
 IMPROVING PERFORMANCE IN HADOOP

MAPREDUCE

 By

 ADEMOLA CHUKWUDI AINA

Bachelor of Science in Computer Science

Department of Computer Science / Mathematics

College of Natural and Applied Sciences

Novena University, Ogume

Delta State, Nigeria.

2011

 Submitted to the Faculty of the

 Graduate College of the

 Oklahoma State University

 in partial fulfillment of

 the requirements for

 the Degree of

 MASTER OF SCIENCE

 December, 2014

ii

 IMPROVING PERFORMANCE IN HADOOP

MAPREDUCE

 Thesis Approved:

 Dr. Johnson Thomas

 Thesis Adviser

 Dr. David Cline

 Dr. K.M. George

iii
Acknowledgements reflect the views of the author and are not endorsed by committee
members or Oklahoma State University.

ACKNOWLEDGEMENTS

My deepest gratitude goes to God who granted me the grace to do this thesis. My loving

appreciation to my sweet mother for her financial and mental support and

encouragement.

Also, special thanks to my thesis Supervisor Dr. J. P. Thomas for his advice, support and

knowledge. I also wish to express my appreciation to Dr. Michael Buser, for his Big Data

support. Likewise, I acknowledge the committee members for their support

iv

Name: ADEMOLA CHUKWUDI AINA

Date of Degree: DECEMBER, 2014

Title of Study: IMPROVING PERFORMANCE IN HADOOP MAPREDUCE

Major Field: COMPUTER SCIENCE

Abstract: Hadoop MapReduce is a parallel, distributed programming model for

processing large data sets or so-called Big data, on a cluster. The basic idea of

MapReduce is to split the large input data set into many small pieces and assign these

pieces to different devices for processing [5]. In this thesis, we took a look at

performance evaluation of the MapReduce framework. MapReduce can be improved to

perform speculative execution with maximum performance. Thus, optimizing the cost of

computation and cost of communication will help achieve better performance. These

optimizations are done by measuring the processing power of each machine and

distributing task based on the capacity of each machine. The second step, measure he

communication overheads and distribute tasks in the system for a given job or workload.

To this end, we represent the Hadoop MapReduce execution with a functional model, and

develop an optimization model for performance improvement in the system. Our

experiments show that the proposed developed optimization functional model

outperforms the regular functional model of the Hadoop MapReduce system by a factor

of 2.

v

TABLE OF CONTENTS

Chapter Page

I. INTRODUCTION ..1

 Background ...2

 Limitations ad basic assumptions of Hadoop MapReduce 2

 Motivation ...3

 Thesis outline ...4

II. REVIEW OF LITERATURE..5

 HDFS MapReduce ..6

 HDFS ..7

 Streaming data access on HDFS ...7

 Large data sets ...8

 Simple coherency model ...8

 Namenodes and datanodes – HDFS architecture ..8

 Key features of the MapReduce system ..9

 Phases in MapReduce ...10

 Practical aspects of MapReduce ...11

 MapReduce example ...11

 Performance evaluation of MapReduce ..12

 Optimization techniques ...14

III. FUNCTIONAL MODEL ...16

 Functional model for regular MapReduce ..17

 Functional model with communication and processing power19

 Communication performance degradation ..23

vi

Chapter Page

IV. EXPERIMENTS AND RESULT ..27

 Data source ..28

 Mapper and Reducer machines ...29

 Experimental setup ..29

 System configuration ..29

 Programming techniques ..30

Implementation ...30

Results ...33

 Experiment 1: Performance of regular MapReduce ...33

 Experiment 2: Optimized MapReduce ...36

Experiment 3: Workload Redistribution in optimized MapReduce38

V. CONCLUSION ..42

REFERENCES .. 44 - 46

vii

LIST OF TABLES

Table Page

4.1..34

4.2.. 36 - 37

4.3.. 39 - 40

viii

LIST OF FIGURES

Figure Page

3.1..17

3.2..22

3.3..24

4.1..35

4.2..37

4.3..40

 4.4..41

1

CHAPTER I

INTRODUCTION

Many programming models on large and distributed cluster systems have emerged,

among which is MapReduce. MapReduce was designed for computation that involves

huge amount of data. Examples include finding the common set of element in joint tables,

or finding the set of most frequent queries submitted to Google’s search engine on any

given day, or finding the most commonly used terms in a table or gathering of commonly

used data, otherwise known as mapping data. MapReduce exploits a map function and

reduce function [3, 4] in a class of code to parallelize the user program automatically and

it provides the states for fault tolerance during its implementation and execution.

The MapReduce System automatically takes care of managing the distributed servers,

running the various tasks in parallel, managing all communications and data transfers

between the various parts of the system, providing for redundancy and data processing

features, and overall management of the whole process. There have been many custom

solutions using the MapReduce for specific problems, and many publications to evaluate

the performance of the Map and Reduce phases of the Hadoop MapReduce framework

[2].

2

Hadoop is an open source software or programming framework, mostly Java-based, that

supports the processing of large data sets in a distributed computing environment. It is

part of the Apache project sponsored by the Apache Software Foundation.

1.1 BACKGROUND

 “MapReduce is the heart of Hadoop. It is this programming paradigm that allows for

massive scalability across hundreds or thousands of servers in a Hadoop cluster. The

MapReduce concept is fairly simple to understand for those who are familiar with

clustered scale-out data processing solutions” [1].

MapReduce includes two major parts, the Map function and Reduce function. The input

files are automatically split and copied to different computing nodes. After that the inputs

will be sent to Map function in key-value pair format. The Map function will process the

input pairs and generate intermediate key-value pairs as inputs for the Reduce function.

The Reduce function will combine the inputs who have the same key and generate the

final result. The final result will be written into the distributed file system [5]. Hadoop is

an open source software project that enables the distributed processing of large data sets

across clusters of commodity servers. It is designed to scale up from a single server to

thousands of machines, with a very high degree of fault tolerance.

1.2 LIMITATIONS AND BASIC ASSUMPTIONS OF HADOOP

MAPREDUCE

 Batch Processing and Not Interactive: Hadoop assumes that nodes perform

work at roughly the same rate but that is not true in a virtualized environment, that

is, if there is a heterogeneity in the processing elements. MapReduce is a batch

3

based algorithm. There are continuous optimizations on the MapReduce algorithm

being proposed from different open source software providers.

 Lunching Tasks: There is no cost to launching a task on a node that has an idle

slot. One problem with the Hadoop system is that by dividing the tasks across

many nodes, it is possible for a few slow nodes to rate-limit the rest of the

program. Tasks may be slow for various reasons, including hardware degradation,

or software mis-configuration, but the causes may be hard to detect since the tasks

still complete successfully, albeit after a longer time than expected. Hadoop

doesn’t try to diagnose and fix slow-running tasks; instead, it tries to detect when

a task is running slower than expected and launches another, equivalent, task as a

backup. This is termed speculative execution of tasks.

Communication Costs: Communications costs in MapReduce framework are not

considered or assumed to be negligible. However, when measuring the performance of

the MapReduce framework communication contributes to the performance.

