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Abstract 

 

Algal blooms are a major concern due to the adverse health and economic impacts they 

have on humans, animals, and aquatic ecosystems. Chlorophyll-a, a photosynthetic 

pigment present in all major groups of algae, has been widely used as an indicator of 

algal blooms. Studies have used satellite remote sensing to develop Chl-a algorithms by 

pairing ground-based Chl-a and satellite spectral data that are temporally and spatially 

coincident. The problem with the development of satellite based Chl-a algorithms is that 

temporally coincident satellite spectra are not always available due to the mismatch 

between ground-based sampling and image acquisition dates. It is a common practice to 

use imagery acquired days before or after ground-based sampling assuming that 

negligible water quality changes would have occurred if no major limnetic and 

hydroclimatic activities happened. The literature suggests one day as the ideal temporal 

disparity between ground-based and satellite data, with some studies suggesting up to 7 

days as acceptable. Previous studies have used multiple reservoirs to arrive at these 

conclusions. It is not clear if the variations observed were due the increasing temporal 

disparity or the multiple reservoirs. The objective of this study was to delineate the 

variations caused by increasing time windows and those caused by single versus multiple 

reservoirs. This study developed regression models using Landsat-5, Landsat-8, and 

Sentinel-2 for time windows ranging from the same day of satellite and ground-based 

data collection to eight days apart. We also developed and compared regression statistics 

for a single reservoir to those of multiple reservoirs. Single bands, band ratios, and 

spectral derivatives were regressed against Chl-a data from 10 reservoirs of Oklahoma. 

For the time window, the R2 values for all three satellites decreased as the time window 

increased, with Sentinel-2 performing better than Landsat-8 and Landsat-5. The spectral 

bands present in Sentinel-2 are important predictors of Chl-a. The analysis for single 

versus multiple reservoirs revealed that the number of reservoirs was not as important as 

the time window and the satellite resolution for Chl-a sensing. Sentinel-2 and Landsat-8 

provided high R2 values when multiple reservoirs were used.  
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CHAPTER I 
 

 

INTRODUCTION 

Algae can form blooms that result from excess nutrients, increased sunlight, 

elevated temperature, and calm conditions in water bodies (Klemas, 2012; Boyer et al., 

2015; Kislik et al., 2018). Some species can produce dangerous toxins that have adverse 

impacts on human and animal health (Klemas, 2012; Boyer et al., 2015; Song et al., 

2021). Non-toxic species of algae can also be detrimental to the health of aquatic 

ecosystems when they bloom and die (Smolen, 2007; Kislik et al., 2018; Song et al., 

2021). Dead algae undergo microbial decomposition and create anoxic conditions in the 

water. This may result in fish kills and death of other aquatic animals (Klemas, 2012; 

Boyer et al., 2015;Song et al., 2021). Algal blooms can also cause economic losses due to 

beach closures that impact businesses that depend on recreational activities associated 

with the affected waters (Klemas, 2012; Brooks et al., 2015). Chlorophyll a (Chl-a) is one 

of the pigments measured to determine the severity of algal blooms. 
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Chlorophyll a (Chl-a) is one of the pigments measured to determine the severity 

of algal blooms. It is a photosynthetic pigment that is present in the leaves of green 

plants and major groups of algae (Dodds and While, 2010; Kirk, 2011; Klemas, 2012; 

Yan et al., 2018). The presence of Chl-a is a key indicator of water quality and the 

trophic status of lakes and reservoirs (Dodds and While, 2010; Kirk, 2011; Yan et al., 

2018). The concentration ranges of Chl-a in micrograms per liter (µg/l) can be used to 

classify water bodies as oligotrophic, mesotrophic, eutrophic, and hypereutrophic. 

Oligotrophic lakes have a Chl-a range of 0-2.6 µg/l, very little nutrients, deep clear 

water, and very little algae. The low algal concentration allows deeper light penetration 

and low decomposition rate of dead algae. Organisms in this type of lakes supports high 

oxygen levels throughout the water column. Mesotrophic lakes have a Chl-a 

concentration range of  2.6 -7.3 µg/l, medium amount of nutrients, and clear water with 

some algal blooms. Eutrophic and hypereutrophic lakes have a Chl-a range of 7.3-56 

µg/l and 56-155+ µg/l, respectively. These lakes have very high nutrient contents, and 

murky and turbid water. The decomposition rate is very high and is oxygen deprived 

throughout the water column (Dodds and While, 2010). 

Chlorophyll-a concentrations can be measured in the laboratory using various 

extraction methods, spectrophotometry, and fluorometry (Lorenzen, 1965; Leeuwe, 

2006; Gohin et al., 2008; Tebbs et al., 2013; Zeng and Li, 2015). In-situ probes are also 

used to measure Chl-a concentrations in the field. These ground-based Chl-a monitoring 

programs target specific locations within water bodies at specific times. These ground-

based Chl-a monitoring programs target specific locations within water bodies at 

specific times. A major problem with ground-based Chl-a monitoring is that algal 
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blooms can occur at spatial  and temporal scales that do not match sampling frequencies 

(Tan et al., 2017).  Ground-based monitoring may miss major bloom events creating 

potential exposure risk for human and animals. 

Methods have been developed that fill these temporal and spatial gaps and 

complement ground-based monitoring. Research has utilized remote sensing with 

platforms such as Unmanned Aerial Vehicles (UAV), airplanes, and satellites to monitor 

Chl-a (Klemas et al., 2012; Gholizadeh et al., 2016; Kislik et al., 2018). Satellite remote 

sensing offers greater temporal and spatial resolutions than ground-based sampling alone 

(Klemas et al., 2012; Gholizadeh et al., 2016; Tan et al., 2017; Ansper and Alikas, 2018). 

Satellite remote sensing offers greater temporal and spatial resolutions than ground-based 

sampling alone (Klemas et al., 2012; Gholizadeh et al., 2016; Tan et al., 2017; Ansper 

and Alikas, 2018). 

Chlorophyll-a has spectral properties that allow it to interact with solar radiation 

(Ho & Michalak, 2015; Gholizadeh et al., 2016; Tan et al., 2017). It absorbs energy from 

the violet-blue and orange-red wavelengths of light and reflects green and near-green 

portions of the electromagnetic spectrum. Chl-a also has a peak reflection near 700 nm in 

the near infrared (NIR) region (Yacobi et al., 2011; Lopez et al., 2020). These optical 

properties allow for the development of various methods that can be used to estimate Chl-

a concentrations using spectral data obtained from satellites. Examples of such methods 

are band ratios and band algorithms (Tan et al., 2017), spectral derivatives (Becker et al., 

2005), and color space transformations (Liu et al., 2017).  
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Satellite based spectral data and ground-based water quality data are used to 

develop algorithms to establish empirical or semi-analytical relationships (Tan et al., 

2017; Yan et al., 2018). Empirical models explain the direct relationships between the 

spectral data and water quality parameters. The empirical approach uses bands, band 

ratios, spectral derivatives, and band indices as the independent variables and  sampled 

Chl-a concentrations as the dependent variable (Kloiber et al., 2001; Deutsch et al, 2014; 

Tan et al., 2017; Yan et al., 2018; Buma and Lee, 2020). Semi-analytical algorithms 

consider the empirical relationships between the independent variable (spectral data) and 

the dependent variable (Chl-a) as well as the inherent optical properties of the parameters 

under study. Inherent properties such as the backscattering coefficient, the absorption 

coefficient of water, and the biochemical properties of Chl-a that give it unique 

absorption and reflectance tendencies at different wavelengths are considered for 

developing semi-analytical Chl-a models (Yan et al., 2018).  

Examples of satellite platforms that have been used to develop such empirical and 

semi-analytical relationship include the Landsat series (Landsat 1-8), Medium Resolution 

Imaging Spectroradiometer (MERIS), Moderate Resolution Imaging Spectroradiometer 

(MODIS), the Sentinel series (Sentinel 1-3), and commercial satellites (PlanetScope, 

Quickbird, Worldview, RapidEye). Each of these satellites varies with respect to 

temporal, spectral, radiometric, and spatial resolution as well as image cost and 

availability (Torbick and Corbiere, 2015; Shi et al., 2019; Buma and Lee, 2020; 

Mansaray et al., 2021).  
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Two of the most commonly used satellites are Landsat and Sentinel. Landsat 

provide open-source images with a spatial resolution of 30 m and temporal resolution of 

16 days. Landsat has been used to remotely sense Chl-a in water bodies (Kloiber et al., 

2001; Tan et al., 2017; Ouma et al., 2020). A ratio of Red to NIR is a common band 

combination that is used to estimate Chl-a concentrations (Han and Rundquist 1997; 

Moses, et al. 2009; Yacobi, et al. 2011; Tebbs et al., 2013; Deutsh et al., 2014). Other 

examples of band combinations include a ratio of Blue to Green (Torbick, et al. 2008), a 

normalized difference between Near-Infrared (NIR) and Red at specific wavelengths 

(Mishra and Mishra 2012), a three-band model (TM-1-TM-1)*TM4 (Tan et al., 2017), a 

ratio of Blue to Red (Laili et al., 2015). Single bands have also been used to develop Chl-

a models. An example of such single band is the Landsat-8 Operational Land Imager’s 

(OLI) Green band derived linear model (Ouma et al., 2020). 

