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CHAPTER 1

INTRODUCTION

1.1 Overview

In this thesis we introduce and explore the minimal free resolutions of dominant, 1-

semidominant and 2-semidominant ideals, three families of monomial ideals that are

easy to describe and have strong combinatorial properties.

For over half a century mathematicians have tried to obtain the minimal resolu-

tions of families of ideals in closed form with little success. A common mark in the

construction of these classes of ideals and their corresponding resolutions has been

the use of a monomial ordering or, at least, an ordering of the variables. Groebner

bases, mapping cones, Borel ideals and the (usually nonminimal) Lyubeznik resolu-

tion [No,Pe,Me] are some examples of this phenomenon.

Dominant, 1-semidominant and 2-semidominant ideals, as well as the technique

that resolves them minimally, are distinguished from the objects mentioned above in

that they do not require an ordering of the variables; instead, they are characterized

by the exponents with which the variables appear in the factorization of the mono-

mial generators. The concept of dominance resembles the definition of generic ideal

[BPS,BS] as we will explain in Section 2.2.

We will show that the minimal free resolutions of these classes of ideals have some

important properties. In particular, the Taylor resolution of a monomial ideal is

minimal if and only if the ideal is dominant. In other words, dominant ideals give a

full and explicit characterization of when the Taylor resolution is minimal.

The minimal resolutions of 1-semidominant ideals are also remarkably simple;
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they are given by the Scarf complex. Thus it would be fair to say that we know

everything about them. Although not as easy to decode as in the first two cases, the

minimal resolutions of 2-semidominant ideals can also be expressed in simple terms:

informally speaking, they can be obtained from their Taylor resolutions eliminating

pairs of face and facet of equal multidegree in arbitrary order, until exhausting all

possibilities.

The concepts of dominant and 1-semidominant ideal extend those of complete and

almost complete intersection in a natural way, and the transition from dominant to

1-semidominant ideal is smooth. The latter definition is obtained from the former

via a minor modification. However, the combinatorial properties of dominant and 1-

semidominant ideals can be radically different. For instance, in Section 2.3 we give a

condition under which a dominant ideal and a 1-semidominant ideal (that look almost

identical) have the largest and smallest possible projective dimensions, respectively.

That is why in Chapter 3 se introduce a class of monomial ideals, called 1-

cancellations, whose combinatorial properties resemble those of dominant ideals. In

the second part of Chapter 3 we focus our attention toward a particular subfamily of

1-cancellations and use it to give a partial answer to three open problems that appear

in a paper of Peeva-Stillman.

1.2 Background and Notation

Throughout, the letter S denotes a polynomial ring in the variables x1, . . . , xn, over

a field k; that is, S = k[x1, . . . , xn]. An expression of the form xc1
1 , . . . , x

cn
n , ci ≥ 0,

is referred to as a monomial in S (note that the multiplicative identity 1 is viewed

as a monomial). A monomial ideal in S is an ideal generated by monomials. It is

a corollary to Hilbert’s Basis Theorem that monomial ideals are finitely generated.

Moreover, monomial ideals are finitely generated by monomials. Thus, if M is a

monomial ideal in S, it can be represented in the form M = (m1, . . . ,mq), where each

2



mi is a monomial.

1.3 Graded Modules

Definition 1.1 Given a semigroup (H, ∗), we say that S is graded (with respect to

(H, ∗)) if there are k-vector spaces Sh, h ∈ H, such that

(i) S =
⊕
h∈H

Sh as a k-vector space.

(ii) ShSh′ ⊆ Sh∗h′, for all h, h′ ∈ H.

An element l ∈ S is called homogeneous if l ∈ Sh for some h ∈ H.

Definition 1.2 Given a semigroup (H, ∗), we say that an S-module M is graded if

there exist k-vector spaces Mh, h ∈ H, such that

(i) M =
⊕
h∈H

Mh as a k-vector space,

(ii) ShMh′ ⊆ Mh∗h′ for all h, h′ ∈ H.

An element m ∈ M is called homogeneous if m ∈ Mh for some h ∈ H.

1.4 Standard Graded Modules

Below, we introduce a grading that will be used often. Consider the semigroup (N0,+)

of the nonnegative integers under ordinary addition. For every monomial in S define

its degree by deg(xc1
1 . . . xcn

n ) = c1 + . . .+ cn. For every i ∈ N0, let Si be the k-vector

space spanned by all monomials of degree i. An element l ∈ S is said to have degree

i (that is, deg l = i) if l ∈ Si. Under these conditions, S is graded. This grading will

be called the standard grading of the polynomial ring S.

Example 1.1 Let M be a monomial ideal and (N0,+) the semigroup of nonnegative

integers with addition. We will define a grading on the S-modules M and S/M and

call it the standard grading of M and S/M , respectively.
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For every i ∈ N0, let Mi be the k-vector space spanned by all monomials in M of

degree i. An element l ∈ M is said to have degree i (that is, deg l = i) if l ∈ Mi,

Under these conditions, M is graded. Now, the quotient S-module S/M inherits a

grading via S/M =
⊕
i∈N0

(S/M)i, where (S/M)i = Si/Mi. The elements of (S/M)i

are called homogeneous, of degree i.

Example 1.2 Once again, we consider the semigroup (N0,+). Let σ = {m1, . . . ,ms},

where m1, . . . ,ms are monomials. Let [σ] be a formal symbol. We define the degree of

[σ] as deg[σ] = deg (lcm(m1, . . . ,ms)). Let S[σ] be the free S-module spanned by [σ].

We will make S[σ] into a graded free S-module as follows. To simplify our notation,

let us say that deg[σ] = t. For every monomial m ∈ S, set deg(m[σ]) = deg(m) + t.

Now, define (S[σ])i to be the k-vector space spanned by all elements m[σ] ∈ S[σ] such

that m is a monomial and deg (m[σ]) = i. That is,

(S[σ])i =


Si−t[σ], if i ≥ t

0, if i < t

The elements of (S[σ])i will be said to have degree i. Then

S[σ] =

(⊕
i≥0

Si

)
[σ] =

⊕
i≥0

Si[σ] =
⊕
i≥0

(S[σ])i+t =
⊕
i≥0

(S[σ])i .

Likewise,

Sj (S[σ])i = SjSi−t[σ] ⊆ Sj+i−t[σ] = (S[σ])i+j .

Therefore, we have endowed S[σ] with a grading, which will be called the stan-

dard grading of S[σ]. More generally, if σi = {mi1 , . . . ,mis}, with i = 1, . . . , r,

are sets of s monomials, we define r formal objects [σ1], . . . , [σr], and set deg[σi] =

deg (lcm(mi1 , . . . ,mis)). Let
r⊕

i=1

S[σi] be the free S-module generated by [σ1], . . . , [σr].

For every j ∈ N0, let

(
r⊕

i=1

S[σi]

)
j

=
r⊕

i=1

(S[σi])j. The elements of

(
r⊕

i=1

S[σi]

)
j

will be

called homogeneous of degree j. It can be verified that
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(i)
r⊕

i=1

S[σi] =
⊕
j≥0

(
r⊕

i=1

S[σi]

)
j

;

(ii) Sk

(
r⊕

i=1

S[σi]

)
j

⊆
(

r⊕
i=1

S[σi]

)
j+k

.

Thus, we have endowed
r⊕

i=1

S[σi] with a grading, which will be called the standard

grading of
r⊕

i=1

S[σi].

1.5 Multigraded Modules

Let S be the set of all monomials in S (recall that 1 ∈ S is viewed as a monomial).

For each m ∈ S , let Sm be the k-vector space spanned by m. Then

(i) S =
⊕

m∈S

Sm

(ii) SmSm′ ⊆ Smm′ .

Thus, S is a graded polynomial ring with respect to the semigroup (S , .). This

grading of S will be called multigrading.

Example 1.3 Let M be a monomial ideal in S. Let M be the set of all monomials

in M . For each m ∈ M , let Mm be the k- vector space spanned by m. Then

(i) M =
⊕

m∈M

Mm

(ii) SmMm′ ⊆ Mmm′.

Thus, M is a graded module with respect to the semigroup (M , .), and we will

say that M is a multigraded module. The elements of each space Mm will be

said to have multidegree m. The quotient S-module S/M inherits a grading via

S/M =
⊕

m∈M

(S/M)m, where (S/M)m = Sm/Mm.

Example 1.4 Let σ = {m1, . . . ,ms}, where m1, . . . ,ms are monomials. Let [σ] be

a formal symbol. We define the multidegree of [σ], denoted mdeg[σ], as mdeg[σ] =

lcm(m1, . . . ,ms).
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Let S[σ] be the free S-module generated by [σ]. Let S be the set of all monomials

in S. For every m ∈ S , set mdeg(m[σ]) = m.mdeg[σ]. To keep our notation simple,

let mdeg[σ] = l. Now define (S[σ])m to be the k-vector space

(S[σ])M =


Sml−1 [σ], if l | m

0, if l ∤ m

(We will say that every element of a component (S[σ])m has multidegree m.) Then

S[σ] =

(⊕
m∈S

Sm

)
[σ] =

⊕
m∈S

Sm[σ] =
⊕
m∈S

(S[σ])ml =
⊕
m∈S

(S[σ])m .

Likewise, Sm (S[σ])m′ = SmSm′l−1 [σ] = Smm′l−1 [σ] = (S[σ])mm′ .

Therefore, we have defined a grading on S[σ], which will be called multigrading.

More generally, if σi = {mi1 , . . . ,mis}, with i = 1, . . . , r, are sets of s monomials,

we define r formal objects [σ1], . . . [σr] and set their multidegree to be mdeg[σi] =

lcm(mi1 , . . . ,mis). To keep our notation simple, let li = mdeg[σi] ∀i + 1, . . . , r. We

define a multigrading on the free S-module
r⊕

i=1

S[σi] in the same fashion we did before;

that is (
r⊕

i=1

S[σi]

)
m

=
r⊕

i=1

(S[σi])m .

With this definition it can be verified that

(i)
r⊕

i=1

S[σi] =
⊕

m∈S

(
r⊕

i=1

S[σi]

)
m

(ii) Sm

(
r⊕

i=1

S[σi]

)
m′

⊆
(

r⊕
i=1

S[σi]

)
mm′

.

This grading will be called the multigrading of the free S-module
r⊕

i=1

S[σi].

1.6 Graded Free Resolutions

Definition 1.3 Let f : M → N be a homomorphism between two S-modules that are

graded with respect to the same semigroup (H, ∗). We say that f is homogeneous if

f(Mh) ⊆ Nh, for all h ∈ H.
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Definition 1.4 Let M be a monomial ideal in S. A graded free resolution of the

S-module S/M is an exact sequence of the form

F : · · · → Fi
fi−→ Fi−1 → · · · → F1

f1−→ F0
f0−→ S/M → 0,

where each Fi is a free S-module, and the following properties hold:

(i) S/M and the Fi are graded with respect to a fixed semigroup (H, ∗),

(ii) each fi is homogeneous with respect to (H, ∗).

The maps fi are called differential maps, and the matrices (fi) associated to these

maps are called differential matrices. If [σ] is a basis element of the free S-module

Fi, we say that [σ] has homological degree i, which we denote hdeg[σ] = i.

Throughout this work, we are only interested in free resolutions that are graded with

respect to the semigroup that defines either the standard grading or the multigrading.

Thus, when we speak of the standard graded free resolution, we make reference to the

first kind of resolution, while the expression multigraded free resolution is reserved

for the second case.

1.7 Minimal Resolutions

Let M be a monomial ideal. Let

F : · · · → Fi
fi−→ Fi−1 → · · · → F1

f1−→ F0
f0−→ S

M
→ 0

be a free resolution of S/M . F is said to be minimal if for every i, the differential

matrix (fi) of F has no invertible entries.

The idea behind the definition of minimal resolution is this: when one matrix

of a resolution F has an invertible entry, F can be expressed as a direct sum of the

form F = G⊕
(
0 → S

(1)−→ S → 0
)
, where G is also a resolution of S/M . Since G is
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“smaller” than F, F is not minimal. We will say that G is obtained from F by means

of a consecutive cancellation.

There are two main reasons minimal resolutions are important:

(i) Although there are many graded free resolutions for a given monomial ideal, the

minimal resolution is unique up to isomorphism.

(ii) Minimal resolutions encode important information about a monomial ideal. For

example, the Betti numbers, which we introduce in the next section, can be read

off as the ranks of the free modules in a minimal resolution.

1.8 The Taylor Resolution

Let M = (m1, . . . ,mq) be a monomial ideal. For every subset {mi1 , . . . ,mis} of

{m1, . . . ,mq}, with 1 ≤ i1 < . . . < is ≤ q, we create a formal symbol [mi1 , . . . ,mis ],

called a Taylor symbol. The Taylor symbol associated to {} will be denoted by [∅].

For each s = 0, . . . , q, set Fs equal to the free S-module with basis {[mi1 , . . . ,mis ] :

1 ≤ i1 < . . . < is ≤ q} given by the
(
q
s

)
Taylor symbols corresponding to subsets of

size s. That is, Fs =
⊕

i1<...<is

S[mi1 , . . . ,mis ] (note that F0 = S[∅]). Define

f0 : F0 → S/M

s[∅] 7→ f0(s[∅]) = s

For s = 1, . . . , q, let fs : Fs → Fs−1 be given by

fs ([mi1 , . . . ,mis ]) =
s∑

j=1

(−1)j+1 lcm(mi1 , . . . ,mis)

lcm(mi1 , . . . , m̂ij , . . . ,mik)
[mi1 , . . . , m̂ij , . . . ,mik ]

and extended by linearity. The Taylor resolution TM of S/M is the exact sequence

TM : 0 → Fq
fq−→ Fq−1 → · · · → F1

f1−→ F0
f0−→ S/M → 0.