1.3 MOTIVATION

Given the limitations identified above, in this thesis we propose an approach to:

(a) Estimate the cost of computation for a MapReduce job

(b) Estimate the total cost for a MapReduce job that takes into consideration both the

computation and communication costs

(c) Maximize performance when executing speculative tasks.

4

1.4 THESIS OUTLINE

Chapter 2 covers the literature review and related works on the MapReduce framework. It

identifies the key features of the MapReduce. Chapter 3 describes our proposed model to

improve the performance of the MapReduce framework. Chapter 4 presents the

experiments to validate the model we have proposed in chapter 3. Chapter 5 gives

conclusions and recommendations for future work

5

CHAPTER II

REVIEW OF LITERATURE

In this chapter, sections 2.1 to 2.5 give a summary of the Hadoop MapReduce

framework. A review of research in performance evaluation of the Hadoop MapReduce

framework is provided in sections 2.6.

The MapReduce Framework is used for computation analysis of huge data [6]. It is a

programming model for data processing in large-scale, where each output depends on

only two inputs (that is, the Key/Value pairs). A brief overview of the framework is

discussed as follows.

6

2.1 HADOOP MAPREDUCE

Hadoop MapReduce [7] is a software framework for writing applications which process

vast amounts of data (multi-terabyte data-sets) in-parallel on large clusters (thousands of

nodes) of commodity hardware in a reliable, fault-tolerant manner.

A MapReduce job splits the input data-set into independent chunks which are processed

by the map tasks in a completely parallel manner. The framework sorts the outputs of the

maps, which are then input to the reduce tasks. Typically both the input and the output of

the job are stored in a file-system. The framework takes care of scheduling tasks,

monitoring them and re-executes the failed tasks. Typically the compute nodes and the

storage nodes are the same, that is, the MapReduce framework and the Hadoop

Distributed File System are running on the same set of nodes. This configuration allows

the framework to effectively schedule tasks on the nodes where data is already present,

resulting in very high aggregate bandwidth across the cluster.

The MapReduce framework consists of a single master JobTracker and one

slave TaskTracker per cluster-node. The master is responsible for scheduling the jobs'

component tasks on the slaves, monitoring them and re-executing the failed tasks. The

slaves execute the tasks as directed by the master. Minimally, applications specify the

input/output locations and supply map and reduce functions via implementations of

appropriate interfaces and/or abstract-classes. These, and other job parameters, comprise

the job configuration. The Hadoop job client then submits the job (jar/executable etc.)

and configuration to the JobTracker which then assumes the responsibility of distributing

7

the software configuration to the slaves, scheduling tasks and monitoring them, providing

status and diagnostic information to the job-client.

Although the Hadoop framework is implemented in Java, MapReduce applications need

not be written in Java [7].

2.2 HDFS [7]

The Hadoop Distributed File System (HDFS) is a distributed file system designed to run

on commodity hardware. It has many similarities with existing distributed file systems.

However, the differences from other distributed file systems are significant. HDFS is

highly fault-tolerant and is designed to be deployed on low-cost hardware. HDFS

provides high throughput access to application data and is suitable for applications that

have large data sets HDFS relaxes a few POSIX requirements to enable streaming access

to file system data. HDFS was originally built as infrastructure for the Apache Nutch web

search engine projects HDFS is now an Apache Hadoop subproject. The project URL

is in [8].

2.2.1 STREAMING DATA ACCESS ON HDFS

Applications that run on HDFS need streaming access to their data sets. They are not

general purpose applications that typically run on general purpose file systems. HDFS is

designed more for batch processing rather than interactive use by users. The emphasis is

on high throughput of data access rather than low latency of data access. POSIX imposes

many hard requirements that are not needed for applications that are targeted for HDFS.

POSIX semantics in a few key areas has been traded to increase data throughput rates.

8

2.2.2 LARGE DATA SETS

Applications that run on HDFS have large data sets. A typical file in HDFS is gigabytes

to terabytes in size. Thus, HDFS is tuned to support large files. It should provide high

aggregate data bandwidth and scale to hundreds of nodes in a single cluster. It should

support tens of millions of files in a single instance.

2.2.3 SIMPLE COHERENCY MODEL

HDFS applications need a write-once-read-many access model for files. A file once

created, written, and closed need not be changed. This assumption simplifies data

coherency issues and enables high throughput data access. A MapReduce application or a

web crawler application fits perfectly with this model. There is a plan to support

appending-writes to files in the future.

2.2.4 NAMENODES AND DATANODES – HDFS ARCHITECTURE

HDFS has a master/slave architecture. An HDFS cluster consists of a single NameNode,

a master server that manages the file system namespace and regulates access to files by

clients. In addition, there are a number of DataNodes, usually one per node in the cluster,

which manage storage attached to the nodes that they run on. HDFS exposes a file system

namespace and allows user data to be stored in files. Internally, a file is split into one

or more blocks and these blocks are stored in a set of DataNodes. The NameNode

executes file system namespace operations like opening, closing, and renaming files and

directories. It also determines the mapping of blocks to DataNodes. The DataNodes are

responsible for serving read and write requests from the file system’s clients. The

9

DataNodes also perform block creation, deletion, and replication upon instruction from

the NameNode.

The NameNode and DataNode are pieces of software designed to run on commodity

machines. These machines typically run a GNU/Linux operating system (OS). HDFS is

built using the Java language; any machine that supports Java can run the NameNode or

the DataNode software. Usage of the highly portable Java language means that HDFS can

be deployed on a wide range of machines. A typical deployement has a dedicated

machine that runs only the NameNode software. Each of the other machines in the cluster

runs one instance of the DataNode software. The architecture does not preclude running

multiple DataNodes on the same machine but in a real deployment that is rarely the case.

The existence of a single NameNode in a cluster greatly simplifies the architecture of the

system. The NameNode is the arbitrator and repository for all HDFS metadata. The

system is designed in such a way that user data never flows through the NameNode.

2.3 KEY FEAUTURES OF THE MAPREDUCE SYSTEM

There are many features of the MapReduce framework but the key features are outlined

below:

 Provides a framework for MapReduce execution

 Redundancy and fault tolerance is built-in, so the programmer doesn’t have to

worry about errors

 The MapReduce programming model is language independent

10

MapReduce facilitates automatic parallelizable and distributed execution, while enable

local data processing. It also manages inter-process communication.

2.4 PHASES IN MAPREDUCE

The Major phases in the MapReduce are the “Map” Phase and the “Reduce” Phase but

there are intermediate phase between the Map and Reduce phase. Basically, the “Map”

and “Reduce” are like programming Functions in a class of codes. Assuming you are

developing a MapReduce job, That is, a program to count the total number of words in a

file and group them in MapReduce fashion. The class will be called “WordCount”, and a

“Map” Function will be invoked to splits the input data-set into independent chunks in a

completely parallel manner. The framework sorts the outputs of the maps, which are then

input to the “Reduce” tasks. The process of sorting the output of the maps is the

intermediate functions which can be called the “Copy & Sort” phase. Typically both the

input and the output of the job are stored in a file-system. The framework takes care of

scheduling tasks, monitoring them and re-executes the failed tasks [2].

