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Title of Study: NEUTRINOS: A GATEWAY TO BEYOND THE STANDARD MODEL

Major Field: Physics

Abstract: The Standard Model (SM) of particle physics based on the gauge group SU(3)⊗
SU(2)L ⊗ U(1)Y is very appealing as it describes physics at low energy quite spectacularly.
However, it cannot be an ultimate theory of nature as both theoretical and experimental
evidence implies new physics at high and low energy scales. For instance, it fails to describe
several phenomena such as neutrino masses and mixings, the strong hierarchy in the masses of
fermions, dark matter candidates, and the origin of the baryon asymmetry in the universe.
Thus, a fundamental framework beyond the standard model (BSM) is needed to resolve
the shortcomings of the SM. Constructing such BSM models to tackle these fundamental
problems of the SM while being consistent with the existing low-energy data, focusing on
explaining the neutrino masses and oscillations, is the primary goal of this dissertation.

Several BSM models have been developed in this thesis to resolve the shortcomings of the
SM, using applied group theory and quantum field theory. Furthermore, each model detailed
out has its unique characteristics and several phenomenological consequences. Various neu-
trino mass models, in particular, are proposed to shed light on the unresolved puzzles of
fundamental physics. Neutrinos can play an important role in particle physics, cosmology,
and astrophysics: their properties have significant consequences on large-scale cosmological
structures and the baryon asymmetry of the universe. On the other hand, cosmology put
essential constraints on the neutrino mass making as a probe to test the proposed theories
beyond the SM. This dissertation cast light on BSM physics with various neutrino mass mod-
els ranging from MeV scale to TeV scale new physics that can be tested at future colliders
and neutrino experiments. For instance, it discusses the model of radiative neutrino masses
at electroweak scale which also resolves anomalies reported in B-meson decays, RD(?) and
RK(?) , as well as in muon g− 2 measurement, ∆aµ. Moreover, models of radiative Majorana
neutrino masses that require new scalars can also generate observable neutrino non-standard
interactions (NSI) with the matter.
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CHAPTER I

INTRODUCTION

All the matter in the universe comprises fundamental particles, called fermions, and the
mediators of interactions, called bosons. Fermions with spin s = 1

2
come in two types:

quarks and leptons. Quakrs and leptons are further categorized into three-generation, as
shown in the Fig. 1. The leptons with electric charge Q = −1 (in units of elementary charge
e) are the electron e−, muon µ−, and tau τ−, with the corresponding neutrinos identified as
νe, νµ, and ντ with Q = 0. The quarks are u, c, t with charge Q = 2

3
and d, s, b with charge

Q = −1
3
. Furthermore, quarks come in three different colors (color is an additional quantum

number). Among these, the first generation is the lightest and the most stable, making up all
the stable matter in the universe. In contrast, the second and third generations are heavy and
when produced will decay quickly to lighter particles. Interactions between these elementary
particles occur due to four fundamental forces: the strong, the weak, the electromagnetic,
and the gravitational, each with different ranges and strengths. Three fundamental forces,
strong, weak, and electromagnetic, result from the exchange of force-carrier particles, bosons
(gluon, photon, W , and Z) with spin s = 1. The gluon carries the strong force. The photon
gives rise to the electromagnetic interactions, and the (W , Z) bosons mediate the weak force.

Figure 1: Standard Model: Matter fields and mediators

The standard model (SM) of particle physics, with its particle content as shown in Fig. 1
(also see Table 1), is highly successful in describing all of elementary particle interactions.
Several significant discoveries were made over the past few decades marking the triumph of
the SM. For instance, the Higgs boson [1, 2] was discovered in 2012 at the Large Hadron
Collider (LHC).
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This chapter will briefly review SM and discuss the motivation for going beyond the
standard model.

1.1 The Standard Model

The SM is a non-abelian Yang-Mills gauge theory based on gauge symmetry SU(3)C ×
SU(2)L × U(1)Y , where C, L, and Y respectively stands for color, weak isospin, and hy-
percharge. SU(3)C is the gauge theory of strong interactions and has eight gauge bosons
called gluons associated with it. SU(2)L × U(1)Y is the symmetry group of electroweak
interactions. Note that the abelian gauge group of electromagnetism U(1)em is a subgroup
of SU(2)L × U(1)Y . The photon, W±, and Z are the four gauge bosons of the electroweak
gauge group.

The fermion sector is made of quarks and leptons, as shown in Table 1. The numbers in
the parenthesis are the quantum numbers associated with each gauge group. For instance,
QL ∼ (3, 2, 1/6) represents triplet under SU(3)C group, doublet under SU(2)L, and hyper-
charge of 1/6. Note that each particle has its corresponding antiparticles. The left-handed
and right-handed chiral fields are defined as

e−L,R = PL,R e
− , (1.1.1)

where PL,R = 1/2 (1 ∓ γ5) is the chirality operator. The SM gauge group is spontaneously
broken into SU(3)C×U(1)em by a complex scalar field φ once its neutral component acquired
a nonzero vacuum expectation value. Note that color sector SU(3)C remains unbroken.

SU(3)C × SU(2)L × U(1)Y → SU(3)C × U(1)em . (1.1.2)

The spontaneous symmetry breaking is realilzed by the Higgs mechanism, which generates
masses to theW± and Z bosons and fermions. The photon field remains massless, indicating
U(1)em is a good symmetry of the vacuum.

SU(3)C × SU(2)L × U(1)Y

Matter QL =

(
u
d

)
L

∼ (3, 2, 1
6
), LL =

(
νe
e

)
L

∼ (1, 2,−1
2
)

eR ∼ (1, 1,−1), uR ∼ (3, 1, 2
3
), dR ∼ (3, 1,−1

3
)

Gauge Gµ
a,a=1−8 , Aµi,i=1−3, Bµ

Higgs φ =

(
φ+

φ0

)
∼ (1, 2, 1

2
)

Table 1: Matter, gauge, and Higgs contents of the SM

1.1.1 Symmetries

Any physical system has a symmetry S when the Hamiltonian of the system H is invariant
under transformation of S. Symmetries can be mainly classified into two groups: discrete
symmetries and continuous symmetries. Parity P , charge conjugation C, and time-reversal
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T are examples of discrete symmetries. It is too important to state that all the interactions
must be invariant under the transformation CPT . On the other hand, space-time symmetries
(translations, rotations, ..) and internal symmetries ( SU(2) isospin, U(1)B baryon symme-
try, ..) are types of continuous symmetries. For an illustration, take strong interactions
under SU(2) isospin symmetry such that the invariance of Hamiltonian implies

UHU † = H , (1.1.3)

where U = eiθaTa is a unitary matrix with Ta(a = 1, 2, 3) being the three generators of SU(2)
group and θa are continuous parameters. The generators obey the following commutation
relations:

[Ta, Tb] = iεabcTc , (1.1.4)
where εabc is the structure constants of the SU(2) group. This immediately implies [Ta, H] =
0 and shows that for a given eigenstate, one can always find a new degenerate eigenstate
by applying Ta generators. (p, n) and (π+, π0, π−) are examples of isospin doublet and
triplet, respectively. Note, however, proton and neutron nor the triplet of pions are exactly
degenerate. Thus this implies isospin is not an exact symmetry of strong interactions.

There are mainly two distinct classes of internal symmetries: Global symmetries and local
(gauge) symmetries. SU(2) isospin, SU(3) flavor, U(1)B, U(1)L, etc. are examples of global
symmetries, whereas SU(2)L weak isospin, SU(3)C , etc. are examples of local symmetries.
A global symmetry of the Lagrangian of a system implies that current and associated charge
are conserved. For examples a field ψ under global U(1) transforms as

ψ → eiαψ . (1.1.5)

Here α is the phase that is the same for all space-time coordinates. Furthermore, one can
promote global symmetry to local by introducing new vector boson (gauge) fields making
the free theory into interacting theory. The number of generators of the symmetry group
determines the number of associated vector bosons. For instance, U(1), SU(2), SU(3) have
one, three, and eight generators and thus the same number of gauge bosons.

1.1.2 QCD

Quantum Chromodynamics is the gauge theory based on the non-abelian Lie group SU(3)C
of strong interactions. One can build gauge-invariant Lagrangian by simply introducing
covariant derivative Dµ defined as

Dµqi = (∂µ − igsGa
µT

a)qi , (1.1.6)

where gs is the strong coupling constant and qi (i = 1, 2, 3) are quark fields belonging to the
fundamental representation of the group. The generators of the group T a = λa/2, where λa
are the Gell-Mann matrices. Ga

µ(a = 1, ..., 8) are the gluon fields. The QCD Lagrangian is
thus given as

LQCD =
∑
q

q̄ (i /D −mq) q −
1

4
Ga
µνG

aµν . (1.1.7)

Ga
µν is the gluon field strength and defined as

Ga
µν = ∂µG

a
ν − ∂νGa

µ − gsfabcGb
µG

c
ν , (1.1.8)

where fabc are the group structure constants with the relation [T a, T b] = ifabcT c.
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1.1.3 Electroweak thoery

The SM electroweak interaction is based on the gauge symmetry SU(2)L × U(1)Y , where
SU(2)L is the weak isospin acting on left-handed fermions and U(1)Y is the weak hypercharge
group. The covariant derivative for a field ψ associated with SU(2)L×U(1)Y gauge symmetry
read as

Dµψ = (∂µ − igW a
µT

a − ig′Y Bµ) ψ , (1.1.9)

where g and g′ are respectively coupling constants of SU(2)L and U(1)Y . T a = σa/2 (a =
1, 2, 3) and Y are SU(2)L generators with σa being pauli matrices and U(1)Y generators with
the relation

[T a, T b] = iεabcT c , [T a, Y ] = 0 . (1.1.10)

W a
µ (a = 1, 2, 3) are vector gauge bosons of SU(2)L. Bµ is the hypercharge boson of U(1)Y

and is connected to electric charge via

Q = T3 + Y (1.1.11)

The lagrangian of the electroweak interaction reads as

L = Lgauge + Lfermions + Lscalar + LY ukawa . (1.1.12)

The fermion lagrangian is simply given as

Lfermion =
∑
ψL

iψ̄Lγ
µDµψL +

∑
ψR

iψ̄Rγ
µDµψR . (1.1.13)

The gauge field lagrangian reads as

Lgauge = −1

4
W a
µνW

aµν − 1

4
BµνB

µν + Lgauge−fixing + LFaddeev−Popov . (1.1.14)

The field strength tensors Wµν and Bµν are defined as

W a
µν = ∂µW

a
ν − ∂νW a

µ − gεabcW b
µW

c
ν (1.1.15)

and
Bµν = ∂µBν − ∂νBµ . (1.1.16)

For the sake of conciseness, gauge-fixing and Faddeev Popov lagrangian is omitted here.
Furthermore, lagrangian for the scalar and Yukawa terms are discussed in the following
section as these terms provide masses to gauge bosons W±, Z, and fermions.

1.1.4 Higgs Mechanism

In this section, Higgs mechanism is implemented in SU(2)L×U(1)Y gauge theory to generate
masses for the three gauge bosons W± and Z but not for the photon A. This immediately
implies we require three would-be-Goldstone bosons. Thus one introduces a complex scalar
doublet filed Φ that transforms linearly under electroweak symmetry and has non-vanishing
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weak isospin and hypercharge to break SU(2)L and U(1)Y . The SM lagrangian involving
scalar sector is given by:

LHiggs = (DµΦ)†(DµΦ)− V (Φ) , (1.1.17)
where the most general renormalizable Higgs potential involving Φ can be written as

V (Φ) = −1

2
µ2Φ†Φ +

1

2
λ(Φ†Φ)2 , (1.1.18)

where
Φ ∼ (1, 2, 1/2) =

(
φ+

φ0

)
. (1.1.19)

The covariant derivate is simply given by Eq. (1.1.9) by replacing ψ with Φ. There are
two possibilities for the vacuum expectation value (VEV), 〈Φ〉, to minimize the potential
depending on the sign of the mass parameter µ2. The first choice with µ2 < 0 leads to
minimum 〈Φ〉 = 0. This is symmetric under SU(2) × U(1)Y thus no symmetry breaking
occurs. The second choice with µ > 0, the minimum occurs at

〈Φ〉 =

(
0
v√
2

)
,with v =

√
2µ2

λ
. (1.1.20)

Note, there are infinite degenerate vacua corresponding to infinite possible values of arg (Φ).
Any of these vacua is SU(2)L ×U(1)Y non-symmetric and U(1)em symmetric. Thus, once a
particular vacuum is chosen, the electroweak symmetry SU(2)L×U(1)Y breaks into U(1)em.
After symmetry breaking, three components of the real field in Φ becomes the Goldstone
bosons and thus absorbed by three linear combination of the gauge bosons W± and Z. The
fourth field associated with the unbroken U(1) symmetry remains massless and is identified
as the photon filed (A). The physical fields read as

W±
µ =

W 1
µ ∓ iW 2

µ√
2

, Zµ =
gLW

3
µ − gYBµ√
g2
L + g2

Y

, Aµ =
gLW

3
µ + gYBµ√
g2
L + g2

Y

, (1.1.21)

where the masses of the gauge bosons are given by:

mW± =
gLv

2
, mZ =

√
g2
L + g2

Y v

2
, mA = 0 . (1.1.22)

Furthermore, the extra degree that is not eaten up by gauge bosons is identified as Higgs
boson h with a mass

mh =
√
λv . (1.1.23)

It is interesting that sponteneous symmetry breaking of electroweak theory also leads to
generation of fermion masses. The Yukawa interactions involving scalar field and fermions
read as

LY ukawa = −
(
Q̄iLYdijΦdRj + Q̄iLYuij Φ̃uRj + L̄iLYLijΦlRj

)
+ h.c. (1.1.24)

where Φ̃ = iτ2Φ?, (Ydij , Yuij , YLij) are the Yukawa couplings associated with down-type
quarks, up-type quarks, and leptons. The masses of the fermion after the Higgs field acquires
a non-vanishing VEV, read as

Muij =
v√
2
Yuij ,Mdij =

v√
2
Ydij and MLij

=
v√
2

YLij . (1.1.25)
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1.2 Motivation for BSM

In elementary particle physics, several significant discoveries were made over the past few
decades marking the triumph of the Standard Model (SM). Despite its tremendous success
in describing nature, SM is not complete, as indicated by experiments such as neutrino oscil-
lations. Moreover, strong theoretical motivations suggest that SM is a low-energy effective
theory, and a new BSM theory must exist. Thus, SM must be extended to find the true
theory of nature, and it is imperative to understand and test these new theories. The main
theoretical and experimental motivations for the BSM physics are reviewed here:

1.2.1 Neutrino masses and mixing:

The results of neutrino oscillations are perhaps the most important experimental results of
the last decades. It predicts tiny masses and relatively large neutrino mixing, which directly
contradicts SM’s prediction. In the SM, right-handed neutrinos are absent. Thus neutrinos
have precisely zero mass. This demands BSM physics to explain the tiny but non-vanishing
nature of neutrino masses and their mixings.

Neutrino oscillation phenomena occur when a neutrino with a specific lepton flavor can
be later detected to have a different flavor. All the existing neutrino oscillation data can be
elucidated on a minimal three-flavor basis. The 3 × 3 unitary neutrino mixing matrix, also
known as the Pontecorvo-Maki-Nakagawa-Sakata (PMNS) matrix [3–5] , U transforms weak
(flavor) eigenstates of neutrinos (νe, νµ, ντ ) to the mass eigenstates of neutrinos (ν1, ν2, ν3).

ν`L(x) =
∑
j

U`jνjL(x); ` = e, µ, τ . (1.2.1)

This PMNS matrix can be parameterized by three Euler angles and a phase. Note, there
are two additional phases for Majorana neutrinos [6, 7]:

U =

 c12c13 c12c13 s13e
−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13

s12c23 − c12c23s13e
iδ −c12s23 − s12c23s13e

iδ c23c13

 .P (1.2.2)

where cij = cos θij, sij = sin θij, δ is the Dirac CP phase, and P = Diag {1, e−iρ1 , e−iρ2} with
ρ1 and ρ2 being the Majorana CP phases. Thus, in addition to the SM parameters, there are
seven (nine) parameters if neutrinos are Dirac (Majorana) particles. Among these param-
eters, two mass-squared differences, ∆m2

21 and |∆m2
31|, solar mixing angle θ12, atmospheric

mixing angle θ23, and reactor mixing angle θ13 are measured. Note, ∆m2
32 > 0 (∆m2

31 < 0)
represents normal (inverted) hierarchy. The best-fit values for both normal and inverted
ordering within 1σ and 3σ ranges are tabulated in Fig. 1.2.2 [8].

1.2.2 Dark Matter and Dark Energy:

Several experimental measurements have exhibited dark matter (DM) contributing about
26.8% to the average density in the universe, while their particle physics description remains
unknown. Similarly, dark energy contributesto 68.3% of the energy density of the universe,
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Figure 2: The 1σ and 3σ ranges [8] of neutrino oscillation parameters, extracted from the
global fit for both normal and inverted ordering.

where only 4.9% of the universe is ordinary matter. Astrophysical and cosmological observa-
tions [9–11] are compelling evidences for the existence of DM. The precise measurements of
the Cosmic Microwave Anisotropy (CMB) and of spatial distribution of galaxies yields the
DM and the baryonic matter density [12]

ΩDMh
2 ∼ 0.1198± 0.0015 (1.2.3)

where h is the Hubble constant in units of 100km/(s.Mpc). The SM of particle physics fails
to incorporate the dark matter candidate. Thus one must consider beyond SM scenarios for
viable DM candidates. The detection of dark matter will be a crucial paradigm shift not
only in the field of elementary particle physics but in our understanding of the universe as a
whole.

1.2.3 Matter-antimatter Asymmetry:

It is of utmost importance to understand the origin of matter-antimatter asymmetry in
the universe as it directly hints for new physics beyond the SM. This matter-antimatter
asymmetry is yet another mystery that SM theory cannot resolve. The baryon-to-photon
ratio ηB = (nB − nB̄/nγ) describes matter-antimatter asymmetry, where nB, nB̄, and nγ are
respectively the number densities of baryons, anti-baryons, and photons in the universe. ηB
is precisely measured by Wilkinson Microwave Anisotropy Probe (WMAP) [13] and read as

ηB = (6.19± 0.15)× 10−10 (68% C.L.) (1.2.4)

For non-zero baryon asymmetry to be generated, there are three necessary Sakharov
conditions, (i) baryon number violation, (ii) C and CP violation, and (iii) deviation from
thermal equilibrium. SM theory does not satisfy the necessary Sakharov conditions as there
is not enough CP-violation. Hence, BSM physics with a new source of CP-violation is needed
to explain the matter-antimatter asymmetry of the universe.
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1.2.4 Flavor Physics:

Several experimental anomalies deviate from the prediction of the SM. Thus, new physics
beyond SM may be needed to explain these observed anomalies. For example, there are
anomalies in muon anomalous magnetic moment, RD(∗) , and RK(∗) . A long-standing discrep-
ancy of the anomalous magnetic moment of the muon measured by the Brookhaven Muon
g-2 collaboration [14], also by recent Fermilab Muon g-2 collaboration [15] and SM theory
prediction [16], indicates a 4.2σ discrepancy. Furthermore, various anomalies reported in
semi-leptonic rare decay of the B−meson by BaBar [17, 18], Belle [19–21], and LHCb [22–
25] experiments show discrepancies in RD(∗) and RK(∗) at the level of 3.0σ, and 3.1σ. These
deviations from the SM have caused enthusiasm for new physics in the particle physics
community, which may be taken as hints for BSM physics.

1.2.5 Grand Unification:

Embedding strong, weak, and electromagnetic interactions into a single underlying force at a
high energy scale can be accomplished in Grand Unified Theory (GUT). The standard model
fails to unify the known forces of nature. Thus, a new theory beyond SM with larger gauge
group structure and with additional particles is a necessity in Grand Unification. Moreover,
these grand unified theories predict that protons must be unstable. The discovery of proton
decay in the experiments will be revolutionary in scientific history.

1.3 Organisation of this Dissertation

Building new models Beyond the SM (BSM) to resolve shortcomings of the SM and solving
various experimental discrepancies is the primary objective of this dissertation. Each chapter
is dedicated to building viable models beyond SM, particularly the ones that can be tested
at the current and future high energy colliders, the neutrino experiments, and low-energy
hadronic experiments. In chapter II, models of radiative Majorana neutrino masses that
require new scalars and/or fermions to induce lepton-number-violating interactions are in-
vestigated [26, 27]. In chapter III a minimal left-right symmetric model based on the gauge
group SU(3)C ⊗SU(2)L⊗SU(2)R⊗U(1)B−L wherein the Higgs triplets conventionally em-
ployed for symmetry breaking are replaced by Higgs doublets is studied [28]. Majorana
masses for the right-handed neutrinos (νR) are induced via two-loop diagrams involving a
charged scalar field η+. In chapter IV a radiative neutrino mass model involving TeV-scale
scalar leptoquarks R2 and S3, which can simultaneously explain the RD(?) , RK(?) , as well as
muon g − 2 anomalies, all within 1σ CL, while being consistent with neutrino oscillation
data, as well as all flavor and LHC constraints have been worked out [29]. In chapter V a
simple and predictive realization of neutrino masses in theories based on the SU(6) grand
unifying group is studied [30]. Then, we conclude in chapter VI.
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CHAPTER II

NON-STANDARD INTERACTIONS IN RADIATIVE NEUTRINO MASS
MODELS

2.1 Introduction

The origin of tiny neutrino masses needed to explain the observed neutrino oscillation data
is of fundamental importance in particle physics. Most attempts that explain the smallness
of these masses assume the neutrinos to be Majorana particles, in which case their masses
could arise from effective higher dimensional operators, suppressed by a high energy scale
that characterizes lepton number violation. This is the case with the seesaw mechanism,
where the dimension-five operator [31]

O1 = LiLjHkH lεikεjl (2.1.1)

suppressed by an inverse mass scale Λ is induced by integrating out Standard Model (SM)
singlet fermions [32–36], SU(2)L triplet scalars [7, 37–39], or SU(2)L triplet fermions [40]
with mass of order Λ.1 In Eq. 2.1.1, L stands for the lepton doublet, and H for the Higgs
doublet, with i, j, k, l denoting SU(2)L indices, and εik is the SU(2)L antisymmetric tensor.
Once the vacuum expectation value (VEV) of the Higgs field, 〈H0〉 ' 246 GeV is inserted
in Eq. (2.1.1), Majorana masses for the neutrinos given by mν = v2/Λ will be induced. For
light neutrino masses in the observed range, mν ∼ (10−3 − 10−1) eV, the scale Λ should be
around 1014 GeV. The mass of the new particle that is integrated out need not be Λ, since it
is parametrically different, involving a combination of Yukawa couplings and Λ. For example,
in the type-I seesaw model the heavy right-handed neutrino mass goes as MR ∼ y2

DΛ, which
can be near the TeV scale, if the Dirac Yukawa coupling yD ∼ 10−6. However, it is also
possible that yD ∼ O(1), in which case the new physics involved in neutrino mass generation
could not be probed directly in experiments.2

An alternative explanation for small neutrino masses is that they arise only as quantum
corrections [43–45] (for a review, see Ref. [46]). In these radiative neutrino mass models, the
tree-level Lagrangian does not generate O1 of Eq. (2.1.1), owing to the particle content or
symmetries present in the model. If such a model has lepton number violation, then small
Majorana masses for neutrinos will be induced at the loop level. The leading diagram may
arise at one, two, or three loop level, depending on the model details, which will have an
appropriate loop suppression factor, and typically a chiral suppression factor involving a light
fermion mass as well.3 For example, in the two-loop neutrino mass model of Refs. [44, 45],

1For a clear discussion of the classification of seesaw types see Ref. [41].
2This is strictly true for one generation case. For more than one generation, the scale could be lower [42].
3The magnitude of mν would be too small if it is induced at four or higher loops, assuming that the

diagrams have chiral suppression factors proportional to the SM charged fermion masses.
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small and calculable mν arises from the diagram shown in Fig. 45, which is estimated to be
of order

mν ≈
f 2h

(16π2)2

m2
µ

M
, (2.1.2)

assuming normal ordering of neutrino masses and requiring large µ−τ mixing. Here f, h are
Yukawa couplings involving new charged scalars with mass of orderM . Even with f ∼ h ∼ 1,
to obtainmν ∼ 0.1 eV, one would require the scalar massM ∼ TeV. This type of new physics
can be directly probed at colliders, enabling direct tests of the origin of neutrino mass.

When the mediators of neutrino mass generation have masses around or below the TeV
scale, they can also induce other non-standard processes. The focus of this chapter is neu-
trino non-standard interactions (NSI) [47] induced by these mediators. These NSI are of
great phenomenological interest, as their presence would modify the standard three-neutrino
oscillation picture. The NSI will modify scattering experiments, as the production and detec-
tion vertices are corrected; they would also modify neutrino oscillations, primarily through
new contributions to matter effects. There have been a variety of phenomenological studies
of NSI in the context of oscillations, but relatively lesser effort has gone into the ultraviolet
(UV) completion of models that yield such NSI (for a recent update, see Ref. [48]). A major
challenge in generating observable NSI in any UV-complete model is that there are severe
constraints arising from charged lepton flavor violation (cLFV) [49]. One possible way to
avoid such constraints is to have light mediators for NSI [50–52]. In contrast to these at-
tempts, in this chapter we focus on heavy mediators, and study the range of NSI allowed
in a class of radiative neutrino mass models.4 Apart from being consistent with cLFV con-
straints, these models should also be consistent with direct collider searches for new particles
and precision electroweak constraints. We find, somewhat surprisingly, that the strengths of
the diagonal NSI can be (20-50)% of the weak interaction strength for the flavor diagonal
components in a class of popular models that we term as type-I radiative neutrino mass
models, while they are absent at tree-level in another class, termed type-II radiative models.

2.1.1 Type-I and type-II radiative neutrino mass models

We propose a nomenclature that greatly helps the classification of various radiative models of
neutrino mass generation. One class of models can be described by lepton number violating
effective higher dimensional operators, similar to Eq. (2.1.1). A prototypical example is the
Zee model [43] which introduces a second Higgs doublet and a charged SU(2)L-singlet scalar
to the SM. Interactions of these fields violate lepton number, and would lead to the effective
lepton number violating (∆L = 2) dimension 7 operator

O2 = LiLjLkecH lεijεkl (2.1.3)

with indices i, j, .. referring to SU(2)L, and ec standing for the SU(2)L singlet let-handed
positron state. Neutrino masses arise via the one-loop diagram shown in Fig. 6. The induced
neutrino mass has an explicit chiral suppression factor, proportional to the charged lepton
mass inside the loop. Operator O2 can be obtained by cutting the diagram of Fig. 6. We

4Analysis of Ref. [53, 54] of neutrino NSI in a model with charged singlet and/or doublet scalars, although
not in the context of a neutrino mass model, is analogous to one model we analyze.
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call radiative neutrino mass models of this type, having a loop suppression and a chirality
suppression proportional to a light charged fermion mass, and expressible in terms of an
effective higher dimensional operator as in Eq. (2.1.3) as type-I radiative models. A clas-
sification of low dimensional operators that violate lepton number by two units has been
worked out in Ref. [55]. Each of these operators can generate a finite set of type-I radiative
neutrino mass models in a well-defined manner. Lepton number violating phenomenology of
these operators has been studied in Ref. [56].

Another well known example in this category is the two-loop neutrino mass model of
Refs. [44, 45], which induces an effective d = 9 operator

O9 = LiLjLkecLlecεijεkl . (2.1.4)

Neutrino masses arise in this model via the two-loop diagrams shown in Fig. 45, which has a
chiral suppression factor proportional to m2

` , with ` standing for the charged leptons of the
SM.

This category of type-I radiative neutrino mass models is populated by one-loop, two-
loop, and three-loop models. Popular one-loop type-I models include the Zee model [43]
(cf. Sec. 2.4), and its variant with LQs replacing the charged scalars (cf. Sec. 2.5). This vari-
ant is realized in supersymmetric models with R-parity violation [57]. Other one-loop models
include SU(2)L-triplet LQ models (cf. Sec. 2.7.1) wherein the neutrino mass is proportional
to the up-type quark masses [58, 59]. Ref. [60] has classified simple realizations of all models
leading to d = 7 lepton number violating operators, which is summarized in Sec. 2.2. Pop-
ular type-I two-loop models include the Zee-Babu model [44, 45] (cf. Sec. 2.7.2), a variant
of it using LQs and a diquark [61] (cf. Sec. 2.7.2), a pure LQ extension [62] (cf. Sec. 2.7.2),
a model with LQs and vector-like fermions [63] (cf. Sec. 2.7.2), and the Angelic model [64]
(cf. Sec. 2.7.2). We also present here a new two-loop model (cf. Sec. 2.7.2) with LQs wherein
the neutrino masses arise proportional to the up-type quark masses. Type-I three-loop
models include the KNT model [65] (cf. Sec. 2.7.3), an LQ variant of the KNT model [66]
(cf. Sec. 2.7.3), the AKS model [67] (cf. Sec. 2.7.3), and the cocktail model [68] (cf. Sec. 2.7.3).
For a review of this class of models, see Ref. [46].

A systematic approach to identify type-I radiative models is to start from a given ∆L = 2
effective operators of the type O2 of Eq. (2.1.3), open the operator in all possible ways,
and identify the mediators that would be needed to generate the operator. Such a study
was initiated in Ref. [55], and further developed in Refs. [60, 69]. We shall rely on these
techniques. In particular, the many models suggested in Ref. [60] have been elaborated on in
Sec. 2.7, and their implications for NSI have been identified. This method has been applied
to uncover new models in Ref. [70].

In all these models there are new scalar bosons, which are almost always necessary for
neutrino mass generation in type-I radiative models using effective higher dimensional op-
erators. For future reference, we list in Table 2 all possible new scalar mediators in type-I
radiative models that can couple to neutrinos, along with their SU(3)c × SU(2)L × U(1)Y
quantum numbers, field components and electric charges (in superscript), and corresponding
Lagragian terms responsible for NSI. We will discuss them in detail in 2.4, 2.5 and 2.7. The
models discussed in Sec. 2.7 contain other particles as well, which are however not relevant for
the NSI discussion, so are not shown in Table 2. Note that the scalar triplet ∆(1,3, 1) could
induce neutrino mass at tree-level via type-II seesaw mechanism [7, 37–39], which makes
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Particle Content Lagrangian term
η+(1,1, 1) or h+(1,1, 1) fαβLαLβ η

+ or fαβLαLβ h+

Φ
(
1,2, 1

2

)
= (φ+, φ0) YαβLα`

c
βΦ̃

Ω
(
3,2, 1

6

)
=
(
ω2/3, ω−1/3

)
λαβLαd

c
βΩ

χ
(
3,1,−1

3

)
λ′αβLαQβχ

?

ρ̄
(
3̄,3, 1

3

)
=
(
ρ̄4/3, ρ̄1/3, ρ̄−2/3

)
λ′′αβLαQβ ρ̄

δ
(
3,2, 7

6

)
=
(
δ5/3, δ2/3

)
λ′′′αβLαu

c
βδ

∆(1,3, 1) = (∆++,∆+,∆0) f ′αβLαLβ∆

Table 2: Summary of new particles, their SU(3)c × SU(2)L × U(1)Y quantum numbers
(with the non-Abelian charges in boldface), field components and electric charges (in super-
script), and corresponding Lagrangian terms responsible for NSI in various type-I radiative
neutrino mass models discussed in Secs. 2.4, 2.5 and 2.7. Here Φ̃ = iτ2Φ?, with τ2 being the
second Pauli matrix. For a singly charged scalar, η+ and h+ are used interchangeably, to be
consistent with literature.

radiative models involving ∆ field somewhat unattractive, and therefore, is not included in
our subsequent discussion.

There is one exception to the need for having new scalars for type-I radiative models
(see Sec. 2.7.1). The Higgs boson and the W,Z bosons of the SM can be the mediators
for radiative neutrino mass generation, with the new particles being fermions. In this case,
however, there would be tree-level neutrino mass á la type-I seesaw mechanism [32–36], which
should be suppressed by some mechanism or symmetry. Such a model has been analyzed in
Refs. [71, 72], which leads to interesting phenomenology, see Sec. 2.7.1.

From the perspective of neutrino NSI, these type-I radiative models are the most inter-
esting, as the neutrino couples to a SM fermion and a new scalar directly, with the scalar
mass near the TeV scale. We have analyzed the ranges of NSI possible in all these type-I
radiative models. Our results are summarized in Fig. 60 and Table 21.

A second class of radiative neutrino mass models has entirely new (i.e., non-SM) particles
inside the loop diagrams generating the mass. These models cannot be derived from effective
∆L = 2 higher-dimensional operators, as there is no way to cut the loop diagram and
generate such operators. We term this class of models type-II radiative neutrino mass models
(cf. Sec. 2.8). The induced neutrino mass may have a chiral suppression, but this is not
proportional to any light fermion mass. Effectively, these models generate operator O1 of
Eq. (2.1.1), but with some loop suppression. From a purely neutrino mass perspective,
the scale of new physics could be of order 1010 GeV in these models. However, there are
often other considerations which make the scale near a TeV, a prime example being the
identification of a WIMP dark matter with a particle that circulates in the loop diagram
generating neutrino mass.

A well-known example of the type-II radiative neutrino mass model is the scotogenic
model [73] which assumes a second Higgs doublet and right-handed neutrinos N beyond
the SM. A discrete Z2 symmetry is assumed under which N and the second Higgs doublet
are odd. If this Z2 remains unbroken, the lightest of the Z2-odd particles can serve as a
dark matter candidate. Neutrino mass arises through the diagram of Fig. 58. Note that this
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diagram cannot be cut in any way to generate an effective higher dimensional operator of the
SM. While the neutrino mass is chirally suppressed by MN , this need not be small, except
for the desire for it (or the neutral component of the scalar) to be TeV-scale dark matter.
There are a variety of other models that fall into the type-II category [74–79].

The type-II radiative neutrino mass models will have negligible neutrino NSI, as the
neutrino always couples to non-SM fermions and scalars. Any NSI would be induced at
the loop level, which would be too small to be observable in experiments. As a result, in
our comprehensive analysis of radiative neutrino mass models for NSI, we can safely ignore
type-II models.

One remark is warranted here. Consider an effective operator of the type

O′1 = LiLjHkH lεikεjl(u
cuc)(ucuc)?. (2.1.5)

Such an operator would lead to neutrino masses at the two-loop level, as can be seen in an
explicit model shown in Fig. 59. Although this model can be described as arising from an
effective ∆L = 2 operator, the neutrino mass has no chiral suppression here. The mass scale
of the new scalars could be as large as 1010 GeV. Such models do belong to type-I radiative
models; however, they are more like type-II models due to the lack of a chiral suppression.
In any case, the NSI induced by the LQs that go inside the loop diagram for neutrino masses
is already covered in other type-I radiative models that we have analyzed. Another example
of this type of operator is LiLjHkH lεikεjl(H

†H), which is realized for instance in the model
of Ref. [72] (see Sec. 2.7.1). Such effective operators, which appear as products of lower
operators, were treated as trivial in the classification of Ref. [55].

2.1.2 Summary of results

We have mapped out in this chapter the allowed ranges for the neutrino NSI parameters
εαβ in radiative neutrino mass models. We present a detailed analysis of the Zee model
[43] with light charged scalar bosons. To map out the allowed values of εαβ, we have an-
alyzed constraints arising from the following experimental and theoretical considerations:
i) Contact interaction limits from LEP (cf. Sec. 2.4.6); ii) Monophoton constraints from
LEP (cf. Sec. 2.4.11); iii) Direct searches for charged scalar pair and single production at
LEP (cf. Sec. 2.4.7); iv) Pair production of charged scalars at LHC (cf. Sec. 2.4.7); v)
Higgs physics constraints from LHC (cf. Sec. 2.4.10); vi) Lepton universality in W± decays
(cf. Sec. 2.4.8); vii) Lepton universality in τ decays (cf. Sec. 2.4.9); viii) Electroweak preci-
sion data (cf. Sec. 2.4.4); ix) Charged lepton flavor violation (cf. Sec. 2.4.5); x) Perturbative
unitarity of Yukawa and quartic couplings; and xi) Charge breaking minima of the Higgs
potential (cf. Sec. 2.4.3).

Imposing these constraints, we find that light charged scalars, arising either from the
SU(2)L-singlet or doublet field or an admixture, can have a mass near 100 GeV. Neutrino
NSI obtained from the pure SU(2)L-singlet component turns out to be unobservably small.
However, the SU(2)L-doublet component in the light scalar can have significant Yukawa cou-
plings to the electron and the neutrinos, thus inducing potentially large NSI. The maximum
allowed NSI in this model is summarized below:

Zee εmax
ee = 8% , εmax

µµ = 3.8% , εmax
ττ = 43% ,

model: εmax
eµ = 0.0015% , εmax

eτ = 0.56% , εmax
µτ = 0.34% .
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These values are significantly larger than the ones obtained in Ref. [80], where the contribu-
tions from the doublet Yukawa couplings of the light charged Higgs were ignored.

We have also analyzed in detail leptoquark (LQ) models of radiative neutrino mass gen-
eration. As the base model we analyze the LQ version of the Zee model, the results of
which can also be applied to other LQ models with minimal modification. This analysis
took into account the following experimental constraints: i) Direct searches for LQ pair and
single production at LHC (cf. Sec. 2.5.3); ii) APV (cf. Sec. 2.5.1); iii) Charged lepton flavor
violation (cf. Secs. 2.5.1 and 2.5.1); and iv) rare meson decays (cf. Sec. 2.5.1). Including all
these constraints we found the maximum possible NSI induced by the singlet and doublet
LQ components, as given below:

SU(2)L-singlet εmax
ee = 0.69%, εmax

µµ = 0.17%, εmax
ττ = 34.3%,

LQ model: εmax
eµ = 1.5× 10−5%, εmax

eτ = 0.36%, εmax
µτ = 0.43%.

SU(2)L-doublet εmax
ee = 0.4%, εmax

µµ = 21.6%, εmax
ττ = 34.3%,

LQ model: εmax
eµ = 1.5× 10−5%, εmax

eτ = 0.36%, εmax
µτ = 0.43%.

Our results yield somewhat larger NSI compared to the results of Ref. [81] which analyzed,
in part, effective interactions obtained by integrating out the LQ fields.

We also analyzed a variant of the LQ model with SU(2)L-triplet LQs, which have cou-
plings to both up and down quarks simultaneously. The maximum NSI in this case are found
to be as follows:

SU(2)L-triplet εmax
ee = 0.59%, εmax

µµ = 2.49%, εmax
ττ = 51.7%,

LQ model: εmax
eµ = 1.9× 10−6%, εmax

eτ = 0.50%, εmax
µτ = 0.38%.

For completeness, we also list here the maximum possible NSI in the two-loop Zee-Babu
model:

Zee-Babu εmax
ee = 0%, εmax

µµ = 0.9%, εmax
ττ = 0.3% ,

model: εmax
eµ = 0%, εmax

eτ = 0%, εmax
µτ = 0.3%.

The NSI predictions in all other models analyzed here will fall into one of the above
categories.

The rest of the chapter is structured as follows. In Sec. 2.2, we discuss the classification
of low-dimensional lepton-number violating operators and their UV completions. In Sec. 2.3,
we briefly review neutrino NSI and establish our notation. Sec. 2.4 discusses the Zee model
of neutrino masses and derives the various experimental and theoretical constraints on the
model. Applying these constraints, we derive the allowed range for the NSI parameters.
Here we also show how neutrino oscillation data may be consistently explained with large
NSI. In Sec. 2.5 we turn to the one-loop radiative model for neutrino mass with LQs. Here
we delineate the collider and low energy constraints on the model and derive the ranges for
neutrino NSI. In Sec. 2.6, we discuss a variant of the one-loop LQ model with triplet LQ.
In Sec. 2.7 we discuss other type-I models of radiative neutrino mass and obtain the allowed
values of εαβ. We briefly discuss NSI in type-II models in Sec. 2.8. In Sec. 2.9 we conclude.
Our results are tabulated in Table 21 and summarized in Fig. 60.
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2.2 Classification of ∆L = 2 operators and their UV completions

It is instructive to write down low-dimensional effective operators that carry lepton number
of two units (∆L = 2), since all type-I radiative models can be constructed systematically
from these operators. Here we present a summary of such operators through d = 7 [55]. We
use two component Weyl notation for SM fermions and denote them as

L

(
1,2,−1

2

)
, ec(1,1, 1), Q

(
3,2,

1

6

)
, dc

(
3,1,

1

3

)
, uc

(
3,1,−2

3

)
. (2.2.1)

The Higgs field of the SM is denoted as H
(
1,2, 1

2

)
. The ∆L = 2 operators in the SM are

all odd-dimensional. The full list of operators through d = 7 is given by [55]:

O1 = LiLjHkH lεikεjl , (2.2.2a)
O2 = LiLjLkecH lεijεkl , (2.2.2b)
O3 =

{
LiLjQkdcH lεijεkl, LiLjQkdcH lεikεjl

}
≡ {O3a, O3b} , (2.2.2c)

O4 =
{
LiLjQiu

cHkεjk, LiLjQku
cHkεij

}
≡ {O4a, O4b} , (2.2.2d)

O8 = Liec ucdcHjεij . (2.2.2e)

Not listed here are products of lower-dimensional operators, such as O1 × HH, with the
SU(2)L contraction of HH being a singlet. Here O1 is the Weinberg operator [31], while the
remaining operators are all d = 7.5 In this chapter, we shall analyze all models of neutrino
mass arising from these d = 7 operators for their NSI, as well as the two-loop Zee-Babu
model arising from O9 of Eq. (2.1.4). A few other models that have been proposed in the
literature with higher dimensional operators will also be studied. The full list of d = 9
models is expected to contain a large number, which has not been done to date.

Figure 3: Diagrams that generate operators of dimension 7 via (a) scalar and vectorlike
fermion exchange, and (b) by pure scalar exchange.

Each of these d = 7 operators can lead to finite number of UV complete neutrino mass
models. The generic diagrams that induce all of the d = 7 operators are shown in Fig. 3.
Take for example the operator O2 in Eq. 2.2.2b. There are two classes of models that can
generate this operator with the respective mediators obtained from the following contractions
(see Table 3):

O1
2 = H(LL)(ecH) , O2

2 = H(LL)(Lec) . (2.2.3)
5In the naming convention of Ref. [55], operators were organized based on how many fermion fields are

in them. Operators O5 −O7, which are d = 9 operators, appeared ahead of the d = 7 operator O8.

15



Here the pairing of fields suggests the mediator necessary. The (LL) contraction would
require a scalar that can be either an SU(2)L singlet, or a triplet. The (ecH) contraction
would require a new fermion, which is typically a vectorlike fermion. Thus, O1

2 has two
UV completions, with the addition of a vectorlike lepton ψ

(
1,2,−3

2

)
to the SM, along

with a scalar which is either a singlet η+(1,1, 1), or a triplet ∆(1,3, 1). The choice of
∆(1,3, 1) can lead to the generation of the lower d = 5 operator at tree level via type-II
seesaw, and therefore, is usually not employed in radiative models. The model realizing O1

2

with ψ
(
1,2,−3

2

)
vectorlike lepton and η+(1,1, 1) scalar is discussed in Sec. 2.7.1. Similarly

operator O2
2 has a unique UV completion, with two scalars added to the SM – one η+(1,1, 1)

and one Φ
(
1,2, 1

2

)
. This is the Zee model of neutrino mass, discussed at length in Sec. 2.4.

O1
2

L(LL)(ecH)

φ (1,1, 1)

ψ (1,2,−3
2
)

O2
2

H(LL)(Lec)

φ (1,1, 1)

η (1,2, 1
2
)

Table 3: Minimal UV completions of operator O2 [60]. Here φ and η generically denote
scalars and ψ is a generic vectorlike fermion. The SM quantum numbers of these new fields
are as indicated.

O1
3 O2

3 O3
3 O4

3 O5
3 O6

3

Q(LL)(dcH) dc(LL)(QH) L(Ldc)(QH) L(LQ)(dcH) L(LQ)(dcH) L(Ldc)(QH)

φ (1,1, 1) (1,1, 1)
(
3,2, 1

6

) (
3,1,−1

3

) (
3,3,−1

3

) (
3,2, 1

6

)
ψ

(
3,2,−5

6

) (
3,1, 2

3

) (
3,1, 2

3

) (
3,2,−5

6

) (
3,2,−5

6

) (
3,3, 2

3

)
O3a O3a O3a O3b O3a,O3b O3a,O3b

O7
3 O8

3 O9
3

H(LL)(Qdc) H(LQ)(Ldc) H(LQ)(Ldc)

φ (1,1,1)
(
3,1,−1

3

) (
3,3,−1

3

)
η

(
1,2, 1

2

) (
3,2, 1

6

) (
3,2, 1

6

)
O3a O3b O3a,O3b

Table 4: Minimal UV completions of operators O3a and O3b [60]. Here the models in the
top segment require a new scalar φ and a vectorlike fermion ψ, while those in the lower
segment require two scalar fields φ and η.

Operators O3a and O3b in Eq. 2.2.2c can be realized by the UV complete models given
in Table. 4 [60]. Here all possible contraction among the fields are shown, along with the
required mediators to achieve these contractions. Fields denoted as φ and η are scalars,
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O1
4 O2

4

Q(LL)(ucH) uc(LL)(QH)

φ (1,1, 1) (1,1, 1)
ψ

(
3,2, 7

6

) (
3,1,−1

3

)
O4b O4b

O3
4

H(LL)(Quc)

φ (1,1, 1)

η
(
1,2, 1

2

)
O4b

Table 5: Minimal UV completions of the operatorsO4a andO4b. Note that only the operator
O4b is generated. Fields φ and η are scalars, while the ψ fields are vectorlike fermions.

O1
8 O2

8 O3
8

L(ec uc)(dcH) uc(Ldc)(ecH) ec(Ldc)(ucH)

φ
(
3,1,−1

3

) (
3,2, 1

6

) (
3,2, 1

6

)
ψ

(
3,2,−5

6

) (
1,2,−1

2

) (
3,2, 7

6

)
O4

8

(Ldc)(ucec)H

φ
(
3,1,−1

3

)
η

(
3,2, 1

6

)
Table 6: Minimal UV completions of operator O8. Fields φ and η are scalars, while the ψ
fields are vectorlike fermions.

while ψ is a vectorlike fermion. The SM quantum numbers for each field are also indicated
in the Table. We shall analyze neutrino NSI arising from each of these models in Sec. 2.7.

The UV completions of operators O4 and O8 are shown in Tables 5 and 6 respectively
[60]. These models will all be analyzed in Sec. 2.7 for neutrino NSI. Note that in both O4

and O8, pairing of un-barred and barred fermion fields is not included, as the mediators for
such an UV completion will have to be vector bosons which would make such models difficult
to realize. As a result, only O4b can be realized with scalar and fermionic exchange.

Classification based on topology of diagrams

Rather than classifying radiative neutrino mass models in terms of effective ∆L = 2 opera-
tors, one could also organize them in terms of the topology of the loop diagrams [41, 82, 83].
Possible one-loop topologies are shown in Fig. 4 [41, 82], and the two-loop topologies are
shown in Fig. 5 [83]. Note that in the two-loop diagrams, two Higgs particles that are
connected to two internal lines in possible ways are not shown.

For the purpose of NSI, we find the classification based on type-I and type-II suggested
here most convenient. The classification based on the diagram topology does not specify
whether the internal particles are SM fermions or not, and the NSI effects arise only when
neutrino couples to the SM fermions. Let us also note that the first diagram of Fig. 4 and the
first two diagrams of Fig. 5 are the ones that appear most frequently in the explicit type-I
radiative models that we discuss in subsequent sections.

2.3 Neutrino non-standard interactions

Neutrino NSI can be of two types: Neutral Current (NC) and Charged Current (CC). The
CC NSI of neutrinos with the matter fields in general affects the production and detection
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Figure 4: Topologies of one-loop radiative neutrino mass diagrams.

Figure 5: Topologies of two-loop neutrino mass diagrams. Two Higgs bosons should be
attached to internal lines in all possible ways.

of neutrinos, while the NC NSI affects the neutrino propagation in matter. In the low-
energy regime, neutrino NSI with matter fields can be formulated in terms of an effective
four-fermion Lagrangian as follows [47]:

LNC
NSI = −2

√
2GF

∑
f,X,α,β

εfXαβ (ν̄αγ
µPLνβ)

(
f̄γµPXf

)
, (2.3.1)

LCC
NSI = −2

√
2GF

∑
f,f ′,X,α,β

εff
′X

αβ (ν̄αγ
µPLνβ)

(
f̄ ′γµPXf

)
, (2.3.2)

where GF is the Fermi coupling constant, and PX (with X = L,R) denotes the chirality
projection operators PL,R = (1 ∓ γ5)/2. These projection operators can also be reparame-
terized into vector and axial components of the interaction. The dimensionless coefficients
εαβ are the NSI parameters that quantify the strength of the NSI between neutrinos of fla-
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vors α and β and the matter field f ∈ {e, u, d} (for NC) and f 6= f ′ ∈ {u, d} (for CC). If
εαβ 6= 0 for α 6= β, the NSI violates lepton flavor, while for εαα 6= εββ, it violates lepton
flavor universality.

The vector component of NSIs, εfVαβ = εfLαβ +εfRαβ , affects neutrino oscillations by providing
a new flavor-dependent matter effect.6 The effective Hamiltonian for the matter effect is given
by

H =
1

2E
UPMNS

0 0 0
0 ∆m2

21 0
0 0 ∆m2

31

U †PMNS +
√

2GFNe(x)

1 + εee εeµ εeτ
ε?eµ εµµ εµτ
ε?eτ ε?µτ εττ

 , (2.3.3)

where UPMNS is the standard 3 × 3 lepton mixing matrix, E is the neutrino energy, Ne(x)
is the electron number density as a function of the distance x traveled by the neutrino in
matter, and the 1 in the 1 + εee term is due to the standard CC matter potential. The
Hamiltonian level NSI in Eq. 2.3.3 is related to the Lagrangian level NSI in Eq. 2.3.1 as
follows:

εαβ =
∑

f∈{e,u,d}

〈
Nf (x)

Ne(x)

〉
εfVαβ

= εeVαβ +

〈
Np(x)

Ne(x)

〉
(2εuVαβ + εdVαβ ) +

〈
Nn(x)

Ne(x)

〉
(εuVαβ + 2εdVαβ ) , (2.3.4)

where Nf (x) is the number density of fermion f at position x, and 〈Np(n)/Ne〉 is the average
ratio of the density of protons (neutrons) to the density of electrons along the neutrino
propagation path. Note that the coherent forward scattering of neutrinos with nucleons can
be thought of as the incoherent sum of the neutrino scattering with the constituent quarks,
because the nucleon form factors are equal to one in the limit of zero momentum transfer.
Assuming electric charge neutrality of the medium, we can set 〈Np(x)/Ne(x)〉 = 1 and define
the ratio Yn(x) ≡ 〈Nn(x)/Ne(x)〉 to rewrite Eq. 2.3.4 as

εαβ = εeVαβ + [2 + Yn(x)] εuVαβ + [1 + 2Yn(x)] εdVαβ . (2.3.5)

In the Earth, the ratio Yn which characterizes the matter chemical composition can be taken
to be constant to very good approximation. According to the Preliminary Reference Earth
Model (PREM) [84], Yn = 1.012 in the mantle and 1.137 in the core, with an average value
Yn = 1.051 all over the Earth. On the other hand, for solar neutrinos, Yn(x) depends on the
distance to the center of the Sun and drops from about 1/2 in the center to about 1/6 at
the border of the solar core [85, 86].

In the following sections, we will derive the predictions for the NSI parameters εαβ in var-
ious radiative neutrino mass models, which should then be compared with the experimental
and/or global fit constraints [87–90] on εαβ using Eq. 2.3.5. We would like to emphasize two
points in this connection:

6The axial-vector part of the weak interaction gives a nuclear spin-dependent contribution that averages
to zero in the non-relativistic limit for the nucleus.
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(i) Depending on the model, we might have NSI induced only in the neutrino-electron or
neutrino-nucleon interactions, or involving only left- or right-chirality of the matter
fields. In such cases, only the relevant terms in Eq. 2.3.5 should be considered, while
comparing with the experimental or global fit constraints.

(ii) Most of the experimental constraints [88] are derived assuming only one NSI parameter
at a time, whereas within the framework of a given model, there might exist some
non-trivial correlation between NSI involving different neutrino flavors, as we will see
below. On the other hand, the global fits [89, 90] usually perform a scan over all NSI
parameters switched on at the same time in their analyses, whereas for a given model,
the cLFV constraints usually force the NSI involving some flavor combinations to be
small, in order to allow for those involving some other flavor combination to be sizable.
To make a conservative comparison with our model predictions, we will quote the most
stringent values from the set of experimental and global fit constraints, as well as the
future DUNE sensitivities [91–94]; see Tables 10 and 18.

2.4 Observable NSI in the Zee model

One of the simplest extensions of the SM that can generate neutrino mass radiatively is the
Zee Model [43], wherein small Majorana masses arise through one-loop diagrams. This is
a type-I radiative model, as it can be realized by opening up the ∆L = 2 effective d = 7
operatorO2 = LiLjLkecH lεijεkl, and since the induced neutrino mass has a chiral suppression
factor proportional to the charged lepton mass. Due to the loop and the chiral suppression
factors, the new physics scale responsible for neutrino mass can be at the TeV scale. The
model belongs to the classification O2

2 of Table 3.
The model assumes the SM gauge symmetry SU(3)c×SU(2)L×U(1)Y , with an extended

scalar sector. Two Higgs doublets Φ1,2(1,2, 1/2), and a charged scalar singlet η+(1,1, 1) are
introduced to facilitate lepton number violating interactions and thus nonzero neutrino mass.
The leptonic Yukawa Lagrangian of the model is given by:

−LY ⊃ fαβL
i
αL

j
βεijη

+ + (y1)αβΦ̃i
1L

j
α`
c
βεij + (y2)αβΦ̃i

2L
j
α`
c
βεij + H.c. , (2.4.1)

where {α, β} are generation indices, {i, j} are SU(2)L indices, Φ̃a ≡ iτ2Φ?
a (a = 1, 2) and

`c denotes the left-handed antilepton fields. Here and in what follows, a transposition and
charge conjugation between two fermion fields is to be understood. Note that due to Fermi
statistics, fαβ = −fβα. Expanding the first term of the Lagrangian Eq. (2.4.1) leads to the
following couplings of η+:

−LY ⊃ 2η+ [feµ(νeµ− νµe) + feτ (νeτ − ντe) + fµτ (νµτ − ντµ)] + H.c. (2.4.2)

The presence of two Higgs doublets Φ1,2 allows for a cubic coupling in the Higgs potential,

V ⊃ µΦi
1 Φj

2εij η
− + H.c. , (2.4.3)

which, along with the Yukawa couplings of Eq. (2.4.1), would lead to lepton number vi-
olation. The magnitude of the parameter µ in Eq. (2.4.3) will determine the range of
NSI allowed in the model. Interestingly, µ cannot be arbitrarily large, as it would lead to
charge-breaking minima of the Higgs potential which are deeper than the charge conserving
minimum [95, 96] (see Sec. 2.4.3).
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2.4.1 Scalar sector

We can start with a general basis, where both Φ1 and Φ2 acquire vacuum expectation values
(VEVs):

〈Φ1〉 =
1√
2

(
0
v1

)
, 〈Φ2〉 =

1√
2

(
0

v2e
iξ

)
. (2.4.4)

However, without loss of generality, we can choose to work in the Higgs basis [97] where only
one of the doublet fields gets a VEV v given by v =

√
v2

1 + v2
2 ' 246 GeV. The transformation

to the new basis {H1, H2} is given by:(
H1

H2

)
=

(
cβ e−iξsβ
−eiξsβ cβ

)(
Φ1

Φ2

)
, (2.4.5)

where sβ ≡ sin β and cβ ≡ cos β, with tan β = v2/v1. In this new basis, we can parametrize
the two doublets as

H1 =

(
G+

1√
2
(v +H0

1 + iG0)

)
, H2 =

(
H+

2
1√
2
(H0

2 + iA)

)
, (2.4.6)

where (G+, G0) are the Goldstone bosons, (H0
1 , H0

2 ), A, and H+
2 are the neutral CP-even and

odd, and charged scalar fields, respectively. We shall work in the CP conserving limit, since
phases such as ξ in Eq. (2.4.4) will not have a significant impact on NSI phenomenology
which is our main focus here.

The most general renormalizable scalar potential involving the doublet fields H1, H2 and
the singlet field η+ can be written as

V (H1, H2, η) = − µ2
1H
†
1H1 + µ2

2H
†
2H2 − (µ2

3H
†
2H1 + H.c.)

+
1

2
λ1(H†1H1)2 +

1

2
λ2(H†2H2)2 + λ3(H†1H1)(H†2H2) + λ4(H†1H2)(H†2H1)

+

[
1

2
λ5(H†1H2)2 +

{
λ6(H†1H1) + λ7(H†2H2)

}
H†1H2 + H.c.

]
+ µ2

η|η|2 + λη|η|4 + λ8|η|2H†1H1 + λ9|η|2H†2H2

+ (λ10|η|2H†1H2 + H.c.) + (µ εijH
i
1H

j
2η
− + H.c.) (2.4.7)

Differentiating V with respect toH1 andH2, we obtain the following minimization conditions:

µ2
1 =

1

2
λ1v

2, µ2
3 =

1

2
λ6v

2, (2.4.8)

where, for simplicity, we have chosen µ2
3 to be real. The mass matrix for the charged scalars

in the basis {H+
2 , η

+} becomes

M2
charged =

(
M2

2 −µv/
√

2

−µv/
√

2 M2
3

)
, (2.4.9)

where

M2
2 = µ2

2 +
1

2
λ3v

2, M2
3 = µ2

η +
1

2
λ8v

2 . (2.4.10)
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The physical masses of the charged scalars {h+, H+} are given by:

m2
h+,H+ =

1

2

{
M2

2 +M2
3 ∓

√
(M2

2 −M2
3 )2 + 2 v2µ2

}
, (2.4.11)

where

h+ = cosϕη+ + sinϕH+
2 ,

H+ = − sinϕη+ + cosϕH+
2 , (2.4.12)

with the mixing angle ϕ given by

sin 2ϕ =
−
√

2 vµ

m2
H+ −m2

h+

. (2.4.13)

As we shall see later, this mixing parameter ϕ, which is proportional to µ will play a crucial
role in the NSI phenomenology of the model.

Similarly, the matrix for the CP-even and odd neutral scalars in the basis {H0
1 , H

0
2 , A}

can written as [98]:

M2
neutral =

 λ1v
2 Re(λ6)v2 −Im(λ6)v2

λ6v
2 M2

2 + 1
2
v2(Re(λ5) + λ4) −1

2
Im(λ5)v2

−Im(λ6)v2 −1
2
Im(λ5)v2 M2

2 + 1
2
v2(−Re(λ5) + λ4)

 .

(2.4.14)
In the CP-conserving limit where Im(λ5,6) = 0, the CP-odd state will decouple from the
CP-even states. One can then rotate the CP-even states into a physical basis {h,H} which
would have masses given by [98]:

m2
h,H =

1

2

[
m2
A + (λ1 + λ5)v2 ±

√
{m2

A + (λ5 − λ1)v2}2 + 4λ2
6v

4

]
, (2.4.15)

whereas the CP-odd scalar mass is given by

m2
A = M2

2 −
1

2
(λ5 − λ4)v2 . (2.4.16)

The mixing angle between the CP-even eigenstates {H0
1 , H

0
2}, defined as

h = cos(α− β)H0
1 + sin(α− β)H0

2 ,

H = − sin(α− β)H0
1 + cos(α− β)H0

2 , (2.4.17)

is given by

sin 2(α− β) =
2λ6v

2

m2
H −m2

h

. (2.4.18)

We will identify the lightest CP-even eigenstate h as the observed 125 GeV SM-like Higgs
and use the LHC Higgs data to obtain constraints on the heavy Higgs sector (see Sec. 2.4.10).
We will work in the alignment/decoupling limit, where β − α→ 0 [99–102], as suggested by
the LHC Higgs data [103, 104].
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⟨H0
1⟩

H+
2η+

να ℓγ ℓcγ νβ

Figure 6: Neutrino mass generation at one-loop level in the Zee model [43]. The dot (•)
on the SM fermion line indicates mass insertion due to the SM Higgs VEV.

2.4.2 Neutrino mass

In the Higgs basis where only the neutral component of H1 gets a VEV, the Yukawa inter-
action terms in Eq. 2.4.1 of fermions with the scalar doublets H1 and H2 become

−LY ⊃ ỸαβH̃
i
1L

j
α`
c
βεij + YαβH̃

i
2L

j
α`
c
βεij + H.c. , (2.4.19)

where Y and Ỹ are the redefined couplings in terms of the original Yukawa couplings y1 and
y2 given in Eq. 2.4.1 and where H̃a = iτ2H

?
a (a = 1, 2) with τ2 being the second Pauli matrix.

After electroweak symmetry breaking, the charged lepton mass matrix reads as

M` = Ỹ 〈H0
1 〉 = Ỹ

v√
2
. (2.4.20)

Without loss of generality, one can work in a basis where M` is diagonal, i.e., M` =
diag (me, mµ, mτ ). The Yukawa coupling matrix f involving the η+ field in Eq. 2.4.1 is
taken to be defined in this basis.

The Yukawa couplings in Eq. 2.4.1, together with the trilinear term in the scalar potential
Eq. 2.4.3, generate neutrino mass at the one-loop level, as shown in Fig. 6. Here the dot
(•) on the SM fermion line indicates mass insertion due to the SM Higgs VEV. There is a
second diagram obtained by reversing the arrows on the internal particles. Thus, we have a
symmetric neutrino mass matrix given by

Mν = κ (fM`Y + Y TM`f
T ) , (2.4.21)

where κ is the one-loop factor given by

κ =
1

16π2
sin 2ϕ log

(
m2
h+

m2
H+

)
, (2.4.22)

with ϕ given in Eq. 2.4.13. The matrix f that couples the left-handed lepton doublets to
the charged scalar η+ can be made real by a phase redefinition P̂ fP̂ , where P̂ is a diagonal
phase matrix, while the Yukawa coupling Y in Eq. 2.4.19 is in general a complex asymmetric
matrix:

f =

 0 feµ feτ
−feµ 0 fµτ
−feτ −fµτ 0

 , Y =

 Yee Yeµ Yeτ
Yµe Yµµ Yµτ
Yτe Yτµ Yττ

 . (2.4.23)
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Here the matrix Y is multiplied by (ν̄e, ν̄µ, ν̄τ ) from the left and (eR, µR, τR)T from the right,
in the interaction with the charged scalar H+. Thus the neutrino NSI will be governed by
the matrix elements (Yee, Yµe, Yτe), which parametrize the couplings of να with electrons in
matter.

Note that in the limit Y ∝ Ml, as was suggested by Wolfenstein [105] by imposing
a discrete Z2 symmetry to forbid the tree-level flavor changing neutral currents (FCNC)
mediated by the neutral Higgs bosons, the diagonal elements of Mν would vanish, yielding
neutrino mixing angles that are not compatible with observations [106, 107]. For a variant
of the Zee-Wolfenstein model with a family-dependent Z4 symmetry which is consistent with
neutrino oscillation data, see Ref. [108].

From Eq. 2.4.21 it is clear that only the product of the Yukawa couplings f and Y is
constrained by the neutrino oscillation data. Therefore, by taking Y ∼ O(1) and f � 1
in the neutrino mass matrix Eq. 2.4.21, we can correctly reproduce the neutrino oscillation
parameters (see Sec. 2.4.13). This choice maximizes the neutrino NSI in the model. We shall
adopt this choice.

Since the model has two Higgs doublets, in general both doublets will couple to up and
down quarks. If some of the leptonic Yukawa couplings Yαe of Eq. (2.4.23) are of order unity,
so that significant neutrino NSI can be generated, then the quark Yukawa couplings of the
second Higgs doublet H2 will have to be small. Otherwise chirality enhanced meson decays,
such as π+ → e+ν will occur with unacceptably large rates. Therefore, we assume that the
second Higgs doublet H2 is leptophilic in our analysis.

2.4.3 Charge breaking minima

To have sizable NSI, we need a large mixing ϕ between the singlet and doublet charged
scalar fields η+ and H+

2 . From Eq. 2.4.13, this means that we need a large trilinear µ-term.
But µ cannot be arbitrarily large, as it leads to charge breaking minima (CBM) of the
potential [95, 96]. We numerically analyze the scalar potential given by Eq. 2.4.7 to ensure
that it does not develop any CBM deeper than the charge-conserving minimum (CCM).

We take µ2
2, µ

2
η > 0. The fieldH1 is identified approximately as the SM Higgs doublet, and

therefore, the value of λ1 is fixed by the Higgs mass (cf. Eq. 2.4.8), and the corresponding
mass-squared term is chosen to be negative to facilitate electroweak symmetry breaking
(µ2

1 > 0 in Eq. (2.4.7)). Note that the cubic scalar coupling µ can be made real as any phase
in it can be absorbed in η− by a field redefinition.

In order to calculate the most general minima of the potential, we assign the following
VEVs to the scalar fields:

〈H1〉 =

(
0
v1

)
, 〈H2〉 = v2

(
sin γ eiδ

cos γ eiδ
′

)
, 〈η−〉 = vη , (2.4.24)

where vη and v1 can be made real and positive by SU(2)L×U(1)Y rotations. A non-vanishing
VEV vη would break electric charge conservation, as does a nonzero value of sin γ. Thus, we
must ensure that the CBM of the potential lie above the CCM. The Higgs potential, after
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inserting Eq. 2.4.24 in Eq. 2.4.7, reads as

V = −µ2
1v

2
1 +

λ1v
4
1

2
+ (µ2

2 + λ3)v2
2 +

λ2v
4
2

2
+ (µ2

η + λ8v
2
1 + λ9v

2
2)v2

η + ληv
4
η

+v1v2{2 cos γ[−µ2
3 cos δ′ + λ6v

2
1 cos (θ2 + δ′) + λ7v

3
2 cos (θ3 + δ′) + λ10v

2
η cos (θ4 + δ′)]

+v1v2 cos γ2[λ4 + λ5 cos (θ1 + 2δ′)]− 2µvη cos δ sin γ}. (2.4.25)

Here θ1, θ2, θ3, and θ4 are respectively the phases of the quartic couplings λ5, λ6, λ7, and λ10.
For simplicity, we choose these quartic couplings, as well as λ9 to be small. This choice does
not lead to any run-away behavior of the potential. We keep all diagonal quartic couplings to
be nonzero, so that the potential remains bounded. (All boundedness conditions are satisfied
if we choose, as we do for the most part, all the quartic couplings to be positive.) We also
keep the off-diagonal couplings λ3 and λ8 nonzero, as these couplings help in satisfying
constraints from the SM Higgs boson properties from the LHC.

Eq. 2.4.25 yields five minimization conditions from which {v1, v2, vη, δ, γ} can be solved
numerically for any given set of masses and quartic couplings. The mass parameters are
derived from the physical masses of h+, H+ and h in the CCM. We vary mh+ from 50 to 500
GeV and choose three benchmark points for mH+ : {0.7, 1.6, 2.0} TeV. To get an upper limit
on the mixing angle ϕ (cf. Eq. 2.4.13] for our subsequent analysis, we keep λ3 = λ8 fixed at
two benchmark values (3.0 and 2.0) and vary the remaining nonzero quartic couplings λ2 and
λη in the range [0.0, 3.0]. Our results on the maximum sinϕ are shown in Fig. 7. We do not
consider values of the quartic couplings exceeding 3.0 to be consistent with perturbativity
considerations [109]. Each choice of mixing angle ϕ, and the parameters λ2, λη, mh+ , and
mH+ yields different minimization conditions deploying different solutions to the VEVs. We
compare the values of the potential for all cases of CBM and CCM. If any one of the CBM
is deeper than CCM, we reject the solution and rerun the algorithm with different initial
conditions until we meet the requirement of electroweak minimum being deeper than all
CBM.

For values of the mixing angle sinϕ above the curves shown in Fig. 7 for a given mH+,
the potential develops CBM that are deeper than the electroweak minimum, which is un-
acceptable. This is mainly due to the fact that for these values of ϕ, the trilinear coupling
µ becomes too large, which drives the potential to a deeper CBM [95], even for positive
µ2
η. From Fig. 7 it is found that sinϕ < 0.23 for mH+ = 2 TeV, while sinϕ = 0.707 is

allowed when mH+ = 0.7 TeV. In all cases the maximum value of |µ| is found to be about
4.1 times the heavier mass mH+ . Note that we have taken the maximum value of the mixing
ϕmax = π/4 here, because for ϕ > π/4, the roles of h+ and H+ will be simply reversed,
i.e., H+ (h+) will become the lighter (heavier) charged Higgs field. The CBM limits from
Fig. 7 will be applied when computing neutrino NSI in the model.

2.4.4 Electroweak precision constraints

The oblique parameters S, T and U can describe a variety of new physics in the electroweak
sector parametrized arising through shifts in the gauge boson self-energies [110, 111] and
impose important constraints from precision data. These parameters have been calculated
in the context of the Zee model in Ref. [112]. We find that the T parameter imposes the
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Figure 7: Maximum allowed value of the mixing parameter sinϕ from charge breaking
minima constraints as a function of the light charged Higgs mass mh+ , for different values
of the heavy charged Higgs mass mH+ = 2 TeV, 1.6 TeV and 0.7 TeV, shown by red,
green and blue curves, respectively. We set the quartic couplings λ3 = λ8 = 3.0 (left) and
λ3 = λ8 = 2.0 (right), and vary λ2, λη in the range [0.0, 3.0]. For a given mH+ , the region
above the corresponding curve leads to charge breaking minima.

most stringent constraint, compared to the other oblique parameters. The T parameter in
the Zee model can be expressed as [112]:

T =
1

16π2αemv2

{
cos2ϕ

[
sin2(β − α)F(m2

h+ ,m2
h) + cos2(β − α)F(m2

h+ ,m2
H) + F(m2

h+ ,m2
A)
]

+ sin2ϕ
[
sin2(β − α)F(m2

H+ ,m2
h) + cos2(β − α)F(m2

H+ ,m2
H) + F(m2

H+ ,m2
A)
]

− 2 sin2ϕcos2ϕF(m2
h+ ,m2

H+)− sin2(β − α)F(m2
h,m

2
A)− cos2(β − α)F(m2

H ,m
2
A)

+ 3sin2(β − α)
[
F(m2

Z ,m
2
H)−F(m2

W ,m
2
H)−F(m2

Z ,m
2
h) + F(m2

W ,m
2
h)
]}

, (2.4.26)

where the symmetric function F is given by

F(m2
1,m

2
2) = F(m2

2,m
2
1) ≡ 1

2
(m2

1 +m2
2)− m2

1m
2
2

m2
1 −m2

2

ln

(
m2

1

m2
2

)
. (2.4.27)

In order to generate large NSI effects in the Zee model, the mixing between the singlet
and the doublet charged scalar, parametrized by the angle ϕ, should be significant. This
mixing contributes to the gauge boson self-energies and will therefore be bounded from the
experimental value of the T parameter: T = 0.01 ± 0.12 [113]. For simplicity, we assume
no mixing between the neutral CP-even scalars h and H. Furthermore, we take the heavy
neutral CP-even (H) and odd (A) scalars to be degenerate in mass. In Fig. 8, we have shown
our results from the T parameter constraint, allowing for two standard deviation error bar,
in the heavy neutral and charged Higgs mass plane. Here we have fixed the light charged
scalar mass mh+ = 100 GeV. As shown in the figure, when the masses mH and mH± are
nearly equal (along the diagonal), the T parameter constraint is easily satisfied.

From Fig. 8, we also find that for specific values of mH and mH± , there is an upper limit
on the mixing sinϕ. This is further illustrated in Fig. 9. Here, the colored regions (both
green and red) depict the allowed parameter space in m+

H − sinϕ plane resulting from the T
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Figure 8: T -parameter constraint at the 2σ confidence level in the heavy charged and
neutral Higgs mass plane in the Zee model. Here we have set the light charged scalar mass
mh+ = 100 GeV. Different colored regions correspond to different values of the mixing angle
sinϕ between the charged Higgs bosons.

Figure 9: T -parameter constraint in the mixing and heavy charged scalar mass plane in the
Zee model for heavy neutral scalar masses mH = mA = 0.7 TeV. The colored regions (both
green and red) are allowed by the T -parameter constraint, while in the red shaded region,
|λ4|, |λ5| > 3.0, which we discard from perturbativity requirements.

parameter constraint. For example, if we set mH = 0.7 TeV, the maximum mixing that is
allowed by T parameter is (sinϕ)max = 0.63. The mass splitting between the heavy neutral
and the charged Higgs bosons is governed by the relation (cf. Eqs. 2.4.11 and 2.4.15):

m2
H± −m2

H =
1

2
(λ5 − λ4)v2 . (2.4.28)

We choose λ5 = −λ4, which would maximize the mass splitting, as long as the quartic
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Figure 10: One-loop Feynman diagrams contributing to `α → `β + γ process mediated by
charged scalar (left) and neutral scalar (right) in the Zee model.

couplings remain perturbative. The red region in Fig. 9 depicts the scenario where |λ4|, |λ5| >
3.0, which we discard from perturbativity requirements in a conservative approach. Satisfying
this additional requirement that these couplings be less than 3.0, we get an upper limit on
sinϕ < 0.59. For the degenerate case mH± = mH with λ4 = λ5, the upper limit is stronger:
sinϕ < 0.49.

2.4.5 Charged lepton flavor violation constraints

Charged lepton flavor violation (cLFV) is an integral feature of the Lagrangian Eq. 2.4.1
of the model. We can safely ignore cLFV processes involving the fαβ couplings which are
assumed to be of the order of 10−8 or so to satisfy the neutrino mass constraint, with Yαβ
couplings being order one. Thus, we focus on cLFV proportional to Yαβ. Furthermore, as
noted before, NSI arise proportional to (Yee, Yµe, Yτe), where the first index refers to the
neutrino flavor and the second to the charged lepton flavor in the coupling of charged scalars
h+ and H+. After briefly discussing the cLFV constraints arising from other Yαβ, we shall
focus on the set (Yee, Yµe, Yτe) relevant for NSI. The neutral scalar bosons H and A will
mediate cLFV of the type µ→ 3e and τ → µee at tree-level, while these neutral scalars and
the charged scalars (h+, H+) mediate processes of the type µ → eγ via one-loop diagrams.
Both of these processes will be analyzed below. We derive limits on the couplings Yαβ as
functions of the scalar masses. These limits need to be satisfied in the neutrino oscillation
fit, see Sec. 2.4.13 for details. The constraints derived here will also be used to set upper
limits of possible off-diagonal NSI. The various processes considered and the limits derived
are summarized in Tables 7 and 8. We now turn to the derivation of these bounds.

`α → `β + γ decays

The decay `α → `β+γ arises from one-loop diagrams shown in Fig. 10. The general expression
for this decay rate can be found in Ref. [114]. Let us focus on the special case where the
FCNC coupling matrix Y of Eq. (2.4.23) has nonzero entries either in a single row, or in a
single column only. In this case, the chirality flip necessary for the radiative decay will occur
on the external fermion leg. Suppose that only the right-handed component of fermion fα
has nonzero Yukawa couplings with a scalar boson B and fermion F , parametrized as

−LY ⊃ B

2∑
α=1

YαβF βPRfα + H.c. (2.4.29)
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The electric charges of fermions F and f are QF and Qf respectively, while that of the boson
B is QB, which obey the relation Qf = QF − QB. The decay rate for fα → fβ + γ is then
given by

Γ(fα → fβ + γ) =
α

4

|YαγY ?
βγ|2

(16π2)2

m5
α

m4
B

[QFff (t) +QBfB(t)]2 . (2.4.30)

Here α = e2/4π is the fine-structure constant, t = m2
F/m

2
B, and the function fF (t) and fB(t)

are given by

fF (t) =
t2 − 5t− 2

12(t− 1)3
+

t logt

2(t− 1)4
,

fB(t) =
2t2 + 5t− 1

12(t− 1)3
− t2 logt

2(t− 1)4
. (2.4.31)

These expressions are obtained in the approximation mβ � mα.
Let us apply these results to `α → `β + γ mediated by the charged scalars (h+, H+) in

the Zee model where the couplings have the form Yαβ ν̄αPR`βh
+ sinϕ, etc. Here QF = 0,

while QB = +1. Eq. (2.4.30) then reduces to (with t� 1)

Γ(h+,H+)(`α → `β + γ) =
α

4

|YγαY ?
γβ|2

(16π2)2

m5
α

144

(
sin2 ϕ

m4
h+

+
cos2 ϕ

m4
H+

)
. (2.4.32)

If we set mh+ = 100 GeV, mH+ = 700 GeV and sinϕ = 0.7, then the experimental limit
BR(µ → eγ) ≤ 4.2 × 10−13 [115] implies |YαeY ?

αµ| ≤ 6 × 10−5. Similarly, the limit BR(τ →
eγ) ≤ 3.3× 10−8 [116] implies |YατY ?

αe| ≤ 4× 10−2, and the limit BR(τ → µγ) ≤ 4.4× 10−8

[116] implies |YατY ?
αµ| ≤ 4.6 × 10−2. These are rather stringent constraints, which suggest

that no more than one entry in a given row of Y can be large. Such a choice does not however
affect the maximum NSI, as the elements of Y that generate them are in the first column
of Y . Keeping only the entries (Yee, Yµe, Yτe) nonzero does not lead to `α → `β + γ decay
mediated by the charged scalars (h+, H+).

However, nonzero values of (Yee, Yµe, Yτe), needed for NSI, would lead to `α → `β + γ
mediated by the heavy neutral scalars. Taking H and A to be degenerate, the Yukawa
couplings are of the form ¯̀

αPR`βH. Thus, QF = −1 and QB = 0 in this case, leading to the
decay width

Γ(H,A)(`α → `β + γ) =
α

144

|YαγY ?
βγ|2

(16π2)2

m5
α

m4
H

. (2.4.33)

We show the constraints on these product of Yukawa couplings for a fixed mass of the neutral
Higgs mH in Table 7. The severe constraint coming from µ → eγ process prevents the off-
diagonal NSI parameter εeµ from being in the observable range. However, εeτ and εµτ can
be in the observable range, consistent with these constraints.

Electron anomalous magnetic moment

Another potential constraint comes from anomalous magnetic moment of leptons (g − 2)α,
which could get contributions from both charged and neutral scalars in the Zee model. The
heavy neutral scalar contribution can be ignored here. For the Yukawa couplings relevant for
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Process Exp. bound Constraint

µ→ eγ BR < 4.2 ×10−13 [117] |Y ?
µeYee| < 1.05× 10−3

(
mH

700 GeV

)2

τ → eγ BR < 3.3 ×10−8 [116] |Y ?
τeYee| < 0.69

(
mH

700 GeV

)2

τ → µγ BR < 4.4 ×10−8 [116] |Y ?
τeYµe| < 0.79

(
mH

700 GeV

)2

Table 7: Constraints on Yukawa couplings as a function of heavy neutral scalar mass from
`α → `β + γ processes.

ℓα

ℓβ

ℓγ

ℓδ

H0/A0

Figure 11: Feynman diagram contributing to tree-level cLFV trilepton decay mediated by
CP-even and odd neutral scalars in the Zee model. At least two of the final state leptons
must be of electron flavor to be relevant for NSI.

NSI, the charged scalar contribution to muon g − 2 is also absent. The only non-negligible
contribution is to the electron g − 2, which can be written at one-loop level as [118]

∆ae = − m
2
e

96π
(Y †Y )ee

(
sin2 ϕ

m2
h+

+
cos2 ϕ

m2
H+

)
. (2.4.34)

Comparing this with ∆ae ≡ aexp
e − aSM

e = (−87± 36)× 10−14 (where ae ≡ (g− 2)e/2), based
on the difference between the experimental measurements [119] and SM calculations [120]
with the updated value of the fine-structure constant [121], we find that the charged scalar
contribution 2.4.34 goes in the right direction. However, for the allowed parameter space
in mh+ − Yee sinϕ plane (see Fig. 20), it turns out to be too small to explain the 2.4σ
discrepancy in ∆ae. For example, with |Yτe| sinϕ = 0.75 and mh+ = 150 GeV, which is a
consistent choice (cf. Fig. 20), we would get ∆ae = −2.2× 10−14, an order of magnitude too
small to be relevant for experiments.