The Sentinel-2 European multi-spectral instrument (MSI) has been used to 

improve the detection of Chl-a in inland water bodies (Xu et al., 2019; Buma and Lee, 

2020; Pirasteh et al., 2020; Saberioon et al., 2020). The Sentinel-2 has additional bands in 

the Red-Edge (RE) region that uniquely detect Chl-a in water bodies. The RE band is 

significant as algae cause a peak reflectance near 700 nm making it suitable for the 

development of a wide range of Chl-a algorithms (Bramich et al., 2021). Sentinel-2 also 

has other bands that are similar to the Landsat and they have also been used to detect Chl-

a. The MSI’s combination of Green and Shortwave near-infrared-1 (SWIR-1) ( Ouma et 

al., 2020), NIR-Red band ratios (Watanabe et al., 2017), a three-band NIR-Red model 

(R−1 − RE−1) × NIR), a NIR-Red ratio (R−1 − RE−1)/(NIR−1 − RE−1) (Ansper and Alikas, 
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2018), and a Green-Red band ratio (Ha et al., 2017) are examples of the predictors for 

Chl-a detection in inland water bodies. 

Spectral derivative techniques are used to detect Chl-a in water bodies. They 

eradicate background signals, distinguish overlapping spectral features, and reduces 

interferences such as the impact of turbidity in the estimation of Chl-a in aquatic systems 

(Demetriades-Shah et al., 1990; Becker et al., 2005). The derivatives of reflectance with 

different orders highlight the absorption and scattering characteristics of photosynthetic 

pigments. The spectral regions 630–645 nm, 660–670 nm, 680–687 nm, and 700– 735 

nm were observed to be important wavelength ranges where the first derivatives can be 

applied for the estimation of Chl-a (Han, 2005). Equations (1) and (2) are used to 

estimate the first and second derivatives of spectral data (Becker et al., 2005). 

d1st = (ρn+1 − ρn)/(λn+1 − λn)                              (1) 

d2nd= (dn+1 
1st − dn 

1st)/(λn+2 − λn)                       (2) 

where d1st and d2nd are first and second derivatives, n is the band number, ρ is the surface 

reflectance, and λ is the wavelength. 

A major challenge to satellite based Chl-a monitoring is that most open source 

satellites have revisit flyover schedules that are not frequent enough to overlap with the 

erratic nature of algal blooming and dissipation. The 16-day revisit schedule of Landsat 

and the 5-day revisit schedule of Sentinel-2 may miss significant bloom events between 

flyover dates and times. These temporal gaps can be extended when cloud cover is high 

and impede the use of imagery acquired on schedule. This creates the problem of a 

potential mismatch between satellite and ground-based Chl-a data which makes it 
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challenging to apply the Central Limit Theorem (CLT) for algorithm development 

(McCullough et al., 2012, Boucher et al., 2018).  

The CLT stipulates that the means of random sample size (n), from a population 

with mean, µ, and variance, σ2, spread normally with mean (µ), and variance (σ2 /n). The 

residuals of a regression model with goodness of fit should be normally distributed 

(McLeod, 2019). The residuals will be closer to the normality when larger data set (n ≥ 

30) is used. The sample mean and standard deviation will be closer in value with the 

population mean (µ) and standard deviation (σ) when the sample size is increased. It can 

also reduce the sampling errors in the dataset (McLeod, 2019). 

Previous studies have paired satellite and ground-based data that were collected 

on different days to address the issue of limited data size for the development of models. 

Kloiber et al. (2001) determined the maximum acceptable temporal disparity between 

satellite overpass date and ground-based data collection for Secchi Disk Transparency 

(SDT) in lakes of the Twin Cities Metropolitan Area in Minnesota. The empirical 

relationships between Landsat-5 TM3/TM1 and SDT were recorded for an increasing 

time window from the same day to ±7 days between satellite image acquisition and 

ground-based sampling. A ±7-day time window means ground-based sampling was 

carried out seven days before or after the satellite acquired an image. They repeated the 

analysis by using a constant set of data (N=20) which was randomly selected for different 

time windows of 0-7 days between samplings. Kloiber et al. (2001) observed decreasing 

R2 values and increasing standard error of estimate (SEE) with increasing time window 

between ground-based sampling and satellite overpass. They concluded that ±1 day was 

the idea time window for pairing satellite and ground-based SDT data. The study also 
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asserted that when SDT data were limited, a time window of ±7 days would allow a 

strong linear relationship between satellite and ground-based data especially if SDT did 

not significantly change during that period.  

The Kloiber et al (2001) study has provided an important reference for 

determining acceptable temporal disparities in the collection of satellite and ground-based 

data (Olmanson et al., 2008; Brezonick et al., 2009; McCullough et al., 2012; Urbanski et 

al., 2016; Tan et al., 2017; Boucher et al., 2018). However, other studies have suggested 

an even longer period of up to a ten-day window between ground-based sampling and 

image acquisition as acceptable for pairing water quality data (Kloiber et al., 2001; 

Olmanson et al., 2008; Brezonick et al., 2009; McCullough et al., 2012; Urbanski et al., 

2016; Tan et al., 2017; Boucher et al., 2018). The assumption is that water quality 

conditions will not significantly change over this time period as long as no major events 

such as flooding, severe weather, and limnetic mixing take place in the lake (Torbick and 

Corbiere, 2015; Kuhn et al., 2019).  

Previous studies have utilized data from single (Brivio et al., 1999; Tebbs et al., 

2013; Yip et al., 2014; ; Bonansea et al., 2015 Tan et al., 2017; Watanabe et al., 2017) 

and multiple (Kloiber et al., 2001; Chipman et al., 2004; Olmanson et al., 2007; Keith et 

al., 2018; Watanabe et al., 2019) water bodies to determine the number of days we can go 

before or after satellite overpass to develop predictive models. These studies have 

successfully illustrated the application of remote sensing in retrieving water quality 

parameters. Most of the studies (Kloiber et al., 2001; Olmanson et al., 2007; Mancino et 

al., 2009; Keith et al., 2018) that have used multiple waterbodies for predicting water 

quality parameters have used a specified time difference between satellite overpass and 



9 
 

ground-based sampling to obtain data for developing predictive models. The predictive 

models developed in those studies have illustrated strong relationships between spectral 

and ground-based water quality data. However, these studies have not discussed how the 

data from multiple water bodies or temporal disparity between spectral and ground-based 

data could cause variation in Chl-a estimation. This ambiguity makes it important to 

determine if other factors also contribute to the variations obtained in addition to the 

temporal disparities between satellite and ground-based data.  

Studies that have used single as well as multiple water bodies to estimate Chl-a 

have observed factors such as weather conditions which includes windy days, sunny 

days, and precipitation events, lake water temperature (Tan et al.,2017), activities in 

watershed such as irrigation, recreation, industrialization (Mamun et al., 2021), nutrient 

concentrations (Watanabe et al., 2018) contribute to the variation in Chl-a. Mixing 

events, turbidity, Biological Oxygen Demand (BOD) are also important factors that could 

cause variations in Chl-a estimation (Watanabe et al., 2018). Some studies have also 

observed variation in Chl-a concentration across different zones of the reservoirs (Li et 

al., 2017). These factors are out of the scope of study. 

The first objective of this research was to determine how many days before or 

after the satellite overpass, can we utilize the ground-based data for developing 

regression models and get good statistical results. The second objective was to compare 

the statistical results of Chl-a regression models using data from a single reservoir to 

those that were developed using data from multiple reservoirs within a specific time 

window between ground-based sampling and satellite acquisition.  
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The key significance of this study is to further understand the extent to which 

satellites may be useful to address the problems faced in ground-based for better 

management and monitoring of bloom events. Satellites provide synoptic observation of 

the Earth at low cost, and they have been widely used to study algal blooms in inland 

water bodies. The combination of satellite remote sensing with ground-based sampling 

can  offset the limitations of ground-based monitoring such as problems related to 

accessibility, time consumption, requirement of human and economic resources. 
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CHAPTER II 
 

 

MATERIALS AND METHODS 

 

2.1 Study Area 

 Oklahoma has over 200 reservoirs that were constructed for flood control, water 

supply, recreational activities, wildlife management and protection, and hydroelectric 

power (Kenneth, 1998). These reservoirs are monitored under the Beneficial Use 

Monitoring Program (BUMP), which is run by the Oklahoma Water Resources Board 

(OWRB). The BUMP program monitors a total of 130 reservoirs on a quarterly basis and 

a five-year rotational routine. This study is focused on 10 of the BUMP reservoirs, which 

were selected because they had enough available Chl-a data. Most of these reservoirs 

have track records of cyanobacterial algal bloom events (Mason and Triplett, 2016; 

Boyer et al., 2017). Figure 1 shows a map of Oklahoma and the BUMP reservoirs 

including the study reservoirs in colors. The characteristics of study reservoirs are 

presented in Table 1. 
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Figure 1 Map of Oklahoma showing the BUMP reservoirs across the state and the 10 study 

reservoirs used in this study. 

