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Abstract: Chapter I: 
Hard red winter wheat is broadly grown in Great Plains states. Knowing how wheat 

quality is correlated across space may help wheat buyers know where to find wheat with the 

characteristics they need. The mean of wheat quality characteristics is estimated for each location 

first. A variogram is used to represent the spatial correlation of these local expected values. 

Variograms are also estimated for the residuals by year. Such information could be used to 

determine how large an area a wheat sample represents. The result shows that expected local 

wheat quality has a strong spatial correlation even over a large distance. The spatial correlation of 

residuals changes across years. Thus, the conclusion is that having a survey each year provides 

new information to wheat buyers. The results can explain why Plains Grains Inc., who provided 

the data, conducts a wheat quality survey every year. 

 

 Chapter II: 

This chapter looks at the spatial patterns of hard red winter wheat protein and basis.  

Additionally, a hedonic model between wheat basis and protein is built to determine if the protein 

premium varies across space. The spatial regression models are estimated using Bayesian Kriging 

so that coefficients can vary across space. The theoretical variogram model is fitted in the 

covariance matrix so we can quantify the spatial variation. Local basis and protein premium are 

highly correlated across space, and protein premium changes relatively large every year. The 

hedonic model shows that protein premiums are largest in the western part of the Southern Great 

Plains. The Pacific Northwest region shows no protein premium, which is presumably because 

protein premiums are paid directly through price in these areas.   
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CHAPTER I 
 

 

SPATIAL PATTERNS IN HARD RED WINTER WHEAT QUALITY 

 

 

1. Introduction 

Hard red winter wheat (HRWW) can be used to make bread-use flour and flour suitable for Asian 

noodles, hard rolls, and flatbreads. HRWW quality information is difficult for millers to acquire 

because elevators do only limited wheat quality tests due to the time and cost (Regnier 2004). 

Information about wheat quality is valuable to wheat buyers. Wheat characteristics can directly 

influence the quality of flour and end products. For example, protein, or gluten, in flour is the key 

factor to make dough sticky (MacRitchie 1987; Veraverbeke et al. 2002) and gives a smooth 

texture to the bread. Test weight and percentage of large kernels can give millers an 

approximation of flour yield. Moisture is an indicator of storage time length. Espinosa and 

Goodwin (1991) and Roberts (2020) have estimated hedonic models of wheat prices and selected 

wheat characteristics. Espinosa and Goodwin used Kansas wheat price and quality data and found 

that wheat buyers and end-users use characteristics other than grading factors to price the wheat. 

Roberts extended the previous work into the entire HRWW growing region. Plains Grains Inc. 

(PGI) was formed in 2004 to provide accurate wheat quality data to domestic and international 

wheat buyers. Thus, this previous research suggests PGI is providing useful information to wheat 

buyers.   
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Studies have used various methods to examine the factors affecting wheat quality. Factors 

that can determine wheat quality includes the wheat producer's choice of wheat variety (Barkley 

& Porter 1996; Lambert et al. 2003); the weather and soil conditions (Gooding et al. 2003; 

Johansson et al. 2008; Lee et al. 2013); and the nitrogen level applied in the field (Erekul et al. 

2006; Bongiovanni et al. 2007; Zecevic 2010; Meyer-Aurich et al. 2010). Lee et al. utilized a 

spatial lag model studying the influence of temperature and rainfall on wheat protein and test 

weight. The spatial lag model improves the model’s prediction ability. Meyer-Aurich et al. 

applied a spatial error model to estimate the wheat yield and protein response to nitrogen applied. 

Their work provides the support to consider the spatial effect when wheat qualities are involved. 

However, there are several ways to calculate the weight matrix, so the model's performance 

partially depends on the weight matrix. A spatial autoregressive model also cannot tell how 

variables are correlated across space very accurately.  

The variogram is used in this work to examine the spatial variation in wheat characteristics. It 

can give simple results to understand how wheat quality varies across space. PGI breaks the 

selected wheat characteristics into 3 groups, wheat grading characteristics, kernel quality 

characteristics, and other wheat characteristics. The grading characteristics include dockage, test 

weight, damaged kernels, shrunken and broken kernels, and foreign material (PGI 2020). Kernel 

quality characteristics include total defects, kernel size, thousand kernel weight, and kernel 

diameter. Other wheat characteristics include protein, ash content, falling number, moisture, and 

kernel hardness. The main objective in this work is to find if it is necessary to have wheat 

sampling annually and does PGI provides new information to the market every year. Two specific 

problems are i) how is local expected wheat quality distributed across space, and ii) how is error 

distributed across space in each year. 

To find out the answers to the questions above, a mixed effect regression model is used in 

this work. Regression with dummy location variables and year random effects is used to find the 
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mean value of wheat characteristics for each location. Then, variograms are estimated for the 

means at each location and the residuals for each year. The exponential model and linear model 

are used for the theoretical variogram. In this way, the spatial variation and correlation in local 

mean quality value and residuals are estimated separately. The long-term means of each location 

could be useful to wheat buyers who are contracting purchases in advance of harvest or early in 

the harvest while quality information is limited. It also provides evidence supporting PGI’s 

surveying work every year.   

2. Materials and Methods 

2.1 Data 

The wheat quality data are PGI’s unpublished data. PGI collects wheat samples, tests wheat 

qualities, and provides this information to the wheat buyers every year. The sampled locations are 

focused on Great Plains states including Colorado, Kansas, Montana, Nebraska, North Dakota, 

Oklahoma, South Dakota, Texas, Wyoming, and the Pacific Northwest regions including Oregon, 

Washington, and Idaho. In the Great Plains States, PGI samples the individual elevators. In the 

Pacific Northwest, the samples are from regional elevators and so represent a larger area. Local 

elevators typically sample each load of wheat and after the sample is tested, the wheat is placed 

into a dump barrel. The PGI representative takes a probe sample from the dump barrel.  The 

samples are sent to the USDA ARS Hard Winter Wheat Quality Lab in Manhattan, Kansas (PGI 

2020) to test wheat quality. The grade of sampled wheat is officially declared by the Federal 

Grain Inspection Service office in Enid, Oklahoma.  