`α → ¯̀
β`γ`δ decays

The Yukawa coupling matrix Y of the second Higgs doublet (cf. Eq. (2.4.23)) would lead to
trilepton decay of charged leptons mediated by the neutral scalars of the theory. The tree-
level Feynman diagrams for such decays are shown in Fig. 11. Partial rates for the trilepton
decays are obtained in the limit when the masses of the decay products are neglected. The
partial decay width for µ→ ēee is given as follows:

Γ(µ− → e+e−e−) =
1

6144π3
|Y ?
µe Yee|2

m5
µ

m4
H

. (2.4.35)
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Process Exp. bound Constraint

µ− → e+e−e− BR < 1.0 ×10−12 [122] |Y ?
µeYee| < 3.28× 10−5

(
mH

700 GeV

)2

τ− → e+e−e− BR < 1.4 ×10−8 [123] |Y ?
τeYee| < 9.05× 10−3

(
mH

700 GeV

)2

τ− → e+e−µ− BR < 1.1 ×10−8 [123] |Y ?
τeYµe| < 5.68× 10−3

(
mH

700 GeV

)2

Table 8: Constraints on Yukawa couplings as a function of heavy neutral scalar mass from
`α → ¯̀

β`γ`δ decay (with at least two of the final state leptons of electron flavor to be relevant
for NSI).

The partial decay width for τ → ¯̀
α`β`γ is given by

Γ
(
τ → ¯̀

α`β`γ
)

=
1

6144π3
S |Y ?

ταYβγ|2
m5
τ

m4
H

. (2.4.36)

Here S = 1 (2) for β = γ (β 6= γ) is a symmetry factor. Using the total muon and tau decay
widths, Γtot

µ = 3.00× 10−19 GeV and Γtot
τ = 2.27× 10−12 GeV respectively, we calculate the

cLFV branching ratios for the processes µ− → e+e−e−, τ− → e+e−e− and τ− → e+e−µ−

using Eqs. 2.4.35 and 2.4.36. We summarize in Table 8 the current experimental bounds on
these branching ratios and the constraints on the Yukawa couplings Yαβ as a function of mass
of neutral Higgs boson mH = mA. It is clear from Table 8 that these trilepton decays put
more stringent bounds on product of Yukawa couplings compared to the bounds arising from
loop-level `α → `βγ decays. This also implies that off-diagonal NSI are severely constrained.

As already noted, the light charged Higgs h+ would mediate `α → `β + γ decay if more
than one entry in a given row of Y is large. The heavy neutral Higgs bosons mediate trilepton
decays of the leptons when there are more than one nonzero entry in the same column (or
same row) of Y . This last statement is however not valid for the third column of Y . For
example, nonzero Yττ and Yµτ will not lead to tree-level trilepton decay of τ . Apart from the
first column of Y , we shall allow nonzero entries in the third column as well. In particular, for
diagonal NSI εαα, we need one Yαe entry for some α to be nonzero, and to avoid the trilepton
constraints, the only other entry that can be allowed to be large is Yβτ with β 6= α. On the
other hand, for off-diagonal NSI εαβ (with α 6= β), we must allow for both Yαe and Yβe to be
non-zero. In this case, however, the trilepton decay `β → `αee is unavoidable and severely
restricts the NSI as we will see in Sec. 2.4.12. Also, the other entry that can be populated is
Yγτ with γ 6= α, β. This will lead to τ → `+ γ decays, which, however, do not set stringent
limits on the couplings (cf. Table 7). Some benchmark Yukawa textures satisfying all cLFV
constraints are considered in Sec. 2.4.13 to show consistency with neutrino oscillation data.

2.4.6 Collider constraints on heavy neutral scalar mass

LEP contact interaction

Electron-positron collisions at center-of-mass energies above the Z-boson mass performed
at LEP impose stringent constraints on contact interactions involving e+e− and a pair of
fermions [124]. Integrating out new particles in a theory one can express their effect via
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higher-dimensional (generally dimension-6) operators. An effective Lagrangian, Leff , can
parametrize the contact interaction for the process e+e− → ff̄ with the form [125]

Leff =
g2

Λ2(1 + δef )

∑
i,j=L,R

ηfij(ēiγ
µei)(f̄jγµfj) , (2.4.37)

where δef is the Kronecker delta function, f refers to the final sate fermions, g is the coupling
strength, Λ is the new physics scale and ηfij = ±1 or 0, depending on the chirality structure.
LEP has put 95% confidence level (CL) lower limits on the scale of the contact interaction Λ
assuming the coupling g =

√
4π [124]. In the Zee model, the exchange of new neutral scalars

(H and A) emerging from the second Higgs doublet will affect the process e+e− → `+
α `
−
β

(with `α,β = e, µ, τ), and therefore, the LEP constraints on Λ can be interpreted as a lower
limit on the mass of the heavy neutral scalar, for a given set of Yukawa couplings. Here we
assume that H and A are degenerate, and derive limits obtained by integrating out both
fields.

In general, for `+
α `
−
β → `+

γ `
−
δ via heavy neutral scalar exchange, the effective Lagrangian

in the Zee model can be written as

LZee
eff =

YαδY
?
βγ

m2
H

(¯̀
αL`δR)(¯̀

βR`γL) . (2.4.38)

By Fierz transformation, we can rewrite it in a form similar to Eq. 2.4.37:

LZee
eff = −1

2

YαδY
?
βγ

m2
H

(¯̀
αLγ

µ`γL)(¯̀
βRγµ`γR) . (2.4.39)

Thus, the only relevant chirality structures in Eq. 2.4.37 are LR and RL, and the relevant
process for deriving the LEP constraints is e+e− → `+

α `
−
α :

Leff =
g2

Λ2(1 + δeα)

[
η`LR(ēLγ

µeL)(¯̀
αRγµ`αR) + η`RL(ēRγ

µeR)(¯̀
αLγµ`αL)

]
, (2.4.40)

with η`LR = η`RL = −1.
Now for e+e− → e+e−, Eq. 2.4.39 becomes

LZee
eff (e+e− → e+e−) = −|Yee|

2

2m2
H

(ēLγ
µeL)(ēRγµeR) . (2.4.41)

Comparing this with Eq. 2.4.40, we obtain

mH

|Yee|
=

Λ−LR/RL√
2g

, (2.4.42)

where Λ− corresponds to Λ with η`LR = η`RL = −1. The LEP constraints on Λ were derived
in Ref. [124] for g =

√
4π, which can be translated into a lower limit on mH/|Yee| using

Eq. 2.4.42, as shown in Table 9. Similarly, for e+e− → µ+µ−, Eq. 2.4.39 is

LZee
eff (e+e− → µ+µ−) = − 1

2m2
H

[
|Yeµ|2(ēLγ

µeL)(µ̄RγµµR) + |Yµe|2(ēRγ
µeR)(µ̄LγµµL)

]
.

(2.4.43)
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Process LEP bound [124] Constraint
e+e− → e+e− Λ−LR/RL > 10 TeV mH

|Yee| > 1.99 TeV
e+e− → µ+µ− Λ−LR/RL > 7.9 TeV mH

|Yµe| > 1.58 TeV
e+e− → τ+τ− Λ−LR/RL > 2.2 TeV mH

|Yτe| > 0.44 TeV

Table 9: Constraints on the ratio of heavy neutral scalar mass and the Yukawa couplings
from LEP contact interaction bounds.

Since for NSI, only Yµe (neutrino interaction with electron) is relevant, we can set Yeµ → 0,
and compare Eq. 2.4.43 with Eq. 2.4.40 to get a constraint on mH/|Yµe|, as shown in Table 9.
Similarly, for e+e− → τ+τ−, we can set Yeτ → 0 and translate the LEP limit on Λ− into a
bound on mH/|Yτe|, as shown in Table 9.

The LEP constraints from the processes involving qq̄ final states, such as e+e− → cc̄ and
e+e− → bb̄, are not relevant in our case, since the neutral scalars are leptophilic. We will use
the limits quoted in Table 9 while deriving the maximum NSI predictions in the Zee model.

LEP constraints on light neutral scalar

The LEP contact interaction constraints discussed in Sec. 2.4.6 are not applicable if the
neutral scalars H and A are light. In this case, however, the cross section of e+e− → `+

α `
−
α

can still be modified, due to the t-channel contribution of H/A, which interferes with the
SM processes. We implement our model file in FeynRules package [126] and compute the
e+e− → `+

α `
−
α cross-sections in the Zee model at the parton-level using MadGraph5 event

generator [127]. These numbers are then compared with the measured cross sections [124,
128] to derive limits on mH/A as a function of the Yukawa couplings Yαe (for α = e, µ, τ).
For a benchmark value of mH = mA = 130 GeV, we find the following constraints on the
Yukawa couplings Yαe relevant for NSI:

Yee < 0.80 , Yµe < 0.74 , Yτe < 0.73 . (2.4.44)

This implies that the second charged scalar H+ can also be light, as long as it is allowed by
other constraints (see Fig. 14). We will use this finding to maximize the NSI prediction for
the Zee model (see Sec. 2.4.12).

LHC constraints

Most of the LHC searches for heavy neutral scalars are done in the context of either MSSM
or 2HDM, which are not directly applicable in our case because H and A do not couple
to quarks, and therefore, cannot be produced via gluon fusion. The dominant channel to
produce the neutral scalars in our case at the LHC is via an off-shell Z boson: pp →
Z? → HA → `+`−`+`−.7 Most of the LHC multilepton searches assume a heavy ZZ(?)

resonance [130, 131], which is not applicable in this case. The cross section limits from

7Only the (H
↔
∂ µA)Zµ coupling is nonzero, while the (H

↔
∂ µH)Zµ and (A

↔
∂ µA)Zµ couplings vanish due

to parity [129].
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inclusive multilepton searches, mostly performed in the SUSY context with large missing
transverse energy [132, 133], turn out to be weaker than the LEP constraints derived above.

2.4.7 Collider constraints on light charged scalar

e−

e− h+

h−

Z/γ

e−

e−

να

h−

h+ e−

e−

W+

h−

νe

e−

e−
Z/γ

ℓ±

ℓ±

ν

h±

Figure 12: Feynman diagrams for pair- and single-production of singly−charged scalars h±
at e+e− collider.

In this section, we discuss the collider constraints on the light charged scalar h± in the
Zee model from various LEP and LHC searches.

Constraints from LEP searches

At LEP, h± can be pair-produced through the s-channel Drell-Yan process mediated by either
γ or Z boson (see Fig. 12 (a)). It can also be pair-produced through the t-channel processes
mediated by a light neutrino (see Fig. 12 (b)). In addition, it can be singly-produced either
in association with a W boson (see Fig. 12 (c)) or via the Drell-Yan channel in association
with leptons (see Fig. 12 (d)).

It is instructive to write down the explicit formula for the pair-production (Figs. 12 (a)
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and 12 (b) cross section:

σ(e+e− → h+h−) =
β3

48πs

[
e4 +

g4

8c4
w

(1− 4s2
w + 8s4

w)

(
s2
w −

1

2
sin2 ϕ

)2
s2

(s−m2
Z)2 + Γ2

Zm
2
Z

+
e2g2

2c2
w

(4s2
w − 1)

(
s2
w −

1

2
sin2 ϕ

)
s(s−m2

Z)

(s−m2
Z)2 + Γ2

Zm
2
Z

]
+
|Yαe|4
32πs

[
−β +

1

2
(1 + β2) ln

1 + β

1− β

]
− |Yαe|

2

128πs

[
2β(1 + β2)− (1− β2)2 ln

1 + β

1− β

]
×
[
e2 +

g2

c2
w

(
s2
w −

1

2
sin2 ϕ

)
(2s2

w − 1)
s(s−m2

Z)

(s−m2
Z)2 + Γ2

Zm
2
Z

]
,

(2.4.45)

where β =
√

1− 4m2
h+/s, s is the squared center-of-mass energy, e and g are the electro-

magnetic and SU(2)L coupling strengths, respectively, and cw ≡ cos θw, sw ≡ sin θw (θw
being the weak mixing angle). Note that the t-channel cross section depends on the Yukawa
coupling Yαe, and it turns out there is a destructive interference between the s and t-channel
processes. Similarly, the differential cross section for the production of h±W∓ (Fig. 12 (c))
is given by

dσ(e+e− → h±W∓)

d cos θ
=

g2|Yee|2
64πs

λ1/2

(
1,
m2
h+

s
,
m2
W

s

)
× A cos2 θ +B cos θ + C[

1− m2
h++m2

W

s
− λ1/2

(
1,

m2
h+

s
,
m2
W

s

)
cos θ

]2 , (2.4.46)

where θ is the angle made by the outgoing h± with respect to the initial e−-beam direction,
λ(x, y, z) = x2 + y2 + z2 − 2xy − 2xz − 2yz, and

A =
s

4m2
W

[
1− (mh+ −mW )2

s

] [
1− (mh+ +mW )2

s

] [
1− 2m2

W

s

]
(2.4.47)

B = − s

2m2
W

(
1− m2

h+ +m2
W

s

)
λ1/2

(
1,
m2
h+

s
,
m2
W

s

)
, (2.4.48)

C =
s

4m2
W

(
1− 2m2

h+

s
− 3m4

W

s2
− 2m2

h+m2
W

s2
+

2m6
W

s3
− 2m2

h+m4
W

s3
+
m4
h+

s2
+
m4
h+m2

W

s3

)
.

(2.4.49)

The analytic cross section formula for the single-production of charged Higgs via Drell-
Yan process (Fig. 12 (d)) is more involved due to the three-body phase space and is not
given here. We implement our model file in FeynRules package [126] and compute all the
cross-sections at the parton-level using MadGraph5 event generator [127].

Once produced on-shell, the charged scalar will decay into the leptonic final states να`β
through the Yukawa coupling Yαβ. Since we are interested in potentially large NSI effects,
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the charged scalar must couple to the electron. Due to stringent constraints from cLFV
processes, especially the trilepton cLFV decays (see Table 8), which is equally applicable for
the product of two Yukawa entries either along a row or column, both Yαe and Yαµ (or Yαe
and Yβe) cannot be large simultaneously. So we consider the case where BReν+BRτν = 100%
and BRµν is negligible, in order to avoid more stringent limits from muon decay.8

Electron channel: For a given charged scalar decay branching ratio to electrons, BReν ,
we can reinterpret the LEP selectron searches [134] to put a constraint on the charged scalar
mass as a function of BReν . In particular, the right-handed selectron pair-production e+e− →
ẽRẽR, followed by the decay of each selectron to electron and neutralino, ẽR → eR + χ̃0, will
mimic the e+e−νν̄ final state of our case in the massless neutralino limit. So we use the
95% CL observed upper limits on the ẽRẽR production cross section [134] for mχ̃ = 0 as an
experimental upper limit on the quantity

σ̃ee ≡ σ(e+e− → h+h−)BR2
eν + σ(e+e− → h±W∓)BReνBRW→eν , (2.4.50)

and derive the LEP exclusion region in the plane of charged scalar mass and BReν , as shown
in Fig. 14 (a) by the orange-shaded region. Here we have chosen Yee sinϕ = 0.1 and varied
Yτα (with α = µ or τ) to get the desired branching ratios. We find that for BReν = 1, charged
scalar masses less than 100 GeV are excluded. For BReν < 1, these limits are weaker, as
expected, and the charged scalar could be as light as 97 GeV (for BReν = 0.33), if we just
consider the LEP selectron (as well as stau, see below) searches.

Fig. 14 (b) shows the same constraints as in Fig. 14 (a), but for the case of Yee sinϕ = 0.2.
The LEP selectron constraints become stronger as we increase Yee and extend to smaller
BReν . However, the mass limit of 100 GeV for BReν = 1 from Fig. 14 (a) still holds here.
This is because the charged scalar pair-production cross section drops rapidly for mh+ > 100
GeV due to the kinematic threshold of LEP II with

√
s = 209 GeV and is already below the

experimental cross section limit even for Yee sinϕ = 0.2. In this regime, the single-production
channel in Fig. 12 (d) starts becoming important, despite having a three-body phase space
suppression.

Figs. 14 (c) and 14 (d) show the same constraints as in Fig. 14 (a) and 14 (b) respectively,
but for the Yee = 0 case. Here we have fixed Yτe sinϕ and varied Yτα (with α = e or µ) to get
the desired branching ratios. In this case, the single-production channel in association with
the W boson (cf. Fig. 12 (c)) goes away, and therefore, the limits from selectron and stau
searches become slightly weaker. Note that for the NSI purpose, we must have a non-zero Yαe
(for α = e, µ or τ). Therefore, the t-channel contribution to the pair-production (cf. Fig. 12
(b)), as well as the Drell-Yan single-production channel are always present.9

Tau channel: In the same way, we can also use the LEP stau searches [134] to derive
an upper limit on

σ̃ττ ≡ σ(e+e− → h+h−)BR2
τν + σ(e+e− → h±W∓)BRτνBRW→τν (2.4.51)

and the corresponding LEP exclusion region in the plane of charged scalar mass and BRτν ,
as shown in Fig. 14 by the blue shaded region. We find that for BRτν = 1, charged scalar
masses less than 104 (105) GeV are excluded for Yee sinφ = 0.1 (0.2).

8This choice is consistent with the observed neutrino oscillation data (see Sec. 2.4.13).
9This might be the reason why the LEP limits derived here are somewhat more stringent than those

reported in Ref. [135], which presumably only considered the s-channel contribution.
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Figure 13: Feynman diagrams for pair production and single production of singly−charged
scalars h± at LHC.

For BRτν 6= 0, a slightly stronger limit can be obtained from the LEP searches for the
charged Higgs boson pairs in the 2HDM [136]. Their analysis focused on three kinds of final
states, namely, τντν, cs̄τν (or c̄sτν) and cs̄c̄s, under the assumption that BRτν + BRcs̄ = 1,
which is valid in the 2HDM as the couplings of the charged Higgs boson to the SM fermions
are proportional to the fermion masses. In our case, the observed LEP upper limit on
σ(e+e− → h+h−)BR2

τν for BRτν = 1 can be recast into an upper limit on

σhττ ≡ σ(e+e− → h+h−)BR2
τν + σ(e+e− → h±W∓)BRτνBRW→τν (2.4.52)

and the corresponding exclusion region is shown in Fig. 14 by the green shaded region.
We can also use the LEP cross section limit on cs̄τν for BRτν 6= 1 as an upper limit on
σ(e+e− → h±W∓)BRτνBRW→cs̄ and the corresponding exclusion region is shown in Fig. 14
by the cyan shaded region, which is found to be weaker than the τντν mode.
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Figure 14: Collider constraints on light charged scalar h± in the Zee model for (a)
Yee sinϕ = 0.1, (b) Yee sinϕ = 0.2, (c) Yee sinϕ = 0, Yτe sinϕ = 0.1, and (d) Yee sinϕ = 0,
Yτe sinϕ = 0.2. We plot the h± branching ratios to τν and eν (with the sum being equal
to one) as a function of its mass. All shaded regions are excluded: Blue and orange shaded
regions from stau and selectron searches at LEP (see Sec. 2.4.7); purple region from selectron
searches at LHC (see Sec. 2.4.7); yellow, brown, and pink regions from W universality tests
in LEP data for µ/e, τ/e, and τ/µ sectors respectively (see Sec. 2.4.8); light green and gray
regions from tau decay universality and lifetime constraints respectively (see Sec. 2.4.9). The
W universality constraints do not apply in panels (b) and (c), because the h±W∓ production
channel in Fig. 12 (c) vanishes in the Yee → 0 limit.
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Constraints from LHC searches

As for the LHC constraints, there is no t-channel contribution to the singlet charged scalar
production. The only possible channel for pair-production is the s-channel Drell-Yan process
pp → γ?/Z? → h+h− (see Fig. 13 (a)), followed by the leptonic decay of h± → `ν. There
are also single-production processes as shown in Fig. 13 (b)-(d), which turn out to be less
important. The relevant LHC searches are those for right-handed selectrons/staus: pp →˜̀+
R
˜̀−
R → `+

Rχ̃
0`−Rχ̃

0, which will mimic the `+ν`−ν final states from h+h− decay in the massless
neutralino limit. The

√
s = 13 TeV LHC stau searches focus on the stau mass range above

100 GeV and it turns out that the current limits [137] on the stau pair-production cross
section are still a factor of five larger than the h+h− pair-production cross section in our
case; therefore, there are no LHC limits from the tau sector. A

√
s = 8 TeV ATLAS analysis

considered the mass range down to 80 GeV [138]; however, the observed cross section is still
found to be larger than the theoretical prediction in our case even for BRτν = 1.

As for the selectron case, we take the
√
s = 13 TeV CMS search [139], which focuses on

the selectron masses above 120 GeV, and use the observed cross section limit on σ(pp →
e+
Rχ̃

0e−Rχ̃
0) to derive an upper limit on σ(pp → h+h−)BR2

eν , which can be translated into a
bound on the charged scalar mass, as shown in Fig. 14 by the purple shaded regions. It is
evident that the LHC limits can be evaded by going to larger BRτν & 0.4, which can always
be done for any given Yukawa coupling Yαe by choosing an appropriate Yβτ . This however
may not be the optimal choice for NSI, especially for Yee 6= 0, where the lepton universality
constraints restrict us from having a larger BRτν . Thus, the LHC constraints will be most
relevant for εee, as we will see in Fig. 20 (a).

2.4.8 Constraints from lepton universality in W± decays

The presence of a light charged Higgs can also be constrained from precision measurements of
W boson decay rates. The topology of the charged Higgs pair production h+h− (Fig. 12 (a)
and 12 (b)) and the associated production h±W∓ (Fig. 12 (c)) is very similar to the W+W−

pair production at colliders, if the charged Higgs mass is within about 20 GeV of the W
boson mass. Thus, the leptonic decays of the charged Higgs which are not necessarily flavor-
universal can be significantly constrained from the measurements of lepton universality inW
decays. From the combined LEP results [140], the constraints on the ratio of W branching
ratios to leptons of different flavors are as follows:

Rµ/e =
Γ(W → µν)

Γ(W → eν)
= 0.986± 0.013 , (2.4.53)

Rτ/e =
Γ(W → τν)

Γ(W → eν)
= 1.043± 0.024 , (2.4.54)

Rτ/µ =
Γ(W → τν)

Γ(W → µν)
= 1.070± 0.026 . (2.4.55)

Note that while the measured value of Rµ/e agrees with the lepton universality prediction of
the SM, RSM

µ/e = 1, within 1.1σ CL, the W branching ratio to tau with respect to electron is
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about 1.8σ and to muon is about 2.7σ away from the SM prediction: RSM
τ/` = 0.9993 (with

` = e, µ), using the one-loop calculation of Ref. [141].
The best LEP limits on lepton universality in W decays come from the W+W− pair-

production channel, where oneW decays leptonically, and the otherW hadronically, i.e., e+e− →
W+W− → `νqq̄′ [140]. However, due to the leptophilic nature of the charged Higgs h± in
our model, neither the e+e− → h+h− channel (Figs. 12 (a) and 12 (b)) nor the Drell-Yan
single-production channel (Fig. 12 (d)) will lead to `νqq̄ final state. So the only relevant
contribution to the W universality violation could come from the h±W∓ production channel
(Fig. 12 (c)), with the W decaying hadronically and h± decaying leptonically. The pure
leptonic channels (eνeν and µνµν) have ∼ 40% uncertainties in the measurement and are
therefore not considered here.

Including the h±W∓ contribution, the modified ratios R`/`′ can be calculated as follows:

R`/`′ =
σ(W+W−)BRW

qq̄′BRW
`ν + σ(h±W∓)BRW

qq̄′BR`ν

σ(W+W−)BRW
qq̄′BRW

`′ν + σ(h±W∓)BRW
qq̄′BR`′ν

, (2.4.56)

where σ(W+W−) and σ(h±W∓) are the production cross sections for e+e− → W+W− and
e+e− → h±W∓ respectively, BRW

`ν denotes the branching ratio of W → `ν (with ` = e, µ, τ),
whereas BR`ν denotes the branching ratio of h± → `ν as before (with ` = e, τ). At LEP
experiment, the W+W− pair production cross section σW+W− is computed to be 17.17 pb
at
√
s = 209 GeV [140]. Within the SM, W± decays equally to each generation of leptons

with branching ratio of 10.83% and decays hadronically with branching ratio of 67.41% [113].
We numerically compute using MadGraph5 [127] the h±W∓ cross section at

√
s = 209 GeV

as a function of mh± and BR`ν , and compare Eq. 2.4.56 with the measured values given in
Eqs. 2.4.53-2.4.55 to derive the 2σ exclusion limits in the mh+-BR`ν plane. This is shown
in Figs. 14 (a) and 14 (b) by yellow, brown, and pink shaded regions for µ/e, τ/e, and τ/µ
universality tests, respectively. Note that these constraints are absent in Figs. 14 (c) and
14 (d), because when Yee = 0, there is no W±h∓ production at LEP (cf. Fig. 12 (c) in the
Zee model. But when Yee is relatively large, these constraints turn out to be some of the
most stringent ones in the mh+-BR`ν plane shown in Figs. 14 (a) and 14 (b), and rule out
charged scalars below 110 GeV (129 GeV) for Yee sinϕ = 0.1 (0.2). These constraints are not
applicable for mh± > 129 GeV, because h±W∓ can no longer be produced on-shell at LEP
II with maximum

√
s = 209 GeV.

As mentioned before, the measured W branching ratio to tau with respect to muon is
2.7σ above the SM prediction. Since in our case, h± decays to either eν or τν, but not µν,
this contributes to Rτµ only in the numerator, but not in the denominator. Therefore, the
2.7σ discrepancy can be explained in this model, as shown by the allowed region between
the upper and lower pink-dashed curves in Fig. 14 (a) with Yee sinϕ = 0.1.10 The upper
pink-shaded region with larger BRτν gives Rτµ > 1.122, which is above the allowed 2σ range
given in Eq. 2.4.55. On the other hand, the lower pink-shaded region with smaller BRτν

gives Rτµ < 1.018, which is below the allowed 2σ range given in Eq. 2.4.55. For larger
Yukawa coupling Yee, as illustrated in Fig. 14 (b) with Yee sinϕ = 0.2, the whole allowed
range of parameter space from Rτ/µ shifts to lower values of BRτν . This is because the

10Light charged scalar has been used to address the lepton universality issue in W decays in Ref. [142].
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Figure 15: Feynman diagram for the new decay mode of the τ lepton mediated by light
charged scalar in the Zee model.

h±W∓ production cross section σ(h±W∓) in Eq. 2.4.56 is directly proportional to |Yee|2, and
therefore, for a large Yee, a smaller BRτν would still be compatible with the Rτ/µ-preferred
range.

2.4.9 Constraints from tau decay lifetime and universality

In order to realize a light charged scalar h− consistent with LEP searches, we have assumed
that the decay h− → τ ν̄β proceeds with a significant branching ratio. h− also has coupling
with eν̄α, so that non-negligible NSI is generated. When these two channels are combined,
we would get new decay modes for the τ lepton, as shown in Fig. 15. This will lead to
deviation in τ -lifetime compared to the SM expectation. The new decay modes will also lead
to universality violation in τ decays, as the new modes preferentially lead to electron final
states. Here we analyze these constraints and evaluate the limitations these pose for NSI.

The effective four-fermion Lagrangian relevant for the new τ decay mode is given by

Leff = (ν̄LαeR)(τ̄RνLβ)YαeY
?
βτ

sin2 ϕ

m2
h+

. (2.4.57)

This can be recast, after a Fierz transformation, as

Leff = −1

2
(ν̄LαγµνLβ)(τ̄Rγ

µeR)YαeY
?
βτ

sin2 ϕ

m2
h+

. (2.4.58)

This can be directly compared with the SM τ decay Lagrangian, given by

LSM = 2
√

2GF (ντLγµντL)(τ̄Lγ
µeL) . (2.4.59)

It is clear from here that the new decay mode will not interfere with the SM model (in the
limit of ignoring the lepton mass), since the final state leptons have opposite helicity in the
two decay channels. The width of the τ lepton is now increased from its SM value by a
factor 1 + ∆, with ∆ given by [143]

∆ =
1

4
|gsRR|2 , (2.4.60)

where

gsRR = −
YαeY

?
βτ sin2 ϕ

2
√

2GFm2
h+

. (2.4.61)
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The global fit result on τ lifetime is ττ = (290.75± 0.36)× 10−15 s, while the SM prediction
is τSM

τ = (290.39±2.17)×10−15 s [113]. Allowing for 2σ error, we find ∆ ≤ 1.5%. If the only
decay modes of h− are h− → ν̄αe

− and h− → ν̄βτ
−, then we can express |Yβτ |2 in terms of

|Yαe|2 as

|Yβτ |2 = |Yαe|2
BR(h− → τν)

BR(h− → eν)
. (2.4.62)

Using this relation, we obtain

∆ = |εαα|2
BR(h− → τν)

BR(h− → eν)
, (2.4.63)

where εαα is the diagonal NSI parameter for which the expression is derived later in Eq. 2.4.79.
Therefore, a constraint on ∆ from the tau lifetime can be directly translated into a constraint
on εαα:

|εαα| ≤ 12.2%

√
BR(h− → eν)

BR(h− → τν)
. (2.4.64)

An even stronger limit is obtained from e−µ universality in τ decays. The experimental
central value prefers a slightly larger width for τ → µνν compared to τ → eνν. In our
scenario, h− mediation enhances τ → eνν relative to τ → µνν. We have in this scenario

Γ(τ → µνν)

Γ(τ → eνν)
= 1−∆ , (2.4.65)

which constrains ∆ ≤ 0.002, obtained by using the measured ratio Γ(τ→µνν)
Γ(τ→eνν)

= 0.9762±0.0028

[113], and allowing 2σ error. This leads to a limit

|εαα| ≤ 4.5%

√
BR(h− → eν)

BR(h− → τν)
. (2.4.66)

In deriving the limits on a light charged Higgs mass from LHC constraints, we have imposed
the τ decay constraint as well as the universality constraint on ∆, see Fig. 14. Avoiding the
universality constraint by opening up the τ → µνν channel will not work, since that will be
in conflict with µ→ eνν constraints, which are more stringent.

The Michel parameters in τ decay will now be modified [144]. While the ρ and δ param-
eters are unchanged compared to their SM value of 3/4, ξ is modified from its SM value of
1 to

ξ = 1− 1

2
|gsRR|2 . (2.4.67)

However, the experimental value is ξ = 0.985±0.030 [113], which allows for significant room
for the new decay. Again, our choice of Yukawa couplings does not modify the µ → eνν
decay, and is therefore, safe from the Michel parameter constraints in the muon sector, which
are much more stringent.
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Figure 16: (a) New contribution to h → γγ decay mediated by charged scalar loop. (b)
New contribution to h→ 2`2ν via the exotic decay mode h→ h±h∓?.

2.4.10 Constraints from Higgs precision data

In this subsection, we analyze the constraints on light charged scalar from LHC Higgs pre-
cision data. Both ATLAS and CMS collaborations have performed several measurements of
the 125 GeV Higgs boson production cross sections and branching fractions at the LHC, both
in Run I [145] and Run II [146, 147]. Since all the measurements are in good agreement with
the SM expectations, any exotic contributions to either production or decay of the SM-like
Higgs boson will be strongly constrained. In the Zee model, since the light charged scalar is
leptophilic, it will not affect the production rate of the SM-like Higgs h (which is dominated
by gluon fusion via top-quark loop). However, it gives new contributions to the loop-induced
h→ γγ decay (see Fig. 16 (a)) and mimics the tree-level h→ WW ? → 2`2ν channel via the
exotic decay mode h → h±h∓? → h±`ν → 2`2ν (see Fig. 16 (b)). Both these contributions
are governed by the effective hh+h− coupling given by

λhh+h− = −
√

2µ sinϕ cosϕ+ λ3v sin2 ϕ+ λ8v cos2 ϕ . (2.4.68)

Therefore, the Higgs precision data from the LHC can be used to set independent constraints
on these Higgs potential parameters, as we show below.

The Higgs boson yield at the LHC is characterized by the signal strength, defined as
the ratio of the measured Higgs boson rate to its SM prediction. For a specific production
channel i and decay into specific final states f , the signal strength of the Higgs boson h can
be expressed as

µif ≡
σi

(σi)SM

BRf

(BRf )SM

≡ µi · µf , (2.4.69)

where µi (with i = ggF, VBF, V h, and tt̄h) and µf (with f = ZZ?,WW ?, γγ, τ+τ−, bb̄) are
the production and branching rates relative to the SM predictions in the relevant channels.
As mentioned above, the production rate does not get modified in our case, so we will set
µi = 1 in the following. As for the decay rates, the addition of the two new channels shown
in Fig. 16 will increase the total Higgs decay width, and therefore, modify the partial widths
in all the channels.

To derive the Higgs signal strength constraints on the model parameter space, we have
followed the procedure outlined in Ref. [98, 148], using the updated constraints on signal
strengths reported by ATLAS and CMS collaboration for all individual production and decay
modes at 95% CL, based on the

√
s = 13 TeV LHC data. The individual analysis by each
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experiment examines a specific Higgs boson decay mode corresponding to various production
processes. We use the measured signal strengths in the following dominant decay modes for
our numerical analysis: h → γγ [149–152], h → ZZ? [153, 154], h → WW ? [155–157],
h→ ττ [158, 159] and h→ bb̄ [160–162].

We formulate the modified h→ γγ decay rate as

Γ(h→ γγ) = κ2
γΓ(h→ γγ)SM , (2.4.70)

where the scaling factor κγ is given by

κγ =

∑
f N

f
c Q

2
fA1/2(τf ) + A1(τW ) +

λhh+h−v

2m2
h+

A0(τh+)∑
f N

f
c Q2

fA1/2(τf ) + A1(τW )
, (2.4.71)

where N f
c = 3 (1) is the color factor for quark (lepton),

∑
f is the sum over the SM fermions

f with charge Qf , and the loop functions are given by [163]

A0(τ) = −τ + τ 2f(τ), (2.4.72)
A1/2(τ) = 2τ [1 + (1− τ)f(τ)], (2.4.73)
A1(τ) = −2− 3τ [1 + (2− τ)f(τ)], (2.4.74)

with f(τ) =


arcsin2

(
1√
τ

)
, if τ ≥ 1

−1

4

[
log

1 +
√

1− τ
1−
√

1− τ − iπ
]2

, if τ < 1 .
(2.4.75)

The parameters τi = 4m2
i /m

2
h are defined by the corresponding masses of the heavy particles

in the loop. For the fermion loop, only the top quark contribution is significant, with the
next leading contribution coming from the bottom quark which is an 8% effect. Note that
the new contribution in Eq. 2.4.71 due to the charged scalar can interfere with the SM part
either constructively or destructively, depending on the sign of the effective coupling λhh+h−

in Eq. 2.4.68.
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Figure 17: Constraints from the Higgs boson properties in λ8−sinϕ plane in the Zee model
(with λ3 = λ8). The red, cyan, green, yellow, and purple shaded regions are excluded by
the signal strength limits for various decay modes (γγ, ττ, bb̄, ZZ?,WW ?) respectively. The
white unshaded region simultaneously satisfies all the experimental constraints. Gray shaded
region (only visible in the upper right panel) is excluded by total decay width constraint.
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As for the new three-body decay mode h → h±h∓
? → h±`ν, the partial decay rate is

given by

Γ(h→ h+`−ν̄) =
|λhh+h−|2
64π3mh

Tr(Y †Y )

∫ 1
2

(1+r)

√
r

dx
(1− 2x+ r)

√
x2 − r

(1− 2x)2 +
r2Γ2

h+

m2
h

, (2.4.76)

where Y is the Yukawa coupling defined in Eq. 2.4.19, Γh+ = Tr(Y †Y )mh+/8π is the total
decay width of h+, and r = m2

h+/m2
h. With this new decay mode, the signal strength in

the h → 2`2ν channel will be modified to include Γ(h → h±`ν → 2`2ν) along with the SM
contribution from Γ(h→ WW ? → 2`2ν), and to some extent, from Γ(h→ ZZ? → 2`2ν).

The partial decay widths of h in other channels will be the same as in the SM, but their
partial widths will now be smaller, due to the enhancement of the total decay width. A
comparison with the measured signal strengths therefore imposes an upper bound on the
effective coupling λhh±h∓ which is a function of the cubic coupling µ, quartic couplings λ3

and λ8, and the mixing angle sinϕ (cf. Eq. 2.4.69). For suppressed effective coupling λhh±h∓
to be consistent with the Higgs observables, we need some cancellation between the cubic and
quartic terms. In order to have large NSI effect, we need sufficiently large mixing sinϕ, which
implies large value of µ (cf. Eq. 2.4.13). In order to find the maximum allowed value of sinϕ,
we take λ3 = λ8 in Eq. 2.4.69 and show in Fig. 17 the Higgs signal strength constraints in the
λ8 − sinϕ plane. The red, blue, yellow, cyan, and green shaded regions are excluded by the
signal strength limits γγ,WW ?, ZZ?, ττ , and bb̄ decay modes, respectively. We have fixed
the light charged Higgs mass at 100 GeV, and the different panels are for different benchmark
values of the heavy charged Higgs mass: mH+ = 700 GeV (upper left), 2 TeV (upper right),
1.6 TeV (lower left) and 450 GeV (lower right). The first choice is the benchmark value
we will later use for NSI studies, while the other three values correspond to the minimum
allowed values for the heavy neutral Higgs mass (assuming it to be degenerate with the
heavy charged Higgs to easily satisfy the T -parameter constraint (cf. Sec. 2.4.4)) consistent
with the LEP contact interaction bounds for O(1) Yukawa couplings (cf. Sec. 2.4.6). From
Fig. 17, we see that the h → γγ signal strength gives the most stringent constraint. If we
allow λ8 to be as large as 3, then we can get maximum value of sinϕ up to 0.67 (0.2) for
mH+ = 0.7 (2) TeV.

In addition to the modified signal strengths, the total Higgs width is enhanced due to the
new decay modes. Both ATLAS [131] and CMS [164] collaborations have put 95% CL upper
limits on the Higgs boson total width Γh from measurement of off-shell production in the
ZZ → 4` channel. Given the SM expectation ΓSM

h ∼ 4.1 MeV, we use the CMS upper limit
on Γh < 9.16 MeV [164] to demand that the new contribution (mostly from h → h±h∓?,
because the h → γγ branching fraction is much smaller) must be less than 5.1 MeV. This
is shown in Fig. 17 by the grey shaded region (only visible in the upper right panel), which
turns out to be much weaker than the signal strength constraints in the individual channels.

2.4.11 Monophoton constraint from LEP

Large neutrino NSI with electrons inevitably leads to a new contribution to the monophoton
process e+e− → νν̄γ that can be constrained using LEP data [165]. In the SM, this process
occurs via s-channel Z-boson exchange and t- channel W -boson exchange, with the photon
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Figure 18: Feynman diagrams for charged scalar contributions to monophoton signal at
LEP.

being emitted from either the initial state electron or positron or the intermediate state
W boson. In the Zee model, we get additional contributions from t-channel charged scalar
exchange (see Fig. 18). Both light and heavy charged scalars will contribute, but given the
mass bound on the heavy states from LEP contact interaction, the dominant contribution
will come from the light charged scalar.

The total cross section for the process e+e− → ναν̄βγ can be expressed as σ = σSM +
σNS, where σSM is the SM cross section (for α = β) and σNS represents the sum of the
pure non-standard contribution due to the charged scalar and its interference with the SM
contribution. Note that since the charged scalar only couples to right-handed fermions, there
is no interference with the W -mediated process (for α = β = e). Moreover, for either α or β
not equal to e, the W contribution is absent. For α 6= β, the Z contribution is also absent.

The monophoton process has been investigated carefully by all four LEP experiments [113],
but the most stringent limits on the cross section come from the L3 experiment, both on [166]
and off [167] Z-pole. We use these results to derive constraints on the charged scalar mass and
Yukawa coupling. The constraint |σ − σexp| ≤ δσexp, where σexp ± δσexp is the experimental
result, can be expressed in the following form:∣∣∣∣1 +

σNS

σSM
− σexp

σSM

∣∣∣∣ ≤ (
σexp

σSM

)(
δσexp

σexp

)
. (2.4.77)

We evaluate the ratio σexp/σSM by combining the L3 results [166, 167] with an accurate
computation of the SM cross section, both at Z-pole and off Z-pole. Similarly, we compute
the ratio σNS/σSM numerically as a function of the charged scalar mass mh+ and the Yukawa
coupling Yαβ sinϕ. For comparison of cross sections at Z-pole, we adopt the same event
acceptance criteria as in Ref. [166], i.e., we allow photon energy within the range 1 GeV
< Eγ < 10 GeV and the angular acceptance 45◦ < θγ < 135◦. Similarly, for the off Z-pole
analysis, we adopt the same event topology as described in Ref. [167]: i.e., 14◦ < θγ < 166◦,
1 GeV < Eγ, and pγT > 0.02

√
s. We find that the off Z-pole measurement imposes more

stringent bound than the Z-pole measurement bound. As we will see in the next section
(see Fig. 20), the monophoton constraints are important especially for the NSI involving
tau-neutrinos. We also note that our monophoton constraints are somewhat weaker than
those derived in Ref. [168] using an effective four-fermion approximation.
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2.4.12 NSI predictions

The new singly-charged scalars η+ andH+
2 in the Zee Model induce NSI at tree level as shown

in Fig. 19. Diagrams (a) and (d) are induced by the pure singlet and doublet components
of the charged scalar fields and depend on the Yukawa couplings f and Y respectively
(cf. Eqs. 2.4.1 and 2.4.19). On the other hand, diagrams (b) and (c) are induced by the
mixing between the singlet and doublet fields, and depend on the combination of Yukawa
couplings and the mixing angle ϕ (cf. Eq. 2.4.13). As mentioned in Sec. 2.4.2, satisfying the
neutrino mass requires the product f ·Y to be small. For Y ∼ O(1), we must have f ∼ 10−8

to get mν ∼ 0.1 eV (cf. Eq. 2.4.21). In this case, the NSI from Fig. 19 (a) and (c) are heavily
suppressed. So we will only consider diagrams (b) and (d) for the following discussion and
work in the mass basis for the charged scalars, where η+ and H+

2 are replaced by h+ and
H+ (cf. Eq. 2.4.12).

ℓρL νβL

ναL ℓσL

η+

ℓρR
νβL

ναL ℓσR

H+
2

η+

H+
2

ℓρL νβL

ναL ℓσL

η+

H+
2

η+

ℓρR νβL

ναL ℓσR
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2

Figure 19: Tree-level NSI induced by the exchange of charged scalars in the Zee model.
Diagrams (a) and (d) are due to the pure singlet and doublet charged scalar components,
while (b) and (c) are due to the mixing between them.

The effective NSI Lagrangian for the contribution from Fig. 19 (b) is given by

Leff = sin2 ϕ
YαρY

?
βσ

m2
h+

(ν̄αL `ρR)(¯̀
σR νβL)

= −1

2
sin2 ϕ

YαρY
?
βσ

m2
h+

(ν̄αγ
µPLνβ)(¯̀

σγµPR`ρ) , (2.4.78)

where in the second step, we have used the Fierz transformation. Comparing Eq. 2.4.78 with
Eq. 2.3.1, we obtain the h+-induced matter NSI parameters (setting ρ = σ = e)

ε
(h+)
αβ =

1

4
√

2GF

YαeY
?
βe

m2
h+

sin2 ϕ . (2.4.79)

Thus, the diagonal NSI parameters εαα depend on the Yukawa couplings |Yαe|2, and are
always positive in this model, whereas the off-diagonal ones εαβ (with α 6= β) involve the
product YαeY ?

βe and can be of either sign, or even complex. Also, we have a correlation
between the diagonal and off-diagonal NSI:

|εαβ| =
√
εααεββ , (2.4.80)
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which is a distinguishing feature of the model.
Fig. 19 (d) gives a sub-dominant NSI contribution as follows:

ε
(H+)
αβ =

1

4
√

2GF

YαeY
?
βe

m2
H+

cos2 ϕ . (2.4.81)

Hence, the total matter NSI induced by the charged scalars in the Zee model can be expressed
as

εαβ ≡ ε
(h+)
αβ + ε

(H+)
αβ =

1

4
√

2GF

YαeY
?
βe

(
sin2 ϕ

m2
h+

+
cos2 ϕ

m2
H+

)
. (2.4.82)

To get an idea of the size of NSI induced by Eq. 2.4.82, let us take the diagonal NSI
parameters from the light charged scalar contribution in Eq. 2.4.79:

ε(h+)
αα =

1

4
√

2GF

|Yαe|2
m2
h+

sin2 ϕ . (2.4.83)

Thus, for a given value of mh+ , the NSI are maximized for maximum allowed values of |Yαe|
and sinϕ. Following Eq. 2.4.68, we set the trilinear coupling λhh+h− → 0, thus minimizing
the constraints from Higgs signal strength. We also assume λ3 = λ8 to get

µ =

√
2λ8v

sin 2ϕ
. (2.4.84)

Now substituting this into Eq. 2.4.13, we obtain

sin2 ϕ ' λ8v
2

2(m2
H+ −m2

h+)
. (2.4.85)

Furthermore, assuming the heavy charged and neutral scalars to be mass-degenerate, from
LEP contact interaction constraints (cf. Sec. 2.4.6), we have

m2
H+

|Yαe|2
&

Λ2
α

8π
, (2.4.86)

where Λα = 10 TeV, 7.9 TeV and 2.2 TeV for α = e, µ, τ , respectively [124]. Combining
Eqs. 2.4.83, 2.4.85 and 2.4.86, we obtain

εmax
αα ' λ8v

2

m2
h+

π√
2GFΛ2

α

(2.4.87)

Using benchmark values of mh+ = 100GeV and λ8 = 3, we obtain:

εmax
ee ≈ 3.5% , εmax

µµ ≈ 5.6% , εmax
ττ ≈ 71.6% . (2.4.88)

Although a rough estimate, this tells us that observable NSI can be obtained in the Zee
model, especially in the τ sector. To get a more accurate prediction of the NSI in the Zee
model and to reconcile large NSI with all relevant theoretical and experimental constraints,
we use Eq. 2.4.82 to numerically calculate the NSI predictions, as discussed below.
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Heavy neutral scalar case

First, we consider the case with heavy neutral and charged scalars, so that the LEP contact
interaction constraints (cf. Sec. 2.4.6) are valid. To be concrete, we have fixed the heavy
charged scalar mass mH+ = 700 GeV and the quartic couplings λ3 = λ8 = 3. In this
case, the heavy charged scalar contribution to NSI in Eq. 2.4.82 can be ignored. The NSI
predictions in the light charged scalar mass versus Yukawa coupling plane are shown by
black dotted contours in Fig. 20 for diagonal NSI and Fig. 21 for off-diagonal NSI. The
theoretical constraints on sinϕ from charge-breaking minima (cf. Sec. 2.4.3) and T -parameter
(cf. Sec. 2.4.4) constraints are shown by the light and dark green-shaded regions, respectively.
Similarly, the Higgs precision data constraint (cf. Sec. 2.4.10) on sinϕ is shown by the
brown shaded region. To cast these constraints into limits on Yαe sinϕ, we have used the
LEP contact interaction limits on Yαe (cf. Sec. 2.4.6) for diagonal NSI, and similarly, the
cLFV constraints (cf. Sec. 2.4.5) for off-diagonal NSI, and combined these with the CBM,
T -parameter and Higgs constraints, which are all independent of the light charged scalar
mass. Also shown in Figs. 20 and 21 are the LEP and/or LHC constraints on light charged
scalar (cf. Sec. 2.4.7) combined with the lepton universality constraints fromW and τ decays
(cf. Secs. 2.4.8 and 2.4.9), which exclude the blue shaded region below mh+ ∼ 100 GeV. In
addition, the LEP monophoton constraints (cf. Sec. 2.4.11) are shown in Fig. 20 by the light
purple shaded region.

The model predictions for NSI are then compared with the current experimental con-
straints from neutrino-electron scattering experiments (red shaded), as well as the global
fit results from neutrino oscillation plus COHERENT data (orange shaded); see Table 10
for more details.11 For neutrino-electron scattering constraints, we only considered the con-
straints on εeRαβ [169–172], since the dominant NSI in the Zee model always involves right-
handed electrons (cf. Eq. 2.4.78). These scattering experiments impose the strongest limits
for εµµ and εττ , restricting them to be less than 3.8% and 43%, respectively, although the
model allows for much larger NSI (cf. Fig. 20). For εµµ, we have rederived the CHARM II
limit following Ref. [169], but using the latest PDG value for s2

w = 0.22343 (on-shell) [113].
Specifically, we used the CHARM II measurement of the Z-coupling to right-handed elec-
trons geR = 0.234 ± 0.017 obtained from their νµe → νe data [173] and compared with the
SM value of (geR)SM = s2

w to obtain a 90% CL limit on εµµ < 0.038, which is slightly weaker
than the limit of 0.03 quoted in Ref. [170].

As for the global-fit constraints, we use the constraints on εpαβ from Ref. [89], assuming
that these will be similar for εeαβ due to charge-neutrality in matter. Also shown (blue
solid lines) are the future sensitivity at long baseline experiments, such as DUNE with 300
kt.MW.yr and 850 kt.MW.yr of exposure, derived at 90% CL using GloBES3.0 [174] with
the DUNE CDR simulation configurations [175]. Here we have used δ (true) = −π/2 for the
true value of the Dirac CP phase and marginalized over all other oscillation parameters [94].

Taking into account all existing constraints and this possibility of light h+ and H+, the
maximum possible allowed values of the NSI parameters in the Zee model are shown in the
second column of Table 10, along with the combination of the relevant constraints limiting

11From the oscillation data alone, there is an additional constraint on εττ − εµµ < 42.6% [89]. However,
this is not applicable here, since we can only allow for one large diagonal NSI at a time, otherwise there will
be stringent constraints from cLFV (cf. Sec. 2.4.5).
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each NSI parameter (shown in parentheses). Thus, we find that for the diagonal NSI, one
cannot get significantly large εee and εµµ, but εττ as large as 43% can be allowed in this
model and there is a good portion of the allowed region for εττ within reach of DUNE
sensitivity. As for the off-diagonal NSI, they require the presence of at least two non-zero
Yukawa couplings Yαe, and their products are all heavily constrained from cLFV; therefore,
one cannot get sizable off-diagonal NSI in the Zee model that can be probed at DUNE or
any other neutrino experiment.

Light neutral scalar case

Now we consider the case where the neutral scalars H and A are light, so that the LEP
contact interaction constraints (cf. 2.4.6) are not applicable. In this case, both h+ and H+

contributions to the NSI in Eq. 2.4.82 should be kept. For concreteness, we fix mH+ = 130
GeV to allow for the maximum H+ contribution to NSI while avoiding the lepton universality
constraints on H+ (cf. Sec. 2.4.8). We also choose the neutral scalars H and A to be nearly
mass-degenerate with the charged scalar H+, so that the T -parameter and CBM constraints
are easily satisfied. The Higgs decay constraints can also be significantly relaxed in this
case by making λhh+h− → 0 in Eq. 2.4.68. The NSI predictions for this special choice of
parameters are shown in Fig. 22. Note that for higher mh+ , the NSI numbers are almost
constant, because of the mH+ contribution which starts dominating. We do not show the off-
diagonal NSI plots for this scenario, because the cLFV constraints still cannot be overcome
(cf. Fig. 21).
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Figure 20: Zee model predictions for diagonal NSI (εee, εµµ, εττ ) are shown by the black
dotted contours. Color-shaded regions are excluded by various theoretical and experimental
constraints. Blue shaded region is excluded by direct searches from LEP and LHC (Sec. 2.4.7)
and/or lepton universality (LU) tests in W decays (Sec. 2.4.8). Purple shaded region is ex-
cluded by (off Z-pole) LEP monophoton search (cf. Sec. 2.4.11). Purple dashed line indicates
the LEP monophoton search limit at Z pole (which is always weaker than the off Z-pole
constraint). Light green, brown and deep green shaded regions are excluded respectively
by T parameter (Sec. 2.4.4), precision Higgs data (Sec. 2.4.10), and charge breaking min-
ima (Sec. 2.4.3), each combined with LEP contact interaction constraint (Sec. 2.4.6). Red
shaded regions are excluded by neutrino-electron scattering experiments, like CHARM [170],
TEXONO [171] and BOREXINO [172]. Orange shaded region in (c) is excluded by global
fit constraints from neutrino oscillation+COHERENT data [89]. We also show the future
DUNE sensitivity in blue solid lines, for both 300 kt.MW.yr and 850 kt.MW.yr exposure [94].
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Figure 21: Zee model predictions for off-diagonal NSI (εeµ, εµτ , εeτ ) are shown by black
dotted contours. Colored shaded regions are excluded by various theoretical and experi-
mental constraints. Blue shaded region is excluded by direct searches from LEP and LHC
(Sec. 2.4.7) and/or lepton universality (LU) tests in W decays (Sec. 2.4.8). Light green,
brown and deep green shaded regions are excluded respectively by T -parameter (Sec. 2.4.4),
precision Higgs data (Sec. 2.4.10), and charge breaking minima (Sec. 2.4.3), each combined
with cLFV constraints (Sec. 2.4.5). The current NSI constraints from neutrino oscillation
and scattering experiments are weaker than the cLFV constraints, and do not appear in the
shown parameter space. The future DUNE sensitivity is shown by blue solid lines, for both
300 kt.MW.yr and 850 kt.MW.yr exposure [94].
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Figure 22: Zee model predictions for diagonal NSI for light neutral scalar case. Here
we have chosen mH+ = 130 GeV. Labeling of the color-shaded regions is the same as in
Fig. 20, except for the LEP dilepton constraint (green shaded region) which replaces the
T -parameter, CBM and LHC Higgs constraints.
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NSI Zee Model Scattering Global fit DUNE
Prediction (Max.) constraints constraints [89] sensitivity [94]

εee 0.08 [−0.07, 0.08] [171] [−0.010, 2.039] [−0.185, 0.380]
(LEP + LU + T -param.) ([−0.130, 0.185])

εµµ 0.038 [−0.03, 0.03] [170] [−0.364, 1.387] [−0.290, 0.390]
(CHARM) [−0.017, 0.038] (ours) ([−0.192, 0.240])

εττ 0.43 [−0.42, 0.43] [172] [−0.350, 1.400] [−0.360, 0.145]
(BOREXINO) ([−0.120, 0.095])

εeµ 1.5× 10−5 [−0.13, 0.13] [170] [−0.179, 0.146] [−0.025, 0.052]
(LEP + LU + cLFV + T -param.) ( [−0.017, 0.040])

εeτ 0.0056 [−0.19, 0.19] [171] [−0.860, 0.350] [−0.055, 0.023]
(LEP + LU + cLFV + T -param.) ([−0.042, 0.012])

εµτ 0.0034 [−0.10, 0.10] [170] [−0.035, 0.028] [−0.0.015, 0.013]
(LEP + LU + cLFV + T -param) ([−0.010, 0.010])

Table 10: Maximum allowed NSI (with electrons) in the Zee model, after imposing con-
straints from CBM (Sec. 2.4.3), T -parameter (Sec. 2.4.4), cLFV searches (Sec. 2.4.5), LEP
contact interaction (Sec. 2.4.6), direct collider searches (Sec. 2.4.7), lepton universality (LU)
in W decays (Sec. 2.4.8), LHC Higgs data (Sec. 2.4.10), and LEP monophoton searches
(Sec. 2.4.11). We also impose the constraints from neutrino−electron scattering experi-
ments (as shown in the third column), like CHARM−II [170], TEXONO [171] and BOREX-
INO [172] (only εeRαβ are considered, cf. Eq. 2.4.78) as well as the global fit constraints (as
shown in the fourth column) from neutrino oscillation+COHERENT data [89] (only εpαβ are
considered), whichever is stronger. The maximum allowed value for each NSI parameter is
obtained after scanning over the light charged Higgs mass (see Figs. 20 and 21) and the com-
bination of all relevant constraints limiting the NSI are shown in parentheses in the second
column. In the last column, we also show the future DUNE sensitivity for 300 kt.MW.yr
exposure (and 850 kt.MW.yr in parentheses) [94].

2.4.13 Consistency with neutrino oscillation data

In this section, we show that the choice of the Yukawa coupling matrix used to maximize
our NSI parameter values is consistent with the neutrino oscillation data. The neutrino
mass matrix in the Zee model is given by Eq. 2.4.21 which is diagonalized by the unitarity
transformation

UT
PMNSMν UPMNS = M̂ν , (2.4.89)

where M̂ν = diag(m1,m2,m3) is the diagonal mass matrix with the eigenvalues m1,2,3 and
UPMNS is the 3 × 3 lepton mixing matrix. In the standard parametrization [113],

UPMNS =

 c12c13 c13s12 e−iδs13

−c23s12 − c12s13s23e
iδ c12c23 − s12s13s23e

iδ c13s23

s12s23 − c12c23s13e
iδ −c12s23 − c23s12s13e

iδ c13c23

 , (2.4.90)

where cij ≡ cos θij, sij ≡ sin θij, θij being the mixing angle between different flavor eigen-
states i and j, and δ is the Dirac CP phase. We diagonalize the neutrino mass matrix 2.4.21
numerically, assuming certain forms of the Yukawa coupling matrices given below. The uni-
tary matrix thus obtained is converted to the mixing angles θij using the following relations
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from Eq. 2.4.90:

s2
12 =

|Ue2|2
1− |Ue3|2

, s2
13 = |Ue3|2, s2

23 =
|Uµ3|2

1− |Ue3|2
. (2.4.91)

Since the NSI expressions in Eq. 2.4.82 depend on Yαe (the first column of the Yukawa
matrix), we choose the following three sets of benchmark points (BPs) for Yukawa textures
to satisfy all the cLFV constraints, see Tables 7 and 8. For simplicity, we also take all the
elements of Yukawa matrix to be real.

BP I : Y =

 Yee 0 Yeτ
0 Yµµ Yµτ
0 Yτµ Yττ

 , (2.4.92)

BP II : Y =

 0 Yeµ Yeτ
Yµe 0 Yµτ
0 Yτµ Yττ

 , (2.4.93)

BP III : Y =

 Yee 0 Yeτ
0 Yµµ Yµτ
Yτe 0 Yττ

 (2.4.94)

For BP I, substituting Y from Eq. 2.4.92 in Eq. 2.4.21, we get a symmetric neutrino mass
matrix as follows:

Mν = a0

 m11 m12 m13

m12 m22 m23

m13 m23 m33

 , (2.4.95)

where a0 = κfµτYee fixes the overall scale, and the entries in Mν are given by

m11 = 2mτx2 y13 ,

m12 = −mex1y11 +mτy13 +mµ x1 y22 +mτ x2 y23 ,

m13 = −mex2y11 +mµx1y32 +mτ x2 y33 ,

m22 = 2mτy23 ,

m23 = −mµ y22 +mτy33 ,

m33 = −2mµ y32 ,

and we have defined the ratios x1 = feµ
fµτ

, x2 = feτ
fµτ

, y13 = Yeτ
Yee

, y22 = Yµµ
Yee

, y23 = Yµτ
Yee

, y32 = Yτµ
Yee

,
and y33 = Yττ

Yee
. Similarly, for BPs II and III, one can absorb Yµµ and Yττ respectively in the

overall factor a0 to get the mass matrix parameters in terms of the ratios xi and yij.
For each set of Yukawa structure, we show in Table 11 the best-fit values of the parameters

xi, yij and a0. For BP I and II, we obtain inverted hierarchy (IH) and for BP III, we get
normal hierarchy (NH) of neutrino masses. The model predictions for the neutrino oscillation
parameters in each case are shown in Table 12, along with the 3σ allowed range from a recent
NuFit4 global analysis [176]. It is clear that the fits for all the three sets are in very good
agreement with the observed experimental values. We note here that the NuFit4 analysis
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BP x1 x2 y11 y12 y13 y21 y22 y23 y31 y32 y33 a0(10−9)

BP I (IH) −7950 34 −1.0 0 −0.01 0 0.001 0.08 0 0.05 0.70 0.017
BP II (IH) 14 4.7 0 0.05 0.01 1.0 0 0.02 0 0.06 0.03 0.19
BP III (NH) −9.9 0.27 0.01 0 0.07 0 0.13 −0.007 −1.0 0 −0.036 0.6

Table 11: Values of parameters chosen for different sets of Yukawa structure given in
Eqs. 2.4.92-2.4.94 to fit the neutrino oscillation data.

Oscillation 3σ allowed range Model prediction
parameters from NuFit4 [176] BP I (IH) BP II (IH) BP III (NH)

∆m2
21(10−5 eV2) 6.79 - 8.01 7.388 7.392 7.390

∆m2
23(10−3 eV2)(IH) 2.412 - 2.611 2.541 2.488 -

∆m2
31(10−3 eV2)(NH) 2.427 - 2.625 - - 2.505

sin2 θ12 0.275 - 0.350 0.295 0.334 0.316
sin2 θ23 (IH) 0.423 - 0.629 0.614 0.467 -
sin2 θ23 (NH) 0.418 - 0.627 - - 0.577
sin2 θ13 (IH) 0.02068 - 0.02463 0.0219 0.0232 -
sin2 θ13(NH) 0.02045 - 0.02439 - - 0.0229

Table 12: 3σ allowed ranges of the neutrino oscillation parameters from a recent global
fit [176] (without NSI), along with the model predictions for each BP.

does not include any NSI effects, which might affect the fit results; however, it is sufficient
for the consistency check of our benchmark points. A full global analysis of the oscillation
data in presence of NSI to compare with our benchmark points is beyond the scope of this
work.

In addition to the best fit results in the tabulated format, we also display them in Fig. 23
in the two-dimensional projections of 1σ, 2σ and 3σ confidence regions of the global fit re-
sults [176] (without inclusion of the Super-K atmospheric ∆χ2-data). Colored regions (grey,
magenta, cyan) are for normal hierarchy, whereas regions enclosed by solid, dashed, dotted
lines are for inverted hierarchy. The global-fit best-fit points, along with the model predic-
tions for each benchmark point, are shown for comparison. It is clear that the theoretical
predictions are within the observed 3σ range in each case.

2.5 NSI in one-loop leptoquark model

There are only four kinds of scalar leptoquarks that can interact with the neutrinos at the
renormalizable level in the SM (see Table 2): LdcΩ, LQχ?, LQρ̄ and Lucδ.12 In this section
and next, we discuss neutrino mass models with various combinations of these LQs. Our
focus is again the range of neutrino NSI that is possible in these models. We note in passing
that all these scalar LQ scenarios have gained recent interest in the context of semileptonic
B-decay anomalies, viz., R(?)

D and R(?)
K . But it turns out that none of these scalar LQ models

can simultaneously explain both R(?)
D and R(?)

K [178].
We start with a LQ variant of the Zee model that generates small neutrino masses at

12The LQ fields Ω, χ?, ρ̄, δ are often denoted as S1, S3, R2, R̃2 respectively [177].
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Figure 23: Global oscillation analysis obtained from NuFit4 [176] for both Normal hier-
archy (NH) and Inverted hierarchy (IH) compared with our model benchmark points (BP1,
BP2, BP3). Gray, Magenta, and Cyan colored contours represent 1σ, 2σ, and 3σ CL contours
for NH, whereas solid, dashed, and dotted lines respectively correspond to 1σ, 2σ, and 3σ CL
contours for IH. Red, purple, and (blue, black, brown) markers are respectively best-fit from
NuFit for IH and NH, and benchmark points I, II and III for Yukawa structures given in
Eqs. 2.4.92-2.4.94.

one-loop level, via the operator is O3b (cf. Eq. (2.2.2c)). It turns out that O3b will induce
neutrino masses at one-loop, while O3a, owing to the SU(2)L index structure, will induce
mν at the two-loop level. A UV complete model of O3a will be presented in Sec. 2.7.2.
More precisely, the model of this section corresponds to O8

3 of Table 4, which involves two
LQ fields and no new fermions. All other realizations of O3 will be analyzed in subsequent
sections.

The phenomenology of the basic LQ model generating O8
3 will be analyzed in detail in

this section, and the resulting maximum neutrino NSI will be obtained. The constraints that
we derive here on the model parameters can also be applied, with some modifications, to the
other O3 models, as well as other one-loop, two-loop and three-loop LQ models discussed in
subsequent sections.

To realize operator O3b the SU(2)L doublet and singlet scalars of the Zee model [43] are
replaced by SU(2)L doublet and singlet LQ fields. This model has been widely studied in
the context of R-parity breaking supersymmetry, where the LQ fields are identified as the Q̃
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and d̃c fields of the MSSM [57, 179, 180]. For a non-supersymmetric description and analysis
of the model, see Ref. [59].

The gauge symmetry of the model denoted as O8
3 is the same as the SM: SU(3)c ×

SU(2)L × U(1)Y . In addition to the SM Higgs doublet H
(
1,2, 1

2

)
, two SU(3)c triplet

LQ fields Ω
(
3,2, 1

6

)
=
(
ω2/3, ω−1/3

)
and χ−1/3

(
3,1,−1

3

)
are introduced. The Yukawa La-

grangian relevant for neutrino mass generation in the model is given by

LY ⊃ λαβL
i
αd

c
βΩjεij + λ′αβL

i
αQ

j
βχ

?εij + H.c.

≡ λαβ
(
ναd

c
βω
−1/3 − `αdcβω2/3

)
+ λ′αβ (ναdβ − `αuβ)χ? + H.c. (2.5.1)

Here {α, β} are family indices and {i, j} are SU(2)L indices as before. As in the Zee model,
a cubic scalar coupling is permitted, given by

V ⊃ µH†Ωχ? + H.c. ≡ µ
(
ω2/3H− + ω−1/3H

0
)
χ? + H.c. (2.5.2)

which ensures lepton number violation.
Once the neutral component of the SM Higgs doublet acquires a VEV, the cubic term in

the scalar potential 2.5.2 will generate mixing between the ω−1/3 and χ−1/3 fields, with the
mass matrix given by:

M2
LQ =

(
m2
ω µv/

√
2

µ?v/
√

2 m2
χ

)
, (2.5.3)

where m2
ω and m2

χ include the bare mass terms plus a piece of the type λv2 arising from the
SM Higgs VEV. The physical states are denoted as {X−1/3

1 , X
−1/3
2 }, defined as

X1 = cosαω + sinαχ ,

X2 = − sinαω + cosαχ , (2.5.4)

with the mixing angle given by

tan 2α =
−
√

2µv

m2
χ −m2

ω

. (2.5.5)

The squared mass eigenvalues of these states are:

m2
1,2 =

1

2

[
m2
ω +m2

χ ∓
√

(m2
ω −m2

χ)2 + 4µ2v2
]
. (2.5.6)

Neutrino masses are induced via the one-loop diagram shown in Fig. 24. The mass matrix
is given by:

Mν =
3 sin 2α

32π2
log

(
m2

1

m2
2

)
(λMdλ

′T + λ′Mdλ
T ) . (2.5.7)

Here Md is the diagonal down-type quark mass matrix. Acceptable neutrino masses and
mixings can arise in the model for a variety of parameters. Note that the induced Mν is
proportional to the down-quark masses, the largest being mb. In the spirit of maximizing
neutrino NSI, which are induced by either the ω−1/3 or the χ−1/3 field, without relying on
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⟨H0⟩

χ−1/3ω−1/3

να dc
γ dγ νβ

Figure 24: One-loop diagram inducing neutrino mass in the LQ model. This is the model
O8

3 of Table 4. In SUSY models with R-parity violation, ω−1/3 is identified as d̃ and χ?1/3 as
d̃c.

their mixing, we shall adopt a scenario where the couplings λαβ are of order one, while
λ′αβ � 1. Such a choice would realize small neutrino masses. One could also consider
λ′ ∼ O(1), with λ� 1 as well. However, in the former case, there is a GIM-like suppression
in the decay rate for `α → `β + γ [62], which makes the model with λ ∼ O(1), λ′ � 1
somewhat less constrained from cLFV, and therefore we focus on this scenario. The reason
for this suppression will be elaborated in Sec. 2.5.1.

2.5.1 Low-energy constraints

One interesting feature of the LQ model presented in this section is that the radiative decay
`α → `β + γ is suppressed in the model due to a GIM-like cancellation. On the other hand,
µ− e conversion in nuclei gives a stringent constraint on the Yukawa couplings of the model,
as do the trilepton decays of the lepton to some extent. Since the product |λλ′| � 1 in order
to generate the correct magnitude of the neutrino masses (cf. Eq. (2.5.7)), we shall primarily
consider the case where |λ′| � 1 with |λ| being of order one. This is the case where the
constraints from radiative decays are nonexistent. If on the other hand, |λ| � 1 and |λ′| is
of order unity, then these radiative decays do provide significant constraints. This situation
will be realized in other LQ models as well; so we present constraints on the model of this
section in this limit as well. The processes that are considered are: `α → `β + γ, µ − e
conversion in nuclei, `α → ¯̀

β`γ`δ (with at least two of the final state leptons being of same
flavor), τ → `π, τ → `η, τ → `η′ (where ` = e or µ), and APV.

Atomic parity violation

dR eL

eL dR

ω2/3

eL

uL uL

eL

χ−1/3

Figure 25: Doublet and singlet LQ contribution to APV at tree-level.

The strongest constraints on the λed and λ′ed couplings come from atomic parity violation
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(APV) [181], analogous to the R-parity violating supersymmetric case [182]. The diagrams
shown in Fig. 25 lead to the following effective couplings between up/down quarks and
electrons:

Leff =
|λed|2
m2
ω

(ēLdR)
(
d̄ReL

)
+
|λ′ed|2
m2
χ

(
ecLuL

)
(ūLe

c
L)

= − 1

2

|λed|2
m2
ω

(ēLγ
µeL)

(
d̄RγµdR

)
+

1

2

|λ′ed|2
m2
χ

(ēLγ
µeL) (ūLγµuL) , (2.5.8)

where we have used the Fierz transformation in the second step. The parity-violating parts
of these interactions are given by

LPV
eff =

1

8

|λed|2
m2
ω

[(
ēγµγ5e

) (
d̄γµd

)
− (ēγµe)

(
d̄γµγ

5d
)]

− 1

8

|λ′ed|2
m2
χ

[(
ēγµγ5e

)
(ūγµu) + (ēγµe)

(
ūγµγ

5u
)]
. (2.5.9)

On the other hand, the parity-violating SM interactions at tree-level are given by

LPV
SM =

GF√
2

∑
q=u,d

[
C1q

(
ēγµγ5e

)
(q̄γµq) + C2q (ēγµe)

(
q̄γµγ

5q
)]
, (2.5.10)

with

C1u = −1

2
+

4

3
s2
w , C2u = −1

2
+ 2s2

w ,

C1d =
1

2
− 2

3
s2
w , C2d =

1

2
− 2s2

w . (2.5.11)

Correspondingly, the weak charge of an atomic nucleus with Z protons and N neutrons is
given by

Qw(Z,N) = −2 [C1u(2Z +N) + C1d(Z + 2N)] = (1− 4s2
w)Z −N , (2.5.12)

where (2Z + N) and (Z + 2N) are respectively the number of up and down quarks in the
nucleus. The presence of the new PV couplings in Eq. 2.5.9 will shift the weak charge to

δQw(Z,N) =
1

2
√

2GF

[
(2Z +N)

|λ′ed|2
m2
χ

− (Z + 2N)
|λed|2
m2
ω

]
. (2.5.13)

There are precise experiments measuring APV in cesium, thallium, lead and bismuth [183].
The most precise measurement comes from cesium (at the 0.4% level [184]), so we will use
this to derive constraints on LQ. For 133

55 Cs, Eq. 2.5.13 becomes

δQw

(
133
55 Cs

)
=

1

2
√

2GF

(
188
|λ′ed|2
m2
χ

− 211
|λed|2
m2
ω

)
. (2.5.14)
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µ e
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ω2/3

u

µ e

u

χ−1/3

Figure 26: Feynman diagrams leading to µ−e conversion at tree-level in the doublet-singlet
LQ model.

Taking into account the recent atomic structure calculation [181], the experimental value of
the weak charge of 133

55 Cs is given by [113]

Qexp
w

(
133
55 Cs

)
= −72.62± 0.43 , (2.5.15)

whereas the SM prediction is [113, 181]

QSM
w

(
133
55 Cs

)
= −73.23± 0.02 , (2.5.16)

based on a global fit to all electroweak observables with radiative corrections. Assuming new
radiative corrections from LQ are small and saturating the difference between Eqs. 2.5.15
and 2.5.16, we obtain a 2σ allowed range of δQw:

−0.29 < δQw < 1.51 . (2.5.17)

Comparing this with Eq. 2.5.14, we obtain the corresponding 2σ bounds on λed and λ′ed as
a function of the LQ mass as follows:

|λed| < 0.21
( mω

TeV

)
, |λ′ed| < 0.51

( mχ

TeV

)
. (2.5.18)

The APV constraint on down-quark coupling of the LQ is stronger than the up-quark cou-
pling constraint due to the fact that the experimental value of Qw (cf. Eq. 2.5.15) is 1.5σ
larger than the SM prediction (cf. Eq. 2.5.16), while the doublet LQ contribution to Qw goes
in the opposite direction (cf. Eq. 2.5.14).

µ− e conversion
Another constraint on the LQ model being discussed comes from the cLFV process of coher-
ent µ− e conversion in nuclei (µN → eN). We will only consider the tree-level contribution
as shown in Fig. 26, since the loop-level contributions are sub-dominant. Following the gen-
eral procedure described in Ref. [143], we can write down the branching ratio for this process
as [62]

BR(µN → eN) ' |~pe|Eem
3
µα

3Z4
effF

2
p

64π2ZΓN
(2A− Z)2

( |λ?edλµd|
m2
ω

+
|λ′?edλ′µd|
m2
χ

)2

, (2.5.19)

where ~pe and Ee are the momentum and energy of the outgoing electron respectively, Z and
A are the atomic number and mass number of the nucleus respectively, Zeff is the effective
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atomic number, Fp is the nuclear matrix element, and ΓN is the muon capture rate of the
nucleus. Here we take |~pe| ' Ee ' mµ and use the values of Zeff and Fp from Ref. [185], and
the value of ΓN from Ref. [186]. Comparing the model predictions from Eq. 2.5.19 with the
experimental limits for different nuclei [187–189], we obtain the constraints on the Yukawa
couplings (either λ or λ′) and LQ mass as shown in Table 13.

Nucleus Experimental Zeff Fp ΓN [186] Constraint
Limit [185] [185] (106 s−1) on |λ?edλµd|

48
22Ti BR < 6.1× 10−13 [187] 17.6 0.54 2.59 < 4.30× 10−6

(
mω
TeV

)2
197
79 Au BR < 7.0× 10−13 [188] 33.5 0.16 13.07 < 4.29× 10−6

(
mω
TeV

)2
208
82 Pb BR < 4.6× 10−11 [189] 34.0 0.15 13.45 < 3.56× 10−5

(
mω
TeV

)2
Table 13: Constraints on Yukawa couplings and LQ masses from µ−e conversion in different
nuclei. For |λ′?edλ′µd|, the same constraints apply, with mω replaced by mχ.

`α → ¯̀
β`γ`δ decay

Leptoquarks do not induce trilepton decays of the type µ → 3e at the tree-level. However,
they do induce such processes at the loop level. There are LQ mediated Z and photon
penguin diagrams, as well as box diagrams. These contributions have been evaluated for the
LQ model of this section in Ref. [62]. With the Yukawa couplings λ being of order one, but
with |λ′| � 1, the branching ratio for µ− → e+e−e− decay is given by [62]

BR(µ→ 3e) =

(
3
√

2

32π2GF

)2

CL
dd

|λedλ?µd|2
m4
ω

, (2.5.20)

where

CL
dd =

1

7776

[
72e4

(
log

m2
µ

m2
ω

)2

− 108(3e4 + 2e2|λed|2) log

(
m2
µ

m2
ω

)

+ (449 + 68π2)e4 + 486e2|λed|2 + 243|λed|4
]
. (2.5.21)

Here we have kept only those couplings that are relevant for neutrino NSI, and we have
assumed that there are no accidental cancellations among various contributions. Using
BR(µ→ 3e) < 1.0× 10−12 [122], we obtain

|λedλ?µd| < 4.4× 10−3
( mω

TeV

)2 (
1 + 1.45|λed|2 + 0.81|λed|4

)−1/2
. (2.5.22)

Analogous constraints from τ → 3e and τ → 3µ are less stringent. For example, from
BR(τ → 3e) < 1.4 × 10−8 [123], and using Eq. (2.5.20) with a multiplicative factor of
BR(τ → ν̄``ντ ) = 0.174, we obtain

|λedλ?τd| < 1.2
( mω

TeV

)2

(1 + 1.96|Yed|2 + 1.50|Yed|4)−1/2 . (2.5.23)
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γ
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Figure 27: One-loop Feynman diagrams for `α → `βγ processes mediated by LQ.

Similarly, from BR(τ → 3µ) < 1.2× 10−8 [123] we obtain

|λµdλ?τd| < 1.1
( mω

TeV

)2

(1 + 1.96|Yµd|2 + 1.50|Yµd|4)−1/2 . (2.5.24)

The constraint on |λedλ?µd| from the trilepton decay (cf. Eq. 2.5.22) turns out to be weaker
than those from µ − e conversion (cf. Table 13). Similarly, the constraints on |λedλ?τd| and
|λµdλ?τd| from the trilepton decay (cf. Eqs. 2.5.23 and 2.5.24) turn out to be weaker than
those from semileptonic tau decays (cf. Table 15).

`α → `βγ constraint

The lepton flavor violating radiative decay `α → `β +γ arises via one-loop diagrams with the
exchange of LQ fields (see Fig. 27). These diagrams are analogous to Fig. 10, but with the
charged and neutral scalars replaced by LQ scalars. Note that the photon can be emitted
from either the LQ line, or the internal fermion line. It turns out that the LQ Yukawa
coupling matrix λ leads to suppressed decay rates for `α → `β + γ, owing to a GIM-like
cancellation. The coupling of the ω2/3 LQ has the form `αLdcβRω

2/3, which implies that
QB = 2/3 and QF = −1/3 in Eq. (2.4.30). Consequently, the rate becomes proportional
to a factor which is at most of order (m2

b/m
2
ω)2. Thus, the off-diagonal couplings of λ are

unconstrained by these decays.
On the other hand, the χ−1/3 LQ field does mediate `α → `β + γ decays, proportional to

the Yukawa coupling matrix λ′. The relevant couplings have the form ūL`Lχ
?, which implies

that QF = −2/3 and QB = 1/3 in Eq. (2.4.30). We find the decay rate to be

Γ(`α → `β + γ) =
9α

576

|λ′βdλ′?αd|2
(16π2)2

m5
α

m4
χ

, (2.5.25)

where 9 = 32 is a color factor. Here we have assumed t = m2
F/m

2
B → 0, since the LQ

is expected to be much heavier than the SM charged leptons to satisfy the experimental
constraints. The limits on the products of Yukawa couplings from these decays are listed in
Table 14.

Semileptonic tau decays

The decays τ− → `−π0, `−η, `−η′, with ` = e or µ will occur at tree level mediated by the
doublet LQ ω2/3 or the singlet LQ χ−1/3. The relevant Feynman diagrams are shown in
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Process Exp. limit Constraint

µ→ eγ BR < 4.2 ×10−13 [117] |λ′edλ′?µd| < 2.4× 10−3
( mχ
TeV

)2

τ → eγ BR < 3.3 ×10−8 [116] |λ′edλ′?τd| < 1.6
( mχ
TeV

)2

τ → µγ BR < 4.4 ×10−8 [116] |λ′?µdλ′τd| < 1.9
( mχ
TeV

)2

Table 14: Constraints on the Yukawa couplings λ′ as a function of the singlet LQ mass
from `α → `βγ processes.

τ

dc

dc

ℓ

ω2/3

π0, η

τ

u

u

ℓ

χ⋆

π0, η

Figure 28: Feynman diagram for τ → µπ0 (µη, µη′) and τ → eπ0 (eη, eη′) decays.

