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CHAPTER I 
 

 

INTRODUCTION 

 

 The world of bacteria is filled with many shapes and sizes. Why do bacteria even 

need to have a shape? What benefit does having a shape provide? Form feeds function 

and function feeds form. The shape bacteria take is broadly uniform within a species and 

provides different ways of interacting with the environment. Rod bacteria have different 

advantages than a sphere, a filament has its own set of advantages when compared to 

either.  These advantages allow bacteria to compete for niches and further evolve their 

fitness for those niches. 

 Bacteria have a variety of methods to control their shape but the primary one is 

the cell wall. It is a mesh–like structure that serves a utilitarian role by providing some 

protection from lysis as a result of environmental stress but also shapes the cell. Cell 

walls of various chemical compositions serve similar roles across kingdoms of life. For 

most bacteria the cell wall is necessary for life and growth. It also has a unique chemical 

composition and method of construction that makes for an important role in treating a 

bacterial infection. 
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 Pathogenic bacteria are those that can infect and cause disease in other organisms. 

To treat a bacterial infection antibiotics are necessary. Antibiotics are chemicals that can 

either stop bacteria from growing or outright kill them. Antibiotics are selected for 

infections based on the causative bacteria and specificity to bacteria to prevent harm to 

the host. The cell wall of bacteria is unique to bacteria and essential to life and is a 

common target for antibiotics.  There are several classes of antibiotics target the cell wall 

in some way at different stages. The usage of antibiotics against infections and 

commercial agriculture have led to a dramatic increase in antibiotic resistant bacteria.  

 The mechanisms bacteria can use to evolve antibiotic resistance are many and 

varied. Many of these mechanisms are worth study in and of themselves because if these 

mechanisms can also be combatted than so can antibiotic resistance. There are also likely 

to be uncharacterized methods that can be used by bacteria to develop antibiotic 

resistance. Bacteria may have the ability to develop resistance to cell wall targeting 

antibiotics based on how they create and maintain their shapes.  
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CHAPTER II 
 

 

REVIEW OF LITERATURE 

 

The Cause and Impact of Cell Shape 

 The world is filled with innumerable species of bacteria that display a huge 

diversity of cell shapes and sizes. The diversity of size, shape, and arrangement indicates 

there are evolutionary niches that can be filled with a selective advantage due to these 

traits. The most common bacterial shapes are spheres and rods, but can include curves, 

spirals, branched, filamentous, and cells whose shape eludes simple description (Young 

2006). Each of these shapes comes with their own ways of interacting and arranging with 

other cells, such as chaining or pairing. As with macroorganisms, bacterial form feeds 

function and function feeds form. Cell shape is tightly controlled within a species, 

suggesting an important role for cell shape in physiology and thus a mechanism of 

providing selective advantage. Each shape of bacteria comes with its own system of 

proteins (or even a single protein) needed to maintain cell shape and in many cases these 

systems are essential to life (Bean, Flickinger et al. 2009, Esue, Rupprecht et al. 2010).  

 Cell shape is clearly impactful enough that physiology is warped when proper cell 

shape is disrupted. The spiral shape of Helicobacter pylori is controlled by Csd5 
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(Krzyżek and Gościniak 2018). When Csd5 is deleted H. pylori becomes a straight rod. 

H. pylori infects the mucus lining in the gut and its spiral shape has been shown to be 

important for colonization as it helps the cells swim through the mucus (Krzyżek and 

Gościniak 2018). Caulobacter crescentus is a curved shaped bacterium whose curvature 

is a direct result of the protein crescentin (Ausmees, Kuhn et al. 2003). This curved shape 

allows for greater attachment during conditions of flow and allows WT cells to 

outcompete straight rods in surface colonization (Ausmees, Kuhn et al. 2003, Persat, 

Stone et al. 2014).  

Bacterial cell shape is primarily determined by the peptidoglycan (PG) cell wall; a 

complex structure composed of chains of sugars crosslinked via oligopeptides. When 

cells have the cell wall removed to create L-forms they lose their ability to maintain their 

wild-type (WT) shape and conversely, when the cell wall is purified from the rest of the 

cell the purified material maintains the cell shape (de Pedro, Quintela et al. 1997, 

Joseleau-Petit, Liébart et al. 2007, Cabeen, Charbon et al. 2009). The cell wall does this 

by forming a flexible but firm net around the inner membrane that keeps the overall 

shape of the cell to match that of the cell wall. To use an analogy when sewing a stuffed 

animal, the fabric has its own shape determined by the elasticity of the fabric, its 

orientation, and where the seams sewn.  The stuffing itself is an amorphous blob but the 

fabric once sewn together will maintain that general shape even without stuffing. The 

actual architecture of the cell wall varies across species but more importantly across gram 

structure. Gram-negative peptidoglycan is thinner and uses an oligopeptide crosslink, 

while Gram-positive bacteria have a much thicker peptidoglycan layer and often use 

pentaglycine crosslinks in addition to oligopeptide crosslinks.  
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Biochemistry and Synthesis of the Cell Wall 

The glycan portion of peptidoglycan is made up of alternating dimeric subunits of 

the sugars N-acetylmuramic acid (NAM) and N-acetylglucosamine (NAG), which are 

mostly found in the cell wall, but NAG can be used in the making of LPS (Heijenoort 

2001, Vollmer, Blanot et al. 2008). NAG and NAM must be synthesized in the cytoplasm 

before being assembled into the cell wall outside of the cell. NAG is formed from 

fructose-6-phosphate and is then modified with the addition of phosphoenolpyruvate to 

form NAM. A pentapeptide “stem” attached to NAM is which will eventually allow for 

crosslinking glycan strands in the cell wall. Both NAG and NAM-pentapetide need to be 

imported to the periplasm and catalyzed into an alternating chain via a transglycosylase 

(Chattaway 1982, Heijenoort 2001, Vollmer, Blanot et al. 2008). NAM-pentapeptide is 

bound to undecaprenyl phosphate forming lipid I. NAG is then attached to the NAM, 

forming lipid II. Lipid II is then flipped from the cytoplasmic side of the inner membrane 

(IM) to the periplasmic side of the IM. The NAM-NAG subunit can now be incorporated 

into the growing PG (Liu and Breukink 2016). 

Once in the periplasm parallel, intersecting and vertical layers of glycan chains 

must be linked to form a stable mesh like structure. The glycan strands are crosslinked by 

their pentapeptide chains by a transpeptidase enzyme from NAM to NAM to form a 

tetrapeptide and pentapeptide linked at the third and fourth amino acids respectively. The 

tetrapeptides used in crosslinking are some of the only places that D-amino acids, D-

alanine and D-Glutamate, are found (Cava, de Pedro et al. 2011). Further structure and 

stiffness arise from the linkage of the outer membrane to the cell wall by Braun’s 

lipoprotein in Gram-negative bacteria. This relationship between the IM and the cell wall 
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comes most into play during changes to the osmolarity of the environment. The few 

bacteria without cell walls are extremely sensitive to changes in the osmolarity of their 

environments and often lyse in hypotonic solutions and shrivel up and die in hypertonic 

solutions. Modifications to the cell wall are also often necessary in halophile bacteria to 

prevent plasmolysis.  

Crosslinking multiple glycan chains into a single structure provides significant 

increases in strength and flexibility of the cell wall (Driehuis, de Jonge et al. 1992, 

Huang, Mukhopadhyay et al. 2008, Rani and Patri 2019). Crosslinking frequency and 

patterning are related to the strength and elasticity of the cell wall when responding to the 

physical forces cells are subjected to, such as the tearing forces found in turgor pressure 

(Huang, Mukhopadhyay et al. 2008, Brill, Hoffmann et al. 2011, Furchtgott, Wingreen et 

al. 2011, Rani and Patri 2019). Crosslinking frequency is also altered based on 

physiology. Escherichia coli has been known to increase cross-linking in stationary phase 

(Pisabarro, de Pedro et al. 1985). While tetra peptides are the most common form of 

crosslink, there is some variation in the number of peptides in the crosslink as well as the 

particular amino acids that the crosslink occurs on (Quintela, Caparrós et al. 1995, 

Willey, Sandman et al. 2020). The amino acid composition and pattern of crosslinking 

often varies by species (Quintela, Caparrós et al. 1995, Boniface, Parquet et al. 2009, Bui 

Nhat, Gray et al. 2009). This combination of glycan chain length, organization, and 

crosslinking gives shape, flexibility, and strength to the cell. 

The enzymatic heavy lifting of forming glycan chains (transglycosylation) and 

crosslinking (transpeptidation) is performed by two groups of proteins: penicillin binding 

proteins (PBPs) and shape, elongation, division, and sporulation (SEDS) proteins. PBPs 
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fall into two sub-categories; B-class, either a transpeptidase or transglycosylase but not 

both, or A-class, both a transpeptidase and a transglycosylase. SEDS proteins are 

typically monofunctional transglycosylases. While the canonical view of peptidoglycan is 

of an organized grid like structure of crosslinked glycan strands, the recent high-

resolution images of the cell wall show that glycan chain organization is not that ordered 

(Turner, Mesnage et al. 2018). Glycan chain length and organization appear to be 

correlated with cell shape but not cell wall thickness. Shorter, less organized glycan 

chains are associated with cocci bacteria and longer more organized glycan chains are 

found in rod cells (Hayhurst, Kailas et al. 2008, Turner, Hurd et al. 2013, Turner, 

Vollmer et al. 2014, Turner, Mesnage et al. 2018). However, these experiments have only 

been done in three species so there is a possibility that this link between glycan chain 

length/organization and cell shape does not apply more broadly; additionally, there is no 

knowledge about how curved cells, spirilla, and other shapes arrange glycan chains 

(Turner, Vollmer et al. 2014).  

A Tale of Two Systems: How to Make a Rod Cell 

There are two main groups of proteins used by most rod shape bacteria to 

synthesize PG: the elongasome, which controls lateral cell wall growth, and the divisome, 

which controls septa formation during fission (van der Ploeg, Verheul et al. 2013, Cho, 

Uehara et al. 2014). These two systems are broadly homologous to each other. In E. coli 

and many other Gram-negative rods both the divisome and elongasome have an essential 

modulator (FtsZ or MreB), essential SEDS transglycosylase (FtsW or RodA) with a PBP 

transpeptidase partner (PBP3 or PBP2), and an A-class PBP (PBP1B or PBP1A) (Adams 

and Errington 2009, Varma and Young 2009, Shaevitz and Gitai 2010, Cho, Wivagg et 
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al. 2016). PBP1A and 1B are both non-essential but the double deletion is lethal, 

suggesting they must be able to compensate for each other. While they have some 

overlapping function, ΔPBP1B mutants display a slower growth rate and are more 

susceptible to cell wall targeting antibiotics than ΔPBP1A cells (García del Portillo and 

de Pedro 1990). These two systems are likely to have some interaction as glycan chain 

organization is pervasive throughout the cylinder of the cell and the septa (Turner, 

Mesnage et al. 2018). 

The modulator determines the sites of cell wall synthesis and recruits the other 

proteins in the elongasome or divisome (Adams and Errington 2009). The expression of 

the modulators is controlled so that both MreB and FtsZ are maximally expressed in log 

phase and least expressed in stationary phase (Addinall and Holland 2002, Santos, Lobo 

et al. 2002, Freire, Neves Moreira et al. 2009). MreB is an actin homolog that forms 

antiparallel membrane associated polymers in order to recruit the other components of the 

elongasome (Shaevitz and Gitai 2010, van den Ent, Izoré et al. 2014). MreB forms short 

polymers along the cytoplasmic side of the IM that through its own physical properties 

and interactions with RodZ, another elongasome component, tend to form in areas of 

neutral or negative curvature (Salje, van den Ent et al. 2011, Morgenstein, Bratton et al. 

2015, Bratton, Shaevitz et al. 2018, Colavin, Shi et al. 2018, Hussain, Wivagg et al. 

2018). These sites of polymerization allow for cell wall elongation in the cylindrical 

portion of the cell. These polymers are dynamic and rotate perpendicularly around the 

cylinder (van Teeffelen, Wang et al. 2011, Morgenstein, Bratton et al. 2015, Kurita, Shin 

et al. 2019, Kurita, Kato et al. 2020). These rotational dynamics are only shared by RodZ 

and RodA, while PBP2 has some conflicting reports in regards to rotation (Vijayan, 
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Mallick et al. 2014, Morgenstein, Bratton et al. 2015). PBP1A does not share rotation 

with MreB suggesting it does not require recruitment by MreB for functionality (van 

Teeffelen, Wang et al. 2011, Lee, Tropini et al. 2014, Morgenstein, Bratton et al. 2015).  

Depletion or depolymerization of MreB results in round swollen cells prone to 

lysis (Bendezú and de Boer 2008, Awuni and Mu 2019). MreB is conditionally essential 

and can only be deleted under conditions of slow growth/limited nutrient availability 

(Kruse, Bork-Jensen et al. 2005, Bendezú and de Boer 2008), or when ftsZAQ is 

upregulated (Kruse, Bork-Jensen et al. 2005, Bendezú and de Boer 2008, Cho, Uehara et 

al. 2014). While it is not clear the exact mechanism for cell lysis after MreB disruption, 

changes in the surface area to volume ratio combined with loss of cell wall integrity when 

MreB is disrupted likely explains most of the mechanism for lysis. It is possible that 

MreB’s interaction with the IM and its organization contributes in some way to lysis 

(Bendezú and de Boer 2008, Salje, van den Ent et al. 2011, Turner, Mesnage et al. 2018). 

MreB directly binds with the membrane and has been shown to excluded from certain 

regions of the IM by anionic phospholipids (Lin and Weibel 2016, Shiomi 2017). Similar 

to actin, MreB has also been linked in organizing and/or associating with integral 

membrane proteins (Espeli, Nurse et al. 2003, Strahl, Bürmann et al. 2014, Oswald, 

Varadarajan et al. 2016); however, this in and of itself is not evidence that MreB 

depolymerization/depletion causes lysis via this loss of membrane interactions. The 

reasons behind MreB depletion or depolymerization and lysis are relatively unexplored.  
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Physiology and Cell Shape 

An easy to understand and well-studied example of the impact cell shape has on 

physiology is that of motility (Ferrero and Lee 1988, Cooper and Denny 1997, Maki, 

Gestwicki et al. 2000, Motaleb, Corum et al. 2000, Kudo, Imai et al. 2005, Young 2006). 

There are a limited number of cell shapes that allow for different types of motility and 

efficiency of chemotaxis. For simplicity I will focus on swimming motility (Cooper and 

Denny 1997, Mitchell 2002). When swimming the viscosity of the environment plays a 

key role in selection for cell shape. Curved cells result in cells and can move though 

thicker fluids more efficiently; spirilla also share this trait in viscous environments  

(Ferrero and Lee 1988, Kudo, Imai et al. 2005, Magariyama, Ichiba et al. 2005, 

Robertson, Rourke et al. 2005, Bartlett, Bratton et al. 2017). More generally, cocci cells 

are still capable of swimming but it is very uncommon and bacilli hold an advantage 

when chemotaxis is involved (Levinson 2018).   

Physical forces provide bacilli with a competitive advantage in terms of speed and 

energy cost involved in swimming possibly due to their hydrodynamic shape, the lesser 

effects of Brownian motion on rod shape, and their ability to run-and-tumble or reverse to 

follow a chemical gradient (Cooper and Denny 1997, Dusenbery 1998). The ubiquity of 

the rod shape and its jack of all trades nature in motility and chemotaxis has its own 

selective pressure, particularly in length. As rod length increases cells are no longer able 

to tumble but perform stops and must rely on Brownian motion in order to change 

direction. The lack of tumbling in filamentous cells puts a pressure on rods that chemotax 

to be a goldilocks “just-right” size that can respond to chemotactic signals but still tumble 

to follow a gradient in an efficient way (Maki, Gestwicki et al. 2000). Many rod-shaped 
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organisms have the majority of their chemotaxis sensory arrays located at the cell poles. 