It can be proven that TM is a multigraded free resolution of S/M .
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Remark 1.1 Suppose that F is a multigraded free resolution of S/M . Let fj : Fj →

Fj−1 be an arbitrary differential map of F. Let Fj =
r⊕

i=1

S[σi]. Fix an arbitrary

number k ≥ 0. Let
r∑

t=1

mt[σt] be an arbitrary element of

(
r⊕

i=1

S[σi]

)
k

. By defini-

tion, mt[σt] ∈ (S[σt])k, for all t = 1, . . . , r. Let lt = mdeg (mt[σt]). This implies

that deg lt = deg (mdeg (mt[σt])) = deg (mt[σt]) = k. Since fj is homogeneous,

mdeg (fj (mt[σt])) = mdeg (mt[σt]) = lt. Thus

deg (fj (mt[σt])) = deg{mdeg (fj (mt[σt]))} = deg{mdeg (mt[σt])} = deg lt = k.

In other words, fj (mt[σt]) ∈ (Fj−1)k. Hence, fj

(
r∑

t=1

mt[σt]

)
∈ (Fj−1)k, which im-

plies that fj
(
(Fj)k

)
⊆ (Fj−1)k. It follows that fj is homogeneous with respect to the

standard grading of S/M,F0, F1, . . ., and hence, F is also a standard graded free res-

olution of S/M . This means that multigraded free resolutions are particular cases of

standard graded free resolutions.

Example 1.5 Let M = (x2y2, xz, yz). The Taylor resolution TM of S/M is

0 → S[x2y2, xz, yz]



1

−1

xy


−−−−−−→

S[x2y2, xz]

⊕

S[x2y2, yz]

⊕

S[xz, yz]



−z −z 0

xy2 0 −y

0 xy2 x


−−−−−−−−−−−−−−→

S[x2y2]

⊕

S[xz]

⊕

S[yz]

(
x2y2 xz yz

)
−−−−−−−−−−−−−→ S[∅] → S/M → 0.

Notice that TM is not minimal because one of the differentials has invertible en-

tries. In chapter 2 we will explain how to obtain a minimal resolution of S/M by

making a consecutive cancellation to TM but, for now, let us just accept that the

following is a minimal resolution F of S/M :
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0 →

S[x2y2, yz]

⊕

S[xz, yz]



−z 0

0 −y

xy2 x


−−−−−−−−−−→

S[x2y2]

⊕

S[xz]

⊕

S[yz]

(
x2y2 xz yz

)
−−−−−−−−−−−−−→ S[∅] → S/M → 0.

1.9 The Scarf Complex

Let M = (m1, . . . ,mq) be a monomial ideal. Let TM be the Taylor resolution of S/M ,

and let A be the set of Taylor symbols whose multidegrees are not common to other

Taylor symbols; that is, a Taylor symbol [σ] is in A if and only if mdeg[σ] ̸= mdeg[σ′],

for every Taylor symbol [σ′] ̸= [σ]. For each s = 0, . . . , q, set Gs equal to the free S-

module with basis {[mi1 , . . . ,mis ] ∈ A : 1 ≤ i1 < . . . < is ≤ q}. For each s = 0, . . . , q,

let gs = fs ↾Gs . It can be proven that the gs are well defined (more precisely, that

gs (Gs) ⊆ Gs−1) and that

0 → Gq
gq−→ Gq−1 → · · · → G1

g1−→ G0
g0−→ S

M
→ 0

is a subcomplex of TM , which will be called the Scarf complex of S/M . Although the

Scarf complex itself is a chain complex, it is not exact in general, and thus it is not

generally a resolution of S/M . Those ideals M for which the Scarf complex of S/M

is exact (and thus, a resolution of S/M) are called Scarf ideals. It can be proven that

whenever the Scarf complex is a resolution, it is minimal.

Example 1.6 Let M = (x2y2, xz, yz). The following is the Scarf complex S of S/M

10



which can be easily obtained from TM , given in Example 1.5.

0 → S[xz, yz]



0

−y

x


−−−−−−→

S[x2y2]

⊕

S[xz]

⊕

S[yz]

(
x2y2 xz yz

)
−−−−−−−−−−−−−→ S[∅] → S/M → 0.

Remark 1.2 Notice that S in Example 1.6 is a proper subcomplex of the minimal

resolution F of S/M , given in Example 1.5. Thus S is not even a free resolution of

S/M . However, it can be proven that whenever the Scarf complex is a resolution of a

monomial ideal, it is a minimal free resolution of it.

1.10 Betti Numbers

Definition 1.5 Let M be a monomial ideal, and let

F : · · · → Fi
fi−→ Fi−1 → · · · → F1

f1−→ F0
f0−→ S

M
→ 0

be a minimal multigraded free resolution of S/M . For every i, we define the ith total

Betti number (or just the ith Betti number) of S/M , denoted bi (S/M) (or just bi),

to be bi (S/M) = rank(Fi).

For every i, j ≥ 0, we define the graded Betti number bi,j (S/M) of S/M , in

homological degree i and internal degree j , as

bi,j (S/M) = #{basis elements [σ] of Fi : deg[σ] = j}.

Let m be a monomial in S. For every i, we define the multigraded Betti number

bi,m (S/M) of S/M , as

bi,m (S/M) = #{basis elements [σ] of Fi : mdeg[σ] = m}.
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We define the regularity and projective dimension of S/M , denoted reg (S/M)

and pd (S/M), respectively, to be

reg (S/M) = max{r : bi,i+r (S/M) ̸= 0, for some i ≥ 0}.

pd (S/M) = max{i : bi (S/M) ̸= 0}.
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CHAPTER 2

MINIMAL RESOLUTIONS OF DOMINANT AND SEMIDOMINANT

IDEALS

2.1 Foundational Results

The results in this section are foundational in character because they deal with the

basic concepts of change of basis and consecutive cancellation, which are natural

avenues leading to the minimal free resolution of a monomial ideal. Most of these

results are known in some form to experts, yet we have decided to include statements

with full proofs because the material is essential to the development of this thesis

and, as far as we know, nobody has published these particular facts with careful

explanations.

The reader will find that the underlying ideas have the strong familiar flavor of

linear algebra.

Definition 2.1 Let M be a monomial ideal and let

0 → Fq
fq−→ · · · → Fj+2

fj+2−−→ Fj+1
fj+1−−→ Fj

fj−→ Fj−1 → · · · → F0 → S/M → 0

be a free resolution of S/M .

Let U = {[u1], · · · , [uh]} be a basis of Fj+1 and let V = {[v1], · · · , [vg]} be a basis of

13



Fj. Suppose ars is an invertible entry of the differential matrix

(fj+1)U,V =



a11 · · · a1s · · · a1h
...

...
...

ar1 · · · ars · · · arh
...

...
...

ag1 · · · ags · · · agh


.

The change of basis U ′ = {[u1]
′, · · · , [uh]

′}, where [us]
′ = [us] and [ui]

′ = [ui]−
ari
ars

[us]

for all i ̸= s; and V ′ = {[v1]′, . . . , [vg]′}, where [vr]
′ =

g∑
i=1

ais[vi] and [vi]
′ = [vi], for all

i ̸= r will be called the standard change of basis (around ars).

Lemma 2.1 With the notation used in Definition 2.1, if we make a standard change

of basis around ars, the following properties hold:

(i) mdeg[ui]
′ = mdeg[ui], for all i = 1, ..., h; mdeg[vi]

′ = mdeg[vi], for all i =

1, ..., g.

(ii) The differential matrix (fj+1)U ′,V ′ is of the form

(fj+1)U ′,V ′ =



b1,1 ... b1,s−1 0 b1,s+1 ... b1,h
...

...
...

...
...

br−1,1 ... br−1,s−1 0 br−1,s+1 ... br−1,h

0 ... 0 1 0 ... 0

br+1,1 ... br+1,s−1 0 br+1,s+1 ... br+1,h

...
...

...
...

bg,1 ... bg,s−1 0 bg,s+1 ... bg,h



.

(iii) Let 1 ≤ c ≤ g and 1 ≤ d ≤ h. If c ̸= r and d ̸= s, then bcd = acd −
ardacs
ars

.

(iv) The differential matrix (fj+2)T,U ′ is obtained from (fj+2)T,U by turning the sth

row into a row of zeros, and the differential matrix (fj)V ′,W is obtained from
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(fj)V,W by turning the rth column into a column of zeros. (Here we assume that

T and W are bases of Fj+2 and Fj−1, respectively.)

Proof.

(i) This part is essentially a consequence of the fact that fj+1 is a graded map of

degree 0.

First, notice that since fj+1([us]) =
g∑

i=1

ais[vi], we must have

mdeg[us] = mdeg(ais[vi]) = mdeg aismdeg[vi] for all i.

In particular, since mdeg ars = 1, we have that mdeg[us] = mdeg[vr]. On the other

hand,

mdeg[us] = mdeg(fj+1([us]) = mdeg

(
g∑

i=1

ais[vi]

)
= mdeg[vr]

′.

Combining these facts, we get that mdeg[vr]
′ = mdeg[vr]. In addition to this, it is

clear that for all i ̸= r, mdeg[vi]
′ = mdeg[vi], which proves the first part of (i).

Now given that fj+1([ui]) =
g∑

p=1

api[vp], we must have that mdeg[ui] = mdeg (api[vp]),

for all i = 1, ..., h and p = 1, ..., g. In particular, mdeg[ui] = mdeg (ari[vr]). Therefore,

mdeg

(
ari
ars

[us]

)
= mdeg

(
ari
ars

)
mdeg[us] = mdeg ari mdeg[vr] = mdeg(ari[vr]) =

mdeg[ui], which shows that [ui]
′ = [ui] −

ari
ars

[us] is homogeneous and mdeg[ui]
′ =

mdeg[ui]. Finally, it is clear that mdeg[us]
′ = mdeg[us].

(ii) fj+1([us]
′) = fj+1([us]) =

g∑
i=1

ais[vi] = [vr]
′. Therefore, the sth column of (fj+1)U ′,V ′

is as stated in the lemma.
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On the other hand, for all i ̸= s,

fj+1([ui]
′) = fj+1

(
[ui]−

ari
ars

[us]

)
= fj+1([ui])−

ari
ars

fj+1([us])

=

g∑
p=1

api[vp]−
ari
ars

g∑
p=1

aps[vp]

=
∑
p̸=r

(
api −

ari
ars

aps

)
[vp] + 0[vr]

=
∑
p̸=r

(
api −

ari
ars

aps

)
[vp]

′ + 0[vr]
′.

Hence, the rth row of (fj+1)U ′,V ′ is as stated.

(iii) If c ̸= r and d ̸= s, we have

fj+1([ud]
′) = fj+1

(
[ud]−

ard
ars

[us]

)
=

g∑
i=1

aid[vi]−
ard
ars

g∑
i=1

ais[vi]

=
∑

i̸=c i ̸=r

(
aid −

ard
ars

ais

)
[vi] +

(
acd −

ard
ars

acs

)
[vc] + 0[vr]

=
∑

i̸=c i ̸=r

(
aid −

ard
ars

ais

)
[vi]

′ +

(
acd −

ard
ars

acs

)
[vc]

′.

This implies that bcd = acd −
ardacs
ars

.

(iv) We will denote by Aip the entries of (fj+2)T,U and by Bip the entries of (fj+2)T,U ′ .

If [tp] is a basis element in T , fj+2([tp]) =
h∑

i=1

Aip.[ui].

Given that for all i ̸= s, [ui] = [ui]
′ +

ari
ars

[us]
′, it follows that

fj+2([tp]) =
∑
i ̸=s

Aip

(
[ui]

′ +
ari
ars

[us]
′
)
+ Asp[us]

′

=
h∑

i=1

Aip[ui]
′ +

[(∑
i̸=s

Aip
ari
ars

)
+ Asp

]
[us]

′.

This implies that, for all i ̸= s, Bip = Aip.
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On the other hand, the entry Bsp =

(∑
i̸=s

Aip
ari
ars

)
+Asp must be zero, as we show

below.

Since Im fj+2 = Ker fj+1, we must have (fj+1 ◦ fj+2) ([tp]) = 0; that is,


0

...

0


= (fj+1)U ′,V ′ (fj+2)T,U ′ ([tp])

=



b1,1 ... b1,s−1 0 b1,s+1 ... b1,h
...

...
...

...
...

br−1,1 ... br−1,s−1 0 br−1,s+1 ... br−1,h

0 ... 0 1 0 ... 0

br+1,1 ... br+1,s−1 0 br+1,s+1 ... br+1,h

...
...

...
...

bg,1 ... bg,s−1 0 bg,s+1 ... bg,h





A1p

...

As−1p(∑
i̸=s

Aip
ari
ars

)
+ Asp

As+1p

...

Ahp



.

Notice that the sth entry of the resulting column vector is 0 =

(∑
i̸=s

Aip
ari
ars

)
+ Asp.

This proves our statement regarding (fj+2)T,U ′ .