Fig. 28. The decay rate for τ− → `−π0 mediated by ω LQ is given by

Γτ→`π0 =
|λ`dλ?τd|2
1024π

f 2
πm

3
τ

m4
ω

Fτ (m`,mπ) , (2.5.26)

where

Fτ (m`,mπ) =

[(
1− m2

`

m2
τ

)2

−
(

1 +
m2
`

m2
τ

)
m2
π

m2
τ

][
1−

(
m`

mτ

+
mπ

mτ

)2
]1/2

×
[

1−
(
m`

mτ

− mπ

mτ

)2
]1/2

. (2.5.27)

If this decay is mediated by the χ leptoquark, the same relation will hold, up to a factor of
|Vud|2, with the replacement (λ, mω) → (λ′, mχ). The rates for τ− → `−η and τ− → `−η′

can be obtained from Eq. (2.5.26) by the replacement (fπ, mπ) → (mη, f
q
η ) and (mη′ , f

q
η′)

respectively. Here we have defined the matrix elements to be

〈π0(p)|ūγµγ5u|0〉 = −〈π0(p)|d̄γµγ5d|0〉 = −i fπ√
2
pµ , (2.5.28)

〈η(p)|ūγµγ5u|0〉 = 〈η(p)|d̄γµγ5d|0〉 = −i f
q
η√
2
pµ , (2.5.29)

〈η′(p)|ūγµγ5u|0〉 = 〈η′(p)|d̄γµγ5d|0〉 = −i
f qη′√

2
pµ . (2.5.30)

The sign difference in Eq. 2.5.28 is due to the fact that the state |π0〉 = (uū−dd̄)/
√

2. As for
|η〉 and |η′〉 states, these are obtained from the mixing of the flavor states |ηq〉 = (ūu+d̄d)/

√
2
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and |ηs〉 = s̄s:

|η〉 = cosφ |ηq〉 − sinφ |ηs〉,
|η′〉 = sinφ |ηq〉+ cosφ |ηs〉 . (2.5.31)

The matrix elements entering semileptonic τ decays are then related as

f qη = cosφfq , f qη′ = sinφfq (2.5.32)

where fq is defined through

〈ηq(p)|q̄γµγ5q|0〉 = −i fq√
2
pµ . (2.5.33)

The mixing angle φ and the decay parameter fq have been determined to be [190]

φ = (39.3± 1)0 , fq = (1.07± 0.02)fπ . (2.5.34)

Using these relations, and with fπ ' 130 MeV, we have f qη ' 108 MeV and f qη′ ' 89 MeV
[191]. Using these values and the experimental limits on the semileptonic branching ratios
[113], we obtain limits on products of Yukawa couplings as functions of the LQ mass, which
are listed in Table 15. It turns out that these limits are the most constraining for off-diagonal
NSI mediated by leptoquarks.

We should mention here that similar diagrams as in Fig. 28 will also induce alternative
pion and η-meson decays: π0 → e+e− and η → `+`− (with ` = e or µ). In the SM,
BR(π0 → e+e−) = 6.46 × 10−8 [113], compared to BR(π0 → γγ) ' 0.99. Specifically, the
absorptive part of π0 → e+e− decay rate13 is given by [192, 193]

Γabsp(π0 → e+e−)

Γ(π0 → γγ)
=

1

2
α2

(
me

mπ

)2
1

β

(
log

1 + β

1− β

)2

, (2.5.35)

where β =
√

1− 4m2
e/m

2
π. For LQ mediation, the suppression factor (me/mπ)2 ∼ 1.4×10−5

is replaced by the factor (mπ/mω)4 ∼ 3.3 × 10−16 for a TeV-scale LQ. Similar suppression
occurs for the η decay processes η → `+`− (with ` = e or µ) [192, 194]. Therefore, both
pion and η decay constraints turn out to be much weaker than those from τ decay given in
Table 15.

Rare D-meson decays

The coupling matrix λ′ of Eq. (2.5.1) contains, even with only diagonal entries, flavor
violating couplings in the quark sector. To see this, we write the interaction terms in a basis
where the down quark mass matrix is diagonal. Such a choice of basis is always available
and conveniently takes care of the stringent constraints in the down-quark sector, such as
from rare kaon decays. The χ leptoquark interactions with the physical quarks, in this basis,
read as

−LY ⊃ λ′αd (ναdχ
? − `αV ?

iduiχ
?) + H.c. (2.5.36)

13The dispersive part of π0 → e+e− decay rate is found to be 32% smaller than the absorptive part in the
vector meson dominance [192].
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Process Exp. limit [113] Constraint

τ → µπ0 BR < 1.1× 10−7 |λµdλ?τd| < 9.3× 10−2
(
mω
TeV

)2

τ → eπ0 BR < 8× 10−8 |λedλ?τd| < 7.9× 10−2
(
mω
TeV

)2

τ → µη BR < 6.5× 10−8 |λµdλ?τd| < 9.5× 10−2
(
mω
TeV

)2

τ → eη BR < 9.2× 10−8 |λedλ?τd| < 1.1× 10−1
(
mω
TeV

)2

τ → µη′ BR < 1.3× 10−7 |λµdλ?τd| < 2.3× 10−1
(
mω
TeV

)2

τ → eη′ BR < 1.6× 10−7 |λedλ?τd| < 2.5× 10−1
(
mω
TeV

)2

Table 15: Constraints on couplings and the LQ mass from semileptonic tau decays. Exactly
the same constraints apply to λ′ couplings, with mω replaced by mχ.

c

u

ℓα

ℓβ

χ−1/3
D0

c

d

d

u

ℓβ

ℓα

χ−1/3

π+

D+

Figure 29: Feynman diagram for rare leptonic and semileptonic D-meason decays mediate
by the χ leptoquark.

Here V is the CKM mixing matrix. In particular, the Lagrangian contains the following
terms:

−LY ⊃ −λ′αd (V ?
ud`αuχ

? + V ?
cd`αcχ

?) + H.c. (2.5.37)

The presence of these terms will result in the rare decays D0 → `+`− as well as D → π`+`−

where ` = e, µ. The partial width for the decay D0 → `+`− is given by

ΓD0→`−α `+α =
|λ′αdλ′?αd|2|VudV ?

cd|2
128π

m2
`f

2
DmD

m4
χ

(
1− 2m2

`

m2
D

)(
1− 4m2

`

m2
D

)1/2

. (2.5.38)

Here we have used the effective Lagrangian arising from integrating out the χ field to be

Leff =
λ′αdλ

′?
βd

2m2
χ

(ūLγ
µcL)(¯̀

βLγ
µ`αL) (2.5.39)

and the hadronic matrix element

〈D0|ūγµγ5c|0〉 = −ifDpµ . (2.5.40)

Using fD = 200 MeV, we list the constraint arising from this decay in Table 16. It will turn
out that the NSI parameter εµµ will be most constrained by the limit D0 → µ+µ−, in cases
where χ leptoquark is the mediator. Note that this limit only applies to SU(2)L singlet
and triplet LQ fields, and not to the doublet LQ field Ω. The doublet LQ field always has
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Process Exp. limit [113] Constraint
D0 → e+e− BR < 7.9× 10−8 |λ′ed| < 16.7

( mχ
TeV

)
D0 → µ+µ− BR < 6.2× 10−9 |λ′µd| < 0.614

( mχ
TeV

)
D+ → π+e+e− BR < 1.1× 10−6 |λ′ed| < 0.834

( mχ
TeV

)
D+ → π+µ+µ− BR < 7.3× 10−8 |λ′µd| < 0.426

( mχ
TeV

)
D+ → π+e+µ− BR < 3.6× 10−6 |λ′µdλ′?ed| < 1.28

( mχ
TeV

)2

Table 16: Constraints on the χ leptoquark Yukawa couplings from D0 → `+`− and D+ →
π+`+`− decays.

couplings to a SU(2)L singlet quark field, which does not involve the CKM matrix, and thus
has not quark flavor violation arising from V .

The semileptonic decay D+ → π+`+`− is mediated by the same effective Lagrangian as
in Eq. (2.5.39). The hadronic matrix element is now given by

〈π+(p2)|ūγµc|D+(p1)〉 = F+(q2)(p1 + p2)µ + F−(q2)(p1 − p2)µ (2.5.41)

with q2 = (p1− p2)2. Since the F−(q2) term is proportional to the final state lepton mass, it
can be ignored. For the form factor F+(q2) we use

F+(q2) =
fD
fπ

gD?Dπ
1− q2/m2

D?
. (2.5.42)

For the D? → Dπ decay constant we use gD?Dπ = 0.59 [195]. Vector meson dominance
hypothesis gives very similar results [196]. With these matrix elements, the decay rate is
given by

ΓD+→π+`+α `
−
β

=

[ |λ′αdλ′?βd|
4m2

χ

fD
fπ
gD?Dπ|VudV ?

cd|
]2

1

64π3mD

F . (2.5.43)

The function F is defined as

F =
m2
D?

12m2
D

[
−2m6

D + 9m4
Dm

2
D? − 6m2

Dm
4
D? − 6(m2

D? −m2
D)2m2

D? log

(
m2
D? −m2

D

m2
D?

)]
.

Note that in the limit of infinite D? mass, this function F reduces to m6
D/24. The numerical

value of the function is F ' 2.98 GeV6. Using fD = 200 MeV, fπ = 130 MeV, gD?Dπ = 0.59
and the experimental upper limits on the corresponding branching ratios [113], we obtain
bounds on the λ′ couplings as shown in Table 16. These semileptonic D decays have a mild
effect on the maximal allowed NSI. Note that the experimental limits on D0 → π0`+`− are
somewhat weaker than the D+ decay limits and are automatically satisfied when the D+

semileptonic rates are satisfied.

2.5.2 Contact interaction constraints

High-precision measurements of inclusive e±p → e±p scattering cross sections at HERA
with maximum

√
s = 320 GeV [197] and e+e− → qq̄ scattering cross sections at LEP II with
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LQ LEP HERA
type Exp. bound [124] Constraint Exp. bound [197] Constraint
ω2/3 Λ−LR > 5.1 TeV mω

|λed|
> 1.017 TeV Λ−LR > 4.7 TeV mω

|λed|
> 0.937 TeV

χ−1/3 Λ−LL > 3.7 TeV mχ
|λed|

> 0.738 TeV Λ−LL > 12.8 TeV mχ
|λed|

> 2.553 TeV

Table 17: Constraints on the ratio of LQ mass and the Yukawa coupling from LEP [124]
and HERA [197] contact interaction bounds.

maximum
√
s = 209 GeV [124] can be used in an effective four-fermion interaction theory to

set limits on the new physics scale Λ >
√
s that can be translated into a bound in the LQ

mass-coupling plane. This is analogous to the LEP contact interaction bounds derived in the
Zee model 2.4.6. Comparing the effective LQ Lagrangian 2.5.8 with Eq. 2.4.37 (for f = u, d),
we see that for the doublet LQ, the only relevant chirality structure is LR, whereas for the
singlet LQ, it is LL, with ηdLR = ηuLL = −1. The corresponding experimental bounds on Λ−

and the resulting constraints on LQ mass and Yukawa coupling are given in Table 17.
In principle, one could also derive an indirect bound on LQs from the inclusive dilepton

measurements at the LHC, because the LQ will give an additional t-channel contribution
to the process pp → `+`−. However, for a TeV-scale LQ as in our case, the LHC contact
interaction bounds [198, 199] with

√
s = 13 TeV are not applicable. Recasting the LHC

dilepton searches in the fully inclusive category following Ref. [200] yields constraints weaker
than those coming from direct LQ searches shown in Fig. 31.

2.5.3 LHC constraints

g

g LQ

LQ

q

q

LQ

Z/γ

LQ

q

q LQ

LQ

ℓ

q

q

g

ℓ

LQ

q

g

ℓ

LQ
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Figure 30: Feynman diagrams for pair− and single−production of LQ at the LHC.

In this section, we derive the LHC constraints on the LQ mass and Yukawa couplings
which will be used in the next section for NSI studies.
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Figure 31: LHC constraints on scalar LQ in the LQ mass and branching ratio plane. For a
given channel, the branching ratio is varied from 0 to 1, without specifying the other decay
modes which compensate for the missing branching ratios to add up to one. Black, red, green,
blue, brown and purple solid lines represent present bounds from the pair production process
at the LHC, i.e., looking for e+e−jj, µ+µ−jj, τ+τ−bb̄, τ+τ−tt̄, τ+τ−jj and νν̄jj signatures
respectively. These limits are independent of the LQ Yukawa coupling. On the other hand,
black (red) dashed, dotted and dot-dashed lines indicate the bounds on LQ mass from the
single production in association with one charged lepton for LQ couplings λed (µd) = 2, 1.5
and 1 respectively for first (second) generation LQ. Note the updated version of this plot is
presented in Figure 77 of chapter IV.

Pair production

At hadron colliders, LQs can be pair-produced through either gg or qq̄ fusion, as shown in
Fig. 30 (a), (b) and (c). Since LQs are charged under SU(3)c, LQ pair production at LHC
is a QCD driven process, solely determined by the LQ mass and strong coupling constant,
irrespective of their Yukawa couplings. Although there is a t-channel diagram [cf. Fig. 30
(c)] via charged lepton exchange through which LQ can be pair-produced via quark fusion
process, this cross-section is highly suppressed compared to the s-channel pair production
cross-section.

There are dedicated searches for pair production of first [201, 202], second [202–204]
and third generation [204–206] LQs at the LHC. Given the model Lagrangian 2.5.1, we are
interested in the final states containing either two charged leptons and two jets (``jj), or
two neutrinos and two jets (ννjj). Note that for the doublet LQ Ω = (ω2/3, ω−1/3), the jets
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will consist of down-type quarks, while for the singlet LQ χ−1/3, the jets will be of up-type
quarks. For the light quarks u, d, c, s, there is no distinction made in the LHC LQ searches;
therefore, the same limits on the corresponding LQ masses will apply to both doublet and
singlet LQs. The only difference is for the third-generation LQs, where the limit from τ+τ−bb̄
final state is somewhat stronger than that from τ+τ−tt̄ final state [204, 206].

In Fig. 31, we have shown the LHC limits on LQ mass as a function of the corresponding
branching ratios for each channel. For a given channel, the branching ratio is varied from 0
to 1, without specifying the other decay modes which compensate for the missing branching
ratios to add up to one. For matter NSI, the relevant LQ couplings must involve either up or
down quark. Thus, for first and second generation LQs giving rise to NSI, we can use e+e−jj
and µ+µ−jj final states from LQ pair-production at LHC to impose stringent bounds on
the λαd and λ′αd couplings (with α = e, µ) which are relevant for NSI involving electron and
muon flavors. There is no dedicated search for LQs in the τ+τ−jj channel to impose similar
constraints on λτd and λ′τd relevant for tau-flavor NSI. There are searches for third generation
LQ [205, 206] looking at τ+τ−bb̄ and τ+τ−tt̄ signatures which are not relevant for NSI, since
we do not require λ′τt (for χ−1/3) or λτb (for ω2/3) couplings. For constraints on λτd, we
recast the τ+τ−bb̄ search limits [204–206] taking into account the b-jet misidentification as
light jets, with an average rate of 1.5% (for a b-tagging efficiency of 70%) [207]. As expected,
this bound is much weaker, as shown in Fig. 31.

However, a stronger bound on NSI involving the tau-sector comes from νν̄jj final state.
From the Lagrangian 2.5.1, we see that the same λτd coupling that leads to τ+τ−dd final state
from the pair-production of ω2/3 also leads to ντ ν̄τdd final state from the pair-production of
the SU(2)L partner LQ ω−1/3, whose mass cannot be very different from that of ω2/3 due to
electroweak precision data constraints (similar to the Zee model case, cf. Sec. 2.4.4). Since
the final state neutrino flavors are indistinguishable at the LHC, the νν̄jj constraint will
equally apply to all λαd (with α = e, µ, τ) couplings which ultimately restrict the strength of
tau-sector NSI, as we will see in the next subsection. The same applies to the λ′τd couplings
of the singlet LQ χ−1/3, which are also restricted by the νν̄jj constraint.

Single production

LQs can also be singly produced at the collider in association with charged leptons via s-
and t- channel quark-gluon fusion processes, as shown in Fig. 30 (d) and (e). The single pro-
duction limits, like the indirect low-energy constraints, are necessarily in the mass-coupling
plane. This signature is applicable to LQs of all generations. In Fig. 31, we have shown
the collider constraints in the single-production channel for some benchmark values of the
first and second generation LQ couplings λed and λµd (since d jets cannot be distinguished
from s jets) equal to 1, 1.5 and 2 by dot-dashed, dotted and dashed curves respectively. The
single-production limits are more stringent than the pair-production limits only for large λed,
but not for λµd. There is no constraint in the τj channel, and the derived constraint from
τb channel is too weak to appear in this plot.
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How light can the leptoquark be?

There is a way to relax the νν̄jj constraint and allow for smaller LQ masses for the doublet
components. This is due to a new decay channel ω−1/3 → ω2/3 +W− which, if kinematically
allowed, can be used to suppress the branching ratio of ω−1/3 → νd decay for relatively
smaller values of λαd couplings, thereby reducing the impact of the νν̄jj constraint. The
partial decay widths for ω−1/3 → ω2/3 +W− and ω−1/3 → ναdβ are respectively given by

Γ(ω−1/3 → ω2/3W−) =
1

32π

m3
ω−1/3

v2

(
1− m2

ω2/3

m2
ω−1/3

)2

×
[{

1−
(
mω2/3 +mW

mω−1/3

)2
}{

1−
(
mω2/3 −mW

mω−1/3

)2
}]1/2

,

(2.5.44)

Γ(ω−1/3 → ναdβ) =
|λαβ|2
16π

mω−1/3 . (2.5.45)

In deriving Eq. 2.5.44, we have used the Goldstone boson equivalence theorem, and in
Eq. 2.5.45, the factor in the denominator is not 8π (unlike the SM h → bb̄ case, for in-
stance), because only one helicity state contributes.

The lighter LQ ω2/3 in this case can only decay to `αdβ with 100% branching ratio. Using
the fact that constraints from τ+τ−jj channel are weaker, one can allow for ω2/3 as low as
522 GeV, as shown in Fig. 31 by the solid brown curve, when considering the λτd coupling
alone. This is, however, not applicable to the scenario when either λed or λµd coupling is
present, because of the severe constraints from e+e−jj and µ+µ−jj final states.

2.5.4 NSI prediction

dc
ρ νβ

να dc
σ

ω−1/3

dρ νβ

να dσ

χ−1/3

Figure 32: Tree-level NSI diagrams with the exchange of heavy LQs: (a) for doublet LQ
with Yukawa λ ∼ O(1), and (b) for singlet LQ with Yukawa λ′ ∼ O(1).

The LQs ω−1/3 and χ−1/3 in the model have couplings with neutrinos and down-quark
(cf. Eq. 2.5.1), and therefore, induce NSI at tree level as shown in Fig. 32 via either λ or λ′
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couplings. From Fig. 32, we can write down the effective four-fermion Lagrangian as

L =
λ?αdλβd
m2
ω

(d̄RνβL)(ν̄αLdR) +
λ′?αdλ

′
βd

m2
χ

(d̄LνβL)(ν̄αLdL)

= −1

2

[
λ?αdλβd
m2
ω

(d̄Rγ
µdR)(ν̄αLγµνβL) +

λ′?αdλ
′
βd

m2
χ

(d̄Lγ
µdL)(ν̄αLγµνβL)

]
, (2.5.46)

where we have used Fierz transformation in the second step. Comparing Eq. 2.5.46 with
Eq. 2.3.1, we obtain the NSI parameters

εdαβ =
1

4
√

2 GF

(
λ?αdλβd
m2
ω

+
λ′?αdλ

′
βd

m2
χ

)
. (2.5.47)

For Yn(x) ≡ Nn(x)
Np(x)

= 1, one can obtain the effective NSI parameters from Eq. 2.3.5 as

εαβ ≡ 3εdαβ =
3

4
√

2 GF

(
λ?αdλβd
m2
ω

+
λ′?αdλ

′
βd

m2
χ

)
. (2.5.48)

To satisfy the neutrino mass constraint [cf. Eq. 2.5.7], we can have either λ or λ′ couplings
of O(1), but not both simultaneously. As mentioned in Sec. 2.5.1, the choice λ′ � 1 and
λ ∼ O(1) is less constrained from cLFV.

Doublet leptoquark

First, taking the λ-couplings only and ignoring the λ′ contributions, we show in Figs. 33 and
34 the predictions for diagonal (εee, εµµ, εττ ) and off-diagonal (εeµ, εµτ , εeτ ) NSI parameters
respectively from Eq. 2.5.48 by black dotted contours. Colored shaded regions in each plot
are excluded by various theoretical and experimental constraints. In Figs. 33 (b) and (c),
the yellow colored regions are excluded by perturbativity constraint, which requires the LQ
coupling λαd <

√
4π√

3
[208]. Red shaded region in Fig. 33 (a) is excluded by the APV bound

(cf. Sec. 2.5.1), while the brown and cyan regions are excluded by HERA and LEP contact
interaction bounds, respectively (cf. Table 17). Red shaded region in Fig. 33 (c) is excluded
by the global fit constraint from neutrino oscillation+COHERENT data [89]. Blue shaded
regions in Figs. 33 (a) and (b) are excluded by LHC LQ searches (cf. Fig. 31) in the pair-
production mode for small λαd (which is independent of λαd) and single-production mode for
large λαd) with α = e, µ. Here we have assumed 50% branching ratio to ej or µj, and the
other 50% to τd in order to relax the LHC constraints and allow for larger NSI. Blue shaded
region in Fig. 33 (c) is excluded by the LHC constraint from the νν̄jj channel, where the
vertical dashed line indicates the limit assuming BR(ω−1/3 → νd) = 100%, and the unshaded
region to the left of this line for small λτd is allowed by opening up the ω−1/3 → ω2/3W−

channel (cf. Sec. 2.5.3). Note that we cannot completely switch off the ω−1/3 → νd channel,
because that would require λτd → 0 and in this limit, the NSI will also vanish.

The red line in Fig. 33 (b) is the suggestive limit on εdRαβ from NuTeV data [169] (cf. Ta-
ble 18). This is not shaded because there is a 2.7σ discrepancy of their s2

w measurement
with the PDG average [113] and a possible resolution of this might affect the NSI constraint
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obtained from the same data. Here we have rederived the NuTeV limit following Ref. [169],
but using the latest value of s2

w (on-shell) [113] (without including NuTeV). Specifically, we
have used the NuTeV measurement of the effective coupling (g̃µR)2 = 0.0310 ± 0.0011 from
νµq → νq scatterings [209] which is consistent with the SM prediction of (g̃µR)2

SM = 0.0297.
Here (g̃µR)2 is defined as

(g̃µR)2 =
(
guR + εuRµµ

)2
+
(
gdR + εdRµµ

)2
, (2.5.49)

where guR = −2
3
s2
w and gdR = 1

3
s2
w are the Z couplings to right-handed up and down quarks

respectively. Only the right-handed couplings are relevant here, since the effective NSI
Lagrangian 2.5.46 involves right-handed down-quarks for the doublet LQ component ω2/3.
In Eq. 2.5.49, setting εuRµµ = 0 for this LQ model and comparing (g̃µR)2 with the measured
value, we obtain a 90% CL on εdRµµ < 0.029, which should be multiplied by 3 (since εαβ ≡ 3εdRαβ)
to get the desired constraint on εαβ shown in Fig. 33 (b).

For εee, the most stringent constraint comes from APV (Sec. 2.5.1), as shown by the red
shaded region in Fig. 33 (a) which, when combined with the LHC constraints on the mass
of LQ, rules out the possibility of any observable NSI in this sector. Similarly, for εµµ, the
most stringent limit comes from NuTeV. However, if this constraint is not considered, εµµ
can be as large as 21.6%. On the other hand, εττ can be as large as 34.3%, constrained only
by the LHC constraint on the LQ mass and perturbative unitarity constraint on the Yukawa
coupling (cf. Fig. 33 (c)). This is within the future DUNE sensitivity reach, at least for the
850 kt.MW.yr (if not 300 kt.MW.yr) exposure [94], as shown in Fig. 33 (c). Note that from
oscillation data alone, εττ − εµµ is constrained to be less than 9.5% [89].
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LQ model prediction (Max.) Scattering Global fit DUNE
NSI Doublet Singlet constraints constraints [89] sensitivity [94]
εee 0.004 0.0069 [−1.8, 1.5] [169] [−0.036, 1.695] [−0.185, 0.380]

(LHC + APV) (LHC+HERA) ([−0.130, 0.185])
εµµ 0.216 0.0086 [−0.024, 0.045] [169] [−0.309, 1.083] [−0.290, 0.390]

(LHC+PU) (D → πµµ) [0.0277, 0.0857] (ours) ([−0.192, 0.240])
εττ 0.343 [−0.225, 0.99] [210] [−0.306, 1.083] [−0.360, 0.145]

(LHC + Unitarity) ([−0.120, 0.095])
εeµ 1.5× 10−7 [−0.21, 0.12] [210] [−0.174, 0.147] [−0.025, 0.052]

(LHC + µ− e conv.) ([−0.017, 0.040])
εeτ 0.0036 [−0.39, 0.36] [210] [−0.618, 0.330] [−0.055, 0.023]

(LHC + τ → eπ0) ([−0.042, 0.012])
εµτ 0.0043 [−0.018, 0.0162] [211] [−0.033, 0.027] [−0.015, 0.013]

(LHC + τ → µπ0) ([−0.010, 0.010])

Table 18: Maximum allowed NSI (with d-quarks) in the one-loop LQ model, after im-
posing the constraints from APV (Sec. 2.5.1), cLFV (Secs. 2.5.1, 2.5.1, 2.5.1), LEP and
HERA contact interaction (Sec. 2.5.2), perturbative unitarity and collider (Secs. 2.5.3) con-
straints. We also impose the constraints from neutrino-nucleon scattering experiments, like
CHARM II [169], NuTeV [169], COHERENT [210] and IceCube [211], as well as the global
fit constraints from neutrino oscillation+COHERENT data [89], whichever is stronger. The
scattering and global fit constraints are on εdαβ, so it has been scaled by a factor of 3 for
the constraint on εαβ in the Table. The maximum allowed value for each NSI parameter is
obtained after scanning over the LQ mass (see Figs. 33 and 34) and the combination of the
relevant constraints limiting the NSI are shown in parentheses in the second column. The
same numbers are applicable for the doublet and singlet LQ exchange, except for εee where
the APV constraint is weaker than HERA (Fig. 35 (a))) and for εµµ which has an additional
constraint from D+ → π+µ+µ− decay (see Fig. 35 (b)). In the last column, we also show the
future DUNE sensitivity [94] for 300 kt.MW.yr exposure (and 850 kt.MW.yr in parentheses).
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Figure 33: Predictions for diagonal NSI (εee, εµµ, εττ ) induced by doublet LQ in the one-
loop LQ model are shown by black dotted contours. Colored shaded regions are excluded
by various theoretical and experimental constraints. Yellow colored region is excluded by
perturbativity constraint on LQ coupling λαd [208]. Blue shaded region is excluded by LHC
LQ searches (Fig. 31) in subfigure (a) by e+jets channel (pair production for small λed and
single-production for large λed), in subfigure (b) by µ+jets channel, and in subfigure (c) by
ν+jet channel. In (a), the red, brown and cyan shaded regions are excluded by the APV
bound (cf. Eq. 2.5.18), HERA and LEP contact interaction bounds (cf. Table 17) respectively.
In (b), the red line is the suggestive limit from NuTeV [169]. In (c), the red shaded region is
excluded by the global fit constraint from neutrino oscillation+COHERENT data [89]. We
also show the future DUNE sensitivity in blue solid lines for both 300 kt.MW.yr and 850
kt.MW.yr [94].
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Figure 34: Predictions for off-diagonal NSI (εeµ, εµτ , εeτ ) induced by the doublet LQ in the
one-loop LQ model are shown by black dotted contours. Colored shaded regions are excluded
by various theoretical and experimental constraints. Blue shaded area is excluded by LHC
LQ searches (cf. Fig. 31). In (a) and (b), the brown and green shaded regions are excluded
by τ → `π0 and τ → `η (with ` = e, µ) constraints (cf. Table 15). In (a), the red shaded
region is excluded by the global fit constraint on NSI from neutrino oscillation+COHERENT
data [89]. In (b), the yellow shaded region is excluded by perturbativity constraint on LQ
coupling λαd [208] combined with APV constraint (cf. Eq. 2.5.18). In (c), the red shaded
region is excluded by µ→ e conversion constraint. Also shown in (b) are the future DUNE
sensitivity in blue solid lines for both 300 kt.MW.yr and 850 kt.MW.yr [94].
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Figure 35: Additional low-energy constraints on NSI induced by singlet LQ. Subfigure (a)
has the same APV and LHC constraints as in Fig. 20 (a), the modified HERA and LEP
contact interaction bounds (cf. Table 17), plus the D+ → π+e+e− constraint, shown by green
shaded region (cf. Sec. 2.5.1). Subfigure (b) has the same constraints as in Fig. 20 (b), plus the
D+ → π+µ+µ− constraint, shown by light-green shaded region, and D0 → µ+µ− constraint
shown by brown shaded region (cf. Sec. 2.5.1). Subfigure (c) has the same constraints as in
Fig. 21 (a), plus the τ → µγ constraint, shown by purple shaded region. Subfigure (d) has
the same constraints as in Fig. 21 (b), plus the τ → eγ constraint, shown by purple shaded
region.

78



As for the off-diagonal NSI in Fig. 21, the LHC constraints (cf. Sec. 2.5.3) are again shown
by blue shaded regions. The yellow shaded region in Fig. 21 (b) is from the combination
of APV and perturbative unitarity constraints. However, the most stringent limits for all
the off-diagonal NSI come from cLFV processes. In particular, τ → `π0 and τ → `η (with
` = e, µ) impose strong constraints (cf. Sec. 2.5.1) on εµτ and εeτ , as shown in Figs. 34 (a) and
(b). For εeµ, the most stringent limit comes from µ− e conversion (cf. Sec. 2.5.1), as shown
in Fig. 34 (c). The maximum allowed NSI in each case is tabulated in Table 18, along with
the current constraints from neutrino-nucleon scattering experiments, like CHARM [169],
COHERENT [210] and IceCube [211], as well as the global fit constraints from neutrino
oscillation+COHERENT data [89] and future DUNE sensitivity [94]. It turns out that the
cLFV constraints have essentially ruled out the prospects of observing any off-diagonal NSI
in this LQ model in future neutrino experiments. This is consistent with general arguments
based on SU(2)L gauge-invariance [49].

Singlet leptoquark

Now if we take the λ′ couplings instead of λ in Eq. 2.5.48, the NSI predictions, as well as
the constraints, can be analyzed in a similar way as in Figs. 33 and 34. Here the APV
(cf. Eq. 2.5.18), as well as the LEP and HERA contact interaction constraints on εee (cf. Ta-
ble 17) are somewhat modified. In addition, there are new constraints from D+ → π+`+`−

and D0 → `+`− (cf. Sec. 2.5.1) for εee and εµµ, as shown in Fig. 35 (a) and (b). For εee,
the D+ → π+e+e− constraint turns out to be much weaker than the APV constraint. The
D0 → e+e− constraint is even weaker and does not appear in Fig. 35 (a). However, for εµµ,
the D+ → π+µ+µ− constraint turns out to be the strongest, limiting the maximum allowed
value of εµµ to a mere 0.8%, as shown in Fig. 35 (b) and in Table 18.

The NuTeV constraint also becomes more stringent here due to the fact that the singlet
LQ χ couples to left-handed quarks (cf. Eq. 2.5.46). So it will affect the effective coupling(
g̃`L
)
. For εµµ, we use the NuTeV measurement of (g̃µL)2 = 0.3005 ± 0.0014 from νµq → νq

scatterings [209] which is 2.7σ smaller than the SM prediction of (g̃µL)2
SM = 0.3043. Here

(g̃µL)2 is defined as

(g̃µL)2 =
(
guL + εuLµµ

)2
+
(
gdL + εdLµµ

)2
, (2.5.50)

where guL = 1
2
− 2

3
s2
w and gdL = −1

2
+ 1

3
s2
w. For the SM prediction, we have used the latest PDG

value for on-shell s2
w = 0.22343 from a global fit to electroweak data (without NuTeV) [113]

and comparing (g̃µL)2 with the measured value, derive a 90% CL constraint on 0.0018 <
εµµ < 0.8493. Note that this prefers a non-zero εµµ at 90% CL (1.64σ) because the SM with
εµµ = 0 is 2.7σ away and also because there is a cancellation between gdL (which is negative)
and εµµ (which is positive) in Eq. 2.5.50 to lower the value of (g̃µL)2 to within 1.64σ of the
measured value.

For the off-diagonal sector, there are new constraints from τ → `γ relevant for εµτ and
εeτ , as shown in Figs. 35 (c) and (d). However, these are less stringent than the τ → `π0

and τ → `η constraints discussed before. There are no new constraints for εττ and εeµ that
are stronger than those shown in Figs. 33 (c) and 34 (c) respectively, so we do not repeat
these plots again in Fig. 35.
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2.6 NSI in a triplet leptoquark model

⟨H0⟩

ρ̄1/3ω−1/3

να dc
γ dγ νβ

Figure 36: Neutrino mass generation in the one-loop model with both doublet and triplet
leptoquarks. This is the O9

3 model of Table 4 [60].

This is the O9
3 model of Table 4 [60]. In this model, two new fields are introduced

– an SU(2)L-triplet scalar LQ ρ̄
(
3̄,3, 1

3

)
=
(
ρ̄4/3, ρ̄1/3, ρ̄−2/3

)
and an SU(2)L-doublet LQ

Ω
(
3,2, 1

6

)
=
(
ω2/3, ω−1/3

)
. The relevant Lagrangian for the neutrino mass generation can

be written as

−LY ⊃ λαβLαd
c
αΩ + λ′αβLαQβ ρ̄+ H.c. = λαβ

(
ναd

c
βω
−1/3 − `αdcβω2/3

)
+λ′αβ

[
`αdβ ρ̄

4/3 − 1√
2

(ναdβ + `αuβ) ρ̄1/3 + ναuβ ρ̄
−2/3

]
+ H.c. (2.6.1)

These interactions, along with the potential term

V ⊃ µΩ̃ρH + H.c. = µ

[
ω?1/3ρ−4/3H+ +

1√
2

(
ω?1/3H0 − ω?−2/3H+

)
ρ−1/3

− ω?−2/3ρ2/3H0

]
+ H.c. , (2.6.2)

where ρ̄ is related to ρ by charge conjugation as ρ
(
3,3,−1

3

)
=
(
ρ2/3, −ρ−1/3, ρ−4/3

)
, induce

neutrino mass at one-loop level via the O9
3 operator in the notation of Ref. [60], as shown in

Fig. 36. The neutrino mass matrix can be estimated as

Mν ∼
1

16π2

µv

M2

(
λMdλ

′T + λ′Mdλ
T
)
, (2.6.3)

where Md is the diagonal down-type quark mass matrix and M ≡ max(mω,mρ). The NSI
parameters read as

εαβ =
3

4
√

2GF

(
λ?αdλβd
m2
ω

+
λ′?αuλ

′
βu

m2
ρ−2/3

+
λ′?αdλ

′
βd

2m2
ρ1/3

)
. (2.6.4)

Note that both λ and λ′ cannot be large at the same time due to neutrino mass constraints
(cf. Eq. 2.6.3). For λ� λ′, this expression is exactly the same as the doublet LQ contribution
derived in Eq. 2.5.48 and the corresponding maximum NSI can be read off from Table 18 for
the doublet component.
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On the other hand, for λ′ � λ, the third term in Eq. 2.6.4 is analogous to the down-
quark induced singlet LQ NSI given in Eq. 2.5.48 (except for the Clebsch-Gordan factor of
(1/
√

2)2), whereas the second term is a new contribution from the up-quark sector. Note that
both terms depend on the same Yukawa coupling λ′αu = λ′αd in the Lagrangian 2.6.1. This is
unique to the triplet LQ model, where neutrinos can have sizable couplings to both up and
down quarks simultaneously, without being in conflict with the neutrino mass constraint. As
a result, some of the experimental constraints quoted in Sec. 2.5 which assumed the presence
of only down-quark couplings of LQ will be modified in the triplet case, as discussed below:

2.6.1 Atomic parity violation

The shift in the weak charge given by Eq. 2.5.13 is modified to

δQw(Z,N) =
1

2
√

2GF

[
(2Z +N)

|λ′eu|2
2m2

ρ1/3

− (Z + 2N)
|λ′ed|2
m2
ρ4/3

]
. (2.6.5)

Assuming mρ1/3 = mρ4/3 ≡ mρ and noting that λ′αu = λ′αd in Eq. 2.6.1, we obtain

δQw

(
133
55 Cs

)
= − 117

2
√

2GF

|λ′ed|2
m2
ρ

. (2.6.6)

Comparing this with the 2σ allowed range 2.5.17, we obtain the modified constraint

|λ′ed| < 0.29
( mρ

TeV

)
, (2.6.7)

which is weaker (stronger) than that given by Eq. 2.5.18 for the SU(2)L-doublet (singlet)
LQ alone.

2.6.2 µ− e conversion
From Eq. 2.5.19, we see that for the triplet case, the rate of µ − e conversion will be given
by

BR(µN → eN) ' |~pe|Eem
3
µα

3Z4
effF

2
p

64π2ZΓN
(2A− Z)2

(
|λ′?edλ′µd|
m2
ρ4/3

+
|λ′?euλ′µu|
2m2

ρ1/3

)2

, (2.6.8)

For degenerate ρ-mass and λ′`d = λ′`u, we obtain the rate to be (3/2)2 times larger than that
given in Eq. 2.5.19. Therefore, the constraints on |λ′?edλ′µd| given in Table 13 will be a factor
of 3/2 stronger.

2.6.3 Semileptonic tau decays

The semileptonic tau decays such as τ− → `−π0, `−η, `−η′ will have two contributions from
ρ̄1/3 and ρ̄4/3. The relevant terms in the Lagrangian 2.7.22 are

−LY ⊃ λ′αβ

(
− 1√

2
`αuβ ρ̄

1/3 + `αdβ ρ̄
4/3

)
+ H.c.

⊃ λ′τd

(
− 1√

2
τV ?

uduρ̄
1/3 + τdρ̄4/3

)
+ λ`d

(
− 1√

2
`V ?

uduρ̄
1/3 + `dρ̄4/3

)
+ H.c. , (2.6.9)
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Process Exp. limit [113] Constraint

τ → µπ0 BR < 1.1× 10−7 |λ′µdλ′?τd| < 1.9× 10−1
( mρ
TeV

)2

τ → eπ0 BR < 8× 10−8 |λ′edλ′?τd| < 1.6× 10−1
( mρ
TeV

)2

τ → µη BR < 6.5× 10−8 |λ′µdλ′?τd| < 6.3× 10−2
( mρ
TeV

)2

τ → eη BR < 9.2× 10−8 |λ′edλ′?τd| < 7.3× 10−2
( mρ
TeV

)2

τ → µη′ BR < 1.3× 10−7 |λ′µdλ′?τd| < 1.5× 10−1
( mρ
TeV

)2

τ → eη′ BR < 1.6× 10−7 |λ′edλ′?τd| < 1.7× 10−1
( mρ
TeV

)2

Table 19: Constraints on couplings and the LQ mass from semileptonic tau decays in the
triplet LQ case. Here we have assumed all the triplet fields (ρ̄4/3, ¯rho

1/3, ρ̄−2/3) to have the
same mass mρ.

where we have assumed a basis with diagonal down-type quark sector. Using the matrix
element 2.5.28, we find the modified decay rate for τ− → `−π0 from Eq. 2.5.26:

Γτ→`π0 =
|λ′`dλ′?τd|2
1024π

f 2
πm

3
τFτ (m`,mπ)

(
1

m2
ρ4/3

− 1

2m2
ρ−1/3

)2

. (2.6.10)

Thus, for mρ−1/3 = mρ4/3 , the τ− → `−π0 decay rate is suppressed by a factor of 1/4,
compared to the doublet or singlet LQ case (cf. Eq. 2.5.26). So the constraints on λ′`dλ

?
τd

from τ → `π0 shown in Table 15 will be a factor of 2 weaker in the triplet LQ case.
On the other hand, using the matrix element 2.5.29, we find that the modified decay rate

for τ− → `−η becomes

Γτ→`η =
|λ′`dλ′?τd|2
1024π

f 2
ηm

3
τFτ (m`,mη)

(
1

m2
ρ4/3

+
1

2m2
ρ−1/3

)2

, (2.6.11)

which is enhanced by a factor of 9/4 for mρ−1/3 = mρ4/3 , compared to the doublet or singlet
LQ case. So the constraints on λ`dλ?τd from τ → `η shown in Table 15 will be a factor of 3/2
stronger in the triplet LQ case. The same scaling behavior applies to τ → `η′ constraints.
These modified constraints are summarized in Table 19.

2.6.4 `α → `β + γ

The cLFV decay `α → `β + γ arises via one-loop diagrams with the exchange of ρ̄ LQ fields,
analogous to Fig. 27. The relevant couplings in Eq. 2.6.1 have the form `uρ̄1/3 = ucPL`ρ̄

1/3

for which QF = −2/3 and QB = 1/3 in the general formula 2.4.30, whereas for the couplings
`dρ̄4/3 = dcPL`ρ̄

4/3, we have QF = 1/3 and QB = 4/3. Substituting these charges in
Eq. 2.4.30 and taking the limit t = m2

F/m
2
B → 0 (since the LQs are expected to be much

heavier than the SM charged leptons), we obtain

Γ(`α → `β + γ) =
9α

256

|λ′βdλ′?αd|
(16π2)2

m5
α

m4
ρ

, (2.6.12)
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where 9 = 32 is a color factor and we have assumed mρ−1/3 = mρ4/3 . The rate in Eq. 2.6.12
is 9/4 times larger than that given in Eq. 2.5.25 for the singlet LQ case. Therefore, the
constraints on |λ′βdλ′?αd| derived in Table 14 will be weakened by a factor of 3/2.

2.6.5 D-meson decays

The `αuβ ρ̄1/3 and `αdβ ρ̄4/3 terms in Eq. 2.7.22 induce flavor violating quark decays. Following
the discussion in Sec. 2.5.1, we work in a basis where the down quark mass matrix is diagonal,
so there are no constraints from rare kaon decays. However, the `αuβ ρ̄1/3 term in Eq. 2.7.22
now becomes `αV ?

iduiρ̄
1/3 which induces D0 → `+`− and D+ → π+`+`− decays. The analysis

will be the same as in Sec. 2.5.1, except that the λ′αd couplings will now be replaced by
λ′αd/
√

2. Correspondingly, the constraints on |λ′αd| given in Table 16 will be
√

2 times weaker.
For instance,

|λ′µd| <
{

0.868
( mρ

TeV

)
from D0 → µ+µ−

0.602
( mρ

TeV

)
from D+ → π+µ+µ−

. (2.6.13)

2.6.6 Contact interaction constraints

The LEP and HERA contact interaction bounds discussed in Sec. 2.5.2 will also be modified
in the triplet LQ case. Here, the interactions are only of LL type, but the effective Yukawa
coupling is

√
3/2 times that of the singlet case in Table 17. The modified constraint is given

by

mρ

|λ′ed|
=

√
3

16π
ΛLL
− >

{
0.904 TeV from LEP
3.127 TeV from HERA

. (2.6.14)

2.6.7 LHC constraints

The LHC constraints on the ρ̄ fields will be similar to the discussion in Sec. 2.5.3. Comparing
the Lagrangians 2.5.1 and 2.7.22, we see that ρ̄1/3 will have the same decay modes to νj and
`j, and therefore, the same constraints as the singlet χ−1/3 discussed in Sec. 2.5.4. In our
analysis, we have assumed degenerate mass spectrum for all the triplet LQ fields. But we
note here that the ρ̄−2/3 component can in principle be lighter, since it can only decay to
νj for which the constraints are weaker (cf. Fig. 31). However, the mass splitting between
ρ̄−2/3 and ρ̄1/3 cannot be more than ∼ 100 GeV from T -parameter constraints, analogous to
the charged scalar case discussed in Sec. 2.4.4 (cf. Fig. 9). In that case, the limit on mρ1/3

for 50% branching ratio to νj and `j channels (since they are governed by the same λ′αd
coupling), one can allow for mρ−2/3 as low as 800 GeV or so.
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2.6.8 NSI prediction

Taking into account all the constraints listed above, we show in Figs. 37 and 38 the predictions
for diagonal (εee, εµµ, εττ ) and off-diagonal (εeµ, εµτ , εeτ ) NSI parameters respectively from
Eq. 2.6.4 by black dotted contours. Colored shaded regions in each plot are excluded by
various theoretical and experimental constraints, as in Figs. 33 and 34. The main difference
is in the NuTeV constraint shown in Fig. 37 (b), which is more stringent than those shown in
Figs. 33 (b) and 35 (b). The reason is that in presence of both εuLµµ and εdLµµ as in this LQ model
(cf. 2.6.1), the total contribution to (g̃µL)2 in Eq. 2.5.50 is always positive, and therefore, any
nonzero εµµ will make the discrepancy worse than the SM case of 2.7σ. Therefore, we cannot
impose a 90% CL (1.64σ) constraint from NuTeV in this scenario. The line shown in Fig. 37
(b) corresponds to the 3σ constraint on εµµ < 0.0007, which is subject to the same criticism
as the discrepancy with the SM, and therefore, we have not shaded the NuTeV exclusion
region and do not consider it while quoting the maximum allowed NSI.

From Figs. 37 and 38, we find the maximum allowed values of the NSI parameters in the
triplet LQ model to be

εmax
ee = 0.0059 , εmax

µµ = 0.0007 , εmax
ττ = 0.517 ,

εmax
eµ = 1.9× 10−8 , εmax

eτ = 0.0050 , εmax
µτ = 0.0038 . (2.6.15)

This is also summarized in Fig. 60 and in Table 21.
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Figure 37: Predictions for diagonal NSI (εee, εµµ, εττ ) induced by the triplet LQ are shown
by black dotted contours. Colored shaded regions are excluded by various theoretical and
experimental constraints. The labels are same as in Fig. 33.
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Figure 38: Predictions for off-diagonal NSI (εeµ, εµτ , εeτ ) induced by the triplet LQ are
shown by black dotted contours. Colored shaded regions are excluded by various theoretical
and experimental constraints. The labels are same as in Fig. 34.
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Figure 39: One-loop neutrino mass in the minimal radiative inverse seesaw model [72].
This model induces the operator O′2 of Eq. 2.7.1.

2.7 Other type-I radiative models

In this section, we briefly discuss the NSI predictions in other type-I radiative models at
one-, two- and three-loops. In each case, we present the new particle content, model La-
grangian, Feynman diagrams for neutrino mass generation and expressions for neutrino mass,
followed by the expression for NSI parameters. The maximum NSI allowed in each model is
summarized in Table 21.

2.7.1 One-loop models

Minimal radiative inverse seesaw model

This is an exception to the general class of type-I radiative models, where the new particles
running in the loop will always involve a scalar boson. In this model, the SM Higgs and Z
bosons are the mediators, with the new particles being SM-singlet fermions.14 The low-energy
effective operator that leads to neutrino mass in this model is the dimension-7 operator

O′2 = LiLjHkH lεikεjl(H
†H) . (2.7.1)

However, this mechanism is only relevant when the dimension-5 operator given by Eq. 2.1.1
that leads to the tree-level neutrino mass through the seesaw mechanism is forbidden due
to some symmetry. This happens in the minimal radiative inverse seesaw model [72]. In
the usual inverse seesaw model [212], one adds two sets of SM-singlet fermions, N and S,
with opposite lepton numbers. The presence of a Majorana mass term for the S-field, i.e.,
µSSS leads to a tree-level neutrino mass via the standard inverse seesaw mechanism [212].
However, if one imposes a global U(1) symmetry under which the S-field is charged, then the
µSSS term can be explicitly forbidden at tree-level.15 In this case, the only lepton number
breaking term that is allowed is the Majorana mass term for the N -field, i.e., µRNN . It can

14There is yet another possibility where the mediators could be new vector bosons; however, this necessarily
requires some new gauge symmetry and other associated Goldstone bosons to cancel the UV divergences.

15This can be done, for instance, by adding a singlet scalar field σ with a global U(1) charge of +2, and
by making N and S oppositely charged under this U(1), viz., N(−1) and S(+1), so that the SσS term is
forbidden, but NσN and SσN are allowed. Furthermore, this global U(1) symmetry can be gauged, e.g.,
in an E6 GUT embedding, where the fundamental representation 27 breaks into 161 + 10−2 + 14 under
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be shown that this term by itself does not give rise to neutrino mass at tree-level, but a non-
zero neutrino mass is inevitably induced at one-loop through the diagram shown in Fig. 39
involving the SM Higgs doublet (which gives rise to two diagrams involving the SM Higgs
and Z-boson after electroweak symmetry breaking [72]). One can see that the low-energy
effective operator that leads to neutrino mass in this model is the d = 7 operator O′1 of Eq.
(2.1.5) by cutting Fig. 39 at one of the H-legs in the loop.

The relevant part of the Yukawa Lagrangian of this model is given by

−LY ⊃ YαβLαHNβ + Sρα(MN)ραNα +
1

2
NT
αC(µR)αβNβ + H.c. (2.7.2)

After electroweak symmetry breaking, evaluating the self-energy diagrams that involve the
Z-boson and Higgs boson (cf. Fig. 39), the neutrino mass reads as (in the limit µR �
MN) [72, 213]:

Mν '
αw

16πm2
W

(MDµRM
T
D)

[
xh

xN − xH
log

(
xN
xH

)
+

3xZ
xN − xZ

log

(
xN
xZ

)]
, (2.7.3)

where MD ≡ Y v/
√

2, αw ≡ g2/4π, xN = m2
N/m

2
W , xH = m2

H/m
2
W and xZ = m2

Z/m
2
W , and

we have assumed MN = mN1 for simplicity.
The NSI in this model arise due to the fact that the light SU(2)L-doublet neutrinos ν

mix with the singlet fermions N and S, due to which the 3 × 3 lepton mixing matrix is no
longer unitary. The neutrino-nucleon and neutrino-electron interactions proceed as in the
SM via t-channel exchange of W and Z bosons, but now with modified strength because of
the non-unitarity effect, that leads to NSI [214]. If only one extra Dirac state mixes with
the three light states with mixing parameters Uα4 (with α = e, µ, τ), we can write the NSI
parameters as

εee =

(
Yn
2
− 1

)
|Ue4|2, εµµ =

Yn
2
|Uµ4|2, εττ =

Yn
2
|Uτ4|2,

εeµ =
1

2
(Yn − 1)Ue4U

?
µ4, εeτ =

1

2
(Yn − 1)Ue4U

?
τ4, εµτ =

Yn
2
Uµ4U

?
τ4 , (2.7.4)

where Yn = Nn/Ne is the ratio of the average number density of neutrons and electrons in
matter. Note that for Yn → 1 which is approximately true for neutrino propagation in earth
matter, we get vanishing εeµ and εeτ up to second order in Uα4.16 Taking into account all
the experimental constraints on Uα4U

?
β4 from neutrino oscillation data in the averaged-out

regimes, beta decay, rare meson decay, beam dump experiments, cLFV searches, collider
constraints from LEP and LHC, as well as electroweak precision constraints [214–219], the
maximum NSI parameters allowed in this model are summarized in Table 21. We find that

|εmax
ee | = 0.024 , εmax

µµ = 0.022 , εmax
ττ = 0.10 ,

εmax
eµ = 0.001 , εmax

eτ = 0.003 , εmax
µτ = 0.012 . (2.7.5)

SO(10) × U(1). The ν and N belong to the 161 subgroup, while the S belongs to 14. Adding two scalars
σ, σ′ with U(1) charges −2 and −5 respectively allows the Dirac mass term NσS and Majorana mass term
Nσ′N in Eq. 2.7.2, but not the Majorana mass terms Sσ(′)S.

16This result is in disagreement with Ref. [214], where they have εαβ = 1
2Uα4U

?
β4 for all the off-diagonal

NSI parameters, which cannot be the case, because for α = e, both CC and NC contributions are present,
whereas for α 6= e, only the NC contribution matters.
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For εeµ and εeτ , we have used Yn = 1.051 (for average value all over the earth) in Eq. 2.7.4,
in addition to the cLFV constraints on Ue4U?

µ4 and Ue4U?
τ4. The maximum NSI values listed

above (and also summarized in Table 21) are obtained for a relatively light (∼MeV-scale)
sterile neutrino, where the experimental constraints are weaker than at higher masses.

The NSI expressions 2.7.4 also apply to two-loop radiative models with two W -boson
exchange [220–222]. However, the maximum NSI obtainable in these models will be much
smaller than the estimate in Eq. 2.7.5 because the sterile neutrino in this case is required to
be heavier for successful neutrino mass generation at two-loop.

One-loop model with vectorlike leptons

να ℓγ ℓc
γ Eδ Ec

δ
νβ

η+

⟨H0⟩
Figure 40: Neutrino mass generation in the one-loop model with vectorlike leptons. This
is the O1

2 model of Table 3 [60].

This model [60] utilizes the same d = 7 operator O2 = LiLjLkecH lεijεkl (cf. Eq. 2.2.2b),
as in the Zee model to generate a one-loop neutrino mass. The new particles added are a
scalar singlet η+(1,1, 1) and a vectorlike lepton ψ

(
1,2,−3

2

)
= (E, F−−), which give rise

to the O1
2 operator L(LL)(ecH) (cf.Table 3). Neutrino mass is generated via the one-loop

diagram shown in Fig. 40. The relevant Lagrangian for the neutrino mass generation reads:

−L ⊃ fαβLαLβη
+ + y′αβLαψ

c
βη
− + yαβ`

c
αψβH +mψψψ

c + H.c. (2.7.6)

where ψc = (F++, −Ec) and H
(
1,2, 1

2

)
is the SM Higgs doublet. Expanding the first two

terms, we get

−L ⊃ fαβ(να`βη
+ − `ανβη+)− y′αβ(ναE

+
β η
− + `αE

++
β η−) + H.c. (2.7.7)

The neutrino mass matrix can be estimated as

Mν ∼
1

16π2

v

M2

(
f M` yME y

′T + y′MEy
TM`f

T
)
, (2.7.8)

where M` is the diagonal mass matrix for the SM charged leptons, ME is the diagonal mass
matrix for the vector-like leptons with eigenvalues mEi , and M ≡ max(mη,mEi). Note that
just one flavor of ψ is not sufficient, because in this case, the neutrino mass matrix 2.7.8
would have a flavor structure given by (fM`−M`f), which has all the diagonal entries zero,
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Observable Exp. limit Constraint

µ→ eγ BR < 4.2× 10−13 [117] |f ?eτfµτ | < 1.09× 10−3
(mh+

TeV

)2

τ → eγ BR < 3.3× 10−8 [116] |f ?eµfµτ | < 0.71
(mh+

TeV

)2

τ → µγ BR < 4.4× 10−8 [116] |f ?eµfeτ | < 0.82
(mh+

TeV

)2

lep./had. univ.
∑
q=d,s,b

|V exp
uq |2 = 0.9992± 0.0011 [113] |feµ|2 < 0.015

(mh+

TeV

)2

µ/e univ. gexp
µ /gexp

e = 1.0001± 0.0020 [113]
∣∣|fµτ |2 − |feτ |2∣∣ < 0.05

(mh+

TeV

)2

τ/µ univ. gexp
τ /gexp

µ = 1.0004± 0.0022 [113]
∣∣|feτ |2 − |feµ|2∣∣ < 0.06

(mh+

TeV

)2

τ/e univ. gexp
τ /gexp

e = 1.0004± 0.0023 [113]
∣∣|fµτ |2 − |feµ|2∣∣ < 0.06

(mh+

TeV

)2

Table 20: Constraints on the singly-charged scalar Yukawa couplings [223]. Here gexp
α stands

for the effective gauge coupling extracted from muon and tau decays in the different leptonic
channels.

similar to the Zee-Wolfenstein model [105]. Such a structure is ruled out by observed neutrino
oscillation data. Thus, we require at least two flavors of ψ, in which case the diagonal entries
of Mν are nonzero, and the model is consistent with experiments.

NSI in this model are induced by the f -type couplings in Eq. 2.7.7, similar to the f -
couplings in the Zee model Lagrangian 2.4.2. The NSI parameters read as

εαβ ≡ εeeαβ =
1√
2GF

f ?eαfeβ
m2
η+

. (2.7.9)

Due to the antisymmetric nature of the f couplings, the only relevent NSI parameters in this
case are εµτ , εµµ, and εττ . These are severely constrained by cLFV searches and universality
of charged currents [223], as shown in Table 20. This is similar to the case of Zee-Babu model
discussed later in Sec. 2.7.2. Since the singly-charged scalar mass has to be above ∼ 100
GeV to satisfy the LEP constraints (cf. Sec. 2.4.7), we obtain from Eq. 2.7.9 and Table 20
the following maximum values:

εmax
ee = 0 , εmax

µµ = 9.1× 10−4 , εmax
ττ = 3.0× 10−3 ,

εmax
eµ = 0 , εmax

eτ = 0 , εmax
µτ = 3.0× 10−3 . (2.7.10)

This is also summarized in Table 21.

SU(2)L-singlet leptoquark model with vectorlike quark

This model [60] is the O4
3 realization of the dimension-7 operator O3 (cf. Table 4). The

new particles introduced are a scalar LQ singlet χ
(
3,1,−1

3

)
and a vectorlike quark doublet

Q
(
3,2,−5

6

)
=
(
D−1/3, X−4/3

)
. Neutrino mass is generated at one-loop level as shown in

Fig. 41. The QQχ? and dcucχ interaction terms, allowed by gauge invariance, are forbid-
den by demanding baryon-number conservation in order to avoid rapid proton decay. The
relevant Lagrangian for the neutrino mass generation reads as

−LY ⊃ λαβLαQβχ
? + λ′αLαQcχ+ fαd

c
αQH + f ′αβ`

c
αu

c
βχ+ H.c. (2.7.11)
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να dγ dc
γ D Dc νβ

χ−1/3

⟨H0⟩
Figure 41: Neutrino mass generation in the one-loop singlet leptoquark model with vec-
torlike quarks. This is the O4

3 model of Table 4 [60].

Expanding the first two terms, we get

−LY ⊃ λαβ(ναdβχ
? − `αuβχ?)− λ′α(ναD

cχ+ `αX
cχ) . (2.7.12)

The neutrino mass matrix can be estimated as

Mν ∼
1

16π2

v

M2

(
λMdfMDλ

′T + λ′MDf
TMdλ

T
)
, (2.7.13)

where Md is the diagonal down-type quark mass matrix, MD is the mass matrix for the
down-type VQ with eigenvalues mDi , and M ≡ max(mχ,mDi). With a single copy of VQ
quarks, the rank of Mν is two, implying that the lightest neutrino has zero mass at the
one-loop order. This model can lead to consistent neutrino oscillation phenomenology.

NSI in this model are induced by the λ-type interactions in Eq. 2.7.12:

εαβ =
3

4
√

2GF

λ?αdλβd
m2
χ

. (2.7.14)

This is exactly same as the singlet LQ contribution in Eq. 2.5.48 and the corresponding
maximum NSI can be read off from Table 18:

εmax
ee = 0.0069 , εmax

µµ = 0.0086 , εmax
ττ = 0.343 ,

εmax
eµ = 1.5× 10−7 , εmax

eτ = 0.0036 , εmax
µτ = 0.0043 . (2.7.15)

This is also summarized in Table 21.

SU(2)L-doublet leptoquark model with vectorlike quark

This is referred to as O6
3 in Table 4. The model has an SU(2)L-doublet LQ Ω

(
3,2, 1

6

)
=(

ω2/3, ω−1/3
)
and an SU(2)L-triplet vectorlike quark Σ

(
3,3, 2

3

)
=
(
Y 5/3, U2/3, D−1/3

)
. Neu-

trino mass is generated at one-loop level via the Feynman diagram shown in Fig. 42. The
relevant Lagrangian for the neutrino mass generation can be written as

−LY ⊃ MΣΣΣc +
(
λαβLαd

c
βΩ + λ′αQαΣcH + λ′′αLαΣΩ̃ + H.c.

)
, (2.7.16)
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Figure 42: Neutrino mass generation in the one-loop doublet leptoquark model with vec-
torlike quarks. This is the model O6

3 of Table 4 [60].

where Ω̃ = iτ2Ω? is the isospin conjugate field. Expanding the terms in Eq. 2.7.16, we obtain

−LY ⊃ MΣ (Y Y c +DDc + UU c) +
[
λαβ

(
ναω

−1/3 − `αω2/3
)
dcβ

+λ′α

{
uαY

cH+ +
1√
2

(
uαH

0 + dαH
+
)
U c + dαD

cH0

}
+λ′′α

{
ναDω

?1/3 − 1√
2

(
−ναω?−2/3 + `αω

?1/3
)
U − `αY ω?−2/3

}
+ H.c.

]
. (2.7.17)

The neutrino mass can be estimated as

Mν ∼
1

16π2

v

M2

(
λMdλ

′MDλ
′′T + λ′′MDλ

′TMdλ
T
)
, (2.7.18)

where Md and MD are the diagonal down quark mass matrix and vectorlike quark mass
matrix respectively, and M ≡ max(mω,mDi), with mDi being the eigenvalues of MD. As in
previous models with one copy of vectorlike fermion, the rank of Mν is two in this model,
implying that the lightest neutrino is massless at the one-loop level.

NSI in this model are induced by the doublet LQ component ω−1/3. The NSI parameters
read as

εαβ =
3

4
√

2GF

λ?αdλβd
m2
ω

. (2.7.19)

This expression is exactly the same as the doublet LQ contribution in Eq. 2.5.48 and the
corresponding maximum NSI can be read off from Table 18:

εmax
ee = 0.004 , εmax

µµ = 0.216 , εmax
ττ = 0.343 ,

εmax
eµ = 1.5× 10−7 , εmax

eτ = 0.0036 , εmax
µτ = 0.0043 . (2.7.20)

This is also summarized in Table 21.

Model with SU(2)L-triplet leptoquark and vectorlike quark

This is based on the operator O5
3 (see Table 4) which is realized by adding an SU(2)L-triplet

ρ̄
(
3̄,3, 1

3

)
=
(
ρ̄4/3, ρ̄1/3, ρ̄−2/3

)
and a vectorlike quark doubletQ

(
3,2,−5

6

)
=
(
D−1/3, X−4/3

)
.

Neutrino mass is generated at one-loop level, as shown as Fig. 43. There is also a two-loop
diagram involving ρ2/3, which is not considered here, as that would be sub-dominant to the
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Figure 43: Neutrino mass generation in the one-loop triplet leptoquark model with vector-
like quarks. This model corresponds to O5

3 of Table 4 [60].

one-loop diagram. The interaction term QQρ is forbidden by demanding baryon-number
conservation to avoid proton decay. The relevant Lagrangian for the neutrino mass genera-
tion can be written as

−LY ⊃ MQQQc + (λαβLαQβ ρ̄+ λ′αLαQ
cρ+ yαd

c
αQH + H.c.) , (2.7.21)

where ρ̄ is related to ρ by charge conjugation as ρ
(
3,3,−1

3

)
=
(
ρ2/3, −ρ−1/3, ρ−4/3

)
. Ex-

panding the terms in Eq. 2.7.21, we get

−LY ⊃ MQ (DDc +XXc) +

[
λαβ

{
ναuβ ρ̄

−2/3 − 1√
2

(ναdβ + `αuβ) ρ̄1/3 + `αdβ ρ̄
4/3

}
+λ′α

{
ναX

cρ−4/3 +
1√
2

(`αX
c − ναDc) ρ−1/3 − `αDcρ2/3

}
+yα

(
DH0 −H+X

)
dcα + H.c.

]
. (2.7.22)

The neutrino mass can be estimated as

Mν ∼
1

16π2

v

M2

(
λMd yMD λ

′T + λ′MD y
TMd λ

T
)
, (2.7.23)

where Md and MD are the diagonal mass matrices for down-type quark and vectorlike quark
fields, and M = max(mDi ,mρ), with mDi being the eigenvalues of MD. With a single copy
of the vectorlike quark, the matrices y and λ′ are 3× 1 dimensional. Consequently the rank
of Mν is two, which would imply that the lightest neutrino mass m1 = 0 at the one-loop
level. Realistic neutrino mixing can however be generated, analogous to the model of Ref.
[44, 45].

NSI in this model are induced by both ρ̄−2/3 and ρ̄1/3 fields, which couple to up and down
quarks respectively (cf. Eq. 2.7.22). The NSI parameters read as

εαβ =
3

4
√

2GF

(
λ?αuλβu
m2
ρ−2/3

+
λ?αdλβd
2m2

ρ1/3

)
. (2.7.24)

This is same as the triplet contribution in Eq. 2.6.4 and the maximum allowed values are
given in Eq. 2.6.15.
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⟨H0⟩

ρ̄(−2/3)
δ2/3

να uc
γ

uγ νβ

⟨H0⟩⟨H0⟩
ξ2/3

Figure 44: Feynman diagram for neutrino mass generation in the extended one-loop LQ
model with up-type quark chiral suppression in the loop. The ∆L = 2 effective operator is
Õ1 of Eq. 2.7.25.

A new extended one-loop leptoquark model

Here we present a variation of the one-loop LQ model of Sec. 2.5 wherein the neutrino mass
is generated with up-quark chiral suppression (see Fig. 44), rather than down-quark mass
suppression (as in Fig. 24). The effective operator of the model is of dimension nine, given
by

Õ1 = (LQ)(Luc)(HH)H , (2.7.25)

which may appear to be a product of O1 of Eq. (2.1.1) and the SM operator (QucH); but
the SU(2)L contractions mix the two sub-operators. To realize this operator at the one-loop
level, three SU(3)c-triplet LQ fields are introduced: δ

(
3,2, 7

6

)
=
(
δ5/3, δ2/3

)
, ρ̄
(
3̄,3, 1

3

)
=(

ρ̄4/3, ρ̄1/3, ρ̄−2/3
)
, ξ
(
3,1, 2

3

)
. Since three new fields are introduced, this model may be

viewed as non-minimal, and does not fit into the classification of The corresponding La-
grangian for the neutrino mass generation reads as

−LY ⊃ λαβLαu
c
βδ + λ′αβLαQβ ρ̄+ H.c. = λαβ

(
ναu

c
βδ

2/3 − `αucβδ5/3
)

+ λ′αβ

[
`αdβ ρ̄

4/3 − 1√
2

(ναdβ + `αuβ) ρ̄1/3 + ναuβ ρ̄
−2/3

]
+ H.c. (2.7.26)

Neutrino mass is generated by the diagram shown in Fig. 44 using the Lagrangian 2.7.26,
together with the potential terms

V ⊃ λ1ρ̄H̃H̃ξ + µH̃δξ? + H.c. = λ1ξ
2/3
(
ρ̄4/3H−H− +

√
2ρ̄1/3H0H− + ρ̄−2/3H0H0

)
+ µξ?−2/3

(
H0δ2/3 +H−δ5/3

)
+ H.c. (2.7.27)

where H̃ = (H0, −H−) represents the SM Higgs doublet. The neutrino mass matrix can be
estimated as

Mν ∼
1

16π2

µλ1v
3

m2
1m

2
2

(λMuλ
′T + λ′Muλ

T ) , (2.7.28)

where m1 and m2 are the masses of the heaviest two LQs among the δ, ρ̄ and ξ fields, andMu

is the diagonal mass matrix in the up-quark sector. To get small neutrino masses, we need
the product λλ′ � 1. We may take λ ∼ O(1) and λ′ � λ which is preferable to the other
case of λ� λ′, since the λ′ couplings are constrained by D-meson decays (see Sec. 2.5.1).

94



After integrating out the heavy LQ fields, Eq. 2.7.26 leads to an effective NSI Lagrangian
with up-quarks in the neutrino propagation through matter. The NSI parameters read as

εαβ =
3

4
√

2GF

(
λ?αuλβu
m2
δ

+
λ′?αuλ

′
βu

m2
ρ−2/3

+
λ′?αdλ

′
βd

2m2
ρ1/3

)
. (2.7.29)

For λ � λ′, this expression is exactly the same as the doublet LQ contribution derived in
Eq. 2.5.48 and the corresponding maximum NSI can be read off from Table 18 for the doublet
component. For λ′ � λ, Eq. 2.7.29 is the same as Eq. 2.7.24. This latter choice maximizes
NSI in this model and is summarized in Table 21.

There are other variations of one-loop LQ models with more exotic particles [58, 59],
where the neutrino mass is proportional to up-type quark mass. The NSI predictions in
these models are the same as in Eq. 2.7.29.

2.7.2 Two-loop models

Zee-Babu model

This model realizes the operator O9 of Eq. (2.1.4). In this model [44, 45], two SU(2)L-singlet
Higgs fields, h+(1,1, 1) and k++(1,1, 2), are introduced. The corresponding Lagrangian for
the generation of neutrino mass reads:

−LY ⊃ fαβL
i
αCL

j
βh

+εij + hαβ`
T
αC`βk

++ + H.c.

= fαβ(νTαC`β − νTβ C`α)h+ + hαβ`
T
αC`βk

++ + H.c. (2.7.30)

Majorana neutrino masses are induced at two-loop as shown in Fig. 45 by the Lagrangian 2.7.30,
together with the potential term

V ⊃ −µh−h−k++ + H.c. . (2.7.31)

The neutrino mass matrix reads:

να ℓγ ℓc
γ ℓc

δ ℓδ
νβ

h−
h−

k−−

Figure 45: Neutrino mass generation at two-loop in the Zee-Babu model [44, 45]. This
model generates operator O9 of Eq. 2.1.4.

Mν '
1

(16π2)2

8µ

M2
fMuh

†Muf
TI , (2.7.32)

where M = max(mk++ ,mh+) and I is a dimensionless function that depends on the ratio of
the masses of the two new scalars [118, 223–225]. The singly charged scalar h+ induces NSI
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at tree-level through the f -type Yukawa coupling in Eq. 2.7.30. After integrating out the
heavy scalars, NSI induced in neutrino propagation through normal matter can be written
as

εαβ ≡ εeeαβ =
1√
2GF

f ?eαfeβ
m2
h+

. (2.7.33)

This is exactly the same as Eq. 2.7.9 for which the maximum NSI are given by Eq. 2.7.10.
These are severely constrained by cLFV searches and universality of charged currents [223]
(cf. Table 20), restricting the maximum NSI to O(10−3) level [226]. These numbers are
summarized in Table 21.

Leptoquark/diquark variant of the Zee-Babu model

One can also generate neutrino mass at two-loop by replacing leptons with quarks in the
Zee-Babu model as shown in Fig. 46. In addition to the SM fields, this model [61] employs
a scalar LQ χ

(
3,1,−1

3

)
and a scalar diquark ∆

(
6,1,−2

3

)
. The χ (∆) field plays the role of

singly (doubly)-charged scalar in the Zee-Babu model. The relevant Yukawa Lagrangian for
the neutrino mass generation is written as

−LY ⊃ λαβL
i
αQ

j
βχ

?εij + hαβd
c
αd

c
β∆−2/3 + H.c.

= λαβ (ναdβ − `αuβ)χ? + hαβd
c
αd

c
β∆−2/3 + H.c. (2.7.34)

Neutrino mass is generated at two-loop via the Lagrangian 2.7.34 in combination with the
potential term

V ⊃ −µχ?χ?∆−2/3 + H.c. (2.7.35)

The neutrino mass matrix can be calculated as

να dγ dc
γ dc

δ dδ
νβ

χ−1/3
χ−1/3

∆

Figure 46: Neutrino mass generation at two-loop in the LQ/DQ variant of the Zee-Babu
model which generates operator O9 [61], cf. Eq. 2.1.4.

Mν ∼
24µ

(16π2)2M2
λMdh

†Mdλ
TI , (2.7.36)

where M ≡ max(mχ,m∆), Md is the diagonal down-type quark mass matrix, and I is a
dimensionless two-loop integral defined in terms of the ratio of m2

∆ and m2
χ [118]. After

integrating out the heavy scalars, the NSI parameters in this model are given by

εαβ =
3

4
√

2GF

λ?αdλβd
m2
χ

. (2.7.37)
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This is exactly same as the singlet LQ contribution in Eq. 2.5.48 and the corresponding
maximum NSI can be read off from Table 18:

εmax
ee = 0.0069 , εmax

µµ = 0.0086 , εmax
ττ = 0.343 ,

εmax
eµ = 1.5× 10−7 , εmax

eτ = 0.0036 , εmax
µτ = 0.0043 . (2.7.38)

This is also summarized in Table 21.
There are a few variants of this leptoquark/diquark version of the Zee-Babu model. First,

one could replace the color sextet field ∆
(
6,1,−2

3

)
by a color triplet scalar ∆

(
3,1,−2

3

)
in

Fig. 46. The cubic term χ?χ?∆ will not be allowed by Bose symmetry in this case. By
assuming two copies of the χ field, namely, χ1 and χ2, one could restore this coupling from
χ?1χ

?
2∆, in which case the diagram of Fig. 46 can be connected [70]. The NSI in such a

model is identical to the model described in this section. Second, one could replace the
internal down quarks of Fig. 46 by up-type quarks, with a simultaneous replacement of
χ
(
3,1,−1

3

)
by ρ

(
3,3,−1

3

)
and ∆

(
6,1,−2

3

)
by ∆

(
6,1, 4

3

)
. Neutrino NSI will then follow

the ρ NSI predictions as in Sec. 2.7.1. In this up-quark variant, one could replace the diquark
∆
(
6,1, 4

3

)
by a color triplet field ∆

(
3,1, 4

3

)
as well [70].

Model with SU(2)L-doublet and singlet leptoquarks

Operator O3a of Eq. (2.2.2c) does not induce neutrino mass via one-loop diagrams owing
to the SU(2)L index structure. This operator will, however, lead to generation of neutrino
masses at the two-loop level. A simple realization of O3a is given in Ref. [62]. This model
uses the same gauge symmetry and particle content as in the LQ variant of the Zee model
(cf. Sec. 2.5), i.e., Ω

(
3,2, 1

6

)
=
(
ω2/3, ω−1/3

)
and χ

(
3,1,−1

3

)
, with χ coupling modified as

follows:

−LY ⊃ λαβL
i
αd

c
βΩjεij + fαβ`

c
αu

c
βχ+ H.c. ,

= λαβ
(
ναd

c
βω
−1/3 − `αdcβω2/3

)
+ fαβ`

c
αu

c
βχ+ H.c. (2.7.39)

Note that these Yukawa couplings conserve both baryon and lepton number as can be seen by
assigning (B,L) charges of

(
1
3
,−1

)
to Ω and

(
1
3
, 1
)
to χ. The couplings λ̃αβucαdcβχ?, allowed

by the gauge symmetry are forbidden by B, and the couplings λ′αβLαQβχ
? (as in Eq. 2.5.1),

allowed by gauge symmetry as well as B are forbidden by L.17 The L symmetry is softly
broken by the cubic term in the scalar potential 2.5.2.

The simultaneous presence of Eqs. 2.7.39 and 2.5.2 would lead to neutrino mass generation
at two-loop level as shown in Fig. 47. Here Xa (with a = 1, 2) are the mass eigenstates
obtained from the mixture of the ω−1/3 and χ−1/3 states (cf. Eq. 2.5.4). Evaluation of the
LQ-W exchange diagrams in Fig. 47 (a) give the neutrino mass matrix as

Mν ∼
3g2 sin 2α

(16π2)2M2

[
λMdV

TMuf
†M` +M`f

?MuVMdλ
T
]
I , (2.7.40)

where 3 is a color factor, α is the ω−χ mixing angle (cf. Eq. 2.5.5), Mu,d,` are diagonal mass
matrices for the up- and down-type quarks, and charged leptons, respectively, V is the CKM

17The simultaneous presence of the f and λ′ couplings will drastically alter the successful V −A structure
of the SM [227], and therefore, the λ′ terms must be forbidden in this model by L symmetry.
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X−1/3
a

να dc
γ

dγ

uδ

uc
δ

ℓc
β

ℓβ

νβ

W−

να dc
γ uc

δ ℓc
β νβ

H−

X−1/3
a

Figure 47: Two-loop diagrams contributing to neutrino mass generation in the model of
Ref. [62]. The model realizes operator O3a of Eq. (2.2.2c), see Table 4.

να dc
γ dγ Uc U νβ

ω−1/3
ω−2/3

H+

⟨H0⟩

Figure 48: Two-loop neutrino mass generation in the model of Ref. [63] with a LQ and a
vector-like quark. This model corresponds to O3

3 of Table 4.

mixing matrix, M ≡ min(m1,m2) (with m1,2 given by Eq. 2.5.6), and I is a dimensionless
two-loop integral that depends on m1,2, mW and Mu,d,` [62].

NSI induced in this LQ model has the same features as the LQ variant of the Zee model
discussed in Sec. 2.5.4. Note that the fαβ-couplings in Eq. 2.7.39 do not lead to neutrino
NSI. The expression for the NSI parameters is given by

εαβ =
3

4
√

2GF

λ?αdλβd
m2
ω

. (2.7.41)

The maximum allowed values of these NSI parameters are given in Table 18 (doublet case)
and also summarized in Table 21.

Leptoquark model with SU(2)L-singlet vectorlike quark

This model utilizes the dimension-7 operator LiLjεijQkH lεkld
c to generate two-loop neutrino

mass [63]. This specific realization corresponds to the model O3
3 of Table 4 [60]. In addition

to the SM fields, an SU(2)L-singlet vector-like quarks U
(
3,1, 2

3

)
and U c

(
3?,1,−2

3

)
, and a

scalar doublet LQ Ω
(
3,2, 1

6

)
=
(
ω2/3, ω−1/3

)
are added to the SM spectrum. Addition of
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these fields leads to the following new Yukawa Lagrangian:

−LY ⊃ λαβLαΩdcβ + λ′αLαΩ̃U + fαQαHU
c + H.c. ,

= λαβ(ναd
c
βω
−1/3 − `αdcβω2/3) + λ′α

[(
ω−1/3

)?
`αU + να

(
ω2/3

)?
U
]

(2.7.42)

+ fα(uαH
0U c − dαH+U c) + H.c. ,

where Ω̃ ≡ iτ2Ω?. The presence of all three Yukawa terms implies that lepton number is not
conserved. Together with the quartic coupling term in the potential

V ⊃ λω|ΩiHjεij|2 ⊃ −λωω−1/3ω−2/3H+H0 + H.c. , (2.7.43)

the Lagrangian 2.7.43 leads to neutrino mass generation at two-loop as shown in Fig. 48.
This can be estimated as

Mν '
λω

(16π2)2

v

M2
(λMdfMUλ

′T + λ′MT
U f

TMT
d λ

T ) , (2.7.44)

where Md and MU are the diagonal down quark and vectorlike quark mass matrices respec-
tively, and M =max(mω,mUi), with mUi being the eigenvalues of MU .

NSI in this model are induced by the ω−1/3 LQ and are given by

εαβ =
3

4
√

2GF

λ?αdλβd
m2
ω

, (2.7.45)

same as the doublet LQ contribution in Eq. 2.5.48. The maximum NSI that can be obtained
in this model are given in Eq. 2.7.20 and are also summarized in Table 21.

Angelic model

να νβχ−1/3

F

dc
δ

dδ

χ−1/3

dγdc
γ

Fc

Figure 49: Two-loop neutrino mass generation in the Angelic model [64]. This model
induces operator O11 of Ref. [55].

This model induces operator O11 of Ref. [55]:

O11 = LiLjQkdcQldcεikεjl . (2.7.46)

In this model [64], one adds two scalar LQs χa
(
3,1,−1

3

)
(with a = 1, 2) and a color-octet

Majorana fermion F (8,1, 0). The relevant Yukawa Lagrangian is written as

−LY ⊃ λαβaLαQβχa + λ′αad
c
αFχa + λ′′αβae

c
αuβχa + H.c. (2.7.47)
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να ℓγ νβ

η+
W+

⟨H0⟩

dρ

dc
ρ D

Dc

uρ

Figure 50: Two-loop neutrino mass generation with singlet scalar and vector-like quark,
corresponding to O1

3 or Table 4 [60].

Expanding the first term, we get

−LY ⊃ λαβ1 (ναdβ − `αuβ)χ?1 + λαβ2 (ναdβ − `αuβ)χ?2 + H.c. (2.7.48)

Within this framework, neutrino mass is induced at two-loop level as shown in Fig. 49 which
can be estimated as

Mν ∼
4mF

(16π2)2M2
(λλ′V )(MdIMd)(λλ

′V )T , (2.7.49)

where V is the CKM-matrix,Md is the diagonal down-quark mass matrix,M ≡ max(mF ,mχa),
and I is a loop function containing mχa ,mF and Md [64].

NSI in this model are induced by the singlet LQ χ and are given by

εαβ =
3

4
√

2GF

λ?αdaλβda
m2
χa

, (2.7.50)

same as the singlet LQ contribution in Eq. 2.5.48. The maximum NSI in this model are the
same as in Eq. 2.7.15. This is tabulated in Table 21.

Model with singlet scalar and vectorlike quark

This model realizes the O1
3 operator (cf. Table 4) by adding a singlet scalar η+(1,1, 1) and

vectorlike quark Q
(
3,2,−5

6

)
=
(
D−1/3, X−4/3

)
. Neutrino mass is generated at two-loop

level as shown in the Fig. 50. The relevant Lagrangian for the neutrino mass generation can
be read as:

−LY ⊃ fαβLαLβη
+ + f ′αQcQαη

− + YαQdcαH + H.c.