The original dataset has 4032 observations. It contains 49 observations of other wheat 

varieties or missing values in wheat class, 187 observations in the Pacific Northwest region, and 

671 observations with missing coordinates. After clearing those observations, the dataset used in 

this work has 3249 observations. Also, there are 159 locations sampled only once in 8 years, so 

they were removed to avoid a perfect fit of regression. After removing those observations, the 
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dataset has 3090 observations which cover 8 years from 2012 to 2019 and 430 locations in total. 

Noted that some quality data are missing for some locations in a certain year, so the observation 

number may differ according to the wheat quality characteristic. The dataset is also unbalanced 

within-year and across-year. In each year, the number of sampled elevators in each city differs. 

Some locations got repeated measures. For example, in 2012, 62 out of 305 sampled locations 

had more than one sampled elevator. The number of sampled locations also differs across years, 

and sampled locations change by year.    

Latitude and longitude are measured based on city level in the world geodetic system 1984 

(WGS84). Single Kernel Characterization System (SKCS) is used to measure kernel hardness and 

diameters. Other wheat characteristics this work focuses on are dockage, test weight, damaged 

kernels, shrunken & broken kernels, foreign material, total defects, kernel size large, medium, 

and small, thousand kernel weight, protein, individual wheat ash, falling number, and moisture. 

Protein and individual wheat ash measurements are on a 12% moisture basis.  

2.2 Mixed Effect Model and Variogram 

Since the data involves both spatial and time effects, spatial autocorrelation could come from 

local values and residuals. A mixed-effect regression model is used to estimate the mean of wheat 

quality for each location. The model is:  

(1) 𝑦𝑖𝑡 =  𝛽1 + ∑ 𝛽𝑗𝐼(𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑖𝑡 = 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝐼𝐷𝑗)𝐿
𝑗=2 + 𝛾𝑡 + 𝑢𝑖𝑡 

where 𝑦𝑖𝑡 is the 𝑖𝑡ℎ observation in year 𝑡 of a wheat characteristic, 𝛽’s are regression coefficients, 

𝐼(𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑖𝑡 = 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝐼𝐷𝑗) is an indicator function that equals 1 if the location of the 𝑖𝑡ℎ 

observation in year 𝑡 is equal to the 𝑗𝑡ℎ location ID and 0 otherwise, 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝐼𝐷 is an 

alphabetically sorted list of cities, 𝛾𝑡~𝑁(0, 𝜎𝛾
2) is the random year effect in year 𝑡 and 𝑢𝑖𝑡 is the 

error term. Such a mixed model can be estimated using lme() in package nlme to add random year 
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effects. Restricted maximum likelihood (ReML) is used for the method option. In this way, a 

block is formed by year (Zhang, 2015). Local wheat quality value, �̂�𝑗, can be predicted by: 

(2) �̂�𝑗 = 𝐸(𝑦|𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝐼𝐷𝑗) = {
𝛽1  , 𝑗 = 1
𝛽1 + 𝛽𝑗 , 𝑗 = 2, … , 𝐿

   

and local mean wheat quality �̂� is obtained. Then, we need to match the local mean values and 

coordinates based on city names, and transform such dataset into a spatial object in R by function 

coordinates() in gstat package. A projection of longitude and latitude system must be stated by 

peoj4string() to make sure the distance calculated in variogram() is the distances on the earth 

surface.  

A variogram measures similarity based on distances (Isaaks 1989). The function for empirical 

semi-variogram based on data {�̂�𝑗, 𝑖 = 1, … , 𝐿} is: 

(3) 𝛾(ℎ) =
1

2𝑛(ℎ)
∑ (�̂�𝑖 − �̂�𝑗)

2
(𝑖,𝑗):ℎ𝑖𝑗=ℎ  

where 𝛾(ℎ) is the estimated semi-variogram at distance ℎ, 𝑛(ℎ) is the number of point pairs with 

distance ℎ, and �̂�𝑖 and �̂�𝑗 are pair of points at location 𝑖 and 𝑗 with distance ℎ. If ℎ𝑖𝑗 is small, 

which means distance is close, then points should be similar to each other, and correspondingly, 

semi-variogram should be small. The function variogram() returns the number of point pairs, 

distance, and estimated semi-variogram by distance, which are used to estimate a parametric 

model for the variogram. These values are used to estimate the theoretical variogram. Option 

width can be used to control the distance intervals. Smaller distance intervals will provide more 

semi-variograms, but it does not always provide a better plot showing clear patterns of the 

theoretical variogram. So, the default settings are used since it works well. Under default settings, 

width is set by the diagonal length of a box that covers all the data spatially divided by 45. In this 

way, the distances ℎ where semi-variograms are calculated are determined.     
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Theoretically, a semi-variogram will keep increasing as distance increases. When distance 

reaches a point, differences between points reach the maximum, and the semi-variogram will 

reach a plateau and stay there. The exponential variogram model is fitted for wheat dockage, 

foreign material, and protein. Given the parameters vector 𝝀 = {𝑐0, 𝑐𝑒 , 𝑎𝑒}, the exponential model 

is: 

(4) 𝛾∗(ℎ|𝝀) = 𝑐0 + 𝑐𝑒(1 − exp (−ℎ/𝑎𝑒))     

where 𝑐0 is the nugget effect, 𝑐𝑒 is the partial sill, and 𝑎𝑒 is the range.  