As these cells filament, the distance from the pole to flagella increases past the diffusion 

constant of the chemotaxis response protein (CheY). In filamentous E. coli, arrays are 

found both at the poles and along the lateral wall. This is thought to help position CheY 

closer to its targets (Silversmith and Bourret 1999). Further constraints on rod size can 

arise from cell diameter and the energy cost from swimming along gradients, with an 

inverse relationship between the length of the gradient and diameter of the cell  (Mitchell 

2002, Takeuchi, DiLuzio et al. 2005). Cell shape effects many aspects of motility and 

chemotaxis; the energetics, the modes available, and the ability to traverse different 

environments. This is only one aspect of physiology cell shape has a direct effect on.  

Just as cell shape can affect broader aspects of physiology, physiology also affect 

cell shape. When E. coli cells are grown in minimal medium they are unable to grow to 

the same size as when grown in rich medium (Schaechter, MaalØe et al. 1958, Nanninga 

1988). It has been suggested this is a result of growth rate and not necessarily a certain 

metabolic profile; however, nutrient composition of media directly impacts metabolism 

to the point where disconnecting the two is very difficult (Nanninga 1988, Lopatkin, 

Stokes et al. 2019). Upregulation of gluconeogenesis allows cells to survive without 

properly functioning cell division or elongation in rod cells (Barton, Grinnell et al. 2021). 

In addition, when glucose is added to media cells become more tolerant to cell wall 

elongation targeting drugs (Barton, Grinnell et al. 2021). The authors suggest that 

increased gluconeogenesis in the cell or glucose in the medium leads to the increased 

synthesis of cell wall precursors which allows alternative pathways to compensate for the 

inhibition of MreB or PBP2. Work into how β-lactam antibiotics function shows that they 
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induce a lethal cycle of both halting cell wall synthesis and inducing breakdown of the 

current cell wall, thereby exhausting the supply of cell wall precursors (Cho, Uehara et al. 

2014). Providing glucose or upregulating gluconeogenesis allows for the increased 

synthesis of cell wall precursors, replenishing those lost by β-lactam treatment allowing 

other PBPs to increase or continue their activity could provide an avenue to survive these 

antibiotics.  

Bacterial cell shape is much more complex than what has been discussed here. 

There is a wealth of unique shapes, arrangements, and growth strategies each with their 

own particular synthesis systems and ecological niche to fill. Rod cells are one of the 

most common cell shapes and provide a wide variety of advantages such as swimming, 

chemotaxis, and cell-cell interactions. Many disease-causing agents are Gram-negative 

rods and therefore understanding these bacteria is crucial to combat these infections (Neu 

1985, Breijyeh, Jubeh et al. 2020). The wall is an attractive antibiotic target due to its 

essentiality and specificity to bacteria, and unique components such as D-amino acids. 

(Zapun, Contreras-Martel et al. 2008, Worthington and Melander 2013). The essentiality 

of the cell wall also means that resistance to antibiotics targeting the cell wall is very 

common and develops frequently and an exploration into how to overcome resistance and 

how it develops is vital. 

A Waiting Game: Methods of Developing Resistance 

Antibiotics in a medical setting are necessary for treatment of bacterial infections. 

However, since the introduction of antibiotics as a common medical treatment antibiotic 

resistance among bacteria has skyrocketed in frequency (Davies and Davies 2010, 
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Breijyeh, Jubeh et al. 2020). Resistance to antibiotics is defined by the ability to avoid the 

deleterious effects of an antibiotic as a result of some change on the genetic level 

(Depardieu, Podglajen et al. 2007, Davies and Davies 2010, Blair, Webber et al. 2015). 

The main mechanisms of resistance include modification in a target protein to prevent 

antibiotic binding, increasing the presence of efflux pumps to remove antibiotics from the 

cytoplasm, and the synthesis of enzymes to break down antibiotics (Li and Nikaido 2004, 

Li and Nikaido 2009, Davies and Davies 2010, Worthington and Melander 2013). The 

pressure to develop antibiotic resistance existed long before human use of antibiotics to 

treat infections as a result of organisms using antibacterial compounds for a competitive 

advantage in nature (Aminov and Mackie 2007). For example, the first commercially 

available antibiotic, penicillin, was discovered from Penicillium rubens, a mold. If a 

resistant mutant/strain of a bacteria is not within the initial population, there are still 

mechanisms cells can use to avoid killing long enough for cells to develop true resistance 

(Aminov and Mackie 2007, Davies and Davies 2010, Rajput, Thakur et al. 2018, Levin-

Reisman, Brauner et al. 2019).  

One survival strategy bacteria have developed for growing on surfaces is the 

biofilm (Donlan 2002). Biofilms are three dimensional communities of bacteria held 

together by an extracellular matrix that can occur at the interface of two surfaces when 

bacteria come into contact with each other (Donlan 2002). This matrix is rather sticky 

and causes other bacteria to stick to the matrix and begin changing their behavior 

(Pumbwe, Skilbeck et al. 2008, Rajput, Thakur et al. 2018, Trampari, Holden et al. 2021). 

Biofilm bacteria also change their physiology and display different phenotypes when 

compared to planktonic cells such as increases in the expression of efflux pumps (Kvist, 
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Hancock et al. 2008). Overall biofilm bacteria decrease the killing potential of an 

antibiotic by physically limiting diffusion of the antibiotic and increasing efflux pump 

production (DeLisa and Bentley 2002, Li and Nikaido 2009, Rajput, Thakur et al. 2018). 

This limits the detrimental effects of the antibiotic allowing cells time to grow and evolve 

resistance over the course of treatment (DeLisa and Bentley 2002, Pumbwe, Skilbeck et 

al. 2008, Li and Nikaido 2009, Rajput, Thakur et al. 2018, Trampari, Holden et al. 2021).  

 A common assay for antibiotic resistance or effectiveness is a minimum 

inhibitory concentration (MIC) assay. It used to determine the lowest concentrations of 

antibiotic that inhibits cell growth, the MIC. A resistant strain will have a higher MIC of 

the antibiotic than a susceptible strain (Andrews 2001, McKinnon and Davis 2004). For 

antibiotics to be effective the target has to be actively growing or dividing (Tuomanen, 

Cozens et al. 1986, Michiels, Van den Bergh et al. 2016). Therefore, one way the cell can 

temporarily avoid antibiotic killing is to slow its growth rate or becoming metabolically 

inert (Handwerger and Tomasz 1985, Windels, Michiels et al. 2019). These methods both 

have their own nomenclature to make them distinct from resistance; the former is known 

as antibiotic tolerance and the latter is persistence or persister cells. Tolerance works by 

slowing down growth rate to also slow down death rate (McDermott 1958, Brauner, 

Fridman et al. 2016, Levin-Reisman, Brauner et al. 2019). Resistance is distinct from 

tolerance as resistance arises from some mechanism that increases the concentration of 

the antibiotic needed to cause a negative effect while tolerance does not change the MIC 

at all. Tolerance can be innate in a species, be inherited, or caused environmentally. Since 

MIC assays are an endpoint assay that only assesses the effect of a dose of antibiotic after 

a significant amount of time, tolerance is harder to detect as it is transient, and tolerant 



15 
 

cells will display the same MIC as a susceptible strain. To detect tolerance, the 

population is measured consistently over time during antibiotic treatment with tolerant 

strains displaying a slower but consistent killing when compared to the rapid killing of 

susceptible cells (Handwerger and Tomasz 1985). In patients, a tolerant strain can still be 

killed if the patient completes the full length of an antibiotic course but if the patient 

stops taking antibiotic early these tolerant stains can survive and produce an antibiotic 

resistant strain (Levin-Reisman, Brauner et al. 2019, Windels, Michiels et al. 2019).  

While tolerance can be displayed consistently across a population and result in 

mutation, persistence is a stochastic phenotype in a population of metabolically inactive 

non-dividing cells (Bigger 1944, Balaban, Merrin et al. 2004). The percentage of persister 

cells in a population is relatively consistent within a species and normally very low 

(Balaban, Merrin et al. 2004, Gefen and Balaban 2009). Persistent cells can “wake up” 

and become active after the surrounding population of cells is killed off and the antibiotic 

removed, although the exact mechanism for persister cell waking is debated (Gefen and 

Balaban 2009, Amato, Fazen et al. 2014, Kim, Yamasaki et al. 2018). Similar to 

tolerance, the MIC of cells with a persister phenotype is the same as if there were no 

persister cells since they make such a small proportion of the population (Brauner, 

Fridman et al. 2016, Levin-Reisman, Brauner et al. 2019). A time killing assay is needed 

to determine if persistence is occurring (Brauner, Fridman et al. 2016, Levin-Reisman, 

Brauner et al. 2019). In a time killing assay when an antibiotic is added sensitive cells 

begin to die; however, at a certain point persistent cells fail to be killed resulting in 

asymptotic decline of colony forming units. Once the antibiotic is removed these persister 

cells will awaken and being to grow, although they are still sensitive to the antibiotic if 
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treatment is readministered. In contrast, tolerant strains display a linear decline in 

population that is slower than a sensitive strain (Balaban, Merrin et al. 2004, Gefen and 

Balaban 2009, Harms, Maisonneuve et al. 2016). Persister cells are one of many factors 

that can lead to chronic infections and antibiotic resistance (Bigger 1944).  

The time to accrue mutants in the population is one of the most important factors 

when discussing mechanisms to develop antibiotic resistance (Tuomanen, Cozens et al. 

1986, Aminov and Mackie 2007, Depardieu, Podglajen et al. 2007, Blair, Webber et al. 

2015). Tolerance, persistence, and biofilms are all mechanisms that cells can use to 

temporarily avoid the deleterious effects of antibiotics. These three methods are well 

characterized and studied and are accepted nomenclature but there is the possibility of 

more mechanisms both innate and heritable to allow for accumulation of mutations that 

lead to antibiotic resistance. There are multiple areas worth researching including timing. 

Persistence and tolerance both show that by altering how cells grow antibiotics become 

less effective and this could be used to indicate when certain systems of the cell are 

essential. Normally essential cell systems like the elongasome might lose their 

essentiality depending on the stage of growth or physiology. This can be exploited to 

understand these systems better for knowledge about how to improve efficacy or 

overcome resistance of antibiotics.
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CHAPTER III 
 

 

A DENSITY-DEPENDENT REQUIREMENT OF PBP1B FOR CELLS TO GROW AFTER 

DISRUPTION OF THE MREB-PBP2 ELONGATION COMPLEX REQUIRES A MINIMUM 

CELL DENSITY 

 

Introduction 

Bacterial cell shape is primarily determined by the peptidoglycan (PG) cell wall, 

which is made up of sugar polymers cross-linked together by small peptides. Synthesis is 

catalyzed by a series of penicillin binding proteins (PBPs) with transglycosylase and/or 

transpeptidase activity (Shi, Bratton et al. 2018). The two main classes of PBPs are class 

A PBPs (aPBP), which are bifunctional enzymes that can perform both transglycosylase 

and transpeptidase reactions, and class B PBPs (bPBPs), which are monofunctional 

transpeptidases. In many rod-shaped bacteria, cell wall synthesis is split among two 

homologous groups of proteins known as the divisome and the elongasome (van der 

Ploeg, Verheul et al. 2013). The divisome synthesizes and organizes septum synthesis 

and is coordinated by the tubulin homolog, FtsZ. The elongasome synthesizes and 

organizes side wall synthesis during growth and elongation and is coordinated by the 

bacterial actin homolog, MreB (van Teeffelen, Wang et al. 2011, Shi, Bratton et al. 
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2018). There is evidence that these two complexes interact with each other (Varma and 

Young 2009, van der Ploeg, Verheul et al. 2013). 

The divisome complex is made up of an aPBP, PBP1B, and an essential bPBP, 

PBP3. PBP3 works in conjugation with FtsW, a SEDS (shape, elongation, division, 

sporulation) protein family member (Cho, Wivagg et al. 2016, Meeske, Riley et al. 2016, 

Leclercq, Derouaux et al. 2017). Interference of the divisome results in long filamentous 

cells as septation is disrupted (Spratt 1977, Boes, Olatunji et al. 2019). The elongasome 

complex is made up of a homologous system to the divisome with an aPBP, PBP1A, and 

the essential bPBP, PBP2 (van der Ploeg, Verheul et al. 2013). PBP2 works in 

conjugation with the transglycosylase, RodA, its SEDS protein family member (van der 

Ploeg, Verheul et al. 2013). The polymeric form of MreB directs sites of cell wall 

remodeling and coordinates the activity of the other members of the elongasome (Bean, 

Flickinger et al. 2009, Vijayan, Mallick et al. 2014, Hussain, Wivagg et al. 2018, Shi, 

Bratton et al. 2018). Current work suggests that MreB directly interacts with PBP2/RodA 

but is independent from PBP1A (Den Blaauwen, Aarsman et al. 2003, Lee, Tropini et al. 

2014, Morgenstein, Bratton et al. 2015). The disruption of the elongasome results in 

dysregulated cell wall insertion during growth, resulting in swollen round cells (Bean, 

Flickinger et al. 2009).  

Interestingly, while disruption of MreB and PBP2 both result in similar round 

shape changes, they do not share similar overall physiology phenotypes (Cho, Uehara et 

al. 2014, Barton, Grinnell et al. 2021). MreB was discovered in screens for mutants 

resistant to the PBP2-targeting drug, mecillinam (Wachi, Doi et al. 1987). Antibiotics 

targeting PBPs, such as mecillinam and other beta-lactams, induce a futile cycle by both 
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inhibiting new cell wall synthesis and inducing breakdown of the current cell wall, while 

inhibition of MreB with the drug A22 does not induce breakdown of the cell wall 

(Uehara, Parzych et al. 2010, Cho, Uehara et al. 2014).  

MreB is conditionally essential and deletion can only be achieved by very slow 

growth or with the accumulation of suppressors, such as the upregulation of ftsZAQ. 

However, during stationary phase the transcriptional repressor BolA can repress mreB 

expression (Aldea, Hernández-Chico et al. 1988, Santos, Lobo et al. 2002). Ectopic 

expression of bolA during exponential phase leads to a round cell phenotype similar to 

that seen when MreB is depolymerized by A22 (Freire, Neves Moreira et al. 2009). From 

this, we hypothesized that MreB might be dispensable and therefore less sensitive to A22 

during stationary phase when BolA should be most actively repressing its expression. 

As expected, addition of A22 to cells after six hours of growth resulted in no 

change to growth rate; however, we found that A22 can be added as early as 2 hours after 

inoculation without affecting the growth rate of cells. Here, we show that the effects of 

A22 on cell growth work in a quorum sensing (QS)-independent, cell density-dependent 

manner, while loss of cell shape is independent of cell density. Furthermore, this cell 

density-dependent growth resistance is only seen when the elongasome components 

MreB and PBP2 are targeted, but not other cell wall synthesis proteins. We show that the 

ability of cells to continue to grow as round cells requires the activity of the divisome 

protein PBP1B. Additionally, this cell density-dependent growth resistance (DDGR) 

appears in other MreB-containing Gram-negative rod species. 
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Results 

Timing of A22 addition is important for growth rate changes  

 MreB is essential for rod shape in many bacteria. It is thought that MreB 

organizes the localization of the cell wall synthesis machinery; therefore, MreB should be 

at maximal expression and activity during exponential phase when cells are growing the 

fastest. In E. coli, the transcription factor BolA is most active during stationary phase 

(Freire, Neves Moreira et al. 2009). It has been shown that BolA can repress transcription 

of MreB, contributing to the change in length:width ratio in stationary phase cells 

(Morgenstein, Bratton et al. 2015, Bratton, Shaevitz et al. 2018). Therefore, we 

hypothesized that disrupting MreB with the depolymerizing agent A22 when cells are 

close to stationary phase will have less of an inhibitory effect on cell growth than when 

cells are disrupted with A22 in exponential phase (Awuni and Mu 2019).  