 

Table 1 Characteristics of study reservoirs acquired from BUMP Lake Data, OWRB 2018  

S.N Name of Lake Trophic Class 

1. Lake Carl Blackwell( 4 sample sites) Eutrophic 

2. Eufaula Lake (17 sample sites) Mesotrophic- Eutrophic 

3. Grand Lake (13 sample sites) Eutrophic  

4. Kaw Lake (5 sample sites) Hypereutrophic 

5.  Lugert-Altus (4 sample sites) Eutrophic 

6. Lake McMurtry (3 sample sites) Eutrophic 

7. Oologah (7 sample sites) Mesotrophic 

8. Robert S. Kerr Reservoir (6 sample sites) Eutrophic 

9. Texoma (13 sample sites  

 

Eutrophic -Hypereutrophic 

10. Waurika Lake (5 sample sites) Eutrophic 
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2.2 Water quality data 

Chlorophyll-a data for the 10 study reservoirs were obtained from the OWRB’s 

BUMP with data collected from 2006 to 2020. The Chl-a samples were collected below 

the surface at a depth of 0.5 m and preserved on ice. They were taken to the laboratory 

for filtration, extraction, and measurement of Chl-a. Chl-a analysis was carried out using 

the American Public Health Association (APHA) 10200-H guidelines (OWRB, 2018). 

2.3 Image acquisition and processing 

 

Landsat-5 and Landsat-8 data were downloaded from the U.S Geological Survey 

Earth Explorer website. The data were subjected to geometric, radiometric, and 

atmospheric corrections using the Land Surface Reflectance Code (LaSRC) algorithm 

(Version 1.5.0) for Landsat 8 and Landsat Ecosystem Disturbance Adaptive Processing 

System (LEDAPS) algorithm (Version 3.4.0) for Landsat-5 products. The surface 

reflectance images were stored with a scaling factor of 10,000 and made available at the 

Earth Explorer website for open-source use. 

Landsat has a temporal resolution of 16 days and a spatial resolution of 30 m. The 

Landsat-5 Thematic Mapper (TM) has an image tile of 170 *185 km2 , a radiometric 

resolution of 8-bits, and seven spectral bands. The Landsat-8 Operational Land 

ImaBanger (OLI) has an image tile of 185*180 km2, a radiometric resolution of 16-bits, 

and eleven spectral bands. The U.S Landsat products are generated in the Albers Equal 

Area (AEA) Conic map projection. They possess a WGS84 datum and are provided in 

Georeferenced Tagged Image File Format (GeoTIFF)(Dwyer et al., 2018).   
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Sentinel-2 Level 2A images were obtained from the official website of Sentinel 

Hub EO Browser. The Level 2A images were generated through the Payload Data 

Ground Segment (PDGS) utilizing the Sen2Cor processor and made available for open-

source use. The Level 2A images are atmospherically corrected Bottom-of-Atmosphere 

(BOA) products. Each Level-2A product constitutes 100*100 km2 tiles in cartographic 

geometry. It has a revisit time of 5 days. Sentinel-2 has 13 spectral bands, three possible 

spatial resolutions of 10m (Band 2, Band 3, Band 4, and Band 8), 20m (Band 5, Band 6, 

Band 7, Band 8a, Band 11, and Band 12), and 60m (Band 1, Band 9, and Band 10), and a 

radiometric resolution of 12-bit. The image tiles are projected in UTM/WGS84 

projection. The Sentinel-2 image format used for the study was a 32-bit float with .tiff 

extension.  

Images with cloud cover less than 10% or those with no cloud cover at the sample 

sites were selected for spectral data extraction. The downloaded satellite images were 

imported to ArcGIS 10.8 and pixel values for the sampling points were extracted using 

the extraction tool in the Spatial analyst toolset. The pixel values obtained for each of the 

sampling points were divided by the scaling factor (10,000) that was used for image 

storage in Landsat-5 and Landsat-8. The Sentinel-2 32-bit float pixel values were stored 

as surface reflectance values ranging from 0-1. Appendix II shows details of the dates of 

image acquisition and ground-based sampling for the study reservoir for Landsat-5, 

Landsat-8, and Sentinel-2. 

2.4 Bands, Band Combinations, and Spectral Derivatives  

  

 This study used band combinations and selections following Mansaray et al. 

(2021). Different spectral bands and band combinations of Landsat-5 TM, Landsat-8 
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OLI, and  Sentinel-2 were utilized for the development of empirical Chl-a models. A total 

of 27, 30, and 58 bands, band ratios, and spectral derivatives were used for Landsat-5, 

Landsat-8, and Sentinel-2, respectively. 

 The spectral derivative technique was utilized to obtain first and second order 

derivatives for the respective spectral bands of Landsat-5, Landsat-8, and Sentinel-2. 

These derivatives were used as independent variables for the regression analysis along 

with bands, bands combinations, and ratios. The first derivative denoted by (dn) was 

calculated using Eq (1) (Becker et al., 2005). 

dn = (ρn+1- ρn) / (λ n+1- λn)                                                            Eq. (1)  

where n= band number, λ= center wavelength, ρ= surface reflectance. The second 

derivative was designated as (d2n) and calculated using Eq (2) (Becker et al., 2005). 

d2n = (dn+1-dn)/0.5*(λ n+2- λn)                                  Eq. (2) 

2.5 Best-fit model development and validation for varying time windows 

 

Multiple linear regression analysis was carried out for the two factors considered 

in the study: time window and single vs multiple reservoirs. This study utilized data for 

time windows ranging from zero to ±8 days. The time window in this study is defined as 

the temporal gap between the date of satellite overpass and the date of ground-based Chl-

a sample visit. The time window was recorded as zero day (0-day) when sampling took 

place on the same day as a satellite overpass. This time window was considered to be 

temporally coincident. The time window was recorded as 1-day (±1 day of satellite 

overpass) when sampling was done one day before or after satellite overpass. An eight-

day time lapse of ground-based sampling before or after satellite overpass gave an 8 -day 
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time window (±8 days of satellite overpass). The cloud-free satellite images closest to the 

sampling date was considered for pairing when multiple images were available. 

This study developed regression models for all the nine time windows (0, ±1, ±2, 

±3, ±4, ±5, ±6, ±7, and ±8 days). Studies have found that a time-window of up to ten 

days between satellite image acquisition and ground-based sampling could be used to 

develop regression models (Olmanson et al., 2007). The independent variables were the 

spectral bands, band combinations, and spectral derivatives. The dependent variables 

were the measured concentrations of Chl-a, the natural logarithms of those concentrations 

(LN(Chl-a)), and their square roots (SQRT(Chl-a)). It is a common practice in remote 

sensing to use the power transformations of the measured concentration for model 

development (Tan et al., 2017; Mansaray et al., 2021). Increasing the time window gave 

more data points because the data from the previous time window become part of the data 

for the successive time windows as illustrated in the blue boxes in Table 2. 

Table 2 Increasing data size per time window with the blue boxes representing the data used to 

develop the nine regression models  

Serial numbers of 

Regression Models 

Time window for which data were included 

0 ±1 ±2 ±3 ±4 ±5 ±6 ±7 ±8 

1          

2          

3          
4          
5          
6          
7          
8          
9          

 

Regression analysis was done using the stepwise selection of terms through the 

Forward Information Criteria (FIC). The FIC involves a step-by-step addition of terms to 
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the regression model. It evaluates how the addition of terms best explains the variation in 

the dependent variable. The model that gave the best statistics in terms of the coefficient 

of determination (R2≥0.5), significance of the relationship at a 0.05 significance level (p-

value≤0.05), multi-collinearity of the independent variables (Variance Inflation Factor 

(VIF) <10), minimum number of data points (N ≥ 30) and low root mean square error 

(RMSE) relative to the concentration range was considered as the best-fit model. 

The train-test and K-folds validation methods were used to test the best-fit models 

for each dataset. The data were divided into a training and a testing set in the train-test 

validation. Using the training test, the best-fit model was reproduced and then used to 

calculate Chl-a concentrations in the testing set. The model-derived Chl-a concentrations 

were regressed against the measured Chl-a concentrations of the testing set and the R2 

was recorded. 

The best-fit model was also validated using the K-folds Cross Validation method. 

The original sample data was divided randomly into K subsamples. This study divided 

the data into 10 subsamples. The value of K was chosen as 10 as this is a typical choice 

(Kuhn et al., 2013; Kuppssinsku et al., 2020). Minitab 20 attempted to reproduce the 

best-fit model using the training set and then tested it using th.e testing set for each 

subsample. The R2 and the RMSE were recorded for each round as shown below. 

• Model-1: Trained on Fold-2 + Fold-3 +…. Fold-10; Test on Fold-1; Record R2 & 

RMSE 

• Model-2: Trained on Fold-1 + Fold-3 +…. Fold-10; Test on Fold-2; Record R2 & 

RMSE 
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• Model-n: Trained on Fold-1 + Fold-2 + Fold-n +…. Fold-10; Test on Fold-n; 

Record R2 & RMSE (n = a value between 4 and 9) 

• Model-10: Trained on Fold-1 + Fold-3 +…. Fold-9; Test on Fold-10; Record R2 

& RMSE 

All the 10 models were expected to be equivalent to the best-fit model and the R2 

and RMSE were used to evaluate this expectation. The procedure is summarized in 

Figure 2. 

Figure 2 Flow chart for development of best-fit model 

2.6 Best-fit model development and validation for single versus multiple reservoirs 

  

This study compared the statistics of regression models with a single reservoir to 

those with multiple reservoirs in order to delineate the effects of multiple reservoirs on 

the performance of the three satellites for Chl-a detection. The same number of data 

points was used to calculate the regression statistics of each reservoir. The obtained 

statistics were then averaged to give the representative statistics for a single reservoir. 