The empirical variogram of other wheat characteristics never reaches the plateau before 1000 

km, and the scatterplot suggests that linear variogram model. We assume that all the linear 

models will reach the plateau at 1000 km, so given the parameters vector 𝝀 = {𝑐0, 𝑐1}, a linear 

variogram model is: 

(5) 𝛾∗(ℎ|𝝀) = {
𝑐0 + 𝑐1 ∗ ℎ, 𝑖𝑓 ℎ ≤ 1000
𝑐0 + 1000𝑐1,  𝑖𝑓 ℎ > 1000 

     

where 𝑐0 is the nugget effect, and 𝑐1 is the slope. 

To estimate the spatial parameters, the weight in least-squares minimization is used:  

(6) min
𝝀

∑ 𝑛(ℎ𝑘){𝛾(ℎ𝑘) − 𝛾∗(ℎ𝑘|𝝀)}2𝐾
𝑘=1  

For wheat dockage, foreign material, and protein, such process can be done by function 

fit.variogram() in gstat. The model option is set as an exponential model, and fit.method option is 

set to be 1 so that 𝑛(ℎ), the number of point pairs at ℎ distance, is used as the weight in least-

squares minimization. Note that fit.variogram() only iterates 200 times, so repeating this function 

using the previous estimation of parameters is necessary to provide better results even though it 

may not converge at the end. Thus, a general process of estimating parameters in an exponential 

model is: 
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i) input initial value 𝑐0
(𝑘)

, 𝑐𝑒
(𝑘)

, 𝑎𝑒
(𝑘)

, 𝑘 = 0      

ii) run fit.variogram(), obtain results 𝑐0̂, 𝑐�̂� , 𝑎�̂� 

iii) 𝑘 = 𝑘 + 1, let 𝑐0
(𝑘)

= 𝑐0̂, 𝑐𝑒
(𝑘)

= 𝑐�̂� , 𝑎𝑒
(𝑘)

= 𝑎�̂�   

iv) repeat step ii) and iii) through 𝑘 = 100 

v) output 𝑐0
(100)

, 𝑐𝑒
(100)

, 𝑎𝑒
(100)

  

For the rest of the wheat characteristics, a linear variogram model can be estimated by 

function lm() in stats which is a basic package in R. We can treat semi-variogram as the 

dependent variable, distance as the independent variable, and the number of point pairs as the 

weight. Partial sill effect is calculated as 1000𝑐1. The variograms for residuals of each wheat 

characteristic in each year are set to be the exponential model. The estimating process is the same 

with fitting variogram model for dockage, foreign material, and protein. 

3. Results 

Range estimates the maximum distance that 2 points are still correlated. For dockage, foreign 

material, and protein, the estimated range parameters are all below 1000 km (Table 1-2). For 

foreign material and protein, the fitted variogram is increasing up to 600 km. The variogram of 

dockage reaches the sill after 175 km which is relatively smaller than the other two. This implies 

that spatial correlation in dockage decays very fast as distance increases. The plots of the 

empirical variogram and the fitted variogram for each wheat characteristic are shown in Figure 1-

1 and Figure 1-2. Since we have assumed that the linear variogram model for the rest of wheat 

characteristics reaches the plateau at 1000 km, samples of those wheat characteristics can 

represent a large area. This result implies that PGI has sampled more than enough locations if 

their goal is to determine the averages of wheat characteristics over time.  

Nugget represents the variability of the data at 0 distance. Measurement errors could result in 

a relatively large nugget. If the nugget effect is close to the partial sill or bigger than the partial 
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sill, then it implies too much spatial noise or not enough spatial correlation. For foreign material, 

test weight, shrunken and broken kernels, total defects, the estimated nugget effects are bigger 

than the partial sill effects (Table 1-2, Table 1-3). The fitted variograms of these wheat 

characteristics are also more horizontal than others. It indicates that there is not much spatial 

correlation in these wheat characteristics. SKCS average diameter and individual ash have almost 

0 nugget effects and partial sill effects. It means that they probably do not have spatial 

correlations at all. Other wheat characteristics’ nugget effect is smaller than the partial sill effect 

even though sometimes the difference is small. This implies those wheat characteristics got some 

spatial correlations. Dockage, foreign material, and protein also have a much smaller estimated 

distance than other wheat characteristics. So, it implies that the area to have a spatial correlation 

of these three characteristics is much smaller than others. Due to the estimated distance of 175.39 

km, nugget effect of 0.03, and partial sill of 0.05, dockage is locally correlated for sure.   

For each wheat characteristic, 8 fitted variograms are estimated by year. They are plotted 

together to see how the variation changes across years (Figure 1-3). The spatial variation for most 

wheat characteristics changes in a big way. Individual ash and test weight have a sudden huge 

change on nugget or partial sill effect in one year. The other 7 fitted lines are almost identical, 

which implies that there could be a measurement error. The variograms of moisture seem more 

stable than others because the fitted lines have a similar shape. It implies that the variability of 

error term for moisture in each year stays relatively stable than others. Other wheat 

characteristics’ fitted variograms do not have a concentrated area as moisture does. For example, 

the residuals of protein got 2 years with an estimated distance under 400 km while other 6 years 

over 1000 km. The local variation of the residuals of protein also changes across the year by 

different nugget levels. Based on these plots, we can conclude that even though error terms have a 

strong spatial correlation, the variation and the distance to correlate with are changing 

dramatically across years.  
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Many factors could make wheat quality deviate from its expected value such as weather, 

fertilizers, yields, and producer’s choices on sub-varieties in HRWW. The variogram is a simple 

method to extract and summarize the information contained in data. In this work, we find that 

both expected local wheat quality and error term in each year show a strong correlation. It is good 

for wheat buyers and PGI researchers. More importantly, how error term is correlated across 

space changes across the year in a big way. This indicates that wheat buyers cannot simply use 

past data to predict the current year’s wheat quality. Because every year could have a huge 

change in error term’s spatial distribution, and no one can be sure before the quality tests are 

done. PGI does provide unique, important, and meaningful wheat quality information to the 

market and PGI needs to do sampling each year.  