The phases of the framework can simply be summarized as follows:

 Map phase: user defined function applied to input data - Is a Function that takes a

key/value pair and produces an intermediate key/value pair. (k1, v1) list (k2,

v2)

 Copy phase: task fetches map outputs

 Sort/Combining phase: map outputs are sorted by key and group the output

 Reduce phase: user-defined function is applied to the list of map outputs with

each key - Is a Function that takes a key and a list of key values and outputs the

11

final key/value pair. Basically, aggregate the result from map phase after the

intermediate phase (copy phase and sort phase). (k2, list (v2)) list (k3, v3)

The MapReduce System receives the result from the Reduce phase, making it accessible

in the Hadoop Distributed File System (HDFS).

2.5 PRACTICAL ASPECTS OF MAPREDUCE

The physically file size of an HDFS cluster 64/128 Memory – Blocks. There are different

files system ranging from the Native file system, Hadoop Distributed File System

(HDFS), and the Cloud. The most commonly known and used cloud at is the AWS (that

is, Amazon cloud system). The Output in any Hadoop MapReduce jobs are immutable.

Any Common Object Oriented Programming language such as – C++, Java, Python,

Javascript, and many more others can be used for implementation.

2.6 MAPREDUCE EXAMPLE

A simple example is presented in [6]. A CSV/Text file that contains English words from

a dictionary and all translations in other languages added to it, separated by a ‘|’ symbol.

The MapReduce job will read dictionaries of different languages and match each English

word with a translation in another language. In this example the class code is built

basically of three parts. A static class holds the mapper, the other static class holds the

reducer, and the main method works as the driver to the application. More details,

including implementation of this application can be found at [9, 6].

12

2.7 PERFORMANCE EVALUATION OF MAPREDUCE

There have been some studies into the performance of Hadoop MapReduce. According to

[12], the “Hadoop MapReduce, is slower than two state-of-the-art parallel database

systems in performing a variety of analytical tasks by a factor of 3.1 to 6.5. MapReduce

can achieve better performance with the allocation of more compute nodes from the

cloud to speed up computation; however, this approach of renting more nodes" is not cost

effective in a pay-as-you-go environment. Users desire an economical elastically scalable

data processing system, and therefore, are interested in whether MapReduce can offer

both elastic scalability and efficiency”. Likewise, [13] states that the Hadoop’s scheduler

can cause severe performance degradation in heterogeneous environments. A new

algorithm called LATE (Longest Approximate time to End) was designed in [13] which

was believed to be highly robust to heterogeneity and improve the Hadoop response time

by a factor of 2 in a clusters of 200 virtual machines on Amazon’s Elastic Compute

Cloud (EC2). The authors claim that Hadoop's performance is closely tied to its task

scheduler, and this algorithm claims to improve the scheduler of the Hadoop MapReduce

framework. Using Amazon's EC2 as an example, the scheduler decides when to

speculatively re-execute tasks that appear to be stragglers in a homogeneous cluster

where tasks progress linearly,

Some efforts have been made to improve the performance of Hadoop using job

scheduling or job parameter optimization. [15] Proposes an approach to improve the

performance of the Hadoop MapReduce framework by optimizing the job and task

execution mechanism. This approach:

13

1. Reduced the cost in time during job initialization and job termination by setting

up and cleaning tasks of MapReduce

2. Introduced an instant messaging communication mechanism for accelerating

performance-sensitive task scheduling and execution. This is instead of using the

loose heartbeat-based communication mechanism to transmit all messages

between the JobTracker and TaskTrackers,

3. Implemented SHadoop, an optimized and fully compatible version of Hadoop that

aims at shortening the execution time cost of MapReduce jobs, especially for

short jobs. Experimental results show that compared to the standard Hadoop,

SHadoop can achieve stable performance improvement by around 25% on

average for comprehensive benchmarks without losing scalability and speedup.

This optimization work has passed a production-level test in Intel and has been

integrated into the Intel Distributed Hadoop (IDH) [15].

Estimating the completion time of MapReduce programs as a function of a new dataset

and the cluster resources are given in [16]. The emphasis is on a benchmarking approach

for designing a MapReduce performance Model. [14] Mentioned that the Hadoop

MapReduce system works with the parameter configuration space in the Hadoop

MapReduce. This parameter configuration space is a huge aspect of MapReduce whereby

the job parameter can be tuned. The challenge lies in MapReduce job parameter tuning

which is a daunting and time consuming task. There are more than 70 parameter

configurations that impact job performance. Thus, it is a challenge to systematically

explore the parameter space and select a near-optimal configuration. Hence, it was

proposed in [14] that an online performance tuning system called MRONLINE would

14

improve performance by 30% more than the default configuration YARN. MRONLINE

monitors a job’s execution, tunes associated performance-tuning parameters based on

collected statistics, and provides fine-grained control over parameter configuration.

Somewhat similar to our model is the data fetching mechanism proposed in [17], on

improving MapReduce performance by data fetching in heterogeneous or shared

environments. This mechanism fetches data to corresponding compute nodes in advance.

The mechanism is implemented and evaluated on Hadoop-1.0.4. According to [17],

results on real applications show that the data prefetching mechanism can reduce data

transmission time by up to 94%. The load balancing for data placement as proposed in

[17], addresses the problem of how to place data across nodes in a way that each node has

a balanced data processing load. Given a data-intensive application running on a Hadoop

MapReduce cluster, this data placement scheme adaptively balances the amount of data

stored in each node to achieve improved data-processing performance. Using

experimental results on two real data-intensive applications show that the proposed data

placement strategy improves the MapReduce performance by rebalancing data across

nodes before performing a data-intensive application in a heterogeneous Hadoop cluster.

2.8 OPTIMIZATION TECHINIQUES

There are many different ways to optimize MapReduce. It is critically important because

of the huge volumes of data and we want to get an optimal performance in the system.

There may sometimes be resource constraints. There may also be time constraints In the

Hadoop cluster, there are many configuration settings that can be adjusted.

15

The focus in our work on MapReduce Jobs. Optimization can be achieved at different

stages of the MapReduce job. We can do optimization before a job runs, optimization

while loading the data, optimization during the Map phase of the job, which often

includes breaking a complex mapping task into multiple jobs, optimization at the shuffle

phase of the job, Optimization at the Reduce phase of the Job, and post processing or

optimization of the job after the job completes. There may be adjustments or

preprocessing of the incoming file to filter out most commonly unvalued or junk data. In

addition incoming files may be compressed.

16

CHAPTER III

FUNCTIONAL MODEL

In this chapter, we propose a functional model to represent a regular MapReduce job

execution. We also propose an optimization of the functional model. The optimization of

the functional model is achieved by optimizing the cost of computation and cost of

communication to improve the performance of executing a task or a job. First, these

optimizations are done by measuring the processing power of each machine and thereby

distribute tasks based on the capacity of each machine. Second, measure and optimize the

communication in the system for a given job or workload. Then, we represent the Hadoop

MapReduce execution with a functional model, and develop an optimization model for

performance improvement in the system. Our experiments as shown in chapter 4, using

the proposed developed optimization functional model show that our approach

outperforms the regular functional model of the Hadoop MapReduce system by a factor

of 2.