The largest data size for Landsat-5 was 33 data points. Hence, all the reservoirs with at 

least 30 data points were selected and the sample size, N =30, used for the single 

7. Test best fit model using the K-folds Cross Validation method

6. Plot model-derived values against measured values and record the R2 for each

5. Select best fit model based on prescribed statistics (R2≥0.5, p-value≤0.05, VIF<10, N ≥ 30, low 
RMSE)

4. In each step, record statistics (R2, p-value, RMSE, & VIF) and compare them 

3. Use Forward Information Criteria to carry out stepwise selection of terms

2. Transform data to have three sets of y-variables: actual concentration, LN, and SQRT

1. Deploy water quality & satellite data in Microsoft Excel; import to Minitiab 20
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reservoir analysis. Landsat-8 had reservoirs with up to 48 data points allowing the sample 

size of 40 for the single reservoir analysis. The Sentinel-2 sample size, N= 30, was used 

for the single reservoir analysis. Random samples were selected without replacement 

until the required sample size (N = 30, 40, and 30 for Landsat-, Landsat-8, and Sentinel-

2, respectively) was attained from each of the reservoir. All the data were selected for the 

analysis for a reservoir that had exactly the required sample size. Multiple regression 

models were developed using the stepwise FIC and the best-fit model was the one with 

the highest R2, lowest RMSE, lowest VIF, and significant p-value. The average best-fit 

R2 and RMSE were recorded as the representative statistics for a single reservoir. 

The same sample sizes used in the single reservoir analysis were used for multiple 

reservoir analysis. An equal number of subsamples (n) were randomly drawn without 

replacement from the data for each of the ten study reservoirs (n = 3, 4, and 3, for 

Landsat-5, Landsat-8, and Sentinel-2) to give the total required sample size (N = 30, 40, 

and 30 for Landsat-5, Landsat-8, and Sentinel-2, respectively). Multiple regression 

models were then developed using the stepwise FIC and this was followed by selection of 

the best-fit model based on the R2, RMSE, VIF, and p-value. This process was repeated 

multiple times and the average R2 and RMSE were recorded as the representative 

statistics for multiple reservoirs. Figure 3 presents the steps followed in the single versus 

multiple reservoir analysis. 
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Figure 3 Flow chart showing the procedure for single and multiple reservoir analysis used for the 

study 

 

 

 

 

 

 

 

Single vs Multiple 

Reservoir analysis

Single Reservoir analysis

Step1: Select all reservoirs with a required 
minimum data size per satellite platfom

Step 2: Select one of these reservoirs and 
randomly draw N data points

Step 3: Develop regression models, select 
the best-fit model, and record its statistics 
(R2 & RMSE)

Step 4: Repeat Steps 2 and 3 for all the 
selected reservoirs

Step5: Compute the average statistics

Multiple Reservoir analysis

Step1: Randomly select n subsamples 
without replacement from each of the ten 
study reservoirs to give a sample size of N 

Step 2: Develop multiple linear regression 
models, select the best-fit model, & record 
the statistics

Step3: Repeat Steps 1 & 2 as many times as 
there are available data

Step 4: Compute the average statistics
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CHAPTER III 
 

 

RESULTS 

 

3.1 Data size per time window 

A total of 1,371 datapoints were available between 2006 and 2020 (14 years) of 

ground-based Chl-a data collected in the ten study reservoirs. Landsat-5 had 15 data 

points that were collected on the same day as the ground-based data, Landsat-8 had 24, 

and Sentinel-2 had 20 during this period. These were too few data points to pair with the 

Chl-a data to give reliable regression models (McCullough et al., 2012, Boucher et al., 

2018). This observation confirmed the need to expand the time window beyond the same 

date of image acquisition and ground-based sampling to allow the use of enough data 

points. The number of data points and Chl-a range (µg/l) for each time window (0 to ± 8 

days) for Landsat-5, Landsat-8, and Sentinel-2 is presented in Table 3.
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Table 3 Number of data points associated with each of the increasing time window (0 to ± 8days) 

along with the Chl-a concentration range in (µg/l) for Landsat-5, Landsat-8, and Sentinel-2. 

 

3.2 Best-fit model per satellite 

 

Table 4 presents the statistical results (R2, RMSE, 10-fold CV R2, and 10-fold CV 

RMSE) of the best-fit regression model for each satellite platforms. Details of the 

regression models for all the time windows are shown in Appendix I. 

 

 

 

 

 

 

 

Platform Attribute 

 Time window 

0 1 2 3 4 5 6 7 8 

Landsat-5 

Data size 

(N) 

15 37 84 101 139 168 179 191 197 

Chl-a 

conc. 

range 

(µg/l) 

1.32-

34 

 

1.32

-34 

 

1.32-

48 

1.32-

48 

1.32-

48 

1.32-

58.5 

1.32-

58.5 

1.32-

58.5 

1.32-

58.5 

Landsat-8 

Data size 

(N) 

24 73 110 181 235 304 329 408 432 

Chl-a 

conc. 

range  

(µg/l) 

0.64-

21.6 

0.64

-

45.3

0 

0.64-

101 

0.64-

101 

0.62-

101 

0.62-

101 

0.62-

101 

0.62-

101 

0.62-

101 

Sentinel-2 

Data size 

(N) 

20 49 67 124 195 237 259 291 333 

Chl-a 

conc. 

range 

(µg/l) 

1.37-

101 

1.32

-101 

0.64-

101 

0.64-

106 

0.64-

106 

0.64-

106 

0.64-

106 

0.64-

106 

0.64-

106 
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Table 4 Statistics (R2, RMSE, 10-fold CV R2, and 10-fold CV RMSE) of the best-fit model per 

satellite sensor. 

Platform  
Time 

window 
Model (s) R

2

 RMSE 
10-Folds CV 

R
2

 RMSE 

Landsat-5 0* Sqrt(Chl-a) = 5.957 - 13.93* d
1
 0.55 1.04 0.44 1.10 

Landsat-8      1 
Sqrt(Chl-a)=1.840 + 48.78 d

21
 

+ 10.62 d
23

 + 21.57 d
25

 

0.60 0.88 0.56 0.94 

Sentinel-2 8 Sqrt (Chl-a) = 6.075 - 2.670 

*(Red/RE1) - 6.807 *d6 + 18.80* d23                   

0.83 1.52 0.80 1.55 

Note:  For Landsat-5, d1= (ρG- ρB) /(λG-λ\B); For Landsat-8, d21
 = (dB

-dCA)/0.5* (λG-λCA) , d23
  = (dR

-

dG)/0.5* (λNIR-λG) , d25= (dSWIR1
-dNIR)/0.5* (λSWIR2-λNIR) ; For Sentinel-2, d6= (ρRE3- ρRE2) /(λRE2-

λRE3) , d23 = (dR
-dG)/0.5* (λRE1-λG) where ρ is the surface reflectance and λ is the center 

wavelength. 

 The best-fit model for each satellite fulfilled all these criteria: R2 ≥ 0.5, low 

RMSE values, VIF< 10, p < 0.05, Minimum data points (N) ≥ 30. For Landsat-5, all the 

criteria were fulfilled except for the requirement of  N ≥ 30. The R2 decreased when the 

number of data points were increased for Landsat-5. 

Figure 4 presents scatter plots showing relationships between the values of Chl-a 

(µg/L) predicted by the Landsat- 5 (L5), Landsat-8 (L8), and Sentinel-2 (S2) spectra and 

those measured in the study reservoirs. The R2 values are displayed at the top of each 

graph along with the satellite platforms  for developing the predictive model . The x-axis 

represents the measured values, and the y-axis represents the fitted values. All three 

satellites showed strong relationships between measured and fitted values of Chl-a.  
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Figure 4 Scatter plots showing relationships between the model-derived concentrations and 

measured concentrations of Chl-a (µg/l) with Landsat-5 (L5), Landsat-8 (L8), and Senintel-2 

(S2). The R2 values are presented at the top of each graph with the satellite platform. 
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3.2.1 Comparison of different time windows (R2) 

 

Figure 5 shows the relationship between the coefficient of determination (R2) and 

increasing time window for the three satellites. The blue curve represents the trend in R2 

for Landsat-5, the green and red represent those for Landsat-8 and Sentinel-2, 

respectively. The x-axis represents the number of sampling days before or after satellite 

image acquisition, and the y-axis presents the R2.  

Figure 5 Graph of R2 for the different time windows with Landsat-5, Landsat-8, and Sentinel-2 

For all the three satellites, highest R2 values were observed for the temporally 

coincident paired data. Generally, the R2 values dropped as the time window increased. 

The strength of relation between the satellite spectra and ground-based data decreased as 

the temporal disparity increased. Sentinel-2 gave the highest R2 values, followed by 

Landsat-8 and then Landsat-5 for all the time windows. Only Sentinel-2 gave R2 ≥ 0.5 in 

all nine time windows. Sentinel-2 provided stronger relationship between the satellite and 

ground-based data for each time window up to 8 days. 
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3.2.2 Comparison of different time windows (RMSE) 

 

Figure 6 presents the RMSE values (µg/l)  for the multiple regression analysis of 

Chl-a and the satellite spectra for Landsat-5, Landsat-8, and Sentinel-2 with increasing 

time window. The RMSE values obtained for all the three satellites were low (Chl-a <5 

µg/l).  