4. Discussion 

In this work, we find that local mean wheat quality and residuals in sampled years have strong 

spatial correlation. This work may play a part in helping wheat buyers find where to buy wheat 

with the qualities they seek. Wheat buyers are targeting different niche markets, so sometimes 

they are very specific about certain quality levels of HRWW. Knowing how the local wheat 

quality and error distributed in space could give wheat buyers more choices. The result suggests 

that research that involves wheat qualities may need to consider spatial correlation in them. 

Omitting the spatial correlation in wheat quality would be a strong restriction in the study of 

wheat in the future. The results could also be used as prior information for spatial study using 

Bayesian framework since spatial model under Bayesian framework usually requires a theoretical 

variogram model and prior probabilities on parameters.      

Future improvement that can be done based on this work comes from 3 aspects. The first 

aspect is to estimate the covariance matrix of local value and error term in a single step. One 

possible method is through Bayesian Kriging. It is a Gaussian Process, and we can directly set up 

the covariance matrix into the exponential model. The second aspect is how to improve the 
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optimization speed and overall results. Cressie (1985) provides a better objective function for the 

weighted least squares method. However, it seems the precision of R would fail in some cases. 

Thus, another language with higher numerical precision could be a solution to this problem. The 

third aspect is that some wheat characteristics are not normally distributed. Normalizing it may 

lead to a better result.      
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CHAPTER II 

 

 

 

 
QUALITY-ADJUSTED WHEAT BASIS WITH SPATIALLY VARYING PARAMETERS 

 

 

1. Introduction 

There are six wheat types grown in the United States. Hard red winter wheat (HRWW) accounts 

for about 40% of the wheat production in the U.S., and it is a major export grain of the United 

States. The objective of this article is to determine how protein and protein premium of hard red 

winter wheat vary across space. Such information should interest millers, food businesses, and 

wheat researchers.  

HRWW is widely grown in the Great Plains states and northern states. Previous study shows 

that the performance of wheat flour for bread making depends on gluten (MacRitchie, 1987) 

because gluten is a key factor to make flour dough sticky and elastic so that bakers can make 

them into many shapes (Veraverbeke et al. 2002). Higher gluten levels are correlated with 

stronger dough that will produce chewy bread. The protein level in wheat can provide a rough 

estimate of the gluten level in the flour made from that wheat. Millers often blend some high 

protein wheat to reach the high gluten level standard. In Southern Great Plains states, hard red 

winter wheat (HRWW) generally has a medium to high protein content, making it suitable for all-

purpose flour. However, such information is difficult for millers to acquire (Regnier et al. 2004).
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Thus, Plains Grain Inc. (PGI) was created to provide information about local wheat quality to the 

market. 

Protein premium has been well examined by many studies (Bale and Ryan, 1977; Espinosa 

and Goodwin, 1991; Lambert and Wilson, 2003; Roberts 2020). Espinosa and Goodwin estimated 

a hedonic model with grading characteristics and end-use characteristics. Their study showed that 

protein level significantly affects the wheat price and milling and baking characteristics. Roberts 

continued Goodwin’s work and expanded the research area to the entire HRWW growing region. 

He found that premium for end-use characteristics is paid through local basis. Their work 

assumes that the protein premium is universal constant across space. But the demand for wheat 

protein may not be uniformly distributed across space. Further, northern states often conduct 

protein tests and pay protein premiums while southern states do not. So, there must be differences 

in valuing the wheat protein in basis by location.    

To let the protein premiums vary across space, we utilized Bayesian Kriging to estimate the 

hedonic model between wheat basis and protein. Bayesian Kriging is a spatial smoothing method. 

Such a technique is a special case of Spatially Varying Coefficient Process (SVCP). It is like 

geographically weighted regression (GWR) except that Bayesian Kriging sets certain prior 

probability density functions on spatial parameters where a typical GWR estimates spatial 

parameters by optimization or assumption. Handcock and Stein (1993) provide an early 

explanation of Bayesian Kriging. Gelfand et al. (2003) applied SVCP in the study of house prices 

against some housing characteristics. Their work provided suggestions on handling spatial-

temporal data. Wheeler and Calder (2007) compared two major spatial models, GWR and SVCP. 

They used simulated data and concluded that SVCP provides more flexibility in modeling spatial 

relationships and gives easier interpretable and accurate results than GWR. Cho (2017) used 

Bayesian Kriging to estimate mean hay yield for counties in Oklahoma. Park, Brorsen, and Harri 

(2018) provide a recent application to crop insurance rating. They used the Bayesian Kriging 
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method to smooth the crop yield distributions across counties. The model used here goes beyond 

these previous works by letting regression parameters vary across space.  

This paper addresses two specific questions about wheat protein and basis information in the 

Great Plains. The first goal is to determine how wheat protein samples are correlated across 

space. Near places should have similar soil, weather, and, maybe, growing techniques. So, it is 

reasonable to assume wheat protein in near places should not differ dramatically. Thus, there 

could be a sample point that might represent its near locations. The second question is how 

premiums vary across space. Studies have shown there is protein premium and we want to know 

how it is distributed across space. Low protein wheat is often fed to cattle rather than used for 

flour and thus its price is expected to be discounted. If protein premium does not vary across 

location in an obvious difference, then there could be no incentive for farmers to grow high-

quality wheat.  

To use Bayesian Kriging, a theoretical spatial covariance model is assumed for the local 

mean values and prior probabilities are set on the spatial parameters. By assuming that the local 

mean value follows a multivariate normal distribution with a prior mean vector and covariance 

matrix, a posterior distribution is formed by Hamiltonian Monte Carlo methods (Carpenter 2017). 

The posterior mean is used as the final estimation for each parameter.       