= fαβ(να`βη
+ − `ανβη+)− f ′α(Xcdαη

− +Dcuαη
−)

+Yα(DdcαH
0 −XdcαH+) + H.c. (2.7.51)

The neutrino mass can be estimated as

Mν ∼
g2m2

` sinϕ

(16π2)2m2
η

(
f + fT

)
, (2.7.52)
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where sinϕ represents the mixing between W+ and η+. The role of the vectorlike quarks
in this model is to achieve such a mixing, which requires lepton number violation. Note
that only the longitudinal component of W mixes with η+, which brings in two powers of
lepton mass suppression in the neutrino mass estimate – one from the Yukawa coupling of
the longitudinal W and the other from a required charality flip inside the loop. It is to be
noted that Eq. 2.7.52 does not fit the neutrino oscillation data as it has all diagonal entries
zero, owing to the anti-symmetric nature of the f -couplings.

Other operators which lead to similar inconsistency with the neutrino oscillation data
are O2

3, O1
4 and O2

4 (cf. Tables 4 and 5). Therefore, we do not discuss the NSI prospects in
these models.

Leptoquark model with vectorlike lepton

να νβdc
γ dγ uγ uc

γ Ec E ℓc
β

ℓβ

W−

ω−1/3

⟨H0⟩

Figure 51: Two-loop neutrino mass generation with SU(2)L-doublet leptoquark and vector-
like lepton, corresponding to O2

8 of Table 6 [60].

This model is a realization ofO2
8 in Table 6. This is achieved by adding an SU(2)L-doublet

leptoquark Ω
(
3,2, 1

6

)
and a vectorlike lepton ψ

(
1,2,−1

2

)
= (N, E). The Lagrangian re-

sponsible for neutrino mass generation can be written as

−LY ⊃ mψψψ
c + (λαβLαΩdcβ + λ′αψ

cucαΩ + λ′′αψ`
c
αH̃ + H.c.)

= mψ(NN c + EEc) +
[
λαβ(ναd

c
βω
−1/3 − `αdcβω2/3) + λ′α(Ecω−1/3 +N cω2/3)ucα

+λ′′α(NH− + EH
0
)`cα + H.c.)

]
. (2.7.53)

Neutrino masses are generated at two-loop level via diagrams shown in Fig. 51 and can be
estimated as:

Mν ∼
g2

(16π2)2

v

m2
ωm

2
E

(
λMdMuλ

′?MEλ
′′†M` +M`λ

′′?MEλ
′†MuMdλ

T
)
, (2.7.54)

whereMd, Mu, M` andME are the diagonal mass matrices for down quark, up quark, charged
leptons and vectorlike leptons, respectively, and mE is the largest eigenvalue of ME. The
NSI parameters can be written as

εαβ =
3

4
√

2GF

λ?αdλβd
m2
ω

, (2.7.55)
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This is exactly the same expression as the doublet contribution in Eq. 2.5.46, with the
maximum values given in Table 18.

Leptoquark model with SU(2)L-doublet vectorlike quark

να dc
γ dγ

uγ uc
γ U Uc ℓc

β
ℓβ νβ

⟨H0⟩

ω−1/3

W−

Figure 52: Two-loop neutrino mass generation with SU(2)L-doublet leptoquark and
SU(2)L-doublet vectorlike quark corresponding to O3

8 or Table 6 [60].

This model realizes the O3
8 operator (cf. Table 6) by adding an SU(2)L-doublet lepto-

quark Ω
(
3,2, 1

6

)
and an SU(2)L-doublet vectorlike quark ξ

(
3,2, 7

6

)
=
(
V 5/3, U2/3

)
. The

corresponding Lagrangian for the neutrino mass generation is given by

−LY ⊃ mξξξ
c + (λαβLαΩdcβ + λ′αξu

c
αH̃ + λ′′αξ

c`cαΩ + H.c.)

= mξ(V V
c + UU c) +

[
λαβ(ναω

−1/3 − `αω2/3)dcβ − λ′α(V H− + UH̄0)ucα

+λ′′α(U cω−1/3 + V cω2/3)`cα + H.c.
]
. (2.7.56)

Neutrino mass is generated at two-loop level as shown in Fig. 52 and can be estimated as

Mν ∼
g2

(16π2)2

v

m2
ωm

2
U

(
λMdMuλ

′?MUλ
′′†M` +M`λ

′′?MUM
′†
λMuMdλ

T
)
. (2.7.57)

whereMd, Mu, M` andMU are the diagonal mass matrices for down quark, up quark, charged
leptons and vectorlike quarks, respectively, and mU is the largest eigenvalue ofMU . The NSI
parameters can be written as

εαβ =
3

4
√

2GF

λ?αdλβd
m2
ω

. (2.7.58)

This is exactly the same expression as the doublet contribution in Eq. 2.5.46, with the
maximum values given in Table 18.

A new two-loop leptoquark model

Here we propose a new two-loop LQ model for neutrino mass, where one can get NSI with
up-quark. The effective ∆L = 2 operator is d = 13, and is given by

Od=13 = QLucQLucH H H H . (2.7.59)
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να uc
γ uγ uδ uc

δ
νβ

∆̂−4/3

⟨H0⟩

⟨H0⟩ ⟨H0⟩

⟨H0⟩
ω2/3 ω2/3

δ2/3 δ2/3

Figure 53: New two-loop scalar LQ model with up-quark loops. The operator induced in
the model is Od=13 in Eq. 2.7.59.

This model utilizes two scalar LQs – δ
(
3,2, 7

6

)
=
(
δ5/3, δ2/3

)
and Ω

(
3,2, 1

6

)
=
(
ω2/3, ω−1/3

)
,

and a scalar diquark ∆̂
(
6?,3,−1

3

)
=
(

∆̂−4/3, ∆̂−1/3, ∆̂2/3
)
. The relevant Yukawa Lagrangian

for the neutrino mass generation reads as

−LY ⊃ fαβLαδu
c
β + hαβQα∆̂Qβ + yαβQαHu

c
β + H.c.

= fαβ
(
ναu

c
βδ

2/3 − `αucβδ5/3
)

+ hαβ

(
uαuβ∆̂−4/3 +

√
2uαdβ∆̂−1/3 + dαdβ∆̂2/3

)
+ yαβ

(
uαH

0ucβ − dαH+ucβ
)

+ H.c. (2.7.60)

The relevant terms in the potential that leads to neutrino mass generation read as

V ⊃ µΩ2∆̂ + λδ†ΩHH + H.c. (2.7.61)

The neutrino mass is induced at two-loop level as shown in Fig. 53 and can be estimated as

Mν ∼
1

(16π2)2

µv4λ2

m2
δm

2
ωm

2
∆̂

fMuhMuf
T , (2.7.62)

where Mu is the diagonal up-type quark mass matrix. Note that Mν is a symmetric matirx,
as it should be, since h = hT .

After integrating out the heavy scalars, NSI induced in this model can be written as

εαβ =
3

4
√

2GF

f ?αufβu
m2
δ

. (2.7.63)

This is same as the extended one-loop LQ model prediction in Eq. 2.7.29 for λ � λ′. The
maximum allowed values can be read off from Table 18 for the doublet component. This is
also summarized in Table 21.

2.7.3 Three-loop models

KNT Model

The Krauss-Nasri-Trodden (KNT) model [65] generates the d = 9 operator O9 of Eq. (2.1.4).
SM-singlet fermions Nα(1,1, 0) and two SM-singlet scalars η+

1 and η+
2 with SM charges
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(1,1, 1) are introduced. The relevant Yukawa Lagrangian is written as

−LY ⊃ fαβ LαLβη
+
1 + f ′αβ `

c
αNβη

−
2 +

1

2
(MN)αβNαNβ . (2.7.64)

Tree level mass is prevented by imposing a Z2 symmetry under which the fields η+
2 and N are

odd, while the other fields are even. The Majorana mass term for N as shown in Eq. 2.7.64
explicitly breaks lepton number. Neutrino masses are generated at three-loop as shown in
Fig. 54 by the Lagrangian 2.7.64, together with the quartic term in the potential

V ⊃ λs(η
+
1 η
−
2 )2 . (2.7.65)

The estimated neutrino mass matrix reads as

να ℓγ ℓc
γ Nρ Nρ ℓc

δ ℓδ νβ

η+
1

η−
2

η−
2

η+
1

Figure 54: Three-loop neutrino mass generation in the KNT model [65]. The model induces
operator O9 of Eq. (2.1.4).

Mν ' −
λs

(16π2)3

1

M2
fM`f

′†MNf
′?M`f

TI , (2.7.66)

where M` is the diagonal charged lepton mass matrix, MN = diag(mNα) is the diagonal
Majorana mass matrix for Nα fermions, M ≡ max(mNα ,mη1 ,mη2), and I is a three-loop
function obtained in general by numerical integration [228].

NSI in the KNT model arise from singly-charged scalar η+
1 that has the same structure

as in the Zee-Babu model (cf. Sec. 2.7.2) and are given by

εαβ =
1√
2GF

f ?eαfeβ
m2
η1

. (2.7.67)

The maximum NSI one can get in this model are same as in Eq. 2.7.10 and also summarized
in Table 21.

AKS model

In the Aoki-Kanemura-Seto (AKS) model [67] an effective ∆L = 2 operator of dimension 11
is induced:

O′3 = LLHHececec ec . (2.7.68)

Note that there is a chiral suppression in this model unlike generic operators of type O′1
given in Eq. 2.1.5. In addition to the SM fields, the following particles are added: an isospin
doublet scalar Φ2

(
1,2, 1

2

)
, a singly-charged scalar singlet η+(1,1, 1), a real scalar singlet
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Figure 55: Three-loop neutrino mass generation in the AKS model [67]. The model induces
operator O′3 of Eq. 2.7.68.

η0(1,1, 0), and two isospin-singlet right-handed neutrinos Nα(1,1, 0) (with α = 1, 2). The
relevant Yukawa Lagrangian for the neutrino mass generation reads as

−LY ⊃ yαβaΦ̃aLα`
c
β + hαβ`

c
αNβη

− +
1

2
(MN)αβNαNβ + H.c. , (2.7.69)

where Φ1

(
1,2, 1

2

)
is the SM Higgs doublet. Tree-level neutrino mass is forbidden by imposing

a Z2 symmetry under which η±, η0 and NαR are odd, while the remaining fields are even.
Neutrino masses are generated at three-loop, as shown in Fig. 55, by combining Eq. 2.7.69
with the quartic term in the potential

V ⊃ κεab(Φ
c
a)
†Φbη

−η0 + H.c. (2.7.70)

In Fig. 55 H± are the physical charged scalars from a linear combination of Φ1 and Φ2. The
neutrino mass matrix reads as follows:

Mν '
1

(16π2)3

(−mNv
2)

m2
N −m2

η0

4κ2 tan2 β(yh)(yh)TI , (2.7.71)

where tan β ≡ 〈Φ0
2〉/〈Φ0

1〉 and I is a dimensionless three-loop integral function that depends
on the masses present inside the loop.

NSI in this model are induced by the charged scalar H−. After integrating out the heavy
scalars, the NSI expression can be written as

εαβ =
1

4
√

2GF

y?eαayeβa
m2
H−

. (2.7.72)

This is similar to the heavy charged scalar contribution in Eq. 2.4.81. However, since the
same Yukawa couplings yeαa contribute to the electron mass in Eq. 2.7.69, we expect

εαβ ∝ y2
e tan2 β ∼ O

(
10−10

)
, (2.7.73)

where ye is the electron Yukawa coupling in the SM. Thus, the maximum NSI in this model
are of order of O (10−10), as summarized in Table 21.
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H/A
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1,2 H+

1,2
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ℓc
γ ℓc

ρℓγ ℓρ

Figure 56: Three-loop neutrino mass generation in the cocktail model [68]. The efective
operator induced is O9 of Eq. (2.1.4).

Cocktail Model

This model [68] induces operator O9 of Eq. (2.1.4) at the three-loop level. The model
includes two SU(2)L-singlet scalars η+(1,1, 1) and k++(1,1, 2), and a second scalar doublet
Φ2

(
1,2, 1

2

)
, in addition to the SM Higgs doublet Φ1

(
1,2, 1

2

)
. The fields η+ and Φ2 are odd

under a Z2 symmetry, while k++ and all SM fields are even. With this particle content, the
relevant term in the Lagrangian reads as

−LY ⊃ yαβΦ̃1Lα`
c
β + Yαβ`

c
α`βk

++ + H.c. , (2.7.74)

which breaks lepton number when combined with the following cubic and quartic terms in
the potential:

V ⊃ λ

2
(Φ†1Φ2)2 + κ1ΦT

2 iτ2Φ1η
− + κ2k

++η−η− + ξΦT
2 iτ2Φ1η

+k−− + H.c. (2.7.75)

The Φ2 field is inert and does not get a VEV. After electroweak symmetry breaking, it can
be written as

Φ2 =

(
φ+

2

H + iA

)
. (2.7.76)

For κ1 6= 0, the singly-charged state φ+
2 mixes with η+ (with mixing angle β), giving rise to

two singly-charged scalar mass eigenstates:

H+
1 = cβφ

+
2 + sβη

+ ,

H+
2 = −sβφ+

2 + cβη
+ , (2.7.77)

where sβ ≡ sin β and cβ ≡ cos β.
The neutrino mass matrix is obtained from the three-loop diagram as shown in Fig. 56

and reads as [68]

Mν ∼
g2

(16π2)3
M`(Y + Y T )M` , (2.7.78)
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where M` stands for the diagonal charged lepton mass matrix.
As for the NSI, since both Φ2 and η+ are odd under Z2 and the SM fields are even, there

is no tree-level NSI in this model. Note that neutrino mass generation utilizes the W boson
couplings, thus the neutrino matter effects in this model are the same as in the SM.

Leptoquark variant of the KNT model

να dγ dc
γ Nρ Nρ dc

δ dδ
νβ

χ
−1/3
1

χ
−1/3
2

χ
−1/3
2

χ
−1/3
1

Figure 57: Three-loop neutrino mass generation in the LQ variant of the KNT model,
which induces operator O9 [66].

One can replace the charged leptons in the KNT model (cf. Sec. 2.7.3) by quarks, and
the charged scalars by leptoquarks. The effective operator induced in this model remains
as O9 or Eq. (2.1.4). To achieve this, two isospin-singlet scalar LQs χ−1/3

a

(
3,1,−1

3

)
(with

a = 1, 2) and at least two SM-singlet right-handed neutrinos Nα(1,1, 0) (with α = 1, 2) are
supplemented to the SM fields. A Z2 symmetry is invoked under which χ

−1/3
2 and N are

odd, while the rest of the fields are even. The relevant Yukawa Lagrangian is as follows:

−LY ⊃ λαβL
i
αQ

j
βχ

?1/3
1 εij + λ′αβd

c
αNβχ

?1/3
2 +

1

2
(MN)αβNαNβ + H.c. (2.7.79)

Here the first term expands to give λαβ (ναdβ − `αuβ)χ
?1/3
1 . These interactions, along with

the quartic term in the potential

V ⊃ λ0

(
χ
?1/3
1 χ

−1/3
2

)2

, (2.7.80)

generate neutrino masses at three-loop level, as shown in Fig. 57. The neutrino mass matrix
reads as

Mν ∼
15λ0

(16π2)3m2
χ1

λMdλ
′?MNλ

′†Mdλ
T I , (2.7.81)

where the factor 15 comes from total color-degrees of freedom, Md and MN are the diagonal
down-type quark and right-handed neutrino mass matrices, respectively, and I is a dimen-
sionless three-loop integral that depends on the ratio of the masses of particles inside the
loop [66].

NSI in this model arise from the χ−1/3
1 interactions with neutrinos and down-quarks. The

expression for NSI parameters is given by

εαβ =
3

4
√

2GF

λ?αdλβd
m2
χ1

, (2.7.82)

which is the same as the singlet contribution in Eq. 2.5.48. The maximum NSI for this model
are the same as those given in Eq. 2.7.15 and are summarized in Table 21.
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⟨H0⟩⟨H0⟩

Figure 58: Neutrino mass generation at one-loop in the scotogenic model [73].

2.8 Type II radiative models

As discussed in the introduction (cf. Sec. 2.1.1), type-II radiative neutrino mass models in
our nomenclature contain no SM particle inside the loop diagrams generating mν , and there-
fore, do not generally contribute to tree-level NSI, although small loop-level NSI effects are
possible [229]. To illustrate this point, let us take the scotogenic model [73] as a prototypical
example. The new particles introduced in this model are SM-singlet fermions Nα(1,1, 0)
(with α = 1, 2, 3) and an SU(2)L doublet scalar η

(
1,2, 1

2

)
: (η+, η0). A Z2 symmetry is

imposed under which the new fields Nα and η are odd, while all the SM fields are even. The
new Yukawa interactions in this model are given by

−LY ⊃ hαβ(ναη
0 − `αη+)Nβ +

1

2
(MN)αβNαNβ + H.c. (2.8.1)

Together with the scalar quartic term

V ⊃ λ5

2
(Φ†η)2 + H.c. , (2.8.2)

where Φ is the SM Higgs doublet, the Lagrangian 2.8.1 gives rise to neutrino mass at one-
loop, as shown in Fig. 58. Since this diagram does not contain any SM fields inside the loop,
it cannot be cut to generate an effective higher-dimensional operator of the SM. Therefore,
we label it as a type-II radiative model. The neutrino mass in this model is given by

Mν =
λ5v

2

8π2

hMNh
T

m2
0 −M2

N

[
1− M2

N

m2
0 −M2

N

log

(
m2

0

M2
N

)]
, (2.8.3)

where we have assumed MN to be diagonal, and m2
0 is the average squared mass of the real

and imaginary parts of η0. It is clear from Eq. 2.8.3 that the neutrino mass is not chirally
suppressed by any SM particle mass.

A new example of type-II-like radiative model is shown in Fig. 59, where the new particles
added are as follows: one color-sextet diquark ∆

(
6,1, 4

3

)
, one SU(2)L doublet scalar LQ

δ
(
3,2, 7

6

)
= (δ5/3, δ2/3), and an SU(2)L singlet scalar LQ ξ

(
3,1, 2

3

)
. The relevant Yukawa

Lagrangian is given by

−LY ⊃ fαβ(ναδ
2/3 − `αδ5/3)ucβ + λαβu

c
α∆ucβ + H.c. (2.8.4)
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Figure 59: A new example of type-II radiative neutrino mass model.

Together with the scalar potential terms

V ⊃ µδ†Φδ + µ′δ2∆ + H.c. , (2.8.5)

where Φ is the SM Higgs doublet, the Lagrangian 2.8.4 gives rise to neutrino mass at two-loop
level, as shown in Fig. 59. The neutrino mass can be approximated as follows:

Mν ∼
1

(16π2)2

µ2µ′v2

m2
1m

2
2

(fλfT ) , (2.8.6)

where m1 and m2 are the masses of the heaviest two LQs among the δ, ξ and ∆ fields that
run in the loop. Thus, although this model can be described as arising from an effective
∆L = 2 operator O′1 of Eq. 2.1.5, the neutrino mass has no chiral suppression here. In this
sense, this can be put in the type-II radiative model category, although it leads to tree-level
NSI induced by the δ LQs, as in the one-loop type-I model discussed in Sec. 2.7.1. A similar
two-loop radiative model without the chiral suppression can be found in Ref. [230].

2.9 Conclusion

We have made a comprehensive analysis of neutrino non-standard interactions generated
by new scalars in radiative neutrino mass models. For this purpose, we have proposed a
new nomenclature to classify radiative neutrino mass models, viz., the class of models with
at least one SM particle in the loop are dubbed as type-I radiative models, whereas those
models with no SM particles in the loop are called type-II radiative models. From NSI
perspective, the type-I radiative models are most interesting, as the neutrino couples to a
SM fermion (matter field) and a new scalar directly, thus generating NSI at tree-level, unlike
type-II radiative models. After taking into account various theoretical and experimental
constraints, we have derived the maximum possible NSI in all the type-I radiative models.
Our results are summarized in Fig. 60 and Table 21.

We have specifically analyzed two popular type-I radiative models, namely, the Zee model
and its variant with LQs replacing the charged scalars, in great detail. In the Zee model
with SU(2)L singlet and doublet scalar fields, we find that large NSI can be obtained via the
exchange of a light charged scalar, arising primarily from the SU(2)L-singlet field but with
some admixture of the doublet field. A light charged scalar with mass as low as ∼100 GeV
is found to be consistent with various experimental constraints, including charged lepton
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flavor violation (cf. Sec. 2.4.5), monophoton constraints from LEP (cf. Sec. 2.4.11), direct
searches for charged scalar pair and single production at LEP (cf. Sec. 2.4.7) and LHC
(cf. Sec. 2.4.7), Higgs physics constraints from LHC (cf. Sec. 2.4.10), and lepton universality
in W± (cf. Sec. 2.4.8) and τ (cf. Sec. 2.4.9) decays. In addition, for the Yukawa couplings
and the mixing between singlet and doublet scalars, we have considered the contact inter-
action limits from LEP (cf. Sec. 2.4.6), electroweak precision constraints from T -parameter
(cf. Sec. 2.4.4), charge breaking minima of the Higgs potential (cf. Sec. 2.4.3), as well as per-
turbative unitarity of Yukawa and quartic couplings. After imposing all these constraints, we
find diagonal values of the NSI parameters (εee, εµµ, εττ ) can be as large as (8%, 3.8%, 43%),
while the off-diagonal NSI parameters (εeµ, εeτ , εµτ ) can be at most (10−3%, 0.56%, 0.34%),
as summarized in Fig. 60 and Table 10. Most of these NSI values are still allowed by the
global fit constraints from neutrino oscillation and scattering experiments, and some of these
parameters can be probed at future long-baseline neutrino oscillation experiments, such as
DUNE.

We have also analyzed in detail the LQ version of the Zee model, the results of which can
be applied to other LQ models with minimal modification. This analysis took into account
the experimental constraints from direct searches for LQ pair and single production at LHC
(cf. Sec. 2.5.3), as well as the low-energy constraints from APV (cf. Sec. 2.5.1), charged
lepton flavor violation (cf. Secs. 2.5.1 and 2.5.1) and rare meson decays (cf. Sec. 2.5.1), apart
from the theoretical constraints from perturbative unitarity of the Yukawa couplings. In-
cluding all these constraints we found that diagonal NSI (εee, εµµ, εττ ) can be as large as
(0.4%, 21.6%, 34.3%), while off-diagonal NSI (εeµ, εeτ εµτ ) can be as large as (10−5%, 0.36%, 0.43%),
as summarized in Fig. 60 and Table 18. A variant of the LQ model with triplet LQs
(cf. Sec. 2.6) allows for larger εττ ) which can be as large as 51.7%. Neutrino scattering
experiments are found to be the most constraining for the diagonal NSI parameters εee and
εµµ, while the cLFV searches are the most constraining for the off-diagonal NSI. εττ is the
least constrained and can be probed at future long-baseline neutrino oscillation experiments,
such as DUNE, whereas the other NSI parameters are constrained to be below the DUNE
sensitivity reach.
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Figure 60: Summary of maximum NSI strength |εαβ| allowed in different classes of radia-
tive neutrino mass models discussed here. Red, yellow, green, cyan, blue and purple bars
correspond to the Zee model, minimal radiative inverse seesaw model, leptoquark model with
singlet, doublet and triplet leptoquarks, and Zee-Babu model respectively.
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CHAPTER III

LEFT RIGHT SYMMETRIC MODEL WITHOUT HIGGS TRIPLETS

3.1 Introduction

Left-right symmetric models (LRSM) based on the gauge group SU(3)C⊗SU(2)L⊗SU(2)R⊗
U(1)B−L [33, 38, 231–235] are attractive extensions of the Standard Model on several grounds.
They explain Parity violation as a spontaneous phenomenon resulting from gauge symmetry
breaking. They incorporate the right-handed neutrino (νR) as an essential component of
the right-handed lepton doublet, paving the way for neutrino mass generation by the seesaw
mechanism [33, 38]. The promotion of hypercharge Y of the Standard Model into (B − L)
in LRSM [236, 237] may shed deeper insight into its origin from higher unification such
as SO(10). And these models lead to a variety of interesting phenomena, if the left-right
symmetry is realized near the TeV scale, that can be tested in ongoing and forthcoming low
energy as well as in high energy collider experiments.

For consistent phenomenology the SU(2)L⊗ SU(2)R⊗U(1)B−L gauge symmetry should
break spontaneously down to SU(2)L ⊗ U(1)Y via the Higgs mechanism at a scale vR much
larger than the electroweak symmetry breaking scale vL. In the early constructions of LRSM,
before the advent of the seesaw mechanism to generate small neutrino masses [32–36, 38], a
pair of Higgs doublets χL(2, 1, 1)+χR(1, 2, 1) and a Higgs bidoublet Φ(2, 2, 0) were employed
for this purpose [232–235]. (The quantum numbers here refer to SU(2)L⊗SU(2)R⊗U(1)B−L
transformations.) When the neutral component of χR develops a vacuum expectation value
(VEV), 〈χ0

R〉 = vR/
√

2, the gauge symmetry breaks down to SU(2)L⊗U(1)Y , giving masses
of order vR to the W±

R and the ZR gauge bosons. The Higgs bidoublet Φ(2, 2, 0) is used
to generate quark and lepton masses, including neutrino Dirac masses. The smallness of
neutrino masses compared to the charged fermions masses would remain unexplained in this
scenario.

The discovery of the seesaw mechanism caused a major shift in the thinking on Higgs
multiplets needed for symmetry breaking in LRSM. It was pointed out in Ref. [33, 38] that a
pair of Higgs triplets ∆L(1, 3, 2)+∆R(3, 1, 2) can simultaneously generateW±

R and ZR gauge
bosons masses and Majorana masses for the νR fields, thus realizing the seesaw mechanism.
After this observation, a Higgs sector consisting of {∆L(1, 3, 2) + ∆R(3, 1, 2) + Φ(2, 2, 0)}
has become standard in the discussion of LRSM models. One feature of this Higgs system
distinct from the Higgs doublet scenario of early years is the appearance of a pair of doubly
charged scalars δ±±L and δ±±R in the physical spectrum. The presence of the ∆L(3, 1, 2) Higgs
field, which is the Parity partner of the ∆R(1, 3, 2) Higgs field used for SU(2)R ⊗ U(1)B−L
symmetry breaking, provides a compelling motivation for type-II seesaw mechanism for small
neutrino masses in this context [7, 33, 39], which is in addition to contributions from the
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type-I seesaw mechanism [32–36, 38]. The phenomenology of this class of minimal left-right
symmetric models has been well studied in the context of flavor physics [238–260], neutrino
masses and cosmology [256, 261–273], Higgs boson physics [237, 253, 274–277], as well as
collider physics [265, 266, 278–293].

The purpose of this chapter is to develop an alternate minimal version of LRSM which
uses a Higgs system consisting of {χL(1, 2, 1) + χR(2, 1, 1) + Φ(2, 2, 0)} for gauge symmetry
breaking and fermion mass generation, as was done in the early papers [232–235]. As for
realizing the seesaw mechanism, a new singlet scalar η+(1, 1, 2) is introduced which has
Yukawa couplings to the right-handed neutrino that violates lepton number. Majorana
masses for the νR fields are induced via two-loop diagrams involving the η+ field. This Higgs
sector is arguably a little simpler than that of the standard left-right model. The physical
scalar spectrum in this scenario consists of four neutral scalars, two pseudoscalars, and three
charged scalars. This is to be compared with the physical spectrum of standard left-right
model which has one less charged scalar, but two doubly charged scalars.

The phenomenology of the model developed here is also distinct from that of the standard
left-right model with respect to neutrino physics, Higgs boson physics and collider signals.
A careful analysis of this model shows that if the W±

R gauge boson has a mass near 5 TeV,
two of the νR fields would have masses in the few MeV range, leading to interesting low
energy phenomena. Such a scenario is constrained by early universe cosmology as well as by
supernova 1987a energy loss in νR. By analyzing these constraints we show the consistency
of such a low mass W±

R scenario. As the mass of W±
R increases, so does the νR masses. We

show that the entire range of W±
R masses, from a few TeV to the GUT scale of 1016 GeV, is

consistent within the model.
Left-right symmetric models involving this set of Higgs boson have been studied previ-

ously [294, 295]. In the early work of Ref. [294] the νR fields were found to be as light as
the usual neutrinos, with masses of order eV or less. (The model of Ref. [294] also contains
iso-singlet down-type quarks, but the Higgs sector and the lepton sector are identical to the
model analyzed here.) In the recent work of Ref. [295] the νR fields were found to have
masses of order 400 MeV or less. These results were obtained based on the evaluation of
one-loop diagrams for νR Majorana masses, which are proportional to the charged lepton
masses. We observe here that there are more important two-loop diagrams for νR masses
that do not rely on electroweak symmetry breaking parameters. The νR mass arising from
such diagrams scale linearly with vR, suppressed by a two-loop factor. This allows for the
νR mass to be anywhere from sub-MeV to 1014 GeV, depending on the scale vR where the
SU(2)R gauge symmetry breaks. In terms of effective operators, the νR mass receives two
contributions:

O1 = c1 ΨRΨR(χTLΦχR), O2 = c2 ΨRΨR(χRχR) (3.1.1)

where ΨR denotes the right-handed lepton doublet. The Wilson coefficients c1 and c2 are
found to be of order

c1 ∼
(y2
τfα4)

16π2

(
1

M2

)
, c2 ∼

(y2
τfα4)

(16π2)2

( µ4

M2

)
. (3.1.2)

Here yτ is the tau-lepton Yukawa coupling, f is the Yukawa coupling of the charged scalar
η+, α4 and µ4 are scalar quartic and cubic couplings which together violate lepton number,
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and M ∼ vR is the scale of new physics where these operators are induced. The operator
O1 is realized through one-loop diagrams, while O2 is realized through two-loop diagrams.
In spite of the additional loop suppression, it is clear that as vR takes values much larger
than vL, contributions from O2 will dominate over O1. Establishing this fact is an important
result of the present chapter.

As we shall show explicitly from a symmetry breaking analysis of the model presented in
Sec. 3.3, all scalar fields have masses of order vR or smaller, except for the η+ field, which
can have an arbitrarily large mass. The mass parameter M appearing in Eq. (3.1.2) is not
the mass of η+, but of the other scalar fields of the model which are of order vR. Thus the
model allows for the η+ field to be integrated out while still yielding the νR Majorana mass
operators of Eq. (3.1.2). The νR mass depends only logarithmically on the η+ mass. While
this is a simplifying feature of the model, phenomenology would require a relatively large
W±
R mass of order 50 TeV or larger in this case. We shall consider therefore the more general

case of η+ mass being of order the W±
R mass or lighter, in which case both particles may be

observed in collider experiments on the horizon.
Our careful evaluation of the two-loop diagrams that generate Majorana masses for the

νR fields confirms that these diagrams dominate over the one-loop diagrams for the entire
range ofW±

R mass. We have analyzed the phenomenology of two specific scenarios, one where
the W±

R gauge boson is light, with a mass in the few TeV range – so that it is observable at
the LHC, and one where it is much heavier. In the former case the νR Majorana mass is in
the few MeV range, which can potentially modify standard big bang cosmology, unless the
νR decays before the onset of nucleosynthesis. Satisfying this constraint requires that the η+

scalar should have a mass of order a few TeV as well. We have re-evaluated the constraints
on W±

R mass arising from the energy loss in νR from supernova 1987a. Including the full
cross section for νR production, as well as certain interference terms that were previously
ignored, we found the constraint on W±

R mass to be MWR
> 4.6 TeV, which is somewhat

weaker than the limit of MwR > 23 TeV found in Ref. [296].
For intermediate value of W±

R mass, the η+ scalar may be accessible to collider exper-
iments which could lead to multi-lepton signals from the decay of η+η− pairs. We have
analyzed the current constraint from LHC, and obtained a limit mη+ ≥ 410 GeV, which may
be increased to 585 GeV at the high luminosity run of the LHC.

The rest of the chapter is organized as follows. The LRSM without Higgs triplets is
outlined in Sec. 3.2. In Sec. 3.3 the scalar sector of this model is presented and analyzed.
Here the masses of the Higgs field are laid out with a few simplifying assumptions. In Sec.
3.4 we summarize the the gauge boson masses and mixings in the model. In Sec. 3.5 we
study the generation of right-handed neutrino mass via one-loop and two-loop diagrams.
In Sec. 3.6 we present fits to the neutrino oscillation data with a TeV scale WR. Here we
summarize various experimental and cosmological limits on an MeV scale sterile neutrino and
show that these constraints are satisfied in the model. In Sec. 3.7 we revisit the supernova
constraints on WR mass valid when the νR mass is below 10 MeV. Sec. 3.8 provides fits
to the neutrino mass matrix with the neutrino oscillation data. In Sec. 3.9 we discuss the
collider implication of this model by analyzing the production and decay of charged scalar
singlet. We finally conclude in Sec. 3.10.
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3.2 LR Symmetric Model without Higgs Triplets

Here we present the basic ingredients of the minimal LRSM model without Higgs triplets.
The model is based on the gauge symmetry SU(3)C ⊗ SU(2)L⊗ SU(2)R ⊗U(1)B−L [33, 38,
231–235] under which the fermion fields transform as left-handed doublets and right-handed
doublets:

QL =

(
uL
dL

)
∼ (3, 2, 1, 1/3), QR =

(
uR
dR

)
∼ (3, 1, 2, 1/3),

ΨL =

(
νL
eL

)
∼ (1, 2, 1,−1), ΨR =

(
νR
eR

)
∼ (1, 1, 2,−1). (3.2.1)

Here the generation index is suppressed, but should be assumed. Under Parity symmetry
QL ↔ QR and ΨL ↔ ΨR, which is possible due to the enhanced gauge symmetry. Note
that the right-handed neutrino νR is required to complete the lepton multiplet, unlike in the
Standard Model, leading to tiny neutrino masses via the seesaw mechanism.

The SU(2)R ⊗ U(1)B−L symmetry is broken spontaneously down to U(1)Y at a scale
vR � vL where vL denotes the electroweak symmetry breaking scale. Furthermore, realistic
fermion masses should be generated through couplings to the Higgs fields. In the model
developed here, these requirements are achieved by the choice of the following Higgs fields:

χL =

(
χ+
L

χ0
L

)
∼ (1, 2, 1, 1), χR =

(
χ+
R

χ0
R

)
∼ (1, 1, 2, 1),

Φ =

(
φ0

1 φ+
2

φ−1 φ0
2

)
∼ (1, 2, 2, 0) , η+ ∼ (1, 1, 1, 2). (3.2.2)

The purpose of the χR Higgs field is to achieve SU(2)R×U(1)B−L symmetry breaking down
to U(1)Y . The χL field is the parity partner of χR, which takes part in electroweak symmetry
breaking. The Φ field is used to generate fermion masses. Since the χR field cannot couple
to the fermions, the νR fields would not acquire Majorana masses at tree-level. The singlet
scalar η+ does have lepton number violating Yukawa couplings to νR, which induce Majorana
masses via two-loop diagrams (as well as sub-dominant one-loop diagrams), which we shall
evaluate carefully in Sec. 3.3.

All neutral components of the Higgs fields acquire nonzero VEVs, which are parameterized
as follows:

〈Φ〉 =
1√
2

(
κ 0
0 κ′eiα

)
, 〈χL〉 =

1√
2

(
0

vLe
iθL

)
, 〈χR〉 =

1√
2

(
0
vR

)
. (3.2.3)

Here the VEVs κ and vR, which can be complex in general, have been made real by SU(2)L
and SU(2)R gauge transformations. In order to accommodate the success of the standard
(V − A) theory of weak interactions, the VEVs should obey the hierarchy vR � κ, κ′, vL.
Such a hierarchical structure would lead to theW±

R gauge boson being much heavier than the
W±
L boson, which is a phenomenological requirement to satisfy low energy weak interactions

constraints. For example, K0−K0 mixing constraint limits the mass ofW±
R to beMWR

≥ 1.6
TeV [238]. (The mass of the W±

R gauge boson is proportional to vR, while that of the W±
L
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is proportional to
√
κ2 + κ′2 + v2

L.) Furthermore, direct searches for dijet resonances at the
LHC has set a limit of 3.6 TeV on the mass of the W±

R boson [297], which also suggests the
VEV hierarchy.1

The most general Yukawa interaction of quark and leptons with the Higgs fields of the
model is given by

−LY = ΨaL (yab Φ + ỹab Φ̃) ΨbR +QaL (Yab Φ + Ỹab Φ̃)QbR

+ fLab (Ψi
aLCΨj

bL) εij η
+ + fRab (Ψi

aRCΨj
bR) εij η

+ + H.c. , (3.2.4)

where Φ̃ = τ2Φ?τ2, C is the charge conjugation matrix, and (i, j) and (a, b) stand respectively
for SU(2) and generation indices. The couplings y, ỹ, Y , Ỹ , fL, and fR are 3 × 3 Yukawa
coupling matrices, with fL,Rab = −fL,Rba required by Lorentz symmetry. Under left-right Parity
symmetry (P ), the fermions and scalar fields transform as follows:

Φ↔ Φ†, Φ̃↔ Φ̃†, χL ↔ χR, η+ ↔ η+, QL ↔ QR, ΨL ↔ ΨR (3.2.5)

along with WL ↔ WR. For most of our discussions we shall assume P to be exact, in which
case the Yukawa coupling matrices obey the following relations:

y = y† , ỹ = ỹ† , Y = Y † , Ỹ = Ỹ † , fL = fR ≡ f , (3.2.6)

Once the Higgs fields acquire VEVs, fermion masses are generated with the mass matrices
for up and down quarks (Mu and Md), charged leptons (M`), and Dirac neutrinos (MνD)
given by

Mu =
1√
2

(Y κ+ Ỹ κ′e−iα) , Md =
1√
2

(Y κ′eiα + Ỹ κ) , (3.2.7)

M` =
1√
2

(y κ′eiα + ỹ κ) , MνD =
1√
2

(y κ+ ỹ κ′e−iα) , (3.2.8)

These relations can be inverted to express the Yukawa coupling matrices in terms of the
mass matrices:

y =

√
2

κ2 − κ′2 (κMνD − κ′e−iαM`) , ỹ =

√
2

κ2 − κ′2 (κM` − κ′eiαMνD) , (3.2.9)

Y =

√
2

κ2 − κ′2 (κMu − κ′e−iαMd) , Ỹ =

√
2

κ2 − κ′2 (κMd − κ′eiαMu) . (3.2.10)

This assumes that κ 6= κ′, which has to be true for phenomenology, otherwise the masses
of the up-type quarks would equal those of the down-type quarks. These relations, Eq.
(3.2.9), provide important constraints on the loop-induced Majorana masses of the νR fields,
especially when the W±

R mass is near the TeV scale. In this case the a priori arbitrary Dirac
1This limit arises from high-mass resonance searches in the dijet channel, which is applicable to the model

presented here. A slightly more stringent limit arising from searches for same sign or opposite sign dilepton
final states is not applicable to the present model, as the νR fields have MeV scale masses here and won’t
decay within the detector. See discussion in Sec. 3.9.
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neutrino mass matrix MνD should have very small entries so that the light neutrino masses
obtained from the seesaw formula are in the sub-eV range. Thus, the νR masses will be solely
proportional to the charged lepton masses, as shown in Eq. (3.1.2).

Another observation about the Yukawa coupling relations of Eq. (3.2.10) is that the ratio
|κ′/κ|, which can be taken to be ≤ 1 without loss of generality, cannot be too close to 1,
or else the top quark Yukawa coupling would become in the non-perturbative regime. If we
demand that the top Yukawa coupling not be larger than a reasonable perturbative value of
1.5, we obtain an upper limit of |κ′/κ| ≤ (0.578, 0.616, 0.645), corresponding to the left-right
symmetry breaking scale vR being (1, 10, 100) TeV. These numbers are obtained by evolving
the top quark Yukawa coupling, along with the standard model gauge couplings, from low
energies to the scale vR, which yields Yt = (0.865, 0.793, 0.736) at these scales. These upper
limits on |κ′/κ| would be relevant in our discussion of W±

L −W±
R mixing, especially in the

context of supernova 1987a energy loss constraints, see Sec. 3.7.
Since the νR fields acquire Majorana masses, the 6 × 6 neutrino mass matrix spanning

(ν, νc) fields can be written down as

Mν =

(
ML

ν MνD

MT
νD MνR

)
, (3.2.11)

whereMνD is given by Eq. (3.2.8), andML
ν andMνR will arise through one-loop and two-loop

radiative correction (cf. Sec. 3.5). Assuming that MνD � MνR , the 3 × 3 light neutrino
mass matrix can be obtained as

M light
ν = ML

ν −MνD(MνR)−1MT
νD , (3.2.12)

which explains the smallness of the neutrino mass. The eigenvalues of the heavier states
in Eq. (3.2.12) are the same as the eigenvalues of MνR in this approximation, which we
shall evaluate in Sec. 3.5. As for the light neutrino masses, if the second (first) term in Eq.
(3.2.12) dominates over the first (second) term, it is the type-I (type-II) seesaw domination.
We shall investigate both options, but our results show that the model can support only the
type-I seesaw scenario for low WR scheme while it supports both cases for high scale WR

scheme.

3.3 Scalar Sector

In this section we analyze the Higgs potential of the LR symmetric model without Higgs
triplets. We shall assume Parity symmetry, as defined in Eq. (3.2.5). The most general
renormalizable Higgs potential involving Φ, χL, χR, and η+ fields is given by:
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V =− µ2
1 tr(Φ

†Φ)− µ2
2 [tr(Φ̃Φ†) + tr(Φ̃†Φ)]− µ2

3 [χ†LχL + χ†RχR] + µ2
η |η|2

+ λη |η|4 + λ1 tr(Φ
†Φ)2 + λ2 [tr(Φ̃Φ†)2 + tr(Φ̃†Φ)2] + λ3 tr(Φ̃Φ†) tr(Φ̃†Φ)

+ λ4 tr(Φ
†Φ) [tr(Φ̃Φ†) + tr(Φ̃†Φ)] + ρ1 [(χ†LχL)2 + (χ†RχR)2] + ρ2 χ

†
LχLχ

†
RχR

+ µ4 [χ†LΦχR + χ†RΦ†χL] + µ5 [χ†LΦ̃χR + χ†RΦ̃†χL] + α1 tr(Φ
†Φ)[χ†LχL + χ†RχR]

+
{
α2e

iδ [χ†LχLtr(Φ̃Φ†) + χ†RχRtr(Φ̃
†Φ)] + H.c.

}
+ α3 [χ†LΦΦ†χL + χ†RΦ†ΦχR]

+
{
α4 [χTLiτ2ΦχRη

− + χTRiτ2Φ†χLη
−] + H.c.

}
+ α5 |η|2tr(Φ†Φ)

+ α6 |η|2[tr(Φ̃Φ†) + tr(Φ̃†Φ)] + α7 |η|2[χ†LχL + χ†RχR] . (3.3.1)

Here all the couplings, save α2, have been made real by field redefinitions. Certain additional
invariants, such as the one obtained from the α4 term by replacing Φ by Φ̃, can be shown to
be not independent. Inserting the VEVs of Eq. (3.2.3) in Eq. (3.3.1), we require the following
conditions for the potential to be an extremum:

∂V

∂κ
=
∂V

∂κ′
=
∂V

∂vL
=
∂V

∂vR
=
∂V

∂θL
=
∂V

∂α
= 0 (3.3.2)

These conditions lead to six relations among the VEVs and various Higgs potential param-
eters:

0 = λ1κκ
2
+ − κµ2

1 − 2κ′µ2
2 cosα +

1

2
α1κ(v2

L + v2
R)

+ κ′{λ4 cosα(3κ2 + κ′2) + 2κκ′(λ3 + 2λ2 cos(2α))}
+ α2κ

′{v2
L cos(δ − α) + v2

R cos(δ + α)}+
µ5√

2
vLvR cos θL , (3.3.3)

0 = λ1κ
′κ2

+ − κ′µ2
1 − 2κµ2

2 cosα +
1

2
(α1 + α3)κ′(v2

L + v2
R)

+ κ{λ4 cosα(3κ′2 + κ2) + 2κκ′(λ3 + 2λ2 cos(2α))}
+ α2κ{v2

L cos(δ − α) + v2
R cos(δ + α)}+

µ4√
2
vLvR cos(θL − α) , (3.3.4)

0 = α1κ
2
+vL − 2µ2

3vL +
√

2vR{κµ5 cos θL + κ′µ4 cos(θL − α)}
+ vL{2ρ1v

2
L + ρ2v

2
R + α3κ

′2 + 4α2κκ
′ cos(δ − α)} , (3.3.5)

0 = α1κ
2
+vR − 2µ2

3vR +
√

2vL{κµ5 cos θL + κ′µ4 cos(θL − α)}
+ vR{2ρ1v

2
R + ρ2v

2
L + α3κ

′2 + 4α2κκ
′ cos(δ + α)} , (3.3.6)

0 = vLvR{κµ5 sin θL + κ′µ4 sin(θL − α)} , (3.3.7)

0 = 2κκ′µ2
2 sinα− 8κ2κ′2λ2 cosα sinα− κκ′κ2

+λ4 sinα

α2κκ
′{v2

L sin(δ − α)− v2
R sin(δ + α)}+

1√
2
κ′µ4vLvR sin(θL − α) . (3.3.8)
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Here and in what follows we shall take |κ| ≥ |κ′| without loss of generality and define

κ2
∓ = κ2 ∓ κ′2 . (3.3.9)

For simplicity in presenting the scalar mass spectrum, we shall assume that the Higgs po-
tential parameters as well as the VEVs are all real. That is, we set α and θL of Eq. (3.2.3)
to zero, which is an allowed solution if the phase δ of Eq. (3.3.1) is taken to be zero. In
this case the last two of Eq. (3.3.8) are automatically satisfied. From the remaining condi-
tions of Eq. (3.3.8) we eliminate the mass parameters {µ2

1, µ
2
2, µ

2
3, µ5} in favor of the VEVs

{vL, vR, κ, κ′}, which are taken to be independent parameters and express the mass matrices
in terms of these VEVs, the quartic couplings, one cubic scalar coupling parameter µ4, and
µ2
η which determines the mass of η+.
The mass matrix for the charged Higgs bosonsM2

+ is first constructed in a basis {φ+
1 , φ

+
2 , χ

+
L ,

χ+
R, η

+} by expanding the potential about the minimum given in Eq. (3.2.3) to quadratic
order. This 5 × 5 matrix contains two massless modes, those associated with the massive
gauge bosons W±

R and W±
L , which we denote as G+

L and G+
R. We make a rotation by an

orthogonal matrix O+ that removes these two massless modes from the 5 × 5 matrix. The
intermediate states are denoted as {G+

L , G
+
R, h

′+
1 , h

′+
2 , h

′+
3 }. The explicit rotation matrix O+

to go to this intermediate basis is given in Eq. (A.3) of Appendix 3.11.1. This rotation ma-
trix depends only on the ratios of VEVs, which are our independent parameters. The 3× 3
mass matrix for the remaining states {h′+1 , h′+2 , h′+3 } is presented in Eq. (A.6) of Appendix
3.11.1. A subsequent rotation would bring this 3 × 3 matrix to a diagonal form, which is
not explicitly carried out. We denote this rotation matrix as O′+. The full transformation
that takes the original charged scalar states to the mass eigenstates, which are denoted as
{H+

1 , H
+
2 , H

+
3 } is then V + = (O′+O+)T .

In an analogous fashion we remove the two Goldstone states (G0
1, G

0
2), corresponding to

the ZL and ZR gauge bosons, from the 4 × 4 pseudoscalar mass matrix constructed in the
initial basis {φ0i

1 , φ
0i
2 , χ

0i
L , χ

0i
R}. Here the superscript i refers to the imaginary components of

the relevant fields. This is achieved by a rotation matrix Oi, which is given in Eq. (B.4)
of Appendix 3.11.2. The remaining 2 × 2 mass matrix is diagonalized by a second rotation
matrix denoted as O′i. The mass eigenstates are denoted as {G0

1, G
0
2, A1, A2} and the 2× 2

mass matrix for the massive pseudoscalar fields is given in Eq. (B.6) of Appendix 3.11.2.
The 4 × 4 mass matrix for the real scalar bosons contains no zero modes. However, we

rotate this matrix to an intermediate basis by a rotation matrix Or so that the SM-like
Higgs boson is easily identifiable. A second rotation by O′r would diagonalize this mass
matrix. The physical states are denoted as {h0, H0

1 , H
0
2 , H

0
3}. The rotation matrix is given

in Eq. (B.6) and the mass matrix is given in (B.9) of Appendix. 3.11.2.
The full rotation that is performed in the various sectors can then be summarized as

follows:
φ+

1

φ+
2

χ+
L

χ+
R

η+

 = V +


G+
L

G+
R

H+
1

H+
2

H+
3

 ,


φ0r

1

φ0r
2

χ0r
L

χ0r
R

 = V r


h0

H0
1

H0
2

H0
3

 ,


φ0i

1

φ0i
2

χ0i
L

χ0i
R

 = V i


G0

1

G0
2

A1

A2

 , (3.3.10)
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Higgs state Mass
H+

1 ' (cosω ε− sinω ε′)φ+
1 + cosω φ+

2 − sinω χ+
L m2

H+
1

' vR
4
{(α3 − ρ12)vR −

√
A}

H+
2 ' −(sinω ε+ cosω ε′)φ+

1 − sinω φ+
2 − cosω χ+

L m2
H+

2

' vR
4
{(α3 − ρ12)vR +

√
A}

H+
3 ' η+ m2

H+
3

' µ2
η + α7

2
v2
R

A1 ' (cosω ε+ sinω ε′)φ0i
1 + cosω φ0i

2 + sinω χ0i
L m2

A1
' m2

H+
1

A2 ' (− sinω ε+ cosω ε′)φ0i
1 − sinω φ0i

2 + cosω χ0i
L m2

A2
' m2

H+
2

h0 ' φ0r
1 + εφ0r

2 + ε′χ0r
L − α1κ

2ρ1vR
χ0r
R m2

h0 ' 2κ2(λ1 + 4ελ4 − α2
1

4ρ1
)

H0
1 ' (cosω ε+ sinω ε′)φ0r

1 − cosω φ0r
2 − sinω χ0r

L m2
H0

1
' m2

H+
1

H0
2 ' (sinω ε− cosω ε′)φ0r

1 − sinω φ0r
2 + cosω χ0r

L m2
H0

2
' m2

H+
2

H0
3 ' χ0r

R + α1κ
2ρ1vR

(φ0r
1 + εφ0r

2 + ε′χ0r
L ) m2

H0
3
' 2ρ1v

2
R

Table 22: Physical Higgs eigenstates and mass spectrum at the leading order with vR �
vL, κ, κ

′, keeping only the linear terms in ε = κ′

κ
, ε′ = vL

κ
, and vR >> vL, κ, κ

′, ρ12 = 2ρ1− ρ2

and A = 8µ2
4 + (α3 + ρ12)2v2

R. Here h0 is the standard model-like Higgs.

where
V + = (O′+O+)T , V r = (O′rOr)T , V i = (O′iOi)T . (3.3.11)

We show in Table 22 approximate expression for the physical Higgs states and their
masses, in the approximation vR � vL, κ, κ

′. We define the ratios

ε =
κ′

κ
, ε′ =

vL
κ
. (3.3.12)

and keep only liner terms in ε and ε′ in the expressions given in Table 22. In these limits,
the Goldstone modes associated with charged scalars read as

G+
1 ' −φ+

1 + εφ+
2 + ε′χ+

L

G+
2 ' χ+

R . (3.3.13)

Similarly, the Goldstone modes associated with pseudoscalars read as

G0
1 ' −φ0i

1 + εφ0i
2 + ε′χ0i

L

G0
2 ' χ0i

R . (3.3.14)

After reducing the charged, scalar and pseudoscalar mass matrices by removing the re-
spective Goldstone modes, there still remains some mixing between heavy states. In the
approximation made here, there is one mixing angle denoted as ω, which is defined as

tan 2ω =
2
√

2µ4

(α3 + (2ρ1 − ρ2))vR
. (3.3.15)

The approximate mass eigenvalues of Table 22 are functions of this angle.
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3.3.1 Scalar sector in the electroweak symmetric limit

In the electroweak conserving limit, the charged, real and pseudoscalar mass matrix can be
obtained from the Higgs potential of Eq. (3.3.1) by setting the electroweak breaking VEVs
κ, κ′, and vL to zero. The mass matrices for the charged, real, and pseudoscalar have the
same structure and is diagonalized by a single 3× 3 unitary matrix V such that

V †M2V = M2
diag (3.3.16)

where M2
diag contains the physical masses of the Higgs field. The mass matrix M2 in this

limit is found to be

M2 =

−µ
2
1 + α2

2
v2
R 2µ2

2 − α2v
2
R −µ5vR√

2

2µ2
2 − α2v

2
R −µ2

1 + α1+α3

2
v2
R

µ4vR√
2

−µ5vR√
2

µ4vR√
2

1
2
(ρ2 − 2ρ1)v2

R

 (3.3.17)

All elements of the mass matrix in Eq. (3.3.17) are of order v2
R. However, we wish to make

one of the Higgs doublets light so that it can trigger electroweak symmetry breaking at a
lower scale vL. This light doublet state is identified as the SM Higgs doublet. Making this
state light is achieved by demanding that the determinant of M2 in Eq. (3.3.17) is nearly
zero. It is only this zero-mass doublet that acquires a vacuum expectation value. Thus, the
VEVs (κ, κ′, vL) are related to the rotation matrix V as

V21

V11

=
κ′

κ
,

V31

V11

=
vL
κ
. (3.3.18)

Using the unitary nature of V , these relations would lead to the relations

V11 =
κ

κL
, V21 =

κ′

κL
, V31 =

vL
κL

, (3.3.19)

where κL is the electroweak VEV, defined as

κ2
L = κ2 + κ′2 + v2

L . (3.3.20)

The masses of the scalar fields η+ and χ0r
R are given by

m2
η = µ2

η +
α7

2
v2
R , (3.3.21)

m2
χ0r
R

= 2ρ1v
2
R . (3.3.22)

The remaining scalar fields χ+
R and χ0i

R are Goldstone modes.

3.4 Gauge Boson Sector

In this section, we derive the physical gauge boson eigenstates and their masses arising from
the symmetry breaking sector given in Eq. (3.2.3). Noting that χL → ULχL, χR → URχR,
and Φ→ ULΦU †R under SU(2)L × SU(2)R gauge transformations parameterized by unitary
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matrices UL and UR, the Lagrangian containing the covariant derivatives of the scalar fields
can be written down as

Lgauge = (DµχL)†DµχL + (DµχR)†DµχR + tr[(DµΦ)†DµΦ] , (3.4.1)

where

DµχL = ∂µχL −
1

2
igL ~τ · ~WµL χL −

1

2
igBL χLBµ ,

DµχR = ∂µχR −
1

2
igR ~τ · ~WµR χR −

1

2
igBL χRBµ ,

DµΦ = ∂µΦ− 1

2
igL ~τ · ~WµLΦ +

1

2
igR Φ~τ · ~WµR . (3.4.2)

Under left-right parity WL ↔ WR, which implies gL = gR. The gauge boson mass matrices
are then obtained by substituting Eq. (3.2.3) into Eq. (3.4.1) and using Eq. (3.4.2). In the
charged gauge boson sector, in the basis (W+

L , W
+
R ), the mass matrix reads as

M2
W+
LR

=
1

4

(
g2
L κ

2
L −2 gLgRκκ

′eiα

−2 gLgRκκ
′e−iα g2

R κ
2
R

)
. (3.4.3)

where κL is given by Eq. (3.3.20) and we have defined

κ2
R = κ2 + κ′2 + v2

R . (3.4.4)

To diagonalize this matrix, one can first write it as

M2
W+
LR

= P M̂2
W+
LR

P ? , (3.4.5)

where P = diag (1, e−iα) and M̂2
W+
LR

is a real symmetric matrix. The phase contained in

P can be absorbed into the W+
R field with a redefinition. The real symmetric matrix M̂2

W+
LR

can be straightforwardly diagonalized. We let W±
1,2 denote the mass eigenstates such that

W+
1 = cos ζ W+

L + sin ζ W+
R ,

W+
2 = − sin ζ W+

L + cos ζ W+
R . (3.4.6)

The mixing angle ζ is then identified as

tan 2ζ =
4gLgRκκ

′

g2
Rκ

2
R − g2

Lκ
2
L

(3.4.7)

The mass eigenvalues are found in the limit of vR >> κ, κ′, vL as

M2
W1
' 1

4
g2
Lκ

2
L, M2

W2
' 1

4
g2
Rv

2
R . (3.4.8)

The mixing angle ζ is constrained to be |ζ| ≤ 4×10−3 from strangeness changing nonleptonic
decays of hadrons [298], as well as from b→ sγ decay [246], independent of the mass of W2.
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Similarly, in the neutral gauge boson sector, the states (W 3
µL,W

3
µR, Bµ) field will mix to

produce Aµ, ZµL, and ZµR, in analogy with the SM. The photon field Aµ remains massless,
while the two orthogonal field ZµL and ZµR mix. It is convenient to choose the following
basis:

Aµ =
gLgRBµ + gBgRW

3
µL + gLgBW

3
µR√

g2
B (g2

L + g2
R) + g2

Lg
2
R

,

ZµR = −gBBµ + gRW
3
µR√

g2
R + g2

B

,

ZµL =
gBgRBµ − gLgR

(
1 +

g2
R

g2
R

)
W 3
µL + g2

BW
3
µR√

g2
B + g2

R

√
g2
B + g2

L +
g2
Bg

2
L

g2
R

, (3.4.9)

The photon field decouples from the rest in the mass matrix, while the ZL − ZR fields mix
with a mass matrix given by

M2
ZLR

=
1

4

 (g2
Y + g2

L)κ2
L

(
g2
Rκ

2
+ − g2

Y κ
2
L

)√ g2
R+g2

L

g2
R−g

2
Y(

g2
Rκ

2
+ − g2

Y κ
2
L

)√ g2
R+g2

L

g2
R−g

2
Y

−2g2
Rg

2
Y κ

2
+

g2
R−g

2
Y

+
g4
Rκ

2
R

g2
R−g

2
Y

+
g2
Y κ

2
L

g2
R−g

2
Y

 , (3.4.10)

We have used the relation between SU(2)R, U(1)B−L, and hypercharge coupling (gR, gB, gY )
in Eq. (3.4.10) to eliminate gB in favor of gY [299].

Y = T 3
R +

B − L
2

=⇒ 1

g2
Y

=
1

g2
R

+
1

g2
B

. (3.4.11)

We obtain easily the eigenvalues of the matrix of Eq. (3.4.10) by writing the mass eigenstates
as Z1,2:

Z1 = cos ξ ZL + sin ξ ZR ,

Z2 = − sin ξ ZL + cos ξ ZR . (3.4.12)

with

tan 2ξ ' 2 (g2
Rκ

2
+ − g2

Y κ
2
L)
√

(g2
R − g2

Y )(g2
R + g2

L)

g4
Rκ

2
R

(3.4.13)

Thus, in the approximation vR � κ, κ′, vL, the masses of neutral gauge bosons read as

M2
Z1
' 1

4

(
g2
Y + g2

L

)
κ2
L, M2

Z2
' 1

4

g4
R

(g2
R − g2

Y )
v2
R . (3.4.14)

Here Z1 is identified as the Z gauge boson. Note that the mass ratio MZ2/MW2 ' 1.19 in
this model. The mixing angle ξ is constrained to be small, of order 10−3 from electroweak
precision observables, but this limit is automatically satisfied once the lower limit on the
mass of Z2 of about 5 TeV from LHC searches is imposed.
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Figure 61: (a) Typical one-loop diagrams responsible to generate left/right-handed Majo-
rana neutrino mass. (b) A typical two-loop diagram responsible to generate right-handed
heavy Majorana neutrino mass.

3.5 Generation of Radiative Majorana Mass forνR

The LR symmetric model without Higgs triplets does not generate Majorana masses for the
νR at the tree level. However, their interactions with the η+ field does lead to lepton number
violation, and the νR fields will develop Majorana masses through loop corrections. Such a
mechanism for generating masses for the usual neutrinos radiatively is well studied [26, 43–
46]; here we apply such a scheme for inducing νR masses. As noted in the introduction,
there are one-loop diagrams which induce νR masses proportional to electroweak symmetry
breaking, which were studied in Ref. [294] and more recently in Ref. [295]. We analyze these
contributions in detail and show that they are sub-leading to the two-loop induced masses
which do not require electroweak breaking effects.

3.5.1 One-loop radiative correction

In this section we evaluate the one-loop contribution to right-handed Majorana neutrino
masses. The relevant diagram is shown in Fig. 61 (a). It is clear from this figure that the
one-loop diagram requires two powers of electroweak symmetry breaking VEVs, one power
arising from the charged lepton mass, and the other arising from η+φ+ mixing. Furthermore,
one power of charged lepton Yukawa coupling of the φ+ scalar, which diminishes the induced
mass. While it is true that the φ+ Yukawa coupling has a contribution not proportional to
the charged lepton Yukawa coupling, this contribution is proportional to the Dirac neutrino
Yukawa coupling through the relations of Eq. (3.2.9), which is even smaller for low scale vR.
These one-loop diagrams are suppressed by inverse powers of vR, so raising vR will not make
their contributions any large. These remarks are supported by our explicit computation,
which we now summarize.

The 5 × 5 charged Higgs matrix is diagonalized by the unitary matrix V +, as shown in
Eq. (3.3.10) and Eq. (3.3.11). The induced neutrino mass matrix arising from Fig. 61 (a) for
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both νR and the light νL fields can be evaluated to be

(MνR)ab =
1

8π2

[
fa`M`V

+
5β (y`bV

?+
1β − ỹ`bV ?+

2β ) + (a↔ b)
]

log

(m2
H+

1

m2
H+
β

)
, (3.5.1)

(ML
ν )ab =

1

8π2

[
fa`M`kV

+
5β (y†kbV

?+
2β − ỹ†kbV ?+

1β ) + (a↔ b)
]

log

(m2
H+

1

m2
H+
β

)
. (3.5.2)

where H+
β = (H+

1 , H
+
2 , H

+
3 ) with the index β summed over the three different physical

Higgs fields. Here we have assumed Parity symmetry so that fR = fL = f , which appears
identically in the νR and the νL mass matrices. Expanding Eq. (3.5.2) and Eq. (3.5.1), the
one-loop neutrino mass is obtained to be

MνR =
1

8π2

[
(fM`y

† + y?M`f
T )

{
O
′+
54 (O+

31O
′+
34 +O+

41O
′+
44 ) log

(m2
H+

2

m2
H+

1

)

+O
′+
55 (O+

31O
′+
35 +O+

41O
′+
45 ) log

(m2
H+

3

m2
H+

1

)}

− (fM`ỹ
† + ỹ?M`f

T )

{
O
′+
54 (O+

32O
′+
34 +O+

42O
′+
44 ) log

(m2
H+

2

m2
H+

1

)

+O
′+
55 (O+

32O
′+
35 +O+

42O
′+
45 ) log

(m2
H+

3

m2
H+

1

)}]
, (3.5.3)

ML
ν = ML

ν (O+
32 ↔ O+

31 , O
+
42 ↔ O+

41) , (3.5.4)

where O+ is the orthogonal matrix that takes the original charged scalar fields to an in-
termediate basis, as shown in Eq. (A.3) and O′+ is the orthogonal matrix that takes the
intermediate basis to the physical basis.

We have computed the maximum allowed value of the νR mass arising from these one-
loop diagrams by varying all parameters of the model within their allowed ranges. Our
results are plotted as a function of the W±

R mass in Fig. 63, along with the contributions
arising from the two-loop diagrams. Here we also show these one-loop induced masses when
the assumption of Parity symmetry is relaxed, so that fL 6= fR. It is clear from this figure
that with the assumption of Parity, the maximum one-loop contribution to the νR mass is
at most 10 eV, while without Parity this can be as large as an MeV or so, corresponding
to TeV scale WR. Furthermore it is also clear from Fig. 63 that the two-loop induced νR
Majorana mass is always more important than the one-loop induced mass. In our numerical
evaluation of the mass, we have demanded that the Majorana masses of the νL fields arising
from these diagrams do not exceed about 0.1 eV. This constraint restricts the maximum
allowed one-loop νR mass significantly.

3.5.2 Two-loop radiative corrections

Now we analyze the two-loop induced νR Majorana masses in the model. The relevant
diagram is shown in Fig. 63 (b). The Yukawa couplings and the Higgs potential coupling
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that are necessary to generate the neutrino mass at the two-loop level are given respectively
in Eq. (3.2.4) and in Eq. (3.3.1). There are three more topologies similar to the one shown
in Fig. 61 with the variation of the Higgs field inside the loop which are shown in Fig. 69 of
Appendix 3.11.3. Since the external neutrino in the diagram are Majorana particles, each
diagram has another set with internal particles replaced by their charge conjugates. The
sum of these pairs of diagrams makes the neutrino mass matrix symmetric. The two-loop
diagrams do not require electroweak symmetry breaking, so we work in this limit. In the
electroweak conserving limit, the η+ field does not mix with the doublet fields, and the
charged and the neutral scalar mass matrices of the three SU(2)L doublets are identical, as
shown given in Eq. (3.3.17). Thus matrix is diagonalized by a single 3 × 3 unitary matrix,
V , with the scalar η+ remaining a mass eigenstate, and with the χ+

R and χ0i
R being Goldstone

modes: φ+
1

φ+
2

χ+
L

 = V

G+

H+
1

H+
2

 ,

φ0r
1

φ0r
2

χ0r
L

 = V

h0

H0
1

H0
2

 ,

φ0i
1

φ0i
2

χ0i
L

 = V

G0

A1

A2

 , (3.5.5)

We carry out the evaluation of neutrino mass in Feynman gauge. Here we must keep the
Goldstone contributions, which however, have the same structure as the contributions from
physical scalars. It is sufficient to identify the Goldstone boson masses as those of theW and
the Z boson. We also set the mass of the h0 field to be 125 GeV. In this gauge, we should also
include possible contributions from the gauge bosons. However, these contributions always
require electroweak symmetry breaking, which will result in much smaller contributions.

The most general Majorana mass matrix for the νR fields arising from Fig. 61 (see Fig. 69
for the complete set of diagrams) can be written as

(MνR)ab =
√

2 α4vR (A1ab + A2ab + A3ab) , (3.5.6)

where

A1ab =
{
fac
[
y?cd V

?
2γ{−V3γV1β − V3γV2β + V2γV3β} − ỹ?cdV1γV3βV

?
1γ

]
(
ydbV

?
1β − ỹdbV ?

2β

)
+ (a↔ b)

}
Iηγβcd ,

A2ab =
{
fac
(
y?cdV

?
2β − ỹ?cdV ?

1β

) [
ỹdb V

?
2γ{−V3γV1β − V3γV2β + V2γV3β}

− ydbV1γV3βV
?

1γ

]
+ (a↔ b)

}
Iηβγcd ,

A3ab =
{(
ycaV

?
1β − ỹcaV ?

2β

)
fcd
[
ỹdb V

?
2γ{−V3γV1β − V3γV2β + V2γV3β}

− ydbV1γV3βV
?

1γ

]
+ (a↔ b)

}
Iβηγcd . (3.5.7)

Here we have defined the two-loop integrals as

Iηγβcd =

∫ ∫
d4p

(2π)4

d4q

(2π)4

q.p

(q2 −m2
η)(q

2 −m2
d)(p

2 −m2
H+
β

)(p2 −m2
c)((p− q)2 −m2

H0
γ
)
,

Iηβγcd = Iηγβcd (γ ↔ β) ,

Iβηγcd = Iηβγcd (η ↔ β) . (3.5.8)
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Here mc and md are the charged lepton masses. (mη, mH+
β
) and mH0

γ
are the masses of the

charged and neutral scalars, respectively. The calculation of Iηγβcd [300–309] is carried out in
Appendix 3.11.42. In Eq. (3.5.8) the indices β and γ are summed over different Higgs states,
except η+, which remains unmixed with the other states in this limit. α4 is the quartic
coupling given in Eq. (3.3.1). f and y are Yukawa couplings given by Eq. (3.2.4). Here
A1, A2, A3 contain the flavor structures associated with each of the diagram in Fig. 69 (a),
(b), and (c). Note that the flavor structure (yfyT ) or (ỹf ỹT ) has no contribution to A3ab in
Eq. (3.5.7) as the Yukawa coupling matrix f is antisymmetric in flavor and therefore these
terms vanish when the conjugate diagrams are included.

Case with MνD �M`

To illustrate the calculation of two-loop induced νR Majorana mass, we take MνD � M`

which is realized in the case of low scale W±
R (cf. Sec. 3.6). This makes both Yukawa

couplings y and ỹ proportional to the charged lepton masses, simplifying the flavor structure
of Eq. (3.5.7). Although each diagram is divergent in the physical basis of scalars, we show
explicitly that the divergent piece of the integral vanishes due to unitarity conditions. The
induced νR Majorana neutrino mass matrix takes the form in this limit given by

(MνR)ab =
2
√

2 α4vR
κ2(1− ε2)2

(fM2
` +M2

` f
T )
(
Cβγ I

ηγβ + C ′βγ I
ηβγ
)
, (3.5.9)

where Iηβγ stands for Iηβγcd , as we neglect the charged lepton masses in comparison to the
scalar masses in evaluating the integrals. Here we have defined

Cβγ = ε2 λ1′

βγ − ε λ2′

βγ − ε λ1
βγ + λ2

βγ ,

C ′βγ = −ε2 λ2
βγ + ε λ2′

βγ + ε λ1
βγ − λ1′

βγ . (3.5.10)

and

λ1
βγ = |V1γ|2V3βV

?
1β ,

λ2
βγ = |V1γ|2V3βV

?
2β ,

λ1′

βγ = −V ?
2γ|V1β|2V3γ − V ?

2γV
?

1βV3γV2β + |V2γ|2V ?
1βV3β ,

λ2′

βγ = −V ?
2γ|V2β|2V3γ − V ?

2γV1βV3γV
?

2β + |V2γ|2V ?
2βV3β . (3.5.11)

Here the parameter ε is defined in Eq. (3.3.12).
Each diagram with the variation of index β and γ is divergent. However, the divergent

piece is independent of β and γ; therefore, the sum of the diagrams will be convergent
because of the following unitarity condition∑

βγ

λ1
βγ =

∑
βγ

λ2
βγ =

∑
βγ

λ1′

βγ =
∑
βγ

λ2′

βγ = 0 . (3.5.12)

Summing over possible values of β and γ, the dimensionless quantity Iηγβcd can be expressed

2In Appendix 3.11.4, integral I132
45 ≡ Iαγβcd is evaluated as it is the most general case including electroweak

symmetry breaking, whence η+ mixes with the other charged Higgs fields.
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Figure 62: Integral function in Eq. (3.5.14) as a function of mass ratios, r1 and r2.

as the ratio of scalar masses. In evaluating the integral Iηγβcd , we neglect terms that are
proportional to the masses of charged lepton since they are much smaller than the masses
of scalar fields. Thus, in the limit of mc = md = 0, the νR mass matrix can be expressed in
terms of two mass ratios of scalars as

(MνR)ab =
2
√

2 α4vR
κ2(1− ε2)2 (16π2)2

(fM2
` +M2

` f
T )

{
Cβγ G

(
m2
η

m2
H0
γ

,
m2
H+
β

m2
H0
γ

)
+ C ′βγ G

(
m2
η

m2
H+
β

,
m2
H0
γ

m2
H+
β

)}
. (3.5.13)

We have evaluated he function G
(
r1, r2

)
analytically to be.

G(r1, r2) = −1

2
log
(
r1r2

)
+

1

4
log2

(
r1

r2

)
+

1

2r1r2

[
− π2

6
− (r1 − 1)

(
Li2(1− r1)

+ Li2(1− 1/r1)r1

)
+ (r1 + r2 − 1)

(
f [r2, r1] + f

[
r2

r1

,
1

r1

]
r1 + f

[
r1

r2

,
1

r2

]
r2

)
− (r2 − 1)

(
Li2(1− r2) + Li2(1− 1/r2)r2

)]
, (3.5.14)

where the function f is given by Eq. (D.17). In getting Eq. (3.5.14), we define µ2 = m2
3 ≡ m2

H0
γ

in Eq. (D.19). This function is plotted in Fig. 62 as functions of the mass ratios. Red, green,
and blue lines in Fig. 62 show values of the function G(r1, r2) as a function of r1 for specific
choices of r2 = 1, r2 = 0.1, and r2 = 0.01. There are simple asymptotic limits of the function
as given below:
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Figure 63: Maximum values of the one-loop induced and two-loop induced MνR as a
function of MWR

. The dashed blue line corresponds to the two-loop contribution, while the
dashed green and the solid red lines respectively represent one-loop contributions to the νR
mass with and without Parity symmetry.

G(r1, r2) →

 −
3
2
− r

2
+ 7

4
r log r for r1 = r2 = r, r << 1

−1
2
− π2

6
+ 1

4
r1 log r1 for r2 = 1, r1 << 1

(3.5.15)

We have also discussed the details of asymptotic forms in terms of masses eigenstate for two
cases: mH0

γ
� mη = mH+

β
(r1 = r2 = r, 0 < r < 1) and mH0

γ
= mH+

β
� mη, (r2 = 1, r1 < 1)

in Appendix 3.11.6.

3.5.3 Comparing One-loop vs two-loop neutrino mass

Here we proceed to compare the one-loop induced νR mass with the two-loop contribution.
We found that the two-loop contribution is always dominant over the one-loop contribution if
parity is an exact symmetry. Fig. 63 shows the maximum one-loop and two-loop contribution
to RH Majorana neutrino mass as a function ofMWR

. The solid blue dashed line corresponds
to the contribution generated from the full two-loop function of RH Majorana mass given
in Eq. (3.5.6) when the parity is assumed to be exact, i.e., there is no breaking of parity in
the Yukawa coupling f . The solid red line represents one-loop contribution from Eq. (3.5.1)
to the νR Majorana mass without assuming parity, i.e., when fL 6= fR in Eq. (3.2.4). In
contrast, the dashed green line represents the maximum νR mass taking parity symmetry
to be exact. The two-loop contribution is proportional to the choice of quartic coupling α4.
Here we have chosen the maximum allowed value of α4 = 4π from perturbative unitarity
limit in generating Fig. 63. Note that choosing α4 to a smaller value, such as α4 = 3, the
crossover between contribution from the two-loop and the one-loop contributions happens
at 8 TeV MWR

mass. In contrast, with exact parity symmetry, the two-loop contribution is
always more significant than the one-loop contribution, which is clear from the green dashed
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MWR
(TeV) 5 10 15 30 50 100 104

MνR (GeV) 0.0042 0.010 0.020 0.05 0.11 0.36 4.2× 103

Table 23: Maximum contribution to the Majorana mass of νR MνR as a function of the
W±
R gauge boson mass MWR

. Here we set of α4 = 3.0 and fµτ ' feτ = 1.0.

line in Fig. 63.
We now summarize the procedure adopted to obtain the maximum νR mass from the

two-loop diagrams. We first diagonalize the scalar mass matrix given in Eq. (3.3.17). As
mentioned in Sec. 3.3.1, we first identify the eigenstate corresponding to the lightest eigen-
value and fix that mass at 100 GeV. After this identification, the rotation matrix that takes
the original basis to an intermediate basis can be parametrized by three parameters, κ, κ′,
and vL, see Eq. (3.3.19). One can then rotate the remaining 2×2 matrix to get the masses of
the heavier Higgs fields. To obtain the maximum νR mass we diagonalizing the mass matrix
given in Eq. (3.5.6). Furthermore, the Yukawa couplings y and ỹ appearing in Eq. (3.5.7) are
expressed in terms of charged lepton mass and Dirac neutrino mass as given in Eq. (3.2.10).
We take account of the running of quark and lepton masses as a function of SU(2)R breaking
scale vR. We take the Dirac neutrino masses to be arbitrary, but demand that this be less
than the νR Majorana mass. A detailed numerical scan is then done with these constraints
to obtain the maximum νR mass. For instance, with the quartic coupling α4 taking value
as large as 4π, the maximum allowed right-handed neutrino mass in this model is about 16
MeV for MWR

of 5 TeV. A similar approach is taken in evaluating the maximum νR mass
arising from the one-loop diagrams as given by Eq. (3.5.1). Since the one-loop neutrino mass
generation requires electroweak symmetry breaking, we numerically diagonalize the full 5×5
charged scalar matrix given in Eq. (3.3.10) and perform a scan over the parameters.

In Table 23 we have listed the maximum possible νR masses within the model as a
function of the WR mass with the quartic coupling α4 = 3.0 and fµτ ' fµτ = 1.0 fixed. We
see that for low scale W±

R , the model predicts νR mass in the (1− 100) MeV range or below.
This can lead to interesting phenomenological consequences, which are discussed in the next
section. It is also worth mentioning that with the small mixing among the charged scalars,
the two-loop contribution to the νR mass begins to dominate over the one-loop contribution
with the following relation:

vR &
√

16π2κM` . (3.5.16)

Taking κ = 246 GeV, and M` = mτ , the two-loop contribution exceeds the one-loop con-
tribution above vR & 26 GeV. The one-loop contribution to the νR mass estimated in Ref.
[295] found it to be as large as 400 MeV, in contrast to a few MeV we find. This discrepancy
may be attributed to the constraint on the lepton Yukawa couplings given in Eq. (3.2.9),
which is not used in Ref. [295].

3.6 Realizing Low Scale Left-Right Symmetry

We have seen that the mass of the νR field is in the tens of MeV range if the mass of the W±
R

is in the multi-TeV range in the model. In this section we pursue the possibility that W±
R is

within reach of collider experiments in the near future. Keeping this in mind we seek a fit to
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the neutrino oscillation data with νR masses in the (1− 100) MeV range. One should ensure
that this scenario is not in conflict with experimental constraints as well as constraints from
cosmology and astrophysics. We illustrate here that all constraints can be satisfied in such
a low-scale W±

R scheme.
Since the radiative correction to the LH neutrino mass is always suppressed in comparison

to the usual seesaw (cf. Sec. 3.8.1), one can take ML
ν = 0 in Eq. (3.2.11). One can then

diagonalize RH neutrino mass matrix (cf. Eq. (3.6.17) and write the unitary matrix that
transforms the weak eigenstates νL and νR to the mass eigenstates νj (j = 1, 2, 3) and
Nα (α = 4, 5, 6) as

U =

(
Uνν UνN
UNν UNN

)
(3.6.1)

Note that Uνν , UνN , UNν , and UNN are not separately unitary. The unitary matrix U diago-
nalizes the 6× 6 neutrino mass matrix as

U †Mν U
? =

(
mνj 0
0 MNα

)
(3.6.2)

where
mνj = Diag (m1,m2,m3) MNα = Diag (M1,M2,M3) . (3.6.3)

Here U?
νν is the usual PMNS matrix characterizing the mixing among light neutrinos. The

three neutrino oscillation observables θ12, θ13, and θ23 are obtained from the following rela-
tions:

s2
12 =

|Ue2|2
1− |Ue3|2

, s2
13 = |Ue3|2, s2

23 =
|Uµ3|2

1− |Ue3|2
. (3.6.4)

where sij = sin θij, with θij being the mixing angles among different flavor eigenstates i and
j. The magnitude of Dirac CP violation δ is determined by the Jarlskog invariant Jcp [310]:

Jcp = Im(Uµ3U
?
e3Ue2U

?
µ2)

=
1

8
cos θ13 sin 2θ12 sin 2θ23 sin 2θ13 sin δ . (3.6.5)

Next, we analyze various low energy constraints on sterile neutrino with a mass of 1
MeV to 100 MeV range that mixes with the light neutrinos. There are various constraints
one needs to consider, such as lepton universality, invisible Z-boson decay, neutrinoless
double beta decay, magnetic and electric dipole moments, neutrino oscillation constraints,
and cosmological constraints. We will discuss astrophysical constraints in the next section
arising from the energy loss in νR in supernovae. Here we focus on the most stringent
constraints for the mixing of sterile neutrino as a function of its mass in the range 1 to 100
MeV.