Figure 6 Graph of RMSE for the different time windows with Landsat-5, Landsat-8, and 

Sentinel-2. 

 Comparatively higher RMSE values were observed from ± 2 days to ±8 days for 

Landsat-5 as compared to other satellite platforms. The lowest RMSE value was 

observed for same day in the case of Landsat-8. The RMSE values increased after ± 1 

day. After ± 3 days, the RMSE was constant till ±8 days. Sentinel-2 had the lowest 

RMSE values compared to the other two satellites with the increasing time window. The 

low RMSE values for Sentinel-2 throughout the time window from same day to ± 8 days. 

These results imply that Sentinel-2 regression models can better predict Chl-a when a 

temporal window of ± 8 days is considered. 

 

0

0.5

1

1.5

2

2.5

0 1 2 3 4 5 6 7 8

R
M

S
E

 (
µ

g
/l

)

Sampling days before or after image acquisition

Landsat-5 Sentinel-2 Landsat-8



27 
 

3.2.3 Validation of the best-fit models per time window  

 

Figure 7 shows the R2 values obtained in the 10-folds cross-validation (CV) of the 

best-fit models for Landsat-5, Landsat-8, and Sentinel-2 with the increasing time 

window. For all three satellites, CV R2 values dropped when the time window was 

increased from 0 to ± 8 days. Cross-validation results show that Sentinel-2 has the 

highest value (R2=0.82) followed by Landsat-8 ( R2 = 0.46) and Landsat-5 (R2 = 0.44). 

Figure 7 Graph of cross-validation R2 versus time window for Landsat-5, Landsat-8, and 

Sentinel-2 

For Landsat-5, only the temporally coincident days between satellite overpass and 

ground-data gave R2 ≥ 0.5 as compared to the other time windows. In the case of 

Landsat-8, results show that for ± 3 days of temporal disparity, Landsat-8 models can be 

used to predict Chl-a in reservoirs. Sentinel-2 models gave R2 ≥ 0.5 for all the time 

windows compared to Landsat-5 and Landsat-8. Based on the Sentinel-2 R2 values, up to 

8 days of time window is acceptable for pairing satellite and ground-based data. 
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Figure 8 presents the RMSE values obtained in the 10-folds CV of the best-fit 

models for Landsat-5, Landsat-8, and Sentinel-2 with the increasing time window. The 

RMSE values were low for all the sensors (RMSE< 5 µg/l). 

Figure 8 Graph of cross-validation RMSE versus time window for three satellite sensors 

 The RMSE values for Landsat-5 was lowest for ± 1 day of temporal disparity. 

The RMSE values increased from ± 2 days and remained constant after ± 5 days. For 

Landsat-8, lowest RMSE value was observed for temporally coincident day. The RMSE 

values followed an increasing trend after ± 1 day. The lowest RMSE values were 

observed for Sentinel-2 from ± 2 to ± 8 days compared to Landsat-5 and Landsat-8. 

Landsat-5’s RMSE values were high as compared to Landsat-8 and Sentinel-2. The 

cross-validation RMSE results show that Sentinel-2 can be used to predict Chl-a when 

the temporal disparity between satellite overpass and ground-based sampling is ± 8 days. 
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3.3 Best-fit model development for single versus multiple reservoir 

 

  Table 5 presents the R2, RMSE, average R2, and average RMSE obtained for 

single reservoir using same number of data points (N=30, 40, and 30) and for Landsat-5, 

Landsat-8, and Sentinel-2, respectively for each reservoir. Table 6 presents the regression 

statistics (R2, RMSE, average R2 and average RMSE) obtained after repeating the 

regression analysis for three times using the same number of data points from multiple 

reservoirs as it was used for single reservoir for Landsat-5, Landsat-8, and Sentinel-2.`   

For this multiple regression analysis, spectral and ground-based Chl-a data obtained 

within a constant number of days ± 4 between satellite image acquisition and ground-

based sampling were taken.  

Table 5 Statistics RMSE, average R2, average RMSE) for single reservoirs with their respective 

data points used for the regression analysis with constant number of days (Days = ± 4) between 

satellite image acquisition and ground-based sampling for Landsat-5, Landsat-8, and Sentinel-2. 

Platform Days 

(±) 

Single 

Reservoir 

No. of 

data 

points 

R2 RMSE Average 

R2 

Average 

RMSE 

(µg/l) 

Landsat-

5 

 

4 

 

Lake Texoma 30 0.40 1.46 
0.50 0.91 

Eufaula Lake 30 0.60 0.36 

Landsat-

8 

 

4 

 

Kaw Lake 40 0.50 2.51 
0.46 1.98 

Oologah Lake 40 0.42 1.44 

Sentinel-

2 

 

4 

 

Grand Lake 30 0.75 0.50 
0.81 0.44 

Oologah Lake 30 0.87 0.37 

 

Data points from Lake Texoma and Eufaula Lake were considered for single 

reservoir analysis using Landsat-5. The averaged R2 and RMSE obtained for those two 

reservoirs were 0.50 and 0.91 µg/l. Kaw Lake and Oologah Lake were used for the single 

reservoir analysis for Landsat-8. The average R2 and RMSE obtained were 0.46 and 1.98 
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µg/l. For Sentinel-2, data from Grand Lake and Oologah Lake were utilized. The average 

R2 and RMSE observed were 0.81 and 0.44 µg/l. Sentinel-2 gave the highest average R2 

(R2 = 0.81), followed by Landsat-5 (R2 = 0.50) and Landsat-8 (R2 = 0.46). Sentinel-2 

provided the lowest average RMSE value (0.44 µg/l), followed by Landsat-5 (0.91 µg/l) 

and Landsat-8 (1.98 µg/l). 

When carrying out the analysis for single reservoir in Minitab 20, particularly for 

Oologah lake using Landsat-8, very high VIF was observed (VIF >50). The 

multicollinearity observed between the independent variables was too high although R2 > 

0.5 was observed. The response variable Chl-a gave a R2 (R2 ≥ 0.5) but VIF was greater 

than 80. The natural logarithm of Chl-a provided high to low VIF, however the R2 

associated with low VIF (VIF<10) was low and for high VIF (VIF > 400), the R2 was 

high. The square root of Chl-a comparatively gave VIF around 10 and R2 of 0.42, so that 

model was selected. The reason behind high multicollinearity between the independent 

variable is still not clear. This observation lowered the average R2 for Landsat-8.  
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Table 6 Statistics (R2, RMSE, average R2 and average RMSE) obtained after repeating the 

regression analysis for three times using the same number of data points from multiple reservoirs 

with constant number of days (Days = ± 4) between satellite image acquisition and ground-based 

sampling for Landsat-5, Landsat-8, and Sentinel-2.` 

Platform Days 

(±) 

Regression analysis 

for multiple 

reservoirs 

 

R2 RMSE  Average 

R2  

Average 

RMSE 

(µg/l) 

Landsat-5 4 Run 1 0.38 1.14 

0.34 1.62 Run 2 0.41 1.90 

Run 3 0.22 1.82 

Landsat-8 4 Run 1 0.65 2.10 

0.62 1.81 Run 2 0.62 1.42 

Run 3 0.60 1.90 

Sentinel-2 4 Run 1 0.67 0.83 

0.72 0.88 Run 2 0.76 0.86 

Run 3 0.72 0.94 

 

The average R2 and RMSE values obtained after running the analysis for three 

times using data from multiple reservoirs were 0.34 and 1.6 µg/l for Landsat-5. For each 

run, Landsat-5 gave a low R2 (R2 ≤ 0.5). Landsat-8 gave an average R2 and RMSE values 

of 0.62 and 1.81 µg/l. Landsat-8 gave a R2 ≥ 0.5 for all the repeated analysis. Sentinel-2 

gave an average R2 and RMSE values of  0.72 and 0.88 µg/l. Each repeated analysis for 

Sentinel-2 using data from multiple reservoirs gave a R2 ≥ 0.5. The average R2 for 

Sentinel-2 was the highest (R2 = 0.72), followed by Landsat-8 (R2 = 0.62) and Landsat-5 

(R2 = 0.34). The average RMSE values were observed to be lowest for Sentinel-2 (0.88 

µg/l), followed by Landsat-5 (1.62 µg/l) and Landsat-8 (1.81 µg/l).  

Landsat-5 exhibited poor performance when data from multiple reservoirs were 

used. The R2 values dropped from (0.50-0.34). The performance of Landsat-8 was better 

when multiple reservoirs were used. An increase in R2 value from 0.46 to 0.62 was 

observed for Landsat-8. Sentinel-2 showed good results in both the cases of single and 
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multiple reservoirs with high R2
 
 (R2 ≥ 0.5) values and low RMSE values. Sentinel-2 can 

predict Chl-a accurately regardless of the number of reservoirs being utilized. 
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CHAPTER IV 
 

 

DISCUSSIONS 

 

4.1 Time Window 

 Algal blooms have adverse impacts on the health and well-being of human, 

animal, and aquatic ecosystems. Chlorophyll-a present in major groups of algae is an 

indicator of algal blooms in inland water bodies (Topp et al., 2019). Those blooms are 

spatially and temporally dynamic in nature. Ground-based sampling alone may not be 

enough to monitor those blooms. Satellites remote sensing have been used to monitor 

algal blooms in water bodies. One of the challenges of satellite remote sensing is that it is 

difficult to capture the blooms due to the temporal resolution of satellites. 