17

3.1 FUNCTIONAL MODEL FOR REGULAR MAPREDUCE

In figure 3.1, ‘Comp’ stands for Computer System, ‘Cat’ and ‘Dog’ stands for different

words, in a word count example.

In our model, our goal is to make results available at a single site. However, the data

sources may be at different machines. Hence, map tasks are running on different

machines, and all reduce tasks are running on one machine. The results from the map

functions running on multiple machines in parallel are sent to the reducer function which

is running on one machine.

From Figure 3.1, the performance of any Mapper 𝑀𝑖 𝑎𝑛𝑑 Reducer 𝑅𝑖 on a machine is:

𝑝𝑒𝑟𝑓(𝑀𝑖) = 𝐶𝑃𝑈 𝑇𝑖𝑚𝑒

Cat, Cat . . .
Dog, Dog . . .

Comp1 - MAPPER 1

Cat, Cat . . .
Dog, Dog . . .

Comp2 - MAPPER 2

REDUCER 1 = 160 Cat

REDUCER 2 = 180 Dog

Comp3

Figure 3.1 – MapReduce framework without considering communication or

processing power

18

This is the CPU time for the Map phase of a task on a mapper Mi. The result of

the mapper are sent through the network to the Reducer.

𝑝𝑒𝑟𝑓(𝑅) = 𝑀𝑎𝑥(𝐶𝑃𝑈 𝑇𝑖𝑚𝑒 (𝑅𝑖, … , 𝑅𝑗)) is the CPU time of Reducer nodes

used during the reducer phase. The worst case performance is considered.

The CPU Time is measured in units such as milliseconds (ms)

The performance measure of task i that takes into account the mapper task on a machine

Mi and the reducer tasks is given as:

 𝑝𝑒𝑟𝑓(𝑃𝑘) =
(𝐷𝑖)

𝑝𝑒𝑟𝑓(𝑀𝑖) + 𝑝𝑒𝑟𝑓(𝑅)
 (1)

Where Pk is the performance of task k measured in kb/sec

For any number of reducers and mappers in our model, the total time to execute a task is

the workload (𝐷𝑖) divided by the multiplication of both performance and the assigned

workload (𝐷𝑖) of the given machine. In other words, it is the inverse of the performance.

That is, response time

 𝑅𝑡(𝑃𝑘) =
(𝐷𝑖)

𝑝𝑒𝑟𝑓(𝑃𝑖)(𝐷𝑖)
 =

1

𝑝𝑒𝑟𝑓(𝑃𝑖)
 (2)

This model is based on the Hadoop MapReduce assumptions, that is, tasks in the same

category (map or reduce) require roughly the same amount of work. For example in

figure 3.1, consider a pre-defined input of a workload text file containing the words ‘cat’

19

and ‘dog’ where the goal of the program is a simple Word Count. There are 2 Mapper

nodes and 2 Reducers on a single computing Machine (total computers = 3). The

mappers and reducers are working in parallel.

Thus, for optimum performance the following constraint must be true for both the

Mappers and Reducers:

1

𝑝𝑒𝑟𝑓(𝑃1)
 ≈

1

𝑝𝑒𝑟𝑓(𝑃2)
 ≈ … ≈

1

𝑝𝑒𝑟𝑓(𝑃𝑖)
 (3)

From equation (1), the lower the workload, the higher the performance of the Machine.

This model has the following deficiencies as it does not consider the impact on

performance caused by straggler machines. There are two reasons why a machine

becomes a straggler machine. Firstly, because it has limited processing power. Secondly,

because it spends too much time in communications. This leads to unbalanced processing

which results in reduced performance.

Our goal is to realize optimal performance that considers straggler machines and

communication costs by adjusting the workload.

3.2 FUNCTIONAL MODEL WITH COMMUNICATION AND PROCESSING

POWER

To reduce the effect of straggler machines and thereby the consequent impact on load

balancing, we take into consideration the processing power and limit the communication

taking place in the system. This will improve the performance of the system.

20

First, we measure the processing power of each computer machine assigned to the

Mapper and distribute tasks based on the capacity of that machine, in other to avoid any

process becoming a straggler. Hence, we assign task based on the processor power of a

given machine. This is represented as:

𝑃𝑜1 < 𝑃𝑜2 < 𝑃𝑜3 < 𝑃𝑜𝑖

The processing power of Machine 1 (Po1) is less than that of Machine 2 (Po2) and

Machine 2 (Po2) is less than Machine 3 (Po3).

The processor power is measured as the CPU speed of that machine. This can be obtained

from the system properties. Therefore, total processing power 𝑃𝑟𝑇 for all machines is:

𝑃𝑟𝑇 = ∑ 𝐶𝑃𝑈𝑖

𝑛

𝑖=1
 = 𝐶𝑝𝑢

1
+ 𝐶𝑝𝑢

2
+ 𝐶𝑝𝑢

3
+ . . . + 𝐶𝑝𝑢

𝑛

Where Cpui is the system processor speed measured in megahertz (MHz) or gigahertz

(GHz).

For each computer with a Mapper node Mi, the workload Di assigned to it is:

 𝐷𝑖 =
𝐶𝑝𝑢𝑖

∑ 𝐶𝑃𝑈𝑖
𝑛
𝑖=1

 𝑥 𝐷 (4)

Where D is the total workload to be distributed among the Mapper.

∑ 𝐶𝑃𝑈𝑖
𝑛
𝑖−1 is the total processing power of mapper machines

Another reason why a machine could become a straggler is if the machine is spending too

much time in communication rather than actually processing the task. We measure

communication time with a timer variable called Ground Communication (GC) which is

21

the elapsed time of the process. The GC elapsed time is the monitor timer set and

configured in the Map-Reduce program segment. The GC elapsed time counter

increments only when the Reducer triggers a call to the Mapper and vice versa. As shown

in section 4.4 later, the last communication takes place between the Mapper and Reduce

right after the “Merged Map outputs”, before the GC elapsed time is recorded. This shows

that the GC elapsed time counter stops when there is no more communication between

the Mapper and the Reducers. Thus, we measure Communication as the maximum of the

GC elapsed time for a particular task assigned to a particular machine.

Ci = GC Elapsed Time (ms)

Where Ci denotes the communication of a task and its unit of measurement is ms

We modify the first model to generate the new model.