The proof of the second statement is as follows: for all i ̸= r, [vi]
′ = [vi], which

means that fj([vi]
′) = fj([vi]). In turn, this implies that the ith columns of (fj)V ′,W

and (fj)V,W are equal. Finally, since [vr]
′ = fj+1([us]

′) ⊆ Im fj+1 = Ker fj, we must

have fj([vr]
′) = 0, which means that the rth column of (fj)V ′,W is a column of zeros,

as stated.

Lemma 2.1 has several important implications that we discuss next. We continue

to use the notation introduced in that lemma.
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Remark 2.1 It is obvious that when we make a standard change of basis, some of the

basis elements [ui] and [vi] change. However, since the free modules S[ui] and S[ui]
′

(respectively S[vi] and S[vi]
′) are isomorphic, and given that by Lemma 2.1 (i), [ui]

and [ui]
′ (respectively [vi] and [vi]

′) are abstract objects with the same multidegree, we

can assume that the basis elements [ui] and [vi] do not change. Therefore, after making

a standard change of basis, we can interpret that we have two different representations

· · · →
⊕

S[ui]
(f)−→
⊕

S[vi] → · · ·

and

· · · →
⊕

S[ui]
′ (f)′−−→

⊕
S[vi]

′ → · · ·

of the same free resolution of S/M , or we can interpret that we have two representa-

tions

· · · →
⊕

S[ui]
(f)−→
⊕

S[vi] → · · ·

and

· · · →
⊕

S[ui]
(f)′−−→

⊕
S[vi] → · · ·

of two different free resolutions of S/M . We will choose the second interpretation.

This way, if we identify the basis of TM with a simplicial complex, when we make a

standard change of basis or a consecutive cancellation, the basis of the new resolution

can be identified with a subset of the simplicial complex and we can still speak in terms

of faces and facets.

Remark 2.2 In the same fashion that we identified the differential map fj+1 with

the differential matrix (fj+1)U,V = (ars), we can identify the sth basis element [us] of

Fj+1 with the column vector (δis), where δis = 0 if i ̸= s, and δss = 1. Similarly,

the image fj+1 ([us]) =
∑g

i=1 ais[vi] of [us] can be identified with the sth column vector

(fj+1)U,V . (δis) = (ais) of (ars). Thus each entry ars is the coefficient of [vr] when

fj+1 ([us]) is expressed in terms of the basis V = {[v1], . . . , [vg]}. Notice that there is
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a bijective correspondence between the entries ars of (fj+1)U,V and the ordered pairs

([us], [vr]) of basis elements [us] and [vr] in homological degrees j+1 and j, respectively.

This means that the entry ars of (fj+1)U,V can be written aτσ, where [σ] is the sth

basis element of U and [τ ] is the rth basis element of V . That is, instead of using

subscripts that denote the number of row and column where the entry is placed, we

can use subscripts that identify the basis elements that generate this entry. Most of

the time we will choose the notation aτσ over ars and will say that aτσ is determined

by [σ] and [τ ].

Remark 2.3 Since fj+1 is graded of degree 0, if ars ̸= 0 we must have

mdeg[us] = mdeg fj+1 ([us])

= mdeg

(
g∑

i=1

ais[vi]

)
= mdeg (ars[vr])
= mdeg ars mdeg[vr].

Hence, ars = 0 or mdeg ars =
mdeg[us]

mdeg[vr]
.

With the notation introduced in Remark 2.2: aτσ = 0 or mdeg aτσ =
mdeg[σ]

mdeg[τ ]
. In

particular, if aτσ is invertible then mdeg[σ] = mdeg[τ ].

Now let bτσ be the entry determined by [σ] and [τ ] in (fj+1)U ′,V ′. Reasoning as before,

we get bτσ = 0 or mdeg bτσ =
mdeg[σ]

mdeg[τ ]
.

(Informally speaking, the multidegrees of the entries do not change under standard

changes of bases.) In particular, if aτσ is invertible, then bτσ = 0 or bτσ is also

invertible.

Remark 2.4 It follows from Lemma 2.1 (ii) and (iv) that after making a standard

change of basis around ars, it is possible to make the consecutive cancellation 0 →

S[us]
′ → S[vr]

′ → 0. With the interpretation we adopted in Remark 2.1 and the

notation we introduced in Remark 2.2, the preceding observation can be restated as

follows: after making a standard change of basis around aτσ, the resulting resolution

admits the consecutive cancellation 0 → S[σ] → S[τ ] → 0.
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We close this section introducing the following terminology. After making a stan-

dard change of basis around an invertible entry aτσ of a resolution F, we obtain a new

resolution F′ such that F = F′ ⊕ (0 → S[σ] → S[τ ] → 0). From now on, the consec-

utive cancellation 0 → S[σ] → S[τ ] → 0 will be called standard cancellation, and

we will say that F′ is obained from F by means of a standard cancellation.

2.2 Dominant Ideals

We are ready to address the study of our first family of monomial ideals, the dominant

ideals. This study includes the construction of their minimal free resolutions as well

as an analysis of their combinatorial properties.

Definition 2.2 Given a set G of monomials in S, we say that

• An element m ∈ G has a dominant variable x (with respect to G) if for all

m′ ∈ G \ {m}, the exponent with which x appears in the factorization of m is

larger than the exponent with which x appears in the factorization of m′; that

is, there exists a positive k such that xk | m and xk ∤ m′, for all m′ ̸= m.

• An element m ∈ G is a dominant monomial (with respect to G) if it has a

dominant variable.

• The set G is a dominant set if every m ∈ G is dominant.

• A monomial ideal M is a dominant ideal if its minimal generating set is

dominant.

Example 2.1 The ideals M1 = (x3y, xy2z, xz2) and M2 = (wx, y3, z2) are dominant,

while M3 = (x2, y2, xy) is not.

Some comments are in order. First, notice that the concept of dominant monomial

always depends on a reference set. For example, the ideal M3 introduced above is
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not dominant because xy is not dominant in the minimal generating set {x2, y2, xy};

however, xy is dominant in the proper subset {x2, xy}.

Second, the definitions of dominant ideal and generic ideal are based on properties

of the exponents of the monomial generators. (Recall that an ideal is generic if

no variable appears with the same nonzero exponent in more than one monomial

generator.) Despite this similarity, dominant and generic ideals are generally different.

In Example 2.1, for instance, M1 is dominant but not generic, while M3 is generic

but not dominant.

Finally, observe that if a monomial ideal is a complete intersection, its monomial

generators are dominant because they do not have variables in common (such is the

case with M2). It follows that the ideal itself is dominant. Thus, monomial complete

intersections are a subset of the family of dominant ideals.

Let us now study some properties derived from the concept of dominance. The

following lemma will be quoted often throughout this work.

Lemma 2.2 Let M be a monomial ideal with minimal generating set G. If [σ1] and

[σ2] are two basis elements of TM with mdeg[σ1] = mdeg[σ2], then [σ1] and [σ2] contain

the same dominant monomials of G.

Proof. Let L1 and L2 be the sets of monomials contained in [σ1] and [σ2], respectively.

Then lcm(L1) = lcm(L2). If neither L1 nor L2 contains dominant elements of G, there

is nothing to prove.

Suppose now that one of these sets, call it Li, contains a dominant monomial m

of G. We will show that the other set, call it Lj, contains m as well. Since m has a

dominant variable x, there is a positive k such that xk | m and xk ∤ m′, for all m′ in

G \ {m}. In particular, xk ∤ m′ for all m′ in Lj \ {m}. That is, xk ∤ lcm(Lj \ {m}).

On the other hand, xk | lcm(Li) = lcm(Lj).

Hence, Lj ̸= Lj \ {m}, which means that m is in Lj. We have proven that each
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dominant element m of G which is in one of [σ1] and [σ2] is also contained in the

other.

In the following theorem we construct the minimal resolutions of dominant ideals.

This theorem yields, in addition, an explicit characterization of when the Taylor

resolution is minimal.

Theorem 2.1 Let M be a monomial ideal. Then TM is minimal if and only if M is

dominant.

Proof. (⇒) Suppose that M is not dominant. Then its minimal generating set G

contains a nondominant monomial n. Let σ = G and τm = G \ {m}. This means

that n | lcm (τn) and thus, mdeg[σ] = mdeg [τn]. So, the top differential map sends

[σ] 7→
∑
m̸=n

am [τm] ± 1 [τn]. Since the coefficient ±1 of [τn] is invertible, TM is not

minimal, a contradiction.

(⇐) If [σ] = [m1, . . . ,mj] and [τi] = [m1, . . . , m̂i, . . . ,mj] for all i, then

fj ([σ]) =

j∑
i=1

aτiσ[τi],

where aτiσ = (−1)i+1mdeg[σ]

mdeg[τi]
. Since mi is dominant, it follows from Lemma 2.2 that

aτiσ is not invertible. This means that the differential matrices of TM do not have

invertible entries, and hence TM is minimal.

Corollary 2.1 Dominant ideals are Scarf.

Proof. If two basis elements [σ1], [σ2] of TM have the same multidegree, according to

Lemma 2.2, they contain the same dominant monomials. Since all monomials of the

minimal generating set are dominant, [σ1] = [σ2].

It follows from Lemma 2.2 that if M is dominant, no facet [τi] of [σ] has the same

multidegree as [σ]. However, Corollary 2.1 shows that an even stronger statement is

22



true: if M is dominant, all basis elements of TM have different multidegrees.

Example 2.2 Let M = (x2, xy, y3). The Taylor resolution TM of S/M is

0 → S[x2, xy, y3]



x

−1

y2


−−−−−−→

S[xy, y3]

⊕

S[x2, y3]

⊕

S[x2, xy]



0 −y3 −y

−y2 0 x

x x2 0


−−−−−−−−−−−−−−−→

S[x2]

⊕

S[xy]

⊕

S[y3]

(
x2 xy y3

)
−−−−−−−−−−−→

S[∅] → S/M → 0.

Notice that M is not a dominant ideal since xy is nondominant. It follows from

Theorem 2.1 that TM is not minimal, which is consistent with the fact that one of

the differential matrices contains an invertible entry −1.

In contrast to the previous example, the next one contains a Taylor Resolution which

is minimal.

Example 2.3 Let M = (x2, xz, y3). the Taylor resolution TM of S/M is

0 → S[x2, xz, y3]



x

−z

y3


−−−−−−→

S[xz, y3]

⊕

S[x2, y3]

⊕

S[x2, xz]



0 −y3 −z

−y3 0 x

xz x2 0


−−−−−−−−−−−−−−−→

S[x2]

⊕

S[xz]

⊕

S[y3]

(
x2 xz y3

)
−−−−−−−−−−−→

S[∅] → S/M → 0.

In this example, M is dominant. According to Theorem 2.1, the Taylor Resolution

TM is minimal, which is consistent with the fact that none of the differential matrices

contains invertible entries.

23



Having obtained the minimal free resolutions of the dominant ideals, we can now

study some combinatorial and homological properties of the family.

Theorem 2.2 (Regularity of Dominant Ideals)

Let M be a dominant ideal with minimal generating set G = {m1, . . . ,mq}.

Let h = deg (mdeg[m1, . . . ,mq]). Then reg (S/M) = h− q.

Proof. Since [m1, . . . ,mq] is a basis element in homological degree q, it follows that

bqh ̸= 0. Thus, reg (S/M) ≥ h− q. We will prove that if bij ̸= 0, then h− q ≥ j − i,

which will complete the proof.

Let [σ] = [mr1 , . . . ,mri ] be a basis element of TM with deg (mdeg[σ]) = j. Let

m ∈ G⧹{mr1 , . . . ,mri}. Since different monomial generators have different dominant

variables, it follows that

deg (mdeg[mr1 , . . . ,mri ,m]) ≥ deg (mdeg[mr1 , . . . ,mri ]) + 1.

Then, after applying the preceding reasoning q − i times, we get

h = deg (mdeg[m1, . . . ,mq])

= deg
(
mdeg[mr1 , . . . ,mri ,ms1 , . . . ,msq−i

]
)

≥ deg (mdeg[mr1 , . . . ,mri ]) + (q − i)
= j + q − i.

This implies that h− q ≥ j − i.

Corollary 2.2 (Characterization of the minimal Taylor Resolution)

Let M be a monomial ideal minimally generated by q monomials. The following

statements are equivalent:

(i) TM is minimal.

(ii) M is dominant.

(iii) bi(S/M) =
(
q
i

)
for all i.
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(iv) pd(S/M) = q.

(v) The LCM lattice of M is Boolean.

Proof. The equivalence of (i), (ii), (iii) and (v) is immediate, as is (iii) ⇒ (iv). We

complete the proof by showing that (iv) ⇒ (i).

Assume that the Taylor Resolution is not minimal. Then, by Theorem 2.1, M

is not dominant. Thus there exists a nondominant monomial m in the minimal

generating set G of M . Let σ = G and τ = G \ {m}. Then m | lcm(τ) and hence,

mdeg[σ] = mdeg[τ ]. Since [σ] and [τ ] are face and facet in homological degrees q

and q − 1 respectively, it follows that the qth differential matrix (dq) of TM contains

an invertible entry. After making a consecutive cancellation in homological degrees q

and q − 1, we obtain a new resolution F of S/M . But the rank of the free module in

homological degree q of TM is 1, which implies that the rank of the free module in

homological degree q of F is 0. Hence, the length of F is less than q, a contradiction.