2. Data  

2.1 Data Originality  

The quality data are the unpublished data provided by PGI. The data set not only has a wheat 

grade for sampling location but also includes other quality characteristics like protein, moisture, 

and dockage rate. The original dataset has about 4031 observations over 8 years period from 2012 

to 2019. It contains several observations in the Pacific Northwest (PNW) region and for other 
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wheat varieties. Those observations were removed. The number of samples and sampled locations 

vary in each year in the rest of the data. It is an unbalanced panel dataset.   

The sampling method is probe sampling. It is the only effective way of sampling from rest 

containers by USDA (2016). The probe for grain sampling is a stick with a pointed head and 

some slots in it. A worker needs to push the probe into the grain bulk, let the slots be filled, then 

draw it out and empty the slots.  

Latitude and longitude are measured based on city level in the world geodetic system 1984 

(WGS84), and they are used to calculate distances. Function geodist() in R package geodist is 

used to calculate Haversine distance, so it is the distance across the surface of the earth. In this 

way, the output distance is in meters, then, divided by 1000 gives results in kilometers. The 

distance matrix is used to calculate the spatial covariance matrix. 

Basis data for hard red winter wheat are collected from the Interactive Crop Basis Tool 

developed by Kansas State University and DTN corporation. The basis is calculated by 

subtracting the futures price from the cash price. Cash price is the market price for local 

businesses to buy flour, and the futures price is the nearby futures contract closest to expiration 

without going into the delivery month. The basis from Kansas State University is weekly average 

basis. DTN recorded the bid price and local basis based daily. The timing of harvest differs across 

locations and thus basis can more directly connect the timing of the quality information and its 

effect on price. Post-harvest basis is used to better reflect the wheat market reaction to wheat 

quality. Due to the different harvest time windows in each state, July-1 to December-1 is the 

period to approximately catch-up post-harvest basis for all locations. The local post-harvest basis 

is calculated by the average post-harvest basis in each location by year. 2047 DTN basis 

observations and quality data are matched according to year and zip code since the local 

elevator’s name does not match sometimes, whereas 23 Kansas State University basis 

observations and quality data are matched based on the local elevator’s name.  
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2.2 Data Summary 

After we match the basis data and quality data based on elevators’ names and years, 2070 

observations are left, 324 unique locations are sampled. Most basis is negative which is common. 

But some positive basis implies either outlier of prices or really good quality of wheat in such 

location (Table1). Figure 1-2 are plotted to show local average post-harvest basis and local 

average protein spatially. “basis” is calculated as the average of post-harvest basis in each year by 

location. The same procedure applies to “protein”. Most matched samples concentrate in 

northwest OK, and KS. Some are in MT, ND, and SD. Northwest states got higher average post-

harvest basis than other locations. In Great Plains states such as OK and KS, the average post-

harvest basis varies around -0.5$/bu. The protein, on the other hand, is different. Wheat samples 

in Northern states like MT, ND, and SD tend to have higher protein level than OK and KS. Also, 

wheat protein level in OK and KS varies a lot. Locations in the west OK, north TX and southwest 

KS tend to have higher protein level. There is no clear pattern for protein level in KS. 

3. Procedure and Software 

3.1 Covariance Matrix 

Bayesian Kriging requires a spatial covariance model. Let 𝜮 denotes a 𝐿 × 𝐿 covariance 

matrix calculated using the exponential function of distance matrix 𝐷, range 𝜃 and sill 𝜌: 

(1) 𝛴𝑖𝑗 = 𝛹(𝐷𝑖𝑗; 𝜌, 𝜃) =  𝜌 exp (−
𝐷𝑖𝑗

𝜃
) 

where 𝐷𝑖𝑗 is the element at 𝑖𝑡ℎ row and 𝑗𝑡ℎ column. In matrix form: 

(2) 𝛴 = 𝜌 [
1 ⋯ 𝑒−

𝐷1𝐿
𝜃

⋮ ⋱ ⋮

𝑒−
𝐷𝐿1

𝜃 ⋯ 1

] 

Distance matrix are calculated by longitude and latitude based on the city. Since every location is 

sampled at least once in eight years, duplicated coordinates need to be removed. The after-
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matched data are unchanged. We assume that the local means are correlated even if the 

observations are in different years. 

3.2 Bayesian Kriging and Hedonic Model 

In our case, the data involves both spatial effect and time effect. Following the model 

suggestions provided by Gelfand, the following Bayesian Kriging model is used: 

(3) 𝐵𝑎𝑠𝑖𝑠𝑙𝑡 = 𝐸𝑥𝑝𝐵𝑎𝑠𝑖𝑠(𝑙) + 𝐴(𝑡) + 𝜀𝑙𝑡 

𝑬𝒙𝒑𝑩𝒂𝒔𝒊𝒔~𝑀𝑉𝑁(𝝁𝟏, 𝜮𝟏) 

𝜮1 =  𝛹(𝐷; 𝜌1, 𝜃1) 

where 𝐵𝑎𝑠𝑖𝑠𝑙𝑡 is the basis in location 𝑙 and year 𝑡, 𝐸𝑥𝑝𝐵𝑎𝑠𝑖𝑠(𝑙) is the expected local basis at 

location 𝑙, 𝐴(𝑡) is the random year effect, 𝜀𝑙𝑡 is the independently and identically distributed error 

term, 𝑬𝒙𝒑𝑩𝒂𝒔𝒊𝒔 is a vector containing all expected local basis, and it follows multivariate 

Gaussian Process with mean vector 𝝁𝟏 and covariance matrix 𝜮𝟏, and 𝜌1, 𝜃1 are sill and range for 

local mean basis.  