 Let D1,..., Di , M1,..., Mi , R1,..., Rj , be as defined earlier in section 3.1

 Let Cij be the communication time between Mapper i and Reducer j. This is

measured as kb/sec

Recall that the Mapper is on a machine that is separate from the reducers. The Reducer

machine receives the result from the Mapper node on another machine and generates the

output. Thus, the function performance model with communication is the CPU time of

the Mapper machine and the time spent by the Reducer machine. Let Pti denote the

processing time of the CPU of the Mapper i

𝑝𝑒𝑟𝑓(𝑀𝑖) = 𝐶𝑃𝑈 𝑇𝑖𝑚𝑒 (Pti) where 𝑝𝑒𝑟𝑓(𝑃𝑖) be as defined earlier in section 3.1

22

From (3), for optimum performance the following constraint must be true for both the

Mapper and Reducer, considering communication:

(𝐷𝑖)

𝑝𝑒𝑟𝑓(𝑃𝑖)(𝐷𝑖)
 x Max (𝐶1𝑖𝑗, 𝐶2𝑖𝑗 …𝐶𝑁𝑖𝑗)

=
1

𝑝𝑒𝑟𝑓(𝑃𝑖)
 x Max (𝐶1𝑖𝑗, 𝐶2𝑖𝑗 …𝐶𝑁𝑖𝑗) (5)

Note that the model is almost the same as our previous model where the results of 𝑃𝑖

differ due to the distribution of workload using equation (4). Eq (5) considers the

computational cost as well as the added overhead of communication cost. The added

overhead of communication cost is not considered in eq. (3).

Continuing with our example in figure 3.1, the extended model with communication is

shown below:

 Figure 3.2 –Proposed framework communication and processing power of each machine

𝐶22

𝐶11 Cat, Cat . . .
Dog, Dog . . .

Comp1 - MAPPER 1

Cat, Cat . . .
Dog, Dog . . .

Comp2 - MAPPER 2

REDUCER 1 = 160 Cat

REDUCER 2 = 180 Dog

Comp3

𝐶
𝑝

𝑢
1

=
2

.5

𝐶
𝑝

𝑢
2

=
5

.0

M(f(D1)) = 333

M(f(D2)) = 667

23

The CPU capacity of each machine differs. Thus, for optimum performance the following

constraint must be true for both Mappers and Reducers:

(𝐷1)

𝑝𝑒𝑟𝑓(𝑃1)(𝐷1)
 × Max (𝐶11, 𝐶12) ≈

(𝐷2)

𝑝𝑒𝑟𝑓(𝑃2)(𝐷2)
 × Max (𝐶21, 𝐶22) ≈

 … ≈
(𝐷𝑖)

𝑝𝑒𝑟𝑓(𝑃𝑖)(𝐷𝑖)
 × Max (𝐶1𝑖𝑗 , 𝐶2𝑖𝑗 …𝐶𝑁𝑖𝑗) (6)

Since the process is in parallel the maximum communication overhead is considered, as

shown in example 3.3 later.

The goal of the model is to help improve the performance of the MapReduce system by

optimizing the communication overheads in the system.

3.3 COMMUNICATION PERFORMANCE DEGRADATION

Communication may degrade performance for different reasons. These possibilities

includes the Mapper and Reducer spending more time communicating rather than

processing the task. This situation arises as a result of the nature of task distribution and

the goal of the task or network issues during processing of tasks. If there is a lot of

network delay during processing, communication could be very slow and thus, leads to

degradation in the performance of the job.

24

For instance, from figure 3.3 below:

In figure 3.3, “MAPPER 1” spends more time communicating than expected as in

communication C12. This is an example of a straggler processes. To resolve this, we

include an additional factor into the communication model known as “Performance

Degradation” which is denoted by - 𝑃𝐷

Thus, from Figure 3.3, the total communication between Mappers and Reducers are:

Mapper 1 to Reducer 1 and Mapper 1 to Reducer 2 = Max (15, 25) = 25 and (𝐷1) =

400𝐾B

Mapper 2 to Reducer 1 and Mapper 2 to Reducer 2 = Max (15, 10) = 15 and (𝐷2) =

600𝐾𝐵

To optimize performance, load balancing is achieved by regaining balance in the system,

For every Mapper Mi in a straggler state due to excess communication, reduce the

workload, (𝐷𝑖) – assigned to that Mapper and denote the reduction as 𝑃𝐷 (Performance

Degradation). Then, add 𝑃𝐷 to any communicating task that has the minimum

communication overhead.

Figure 3.3 - communication degrading performance

sperformance

M(f(D1)) = 400

M(f(D2)) = 600

𝐶11 = 15 Cat, Cat . . .
Dog, Dog . . .

Comp1 - MAPPER 1

Cat, Cat . . .
Dog, Dog . . .

Comp2 - MAPPER 2

REDUCER 1 = 160 Cat

REDUCER 2 = 180 Dog

Comp3

𝐶
𝑝

𝑢
1

=
2

.5

𝐶
𝑝

𝑢
2

=
5

.0

𝐶22 = 10

25

By default, 𝑃𝐷 = 0; but if there exists a straggler, we compute 𝑃𝐷 as:

 𝑃𝐷𝑖 = ∆𝐶 𝑋 𝐷𝑖 (7)

where:

∆𝐶 = rate of change in communication (percentage).

𝐷𝑖 = Workload of the machine to be reduced.

For optimum performance the following constraint must be true for the Mappers and

Reducers:

(𝐷1)− (𝑃𝐷1)

𝑝𝑒𝑟𝑓(𝑃1)(𝐷1)
 × Max (𝐶11, 𝐶12) ≈

(𝐷2)+ (𝑃𝐷1)

𝑝𝑒𝑟𝑓(𝑃2)(𝐷2)
 × Max (𝐶21, 𝐶22)

 … ≈
(𝐷𝑖) ±(𝑃𝐷𝑖)

𝑝𝑒𝑟𝑓(𝑃𝑖)(𝐷
𝑖
)
 × Max (𝐶1𝑖𝑗 , 𝐶2𝑖𝑗 …𝐶𝑁𝑖𝑗) (8)

Continuing with our example in figure 3.3, we can see that Mapper 1 spends more time

communicating than Mapper 2.

Taking this as an example, hypothetically, let 𝑝𝑒𝑟𝑓(𝑃1) = 10 𝑎𝑛𝑑 𝑝𝑒𝑟𝑓(𝑃2) = 10 and

rate of change in communication which was measured in percentage is: (40 − 25)%.

This means:𝑃𝐷 = (40 − 25)% 𝑋 400 = 90

Machine 1: =
(𝐷1) − (𝑃𝐷)

𝑝𝑒𝑟𝑓(𝑃1)(𝐷1)
 × 𝐶1 =

310

10 𝑋 400
 × 0.040

Machine 2 ∶=
(𝐷2) + (𝑃𝐷)

𝑝𝑒𝑟𝑓(𝑃2)(𝐷2)
 × 𝐶2 =

690

10 𝑋 690
 × 0.025

26

Thus, from the calculations, we see that the constraint specified by eq.(8) is satisfied.

Hence, we distribute the workload to create a workload balance. This results in achieving

close to optimal performance.

27

CHAPTER IV

EXPERIMENTS AND RESULTS

This chapter describes our experiments to validate the functional model presented in the

previous chapter. A comparative analysis of experimental results with a regular

MapReduce system and the proposed optimized functional model with communication on

the Hadoop MapReduce system is presented. The experiments show that the optimized

functional model outperformed the regular MapReduce by a factor of 2 in terms of

performance.

The physically file size of an HDFS cluster is 64/128 Memory – Blocks. We used the

Hadoop Distributed File System (HDFS) for our experiments. The outputs of any Hadoop

MapReduce jobs are immutable. The Java programming language is used for our

experiments.