3.6.1 Direct experimental constraints

One can obtain constraints on active–sterile neutrino mixing [217, 311] by looking for visible
final state particles in beta-decay, pion decay, kaon decay, muon decay, etc for sterile neutrino
mass in the (1− 100) MeV range. There are several dedicated searches for the existence of a
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Mass 1 MeV 5 MeV 10 MeV 30 MeV 50 MeV 100 MeV
|UeN |2 2.6×10−4 1.1×10−5 3.5×10−6 4.4× 10−7 1.2×10−7 7.1×10−9

BD2 BOREXINO BOREXINO PIENU πe2 PIENU PIENU
|UµN |2 1.1×10−2 2.75×10−4 2.06×10−4 8.6×10−6 2.35×10−4 3.76×10−6

πµ2 PSI πµ2 PSI πµ2 PSI πµ2 PIENU Kµ2 KEK Kµ2 KEK
|UτN |2 − − 0.49 0.021 4.9×10−3 5.1×10−4

CHARM CHARM CHARM CHARM

Table 24: Constraint on active and sterile mixing UeN , UµN and UτN for different masses
of the sterile neutrino.

sterile neutrino. We quote various direct experimental constraints in Table. 24 in this mass
range for the sterile neutrino. The TRIUMF PIENU [312] experiment performed a kinematic
search for sterile neutrino produced in pion decay and set the limit on the mixing UνN
(ν = e, µ) for the mass range of few MeV to tens of MeV. For example, the collaboration set
limits at the level of |UeN | < 10−8 in the mass range of sterile neutrino 60 MeV to 129 MeV
[313–315] Reactor neutrino experiments put bounds to sterile neutrino with masses from 1
MeV to 10 MeV as it can decay to electron pair and a neutrino (Nα → e+e−ν). Experiments
like Rovno [316] and Bugey [317] reactors have set the limits on mixing UeN . We note the
most stringent limit of a sterile neutrino mixing with νe from the BOREXINO experiment [318]
in Table. 24, which looked for neutrinos produced in Sun with masses up to 14 MeV.

The limit on νµ-sterile neutrino mixing for the mass range of 1 MeV to 100 MeV is provided
by various experiments such as PSI [319], PIENU [320], KEK [321, 322] and measurement of
muon decay spectrum [323]. Similarly, the upper limits on the mixing of ντ -sterile neutrino
in the relevant mass region is provided by NOMAD [324] and CHARM [325]. The most stringent
limits are summarized in Table. 24.

3.6.2 Neutrinoless double beta decay

Neutrinoless double beta decay provides important limits on the active-sterile mixing as a
function of sterile neutrino mass. The inverse half-life T 0ν

1/2 for 0νββ can be expressed as
[326–328]

1

T 0ν
1/2

= G0νg4
A|M0ν |2

∣∣∣∣∣mν
ee

me

+
〈p2〉
me

6∑
α=4

U2
eNα

MNα

〈p2〉+M2
Nα

∣∣∣∣∣
2

. (3.6.6)

HereG0ν and gA are the phase factor and the axial vector coupling relevant for the decay. M0ν

is the light neutrino exchange nuclear matrix element, whereas 〈p〉 is the average momentum
transfer of the process. The first term in Eq. (3.6.6) mν

ee is lepton number violating effective
Majorana mass parameter for standard 0νββ mechanism that read as

mν
ee =| c2

12c
2
13m1 + s2

12c
2
13m2e

iα + s2
13m3e

iβ | (3.6.7)

where α and β are the Majorana phases. The second term in Eq. (3.6.6) is a new physics
contribution to the 0νββ mechanism due to purely left-handed currents with the exchange
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of right-handed neutrinos. It should be noted that if the heavy sterile state and the light
states are in a complete seesaw formalism, then the effective neutrino mass is zero.

(Mν)11 = mν
ee +

∑
α

U2
eNαMNα = 0 . (3.6.8)

In the low W±
R scenario of the LRSM, the model predicts νR masses of a few MeV; thus,

momentum transfer can be much heavier than sterile neutrino mass, suppressing the 0νββ
decay rate. In this case we find that the next order contribution does give important con-
straint, but this is much weaker than the one resulting from (Mν)11 were it not zero. The
new contribution arising from purely right-handed currents and through the exchange of
right-handed neutrino to 0νββ mechanism is given as

1

T 0ν
1/2

= G0νg4
A|M0ν |2

∣∣∣∣∣ 1

me

(
MWL

MWR

)4 6∑
α=4

U∗2N4Nα
MNα

∣∣∣∣∣
2

. (3.6.9)

where UNN is given in Eq. (3.6.1). This contribution from right-handed current is negligible
in our model due to the choice of flavor structure of right-handed neutrino (see Eq. (3.6.15)
for low WR scheme; the model exhibits a distinct hierarchy among right-handed neutrinos
MN4 << MN5 ' MN6 . Moreover, we take x1 = 0 by choosing feµ = 0 in Eq. (3.6.15).
This has an interesting feature as one of the eigenvalues of νR mass is precisely zero, while
other the two becomes degenerate. Thus we decouple the lightest νR from the 6 × 6 mass
matrix leading to no contribution to the 0νββ mechanism. We show two different cases as
presented in Fit1 and Fit2 with the variation of sterile neutrino mass and show that they
are consistent with effective Majorana neutrino mass constraint from neutrinoless double
beta decay.

3.6.3 Cosmological constraints

A sterile neutrino in the mass range of (1 − 100) MeV can potentially upset the successful
predictions of big bang cosmology. If these neutrinos are long-lived, they will contribute to
the effective number of neutrino species, which is constrained by Planck data [329]. A long-
lived sterile neutrino can also over-close the universe, in contradiction with observations.
Here we show that the model with low W±

R indeed satisfies all the cosmological constraints.
The MeV mass sterile neutrino (denoted here asN) can decay into three neutrinos, νie+e−

or into νiγ. The three body decays arise through the mixing of N with the active neutrino
νi. The rates for these decays are given by

Γ(Nα → e+e−ν) =
∑
j

Γj(Nα → e+e−νj)

= 2
∑
j

|Ujα|2
G2
FM

5
Nα

192π3

[{
δje + (−1

4
+

1

2
sin2 θw)

}2

+
1

4
sin4 θw

]
, (3.6.10)

Γ(Nα → 3ν) =
∑
ij

Γiij (Nα → ν̄iνiνj) = 2
∑
j

|Ujα|2
1

4

G2
FM

5
Nα

192π3
(1 + 2 + 1) . (3.6.11)
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Here a factor 2 appears to account for the Majorana nature of N . The e+e−ν decay is
mediated by Z boson as well as by W boson, which result in the factors given in Eq.
(3.6.10). The factor (1 + 2 + 1) in Eq. (3.6.11) account for the three neutrino flavors in the
final state, with the 2 accounting for identical particles.

We point out that if right-handed neutrino has mass of a order GeV corresponding to the
mass of heavy WR of order 100 TeV (cf. Figure 63), RH neutrino can decay to lepton and
pair of jets that hadronizes. The decay rate is given by

Γ(Nα → `jj) =
G2
F

192π3

(
MWL

MWR

)4

|V R
ud UN`Nα |2M5

Nα (3.6.12)

where UNN is given by Eq. (3.6.1) and V R
ud is right-handed analogues of CKM matrix. Fur-

thermore, it can also decay into lepton and pion provided that mNα & mπ +m`. The decay
rate is given by

Γ(Nα → `π) =
G2
F

8π

(
MWL

MWR

)4

|V R
ud UN`Nα|2M5

Nα f
2
π g(x`, xπ) (3.6.13)

where f (x`, xπ) =
[
(1− x2

`)
2 − x2

π (1 + x2
`)
] [(

1− (xπ + x`)
2) (1− (xπ − x`)2)]1/2 and xπ,` =

mπ,`
mN

. Though these decay modes are as important as the decay prescribed in Eq. (3.6.10)
and Eq. (3.6.11), we show next that radiative decay N → νγ mediated by charged singlet
η+ is essential in getting a lifetime of order 1 second.

The radiative decay N → νγ receives contribution from the exchange of η+ which is
enhanced compared to the W± and mixed WL −WR contribution. The decay rate is given
by [114, 330]

Γ(Nα → νγ) =
∑
j

Γj(Nα → νjγ)

= 2×
(
αM3

Nα
m2
τ

128π4

)[∣∣∣∣f 2
eτ + f 2

µτ

m2
η

{
1 + log

(m2
τ

m2
η

)}∣∣∣∣2 +

∣∣∣∣ g2 ρ

2M2
WR

∣∣∣∣2
]

(3.6.14)

where ρ = ζM2
WR
/M2

WL
and we have kept only the magnetic moment contribution propor-

tional to the τ lepton mass [331, 332], which turn out to be the most dominant. We shall use
these formulas to estimate the lifetime of the sterile neutrino and show that the radiative
decay mediated by the η+ scalar can lead to a lifetime of order 1 second, which would make
it consistent with big bang cosmology.

As it turns out, one of the right-handed neutrinos will have a mass much smaller than
the other two in the LRSM due to the flavor structure of the induced mass matrix. This
lightest νR cannot decay fast enough to satisfy the lifetime limit of 1 second. If this νR
has negligible mixing with the active neutrinos, its contribution to the effective number of
neutrinos would be about 0.1, which is not inconsistent with Planck observations [329]. This
reduction in N eff

ν arises since the right-handed neutrino decoupled from the plasma above
QCD phase transition, when the number of degrees of freedom was around 67. N eff

ν =
[g∗(400 MeV)/g∗(1 MeV)]4/3 ' 0.1, where 400 MeV is the typical decoupling temperature
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of νR if the WR mass is of order 5 TeV. If such a decoupled light sterile neutrino has a
mass of order eV of less, it would not over-close the universe, thus making it consistent with
cosmology.

3.6.4 Neutrino oscillation fit consistent with low WR mass

Here we provide a fit to the neutrino oscillation data in the context of low scale W±
R that

satisfies all of the experimental and cosmological constraints on MeV scale sterile neutrinos.
The Yukawa coupling matrix f that couples left- and right-handed lepton doublets with

charged scalar singlet η+ can be made real by the phase redefinitions. The Yukawa coupling
matrices y and ỹ in Eq. (3.2.4) are hermitian due to Parity symmetry. Thus the theory would
appear to have enough parameters to easily satisfy the neutrino oscillation data. However, in
the low vR (MWR

) regime, one can safely ignore the Dirac neutrino mass MνD contributions
in evaluating right-handed neutrino mass. This reduces the input parameters making the
Yukawa couplings y and ỹ in Eq. (3.2.10) proportional to the charged lepton mass matrix
(cf. Sec. 3.5.2). Moreover, the νR Majorana mass matrix of Eq. (3.5.9) has the following
structure, taking advantage of the hierarchy m2

e

m2
τ
� m2

µ

m2
τ
<< 1:

MνR = J


0

m2
µ x1

m2
τ

1
m2
µ x1

m2
τ

0 x2 − m2
µ x2

m2
τ

1 x2 − m2
µ x2

m2
τ

0

 (3.6.15)

with

J =
2
√

2 α4vRm
2
τfeτ

κ2(1− ε2)2 (16π2)2

{
Cβγ G

(
m2
η

m2
H0
γ

,
m2
H+
β

m2
H0
γ

)
+ C ′βγ G

(
m2
η

m2
H+
β

,
m2
H0
γ

m2
H+
β

)}
. (3.6.16)

Here x1 = feµ/feτ , x2 = fµτ/feτ , and ε = κ′

κ
. (Cβγ, C ′βγ) are given in Eq. (3.5.10) and the

function G is given in Eq. (3.5.14). Note that we have taken Parity to be exact so that the
two-loop diagram is always dominant compared to one-loop diagram (cf. Fig. 63). Moreover,
we take x1 = 0 by choosing feµ = 0. As discussed in the context of cosmology, the lightest νR
can be decoupled from the 6× 6 mass matrix so that it does not cause problems with N eff

ν .
This structure has an interesting feature as one of the eigenvalues of the νR mass matrix
is precisely zero, while the two others become degenerate. Furthermore, one of the light
neutrino mass eigenvalue also becomes zero in this case.

We make the following unitary transformation to diagonalize the νR Majorana mass
matrix of Eq. (3.6.15):

OMνRO
T = Mdiag

νR
(3.6.17)

O =

− cos θ sin θ 0
− sin θ√

2
− sin θ√

2
1√
2

− sin θ√
2
− sin θ√

2
1√
2

 , Mdiag
νR

=

0 0 0
0 −mνR 0
0 0 mνR

 , (3.6.18)
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Oscillation 3σ allowed range Model Fits
parameters NuFit5.0 [8] Fit1 Fit2

∆m2
21(10−5 eV2) 6.82 - 8.04 7.40 7.45

∆m2
31(10−3 eV2) 2.435 - 2.598 2.49 2.48
sin2 θ12 0.269 - 0.343 0.325 0.316
sin2 θ23 0.415 - 0.616 0.537 0.561
sin2 θ13 0.02032 - 0.02410 0.0221 0.0220
δCP/

◦ 120 - 369 274 275

Table 25: 3σ allowed ranges of the neutrino oscillation parameters from a recent global-
fit [8], along with the model predictions, as described in Sec. 3.6.4.

m12 (MeV) m23 (MeV) m33 (MeV) θ/ ◦ ϕ12/
◦ ϕ13/

◦ ϕ23/
◦

Fit1 -2.54× 10−4 -4.22× 10−4 6.12× 10−4 42.1 296 182 328
Fit2 -4.30×10−3 7.36×10−3 -9.11×10−3 319 249 192 275

Table 26: Values of parameters that gives Fit1 and Fit2, as prescribed in Table 28 to fit
the neutrino oscillation data.

mη (TeV) mνR (MeV) MWR
(TeV) α4 τ (s) mββ (eV)

Fit1 4.0 4.2 4.0 3.0 0.97 0.009
Fit2 4.0 10 6.0 4.0 0.072 0.017

Table 27: Masses of η, νR, and WR that are consistent with Fit1 and Fit2. Here τ stands
for the lifetime of the sterile neutrino andmββ corresponds to the effective Majorana neutrino
mass.

where

mR = J
√

1 + x2
2

(
1− m2

µ

m2
τ

)2

,

tan θ =
m2
τ

x2

(
m2
τ −m2

µ

) . (3.6.19)

This orthogonal rotation takes νR fields into a new basis such that the arbitrary hermitian
Dirac neutrino mass matrix with its matrix elements mij is modified as follows:

M̂νD =

0 m̂12 m̂13

0 m̂22 m̂23

0 m̂32 m̂33

 , (3.6.20)
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where

m̂12 =
1

2
sec θ

{
−
√

2 m12e
iϕ12 − (ei(2ϕ13−ϕ23)m23 + ei2ϕ23m33) tan θ

}
,

m̂13 =
1

2

{√
2 m12e

iϕ12 − (ei(2ϕ13−ϕ23)m23 + ei2ϕ23m33) tan θ
}
,

m̂13 = e−iϕ12m12 csc θ ,

m̂23 =
√

2 eiϕ23m23 − e−iϕ12m12 cot θ ,

m̂32 =
1√
2

sec θ(−e−iϕ23m23 +m33) ,

m̂33 =
1√
2

(e−iϕ23m23 +m33) (3.6.21)

where ϕij corresponds to the phase of mij. We make the following substitution to get the
first column zero, so that one νR decouples from the seesaw setup:

m11 =
1

2
tan θ

{
−
√

2 m12e
iϕ12 − (ei(2ϕ13−ϕ23)m23 + ei2ϕ23m33) tan θ

}
,

m22 = eiϕ23m23 −
√

2 e−iϕ12m12 cot θ ,

m13 =
1√
2
ei(ϕ13−ϕ23) tan θ (m33e

iϕ23 −m23) . (3.6.22)

The analysis reduces the neutrino mass matrix into the 5×5 matrix, with one zero eigenvalue
corresponding to an active neutrino, and two nearly degenerate νR states. The fit of neutrino
oscillation data to this 5×5 mass matrix is shown in Table 25, with the corresponding input
parameter given in Table 26. The active and sterile mixing matrix for Fit1 and Fit2 is
found to be:

UνN = 10−3 ×

 0.89 + 0.53i −0.69 + 0.11i
0.59− 1.23i 3.16 + 0.59i
−0.21 + 0.68i 2.73− 0.011i

 Fit1 (3.6.23)

UνN = 10−3 ×

−0.41 + 0.15i −0.069 + 0.29i
0.48− 0.15i −1.12− 0.69i
−0.31 + 0.19i −1.11− 0.078i

 Fit2 (3.6.24)

It is easy to verify that with these fits, all the direct active-neutrino oscillation constraints
listed in Table 24 are satisfied. Furthermore, with these choices of parameters, the lifetime of
the heavier νR fields are found to be less than 1 second, showing consistency with cosmology.

3.7 Supernova Energy Loss Constraints

Supernova dynamics may be significantly altered in presence of right-handed charged current
interactions, provided that the right-handed neutrinos are lighter than about 10 MeV, which
is the case in our model with TeV scale W±

R . Barbieri and Mohapatra have derived a lower
limit of 23 TeV on theW±

R mass by demanding that the νR luminosity not exceed 1053 erg/sec
for supernova 1987a [296]. We have reexamined this limit carefully and found that this may
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be significantly weaker, with the lower limit on W±
R as low as 4.6 TeV. We have made three

improvements over the estimate of Ref. [296]. First, we computed the exact cross section for
the production of νR inside supernova via the reaction e− + p → νR + n. Our cross section
turns out to be a factor of 3.3 smaller compared to the naive cross section valid for low
energy neutrino scattering used in the estimate in Ref. [296]. Secondly, we have included
an important interference effect between the W±

R contribution and the W±
L − W±

R mixed
contribution in the production cross section that further reduces the cross section compared
to Ref. [296] for one sign of the mixing parameter. And third, we have used the average
electron energy to be ∼ 150 MeV, as opposed to 300 MeV used in [296], which appears to be
reasonable, given that the core temperature of supernovae is (30− 70) MeV. We now detail
the improvements we have made.

Light right-handed neutrinos with masses less than about 10 MeV may be produced inside
supernovae through the process e+p→ νR+n mediated by theW±

R gauge boson. Unless the
WR is lighter than about 600 GeV, the νR produced this way would not thermalize and will
escape, carrying energy with them, which could be in conflict with the energy loss mechanism
inferred from sn1987a. The effective interactions involving the leptons and quarks in this
model is given by

L =
4GF cos θC√

2

[
− sin ζ dLγ

µuL + cos ζ
M2

WL

M2
WR

dRγ
µuR

]
(νRγµeR) (3.7.1)

where GF is Fermi coupling, θC is the cabibbo angle, and ζ is the the WL − WR mixing
angle defined in Eq. (3.4.7). This Lagrangian needs to be converted to hadronic Lagrangian
involving the proton and the neutron. Since strong interactions are parity conserving, we
infer that the left-handed and the right-handed quark currents will yield the same hadronic
matrix elements. From quasi-elastic neutrino-nucleon cross section calculations [333] we
obtain the matrix elements for both terms. Compared to the Fermi coupling this operator
will have a suppression factor given by

B = − sin ζ + cos ζ
M2

WL

M2
WR

. (3.7.2)

Note that the two terms here would interfere, which was not accounted for in Ref. [296].
Note also that the two terms are comparable in magnitude with an unknown relative sign,
see Eq. (3.4.7). For one sign of the mixing parameter this interference can reduce the νR
production cross section.

We have worked out the cross section for the scattering process

e− (pp) + p (pp)→ νR (pν) + n (pn) (3.7.3)

explicitly. The differential cross section is given by

dσ

dt
=

1

64π

G2
F cos2 θC |B|2

(s−m2
p −m2

e)
2 − 4m2

pm
2
e

|M2| (3.7.4)

HereM is the invariant amplitude expressed in terms of leptonic and hadronic currents as

M = ūνγ
α (1 + γ5)ue · ūn

(
f1γα + g1γαγ5 + if2σαβ

qβ

2M
+ g2

qα
M
γ5

)
up (3.7.5)
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Figure 64: Total cross section for νR production via e+ p→ νR + n at supernova energies
as a function of the CM energy of the electron.

The following definitions of the Mandelstam variables are used here:

s = (pe + pp)
2 = (pν + pn)2 ,

t = (pe − pν)2 = (pn − pp)2 ,

u = (pe − pn)2 = (pν − pp)2 . (3.7.6)

with s+ u+ t = m2
e +m2

p +m2
νR

+m2
n and qµ = (pn − pp)µ = (pe − pν)µ. After some tedious

but straightforward algebra, we find the spin-averaged and summed amplitude-square to be

|M2|
2

= A(t) + (s− u)B(t) + (s− u)2C(t) (3.7.7)
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where

A(t) = 4|f 2
1 |
{
−
(
m2
e −m2

ν

)2 − 4M2
(
m2
e +m2

ν − t
)

+ t2
}

+ 4|g2
1|
{
− (m2

e −m2
νR

)2

+ 4M2(m2
e +m2

νR
− t) + t2

}
+ |f 2

2 |
{
− (m2

e +m2
νR
− t) t

2

M2
− 4(m2

e −m2
νR

)2 + t2
}

+ 4
|g2

2|t
M2

{
− (m2

e −m2
νR

)2 + (m2
e +m2

νR
)t
}

+ 8Re(f1f
?
2 )
{

2t2 − (m2
e −m2

νR
)2

− (m2
e +m2

νR
)t
}

+ 16 Re(g1g?2)
{
− (m2

e −m2
νR

)2 + (m2
e +m2

νR
)t
}

− 4∆2

[(
|f 2

1 |+
|f 2

2 |t
4M2

)
(4M2 −m2

e −m2
νR

+ t) + |g2
1|(4M2 +m2

e +m2
νR
− t)

+
|g2

2|
M2

{
(m2

e +m2
νR

)t− (m2
e −m2

νR
)2
}

+ 4(m2
e +m2

νR
)Re(g1g

?
2)

+ 2(2t−m2
e −m2

νR
)Re(f1f

?
2 )

]
+ 64M∆(m2

e −m2
νR

)Re(f ?2 g1 + f1g
?
1) (3.7.8)

B(t) = −16tRe(f ?2 g1 + f1g
?
1) + 4∆

(m2
e −m2

νR
)

M
(|f 2

2 |+ Re(f1f
?
2 + g1g

?
2)) (3.7.9)

C(t) = 4
(
|f 2

1 |+ |g2
1|
)
− |f

2
2 |t
M2

(3.7.10)

where we have used the definitions

∆ = mn −mp , M =
mp +mn

2
. (3.7.11)

Furthermore the form factors (fi, gi) are real functions and are given by

f1 =
1− (1 + ξ)t/4M2

(1− t/4M2)(1− t/M2
V )2

, f2 =
ξ

(1− t/4M2)(1− t/M2
V )2

g1 =
g1(0)

(1− t/M2
A)2

, g2 =
2M2g1

m2
π − t

(3.7.12)

where g1(0) = −1.270± 0.003, M2
V = 0.71 GeV2, M2

A ' 1 GeV2, and ξ = κp − κn = 3.706 is
the difference between the proton and neutron anomalous magnetic moments in units of the
nuclear magneton.

Our results for |M |2 in Eq. (3.7.7) are in agreement with the results of Ref. [333] as well
as Ref. [334] derived for quasi-elastic neutrino and anti-neutrino scattering on nucleons if
mνR in Eq. (3.7.10) is set to zero, and if the signs of the terms with coefficients f ∗1 g1 and
f2g
∗
1 are flipped. These sign flips arise due to the V + A nature of the leptonic current in

the present case. We have numerically evaluated the total cross section as a function of the
electron center of mass energy, which is plotted in Fig. 64. From this figure one can read off
the cross section to be σ = 69.2 × 10−41cm2 for electron energy of 150 MeV. This value is
a factor of 3.3 smaller compared to the estimate used in Ref. [296]. This difference can be
attributed primarily to the low energy approximation used as well as due to the absence g2

and f2 form factors and the momentum dependence of the form factors in the naive estimate.

141



Since the core temperature of supernova is in the range of (30-70) MeV, we find it reasonable
to choose the average electron energy to be about 150 MeV, in contrast to the energy of 300
GeV used in Ref. [296]. Following the same rough model of supernova dynamics, we have
derived the mass limit on WR, which can be as low as about 4.6 TeV. For this estimate we
also used the fact that | sin ζ| < 0.95 ×M2

WL
/M2

WR
, which arises from the requirement that

the top-quark Yukawa coupling not exceed about 1.5 (see discussions following Eq. (3.2.10).)
Although the estimate is very rough, we conclude that the model with low WR mass may be
compatible with supernova supernova constraints.

There is one other source of energy loss in supernovae in the presence of a νR field with
a mass less than 10 MeV. This arises through the transition magnetic moment interactions
which could produce νR via νLe→ νRe and νLp→ νRp. Once produced this way, the νR will
escape, thus providing a source for supernova energy loss. Since in the model with low WR,
the νR decays into a νL + γ, the transition magnetic moment is sizeable [331, 332]. For the
decay lifetime to be < 1 sec, we find that the transition moment is about µνRνL ∼ 1×10−11µB.
Ref. [335] has estimated an upper limit of (0.2−0.8)×10−11µB from the energy loss argument,
which may be just about consistent with the needed value within the model.

3.8 High Scale Left-Right Symmetry

We now wish to show that the model is consistent if the W±
R mass is very high, well above

the LHC reach, by fitting the model with neutrino oscillation data. Here one does not need
to decouple one of the νR fields from the rest as was done in the low scale WR scheme. Both
the type-I and type-II seesaw scenarios are consistent at the high scale left-right symmetry as
Dirac neutrino mass can be as significant as charged lepton masses. For simplicity, we show
model fit to the type-I case. We adopt the usual seesaw assumption by taking MνD �MνR .

Here one can have Dirac neutrino mass MνD arbitrary and large, unlike the low scale
W±
R scheme discussed in Sec. 3.6. Thus, it has enough parameters to fit the light neutrino

oscillation observables. A simplifying assumption is to take κ′ = 0, so that the charged
lepton masses and Dirac neutrino masses in Eq. (3.2.8) become

M` =
1√
2
ỹκ , MνD =

1√
2
yκ . (3.8.1)

One can choose to work in a basis where M` is diagonal, in which case ỹ is also diagonal.
Thus, MνR has the same structure as in Eq. (3.6.15) with y << ỹ and a modified overall
factor J ′ given as

J ′ = 2
√

2 α4vRfeτm
2
τ

κ2

(
λ2
βγ I

ηγβ
cd − λ1′

βγ I
ηβγ
cd

)
(3.8.2)

where λ2
βγ and λ1′

βγ are given in Eq. (3.5.11). There is ample freedom in the choice of the
Dirac neutrino mass texture; we choose a specific form given by

MνD = m33

 z11 z12e
iϕ z13

z12e
−iϕ z22 0

z13 0 1

 . (3.8.3)
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Oscillation 3σ allowed range Model Fit
parameters NuFit5.0 [8] Fit3 (NH) Fit4 (IH)

∆m2
21(10−5 eV2) 6.82 - 8.04 7.40 7.42

∆m2
23(10−3 eV2)(IH) 2.414 - 2.581 - 2.48

∆m2
31(10−3 eV2)(NH) 2.435 - 2.598 2.517 -

sin2 θ12 0.269 - 0.343 0.314 0.311
sin2 θ23 (IH) 0.419 - 0.617 - 0.589
sin2 θ23 (NH) 0.415 - 0.616 0.570 -
sin2 θ13 (IH) 0.02052 - 0.02428 - 0.0228
sin2 θ13(NH) 0.02032 - 0.02410 0.0217 -
δCP/

◦ (IH) 193 - 352 - 318
δCP/

◦ (NH) 120 - 369 317 -

Table 28: 3σ allowed ranges of the neutrino oscillation parameters from a recent global-
fit [8], along with the model predictions for both normal (NH) and inverted (IH) hierarchy
scenarios.

x1 x2 z11 z12 z13 z22 ϕ m0 (eV)
Fit3 (NH) 1 −0.860 0.649 −0.562 −0.139 0.617 2.42◦ 0.008
Fit4 (IH) 11.17 −1.316 −0.0205 −0.0416 0 0.0448 5.10◦ 1.45

Table 29: Best fit values of parameters that yield Fit1 and Fit2, as prescribed in Table 28
to fit the neutrino oscillation data.

From this structure we obtain a symmetric light neutrino mass matrix through the type-I
seesaw formula as

(M light
ν )ij = m0 aij , (3.8.4)

Here aij = aji (i, j = 1, 2, 3) are obtained by inserting Eq. (3.6.15) and Eq. (3.8.3) into type-I
seesaw equation given in Eq. (3.2.12). Here m0 fixes the overall scale of the light neutrino
masses. For this structure of light neutrino mass matrix, the model provides excellent fits
for both the normal hierarchy and the inverted hierarchy as shown in Table 28 as Fit3 (NH)
and Fit4 (IH) along with the 3σ allowed ranges taken from a recent NuFit5.0 global analysis
[8]. The choice of parameters that gives these fits are tabulated in Table. 29. These fits are
in perfect agreement with the observed experimental values.

The overall scale m0 determines the scale for the SU(2)R breaking, which depends on the
choice of the Dirac mass entry m33. With the benchmark parameters of Fit1 (NH) and Fit2
(IH) represented in Table (29), we can simply write the right-handed neutrino masses as

MνR = 1.25× 1011 Diag{1.318, 1.315, 0.0035}
(m2

33

GeV

)
, Fit1 (NH) (3.8.5)

MνR = 6.9× 108 Diag{1.690, 1.630, 0.0380}
(m2

33

GeV

)
. Fit2 (IH) (3.8.6)

In addition to the best-fit results in the tabulated format, we also display them in Fig.
65 in the two-dimensional projections of 1σ, 2σ, and 3σ confidence regions of the global fit
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Figure 65: Global oscillation analysis obtained from NuFit5.0 [8] for both normal hierarchy
(NH) and inverted hierarchy (IH) compared with our model benchmark points (Fit1 and
Fit2). Yellow, Green, and orange colored contours represent 1σ, 2σ, and 3σ CL allowed
regions for NH, whereas solid, dashed, and dotted lines respectively represent 1σ, 2σ, and 3σ
CL allowed regions for IH. Red, purple, and (blue, black, pink, brown) markers are best-fit
from NuFit for IH and NH, and benchmark points Fit1, Fit2, Fit3, and Fit4.

results [8] (with the inclusion of the Super-K atmospheric ∆χ2-data). The global-fit best-fit
points, along with the model predictions for each benchmark point are shown for comparison.
The theoretical predictions are in good agreement within the observed experimental data.

3.8.1 Inconsistency with the type-II seesaw in low scale LR scenario

In the limit of small mixing between scalars, i.e. in the limit when the flavor eigenstate and
mass eigenstate coincide, we take Eq. (3.2.11) and obtain the condition when M I

ν dominates
M II

ν . Note that for the type-II contribution, ML
ν is given by one-loop diagrams which is

shown in Fig. 61 (a) and evaluated in Eq. (3.5.2). Now Eq. (3.2.11) can be written as

Mν =

(
εκ+vL

vR
F ′ MνD

MT
νD ε2vRα4F

)
(3.8.7)

where F ′ and F is the flavor structure given in Eq. (3.5.2) and Eq. (3.5.9). ε is the one-
loop factor, which is equal to 1/(16π2). After some straightforward algebra, we obtain the
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following relation between type-I and type-II:

M II
ν .

ε3M`

κ
M I

ν (3.8.8)

It is clear from the above equation that the type-I contribution will always dominates type-II
contribution. We emphasize that in low WR mass regime, the maximum νR mass is few tens
of MeV, implying that Dirac mass should be of order keV or less to get correct scale for
the light neutrinos. The Dirac mass contribution to the Yukawa couplings y and ỹ given in
Eq. (3.2.9) is negligible compared to charged lepton mass. Thus, both Yukawa couplings y
and ỹ are proportional to charged lepton mass. The type-II contribution from the one-loop
diagram given by Eq. (3.5.2) has the flavor structure with diagonal elements being zero.
It is worth mentioning that fine-tuning yκ = −ỹκ′ can lead type-II dominance; however,
the diagonal elements of the light neutrino mass matrix will be all zero in this case. With
diagonal elements zero in the neutrino mass matrix, in a basis where the charged lepton
masses are diagonal, one cannot obtain the correct neutrino oscillation pattern [43, 44, 105].

3.9 Collider Implications

The W±
R gauge bosons as well as other new particles in the model can be produced at the

Large Hadron Collider experiments, if they are sufficiently light. In the standard left-right
symmetric model, the WR boson can be resonantly produced when kinematically allowed,
which then decays into a charged lepton plus right-handed neutrino, or a pair of jets. CMS
has obtained a lower limit of 3.6 TeV on the WR mass from resonant searches in the dijet
channel [297]. This limit is applicable to the present model. There are also somewhat
stronger limits derived from searches for the decays of WR into leptonic final state of the
same sign or opposite sign [336, 337]. These occur in the standard left-right symmetric model
as the heavy νR decays into leptons plus jets [283]. In our model, however, when the WR

mass is in the TeV range, the mass of νR is of order 10 MeV, which would mean that it
won’t decay within the detector. Thus these leptonic constraints on the W±

R mass are not
applicable to our scenario.

There are however, other ways of testing the model at the LHC. We focus on the discovery
potential of the right-handed neutrino as well as the η± scalar present in the model. η+η−

can be pair-produced via the Drell-Yan process mediated by the Z and photon, which has a
significant cross section at LHC energies for relatively low mass η+. Assuming that the W±

R

is quite heavy, the mass of the νR can be in the few to hundred GeV range in the model.
The η+ would then decay into `+

RνR as well as into `+
LνL final states, with roughly equal

branching ratios. The νR would then decay through a virtual η± exchange into `R + `L + νL.
This would lead to interesting multi-lepton signals that has already been searched for by
ATLAS. Here we carry out an analysis of this process and derive bounds from the LHC and
estimate the reach of high luminosity LHC.

It is worth mentioning that MνR � MWR
in the model due to the two-loop suppression

in νR mass. Thus it is natural to expect νR to be light, even when the WR gauge boson is
heavy. The decay of νR into SM leptons is suppressed due to their small mixing, typically
of the order mνD/MνR . Furthermore, the decay of νR to νLφ0

1(φ0
2) is also suppressed, as the
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γ/Z
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q
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η∓
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ναR

ℓR

νβL

ℓL

Figure 66: Feynman diagram for pair production of singly-charged scalar η± (left) and
decay of RH neutrino νR → `+`−ν (right) at LHC (note: α, β, ` = e, µ (β, α 6= `)) .

γ/Z

q

q

η−

η+

ℓL

νL

ℓR

νR
η+⋆

ℓR

ℓL
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Figure 67: Feynman diagram for the production of 4-lepton + /ET through Drell-Yan
process with pair production of η±. νR decays to lepton pair and neutrino via virtual η.

coupling with the SM Higgs is small, while the other neutral scalar should be heavy, of order
10 TeV or higher, in order to satisfy flavor changing neutral current constraints [338].

We consider the case where in addition to the νR, the scalar η+ is also light, which opens
up the possibility of production of νR via η+, as shown in Eq. (3.2.4). At the LHC η+ is
produced through the s-channel Drell-Yan process pp → γ/Z → η+η−, as shown in Fig.
66 (left) followed by η± decaying into leptons 3. We take the cleanest channels e, µ in the
final state from the decay of η±. This can be achieved by setting the Yukawa coupling that
couples η± to νατ to be small, as shown by Table 29, obtained from neutrino oscillation fit.
We also set the coupling feµ at 0.01 to suppress the muon decay constraint and the single
production of η±. Then, η+ decays into ν̄eµ+

L , ν̄µe
+
L , ν̄eR µ

+
R, and ν̄µRe

+
R with a branching ratio

(BR) of 1/4 for each process. The right-handed neutrino νeR and νµR can decay into a pair
of leptons and neutrinos via virtual η, as shown in Fig. 66 (right) with branching ratio 1/2
for each process (i.e. νeR → µ−Lµ

+
Rνe, e

−
Lµ

+
Rνµ and νµR → µ−Le

+
Rνe, e

+
Re
−
Lνµ). This means that

the Drell-Yan production of η+η− has 2l+ /ET , 4l+ /ET , and 6l+ /ET as possible final states.
We note that although dilepton + MET search (pp→ η+η− → `+`− /ET ) is appealing as

it has a higher cross-section, the background is much harder to suppress. Thus, we study
the process with 4-leptons and 6-leptons final states, i.e, pp → 4l + /ET (Ref: Fig. 67) and
pp → 6l + /ET . 4-leptons and 6-leptons final states will have a suppressed background in
contrast to 2-lepton final states. We implement our model file in the FeynRules package
[126] and compute all the cross-sections at the parton-level using MadGraph5 event generator
[127].

Following the search done by ATLAS [339] with four or more leptons, we generate the
events for signal region (SR0loose

bveto) with 139 fb−1 integrated luminosity at
√
s = 13 TeV

3The decay of η± to quarks is generally suppressed since the mixing angle of η+ with other charged scalars
is small.
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Figure 68: The observed 95% C.L. limit of the production cross section, σ(pp → η+η−),
as a function of mass of η+ scalar obtained from four leptons searches at

√
s = 13 TeV pp

collisions by the ATLAS experiment [339]. Dotted line corresponds to the future sensitivity
limit at the high luminosity LHC with 3 ab−1 data.

proton-proton collisions. For the estimation of sensitivity, we adopt the background estima-
tion done by ATLAS analysis. This same effective cut is implemented on the signal region
for our model. We implement Z-veto cut that rejects events where any SFOS lepton pair
has an invariant mass close to Z boson mass, i.e., in the mass range of 81.2 − 101.2 GeV.
To suppress the radiative Z boson decays into four leptons, Z veto also takes into account
combinations of any SFOS LL pair with an additional lepton or with second SFOS LL pair.
Also, to separate background and left-right (LR) model signals, meff > 600 GeV cut is used.
Here meff is defined as

meff =
∑
leptons

pT +
∑
jets

pT (> 40GeV ) + Emiss
T . (3.9.1)

where Emiss
T is the missing transverse energy, and the pT > 40 GeV requirement suppresses

contribution from pileup and the underlying events [340]. The observed signal limit at 95%
CL, as shown in Ref. [339] is used to evaluate constraints on our model. Fig. 68 shows
the limit on the production cross-section of η+η− as a function of the mass of the scalar η+

assuming the mass of right-handed neutrino mass at 50 GeV. We see that the current limit
on the mass of η± is 410 GeV from LHC, as shown in Fig. 68. We also show in Fig. 68 the
mass reach for 3 ab−1 integrated luminosity by rescaling and assuming the same efficiency.
We find that the reach for η mass is 585 GeV.

For 6-leptons final state, both η+ and η−, as shown in Fig. 66 and Fig. 67 decays into
right-handed neutrinos νR; both νR then decay to a pair of leptons and a light neutrino. There
are no current 6-leptons + MET searches available in the literature. It would be interesting
to do such a study as we expect half the number of events in this channel compared to
4-leptons + MET searches but with a much-suppressed background. For instance, for η+

mass of 410 GeV, 6-lepton final state would have a cross-section of 0.071 fb with the basic
selection cuts form the ATLAS searches [133, 339]. It is beyond the scope of this work to do
the full analysis as it requires detailed reducible background simulation.
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3.10 Summary and Discussions

In this chapter, we have presented a simple and minimal left-right symmetric model which
does not use the conventional Higgs triplets. Gauge symmetry breaking is achieved by
Higgs doublets and a Higgs bi-doublet. Majorana masses for the right-handed neutrinos are
induced through two-loop diagrams involving a singly charged scalar field η+. This model
naturally exhibits a hierarchy in the masses of νR and WR. If the WR gauge boson has a
mass in the (5− 20) TeV range, the νR fields will have masses of a few tens of MeV. We have
shown that such a scenario is consistent with low energy constraints, as well as constraints
arising from cosmology and astrophysics.

The model presented admits type-I seesaw mechanism for the entire range of WR mass
ranging from a few TeV to the GUT scale of order 1016 GeV. Prior analysis of left-right
symmetric models with this Higgs spectrum focused on the one-loop induced νR Majorana
masses, which turn out to be sub-dominant. For the entire parameter space of the model
we have shown that the dominant contributions to νR masses would arise from two-loop
diagrams, which do not rely on electroweak symmetry breaking, unlike the one-loop diagrams.
We have found excellent fits to neutrino oscillation parameters for low WR scenario as well
for high WR scenario.

We have explored the multi-lepton signals at colliders arising from the production and
decays of the η+ scalar, assuming that it is kinematically accessible to the LHC. While the
current limit on the η+ mass is found to be 410 GeV, we estimate that at the high luminosity
run of the LHC this limit can be improved to 585 GeV.

3.11 Appendices

3.11.1 Evaluation of the charged scalar mass matrix

In evaluating the masses of charged scalar we first identify the Goldstone bosons as:

G+
L =

vLχ
+
L + κ′φ+

2 − κφ+
1√

v2
L + κ′2 + κ2

, (A.1)

G+
R =

κ2
LvRχ

+
R + 2κκ′vLχ

+
L + κ(κ2

− + v2
L)φ+

2 − κ′(κ2
− + v2

L)φ+
1√

(κ2
+ + v2

L)(κ4
− + v2

Lv
2
R + k2

+(v2
L + v2

R))
. (A.2)

G+
L and G+

R have been chosen to be orthogonal to each other. We choose the following
orthogonal matrix O which transforms the original basis {φ+

1 , φ
+
2 , χ

+
L , χ

+
R, η

+} to a new basis
{G+

L , G
+
R, h

′+
1 , h

′+
2 , h

′+
3 }.

O+ =



− κ
κL

κ′

κL

vL
κL

0 0
−κ′(κ2

−−v2
L)√

N2

κ(κ2
−+v2

L)√
N2

2κκ′vL√
N2

κ2
LvR√
N2

0
κ′vR√

κ4
−+κ2

+v
2
R

κvR√
κ4
−+κ2

+v
2
R

0
κ2
−√

κ4
−+κ2

+v
2
R

0

κvL(κ2
−+v2

R)√
N1

κ′vL(−κ2
−+v2

R)√
N1

−k4
−−k2

+v
2
R√

N1

2κκ′vLvR√
N1

0

0 0 0 0 1


, (A.3)
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where κL is given in Eq. (3.3.20) and where we have defined normalization factors as

N1 = (κ4
− + κ2

+v
2
R)(κ4

− + v2
Lv

2
R + k2

+(v2
L + v2

R)) ,

N2 = (κ2
+ + v2

L)(κ4
− + v2

Lv
2
R + k2

+(v2
L + v2

R)) . (A.4)

To get the mass spectrum for charged Higgs, mass matrixM2
+ in the basis {φ+

1 , φ
+
2 , χ

+
L , χ

+
R, η

+}
is first constructed from the bilinear terms by expanding the potential given in Eq. (3.3.1)
around the VEVs shown in Eq. (3.2.3). One can write the mass matrix in the new basis by
performing the transformation

O+M2
+O

+T = M̃2
+ . (A.5)

The elements of the symmetric mass matrix M̃+
ij = M̃+

ji are given by

M̃+
11 =

1

2(κ6
− + κ2

−κ
2
+v

2
R)

{
α3

(
4κ2κ′2v2

Lv
2
R + (k4
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+v

2
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√

2κ′µ4vLvR(κ4
− + κ2
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2
R)− ρ12v

2
L

(
κ6
− + 2κ4

−v
2
R

)
− ρ12v

2
Lv

4
R(3κ′2 + κ2)

}
,

M̃+
12 =

√
N1

2κ(κ4
− + κ2

+v
2
R)3/2

{
κ′vLvR(−2α3κ

2 + ρ12(−κ2
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R))

−
√

2µ4(κ4
− + κ2
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2
R)
}
,

M̃+
22 =

1

2(κ4
− + κ2

+v
2
R)2

{(
α3κ

2
− − ρ12v

2
R

)
N1

}
,

M̃+
13 =

1

2
√
κ4
− + κ2

+v
2
R

{
− α4(κ+ κ′)vL

(
(κ− κ′)2 + v2

R

)}
,

M̃+
23 =

1

2(κ4
− + κ2

+v
2
R)
α4vR(κ− κ′)

√
N1 ,

M̃+
33 = 2α6κκ

′ +
α5

2
κ2

+ + µ2
η +

α7

2
(v2
L + v2

R) , (A.6)

where ρ12 = 2ρ1− ρ2. One can further rotate M̃2
+ to the physical basis {H+

1 , H
+
2 , H

+
3 } to get

the masses of charged scalars such that

O′+M̃2
+O
′+T = M̂2

+ (A.7)

with M̂2
+ being a diagonal matrix.

3.11.2 Evaluation of the neutral scalar mass matrices

The basis {φ0
1, φ

0
2, χ

0
L, χ

0
R} consisting of complex fields can be broken up into real and imag-

inary components which are rotated into new basis {h0r
1 , h

0r
2 , h

0r
3 , h

0r
4 } and {G0

1, G
0
2, h

0i
1 , h

0i
2 }.

For simplicity, we turn off all the phases, which ensures that there is no mixing between
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scalars and pseudo-scalars. We first construct the scalar and pseudoscalar mass matrices
from the Higgs potential of Eq. (3.3.1) in the original basis states.

In the pseudoscalar sector we make a rotation from the original basis to an intermediate
basis denoted as {G0

1, G
0
2, h

0i
1 , h

0i
2 }, where the Goldstone bosons are identified as

G0
1 =
−κφ0i

1 + κ′φ0i
2 + vLχ

0i
L√

v2
L + κ′2 + κ2

(B.1)
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R√
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2
L + κ2

Lv
2
R)

(B.2)

We orthogonal rotation to go to this intermediate basis is denoted as Oi, which is chosen to
be

OiM2
i O

iT = M̃2
i , (B.3)

where M2
i is the mass matrix in the {φ0i

1 , φ
0i
2 , χ

0i
L , χ

0i
R} basis, M̃2

i is in new basis, and

Oi =
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κ+

κ
κ+
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 (B.4)

where κL is defined in Eq. (3.3.20) and where we have defined

N3 = κ2
+v

2
L + κ2

Lv
2
R . (B.5)

The elements of the matrix M̃2
i with M̃ I

ij = M̃ I
ji read as

M̃ I
11 =

1

2κ2
+κ

2
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{
4
√

2κ′κ2
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2κ2
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N3. (B.6)

One can further rotate M̃2
i to the physical basis to get the masses of the pseudoscalars.

Next, we examine the the mass matrix of real scalars in the original basis, {h0r
1 , h

0r
2 , h

0r
3 , h

0r
4 }.

We use the following orthogonal matrix to transform the original basis into an intermediate
basis.

OrM2
rO

rT = M̃2
r , (B.7)

where M2
r is the mass matrix in the {φ0r

1 , φ
0r
2 , χ

0r
L , χ

0r
R } basis, M̃2

r is the same matrix in the
new basis, and where we have chosen
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The Matrix M̃2
r is symmetric, M̃ r

ij = M̃ r
ji, with its elements given by
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11 =
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Here λ23 = 2λ2 +λ3, ρ12 = 2ρ1−ρ2, and ρ′12 = 2ρ1 +ρ2. This 4×4 matrix can be diagonalized
numerically to obtain the mass eigenvalues of the scalar fields. Note that the field h10r is
the SM-like Higgs boson, which has small mixings with the heavier states.

3.11.3 Different topology for the generation of νR Majorana mass

In this section we show different topology for the right-handed Majorana neutrino mass
generation. Unlike in Fig. 61, these are represented in the physical basis for the scalar fields.
There are three more diagrams with internal particles replaced by their conjugates. Note
that in the electroweak symmetry conserving limit, the neutral and charged scalars have the
same mixing matrix and are degenerate. Moreover, scalar and pseudoscalars do not mix, and
the η+ field will remain a mass eigenstate, the remaining Higgs field mix, and a common 3×3
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Figure 69: Topology for right-handed Majorana neutrino mass generation with with various
arrangement of scalar fields. There are three more diagrams with internal particles replaced
by their charge conjugates.

Figure 70: A typical two-loop diagram involving gauge bosons that induce right-handed
Majorana neutrino mass in the model.

unitary matrix V diagonalizes both charged and neutral scalars. There are Goldstone modes
associated with various rotations. We work in the Feynman gauge, where the Goldstone
bosons are treated just as the physical scalars, with their masses identified as those of W
and Z bosons. Note that there are other topology associated with gauge fields such as the
one in Fig. 70 that needs to be considered. However, these diagrams are suppressed as they
require η+ field mixing with φ+

1,2, which is only possible after electroweak symmetry breaking.
Note diagrams consisting of only one Yukawa coupling f like the one shown in Fig. 70 are
summed over its conjugate diagram yielding zero right-handed neutrino mass, as Yukawa
coupling f is antisymmetric in nature. Thus, we do not include these contribution in our
analysis.

3.11.4 Evaluation of I132
45

Here we evaluate general loop integral I132
45 given in Eq. (3.5.9). After performing a Wick

rotation and setting q → −q, Eq. (3.5.8) becomes (up to an overall sign):

I132
45 =

∫ ∫
d4p

(2π)4

d4q

(2π)4

q.p

(q2 +m2
1)(q2 +m2

5)(p2 +m2
2)(p2 +m2

4)((p+ q)2 +m2
3)
. (D.1)

Here p and q are Euclidean four-vectors. m4 and m5 are the charged lepton masses. (m1,
m2) and m3 are the masses of the outside and inside scalars. In the limit of keeping only the
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linear terms in ε = κ′

κ
, ε′ = vL

κ
, and vR >> vL, κ, κ

′, scalar masses are given in Table 22. We
use some useful relation in evaluating Eq. (D.1).

1

(q2 +m2
1) (q2 +m2
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=
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(m2
1 −m2
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[
1
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. (D.2)
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=
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}
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(D.3)

In addition, introducing a new notation, [301] one can write the integral in a compact form
as:

(m1|m2) =

∫
dnp

∫
dnq

1

(p2 +m2
1) (q2 +m2

2)
. (D.4)

(m1|m2|m3) =

∫
dnp

∫
dnq

1

(p2 +m2
1) (q2 +m2

2) ((p+ q)2 +m2
3)
. (D.5)

From Eq. (D.2), (B.6), (D.4) and (D.5) (with n = 4) we can write Eq. (D.1) as follows:

I123
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}
. (D.6)

Solving Eq. (D.4) and Eq. (D.5), gives the solution to I132
45 . In order to evaluate (m1|m2) we

use the following identity with ε = n− 4 :∫
dnp

1
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= iπ2m2

[
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Furthermore, (m1|m2|m3) can be expanded to

(m1|m2|m3) =
1

3− n
[
m2

1 (m1m1 |m2|m3) +m2
2 (m2m2 |m1|m3) +m2
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]
,

(D.8)
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where the term in Eq. (D.8) is given by [303, 341]
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=
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where
µ2 =

ax+ b(1− x)

x(1− x)
, a =

m2
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, b =
m2

3

m2
1

. (D.10)

Now, letting ε = n− 4 and expanding in the limit ε→ 0,

(m1m1 |m2|m3) = π4
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where the function f(a, b) is given by:

f(a, b) =

∫ 1

0

dx

(
Li2
(
1− µ2

)
− µ2 log µ2

1− µ2

)
, (D.12)

and the dilogarithm function Li2 is defined as:

Li2(x) = −
∫ x

0

log(1− y)

y
dy . (D.13)

Performing the y integration, f(a, b) in Eq. (D.12) becomes [301, 341]

f(a, b) =− 1
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where ∆ = (1− 2(a+ b) + (a− b)2) and
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By explicit symmetrization between a and b (a↔ b) and using the relation

Li2(1− z) = −Li2(z)− log z log(1− z) +
1

6
π2 ,
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the function simplifies to:
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It is to be noted that function f(a, b) in Eq. (D.17) can have non-zero imaginary part
[341, 342]. However, the imaginary component of the function f(a, b) cancels out with
judicious logarithmic branch choice. The real part of Eq. (D.17) is in full agreement with
Eq. (D.14. By expanding Eq. (D.6) as in the relation of Eq. (D.8) and making use of
expression given in Eq. (D.11) together with Eq. (D.7), I132

45 is obtained as
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where f jki ≡ f

(
m2
j

m2
i
,
m2
k

m2
i

)
, (i, j, k) = (1, 2, 3, 4, 5) and f is given by Eq. (D.17). In the limit

of m4 = m5 = 0, one can reduce Eq.(D.18) as follows:

I132
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3)(m2
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03
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03
2 )

]
, (D.19)

where f 0k
i ≡ f

(
0,

m2
k

m2
i

)
, f j0i ≡ f

(
m2
j

m2
i
, 0

)
, and f[a,0] = f[0,a] = Li2(1− a).

3.11.5 Evaluation of MνR

To evaluate the neutrino mass, one needs to finally sum over all possible diagrams. Recog-
nizing outside scalars in the diagram as α, β, and inside scalar as γ, one needs to sum over
α, β, and γ. In doing so, all the constants that appear in the integral vanish owing to the
unitarity condition. The total contribution to the neutrino mass is given in Eq. (3.5.6) and
Eq. (3.5.7) with η replaced by α. As an illustration we have,

A1ab = F cdαγβ Iαγβcd (E.1)

where F cdαγβ is the flavor structure with linear combinations of unitary matrices associated
with the two-loop neutrino mass matrix in Eq. (3.5.7). FαγβIαγβcd in the limit ofmc = md = 0,
vanishing charged lepton masses, is given as

FαβγIαβγ00 =
λαβγ

(16π2)2

[
− 1
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log
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2
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+
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6
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]]
, (E.2)

where the function f is given by Eq. (D.17) with a and b being the ratio of the masses.
Moreover, we take µ2 = m2

γ in Eq. (D.19) in getting the above expression.

3.11.6 Asymptotic behavior of Iαγβcd in evaluating the right-handed Majorana
neutrino mass

We show here the asymptotic behavior for the two cases, mH0
γ
>> mh+

α
= mH+

β
and mH0

γ
=

mH+
β
>> mh+

α
. We write Iαγβcd as Iηγβcd ; identifying mη ≡ mh+

α
, mH+

β
≡ (mh+

1
,mh+

2
,mh+

3
), and

mH0
γ
≡ (mh0

1
,mh0

2
,mh0

3
). In evaluating the asymptotic behavior of the neutrino mass, we

have to sum over all possibilities in β and γ. Furthermore, to simplify the flavor structure,
we consider ỹ > y, and take all the phases zero.
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mH0
γ
>> mη = mH+

β
= mβ

Since the masses of leptons are much smaller than Higgs masses, the terms with m2
c and

m2
d are suppressed and can be ignored in Eq. (D.6). Thus, in this limit, we obtain the

right-handed neutrino Majorana mass as

(MνR)ab ≈
α4 vR

(16π2)2
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cd ỹdb λβγ + Transpose)
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log

(
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. (F.1)

mH0
γ

= mH+
β

= mβ >> mη

Here we take two masses being equal to each other and much heavier than the third. Ignoring
the masses of leptons we obtain the RH Majorana mass as

(MνR)ab ≈
α4 vR

2 (16π2)2
(fac ỹ

?
cd ỹdb + Transpose) λββ

m2
η

m2
β

log

(
m2
η

m2
β

)
. (F.2)
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CHAPTER IV

UNIFIED FRAMEWORK FOR B−ANOMALIES, MUON g− 2, AND
NEUTRINO MASSES

4.1 Introduction

Among the many reasons to consider physics beyond the Standard Model (SM), an un-
derstanding of the origin of neutrino masses stands out, as neutrino oscillations have been
firmly established [12] which require nonzero neutrino masses, in contradiction with the SM.
While neutrino masses may be accommodated at tree-level simply by the addition of three
SM-singlet right-handed neutrino fields having large Majorana masses via the type-I seesaw
mechanism [7, 32–36], or by the addition of an SU(2)L-triplet scalar (or fermion) via the
type-II [7, 38, 39] (or type-III [40]) seesaw, there are other interesting scenarios where small
neutrino masses arise naturally as quantum corrections [37, 43–45]. These models of radia-
tive neutrino masses, which we focus on in this chapter, are more likely to be accessible for
direct experimental tests at colliders. (For recent reviews on radiative neutrino mass models
and constraints, see Refs. [26, 46].) Here we show that the new particles that are present in
these models to induce neutrino masses can also play an important role in explaining certain
persistent experimental anomalies, viz. the anomalous magnetic moment of the muon (∆aµ),
and the lepton-flavor-universality violating decays of the B meson (RD(?) and RK(?)).

There has been a long-standing discrepancy in the measured value of the anomalous
magnetic moment of the muon by the E821 experiment at Brookhaven National Labora-
tory [14] and the SM theory prediction [16], resulting in a value for ∆aµ ≡ aexp

µ − aSM
µ =

(27.4 ± 7.3) × 10−10, which indicates a 3.7 σ discrepancy. The muon g − 2 experiment
at Fermilab [343] which is currently in the data accumulation stage, in conjunction with
more precise calculations of the dominant hadronic vacuum polarization contribution [344–
350], is expected to settle in the near future whether this discrepancy is indeed due to new
physics [351]. Meanwhile, it appears to be productive to envision TeV-scale new physics
that can account for the observed anomaly. We shall pursue this line of thought here in the
presence of an R2(3,2, 7/6) leptoquark (LQ) scalar (in the notation of Ref. [227], where the
numbers in parenthesis denote SU(3)c×SU(2)L×U(1)Y quantum numbers) that also takes
part in radiative neutrino mass generation.

Independently, various anomalies have been reported in the semi-leptonic rare decays of
the B-meson by BaBar [17, 18], Belle [19–21] and LHCb [22–25] experiments. The com-
bined average ratio of branching ratios for the charged-current decay, RD(?) = BR(B →
D(?)τν)/BR(B → D(?)`ν) (with ` = e, µ) [17–23] differs from the SM prediction [352] by
1.4 (2.7)σ. The ratio of branching ratios for the neutral-current decay RK(?) = BR(B →
K(?)µ+µ−)/BR(B → K(?)e+e−) [24, 25] differs from the SM predictions [353–356] by
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2.6 (2.4)σ in the high-momentum range, while the discrepancy is 2.2σ in the lower-momentum
range for RK? . These anomalies, while taken together, appear to suggest some lepton-flavor-
universality violating new physics beyond the SM. The most popular explanation of these
anomalies is in terms of scalar LQs. While the charged-current B-anomaly requires the rel-
evant LQ to have a mass around 1 TeV, the neutral-current anomaly may be explained with
a LQ that is somewhat heavier.

A single scalar LQ solution to both b → s`+`− and b → cτν anomalies [357–360] seems
to be ruled out when such models are confronted with global fits to b→ sµ+µ− observables,
as well as perturbativity constraints and direct limits from the LH [178] (see also Refs. [361,
362]). The RD(?) anomaly may be explained by either an S1(3,1, 1/3) or an R2(3,2, 7/6)
LQ, while the RK(?) anomaly may be explained in terms of an S3(3,3, 1/3) LQ.1 Thus, in
order to explain both RD(?) and RK(?) anomalies, there are two logical options: Addition of
(i) R2(3,2, 7/6) and S3(3,3, 1/3) LQs, or (ii) S1(3,1, 1/3) and S3(3,3, 1/3) LQs. Among
these options, we find it more compelling to adopt (i) as there is a direct connection with
neutrino masses induced radiatively in this case, since both the LQs are essential to generate
neutrino mass, unlike option (ii) where only one such LQ is sufficient, along with a color-
sextet diquark to ensure lepton number violation [61]. Therefore, we adopt here a radiative
neutrino mass model involving R2(3,2, 7/6) and S3(3,3, 1/3) LQs, along with an isospin-
3/2 Higgs field ∆(1,4, 3/2) which is needed to induce an R2–S?3 mixing that leads to lepton
number violation, a requirement to generate Majorana neutrino masses.

We show by explicit construction that a model with R2(3,2, 7/6) and S3(3,3, 1/3) LQs
plus ∆(1,4, 3/2) Higgs field [360] can simultaneously explain the RD(?) , RK(?) and ∆aµ
anomalies, while being consistent with all low-energy flavor constraints, as well as with the
LHC limits. We propose a minimal Yukawa flavor structure that achieves these, while also
providing excellent fits to neutrino oscillation parameters. We have also evaluated constraints
from

√
s = 13 TeV LHC data on the LQ Yukawa couplings to fermions of the first two

families arising from non-resonant pp → `+
i `
−
j processes mediated by t-channel exchange of

LQs. These limits on the couplings are found to be in the range (0.15−0.36) for a 1 TeV LQ,
which would preclude any solution of RD(?) with new LQ-mediated decays of the B meson
involving νe or νµ, an a priori logical possibility. We also show that the ∆++ scalar from
the ∆(1,4, 3/2) multiplet, which decays to same-sign dileptons for much of the parameter
space, can be probed to masses as large as 1.1 TeV at the high-luminosity (HL) phase of the√
s = 14 TeV LHC with 3000 fb−1 of data, as it can be produced via strong interactions in

the decay of S4/3
3 → (R?

2)−2/3 + ∆++. The mass reach in this new mode is somewhat better
than in the standard Drell-Yan (DY) channel. We also find that the same Yukawa couplings
responsible for the chirally-enhanced contribution to ∆aµ give rise to new contributions to
the SM Higgs decays to muon and tau pairs, with the modifications to the corresponding
branching ratios being at a few percent level with opposite signs, which could be tested at
future hadron colliders, such as HL-LHC and FCC-hh.

There have been various attempts to explain radiative neutrino masses and a subset
of the anomalies in RD(?) , RK(?) and ∆aµ using scalar LQs. For instance, Ref. [359] has
studied neutrino masses, RD(?) and ∆aµ, whereas Refs. [363–368] address neutrino masses

1The R2 LQ can also explain RK(?) [360], but only by modifying b→ se+e− at tree-level and thus cannot
explain the other b→ sµ+µ− anomalies like P ′5 [356].
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and RK(?) . Similarly, Refs. [369, 370] explain radiative neutrino masses, RD(?) and RK(?) ,
while Ref. [371] explains neutrino masses and lepton g− 2. In some cases such explanations
are disconnected from neutrino mass generation, in the sense that removing certain particle
from the model would still result in nonzero neutrino masses [372, 373]. Our approach here
is similar in spirit to Ref. [374], which address all three anomalies, viz., RD(?) , RK(?) and
∆aµ, in the context of radiative neutrino masses; but unlike Ref. [374] we do not introduce
new vector-like fermions into the model. In the model proposed here there is a close-knit
connection between the RD(?) and RK(?) anomalies, ∆aµ and neutrino mass. In particular,
neutrino mass generation requires all particles that play a role in explaining these anomalies.
Removing any new particle from the model would render the neutrino to be massless. For
other models of radiative neutrino mass using LQ scalars, see Refs. [59, 60, 62–64, 375].

The rest of the chapter is organized as follows. In Section 4.2 we present the basic
features of the model, including the Yukawa Lagrangian (cf. Section 4.2.1), scalar potential
(cf. Section 4.2.2), radiative neutrino mass generation mechanism (cf. Section 4.2.3) and a
desired texture for the Yukawa coupling matrices (cf. Section 4.2.4) consistent with flavor
constraints that can explain the flavor anomalies. In Section 4.3 we discuss how the LQ
scalars present in the model explain the RD(?) and RK(?) flavor anomalies. In Section 4.4
we show how the R2 LQ explains the ∆aµ anomaly. In this section, we also point out the
difficulty in simultaneously explaining the electron g − 2 (cf. Section 4.4.1), as well as the
model predictions for related processes, namely, Higgs decay to lepton pairs (cf. Section 4.4.2)
and muon electric dipole moment (cf. Section 4.4.3). Section 4.5 summarizes the low-energy
constraints on the LQ couplings and masses. Section 4.6 analyzes the LHC constraints on
the LQs. In Section 4.7 we present our numerical results for two benchmark fits to the
neutrino oscillation data that simultaneously explain RD(?) , RK(?) and (g − 2)µ anomalies,
while being consistent with all the low-energy and LHC constraints. Section 4.8 further
analyzes the collider phenomenology of the model relevant for the ∆++ scalar, and makes
testable predictions for HL-LHC and future hadron colliders. Our conclusions are given in
Section 4.9.

4.2 The Model

The model proposed here aims to explain the B-physics anomalies RD(?) and RK(?) , as well
as the muon (g − 2) anomaly ∆aµ, and at the same time induce small neutrino masses as
radiative corrections. To this end, we choose the gauge symmetry and the fermionic content
of the model to be identical to the SM, while the scalar sector is extended to include three
new states, apart from the SM Higgs doublet H:

R2 (3,2, 7/6) =
(
ω5/3 ω2/3

)T
, S3 (3̄,3, 1/3) =

(
ρ4/3 ρ1/3 ρ−2/3

)T
,

∆ (1,4, 3/2) =
(
∆+++ ∆++ ∆+ ∆0

)T
, H (1,2, 1/2) =

(
H+ H0

)T
. (4.2.1)

Here the numbers within brackets represent the transformation properties under the SM
gauge group SU(3)c × SU(2)L × U(1)Y . The superscripts on various fields denote their
respective electric charge Q defined as Q = I3 + Y , with I3 being the third-component of
SU(2)L-isospin. The R2 and S3 LQs are introduced to explain RD(?) and RK(?) anomalies
respectively. The R2 LQ also explains ∆aµ through a chirally-enhanced operator it induces,
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which is proportional to the top quark mass. The SU(2)L-quadruplet ∆ field mixes ω2/3

from R2 with ρ̄2/3 from S?3 (the complex conjugate of ρ−2/3), which is needed to generate
Majorana neutrino masses radiatively. This multiplet, with its characteristic triply-charged
component, was introduced to generate tree-level neutrino masses from dimension (d)-7
effective operators in Ref. [376]; here we use it for radiative mass generation, also via d = 7
operators.

4.2.1 Yukawa Couplings

In addition to the SM Yukawa couplings of the fermions involving the Higgs-doublet field
H, the following Yukawa couplings of the R2 and S3 LQs are allowed in the model:2

LY = f̂ab(u
cT
a Cψ

i
b)R

j
2εij − f̂ ′ab(QiT

a Ce
c
b)R̃

j
2εij + ŷab(Q

T
aCταψb)S3α − ŷ′ab(QT

aCταQb)S
?
3α + H.c.
(4.2.2)

Here we have adopted a notation where all fermion fields are left-handed. Q = (u d)T and
ψ = (ν e)T are the SM quark and lepton doublets respectively, {i, j} are SU(2) indices, {a, b}
are flavor indices, C is the charge conjugation matrix, εij is the SU(2) Levi-Civita tensor,
R̃2 = iτ2R

?
2, and τα (with α = 1, 2, 3) are the Pauli matrices in the doublet representation

of SU(2). The color contraction is unique in each term, which is not shown. It is to be
noted that S3 possesses both leptoquark and diquark couplings, as shown in Eq. (4.2.2),
which would lead to potentially dangerous proton decay operators. Therefore, we set the
diquark coupling ŷ′ab to zero in Eq. (4.2.2), so that baryon number remains unbroken. This
is achieved by assigning baryon number B = −1/3 to S3 and R?

2, along with B = 1/3 for
quarks and −1/3 for anti-quarks, and 0 for leptons and anti-leptons.

We redefine fields to go from the flavor basis (u, d, e) to the mass eigenstates (u0, d0, e0)
for the charged fermions (and similarly for the (uc, dc, ec) fields) via the following unitary
rotations in family space:

u = Vu u
0, d = Vd d

0, e = Ve e
0, ν = Ve ν

0 ,

uc = Vuc u
c 0, dc = Vdc d

c 0, ec = Vec e
c 0 . (4.2.3)

The Cabibbo-Kobayashi-Maskawa (CKM) quark mixing matrix VCKM is generated in the
process and is given by

V = V †uVd = P VCKMQ , (4.2.4)

where P , Q are diagonal phase matrices which are unphysical in the SM, but become physical
in non-SM interactions, such as the ones involving the LQs. These phases will have an
effect on CP -violating observables, such as the muon electric dipole moment (EDM), see
Section 4.4.3. Note that the unitary rotation on the neutrino fields in Eq. (4.2.3) is the
same as for left-handed lepton fields e, and therefore no Pontecorvo-Maki-Nakagawa-Sakata
(PMNS) mixing in the charged weak-current interactions of leptons is induced at this stage.
For explaining the anomalies in B-decays and in muon g − 2, there is no need to go to the
mass eigenstates of the neutrinos; the distinction between the mass and flavor eigenstates

2The field ∆ has no Yukawa couplings with fermions at the tree-level, but couples to the leptons at
one-loop level (cf. Eq. (4.2.52)).
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will only affect neutrino oscillation phenomenology. For convenience, we also redefine the
Yukawa couplings as follows:

V T
uc f̂Ve ≡ f, V T

u f̂
′Vec ≡ V Tf ′, V T

u ŷVe ≡ V Ty . (4.2.5)

Eq. (4.2.2) can now be written in terms of mass eigenstate fermions (except for neutrinos
which are still flavor eigenstates) and the redefined Yukawa couplings as

LY = ucTCfνω2/3 − ucTCfeω5/3 + uTC(V ?f ′)ecω−5/3 + dTCf ′ecω−2/3

− uTC(V ?y)νρ−2/3 + uTC(V ?y)e
ρ1/3

√
2

+ dTCyν
ρ1/3

√
2

+ dTCyeρ4/3 + H.c. (4.2.6)

Here we have dropped the superscript 0 in the labeling of mass eigenstates. In the discussions
that follow, the quark and lepton fields are to be identified as mass eigenstates. Note that
the Yukawa coupling matrices f ′ and y, which respectively appear in the d − ec and d − e
couplings, also appear in the u − ec and u − e couplings, along with the generalized CKM
matrix V . Any texture adopted for f ′ and y should therefore be consistent with flavor
violation in both down-type and up-type quark sectors. The flavor indices i and j in fij (and
similarly for f ′ and y) refer to the quark flavor and the lepton flavor respectively. We shall
make use of these interactions in explaining the B-anomalies, ∆aµ and radiative neutrino
masses.

4.2.2 Scalar Sector

The most general renormalizable Higgs potential involving H, R2, S3 and ∆ is given by:

V = − µ2
HH

†H + µ2
RR
†
2R2 + µ2

SS
†
3S3 + µ2

∆∆†∆ +
λH
2

(H†H)2 +
λR
2

(R†2R2)2

+
λ̃R
2

(R†α2 R2β)(R†β2 R2α) +
λS
2

(S†3S3)2 +
λ′S
2

(S†3TaS3)2 +
λ̃S
2

(S†
α

3 S3β)(S†β3 S3α)

+
λ̃′S
2

(S†
α

3 TaS3β)(S†β3 TaS3α) +
λ∆

2
(∆†∆)2 +

λ′∆
2

(∆†T ′a∆)2 + λHR(H†H)(R†2R2)

+ λ′HR(H†τaH)(R†2τaR2) + λHS(H†H)(S†3S3) + λ′HS(H†τaH)(S†3TaS3)

+ λH∆(H†H)(∆†∆) + λ′H∆(H†τaH)(∆†T ′a∆) + λRS(R†2R2)(S†3S3)

+ λ′RS(R†2τaR2)(S†3TaS3) + λ̃RS(R†α2 R2β)(S†α3 S3β) + λ̃′RS(R†α2 τaR2β)(S†α3 TaS3β)

+ λR∆(R†2R2)(∆†∆) + λ′R∆(R†2τaR2)(∆†T ′a∆) + λS∆(S†3S3)(∆†∆)

+ λ′S∆(S†3TaS3)(∆†T ′a∆) + λ
′′

S∆(S†3TaTbS3)(∆†T ′aT
′
b∆)

+
(
µ∆?ijkR2iS3jk + λRHS2Ri∗

2 S3ijS3klHmε
jkεlm + λ∆H3∆?ijkHiHjHk + H.c.

)
.

(4.2.7)

Here {i, j} are SU(2)L indices, {α, β} are SU(3)c indices, τa are the Pauli matrices, and Ta,
T ′a (with a = 1, 2, 3) are the normalized generators of SU(2) in the triplet and quadruplet
representations, respectively.3 Color-singlet contractions not shown explicitly are to be as-
sumed among two colored fields within the same bracket. For example, the λ′RS term has the

3This potential differs considerably from the one given in Ref. [360], which is missing many terms.
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color contraction (R†α2 τaR2α)(S†β3 TaS3β). Here S3ij and ∆ijk are the completely symmetric
rank-2 and rank-3 tensors of SU(2), with their components related to those given in Eq.
(4.2.1) as:

S311 = ρ4/3 , S312 =
ρ1/3

√
2
, S322 = ρ−2/3 ,

∆111 = ∆+++ , ∆112 =
∆++

√
3
, ∆122 =

∆+

√
3
, ∆222 = ∆0 . (4.2.8)

The presence of the quartic coupling with coefficient λ∆H3 in Eq. (4.2.7) will induce a
vacuum expectation value (VEV) for the neutral component of ∆, even when µ2

∆ > 0 is
chosen. The cubic coupling with coefficient µ would then lead to mixing of ω2/3 and ρ̄2/3

components of R2 and S?3 LQ fields. Such a mixing is required to realize lepton number
violation and to generate neutrino masses. We shall be interested in the choice µ2

H > 0
(which leads to electroweak symmetry breaking), and µ2

R, µ
2
S > 0 (so that electric charge

and color remain unbroken), and µ2
∆ > 0 – so that ∆0 acquires only an induced VEV. To

ensure that this desired vacuum is indeed a local minimum of the potential, we now proceed
to derive the masses of all scalars in the model.

Scalar Masses

We denote the VEVs of H0 and ∆0 fields as〈
H0
〉

=
v√
2
,

〈
∆0
〉

=
v∆√

2
, (4.2.9)

with (v2 + 3 v2
∆) ' (246.2 GeV)2 determined from the Fermi constant GF . While v can be

taken to be real by a gauge rotation, v∆ is complex in general. However, all the complex-
valued couplings of the potential, i.e. terms in the last line of Eq. (4.2.7), can be made real
by field redefinitions, which we adopt, and consequently minimization of the potential would
make v∆ real as well.

We obtain the following conditions for the potential to be an extremum around the VEVs
of Eq. (4.2.9), assuming that v 6= 0:

−µ2
H +

1

2
λHv

2 +
v∆

4
(6λ∆H3v + 2λH∆v∆ + 3λ′H∆v∆) = 0 , (4.2.10)

µ2
∆v∆ +

1

2
λ∆H3v3 +

(
1

2
λH∆ +

3

4
λ′H∆

)
v2v∆ +

(
1

2
λ∆ +

9

8
λ′∆

)
v3

∆ = 0 . (4.2.11)

We eliminate µ2
H and µ2

∆ using these two conditions. To derive the scalar mass spectrum, we
construct the mass matrices from the bilinear terms resulting from expanding the potential
in Eq. (4.2.7) around the VEVs v and v∆.

The 2×2 mass matrix involving the mixing of the charge-2/3 LQs in the basis (ω2/3, ρ̄2/3)
is found to be:

M2
2/3 =

(
m2
ω2/3 µ v∆√

2
,

µ v∆√
2

m2
ρ2/3

)
, (4.2.12)
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where

m2
ω2/3 = µ2

R +
v2

2
(λHR + λ′HR) +

v2
∆

4
(2λR∆ + 3λ′R∆) , (4.2.13)

m2
ρ2/3 = µ2

S +
v2

2
(λHS + λ′HS) +

v2
∆

8
(4λS∆ + 6λ′S∆ + 9λ′′S∆) . (4.2.14)

The mass eigenstates denoted as X1,2 are given by

X1 = cosϕω2/3 + sinϕ ρ̄2/3 , (4.2.15)

X2 = − sinϕω2/3 + cosϕ ρ̄2/3 , (4.2.16)

where the mixing angle ϕ is defined as

tan 2ϕ =

√
2v∆µ

(m2
ω2/3 −m2

ρ2/3)
. (4.2.17)

The mass eigenvalues of the charge-2/3 LQ fields are then given as

m2
X1,X2

=
1

2

[
m2
ω2/3 +m2

ρ2/3 ±
√

(m2
ω2/3 −m2

ρ2/3)2 + 2µ2v2
∆

]
. (4.2.18)

The masses for the remaining LQ components (ω5/3, ρ1/3, ρ4/3) are obtained as follows:

m2
ω5/3 = µ2

R +
v2

2
(λHR − λ′HR) +

v2
∆

4
(2λR∆ − 3λ′R∆) , (4.2.19)

m2
ρ1/3 = µ2

S +
v2

2
λHS +

v2
∆

4
(2λS∆ + 3λ′′S∆) , (4.2.20)

m2
ρ4/3 = µ2

S +
v2

2
(λHS − λ′HS) +

v2
∆

8
(4λS∆ − 6λ′S∆ + 15λ′′S∆) . (4.2.21)

As for the ∆ fields, the masses of the triply and doubly-charged components are given by

m2
∆+++ = −3λ′H∆v

2

2
− 9λ′∆v

2
∆

4
− λ∆H3v3

2v∆

, (4.2.22)

m2
∆++ = −λ′H∆v

2 − 3λ′∆v
2
∆

2
− λ∆H3v3

2v∆

. (4.2.23)

The singly-charged components of H and ∆ will mix, with a mass matrix given by:

M2
+ =

1

2
(λ∆H3v + λ′H∆v∆)

(
−3v∆

√
3v√

3v − v2

v∆

)
. (4.2.24)

One combination of (H±, ∆±) fields is the Goldstone boson (G±) eaten up by theW± gauge
boson, while the other combination (δ±) is a physical charged Higgs field. These fields are

G+ =
vH+ +

√
3v∆∆+√

v2 + 3v2
∆

, δ+ =

√
3v∆H

+ − v∆+√
v2 + 3v2

∆

, (4.2.25)
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with the mass of δ+ given by4

m2
δ+ = −λ

′
H∆ (v2 + 3v2

∆)

2
− λ∆H3 (v3 + 3v2

∆v)

2v∆

. (4.2.26)

The neutral CP -even scalars do not mix with the CP -odd scalars, since all couplings and
VEVs are real. The mass matrix for the CP -even states in the basis (Re H0, Re ∆0) reads
as:

M2
even =

(
λHv

2 + 3
2
λ∆H3vv∆

v
2

[
3λ∆H3v + (2λH∆ + 3λ′H∆) v∆

]
v
2

[
3λ∆H3v + (2λH∆ + 3λ′H∆)v∆

]
−λ∆H3v3

2v∆
+
(
λ∆ + 9

4
λ′∆
)
v2

∆

)
.

(4.2.27)
The resulting mass eigenvalues are given by

m2
h,H =

1

2

[
λHv

2 + (λ∆ +
9

4
λ′∆)v2

∆ −
λ∆H3v(v2 − 3v2

∆)

2v∆

±
√
A

]
(4.2.28)

where

A =

{
λHv

2 −
(
λ∆ +

9

4
λ′∆

)
v2

∆ +
λ∆H3v(v2 + 3v2

∆)

2v∆

}2

+ v2 [3λ∆H3v + (2λH∆ + 3λ′H∆)v∆]
2
. (4.2.29)

The corresponding mass eigenstates are given by

h = cosαRe(H0) + sinαRe(∆0) , (4.2.30)
H = − sinαRe(H0) + cosαRe(∆0) , (4.2.31)

with

sin 2α =
v
[
3λ∆H3v + (2λH∆ + 3λ′H∆)v∆

]
(m2

H −m2
h)

. (4.2.32)

The field h is to be identified as the SM-like Higgs boson of mass 125 GeV.
Similarly, the CP -odd scalar mass matrix, in the basis (Im H0, Im ∆0) is given by

M2
odd =

1

2
λ∆H3v

( −9v∆ 3v

3v − v2

v∆

)
. (4.2.33)

We identify the Goldstone mode G0 eaten up by the Z0 gauge boson and the physical
pseudoscalar Higgs boson A0 as

G0 =
v Im(H0) + 3v∆Im(∆0)√

v2 + 9v2
∆

, A0 =
3v∆Im(H0)− v Im(∆0)√

v2 + 9v2
∆

, (4.2.34)

4In the limit v∆ � v, the physical δ+ field is nearly identical to the original ∆+ field. So we will use the
same notation for mδ+ and m∆+ .
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with the mass of A0 given by

m2
A = −λ∆H3v3

2v∆

− 9λ∆H3vv∆

2
. (4.2.35)

The VEV v∆ must obey the condition v∆ � v from electroweak T -parameter constraint.
In presence of v∆, the electroweak ρ parameter deviates from unity at tree-level, with the
deviation given by [376]

δρ ' −6
v2

∆

v2
. (4.2.36)

Although there are also loop-induced contributions to δρ, arising from the mass splittings
among components of ∆, R2, S3 fields which typically have the opposite sign compared to
Eq. (4.2.36), we assume that there is no precise cancellation between these two types of
contributions. A parameter ρ0, defined as

ρ0 =
m2
W

m2
Z ĉ

2
Z ρ̂

(4.2.37)

(where ĉZ ≡ cos θW (mZ) in the MS scheme, θW being the weak mixing angle, and ρ̂ includes
leading radiative corrections from the SM), has a global average ρ0 = 1.00038±0.00020 [12].
Eq. (4.2.36) can be compared to this global value, with ρ0 = 1 in the SM, which sets a limit
of |v∆| ≤ 1.49 GeV, allowing for 3σ variation, and ignoring loop contributions proportional
to mass splitting among multiplets.