The same process is used for protein level: 

(4) 𝑃𝑟𝑜𝑡𝑒𝑖𝑛𝑙𝑡 = 𝐸𝑥𝑝𝑃𝑟𝑜𝑡𝑒𝑖𝑛(𝑙) + 𝐵(𝑡) + 𝜀𝑙𝑡 

𝑬𝒙𝒑𝑷𝒓𝒐𝒕𝒆𝒊𝒏~𝑀𝑉𝑁(𝝁𝟐, 𝜮𝟐) 

𝜮2 =  𝛹(𝐷; 𝜌2, 𝜃2) 

where 𝑃𝑟𝑜𝑡𝑒𝑖𝑛𝑙𝑡 is the wheat protein level in location 𝑙 and year 𝑡, 𝐸𝑥𝑝𝑃𝑟𝑜𝑡𝑒𝑖𝑛(𝑙) is the 

expected local wheat protein value, 𝐵(𝑡) is the random year effect, 𝜀𝑙𝑡 is the independently and 

identically distributed error term, 𝑾𝒉𝒆𝒂𝒕𝑪𝒉𝒂𝒓 is the vector containing all local wheat 

characteristic value, and it follows multivariate Gaussian Process with mean vector 𝝁𝟐 and 
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covariance matrix 𝜮𝟐, 𝜌2, 𝜃2 are sill and range for local mean protein level. The method to 

calculate the covariance matrix is shown in equations (1) and (2).  

In Roberts’ study (2020), 50% harvest price and 100% harvest price are used to fit two 

hedonic models with all wheat quality characteristics. His results show that end-use 

characteristics affect local HRWW prices. It suggests that quality premiums are paid through 

local basis rather than direct discounts or premiums to producer prices. Thus, basis is used as the 

dependent variable. The hedonic model, which is also the first layer in Bayesian Hierarchical 

structure, is shown as follows: 

(5) 𝑦𝑙𝑡 = (𝛽0(𝑙) + 𝑍0(𝑡)) + (𝛽1(𝑙) + 𝑍1(𝑡))𝑥𝑙𝑡+𝜀𝑙𝑡  

where 𝑦𝑙𝑡 is the basis in location 𝑙 and year 𝑡, 𝑥𝑙𝑡 denotes the protein level in location 𝑙 and year 

𝑡, 𝛽0 and 𝛽1 are parameters different across location 𝑙, 𝑍0 and 𝑍1 denote the random year effects, 

𝜀𝑙𝑡~𝑁(0, 𝜎𝜀
2) denotes the identically and independently distributed error term across year and 

location.  

The second layer is: 

(6)    𝜷𝟎~𝑀𝑉𝑁(𝝁𝜷𝟎
, 𝜮𝜷𝟎

),   𝜮𝜷𝟎
=  𝛹(𝐷𝑖𝑗; 𝜌𝛽0

, 𝜃𝛽0
), 

𝜷𝟏~𝑀𝑉𝑁(𝝁𝜷𝟏
, 𝜮𝜷𝟏

),   𝜮𝜷𝟏
=  𝛹(𝐷𝑖𝑗; 𝜌𝛽1

, 𝜃𝛽1
), 

where 𝜷𝟎 is the vector of intercept parameters for each location, 𝜷𝟎 = [𝛽0(1), 𝛽0(2), … , 𝛽0(𝐿)], 

and is assumed to follow an MVN with mean vector 𝝁𝜷𝟎
, and spatial covariance matrix 𝜮𝜷0

 with 

distance 𝐷𝑖𝑗, range parameters 𝜃𝛽0
 and sill parameters 𝜌𝛽0

, 𝜷𝟏 is the vector of intercept 

parameters for each location, 𝜷𝟏 = [𝛽1(1), 𝛽1(2), … , 𝛽1(𝐿)], and is assumed to follow an MVN 

with mean vector 𝝁𝜷𝟏
, and spatial covariance matrix 𝜮𝜷1

 with distance 𝐷𝑖𝑗, range parameters 𝜃𝛽1
 

and sill parameters 𝜌𝛽1
, and 𝐷𝑖𝑗 is the distance between location 𝑖 and location 𝑗.  
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The third layer is for spatial parameters 𝜃𝛽0
, 𝜌𝛽0

, 𝜃𝛽1
, and 𝜌𝛽1

. Though there is no solid proof 

to back up the prior choice for these parameters, empirically, inverse gamma (IG) is used as a 

prior probability: 

(7) 𝜌𝛽~𝐼𝐺(3,1) 

𝜃𝛽~𝐼𝐺(3,100) 

Theoretically uniform prior is the best choice, but empirical practices have shown that the 

boundary of uniform distribution could change the results dramatically. In our case, using a 

uniform prior would cause the software to crash. Inverse gamma is used because it has a non-

negative domain, which is also the theoretical range of spatial parameters.        

Random year effects are set to have a normal distribution with mean 0 and variance 10,000 so 

it is non-informative. A hard sum-to-zero restriction is placed on the random year effect for better 

convergence.  

3.2 Software  

R is used as the processing language, and RStudio is the platform to run it. The package we 

use is Rstan, which enables the stan framework in R. Stan is a probabilistic programming 

language dealing with Bayesian modeling and inference (Carpenter et al. 2017). It has flexibility 

with model type and data structure. The disadvantage of it is speed. As the number of parameters 

increases, it might take a week or even a month to finish sampling.  

4. Results 

The parameter sill, 𝜌, measures the maximum variation that a variable can reach across space. It 

is like variance so the unit of measure will affect its value. The variation of wheat basis across 

space is 3.91E-04 (Table 2). This is very close to 0 which indicates that basis is very stable across 

space. The estimated distance is 2.58E+05 km which is a huge distance. This implies that 
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correlation for basis decays very slow as distance increases to cover the entire Great Plains. On 

the other hand, the sill of wheat protein is 1.66E+01 which implies that protein level has some 

variation across space. The estimated distance of protein is 1.01E+04 km which is smaller than 

basis. So, the spatial correlation in protein decays faster than the basis’s spatial correlation. The 

mean basis in northwest locations is a little higher than other locations (Figure 2-1). While as the 

protein in north and northwest places also tend to have higher protein wheat than Kansas and 

Oklahoma (Figure 2-2).  