 Studies have suggested specific number of dates that sampling can be carried out 

before or after satellite overpass to obtain images for developing empirical relationships 

between spectral and ground-based data. For this study we used a temporal gap of same 

day to eight days before or after satellite image acquisition to develop regression models 

for the estimation of Chl-a for each satellite sensors. Single bands, band ratios, and 

spectral derivatives were regressed against ground-based Chl-a data to obtain those 

regression models.  The R2 values obtained for the regression models for Landsat-5, 
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Landsat-8, and Sentinel-2 developed per time window followed a decreasing pattern. 

This result was consistent with the study carried out by Kloiber et al. (2001). 

The strength of correlation between satellite and ground-based data was observed 

to be strong only for the temporally coincident date for Landsat-5. A decrease in the 

strength of models to accurately predict Chl-a was observed as the time window was 

expanded. Olmanson et al. (2007) carried out a study to develop a database for water 

clarity of Minnesota’s lakes. They used a time window of  up to ± 10 days when data 

points were sparse. They concluded that the larger number of ground observations with 

longer time window increased the R2 values. In their study, when the number of data 

points were increased from 12 to 26 for ± 1 to ± 7 days’ time window, the R2 increased 

from 0.85 to 0.88. This result was opposite to what we achieved in our study. When the 

data points were increased with the increased time window from 0 to ± 8 days, the R2 

values decreased from 0.55-0.22. The RMSE values also increased  from 1.04 – 1.97 µg/l 

with the increasing data points and expanded time window. The conclusion provided by 

Olmanson et al., 2007 might not be applicable under all scenarios as they carried out the 

study for water clarity and it usually does not exhibit large and rapid fluctuations. 

Landsat-5 exhibited poor performance as compared to Landsat-8 and Sentinel-2 in Chl-a 

sensing. Landsat-5 has a broad band spectrum and lacks wavelengths significant to the 

detection of Chl-a (Chipman et al., 2004). From the observation of our study and dataset, 

we conclude that Landsat-5 is not a good choice to use for Chl-a sensing in reservoirs 

when longer time window between satellite and ground-based data is considered. 

 The regression models developed for Landsat-8 provided strong relationship 

when up to ± 1 day of temporal disparity between satellite and ground-based data was 
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considered. Landsat-8 models did not provide statistically good results when the time 

window was increased beyond ± 1 day. Landsat-8 performed comparatively better than 

Landsat-5. Landsat-8 has two SWIR bands that contribute significantly to the Chl-a 

reflectance in the study reservoirs absent in Landsat-5. This result is consistent with the 

results obtained in the previous studies (Mansaray et al., 2021). The two SWIR bands 

present in Landsat-8 are less prone to be affected by turbidity (Kuhn et al., 2019). Similar 

to the case of Landsat-5, the strength of relationship decreased when the time window 

was increased. This finding was also opposite to the study carried out by Olmanson et al. 

(2007). The increase in data points did not improve the R2 values for the regression 

models. 

 The Sentinel-2 regression models can reliably predict Chl-a up to ± 8 days of 

temporal disparity between satellite and ground-based data. The presence of specific 

bands sensitive to Chl-a estimation in Sentinel-2 gives it an advantage over Landsat-8 

and Landsat-5. The Red-Edge band present in Sentinel-2 is significant as algae cause a 

peak reflectance near 700 nm and is less susceptible to absorption and scattering 

(Bramich et al., 2021). Wavelengths in the RE region have a strong linear relationship 

with Chl-a reflectance (Gitelson et al., 2009). The two SWIR bands also present in 

Sentinel-2 are important predictors of Chl-a in water bodies. The first derivatives of Red 

and RE bands also improve the estimation of Chl-a in inland waters (Han, 2005). 

Sentinel-2 is the best choice among Landsat-5 and Lansdat-8 when larger time window is 

considered. Ground-based data before or after 8 days of Sentinel-2 satellite overpass can 

be used when data points are sparse and there is a need to increase the time window 

between ground-based sampling and satellite image acquisition.  
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Overall, all three sensors can estimate Chl-a in the study reservoirs. Sentinel-2 

outperformed Landsat-5 and Landsat-8 in the detection of Chl-a throughout the 

incremental time window. It demonstrates the potential applicability of Sentinel-2 in 

remote of Chl-a in reservoirs over a longer time window. Sentinel-2 can be effectively 

used in the management of algal blooms and make it easier for the lake managers and 

responsible authorities to take necessary strategic actions to reduce its adverse impacts on 

the environment.  

4.2  Single Versus Multiple Reservoirs 

 

 Ground-based data from single as well as multiple reservoirs were paired up with 

spectral data to develop predictive models to estimate Chl-a. The comparison of 

regression statistics that we obtained using single and multiple reservoirs showed varying 

results for the three satellites. We have observed that the spectral resolution of the 

satellite platforms plays a role in the estimation of Chl-a.  

 Landsat-5 showed good performance when data points from single reservoirs 

were used. This result was consistent with the study carried out by Tan et al. (2017) to 

estimate Chl-a in Erhai lake. When data points were used from multiple reservoirs, 

decrease in the R2 value was observed. Poor performance was exhibited by Landsat-5 

because of its broad band spectrum that lacks wavelengths significant to the detection of 

Chl-a (Chipman et al., 2004). Our result suggests that Landsat-5 cannot reliably predict 

Chl-a when data from multiple water bodies are used.  

 Landsat-8 provided strong relationship between ground-based and spectral data 

from multiple reservoirs were used to develop predictive models. The result was 
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consistent with a study carried out by Markogianni et al. (2020) in 50 natural/ artificial 

lakes of Greece. Landsat-8 also has spectral bands in the SWIR region that is important in 

the detection of Chl-a in water bodies.  Landsat-8 had comparatively lower average R2 

for single reservoir. Oologah Lake, that was used for the single reservoir analysis of 

Landsat-8 exhibited high multicollinearity among the independent variables, that 

contributed to lower average R2  for Landsat-8. The reason behind high multicollinearity 

among the independent variables is not clear and requires further analysis.  

Sentinel-2 had high R2 and low RMSE for both the single and multiple reservoirs. 

Sentinel-2 has RE bands absent in Landsat-5 and Landsat-8. SWIR bands not available in 

Landsat-5. The wavelengths in those regions play significant role in Chl-a detection 

(Bramich et al., 2005). In addition to that, RE and SWIR bands are less susceptible to 

absorption and scattering in turbid water bodies (Kuhn et al., 2019). 

Other important factors that we have not considered in the study are the 

hydroclimatic, anthropogenic, and biophysical processes that takes place in those 

reservoirs. The ten study reservoirs range from eutrophic to hypereutrophic trophic status 

and have different watersheds. Even the zones of those study reservoirs (riverine, 

transition, and lacustrine) vary in terms of trophic state (OWRB, 2018). Li et al., 2017 

concluded in their study that the concentration of Chl-a varies within the different zones 

of the reservoirs. It is usually higher in the riverine zone due to nutrient input from the 

watershed’s runoff. The Chl-a concentration varies from site by site as well, because of 

anthropogenic activities such as intensive agricultural practices, industrialization, fishing, 

recreation, and irrigation in the surrounding water shed (Mamun et al., 2021). 
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 We also observed varying range of Chl-a concentrations for different sample sites 

of the same reservoir in our study. The study reservoirs have different watersheds with 

different hydroclimatic and anthropogenic factors governing the water quality of the 

reservoirs. They undergo different biophysical conditions such as nutrient exchange rates, 

limnetic mixing, turbidity, change in lake water temperature, weather and wind 

conditions, biological oxygen demand (BOD) at different rates. During high wind 

conditions, the predicted Chl-a concentrations are usually low as they get mixed 

throughout the water column, providing unreliable estimations (Tan et al., 2017). These 

conditions of the reservoirs are important to understand to develop better predictive 

models using both the single as well as multiple reservoirs. 

The result of this study suggests that the number of reservoirs do not matter as 

much as the time window and the spectral resolution of the satellite. However, further 

assessment and validation to delineate the effects of multiple reservoirs must consider the 

aforementioned hydroclimatic, anthropogenic, and biophysical conditions for the 

reservoirs to understand the effects of using multiple reservoirs on the satellite platforms.  
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CHAPTER V 
 

 

CONCLUSIONS 

 

Algal blooms are spatially and temporally dynamic in nature. These blooms are 

erratic and can form and dissipate in few hours or days. Chlorophyll-a is a photosynthetic 

pigment present in major group algae. It is used widely to monitor algal blooms in water 

bodies. Ground-based monitoring program alone cannot study the dynamic nature of the 

blooms. These blooms may form in areas where it is difficult to access (coves, difficult 

terrains). Ground-based sampling methods are limited to specific locations and times. 

Satellite remote sensing coupled with ground-based monitoring can fill the monitoring 

gaps of ground-based monitoring and improve the detection of Chl-a in water bodies. 

There are some challenges associated with satellite remote sensing. The lack of digital 

images due to cloud cover, spatial, temporal, and spectral resolution of satellite sensors to 

capture the bloom events might impede the efficacy of monitoring programs based on 

satellite remote sensing.  