The following two remarks are now trivial but show that dominant ideals are as

good as we could expect. First, note that the Taylor resolution of S/M agrees with

the Scarf complex of S/M if and only if M is dominant. This is interesting because

the Taylor resolution is usually highly nonminimal, while the Scarf complex is often

strictly contained in the minimal free resolution of S/M . Second, two dominant

ideals whose minimal generating sets have the same cardinality must have the same

projective dimension and the same total Betti numbers. This is immediate from

Corollary 2.2 (iii) and (iv).

2.3 Semidominant Ideals

In this section we introduce the semidominant ideals by slightly modifying the def-

inition of dominance in such a way that the resulting family does not overlap with
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the family of dominant ideals and yet retains some of its rich properties.

Definition 2.3 Let G be a set of monomials in S. We say that G is semidomi-

nant if exactly one monomial of G is not dominant. A monomial ideal M is called

a semidominant ideal if its minimal generating set is semidominant. When a

semidominant set G is expressed in the form G = {m1, . . . ,mq, n} we will assume

that m1, . . . ,mq are dominant and n is nondominant.

Example 2.4 The ideals M1 = (x2, y3, xy) and M2 = (xy, z2, yz) are semidominant,

M3 = (x2z, y3, yz3) is dominant, and M4 = (xy, yz, xz) is neither dominant nor

semidominant.

Note that the concept of semidominance is obtained from that of dominance in

the same way as the definition of almost complete intersection is derived from that

of complete intersection; namely, by relaxing the defining conditions. In the next

proposition we explain how the former concepts extend the latter.

Proposition 2.3 Monomial almost complete intersections are either dominant or

semidominant ideals.

Proof. Let M = (l1, ..., lq, l) be a monomial almost complete intersection, where

l1, ..., lq form a regular sequence and hence have no variable in common. Note that

for all i, li ∤ l. Then there is a variable xi that appears with a larger exponent in the

factorization of li than in that of l. Therefore, xi is a dominant variable for li, which

means that li is a dominant monomial.

Observe that the two cases stated in the proposition are feasible (consider M2 and

M3 in Example 2.4). Later, we will prove that semidominant ideals are Scarf which,

combined with Corollary 2.1 and Proposition 2.3, implies that monomial almost com-

plete intersections are Scarf too.
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Now we are ready to construct the minimal free resolutions of semidominant ideals.

The idea is simple: if M is semidominant and we identify the basis of TM with the

full simplex on M , we will prove that the basis of the minimal free resolution of S/M

can be obtained by eliminating pairs ([σ], [τ ]) of face and facet of equal multidegree

from the simplicial complex in arbitrary order until we exhaust all such pairs. We

begin with a lemma.

Lemma 2.3 Let M be a semidominant ideal. Let F be a free resolution of S/M

obtained from TM by means of standard cancellations. If two basis elements of F

have the same multidegree, then they are face and facet.

Proof. Let [σ] and [τ ] be two basis elements of F. If mdeg[σ] = mdeg[τ ] then, ac-

cording to Lemma 2.2, [σ] and [τ ] contain the same dominant monomials, and thus

they must differ in the nondominant monomials that define them. Since the minimal

generating set of M contains exactly one nondominant monomial n, we conclude that

one of these basis elements contains n while the other does not. That is, [σ] and [τ ]

are face and facet.

The next two results show that, in the context of semidominant ideals, the process

of eliminating pairs of face and facet of equal multidegree is equivalent to that of

making standard cancellations.

Note: We will say that two pairs of basis elements ([σ], [τ ]) and ([θ], [π]) of TM

are “disjoint” if [σ] ̸= [θ], [π] and [τ ] ̸= [θ], [π].

Lemma 2.4 Let M be a semidominant ideal. Let F be a free resolution of S/M ob-

tained from TM by means of standard cancellations. Let aτσ and aπθ be two invertible

entries of F, determined by two disjoint pairs of basis elements ([σ], [τ ]) and ([θ], [π])

of F, respectively.

Then after making the standard cancellation 0 → S[σ] → S[τ ] → 0 in F, it is possible

to make the standard cancellation 0 → S[θ] → S[π] → 0.
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Proof. [σ] and [τ ] are basis elements in homological degrees j and j− 1, respectively,

for some j. Thus aτσ is an entry of the differential matrix (fj) of F. Similarly, [θ] and

[π] are basis elements in some homological degrees k and k − 1, and aπθ is an entry

of the differential matrix (fk) of F.

In order to prove the lemma, it is enough to show that after making the standard

cancellation 0 → S[σ] → S[τ ] → 0 in F, the entry a′πθ of the differential matrix (f ′
k)

of the new resolution F′ is invertible.

Given that only (fj+1), (fj) and (fj−1) are affected by the standard cancellation

0 → S[σ] → S[τ ] → 0, if k ̸= j − 1, j, j + 1, then a′πθ = aπθ; that is, a
′
πθ is invertible.

Therefore, we only need to prove that a′πθ is invertible in the following cases:

k = j; k = j − 1, and k = j + 1.

First, suppose k = j. Since aπθ is invertible, mdeg[π] = mdeg[θ]. Then a′πθ = 0

or a′πθ is invertible. Let us assume that a′πθ = 0. By Lemma 2.1 (iii), we have that

0 = a′πθ = aπθ −
aπσaτθ
aτσ

. It follows that aπθaτσ = aπσaτθ and, since aπθ and aτσ

are invertible, aπσ and aτθ must be invertible too. In particular, the fact that aπσ

is invertible implies that mdeg[σ] = mdeg[π] which, combined with the hypothesis

mdeg[σ] = mdeg[τ ], implies that mdeg[τ ] = mdeg[π]. It follows from Lemma 2.3

that one of [τ ] and [π] is a face and the other is its facet. Then they must appear in

consecutive homological degrees, which is absurd because k = j. We conclude that

a′πθ is invertible.

Now suppose k = j−1. In this case [τ ] and [θ] appear in homological degree j−1.

Let [τ ] and [θ] be the rth and sth basis elements, respectively. It follows from Lemma

2.1 iv) that after making the standard cancellation 0 → S[σ] → S[τ ] → 0, the matrix(
f ′
j−1

)
of the new resolution F′ is obtained from (fj−1) by eliminating its rth column.

Since the entry a′πθ is placed in the sth column of
(
f ′
j−1

)
, we have that a′πθ = aπθ; that

is, a′πθ is invertible.

Finally, suppose k = j + 1. In this case [σ] and [π] appear in homological degree
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j. Let [σ] and [π] be the uth and vth basis elements, respectively. It follows from

Lemma 2.1 (iv) that after making the standard cancellation 0 → S[σ] → S[τ ] → 0,

the matrix
(
f ′
j+1

)
of the new resolution F′ is obtained from (fj+1) by eliminating its

uth row. Since the entry a′πθ is placed in the vth row of
(
f ′
j+1

)
, we have that a′πθ = aπθ;

that is, a′πθ is invertible.

Theorem 2.4 Let M be a semidominant ideal. Let ([σ1], [τ1]) , . . . , ([σk], [τk]) be k

pairs of basis elements of TM , satisfying the following properties:

(i) ([σi], [τi]) and ([σj], [τj]) are disjoint, if i ̸= j.

(ii) [τi] is a facet of [σi], for all i = 1, . . . , k.

(iii) mdeg[σi] = mdeg[τi], for all i = 1, . . . , k.

Then, starting with TM it is possible to make the following sequence of standard

cancellations:

0 → S[σ1] → S[τ1] → 0, · · · , 0 → S[σk] → S[τk] → 0.

Proof. The proof is by induction on k.

If k = 2, the statement holds by Lemma 2.4, with F = TM . (The fact that aτ1σ1

and aτ2σ2 are invertible follows from the fact that in TM faces and facets of equal

multidegree always determine an invertible entry.)

Assume that the theorem holds for k = j − 1. Let k = j. Then it is possible to

make either of the following two sequences of standard cancellations:

0 → S[σ1] → S[τ1] → 0, · · · , 0 → S[σj−1] → S[τj−1] → 0

and

0 → S[σ1] → S[τ1] → 0, · · · , 0 → S[σj−2] → S[τj−2] → 0, 0 → S[σj] → S[τj] → 0.
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This means that after making the first j − 2 cancellations

0 → S[σ1] → S[τ1] → 0, · · · , 0 → S[σj−2] → S[τj−2] → 0

either of the following two cancellations can be made:

0 → S[σj−1] → S[τj−1] → 0

and

0 → S[σj] → S[τj] → 0.

In other words, after making the first j − 2 standard cancellations, we obtain a

free resolution F, where the entries aτj−1σj−1
and aσjτj determined by ([σj−1], [τj−1])

and ([σj], [τj]), respectively, are invertible. Therefore, it follows from Lemma 2.4,

that after making the cancellation 0 → S[σj−1] → S[τj−1] → 0, the cancellation

0 → S[σj] → S[τj] → 0 is still possible.

Note. In Theorem 2.4, the pairs ([σ1], [τ1]) , . . . , ([σk], [τk]) are indistinguishable, which

implies that the standard cancellations can be made in arbitrary order.

Lemma 2.5 Let M = (m1, . . . ,mq, n) be a semidominant ideal. Let

A =
{(

[mi1 , . . . ,mij , n], [mi1 , . . . ,mij ]
)
: n | lcm(mi1 , . . . ,mij)

}
. Then the following

properties are satisfied:

(i) If ([σ1], [τ1]) and ([σ2], [τ2]) are distinct ordered pairs of A, then they are disjoint.

(ii) [τ ] is a facet of [σ], for all ([σ], [τ ]) ∈ A.

(iii) mdeg[σ] = mdeg[τ ], for all ([σ], [τ ]) ∈ A.

(iv) If ([σ], [τ ]) is an ordered pair of basis elements of TM such that [τ ] is a facet of

[σ] and mdeg[σ] = mdeg[τ ], then ([σ], [τ ]) ∈ A.
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Proof. (i) Since [σ1] and [σ2] contain n and [τ1] and [τ2] do not contain n, it follows

that [σ1] ̸= [τ2] and [τ1] ̸= [σ2]. Let us assume that [σ1] = [σ2]. Then, by con-

struction, [τ1] = [τ2] and thus ([σ1], [τ1]) = ([σ2], [τ2]), a contradiction. Let us now

assume that [τ1] = [τ2]. Then, by construction, [σ1] = [σ2] and thus ([σ1], [τ1]) =

([σ2], [τ2]), a contradiction. (ii) Trivial. (iii) Since n | lcm
(
mi1 , . . . ,mij

)
, it fol-

lows that lcm
(
mi1 , . . . ,mij

)
= lcm

(
mi1 , . . . ,mij , n

)
. (iv) If mdeg[σ] = mdeg[τ ]

then, by Lemma 2.2, [σ] and [τ ] contain the same dominant monomials, and there-

fore they differ in the nondominant monomials that define them. But the minimal

generating set of M contains exactly one nondominant monomial and [τ ] is a facet

of [σ], which implies that [σ] and [τ ] must be of the form [σ] = [mi1 , . . . ,mij , n];

[τ ] = [mi1 , . . . ,mij ].

Theorem 2.5 Let M = (m1, . . . ,mq, n) be a semidominant ideal. Let

A =
{(

[mi1 , . . . ,mij , n], [mi1 , . . . ,mij ]
)
: n | lcm(mi1 , . . . ,mij)

}
. Then the minimal

free resolution of S/M can be obtained from TM by doing all standard cancellations

0 → S[σ] → S[τ ] → 0, with ([σ], [τ ]) ∈ A. In other words, if F is the minimal free

resolution of S/M , then

TM = F⊕

 ⊕
([σ],[τ ])∈A

0 → S[σ] → S[τ ] → 0

 .

Proof. Notice that the ordered pairs of A satisfy the hypotheses of Theorem 2.4,

by Lemma 2.5. Therefore, starting with TM , it is possible to make all standard

cancellations 0 → S[σ] → S[τ ] → 0, with ([σ], [τ ]) ∈ A. We claim that the free

resolution F, obtained after making all these cancellations, is minimal.

Let us assume that F is not minimal. Then there exists an invertible entry aτσ

of F, determined by two basis elements [σ] and [τ ] of F. Hence, [σ] and [τ ] have the

same multidegree. Thus by Lemma 2.3, [σ] and [τ ] are face and facet. It follows from

Lemma 2.5 (iv) that ([σ], [τ ]) ∈ A, a contradiction.
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Corollary 2.3 Semidominant ideals are Scarf.

Proof. Let M be a semidominant ideal. If [σ] and [τ ]are basis elements of TM and

mdeg[σ] = mdeg[τ ], then by Lemma 2.3 we have that [σ] and [τ ] are face and facet.

It follows from Lemma 2.5 (iv) and Theorem 2.5 that [σ] and [τ ] are excluded from

the minimal free resolution of S/M .

Since the Scarf complex of an ideal is the intersection of all its minimal resolutions

(as proved in [Me]), it follows that all minimal resolutions of semidominant ideals have

the same basis.

Example 2.5 Let M = (x3y, y2z, xz2, xyz). Note that M is semidominant, xyz being

the nondominant generator. By Corollary 2.3, M is Scarf. Now, the multidegrees

that are common to more than one basis element of TM are x3y2z, x3yz2, xy2z2, and

x3y2z2 as one can determine by simple inspection. Hence, the basis of the minimal

resolution F of S/M is obtained from the basis of TM by eliminating the elements that

have one of the multidegrees mentioned above. This leads to the following resolution:

F : 0 →

S[x3y, xyz]

⊕

S[y2z, xyz]

⊕

S[xz2, xyz]

(f2)−−→

S[x3y]

⊕

S[y2z]

⊕

S[xz2]

⊕

S[xyz]

(f1)−−→ S[∅]
(f0)−−→ S/M → 0.