28

We ran three sets of experiments. In the first experiment we used standard Hadoop. This

is exemplified by eq.(3). Here tasks or jobs are distributed equally to all the machines. In

the second experiment we ran the optimized model that takes into consideration the

processing power and communication. This model is represented by equation (6) in

chapter 3. In this model, based on previous communication and computational times, the

workload is distributed to the different machines. This is a static model as the workload

in not re-distributed. In the third experiment, as in the second one, we take into

consideration both processing and communications times. However this time we use a

dynamic model represented by eq. (8). If the performance degradation is above a

threshold level, the remaining workload is re-distributed.

4.1 DATA SOURCE - Di

The data source for the various experiment was obtained from the Department of

Biosystem and Agricultural Engineering, College of Agricultural Sciences, Oklahoma

State University, Stillwater. The data used is from an “Eastern Red Cedar” project data

that is currently on-going. The Eastern Red Cedar project is used to determine the

Geolocation, best fit location of resources, among others. The Eastern Red Cedar project

data serves as the workload D to our system. This workload D is divided into 𝐷1, … 𝐷𝑖

smaller workloads where each 𝐷𝑖 is a file that has been assigned to each machine in

Megabytes (MB). The total workload D is 19132 KB and D1 varies according to equation

(4).

29

4.2 MAPPER AND REDUCER MACHINES – Mi, Ri

The number of Reducers might vary according to the number of Mappers and the

goal/aim of the job. Our major area of focus is factoring communication and processing

power into the model to show how performance can be improved once we divide this

data between the machines according to processing power. 6 machines are used for our

experiments with 4 Mapper nodes on independent machines and 2 Reducer nodes on 2

other separate independent machines.

4.3 EXPERIMENTAL SET-UP

4.3.1 SYSTEM CONFIGURATION

The computer systems used for running the program for this experiments are of the

Following configuration:

 CPU(s): Intel Core i7-3930K, its equivalent or above

 Motherboard: ASUS P9X79 WS , its equivalent or above

 Memory: 32GB (8x 4GB) G.Skill Ripjaws X DDR3 1600, its equivalent or above

 Drives: Corsair Force3 120GB, OCZ Vertex 3 120GB, its equivalent or above

 Power Supply: Corsair AX850 850w 80 Plus Gold, its equivalent or above

 We used Cloudera to install Hadoop MapReduce. See [10] for more details.

Cloudera is a GUI utility and licensed Hadoop MapReduce IDE/API Open Source

distributor

These machines are interconnected together on a local area network (LAN).

30

4.3.2 PROGRAMMING TECHINQUES

We looked at the Mapper task and the Reducer task to fit into our model and improve the

performance of Hadoop MapReduce. Some of the techniques used among others for

optimizing the mapper and the MapReduce Jobs are:

1. Define a custom input format to be all strings of words

2. We work with custom input data types. That is, “TextInputFormat”

3. A custom partitioner can be defined. By default, MapReduce uses a hash

partitioner and there might be situation for types of data for which a custom

partition might run more efficiently. Since, we are using “TextInputFormat”, the

default hash partitioner was used.

4. Modified the “jobconf” file and implementation of the reducer and to ensure the

GC elapsed time is set as the measure of communication.

In terms of sub diving tasks, the base line for any experiments is 30 to 40 seconds per

Map task, depending on the goal/aim of the task. Thus, we compile the result of running a

regular MapReduce job and compare it with the result from running the same Job using

the optimized model.

4.4 IMPLEMENTATION

The Map module implementation for the Map function is the word counts program. . The

Map function handles the Mapping of words that are frequently used in a large file and

emits a key/value pair of <word, 1>. First, the mapper processes line by line through the

file, as provided by the specified TextInputFormat. Second, it splits the line into tokens

separated by the string separator specified; this separator by default is whitespaces used

31

through the StringTokenizer, and emits a key-value pair of <word, 1>. For the given

sample input the first map emits: <employee, 1> <title, 1> <eId, 1> <city, 1>. The second

map emits: <employee, 1> <client, 1> <region, 1> <city, 1>. As stated in section 2.4, the

output of each mapper is passed through to the sort/combining phase. As part of the job

configuration, this combining phase is part of the Reducer. The sort/combining phase is a

local combiner which performs operation of a local aggregation. That is, map outputs are

sorted by key and group the output. The Reduce module implementation used as the

Reduce function in the experiments perform a summation of the values which are the

occurrence count of each key. Thus the output of the job is: <employee, 2> < client, 1>

<region, 1> <state, 1> <city, 2>. Various data sizes and partitioning schemes can be

defined. In our experiments, for the regular MapReduce, we distribute the workload

equally among machines. As proposed in the optimized model, equation (4) is used as a

baseline for data sizes allocated to each machine.

The documents are stored in URLDirectory. Each document i represents Di

 MAPPER

 for each document in URLDirectory

{

 File = ReadFile();

 For each line in file

 T = tokenize(line); [initialize mapper]

 for each token in T

{

 word.set(tokenizer.nextToken()); [map key/value pair]

32

 output.collect(word, one); [store key/value pair]

 }

}

CALL_REDUCER(Text);

[sends the result from mapper as key/value pair to reducer]

 REDUCER

Values = getValuesFromMapper(); [initialize key/value pairs from

mapper]

 int sum=0;

 while (values.hasNext())

 {

 sum += values.next().get(); [reduce key/values pair]

 }

 output.collect(key, new IntWritable(sum)); [store output of the reducer]

 MAIN

Define input_path, output_path; [source and

destination paths]

Define setup method. [Initialize]

Define jobconf as ‘newjobconf’. [Hadoop

preprocessor]

Invoke the Hadoop jobClient. [Calls mapper]

JobClient.runJob(conf); [execute]

33

4.5 RESULTS

4.5.1 EXPERIMENT 1: PERFORMANCE OF REGULAR MAPREDUCE

In the first experiment we used standard Hadoop. This is exemplified by eq.(3). Here

tasks or jobs are distributed equally to all the machines.

The processing time of MapReduce with any set of input data may be

affected by many factors. This includes the algorithm used during the

implementation of the class code where the Map and Reduce functions are

operational. Other functions that may be in this class codes includes the partition,

combine and compress functions or sub-classes which also contribute to the

factors affecting the MapReduce results. Some other external factors may also

affect the performance of your MapReduce Job. From table 4.1 below, we see the

cumulated data gathered during the experiments and its corresponding graph

which depicts the performance of regular MapReduce. Thus, we can see how the

performance varies. These variations can be attributed to the following factors:

 Hardware (or resources) such as CPU clock, disk I/O, network bandwidth, and

memory size.

MapReduce requires the storage system to provide I/O interfaces for

scanning data. Hence, during our experiment, there are two I/O modes namely:

Streaming I/O and Direct I/O. According to [11], benchmarking on HDFS shows

that Direct I/O outperforms the Streaming I/O by about 10%. To that end, we use

direct I/O in our experiment to get the result shown in table 4.1 for regular

MapReduce.