To test our hypothesis, we performed growth curves with wild-type (WT) E. coli 

with the addition of A22 (10 µg/ml) every hour from T0-6 (Fig. 1A). As we anticipated, 

the addition of A22 near stationary phase (T5-6) showed little to no change in growth 

rate. Surprisingly, when A22 was added during log phase, we observed little change in 

growth rate when compared with the LB only control (T2-4). Only cells still in lag phase 

(T0-1) showed a marked difference in growth after A22 addition. T3 will be used going 

forward to test this A22 inoculum time effect unless otherwise stated. Therefore, any 

differences in growth due to the time of inoculation are most likely independent of BolA 

as bolA is not observed to be expressed until T4 (Aldea, Garrido et al. 1989).  
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 Disruption of MreB by A22 should lead to round cells (Gitai, Dye et al. 2005, 

Awuni and Mu 2019). We compared the cell shape characteristics of sensitive cells (T1) 

treated with A22 to resistant cells (T3) treated with A22. Cells were imaged every hour 

for seven hours with and without A22 added at T1 or T3 (Fig. 1B). To quantify the 

change in rod shape, we measured the intracellular diameter deviation (IDD); a larger 

IDD indicates cells are less rod shaped and more round (Bratton, Shaevitz et al. 2018). 

Interestingly, both T1 and T3 A22 treated cells become equally round in roughly the 

same amount of time after treatment (Fig. 1C) suggesting there is no difference in the 

degree and speed of MreB depolymerization in sensitive or resistant cells. 

 Surprisingly, although both T1 and T3 treated cells become round after A22 

addition, the size of the cells is different. The cell area of T1 treated cells more than 

doubles (4.30 to 9.82 µm2) within the first two hours of A22 treatment, while T3 treated 

cells become slightly smaller (5.06 to 4.31 μm2) during that same length of A22 treatment 

(Fig. 1D). T1 treated cells do not grow during the time course as the cell area actually 

decreases (9.88 to 5.89 μm2); however, T3 treated cells show a slight increase in cell area 

(3.21 to 4.47 μm2) during the time course suggesting that these cells are still able to grow.  

We also observed that cells treated with A22 at T1 commonly develop 

intracellular vesicles (Fig. 1B arrows) suggesting they are in the early stages of lysis 

(Berman-Frank, Bidle et al. 2004). We hypothesize this decrease in cell size seen in T1 

treated cells is a result of larger cells lysing, leaving only smaller cells to measure. Unlike 

T1 treated cells, T3 treated cells rarely develop vesicles (0.4-0.5%). These data suggest 

there are physiological differences between cells treated with A22 and T1 versus T3.  
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Growth resistance to A22 is due to cell density 

  Cells are able to grow at normal rates when A22 is added at T3 but not T0/1. 

There are many factors that are different between the cells at these time points. First, cells 

are growing faster at T3 (log phase) than they are at T0 (lag phase). To test if growth rate 

is responsible for the observed growth differences in A22, we grew cells at 30°C to slow 

down the growth rate. A22 was added to one culture at T0 and one when the culture 

reached an equivalent O.D.600 (~0.1) as when the cells were grown to T3 at 37°C (Fig. 

2A). Additionally, we slowed down the growth rate by growing cells in M63-lactose 

minimal media (37°C) to an O.D.600 of 0.1 (Fig. 2B). In both conditions of slower growth 

rates, cells were able to grow better when A22 was added at the later time point than at 

T0 (Fig. 2AB). These results suggest that differences in growth rate are not the likely 

cause for A22 resistance at T3. 

Next, we investigated whether growth phase was responsible for the WT-like 

growth in A22, as T0 cells are in lag phase and show reduced growth while T3 cells are 

in exponential phase and are able to grow at a rate as if they were in LB only medium. To 

mimic the growth conditions of cells at T3, we sub-cultured cells grown to T3 into pre-

warmed media with A22 (LBA22) and without (LB) A22 (Fig. 3A). At a 1:100 dilution of 

T3 cells, A22 causes a significant reduction in growth rate, leading us to conclude that 

exponential phase alone is not the reason for continued growth after A22 addition. We 

then determined if different sub-culture dilutions would show similar results. 

Interestingly, 1:1 and 1:10 dilutions grow the same whether or not A22 is present (Fig. 

3A). A major difference between the different dilutions is the number of cells present; 

therefore, we hypothesized that cell density was responsible for the observed growth 
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resistance. However, as smaller dilutions allow for less mass doublings before cells reach 

stationary phase, it is possible the due to the slow action of A22 the number of possible 

mass doublings results in the differences in growth. 

To test this, we repeated the back dilution experiment with cells grown to an 

O.D.600 ~0.1. These cells were backdiluted 1:1 into prewarmed media with and without 

A22 and allowed to grow again to an O.D.600 ~0.1. This was repeated for a total of five 

“generations” (Fig. 2C). There is no observed growth defect due to A22 over the course 

of these “generations” despite allowing cells to have more time in exponential phase and 

therefore more mass doublings. This further suggests that the slow action of A22 is not 

responsible for the observed growth differences. 

To test the effect of cell density on the ability of the cells to continue to grow in 

A22, we grew cells in A22 in two ways: 1) using different inoculation ratios from an 

overnight culture, and 2) using different starting O.D.s to begin the growth curves, both 

with A22 the entire time. Our previous growth curves began with a 1:1000 dilution of an 

overnight culture. We decreased this dilution factor by an order of 10 or 100 and saw a 

decrease in the difference of growth rates between cells grown in A22 medium compared 

to medium alone as the dilution factor increased, supporting our hypothesis that cell 

density is important for growth in A22 (Fig. 3B). Cultures starting with specific O.D.s 

also show a density-dependent growth phenotype, further supporting the role of cell 

density in A22 growth resistance. To avoid any media affects, an overnight culture was 

washed in fresh media before cells were inoculated in media with or without A22 at an 

O.D.600 of 0.1 (~ the same as T3 cells), 0.05, 0.025, and 0.0125. The higher starting 

density cells show no growth difference with or without A22 (Fig. 3C, Table 1). 
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However, inoculation of cells at lower O.D.s results in a change in growth rate when A22 

is added. (Fig. 3C). To quantify the growth rate changes at the different starting O.D.s we 

measured the exponential grow rate of cells from each dilution and compared the growth 

in media with and without A22 (Table 1). These results show that the difference in 

growth rates between media with and without A22 is only statistically significant when 

the cell density is low; at higher starting O.D.s there is no difference in growth between 

media with and without A22. These data further refute the idea that growth phase is 

important for the growth-resistance, as all cells are starting in lag phase, independent of 

starting inoculum density, and support the hypothesis that the ability of E. coli to grow as 

round cells with disrupted MreB is dependent on cell density. In addition, all starting 

O.D.600 conditions grew linearly for similar amounts of time and only the lower cell 

densities showed growth defects, implying there was an equal amount of mass doubling 

for A22 to have an effect.  

 As modulating cell density phenocopies the A22 growth pattern that was initially 

observed for cells treated at different time points (Fig. 1 and Fig. 3C), we tested if 

increasing cell density results in the same physiological changes to A22 treatment: 

vesicle formation and cell size. Cells were grown from a starting O.D.600 of ~0.1 or 0.01 

in LB or LBA22 and imaged every hour for four hours (Fig. 2E, 3D). Unlike our previous 

experiment, this set up also accounts for differences in length of A22 exposure as all 

cultures received A22 at the beginning of the assay. Both treated cells become round at 

the same rate and to the same degree when treated with A22, supporting the idea that the 

degree and speed of MreB depolymerization is unchanged (Fig. 3F). Interestingly, 0.1 

cells did not become as large as their 0.01 counterparts (Fig. 3E), similar to what was 
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seen for T1 and T3 cells (Fig. 1D). Although both inoculation densities result in vesicle 

formation, the low density cells form vesicles earlier and at a higher frequency than the 

high density cells (Fig. 3D). These data support the hypothesis that cells at different 

densities have different physiological responses to A22. We will refer to this 

phenomenon as density-dependent growth resistance (DDGR). 

It is possible that cells might serve as a sponge or reservoir for A22 by physically 

adsorbing the A22 to the membrane or collecting it in their cytoplasm thereby diluting 

out the drug. To test this idea, we artificially increased the starting O.D. of a culture with 

intact heat killed cells (inset Fig. 2E). Heat killed cells were added to fresh media at an 

O.D. of 0.4, a concentration >4X what is needed to observe A22 growth resistance. Cells 

grown overnight were sub-cultured 1:1000 into this culture with and without A22. The 

presence of heat killed cells did not protect the sub-cultured cells from the A22, as there 

is an obvious separation of growth between the LB and LBA22 media (Fig. 2E). This 

suggests that some component of live cells is responsible for DDGR. In addition, DDGR 

does not go away even with a 5X increase in the A22 concentration added at T3 (Fig. 4A) 

supporting the idea that physiological differences exist between cells at different 

densities.  

Changes in the media are not responsible for A22 growth resistance 

 Our results suggest that cell density is important for A22 growth resistance. 

Because we washed the overnight cells before use, we did not think QS or media changes 

were involved. However, to specifically test a role for QS, we grew cells in 10% spent 

media from overnight cultures with and without the addition of A22 (Wang, Liu et al. 
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2019). The addition of 10% spent media did not confer resistance to cells grown in A22 

(Fig. 5A), suggesting that QS is not involved in A22 growth resistance. 

As cells grow, they induce other changes in the medium, such as a decrease in pH, 

an increase in waste products, and the removal of nutrients (Maseda, Sawada et al. 2004, 

Pumbwe, Skilbeck et al. 2008, Lobritz, Belenky et al. 2015, Lopatkin, Stokes et al. 2019, 

Mueller, Egan et al. 2019). To test if any of these changes were occurring and responsible 

for the increased growth in A22, we grew cells with A22 in 100% partially spent media 

from cells grown to an O.D.600 ~0.1 (T3). As cells at T3 exhibit DDGR, if the resistance 

is due to the media conditions at this time point, freshly inoculated cells should also 

exhibit A22 growth resistance. We found no difference in growth in cells treated with 

A22 in the 100% partially spent media vs the fresh media (Fig. 5B). These results suggest 

that, while living cells are required for DDGR, cells are not making a diffusible product 

nor are they changing the media to induce resistance.  

Cell density provides resistance to PBP2 disruption 

 A22 is not a clinically used antibiotic; therefore, we wanted to determine if 

DDGR is common among other antibiotics, including those used clinically. We tested E. 

coli cells grown to T3, to equalize time of drug exposure, and added inhibitory doses of 

antibiotics targeting cell wall synthesis (A22, mecillinam, cephalexin, cefsulodin, 

phosphomycin, ampicillin), translation (kanamycin, chloramphenicol, gentamicin, 

tetracycline), and transcription (rifampicin) (Fig. 6A). The translation- and transcription- 

targeting antibiotics arrest growth within 30 minutes of the addition of the antibiotic, 

while the cell wall-targeting antibiotics cause more variations in response. Phosphomycin 
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and ampicillin both cause active cell lysis within an hour after addition while cells treated 

with cefsulodin and cephalexin grow for an hour before growth is inhibited; however, 

mecillinam (mec), which specifically targets PBP2, is the only tested antibiotic that 

phenocopies the A22 DDGR phenotype. As MreB (target of A22) and PBP2 (target of 

mec) interact with each other, it is logical that they both show this phenomenon when 

targeted by their respective antibiotics (Den Blaauwen, Aarsman et al. 2003, Rohs, Buss 

et al. 2018).  

Similar to A22, mec also causes treated cells to become swollen and round (Fig. 

7), confirming that mec is still active when added at higher cell densities. To confirm that 

the concentration of mec used is high enough to kill cells when added at lower O.D.s, we 

performed a growth curve analysis with mec added at T0 and T3. The concentration of 

mec used is high enough to almost abolish all growth when added at T0 but shows almost 

no effect when added at T3 (Fig. 8B). 

It has been reported that cephalexin causes a similar density-dependent resistance 

as we have observed for A22 and mec (Greenwood and Grady 1975, Chung, Yao et al. 

2009). Because we did not observe cephalexin to have DDGR we replicated the 

experiment of Chung et al. which grew cells at different starting dilutions with cephalexin 

(Chung, Yao et al. 2009). It was reported that cephalexin has no effect when a 1:100 

starting dilution is used compared to a 1:1000 dilution. Repeating this experiment, we do 

not see the same growth in cephalexin at an initial inoculation of 1:100. However, if we 

use a 1:10 starting dilution we are able to recapitulate their results (Fig. 8A). In this 

respect, we believe that resistance to cephalexin at a 1:10 inoculation ratio is likely a 
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result of limited mass doublings as these cells barely grow and is a different phenomenon 

than DDGR reported here. 

To determine if the DDGR seen with mec treatment was due to mec itself or the 

inhibition of PBP2, we used a temperature sensitive mutant of PBP2 (PBP2ts) 

(Woldringh 1988). At temperatures >40oC, the PBP2ts mutant grows slowly, and the 

cells are round, while at the permissive temperature (30oC) the cells grow as rods. To test 

if the growth defect associated with the loss of PBP2 is density dependent, we started 

both WT and PBP2ts cultures growing at 30oC and shifted them to 40oC every hour for 

four hours. If there is a DDGR phenotype, the change in growth rate after the shift to the 

higher temperature should be greatest when cultures are shifted early, before the proper 

density is reached. As a control, we grew the WT and PBP2ts cells at both temperatures 

the entire time (Fig. 8BC). WT cells are able to grow well at both temperatures, while the 

PBP2ts strain has reduced growth at 40oC. In order to determine how growth was 

affected by the shift in temperature, we measured the ratio of growth rates of each strain 

before and after the temperature shift (Fig. 8D). For cultures shifted at T1 and T2, there 

were not enough data points to calculate a growth rate during the 30oC growth period; 

therefore, we used the growth rate of the control sample. In support of our density-

dependent hypothesis, at all time points, WT cells show an increased growth rate when 

shifted to 40oC (above 1 Fig. 8D), while the PBP2ts mutant grows worse after the shift 

for the first two hours (below 1 Fig. 8D). After three hours of growth at the permissive 

temperature, the change in growth rate caused by the temperature shift was minimal, 

likely due to the cells being at a high enough density for DDGR (Fig. 8C-D). This result, 

in conjunction with the mec and A22 experiments, further supports the hypothesis that 
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the elongasome can be disrupted at higher cell densities without deleterious effects on 

cell growth. 

With two essential components of the elongasome displaying DDGR we sought to 

test RodA, the essential transglycosylase partner of PBP2, for DDGR (Bendezú and de 

Boer 2008, Meeske, Riley et al. 2016). While there are no antibiotic compounds we are 

aware of that can inhibit RodA, there is a temperature sensitive mutant (Matsuzawa, 

Hayakawa et al. 1973). As such, we performed the same temperature shift experiment 

with RodAts cells as we had with PBP2ts cells. WT cells displayed the same pattern of 

growth in shifts as they had previously (Fig. 8E). While RodAts cells grew more poorly 

overall, they still display better growth at 40ºC after later shifts (Fig. 8G). Interestingly, 

the T1 shift results in cells stopping growth and lysing before growth continued (Fig. 8F). 