Corollary 2.4 Let M be a semidominant ideal with minimal generating set G =

{m1, . . . ,mq, n}.

(i) The projective dimension of S/M is the cardinality of the largest dominant sub-

set of G that contains n.
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(ii) Let Bj =
{
[mt1 , . . . ,mtj ] : n ∤ mdeg[mt1 , . . . ,mtj ]

}
. Then the total Betti num-

bers are given by the formula

bi (S/M) = #Bi +#Bi−1.

Proof. Let F and A be as in Theorem 2.5.

(i) Let r = max {#(D) : D is a dominant subset of G that contains n} and let{
mt1 , . . . ,mtr−1 , n

}
be a dominant subset of G. Then n ∤ lcm

(
mt1 , . . . ,mtr−1

)
. Thus(

[mt1 , . . . ,mtr−1 , n], [mt1 , . . . ,mtr−1 ]
)
is not in A and, therefore, [mt1 , . . . ,mtr−1 , n] is

a basis element of the minimal resolution F. Thus, pd (S/M) ≥ r. Now, if [σ]

is a basis element of T, in homological degree k > r, then [σ] must be of the

form: [σ] = [ms1 , . . . ,msk ] or [σ] = [ms1 , . . . ,msk−1
, n]. If [σ] = [ms1 , . . . ,msk ], then

{ms1 , . . . ,msk , n} cannot be dominant because its cardinality is larger than r. Hence,

n | lcm(ms1 , . . . ,msk), which means that ([ms1 , . . . ,msk , n], [σ]) ∈ A, and thus [σ] is

not a basis element of F. Similar reasoning shows that if [σ] = [ms1 , . . . ,msk−1
, n]

then
(
[σ], [ms1 , . . . ,msk−1

]
)
∈ A, and thus [σ] is not a basis element of F. Given that

every basis element of TM in homological degree k > r is excluded from the basis of F,

we conclude that pd (S/M) = r. (ii) The basis elements of TM in homological degree

i are of the form [ms1 , . . . ,msi−1
, n] or [mt1 , . . . ,mti ]. Since the basis elements of F

are obtained from the basis of TM by eliminating those elements which are the first

or the second component of a pair ([σ], [τ ]) ∈ A, it follows that the family of basis

elements of F in homological degree i is: {[mt1 , . . . ,mti ] : n ∤ lcm (mt1 , . . . ,mti)} ∪{
[ms1 , . . . ,msi−1

, n] : n ∤ lcm
(
ms1 , . . . ,msi−1

)}
. The statement of part (ii) is now

clear.

Corollary 2.5 Let M = (m1, . . . ,mq, n) be a semidominant ideal. Then pd (S/M) =

2 if and only if for all i ̸= j, n | lcm(mi,mj).

Proof. (⇒) If pd (S/M) = 2, then the largest dominant subset of {m1, . . . ,mq, n}
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that contains n has cardinality 2 (Corollary 2.4). Thus every set {mi,mj, n} is non-

dominant, which implies that n | lcm(mi,mj).

(⇐) If k ≥ 2, then n | lcm(mi1 , . . . ,mik). Therefore, the set D = {mi1 , . . . ,mik , n}

is not dominant and, according to Corollary 2.4, pd (S/M) ≤ 2. Now, {m1, n} is

dominant, so pd (S/M) = 2.

Corollary 2.5 is interesting because it tells us that an ideal M may have maximum

projective dimension (i.e., pd (S/M) = number of generators of M) and another ideal

M ′, obtained by adding one generator to the minimal generating set of M , may have

minimum projective dimension (i.e., pd (S/M ′) = 2). The next example illustrates

this phenomenon.

Example 2.6 Let M = (v2xyz, vw2yz, vwx2z, vwxy2, wxyz2), and let M ′ = (v2xyz,

vw2yz, vwx2z, vwxy2, wxyz2, vwxyz). Since M is dominant, pd (S/M) = 5. The

semidominant ideal M ′ obtained from M by adding the generator vwxyz satisfies the

condition of Corollary 2.5 and thus pd (S/M ′) = 2.

Corollary 2.6 Let M be a semidominant ideal with minimal generating set G =

{m1, . . . ,mq, n}. Then

reg (S/M) = max {deg (mdeg[σ])− hdeg[σ] : σ ⊂ G, n ∈ σ, and σ is dominant} .

Proof. Let {mr1 , . . . ,mrt , n} be a dominant set such that

deg (mdeg[mr1 , . . . ,mrt , n])− (t+ 1) = c.

Then reg (S/M) ≥ c. We will prove that if bij ̸= 0, then c ≥ j−i, which will complete

the proof. There are two ways in which we might have bij ̸= 0:

(i) the minimal free resolution contains a basis element of the form [mr1 , . . . ,mri ]

such that {mr1 , . . . ,mri , n} is dominant and deg (mdeg[mr1 , . . . ,mri ]) = j;
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(ii) the minimal free resolution contains a basis element of the form [ms1 , . . . ,msi−1
, n]

such that {ms1 , . . . ,msi−1
, n} is dominant and deg

(
mdeg[ms1 , . . . ,msi−1

, n]
)
=

j.

If (i) happens, then [mr1 , . . . ,mri , n] is also in the minimal free resolution and

deg (mdeg[mr1 , . . . ,mri , n]) ≥ deg (mdeg[mr1 , . . . ,mri ]) + 1.

It follows from the construction of c that

c ≥ deg (mdeg[mr1 , . . . ,mri , n])−(i+1) ≥ deg (mdeg[mr1 , . . . ,mri ])+1−(i+1) = j−i.

If (ii) happens, then it follows from the construction of c that

c ≥ deg
(
mdeg[ms1 , . . . ,msi−1

, n]
)
− i = j − i.

Example 2.7 Let M = (x3y, y2z, xz2, xyz) as in Example 2.5. Since we already

know the minimal free resolution F of S/M , we can read off the numbers pd (S/M),

bi (S/M), and reg (S/M) from F. However, we will calculate these numbers using

Corollary 2.4 and Corollary 2.6 which, in some cases, turns out to be a faster alter-

native.

Observe that the largest dominant sets containing the nondominant generator xyz

are {x3y, xyz}, {y2z, xyz}, and {xz2, xyz}. It follows from Corollary 2.4 (i) that

pd (S/M) = 2.

Besides that, according to Corollary 2.4 (ii), b2 (S/M) is given by the formula:

b2 (S/M) = #{[mi,mj]/n ∤ mdeg[mi,mj]}
+#{[mi, n]/n ∤ mdeg[mi]} = #{}+#{[x3y, xyz]; [y2z, xyz]; [xz2, xyz]} = 3.

(b1 (S/M) and b0 (S/M) are always easily obtained from TM .) Finally, by Corol-

lary 2.6 we have reg (S/M) = max{deg(mdeg[x3y, xyz]) − 2; deg(mdeg[y2z, xyz]) −

2; deg(mdeg[xz2, xyz])− 2} = max{5− 2; 4− 2; 4− 2} = 3.
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All our calculations are consistent with the information encoded in F, as we can

easily verify.

2.4 2-semidominant Ideals

The concepts of dominance and semidominance lead in a natural way to the more

general definition of p-semidominance, which we give next.

Definition 2.4 A set of monomials is called p-semidominant if it contains ex-

actly p nondominant monomials. A monomial ideal is called p-semidominant if its

minimal generating set is p-semidominant.

With this definition, dominant and semidominant ideals can be thought of as being

0-semidominant and 1-semidominant, respectively. Sometimes, the word semidomi-

nant is used to denote 1-semidominant ideals while other times it makes reference to

p-semidominant ideals in general (as in the title of this thesis). The meaning will be

clear from the context.

In this section we will construct the minimal free resolution of 2-semidominant ide-

als; that is, monomial ideals M with minimal generating set G = {m1, . . . ,mq, n1, n2}

where m1, . . . ,mq are dominant and n1 and n2 are nondominant. First, we want to

know the character of the entries of the differential matrices of TM .

Lemma 2.6 Let M be a 2-semidominant ideal. If two basis elements of a resolution

of S/M , in consecutive homological degrees, have the same multidegree, then they are

face and facet.

Proof. Let [σ] and [τ ] be basis elements in homological degrees j + 1 and j, re-

spectively. If mdeg[σ] = mdeg[τ ], then [σ] and [τ ] must be generated by the same

dominant monomials. Given that [σ] has one more generator than [τ ], if [τ ] con-

tains no nondominant generator, [σ] must contain exactly one. On the other hand,
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if [τ ] contains one nondominant generator, then [σ] must contain both nondominant

generators. The possibilities are four:

(i) [τ ] = [mi1 , . . . ,mij ]; [σ] = [mi1 , . . . ,mij , n1];

(ii) [τ ] = [mi1 , . . . ,mij ]; [σ] = [mi1 , . . . ,mij , n2];

(iii) [τ ] = [mi1 , . . . ,mij−1
, n1]; [σ] = [mi1 , . . . ,mij−1

, n1, n2];

(iv) [τ ] = [mi1 , . . . ,mij−1
, n2]; [σ] = [mi1 , . . . ,mij−1

, n1, n2].

In every case we see that [τ ] is a facet of [σ].

Our next goal is to prove that the basis of the minimal free resolution of S/M

can be obtained from the basis of its Taylor resolution by eliminating pairs of basis

elements [σ], [τ ] in an arbitrary order, where [τ ] is a facet of [σ] and mdeg[σ] =

mdeg[τ ], until exhausting all possibilities.

If this idea is going to succeed, we need first to confirm that the following danger-

ous scenario never occurs. Suppose that ([σ1], [τ1]) and ([σ2], [τ2]) are disjoint pairs of

face and facet with mdeg[σi] = mdeg[τi]. Let ([σ1], [τ1]) determine the invertible entry

ars of the differential matrix (fj+1) of TM . Then eliminating [σ1] and [τ1] from the

basis of TM is equivalent to making the standard change of basis around ars, followed

by the standard cancellation 0 → S[σ1] → S[τ1] → 0.

Similarly, ([σ2], [τ2]) defines an invertible entry acd and eliminating [σ2], [τ2] from

the basis of the Taylor resolution is equivalent to making a standard change of basis

around acd, followed by the standard cancellation 0 → S[σ2] → S[τ2] → 0.
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However, when we make the standard change of basis around ars, the entries of

the matrices change. In particular, the entry acd might become noninvertible, which

would prevent us from doing the standard cancellation 0 → S[σ2] → S[τ2] → 0.

In the next lemma, which is analogous to Lemma 2.4, we show that this scenario

is not possible for 2-semidominant ideals.

Lemma 2.7 Let M be a 2-semidominant ideal. Let F be a free resolution of S/M ob-

tained from TM by means of standard cancellations. Let aτσ and aπθ be two invertible

entries of F, corresponding to two disjoint pairs of basis elements ([σ], [τ ]) and ([θ], [π])

of F, respectively. Then after making the standard cancellation 0 → S[σ] → S[τ ] → 0

in F, it is possible to make the standard cancellation 0 → S[θ] → S[π] → 0.

Proof. [σ] and [τ ] are basis elements in homological degrees j and j− 1, respectively,

for some j. Thus aτσ is an entry of the differential matrix (fj) of F. Similarly, [θ] and

[π] are basis elements in some homological degrees k and k − 1, and aπθ is an entry

of the differential matrix (fk) of F.

In order to prove the lemma, it is enough to show that after making the standard

cancellation 0 → S[σ] → S[τ ] → 0 in F, the entry a′πθ of the differential matrix (f ′
k)

of the new resolution F′ is invertible.

Given that only (fj+1), (fj) and (fj−1) are affected by the standard cancellation

0 → S[σ] → S[τ ] → 0, if k ̸= j − 1, j, j + 1 then a′πθ = aπθ; that is, a
′
πθ is invertible.

Therefore, we only need to prove that a′πθ is invertible in the following cases:

k = j; k = j − 1, k = j + 1.

Suposse k = j. Since aπθ is invertible, mdeg[π] = mdeg[θ]. Then a′πθ = 0 or

a′πθ is invertible. Let us assume that a′πθ = 0. By Lemma 2.1 (iii), we have that

0 = a′πθ = aπθ −
aπσaτθ
aτσ

. It follows that aπθaτσ = aπσaτθ and, since aπθ and aτσ

are invertible, aπσ and aτθ must be invertible too. In particular, the fact that aπσ

is invertible implies that mdeg[σ] = mdeg[π] which, combined with the hypothesis
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mdeg[σ] = mdeg[τ ], implies that mdeg[τ ] = mdeg[π].

In particular, [τ ] and [π] contain the same dominant monomials and thus they

differ in the nondominant monomials that define them. Since [τ ] and [π] appear in the

same homological degree, they must contain exactly one nondominant generator each.

Then [τ ] and [π] are of the form [τ ] = [mi1 , . . . ,mij−1
, n1]; [π] = [mi1 , . . . ,mij−1

, n2].

Given that mdeg[τ ] = mdeg[θ], and the fact that [τ ] and [θ] appear in homological

degrees j − 1 and j, respectively, it follows from Lemma 2.6 that [τ ] is a facet of [θ].

Thus θ must be of the form [θ] = [mi1 , . . . ,mij−1
, n1, n2]. Since [τ ] is also a facet of

[σ], the same reasoning applies to [σ], which means that [σ] = [θ], a contradiction.