34

Table 4.1 – Performance of regular MapReduce

Ex

p

Workload

(D) KB

(𝑫𝟏)

KB

(𝑫𝟐)

KB

(𝑫𝟑)

KB

(𝑫𝟒)

KB

P1

Kb/sec

P2

Kb/sec

P3

Kb/sec

P4

Kb/sec

𝑅𝑡(𝑃1)

sec

𝑅𝑡(𝑃2)

sec

1 816 204 204 204 204 9.97 5.51 10.00 5.48 0.100 0.181

2 1092 273 273 273 273 9.86 4.94 9.88 4.98 0.101 0.202

3 1208 302 302 302 302 8.86 4.67 8.90 4.69 0.113 0.214

4 1360 340 340 340 340 8.82 4.54 8.80 4.57 0.113 0.220

5 1572 378 378 3782 378 8.79 4.44 8.77 4.45 0.114 0.225

6 2016 504 504 504 504 7.55 4.21 7.52 4.23 0.132 0.238

7 2448 612 612 612 612 6.80 4.03 6.85 4.01 0.147 0.248

8 2568 642 642 642 642 6.30 3.88 6.33 3.86 0.159 0.258

9 2828 707 707 707 707 6.20 3.65 6.20 3.64 0.161 0.274

10 3224 806 806 806 806 5.88 3.41 5.87 3.42 0.170 0.293

Table 4.1 - Continuation of Performance of regular MapReduce.

𝑅𝑡(𝑃3)

sec

𝑅𝑡(𝑃4)

Sec

MAX

 (𝑅𝑡(𝑃𝑖))

Sec

0.100 0.182 0.182

0.101 0.201 0.202

0.112 0.213 0.214

0.113 0.219 0.220

0.114 0.225 0.225

0.133 0.236 0.238

0.146 0.249 0.249

0.158 0.259 0.259

0.161 0.275 0.275

0.170 0.292 0.293

35

Figure 4.1 - Performance of regular MapReduce

Table 4.1 - Performance evaluation of the regular MapReduce. Where,

Di – workload for mapper i

Pi – performance of task i

𝑅𝑡(𝑃𝑖) – Response Time of task i

The results show that the respones time incresases almost linearly with workload.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0 500 1000 1500 2000 2500 3000 3500

R
es

p
o

n
se

 T
im

e
(s

)

Workload (Kb)

Performance of Regular MapReduce

36

4.5.2 EXPERIMENT 2: OPTIMIZED MAPREDUCE

In the second experiment we ran the optimized model that takes into consideration the

processing power and communication. This model is represented by equation (6) in

chapter 3. In this model, based on previous communication and computational times, the

workload is distributed to the different machines. This is a static model as the workload

in not re-distributed. The same map and reduce functions as used for the regular

MapReduce was applied here also. The experimental setup was the same as for the

regular MapReduce. The workload was distributed based on eq. (6) as the results are

shown in table 4.2.

Table 4.2 – Performance evaluation of optmized MapReduce

Exp Workload

(D) KB

(𝑫𝟏)

KB

(𝑫𝟐)

KB

(𝑫𝟑)

KB

(𝑫𝟒)

KB

C1

(sec)

C2

(sec)

C3

(sec)

C4

(sec)

P1

Kb/sec

P2

Kb/sec

P3

Kb/sec

1 816 136 272 136 272 0.017 0.034 0.018 0.035 13.41 13.40 13.44

2 1092 182 364 182 364 0.019 0.036 0.020 0.036 13.44 13.46 13.45

3 1208 201 403 201 403 0.020 0.039 0.022 0.040 13.46 13.47 13.47

4 1360 227 453 227 453 0.022 0.040 0.022 0.040 13.48 13.44 13.48

5 1572 262 524 262 524 0.023 0.042 0.024 0.043 13.58 13.58 13.6

6 2016 336 672 336 672 0.034 0.048 0.035 0.049 15.10 14.55 15.00

7 2448 408 816 408 816 0.036 0.051 0.037 0.053 15.23 14.81 15.23

8 2568 428 856 428 856 0.040 0.052 0.038 0.054 15.25 14.83 15.24

9 2828 471 943 471 943 0.041 0.054 0.041 0.055 15.26 15.10 15.25

10 3224 537 1075 537 1075 0.044 0.057 0.043 0.058 15.31 15.44 15.31

37

Table 4.2 – Continuation of performance of optmized MapReduce

P4

Kb/sec

𝑅𝑡(𝑃1)

sec

𝑅𝑡(𝑃2)

sec

𝑅𝑡(𝑃3)

sec

𝑅𝑡(𝑃4)

Sec

MAX

 (𝑅𝑡(𝑃𝑖))

Sec

13.41 0.092 0.109 0.092 0.110 0.110

13.47 0.093 0.111 0.094 0.110 0.111

13.49 0.094 0.113 0.096 0.114 0.114

13.50 0.096 0.114 0.096 0.114 0.114

13.6 0.097 0.116 0.098 0.117 0.117

14.56 0.100 0.117 0.102 0.118 0.118

14.93 0.102 0.119 0.103 0.120 0.120

15.01 0.106 0.119 0.104 0.121 0.121

15.13 0.107 0.120 0.107 0.121 0.121

15.44 0.109 0.122 0.108 0.123 0.123

Figure 4.2 - Performance of optmized MapReduce

0.108

0.11

0.112

0.114

0.116

0.118

0.12

0.122

0.124

0 500 1000 1500 2000 2500 3000 3500

R
es

p
o

n
se

 T
im

e
 (

s)

Workload (Kb)

Optimized Functional Model considering Processing Power and
Communication

38

The result show the optimized model outperforms the regular MapReduce model by a

factor of 2. Here:

Di – workload for mapper i

Ci – Maximum communication that takes place on task i

Pi – performance of task i

𝑅𝑡(𝑃𝑖) – Response Time of task i

4.6 EXPERIMENT 3: WORKLOAD REDISTRIBUTION IN OPTIMIZED

MAPREDUCE

In the third experiment, as in the second one, we take into consideration both processing

and communications times. However this time we use a dynamic model a represented by

eq. (8). If the performance degradation is above a threshold level, the remaining workload

is re-distributed.

From 4.1 and 4.2 above, we can see the performance improvement between the optimized

model regular MapReduce jobs. This performance improvement shows that the optimized

version is about 2 times faster than the regular MapReduce job. Nonetheless, in a real

world situation, the optimization has to be done in real-time or on the fly. In other words,

as the MapReduce job is running the performance degradation (PD) must be observed

and the workload redistributed (see section 3.3). However if the workload is constantly

redistributed according to eq. (8), the communication overhead will be excessive.

Initially, the workload is distributed based on eq. (6).