We used 14 years (2006-2020) of ground-based Chl-a and Landsat-5, Landsat-8, 

and Sentinel-2’s spectral data to develop multiple regression models. These models 

utilized surface reflectance from bands, band ratios and combinations, and spectral 

derivatives. Our study determined the number of days we can go before or after the 
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satellite overpass and utilize the obtained ground-based data for developing 

regression models. The analysis was carried out for Landsat-5, Landsat-8, and Sentinel-2. 

We also compared the statistical results of Chl-a regression models using data from a 

single reservoir to those that were developed from multiple reservoirs. A specific time 

window of ±4 days between ground-based sampling and satellite image acquisition was 

used to carry out that analysis. 

From the results of this study, we observed that Sentinel-2 models developed per 

time window performed better than Landsat-5 and Landsat-8. The spectral resolution of 

the satellite sensors used to develop the models played a role in explaining the variations 

observed in Chl-a estimation. This study revealed that an 8-day time window could be 

used to pair up satellite and ground-based data when Sentinel-2 is used and yield good 

results. The spectral bands present in Sentinel-2 contribute to the continuous prediction of 

Chl-a in reservoirs.  This study also revealed that the number of reservoirs does not 

matter as much as the time window and the spectral resolution of the satellite being 

utilized. Landsat-8 and Sentinel-2 performed better than Landsat-5 when multiple 

reservoirs were used. Also, Landsat-8 and Sentinel-2 are open-source satellites, and the 

images are available free of cost. Lake managers and monitoring authorities can 

incorporate Landsat-8 and Sentinel-2 in their monitoring strategies along with ground-

based sampling methods. This would allow the timely detection of algal blooms in water 

bodies, minimize the exposure risk to humans and animals, and avoid economical loss 

caused by algal blooms. 

 Future research should include hydroclimatic conditions, anthropogenic 

activities, biophysical conditions such as limnetic mixing, wind and weather conditions, 
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turbidity, BOD, lake water temperature, cumulative sunny days and precipitation events 

before bloom take place using available meteorological data (Tan et., 2017) for the 

reservoirs to fully understand the effects of multiple reservoirs. This study did not 

consider those conditions for the study reservoirs. Inclusion of those parameters will 

improve the efficacy of Chl-a predictive models using satellite remote sensing to monitor 

algal blooms. Study of those processes within the different zones of a reservoir (riverine, 

transition, and lacustrine zones) and its interaction with Chl-a could help to develop 

better predictive models for long term monitoring of algal blooms.  
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APPENDICES 
 

Appendix I. Best-fit models obtained for the three satellite sensors with their 

statistics  

 

Table 7 Predictive models for three satellites for time window with their statistics (R2, RMSE, 10 

fold CV R2and RMSE) for Landsat-5 

Platform  D  
Data 

points  
Model (s) R2  RMSE  

10-Folds CV 

R2 RMSE 

Landsat-

5 TM 
0 15 Sqrt(Chl-a) = 5.957 - 13.93* d1  

0.55 1.04 0.44 1.10 

Landsat-

5 TM 
1 37 

Sqrt(Chl-a) = -1.14 + 3.54* ( G/R) 

+ 5.96 NIR1 

 
 

0.39 0.79 0.32 0.81 

Landsat-

5 TM 
2 84 

Ln(Chl-a) = 4.936 - 1.051*( G/B) 

- 0.791*( R/NIR1)  

0.39 1.86 0.32 1.89 

Landsat-

5 TM 
3 101 

Ln(Chl-a) = 3.705 - 0.736 * (R/NIR1) 

- 1.103* d1 

 

0.38 1.82 0.34 1.84 

Landsat-

5 TM 
4 139 

Ln(Chl-a) = 3.224 - 0.5633* (R/NIR1) 

- 1.185 *d2 + 8.82* d5 

 

0.30 1.82 0.24 1.86 

Landsat-

5 TM 
5 168 

Ln(Chl-a) = 3.269 - 0.418* (R/NIR1) 

+ 1.275 d3 + 15.08 * d5 

 

0.24 1.95 0.21 1.95 

Landsat-

5 TM 
6 179 

Ln(Chl-a) =3.425 - 0.497 * (R/NIR1) 

- 0.828*d1 + 7.97*d5 

 

 

0.22 1.95 0.19 1.97 

Landsat-

5 TM 
7 191 

Ln(Chl-a) = 3.716 - 7.24 * NIR1 

- 0.6473*( R/NIR1) 

 

 

0.21 1.97 0.19 1.97 

Landsat-

5 TM 
8 197 

Ln(Chl-a) =3.732 - 0.000754 * B4 

- 0.6544 *(R/NIR1) 

 

0.22 1.97 0.19 1.99 
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Table 8 Predictive models for three satellites for time window with their statistics (R2, RMSE, 10 

fold CV R2and RMSE) for Landsat-8 

 

Platform 

 

D 

 

Data 

Points 

 

Model (s) 
R2 

 

RMSE 

 

10-Folds 

CV 

R2 

 

RM

SE 

 

Sentinel-

2 
0 20 

Ln (Chl-a) =2.618 + 4.415* d4 + 3.57 * 

d8A 

 

 

0.86 1.62 0.82 1.65 

Sentinel-

2 
1 49 

Ln (Chl-a) = 2.620 - 0.599 *(NIR-

SWIR1/NIR+SWIR1) + 4.835* d4 

 

 

0.83 1.52 0.80 1.55 

Sentinel-

2 
2 67 

Sqrt (Chl-a) = 2.695 + 10.245 *d4 

+ 9.44 *d7 – 11.72 * d22 

 

 

0.78 0.67 0.75 0.72 

Sentinel-

2 
3 124 

Sqrt (Chl-a) = 2.802 + 9.908 *d4 

+ 10.06 *d7 – 11.59* d22 

 

 

0.79 0.69 0.78 0.72 

Sentinel-

2 
4 195 

Sqrt (Chl-a) = 5.766 - 3.473 *(Red/RE1) 

+ 0.653*(G/B) - 6.567 *d6 + 17.33 *d23 

 

 

0.70 1.01 0.64 1.08 

Sentinel-

2 
5 237 

Sqrt (Chl-a) =5.802 - 2.148 *( NIR-Red/ 

NIR+Red) - 3.437*( Red/RE1) 

- 5.576* d6 + 21.12* d23 

 

 

0.67 1.06 0.66 1.1 

Sentinel-

2 
6 259 

Sqrt (Chl-a) =6.404 - 2.844 * (Red/RE1) 

+ 77.13* d11 + 18.91 * d23 

 

 

 

0.64 1.25 0.63 1.30 

Sentinel-

2 
7 291 

Sqrt (Chl-a) = 6.857 - 3.214 *( Red/RE1) 

+ 77.97 *d11 + 18.62 * d23 

 

 

 

0.65 1.25 0.64 1.28 

Sentinel-

2 
8 333 

Sqrt (Chl-a) = 6.075 - 2.670 *( Red/RE1) 

- 6.807 *d6 + 18.80* d23 

 

 

 

0.62 1.25 0.61 1.28 
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Table 9 Predictive models for three satellites for time window with their statistics (R2, RMSE, 10 

fold CV R2 and RMSE) for Senitnel-2 

 

 

 

 

 

 

 

 

Platform 

 

D 

 

Data 

Points 

 

Model (s) 
R2 

 

RMSE 

 

10-Folds CV 

R2 

 

RMSE 

 

Landsat-8 0 24 Sqrt (Chl-a)= 5.011- 11.61*d1 

0.62 0.35 0.46 0.44 

Landsat-8 1 73 
Sqrt(Chl-a)=1.840 + 48.78 

d21 + 10.62 d23 + 21.57 d25 

 

0.6 0.88 0.56 0.94 

Landsat-8 2 110 

Sqrt(Chl-a)  = 6.382 - 3.945 * (NIR/red) 

+ 60.73 *d21 - 10.91 *d24 

 

 

0.51 1.41 0.47 1.46 

Landsat-8 3 181 

Sqrt(Chl-a) =6.066 - 3.658 * ( NIR/red) 

+ 65.17 *d21 - 10.784 d24 

 

 

0.57 1.63 0.55 1.66 

Landsat-8 4 235 

Sqrt(Chl-a)  =5.876 - 3.480 * (NIR/red) 

+ 55.47 *d21 - 9.871* d24 

 

 

0.49 1.66 0.46 1.71 

Landsat-8 5 304 

Sqrt(Chl-a)= 4.782 - 2.160 * (NIR/red) 

+ 53.32* d21 - 7.778 *d24 

 

 

0.40 1.82 0.39 1.85 

Landsat-8 6 329 

Sqrt(Chl-a) = 2.883 + 1.678 * ((G-

SWIR)/(G+SWIR))^2 + 12.756 * d4 

+ 52.84 * d21 

 

 

0.41 1.79 0.39 1.85 

Landsat-8 7 408 

Sqrt(Chl-a) =3.850 + 69.87 *d6 

+ 55.47* d21 - 6.508 * d24 

 

 

0.40 1.69 0.38 1.69 

Landsat-8 8 432 

Sqrt(Chl-a)=3.742 + 62.74 * d6 

+ 54.95 *d21 - 6.239 * d24 

 

 