We conclude that a′πθ is invertible.

The cases k = j − 1 and k = j + 1 are as in the proof of Lemma 2.4.

Theorem 2.6 Let M be a 2-semidominant ideal. Let ([σ1], [τ1]) , . . . , ([σk], [τk]) be k

pairs of basis elements of TM , satisfying the following properties:

(i) ([σi], [τi]) and ([σj], [τj]) are disjoint, if i ̸= j.

(ii) [τi] is a facet of [σi] for all i = 1, . . . k.

(iii) mdeg[σi] = mdeg[τi] for all i = 1, . . . k.

Then, starting with TM , it is possible to make the following sequence of standard

cancellations:

0 → S[σ1] → S[τ1] → 0, · · · , 0 → S[σk] → S[τk] → 0.

Proof. Identical to the proof of Theorem 2.4.

Theorem 2.7 Let M be a 2-semidominant ideal. Let A = {([σ1], [τ1]), . . . , ([σk], [τk])}

be a family of pairs of basis elements in TM , having the following properties:

(i) ([σi], [τi]) and ([σj], [τj]) are disjoint, if i ̸= j.
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(ii) [τi] is a facet of [σi] for all i = 1, . . . k.

(iii) mdeg[σi] = mdeg[τi] for all i = 1, . . . k.

(iv) A is maximal with respect to inclusion among the sets satisfying i), ii) and iii).

Then a minimal free resolution F of S/M can be obtained from TM by doing all

standard cancellations 0 → S[σ] → S[τ ] → 0, with ([σ], [τ ]) ∈ A. In symbols,

TM = F⊕

 ⊕
([σ],[τ ])∈A

0 → S[σ] → S[τ ] → 0

 .

Proof. By Theorem 2.6, F is a resolution of S/M . We claim that F is minimal.

If F were not minimal, one of its differential matrices would contain an invertible

entry. That, in turn, would mean that there exists a pair ([σ], [τ ]) of basis elements of

TM , such that A
∪
{([σ], [τ ])} satisfies conditions (i), (ii), and (iii), which contradicts

(iv).

We have explained that all minimal resolutions of 1-semidominant ideals, obtained

from TM by eliminating faces and facets of equal multidegree, have a common basis.

However, the bases of the minimal resolutions of 2-semidominant ideals, obtained in

the same way, are not unique, as the next example shows.

Example 2.8 Let M = (x2y2, xz, yz). The only repeated multidegree is m = x2y2z,

which is common to the three basis elements [σ] = [x2y2, xz, yz], [τ1] = [x2y2, xz], and

[τ2] = [x2y2, yz]. By eliminating the pair [σ], [τ1] from the basis of TM , we obtain the

basis of a minimal resolution of S/M . By eliminating the pair [σ], [τ2] from the basis

of TM , we obtain a different basis of another minimal resolution of S/M .

Theorem 2.8 (Characterization of the Scarf 2-semidominant Ideals)

Let M be a 2-semidominant ideal.

Let B = {m : m is the multidegree of more than one basis element of TM}. For each

40



m ∈ B, let Bm = {[σ] ∈ TM : mdeg[σ] = m}. Then M is Scarf if and only if #(Bm)

is even for all m ∈ B.

Proof. Let G = {m1, . . . ,mq, n1, n2} be the minimal generating set of M . Let us

denote with F the minimal resolution of S/M .

(⇒) Let m ∈ B. Because M is Scarf, all elements of Bm are excluded from the basis

of F, but the elements of Bm are eliminated in pairs, making standard cancellations.

It follows that # (Bm) is even.

(⇐) Let m ∈ B. We need to prove that no element of the basis of F has multidegree

m. Given that basis elements of TM with the same multidegree contain the same

dominant monomials, what distinguishes these elements is the nondominant mono-

mials that define them. Thus there are at most four basis elements of multidegree m;

namely,

[σ1] = [mi1 , . . . ,mir ]; [σ2] = [mi1 , . . . ,mir , n1];

[σ3] = [mi1 , . . . ,mir , n2]; [σ4] = [mi1 , . . . ,mir , n1, n2].

The fact that # (Bm) is even implies that either

(i) # (Bm) = 4 or (ii) # (Bm) = 2.

(i) In this case ([σ2], [σ1]), ([σ4], [σ3]) and TM satisfy the hypotheses of Lemma 2.7,

which means that after making the standard cancellation 0 → S[σ2] → S[σ1] → 0 in

TM , it is still possible to make the cancellation 0 → S[σ4] → S[σ3] → 0. Hence, the

basis of F does not contain elements of multidegree m.

(ii) We will show that the two basis elements with multidegree m are face and facet.

There are exactly two pairs of basis elements that are not face and facet; these

pairs are [σ2], [σ3] and [σ1], [σ4]. If we assume that mdeg[σ2] = mdeg[σ3] = m, then

n2 | mdeg[σ3] = mdeg[σ2]. It follows that mdeg[σ4] = mdeg[σ2] and thus [σ4], [σ2] and

[σ3] have multidegree m, which is not possible because # (Bm) = 2.

Similarly, if mdeg[σ1] = mdeg[σ4], then n2 | mdeg[σ4] = mdeg[σ1], which implies
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that [σ3], [σ1] and [σ4] have multidegree m, which is not possible. Therefore, if

mdeg[σi] = mdeg[σj] = m, then [σi] and [σj] must be face and facet. Thus they

determine an invertible entry of TM , and it is possible to eliminate [σi] and [σj] from

the basis of TM by means of a standard cancellation. This means that no element of

the basis of F has multidegree m.

Theorem 2.8 gives a complete characterization of the Scarf 2-semidominant ideals.

This characterization, however, is difficult to verify in practice because it requires

several calculations. In order to have a good mix between theoretical and practical

results, we include two criteria to help determine whether a 2-semidominant ideal

is Scarf. These two tests, although weaker than the preceding theorem, are easy to

implement in concrete cases.

Corollary 2.7 Let M = (m1, . . . ,mq, n1, n2) be 2-semidominant. If M is Scarf, then

n1, n2 | lcm(m1, . . . ,mq).

Proof. Let m = mdeg[m1, . . . ,mq, n1, n2]. Since n1 is nondominant, n1 | lcm(m1, . . . ,

mq, n2), which means that m = mdeg[m1, . . . ,mq, n2]. Similarly, since n2 is non-

dominant, we must have that n2 | lcm(m1, . . . ,mq, n1) and this implies that m =

mdeg[m1, . . . ,mq, n1]. This means that at least three basis elements of TM have mul-

tidegree m. Now, in the proof of Theorem 2.8 we showed that for 2-semidominant ide-

als, there are at most four basis elements of TM with a given multidegree. In our case,

the fourth candidate is [m1, . . . ,mq]. If M is Scarf, it follows from Theorem 2.8 that

the number of basis elements of TM with multidegree m is even. Thus, we must have

that m = mdeg[m1, . . . ,mq]. The last two equations imply that n1 | lcm(m1, . . . ,mq).

Similarly, n2 | lcm(m1, . . . ,mq).

Corollary 2.8 Let M = (m1, . . . ,mq, n1, n2) be 2-semidominant. If no variable ap-

pears with the same nonzero exponent in n1 and n2, then M is Scarf.
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Proof. If we assume that M is not Scarf, then by Theorem 2.8, there is a multidegree

m which is common to an odd number k > 1 of basis elements of TM . By the proof

of Theorem 2.8, there are at most four basis elements with multidegree m. They are

of the form [σ1] = [mi1 , . . . ,mir ]; [σ2] = [mi1 , . . . ,mir , n1]; [σ3] = [mi1 , . . . ,mir , n2];

[σ4] = [mi1 , . . . ,mir , n1, n2]. Now given that k > 1 and odd, we must have k = 3.

It is easy to verify that if exactly three of the four elements [σ1], [σ2], [σ3], [σ4] have

multidegree m, these elements must be [σ2], [σ3], [σ4] (in any other case, that three of

these elements have multidegree m would imply that the fourth one has multidegree

m as well).

The fact that mdeg[σ1] ̸= mdeg[σ2] implies that n1 ∤ lcm(mi1 , . . . ,mir). In par-

ticular, there is a variable x such that x appears with exponent α > 0 in the

factorization of n1, and xα ∤ lcm(mi1 , . . . ,mir). On the other hand, the fact that

mdeg[σ2] = mdeg[σ3] implies that xα | lcm(mi1 , . . . ,mir , n2). Therefore, x
α | n2.

Let β be the exponent with which x appears in the factorization of n2. Notice that

if we had that α < β or α > β, then we would also have that mdeg[σ2] ̸= mdeg[σ3].

Thus x appears with the same nonzero exponent in the factorization of n1 and n2, a

contradiction.

In the context of 2-semidominant ideals, Corollary 2.8 extends a beautiful theorem

by Bayer, Peeva and Sturmfels [BPS], that states the following: If M is a generic

ideal, then M is Scarf.

Let us see how Corollaries 2.7 and 2.8 work in practice.

Example 2.9 Let M1 = (x3y, y2z, yz4, xz2w, x2zw) and M2 = (x3y, y2z, yz4, xz2, x2z).

Notice that M1 is 2-semidominant, n1 = xz2w and n2 = x2zw being the nondominant

generators. Since w appears in the factorization of n1 but not in the factorization

of any of the dominant monomials m1 = x3y, m2 = y2z, m3 = yz4, we have that

n1 ∤ lcm(m1,m2,m3). Thus, by Corollary 2.7, we have that M1 is not Scarf. Now
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observe that M2 is also 2-semidominant, n1 = xz2 and n2 = x2z being the nondom-

inant generators. Since neither x nor z appears with the same nonzero exponent in

the factorization of n1 and n2, it follows from Corollary 2.8 that M2 is Scarf. Inci-

dentally, note that M2 is not generic. We chose two very similar ideals M1 and M2

to show how sensitive monomial resolutions are.

2.5 Standard Cancellations in Arbitrary Order

In this last section of Chapter 2 we depart from the concept of p-semidominance, and

study certain conditions under which the minimal resolution of S/M can be obtained

from TM by making consecutive cancellations in arbitrary order.

Theorem 2.9 Let M be a monomial ideal. Let us assume that for every basis element

[τ ] of TM , which is a common facet of two faces [σ1] and [σ2], such that mdeg[σ1] =

mdeg[σ2] = mdeg[τ ] = m, the following property holds:

whenever [τ ′] ̸= [τ ] is a facet of [σ1] or [σ2], mdeg[τ ′] ̸= m.

Then the basis of the minimal resolution of S/M can be obtained from the basis of

TM , eliminating pairs of face and facet of equal multidegree in arbitrary order, until

exhausting all possibilities.

The proof of this theorem follows from the next three lemmas.

Lemma 2.8 Under the hypotheses of Theorem 2.9, if F is a resolution of S/M ,

obtained from TM by means of consecutive cancellations, then an entry bτσ of a dif-

ferential of F is invertible if and only if [τ ] is a facet of [σ] and mdeg[τ ] = mdeg[σ].

Proof. The proof is by induction on the number k of consecutive cancellations made

to obtain F. If k = 0, the statement is true because F = TM . Assume that the lemma

is true for k = l − 1. Let us prove that the lemma holds for k = l. Let

0 → S[σ1] → S[τ1] → 0, · · · , 0 → S[σl] → S[τl] → 0
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be the sequence of consecutive cancellations made to obtain F. By induction hypoth-

esis, when we make the first l − 1 cancellations

0 → S[σ1] → S[τ1] → 0, · · · , 0 → S[σl−1] → S[τl−1] → 0,

we obtain a free resolution F′ whose differential matrices have the following property:

aτσ is an invertible entry if and only if τ is a facet of σ, and mdeg[τ ] = mdeg[σ].

(⇒) Let us assume that when we make the consecutive cancellation 0 → S[σl] →

S[τl] → 0 in F′, one of the entries bτσ of a differential matrix of F is invertible but [τ ]

is not a facet of [σ] (the fact that bτσ is invertible implies that mdeg[τ ] = mdeg[σ]).

We derive a contradiction. Let aτσ be the entry determined by [σ] and [τ ] in F′. Then

bτσ = aτσ −
aτlσaτσl

aτlσl

.

Since [τ ] is not a facet of [σ], aτσ is not invertible by induction hypothesis. On the

other hand, since mdeg[τ ] = mdeg[σ], we must have that aτσ = 0. Thus, bτσaτlσl
=

−aτlσaτσl
⇒ aτlσ and aτσl

are invertible, implying that [τl] is a facet of both [σ] and

[σl], while [τ ] is a facet of [σl] with mdeg[σ] = mdeg[τl] = mdeg[σl] = mdeg[τ ]. This

contradicts the hypotheses of Theorem 2.9.

(⇐) Let us assume that when we make the consecutive cancellation 0 → S[σl] →

S[τl] → 0 in F′, one of the entries of a differential of F is bτσ = 0, where [τ ] is a

facet of [σ] and mdeg[τ ] = mdeg[σ]. We derive a contradiction. Let aτσ be the entry

determined by [τ ] and [σ] in F′. Then

0 = bτσ = aτσ −
aτlσaτσl

aτlσl

.

It follows that aτσaτlσl
= aτlσaτσl

. By induction hypothesis, aτσ is invertible and

hence, the left hand side is invertible. This implies that aτlσaτσl
must be invertible.