The estimated range for 𝛽0 is 4.49E+02 km and 𝛽11.46E + 06 km (Table 2-2). This is huge 

distance implies almost every sampled location correlated to each other spatially. Estimated 𝛽0 

are bounded between -0.0536 and 0.0437. 𝛽1 ranges from -0.0040 to 0.0081. 𝛽1 is the expected 

protein premium or discount by location. The first quantile of 0.0004 implies at least 75% of 

sampled locations have protein premium (Table 2-3). The intercept, 𝛽0, in northwest Oklahoma, 

western Kansas, and southwest Nebraska locations are lower than other places (Figure 2-3). 

However, the protein premium, 𝛽1, in those locations are much higher than other places (Figure 

2-4). The protein premiums in northern locations are very close to 0 even though their protein 

level is high. This reflects that they pay protein premiums or discount directly rather than basis. 

Some places in southern Oklahoma and northern Texas tend to receive protein discounts for high 

protein levels and protein premium with low protein levels. This suggests that the usage of wheat 

in those places is probably different from other places.  

The random year effect of intercept, 𝑍0, varies more relative to the year effect on the slope, 

𝑍1 (Table 2-4). But 𝑍0 has little influence on 𝛽0 with absolute value except in the year 2017. 𝑍1 

has 0 estimates in 3 years. In other years, the value is relatively large to the 𝛽1. In 2012, 𝑍1 could 

make about 50% of the locations receive protein discount, while in 2017 it brings a lot more 

protein premium rather than expected level. It suggests that protein premium can change a lot 

across years. The distribution of predicted basis and actual basis are very similar (Table 2-5), and 
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the predicted basis and actual basis have a high correlation of 0.96 (Figure 2-5). This result 

indicates that Bayesian Kriging is a powerful model for extracting spatial information in data.   

5. Conclusion 

This paper studies the spatial correlation of expected basis and protein level. Using Bayesian 

Kriging, the assumption that parameters are universal constants for a hedonic model is relaxed. 

By applying Gelfand’s (2003) model suggestions dealing with spatial-temporal data, spatial effect 

and fixed year effect are separated for basis, protein, and protein premium. Spatial parameters, sill 

and range, are estimated by setting up the kernel function for the spatial correlation matrix.  

The estimated spatial parameters of expected wheat basis and protein show strong spatial 

correlations. For millers and future researchers who need wheat samples, this result indicates that 

only a few samples would be enough to represent a large area, and the sampling distance could be 

increased. The spatial difference is not very huge in general. If using the historical data, multiple 

years should be considered to average out the year effect. The expected local basis is not very 

different among locations as well. On the other side, high spatial similarities in wheat protein may 

imply the same wheat varieties or weather conditions. It is the support of the conclusion by 

Lambert et al. (2003) that farmers are going to grow wheat varieties with certain characteristics 

that give them the highest profit.  

The hedonic model shows that protein premium exists for most locations, and at least 75% of 

the places pay protein premiums through basis.  The year effect could cause a significant change 

in protein premium given the absolute value of premium being so small. It implies that even 

though the wheat market has a wheat premium for most of the locations, adjustment by year has a 

more significant effect, and sometimes year effect could overturn the protein premium into 

discount. This result aligns with the historical observation from Bale and Ryan (1977). They 

claimed that protein premium could be influenced by supply and demand in a certain period, and 
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therefore, none or little protein premium is paid in some years. We also find that protein 

premiums in Northern states are very close to 0$/kg/%. Since we are using the post-harvest basis, 

those estimates imply that protein premium in those locations is paid directly by price. The 

contrast of protein premium and protein levels in north Texas and southern Oklahoma implies 

their wheat might have different usage.  

The improvement in this work is to utilize the Bayesian Kriging method on the wheat basis, 

protein, and protein premium to separate spatial effect and year effect. Compared to the usual 

OLS output, Bayesian Kriging explained more of the variation in the data. Also, previous studies 

showed it would produce better estimation than GWR. However, a drawback of this work is only 

protein is included in the hedonic model, whereas the research results from Roberts suggest that 

end-use characteristics affect the price. Further improvement on how to accelerate the sampling 

speed, or how to simplify the sampling process should be made before adding more variables. 

Because even though Rstan gives users freedom to make all kinds of models, its running speed is 

very slow. Another improvement that can be done is to stabilize the posterior estimation of spatial 

parameters. Fuglstad argued that using inverse gamma is practically good but not stable in some 

cases. Using a penalized prior could stabilize the estimation. Accomplishing such a task in Rstan 

could bring a much better result. 
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APPENDICES 

Figure 1-4. Map of Local Mean by Wheat Characteristics.
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Figure 1-4. Continue. 
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Figure 1-4. Continue. 
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Figure 1-4. Continue. 
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Table 1-1. Summary Statistics of Wheat Characteristics.   