In the approximation |v∆| � |v|, one can solve for v∆ from Eq. (4.2.11), to get

v∆ ' −
λ∆H3v3

2µ2
∆

. (4.2.38)

Substituting this into the masses of the Higgs quadruplet components, we obtain [376]

m2
∆i
' µ2

∆ − qi
λ′H∆v

2

2
, (4.2.39)

where qi is the (non-negative) electric charge of the component field ∆i (with i = 1, 2, 3, 4
denoting the four components of ∆ given in Eq. (4.2.1). We note that there are two pos-
sibilities for mass ordering among these components, depending on the sign of the quartic
coupling λ′H∆, with m∆+++ being either the heaviest or the lightest member. Phenomenology
of these scenarios has been studied extensively in Refs. [376–379].

By choosing all the bare mass parameters µ2
X (for X = H,R2, S3,∆) in Eq. (4.2.7) to

be positive, and the quartic coupling λH to be positive, the desired minimum can be shown
to be a local minimum, as long as the masses of ∆, R2, S3 are well above v ' 246 GeV. To
verify that this minimum is also the absolute minimum of the potential for some range of
parameters, further work has to be done, which is beyond the scope of this chapter. Since
none of the quartic couplings, except for λ∆H3 , plays any crucial role for our analysis, it
appears possible to achieve this condition. Similarly, there is enough freedom to choose the
quartic couplings so that the potential remains bounded from below. We shall discuss below
a set of necessary conditions for the potential to be bounded, which will find application in
Section 4.4.2 in the discussion of modified rates for h→ `+`− in the model.
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Necessary Conditions for Boundedness of the Potential

While the full set of necessary and sufficient conditions on the quartic couplings of Eq. (4.2.7)
for the Higgs potential to be bounded from below is not easily tractable, certain necessary
conditions of phenomenological interest (cf. Section 4.4.2) can be analyzed analytically. We
focus on the quartic couplings involving only the H and R2 fields, which will turn out to
be of phenomenological interest. With SU(2)L and SU(3)c rotations, these fields can be
brought to the form

H =

(
0
v

)
, R2 =

(
x 0 0

y sinαeiφ y cosα 0

)
, (4.2.40)

where in R2, the color indices run horizontally. Here v, x, y can be taken to be real. The
quartic terms V (4)(H,R2) can be then written as

V (4)(H, R2) =
1

2

(
v2 x2 y2

)
λ̂

v2

x2

y2

 , (4.2.41)

where λ̂ is defined as

λ̂ =

 λH λHR − λ′HR λHR + λ′HR
λHR − λ′HR λR + λ̃R λR + λ̃R sin2 α

λHR + λ′HR λR + λ̃R sin2 α λR + λ̃R

 . (4.2.42)

The necessary and sufficient conditions for boundedness of this potential can now be derived
from the co-positivity of real symmetric matrices [96, 380, 381]:

λH ≥ 0 , (4.2.43)
λR + λ̃R ≥ 0 , (4.2.44)

λHR − λ′HR ≥ −
√
λH(λR + λ̃R) , (4.2.45)

λHR + λ′HR ≥ −
√
λH(λR + λ̃R) , (4.2.46)

λR + λ̃R sin2 α ≥ −(λR + λ̃R) , (4.2.47)

(λHR − λ′HR)

√
λR + λ̃R + (λR + λ̃R sin2 α)

√
λH

+(λHR + λ′HR)

√
λR + λ̃R + (λR + λ̃R)

√
λH ≥ 0 or det(λ̂) ≥ 0 .(4.2.48)

These conditions should hold for any value of the angle α.
Note that from Eq. (4.2.45) it follows that if (λHR − λ′HR) is negative, its magnitude

cannot exceed about 1.33, if we demand that none of the quartic couplings should exceed√
4π in magnitude from perturbativity considerations, and using the fact that λH ' 0.25 is

fixed from the mass of h, mh = 125 GeV. This result will be used in the calculation of the
modified Higgs branching ratio h→ `+`− in Section 4.4.2.
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Figure 71: Feynman diagram generating neutrino masses through the exchange of LQs
in the model. The one-loop diagram shown is the leading contribution, while the two-loop
diagram can be important. The dot (•) on the SM fermion line in the one-loop diagram
indicates mass insertion arising from the SM Higgs doublet VEV. There is a second set of
diagrams obtained by reversing the arrows on the internal particles.

4.2.3 Radiative Neutrino Masses

Neutrino masses are zero at the tree-level in the model. However, since lepton number is
not conserved, nonzero Mν will be induced as quantum corrections. The leading diagrams
generatingMν are shown in Fig. 71, mediated by the charge-2/3 LQs. The Yukawa couplings
in Eq. (4.2.6), together with the ∆?R2S3 trilinear term and the ∆?HHH quartic term in
the scalar potential (4.2.7), guarantee lepton number violation. These interactions result
in an effective d = 9 operator that violates lepton number by two units, given by Õ1 =
(ψQ)(ψuc)(HH)H [26, 55, 56, 382]. Smallness of neutrino mass can be loosely understood
even when the new particles have TeV scale masses, owing to a loop suppression factor and
a chiral suppression affecting Mν .

The induced neutrino mass matrix arising from Fig. 71 can be evaluated to be

Mν = (κ1 + κ2)(fTMuV
?y + yTV †Muf) , (4.2.49)

where Mu = diag{mu,mc,mt} is the diagonal up-quark mass matrix, and κ1, κ2 are respec-
tively the one-loop and two-loop factors given by

κ1 =
1

16π2
sin 2ϕ log

(
m2
X2

m2
X1

)
, (4.2.50)

κ2 ≈ 1

(16π2)2

λ∆H3vµ

M2
. (4.2.51)

The leading contribution to Mν is the one-loop term proportional to κ1. In evaluating
this loop integral we have ignored the masses of the up-type quarks in relation to the LQ
masses. In Eq. (4.2.50) the parameter ϕ is the ω2/3 − ρ̄2/3 mixing angle given in Eq.
(4.2.17). Since the effective operator for Mν arising from the one-loop diagram is of the type
Od=7

eff = ψψHHH†H, which is of d = 7, one should also consider the lower dimensional d = 5
operator Od=5

eff = ψψHH that can be induced at the two-loop level as shown in Fig. 71. In
the approximate expression for κ2 given in Eq. (4.2.51), the relevant mass scale is that of
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the heaviest particle in the loop, denoted here by M , defined as M = max(mX1 ,mX2 ,m∆0),
with mX1,X2 being the physical masses of the charge-2/3 LQs (cf. Eq. (4.2.18)) and m∆0

being the physical masses of the quadruplet (cf. Eq. (4.2.39)). When mX1,X2 � m∆0 , the
ratio κ2/κ1 ∼ m2

∆0/(16π2v2), which becomes of order unity for m∆0 < 3 TeV or so. However,
as we will see later in Section 4.7, the R2 LQ is required to have a mass not larger than
about 1 TeV in order for it to explain the RD(?) anomaly. In this case the two-loop diagram
is negligible, and therefore, we only include the one-loop contribution in the neutrino fit
described in Section 4.7.2, although the κ2 term can be important in a more general setting.
The overall factor κ1 in Eq. (4.2.49) is a free parameter which needs to be of O(10−8) to
get the correct order of magnitude for the neutrino masses. Note that the Yukawa matrix
elements fij and yij must have at least some entries that are of order one in order to explain
the B-decay anomalies. κ1 ∼ 10−8 can be achieved by taking either the cubic coupling µ in
Eq. (4.2.7) or the induced VEV v∆ to be small. Both these choices are technically natural,
since if either of these parameters is set to zero, lepton number becomes a good symmetry.

We note that the same operator that leads to neutrino masses in this model also induces
an effective ∆-quadruplet coupling to the SM leptons. (Recall that ∆ cannot couple to
fermions at the tree level in the model.) This can be seen from partner diagrams of Fig. 71,
where the SU(2)L components are chosen differently. Ignoring small SU(2)L-breaking effects,
these couplings would all arise from the same effective operator (ψψH†∆). Therefore, one
can write these couplings as being proportional to Mν . Explicitly, we find that the ∆++

coupling to leptons has the Yukawa coupling matrix given by

(Y∆++``)ij =

√
2√
3

(Mν)ij
v∆

, (4.2.52)

where the 1/
√

3 is a Clebsch-Gordan factor for the ∆++ component of the quadruplet in
the expansion of the (ψψH†∆) operator. Eq. (4.2.52) will play a crucial role in the collider
phenomenology of the quadruplet, as discussed in Section 4.8.

4.2.4 Yukawa Textures

In order to minimize the number of parameters in our numerical fit toRD, RD? , RK , RK? , (g−
2)µ, and the neutrino oscillation observables, while satisfying all flavor and LHC constraints,
we choose the following economical textures for the Yukawa matrices f ′, f and y defined as
in Eq. (4.2.6) with the first (second) index corresponding to quark (lepton) flavors:

f ′ =

 0 0 0
0 0 0
0 f ′32 f ′33

 , f =

 0 0 0
0 f22 f23

0 f32 f33

 , (4.2.53)

y =

 0 0 0
0 y22 y23

y31 y32 0

 (Fit− I) , or y =

 0 0 0
0 y22 0
y31 y32 y33

 (Fit− II) .

(4.2.54)

Our motivation for the above textures is as follows: Nonzero (f ′32, f32) can explain the
anomalous magnetic moment of the muon via chirally-enhanced top-quark loops. The cou-
plings (f ′33, f22, f23) are responsible for RD(?) , while (y22, y32) can explain RK(?) . Similarly,
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the coupling f33 is required to suppress the lepton-flavor-violating (LFV) constraint from
chirally-enhanced τ → µγ, while simultaneously explaining (g−2)µ. The remaining parame-
ters (y23 (33), y31) in Eq. (4.2.54) are needed to satisfy the six neutrino oscillation observables
(∆m2

21, ∆m2
31, sin2 θ13, sin2 θ23, sin2 θ12, δCP). For more details, see Section 4.7. We also note

that the zeros in the coupling matrices of Eqs. (4.2.53)-(4.2.54) need not be exactly zero; but
they need to be sufficiently small so that the flavor changing processes remain under control
(cf. Section 4.5).

4.3 B-physics Anomalies

In this section, we present our strategy to reconcile the observed tension between experiment
and theory in the lepton flavor universality violating observables in the charged-current
decays B → D(?)`ν (with ` = e, µ, τ) and the neutral-current decays B → K(?)`+`− (with
` = e, µ) by making use of the R2 and S3 LQs.

4.3.1 Charged-current Observables

The relevant lepton universality violating ratios RD and RD? are defined as

RD(?) =
BR(B → D(?)τν)

BR(B → D(?)`ν)
(with ` = e, µ) . (4.3.1)

These observables have been measured by both BaBar [17, 18] and Belle [19–21] in the
B̄0 → D+(?)`−ν̄` decays, while LHCb has measured only the RD? parameter using both
B̄0 → D+?`−ν̄` [383] and B̄0 → D−?`+ν` decays [23]. Combining all these measurements,
the average of these ratios are found to be [352]:

RExp
D = 0.340± 0.027± 0.013 , (4.3.2)

RExp
D? = 0.295± 0.011± 0.008 , (4.3.3)

which induce tensions at the levels of 1.4σ and 2.5σ respectively with respect to the corre-
sponding SM predictions [384–392] given by:

RSM
D = 0.299± 0.003 , (4.3.4)

RSM
D? = 0.258± 0.005 . (4.3.5)

Considering the RD and RD? total correlation of −0.38, the combined difference with respect
to the SM is about 3.08σ.

A related observable is the ratio RJ/ψ defined as

RJ/ψ =
BR(B → J/ψτ ν̄τ )

BR(B → J/ψ`ν̄`)
(with ` = e, µ) , (4.3.6)

which also shows a mild discrepancy of 1.7σ between the experimental measurement [22]

RExp
J/ψ = 0.71± 0.17± 0.184 , (4.3.7)
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and the corresponding SM prediction [393–400]

RSM
J/ψ = 0.289± 0.01 . (4.3.8)

However, the experimental uncertainty on this measurement is rather large at the moment,
and any new physics scenario that explains the RD(?) anomaly automatically explains the
RJ/ψ anomaly. Therefore, we will not explicitly discuss RJ/ψ in what follows.

In order to confront our model with the experimental data for the charged-current pro-
cesses, we shall consider LQ contributions to the flavor specific process b → cτ−ν̄. Thus,
only the numerator of Eq. (4.3.1) is modified by the new LQ interactions. To this end, we
consider the general low-energy effective Hamiltonian induced by SM interactions as well as
the R2 and S3 LQs, which is given by

Heff =
4GF√

2
Vcb

[
(τ̄Lγ

µντL) (c̄LγµbL) + g`V (µR) (τ̄Lγ
µν`L) (c̄LγµbL) + g`S(µR) (τ̄Rν`L) (c̄RbL)

+g`T (µR) (τ̄Rσ
µνν`L) (c̄RσµνbL)

]
+ H.c. , (4.3.9)

where the first term is the SM contribution, while the remaining terms correspond to new
physics contribution, with g`V,S,T being the Wilson coefficients defined at the appropriate
renormalization scale µR. As shown in Fig. 72, left panel, the ω2/3 component of the R2 LQ
mediates the b → cτ−ν̄` semileptonic decay via a tree-level contribution. After integrating
out the R2 field, we obtain the following Wilson coefficients at the matching scale µR = mR2 :

g`S (µR = mR2) = 4g`T (µR = mR2) =
f2`f

′?
33

4
√

2m2
R2
GFVcb

, (4.3.10)

where ` = e, µ, τ correspond to the outgoing neutrino flavors νe, νµ, ντ respectively. These
Wilson coefficients are then run down in momentum to the B-meson mass scale in the leading
logarithm approximation, yielding [401]

gS(µR = mb) =

[
αs(mb)

αs(mt)

]− γs

2β
(5)
0

[
αs(mt)

αs(mR2)

]− γs

2β
(6)
0 gS(µR = mR2) , (4.3.11)

gT (µR = mb) =

[
αs(mb)

αs(mt)

]− γT

2β
(5)
0

[
αs(mt)

αs(mR2)

]− γT

2β
(6)
0 gT (µR = mR2), (4.3.12)

where β(nf )
0 = 11−2nf/3 is the running coefficient, with nf being the number of quark flavors

effective in the relevant momentum regime [402, 403]. γS and γT are anomalous dimension
coefficients given by γS = −8 and γT = 8/3. Thus, using αs(mZ) = 0.118, which yields
(using QCD running at four loops) αs(mb) = 0.2169, αs(mt) = 0.1074 and αs(mR2) = 0.09
for our benchmark value ofmR2 = 900 GeV, we obtain the following renormalization factors:5

gS(µR = mb) = 1.596 gS(µR = mR2) , (4.3.13)
gT (µR = mb) = 0.855 gT (µR = mR2) . (4.3.14)

We see that the tensorial coupling gT becomes less important at µR = mb, with its value
given by gS(µR = mb) ≈ 7.56 gT (µR = mb) [405]. We also note that we have ignored
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Figure 72: Feynman diagrams for the dominant LQ contributions to the b → cτ−ν̄ (left)
and b→ sµ−µ+ (right) transitions.

here the mixing between between the Wilson coefficients gS and gT , which is an excellent
approximation, as these off-diagonal terms are much smaller than the diagonal terms [405].

The ρ1/3 component of the S3 LQ can also contribute in principle to b → cτ ν̄` via the
Wilson coefficient g`V given by

g`V (µR = mS3) = − y3`(V
?y)?23

8m2
S3
GFVcb

. (4.3.15)

However, this contribution cannot accommodate RD(?) as the relevant Yukawa couplings are
highly constrained from flavor physics. Any nonzero y2` is subject to D0 − D̄0 mixing and
must be small (cf. Section 4.5.5), while LHC limits constrain both y31 and y32 (cf. Section 4.6).
Furthermore, the product of the Yukawa couplings y2` and y3`′ is strongly constrained by
processes such as B → Kνν̄. It is also worth mentioning that one can induce Wilson coeffi-
cient g`V of Eq. (4.3.15) proportional to y3`y

?
33, in conjunction with CKM mixing. However,

for ` = 3, this contribution has an opposite sign compared to the SM, and therefore would
require the new contribution to be twice as large as the SM one, bringing it to the non-
perturbative regime. For ` = 1 or 2, there is no interference with the SM term, which
would again require large non-perturbative values from the S3 contribution. Thus we shall
ignore these S3-induced contributions to RD(?) . In Section 4.7.1, we have shown two best
fit values of the Yukawa coupling matrices. For these choices of Yukawa couplings, shown
in Eqs. (4.7.3) and (4.7.4), we get negligible contribution to g`V = −5 × 10−5 for Fit I and
g`V = 6 × 10−6 for Fit II from the S3 LQ, whereas the allowed 1σ range to explain RD(?) is
[0.072, 0.11]. Therefore, we will only focus on the R2 contribution to RD(?) induced through
the Wilson coefficients g`S and g`T . RD and RD? induced through the Wilson coefficients g`s
and g`T at µR = mb with ντ in the final state are approximately given by [406]

RD ' RSM
D

(
1 + 1.54 Re[gτS] + 1.09 |gτS|2 + 1.04 Re[gτT ] + 0.75 |gτT |2

)
, (4.3.16)

RD? ' RSM
D?

(
1− 0.13 Re[gτS] + 0.05 |gτS|2 − 5.0 Re[gτT ] + 16.27 |gτT |2

)
, (4.3.17)

where the numerical coefficients arise from the relevant form factors. These expressions
are applicable for νe,µ final states as well, but by setting the Re[gτS] and Re[gτT ] terms in
Eqs. (4.3.16) and (4.3.17) to zero. This is because the new physics and the SM contributions
interfere only when ν` = ντ .

The required values for the Wilson coefficient to get a simultaneous fit for both RD and
RD? is depicted in Fig. 73. We make use of Flavio package [407] that has NNLO QCD and

5The running of gS is identical to that of the b-quark mass, see for e.g., Ref. [404].
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Figure 73: Left: The 1σ allowed ranges for RD and RD? in the complex plane of gτS with
ge,µS = 0. The purple shaded regions correspond to the allowed region that explains both
RD and RD? . Right: The 1σ allowed ranges for RD and RD? in the plane of (gτS, g

µ
S) (with

geS = 0). The same result is obtained by replacing gµS with geS.

NLO electroweak corrections coded in it, in generating Fig. 73. The left panel shows the 1σ
allowed range of RD (light blue band) and R?

D (light coral band) in the complex plane of gτS
with ge,µS = 0, i.e., with f23 6= 0 and f21 = f22 = 0 in Eq. (4.3.10). The intersection between
the two bands, highlighted by the purple shaded regions, represents the allowed region that
satisfies both anomalies. From this plot, we find that Im(gτS) must be nonzero, as first
noted in Ref. [408], while Re(gτS) should be nearly zero to fit RD(?) . From Eqs. (4.3.16) and
(4.3.17) it is clear that any nonzero Re[gτs ] would pull RD and R∗D in opposite directions, in
contradiction with experimental values (cf. Eqs. (4.3.2) and (4.3.3)), which is what forces
Re(gτS) ' 0. In the right panel, we set Re(gτS) = 0, i.e., we set gτS (or, equivalently, the f23

coupling) to be purely imaginary, and switch on the f22 coupling as well, as is the case with
our texture in Eq. (4.2.53). Again, the 1σ allowed ranges for RD and RD? are shown by the
light blue and light coral bands, respectively. The same result is obtained by replacing f22

with f21, i.e., by using geS instead of gµS. In our numerical fit to RD(?) in Section 4.7, we fix
mR2 (f22) close to its minimum (maximum) allowed value from LHC constraints (discussed
in Section 4.6), and find a neutrino mass fit for f23 and f ′33 such that the gµ,τS values are
within the allowed region for both RD and RD(?) shown in Fig. 73.

The same effective Hamiltonian (4.3.9) relevant for RD(∗) also gives rise to the exclusive
decay Bc → τν. Within our model, the branching ratio for this decay is given by [398, 409]:

BR(Bc → τν) = 0.023 |1− 4.068 gS(µR = mBc)|2 . (4.3.18)

Here we have used τ [Bc] = (0.507 ± 0.009) ps, fBc = 0.43 GeV, and mBc = 6.2749 GeV.
The branching ratio BR(Bc → τν) has not been measured experimentally. Thus, Bc lifetime
needs to be compared with theoretical calculations [410–414]. With the benchmark fits
shown in Section 4.7, we obtain branching ratio at the level of 12 %, which is consistent with
the limit quoted in Refs. [406, 409, 415, 416].
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4.3.2 Neutral-current Observables

The relevant lepton flavor universality violation ratios RK and RK? are defined as

RK =
BR(B+ → K+µ+µ−)

BR(B+ → K+e+e−)
, RK? =

BR(B0 → K?0µ+µ−)

BR(B0 → K?0e+e−)
. (4.3.19)

The latest LHCb measurement of RK in the q2 ∈ [1.1, 6] GeV2 region (q2 is the invariant
mass of the lepton pair in the decays) is [24]

RLHCb
K = 0.846+0.060+0.016

−0.054−0.014 , (4.3.20)

which shows a discrepancy at the level of 2.6σ from its SM prediction [353, 417]

RSM
K = 1.0003± 0.0001 . (4.3.21)

Analogously, the LHCb Collaboration has also measured the RK? ratio in two bins of
low-q2 region [25]:

RLHCb
K? =

{
0.660+0.110

−0.070 ± 0.024 q2 ∈ [0.045, 1.1] GeV2 ,

0.685+0.113
−0.069 ± 0.047 q2 ∈ [1.1, 6.0] GeV2 .

(4.3.22)

which have respectively 2.2σ and 2.4σ deviations from their corresponding SM results [354]:

RSM
K? =

{
0.92± 0.02 q2 ∈ [0.045, 1.1] GeV2 ,

1.00± 0.01 q2 ∈ [1.1, 6.0] GeV2 .
(4.3.23)

In addition to these LHCb results, Belle has recently announced new measurements on both
RK [418] and RK? [419], but these results have comparatively larger uncertainties than the
LHCb measurements on RK? .

The effective Hamiltonian describing the new physics contribution to the neutral-current
process b→ sµ+µ−, in presence of S3 LQ, is given by

Heff = −4GF√
2
VtbV

?
ts

e2

(4π)2

[
Cµµ

9 (s̄γµPLb)(µ̄γ
µµ) + Cµµ

10 (s̄γµPLb)(µ̄γ
µγ5µ)

]
+ H.c. , (4.3.24)

with Cµµ
9 and Cµµ

10 being the Wilson coefficients. Here we have assumed that the new physics
couplings to electrons are negligible. We focus on new physics contributions in the b→ sµ+µ−

channel, i.e. modifying only the numerator of Eq. (4.3.19). This is motivated by the fact
that an explanation of RK(?) by modifying the b→ sµ+µ− decay provides a better global fit
to other observables, as compared to modifying the b→ se+e− decay [356]. It is known that
both RK and RK? can be explained by either a purely vectorial Wilson coefficient Cµµ

9 < 0,
or a purely left-handed combination, Cµµ

9 = −Cµµ
10 < 0 [178], with the latter combination

performing better in the global analysis due to a ∼ 2σ tension in the BR(Bs → µµ) decay
which remains unresolved in the Cµµ

9 scenario [356]. In our model, the dominant contribution
to b→ sµ+µ− comes at tree level via the mediation of the ρ4/3 component of the S3 LQ, as

174



shown in Fig. 72, right panel. After integrating out the S3 field, one can extract the Wilson
coefficient for b→ sµ−µ+ decay as:

Cµµ
9 = −Cµµ

10 =
πv2

VtbV ?
tsαem

y22y
?
32

m2
S3

. (4.3.25)

The required best fit values of the Wilson coefficients at µ = mb are C9 = −C10 = −0.53,
with the 1σ range being [−0.61,−0.45] [356]. In our numerical fit, y22 and y32 are fixed by
the neutrino mass fit (up to an overall factor), which is then used to fix mS3 such that the
best-fit value of C9 = −C10 is obtained from Eq. (4.3.25).

Note that the R2 LQ can also give rise to b → s`+`− transition at tree-level with the
corresponding Wilson coefficient given by:

Cµµ
9 = Cµµ

10 = − πv2

VtbV ?
tsαem

f ′22f
′?
32

m2
R2

. (4.3.26)

There is no acceptable fit to RK(∗) with C9 = C10. Thus, taking the product of couplings
f ′2α and f ′3α to be zero (or very small), one can suppress R2 contribution to RK(?) . On the
other hand, a loop-level contribution to b→ s`+`− transition can in principle accommodate
RK(?) , but not simultaneously with RD(?) , due to the stringent limits from τ → µγ [420]. In
our numerical fit, therefore, the R2 contribution will not play a role in explaining RK(?) .

4.4 Muon Anomalous Magnetic Moment and Related Processes

Virtual corrections due to the LQ states can modify the electromagnetic interactions of
charged leptons. The contribution from scalar LQ to anomalous magnetic moments has
been extensively studied [421–423]. In particular, the ω5/3 component of the R2 LQ can
explain the muon (or electron) anomalous magnetic moment, as it couples to both left-
handed and right-handed fermions, see Eq. (4.2.6). The new contribution to the anomalous
magnetic moment arising from ω5/3 LQ can be written as [114, 421]:

∆a` = − 3

16π2

m2
`

m2
R2

∑
q

[ (
|fq`|2 + |(V ?f ′)q`|2

)
(QqF5(xq) +QSF2(xq))

−mq

m`

Re[fq` (V ?f ′)?q`] (QqF6(xq) +QSF3(xq))
]

(4.4.1)

where Qq = 2/3 and QS = 5/3 are respectively the electric charges of the up-type quark and
the LQ propagating inside the loop, as shown in Fig. 74.6 Here xq = m2

q/m
2
R2

and we have
ignored terms proportional to m2

`/m
2
R2

in the loop integral. The loop functions appearing in

6The last term in Eq. (4.4.1) appears with a negative sign, as f and f ′ in the Lagrangian have opposite
signs, see Eq. (4.2.6).
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Figure 74: Chirally-enhanced contribution from the R2 LQ to the muon anomalous mag-
netic moment.

Eq. (4.4.1) are:

F2(xq) =
1

6(1− xq)4

(
1− 6xq + 3x2

q + 2x3
q − 6x2

q lnxq
)
, (4.4.2)

F3(xq) =
1

(1− xq)3

(
1− x2

q + 2xq lnxq
)
, (4.4.3)

F5(xq) =
1

6(1− xq)4

(
2 + 3xq − 6x2

q + x3
q + 6xq lnxq

)
, (4.4.4)

F6(xq) =
1

(1− xq)3

(
−3 + 4xq − x2

q − 2 lnxq
)
. (4.4.5)

Note that the first term in Eq. (4.4.1) is the LQ contribution to the anomalous magnetic
moment without chiral enhancement, whereas the second term is the chirally-enhanced one,
which in our case will be proportional to the top-quark mass.

4.4.1 Difficulty with Explaining ∆ae

A discrepancy has also been reported in the anomalous magnetic moment of the electron,
denoted as ∆ae, with a somewhat lower significance of 2.4σ [121]. The signs of ∆ae and ∆aµ
are opposite. We have investigated whether ∆ae can also also explained in our framework,
but found that the model does not admit a simultaneous explanation of both anomalies, as
introducing couplings of the type fαe would lead to a chirally-enhanced contribution to the
decay µ→ eγ, which is highly constrained. One can attempt to explain both anomalies by
simply avoiding chirally-enhanced `i → `jγ decays by adopting a redefinition of V ?f ′ ≡ f ′ in
Eq. (4.2.6). However, one introduces VCKM in the down sector leading to strong constraints
arising from processes such as KL → e±µ∓, KL → `+`−, and K − K̄ mixing.

A logical option to explain ∆ae would be to choose the Yukawa coupling f21 to be of
O(1), and rely on the charm-quark loop (proportional to f21f

′
21), while being consistent with

all the flavor constraints and RD(∗) . However, it turns out that the required values of the
Yukawa couplings in this case have been excluded by the latest LHC dilepton constraints on
LQ Yukawa couplings and masses from the non-resonant t-channel process pp→ `+`−. These
constraints are discussed later in Section 4.6, and are summarized in Fig. 78. Therefore,
simultaneous explanation of the electron and muon anomalous magnetic moments, together
with RD(?) , is not possible in our setup. Thus, we focus on the parameter space required to
explain ∆aµ, but not ∆ae, as the former is the more persistent and significant discrepancy.
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Figure 75: Feynman diagrams for the LQ contribution to h → µ+µ− (and also τ+τ−) in
our model.

In particular, we set fαe = f ′αe = 0 in Eq. (4.2.53) to avoid any ∆ae contribution for our
numerical fits discussed in Section 4.7.

4.4.2 Modified Higgs Decays to Lepton Pairs

The same R2 LQ interactions that lead to the chirally-enhanced mt/mµ contribution to the
muon g − 2 in Fig. 74 will also induce a loop-level correction to the decay of the SM Higgs
boson h→ µ+µ−. The Feynman diagrams are shown in Fig. 75. In addition to these diagrams
which modify the Yukawa couplings directly, one should also take into account correction
to the muon mass arising from the R2 interactions. The relevant diagram is obtained from
Fig. 75 by removing the Higgs boson line. The significance of the LQ diagrams in modifying
h→ µ+µ− decay has been noted recently in Ref. [424]. We have carried out this calculation
independently, and found full agreement with the results of Ref. [424]. It is sufficient to
compute the coefficient of the d = 6 operator (ψµL µR)H(H†H) which is finite, as any loop
correction to the d = 4 operator (ψµL µR)H will only renormalize the SM operator. The
modification to the branching ratio BR(h→ µ+µ−) is found to be

µµ+µ− ≡
BR(h→ µ+µ−)

BR(h→ µ+µ−)SM

=

∣∣∣∣∣1− 3

8π2

mt

mµ

f32(V ?f ′)?32

m2
R2

{
m2
t

8
F
(
m2
h

m2
t

,
m2
t

m2
R2

)
+ v2 (λHR − λ′HR)

}∣∣∣∣∣
2

. (4.4.6)

The loop function F(x, y) can be expanded to first order in y = m2
t/m

2
R2

(so that the
coefficient of the d = 6 operator is picked out), and also to the required order in x = m2

h/m
2
t .

Although m2
h/m

2
t ∼ 1, the actual expansion parameter is some factor k times this ratio,

with k ∼ 1/10, leading to a rapidly converging series. The function F(x, y) to third order
in m2

h/m
2
t is found to be

F(x, y) = −8 +
13

3
x− 1

5
x2 − 1

70
x3 + 2(x− 4) log y . (4.4.7)

For our benchmark fits (see Eqs. (4.7.3) and (4.7.4)) with mR2 = 0.9TeV, the model pre-
dictions for µµ+µ− as a function of the quartic coupling combination (λHR − λ′HR) is shown
in Fig. 76. These predictions are essentially the same for the two benchmark points, so we
present our results for Fit I (cf. Eq. (4.7.3)) in Fig. 76.
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Collider µµ+µ− µτ+τ−

HL-LHC [428] 9.2% 3.8%
HE-LHC [428] 3.4% 2.2%
ILC (1000) [429] 12.4% 1.1%
CLIC (3000) [430] 11.6% 1.8%

CEPC [431] 17.8% 2.6%
FCC-hh [432] 0.82% 0.88%

Table 30: Expected relative precision of the Higgs signal strengths for future colliders. The
numbers shown here are for the kappa-0 scenario of Ref. [427].

The coupling λ′HR is responsible for the mass splitting between the ω2/3 and ω5/3 com-
ponents of the R2 LQ (cf. Eqs. (4.2.13) and (4.2.19))), which yields a positive contribution
to the electroweak ρ-parameter:

δρ ' NcGF

8
√

2π2
(∆m)2 , (4.4.8)

where Nc = 3 for color-triplets like R2. Using the current global-fit result for ρ0 = 1.00038±
0.00020 [12] (with ρ0 = 1 in the SM) and allowing for 3σ uncertainty, we obtain an upper
bound on the mass splitting ∆m ≤ 55.9 GeV (assuming that v∆ ≤ few MeV, adopted in our
collider physics analysis), which yields a corresponding bound on |λ′HR| ≤ 1.66. As discussed
in Section 4.2.2, a necessary condition for the Higgs potential to be bounded from below
(cf. Eq. (4.2.45)) is that for negative values of (λHR − λ′HR), its magnitude should be below
about 1.33, assuming that the magnitudes of all quartic couplings lie below

√
4π to satisfy

perturbativity. Using the same constraint, we would then have −1.33 ≤ (λHR−λ′HR) ≤ 5.20
as the preferred range, which is what we shall choose for our numerical study.

Our model prediction for µµ+µ− is shown in Fig. 76 by the solid blue line. We see that
the deviation from the SM predictions in this branching is typically at the (2-6)% level.
This is fully consistent with the current LHC measurements: µATLAS

µ+µ− = 1.2 ± 0.6 [425]
and µCMS

µ+µ− = 1.19+0.41
−0.39(stat.)+0.17

−0.16(syst.) [426]. For comparison, we quote in Table 30 the
future collider sensitivities for µµ+µ− from Ref. [427], and the relevant ones are also shown
in Fig. 76 by the horizontal dotted lines. Thus, our predictions for the modified h→ µ+µ−

signal strength can be tested at the HL-LHC, HE-LHC, as well as at the FCC-hh colliders.
It is also worth pointing out that the Yukawa textures needed to simultaneously explain

B-anomalies, muon g − 2, and neutrino mass require the f33 entry to be nonzero, leading
to a new contribution to h → τ+τ−. This is also shown in Fig. 76 by the solid red line for
our benchmark points. Our predictions for µτ+τ− ≡ BR(h→τ+τ−)

BR(h→τ+τ−)SM
are consistent with the

current LHC measurements: µATLAS
τ+τ− = 1.09+0.18

−0.17(stat.)+0.26
−0.22(syst.)+0.16

−0.11(theory syst.) [159]
and µCMS

τ+τ− = 0.85+0.12
−0.11 [433]. For comparison, we quote in Table 30 the future collider

sensitivities for µτ+τ− from Ref. [427]. Some of these are also shown in Fig. 76 by the
horizontal dot-dashed lines. Thus, our predictions for the modified h→ τ+τ− signal strength
are potentially detectable at future colliders.

As can be seen from Fig. 76, a characteristic feature of the model in the allowed parameter
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Figure 76: Branching ratios of Higgs to dimuon (blue) and ditau (red) decays with respect
to the SM predictions in our model as a function of the quartic coupling parameter (λHR −
λ′HR). The horizontal dotted (dot-dashed) lines show the sensitivities of future colliders
for the µ+µ− (τ+τ−) channel. The shaded regions in yellow and blue are excluded by
perturbativity plus electroweak precision data, and by perturbativity plus boundedness of
the potential constraints, respectively.

space accessible to future colliders is that while the shift in the branching ratio of h→ µ+µ−

is downward compared to the SM, it is upward for the branching ratio of h→ τ+τ−.

4.4.3 Muon and Neutron Electric Dipole Moments

LQ interactions can also lead to electric dipole moments (EDM) of the charged leptons (as
well as quarks). Existing limits from electron and muon EDMs would place strong constraints
on the imaginary part of the Yukawa couplings of the R2 LQ [434, 435]. These constraints
are significant only when the LQ couples to both left- and right-handed charged leptons, as
depicted in Fig. 74. The lepton EDM arising from these diagrams is given by [421]

|d`| =
3e

32π2

∑
q

mq

m2
R2

∣∣Im[−fq`(V ?f ′)?q`] (QqF6(xq) +QSF3(xq))
∣∣ . (4.4.9)

In particular, the constraint arising from electron couplings is quite stringent due to the
ACME limit |de| ≤ 1.1×10−29 e.cm [436]. However, since our model does not give additional
contribution to (g− 2)e, we can simply avoid the electron EDM limit by setting the relevant
couplings fαe = f ′αe = 0 in Eq. (4.2.53). Furthermore, the muon EDM arising from the CKM
phase, and from the phases in the matrices P and Q of Eq. (4.2.4) when varied in their
full range [0, 2π], is found to be at most 3 × 10−22 e-cm, which is well below the current
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experimental limit of |dµ| ≤ 1.9 × 10−19 e-cm [437], but may be potentially measurable in
future experiments [343, 438, 439] with high-intensity muon sources [440].

The large Yukawa couplings necessary to explain anomalies in b → cτν decay can also
lead to EDM of the tau lepton dτ , which is closely related to Im(gτs ) appearing in the RD∗

calculation in Eq. (4.3.10). It is found to be at most 4.7 × 10−21 e-cm when the phases in
the matrices P and Q of Eq. (4.2.4) are varied in their full range [0, 2π], which is below the
current experimental limit of |dτ | ≤ 2.5× 10−17 e-cm [441].

Similarly, the same Yukawa couplings that lead to tau EDM can also lead to charm quark
EDM dc proportional to Im(gτs ). The relevant expression is obtained by replacing mq by mτ ,
xq by x`, Qq by Q` = −1 and QS by −5/3 in Eq. (4.4.9). It is found to be at most 3.1×10−22

e-cm. It is below the current experimental limit of |dc| ≤ 1.5×10−21 e-cm [442], obtained from
the limit on neutron EDM, dn < 3.0×10−26 e-cm [443]. There is also a chromoelectric dipole
moment of the charm quark (d̃c), arising from diagrams where the photon emitted by the
leptoquark is replaced by a gluon. This contribution in the model is obtained from Eq. (4.4.9)
by keeping only the second term, and making the substitutions mentioned above. We find
that d̃c is at most 2.1× 10−23gs-cm, which is below the experimental limit, |d̃c| < 1.0× 10−22

cm [442]. Improving the neutron EDM limit by one order of magnitude can therefore directly
test the leptoquark explanation of the RD∗ anomaly.

4.5 Low-energy Constraints

This section summarizes the most stringent low-energy flavor constraints that are relevant
for our model.

4.5.1 `α → `βγ

These LFV radiative decays arising from LQ loops set some of the most stringent constraints
on the couplings of the LQs to µ and τ . As can be seen from Eq. (4.2.6), the R2 LQ has both
left- and right-handed couplings to charged leptons via the f and f ′ couplings; thus, it can
lead to lepton decays both with and without chiral enhancement. The S3 LQ on the other
hand, only couples to left-handed charged leptons, so it cannot induce `α → `βγ processes
with chiral enhancement.

The decay width for the `α → `βγ mediated by LQ loops is given by [114, 422, 444]

Γ(`α → `βγ) =
αem(m2

`α
−m2

`β
)3

4m3
`α

∑
q

(
|σαβqR |2 + |σαβqL |2

)
. (4.5.1)
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The amplitudes σR,L arising from the exchange of R2 LQ can be written as

σαβqR =
3

32π2m2
R2

{[
m`αfqαf

?
qβ +m`β(V ?f ′)qβ(V ?f ′)?qα

] [
QqF5(xq) +QSF2(xq)

]
−mqfqi (V

?f ′)?qi

[
QqF6(xq) +QSF3(xq)

]}
, (4.5.2)

σαβqL =
3

32π2m2
R2

{[
m`α(V ?f ′)qα(V ?f ′)?qβ +m`βfqβf

?
qα

] [
QqF5(xq) +QSF2(xq)

]
−mq(V

?f ′)qi f
?
qi

[
QqF6(xq) +QSF3(xq)

]}
, (4.5.3)

with the loop functions Fi(xq) defined in Eqs. (4.4.2)-(4.4.5). Here we generically denote
the masses of both 2/3 and 5/3 components of R2 as mR2 , assuming them to be degenerate.
Note that the amplitude σqL can be obtained from σqR with the substitution f ↔ V ?f ′. The
last terms in Eqs. (4.5.2) and (4.5.3) which are proportional to mq are the chirally-enhanced
contributions. Similarly, one can obtain the S3 LQ contribution by replacing the f couplings
in the first term of Eq. (4.5.2) by y, assigning proper charges for the quark (Qq) and scalar
LQ (QS), and dropping the f ′ terms in Eq. (4.5.2).

In the limit m`β → 0, which is a very good approximation for both µ→ eγ and τ → `γ

(with ` = e, µ), and taking into account the ucTfeω5/3, uT (V ?f ′)ecω−5/3, and dTyeρ4/3 terms
in Eq. (4.2.6), the full expression for `α → `βγ in our model can be written as

Γ =
9m5

ααem

16(16π2)2

[ ∑
q=u,c,t

{∣∣∣∣fqβf ?qα2m2
R2

+

(
(V ?f ′)qαf

?
qβ + fqα(V ?f ′)?qβ
3m2

R2

)
mq

mα

(1 + 4 log xq)

∣∣∣∣2

+

∣∣∣∣(V ?f ′)qβ(V ?f ′)?qα
2m2

R2

+

(
(V ?f ′)qαf

?
qβ + fqα(V ?f ′)?qβ
3m2

R2

)
mq

mα

(1 + 4 log xq)

∣∣∣∣2
}

+
∑

q′=d,s,b

∣∣∣∣yq′βy?q′α3m2
S3

∣∣∣∣2
]
. (4.5.4)

Here we have not included the S3 contribution from the ūcLeLρ1/3 term, because it is sup-
pressed compared to the dTLyeLρ4/3 contribution because of smaller electric charge, as well
as due to a CKM-suppression factor and by a Clebsch factor of 2, as can be seen from
Eq. (4.2.6). Similarly, the ω2/3 component of the R2 LQ gives sub-dominant contribution
proportional to m2

b/m
2
R2

compared to the ω5/3 component, owing to a GIM-like cancellation
[62]; so we have not included it in Eq. (4.5.4). We have displayed the constraint on the
Yukawa coupling f from this process in Table 31.

4.5.2 µ− e Conversion
µ − e conversion in nuclei provides a stringent constraint on the product of the Yukawa
couplings in our model. The couplings of the S3 LQ, in conjunction with CKM rotation, is
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Process Experimental limit Constraint

µ→ eγ BR< 4.2× 10−13 [117] |fq1f ?q2| < 4.82× 10−4
(
mR2

TeV

)2

τ → eγ BR< 3.3× 10−8 [116] |fq1f ?q3| < 0.32
(
mR2

TeV

)2

τ → µγ BR< 4.4× 10−8 [116] |fq2f ?q3| < 0.37
(
mR2

TeV

)2

Table 31: Constraints on the Yukawa couplings as a function of LQ mass from `α → `βγ
decay. Constraints on f ′ couplings are obtained by replacing f with (V ?f ′) for the ω5/3 LQ.
Constraints on the S3 Yukawa coupling y (V ?y) arising from d̄cLeLρ

4/3 (ūcLeLρ1/3) are weaker
by a factor of 3/2 (6) in comparison to those shown here for the f couplings, suppressed by
smaller electric charge and Clebsch factor of 2, as can be seen from Eq. (4.2.6).

subject to the LFV process from coherent µ − e conversion in nuclei. The branching ratio
for this conversion, normalized to muon capture rate, is given by. [26, 62, 143]:

BR(µN → eN) ' |~pe|Eem
3
µα

3
emZ

4
eff F

2
p

64π2ZΓN
(2A− Z)2

∣∣∣∣∣(V ?y)11(y?V )12

2m2
S3

∣∣∣∣∣
2

(4.5.5)

where ΓN is the muon capture rate of the nucleus, ~pe and Ee are respectively the momentum
and energy of the outgoing electron, A, Z, and Zeff are atomic number, mass number and
effective atomic number of the nucleus, whereas Fp is the nuclear matrix element. The
experimental limit from gold nucleus provides the most stringent bound [188] of BR <
7.0× 10−13 leading to a constraint on the Yukawa coupling:∣∣∣(V ?y)11(y?V )12

∣∣∣ < 8.58× 10−6
(mS3

TeV

)2

. (4.5.6)

4.5.3 Z → ττ Decay

Modifications of Z−boson decays to fermion pairs through one-loop radiative corrections
mediated by LQs provide another important constraint on the Yukawa couplings of the LQ
fields in the model. We focus our study on the leptonic Z boson couplings as they are the
most precisely determined by experiments [12, 445]. Within our model, we require the f ′33

coupling to be of O(1) to explain the RD(?) anomaly. Thus we focus on the Z → ττ decay
which provides a constraint of f ′33. The shift in the coupling of τR with the Z boson arising
through loop corrections involving the R2 LQ is given by [446]

Re[δgττR ] =
3|f ′33|2
16π2

[
1

2
xt(1 + log xt)−

xz
12

{
log xt (2 + 8/3 sin2 θW ) + (4 + 10/3 sin2 θW )

}
+

xz
108

{
(−3 + 4 sin2 θW ) + log xz(18 + 12 sin2 θW )

}]
. (4.5.7)

Here we have used the definitions xt =
m2
t

m2
R2

and xz =
m2
Z

m2
R2

, and kept terms only to linear
orders in these parameters. Using the experimental results on the effective coupling obtained
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by the LEP collaboration [445], Re[δgττR ] ≤ 6.2 × 10−4, we obtain the 1σ (2σ) limit on the
Yukawa coupling as

|f ′33| ≤ 0.835 (1.18) (4.5.8)

for the LQ mass of 900 GeV. Within the context of our model and to find a good fit to RD(?) ,
we allow this coupling to be in the 2σ range. A similar constraint on f ′32 can be derived,
|f ′23| ≤ 1.7 from Z → µ+µ− decay, which is however much weaker than the constraint that
one would obtain from τ → µγ, which requires |f ′23f

′
33| ≤ 0.3.

4.5.4 Rare D-meson Decays

Rare meson decays also put important constraints on the model parameters. The relevant
decays are D0 → µ+µ− and D+ → π+µ+µ−.7 For effective Lagrangian for these decays
mediated by the R2 and S3 LQs is given by (cf. Eq. (4.2.6))

LY ⊃ uT (V ?f ′)ecω−5/3 + uT (V ?y)e
ρ1/3

√
2

+ H.c. (4.5.9)

There is also a contribution from the f Yukawa, but it does not come with VCKM rotation,
so we do not need to consider this contribution for our choice of f1α = 0, while deriving the
partial decay width for the decay D0 → µµ. The decay width for D0 → µµ proportional to
the Yukawa couplings f ′ and y is given by

ΓD0→µµ =
|VusV ?

cs|2m2
µf

2
DmD

128π

( |f ′22|4
m4
R2

+
|y22|4
4m4

S3

)(
1− 4m2

µ

m2
D

)1/2

. (4.5.10)

From Eq. (4.5.10), one can obtain the constraint on f ′22 using the experimental limit BR(D0 →
µ+µ−) < 6.2× 10−9 [12]:

|f ′22| < 0.564
(mR2

TeV

)
. (4.5.11)

The semileptonic decayD+ → π+µµ is mediated by the same term as shown in Eq. (4.5.9)
and we implement the calculation of Ref. [26] to obtain the following decay rate:

ΓD+→π+µµ =

( |f ′22|4
m4
R2

+
|y22|4
4m4

S3

)[
fD
fπ
gD?Dπ|VusV ?

cs|
]2

1

64π3mD

F , (4.5.12)

where the function F is defined as

F =
m2
D?

12m2
D

[
−2m6

D + 9m4
Dm

2
D? − 6m2

Dm
4
D? − 6

(
m2
D? −m2

D

)2
m2
D? log

(
m2
D? −m2

D

m2
D?

)]
.

(4.5.13)
The numerical value of the function F ' 2.98 GeV. Using fD = 212 MeV, fπ = 130 MeV,
gD?Dπ = 0.59 and the experimental upper limits on the corresponding branching ratio
BR(D+ → π+µµ) < 7.3× 10−8, we obtain bounds on the f ′ coupling as

|f ′22| < 0.293
(mR2

TeV

)
. (4.5.14)

7In general, the decays B → Kνν and K → πνν would provide more stringent constraint on the LQ
Yukawa couplings [361, 447]. However, these bounds are avoided in our model by the choice of Yukawa
coupling matrices.
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Similarly, one can find the constraints on Yukawa coupling y22, which is weaker by a factor
of
√

2 in comparison to f ′22 shown in Eqs. (4.5.11) and (4.5.14), owing to a Clebsch factor.

4.5.5 D0 − D̄0 Mixing

Both R2 and S3 LQs can give rise to D0− D̄0 mixing via box diagrams. Explicit calculation
of the box diagram involving R2 LQ gives [448]

∆mD =
2

3
B1(µ)mDf

2
DC
′
1 , (4.5.15)

where fD ' 212 MeV is the D meson decay constant, and C ′1 is the Wilson coefficient given
by

C ′1 (µ = 1 TeV) =
1

128π2

(f1αf
?
2α)2

m2
R2

. (4.5.16)

Here α is the lepton flavor that runs in the box diagrams, which is summed. The renormalized
Wilson coefficients C ′1 [449–451] and the bag factor B1 [452], evaluated at µR = 3 GeV scale,
are given by

C ′1 (µR = 3 GeV) ≈ 0.8C ′1(µR = 1 TeV) , B1(µR = 3 GeV) = 0.75 . (4.5.17)

From the experimental value |∆mD| = 0.95+0.41
−0.44 × 1010 s−1 [12, 453], we obtain the limit

|f1αf
?
2α| < 0.0187

(mR2

TeV

)
. (4.5.18)

The same constraint applies to the f ′ coupling as well. However, in addition to the limit
quoted in Eq. (4.5.18), the Yukawa f ′ is also supplemented by Cabbibo rotation, as seen
from Eq. (4.2.6). Thus, for any nonzero entry in the up-sector f ′1α or charm-sector f ′2α, a
nonzero D0 − D̄0 mixing will be induced by the (V ?f ′) term in Eq. (4.2.6). Consequently,
we get a bound on the individual couplings:

|f ′1α|, |f ′2α| < 0.305
(mR2

TeV

)1/2

. (4.5.19)

Similarly, one can obtain a limit on the individual Yukawa y as well, since a nonzero y1α

(or y2α) would result in a box diagram contribution to D0 − D̄0 mixing, owing to the CKM
mixing. This has contributions from u− ν term in addition to the u− e term in Eq. (4.2.6).
Thus for any nonzero entry in the up-sector or charm-sector in the Yukawa matrix y, the
bound is slightly stronger than that shown in Eq. (4.5.19):

|y1α|, |y2α| < 0.288
(mS3

TeV

)1/2

. (4.5.20)

It is worth mentioning that the Yukawa couplings y3α and f ′3α also contribute to D-meson
mixing. However, these contributions can be safely ignored in the context of our model as
they are strongly suppressed by CKM mixing angles by Vcb and Vub.
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4.6 LHC Constraints on Leptoquarks

At the LHC, the R2 and S3 LQs can be pair-produced through gg and qq̄ fusion processes,
or can be singly produced in association with charged leptons via s- and t- channel quark-
gluon fusion processes. The pair production of the LQs at the LHC is solely dictated by
the LQ mass, irrespective of their Yukawa couplings, whereas the single production rate
depends on both mass and the Yukawa coupling of the LQ. Therefore, the single-production
limits are relevant only for larger Yukawa couplings ∼ O(1) [26, 454] to the first and second-
generation quarks. For the benchmark points studied in Section 4.7, the Yukawa couplings
to the first and second generation quarks are not too large (< 1), hence the collider bounds
from single-production are not so significant compared to the limits from QCD-driven LQ
pair-production. However, we will show in Section 4.6.2 that there are stringent limits on
the Yukawa couplings of the LQ from the the dilepton processes pp→ `+

i `
−
j .

4.6.1 Pair-production Bounds

Once pair-produced at the LHC, each LQ will decay into a quark and a lepton, and the
collider limits on these LQ masses depend on the branching ratios to different decay modes.
To impose the bound on the LQ masses, we use the upper limits on the cross-sections
from dedicated searches for pair production of first [201, 202], second [202–204] and third
generation [204–206] LQs at the LHC and recast them in the context of our model, following
the analysis in Ref. [26]. For this purpose, we first implement our model file in FeynRules
package [126] and then analyze the signal cross sections using MadGraph5aMC@NLO [127],
which is then compared with the experimental upper limits on the cross section times the
branching ratio, assuming that the cut efficiencies are similar in both cases. Our results for
the R2 LQ are shown in Fig. 77, where the black, red, green, blue, cyan, purple, orange,
gray, and brown solid colored lines respectively represent the current bounds from the je,
jµ, bτ , tτ , tν, jν, ce, cµ, and jτ decay mode of the LQ. Here the branching ratio of each
decay mode is varied from 0 to 1 individually without specifying the other decay modes,
which compensate for the missing branching ratios to add up to one. As expected, the
bounds on the first and second-generation LQs are much more stringent, as compared to
the third-generation case. We will use this information to our advantage while choosing our
benchmark points in Section 4.7.

In particular, for the Yukawa ansatz of Eqs. (4.2.53), the dominant decay modes of the
R2 LQ are:

ω2/3 f−→ cν̄µ, cν̄τ , tν̄µ, tν̄τ ,

ω2/3 f ′−→ bτ+, bµ+ ,

ω5/3 f−→ cµ+, cτ+, tµ+, tτ+ ,

ω5/3 f ′−→ tτ+, tµ+ .

(4.6.1)

The branching ratios for these decay modes corresponding to the fits presented in Eqs. (4.7.3)
and (4.7.4) are shown in Table. 32. As we can see, the ω2/3 component of the R2 LQ
dominantly decays to jν and bτ final states, whereas the ω5/3 component mostly decays to
tτ , and jτ final states. Note that the mass of the ω2/3 component cannot be very different
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Figure 77: Summary of the updated direct limits from LQ pair-production searches at
the LHC for different quark-lepton decay channels of the R2 LQ. The branching ratio for a
specific decay channel of the LQ as indicated in the figure is varied from 0 to 1, while the
other decay channels not specified compensate for the missing branching ratios to add up to
one. These limits are independent of the LQ Yukawa coupling.

Model Fit
Branching ratio

ω2/3 ω5/3

νj bτ bµ νt tτ µj τj tµ
Fit I 41.8% 54.1% 4% 0.04% 54.1% 4% 37.8% 4%
Fit II 41.3% 54% 4% 0.04% 54.1% 4% 37.8% 4%

Table 32: Branching ratios for different decay modes of the R2 LQ corresponding to the
fits presented in Eqs. (4.7.3) and (4.7.4).

from that of the ω5/3 component due to the electroweak precision constraints, and hence,
we consider them to be almost degenerate in our analysis. Given the branching ratios in
Table. 32, the bb̄τ+τ− final state gives the most stringent constraint on the R2 LQ mass,
which is required to be larger than 859 GeV, as can be seen from Fig. 77.

As for the S3 LQ relevant for RK(?) anomaly, it can in principle decay to all quark and
lepton flavors, due to the CKM-rotations involved in Eq. (4.2.6). However, the dominant
decay modes of the S3 LQ corresponding to the Yukawa ansatz in Eqs. (4.7.3) and (4.7.4)
are

ρ4/3 → s̄µ+ ,
ρ1/3 → c̄µ+, s̄ν̄ ,
ρ−2/3 → c̄ν̄ .

(4.6.2)
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In addition, for mR2 ,m∆ < mS3 , the S3 LQ can decay to the R2 LQ and the quadruplet
scalar ∆, mediated by the trilinear coupling µ in Eq. (4.2.7) that is responsible for neutrino
mass in our model. For our numerical analysis, we focus on the scenario with the R2 (S3)
LQ mass around ∼ 1 TeV (2 TeV) and the quadruplet mass also around 1 TeV. In this case,
the S3 → R2 + ∆ decay is the dominant one with ∼ 100% branching ratio. In this case, the
various components of S3 decay as follows:

ρ4/3 → ω−2/3∆++ , ω−5/3∆+++ ,
ρ1/3 → ω−2/3∆+ , ω−5/3∆++ ,
ρ−2/3 → ω−5/3∆+ , ω−2/3∆0 .

(4.6.3)

As a consequence, limits on the S3 LQ mass from the standard LHC searches are not ap-
plicable to our scenario. See Section 4.8 for more details on the S3 decay signatures at the
LHC. For this decay to occur, S3 mass should exceed that of R2 LQ.

4.6.2 Dilepton Bounds

Apart from the direct LHC limits from LQ pair-production, there also exist indirect limits
from the cross section measurements on the dilepton process pp → `+

i `
−
j , which could get

significantly modified due to a t−channel LQ exchange for large Yukawa couplings. Ref. [178]
had derived indirect limits on the LQ mass and Yukawa couplings involving the τ lepton using
the previous resonant dilepton searches at the LHC. Meanwhile, a dedicated search [455]
for the non-resonant signals in dielectron and dimuon final states has been performed at
the
√
s = 13 TeV LHC with integrated luminosity 139 fb−1, which is more appropriate

for the t-channel LQ search. Therefore, we use this recent non-resonant dilepton study to
derive new indirect limits on the LQ mass and Yukawa couplings. For this analysis, we
first implement our model file in FeynRules package [126], then analyze the cross section
for pp → `+

i `
−
j signal using MadGraph5aMC@NLO [127] and compare the quoted observed

limits [455] on the cross-section to derive the limits on the Yukawa coupling for a given LQ
mass. Our results are shown in Fig. 78 for different Yukawa couplings fiα and f ′jα (with
i = 1, 2; j = 1, 2, 3; α = 1, 2) of the R2 LQ. Similar bounds can also be derived for the
S3 LQ. There are no bounds on the f31 and f32 couplings quoted in Fig. 78, because they
involve top-quark initial states, whereas the bounds on f ′31 and f ′32 come from bottom-quark-
initiated processes (cf. Eq. (4.2.6). Similarly, we do not report any bounds on the Yukawa
couplings involving τ -flavor, as there is no corresponding non-resonant dilepton analysis
involving taus available so far. Based on the previous analysis [178], we anyway expect the
tau-flavor limits to be weaker than the ones quoted here. Note that the bounds derived in
Fig. 78 are independent of the LQ branch ratios, unlike the direct limits shown in Fig. 77. As
can be seen from Fig. 78, the flavor-dependent upper limits on the LQ Yukawa couplings for
1 TeV R2 LQ mass to the first two family leptons and quarks are in the range (0.15− 0.36),
which get slightly relaxed to (0.15 − 0.45) if we include the bottom-quark. This precludes
a solution of RD(?) with R2-mediated decays of the B-meson involving νe or νµ final states.
Therefore, we only focus on the scenario with ντ final state in our benchmark points for the
explanation of RD(?) .
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Figure 78: Summary of the new indirect constraints on the Yukawa couplings of the R2

LQ as a function of its mass from a recent non-resonant dilepton search at the LHC.

4.7 Numerical Fit

In this section, we present our numerical results for the model parameter space that explains
the anomalies in RD(?) , RK(?) , and ∆aµ within their 1σ measured values, while being con-
sistent with all the low-energy and LHC constraints discussed above. It is beyond the scope
of this work to explore the entire parameter space of the theory; instead we implement all
the constraints and find a few benchmark points to explain the anomalies. First of all, we
fix the R2 LQ mass at 900 GeV to satisfy the LHC bound obtained from pair-produced ω2/3

decaying to bb̄τ+τ− (cf. Fig. 77 and Table 32). Note that mR2 needs to be around 1 TeV
to explain RD(?) ; making it larger would require larger f ′33 and f23 coupling values beyond
O(1). For example, with f ′33 = Imf23 = 1.5 and f22 = 0.45 (to be consistent with the flavor
constraints), the maximum mR2 we can have is 1.4 TeV. We also fix the S3 LQ mass at 2
TeV for our RK(?) analysis, but it can be scaled up to much higher values without requiring
either of the Yukawa couplings y22 or y32 in Eq. (4.3.25) to exceed O(1) values.

4.7.1 Fit to RD(?)

In Fig. 79, we show the allowed parameter space to explain RD(?) at 1σ (orange shaded) and
2σ (light blue shaded) CL in the most relevant Yukawa coupling plane Im(f23)− |f ′33| for a
fixed R2 LQ mass at 900 GeV. We have also fixed f22 = 0.29, which is the maximum allowed
value from the dilepton constraint (see Fig. 78). Note that a nonzero f22 is required by the
neutrino oscillation fit for the textures we have (see Section 4.7.2), and a larger f22 helps
widen the RD(?) region. In our numerical analysis to generate Fig. 79, we have made use of
the Flavio package [407]. As already noted in Section 4.3.1 (cf. Fig. 73), the f23 coupling
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Figure 79: 1σ (light red) and 2σ (light blue) allowed range for RD(?) in the relevant
Yukawa coupling plane, with the R2 LQ mass at 900 GeV and with a fixed f22 = 0.29. The
horizontal purple band is from the Z → ττ constraint. The curved green band and cyan
bands respectively represent exclusion from LQ pair production in pp→ bbττ and pp→ jjνν
channels at LHC. The vertical yellow band corresponds to the exclusion from LFV decay
τ → µγ. The dark purple shaded box represents the 1σ allowed region for RD(?) that is
consistent with all the constraints in this model.

needs to be complex to get a good fit to RD(?) . Thus, while doing the minimization to get
neutrino oscillation fit, we choose the f23 coupling purely imaginary, as shown in Fig. 79.

The dark purple shaded area highlighted in Fig. 79 represents the allowed region that is
consistent with all the constraints in our model. The rest of the colored regions are excluded
by various constraints discussed in the previous sections. The horizontal purple band is from
Z → ττ constraint (cf. Eq. 4.5.8). The green and cyan shaded regions respectively represent
LHC exclusion from LQ pair-production in bτ and jν decay modes (cf. Fig. 77). The vertical
yellow shaded region corresponds to the exclusion from LFV decay τ → µγ (cf. Table 31).
In the next subsection, we will choose both f ′33 and f23 values from within the allowed region
shown in Fig. 79. Similarly, Fig. 80 shows experimental averages for RD and RD∗ taking
correlation into account between the two observables, along with benchmark fits within the
model corresponding to the parameters shown in Eq. (4.7.3) and Eq. (4.7.4).

We note that Yukawa couplings to the third generation lepton required to explain anoma-
lies in RD(∗) can induce C``

9 and C``
10 operators via penguin diagram [356, 456], with renormal-

ization group equation running down to the B-meson mass scale. For instance, in scenarios
with vector LQ, the same Yukawa couplings that explain RD(∗) induce such one-loop photon
penguin diagrams [457]. Similarly, with scalar LQs, similar log enhanced contribution can
be realized [458]. However, within our model, although such contributions exist, the flavor
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Figure 80: 1σ (dark red) and 3σ (light red) contours for experimental averages from
Ref. [459] for the LFUV observables RD and RD∗ observables. Individual 1σ regions from
Belle, BarBar, and LHCb are respectively shown by the dotted green, gray, and purple
contours. Black error bar represent the SM prediction, whereas black and brown marker
corresponds to the two model Fit I and Fit II given by Eq. (4.7.3) and Eq. (4.7.4).

structure we have adopted in Eq. (4.7.3) and Eq. (4.7.4) with f ′23 = 0 (y33 = 0 or y33 � 1)
results in these contributions being negligible.

4.7.2 Neutrino Fit

In this section, we explicitly show that the neutrino oscillation data can be explained in our
model, while being consistent with the B-anomalies and (g − 2)µ, as well as satisfying all
the experimental constraints given in Sections 4.5 and 4.6. We have performed a detailed
numerical study to find the minimal texture for the Yukawa couplings to fit all the observ-
ables. We show our results for two different textures, namely, Fit I and Fit II as given in
Eqs. (4.2.53 and (4.2.54. For this analysis, we fix the R2 and S3 LQ masses at 900 GeV and
2 TeV respectively. Furthermore, the masses of the up-type quarks entering the neutrino
mass matrix (cf. Eq. (4.2.49) are fixed at [12, 404, 460]

mu(2 GeV) = 2.16MeV, mc(mc) = 1.27GeV, mt(mt) = 160GeV. (4.7.1)

We have used these input values of the running up-type quarks given in Eq. (4.7.1) and
then extrapolate them to the LQ mass scale at 1 TeV in doing the numerical fit for the
neutrino oscillation data. We obtain mu(1 TeV) = 1.10 MeV, mc(1 TeV) = 0.532 GeV,
and mt(1 TeV) = 150.7 GeV [404, 461]. The neutrino mass matrix given by Eq. (4.2.49) is
diagonalized by a unitary transformation

UT
PMNSMνUPNMS = M̂ν , (4.7.2)

where M̂ν is the diagonal mass matrix and UPMNS is the 3×3 PMNS lepton mixing matrix. We
numerically diagonalize Eq. (4.7.2) by scanning over the input parameters with two different
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Oscillation 3 σ allowed range Model Model
parameters from NuFit5.0 [8] Fit I Fit II

sin2 θ12 0.269 – 0.343 0.290 0.324
sin2 θ13 0.02032 – 0.02410 0.0235 0.0210
sin2 θ23 0.415 – 0.616 0.472 0.430

∆m2
21 (10−5 eV2) 6.82 – 8.04 7.39 7.45

∆m2
23 (10−3 eV2) 2.435 – 2.598 2.54 2.49
δ (degree) 107 – 403 329.6 322.7

Observable 1σ allowed range
RD 0.310 – 0.367 [352] 0.348 0.343
RD? 0.281 – 0.308 [352] 0.288 0.284

C9 = −C10 [−0.61,−0.45] [356] −0.52 −0.51

(g − 2)µ (10−10) 27.4± 7.3 [344] 29.7 34.4

Table 33: Fits to the the neutrino oscillation parameters in the model with normal hierarchy,
along with the B-anomalies, and muon g− 2 for two benchmark fits given in Eq. (4.7.3) and
Eq. (4.7.4). For comparison, the 3σ allowed range for the oscillation parameters and the 1σ
range for the other observables are also given. Note that correlation between RD and RD∗

is not taken into account here (see Fig. 80 to see such correlation).

textures as shown in Eqs. (4.2.53 and (4.2.54. For ease of finding the fits to oscillation
data, we factor out mt into the overall factor and define m0 = mtκ1, where κ1 is given
in Eq. (4.2.50). Furthermore, we perform constrained minimization in which the neutrino
observables are restricted to lie within 3σ of their experimental measured values, for which
we use the recent NuFit5.0 values (with SK atmospheric data included) [8].

Our fit results for the two textures given in Eqs. (4.2.53 and (4.2.54 are shown below:

Fit I: With m0 = 9.9 eV,

f ′ =

 0 0 0
0 0 0
0 0.29 −1.15

 , f =

 0 0 0
0 0.29 0.886i
0 0.0059 0.0226

 , y =

 0 0 0
0 0.124 0.064

−0.016 0.028 0

 .

(4.7.3)

Fit II: With m0 = 15.1 eV,

f ′ =

 0 0 0
0 0 0
0 0.29 −1.10

 , f =

 0 0 0
0 0.29 0.887i
0 0.0061 0.0215

 , y =

 0 0 0
0 0.22 0

0.026 0.0155 −0.035

 .

(4.7.4)
For each of these Yukawa textures, the corresponding fit results for the neutrino oscillation

parameters are shown in Table 33. It is clear that both fits are in excellent agreement with
the observed experimental values. The f33 entry in the benchmark texture shown above is
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required for fine-tuning at the level of 7% the τ → µγ amplitude arising from top quark loop
with a chiral enhancement (cf. Section 4.5.1). Note that the input parameter f23 in both
Fit I and Fit IIa is purely complex, which is required to get RD(?) correct (cf. Fig. 79).
Furthermore, the same coupling leads to a significant Dirac CP phase, as can be seen from
Table 33, consistent with the recent T2K result [462].

We note that the structures of f and f ′ do not change significantly from Fit-I to Fit-II.
This happens due to the various flavor violating constraints. In this sense, the parameter
space is rather limited for f and f ′. However, the structure of y is different for Fits-I and
II, and there is also some freedom in the overall scale of y, as illustrated in Eqs. (4.7.3 and
(4.7.4.

We shown in Table 33 the fit results for RD, RD(?) , RK(?) and (g − 2)µ, all of which are
within 1σ of the experimentally allowed range.

4.7.3 Non-standard Neutrino Interactions

The LQs ω2/3 from R2 and ρ−2/3, ρ1/3 from S3 have couplings with neutrinos and quarks
(cf. Eq. (4.2.6). These couplings can induce charged-current NSI at tree-level [26]. Using the
effective dimension-6 operators for NSI introduced in Ref. [47], the effective NSI parameters
in our model are given by

εαβ =
3

4
√

2GF

(
f ?1αf1β

m2
ω2/3

+
(V y?)1α(V ?y)1β

m2
ρ−2/3

+
y?1αy1β

2m2
ρ1/3

)
. (4.7.5)

Any non zero entry in the up-sector f1α and y1α, relevant for generating tree-level NSI, does
not affect the neutrino oscillation fit, as it is suppressed by the up-quark mass. However,
Yukawa couplings to the electron and muon sector f1α and y1α (α = 1, 2) are highly con-
strained by the non-resonant dilepton searches at the LHC. The limit on f11 and f12 are 0.19
and 0.16, respectively, for 1 TeV LQ mass (cf. Fig. 78). Also, the limit on y11 and y12 are 0.16
and 0.15. Thus ε11 and ε22 are sub-percent level, and far beyond the reach of forthcoming
neutrino experiments. Furthermore, any nonzero y1α is in conjunction to Cabibbo rotation
and induces (V ?y)2α leading to D0 − D̄0 mixing with a constraint given in Eq. (4.5.20).

As noted in Section 4.6.2, the LHC limits on the LQ Yukawa couplings in the tau sector
are weaker, and in principle, one can allow O(1) Yukawa coupling for f13 and generate a ε33

which can be as large as 5.6%. However, we require f23 to be nonzero and O(1) to explain
RD(?) , and the constraint on the product of Yukawa couplings f13f23 is severe due to the
D0 − D̄0 bound, see Eq. (4.5.18). Thus the induced NSI will again be at a sub-percent
level. For simplicity, we choose f1α = y1α = 0 for all α = 1, 2, 3 (cf. Eq. (4.2.54) in both the
numerical fits discussed in Section 4.7.2.

4.8 Collider Implications

This model provides an avenue to test a unified description of B-anomalies, muon anomalous
magnetic moment and neutrino masses at the LHC through a new decay channel of the S3

LQ. The presence of the two scalar LQs R2 and S3 and the isospin-3/2 scalar multiplet ∆
(especially its triply- and doubly-charged components) give rise to a rich phenomenology
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Figure 81: Feynman diagram for the pair-production of the ρ4/3 component of the S3

LQ (pp → ρ4/3ρ−4/3), followed by ρ decay to the ω2/3 component of the R2 LQ and the
doubly-charged component of the ∆ quadruplet (ρ∓4/3 → ω±2/3∆∓∓). The ω2/3 component
can then decay to bτ (or jν) final state, while the doubly-charged scalar mostly decays
to same-sign lepton pair (for small v∆). This leads to the striking signal of this model:
pp→ `+`+`−`− + τ+τ− + bb̄ (where ` = e or µ).

for the LHC. In this section, we analyze the production and decay of the doubly-charged
component of the scalar multiplet at the LHC and prospective smoking gun signals correlated
with the B-anomalies.

4.8.1 Production of Doubly-charged Scalars via LQ Decay

Being part of the SU(2)L-quadruplet, the charged scalars (∆±±±,∆±±,∆±) can be pair-
produced at the LHC by standard DY processes mediated by s-channel Z/γ exchange. In
addition, s-channel W exchange can lead to associated production of ∆±±±∆∓∓ (∆±±∆∓).
It is important to note that being s-channel processes, the DY pair production cross-sections
are highly suppressed for large ∆±±± (∆±±) masses (similar to the doubly-charged scalar pro-
duction in the type-II seesaw [463–465]). The collider phenomenology of SU(2)L-quadruplet
scalars with DY production and the same-sign dilepton (trilepton) signals from doubly
(triply)-charged scalars has been studied extensively in different contexts [376–379, 466, 467].

Here we propose a unique production mechanism for the doubly-charged scalars at the
LHC via the gluon fusion process, as shown in Fig. 81. In the gluon-gluon fusion process,
the S3 LQ can be pair-produced copiously. Once produced, the various components of the
S3 LQ would decay dominantly to the components of the R2 LQ and ∆ quadruplet, if
kinematically allowed (cf. Eq. (4.6.3). Here we will mainly focus on the ρ∓4/3 → ω±2/3∆∓∓

decay channel, as ρ4/3 and ω2/3 are respectively the components responsible for the RK(?)

and RD(?) anomalies in our model. Therefore, the signal shown in Fig. 81 provides a direct
test of the RK(?) and RD(?) explanations at the high-energy LHC.

Another reason we consider the ∆±± production via S3 decay is that the LQ-induced
charged-scalar pair-production rate is not as highly suppressed as the DY rate for higher
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Figure 82: Comparison of the NLO pair-production cross-sections for the doubly-charged
scalars in the DY channel (pp → ∆++∆−−) versus the LQ channel (pp → ∆++∆−− +
ω2/3ω−2/3) as a function of the doubly-charged scalar mass at

√
s = 14, 27 and 100 TeV.

masses. In addition, there will be an enhancement factor for gluon luminosity compared
to the quark luminosity, which becomes even more pronounced at higher center-of-mass
energies. This can be seen from Fig. 82, where we compare the doubly-charged scalar pair-
production cross-sections at NLO in the DY mode pp→ ∆++∆−− and in the new LQ mode
pp→ ∆++∆−−+ω2/3ω−2/3 (in Fig. 82, ω2/3ω−2/3 is collectively denoted as X) for center-of-
mass energies

√
s =14, 27 and 100 TeV. Note that for the LQ mode, the cross section only

depends on the ρ4/3 LQ mass; however, to make a direct comparison with the DY mode,
we have fixed the ω2/3 mass at 900 GeV (the preferred value for R(?)

D explanation), and for
a given ∆±± mass in Fig. 82, have chosen the ρ4/3 mass such that the ρ∓4/3 → ω±2/3∆∓∓

decay branching ratio is ∼ 50% (with the other 50% going to ω±5/3∆∓∓∓). From Fig. 82,
we infer that the production cross-sections for the doubly-charged scalar in the LQ mode
are sizable up to the multi-TeV mass range, and the collider reach in the inclusive mode
pp → ∆++∆−− + X can be significantly enhanced, compared to the pure DY mode (see
Section 4.8.4 for more details).

4.8.2 Decay of Doubly-Charged Scalars

Now we turn to the decay modes of the quadruplet scalar ∆. The doubly charged scalar
∆±± can decay to `±`± via the leptonic coupling given by Eq. (4.2.52). In addition, being a
part of the SU(2)L-quadruplet, the covariant derivative term leads to bosonic decay modes
(W±W±) of ∆±±. On the other hand, when the mass-splitting between consecutive members
of the quadruplet are nonzero, cascade decays also open up. One should note that depending
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on the quartic coupling λ′H∆, there could be two different hierarchies: (a) when λ′H∆ > 0,
we have m∆±±± < m∆±± < m∆± < m∆0 and (b) when λ′H∆ < 0, we have m∆±±± > m∆±± >
m∆± < m∆0 (cf. Eq. (4.2.52). Therefore, due to mass-splitting, it can decay in cascades
via ∆±±±X∓ or ∆±X± (where X = π,W ?) depending on whether ∆m > 0 or ∆m < 0.
For simplicity, we consider ∆±±± to be the lightest member of the ∆ multiplet throughout
our analysis. The partial decay widths for different decay modes of ∆±± can be written
as [378, 379]:

Γ
(
∆±± → `±i `

±
j

)
=

m∆±± (mν)
2
ij

6π (1 + δij) v2
∆

(
1− m2

i

m2
∆±±
− m2

j

m2
∆±±

)[
λ

(
m2
i

m2
∆±±

,
m2
j

m2
∆±±

)]1/2

,

(4.8.1)

Γ
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∆±± → W±W±) =

3g4v2
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3
∆±±

16πm4
W

(
3m4

W

m4
∆±±

+
m2
W

m2
∆±±

+
1

4

)
β

(
m2
W

m2
∆±±

)
, (4.8.2)

Γ
(
∆±± → ∆±±±π∓

)
=

g4 |Vud|2 (∆m)3f 2
π

8πm4
W

, (4.8.3)

Γ
(
∆±± → ∆±±±`∓ν`

)
=

g4(∆m)5

120π3m4
W

, (4.8.4)

Γ
(
∆±± → ∆±±±qq̄′

)
= 3Γ

(
∆±± → ∆±±±`∓ν`

)
, (4.8.5)
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9g6m∆±±
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v2
∆
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W

F

(
m2
W

m2
∆±±

)
, (4.8.6)

where the kinematic functions are given by [379]

λ(x, y) = 1 + x2 + y2 − 2xy − 2x− 2z , (4.8.7)

β(x) =
√

1− 4x , (4.8.8)

F (x) = −|1− x|
(

47

2
x− 13

2
+

1

x

)
+ 3

(
1− 6x+ 4x2

)
| log
√
x|

+
3 (1− 8x+ 20x2)√

4x− 1
cos−1

(
3x− 1

2x3/2

)
. (4.8.9)

If ∆±± decay to ∆±X± is allowed, the corresponding partial widths will be the same as in
Eqs. (4.8.3-(4.8.5. The different scaling factor due to the Clebsch-Gordon coefficient for the
quadruplet scalar is taken into account properly for the partial decay width formulae of the
doubly charged Higgs given above. For example, the leptonic decay width given in Eq. (4.8.1)
is suppressed by a factor of 2/3, compared to the type-II seesaw scenario [468, 469]. On the
other hand, the bosonic and cascade decay modes are enhanced by a factor 3/2 in the
quadruplet case compared to the triplet scenario [468–470].

In Fig. 83, we show the generic decay phase diagram for ∆±± in our model, withm∆±± = 1
TeV. The dotted, dot-dashed, dashed and thick solid contours correspond to 99%, 90%, 50%
and 10% branching ratios into the leptonic, bosonic or cascade decay modes. The decay
phase diagram clearly depicts that the branching ratio to leptonic decay modes of ∆±±

decreases with v∆, whereas the branching ratio to gauge boson decay mode increases with
v∆. The cross-over happens at v∆ = 10−4 GeV with ∆m ∼ 0, similar to the type-II seesaw
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Figure 83: Generic decay phase diagram for ∆±± in our model, with m∆±± = 1TeV. The
dotted, dot-dashed, dashed and thick solid contours correspond to 99%, 90%, 50% and 10%
branching ratios respectively for the leptonic, bosonic or cascade decays, whereas ∆m is the
mass splitting between the ∆++ and the next lightest scalar component.

case [468, 469]. As soon as the mass splitting is set to ≥ 10 GeV, cascade decays open
up and start dominating depending on the exact value of v∆. Note that the mass splitting
|∆m| between any two components of ∆ cannot be larger than ∼ 50 GeV due to stringent
constraints from electroweak precision data [379].

4.8.3 Comment on 4-body Decay of ∆

In addition to the two-body decays given in Eqs. (4.8.1-(4.8.6, there will also be four-body
decay modes of the doubly-charged scalar via the virtual exchange of R2 and S3 LQs pro-
portional to the µ term in Eq. (4.2.7): ∆±± → (ω±2/3)?(ρ±4/3)?, with each LQ decaying to
two fermions. These decays will depend on the same parameters that lead to ∆±± → `±`±

decays. The phase space for these decays would appear to be comparable to the two-body
decays, since the latter has a suppression of a loop factor, 1/(16π2)2. We have evaluated these
four-body decays of ∆++ semi-analytically following the procedure outline in Ref. [471], as
well as numerically. The two methods gave very similar results. As an example, for a bench-
mark values of m∆++ = 800 GeV, mR2 = 1 TeV, mS3 = 2 TeV, µ = 246 GeV, v∆ = 10−4

GeV, and the values of the Yukawa couplings given in Fit I (cf. Eq. (4.7.3)), the four-body
decay width is 2.3× 10−15 GeV, which turns out to be much smaller than that for the dilep-
tonic decay, which is 2 × 10−9 GeV. As v∆ is increased, the four-body decay may compete
with the dileptonic decay; however, in this case ∆++ → W+W+ decay would dominate.
Consequently, the four-body decay of ∆++ can be safely ignored in our discussions.
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Production ∆±± mass reach for L = 3 ab−1

Channel
√
s = 14 TeV

√
s = 27 TeV

√
s = 100 TeV

LQ-mode 1.1 TeV 2.0 TeV 6.2 TeV
DY-mode 0.9 TeV 1.3 TeV 2.9 TeV

Table 34: Comparison of the doubly-charged scalar mass reach in the LQ and DY modes
(with same-sign di-muon pair final states only) for 3 ab−1 integrated luminosity.