These results support the model that the specific inhibition of the elongation machinery 

can be overcome in a density-dependent manner. 

PBP1B compensates for disruption of the elongasome   

 In addition to the MreB-PBP2-based elongasome complex, there are other cell 

wall synthesis enzymes, including PBP1A and PBP1B. Unlike PBP2 which only has 

transglycosylase activity, PBP1A and PBP1B have both transglycosylase and 

transpeptidase activity (Born, Breukink et al. 2006, Barrett, Wang et al. 2007, Egan, Jean 

et al. 2014). While PBP1A and PBP1B can compensate for each other, they are proposed 

to have different functions, with PBP1B being in the divisome and PBP1A working 

independently of MreB during elongation (Vijayan, Mallick et al. 2014, Morgenstein, 

Bratton et al. 2015). We have recently shown that a mutation in malate dehydrogenase, 
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mdh, is more tolerant to A22 and mec and that this increased resistance is possibly due to 

the increased activity of PBP1B (Barton, Grinnell et al. 2021). Therefore, we sought to 

determine if either PBP1A or PBP1B is needed for continued growth after A22 or mec 

treatment at higher cell densities.  

We tested ΔPBP1A and ΔPBP1B deletions for their ability to continue to grow 

after spikes of A22 or mec at O.D.600 ~0.1 compared with the addition of A22 at T0. 

When spiked with either A22 or mec, ΔPBP1A cells continue growing at the same rate as 

the LB-only control. However, the ΔPBP1B cells stop growing within an hour and 

eventually lyse when spiked with A22 or mec (Fig. 9AB), supporting previous reports 

(Sarkar, Dutta et al. 2012, Thulin and Andersson 2019). These data suggest that PBP1B is 

needed for DDGR of both A22 and mec treatments. 

 We noticed that the PBP1B deletion cells are more sensitive to both A22 and 

mecillinam when added at T0 (Fig. 9AB). To confirm that the lack of DDGR to mec and 

A22 in the PBP1B mutant is not a result of its increased sensitivity to these drugs, we 

checked if other A22-sensitive mutants maintain DDGR. To our knowledge, there are no 

known mutations outside of MreB that increase sensitivity to A22; therefore, we 

performed an A22 sensitivity screen on the Keio collection in order to find such mutants 

(Baba, Ara et al. 2006). 

From this screen, we have confirmed two mutants with increased sensitivity to 

A22: envC and yccK (tusE) (Fig. 10A). EnvC is an activator of cell wall hydrolases 

needed to separate daughter cells after division (Uehara, Parzych et al. 2010). Due to the 

suspected role of PBP1B in survival after A22 or mec treatment and PBP1B’s proposed 
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role in cell division, we decided to focus on the tusE deletion as our control sensitive 

strain. TusE is a sulfur transferase involved in modification of tRNA and is therefore a 

good candidate to use as a control for these experiments (Ikeuchi, Shigi et al. 2006). We 

tested ΔtusE cells for their ability to survive a spike of A22 or mec at an O.D.600 ~0.1 and 

found no reduction in growth despite the heightened sensitivity of these when the drugs 

are added at T0 (Fig. 8B and 9C). This indicates that the inhibition of growth and lysis 

after the addition of A22 or mec at later timepoints is due to the lack of PBP1B and is not 

a universal feature of strains more sensitive to A22 or mec. 

Previous data has shown that overexpression of cell division proteins suppresses 

the growth defects of an mreB deletion (Kruse, Bork-Jensen et al. 2005, Bendezú and de 

Boer 2008). Our current work shows a role for PBP1B in survival of cells treated with 

A22, further suggesting that the divisome is important during growth and not just division 

(Fig. 9AB). To further test the importance of the divisome during A22 treatment, we 

treated cells with combinations of A22 and antibiotics that inhibit a divisome component: 

cephalexin (FtsI), cefsulodin (PBP1A/B), or a control: kanamycin (30S ribosomal 

subunit). We used a dose of each antibiotic that is closer to the minimum inhibitory 

concentration (MIC) and lower than what was used in figure 4 (cephalexin, 5 µg/ml; 

cefsulodin, 7.5 µg/ml; and kanamycin, 3.12 µg/ml), to more easily determine changes in 

growth due to A22. Each drug was added when cells reached an O.D.600 ~0.1 alone or in 

combination with A22. When cells are treated with this lower concentration of 

cephalexin there is minimal growth inhibition. However, when A22 is added at the same 

time cell growth is dramatically reduced. When cefsulodin is used alone, cells stop 

growing after ~2 hours, but when A22 is added with cefsulodin, cells stop growing within 
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1 hr and reach a lower O.D. The kanamycin control-treated cells stop growing after the 

addition of the drug, but when kanamycin is combined with A22, cells do not display an 

increase in sensitivity compared to the kanamycin only treated cells (Fig. 9D). These data 

show that inhibiting divisome components, but not other cellular targets, blocks the A22 

density-dependent growth resistance phenotype, supporting the idea that the divisome is 

needed for growth after disruption of MreB and reinforcing a role for PBP1B in DDGR. 

A22 spike resistance is common in MreB rod species 

 MreB is highly conserved in many rod-shaped organisms, including multiple 

human pathogens making a potential target for antibiotic development. To assess if 

DDGR is a common phenomenon among MreB containing bacteria we tested two human 

pathogens, Shigella flexneri and Pseudomonas aeruginosa. We performed growth curves 

using both P. aeruginosa PA01 and S. flexneri with A22 added either at T0 or an O.D.600 

~0.1 (Fig. 11). Like E. coli, both species continued to grow similar in LB and LBA22 only 

after the addition of A22 at O.D.600 ~0.1. Both species grew worse when A22 was added 

at T0, further supporting a role of cell density in resistance to A22. We show that DDGR 

to the loss of MreB is found across three distinct genera indicating a common novel 

mechanism for growth during elongasome inhibition. 

Conclusions 

MreB is necessary for proper cell shape in many rod-shaped bacteria. MreB polymers are 

critical for proper insertion of PG in rod shaped cells, as they are thought to organize the 

localization of the cell wall synthesis enzymes (van Teeffelen, Wang et al. 2011, Vijayan, 

Mallick et al. 2014, Shi, Bratton et al. 2018). We therefore hypothesized that rapidly 
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growing cells, such as those in exponential phase, would be more sensitive to disruption 

of MreB than slow growing cells, such as those in stationary phase. In fact, the 

transcriptional repressor BolA reduces MreB levels during stationary phase (Santos, 

Lobo et al. 2002, Freire, Neves Moreira et al. 2009). To test this idea, we added the MreB 

depolymerizing drug A22 during the beginning and end of exponential phase expecting to 

see less of an effect as cells approached stationary phase. Surprisingly, we found no 

growth defect when A22 was added in early exponential phase (Fig. 1A). Furthermore, 

the growth resistance seen in response to A22 treatment is a result of cell density. DDGR 

to the loss of the elongasome is only possible when PBP1B is present.  

A22 growth resistance is dependent on cell density 

Cells treated with A22 at the time of inoculation (T0) show a growth defect, but 

cells treated with A22 2-3 hours after inoculation continue to grow at the same rate as 

cells in LB only medium (Fig. 1A). Cells treated at T1 become much larger and stay that 

size compared to those treated at T3 which continue to grow in size after A22 treatment. 

Additionally, T1 cells develop intracellular vesicles, indicating the beginning of cell lysis 

(Fig. 1B), while T3 cells do not (Berman-Frank, Bidle et al. 2004). It is unclear why the 

timing of A22 treatment causes such a drastic change in cell area and vesicles formation, 

but this suggest differences in the physiological state of the cells and may lead to insights 

into the cause of survival differences (Fig. 1B, C and Fig. 2 D, E).  

We have shown that growth phase is not responsible for DDGR as the dilution of 

exponential phase cells results in sensitivity and lag phase cells can be resistant when 

inoculated at different cell densities. (Fig. 2). Together these results suggest a density-
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dependent mechanism for growth resistance. Because it is possible that higher amounts of 

cells lead to dilution of the antibiotics, we added 5X more A22 and 33X more mecillinam 

(Fig. S2) without losing DDGR, suggesting that the increased number of cells are not 

diluting out the antibiotic. Finally, temperature sensitive mutants of both PBP2 and RodA 

show DDGR without the use of drugs (Fig. 4 B-G).  

Cell-cell interactions might play a role at higher cell densities but given that all 

experiments took place under conditions of shaking liquid media, any cell-cell contact is 

likely to be brief. It is possible that the likelihood of cell-contact increases in a density-

dependent manner even in shaking culture; however, other cell-contact-dependent 

phenomena such as killing via type VI secretion or conjugation occur on solid media but 

not in liquid (Achtman, Kennedy et al. 1977, Zahrl, Wagner et al. 2006, Aoki, Webb et 

al. 2009). 

It is suggested via BolA’s activity that cells in stationary phase and therefore at 

T0 should have less MreB (Santos, Lobo et al. 2002, Freire, Neves Moreira et al. 2009). 

It is possible that the lower amount of MreB potentially increases the effectiveness of 

A22, as there would be more A22 per each MreB polymer per each cell; however, we 

don’t believe this explains DDGR as multiple experiments have shown a density 

dependency of cells in different growth phases. In testing the role of exponential phase in 

DDGR we saw that log phase cells (high MreB concentration/cell) and stationary phase 

cells (low MreB concentration/cell) can be desensitized to A22 (Fig. 2A-C) by simply 

changing the cell density: indicating DDGR is not related to the ratio of drug to target 

protein.  
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Changes in the media are not responsible for density-dependent growth resistance 

A non-biological difference cells encounter between T0 and T3 are changes in the 

media. When cells grow in LB, they exhaust certain nutrients in a stepwise fashion. 

When one nutrient is exhausted, they alter their metabolism and that shift in metabolism 

can alter physiology and potentially A22/mec resistance (Falagas, McDermott et al. 1997, 

Mueller, Egan et al. 2019). Additionally, as bacteria metabolize amino acids, they lower 

the pH of the media and lower pH has been linked to increasing MICs (Falagas, 

McDermott et al. 1997). That cells grown in spent media from O.D.600 ~0.1 cells still 

display sensitivity to A22 at T0 and DDGR at T3 (Fig. 2C) further supports the idea that 

changes to the media are not the cause of DDGR. To further our conclusions about pH 

we have also performed experiments in MOPS (Fig. 2C) and M63 minimal media (Fig. 

S1) which do not show as dramatic of pH changes as seen in LB. Therefore, we can 

conclude that nutrient exhaustion and pH changes are not the cause for DDGR.  

A common cell density-dependent phenomenon is quorum sensing (QS). QS has 

been linked to antibiotic resistance via efflux pump activity, and biofilm formation 

(Pumbwe, Skilbeck et al. 2008, Rajput, Thakur et al. 2018, Wang, Liu et al. 2019). We 

have shown that QS is not involved in density-dependent growth resistance (DDGR).  

When 10% overnight spent media was used, we saw no change in growth between A22 

and LB only media at T0 (Fig. 3B). Additionally, when treated with A22 at T3 the cells 

growing in 10% spent media displayed the same growth rate as those in fresh LB. These 

data suggest that DDGR is not due to QS. 
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PBP2 inhibition displays density-dependent growth resistance 

To determine if DDGR is a common feature of other antibiotics, we tested 10 

additional antibiotics with a variety of cellular targets (Fig. 4A). DDGR was only 

observed in A22 and mec, which targets PBP2 (Fig. 4A, S2B). This is interesting because 

while A22 and mec do not share the same protein target, MreB, the target of A22 directly 

interacts with PBP2, the target of mec, in the elongasome complex (van Teeffelen, Wang 

et al. 2011, Lee, Tropini et al. 2014, Morgenstein, Bratton et al. 2015). In addition, a 

similar phenotype has been reported for cephalexin treatment based off of an observation 

that a 1:100 dilution of cells is resistant to cephalexin while a 1:1000 dilution of cells is 

sensitive (Chung, Yao et al. 2009). While attempting to replicate this experiment 

unsuccessfully, we noticed that the reported starting O.D. of the 1:100 dilution more 

closely resembled that of a 1:10 (Fig. S4A). In an effort to more closely replicate the 

published results, we repeated the experiment with a 1:10 dilution and saw that cells 

become resistant to cephalexin although there is very little growth. This suggests that the 

action of cephalexin is very sensitive to the number of mass doublings cells undergo, but 

is a separate phenomenon from the DDGR reported here.  

To confirm that the DDGR observed from mecillinam treatment is due to specific 

inhibition of PBP2 we shifted a temperature sensitive mutant of PBP2 (PBP2ts) to the 

nonpermissive temperature (40o C) at different densities (Fig. 4C). Similar to A22 and 

mec addition, we found a density dependency on growth, as cells shifted at higher 

densities continue to grow better after the temperature shift. These data suggest that the 

elongasome is less essential at specific cell densities while overall PG synthesis remains 

essential. Another essential elongasome component is RodA, the transglycosylase partner 
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of PBP2 (Cho, Wivagg et al. 2016, Meeske, Riley et al. 2016). Similar to PBP2, a 

RodAts mutant displays better growth in restrictive temperatures at higher cell densities.  

When mec was first developed in 1972, most experiments focused on efficacy and 

method of action (Lund and Tybring 1972, Melchior 1975, Spratt 1977). Mec’s narrow 

target range allowed for precise exploration of the elongasome leading to the discovery of 

the Mre family of proteins (Wachi, Doi et al. 1987). Some researchers observed 

differences in cell survival to mecillinam based on density; however, to the best of our 

knowledge no mechanism has ever been put forth (Matsuhashi, Kamiryo et al. 1974, 

Spratt 1977). In the section below, we outline a possible mechanism for cell survival after 

A22 or mecillinam treatment. 

PBP1B is needed for density-dependent growth resistance 

The addition of A22 and mec at later time points does not reduce the growth rate 

of cells but does result in cells becoming round, indicating A22 and mecillinam are still 

able to inhibit their targets. These round cells continue to grow, both at the population 

level (O.D.) and single cell level (cell area) but do not lyse like cells treated with A22 at 

earlier time points (Fig. 1), suggesting a possible role for another PG synthase. Only 

deletion of PBP1B leads to the inhibition of DDGR for both A22 and mec, suggesting 

that PBP1B compensates for the loss of the elongasome in a density-dependent manner, 

and further refuting the idea that these specific antibiotics are being diluted out by 

increased cell numbers (Fig. 5AB).  

PBP1A and PBP1B are aPBPs capable of performing both transglycoyslase and 

transpeptidase activities and have been shown to work independently from the MreB 
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based elongasome (Cho, Wivagg et al. 2016). It has been suggested that PBP1B is 

involved in division while PBP1A is involved in elongation (Cho, Wivagg et al. 2016, 

Ranjit, Jorgenson et al. 2017). Why and how PBP1B and the divisome alter activity in a 

cell density-dependent manner is unclear. While PBP1A and PBP1B can compensate for 

each other, PBP1B does have distinct functionality from PBP1A. PBP1B’s 

transglycosylase domain is essential for de novo PG synthesis, while PBP1A is unable to 

perform de novo PG synthesis (Sarkar, Dutta et al. 2012, Ranjit, Jorgenson et al. 2017, 

Thulin and Andersson 2019). Interestingly, While PBP1B is mostly known for its role in 

the divisome there have been links to a role in the elongasome via A22 and mec 

sensitivity (Nichols, Sen et al. 2011, Barton, Grinnell et al. 2021). Additionally, our work 

shows PBP1B is necessary to overcome loss of PBP2 and MreB in a density-dependent 

manner as ΔPBP1B cells lyse when treated with mec or A22 (Fig. 5AB). It is possible 

that PBP1B is playing some role in linking elongasome and divisome activity. 