  Unit Count Mean SD Min Max 

Grading  

Characteristics       
Dockage % 3132 0.55 0.52 0.00 7.00 

Test weight kg/hl 3133 60.35 1.76 52.10 65.40 

Damage kernel % 3129 0.27 0.50 0.00 10.60 

Shrunken & broken kernel % 3134 1.11 0.80 0.00 13.20 

Foreign material % 3131 0.15 0.28 0.00 6.70 

Total defects % 3122 1.52 0.95 0.10 13.40 

Kernel  

Characteristics       
Kernel size large % 3072 59.89 16.17 0.35 98.10 

Kernel size medium % 3072 38.71 15.36 1.85 96.35 

Kernel size small % 3072 1.41 1.19 0.00 11.10 

Thousand kernel weights g 3136 29.88 3.44 19.67 47.64 

SKCS average diameters mm 3136 2.58 0.12 2.24 3.21 

Other Wheat 

Characteristics       
Protein 12% mb 3137 12.17 1.40 7.60 17.50 

Individual wheat ash 12% mb 3135 1.56 0.13 0.00 2.10 

Falling number sec 3133 391.76 42.10 98.00 598.00 

Moisture % 3137 11.29 1.40 1.23 19.20 

SKCS average hardness -20-120 3072 63.62 9.89 27.33 94.71 

Note: SKCS hardness is an index. Below 50 is soft grain. Above 50 is hard grain. 
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Table 1-2. Estimated Spatial Parameters of Wheat Characteristics with Exponential Model. 

  Nugget Partial Sill Range 

Dockage 0.03 0.05 175.39 

Foreign material 0.02 0.01 497.68 

Protein 0.19 0.48 531.13 

Note: Unit of the range is km. Nugget and partial sill are similar to variance. Its unit depends on 

the unit of parameters. Squaring the corresponding unit in Table 1-1 will give the unit of nugget 

and partial sill. For example, the unit for nugget and partial sill of dockage is %2. 
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Table 1-3. Estimated Spatial Parameters of Wheat Characteristics with Linear Model. 

  Nugget Partial Sill 

Test weight 1.2353 1.1445 

Damaged kernels 0.0197 0.0663 

Shrunken & broken kernel 0.1178 0.0411 

Total defects 0.1608 0.1317 

Kernel size large 22.8816 92.1343 

Kernel size medium 20.5398 83.0046 

Kernel size small 0.1991 0.2808 

Thousand kernel weights 0.5033 3.7690 

SKCS average diameters 0.0010 0.0032 

Individual wheat ash 0.0022 0.0062 

Falling number 233.3085 415.9014 

Moisture 0.2340 1.0564 

SKCS average hardness 12.1769 27.8823 

Note: The variogram of these wheat characteristics does not have a plateau before 1000 km. 

Thus, the range is fixed at 1000 km and partial sill is calculated based on that.  
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Table 2-1. Summary Statistics of Matched Wheat Protein and Basis.  

  Unit Count Mean SD Min Max 

Basis $/kg 2070 -0.02 0.01 -0.06 0.04 

Protein % 2070 12.07 1.38 7.70 17.20 
Note: Basis comes from Kansas State University and DTN corporation. The average post-harvest basis 

from July-1 to December-1 is calculated for each location by year.  
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Table 2-2. Spatial Parameters for Local Basis and Wheat Characteristics 

  𝜌   𝜃 

 Mean SE  Mean SE 

Basis 3.91E-04 0.00E+00  2.58E+05 2.07E+03 

Protein 1.66E+01 2.40E-01  1.01E+04 1.79E+02 

𝛽0 6.88E-04 7.35E-03  4.49E+02 1.86E+02 

𝛽1 2.43E-04 2.94E-03   1.46E+06 1.58E+05 

Note: Unit of θ is km. ρ is similar to variance. Its unit depends on the unit of parameters. Squaring the 

corresponding unit in table 4 will give the unit of ρ for basis and wheat quality. 𝜌 for 𝛽1 is ($/kg/%)2. 
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Table 2-3. Summary of Sampled 𝜷𝟎, 𝜷𝟏. 
 

Note: Bayesian output is sampled distribution, the mean value for each sampled distribution is treated as 

the estimated value and summarized in this table.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  Unit Min 1st Qu. Median Mean 3rd Qu. Max 

𝜷𝟎 
 

$/kg -0.0536 -0.0404 -0.0349 -0.0334 -0.0301 0.0437 

 𝜷𝟏 

 $/kg/% -0.0040 0.0004 0.0011 0.0011 0.0015 0.0081 
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Table 2-4. Statistics of Sampled Year Effect in Hedonic Model. 

Year 𝑍0  𝑍1  

 
 Mean SE 

 
 Mean SE 

2012 0.0125 0.0033  -0.0011 0.0004 

2013 0.0037 0.0033  0.0007 0.0004 

2014 -0.0051 0.0033  0.0007 0.0004 

2015 0.0037 0.0040  0.0000 0.0004 

2016 -0.0048 0.0033  -0.0015 0.0004 

2017 -0.0253 0.0033  0.0015 0.0004 

2018 0.0070 0.0033  0.0000 0.0004 

2019 0.0084 0.0037  0.0000 0.0004 
Note: A hard sum-to-zero is placed on both parameters. The values are not sum-to-zero in the table due to 

the rounding problems.  
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Table 2-5. Comparison between Predicted Basis and Actual Basis. 

 

 Min 1st Qu. Median Mean 3rd Qu. Max 

Predicted -0.0026 -0.0014 -0.0009 -0.0010 -0.0006 0.0018 

Actual -0.0026 -0.0014 -0.0009 -0.0010 -0.0005 0.0016 
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Figure 1-1. Plots of Exponential Variogram for Local Mean of Wheat Characteristics. 
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Figure 1-2. Plots of Linear Variogram for Local Mean of Wheat Characteristics. 
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Figure 1-2. Continue. 
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Figure 1-2. Continue 
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Figure 1-3. Fitted Variograms for Residuals by Characteristics. 
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Figure 1-3. Continue.  
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Figure 1-3. Continue. 
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Figure 1-3. Continue 
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Figure 2-1. Average Post-harvest Basis ($/kg).  
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Figure 2-2. Average Protein Level (%). 

*Average protein level for each location is calculated as average of recorded protein level.  
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Figure 2-3. Estimated Mean 𝜷𝟎 by Location. 
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Figure 2-4. Estimated Mean 𝜷𝟏 by Location. 
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Figure 2-5. Actual Basis vs. Predicted Basis 
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