4.8.4 Signal Sensitivity

We focus on the small v∆ region which gives same-sign dilepton final states from the ∆±±

decay, because charged leptons with large transverse momenta can be cleanly identified with
good resolution and the charge of the leptons can be identified with fairly good accuracy at
hadron colliders. For the benchmark fits given in Section 4.7.2 with normal hierarchy, the
dilepton branching ratios of the ∆±± → `i`j for different flavors are as follows:

BR(ee) = 0 , BR(µµ) = 0.22 , BR(ττ) = 0.23 ,

BR(eµ) = 0.01 , BR(µτ) = 0.39 , BR(eτ) = 0.16 . (4.8.10)

For simplicity, we focus on the µµ final states and consider the signal pp → ∆++∆−− +
X → µ+µ+µ−µ− + X to derive the sensitivity at future hadron colliders. The relevant
SM background is mainly from the multi-top and multi-gauge boson production [472, 473].
However, there are several discriminating characteristics of our signal: (a) the invariant
mass distributions for same-sign lepton pair from the ∆±± decay would peak at a mass value
much higher than the SM Z boson mass; and (b) the outgoing leptons will be more energetic
compared to the ones produced in the decay of SM gauge bosons, since these leptons are
produced from heavy particle ∆±± decay. To derive the signal sensitivity, we first implement
our model file in FeynRules package [126], then analyze the cross section for the signal
using MadGraph5aMC@NLO [127], simulating the hadronization effects with Pythia8 [474] and
detector effects with the Delphes3 package [475]. In order to optimize the signal efficiency
over the SM background, we impose the following basic acceptance criteria: p`T > 15 GeV for
each lepton, pseudorapidity |η`| < 2.5 and a veto on any opposite sign dilepton pair invariant
mass being close to the Z boson mass |M(`+`−) −mZ | > 15 GeV. In addition, events are
selected such that the invariant mass for same-sign muon pair is higher than 500 GeV. After
passing through all these acceptance criteria, we estimate the required luminosities to observe
at least 25 events at different center-of-mass energies (

√
s=14, 27, 100 TeV). Our results are

shown in Fig. 84. It is clear that for a given luminosity and a given
√
s, the doubly-charged

scalar mass reach in the LQ mode is higher than that in the DY mode. The mass reach for
3 ab−1 integrated luminosity is summarized in Table 34 for different center-of-mass energies.

Once we identify the doubly-charged scalar from the multi-lepton signal, the next step
is to distinguish the underlying model. In order to identify whether the ∆±±’s come from
the S3 LQ decay, accompanied by the ω2/3 LQs, we can consider the decay chain given in
Fig. 81, i.e.

pp → ρ4/3ρ−4/3 → ω−2/3∆++ω2/3∆−− → `+`+`−`− + τ+τ− + bb̄ . (4.8.11)
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In this case, the right combination of the bτ invariant mass peaks at the ω2/3 LQ mass, if
it is produced on-shell from the ∆ decay. Considering the fact that the benchmark fits in
our model give 54% branching ratio of ω2/3 to bτ (cf. Table 32), and taking into account
the b-tagging and τ -identification efficiencies of ∼ 70% each, we find that at least 25 signal
events in the channel given by Eq. (4.8.11) can be obtained with 3 ab−1 luminosity for the
S3 LQ masses up to 1.5, 2.4 and 5.5 TeV respectively at

√
s = 14, 27 and 100 TeV. Hence,

it is possible to independently test the unified description of B-anomalies, muon g − 2 and
neutrino masses in our model at future colliders.

4.9 Conclusion

We have presented a radiative neutrino mass model involving TeV-scale scalar leptoquarks R2

and S3, which can simultaneously explain the RD(?) , RK(?) , as well as muon g− 2 anomalies,
all within 1σ CL, while being consistent with neutrino oscillation data, as well as all flavor
and LHC constraints. The R2 LQ is responsible for the RD(?) and (g − 2)µ, while the S3

LQ explains the RK(?) anomaly. The model also features a scalar quadruplet ∆, which is
required for the radiative neutrino mass generation. The same trilinear ∆?R2S3 coupling
that is responsible for neutrino mass also leads to interesting collider signatures in the S3

and ∆ decays that can be probed in the forthcoming run of the LHC. Similarly, the same
Yukawa couplings responsible for the chirally-enhanced contribution to ∆aµ give rise to new
contributions to the SM Higgs decays to muon and tau pairs, with the modifications to the
corresponding branching ratios being at 2-6% level, which could be tested at future hadron
colliders, such as HL-LHC and FCC-hh.
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CHAPTER V

PREDICTIVE DIRAC AND MAJORANA NEUTRINO MASS TEXTURES
FROM SU(6) GRAND UNIFIED THEORIES

Multiple neutrino oscillation experiments over the past two decades have conclusively estab-
lished that neutrinos have non-vanishing masses [113], thereby providing concrete evidence
of new physics beyond the Standard Model (SM). However, although these experiments have
measured the neutrino mass splittings and mixing angles, the actual values of the neutrino
masses still remain unknown. In particular, it is not known whether the neutrino mass
spectrum exhibits a normal or inverted hierarchy. Several medium and long-baseline neu-
trino oscillation experiments have been proposed to settle this issue [476]. At present, the
important question of whether neutrinos are Dirac or Majorana fermions also remains unan-
swered. Future neutrinoless double beta decay (0νββ) experiments may be able to resolve
this question [477].

Grand unification [231, 478, 479] is one of the most attractive proposals for physics
beyond the SM. In these theories, the strong, weak and electromagnetic interactions of the
SM are unified into a larger grand unifying group. The fermions of the SM are embedded
into representations of this bigger group, with the result that quarks and leptons are also
unified into the same multiplets. These representations often contain additional SM singlets,
which can naturally serve the role of right-handed neutrinos in the generation of neutrino
masses. The fact that the SM quarks and leptons are now embedded together in the same
multiplets often leads to relations between the masses of the different SM fermions [480]. If
these multiplets also contain right-handed neutrinos, these theories can impose restrictions
on the form of the neutrino mass matrix, leading to predictions for the neutrino masses.
Familiar examples of unified theories that can relate the masses of the neutrinos to those of
the charged fermion include the Pati-Salam [231] and SO(10) [481, 482] gauge groups.

In this chapter we explore a class of models based on the SU(6) grand unified theory
(GUT) [483, 484] that lead to sharp predictions for the neutrino mass spectrum. In these
theories, the right-handed neutrino emerges from the same multiplet as the lepton doublet
of the SM. A natural consequence of this construction is that, at the level of the lowest-
dimension terms, the Dirac mass term for the neutrinos is skew-symmetric in flavor space,
so that the determinant of the Dirac mass matrix vanishes. If neutrinos are Dirac particles
that obtain their masses from this term, then, in the absence of corrections to this form from
terms of higher dimension, the neutrino mass spectrum consists of two degenerate species
and a massless one. Once higher-dimensional terms suppressed by the Planck scale MPl are
included, this class of models can easily reproduce the observed spectrum of neutrino masses
and mixings. A firm prediction of this construction is that the spectrum of neutrino masses
is inverted, with the lightest neutrino hierarchically lighter than the other two. Then the
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sum of neutrino masses is predicted to lie close to the lower bound of 0.10 eV set by the
observed mass splittings in the case of an inverted hierarchy. Future precision cosmological
experiments, such as LSST [485], Euclid [486], DESI [487], the Simons Observatory [488],
and CMB-S4 [489], that have the required sensitivity to the sum of neutrino masses will be
able to test this striking prediction. The final phase of Project-8 [490], with an expected
sensitivity of 0.04 eV to the absolute electron neutrino mass, will also be able to test this
scenario. Similarly, future large-scale long-baseline neutrino oscillation experiments, such as
Hyper-K [491] and DUNE [492], will be able to test the prediction regarding the inverted
nature of the mass spectrum.

It is well-established that there is a lower bound on the light neutrino contribution
to the 0νββ process in the case of Majorana neutrinos that exhibit an inverted mass-
hierarchy [493, 494]. In particular, it has been pointed out that if long-baseline neutrino
experiments determine that the neutrino mass hierarchy is inverted, while no signal is ob-
served in 0νββ down to the effective Majorana neutrino mass mee . 30 meV, then this would
constitute compelling evidence that neutrinos are Dirac rather than Majorana fermions [495].
The model we present here is an example of a GUT framework that can naturally accom-
modate such a scenario.

If, in addition to the skew-symmetric Dirac mass term, there is also a large Majorana
mass term for the right-handed neutrinos, the neutrinos will be Majorana particles. In this
scenario, the skew-symmetric nature of the Dirac mass term implies that the lightest neutrino
is massless, up to small corrections from higher-dimensional operators1. In contrast to the
case of Dirac neutrinos discussed above, the spectrum of neutrino masses can now exhibit
either a normal or inverted hierarchy. However, the lightest neutrino is still predicted to be
hierarchically lighter than the other two, so that for both normal and inverted hierarchies the
sum of neutrino masses is predicted to lie close to the corresponding lower bound dictated
by the observed mass splittings, i.e. 0.06 eV for the normal case and 0.10 eV for the inverted.
This is a prediction that can be tested by future cosmological observations once long-baseline
experiments have determined whether the spectrum is normal or inverted. In addition, these
predictions for the sum of neutrino masses translate into upper and lower bounds on the
0νββ rate for each of the normal and inverted cases, with important implications for future
0νββ experiments. In our analysis, we explore both the Dirac and Majorana possibilities in
detail and obtain realistic fits to the observed masses and mixings.

To understand the origin of the prediction that the Dirac mass term for the neutrinos is
skew-symmetric, we first consider the minimal grand unifying symmetry, namely SU(5) [478].
In this class of theories the SU(5) grand unifying symmetry is broken at the unification scale,
MGUT ∼ 1016 GeV, down to the SM gauge groups. In simple models based on SU(5), all
the SM fermions in a single generation arise from the 5̄ and 10 representations. The 5̄
is the anti-fundamental representation while the 10 is the tensor representation with two
antisymmetric indices. The Higgs field of the SM is contained in the fundamental repre-
sentation, the 5. The up-type quark masses arise from Yukawa couplings of the schematic
form εκλµνρ5Hκ10λµ10νρ, where 5H contains the SM Higgs, εκλµνρ is the 5-dimensional an-
tisymmetric Levi-Civita tensor, and the Greek letters represent SU(5) indices. Similarly,

1A recent work [496] considers Majorana neutrino masses in the framework of an SU(3)× SU(3)×U(1)
model embedded in an SU(6) GUT. The resulting pattern of neutrino masses shares some of the features of
our Majorana construction, including a massless neutrino.
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the down-type quark and charged lepton masses arise from Yukawa couplings of the form
5†H

µ
10µν 5̄

ν . Although attractive and elegant, the minimal SU(5) model does not contain
SM singlets that can play the role of right-handed neutrinos, and does not make predictions
regarding the neutrino masses. Simple extensions of minimal SU(5) to SU(6), however, do
contain natural candidates for the role of right-handed neutrinos and also allow for elegant
solutions to the doublet-triplet splitting problem [497–502].

In the simplest extension of SU(5) to SU(6), the SM fermions emerge from the 6̄ and
15 representations. While the 6̄ is the antifundamental representation of SU(6), the 15 is
the tensor representation with two antisymmetric indices. Under the SU(5) subgroup of
SU(6), these representations decompose as 15 → 10 + 5 and 6̄ → 5̄ + 1, and can be seen
to contain particles with the quantum numbers of the SM fermions. But now, in addition,
the singlet of SU(5) contained in the 6̄ representation is a natural candidate to play the role
of the right-handed neutrino. If the SM Higgs emerges from the fundamental representation
of SU(6), the down-type quarks and charged leptons can obtain masses from terms of the
schematic form 6†H

µ
15µν 6̄

ν . However, with this set of representations it is not possible to
obtain masses for the up-type quarks of the SM at the renormalizable level. This presents a
problem because the top Yukawa coupling is large.

One possible solution to this problem, first explored in Refs. [503, 504], is that the
third-generation up-type quarks emerge in part from the 20 of SU(6), which is the tensor
representation with three antisymmetric indices. This decomposes as 20 → 10 + 10 un-
der SU(5). This allows the third-generation up-type quarks to obtain their masses from a
renormalizable term of the form εκλµνρσ6Hκ15λµ20νρσ. Nonrenormalizable operators suffice
to generate masses for the up-type quarks of the lighter two generations.

The problem of the top quark mass in SU(6) GUTs admits an alternative solution if
electroweak symmetry is broken by two light Higgs doublets rather than one, so that the
low-energy theory is a two-Higgs-doublet model. In this framework, one of Higgs doublets,
which gives mass to the up-type quarks, is assumed to arise from the 15 of SU(6). This
allows all the up-type quark masses to be generated from renormalizable terms of the form
εκλµνρσ15Hκλ15µν15ρσ, where the Higgs doublet is now contained in the 15H [483]. The
other Higgs doublet, which arises from the 6 of SU(6), gives mass to the down-type quarks
and charged leptons. The central observation is that the same Higgs doublet in the 15H

that generates the large top quark mass can also be used to generate a Dirac neutrino
mass term through renormalizable operators of the form yν

ij15Hµλ6̄
µ
i 6̄

λ
j , where i and j are

flavor indices. Since the 15 of SU(6) is antisymmetric in its tensor indices, this vanishes
if the flavor indices i and j are the same. Therefore, this construction naturally leads to a
skew-symmetric structure for the Dirac mass matrix of the neutrinos in flavor space.

This framework can naturally accommodate either Dirac or Majorana neutrino masses.
The right-handed neutrinos can naturally acquire large Majorana masses of orderM2

GUT/MPl ∼
1014 GeV from nonrenormalizable Planck-suppressed interactions with the Higgs fields that
break the GUT symmetry. This naturally leads to Majorana masses for the neutrinos of the
right size through the seesaw mechanism [32–35]. Alternatively, as a consequence of addi-
tional discrete symmetries, a Majorana mass term for the right-handed neutrinos may not
be allowed, while the coefficient of the Dirac mass term is suppressed. In such a scenario we
obtain Dirac neutrino masses. In this chapter we will consider both the Dirac and Majorana
cases.
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This chapter is organized as follows. In Section 5.1, we outline the framework that
underlies this class of models and show how the pattern of neutrino masses emerges in
the Dirac and Majorana cases. In Section 5.2, we present a realistic model in which the
neutrino masses are Dirac, and perform a detailed numerical fit to the neutrino masses and
mixings using a recent global analysis of the 3-neutrino oscillation data. We show that
this framework predicts an inverted spectrum of neutrino masses with one mass eigenstate
hierarchically lighter than the others. In Section 5.3, we present a realistic model in which
the neutrino masses are Majorana, and again perform a detailed numerical fit to the neutrino
oscillation data. We show that in this scenario one neutrino is again hierarchically lighter
than the others, but the spectrum of neutrino masses can now be either normal or inverted.
We also explore the implications of this scenario for future 0νββ experiments and future
cosmological observations. Our conclusions are presented in Section 5.4.

5.1 The Framework

Our model is based on the SU(6) GUT symmetry with the fermions of each family arising
from a 6̄ representation, denoted by χ, and a rank-two antisymmetric representation 15,
denoted by ψ. For now we omit the generation indices. Note that anomaly cancellation
for the SU(6) group requires that there be two 6̄ chiral fermion representations for each 15
fermion. We denote the additional 6̄ of each family by χ̂. After the breaking of SU(6) to
SU(5), the fields in χ̂ that carry charges under the SM gauge groups acquire large masses at
the GUT scale by marrying the non-SM fermions in the 15. Therefore, these fields do not
play a role in generating the masses of the light fermions. However, the SM-singlet field in χ̂,
which has no counterpart in the 15, may remain light. We employ the familiar convention
in which all fermions are taken to be left-handed, and the SM fermions are labelled as
(Q, uc, dc, L, ec), with QT = (u, d) and LT = (ν, `).

The SU(6) symmetry is broken near the GUT scale down to SU(5), which contains the
usual embedding of SM fermions in a 5̄ and a 10 of SU(5). Without loss of generality we
take the SU(5) indices to be (2, 3, 4, 5, 6), so that the index 1 lies outside SU(5). Color
indices run over (4, 5, 6).

We now consider the assignment of fermions under representations of SU(6). Under the
fermion multiplet χ that transforms as a 6, we have

χ =

 νc

L
dc

 , (5.1.1)

where L is the SM lepton doublet, LT = (ν, `). Note that the Dirac partner νc of the SM
neutrino is embedded in the same multiplet as the left-handed leptons. The fermions in χ̂
also transform as 6̄:

χ̂ =

 N c

L̂

D̂c

 . (5.1.2)
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The fermion content of ψ, which transforms as a 15-dimensional representation of SU(6), is
given by

ψ =


0 L̂c D̂

0 ec d
0 u

0 uc3 −uc2
0 uc1

0

 . (5.1.3)

The breaking of SU(6) down to SU(5) at the GUT scale is realized by a Higgs field Ĥ
which transforms as a 6 under SU(6) and acquires a large vacuum expectation value (VEV)
along the SM-singlet direction. A Higgs field Σ̂, which transforms as an adjoint under SU(6),
further breaks SU(5) down to the SM gauge group. The breaking of electroweak symmetry is
realized through two Higgs doubletsH and ∆ that arise from different SU(6) representations.
The field H, which gives masses to the down-type quarks and charged leptons, emerges from
a 6 while ∆, which gives masses to the up-type quarks, arises from a 15. The Higgs fields
Ĥ, H and ∆ are assumed to have the following VEVs:

〈Ĥ〉 =


M
0
0
0
0
0

 , 〈H〉 =


0
vd
0
0
0
0

 , 〈∆〉 =


0 vu 0 0 0 0
−vu 0 0 0 0 0

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 . (5.1.4)

The VEV of Σ̂ takes the pattern

〈Σ̂〉 = M̂


0 0 0 0 0 0
0 −3

2
0 0 0 0

0 0 −3
2

0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 . (5.1.5)

The field content is summarized in Table 35. Here NF denotes the number of flavors.
We now discuss the generation of fermion masses. The additional fermions L̂, D̂c in χ̂

and L̂c, D̂ in ψ acquire masses at the GUT scale through interactions with Ĥ of the form

−Ldecouple = λ̂ijψiχ̂jĤ + h.c. , (5.1.6)

where we have suppressed the SU(6) and Lorentz indices and shown only the flavor indices.
Consequently, these fields do not play any role in the generation of the masses of the SM
fermions. These interactions do not give mass to the SM-singlet field N c in χ̂. However, even
if N c is light, the fact that it is a SM singlet means that in the absence of other interactions
its couplings to the SM fields at low energies are very small.
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Multiplets SU(6) representation NF

χ 6 3
fermion χ̂ 6 3

ψ 15 3
H 6 1

scalar Ĥ 6 1
∆ 15 1
Σ̂ 35 1

Table 35: Field content of the SU(6) model under consideration.

The SM fermions acquire masses from their Yukawa couplings to the Higgs fields H and
∆ after electroweak symmetry breaking. The SU(6)-invariant Yukawa couplings take the
form

−LY = yd,ijψiχjH + yu,ijψiψj∆
† + h.c. (5.1.7)

The down-quark and charged-lepton masses arise from the yd term in the Lagrangian after
the Higgs field H acquires an electroweak-scale VEV. Similarly the up-quark masses arise
from the yu term in the Lagrangian after ∆ acquires a VEV. In general, the masses of the
SM fermions also receive contributions from higher-dimensional operators suppressed by the
Planck scale (MPl) that involve Σ̂, such as

−L∆Y =
ŷd,ij
MPl

ψiχjΣ̂H +
ŷu,ij
MPl

ψiψjΣ̂∆† + h.c. (5.1.8)

The VEV of Σ̂ breaks the SU(5) symmetry that relates quarks and leptons [cf. Eq. (5.1.5)].
Therefore these higher-dimensional operators violate the GUT symmetries that relate the
masses of the down-type quarks to those of the leptons of the same generation.

A Dirac mass term for the neutrinos may be obtained from interactions of the form

−LD = yν,ijχiχj∆
† + h.c. (5.1.9)

As explained earlier, the fact that ∆ is an antisymmetric tensor under SU(6) implies that
yν,ij is skew-symmetric in flavor space. Consequently, the resulting Dirac mass matrix for
the neutrinos has vanishing determinant. We expect corrections to the Dirac mass term from
Planck-suppressed higher-dimensional operators, such as

−L∆D =
κν,ij
MPl

χiH
†χjĤ

† + h.c. (5.1.10)

In general, this contribution will be suppressed by a factor MGUT/MPl ∼ 10−2 relative to
that from Eq. (5.1.9).

A large Majorana mass term for the right-handed neutrinos can be obtained from Planck-
suppressed nonrenormalizable interactions of the form

−LM =
λνc,ij
MPl

Ĥ†χiĤ
†χj . (5.1.11)
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Multiplets SU(6) representation Z4 quantum number Z7 quantum number
χ 6̄ +1 +4

fermion χ̂ 6̄ −1 −1
ψ 15 +1 +1
H 6 +2 +2

Ĥ 6̄ 0 0
scalar ∆ 15 +2 +2

Σ̂ 35 0 0
σ 1 0 +1

Table 36: Quantum numbers of the various fermion and scalar fields under the discrete
Z4×Z7 symmetry in the model of Dirac neutrinos. Here the integer entries n correspond to
transformation under Z4 as e2πin/4 and under Z7 as e2πin/7.

This leads to Majorana masses for the right-handed neutrinos of order M2
GUT/MPl, which is

parametrically of order the seesaw scale ∼ 1014 GeV. Then, from Eqs. (5.1.9) and (5.1.11),
we obtain Majorana neutrino masses of the right size.

If neutrinos are to be Dirac particles, the mass term for the right-handed neutrinos shown
in Eq. (5.1.11) must be absent. Furthermore, we require the coefficients of the Dirac mass
terms to be extremely small, yν,ij, κν,ij ∼ 10−11, to reproduce the observed values of the
neutrino masses. In Section 5.2, we shall show that the absence of the Majorana mass
term for the right-handed neutrinos, Eq. (5.1.11), and the smallness of yν,ij and κν,ij can be
explained on the basis of discrete symmetries.

5.2 Dirac Neutrino Masses

5.2.1 Pattern of Neutrino Masses

We now present a simple model that realizes the pattern of Dirac neutrino masses discussed
in Section 5.1. The model is based on discrete Z4×Z7 symmetries under which the fermions
and Higgs scalars have the charge assignments shown in Table 36. The Yukawa couplings
that generate masses for the SM fermions, Eqs. (5.1.7) and (5.1.8), are consistent with the Z4

and Z7 symmetries. The interaction in Eq. (5.1.6) that gives GUT-scale masses to the extra
fermions L̂, D̂c in χ̂ and L̂c, D̂ in ψ is also allowed by the discrete symmetries. However,
the renormalizable Dirac mass term for the neutrinos, Eq. (5.1.9), is now forbidden by the
discrete Z7 symmetry. Instead, the leading contribution to the neutrino masses arises from
the dimension-5 term

−Ld=5 = yν,ij
σ

MPl

χiχj∆
† + h.c. (5.2.1)

The field σ, which is a singlet under SU(6), is assumed to acquire a VEV, thereby sponta-
neously breaking the discrete Z7 symmetry. For 〈σ〉 ∼ 107 GeV, we obtain Dirac neutrino
masses in the right range. Since ∆ is in an antisymmetric representation of SU(6), these
mass terms are antisymmetric in flavor space, i.e.

yν,ij = −yν,ji . (5.2.2)
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This leads to a highly predictive spectrum, with one zero eigenvalue, and the other two
eigenvalues equal in magnitude and opposite in sign. This corresponds to an inverted mass
hierarchy, in which the smaller ∆m2 arises from the difference between the masses of the
two heavier eigenstates. We can perform phase rotations on the right-handed neutrinos to
ensure that the elements of this mass matrix are real, so that the phase in the PMNS matrix
vanishes.

Clearly, the mass pattern above is ruled out experimentally. However, we need to include
the effects of higher-dimensional terms, which will give corrections to the pattern above.
Since these corrections are expected to be small, we expect to retain the qualitative features
of the spectrum above, in particular, an inverted ordering. An example of such a higher-
dimensional operator is the dimension-6 term

−Ld=6 = κν,ij
σ

M2
Pl

χiH
†χjĤ

† + h.c. (5.2.3)

This correction is parametrically smaller than the antisymmetric contribution in Eq. (5.2.1)
by a factor MGUT/MPl ∼ 10−2.

In order for the terms in Eq. (5.2.1) to give rise to the leading contribution to the
neutrino masses, other possible mass terms involving the light neutrino fields ν and νc must
be suppressed. The discrete Z4 symmetry forbids Majorana mass terms for ν and νc. It also
forbids Dirac mass terms between ν and N c. A Dirac mass term between νc and N c can be
generated as a Z7-breaking effect, but only at dimension-8:

−Ld=8 =
σ†

3

M4
Pl

χ̂Ĥ†χĤ† + h.c. (5.2.4)

This is too small to have any observable effect. Therefore, without loss of generality, the
neutrino mass matrix has the form of a real skew-symmetric matrix with a small complex
symmetric component. We write the mass term in matrix form as,

−Lmass =
(
νce νcµ νcτ

)
Mν

 νe
νµ
ντ

 . (5.2.5)

It is convenient to decompose the Dirac mass matrix as,

Mν = M0
ν + δm . (5.2.6)

Here M0
ν is skew-symmetric and takes the form

M0
ν =

 0 ma mb

−ma 0 mc

−mb −mc 0

 , (5.2.7)

while δm is an anarchic symmetric matrix whose entries are parametrically smaller than those
in M0

ν . We can choose ma,mb and mc in Eq. (5.2.7) to be real without loss of generality.
However, in general the elements of δm are complex.
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The PMNS matrix U is, as usual, defined to be the rotation matrix that relates the flavor
eigenstates ν` of the active neutrinos to the mass eigenstates νi: νe

νµ
ντ

 = U

 ν1

ν2

ν3

 . (5.2.8)

Defining Dν = diag(m1,m2,m3) as the diagonalized mass matrix with mass eigenvalues mi

corresponding to the eigenstates νi, we have

D†νDν = U †M †
νMνU . (5.2.9)

Therefore the PMNS matrix is identified with the matrix that diagonalizes the matrixM †
νMν .

By a suitable choice of ofma,mb,mc, and the elements in δm, we can fit the observed neutrino
mass splittings and mixing angles.

Before proceeding with a numerical scan, we first estimate the region of parameter space
consistent with observations. Although there are a large number of free parameters, since
onlyma,mb andmc are expected to be large, this scenario is very predictive. We parametrize
the elements of the skew-symmetric matrix M0

ν as follows:

ma = m cos θ cosφ ,

mb = m cos θ sinφ ,

mc = m sin θ . (5.2.10)

Since δm arises from a higher-dimensional operator, it can be treated as a perturbation. At
zeroth order in this perturbation, the eigenvalues for M †

νMν are simply {m2,m2, 0}. This
corresponds to a limiting case of an inverted mass hierarchy in which the smaller (solar) mass
splitting vanishes. By convention, in an inverted hierarchy the mass eigenstates m1,m2,m3

are labeled such thatm3 corresponds to the mass of the lightest state and the smaller splitting
is between m1 and m2, with m2 > m1. In our case, these correspond to the masses of two
degenerate eigenstates with mass m. Then the eigenstate with vanishing mass is identified
as ν3. The mixing angle θ12 mixes states in the degenerate subspace, and hence is arbitrary
at this order. It will be fixed by the perturbation. The other two mixing angles are given by
θ13 = θ and θ23 = φ. The Dirac CP phase δCP can be rotated away at this order as well.

To summarize, for δm = 0, which corresponds to zeroth order in the perturbation, the
model predictions for the solar and atmospheric mass-squared splittings, the mixing angles,
and the Dirac CP phase are given by

∆m2
sol ≡ ∆m2

21 = 0 , ∆m2
atm ≡ |∆m2

32| = m2 ,

θ13 = θ , θ23 = φ , θ12 = arbitrary , δCP = 0 , (5.2.11)

where ∆m2
ij ≡ m2

i − m2
j . Once we add the perturbation δm, the solar splitting and the

mixing angle θ12 are fixed. The perturbation δm can be parametrized as η m̂, where m̂ is an
anarchic symmetric matrix with entries of order m. The lightest eigenstate acquires a mass
of order ηm from the perturbation, and the solar splitting is now

∆m2
sol ≡ m2

2 −m2
1 ∼ 2ηm2 . (5.2.12)
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Fit |x11| |x22| x33 x12 x13 x23 ϕ11 ϕ22

Fit 1 (IH) 0.0620 0.0180 0.0410 0.0088 0.0184 0.0075 227.18◦ -
Fit 2 (IH) 0.1012 0.0234 0.0202 0.0113 0.0151 0.0022 292.30◦ -
Fit 3 (IH) 0.0620 0.0604 0.0239 0.0038 0.0236 0.0041 269.50◦ 288.10◦

Table 37: The values of the parameters for three benchmark points chosen to fit the neutrino
oscillation data in the case of Dirac neutrinos.

Oscillation 3σ allowed range Model prediction
parameters from NuFit4.1 [176] Fit 1 (IH) Fit 2 (IH) Fit 3 (IH)

∆m2
21(10−5 eV2) 6.79 - 8.01 7.35 7.39 7.41

∆m2
23(10−3 eV2) 2.416 - 2.603 2.540 2.506 2.540
sin2 θ12 0.275 - 0.350 0.319 0.314 0.305
sin2 θ23 0.430 - 0.612 0.557 0.558 0.559
sin2 θ13 0.02066 - 0.02461 0.0230 0.0224 0.0227
δCP (◦) 205 - 354 330.8 277.7 287.7

m3 (10−4 eV) - 1.57 1.56 2.88

Table 38: Predictions of the three benchmark points for the neutrino oscillation parameters
in the case of Dirac neutrinos, compared to the 3σ allowed range from a recent global fit. Also
included are the predictions of the benchmark points for the mass of the lightest neutrino.

The atmospheric mass splitting ∆m2
atm ≡ |m2

3−m2
2| continues to remain of the order of m2.

The ratio of the solar and atmospheric splittings determines the parametric size of η, which
in turn sets the mass of the lightest eigenstate. Putting in the numbers, we have

m1 '
√

∆m2
atm ∼ 0.05 eV ,

m2 ' m1 +
∆m2

sol

2m1

∼ 0.05 eV ,

m3 '
∆m2

sol

2
√

∆m2
atm

∼ 7× 10−4 eV . (5.2.13)

We see that a satisfactory fit to the data requires the parameter η to be of order m3/m1 ∼
10−2. Remarkably, this is in excellent agreement with the expected value of η from our
construction, η ∼MGUT/MPl ∼ 10−2.

We see that this flavor pattern results in a very predictive spectrum of neutrino masses and
mixings. We obtain an inverted mass hierarchy, with one neutrino hierarchically lighter than
the other two. This prediction can be conclusively tested in future long-baseline oscillation
experiments such as Hyper-K [491] and DUNE [492]. Since the CP -violating phase δCP in
the PMNS matrix vanishes in the limit that δm is zero, it might have been expected to be
small. However, the results of our numerical scans in Section 5.2.2 show that this need not
be the case, and that fairly large values of δCP can be obtained even for η . 10−2.
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Figure 85: Global oscillation analysis obtained from NuFit4.1 for the case of an inverted
hierarchy (IH) compared to the results from our benchmark points for the Dirac model (Fit1,
Fit2, Fit3). The gray, green, and pink-colored contours represent the NuFit 1σ, 2σ, and 3σ
CL allowed regions respectively, while the red markers represent the NuFit best-fit values for
an IH. The blue, black, and brown markers are respectively the predictions of the benchmark
points corresponding to Fit 1, Fit 2, and Fit 3, as given in Table 38.

5.2.2 Fits to the Data

Our strategy for the scan is as follows. The neutrino mass matrix is parameterized in terms
of a skew-symmetric matrix M0

ν with a small symmetric correction δm, as discussed in
Section 5.2.1. We fix the parameters {ma,mb,mc} of the skew-symmetric matrix M0

ν in
Eq. (5.2.7) such that the zeroth order predictions match the measured values of ∆m2

atm, θ13

and θ23 as given by Eq. (5.2.11). In particular, we take m2 ≡ ∆m2
atm = 2.509 × 10−3 eV2,

θ ≡ θ13 = 8.61◦, and φ ≡ θ23 = 48.3◦ corresponding to the central values from NuFit [176] for
the inverted hierarchy case and employ Eq. (5.2.10) to determine ma,mb, and mc. Further,
the size of the perturbation η is fixed by ∆m2

sol. We then scan over the anarchic matrix m̂
and obtain numerical predictions for the entire PMNS matrix. We choose to parametrize
the mass matrix in Eq. (5.2.6) in terms of mc and the ratios x1 ≡ ma/mc, x2 ≡ mb/mc and
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xij ≡ δmij/mc,

Mν =

 0 ma mb

−ma 0 mc

−mb −mc 0

+ δm

= mc

 0 x1 x2

−x1 0 1
−x2 −1 0

+

 |x11|eiϕ11 x12 x13

x12 |x22|eiϕ22 x23

x13 x23 x33

 . (5.2.14)

As can be seen from Eq. (5.2.10), the values of x1 and x2 are fixed at 4.393 and 4.931,
respectively. The elements of the perturbation matrix δm are restricted to be much smaller
than ma, mb, and mc. The input parameters xij shown in Table 37 are examples of fits that
are in excellent agreement with the recent global fit results from NuFit [176]. In obtaining
these fits, all the elements of δm have been taken to be real except δm11 and δm22. We have
introduced phases ϕ11 and ϕ22 in the elements δm11 and δm22 respectively in order to obtain
a non-zero CP phase in the PMNS matrix. Although the addition of just a single phase, say
ϕ11, can give us a non-vanishing δCP (as in Fits 1 and 2), we find that in this case a large
δCP requires a somewhat larger value of |x11| (as in Fit 2). The addition of a second phase
ϕ22 allows us to obtain a large δCP even if all the xij are small (as in Fit 3).

The predictions of these fits for the oscillation parameters are shown in Table 38, along
with the 3σ allowed range from NuFit4.1 global analysis [176]. Also included are the pre-
dictions for the mass of the lightest neutrino. Note that in each of these fits the lightest
neutrino mass is hierarchically lighter than the other two mass eigenstates by more than
two orders of magnitude. The results for the fits presented in Table 38 are also displayed in
Fig. 85 as Fit1, Fit2 and Fit3 in a two-dimensional projection of the 1σ (gray), 2σ (green),
and 3σ (pink) confidence level (CL) regions of the global-fit results (without the inclusion
of the Super-K atmospheric ∆χ2-data). The NuFit best-fit points in each plane are shown
by the red markers, while the blue, black and brown markers correspond to Fit1, Fit2 and
Fit3 respectively.

Interestingly, we find no significant restriction on the CP -violating phase δCP in the PMNS
matrix in this scenario. In particular, as seen from Fit 3, we can get a large CP phase in the
PMNS matrix even if all the elements of δm are smaller by a factor of order 10−2 than the
observed atmospheric splitting. Larger δCP values seem to be preferred by the recent T2K
results [462], and in the future, a more precise determination of δCP can only help us better
constrain the parameter space of the model.

5.3 Majorana Neutrino Masses

5.3.1 Pattern of Neutrino Masses

We now present a simple model in which the pattern of Majorana neutrino masses discussed
in Section 5.1 is realized. The model is based on a discrete Z6 symmetry under which the
fermions and Higgs scalars have the charge assignments shown in Table 39. With this choice
of charge assignments the interaction in Eq. (5.1.6) that gives GUT-scale masses to the extra
fermions (L̂, D̂c) in χ̂ and (L̂c, D̂) in ψ is allowed by the discrete Z6 symmetry. The Yukawa
couplings that generate masses for the SM quarks and charged leptons, Eqs. (5.1.7) and
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Multiplets SU(6) representation Z6 quantum number
χ 6̄ +1

fermion χ̂ 6̄ −2
ψ 15 +1
H 6 −2

scalar Ĥ 6̄ +1
∆ 15 +2
Σ 35 0

Table 39: Quantum numbers of the various fermion and scalar fields under the discrete Z6

symmetry in the model of Majorana neutrinos.

(5.1.8), are also allowed. Turning our attention to the neutrino sector, the renormalizable
Dirac mass term for the neutrinos, Eq. (5.1.9), and the nonrenormalizable Majorana mass
term for the right-handed neutrinos, Eq. (5.1.11), are both consistent with the discrete
symmetry. In the absence of other mass terms involving ν and νc, these interactions lead to
the desired pattern of Majorana neutrino masses. The singlet neutrinos N in χ̂ obtain large
Majorana masses of order the right-handed scale through the operator

−LRHN =
λN,ij
MPl

Ĥ†χ̂iĤ
†χ̂j . (5.3.1)

The discrete symmetry forbids a renormalizable Dirac mass term between the SM neutrinos
ν and the singlet neutrinos N . Any allowed Dirac mass terms between νc and N are highly
Planck suppressed and much smaller than their Majorana masses. It follows that the effects
of N on the neutrino masses are small and can be neglected. Then, the Dirac mass term in
Eq. (5.1.9) and the Majorana mass term in Eq. (5.1.11) give the dominant contributions to
the neutrino masses, leading to Majorana neutrino masses of parametrically the right size
that exhibit the pattern discussed in Section II.

5.3.2 Fits to the data

In this subsection, we obtain fits to the neutrino masses and mixings for the case of Majo-
rana neutrinos. The skew-symmetric Dirac mass matrix MD and symmetric Majorana mass
matrix Mνc are parameterized as

MD =

 0 m1 m2

−m1 0 m3

−m2 −m3 0

 , Mνc =

M11 M12 M13

M12 M22 M23

M13 M23 M33

 . (5.3.2)

In the limit thatMD �M c
ν , we can write the following seesaw relation for the light neutrino

masses,

Mν ' −MDM
−1
νc M

T
D

= −M0

 0 y1 y2

−y1 0 1
−y2 −1 0

|y11|eiϑ y12 y13

y12 y22 y23

y13 y23 1

−1 0 −y1 −y2

y1 0 −1
y2 1 0

 , (5.3.3)
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Fit y1 y2 |y11| y22 y12 y13 y23 ϑ M0 (eV)
Fit 1 (IH) 4.152 5.100 0.9937 0.8351 −0.0640 0.0537 0.0877 131.5◦ 8.485× 10−4

Fit 2 (IH) 4.459 4.868 0.9773 0.8608 −0.0624 0.0458 0.0745 148.0◦ 1.000× 10−3

Fit 3 (NH) 0.5116 0.4549 0.1330 -0.7430 −0.0375 0.0990 0.0263 241.3◦ 1.127× 10−2

Fit 4 (NH) 0.4983 0.4614 0.1211 -0.6934 −0.0430 0.0980 0.0425 245.4◦ 1.204× 10−2

Table 40: Values of the parameters chosen for four different benchmark models that fit the
neutrino oscillation data in the case of Majorana neutrinos.

Oscillation 3σ allowed range Model prediction
parameters from NuFit4.1 [176] Fit 1 (IH) Fit 2 (IH) Fit 3 (NH) Fit 4 (NH)

∆m2
21(10−5 eV2) 6.79 - 8.01 7.40 7.39 7.24 7.50

∆m2
23(10−3 eV2)(IH) 2.416 - 2.603 2.509 2.504 - -

∆m2
31(10−3 eV2)(NH) 2.432 - 2.618 - - 2.532 2.500

sin2 θ12 0.275 - 0.350 0.309 0.310 0.303 0.300
sin2 θ23 (IH) 0.430 - 0.612 0.590 0.544 - -
sin2 θ23 (NH) 0.427 - 0.609 - - 0.516 0.527
sin2 θ13 (IH) 0.02066 - 0.02461 0.02258 0.02241 - -
sin2 θ13(NH) 0.02046 - 0.02440 - - 0.02232 0.02231
δCP (◦) (IH) 205 - 354 296.3 286.4 - -
δCP (◦) (NH) 141 - 370 - - 282.3 277.2

Table 41: Predictions of the benchmark models for the neutrino oscillation parameters in
the case of Majorana neutrinos, compared to the 3σ allowed range from a recent global fit.

where we choose to parametrize the mass matrix in terms of yi ≡ mi/m3, yij ≡Mij/M33, and
M0 ≡ m2

3/M33. The overall mass scaleM0 is required to be tiny, of order 10−11 GeV, to obtain
the observed values of neutrino masses. We perform a numerical scan of the input parame-
ters, as shown in Eq. (5.3.3), to obtain predictions for the entire PMNS matrix. It is beyond
the scope of this work to scan over the full parameter space; instead, we perform a con-
strained minimization in which the five neutrino observables (sin2 θ12, sin

2 θ13, sin
2 θ23,∆m

2
21,

and |∆m2
3l| with l = 1 in the case of normal hierarchy and l = 2 for inverted) are restricted to

lie within 2σ of their experimentally measured values. The parameter M11 has been chosen
to be complex in order to induce a CP violating phase in the PMNS matrix, but the other
parameters have been taken to be real. We emphasize that the lightest neutrino is exactly
massless due to the skew-symmetric nature of the Dirac mass matrix MD.

The input parameters shown in Table 40 provide excellent fits to the oscillation data,
as can be seen in Table 41. For each of the benchmark points the CP phase in the PMNS
matrix is large, showing that there is no restriction on its value. Fits 1 and 2 correspond to
an inverted hierarchy, whereas Fits 3 and 4 represent a normal hierarchy. The benchmark
points (Fit 1, Fit 2, Fit 3 and Fit 4) are also displayed in Fig. 86 as Fit1 (IH), Fit2 (IH),
Fit3 (NH), and Fit4 (NH) as blue, black, brown, and gray markers respectively in various
two-dimensional projections of the global-fit results [176].
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Figure 86: Global oscillation analysis obtained from NuFit4.1 for both the normal hierar-
chy (NH) and inverted hierarchy (IH) compared to our benchmark models for the Majorana
case (Fit1, Fit2, Fit3, Fit4). The gray, green, and pink-colored contours represent the NuFit
1σ, 2σ, and 3σ CL contours respectively in the NH case, whereas the solid, dashed, and dotted
lines correspond to the 1σ, 2σ, and 3σ CL contours respectively for IH. The red and purple
markers in each case correspond to the NuFit best-fit values for the IH and NH respectively,
while the blue, black, brown, and gray markers are the predictions of the benchmark models
corresponding to Fit 1, 2, 3, and 4 respectively, as given in Table 41. In the bottom right
panel, |∆m2

3l| refers to the atmospheric mass-squared splitting, with l = 1 (2) for NH (IH).
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Figure 87: Model predictions for the effective Majorana mass mee as a function of sin2 θ12

(left), ∆m2
21 (right), and

∑
mi (bottom). The blue (red) points correspond to NH (IH) and

the dark (light) color corresponds to the 1σ (3σ) CL for the oscillation observables. The
horizontal orange band shows the sensitivity of the future 0νββ experiment nEXO at 3σ CL.
The vertical blue (red) band shows the forecast 1σ limits on

∑
mi from CMB-S4 in the case

of NH (IH), whereas the vertical dotted lines show the corresponding central values.

5.3.3 Neutrinoless double beta Decay

In the standard framework with only light neutrinos contributing to 0νββ, the amplitude
for the 0νββ rate is proportional to the ee−element of the neutrino mass matrix, given by

mee = |m1c
2
12c

2
13 + eiαm2s

2
12c

2
13 + eiβm3s

2
13| . (5.3.4)

Here m1, m2, and m3 are the masses of the three light neutrinos, while s2
ij ≡ sin2 θij,

c2
ij ≡ cos2 θij (for ij = 12, 13, 23), and (α, β) are the two unknown Majorana phases.

We can apply Eq. (5.3.4) to our framework to determine its implications for 0νββ. Since
the determinant ofMD vanishes owing to its skew-symmetric structure, the lightest neutrino
is exactly massless. For a given mass ordering (normal or inverted), the masses of the heavier
two neutrinos can then be determined from the observed mass splittings. The expression
for the effective Majorana mass given in Eq. (5.3.4) then reduces to one of the following
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equations, depending on whether the hierarchy is normal or inverted:

mNH
ee =

∣∣∣∣√∆m2
21s

2
12c

2
13 +

√
∆m2

31s
2
13e

i(β−α)

∣∣∣∣ , (5.3.5)

mIH
ee =

∣∣∣∣√|∆m2
32| −∆m2

21 c
2
12c

2
13 +

√
|∆m2

32| s2
12c

2
13e

iα

∣∣∣∣ . (5.3.6)

Note that only one Majorana phase (or one specific linear combination of phases) is relevant,
due to the smallest mass eigenvalue being zero.

To illustrate the range of possibilities for 0νββ in this class of models, in Fig. 87 we plot
the effective Majorana mass as a function of sin2 θ12, ∆m2

21 and the sum of light neutrino
masses

∑
mi. We restrict to points that lie within 1σ and 3σ of the allowed oscillation

parameter range. Each data point in Fig. 87 represents a valid fit that has been obtained
by scanning over the input parameters shown in Eq. (5.3.3). For the purposes of this scan,
we have taken all the elements of the Mνc matrix to be complex. Here the blue (red) points
correspond to the case of normal (inverted) hierarchy. The Majorana phases, as well as the
other observables in Eqs. (5.3.5) and (5.3.6), have been obtained as predictions of the points
in the scan. First, the PMNS matrix is identified with the matrix diagonalizing M †

νMν ,
where Mν is given in Eq. (5.3.3). Then, taking UTMνU = Dν gives the diagonalized mass
matrix with the appropriate Majorana phases.

We can use Eqs. (5.3.5) and (5.3.6) to obtain upper and lower limits on the rate of 0νββ
in this class of models. In the case of a normal hierarchy, the two terms in Eq. (5.3.5) add
constructively for 0 ≤ (β−α) ≤ π/2, while partial cancellation occurs for π/2 ≤ (β−α) ≤ π.
The most effective cancellation (addition) happens when β − α = π (2π). This allows us
to calculate the minimum and maximum values of the effective Majorana mass, which is
parameterized as

mMIN,MAX
ee (NH) =

∣∣∣∣√∆m2
21s

2
12c

2
13 ∓

√
∆m2

31s
2
13

∣∣∣∣ . (5.3.7)

Allowing the fit values from NuFit4.1 to vary over the 3σ range, the minimum effective Ma-
jorana mass is obtained as mMIN

ee = 9.7× 10−4 eV, whereas the maximum effective Majorana
mass is mMAX

ee = 4.3× 10−3 eV. One can make similar arguments in the case of an inverted
hierarchy, for which the most effective cancellation (enhancement) happens when α = π (0)
in Eq. (5.3.6). This leads to

mMIN,MAX
ee (IH) =

∣∣∣∣√|∆m2
32| −∆m2

21 c
2
12c

2
13 ∓

√
|∆m2

32| s2
12c

2
13

∣∣∣∣ , (5.3.8)

This allows us to determine the minimum and maximum values of the effective Majorana
mass in the case of an inverted mass hierarchy as mMIN

ee = 1.39 × 10−2 eV and mMAX
ee =

4.95× 10−2 eV respectively.
Future ton-scale 0νββ experiments such as LEGEND [505] and nEXO [506] should be able

to probe the entire parameter space of this class of models if the hierarchy is inverted. For
illustration, we show in Fig. 87 the future sensitivity from nEXO [506] at 3σ CL (horizontal
orange band), where the band takes into account the nuclear matrix element uncertainties
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involved in translating a given lower bound on the half-life into an upper bound on the
effective Majorana mass parameter.

Similarly, a future cosmological measurement of the sum of the light neutrino masses∑
mi would allow another test of the model predictions. Shown in the bottom panel of

Fig. 87 are the 1σ sensitivity from CMB-S4 [489] (vertical band) for both the normal hierarchy
(blue) and inverted hierarchy (red). It is clear from the figure that the model predictions lie
well within the 1σ sensitivity of CMB-S4, and so these measurements offer an opportunity
to test this scenario.

5.4 Conclusion

In summary, we have presented a framework for neutrino masses in SU(6) GUTs that predicts
a specific texture for the form of the leading contribution to the Dirac mass term. In this
scenario, neutrinos can be either Dirac or Majorana particles. A concrete prediction in the
Dirac case is that the mass hierarchy is inverted. In the Majorana case, on the other hand,
both normal and inverted hierarchies are allowed. In both the Dirac and Majorana cases,
the model makes cosmologically testable predictions regarding the sum of neutrino masses.
Furthermore, in the case of Majorana neutrinos, this framework predicts lower and upper
bounds on the rate of 0νββ for both the normal and the inverted hierarchies. In the case of
an inverted hierarchy, this prediction can be tested in future ton-scale 0νββ experiments.
Note Added: While this work was in progress we received Ref. [496], which considers
Majorana neutrino masses in the context of an intermediate scale SU(3) × SU(3) × U(1)
model embedded in an SU(6) GUT. Although based on the inverse seesaw framework, the
resulting pattern of neutrino masses shares some of the features of our Majorana construction,
including the skew-symmetric form of the Dirac mass term and a massless neutrino.
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CHAPTER VI

SUMMARY AND CONCLUSIONS

The standard model has been highly successful in confronting several significant discoveries
were made over the past few decades. However, it fails to explain many observed phenomena
as forementioned; thus, it cannot be a complete theory of nature. Building new models
Beyond SM (BSM) to resolve shortcomings of the SM and solving various experimental
discrepancies has been the primary focus of this dissertation. Each model presented here
has its unique features and rich phenomenology that can be experimentally investigated.

In chapter II we studied comprehensive radiative neutrino mass models to analyze non-
standard neutrino interactions generated by new scalars. Here we also coined a new classifica-
tion type-I and type-II, based on whether SM fields are present in the loop. Furthermore, only
type-I radiative models (with SM fields inside the loop) are significant in generating NSI at
tree-level as neutrino couples to a SM fermion and a new scalar directly. We mainly focused
on two popular models: the Zee model and its variant with LQs replacing the charged scalars.
After properly implementing various constraints, such as charged lepton flavor violation,
monophoton constraints from LEP, direct searches for pair and single production of charged
scalars at LEP and LHC, Higgs physics constraints, lepton universality, and electroweak
precision constraints, we found diagonal values of NSI in Zee model (εee, εµµ, εττ ) can be
as large as (8%, 3.8%, 43%), while the off-diagonal NSI parameters (εeµ, εeτ , εµτ ) can be at
most (10−3%, 0.56%, 0.34%). Secondly, we also studied LQ version of the Zee model in great
detail and found that diagonal NSI (εee, εµµ, εττ ) can be as large as (0.4%, 21.6%, 34.3%),
while off-diagonal NSI (εeµ, εeτ εµτ ) can be as large as (10−5%, 0.36%, 0.43%), while being
consistent with various constraints.

The study in chapter III showed that the mass of right-handed Majorana neutrinos is
induced via two-loop diagrams in a simple and minimal left-right symmetric model without
conventional Higgs triplets. This model has a scalar charged singlet η+ to break the lepton
number by two units. The model exhibits a natural hierarchy in the masses of νR and WR

due to the two-loop suppression factor. For the WR mass of (5− 20) TeV, the νR fields will
have masses of a few tens of MeV while being consistent with low energy constraints and
constraints from cosmology and astrophysics. Moreover, we have also studied multi-lepton
collider signals from the production and decay of the η+ scalar and found the limit on the
mass to be 410 GeV in an optimistic scenario.

In chapter IV we explored a radiative neutrino mass model involving TeV-scale scalar
leptoquarks R2 and S3, which can simultaneously explain the RD(?) , RK(?) , and muon g − 2
anomalies, all within 1σ CL. The model is consistent with neutrino oscillation data, as well
as all flavor and LHC constraints. The model also employs a quadruplet scalar ∆ required
to generate Majorana neutrino mass at loop level. Moreover, the same parameter that gives

217



rise to muon g − 2 also naturally leads to SM Higgs decays to muon and tau pairs, with
the modified branching ratios at 2-6% level, which could be probed at the future hadron
colliders, such as HL-LHC and FCC-hh.

Finally, chapter V presented a model for neutrino masses in SU(6) GUTs. The firm
prediction of this framework is that the mass ordering of neutrinos is inverted for Dirac
particles, whereas both normal and inverted ordering is allowed for the Majorana case.
Moreover, in the Majorana case, this model predicts a lower and upper bound on the rate
of 0νββ that can be tested in future ton-scale 0νββ experiments.

Thus this dissertation aims to study various BSM neutrino mass mechanisms ranging from
a simple extension of SM by adding scalars to grand unification to resolve the shortcomings of
the SM. All the models studied focuses on the future sensitivity of these new BSM models at
the Energy Frontier and the Intensity Frontier, particularly with LHC, DUNE, and IceCube.
Thus, this proposal aspires to strengthen the theoretical and experimental motivations for
dedicated new physics searches in the coming future.

218



REFERENCES

[1] Georges Aad et al. Observation of a new particle in the search for the Standard Model
Higgs boson with the ATLAS detector at the LHC. Phys. Lett. B, 716:1–29, 2012. doi:
10.1016/j.physletb.2012.08.020.

[2] Serguei Chatrchyan et al. Observation of a New Boson at a Mass of 125 GeV
with the CMS Experiment at the LHC. Phys. Lett. B, 716:30–61, 2012. doi:
10.1016/j.physletb.2012.08.021.

[3] B. Pontecorvo. Mesonium and anti-mesonium. Sov. Phys. JETP, 6:429, 1957.

[4] B. Pontecorvo. Inverse beta processes and nonconservation of lepton charge. Zh. Eksp.
Teor. Fiz., 34:247, 1957.

[5] Ziro Maki, Masami Nakagawa, and Shoichi Sakata. Remarks on the unified model of
elementary particles. Prog. Theor. Phys., 28:870–880, 1962. doi: 10.1143/PTP.28.870.
[,34(1962)].

[6] Samoil M. Bilenky, J. Hosek, and S. T. Petcov. On Oscillations of Neutrinos with
Dirac and Majorana Masses. Phys. Lett., 94B:495–498, 1980. doi: 10.1016/0370-
2693(80)90927-2.

[7] J. Schechter and J. W. F. Valle. Neutrino Masses in SU(2) x U(1) Theories. Phys.
Rev., D22:2227, 1980. doi: 10.1103/PhysRevD.22.2227.

[8] Ivan Esteban, M.C. Gonzalez-Garcia, Michele Maltoni, Thomas Schwetz, and Albert
Zhou. The fate of hints: updated global analysis of three-flavor neutrino oscillations.
JHEP, 09:178, 2020. doi: 10.1007/JHEP09(2020)178.

[9] Vera C. Rubin and W. Kent Ford, Jr. Rotation of the Andromeda Nebula from a
Spectroscopic Survey of Emission Regions. Astrophys. J., 159:379–403, 1970. doi:
10.1086/150317.

[10] Douglas Clowe, Anthony Gonzalez, and Maxim Markevitch. Weak lensing mass re-
construction of the interacting cluster 1E0657-558: Direct evidence for the existence
of dark matter. Astrophys. J., 604:596–603, 2004. doi: 10.1086/381970.

[11] Mariangela Lisanti. Lectures on Dark Matter Physics. In Theoretical Advanced Study
Institute in Elementary Particle Physics: New Frontiers in Fields and Strings, 3 2016.
doi: 10.1142/9789813149441_0007.

219



[12] P.A. Zyla et al. Review of Particle Physics. PTEP, 2020(8):083C01, 2020. doi:
10.1093/ptep/ptaa104.

[13] G. Hinshaw et al. Nine-Year Wilkinson Microwave Anisotropy Probe (WMAP) Ob-
servations: Cosmological Parameter Results. Astrophys. J. Suppl., 208:19, 2013. doi:
10.1088/0067-0049/208/2/19.

[14] G.W. Bennett et al. Final Report of the Muon E821 Anomalous Magnetic Mo-
ment Measurement at BNL. Phys. Rev. D, 73:072003, 2006. doi: 10.1103/Phys-
RevD.73.072003.

[15] B. Abi et al. Measurement of the Positive Muon Anomalous Magnetic Moment to 0.46
ppm. Phys. Rev. Lett., 126(14):141801, 2021. doi: 10.1103/PhysRevLett.126.141801.

[16] T. Aoyama et al. The anomalous magnetic moment of the muon in the Standard
Model. 6 2020.

[17] J. P. Lees et al. Evidence for an excess of B̄ → D(∗)τ−ν̄τ decays. Phys. Rev. Lett.,
109:101802, 2012. doi: 10.1103/PhysRevLett.109.101802.

[18] J. P. Lees et al. Measurement of an Excess of B̄ → D(∗)τ−ν̄τ Decays and Implications
for Charged Higgs Bosons. Phys. Rev., D88(7):072012, 2013. doi: 10.1103/Phys-
RevD.88.072012.

[19] M. Huschle et al. Measurement of the branching ratio of B̄ → D(∗)τ−ν̄τ relative to
B̄ → D(∗)`−ν̄` decays with hadronic tagging at Belle. Phys. Rev., D92(7):072014, 2015.
doi: 10.1103/PhysRevD.92.072014.

[20] S. Hirose et al. Measurement of the τ lepton polarization and R(D∗) in the de-
cay B̄ → D∗τ−ν̄τ . Phys. Rev. Lett., 118(21):211801, 2017. doi: 10.1103/Phys-
RevLett.118.211801.

[21] A. Abdesselam et al. Measurement of the branching ratio of B̄0 → D∗+τ−ν̄τ relative
to B̄0 → D∗+`−ν̄` decays with a semileptonic tagging method. In Proceedings, 51st
Rencontres de Moriond on Electroweak Interactions and Unified Theories: La Thuile,
Italy, March 12-19, 2016, 2016.

[22] R. Aaij et al. Measurement of the ratio of branching fractions B(B+
c →

J/ψτ+ντ )/B(B+
c → J/ψµ+νµ). Phys. Rev. Lett., 120(12):121801, 2018. doi:

10.1103/PhysRevLett.120.121801.

[23] R. Aaij et al. Measurement of the ratio of the B0 → D∗−τ+ντ and B0 → D∗−µ+νµ
branching fractions using three-prong τ -lepton decays. Phys. Rev. Lett., 120(17):
171802, 2018. doi: 10.1103/PhysRevLett.120.171802.

[24] Roel Aaij et al. Search for lepton-universality violation in B+ → K+`+`− decays.
2019.

220



[25] R. Aaij et al. Test of lepton universality with B0 → K∗0`+`− decays. JHEP, 08:055,
2017. doi: 10.1007/JHEP08(2017)055.

[26] K. S. Babu, P. S. Bhupal Dev, Sudip Jana, and Anil Thapa. Non-Standard
Interactions in Radiative Neutrino Mass Models. JHEP, 03:006, 2020. doi:
10.1007/JHEP03(2020)006.

[27] Neutrino Non-Standard Interactions: A Status Report, volume 2, 2019. doi:
10.21468/SciPostPhysProc.2.001.

[28] K. S. Babu and Anil Thapa. Left-Right Symmetric Model without Higgs Triplets. 12
2020.

[29] K. S. Babu, P. S. Bhupal Dev, Sudip Jana, and Anil Thapa. Unified framework
for B-anomalies, muon g − 2 and neutrino masses. JHEP, 03:179, 2021. doi:
10.1007/JHEP03(2021)179.

[30] Zackaria Chacko, P. S. Bhupal Dev, Rabindra N. Mohapatra, and Anil Thapa. Predic-
tive Dirac and Majorana Neutrino Mass Textures from SU(6) Grand Unified Theories.
Phys. Rev. D, 102(3):035020, 2020. doi: 10.1103/PhysRevD.102.035020.

[31] Steven Weinberg. Baryon and Lepton Nonconserving Processes. Phys. Rev. Lett., 43:
1566–1570, 1979. doi: 10.1103/PhysRevLett.43.1566.

[32] Peter Minkowski. µ → eγ at a Rate of One Out of 109 Muon Decays? Phys. Lett.,
67B:421–428, 1977. doi: 10.1016/0370-2693(77)90435-X.

[33] Rabindra N. Mohapatra and Goran Senjanovic. Neutrino Mass and Spontaneous Parity
Nonconservation. Phys. Rev. Lett., 44:912, 1980. doi: 10.1103/PhysRevLett.44.912.

[34] Tsutomu Yanagida. Horizontal gauge symmetry and masses of neutrinos. Conf. Proc.,
C7902131:95–99, 1979.

[35] Murray Gell-Mann, Pierre Ramond, and Richard Slansky. Complex Spinors and Uni-
fied Theories. Conf. Proc., C790927:315–321, 1979.

[36] S. L. Glashow. The Future of Elementary Particle Physics. NATO Sci. Ser. B, 61:687,
1980. doi: 10.1007/978-1-4684-7197-7_15.

[37] T. P. Cheng and Ling-Fong Li. Neutrino Masses, Mixings and Oscillations in SU(2)
× U(1) Models of Electroweak Interactions. Phys. Rev., D22:2860, 1980. doi:
10.1103/PhysRevD.22.2860.

[38] Rabindra N. Mohapatra and Goran Senjanovic. Neutrino Masses and Mixings in
Gauge Models with Spontaneous Parity Violation. Phys. Rev., D23:165, 1981. doi:
10.1103/PhysRevD.23.165.

[39] George Lazarides, Q. Shafi, and C. Wetterich. Proton Lifetime and Fermion Masses in
an SO(10) Model. Nucl. Phys., B181:287–300, 1981. doi: 10.1016/0550-3213(81)90354-
0.

221



[40] Robert Foot, H. Lew, X. G. He, and Girish C. Joshi. Seesaw Neutrino Masses Induced
by a Triplet of Leptons. Z. Phys., C44:441, 1989. doi: 10.1007/BF01415558.

[41] Ernest Ma. Pathways to naturally small neutrino masses. Phys. Rev. Lett., 81:1171–
1174, 1998. doi: 10.1103/PhysRevLett.81.1171.

[42] Jörn Kersten and Alexei Yu. Smirnov. Right-Handed Neutrinos at CERN LHC and
the Mechanism of Neutrino Mass Generation. Phys. Rev., D76:073005, 2007. doi:
10.1103/PhysRevD.76.073005.

[43] A. Zee. A Theory of Lepton Number Violation, Neutrino Majorana Mass, and Oscil-
lation. Phys. Lett., 93B:389, 1980. doi: 10.1016/0370-2693(80)90349-4, 10.1016/0370-
2693(80)90193-8. [Erratum: Phys. Lett.95B,461(1980)].

[44] A. Zee. Quantum Numbers of Majorana Neutrino Masses. Nucl. Phys., B264:99–110,
1986. doi: 10.1016/0550-3213(86)90475-X.

[45] K. S. Babu. Model of ’Calculable’ Majorana Neutrino Masses. Phys. Lett., B203:
132–136, 1988. doi: 10.1016/0370-2693(88)91584-5.

[46] Yi Cai, Juan Herrero-Garcia, Michael A. Schmidt, Avelino Vicente, and Raymond R.
Volkas. From the trees to the forest: a review of radiative neutrino mass models.
Front.in Phys., 5:63, 2017. doi: 10.3389/fphy.2017.00063.

[47] L. Wolfenstein. Neutrino Oscillations in Matter. Phys. Rev., D17:2369–2374, 1978.
doi: 10.1103/PhysRevD.17.2369.

[48] P. S. Bhupal Dev, K. S. Babu, Peter B. Denton, Pedro A. N. Machado, et al. Neutrino
Non-Standard Interactions: A Status Report. SciPost. Phys. Proc., 2:001, 2019. doi:
10.21468/SciPostPhysProc.2.001.

[49] M. B. Gavela, D. Hernandez, T. Ota, and W. Winter. Large gauge invariant non-
standard neutrino interactions. Phys. Rev., D79:013007, 2009. doi: 10.1103/Phys-
RevD.79.013007.

[50] Yasaman Farzan and Ian M. Shoemaker. Lepton Flavor Violating Non-Standard In-
teractions via Light Mediators. JHEP, 07:033, 2016. doi: 10.1007/JHEP07(2016)033.

[51] K. S. Babu, A. Friedland, P. A. N. Machado, and I. Mocioiu. Flavor Gauge Models
Below the Fermi Scale. JHEP, 12:096, 2017. doi: 10.1007/JHEP12(2017)096.

[52] Peter B. Denton, Yasaman Farzan, and Ian M. Shoemaker. Testing large non-standard
neutrino interactions with arbitrary mediator mass after COHERENT data. JHEP,
07:037, 2018. doi: 10.1007/JHEP07(2018)037.

[53] David V. Forero and Wei-Chih Huang. Sizable NSI from the SU(2)L scalar
doublet-singlet mixing and the implications in DUNE. JHEP, 03:018, 2017. doi:
10.1007/JHEP03(2017)018.

222



[54] Ujjal Kumar Dey, Newton Nath, and Soumya Sadhukhan. Non-Standard Neutrino In-
teractions in a Modified ν2HDM. Phys. Rev., D98(5):055004, 2018. doi: 10.1103/Phys-
RevD.98.055004.

[55] K. S. Babu and Chung Ngoc Leung. Classification of effective neutrino mass operators.
Nucl. Phys., B619:667–689, 2001. doi: 10.1016/S0550-3213(01)00504-1.

[56] Andre de Gouvea and James Jenkins. A Survey of Lepton Number Violation Via
Effective Operators. Phys. Rev., D77:013008, 2008. doi: 10.1103/PhysRevD.77.013008.

[57] Lawrence J. Hall and Mahiko Suzuki. Explicit R-Parity Breaking in Supersymmetric
Models. Nucl. Phys., B231:419–444, 1984. doi: 10.1016/0550-3213(84)90513-3.

[58] Ilja Doršner, Svjetlana Fajfer, and Nejc Košnik. Leptoquark mechanism of neutrino
masses within the grand unification framework. Eur. Phys. J., C77(6):417, 2017. doi:
10.1140/epjc/s10052-017-4987-2.

[59] D. Aristizabal Sierra, M. Hirsch, and S. G. Kovalenko. Leptoquarks: Neutrino masses
and accelerator phenomenology. Phys. Rev., D77:055011, 2008. doi: 10.1103/Phys-
RevD.77.055011.

[60] Yi Cai, Jackson D. Clarke, Michael A. Schmidt, and Raymond R. Volkas. Test-
ing Radiative Neutrino Mass Models at the LHC. JHEP, 02:161, 2015. doi:
10.1007/JHEP02(2015)161.

[61] Masaya Kohda, Hiroaki Sugiyama, and Koji Tsumura. Lepton number violation at
the LHC with leptoquark and diquark. Phys. Lett., B718:1436–1440, 2013. doi:
10.1016/j.physletb.2012.12.048.

[62] K. S. Babu and J. Julio. Two-Loop Neutrino Mass Generation through Leptoquarks.
Nucl. Phys., B841:130–156, 2010. doi: 10.1016/2010.07.022.

[63] K. S. Babu and J. Julio. Radiative Neutrino Mass Generation through Vector-like
Quarks. Phys. Rev., D85:073005, 2012. doi: 10.1103/PhysRevD.85.073005.

[64] Paul W. Angel, Yi Cai, Nicholas L. Rodd, Michael A. Schmidt, and Ray-
mond R. Volkas. Testable two-loop radiative neutrino mass model based on an
LLQdcQdc effective operator. JHEP, 10:118, 2013. doi: 10.1007/JHEP11(2014)092,
10.1007/JHEP10(2013)118. [Erratum: JHEP11,092(2014)].

[65] Lawrence M. Krauss, Salah Nasri, and Mark Trodden. A Model for neutrino masses
and dark matter. Phys. Rev., D67:085002, 2003. doi: 10.1103/PhysRevD.67.085002.

[66] Takaaki Nomura, Hiroshi Okada, and Nobuchika Okada. A Colored KNT Neutrino
Model. Phys. Lett., B762:409–414, 2016. doi: 10.1016/j.physletb.2016.09.038.

[67] Mayumi Aoki, Shinya Kanemura, and Osamu Seto. Neutrino mass, Dark Matter and
Baryon Asymmetry via TeV-Scale Physics without Fine-Tuning. Phys. Rev. Lett., 102:
051805, 2009. doi: 10.1103/PhysRevLett.102.051805.

223



[68] Michael Gustafsson, Jose Miguel No, and Maximiliano A. Rivera. Predictive Model
for Radiatively Induced Neutrino Masses and Mixings with Dark Matter. Phys. Rev.
Lett., 110(21):211802, 2013. doi: 10.1103/PhysRevLett.110.211802, 10.1103/Phys-
RevLett.112.259902. [Erratum: Phys. Rev. Lett.112,no.25,259902(2014)].

[69] Paul W. Angel, Nicholas L. Rodd, and Raymond R. Volkas. Origin of neutrino masses
at the LHC: ∆L = 2 effective operators and their ultraviolet completions. Phys. Rev.,
D87(7):073007, 2013. doi: 10.1103/PhysRevD.87.073007.

[70] Christiane Klein, Manfred Lindner, and Stefan Vogl. Radiative neutrino masses and
successful SU(5) unification. 2019.

[71] Apostolos Pilaftsis. Radiatively induced neutrino masses and large Higgs neutrino
couplings in the standard model with Majorana fields. Z. Phys., C55:275–282, 1992.
doi: 10.1007/BF01482590.

[72] P. S. Bhupal Dev and Apostolos Pilaftsis. Minimal Radiative Neutrino Mass Mecha-
nism for Inverse Seesaw Models. Phys. Rev., D86:113001, 2012. doi: 10.1103/Phys-
RevD.86.113001.

[73] Ernest Ma. Verifiable radiative seesaw mechanism of neutrino mass and dark matter.
Phys. Rev., D73:077301, 2006. doi: 10.1103/PhysRevD.73.077301.

[74] Jisuke Kubo, Ernest Ma, and Daijiro Suematsu. Cold Dark Matter, Radiative Neutrino
Mass, µ → eγ, and Neutrinoless Double Beta Decay. Phys. Lett., B642:18–23, 2006.
doi: 10.1016/j.physletb.2006.08.085.

[75] Pavel Fileviez Perez and Mark B. Wise. On the Origin of Neutrino Masses. Phys.
Rev., D80:053006, 2009. doi: 10.1103/PhysRevD.80.053006.

[76] Sandy S. C. Law and Kristian L. McDonald. A Class of Inert N-tuplet Mod-
els with Radiative Neutrino Mass and Dark Matter. JHEP, 09:092, 2013. doi:
10.1007/JHEP09(2013)092.

[77] Diego Restrepo, Oscar Zapata, and Carlos E. Yaguna. Models with radiative
neutrino masses and viable dark matter candidates. JHEP, 11:011, 2013. doi:
10.1007/JHEP11(2013)011.

[78] Seungwon Baek, Hiroshi Okada, and Kei Yagyu. Flavour Dependent Gauged Radiative
Neutrino Mass Model. JHEP, 04:049, 2015. doi: 10.1007/JHEP04(2015)049.

[79] Bhaskar Dutta, Sumit Ghosh, Ilia Gogoladze, and Tianjun Li. Three-loop neutrino
masses via new massive gauge bosons from E6 GUT. Phys. Rev., D98(5):055028, 2018.
doi: 10.1103/PhysRevD.98.055028.

[80] Juan Herrero-Garcia, Tommy Ohlsson, Stella Riad, and Jens Wiren. Full parameter
scan of the Zee model: exploring Higgs lepton flavor violation. JHEP, 04:130, 2017.
doi: 10.1007/JHEP04(2017)130.

224



[81] Mark B. Wise and Yue Zhang. Effective Theory and Simple Completions for Neutrino
Interactions. Phys. Rev., D90(5):053005, 2014. doi: 10.1103/PhysRevD.90.053005.

[82] Florian Bonnet, Martin Hirsch, Toshihiko Ota, and Walter Winter. Systematic
study of the d=5 Weinberg operator at one-loop order. JHEP, 07:153, 2012. doi:
10.1007/JHEP07(2012)153.

[83] D. Aristizabal Sierra, A. Degee, L. Dorame, and M. Hirsch. Systematic classifica-
tion of two-loop realizations of the Weinberg operator. JHEP, 03:040, 2015. doi:
10.1007/JHEP03(2015)040.

[84] A. M. Dziewonski and D. L. Anderson. Preliminary reference earth model. Phys. Earth
Planet. Interiors, 25:297–356, 1981. doi: 10.1016/0031-9201(81)90046-7.

[85] Aldo Serenelli, Sarbani Basu, Jason W. Ferguson, and Martin Asplund. New Solar
Composition: The Problem With Solar Models Revisited. Astrophys. J., 705:L123–
L127, 2009. doi: 10.1088/0004-637X/705/2/L123.

[86] Pilar Coloma and Thomas Schwetz. Generalized mass ordering degeneracy
in neutrino oscillation experiments. Phys. Rev., D94(5):055005, 2016. doi:
10.1103/PhysRevD.95.079903, 10.1103/PhysRevD.94.055005. [Erratum: Phys.
Rev.D95,no.7,079903(2017)].

[87] Pilar Coloma, Peter B. Denton, M. C. Gonzalez-Garcia, Michele Maltoni, and Thomas
Schwetz. Curtailing the Dark Side in Non-Standard Neutrino Interactions. JHEP, 04:
116, 2017. doi: 10.1007/JHEP04(2017)116.

[88] Y. Farzan and M. Tortola. Neutrino oscillations and Non-Standard Interactions.
Front.in Phys., 6:10, 2018. doi: 10.3389/fphy.2018.00010.

[89] Ivan Esteban, M. C. Gonzalez-Garcia, Michele Maltoni, Ivan Martinez-Soler, and Jordi
Salvado. Updated Constraints on Non-Standard Interactions from Global Analysis of
Oscillation Data. JHEP, 08:180, 2018. doi: 10.1007/JHEP08(2018)180.

[90] Ivan Esteban, M. C. Gonzalez-Garcia, and Michele Maltoni. On the Determination
of Leptonic CP Violation and Neutrino Mass Ordering in Presence of Non-Standard
Interactions: Present Status. JHEP, 06:055, 2019. doi: 10.1007/JHEP06(2019)055.

[91] Andre de Gouvea and Kevin J. Kelly. Non-standard Neutrino Interactions at DUNE.
Nucl. Phys., B908:318–335, 2016. doi: 10.1016/j.nuclphysb.2016.03.013.

[92] Pilar Coloma. Non-Standard Interactions in propagation at the Deep Underground
Neutrino Experiment. JHEP, 03:016, 2016. doi: 10.1007/JHEP03(2016)016.

[93] Mattias Blennow, Sandhya Choubey, Tommy Ohlsson, Dipyaman Pramanik, and
Sushant K. Raut. A combined study of source, detector and matter non-standard
neutrino interactions at DUNE. JHEP, 08:090, 2016. doi: 10.1007/JHEP08(2016)090.

225



[94] P. S. Bhupal Dev. NSI and Neutrino Mass Models at DUNE.
https://indico.fnal.gov/event/18430/session/6/contribution/23/material/slides/0.pdf,
2018.

[95] A. Barroso and P. M. Ferreira. Charge breaking bounds in the Zee model. Phys. Rev.,
D72:075010, 2005. doi: 10.1103/PhysRevD.72.075010.

[96] K. S. Babu and J. Julio. Renormalization of a two-loop neutrino mass model. AIP
Conf. Proc., 1604(1):134–141, 2015. doi: 10.1063/1.4883422.

[97] Sacha Davidson and Howard E. Haber. Basis-independent methods for the two-Higgs-
doublet model. Phys. Rev., D72:035004, 2005. doi: 10.1103/PhysRevD.72.099902,
10.1103/PhysRevD.72.035004. [Erratum: Phys. Rev.D72,099902(2005)].

[98] K. S. Babu and Sudip Jana. Enhanced Di-Higgs Production in the Two Higgs Doublet
Model. JHEP, 02:193, 2019. doi: 10.1007/JHEP02(2019)193.

[99] John F. Gunion and Howard E. Haber. The CP conserving two Higgs doublet
model: The Approach to the decoupling limit. Phys. Rev., D67:075019, 2003. doi:
10.1103/PhysRevD.67.075019.

[100] Marcela Carena, Ian Low, Nausheen R. Shah, and Carlos E. M. Wagner. Impersonating
the Standard Model Higgs Boson: Alignment without Decoupling. JHEP, 04:015, 2014.
doi: 10.1007/JHEP04(2014)015.

[101] P. S. Bhupal Dev and Apostolos Pilaftsis. Maximally Symmetric Two Higgs
Doublet Model with Natural Standard Model Alignment. JHEP, 12:024,
2014. doi: 10.1007/JHEP11(2015)147, 10.1007/JHEP12(2014)024. [Erratum:
JHEP11,147(2015)].

[102] Dipankar Das and Ipsita Saha. Search for a stable alignment limit in two-Higgs-doublet
models. Phys. Rev., D91(9):095024, 2015. doi: 10.1103/PhysRevD.91.095024.

[103] Jérémy Bernon, John F. Gunion, Howard E. Haber, Yun Jiang, and Sabine Kraml.
Scrutinizing the alignment limit in two-Higgs-doublet models: mh=125 GeV. Phys.
Rev., D92(7):075004, 2015. doi: 10.1103/PhysRevD.92.075004.

[104] Debtosh Chowdhury and Otto Eberhardt. Update of Global Two-Higgs-Doublet Model
Fits. JHEP, 05:161, 2018. doi: 10.1007/JHEP05(2018)161.

[105] Lincoln Wolfenstein. A Theoretical Pattern for Neutrino Oscillations. Nucl. Phys.,
B175:93–96, 1980. doi: 10.1016/0550-3213(80)90004-8.

[106] Yoshio Koide. Can the Zee model explain the observed neutrino data? Phys. Rev.,
D64:077301, 2001. doi: 10.1103/PhysRevD.64.077301.

[107] Xiao-Gang He. Is the Zee model neutrino mass matrix ruled out? Eur. Phys. J., C34:
371–376, 2004. doi: 10.1140/epjc/s2004-01669-8.

226



[108] K. S. Babu and J. Julio. Predictive Model of Radiative Neutrino Masses. Phys. Rev.,
D89(5):053004, 2014. doi: 10.1103/PhysRevD.89.053004.

[109] Sin Kyu Kang and Jubin Park. Unitarity Constraints in the standard model with a
singlet scalar field. JHEP, 04:009, 2015. doi: 10.1007/JHEP04(2015)009.

[110] Michael E. Peskin and Tatsu Takeuchi. A New constraint on a strongly interacting
Higgs sector. Phys. Rev. Lett., 65:964–967, 1990. doi: 10.1103/PhysRevLett.65.964.

[111] Michael E. Peskin and Tatsu Takeuchi. Estimation of oblique electroweak corrections.
Phys. Rev., D46:381–409, 1992. doi: 10.1103/PhysRevD.46.381.

[112] W. Grimus, L. Lavoura, O. M. Ogreid, and P. Osland. The Oblique pa-
rameters in multi-Higgs-doublet models. Nucl. Phys., B801:81–96, 2008. doi:
10.1016/j.nuclphysb.2008.04.019.

[113] M. Tanabashi et al. Review of Particle Physics. Phys. Rev., D98(3):030001, 2018. doi:
10.1103/PhysRevD.98.030001.

[114] L. Lavoura. General formulae for f(1) → f(2)γ. Eur. Phys. J., C29:191–195, 2003.
doi: 10.1140/epjc/s2003-01212-7.

[115] Fabrizio Cei. Latest Results from MEG. PoS, NEUTEL2017:023, 2018. doi:
10.22323/1.307.0023.

[116] Bernard Aubert et al. Searches for Lepton Flavor Violation in the Decays τ± →
e±γ and τ± → µ±γ. Phys. Rev. Lett., 104:021802, 2010. doi: 10.1103/Phys-
RevLett.104.021802.

[117] A. M. Baldini et al. Search for the lepton flavour violating decay µ+ → e+γ with
the full dataset of the MEG experiment. Eur. Phys. J., C76(8):434, 2016. doi:
10.1140/epjc/s10052-016-4271-x.

[118] K. S. Babu and C. Macesanu. Two loop neutrino mass generation and its experimental
consequences. Phys. Rev., D67:073010, 2003. doi: 10.1103/PhysRevD.67.073010.

[119] D. Hanneke, S. Fogwell Hoogerheide, and G. Gabrielse. Cavity Control of a Single-
Electron Quantum Cyclotron: Measuring the Electron Magnetic Moment. Phys. Rev.,
A83:052122, 2011. doi: 10.1103/PhysRevA.83.052122.

[120] Tatsumi Aoyama, Toichiro Kinoshita, and Makiko Nio. Revised and Improved Value
of the QED Tenth-Order Electron Anomalous Magnetic Moment. Phys. Rev., D97(3):
036001, 2018. doi: 10.1103/PhysRevD.97.036001.

[121] Richard H. Parker, Chenghui Yu, Weicheng Zhong, Brian Estey, and Holger Mueller.
Measurement of the fine-structure constant as a test of the Standard Model. Science,
360:191, 2018. doi: 10.1126/science.aap7706.

[122] Wilhelm H. Bertl et al. Search for the Decay µ+ → e+e+e−. Nucl. Phys., B260:1–31,
1985. doi: 10.1016/0550-3213(85)90308-6.

227



[123] Y. Amhis et al. Averages of b-hadron, c-hadron, and τ -lepton properties as of summer
2016. Eur. Phys. J., C77(12):895, 2017. doi: 10.1140/epjc/s10052-017-5058-4.