 DDGR has healthcare implications 

The ability of bacteria to evade killing from antibiotics is an important clinical 

feature. In addition to being resistant to the effects of an antibiotic, which results in a 

higher MIC and is caused by heritable mutations, cells can avoid being killed through 

biofilm formation, antibiotic tolerance, and the formation of persister cells. Biofilms act 

as a physical barrier to block the diffusion of antibiotics keeping them away from the cell 

(Trampari, Holden et al. 2021). Tolerance and persistence both temporarily avoid cell 

death either by modifying growth rate or forming a metabolically inactive subpopulation 

(Brauner, Fridman et al. 2016, Harms, Maisonneuve et al. 2016). All three of these 

avoidance mechanisms can lead to mutations that eventually result in the accumulation of 
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resistance. Here, we show that DDGR is another method for bacteria to evade the effects 

of antibiotics.  

The cell wall has always been an attractive antibiotic target due to its universality 

in bacteria and the lack of a PG cell wall in eukaryotic cells. Most Gram-negative rod-

shaped pathogens utilize a Mre/Rod family-based cell wall synthesis system (Alyahya, 

Alexander et al. 2009) and therefore might display DDGR. The rod-shaped pathogens, 

Pseudomonas aeruginosa and Shigella flexneri, display DDGR in response to A22 (Fig. 

6). 

Grow in the presence of antibiotics due to DDGR can potentially allow cells to 

develop true resistance to antibiotics. Antibiotic cocktails have been long used as a 

method of treatment in antibiotic resistant infections (Rahal 1978, Yourassowsky, van der 

Linden et al. 1986). One complication of cocktails is that a higher number of drugs 

included in the cocktail the increases the likelihood of complex interactions, thereby 

making them less effective (Rahal 1978, Tekin, White et al. 2018). As best practice, drug 

cocktails should be kept to the minimum number of antibiotics needed to avoid these 

interactions and to minimize creating a super-resistant infection (Tekin, White et al. 

2018). Simultaneous disruption of the elongasome and divisome, as seen in the 

cefsulodin-A22 or the cephalexin-A22 treated cells (Fig. 5D), is a way of overcoming 

DDGR. A cocktail of mecillinam, a clinically approved antibiotic for use in humans that 

is not currently widely used, and cefsulodin or cephalexin could increase the efficacy of 

both while only using two antibiotics and minimizing drug interactions.  
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Materials and Methods 

Growth conditions 

Overnight cultures were grown at 37ºC in a shaking incubator in Luria Bertani 

(LB) broth (Fisher Scientific: 244620) or MOPS (Teknova: M2106) supplemented with 

0.2% glycerol. For growth curves a 1:1000 subculture of the overnight culture was made 

into fresh media and cells were grown shaking at 37ºC, unless otherwise noted. O.D.600 

samples were taken every hour for the first two hours and then every 30 minutes. In cases 

of increased starting inoculum uninoculated media was removed so that all flasks had the 

same starting volume.  

Slow growth conditions 

 MG1655 cells were inoculated 1:1000 from an overnight culture grown at 37ºC 

into LB and grown at 30ºC. O.D.600 measurements were taken every hour for the first 

two hours and then every 30 minutes. Slow growth was tested by inoculating MG1655 

cells 1:1000 from an overnight culture, grown in M63 lactose media (M63 salts + 

casamino acids + 0.25% lactose) into fresh M63 lactose media. Measurements were taken 

once every hour for two hours before switching to measurements every 30 minutes. A22 

(10 µg/ml) was added at the start of the growth curves or when cells reached an O.D.600 

~0.1.  

Spent media testing 

Overnight spent media was created by growing wild type cells in LB either 

overnight or to an O.D.600 ~0.1. 5 ml of overnight culture was spun down at 5000 x g for 
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10 minutes before filter (0.22µm) sterilization. The O.D.600 0.1 spent media was only 

filter sterilized. Overnight spent LB was mixed with fresh LB of the same batch to a final 

concentration of 10% before inoculation. 100% of the 0.1 spent LB was used. Cells were 

inoculated 1:1000 from an overnight culture of MG1655 cells. Both fresh LB and spent 

LB had A22 (10 µg/ml) added at the start of the growth curve and when the O.D.600 

~0.1. O.D.600 measurements were taken once every hour for two hours before switching 

to measurements every 30 minutes. 

Increased cell density growth 

 Overnight cultures of MG1655 cells grown in LB were subcultured in 1:1000, 

1:100, and 1:10 ratios into fresh LB. Cells were grown with and without A22 (10 µg/ml). 

O.D.600 measurements were taken every hour for two hours before measuring every 30 

minutes. 

Overnight cultures of MG1655 cells were grown in MOPS (0.2% glycerol) before 

being spun down and resuspended in fresh MOPS (0.2% glycerol). The O.D.600 was 

measured and this was then used to calculate the amount of culture needed for a starting 

O.D.600 of 0.1, 0.05, 0.025, and 0.0125 with the same final volume. Each starting O.D.600 

condition was grown in LB or LB + A22 (10 µg/ml). O.D.600 measurements were then 

taken every 30 minutes.  

Growth rates were calculated using the following formula Growth rate =

log(O.D.600  T2)−log (O.D.600  T2) 

0.301(Hr)
. Time points were chosen based on log phase (linear growth 

on a log-scale plot) and at least 30 minutes after exposure to A22 (10 µg/ml). In order to 
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average growth rates taken on different days we used the growth ratios 
Growth rate A22

Growth rate control
 

from each day and averaged across three days. 

Growth stage testing 

 Sterile LB was kept at 37ºC and a culture of exponentially growing MG1655 cells 

at O.D.600 ~0.1 were subcultured into the pre-warmed media with and without A22 (10 

µg/ml). The cells were diluted at 1:1, 1:10, and 1:100. O.D.600 measurements were taken 

every half hour post subculturing into pre-warmed media. 

Temperature shift  

 Overnight cultures of MG1655 cells and LMC582 (PBPts), grown at 30ºC, cells 

were subcultured 1:1000 into flasks with LB +0.2% glycerol. Control flasks of each 

strain were kept at either 40ºC or 30ºC and not shifted over the course of the growth 

curve. Flasks was moved from the permissive to the non-permissive temperature every 

hour. O.D.600 measurements were taken every hour for two hours after which 

measurements were taken every 30 minutes.  

 Growth rates were calculated using the following formula Growth rate =

log(O.D.600  T2)−log (O.D.600  T2) 

0.301(Hr)
. Time points were chosen based on log phase and at least 30 

minutes after temperature shift. In order to average growth rates taken on different days 

we used growth ratios 
Growth rate at 30ºC

Growth rate at 40ºC
 and averaged across three days. Because cells 

shifted at T1 and T2 were shifted before reaching exponental growth we used the 30ºC 

control growth rates. 
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Deletion strains 

All deletions were made via P1 lysate transduction from Keio deletion strains into 

MG1655 background. Transductants were selected on kanamycin plates and deletions 

were verified by PCR confirmation.  

Microscopy 

 Growth conditions: MG1655 cells were diluted 1:1000 from and overnight 

culture in fresh LB at 37ºC. Cells treated with A22 (10 µg/ml) had the antibiotic added at 

1 hour of growth. These cells were imaged at 1 hour of growth, 3 hours of growth, and 5 

hours of growth. In a separate experiment cells were grown for 3 hours when A22 

(10µg/ml) or mecillinam (3µg/ml) was added to the media. These cells were then imaged 

at 3 hours, 4 hours, and 6 hours.  

Image acquisition: All imaging was done on M63 glucose 1% agarose pads at 

room temperature. Heat killed cells were placed in a boiling water bath for 10 minutes 

prior imaging. Phase contrast images were collected on a Nikon Ni-E epifluorescent 

microscope equipped with a 100X/1.45 NA objective (Nikon), Zyla 4.2 plus cooled 

sCMOS camera (Andor), and NIS Elements software (Nikon).  

Microscopy analysis 

The coefficient of variation of intracellular diameter deviation and cell area (µm2) 

were determined in MATLAB program Morphometrics (Morgenstein, Bratton et al. 

2015, Ursell, Lee et al. 2017). Statistical significance was determined via ANOVA and 
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Tukey’s HSD. All group comparisons not marked not significant are significant to a P-

value of 0.0001. 

Keio library screen 

Cells were grown in 96-well plates from Keio deletion library plates. Overnight 

plate cultures were inoculated 1:100 into LB plates and A22 (1 µg/ml) plates and grown 

overnight. The ratio of LB O.D.600 and A22 O.D.600 were averaged across three 

repetitions and those strains with a ratio of 4 or higher were considered to be more 

sensitive to A22. 
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Starting 

O.D.600 

A22 Growth Rate/MOPS 

Growth Rate 

SD P-value vs 

0.1 

P-

value 

vs .05 

0.1 0.999 0.0345 Na 0.851 

0.05 0.956 0.0391 0.851 Na 

0.025 0.800 0.1200 0.025 0.078 

0.0125 0.691 0.0171 0.002 0.005 

Table 1. Increased cell density allows cells to grow in A22. Growth rate ratio of cells in 

grown in A22 (10 μg/ml) vs MOPS. Students t-test to compare starting O.D.600 0.1 group 

vs all other starting O.D.600 groups and starting O.D.600 0.05 group vs all other starting 

O.D.600 groups. SD = standard deviation. 
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E. coli strains 

Strain Name Relevant Genotype Source 

MG1655 F- lambda- ilvG- rfb-50 rph-

1 

E. coli Genetic Stock 

Center 

RS1 MG1655 envC::kan  This Study 

RS2 MG1655 yccK::kan This Study 

LMC582 F- araD139 Δ(argF-

lac)U169 deoC1 flbB5301 

ptsF25  pbpa137(ts) 

(Woldringh 1988)  

LMC882 his, purB, proA, thi, lacY, 

rpsL, rodA(Ts)-52, 

zbe::Tn10 

(Matsuzawa, Hayakawa et 

al. 1973) 

ΔPBP1B MG1655 mrcB::kan This Study 

ΔPBP1A MG1655 mrcA::kan This Study 

P. aeruginosa strains 

Strain Name Relevant Genotype Source 

PA01 Wild Type Pseudomonas Genetic 

Stock Center 

S.Flexneri strains 

Strain Name Relevant Genotype Source 

ATCC 12022 Wild Type ATCC 

 

Table 2: E. coli, P. aeruginosa, and S. flexneri strains. 
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Figure 1. Timing of A22 addition is important for growth rate changes. (A) 

Representative growth curve of WT cells with A22 (10 µg/ml) added every hour from 0 

to 6 hours as indicated by corresponding arrows. (B) Representative phase-contrast 

images of WT cells grown in LB, LB with A22 (10 μg/ml) added at one hour of growth, 

and LB with A22 added at 3 hours at growth. Cells were imaged every hour for seven 

hours. White arrow indicates cell vesicles forming in advance of lysis and numbers in the 

upper left represent percentage of cells displaying vesicles and the Poisson error to one 

standard deviation. Scale bar is equal to 2 µm. (C, D) Quantification of cells imaged in B. 



48 
 

Error bars are 95% CI. Data was pooled from three independent experiments. Numbers 

above the bars indicated total number of cells measured. (C) Coefficient of intracellular 

diameter deviation from cell imaging in B. (D) Cell area from cell imaging in B. 
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Figure 2. Density dependent growth resistance is not caused by slow growth or 

limited mass doublings (A) Growth curve of WT cells grown at 30° C in LB without 

A22, LBA22 (10 μg/ml), and A22 added at the indicated time where O.D.600 ~0.1 (*). (B) 

Growth curve of WT cells in M63 lactose media grown in LB, LBA22 (10 μg/ml), and 

A22 added at the indicated time where O.D.600 ~0.1 (*). (C) Representative growth curve 

of WT cells. Cells were grown for three hours and spiked with A22 (10 μg/ml) then 

inoculated at a 1:1 ratio into prewarmed LB and LBA22(F1 and F1 A22). These cells were 

then grown for half an hour before repeating this procedure three more times. (F2-F4). 
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Figure 3. Growth resistance is dependent on cell density. (A) Representative log-scale 

growth curve of WT cells treated with A22. Cells were grown without A22 for three 

hours (arrow) and then either allowed to continue to grow, spiked with A22, or back-

diluted into prewarmed media with and without A22 (10 μg/ml) at the indicated dilution 

factors. (B) Representative log-scale growth curve of wild type cells with different 

inoculation dilutions. Cells were grown with and without A22 (10 μg/ml) at the indicated 

initial inoculation ratio from overnight cells. (C) Representative log-scale growth curve 

of wild type cells with different starting O.D.s. Overnight cells were washed and 
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resuspended into new MOPS media and inoculated at the indicated O.D.600 with and 

without A22 (10 μg/ml). (D) Representative phase contrast images of WT cells grown 

from O.D.600~0.01 or 0.1 with and without A22 (10 μg/ml). Cells were imaged every 

hour for four hours. White arrow indicates cell vesicles forming in advance of lysis and 

numbers in the upper left represent percentage of cells displaying vesicles and the 

Poisson error to one standard deviation. Scale bar is equal to 2 µm. (E F) Quantification 

of cells imaged in D. Error bars are 95% CI. Data was pooled from three independent 

experiments. Numbers above the bars indicated total number of cells measured. (E) Cell 

area from cell imaging in D. (F) Coefficient of intracellular diameter deviation from cell 

imaging in D.  
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Figure 4. Increased drug concentrations do not remove DDGR. (A) Growth curve of 

WT cells grown without A22, A22 (10 µg/ml) added at the indicated time, and A22 (50 

µg/ml) added at the indicated time where O.D.600 ~0.1 (*). (B) Growth curve of wild type 

cells. Grown without mecillinam, mecillinam (3 µg/ml) added at the indicated time where 

O.D.600 ~0.1, mecillinam (30 µg/ml) added at the indicated time where O.D.600 ~0.1, and 

mecillinam (100 µg/ml) added at the indicated time where O.D.600 ~0.1 (*). 
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Figure 5. Changes in media do not cause growth resistance. Arrows are color coded to 

the lines representing spike (*) conditions. (A) Representative growth curve of WT cells 

with 100% spent media from a culture grown to an O.D.600 0.1. Cells were grown in LB, 

A22 (10 μg/ml), and A22 added at the indicated time where O.D.600 ~0.1 (*). (B) 

Representative growth curve of WT cells with 10% spent media from an overnight 

culture. Cells were grown in LB, A22 (10 μg/ml), and A22 added at the indicated time 

where O.D.600 ~0.1 (*). 
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Figure 6. PBP2 disruption also demonstrates growth resistance. (A) Representative 

growth curve of WT cells treated with a variety of antibiotics at the indicated time 

(arrow). A22 (10 μg/ml), cephalexin (10 μg/ml), mecillinam (3 μg/ml), ampicillin (100 

μg/ml), phosphomycin (10 μg/ml), cefsulodin (30 μg/ml), kanamycin (30 μg/ml), 

chloramphenicol (35 μg/ml), tetracycline (10 μg/ml), gentamycin (45 μg/ml), and 

rifampicin (500 μg/ml). (B) Representative growth curve of WT cells grown at 40ºC, 30º 

C, and shifted from 30º C to 40º C every hour every hour for four hours. (C) 

Representative growth curve of PBP2ts cells grown at 40ºC, 30º C, and shifted from 30º 

C to 40º C every hour every hour for four hours. (D) Pooled average growth rate ratios 

(growth rate at 40o C/growth rate at 30o C) from WT and PBP2ts. Cells were grown at 

30o C and transferred to 40o C every hour for four hours. (E) Representative growth curve 
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of WT cells grown at 40ºC, 30º C, and shifted from 30º C to 40º C every hour. (F) 

Representative growth curve of RodAts cells grown at 40ºC, 30º C, and shifted from 30º 

C to 40º C every hour for four hours. Pooled average growth rate ratios (growth rate at 

40o C/growth rate at 30o C) from WT and RodAts. Cells were grown at 30o C and 

transferred to 40o C every hour for four hours. 