This means that [τ ] is a facet of both [σ] and [σl], while [τl] is a facet of [σ], and

mdeg[σ] = mdeg[τ ] = mdeg[σl] = mdeg[τl]. This contradicts the hypotheses of

Theorem 2.9.
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Lemma 2.9 Under the hypotheses of Theorem 2.9, let F be a resolution of S/M ,

obtained from TM by means of consecutive cancellations. If aτσ and aπθ are two

invertible entries of F, determined by two disjoint pairs ([σ], [τ ]) and ([θ], [π]), then

after making the consecutive cancellation 0 → S[σ] → S[τ ] → 0, it is possible to make

the consecutive cancellation 0 → S[θ] → S[π] → 0.

Proof. Since aπθ is invertible, it follows from Lemma 2.8 that [π] is a facet of [θ]

and mdeg[π] = mdeg[θ]. Then, by Lemma 2.8 again, after making the cancellation

0 → S[σ] → S[τ ] → 0 in F, the entry bπθ of the resulting resolution is invertible and,

therefore, it is possible to make the cancellation 0 → S[θ] → S[π] → 0.

Lemma 2.10 Under the hypotheses of Theorem 2.9, assume that ([σ1], [τ1]), · · · , ([σk],

[τk]) are k pairs of basis elements of TM , satisfying the following properties:

(i) ([σi], [τi]) and ([σj], [τj]) are disjoint if i ̸= j.

(ii) [τi] is a facet of [σi], for all i = 1, · · · , k.

(iii) mdeg[σi] = mdeg[τi], for all i = 1, · · · , k.

Then starting with TM , it is possible to make the following sequence of consecutive

cancellations:

0 → S[σ1] → S[τ1] → 0, · · · , 0 → S[σk] → S[τk] → 0.

Proof. Identical to the proof of Theorem 2.4 (semidominant case) and the proof of

Theorem 2.6 (2-semidominant case).

The proof of Theorem 2.9 is now a simple consequence of the preceding corollaries.
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Proof. [of Theorem 2.9]

By Lemma 2.10, after eliminating pairs of face and facet of equal multidegree in arbi-

trary order, until exhausting all possibilities, we obtain the basis of a free resolution

F of S/M . If we assume that F is not minimal, then there is a differential matrix of

F that contains an invertible entry aτσ. By Lemma 2.8, [σ] and [τ ] are face and facet

of equal multidegree, which means that not all possibilities have been exhausted, a

contradiction.

Example 2.10 Let m1 = x1x4x7x9; m2 = x2x5x7x8; m3 = x3x6x8x9; m4 = x1x2x3;

m5 = x4x5x6. Let M = (m1,m2, . . . ,m5). (Notice that M is 5-semidominant.) It is

easy to verify that the only multidegree that is common to more than one basis element

of TM is m = x1x2 . . . x9. The following table shows all basis elements of multidegree

m, and their corresponding homological degrees.

Table 2.1: Elements of Multidegree m

homological degree basis elements

3 [τ ] = [m1,m2,m3]

4 [σi] = [m1, . . . , m̂i, . . . ,m5]; i = 1, . . . , 5

5 [θ] = [m1, . . . ,m5]

Note that the only instance in which we have two faces of multidegree m with a

common facet of multidegree m is when the faces are [σ4] and [σ5], and the common

facet is [τ ]. Since neither [σ4] nor [σ5] have other facets of multidegree m, the hypothe-

ses of Theorem 2.9 are satisfied, and we can obtain a basis of a minimal resolution of

S/M by eliminating pairs of faces and facets of multidegree m. By simple inspection,

we conclude that in every case, this process consists of two eliminations of the form

([θ], [σi]) and ([σj], [τ ]), where i ∈ {1, 2, . . . , 5}; j ∈ {4, 5}, and i ̸= j. For example,

the basis of a minimal resolution of S/M can be obtained from the basis of TM by
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eliminating ([θ], [σ2]) and ([σ5], [τ ]).

Example 2.11 Let m1 = x1x2x3; m2 = x1x4x6; m3 = x3x5x6; m4 = x2x4x5;

m5 = x3x7. Let M = (m1,m2, . . . ,m5). (Notice that M is 4-semidominant.) In

order for M to violate the hypothesis of Theorem 2.9, there must exist four basis el-

ements of TM with a common multidegree, two of them in some homological degree

k and the other two in homological degree k + 1. We will show that this does not

happen.

Notice that m = x1x2 . . . x6 and m′ = x1x2 . . . x7 are the only two multidegrees that are

common to more than one Taylor symbol. Now, the basis elements of TM with multi-

degree m are [m1, . . . ,m4], in homological degree 4, and its four facets, in homological

degree 3. On the other hand, the basis elements of TM having multidegree m′ are

[m1, . . . ,m5], in homological degree 5; four of its facets, in homological degree 4, and

[m1,m4,m5] in homological degree 3. Therefore, it is impossible to find four basis ele-

ments with a common multidegree; two in homological degree k and two in homological

degree k+1. By Theorem 2.9, the basis of a minimal resolution of S/M can be obtained

from TM by removing pairs of face and facet of equal multidegree in arbitrary order

until exhausting all possibilities. For instance, remove ([m1, . . . ,m4], [m1, . . . ,m3]);

([m1, . . . ,m5], [m2, . . . ,m5]) and ([m1,m2,m4,m5], [m2,m4,m5]).
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CHAPTER 3

APPLICATIONS

3.1 1-cancellations

Since the concept of semidominance is obtained from that of dominance via a minor

modification, it is reasonable to think of 1-semidominant ideals as objects that are

close to being dominant. However, when we studied the combinatorial properties of

dominant and 1-semidominant ideals, we observed a radically different behavior (see

Corollary 2.5 and Example 2.6). The similarity between these two classes of monomial

ideals lies on the way we construct them, not on their combinatorial properties.

In this section we define and study new monomial ideals which are very close to

being dominant from a combinatorial point of view.

Definition 3.1 a monomial ideal M is called a 1-cancellation ideal (or simply, a

1-cancellation), if a minimal resolution of S/M can be obtained from TM by means

of exactly one consecutive cancellation.

Note that if M is a 1-cancellation ideal, TM is not minimal. Then, by the equiva-

lence between the statements (i) and (iv) of Corollary 2.2, it follows that the only

consecutive cancellation in TM occurs in the last two homological degrees.

Theorem 3.1 Let M be a monomial ideal minimally generated by G = {m1, . . . ,mq}.

Then M is a 1-cancellation ideal if and only if G is not dominant but every subset

G \ {mi} is.

Proof. (⇒) Since M is 1-cancellation, M is not dominant and, hence, G is not domi-

nant. On the other hand, if we assume that a subset G \ {mi} is not dominant, there
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is a monomial mj ∈ G \ {mi}, such that mj | lcm(G \ {mi,mj}). It follows that

lcm(G \ {mi,mj}) = lcm(G \ {mi}). Let [σ] and [τ ] be the Taylor symbols defined

by G \ {mi} and G \ {mi,mj}, respectively. Then [σ] and [τ ] are face and facet of

equal multidegree, and they appear in homological degrees q − 1 and q − 2. Thus, it

is possible to make the cancellation 0 → S[σ] → S[τ ] → 0 in TM , which contradicts

the fact that the the only cancellation occurs in the last two homological degrees of

TM .

(⇐) Suppose that [σ] and [τ ] are basis elements of TM , such that [τ ] is a facet of [σ]

and mdeg[σ] = mdeg[τ ]. Then σ is not a dominant set. If #(σ) < q, then there is a

set of the form G \ {mi}, such that σ ⊆ G \ {mi}. This implies that G \ {mi} is not

dominant, a contradiction. Thus, #(σ) = q.

We have proved that if TM admits a consecutive cancellation, it must take place

in homological degrees q and q−1. The fact that G is not dominant, implies that TM

admits such a cancellation. Since TM contains only one basis element in homological

degree q, after making that consecutive cancellation, we obtain a minimal resolution

of S/M .

Example 3.1 Let M = (x2, y2, xy). Note that G = {x2, y2, xy} is nondominant, but

G \ {x2}; G \ {y2}; G \ {xy} are. Thus, by Theorem 3.1 M is a 1-cancellation.

Note: in general, if M is minimally generated by three monomials, either TM is

minimal or the minimal resolution of S/M is obtained from TM by making exactly

one cancellation. That is, M is either dominant or a 1-cancellation.

The preceding example is a particular case of a more general construction which,

in turn, is a corollary to Theorem 3.1.

Corollary 3.1 Let M be a 1-semidominant ideal, minimally generated by G = {m1,

. . . ,mq,m
′}. If (m1, . . . ,mq) is a complete intersection and for all i = 1, . . . , q,

gcd(mi,m
′) ̸= 1, then M is a 1-cancellation.
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Example 3.2 Let M = (x2
1, . . . , x

2
q, x1x2 . . . xq).

By Corollary 3.1, M is a 1-cancellation.

Example 3.3 Let M be minimally generated by G = {m1 = x1x2x3;m2 = x1x4x5;m3

= x2x4x6;m4 = x3x5x6}. Notice that G is 4-semidominant (which means that G is

not dominant). However, each set G \ {mi} is dominant. By Theorem 3.1, M is a

1-cancellation.

In the next theorem we study some combinatorial properties of 1-cancellations.

Theorem 3.2 Let M be a 1-cancellation minimally generated by G = {m1, . . . ,mq}.

Let F be the minimal resolution of S/M obtained from TM , after making one consec-

utive cancellation. Then

(i) pd (S/M) = q − 1.

(ii) reg (S/M) = max{deg[σ]−(q−1), with [σ] a basis element of F, and hdeg[σ] =

q − 1}.

Proof. (i) Trivial. (ii) Let [τ ] be a basis element of F. Then there is a basis ele-

ment [G \ {mi}] of F, such that τ ⊆ G \ {mi}. This means that τ is of the form

τ = G \ {mi1 , . . . ,mis}, and hdeg[τ ] = q − s. Now, by Theorem 3.1, G \ {mi}

is dominant, which implies that deg[G \ {mi1}] ≥ deg[G \ {mi1 ,mi2 ] + 1 ≥ · · · ≥

deg[G \ {mi1 , . . . ,mis}] + (s− 1) = deg[τ ] + (s− 1) Hence

max{deg[σ]− (q − 1), with [σ] a basis element of F, and hdeg[σ] = q − 1}
≥ deg[G \ {mi1}]− (q − 1)
≥ deg[τ ] + (s− 1)− (q − 1)
= deg[τ ]− (q − s)
= deg[τ ]− hdeg[τ ].

Therefore,

max{deg[σ]− (q − 1), with [σ] a basis element of F, and hdeg[σ] = q − 1}
≥ max{deg[τ ]− hdeg[τ ], with [τ ] a basis element of F}
= reg (S/M) .
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3.2 A Special Family of 1-cancellations

We now construct an explicit family of 1-cancellations, which is realated to three

interesting open problems.

Theorem 3.3 Let p ≥ 1. Let S = k[x1, . . . , xk], where k =
(
p+1
2

)
. Then there exist

p+ 1 square-free monomials m1, . . . ,mp+1, of degree p, such that

(i) Each variable xi divides exactly two of the monomials m1, . . . ,mp+1.

(ii) For every pair of monomials ms,mt, there is exactly one variable xi that divides

both ms and mt.

Proof. Let A = {yi,j, with 1 ≤ i < j ≤ p + 1} be a set of formal objects. Let B =

{x1, . . . , xk}. Since #A =
(
p+1
2

)
=

p(p+ 1)

2
= #B, there is a bijection f : A → B.

For all i = 1, . . . , p+1, let mi =
p+1∏

h=i+1

f(yi,h)
i−1∏
h=1

f(yh,i). Then m1, . . . ,mp+1 are p+1

square-free monomials of degree p. We claim that this monomials satisfy properties

(i) and (ii) of this theorem.

(i) Let xi ∈ B. Let ys,t be the (only) element in A such that f(ys,t) = xi. Then xi

appears in the factorization of ms =
p+1∏

h=s+1

f(ys,h)
s−1∏
h=1

f(yh,s) (when h = t, we obtain

f(ys,t) = xi). Similarly, xi appears in the factorization of mt =
p+1∏

h=t+1

f(yt,h)
t−1∏
h=1

f(yh,t)

(when h = s, we obtain f(ys,t) = xi). Moreover, by construction of mj, xi does not

appear in the factorization of mj, if j ̸= s and j ̸= t. (ii) Let us say that 1 ≤ s <

t ≤ p + 1. Then f(ys,t) is a factor of ms =
p+1∏

h=s+1

f(ys,h)
s−1∏
h=1

f(yh,s) (corresponding to

h = t). Similarly, f(ys,t) is a factor of mt =
p+1∏

h=t+1

f(yt,h)
t−1∏
h=1

f(yh,t) (corresponding to

h = s). Thus, f(yh,t) divides both ms and mt. Now, suppose that f(yu,v) is a variable

that divides ms and mt. By construction of ms, either u = s or v = s. Likewise,

by construction of mt, either u = t or v = t. Then {u, v} = {s, t}. It follows that

f(yu,v) = f(ys,t) or f(yu,v) = f(yt,s). Since s < t, yt,s /∈ A. Hence, f(yu,v) = f(ys,t),

which means that there exists exactly one variable that divides both ms and mt.
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Since the proof of the theorem is not constructive, we explain how to construct

m1, . . . ,mp+1, explicitly, using a simple diagram.