0.38   1.69 0.36 1.69 
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Appendix II. List of reservoirs with their date of image acquisition and ground-

based sampling for the three satellites 
 

Table 10 Difference in days between Landsat-8 image acquisition and in situ sampling dates for 

the 10 Oklahoma reservoirs 

S.N Name of Reservoir Date of image 

acquisition 

Date of in situ 

sampling 

(±)Lag days 

1. Robert S. Kerr 

Reservoir 

11/18/2015 11/18/2015 0 

9/17/2016 9/13/2016 -4 

2. Grand Lake 4/24/2015 4/28/2015 +4 

8/6/2018 8/7/2018 +1 

3.  Lake Carl Blackwell 4/25/2013 4/24/2013 -1 

12/18/2015 12/21/2015 +3 

9/24/2016 

 

9/27/2016 

 

+3 

2/9/2018 

 

2/13/2018 

 

+4 

6/1/2018 

 

6/5/2018 

 

+4 

4. Lake McMurtry 4/12/2014 4/7/2014 -5 

10/1/2016 10/3/2016 +2 

4/4/2017 4/4/2017 0 

7/9/2017 7/5/2017 -4 

1/4/2019 1/2/2019 -2 

6/29/2019 7/2/2019 -3 

5. Lake Texoma 10/13/2017 10/16/2017 +3 

8/31/2013 8/26/2013 -5 

6. Oologah lake 3/11/2014 3/10/2014 -1 

8/27/2014 8/25/2014 -2 

11/11/2016 11/14/2016 +3 

5/31/2017 5/31/2017 0 

8/19/2017 8/15/2017 -4 

1/29/2019 1/30/2019 +1 

4/26/2019 4/29/2019 +3 

7/24/2019 7/29/2019 +5 

7/31/2019 7/29/2019 -2 

7. Altus Reservoir 9/4/2015 9/8/2015 +4 

10/17/2019 10/14/2019 -3 

8/21/2016 8/22/2016 +1 

8. Waurika Lake 4/14/2018 4/10/2018 -4 

11/29/2014 12/2/2014 +3 
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S.N Name of Reservoir Date of image 

acquisition 

Date of in situ 

sampling 

(±)Lag days 

9. Eufaula Lake 8/14/2015 8/10/2015 -4 

1/23/2017 1/18/2017 -5 

7/9/2017 7/10/2017 +1 

10/12/2019 10/7/2019 -5 

1/7/2020 1/7/2020 0 

10. Kaw Lake 1/16/2015 1/13/2015 -3 

4/25/2013 4/22/2013 -3 

4/22/2015 4/21/2015 -1 

7/4/2015 7/6/2015 -2 

  6/1/2018 6/4/2018 +3 

8/4/2018 8/7/2018 +3 

11/4/2019 11/5/2019 +1 

2/8/2020 2/10/2020 +2 

9/26/2020 9/21/2020 -5 
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Table 11 Difference in days between Sentinel-2 image acquisition and ground-based sampling 

for 10 reservoirs of Oklahoma 

S.N Name of reservoir Date of image 

acquisition 

Date of in situ 

sampling 

(±)Lag days 

1. Robert S. Kerr 

Reservoir  

 

2/21/2020 2/24/2020 -3 

2. Grand Lake 10/19/2019 10/22/2019 -3 

3/7/2020 3/4/2020 +3 

8/24/2020 8/25/2020 -1 

1/27/2018 1/23/2018 +4 

10/29/2017 10/24/2017 +5 

4/12/2018 4/17/2018 -5 

8/19/2020 8/25/2020 -6 

10/14/2019 10/22/2019 -8 

3. Lake Carl Blackwell 11/16/2017 11/14/2017 +2 

8/3/2018 8/6/2018 -3 

2/9/2018 2/13/2018 -4 

6/9/2018 6/5/2018 +4 

4. Lake McMurtry  1/5/2019 1/2/2019 +3 

3/31/2019 4/1/2019 -1 

7/9/2019 7/2/2019 -7 

6/24/2019 7/2/2019 -8 

5. Lake Texoma 7/6/2018 7/2/2018 +4 

10/22/2017 10/16/2017 +6 

10/9/2017 10/16/2017 -7 

1/15/2018 1/8/2018 +7 

4/10/2018 4/2/2018 +8 

6. Oologah Lake 1/30/2019 1/30/2019   0 

4/27/2019 4/29/2019 -2 

10/27/2018 10/29/2018 -2 

7/31/2019 7/29/2019 -2 

2/16/2017 2/13/2017 +3 

1/27/2019 1/30/2019 -3 

7/26/2019 7/29/2019 -3 

8/23/2017 8/15/2017 +8 

7/21/2019 7/29/2019 -8 
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S.N Name of reservoir Date of image 

acquisition 

Date of in situ 

sampling 

(±)Lag days 

7. Altus reservoir 10/15/2019 10/14/2019 +1 

1/18/2020 1/21/2020 -3 

10/10/2019 10/14/2019 -4 

10/20/2019 10/14/2019 +6 

1/13/2020 1/21/2020 -8 

8. Waurika Lake 4/10/2018 4/10/2018 0 

8/17/2020 8/17/2020 0 

1/20/2018 1/17/2018 +3 

9/27/2019 9/30/2019 -3 

10/27/2017 10/31/2017 -4 

4/15/2018 4/10/2018 +5 

8/22/2020 8/17/2020 +5 

7/4/2018 7/10/2018 -6 

10/7/2019 9/30/2019 +7 

1/20/2020 1/13/2020 +7 

1/5/2020 1/13/2020 -8 

9. Eufaula Lake 8/9/2020 8/10/2020 -1 

8/14/2020 8/10/2020 +4 

7/6/2017 7/10/2017 -4 

10. Kaw Lake 9/21/2020 9/21/2020 0 

11/6/2019 11/5/2019 +1 

2/9/2018 2/12/2018 -3 

5/30/2018 6/4/2018 -4 

8/3/2018 8/7/2018 -4 

11/1/2019 11/5/2019 -4 

6/9/2018 6/4/2018 +5 

9/16/2020 9/21/2020 -5 
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Table 12 Difference in days between Sentinel-2 image acquisition and ground-based sampling for 

10 reservoirs of Oklahoma 

 

S.N Name of reservoir Date of image 

acquisition 

Date of in situ 

sampling 

(±)Lag days 

1. Robert S. Kerr 

Reservoir 

 

2/21/2020 2/24/2020 -3 

2. Grand Lake 10/19/2019 10/22/2019 -3 

3/7/2020 3/4/2020 +3 

8/24/2020 8/25/2020 -1 

1/27/2018 1/23/2018 +4 

10/29/2017 10/24/2017 +5 

4/12/2018 4/17/2018 -5 

8/19/2020 8/25/2020 -6 

10/14/2019 10/22/2019 -8 

3. Lake Carl Blackwell 11/16/2017 11/14/2017 +2 

8/3/2018 8/6/2018 -3 

2/9/2018 2/13/2018 -4 

6/9/2018 6/5/2018 +4 

4. Lake McMurtry 1/5/2019 1/2/2019 +3 

3/31/2019 4/1/2019 -1 

7/9/2019 7/2/2019 -7 

6/24/2019 7/2/2019 -8 

5. Lake Texoma 7/6/2018 7/2/2018 +4 

10/22/2017 10/16/2017 +6 

10/9/2017 10/16/2017 -7 

1/15/2018 1/8/2018 +7 

4/10/2018 4/2/2018 +8 
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S.N Name of reservoir Date of image 

acquisition 

Date of in situ 

sampling 

(±)Lag days 

6. Oologah Lake 1/30/2019 1/30/2019 0 

4/27/2019 4/29/2019 -2 

10/27/2018 10/29/2018 -2 

7/31/2019 7/29/2019 -2 

2/16/2017 2/13/2017 +3 

1/27/2019 1/30/2019 -3 

7/26/2019 7/29/2019 -3 

8/23/2017 8/15/2017 +8 

7/21/2019 7/29/2019 -8 

7. Altus reservoir 10/15/2019 10/14/2019 +1 

1/18/2020 1/21/2020 -3 

10/10/2019 10/14/2019 -4 

10/20/2019 10/14/2019 +6 

1/13/2020 1/21/2020 -8 

8. Waurika Lake 4/10/2018 4/10/2018 0 

8/17/2020 8/17/2020 0 

1/20/2018 1/17/2018 +3 

9/27/2019 9/30/2019 -3 

10/27/2017 10/31/2017 -4 

4/15/2018 4/10/2018 +5 

8/22/2020 8/17/2020 +5 

7/4/2018 7/10/2018 -6 

10/7/2019 9/30/2019 +7 

1/20/2020 1/13/2020 +7 

1/5/2020 1/13/2020 -8 
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S.N Name of reservoir Date of image 

acquisition 

Date of in situ 

sampling 

(±)Lag days 

9. Eufaula Lake 8/9/2020 8/10/2020 -1 

8/14/2020 8/10/2020 +4 

7/6/2017 7/10/2017 -4 

10. Kaw Lake 9/21/2020 9/21/2020 0 

11/6/2019 11/5/2019       +1 

2/9/2018 2/12/2018 -3 

5/30/2018 6/4/2018 -4 

8/3/2018 8/7/2018 -4 

  11/1/2019 11/5/2019 -4 

6/9/2018 6/4/2018 +5 

9/16/2020 9/21/2020 -5 
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