  



56 
 

 

Figure 7. Mecillinam is still active during DDGR (A) Representative growth curve of 

WT cells used for imaging. Arrows indicate times used for imaging. Mecillinam (3 

µg/ml) was added at the first arrow concurrently with imaging. (B) Representative phase 

contrast imaging of WT cells at early exponential phase, exponential phase, and 

stationary phase with and without A22 addition at early exponential phase. Scale bar is 

equal to 2µm. (C) Pooled coefficient of intracellular diameter deviation from cell 

imaging. All comparisons not marked not significant are statistically significant P 

<0.001. (D) Pooled cell area (µm2) from cell imaging. All comparisons not marked not 

significant are statistically significant P <0.001. 
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Figure 8. Cephalexin does not display DDGR.  (A) Representative growth curve of WT 

cells grown in LB and LBcephalexin (10μg/ml) inoculated at the following ratios of 

overnight culture to new LB 1:10, 1:100, 1:1000. (B) Growth curve of WT cells grown in 

LB, LBmecillinam (3 μg/ml), and LB with mecillinam added at O.D.600 ~0.1 (T3). 
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Figure 9. PBP1B is necessary for density dependent growth resistance. (A) 

Representative growth curve of WT, ΔPBP1A, and ΔPBP1B cells grown without A22, 

A22 (10 μg/ml), and A22 added at the indicated times where O.D.600 ~0.1 (*). Arrow 

coloration corresponds to which strains were spiked at that time. (B) Representative 

growth curve of WT, ΔPBP1A, and ΔPBP1B grown without mecillinam, mecillinam (3 

μg/ml), and mecillinam added at the indicated time per strain where O.D.600~0.1.  (*). (C) 

Representative growth curve of WT and ΔtusE grown without A22 and A22 (10 μg/ml) 

added at the indicated time per strain where O.D.600~0.1. (*). (D) Representative growth 

curve of WT cells grown without antibiotics and the indicated antibiotics at the 

concentrations (μg/ml) added at the indicated time where O.D.600 ~0.1 (arrow and *). 

  

0

0.5

1

1.5

2

2.5

3

3.5

0 1 2 3 4 5 6

WT

WT A22

WT A22*

ΔPBP1A

ΔPBP1A A22

ΔPBP1A A22*

ΔPBP1B

ΔPBP1B A22

ΔPBP1B A22*

O
.D

. 6
0

0

Time (Hrs)

A

0

0.5

1

1.5

2

2.5

3

3.5

0 1 2 3 4 5 6

WT

WT Mec

WT Mec*

ΔPBP1A

ΔPBP1A Mec

ΔPBP1A Mec*

ΔPBP1B

ΔPBP1B Mec

ΔPBP1B Mec*
O

.D
. 6

0
0

Time (Hrs)

B

0

0.5

1

1.5

2

2.5

3

3.5

0 1 2 3 4 5 6 7

WT

WT A22*

ΔtusE

ΔtusE  A22*

O
.D

. 6
0

0

Time (Hrs)

C

0

0.5

1

1.5

2

2.5

3

3.5

0 1 2 3 4 5 6

LB

A22 10*

Ceph 5*

Ceph 5 A22 10*

Cef 7.5*

Cef 7.5 A22 10*

Kan 3.75*

Kan 3.75 A22 10*

D

Time (Hrs)

O
.D

. 6
0

0



59 
 

 

Figure 10. Strain sensitive to A22 also display DDGR. (A) Ratio of O.D.600 of strains 

grown in 1 µg/ml or 10 µg/ml A22 vs LB for 6 hrs. (B) Representative growth curve of 

wild-type and ΔtusE strains. Grown without mecillinam, mecillinam (3 µg/ml), and 

mecillinam added at the indicated timepoint per strain where O.D.600 ~0.1. 
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Figure 11. Other Gram-negative rod species display DDGR. (A) Growth curve of 

Pseudomonas aeruginosa PA01 in LB, LBA22 (20 μg/ml), and LB with A22 added at the 

indicated timepoint where O.D.600 ~0.1 (*). (B) Growth curve of Shigella flexneri (ATCC 

12022) in LB, LBA22 (10 μg/ml), and LB with A22 added at the indicated timepoint 

where O.D.600 ~0.1 (*). 
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CHAPTER IV 
 

 

DISCUSSION 

 

Cell wall targeting antibiotics, particularly β-lactams, are used very commonly in 

clinical and laboratory settings. Two prominent reasons are that the cell wall is both 

essential for most bacteria making it an attractive target, and unique to bacteria, leading 

to a lack of cross reactivity in humans. β-lactams target the various penicillin binding 

proteins that synthesize the cell wall at the periplasmic stage. Β-lactams prevent new wall 

growth by inhibiting transpeptidase activity and inducing breakdown of current cell wall, 

eventually leading to cell death (Zapun, Contreras-Martel et al. 2008, Worthington and 

Melander 2013, Cho, Uehara et al. 2014). 

Other antibiotics target cell wall synthesis at different stages of PG synthesis, 

such as targeting lipid II in the membrane stage of synthesis or preventing the synthesis 

of glycan monomers in cytoplasmic stages (Sarkar, Yarlagadda et al. 2017). Because of 

the frequency of use during infections and the essentiality of the cell wall to bacteria, 

resistant mutants to these drugs occur frequently, methicillin resistant Staphylococcus 

aureus being a prominent example (Aminov and Mackie 2007, Davies and Davies 2010, 

Blair, Webber et al. 2015). Resistant mutations occur by chance or through horizontal 

gene transfer and are selected for in the presence of antibiotics. Any further chance for 
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resistant mutations comes from cells that can survive, even temporarily, leading to 

resistant strains and infections (Brauner, Fridman et al. 2016). MreB coordinates the 

activity and location of cylindrical cell wall synthesis in many bacilli and can be a good 

target for future antibiotics as it is essential for growth. A common lab-only antibiotic 

that targets MreB is A22, a thiourea derivative that depolymerizes MreB and prevents 

cell wall insertion in the cylinder of many bacilli (Bean, Flickinger et al. 2009). 

Unfortunately, A22 resistant mutants are regularly generated. Understanding reasons why 

this occurs and other methods for cells to develop resistance to A22 is key for any future 

clinical antibiotics targeting MreB. 

Density-dependent growth resistance (DDGR) is the ability of rod cells to grow at 

wild-type (WT) rates post elongasome disruption in a manner dependent on cell density 

and independent from quorum sensing. So far, three essential components of the 

elongasome; MreB, RodA, and PBP2, have been shown to display DDGR. The dynamics 

of these three proteins is similar, implying they work together (Melchior 1975, Vijayan, 

Mallick et al. 2014, Morgenstein, Bratton et al. 2015). While DDGR allows for growth 

after inhibition of the elongasome the cells still display the characteristic round shape 

phenotype associated with disrupting these proteins (Melchior 1975, Bean, Flickinger et 

al. 2009). In addition, DDGR is transient as cells that display DDGR can lose it once 

subcultured to a lower cell density (Chapter III Fig. 3A). This implies that DDGR is not a 

form of resistance to antibiotics but rather a physiological change in the cell that 

modulates how deleterious of an effect these particular antibiotics can have. The closest 

comparison would be antibiotic tolerance. Tolerance is also transient but tends to apply to 
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antibiotics in general rather than only specific targets whereas DDGR only seems to 

occur specifically when only the elongasome is targeted (Windels, Michiels et al. 2019).  

 When cells are growing at higher density, they must be able to sense certain 

signals in order to measure and respond to the levels of nutrients and waste in addition to 

the number of cells around them. It appears there is a critical cell density that regardless 

of growth phase leads to a decrease in cell size (Chapter III Fig.1 BD and Fig. 3 DE). In 

both growth curves cells in LB reach a maximum cell size at an O.D.600 ~ 0.1 before a 

significant decrease in size. It is possible that whatever causes this shift in cell size also 

protects the cells from the deleterious effects that begin to occur around the same time 

from A22 or mecillinam, a β-lactam specific to PBP2. The deleterious effect of A22 or 

mecillinam on growth and shape only becomes fully apparent after multiple rounds of 

division (Chapter III Fig. 1C and Fig. 3F). Smaller cell size is possibly linked to A22 

resistance in external literature as FtsZ upregulated cells are both smaller than WT cells 

and also tolerant to A22 induced killing while still becoming round (Bendezú and de 

Boer 2008). While these experiments did not directly test whether smaller round cells are 

able to grow without a properly functioning elongasome, they suggest size may lead to 

protection. A22 induced death is preceded by intracellular vesicle formation; however, 

how small sphere cells might relate to less vesicle formation is not clear (Chapter III Fig. 

1BD and Fig. 3DE). ftsZ expression is most likely not the cause of DDGR as it is 

expressed at a relatively constant level regardless of growth rate or density (Addinall and 

Holland 2002).  

DDGR is not the only way that cell density has been linked to the lessened effects 

of antibiotics and exploring similar phenomena might lead to insights into the mechanism 
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of DDGR. The inoculum effect is an increase in the MIC when the starting inoculum 

amount is increased (Sabath, Garner et al. 1975). While β-lactams show the greatest 

increase in MIC due to the inoculum effect, the inoculum effect is considered to be 

present across all classes of antibiotics, whereas DDGR is not seen in all β-lactams nor 

across classes of antibiotics (Sabath, Garner et al. 1975, Lenhard and Bulman 2019). 

Although the mechanism behind the inoculum effect it is unknown, it is mainly used to 

describe variations in MIC as a laboratory phenomenon, but there is some discussion of 

its role in infection (Lenhard and Bulman 2019) (Udekwu, Parrish et al. 2009). A 

proposed mechanism for why β-lactams seem to most strongly display the inoculum 

effect is that PBPs are generally less expressed in stationary phase (Stevens, Van et al. 

1993). I believe this explanation to be insufficient as inoculated cells are in lag phase 

independent of inoculum size and eventually exponential phase before they achieve 

stationary phase by the end of the assay, which would mean that the antibiotic would be 

effective again. There may still be some overlap in mechanism for both the inoculum 

effect and DDGR but there has been no work in this regard and the lack of DDGR in 

other β-lactams seems to indicate whatever overlap is small.  

 There are two main questions about DDGR for further exploration: what allows 

for continued growth of round cells, and how do cells sense density? While we implicate 

PBP1B as a necessary agent for DDGR and as serving a potential role in crosstalk 

between the elongasome and the divisome, it is unlikely to be the only protein necessary 

for round cell growth. PBP3, an essential divisome transpeptidase, is also probably 

necessary, but as an essential enzyme may be more difficulties to study (van der Ploeg, 

Verheul et al. 2013). Another protein implicated in resistance to mecillinam is SltY, a 
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lytic transglycosylase that breaks down glycan chains and is induced by β-lactams to 

breakdown the cell wall (Höltje, Mirelman et al. 1975, Cho, Uehara et al. 2014). An ΔsltY 

mutant displays DDGR for both A22 or mecillinam (Fig. 1) suggesting that either PG 

recycling or SltY specifically is not needed for growth after A22 treatment. There is a 

family of other lytic transglycosylases that may also play a role in round cell growth and 

PG recycling (van Heijenoort 2011). PG recycling must be important as DDGR is lost for 

mecillinam treatment in a strain that has PG recycling impaired (Cho, Uehara et al. 

2014). The lack of PG recycling also leads to cells being more sensitive to A22 and 

having a reduced form of DDGR in response to (Fig. 2). It is possible that there may be 

redundancy between the lytic transglycosylases and a certain combination of lytic 

transglycosylases mutants will be needed to stop DDGR. 

 In order to come up with other potential proteins involved in DDGR, the 

transcriptional response to cells spiked with mecillinam and A22 were compared. RNA-

seq was performed on cells grown in LB (control) or 1-hour post spike (O.D> 0.1) of 

A2210, and mecillinam3. When A22 or mecillinam spike cells were compared to the LB 

only control 55 genes were differentially regulated (Table 1). None of these genes have a 

direct role in cell wall synthesis; however, many of the genes in chemotaxis/flagella 

synthesis were upregulated as were genes involved in cysteine biosynthesis. Our lab has 

previously performed work showing that sublethal A22 treatment prevents chemotaxis 

but whether this relates to growth as a round cell is unexplored. Cysteine biosynthesis 

provides an unexpected but not unprecedented method of providing some level of 

protection from at least mecillinam. A previous study has shown cell lacking cysB, the 

transcriptional activator of cysteine biosynthesis, were more resistant to mecillinam 
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(Thulin and Andersson 2019). It is thought the reason ΔcysB cells are resistant to 

mecillinam is that they upregulate both PBP1B and LpoB, a lipoprotein that activates 

PBP1B (Thulin and Andersson 2019). We did not find PBP1B nor LpoB to be 

upregulated in our RNA-seq data. To determine the role of PBP1B LpoB and the 

additional PBP1B activators, DamX and DedD, will all be explored for roles in round cell 

growth and DDGR.  

 Arguably the more interesting question about DDGR is: how are cells detecting 

cell density without quorum sensing (QS)? The simplest possible explanation is that QS 

is occurring but that the signaling molecule is very short lived. Short lived QS would be 

plausible as our spent media was from overnight cultures; however, an O.D.600~0.5-0.1 is 

extremely low for canonical QS systems to be active (Wang, Liu et al. 2019). A second 

idea is that cell–cell contact is necessary and would occur, albeit briefly, even in a 

shaking liquid culture. Distinguishing between short lived QS and cell contact can be 

done by separating a high- and low-density culture with a semi-permeable membrane so 

that media is shared but cell-cell contact is inhibited between the two cultures. Growth of 

each culture would be measured in the presence of A22. Computer simulations of cell-

cell contact in liquid could be informative to understand how the chance of cells 

contacting each other changes at different O.D.s to see if there is a large increase in 

probability at densities that DDGR is observed. Determining the mechanism of density 

sensing is only the first step into understanding DDGR. Next, it will be important to find 

the proteins necessary for relaying the density signal. We could use a transposon 

sequencing method to compare mutants from an A22 spike, mecillinam, mecillinam 

spike, or LB only condition. Transposon sequencing could have the benefit of selecting 
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against proteins needed for either density sensing or round cell growth. Separating these 

two may be difficult but it would allow us to include proteins of unknown function and 

all non-essential genes.   