Consider the following right triangle containing the variables x1, . . . , xk

x1 x2 x3 x4 · · · xp

xp+1 xp+2 xp+3 · · · x2p−1

x2p x2p+1 · · · x3p−(1+2)

x3p−2 · · · x4p−(1+2+3)

. . .
...

x(p+1)p−(1+2+...+p)

Now the monomials m1, . . . ,mq are obtained from the union of this right triangle and

its reflection across the hypothenuse:

m1 = x1 x2 x3 x4 · · · xp

m2 = x1 xp+1 xp+2 xp+3 · · · x2p−1

m3 = x2 xp+1 x2p x2p+1 · · · x3p−(1+2)

m4 = x3 xp+2 x2p x3p−2 · · · x4p−(1+2+3)

...
...

...
...

...
...

mp = xp−1 x2p−2 · · · · · · · · · x(p+1)p−(1+...+p)

mp+1 = xp x2p−1 x3p−(1+2) x4p−(1+2+3) · · · x(p+1)p−(1+...+p)

Example 3.4 p = 4 ⇒ k =
(
5
2

)
= 10

m1 = x1 x2 x3 x4

m2 = x1 x5 x6 x7

m3 = x2 x5 x8 x9

m4 = x3 x6 x8 x10

m5 = x4 x7 x9 x10

Theorem 3.4 Let p ≥ 1. Let S = k[x1, . . . , xk], where k =
(
p+1
2

)
. Let M =

(m1, . . . ,mp+1) be the ideal generated by the p+ 1 monomials of Theorem 3.3. Then
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M is a 1-cancellation, and a minimal resolution of S/M can be obtained from TM by

making the cancellation 0 → S[σ] → S[τ ] → 0, where [σ] is the only Taylor symbol in

homological degree p+ 1, and [τ ] is an arbitrary Taylor symbol in homological degree

p.

Proof. Let G = {m1, . . . ,mp+1} and let mi ∈ G. By Theorem 3.3 (i), each variable x

that divides mi, is also a divisor of some other monomial mx ∈ G \ {mi}. Hence, mi

is not dominant in G and then, G itself is not dominant. On the other hand, the set

G\{mi} is dominant because, for eachm ∈ G\{mi} there is a variable xm that divides

both mi and m (Theorem 3.3 (ii)). Now, by Theorem 3.3 (i), xm does not divide any

of the monomials of G \ {mi,m}. Hence, mdeg[G \ {mi,m}] ̸= mdeg[G \ {mi}].

This implies that each m is dominant in G \ {mi} and thus, G \ {mi} is a dominant

set. By Theorem 3.1, M is then a 1-cancellation. It only remains to prove that

in the consecutive cancellation that leads to the minimal resolution of S/M , we

can choose an arbitrary [τ ] in homological degree p. Notice that every [τ ] is of the

form [G \ {mi}], while [σ] = [G]. Since mi is nondominant in G, it follows that

mdeg[G] = mdeg[G \ {mi}].

3.3 Three Open Problems

We suggest that 1-cancellations are easy to manipulate and represent a useful tool for

making computations. Indeed, we will now show through some easy computations

how the class of 1-cancellation ideals defined in the last section gives a partial solution

to three open problems, simultaneously.

The following open problems were posed by Peeva-Stillman in their article “Open

problems on Syzygies and Hilbert functions”. (Here we respect the numbers with

which they appear in that paper.)

Problem 3.5 Let a1 ≥ a2 ≥ . . . ≥ aq ≥ 2 be the degrees of the elements in a minimal
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system of homogeneous generators of M . Set r = codim (S/M). Find nice sufficient

conditions on M so that reg (S/M) ≤ a1 + . . .+ ar − r.

Problem 3.6 Assuming the ideal M satisfies some specials conditions, find a sharp

upper bound for reg(M), in term of the maximum degree of an element in a minimal

system of homogeneous generators of M .

Problem 6.3 Let M be a monomial ideal generated by q monomials of degree p. Let

W be the monomial ideal generated by the first q square-free monomials of degree

p in reverse lex order. Find conditions of M that imply bSi (S/W ) ≤ bSi (S/M), for

every i ≥ 0.

In order to solve these problems, we need to study the combinatorial properties

of the ideals defined in the last section.

Theorem 3.5 Let k =
p(p+ 1)

2
and S = k[x1, . . . , xk]. Let M = (m1, . . . ,mp+1) be

the ideal generated by the monomials of Theorem 3.3. Then reg (S/M) = k − p.

Proof. Let G = {m1, . . . ,mp+1}. By Theorem 3.4, M is a 1-cancellation, and x1 . . . xk

= mdeg[G] = mdeg[G \ {mi}], for all i. Then by Theorem 3.2 (ii), reg (S/M) =

deg(x1, . . . , xk)− p = k − p.

Now we can give an answer to Problem 3.6 (within the context that we are consider-

ing). Notice that Problem 3.6 asks for an upper bound of the regularity in terms of

the maximum degree a1 of an element in a minimal generating set of M . We will do

more than that. We will express the regularity as a function of a1.

Corollary 3.2 For every p ≥ 1, let M = (m1, . . . ,mp+1) be the ideal generated by

the p+ 1 monomials of Theorem 3.3. Then every monomial generator mi has degree

a1 = p, and reg (S/M) =
1

2
a21 −

1

2
a1.

Proof. By Theorem 3.5, reg (S/M) = k − p =
p(p+ 1)

2
− p =

1

2
p2 − 1

2
p.
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Theorem 3.6 Let M = (m1, . . . ,mp+1) be the ideal generated by the p+1 monomials

of Theorem 3.3. Then

codim (S/M) =


p+ 1

2
if p is odd

p+ 2

2
if p is even .

Proof. Let G = {m1, . . . ,mp+1}. Suppose p is odd. For all i = 1, . . . ,
p+ 1

2
, let yi ∈

{x1, . . . , xk} be the (only) variable that divides bothm2i−1 andm2i. Then every mono-

mial m ∈ G is divisible by at least one of the variables of L = {y1, . . . , y p+1
2
}. There-

fore, codim (S/M) ≤ p+ 1

2
. Now, suppose that there is a set L′ = {xi1 , . . . , xil} ⊆

{x1, . . . , xk}, such that every monomial m ∈ G is divisible by some variable in L′.

Then p + 1 = #{m ∈ G : m is divisible by some variable in L′} ≤
l∑

j=1

#{m ∈ G :

m is divisible by xij}

= 2l ⇒ p+ 1

2
≤ l. Thus, codim (S/M) =

p+ 1

2
.

Suppose now that p is even. For all i = 1, . . . ,
p

2
, let yi ∈ {x1, . . . , xk} be the (only)

variable that divides both m2i−1 and m2i. In addition, let y p
2
+1 be a variable that

divides mp+1. Then every monomial m ∈ G is divisible by at least one of the variables

of L = {y1, . . . , y p
2
+1}. Therefore, codim (S/M) ≤ p

2
+ 1 =

p+ 2

2
. If there is a set

L′ = {xi1 , . . . , xil} ⊆ {x1, . . . , xk}, such that every monomial m ∈ G is divisible by

some variable in L′, then p+1 = #{m ∈ G : m is divisible by some variable in L′} ≤
l∑

j=1

#{m ∈ G : m is divisible by xij}

It follows that p+ 1 ≤ 2l but since p is even, we must have p+ 2 ≤ 2l. This implies

that
p+ 2

2
≤ l.

Having studied the combinatorial properties of M = (m1, . . . ,mp+1), we only need

to put the pieces together to prove Problem 3.5 for our particular family. We do so

in the next corollary.

Corollary 3.3 For every p ≥ 1, let M = (m1, . . . ,mp+1) be the ideal generated by

the p+1 monomials of Theorem 3.3 . Let r = codim (S/M), and let a1 ≥ a2 ≥ . . . ≥
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ap+1 ≥ 2 be the degrees of the m1, . . . ,mp+1, respectively. Then

reg (S/M) ≤ a1 + . . .+ ar = r.

Proof. By construction, a1 = a2 = . . . = ar = p. By Theorem 3.5, reg (S/M) =

k− p =
p(p+ 1)

2
− p. Suppose first that p is odd. By Theorem 3.6, r =

p+ 1

2
. Then

a1 + . . .+ ar = pr =
p(p+ 1)

2
. Hence,

reg (S/M) =
p(p+ 1)

2
−p = a1+ . . .+ar−p ≤ a1+ . . .+ar−

p+ 1

2
= a1+ . . .+ar−r.

Suppose now that p is even. By Theorem 3.6, r =
p+ 2

2
. Then a1 + a2 + . . . + ar =

pr =
p(p+ 2)

2
. Hence,

reg (S/M) =
p(p+ 1)

2
−p ≤ a1+a2+. . .+ar−p ≤ a1+. . .+ar−

p+ 2

2
= a1+. . .+ar−r.

Finally, we will prove that the family {(m1, . . . ,mp+1), p ≥ 1}, where m1, . . . ,mp+1

are the monomials defined in Theorem, satisfies the inequality of Problem 6.3.

Theorem 3.7 For p ≥ 1, let M = (m1, . . . ,mp+1) be the ideal generated by the p+1

monomials of Theorem 3.3. Let W be the ideal generated by the first p+1 square-free

monomials of degree p in reverse lex order. Then

bi (S/W ) ≤ bi (S/M) , for all i ≥ 0.

Proof. Let G′ = {m′
1, . . . ,m

′
p+1} be the minimal generating set of W . Notice that

m′
1 = x1x2 . . . xp−1xp.

m′
2 = x1x2 . . . xp−1xp+1

m′
3 = x1x2 . . . xp−2xpxp+1.

Therefore, m′
1 is not dominant in G′. This means that mdeg[G′] = mdeg[G′ \ {m′

1}]

and TW admits the consecutive cancellation 0 → S[G′] → S[G′ \ {m′
1}] → 0. On the
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other hand,M is a 1-cancellation. Hence, for all i = 0, 1, . . . , p−1, bi (S/W ) ≤
(
p+1
i

)
=

bi (S/M). Besides that, bp = (S/W ) ≤
(
p+1
p

)
− 1 = bp (S/M) and bp+1 (S/W ) =

bp+1 (S/M) = 0.

Remark 3.1 Notice that in Problem 6.3, the ideal M is generated by q monomials of

degree p, while in Theorem 3.7, M is generated by p+1 monomials of degree p. This

means that our solution, though infinite, is far from being the most general solution.
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CHAPTER 4

CONCLUSIONS

The thread that runs through the entire study of dominant, 1-semidominant and

2-semidominant ideals is the fact that their minimal resolutions can be obtained

eliminating pairs consisting of face and facet of equal multidegree, in arbitrary order.

Of course, this principle is trivial in the case of dominant ideals because their Taylor

resolution is already minimal and in the case of semidominant ideals, this rule is

eclipsed by an even stronger fact; namely, semidominant ideals are Scarf.

In both cases, however, the principle is implicit. In order to prove that TM is

minimal whenever M is dominant, all we have to do is show that it is impossible

to find a face and a facet of equal multidegree (see Theorem 2.1 (⇐)). Thus we do

not apply the rule to TM but we certainly study TM in light of it. Similarly, the

proof that semidominant ideals are Scarf is based on the fact that when we make

random standard cancellations involving faces and facets of equal multidegree, all

basis elements with a repeated multidegree are eliminated.

Having understood the common theme in the study of these three classes of ideals,

it is natural to wonder whether 3-semidominant ideals can be resolved in the same

way. Unfortunately, the answer is no, as the next example shows.

With the assistance of a software system (for instance, Macaulay 2 [GS]) it is easy

to verify that the 3-semidominant ideal M = (x2y2z2, xw2, yw2, zw) is Scarf. Now,

there are six basis elements of TM with multidegree m = x2y2z2w2 which, therefore,

are excluded from the basis of the minimal resolution of S/M . However, if we elimi-

nate pairs of face and facet of equal multidegree as follows:

59



([x2y2z2, xw2, yw2, zw], [x2y2z2, xw2, zw]) first, and ([x2y2z2, xw2, yw2], [x2y2z2, yw2])

next, then the remaining basis elements of multidegree m, [x2y2z2, yw2, zw] and

[x2y2z2, xw2], cannot be eliminated in this way because they are not face and facet.

This proves that the basis of the minimal resolution of S/M cannot be obtained

eliminating pairs of face and facet of equal multidegree, at random.

It remains an open problem to determine the family of all monomial ideals the basis

of whose minimal resolutions can be obtained following the rule that we are discussing.

What we know though is that the family contains more ideals than the dominant,

1-semidominant, and 2-semidominant ideals (for instance, the 3-semidominant and 4-

semidominant ideals M3 = (xy, xz, yz) and M4 = (xz, yz, xw, yw) are in the family).

In order to expand our knowledge of this class, in the last section of Chapter 2

we set aside the concept of p-semidominance and studied monomial ideals under

different hypotheses (see Theorem 2.9). This means that the minimal resolutions of

all monomial ideals in Chapter 2 can be obtained making standard cancellations in

arbitrary order. It would be nice to obtain other results in the same line of reasoning.

In Chapter 3 we studied the 1-cancellation ideals in general, and then we worked

with a particular class of them to solve three open problems. The natural continuation

in this study is to define the p-semidominant ideals as those whose minimal resolutions

can be obtained from their Taylor resolutions by means of exactly p standard cancel-

lations. The next step would be the characterization of the p-semidominant ideals.

The characterization of the 2-cancellations seems to be rather simple. However, for

larger values of p, characterizing the p-cancellations appears to be challenging.
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