39

During runtime, if the PD of a particular machine exceeds a threshold, the workload is re-

distributed with a machine that has the best PD. We look at the execution log and get an

estimate of the communication overheads, the time remaining for a task and the workload

to be transferred. . The result is shown in table 4.3

Table 4.3 – Workload redistribution using optimized alorithm

Exp Workload

(D) KB

(𝑫𝟏)

KB

(𝑫𝟐)

KB

(𝑫𝟑)

KB

(𝑫𝟒)

KB

C1

(sec)

C2

(sec)

C3

(sec)

C4

(sec)

P1

Kb/sec

P2

Kb/sec

1 816 204 204 204 204 0.035 0.03 0.02 0.031 13.41 13.4

2 1092 273 273 273 273 0.036 0.032 0.022 0.032 13.44 13.46

3 1208 302 302 302 302 0.039 0.033 0.024 0.034 13.46 13.47

4 1360 340 340 340 340 0.044 0.035 0.046 0.036 13.48 13.44

5 1572 378 378 378 378 0.049 0.038 0.052 0.037 13.58 13.58

6 2016 504 504 504 504 0.061 0.045 0.061 0.044 15.1 14.55

7 2448 612 612 612 612 0.064 0.047 0.065 0.048 15.23 14.81

8 2568 642 642 642 642 0.067 0.048 0.068 0.05 15.25 14.83

9 2828 707 707 707 707 0.071 0.05 0.07 0.052 15.26 15.1

10 3224 806 806 806 806 0.075 0.055 0.074 0.055 15.31 15.44

40

Table 4.3 – Continuation of workload redistribution using optimized alorithm

Figure 4.3 Workload redistribution using optimized alorithm

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0 500 1000 1500 2000 2500 3000 3500

R
es

p
o

n
se

 T
im

e
 (

s)

Workload (KB)

Optimal Finding

P3

Kb/sec

P4

Kb/sec

𝑅𝑡(𝑃1)

sec

𝑅𝑡(𝑃2)se

c

𝑅𝑡(𝑃3)

Sec

𝑅𝑡(𝑃4)

sec

MAX

 (𝑅𝑡(𝑃𝑖))

sec

13.44 13.41 0.11 0.105 0.095 0.106 0.11

13.45 13.47 0.111 0.107 0.097 0.107 0.111

13.47 13.49 0.114 0.108 0.099 0.109 0.114

13.48 13.5 0.119 0.11 0.121 0.111 0.121

13.6 13.6 0.123 0.112 0.126 0.111 0.126

15 14.56 0.128 0.114 0.128 0.113 0.128

15.23 14.93 0.13 0.115 0.131 0.115 0.131

15.24 15.01 0.133 0.116 0.134 0.117 0.134

15.25 15.13 0.137 0.117 0.136 0.119 0.137

15.31 15.44 0.141 0.12 0.14 0.12 0.141

41

Thus, using datas from table 4.1, 4.2 and 4.3, an overall comparison is used to derive the

next graph below:

Figure 4.4 Comparison of all results

Blue – Experiment 1 - Regular MapReduce

Dark red – Experiment 2 - Optimized MapReduce

Green – Experiment 3 – Workload redistribution in optimized Approach

Figure 4.4 – Comparison analysis.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

816 1092 1208 1360 1572 2016 2448 2568 2828 3224

R
es

p
o

n
se

 T
im

e
 (

s)

Workload (KB)

Comparison of all Results

42

This shows that the optimized approach is 2 times faster than the regular MapReduce.

The Real time is about 20% worse than the optimized, but over 80% better than the

regular MapReduce.

43

CHAPTER V

CONCLUSION

In this report, we first represent the regular Hadoop MapReduce execution with a

functional model that takes into consideration processing power. Next we propose a

functional model that, optimization Hadoop MapReduce further by taking

communications and processing power alot into consideration. We ran experiments on a

6-node cluster. Our results show that optimized functional model outperforms the regular

functional model of the Hadoop MapReduce. Results also show that the real-time

approach performs better than the regular MapReduce. Future work will focus on adding

optimal partitioning of the Big Data in a MapReduce job to our functional model.

44

REFERENCES

[1] Hadoop MapReduce http://www-

01.ibm.com/software/data/infosphere/hadoop/MapReduce/ [518/2014]

[2] MapReduce Tutorial http://hadoop.apache.org/docs/r1.2.1/mapred_tutorial.html

[05/20/2014]

[3] J. Dean and S. Ghemawat. MapReduce: Simplified data processing on large

clusters. in Proceedings of the 6th Symposium on Operating System Design and

Implementation (OSDI' 04). 2004. San Francisco, California, USA.

[4] J. Dean and S. Ghemawat. MapReduce: a flexible data processing tool.

Communications of the ACM, 2010. 53(1): p. 72-77.

[5] Junbo Zhang, Dong Xiang, Tianrui Li, and Yi Pan. M2M: A Simple Matlab-to-

MapReduce Translator for Cloud Computing. Page 2. 2013 – IEEE

[6] Hadoop Basic – Creating a MapReduce program

http://java.dzone.com/articles/hadoop-basics-creating [08/20/2014]

45

[7] HDFS Architecture Guide http://hadoop.apache.org/docs/r1.2.1/hdfs_design.html

[08/20/2014]

[8] HDFS Architecture https://hadoop.apache.org/docs/r2.4.1/hadoop-project-

dist/hadoop-hdfs/HdfsDesign.html [08/20/2014]

[9] Sample Dictionary Words

https://dl.dropboxusercontent.com/u/13762170/input.txt [07/1/2014]

[10] New to Cloudera http://www.cloudera.com/content/dev-

center/en/home/developer-admin-resources/new-to-hadoop.html [7/20/2014]

[11] How-to: Use Eclipse with MapReduce in Cloudera&’s QuickStart VM

http://blog.cloudera.com/blog/2013/08/how-to-use-eclipse-with-MapReduce-in-

clouderas-quickstart-vm/ [7/30/2014]

[12] Dawei Jiang, Beng Chin Ooi, Lei Shi, and Sai Wu. The Performance of

MapReduce: An In-depth Study, p472 – 473, 2010 – PVLDB

[13] Improving MapReduce Performance in an heterogeneous environments

https://www.usenix.org/legacy/event/osdi08/tech/full_papers/zaharia/zaharia_htm

l/index.html [9/2/2014]

[14] MRONLINE – MapReduce Online Performance Tunning

http://people.cs.vt.edu/~butta/docs/hpdc2014-mronline.pdf [9/20/2014]

[15] SHadoop: Improving MapReduce performance by optimizing job

execution mechanism in Hadoop clusters

http://www.sciencedirect.com/science/article/pii/S0743731513002141

[9/10/2014]

46

[16] Benchmarking approach for designing a MapReduce performance model

http://www.cis.upenn.edu/~zhuoyao/Zhuoyao_Homepage/paper/ICPE13.pdf

[9/11/2014]

[17] Improving MapReduce performance through data placement in

heterogeneous Hadoop clusters

http://www.eng.auburn.edu/~xqin/pubs/hcw10.pdf [9/11/2014].

VITA

ADEMOLA CHUKWUDI AINA

Candidate for the Degree of

Master of Science

Thesis: IMPROVING PERFORMANCE IN HADOOP MAPREDUCE

Major Field: Computer Science

Biographical:

Education:

Completed the requirements for the Master of Science in Computer Science at

Oklahoma State University, Stillwater, Oklahoma in December, 2014.

Completed the requirements for the Bachelor of Science Computer Science at

Novena University, Ogume, Delta State, Nigeria in 2011.

Experience:

More than 4 year experience in Software development, web development,

and online security.

Professional Memberships:

National Association of Computer Science Student (NACOSS),

Novena Chapter, Nigeria.