DDGR is a new and interesting phenomenon that allows cells to continue to grow 

in the presence of antibiotics potentially allowing for the accumulation of mutations 

leading to resistance. It is a narrow phenomenon only applying to the elongasome but 

seemingly to all of the elongasome. Further research into DDGR seems to offer new 

insight into how the proteins involved in the creation and maintenance of the cell wall 

interact with each and the wider cell’s physiology. It also opens new questions into how 

the cell interacts with its environment and with other cells. DDGR may also give new 

insights into other similar density related reactions to antibiotics. DDGR is unlikely to be 

widely applicable in creating resistant strains but the methods in which DDGR can be 

overcome can also apply to other resistance mechanisms such as tolerance. DDGR and its 

study may be more useful overall as a direction for research into the cell wall and cell 

physiology, but that better understanding may eventually help in the fight against 

antibiotic resistance. 
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Strain Name Relevant Genotype Source 

MG1655 F- lambda- ilvG- rfb-50 rph-

1 

E. coli Genetic Stock 

Center 

ΔsltY MG1655 sltY::kan This study 

Tu278 MG1655 lacIZYA::frt 

lysA::frt ampD::frt 

(Cho, Uehara et al. 2014) 

Table 3. E. coli strain table  
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ompF cmlB coa cry tolF b0929 JW0912 fliC flaF hag b1923 JW1908 

ymgG b1172 JW5178 yebE b1846 JW1835 

ycfJ b1110 JW1096 ycgR b1194 JW1183 

flxA b1566 JW1558 cysU cysT b2424 JW2417 

cysI b2763 JW2733 cysA b2422 JW2415 

degP htrA ptd b0161 JW0157 amyA yedC b1927 JW1912 

cysH b2762 JW2732 ygaC b2671 JW2646 

ymgD b1171 JW5177 ynjH b1760 JW1749 

bdm yddX b1481 JW5239 yecR b1904 JW1892 

cysC b2750 JW2720 ypeC b2390 JW2387 

cysJ b2764 JW2734 cheR cheX b1884 JW1873 

fimI b4315 JW5779 fliD flaV flbC b1924 JW1909 

cysN b2751 JW2721 fliS b1925 JW1910 

fimC b4316 JW4279 ulaG yjfR b4192 JW5868 

flhC flaI b1891 JW1880 ivy ykfE b0220 JW0210 

spy b1743 JW1732 motB b1889 JW1878 

fliT b1926 JW1911 yhjG yhjF b3524 JW3492 

fimD b4317 JW5780 motA flaJ b1890 JW1879 

cysD b2752 JW2722 yacC b0122 JW0118 

ypfG b2466 JW2450 fcl wcaG yefB b2052 JW2037 

fimA pilA b4314 JW4277 fimG b4319 JW4282 

cysW b2423 JW2416 crfC yjdA b4109 JW4070 

flhD flbB b1892 JW1881 ygaM b2672 JW2647 

yaiY b0379 JW0370 ybhB b0773 JW0756 
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osmB b1283 JW1275 yehI b2118 JW2105 

fimH b4320 JW4283 fimF b4318 JW4281 

caiD yaaL b0036 JW0035 ubiK yqiC b3042 JW5505 

ybgQ b0718 JW5099  

Table 4. Genes with overlapping differential regulation in both A22 and mecillinam 

spikes. A list of common gene names that were significantly different in the both 

mecillinam and A22 spikes compared to the control transcriptome. 
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Figure 12. SltY is not essential for DDGR. (A) Representative growth curve of WT and 

ΔsltY cells grown without A22, A22 (10 μg/ml), and A22 added at T3 where O.D.600 ~0.1 

(*). (B) Representative growth curve of WT and ΔsltY cells grown without mecillinam, 

mecillinam(3 μg/ml), and mecillinam added at T3 where O.D.600 ~0.1 (*). 
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Figure 13. Peptidoglycan recycling essential for mecillinam DDGR. (A) 

Representative growth curve of WT and ΔlysA  ΔampD cells grown without A22, A22 

(10 μg/ml), and A22 added at T3 where O.D.600 ~0.1 (*). (B) Representative growth 

curve of WT and ΔlysA  ΔampD cells grown without mecillinam, mecillinam(3 μg/ml), 

and mecillinam added at T3 where O.D.600 ~0.1 (*). 
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Table 5. Significantly regulated genes from differential sequencing of control and 

A22 spikes 

Common Gene Name  logFC logCPM PValue FDR 

ymdA b1044 JW1031 3.79732 5.313226 5.09E-29 2.02E-25 

yecR b1904 JW1892 4.116968 7.582576 2.35E-26 4.67E-23 

ompF cmlB coa cry tolF b0929 

JW0912 

4.231988 12.63258 1.48E-25 1.96E-22 

kch b1250 JW1242 4.16585 2.722393 9.49E-23 9.44E-20 

fliT b1926 JW1911 2.83282 5.949252 5.58E-18 4.44E-15 

fliE fla AI flaN b1937 JW1921 3.130471 8.172597 1.98E-16 1.31E-13 

flhB yecQ b1880 JW1869 2.886697 7.779716 2.80E-16 1.59E-13 

fliS b1925 JW1910 2.695221 6.873715 4.24E-16 2.11E-13 

flhE b1878 JW1867 3.160945 6.11172 5.86E-16 2.59E-13 

fliO flaP flbD b1947 JW5316 2.702945 6.302795 9.75E-16 3.88E-13 

fliZ yedH b1921 JW1906 2.807568 7.997627 1.15E-15 4.17E-13 

fliL cheC1 fla AI fla QI b1944 

JW1928 

2.775557 8.962808 2.73E-15 9.05E-13 

fliP flaR b1948 JW1932 2.689304 7.38503 1.24E-14 3.79E-12 

fliR flaP b1950 JW1934 2.92497 5.689554 4.43E-14 1.14E-11 

fliF fla AII.1 fla BI b1938 JW1922 2.768379 10.007 4.14E-14 1.14E-11 

flxA b1566 JW1558 2.380647 6.89023 4.60E-14 1.14E-11 
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flhA b1879 JW1868 2.74421 8.761382 9.41E-14 2.20E-11 

fliJ flaO flaS b1942 JW1926 2.862019 6.471341 1.51E-13 3.35E-11 

cysJ b2764 JW2734 -4.44881 7.752405 1.72E-13 3.59E-11 

fliH fla AII.3 fla BIII b1940 

JW1924 

2.717607 8.512533 2.64E-13 5.25E-11 

fliI fla AIII flaC b1941 JW1925 2.678588 8.823642 5.62E-13 1.06E-10 

fliQ flaQ b1949 JW1933 2.796257 4.480281 6.26E-13 1.13E-10 

fliA flaD rpoF b1922 JW1907 2.632776 10.02561 8.12E-13 1.40E-10 

fliK flaE flaR b1943 JW1927 3.206141 8.078321 3.58E-12 5.70E-10 

cysU cysT b2424 JW2417 -3.98815 5.782937 3.58E-12 5.70E-10 

fliG fla AII.2 fla BII b1939 JW1923 2.591151 9.168476 4.37E-12 6.69E-10 

flgB fla FII flbA b1073 JW1060 2.654825 9.825574 4.96E-12 7.30E-10 

cysD b2752 JW2722 -3.9698 6.993677 6.20E-12 8.81E-10 

flgH fla FVIII flaY b1079 JW5153 2.640983 8.296826 6.46E-12 8.85E-10 

spy b1743 JW1732 -1.96852 6.498999 1.60E-11 2.12E-09 

fliM cheC2 fla AII fla QII b1945 

JW1929 

2.400703 9.256675 1.72E-11 2.14E-09 

ypfG b2466 JW2450 -2.26406 4.52204 1.70E-11 2.14E-09 

flgI fla FIX flaM b1080 JW1067 2.709938 8.831566 1.99E-11 2.40E-09 

fliD flaV flbC b1924 JW1909 2.43978 9.161135 2.13E-11 2.50E-09 

flgC fla FIII flaW b1074 JW1061 2.458395 9.026708 2.31E-11 2.62E-09 

ycfJ b1110 JW1096 -2.32833 3.467865 3.33E-11 3.68E-09 

flgG fla FVII flaL b1078 JW1065 2.655517 9.754651 5.19E-11 5.43E-09 

ymgG b1172 JW5178 -3.15382 3.311017 5.13E-11 5.43E-09 

flgJ fla FX flaZ b1081 JW1068 2.868162 8.237889 5.58E-11 5.69E-09 
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cysW b2423 JW2416 -3.91481 5.977122 1.09E-10 1.08E-08 

amyA yedC b1927 JW1912 1.852564 6.6384 1.54E-10 1.49E-08 

flgD fla FIV flaV b1075 JW1062 2.427621 10.11094 1.72E-10 1.63E-08 

fliN flaN motD b1946 JW1930 2.327463 7.784766 2.25E-10 2.08E-08 

ymgD b1171 JW5177 -2.50951 3.899082 2.66E-10 2.41E-08 

cysN b2751 JW2721 -3.71234 7.618218 3.21E-10 2.83E-08 

ftnA ftn gen-165 rsgA b1905 

JW1893 

1.928962 6.914107 4.16E-10 3.60E-08 

bdm yddX b1481 JW5239 -4.22394 1.65261 4.59E-10 3.89E-08 

cysC b2750 JW2720 -4.04594 5.59592 4.94E-10 4.09E-08 

flgE fla FV flaK b1076 JW1063 2.375234 10.86102 6.59E-10 5.35E-08 

ygaC b2671 JW2646 -2.05782 3.73206 7.41E-10 5.90E-08 

cysP b2425 JW2418 -3.27394 7.043785 1.07E-09 8.26E-08 

cysI b2763 JW2733 -4.48495 8.010176 1.08E-09 8.26E-08 

ves ydjR b1742 JW1731 1.818521 5.245544 1.61E-09 1.21E-07 

yaiY b0379 JW0370 -3.09808 2.169448 2.70E-09 1.99E-07 

yhjG yhjF b3524 JW3492 1.715419 6.402325 3.16E-09 2.28E-07 

flhC flaI b1891 JW1880 1.881425 7.060729 1.49E-08 1.06E-06 

yeeE b2013 JW1995 -2.96105 6.092229 1.52E-08 1.06E-06 

flgN b1070 JW1057 1.818741 6.989129 1.77E-08 1.21E-06 

ivy ykfE b0220 JW0210 -1.78945 7.455756 2.17E-08 1.46E-06 

flgF fla FVI flaX b1077 JW1064 2.177836 9.66771 3.63E-08 2.41E-06 

ompT b0565 JW0554 1.881684 11.08758 4.57E-08 2.93E-06 

cysH b2762 JW2732 -3.90777 6.836215 4.51E-08 2.93E-06 
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degP htrA ptd b0161 JW0157 -2.11761 10.3212 6.01E-08 3.80E-06 

ydiY b1722 JW1711 1.620473 4.438103 6.84E-08 4.25E-06 

ybhB b0773 JW0756 -1.48054 6.289256 1.08E-07 6.61E-06 

fimI b4315 JW5779 2.071153 5.745636 1.10E-07 6.61E-06 

fimC b4316 JW4279 2.437594 5.225766 1.30E-07 7.63E-06 

cysA b2422 JW2415 -3.80264 7.829094 1.30E-07 7.63E-06 

fliC flaF hag b1923 JW1908 1.898811 13.42878 1.36E-07 7.85E-06 

fimD b4317 JW5780 2.12021 5.825681 1.96E-07 1.11E-05 

flgK flaS flaW b1082 JW1069 1.754859 9.740147 2.59E-07 1.45E-05 

cheW b1887 JW1876 2.407137 1.56147 2.69E-07 1.48E-05 

fimA pilA b4314 JW4277 2.338373 9.658368 4.52E-07 2.46E-05 

ulaG yjfR b4192 JW5868 4.009881 0.273049 5.00E-07 2.69E-05 

csgD b1040 JW1023 1.981168 1.910796 5.28E-07 2.80E-05 

flhD flbB b1892 JW1881 1.483852 6.314472 5.92E-07 3.10E-05 

crfC yjdA b4109 JW4070 1.704856 6.880506 6.26E-07 3.22E-05 

ypeC b2390 JW2387 -1.91461 3.743053 6.32E-07 3.22E-05 

sufA ydiC b1684 JW1674 -1.51161 6.292903 7.84E-07 3.95E-05 

yciW b1287 JW5200 -2.19558 4.419777 8.48E-07 4.22E-05 

ybjI b0844 JW5113 -1.36002 6.468647 9.48E-07 4.65E-05 

argB b3959 JW5553 -1.41449 5.439695 1.09E-06 5.29E-05 

fimH b4320 JW4283 2.151317 4.689787 1.24E-06 5.93E-05 

tsr cheD b4355 JW4318 2.363942 9.402232 1.42E-06 6.72E-05 

motB b1889 JW1878 1.500289 7.89418 1.44E-06 6.73E-05 

borD ybcU b0557 JW0546 2.09845 6.55485 1.57E-06 7.28E-05 
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flgM b1071 JW1058 1.762079 7.696388 1.67E-06 7.65E-05 

pdeH yhjH b3525 JW3493 1.596654 8.285952 2.06E-06 9.30E-05 

argC b3958 JW3930 -1.31452 5.926102 2.65E-06 0.000117 

ygaM b2672 JW2647 -1.89611 3.137678 2.65E-06 0.000117 

sufC ynhD b1682 JW1672 -1.57346 6.905722 3.11E-06 0.000136 

yncE b1452 JW1447 -1.59809 9.734271 3.79E-06 0.000164 

bglB b3721 JW3699 1.672618 2.227341 4.37E-06 0.000187 

sufB ynhE b1683 JW5273 -1.72819 8.091408 4.46E-06 0.000189 

yshB b4686 JW3839.1 1.539648 6.647638 4.98E-06 0.000208 

flgL flaT flaU b1083 JW1070 1.682429 9.750148 5.05E-06 0.000209 

rimL b1427 JW1423 -1.34009 4.794536 5.88E-06 0.000241 

wrbA b1004 JW0989 -1.4905 5.172736 5.98E-06 0.000242 

yjdM phnA b4108 JW4069 1.54748 4.437159 6.73E-06 0.00027 

ynjH b1760 JW1749 1.605439 4.749635 7.84E-06 0.000312 

motA flaJ b1890 JW1879 1.448566 8.483339 9.02E-06 0.000355 

ygbE b2749 JW2719 -1.25014 5.669293 1.36E-05 0.000529 

caiD yaaL b0036 JW0035 -1.75235 1.523325 1.82E-05 0.000702 

paaZ maoC ydbN b1387 JW1382 -1.47331 3.069162 1.98E-05 0.000755 

fimG b4319 JW4282 2.179843 3.46924 2.04E-05 0.000774 

fimF b4318 JW4281 1.810511 2.994106 2.27E-05 0.00085 

ycgR b1194 JW1183 1.386467 7.883564 2.35E-05 0.000874 

ybjX b0877 JW0861 1.359763 8.470447 2.86E-05 0.001053 

osmB b1283 JW1275 -1.50571 3.592095 3.26E-05 0.001191 

flgA b1072 JW1059 1.662981 8.185809 3.42E-05 0.001237 
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paaG ydbT b1394 JW1389 -1.63645 3.318783 3.47E-05 0.001243 

pdxI ydbC b1406 JW1403 -1.27071 5.302869 4.48E-05 0.001591 

cspF b1558 JW1550 1.973051 1.297906 5.26E-05 0.001844 

dsbG ybdP b0604 JW0597 1.376465 4.816719 5.28E-05 0.001844 

osmY b4376 JW4338 -1.17786 5.900862 5.75E-05 0.00199 

kdpA b0698 JW0686 1.626368 1.942382 5.87E-05 0.002014 

entF b0586 JW0578 -1.50306 9.365166 6.24E-05 0.00212 

sufD ynhC b1681 JW1671 -1.41324 7.902287 6.88E-05 0.0023 

dsdA b2366 JW2363 -1.52503 9.36794 6.83E-05 0.0023 

ybjJ b0845 JW0829 -1.09067 5.965369 7.75E-05 0.002569 

pmrD b2259 JW2254 1.085269 5.660545 7.86E-05 0.002584 

cadB b4132 JW4093 -1.85406 1.693405 8.91E-05 0.002905 

sdaC dcrA b2796 JW2767 1.543623 10.65664 9.49E-05 0.00307 

zapC ycbW b0946 JW5125 -1.41268 6.241157 9.58E-05 0.003073 

acuI yhdH b3253 JW3222 -1.4709 6.503646 9.73E-05 0.003096 

cheR cheX b1884 JW1873 1.156084 7.212082 0.000102 0.003215 

tusA sirA yhhP b3470 JW3435 1.415637 5.780111 0.000106 0.003279 

nrdI ygaO b2674 JW2649 -1.34685 5.728774 0.000106 0.003279 

ybdZ b4511 JW0577 -1.36519 4.48927 0.000106 0.003279 

rcsA b1951 JW1935 1.393139 4.865991 0.000109 0.003325 

ynfF b1588 JW5260 -1.37133 6.608585 0.000112 0.003395 

yecJ b4537 JW1891 1.562267 5.12121 0.000119 0.003572 

rnpA b3704 JW3681 1.061769 6.258932 0.000129 0.003851 

tcyP ydjN b1729 JW1718 -1.87265 7.530619 0.000131 0.003899 
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sufS csdB ynhB b1680 JW1670 -1.28451 7.52938 0.000147 0.004338 

argF b0273 JW0266 -1.2172 6.301815 0.000163 0.004769 

tap b1885 JW1874 1.258458 8.902773 0.00017 0.004905 

yebE b1846 JW1835 -1.075 5.899064 0.00017 0.004905 

yecA b1908 JW1896 -1.36442 6.713224 0.000176 0.005031 

paaH ydbU b1395 JW1390 -1.57854 4.304991 0.000186 0.00529 

mliC ydhA b1639 JW1631 -1.16558 3.605276 0.00019 0.005363 

nrdH ygaN b2673 JW2648 -1.07188 5.566077 0.000198 0.00555 

potH b0856 JW0840 -1.3636 2.467925 0.000217 0.006024 

fis b3261 JW3229 1.129485 5.983349 0.00024 0.006605 

sbp b3917 JW3888 -1.49549 3.681368 0.000241 0.006605 

pstS phoS b3728 JW3706 1.094995 4.733207 0.000245 0.00668 

yhhQ b3471 JW3436 1.273145 2.619139 0.000275 0.007436 

yecD b1867 JW5307 -1.06217 7.015759 0.000282 0.00757 

php yhfV b3379 JW3342 2.09094 0.499654 0.000287 0.007666 

yccT b0964 JW0947 1.578279 1.586194 0.000317 0.008402 

mgtA corB mgt b4242 JW4201 2.048408 6.486808 0.000338 0.008891 

ubiK yqiC b3042 JW5505 1.382166 7.579431 0.000351 0.00913 

aspC b0928 JW0911 -1.37065 10.23583 0.000351 0.00913 

csgF b1038 JW1021 2.737266 -0.19931 0.000366 0.009463 

chrR yieF b3713 JW3691 -1.03907 6.971311 0.000372 0.00955 

ygiW b3024 JW2992 -1.19713 4.105232 0.000408 0.010393 

yfaZ b2250 JW5371 -1.62512 5.45883 0.000455 0.011535 

mcbA ybiM b0806 JW5106 1.481607 2.289846 0.000498 0.012483 
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nrdF ygaD b2676 JW2651 -1.11861 5.99585 0.000499 0.012483 

ydiS b1699 JW1689 -1.27901 2.015002 0.000573 0.014248 

yeaC b1777 JW1766 -1.20083 7.275241 0.000589 0.014547 

cysM b2421 JW2414 -1.75729 6.602869 0.000595 0.014615 

aldA ald b1415 JW1412 -1.38862 12.58246 0.000636 0.015516 

ykfB b0250 JW0239 0.971259 6.056426 0.000645 0.015638 

gabT b2662 JW2637 -1.15991 5.307213 0.000666 0.01605 

lysO ybjE b0874 JW0858 1.054386 4.598413 0.000691 0.016565 

kbl b3617 JW3592 -1.12563 9.630699 0.000696 0.016577 

rluB yciL b1269 JW1261 0.962079 6.240064 0.000751 0.01768 

ykgG b0308 JW5042 -0.94453 5.475443 0.000748 0.01768 

tar cheM b1886 JW1875 1.177386 9.514468 0.000781 0.018275 

sufE ynhA b1679 JW1669 -0.99272 5.421976 0.000791 0.018387 

fimB b4312 JW4275 1.420231 4.760818 0.000813 0.018808 

yjhQ b4307 JW4269 1.164286 2.440421 0.000852 0.019482 

fes b0585 JW0576 -1.23524 7.496928 0.000851 0.019482 

yjcZ b4110 JW5729 1.100168 6.831813 0.000912 0.020719 

fbaB dhnA b2097 JW5344 -1.04738 5.725923 0.000951 0.021492 

yjaG b3999 JW3963 1.624439 1.983288 0.000959 0.021545 

moaE chlA5 b0785 JW0768 -1.33765 5.873557 0.000968 0.02163 

clsC ymdC b1046 JW5150 0.910291 5.731076 0.001071 0.023785 

dkgA yqhE b3012 JW5499 -1.19595 5.493736 0.001181 0.026091 

yacC b0122 JW0118 1.269428 6.022652 0.001198 0.026324 

cheA b1888 JW1877 1.104127 10.0205 0.001261 0.027491 
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nrdE b2675 JW2650 -1.14357 7.911501 0.001265 0.027491 

clpA lopD b0882 JW0866 -1.35416 11.29259 0.001282 0.027716 

yegS b2086 JW2070 -1.13568 2.709167 0.001343 0.028874 

pfkB b1723 JW5280 -0.96345 6.795361 0.001397 0.029871 

yeeO -0.91067 4.475965 0.001421 0.030216 

gadW yhiW b3515 JW3483 1.022955 5.01376 0.001434 0.030341 

pdeL yahA b0315 JW0307 0.929757 3.667066 0.001449 0.030465 

katG b3942 JW3914 -1.09262 10.7292 0.001463 0.030465 

cbl b1987 JW1966 -1.18799 3.621683 0.001463 0.030465 

fcl wcaG yefB b2052 JW2037 -1.70333 0.834743 0.001479 0.030635 

entA b0596 JW0588 -1.36177 6.086403 0.001493 0.030767 

yehI b2118 JW2105 1.163157 2.811656 0.00158 0.032385 

dicA b1570 JW1562 1.405175 6.472655 0.001592 0.03246 

aer air yqjJ b3072 JW3043 1.094665 8.577912 0.001609 0.032648 

yjcS b4083 JW5721 1.424115 1.281893 0.00169 0.033936 

nlpD b2742 JW2712 -1.58491 9.894384 0.001685 0.033936 

glxK glxB5 ybbZ b0514 JW0502 -1.4544 2.763363 0.001705 0.034075 

yjfN b4188 JW5742 -1.07069 2.745813 0.001766 0.035126 

patD prr ydcW b1444 JW1439 -0.92501 4.072417 0.001778 0.035171 

sdaB b2797 JW2768 1.27786 9.758298 0.001862 0.036535 

sad yneI b1525 JW5247 -0.90401 5.879531 0.00187 0.036535 

gsiA yliA b0829 JW5897 -1.14787 8.046921 0.001874 0.036535 

yicH b3655 JW3630 1.397111 1.379755 0.001887 0.0366 

lsrD ydeZ b1515 JW1508 -1.28538 2.836389 0.001944 0.037536 
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cmtB b2934 JW2901 1.780707 0.53215 0.001965 0.03776 

yjdP b4487 JW5890 -0.96185 3.753725 0.002119 0.040323 

ytfK b4217 JW5749 -1.055 6.842558 0.002117 0.040323 

sstT ygjU b3089 JW3060 0.958249 7.082633 0.002187 0.040917 

ybbP b0496 JW0485 -0.95939 5.887573 0.002191 0.040917 

cysK cysZ b2414 JW2407 -1.3916 11.06798 0.00218 0.040917 

nanK yhcI b3222 JW5538 -1.61061 8.183581 0.002176 0.040917 

gsiB yliB b0830 JW5111 -1.28405 7.458824 0.002229 0.041415 

yagP 1.278733 1.24594 0.002319 0.04242 

ycaM b0899 JW5119 1.004574 3.68666 0.002336 0.04242 

nemA ydhN b1650 JW1642 -0.84641 6.455065 0.002319 0.04242 

yceM mviM b1068 JW1055 -0.92955 6.896791 0.002331 0.04242 

hisH b2023 JW2005 -1.41546 5.444641 0.002335 0.04242 

ybbA b0495 JW0484 -1.49313 4.985885 0.002373 0.04289 

dsdX orf445 yfdA yfdD b2365 

JW2362 

-2.43688 7.167037 0.002408 0.043327 

yeaG b1783 JW1772 -0.89341 4.5506 0.002446 0.043613 

hslJ ydbI b1379 JW1374 -1.01939 5.049103 0.002437 0.043613 

lsrR ydeW b1512 JW1505 -1.0655 4.692295 0.002502 0.044418 

lpxT yeiU b2174 JW2162 0.852507 5.502663 0.00253 0.044718 

yodB b1974 JW5323 1.468601 1.31654 0.002573 0.045279 

kduD ygeC yqeD b2842 JW2810 -0.83354 4.705996 0.002659 0.046582 

ybgQ b0718 JW5099 1.208401 2.848866 0.002694 0.046995 

btuC b1711 JW1701 -0.82621 5.871067 0.002719 0.047223 
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plaP yeeF b2014 JW5330 0.953673 5.346125 0.002833 0.048833 

cobS b1992 JW1970 -1.3055 5.245175 0.002836 0.048833 

Table 5. Significantly regulated genes from differential sequencing of control and 

A22 spikes: A22 (10 μg/ml) was added at an O.D.600~0.1 and grown for one hour post 

spike before RNA extractraction. Control cells were grown for four hours before RNA 

extraction. Log fold change in A22* condition shown relative to control. Only genes 

significantly regulated by FDR shown. 
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Table 6. Significantly regulated genes from differential sequencing of control and 

mecillinam spikes 

Common Gene Name logFC logCPM PValue FDR 

ompF cmlB coa cry tolF b0929 

JW0912 

3.441708 12.6769 7.68E-15 3.05E-11 

ymgG b1172 JW5178 -3.52771 3.62346 5.93E-13 1.18E-09 

ycfJ b1110 JW1096 -2.61158 3.686899 3.76E-11 4.98E-08 

flxA b1566 JW1558 2.276043 6.901069 1.85E-10 1.84E-07 

cysI b2763 JW2733 -3.47585 7.055778 3.12E-10 2.41E-07 

degP htrA ptd b0161 JW0157 -2.70128 10.793 3.64E-10 2.41E-07 

cysH b2762 JW2732 -2.80432 5.831676 1.20E-08 6.81E-06 

ymgD b1171 JW5177 -2.75208 4.086832 1.95E-08 9.69E-06 

bdm yddX b1481 JW5239 -3.80913 1.266779 2.06E-07 9.11E-05 

cysC b2750 JW2720 -2.85407 4.506044 4.81E-07 0.000174 

cysJ b2764 JW2734 -3.5456 6.898248 4.86E-07 0.000174 

fimI b4315 JW5779 2.244485 5.715277 5.86E-07 0.000174 

cysN b2751 JW2721 -2.67084 6.676498 5.93E-07 0.000174 

fimC b4316 JW4279 2.555392 5.213756 6.13E-07 0.000174 

flhC flaI b1891 JW1880 1.740896 7.086439 6.79E-07 0.00018 

ompG b1319 JW1312 3.892114 0.329686 2.80E-06 0.000695 

spy b1743 JW1732 -1.81274 6.368563 3.80E-06 0.000889 

fliT b1926 JW1911 1.575651 6.17072 7.26E-06 0.001603 

fimD b4317 JW5780 2.00666 5.849152 9.42E-06 0.001971 

cysD b2752 JW2722 -2.97771 6.086246 1.14E-05 0.002189 

ypfG b2466 JW2450 -1.72715 4.088547 1.16E-05 0.002189 
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fimA pilA b4314 JW4277 2.132043 9.695858 1.35E-05 0.002434 

cysW b2423 JW2416 -3.20504 5.323471 1.42E-05 0.00245 

flhD flbB b1892 JW1881 1.420791 6.321353 1.71E-05 0.002837 

ves ydjR, b1742, JW1731 1.505191 5.312364 1.79E-05 0.002844 

yaiY b0379 JW0370 -2.61854 1.776562 1.88E-05 0.002866 

osmB b1283 JW1275 -1.85176 3.845885 1.96E-05 0.002881 

fimH b4320 JW4283 2.185876 4.689777 2.06E-05 0.002926 

caiD yaaL b0036 JW0035 -2.07089 1.724169 2.14E-05 0.002929 

fliC flaF hag b1923 JW1908 1.65778 13.47586 2.78E-05 0.003677 

yebE b1846 JW1835 -1.38969 6.105887 3.13E-05 0.003915 

ycgR b1194 JW1183 1.544239 7.835907 3.15E-05 0.003915 

cysU cysT b2424 JW2417 -3.12272 4.987973 3.45E-05 0.004151 

cysA b2422 JW2415 -2.77398 6.897588 3.68E-05 0.0043 

amyA yedC b1927 JW1912 1.391263 6.744334 5.00E-05 0.005674 

ygaC b2671 JW2646 -1.49894 3.293888 5.84E-05 0.006449 

ynjH b1760 JW1749 1.652494 4.73904 9.40E-05 0.010016 

yecR b1904 JW1892 1.541113 7.923851 9.58E-05 0.010016 

ypeC b2390 JW2387 -1.65413 3.535262 0.000102 0.010364 

cheR cheX b1884 JW1873 1.338806 7.145017 0.000134 0.013317 

fruB fpr fruF b2169 JW2156 -1.57327 5.353058 0.000146 0.014009 

fliD flaV flbC b1924 JW1909 1.504926 9.341945 0.000148 0.014009 

fliS b1925 JW1910 1.353389 7.136356 0.000155 0.014111 

ulaG yjfR b4192 JW5868 2.69309 0.412034 0.000156 0.014111 

ivy ykfE b0220 JW0210 -1.2454 7.043501 0.000162 0.014296 
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motB b1889 JW1878 1.35596 7.923381 0.000172 0.014829 

yhjG yhjF b3524 JW3492 1.28131 6.504702 0.000175 0.014829 

motA flaJ b1890 JW1879 1.381733 8.492104 0.00024 0.019879 

yacC b0122 JW0118 1.590567 5.937734 0.00025 0.020301 

fcl wcaG yefB b2052 JW2037 -2.66602 1.512654 0.000255 0.020301 

fimG b4319 JW4282 2.06645 3.502478 0.000276 0.021529 

crfC yjdA b4109 JW4070 1.329289 6.97138 0.000386 0.02952 

ygaM b2672 JW2647 -1.64071 2.921861 0.000415 0.031126 

ybhB b0773 JW0756 -1.19136 6.070594 0.000427 0.031126 

yehI b2118 JW2105 1.452694 2.735235 0.000431 0.031126 

yhbO b3153 JW5529 -1.90195 0.936514 0.00044 0.031209 

pgaB ycdR b1023 JW5142 1.631562 1.894816 0.000455 0.031718 

ygiM b3055 JW3027 -1.25006 7.494119 0.000465 0.031865 

ompN ynaG b1377 JW1371 1.418481 11.63031 0.000503 0.033873 

fabB fabC b2323 JW2320 -1.3409 11.44471 0.000521 0.034067 

fimF b4318 JW4281 1.778017 3.012359 0.000523 0.034067 

ubiK yqiC b3042 JW5505 1.467135 7.556633 0.000612 0.039235 

ybgQ b0718 JW5099 1.644903 2.73852 0.000651 0.041046 

Table 6. Significantly regulated genes from differential sequencing of control and 

mecillinam spikes: Mecillinam(3 μg/ml) was added at an O.D.600~0.1 and grown for one 

hour post spike before RNA extraction. Control cells were grown for four hours before 

RNA extraction. Log fold change in mec* condition shown relative to control. Only 

genes significantly regulated by FDR shown. 
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