[124] A Combination of preliminary electroweak measurements and constraints on the stan-
dard model. 2003.

[125] E. Eichten, Kenneth D. Lane, and Michael E. Peskin. New Tests for Quark and Lepton
Substructure. Phys. Rev. Lett., 50:811–814, 1983. doi: 10.1103/PhysRevLett.50.811.

[126] Neil D. Christensen and Claude Duhr. FeynRules - Feynman rules made easy. Comput.
Phys. Commun., 180:1614–1641, 2009. doi: 10.1016/j.cpc.2009.02.018.

[127] J. Alwall, R. Frederix, S. Frixione, V. Hirschi, F. Maltoni, O. Mattelaer, H. S. Shao,
T. Stelzer, P. Torrielli, and M. Zaro. The automated computation of tree-level and
next-to-leading order differential cross sections, and their matching to parton shower
simulations. JHEP, 07:079, 2014. doi: 10.1007/JHEP07(2014)079.

[128] G. Abbiendi et al. Tests of the standard model and constraints on new physics from
measurements of fermion pair production at 189-GeV to 209-GeV at LEP. Eur. Phys.
J., C33:173–212, 2004. doi: 10.1140/epjc/s2004-01595-9.

[129] Bohdan Grzadkowski, Howard E. Haber, Odd Magne Ogreid, and Per Osland. Heavy
Higgs boson decays in the alignment limit of the 2HDM. JHEP, 12:056, 2018. doi:
10.1007/JHEP12(2018)056.

[130] Albert M Sirunyan et al. Search for a new scalar resonance decaying to a
pair of Z bosons in proton-proton collisions at

√
s = 13 TeV. JHEP, 06:

127, 2018. doi: 10.1007/JHEP06(2018)127, 10.1007/JHEP03(2019)128. [Erratum:
JHEP03,128(2019)].

[131] Morad Aaboud et al. Constraints on off-shell Higgs boson production and the Higgs
boson total width in ZZ → 4` and ZZ → 2`2ν final states with the ATLAS detector.
Phys. Lett., B786:223–244, 2018. doi: 10.1016/j.physletb.2018.09.048.

[132] Serguei Chatrchyan et al. Search for anomalous production of events with three or
more leptons in pp collisions at

√
(s) = 8 TeV. Phys. Rev., D90:032006, 2014. doi:

10.1103/PhysRevD.90.032006.

[133] Morad Aaboud et al. Search for supersymmetry in events with four or more leptons
in
√
s = 13 TeV pp collisions with ATLAS. Phys. Rev., D98(3):032009, 2018. doi:

10.1103/PhysRevD.98.032009.

[134] http://lepsusy.web.cern.ch/lepsusy/.

[135] Qing-Hong Cao, Gang Li, Ke-Pan Xie, and Jue Zhang. Searching for Weak Singlet
Charged Scalar at the Large Hadron Collider. Phys. Rev., D97(11):115036, 2018. doi:
10.1103/PhysRevD.97.115036.

228



[136] G. Abbiendi et al. Search for Charged Higgs bosons: Combined Results Using LEP
Data. Eur. Phys. J., C73:2463, 2013. doi: 10.1140/epjc/s10052-013-2463-1.

[137] Albert M. Sirunyan et al. Search for supersymmetry in events with a τ lepton pair and
missing transverse momentum in proton-proton collisions at

√
s = 13 TeV. JHEP, 11:

151, 2018. doi: 10.1007/JHEP11(2018)151.

[138] Georges Aad et al. Search for the direct production of charginos, neutralinos and staus
in final states with at least two hadronically decaying taus and missing transverse
momentum in pp collisions at

√
s = 8 TeV with the ATLAS detector. JHEP, 10:096,

2014. doi: 10.1007/JHEP10(2014)096.

[139] Albert M. Sirunyan et al. Search for supersymmetric partners of electrons and muons
in proton-proton collisions at

√
s = 13 TeV. Phys. Lett., B790:140–166, 2019. doi:

10.1016/j.physletb.2019.01.005.

[140] A Combination of preliminary electroweak measurements and constraints on the stan-
dard model. 2004.

[141] Bernd A. Kniehl, Fantina Madricardo, and Matthias Steinhauser. Gauge independent
W boson partial decay widths. Phys. Rev., D62:073010, 2000. doi: 10.1103/Phys-
RevD.62.073010.

[142] Radovan Dermisek. Light Charged Higgs and Lepton Universality inW boson Decays.
2008.

[143] Yoshitaka Kuno and Yasuhiro Okada. Muon decay and physics beyond the standard
model. Rev. Mod. Phys., 73:151–202, 2001. doi: 10.1103/RevModPhys.73.151.

[144] K. S. Babu, Douglas W. McKay, Irina Mocioiu, and Sandip Pakvasa. Light sterile
neutrinos, lepton number violating interactions, and the LSND neutrino anomaly.
Phys. Rev., D93(11):113019, 2016. doi: 10.1103/PhysRevD.93.113019.

[145] Georges Aad et al. Measurements of the Higgs boson production and decay rates
and constraints on its couplings from a combined ATLAS and CMS analysis of
the LHC pp collision data at

√
s = 7 and 8 TeV. JHEP, 08:045, 2016. doi:

10.1007/JHEP08(2016)045.

[146] Albert M Sirunyan et al. Combined measurements of Higgs boson couplings in
proton-proton collisions at

√
s = 13TeV. Eur. Phys. J., C79(5):421, 2019. doi:

10.1140/epjc/s10052-019-6909-y.

[147] Combined measurements of Higgs boson production and decay using up to 80 fb−1 of
proton–proton collision data at

√
s = 13 TeV collected with the ATLAS experiment.

Technical Report ATLAS-CONF-2019-005, 2019.

[148] Sudip Jana and S. Nandi. New Physics Scale from Higgs Observables
with Effective Dimension-6 Operators. Phys. Lett., B783:51–58, 2018. doi:
10.1016/j.physletb.2018.06.038.

229



[149] Measurements of Higgs boson production via gluon fusion and vector boson fusion in
the diphoton decay channel at

√
s = 13 TeV. Technical Report CMS-PAS-HIG-18-029,

2019.

[150] Measurement of the associated production of a Higgs boson and a pair of top-antitop
quarks with the Higgs boson decaying to two photons in proton-proton collisions at√
s = 13 TeV. Technical Report CMS-PAS-HIG-18-018, 2018.

[151] Measurements of Higgs boson properties in the diphoton decay channel using 80 fb−1

of pp collision data at
√
s = 13 TeV with the ATLAS detector. Technical Report

ATLAS-CONF-2018-028, 2018.

[152] Measurement of Higgs boson production in association with a tt pair in the diphoton
decay channel using 139 fb−1 of LHC data collected at

√
s = 13 TeV by the ATLAS

experiment. Technical Report ATLAS-CONF-2019-004, 2019.

[153] Measurements of properties of the Higgs boson in the four-lepton final state in proton-
proton collisions at

√
s = 13 TeV. Technical Report CMS-PAS-HIG-19-001, 2019.

[154] Measurements of the Higgs boson production, fiducial and differential cross sections
in the 4` decay channel at

√
s = 13 TeV with the ATLAS detector. Technical Report

ATLAS-CONF-2018-018, 2018.

[155] Morad Aaboud et al. Measurements of gluon-gluon fusion and vector-boson fusion
Higgs boson production cross-sections in the H → WW ∗ → eνµν decay channel in pp
collisions at

√
s = 13 TeV with the ATLAS detector. Phys. Lett., B789:508–529, 2019.

doi: 10.1016/j.physletb.2018.11.064.

[156] Georges Aad et al. Measurement of the production cross section for a Higgs boson in
association with a vector boson in the H → WW ∗ → `ν`ν channel in pp collisions at√
s = 13 TeV with the ATLAS detector. 2019.

[157] Albert M. Sirunyan et al. Measurements of properties of the Higgs boson decaying
to a W boson pair in pp collisions at

√
s = 13 TeV. Phys. Lett., B791:96, 2019. doi:

10.1016/j.physletb.2018.12.073.

[158] Measurement of Higgs boson production and decay to the ττ final state. Technical
Report CMS-PAS-HIG-18-032, 2019.

[159] Morad Aaboud et al. Cross-section measurements of the Higgs boson decaying into a
pair of τ -leptons in proton-proton collisions at

√
s = 13 TeV with the ATLAS detector.

Phys. Rev., D99:072001, 2019. doi: 10.1103/PhysRevD.99.072001.

[160] A. M. Sirunyan et al. Observation of Higgs boson decay to bottom quarks. Phys. Rev.
Lett., 121(12):121801, 2018. doi: 10.1103/PhysRevLett.121.121801.

[161] Morad Aaboud et al. Observation of H → bb̄ decays and V H production with the
ATLAS detector. Phys. Lett., B786:59–86, 2018. doi: 10.1016/j.physletb.2018.09.013.

230



[162] Morad Aaboud et al. Search for Higgs bosons produced via vector-boson fusion and
decaying into bottom quark pairs in

√
s = 13 TeV pp collisions with the ATLAS

detector. Phys. Rev., D98(5):052003, 2018. doi: 10.1103/PhysRevD.98.052003.

[163] Abdelhak Djouadi. The Anatomy of electro-weak symmetry breaking. I: The
Higgs boson in the standard model. Phys. Rept., 457:1–216, 2008. doi:
10.1016/j.physrep.2007.10.004.

[164] Albert M Sirunyan et al. Measurements of the Higgs boson width and anomalous
HV V couplings from on-shell and off-shell production in the four-lepton final state.
Phys. Rev., D99(11):112003, 2019. doi: 10.1103/PhysRevD.99.112003.

[165] Zurab Berezhiani and Anna Rossi. Limits on the nonstandard interactions of neu-
trinos from e+ e- colliders. Phys. Lett., B535:207–218, 2002. doi: 10.1016/S0370-
2693(02)01767-7.

[166] M. Acciarri et al. Determination of the number of light neutrino species from single
photon production at LEP. Phys. Lett., B431:199–208, 1998. doi: 10.1016/S0370-
2693(98)00519-X.

[167] P. Achard et al. Single photon and multiphoton events with missing energy in e+e−

collisions at LEP. Phys. Lett., B587:16–32, 2004. doi: 10.1016/j.physletb.2004.01.010.

[168] Patrick J. Fox, Roni Harnik, Joachim Kopp, and Yuhsin Tsai. LEP Shines Light on
Dark Matter. Phys. Rev., D84:014028, 2011. doi: 10.1103/PhysRevD.84.014028.

[169] S. Davidson, C. Pena-Garay, N. Rius, and A. Santamaria. Present and future bounds
on nonstandard neutrino interactions. JHEP, 03:011, 2003. doi: 10.1088/1126-
6708/2003/03/011.

[170] J. Barranco, O. G. Miranda, C. A. Moura, and J. W. F. Valle. Constraining
non-standard neutrino-electron interactions. Phys. Rev., D77:093014, 2008. doi:
10.1103/PhysRevD.77.093014.

[171] M. Deniz et al. Constraints on Non-Standard Neutrino Interactions and Unparticle
Physics with Neutrino-Electron Scattering at the Kuo-Sheng Nuclear Power Reactor.
Phys. Rev., D82:033004, 2010. doi: 10.1103/PhysRevD.82.033004.

[172] S. K. Agarwalla et al. Constraints on Non-Standard Neutrino Interactions from Borex-
ino Phase-II. 2019.

[173] P. Vilain et al. Precision measurement of electroweak parameters from the scattering
of muon-neutrinos on electrons. Phys. Lett., B335:246–252, 1994. doi: 10.1016/0370-
2693(94)91421-4.

[174] Patrick Huber, Joachim Kopp, Manfred Lindner, Mark Rolinec, and Walter Winter.
New features in the simulation of neutrino oscillation experiments with GLoBES 3.0:
General Long Baseline Experiment Simulator. Comput. Phys. Commun., 177:432–438,
2007. doi: 10.1016/j.cpc.2007.05.004.

231



[175] T. Alion et al. Experiment Simulation Configurations Used in DUNE CDR. 2016.

[176] Ivan Esteban, M. C. Gonzalez-Garcia, Alvaro Hernandez-Cabezudo, Michele Maltoni,
and Thomas Schwetz. Global analysis of three-flavour neutrino oscillations: synergies
and tensions in the determination of θ23, δCP , and the mass ordering. JHEP, 01:106,
2019. doi: 10.1007/JHEP01(2019)106.

[177] W. Buchmuller, R. Ruckl, and D. Wyler. Leptoquarks in Lepton - Quark Collisions.
Phys. Lett., B191:442–448, 1987. doi: 10.1016/S0370-2693(99)00014-3, 10.1016/0370-
2693(87)90637-X. [Erratum: Phys. Lett.B448,320(1999)].

[178] A. Angelescu, Damir Bečirević, D. A. Faroughy, and O. Sumensari. Closing the window
on single leptoquark solutions to the B-physics anomalies. JHEP, 10:183, 2018. doi:
10.1007/JHEP10(2018)183.

[179] R. Barbier et al. R-parity violating supersymmetry. Phys. Rept., 420:1–202, 2005. doi:
10.1016/j.physrep.2005.08.006.

[180] Herbert K. Dreiner. An Introduction to explicit R-parity violation. pages 462–
479, 1997. doi: 10.1142/9789814307505_0017. [Adv. Ser. Direct. High Energy
Phys.21,565(2010)].

[181] B. M. Roberts, V. A. Dzuba, and V. V. Flambaum. Parity and Time-Reversal Violation
in Atomic Systems. Ann. Rev. Nucl. Part. Sci., 65:63–86, 2015. doi: 10.1146/annurev-
nucl-102014-022331.

[182] Yee Kao and Tatsu Takeuchi. Single-Coupling Bounds on R-parity violating Super-
symmetry, an update. 2009.

[183] M. S. Safronova, D. Budker, D. DeMille, Derek F. Jackson Kimball, A. Derevianko,
and C. W. Clark. Search for New Physics with Atoms and Molecules. Rev. Mod. Phys.,
90(2):025008, 2018. doi: 10.1103/RevModPhys.90.025008.

[184] S. G. Porsev, K. Beloy, and A. Derevianko. Precision determination of electroweak
coupling from atomic parity violation and implications for particle physics. Phys. Rev.
Lett., 102:181601, 2009. doi: 10.1103/PhysRevLett.102.181601.

[185] Ryuichiro Kitano, Masafumi Koike, and Yasuhiro Okada. Detailed calculation of lep-
ton flavor violating muon electron conversion rate for various nuclei. Phys. Rev., D66:
096002, 2002. doi: 10.1103/PhysRevD.76.059902, 10.1103/PhysRevD.66.096002. [Er-
ratum: Phys. Rev.D76,059902(2007)].

[186] T. Suzuki, David F. Measday, and J. P. Roalsvig. Total Nuclear Capture Rates for
Negative Muons. Phys. Rev., C35:2212, 1987. doi: 10.1103/PhysRevC.35.2212.

[187] J. Kaulard et al. Improved limit on the branching ratio of µ− → e+ conversion on
titanium. Phys. Lett., B422:334–338, 1998. doi: 10.1016/S0370-2693(97)01423-8.

232



[188] Wilhelm H. Bertl et al. A Search for muon to electron conversion in muonic gold. Eur.
Phys. J., C47:337–346, 2006. doi: 10.1140/epjc/s2006-02582-x.

[189] W. Honecker et al. Improved limit on the branching ratio of µ→ e conversion on lead.
Phys. Rev. Lett., 76:200–203, 1996. doi: 10.1103/PhysRevLett.76.200.

[190] Martin Beneke and Matthias Neubert. Flavor singlet B decay amplitudes in QCD
factorization. Nucl. Phys., B651:225–248, 2003. doi: 10.1016/S0550-3213(02)01091-X.

[191] Wen-jun Li, Ya-dong Yang, and Xiang-dan Zhang. τ− → µ−π0(η, η′) decays in new
physics scenarios beyond the standard model. Phys. Rev., D73:073005, 2006. doi:
10.1103/PhysRevD.73.073005.

[192] K. S. Babu and Ernest Ma. Pseudoscalar Electromagnetic Form-factors: Vector Domi-
nance and Quantum Chromodynamics. Phys. Lett., 119B:449, 1982. doi: 10.1016/0370-
2693(82)90710-9.

[193] S. Berman and D. Geffen. The Electromagnetic Structure and Alternative Decay
Modes of the pi0. Nuovo Cim., 18:1192, 1960. doi: 10.1007/BF02733176.

[194] Donald A. Geffen and Bing-lin Young. Rare Decay Modes of the eta Meson as a Probe
of Electromagnetic and Strong Interactions. Phys. Rev. Lett., 15:316–320, 1965. doi:
10.1103/PhysRevLett.15.316.

[195] Gustavo Burdman and Ian Shipsey. D0 - D̄0 mixing and rare charm decays. Ann. Rev.
Nucl. Part. Sci., 53:431–499, 2003. doi: 10.1146/annurev.nucl.53.041002.110348.

[196] K. S. Babu, X. G. He, Xueqian Li, and Sandip Pakvasa. Fourth Generation Signatures
in D0 - Anti-d0 Mixing and Rare D Decays. Phys. Lett., B205:540–544, 1988. doi:
10.1016/0370-2693(88)90994-X.

[197] H. Abramowicz et al. Limits on contact interactions and leptoquarks at HERA. Phys.
Rev., D99(9):092006, 2019. doi: 10.1103/PhysRevD.99.092006.

[198] Morad Aaboud et al. Search for new high-mass phenomena in the dilepton final state
using 36 fb−1 of proton-proton collision data at

√
s = 13 TeV with the ATLAS detector.

JHEP, 10:182, 2017. doi: 10.1007/JHEP10(2017)182.

[199] Albert M Sirunyan et al. Search for contact interactions and large extra dimensions in
the dilepton mass spectra from proton-proton collisions at

√
s = 13 TeV. JHEP, 04:

114, 2019. doi: 10.1007/JHEP04(2019)114.

[200] Darius A. Faroughy, Admir Greljo, and Jernej F. Kamenik. Confronting lepton flavor
universality violation in B decays with high-pT tau lepton searches at LHC. Phys.
Lett., B764:126–134, 2017. doi: 10.1016/j.physletb.2016.11.011.

[201] Search for pair production of first generation scalar leptoquarks at
√
s = 13 TeV.

Technical Report CMS-PAS-EXO-17-009, 2018.

233



[202] Vardan Khachatryan et al. Search for pair production of first and second generation
leptoquarks in proton-proton collisions at

√
s = 8 TeV. Phys. Rev., D93(3):032004,

2016. doi: 10.1103/PhysRevD.93.032004.

[203] Morad Aaboud et al. Searches for scalar leptoquarks and differential cross-section
measurements in dilepton-dijet events in proton-proton collisions at a centre-of-mass
energy of

√
s = 13 TeV with the ATLAS experiment. 2019.

[204] Albert M Sirunyan et al. Constraints on models of scalar and vector leptoquarks
decaying to a quark and a neutrino at

√
s = 13 TeV. Phys. Rev., D98(3):032005, 2018.

doi: 10.1103/PhysRevD.98.032005.

[205] Albert M Sirunyan et al. Search for heavy neutrinos and third-generation leptoquarks
in hadronic states of two τ leptons and two jets in proton-proton collisions at

√
s = 13

TeV. JHEP, 03:170, 2019. doi: 10.1007/JHEP03(2019)170.

[206] Morad Aaboud et al. Searches for third-generation scalar leptoquarks in
√
s = 13 TeV

pp collisions with the ATLAS detector. 2019.

[207] Serguei Chatrchyan et al. Identification of b-Quark Jets with the CMS Experiment.
JINST, 8:P04013, 2013. doi: 10.1088/1748-0221/8/04/P04013.

[208] Luca Di Luzio and Marco Nardecchia. What is the scale of new physics behind the
B-flavour anomalies? Eur. Phys. J., C77(8):536, 2017. doi: 10.1140/epjc/s10052-017-
5118-9.

[209] G. P. Zeller et al. A Precise determination of electroweak parameters in neu-
trino nucleon scattering. Phys. Rev. Lett., 88:091802, 2002. doi: 10.1103/Phys-
RevLett.88.091802, 10.1103/PhysRevLett.90.239902. [Erratum: Phys. Rev.
Lett.90,239902(2003)].

[210] Pilar Coloma, M. C. Gonzalez-Garcia, Michele Maltoni, and Thomas Schwetz. CO-
HERENT Enlightenment of the Neutrino Dark Side. Phys. Rev., D96(11):115007,
2017. doi: 10.1103/PhysRevD.96.115007.

[211] Jordi Salvado, Olga Mena, Sergio Palomares-Ruiz, and Nuria Rius. Non-standard
interactions with high-energy atmospheric neutrinos at IceCube. JHEP, 01:141, 2017.
doi: 10.1007/JHEP01(2017)141.

[212] R. N. Mohapatra and J. W. F. Valle. Neutrino Mass and Baryon Number Noncon-
servation in Superstring Models. Phys. Rev., D34:1642, 1986. doi: 10.1103/Phys-
RevD.34.1642. [,235(1986)].

[213] P. S. Bhupal Dev and Apostolos Pilaftsis. Light and Superlight Sterile Neutrinos in
the Minimal Radiative Inverse Seesaw Model. Phys. Rev., D87(5):053007, 2013. doi:
10.1103/PhysRevD.87.053007.

234



[214] Mattias Blennow, Pilar Coloma, Enrique Fernandez-Martinez, Josu Hernandez-Garcia,
and Jacobo Lopez-Pavon. Non-Unitarity, sterile neutrinos, and Non-Standard neutrino
Interactions. JHEP, 04:153, 2017. doi: 10.1007/JHEP04(2017)153.

[215] Anupama Atre, Tao Han, Silvia Pascoli, and Bin Zhang. The Search for Heavy Majo-
rana Neutrinos. JHEP, 05:030, 2009. doi: 10.1088/1126-6708/2009/05/030.

[216] Frank F. Deppisch, P. S. Bhupal Dev, and Apostolos Pilaftsis. Neutrinos and Collider
Physics. New J. Phys., 17(7):075019, 2015. doi: 10.1088/1367-2630/17/7/075019.

[217] Andre de Gouvea and Andrew Kobach. Global Constraints on a Heavy Neutrino. Phys.
Rev., D93(3):033005, 2016. doi: 10.1103/PhysRevD.93.033005.

[218] R. Alonso, M. Dhen, M. B. Gavela, and T. Hambye. Muon conversion to electron in
nuclei in type-I seesaw models. JHEP, 01:118, 2013. doi: 10.1007/JHEP01(2013)118.

[219] Stefan Antusch and Oliver Fischer. Non-unitarity of the leptonic mixing ma-
trix: Present bounds and future sensitivities. JHEP, 10:094, 2014. doi:
10.1007/JHEP10(2014)094.

[220] S. T. Petcov and S. T. Toshev. Conservation of Lepton Charges, Massive Majo-
rana and Massless Neutrinos. Phys. Lett., 143B:175–178, 1984. doi: 10.1016/0370-
2693(84)90829-3.

[221] K. S. Babu and Ernest Ma. Natural Hierarchy of Radiatively Induced Majorana Neu-
trino Masses. Phys. Rev. Lett., 61:674, 1988. doi: 10.1103/PhysRevLett.61.674.

[222] Sacha Davidson, Gino Isidori, and Alessandro Strumia. The Smallest neutrino mass.
Phys. Lett., B646:100–104, 2007. doi: 10.1016/j.physletb.2007.01.015.

[223] Miguel Nebot, Josep F. Oliver, David Palao, and Arcadi Santamaria. Prospects for
the Zee-Babu Model at the CERN LHC and low energy experiments. Phys. Rev., D77:
093013, 2008. doi: 10.1103/PhysRevD.77.093013.

[224] Daniel Schmidt, Thomas Schwetz, and He Zhang. Status of the Zee-Babu model for
neutrino mass and possible tests at a like-sign linear collider. Nucl. Phys., B885:524–
541, 2014. doi: 10.1016/j.nuclphysb.2014.05.024.

[225] Juan Herrero-Garcia, Miguel Nebot, Nuria Rius, and Arcadi Santamaria. The Zee-
Babu model revisited in the light of new data. Nucl. Phys., B885:542–570, 2014. doi:
10.1016/j.nuclphysb.2014.06.001.

[226] Tommy Ohlsson, Thomas Schwetz, and He Zhang. Non-standard neutrino in-
teractions in the Zee-Babu model. Phys. Lett., B681:269–275, 2009. doi:
10.1016/j.physletb.2009.10.025.

[227] W. Buchmuller and D. Wyler. Constraints on SU(5) Type Leptoquarks. Phys. Lett.,
B177:377–382, 1986. doi: 10.1016/0370-2693(86)90771-9.

235



[228] Kingman Cheung, Hiroyuki Ishida, and Hiroshi Okada. Accommodation of the Dirac
Phase in the Krauss-Nasri-Trodden Model. 2016.

[229] Ingolf Bischer, Werner Rodejohann, and Xun-Jie Xu. Loop-induced Neutrino Non-
Standard Interactions. JHEP, 10:096, 2018. doi: 10.1007/JHEP10(2018)096.

[230] Zhen Liu and Pei-Hong Gu. Extending two Higgs doublet models for two-loop neutrino
mass generation and one-loop neutrinoless double beta decay. Nucl. Phys., B915:206–
223, 2017. doi: 10.1016/j.nuclphysb.2016.12.001.

[231] Jogesh C. Pati and Abdus Salam. Lepton Number as the Fourth Color. Phys. Rev.,
D10:275–289, 1974. doi: 10.1103/PhysRevD.10.275, 10.1103/PhysRevD.11.703.2. [Er-
ratum: Phys. Rev.D11,703(1975)].

[232] R. N. Mohapatra and Jogesh C. Pati. A Natural Left-Right Symmetry. Phys. Rev.,
D11:2558, 1975. doi: 10.1103/PhysRevD.11.2558.

[233] Rabindra N. Mohapatra and Jogesh C. Pati. Left-Right Gauge Symmetry and an Iso-
conjugate Model of CP Violation. Phys. Rev. D, 11:566–571, 1975. doi: 10.1103/Phys-
RevD.11.566.

[234] G. Senjanovic and Rabindra N. Mohapatra. Exact Left-Right Symmetry and Spon-
taneous Violation of Parity. Phys. Rev., D12:1502, 1975. doi: 10.1103/Phys-
RevD.12.1502.

[235] Goran Senjanovic. Spontaneous Breakdown of Parity in a Class of Gauge Theories.
Nucl. Phys., B153:334–364, 1979. doi: 10.1016/0550-3213(79)90604-7.

[236] Aharon Davidson. B −L as the fourth color within an SU(2)L×U(1)R×U(1) model.
Phys. Rev. D, 20:776, 1979. doi: 10.1103/PhysRevD.20.776.

[237] Rabindra N. Mohapatra and R.E. Marshak. Local B-L Symmetry of Electroweak
Interactions, Majorana Neutrinos and Neutron Oscillations. Phys. Rev. Lett., 44:1316–
1319, 1980. doi: 10.1103/PhysRevLett.44.1316. [Erratum: Phys.Rev.Lett. 44, 1643
(1980)].

[238] G. Beall, Myron Bander, and A. Soni. Constraint on the Mass Scale of a Left-Right
Symmetric Electroweak Theory from the K(L) K(S) Mass Difference. Phys. Rev. Lett.,
48:848, 1982. doi: 10.1103/PhysRevLett.48.848.

[239] Darwin Chang. A Minimal Model of Spontaneous CP Violation with the Gauge Group
SU(2)-L x SU(2)-R x U(1)-(B-L). Nucl. Phys. B, 214:435–451, 1983. doi: 10.1016/0550-
3213(83)90243-2.

[240] G.C. Branco, J.M. Frere, and J.M. Gerard. The Value of ε′/ε in Models Based on
SU(2)-l X SU(2)-r X U(1). Nucl. Phys. B, 221:317–330, 1983. doi: 10.1016/0550-
3213(83)90581-3.

236



[241] Haim Harari and Miriam Leurer. Left-Right Symmetry and the Mass Scale of a Possible
Right-Handed Weak Boson. Nucl. Phys. B, 233:221–231, 1984. doi: 10.1016/0550-
3213(84)90412-7.

[242] G. Ecker, W. Grimus, and H. Neufeld. The Neutron Electric Dipole Moment in Left-
right Symmetric Gauge Models. Nucl. Phys. B, 229:421–444, 1983. doi: 10.1016/0550-
3213(83)90341-3.

[243] Frederick J. Gilman and M.H. Reno. Restrictions From the Neutral K and B Meson
Systems on Left-right Symmetric Gauge Theories. Phys. Rev. D, 29:937, 1984. doi:
10.1103/PhysRevD.29.937.

[244] G. Ecker and W. Grimus. CP Violation and Left-Right Symmetry. Nucl. Phys. B,
258:328–360, 1985. doi: 10.1016/0550-3213(85)90616-9.

[245] David London and D. Wyler. Left-right Symmetry and {CP} Violation in the B
System. Phys. Lett. B, 232:503–508, 1989. doi: 10.1016/0370-2693(89)90449-8.

[246] K.S. Babu, Kazuo Fujikawa, and Atsushi Yamada. Constraints on left-right symmetric
models from the process b —> s gamma. Phys. Lett. B, 333:196–201, 1994. doi:
10.1016/0370-2693(94)91029-4.

[247] Thomas G. Rizzo. Constraints from b —> s gamma on the left-right symmetric model.
Phys. Rev. D, 50:3303–3309, 1994. doi: 10.1103/PhysRevD.50.3303.

[248] Gabriela Barenboim, Jose Bernabeu, Joaquim Prades, and Martti Raidal. Constraints
on the WR mass and CP violation in left-right models. Phys. Rev. D, 55:4213–4221,
1997. doi: 10.1103/PhysRevD.55.4213.

[249] M.E. Pospelov. FCNC in left-right symmetric theories and constraints on the right-
handed scale. Phys. Rev. D, 56:259–264, 1997. doi: 10.1103/PhysRevD.56.259.

[250] Patricia Ball, J.M. Frere, and J. Matias. Anatomy of mixing induced CP asymmetries
in left-right symmetric models with spontaneous CP violation. Nucl. Phys. B, 572:
3–35, 2000. doi: 10.1016/S0550-3213(99)00824-X.

[251] Martti Raidal. CP asymmetry in B —> phi K(S) decays in left-right models and its
implications on B(s) decays. Phys. Rev. Lett., 89:231803, 2002. doi: 10.1103/Phys-
RevLett.89.231803.

[252] Yue Zhang, Haipeng An, Xiangdong Ji, and R.N. Mohapatra. Right-handed quark
mixings in minimal left-right symmetric model with general CP violation. Phys. Rev.
D, 76:091301, 2007. doi: 10.1103/PhysRevD.76.091301.

[253] Yue Zhang, Haipeng An, Xiangdong Ji, and Rabindra N. Mohapatra. General CP Vi-
olation in Minimal Left-Right Symmetric Model and Constraints on the Right-Handed
Scale. Nucl. Phys., B802:247–279, 2008. doi: 10.1016/j.nuclphysb.2008.05.019.

237



[254] Monika Blanke, Andrzej J. Buras, Katrin Gemmler, and Tillmann Heidsieck. Delta F
= 2 observables and B → Xqγ decays in the Left-Right Model: Higgs particles striking
back. JHEP, 03:024, 2012. doi: 10.1007/JHEP03(2012)024.

[255] Joydeep Chakrabortty, H.Zeen Devi, Srubabati Goswami, and Sudhanwa Patra. Neu-
trinoless double-β decay in TeV scale Left-Right symmetric models. JHEP, 08:008,
2012. doi: 10.1007/JHEP08(2012)008.

[256] James Barry and Werner Rodejohann. Lepton number and flavour violation in TeV-
scale left-right symmetric theories with large left-right mixing. JHEP, 09:153, 2013.
doi: 10.1007/JHEP09(2013)153.

[257] Stefano Bertolini, Alessio Maiezza, and Fabrizio Nesti. Present and Future K and B
Meson Mixing Constraints on TeV Scale Left-Right Symmetry. Phys. Rev. D, 89(9):
095028, 2014. doi: 10.1103/PhysRevD.89.095028.

[258] Goran Senjanović and Vladimir Tello. Right Handed Quark Mixing in Left-Right
Symmetric Theory. Phys. Rev. Lett., 114(7):071801, 2015. doi: 10.1103/Phys-
RevLett.114.071801.

[259] Goran Senjanović and Vladimir Tello. Restoration of Parity and the Right-Handed
Analog of the CKM Matrix. Phys. Rev. D, 94(9):095023, 2016. doi: 10.1103/Phys-
RevD.94.095023.

[260] Diganta Das, Chandan Hati, Girish Kumar, and Namit Mahajan. Towards a unified
explanation of RD(∗) , RK and (g−2)µ anomalies in a left-right model with leptoquarks.
Phys. Rev. D, 94:055034, 2016. doi: 10.1103/PhysRevD.94.055034.

[261] M. Hirsch, H.V. Klapdor-Kleingrothaus, and O. Panella. Double beta decay in left-right
symmetric models. Phys. Lett. B, 374:7–12, 1996. doi: 10.1016/0370-2693(96)00185-2.

[262] Anjan S. Joshipura, Emmanuel A. Paschos, and Werner Rodejohann. Leptogenesis in
left-right symmetric theories. Nucl. Phys. B, 611:227–238, 2001. doi: 10.1016/S0550-
3213(01)00346-7.

[263] K.S. Babu, A. Bachri, and H. Aissaoui. Leptogenesis in minimal left-right symmetric
models. Nucl. Phys. B, 738:76–92, 2006. doi: 10.1016/j.nuclphysb.2005.12.021.

[264] Miha Nemevsek, Fabrizio Nesti, Goran Senjanovic, and Vladimir Tello. Neutrinoless
Double Beta Decay: Low Left-Right Symmetry Scale? 12 2011.

[265] Miha Nemevsek, Goran Senjanovic, and Yue Zhang. Warm Dark Matter in Low Scale
Left-Right Theory. JCAP, 07:006, 2012. doi: 10.1088/1475-7516/2012/07/006.

[266] S.P. Das, F.F. Deppisch, O. Kittel, and J.W.F. Valle. Heavy Neutrinos and Lepton
Flavour Violation in Left-Right Symmetric Models at the LHC. Phys. Rev. D, 86:
055006, 2012. doi: 10.1103/PhysRevD.86.055006.

238



[267] Miha Nemevsek, Goran Senjanovic, and Vladimir Tello. Connecting Dirac and Majo-
rana Neutrino Mass Matrices in the Minimal Left-Right Symmetric Model. Phys. Rev.
Lett., 110(15):151802, 2013. doi: 10.1103/PhysRevLett.110.151802.

[268] Chien-Yi Chen, P. S. Bhupal Dev, and R.N. Mohapatra. Probing Heavy-Light Neutrino
Mixing in Left-Right Seesaw Models at the LHC. Phys. Rev. D, 88:033014, 2013. doi:
10.1103/PhysRevD.88.033014.

[269] Chang-Hun Lee, P.S. Bhupal Dev, and R.N. Mohapatra. Natural TeV-scale left-right
seesaw mechanism for neutrinos and experimental tests. Phys. Rev. D, 88(9):093010,
2013. doi: 10.1103/PhysRevD.88.093010.

[270] Ram Lal Awasthi, M.K. Parida, and Sudhanwa Patra. Neutrino masses, dominant neu-
trinoless double beta decay, and observable lepton flavor violation in left-right models
and SO(10) grand unification with low mass WR, ZR bosons. JHEP, 08:122, 2013. doi:
10.1007/JHEP08(2013)122.

[271] P. S. Bhupal Dev, Srubabati Goswami, and Manimala Mitra. TeV Scale Left-Right
Symmetry and Large Mixing Effects in Neutrinoless Double Beta Decay. Phys. Rev.
D, 91(11):113004, 2015. doi: 10.1103/PhysRevD.91.113004.

[272] Goran Senjanovic and Vladimir Tello. Disentangling the seesaw mechanism in the
minimal left-right symmetric model. Phys. Rev. D, 100(11):115031, 2019. doi:
10.1103/PhysRevD.100.115031.

[273] Julian Heeck and Sudhanwa Patra. Minimal Left-Right Symmetric Dark Matter. Phys.
Rev. Lett., 115(12):121804, 2015. doi: 10.1103/PhysRevLett.115.121804.

[274] J.F. Gunion, J. Grifols, A. Mendez, Boris Kayser, and Fredrick I. Olness. Higgs Bosons
in Left-Right Symmetric Models. Phys. Rev. D, 40:1546, 1989. doi: 10.1103/Phys-
RevD.40.1546.

[275] N. G. Deshpande, J. F. Gunion, Boris Kayser, and Fredrick I. Olness. Left-right
symmetric electroweak models with triplet Higgs. Phys. Rev., D44:837–858, 1991. doi:
10.1103/PhysRevD.44.837.

[276] Gabriela Barenboim, Martin Gorbahn, Ulrich Nierste, and Martti Raidal. Higgs Sector
of the Minimal Left-Right Symmetric Model. Phys. Rev., D65:095003, 2002. doi:
10.1103/PhysRevD.65.095003.

[277] Martin Holthausen, Manfred Lindner, and Michael A. Schmidt. Radiative Symmetry
Breaking of the Minimal Left-Right Symmetric Model. Phys. Rev. D, 82:055002, 2010.
doi: 10.1103/PhysRevD.82.055002.

[278] Barry R. Holstein and S.B. Treiman. Tests of Spontaneous Left-Right Symmetry
Breaking. Phys. Rev. D, 16:2369–2372, 1977. doi: 10.1103/PhysRevD.16.2369.

239



[279] Rabindra N. Mohapatra and Deepinder P. Sidhu. Gauge Theories of Weak Interactions
with Left-Right Symmetry and the Structure of Neutral Currents. Phys. Rev. D, 16:
2843, 1977. doi: 10.1103/PhysRevD.16.2843.

[280] M.A.B. Beg, R.V. Budny, Rabindra N. Mohapatra, and A. Sirlin. Manifest Left-Right
Symmetry and Its Experimental Consequences. Phys. Rev. Lett., 38:1252, 1977. doi:
10.1103/PhysRevLett.38.1252. [Erratum: Phys.Rev.Lett. 39, 54 (1977)].

[281] Vernon D. Barger and R.J.N. Phillips. Weak Currents and Z0 Production in Left-right
Symmetric Gauge Models. Phys. Rev. D, 18:775, 1978. doi: 10.1103/PhysRevD.18.775.

[282] Vernon D. Barger, Ernest Ma, and K. Whisnant. Testing the Standard Model Versus
Left-right Models on and Off the Z Resonance. Phys. Rev. D, 28:1618, 1983. doi:
10.1103/PhysRevD.28.1618.

[283] Wai-Yee Keung and Goran Senjanovic. Majorana Neutrinos and the Production
of the Right-handed Charged Gauge Boson. Phys. Rev. Lett., 50:1427, 1983. doi:
10.1103/PhysRevLett.50.1427.

[284] Mirjam Cvetic, Paul Langacker, and Boris Kayser. Determination of g-R / g-L in
left-right symmetric models at hadron colliders. Phys. Rev. Lett., 68:2871–2874, 1992.
doi: 10.1103/PhysRevLett.68.2871.

[285] J. Maalampi, A. Pietila, and J. Vuori. Pair production of light and heavy W bosons
of the left-right model in e+ e- collisions. Nucl. Phys. B, 381:544–558, 1992. doi:
10.1016/0550-3213(92)90489-X.

[286] Vladimir Tello, Miha Nemevsek, Fabrizio Nesti, Goran Senjanovic, and Francesco Vis-
sani. Left-Right Symmetry: from LHC to Neutrinoless Double Beta Decay. Phys. Rev.
Lett., 106:151801, 2011. doi: 10.1103/PhysRevLett.106.151801.

[287] Alessio Maiezza, Miha Nemevsek, Fabrizio Nesti, and Goran Senjanovic. Left-Right
Symmetry at LHC. Phys. Rev. D, 82:055022, 2010. doi: 10.1103/PhysRevD.82.055022.

[288] Miha Nemevsek, Fabrizio Nesti, Goran Senjanovic, and Yue Zhang. First Limits on
Left-Right Symmetry Scale from LHC Data. Phys. Rev. D, 83:115014, 2011. doi:
10.1103/PhysRevD.83.115014.

[289] G. Bambhaniya, J. Chakrabortty, J. Gluza, M. Kordiaczyńska, and R. Szafron. Left-
Right Symmetry and the Charged Higgs Bosons at the LHC. JHEP, 05:033, 2014. doi:
10.1007/JHEP05(2014)033.

[290] Sudhanwa Patra, Farinaldo S. Queiroz, and Werner Rodejohann. Stringent Dilepton
Bounds on Left-Right Models using LHC data. Phys. Lett. B, 752:186–190, 2016. doi:
10.1016/j.physletb.2015.11.009.

[291] P. S. Bhupal Dev, Rabindra N. Mohapatra, and Yongchao Zhang. Probing the Higgs
Sector of the Minimal Left-Right Symmetric Model at Future Hadron Colliders. JHEP,
05:174, 2016. doi: 10.1007/JHEP05(2016)174.

240



[292] Manfred Lindner, Farinaldo S. Queiroz, Werner Rodejohann, and Carlos E. Yaguna.
Left-Right Symmetry and Lepton Number Violation at the Large Hadron Electron
Collider. JHEP, 06:140, 2016. doi: 10.1007/JHEP06(2016)140.

[293] Manimala Mitra, Richard Ruiz, Darren J. Scott, and Michael Spannowsky. Neutrino
Jets from High-Mass WR Gauge Bosons in TeV-Scale Left-Right Symmetric Models.
Phys. Rev. D, 94(9):095016, 2016. doi: 10.1103/PhysRevD.94.095016.

[294] K.S. Babu and V.S. Mathur. Radiatively Induced Seesaw Mechanism for Neutrino
Masses. Phys. Rev. D, 38:3550, 1988. doi: 10.1103/PhysRevD.38.3550.

[295] Pavel Fileviez Perez, Clara Murgui, and Sebastian Ohmer. Simple Left-Right The-
ory: Lepton Number Violation at the LHC. Phys. Rev., D94(5):051701, 2016. doi:
10.1103/PhysRevD.94.051701.

[296] Riccardo Barbieri and Rabindra N. Mohapatra. Limits on Right-handed Interactions
From {SN1987A} Observations. Phys. Rev. D, 39:1229, 1989. doi: 10.1103/Phys-
RevD.39.1229.

[297] Albert M Sirunyan et al. Search for high mass dijet resonances with a new background
prediction method in proton-proton collisions at

√
s = 13 TeV. JHEP, 05:033, 2020.

doi: 10.1007/JHEP05(2020)033.

[298] John F. Donoghue and Barry R. Holstein. STRONG BOUNDS ON WEAK COU-
PLINGS. Phys. Lett. B, 113:382–386, 1982. doi: 10.1016/0370-2693(82)90769-9.

[299] K. S. Babu, Bhaskar Dutta, and Rabindra N. Mohapatra. A theory of
R(D∗, D) anomaly with right-handed currents. JHEP, 01:168, 2019. doi:
10.1007/JHEP01(2019)168.

[300] Gerard ’t Hooft and M. J. G. Veltman. Regularization and Renormalization of Gauge
Fields. Nucl. Phys., B44:189–213, 1972. doi: 10.1016/0550-3213(72)90279-9.

[301] J. van der Bij and M. J. G. Veltman. Two Loop Large Higgs Mass Correction to the
rho Parameter. Nucl. Phys., B231:205–234, 1984. doi: 10.1016/0550-3213(84)90284-0.

[302] David J. Broadhurst. The Master Two Loop Diagram With Masses. Z. Phys., C47:
115–124, 1990. doi: 10.1007/BF01551921.

[303] A. Ghinculov and J. J. van der Bij. Massive two loop diagrams: The Higgs propagator.
Nucl. Phys., B436:30–48, 1995. doi: 10.1016/0550-3213(94)00522-G.

[304] Debajyoti Choudhury, Raj Gandhi, J. A. Gracey, and Biswarup Mukhopadhyaya. Two
loop neutrino masses and the solar neutrino problem. Phys. Rev., D50:3468–3476,
1994. doi: 10.1103/PhysRevD.50.3468.

[305] Luise Adams, Christian Bogner, and Stefan Weinzierl. The two-loop sunrise graph
with arbitrary masses. J. Math. Phys., 54:052303, 2013. doi: 10.1063/1.4804996.

241



[306] D. Kreimer. The Master two loop two point function: The General case. Phys. Lett.,
B273:277–281, 1991. doi: 10.1016/0370-2693(91)91684-N.

[307] D. Kreimer. The Two loop three point functions: General massive cases. Phys. Lett.,
B292:341–347, 1992. doi: 10.1016/0370-2693(92)91185-C.

[308] A. Frink, J. G. Korner, and J. B. Tausk. Massive two loop integrals and Higgs physics.
In Joint Particle Physics Meeting on the Fundamental Structure of Matter Ouranoupo-
lis, Greece, May 27-31, 1997, 1997.

[309] Natalia I. Usyukina and Andrei I. Davydychev. Two loop three point diagrams
with irreducible numerators. Phys. Lett., B348:503–512, 1995. doi: 10.1016/0370-
2693(95)00136-9.

[310] C. Jarlskog. Commutator of the Quark Mass Matrices in the Standard Electroweak
Model and a Measure of Maximal CP Violation. Phys. Rev. Lett., 55:1039, 1985. doi:
10.1103/PhysRevLett.55.1039.

[311] Patrick D. Bolton, Frank F. Deppisch, and P.S. Bhupal Dev. Neutrinoless double
beta decay versus other probes of heavy sterile neutrinos. JHEP, 03:170, 2020. doi:
10.1007/JHEP03(2020)170.

[312] M. Aoki et al. Search for Massive Neutrinos in the Decay π → eν. Phys. Rev. D, 84:
052002, 2011. doi: 10.1103/PhysRevD.84.052002.

[313] A. Aguilar-Arevalo et al. Improved search for heavy neutrinos in the decay π → eν.
Phys. Rev. D, 97(7):072012, 2018. doi: 10.1103/PhysRevD.97.072012.

[314] D.A. Bryman and R. Shrock. Improved Constraints on Sterile Neutrinos in the
MeV to GeV Mass Range. Phys. Rev. D, 100(5):053006, 2019. doi: 10.1103/Phys-
RevD.100.053006.

[315] D.A. Bryman and R. Shrock. Constraints on Sterile Neutrinos in the MeV to GeV
Mass Range. Phys. Rev. D, 100:073011, 2019. doi: 10.1103/PhysRevD.100.073011.

[316] A.I. Derbin, A.V. Chernyi, L.A. Popeko, V.N. Muratova, G.A. Shishkina, and S.I.
Bakhlanov. Experiment on anti-neutrino scattering by electrons at a reactor of the
Rovno nuclear power plant. JETP Lett., 57:768–772, 1993.

[317] C. Hagner, M. Altmann, F. von Feilitzsch, L. Oberauer, Y. Declais, and E. Kajfasz.
Experimental search for the neutrino decay neutrino (3) —> j-neutrino + e+ + e-
and limits on neutrino mixing. Phys. Rev. D, 52:1343–1352, 1995. doi: 10.1103/Phys-
RevD.52.1343.

[318] G. Bellini et al. New limits on heavy sterile neutrino mixing in B8 decay obtained
with the Borexino detector. Phys. Rev. D, 88(7):072010, 2013. doi: 10.1103/Phys-
RevD.88.072010.

242



[319] R.C. Minehart, K.O.H. Ziock, R. Marshall, W.A. Stephens, M. Daum, B. Jost, and
P.R. Kettle. A Search for Admixture of Massive Neutrinos in the Decay π → µν . Phys.
Rev. Lett., 52:804–807, 1984. doi: 10.1103/PhysRevLett.52.804.

[320] A. Aguilar-Arevalo et al. Search for heavy neutrinos in π → µν decay. Phys. Lett. B,
798:134980, 2019. doi: 10.1016/j.physletb.2019.134980.

[321] R.S. Hayano et al. HEAVY NEUTRINO SEARCH USING K(mu2) DECAY. Phys.
Rev. Lett., 49:1305, 1982. doi: 10.1103/PhysRevLett.49.1305.

[322] T. Yamazaki et al. Search for Heavy Neutrinos in Kaon Decay. page I.262, 7 1984.

[323] Robert E. Shrock. General Theory of Weak Processes Involving Neutrinos. 2. Pure
Leptonic Decays. Phys. Rev. D, 24:1275, 1981. doi: 10.1103/PhysRevD.24.1275.

[324] P. Astier et al. Search for heavy neutrinos mixing with tau neutrinos. Phys. Lett. B,
506:27–38, 2001. doi: 10.1016/S0370-2693(01)00362-8.

[325] J. Orloff, Alexandre N. Rozanov, and C. Santoni. Limits on the mixing of tau neutrino
to heavy neutrinos. Phys. Lett. B, 550:8–15, 2002. doi: 10.1016/S0370-2693(02)02769-
7.

[326] Sergey Kovalenko, Zhun Lu, and Ivan Schmidt. Lepton Number Violating Processes
Mediated by Majorana Neutrinos at Hadron Colliders. Phys. Rev. D, 80:073014, 2009.
doi: 10.1103/PhysRevD.80.073014.

[327] Amand Faessler, Marcela González, Sergey Kovalenko, and Fedor Šimkovic. Arbitrary
mass Majorana neutrinos in neutrinoless double beta decay. Phys. Rev. D, 90(9):
096010, 2014. doi: 10.1103/PhysRevD.90.096010.

[328] Patrick D. Bolton, Frank F. Deppisch, Lukáš Gráf, and Fedor Šimkovic. Two-Neutrino
Double Beta Decay with Sterile Neutrinos. 11 2020.

[329] N. Aghanim et al. Planck 2018 results. VI. Cosmological parameters. Astron. Astro-
phys., 641:A6, 2020. doi: 10.1051/0004-6361/201833910.

[330] Palash B. Pal and Lincoln Wolfenstein. Radiative Decays of Massive Neutrinos. Phys.
Rev. D, 25:766, 1982. doi: 10.1103/PhysRevD.25.766.

[331] K.S. Babu and V.S. Mathur. Magnetic Moments of Dirac and Majorana Neutrinos.
Phys. Lett. B, 196:218–222, 1987. doi: 10.1016/0370-2693(87)90607-1.

[332] M. Fukugita and T. Yanagida. A Particle Physics Model for Voloshin-Vysotskii-
Okun Solution to the Solar Neutrino Problem. Phys. Rev. Lett., 58:1807, 1987. doi:
10.1103/PhysRevLett.58.1807.

[333] C.H. Llewellyn Smith. Neutrino Reactions at Accelerator Energies. Phys. Rept., 3:
261–379, 1972. doi: 10.1016/0370-1573(72)90010-5.

243



[334] Alessandro Strumia and Francesco Vissani. Precise quasielastic neutrino/nucleon cross-
section. Phys. Lett. B, 564:42–54, 2003. doi: 10.1016/S0370-2693(03)00616-6.

[335] Riccardo Barbieri and Rabindra N. Mohapatra. Limit on the Magnetic Moment of the
Neutrino from Supernova SN 1987a Observations. Phys. Rev. Lett., 61:27, 1988. doi:
10.1103/PhysRevLett.61.27.

[336] Morad Aaboud et al. Search for heavy Majorana or Dirac neutrinos and right-handed
W gauge bosons in final states with two charged leptons and two jets at

√
s = 13 TeV

with the ATLAS detector. JHEP, 01:016, 2019. doi: 10.1007/JHEP01(2019)016.

[337] Albert M Sirunyan et al. Search for a heavy right-handed W boson and a heavy
neutrino in events with two same-flavor leptons and two jets at

√
s = 13 TeV. JHEP,

05:148, 2018. doi: 10.1007/JHEP05(2018)148.

[338] Diego Guadagnoli and Rabindra N. Mohapatra. TeV Scale Left Right Symmetry
and Flavor Changing Neutral Higgs Effects. Phys. Lett., B694:386–392, 2011. doi:
10.1016/j.physletb.2010.10.027.

[339] Search for supersymmetry in events with four or more charged leptons in 139 fb−1

√
s = 13TeV pp collisions with the ATLAS detector. 8 2020.

[340] Georges Aad et al. Performance of pile-up mitigation techniques for jets in pp collisions
at
√
s = 8 TeV using the ATLAS detector. Eur. Phys. J., C76(11):581, 2016. doi:

10.1140/epjc/s10052-016-4395-z.

[341] Kristian L. McDonald and B. H. J. McKellar. Evaluating the two loop diagram re-
sponsible for neutrino mass in Babu’s model. 2003.

[342] S. Coleman and R. E. Norton. Singularities in the physical region. Nuovo Cim., 38:
438–442, 1965. doi: 10.1007/BF02750472.

[343] J. Grange et al. Muon (g-2) Technical Design Report. 1 2015.

[344] T. Blum, P.A. Boyle, V. Gülpers, T. Izubuchi, L. Jin, C. Jung, A. Jüttner, C. Lehner,
A. Portelli, and J.T. Tsang. Calculation of the hadronic vacuum polarization contribu-
tion to the muon anomalous magnetic moment. Phys. Rev. Lett., 121(2):022003, 2018.
doi: 10.1103/PhysRevLett.121.022003.

[345] C.T.H. Davies et al. Hadronic-vacuum-polarization contribution to the muon’s anoma-
lous magnetic moment from four-flavor lattice QCD. Phys. Rev. D, 101(3):034512,
2020. doi: 10.1103/PhysRevD.101.034512.

[346] Antoine Gérardin, Marco Cè, Georg von Hippel, Ben Hörz, Harvey B. Meyer, Daniel
Mohler, Konstantin Ottnad, Jonas Wilhelm, and Hartmut Wittig. The leading
hadronic contribution to (g − 2)µ from lattice QCD with Nf = 2 + 1 flavours of O(a)
improved Wilson quarks. Phys. Rev. D, 100(1):014510, 2019. doi: 10.1103/Phys-
RevD.100.014510.

244



[347] M. Davier, A. Hoecker, B. Malaescu, and Z. Zhang. A new evaluation of the hadronic
vacuum polarisation contributions to the muon anomalous magnetic moment and to
α(m2

Z). Eur. Phys. J. C, 80(3):241, 2020. doi: 10.1140/epjc/s10052-020-7792-2. [Er-
ratum: Eur.Phys.J.C 80, 410 (2020)].

[348] Sz. Borsanyi et al. Leading-order hadronic vacuum polarization contribution to the
muon magnetic momentfrom lattice QCD. 2 2020.

[349] Christoph Lehner and Aaron S. Meyer. Consistency of hadronic vacuum polariza-
tion between lattice QCD and the R-ratio. Phys. Rev. D, 101:074515, 2020. doi:
10.1103/PhysRevD.101.074515.

[350] Andreas Crivellin, Martin Hoferichter, Claudio Andrea Manzari, and Marc Montull.
Hadronic vacuum polarization: (g−2)µ versus global electroweak fits. Phys. Rev. Lett.,
125(9):091801, 2020. doi: 10.1103/PhysRevLett.125.091801.

[351] Fred Jegerlehner and Andreas Nyffeler. The Muon g-2. Phys. Rept., 477:1–110, 2009.
doi: 10.1016/j.physrep.2009.04.003.

[352] Yasmine Sara Amhis et al. Averages of b-hadron, c-hadron, and τ -lepton properties as
of 2018. 9 2019.

[353] Marzia Bordone, Gino Isidori, and Andrea Pattori. On the Standard Model predictions
for RK and RK∗ . Eur. Phys. J., C76(8):440, 2016. doi: 10.1140/epjc/s10052-016-4274-
7.

[354] Bernat Capdevila, Andreas Crivellin, Sébastien Descotes-Genon, Joaquim Matias, and
Javier Virto. Patterns of New Physics in b → s`+`− transitions in the light of recent
data. JHEP, 01:093, 2018. doi: 10.1007/JHEP01(2018)093.

[355] Wolfgang Altmannshofer, Peter Stangl, and David M. Straub. Interpreting Hints
for Lepton Flavor Universality Violation. Phys. Rev. D, 96(5):055008, 2017. doi:
10.1103/PhysRevD.96.055008.

[356] Jason Aebischer, Wolfgang Altmannshofer, Diego Guadagnoli, Méril Reboud, Peter
Stangl, and David M. Straub. B-decay discrepancies after Moriond 2019. 2019.

[357] Martin Bauer and Matthias Neubert. Minimal Leptoquark Explanation for the
RD(∗) , RK , and (g − 2)g Anomalies. Phys. Rev. Lett., 116(14):141802, 2016. doi:
10.1103/PhysRevLett.116.141802.

[358] Oleg Popov and Graham A White. One Leptoquark to unify them? Neutrino masses
and unification in the light of (g − 2)µ, RD(?) and RK anomalies. Nucl. Phys. B, 923:
324–338, 2017. doi: 10.1016/j.nuclphysb.2017.08.007.

[359] Yi Cai, John Gargalionis, Michael A. Schmidt, and Raymond R. Volkas. Reconsidering
the One Leptoquark solution: flavor anomalies and neutrino mass. JHEP, 10:047, 2017.
doi: 10.1007/JHEP10(2017)047.

245



[360] Oleg Popov, Michael A. Schmidt, and Graham White. R2 as a single leptoquark
solution to RD(∗) and RK(∗) . Phys. Rev. D, 100(3):035028, 2019. doi: 10.1103/Phys-
RevD.100.035028.

[361] Dario Buttazzo, Admir Greljo, Gino Isidori, and David Marzocca. B-physics
anomalies: a guide to combined explanations. JHEP, 11:044, 2017. doi:
10.1007/JHEP11(2017)044.

[362] Jacky Kumar, David London, and Ryoutaro Watanabe. Combined Explanations of
the b → sµ+µ− and b → cτ−ν̄ Anomalies: a General Model Analysis. Phys. Rev. D,
99(1):015007, 2019. doi: 10.1103/PhysRevD.99.015007.

[363] Heinrich Päs and Erik Schumacher. Common origin of RK and neutrino masses. Phys.
Rev. D, 92(11):114025, 2015. doi: 10.1103/PhysRevD.92.114025.

[364] Kingman Cheung, Takaaki Nomura, and Hiroshi Okada. Testable radiative neu-
trino mass model without additional symmetries and explanation for the b → s`+`−

anomaly. Phys. Rev. D, 94(11):115024, 2016. doi: 10.1103/PhysRevD.94.115024.

[365] Shu-Yuan Guo, Zhi-Long Han, Bin Li, Yi Liao, and Xiao-Dong Ma. Interpreting the
RK(∗) anomaly in the colored Zee–Babu model. Nucl. Phys. B, 928:435–447, 2018. doi:
10.1016/j.nuclphysb.2018.01.024.

[366] Chandan Hati, Girish Kumar, Jean Orloff, and Ana M. Teixeira. Reconciling B-
meson decay anomalies with neutrino masses, dark matter and constraints from flavour
violation. JHEP, 11:011, 2018. doi: 10.1007/JHEP11(2018)011.

[367] Shivaramakrishna Singirala, Suchismita Sahoo, and Rukmani Mohanta. Exploring
dark matter, neutrino mass and RK(∗),φ anomalies in Lµ−Lτ model. Phys. Rev. D, 99
(3):035042, 2019. doi: 10.1103/PhysRevD.99.035042.

[368] Alakabha Datta, Divya Sachdeva, and John Waite. Unified explanation of b→ sµ+µ−

anomalies, neutrino masses, and B → πK puzzle. Phys. Rev. D, 100(5):055015, 2019.
doi: 10.1103/PhysRevD.100.055015.

[369] Ilja Doršner, Svjetlana Fajfer, Darius A. Faroughy, and Nejc Košnik. The role of the
S3 GUT leptoquark in flavor universality and collider searches. JHEP, 10:188, 2017.
doi: 10.1007/JHEP10(2017)188.

[370] Shaikh Saad and Anil Thapa. Common origin of neutrino masses and RD(∗) , RK(∗)

anomalies. Phys. Rev. D, 102(1):015014, 2020. doi: 10.1103/PhysRevD.102.015014.

[371] Chuan-Hung Chen and Takaaki Nomura. Electron and muon g− 2, radiative neutrino
mass, and `′ → `γ in a U(1)e−µ model. 3 2020.

[372] Chuan-Hung Chen, Takaaki Nomura, and Hiroshi Okada. Excesses of muon g − 2,
RD(∗) , and RK in a leptoquark model. Phys. Lett. B, 774:456–464, 2017. doi:
10.1016/j.physletb.2017.10.005.

246



[373] Shaikh Saad. Combined explanations of (g− 2)µ, RD(∗) , RK(∗) anomalies in a two-loop
radiative neutrino mass model. Phys. Rev. D, 102(1):015019, 2020. doi: 10.1103/Phys-
RevD.102.015019.

[374] Innes Bigaran, John Gargalionis, and Raymond R. Volkas. A near-minimal lepto-
quark model for reconciling flavour anomalies and generating radiative neutrino masses.
JHEP, 10:106, 2019. doi: 10.1007/JHEP10(2019)106.

[375] Oscar Catà and Thomas Mannel. Linking lepton number violation with B anomalies.
3 2019.

[376] K.S. Babu, S. Nandi, and Zurab Tavartkiladze. New Mechanism for Neutrino Mass
Generation and Triply Charged Higgs Bosons at the LHC. Phys. Rev. D, 80:071702,
2009. doi: 10.1103/PhysRevD.80.071702.

[377] Gulab Bambhaniya, Joydeep Chakrabortty, Srubabati Goswami, and Partha Konar.
Generation of neutrino mass from new physics at TeV scale and multilepton signatures
at the LHC. Phys. Rev. D, 88(7):075006, 2013. doi: 10.1103/PhysRevD.88.075006.

[378] Kirtiman Ghosh, Sudip Jana, and S. Nandi. Neutrino Mass Generation at TeV Scale
and New Physics Signatures from Charged Higgs at the LHC for Photon Initiated
Processes. JHEP, 03:180, 2018. doi: 10.1007/JHEP03(2018)180.

[379] Tathagata Ghosh, Sudip Jana, and S. Nandi. Neutrino mass from Higgs quadruplet
and multicharged Higgs searches at the LHC. Phys. Rev., D97(11):115037, 2018. doi:
10.1103/PhysRevD.97.115037.

[380] K. P. Hadeler. On copositive matrices. Linear Algebra and its Applications, 49:79–89,
1983.

[381] K.G. Klimenko. On Necessary and Sufficient Conditions for Some Higgs Poten-
tials to Be Bounded From Below. Theor. Math. Phys., 62:58–65, 1985. doi:
10.1007/BF01034825.

[382] R. Cepedello, M. Hirsch, and J.C. Helo. Lepton number violating phenomenology of
d = 7 neutrino mass models. JHEP, 01:009, 2018. doi: 10.1007/JHEP01(2018)009.

[383] Roel Aaij et al. Measurement of the ratio of branching fractions B(B̄0 →
D∗+τ−ν̄τ )/B(B̄0 → D∗+µ−ν̄µ). Phys. Rev. Lett., 115(11):111803, 2015. doi:
10.1103/PhysRevLett.115.159901, 10.1103/PhysRevLett.115.111803. [Erratum: Phys.
Rev. Lett.115,no.15,159901(2015)].

[384] Svjetlana Fajfer, Jernej F. Kamenik, and Ivan Nišandžić. On the B → D∗τ ν̄τ Sensitiv-
ity to New Physics. Phys. Rev., D85:094025, 2012. doi: 10.1103/PhysRevD.85.094025.

[385] Svjetlana Fajfer, Jernej F. Kamenik, Ivan Nišandžić, and Jure Zupan. Implications
of Lepton Flavor Universality Violations in B Decays. Phys. Rev. Lett., 109:161801,
2012. doi: 10.1103/PhysRevLett.109.161801.

247



[386] Jon A. Bailey et al. B → D`ν form factors at nonzero recoil and |Vcb| from 2+1-flavor
lattice QCD. Phys. Rev., D92(3):034506, 2015. doi: 10.1103/PhysRevD.92.034506.

[387] Heechang Na, Chris M. Bouchard, G. Peter Lepage, Chris Monahan, and Junko
Shigemitsu. B → Dlν form factors at nonzero recoil and extraction of |Vcb|.
Phys. Rev., D92(5):054510, 2015. doi: 10.1103/PhysRevD.93.119906, 10.1103/Phys-
RevD.92.054510. [Erratum: Phys. Rev.D93,no.11,119906(2016)].

[388] Dante Bigi, Paolo Gambino, and Stefan Schacht. R(D∗), |Vcb|, and the Heavy
Quark Symmetry relations between form factors. JHEP, 11:061, 2017. doi:
10.1007/JHEP11(2017)061.

[389] Florian U. Bernlochner, Zoltan Ligeti, Michele Papucci, and Dean J. Robinson. Com-
bined analysis of semileptonic B decays to D and D∗: R(D(∗)), |Vcb|, and new physics.
Phys. Rev., D95(11):115008, 2017. doi: 10.1103/PhysRevD.95.115008, 10.1103/Phys-
RevD.97.059902. [erratum: Phys. Rev.D97,no.5,059902(2018)].

[390] Sneha Jaiswal, Soumitra Nandi, and Sunando Kumar Patra. Extraction of |Vcb| from
B → D(∗)`ν` and the Standard Model predictions of R(D(∗)). JHEP, 12:060, 2017.
doi: 10.1007/JHEP12(2017)060.

[391] Florian U. Bernlochner, Stephan Duell, Zoltan Ligeti, Michele Papucci, and Dean J.
Robinson. Das ist der HAMMER: Consistent new physics interpretations of semilep-
tonic decays. 2020.

[392] Sneha Jaiswal, Soumitra Nandi, and Sunando Kumar Patra. Updates on SM predic-
tions of |Vcb| and R(D∗) in B → D∗`ν` decays. 2020.

[393] Mikhail A. Ivanov, Juergen G. Korner, and Pietro Santorelli. Semileptonic decays of Bc

mesons into charmonium states in a relativistic quark model. Phys. Rev., D71:094006,
2005. doi: 10.1103/PhysRevD.75.019901, 10.1103/PhysRevD.71.094006. [Erratum:
Phys. Rev.D75,019901(2007)].

[394] Wen-Fei Wang, Ying-Ying Fan, and Zhen-Jun Xiao. Semileptonic decays Bc →
(ηc, J/Ψ)lν in the perturbative QCD approach. Chin. Phys., C37:093102, 2013. doi:
10.1088/1674-1137/37/9/093102.

[395] Rupak Dutta and Anupama Bhol. Bc → (J/ψ, ηc)τν semileptonic decays within the
standard model and beyond. Phys. Rev., D96(7):076001, 2017. doi: 10.1103/Phys-
RevD.96.076001.

[396] Christopher W. Murphy and Amarjit Soni. Model-Independent Determination of
B+
c → ηc `

+ ν Form Factors. Phys. Rev., D98(9):094026, 2018. doi: 10.1103/Phys-
RevD.98.094026.

[397] Aidos Issadykov and Mikhail A. Ivanov. The decays Bc → J/ψ + ¯̀ν` and Bc →
J/ψ + π(K) in covariant confined quark model. Phys. Lett., B783:178–182, 2018. doi:
10.1016/j.physletb.2018.06.056.

248



[398] Ryoutaro Watanabe. New Physics effect on Bc → J/ψτ ν̄ in relation to the RD(∗)

anomaly. Phys. Lett., B776:5–9, 2018. doi: 10.1016/j.physletb.2017.11.016.

[399] Thomas D. Cohen, Henry Lamm, and Richard F. Lebed. Model-independent bounds
on R(J/ψ). JHEP, 09:168, 2018. doi: 10.1007/JHEP09(2018)168.

[400] Anson Berns and Henry Lamm. Model-Independent Prediction of R(ηc). JHEP, 12:
114, 2018. doi: 10.1007/JHEP12(2018)114.

[401] Ilja Doršner, Svjetlana Fajfer, Nejc Košnik, and Ivan Nišandžić. Minimally flavored
colored scalar in B̄ → D(∗)τ ν̄ and the mass matrices constraints. JHEP, 11:084, 2013.
doi: 10.1007/JHEP11(2013)084.

[402] K.G. Chetyrkin. Quark mass anomalous dimension to O (alpha-s**4). Phys. Lett. B,
404:161–165, 1997. doi: 10.1016/S0370-2693(97)00535-2.

[403] J.A. Gracey. Three loop MS-bar tensor current anomalous dimension in QCD. Phys.
Lett. B, 488:175–181, 2000. doi: 10.1016/S0370-2693(00)00859-5.

[404] K.S. Babu. TASI Lectures on Flavor Physics. In Proceedings of Theoretical Ad-
vanced Study Institute in Elementary Particle Physics on The dawn of the LHC
era (TASI 2008): Boulder, USA, June 2-27, 2008, pages 49–123, 2010. doi:
10.1142/9789812838360_0002.

[405] Martín González-Alonso, Jorge Martin Camalich, and Kin Mimouni. Renormalization-
group evolution of new physics contributions to (semi)leptonic meson decays. Phys.
Lett. B, 772:777–785, 2017. doi: 10.1016/j.physletb.2017.07.003.

[406] Monika Blanke, Andreas Crivellin, Stefan de Boer, Teppei Kitahara, Marta Moscati,
Ulrich Nierste, and Ivan Nišandžić. Impact of polarization observables and Bc → τν
on new physics explanations of the b → cτν anomaly. Phys. Rev. D, 99(7):075006,
2019. doi: 10.1103/PhysRevD.99.075006.

[407] David M. Straub. flavio: a Python package for flavour and precision phenomenology
in the Standard Model and beyond. 10 2018.

[408] Yasuhito Sakaki, Minoru Tanaka, Andrey Tayduganov, and Ryoutaro Watanabe. Test-
ing leptoquark models in B̄ → D(∗)τ ν̄. Phys. Rev. D, 88(9):094012, 2013. doi:
10.1103/PhysRevD.88.094012.

[409] Rodrigo Alonso, Benjamín Grinstein, and Jorge Martin Camalich. Lifetime of B−c
Constrains Explanations for Anomalies in B → D(∗)τν. Phys. Rev. Lett., 118(8):
081802, 2017. doi: 10.1103/PhysRevLett.118.081802.

[410] Chao-Hsi Chang, Shao-Long Chen, Tai-Fu Feng, and Xue-Qian Li. The Lifetime of Bc

meson and some relevant problems. Phys. Rev. D, 64:014003, 2001. doi: 10.1103/Phys-
RevD.64.014003.

249



[411] S.S. Gershtein, V.V. Kiselev, A.K. Likhoded, and A.V. Tkabladze. Physics of B(c)
mesons. Phys. Usp., 38:1–37, 1995. doi: 10.1070/PU1995v038n01ABEH000063.

[412] Ikaros I.Y. Bigi. Inclusive B(c) decays as a QCD lab. Phys. Lett. B, 371:105–110, 1996.
doi: 10.1016/0370-2693(95)01574-4.

[413] Martin Beneke and Gerhard Buchalla. The Bc Meson Lifetime. Phys. Rev. D, 53:
4991–5000, 1996. doi: 10.1103/PhysRevD.53.4991.

[414] V.V. Kiselev, A.E. Kovalsky, and A.K. Likhoded. Bc decays and lifetime in QCD sum
rules. Nucl. Phys. B, 585:353–382, 2000. doi: 10.1016/S0550-3213(00)00386-2.

[415] A.G. Akeroyd and Chuan-Hung Chen. Constraint on the branching ratio of Bc → τ ν̄
from LEP1 and consequences for R(D(∗)) anomaly. Phys. Rev. D, 96(7):075011, 2017.
doi: 10.1103/PhysRevD.96.075011.

[416] Debjyoti Bardhan and Diptimoy Ghosh. B -meson charged current anomalies: The
post-Moriond 2019 status. Phys. Rev. D, 100(1):011701, 2019. doi: 10.1103/Phys-
RevD.100.011701.

[417] Christoph Bobeth, Gudrun Hiller, and Giorgi Piranishvili. Angular distributions of
B̄ → K̄`+`− decays. JHEP, 12:040, 2007. doi: 10.1088/1126-6708/2007/12/040.

[418] A. Abdesselam et al. Test of lepton flavor universality in B → K`+`− decays. 2019.

[419] A. Abdesselam et al. Test of lepton flavor universality in B → K∗`+`− decays at Belle.
2019.

[420] Damir Bečirević and Olcyr Sumensari. A leptoquark model to accommodate Rexp
K <

RSM
K and Rexp

K∗ < RSM
K∗ . JHEP, 08:104, 2017. doi: 10.1007/JHEP08(2017)104.

[421] King-man Cheung. Muon anomalous magnetic moment and leptoquark solutions.
Phys. Rev. D, 64:033001, 2001. doi: 10.1103/PhysRevD.64.033001.

[422] Rusa Mandal and Antonio Pich. Constraints on scalar leptoquarks from lepton and
kaon physics. JHEP, 12:089, 2019. doi: 10.1007/JHEP12(2019)089.

[423] I. Doršner, S. Fajfer, A. Greljo, J. F. Kamenik, and N. Košnik. Physics of leptoquarks
in precision experiments and at particle colliders. Phys. Rept., 641:1–68, 2016. doi:
10.1016/j.physrep.2016.06.001.

[424] Andreas Crivellin, Dario Müller, and Francesco Saturnino. Correlating h → µ+µ− to
the Anomalous Magnetic Moment of the Muon via Leptoquarks. 8 2020.

[425] Georges Aad et al. A search for the dimuon decay of the Standard Model Higgs boson
with the ATLAS detector. 7 2020.

[426] Measurement of Higgs boson decay to a pair of muons in proton-proton collisions at√
s = 13 TeV. Technical Report CMS-PAS-HIG-19-006, 2020.

250



[427] J. de Blas et al. Higgs Boson Studies at Future Particle Colliders. JHEP, 01:139, 2020.
doi: 10.1007/JHEP01(2020)139.

[428] M. Cepeda et al. Report from Working Group 2: Higgs Physics at the HL-LHC and
HE-LHC, volume 7, pages 221–584. 12 2019. doi: 10.23731/CYRM-2019-007.221.

[429] Keisuke Fujii et al. Tests of the Standard Model at the International Linear Collider.
8 2019.

[430] The Compact Linear e+e− Collider (CLIC): Physics Potential. 12 2018.

[431] Mingyi Dong et al. CEPC Conceptual Design Report: Volume 2 - Physics & Detector.
11 2018.

[432] A. Abada et al. FCC Physics Opportunities: Future Circular Collider Conceptual
Design Report Volume 1. Eur. Phys. J. C, 79(6):474, 2019. doi: 10.1140/epjc/s10052-
019-6904-3.

[433] Measurement of Higgs boson production in the decay channel with a pair of τ leptons.
Technical Report CMS-PAS-HIG-19-010, 2020.

[434] Kaori Fuyuto, Michael Ramsey-Musolf, and Tianyang Shen. Electric Dipole Moments
from CP-Violating Scalar Leptoquark Interactions. Phys. Lett. B, 788:52–57, 2019.
doi: 10.1016/j.physletb.2018.11.016.

[435] W. Dekens, J. de Vries, M. Jung, and K.K. Vos. The phenomenology of elec-
tric dipole moments in models of scalar leptoquarks. JHEP, 01:069, 2019. doi:
10.1007/JHEP01(2019)069.

[436] V. Andreev et al. Improved limit on the electric dipole moment of the electron. Nature,
562(7727):355–360, 2018. doi: 10.1038/s41586-018-0599-8.

[437] G.W. Bennett et al. An Improved Limit on the Muon Electric Dipole Moment. Phys.
Rev. D, 80:052008, 2009. doi: 10.1103/PhysRevD.80.052008.

[438] M. Abe et al. A New Approach for Measuring the Muon Anomalous Magnetic Moment
and Electric Dipole Moment. PTEP, 2019(5):053C02, 2019. doi: 10.1093/ptep/ptz030.

[439] Tetsuichi Kishishita et al. SliT: A Strip-sensor Readout Chip with Subnanosecond
Time-walk for the J-PARC Muon g − 2/EDM Experiment. 6 2020.

[440] Ryan Janish and Harikrishnan Ramani. Muon g-2 and EDM experiments as muonic
dark matter detectors. 6 2020.

[441] K. Inami et al. Search for the electric dipole moment of the tau lepton. Phys. Lett. B,
551:16–26, 2003. doi: 10.1016/S0370-2693(02)02984-2.

[442] Hector Gisbert and Joan Ruiz Vidal. Improved bounds on heavy quark electric dipole
moments. Phys. Rev. D, 101(11):115010, 2020. doi: 10.1103/PhysRevD.101.115010.

251



[443] J. M. Pendlebury et al. Revised experimental upper limit on the electric dipole moment
of the neutron. Phys. Rev. D, 92(9):092003, 2015. doi: 10.1103/PhysRevD.92.092003.

[444] Rachid Benbrik and Chun-Khiang Chua. Lepton Flavor Violating l → l′gamma and
Z → ll̄′ Decays Induced by Scalar Leptoquarks. Phys. Rev. D, 78:075025, 2008. doi:
10.1103/PhysRevD.78.075025.

[445] S. Schael et al. Precision electroweak measurements on the Z resonance. Phys. Rept.,
427:257–454, 2006. doi: 10.1016/j.physrep.2005.12.006.

[446] P. Arnan, D. Bečirević, F. Mescia, and O. Sumensari. Probing low energy scalar
leptoquarks by the leptonic W and Z couplings. JHEP, 02:109, 2019. doi:
10.1007/JHEP02(2019)109.

[447] Leandro Da Rold and Federico Lamagna. Composite Higgs and leptoquarks from a
simple group. JHEP, 03:135, 2019. doi: 10.1007/JHEP03(2019)135.

[448] Andreas Crivellin and Francesco Saturnino. Correlating tauonic B decays with the
neutron electric dipole moment via a scalar leptoquark. Phys. Rev. D, 100(11):115014,
2019. doi: 10.1103/PhysRevD.100.115014.

[449] Andrzej J. Buras, Mikolaj Misiak, and Jorg Urban. Two loop QCD anomalous dimen-
sions of flavor changing four quark operators within and beyond the standard model.
Nucl. Phys. B, 586:397–426, 2000. doi: 10.1016/S0550-3213(00)00437-5.

[450] Marco Ciuchini, E. Franco, V. Lubicz, G. Martinelli, I. Scimemi, and L. Silvestrini.
Next-to-leading order QCD corrections to Delta F = 2 effective Hamiltonians. Nucl.
Phys. B, 523:501–525, 1998. doi: 10.1016/S0550-3213(98)00161-8.

[451] Eugene Golowich, JoAnne Hewett, Sandip Pakvasa, and Alexey A. Petrov. Impli-
cations of D0 - D̄0 Mixing for New Physics. Phys. Rev. D, 76:095009, 2007. doi:
10.1103/PhysRevD.76.095009.

[452] N. Carrasco et al. D0 − D̄0 mixing in the standard model and beyond from Nf

=2 twisted mass QCD. Phys. Rev. D, 90(1):014502, 2014. doi: 10.1103/Phys-
RevD.90.014502.

[453] A. Bazavov et al. B- and D-meson leptonic decay constants from four-flavor lattice
QCD. Phys. Rev. D, 98(7):074512, 2018. doi: 10.1103/PhysRevD.98.074512.

[454] Luca Buonocore, Ulrich Haisch, Paolo Nason, Francesco Tramontano, and Giulia Zan-
derighi. Resonant single leptoquark production at hadron colliders. 5 2020.

[455] Georges Aad et al. Search for new non-resonant phenomena in high-mass dilepton final
states with the ATLAS detector. 6 2020. doi: 10.3204/PUBDB-2020-02512.

[456] Christoph Bobeth, Ulrich Haisch, Alexander Lenz, Ben Pecjak, and Gilberto
Tetlalmatzi-Xolocotzi. On new physics in ∆Γd. JHEP, 06:040, 2014. doi:
10.1007/JHEP06(2014)040.

252



[457] Andreas Crivellin, Christoph Greub, Dario Müller, and Francesco Saturnino. Impor-
tance of Loop Effects in Explaining the Accumulated Evidence for New Physics in
B Decays with a Vector Leptoquark. Phys. Rev. Lett., 122(1):011805, 2019. doi:
10.1103/PhysRevLett.122.011805.

[458] Andreas Crivellin, Dario Müller, and Francesco Saturnino. Flavor Phenomenol-
ogy of the Leptoquark Singlet-Triplet Model. JHEP, 06:020, 2020. doi:
10.1007/JHEP06(2020)020.

[459] Wolfgang Altmannshofer, P.S. Bhupal Dev, Amarjit Soni, and Yicong Sui. Address-
ing RD(∗) , RK(∗) , muon g − 2 and ANITA anomalies in a minimal R-parity violating
supersymmetric framework. Phys. Rev. D, 102(1):015031, 2020. doi: 10.1103/Phys-
RevD.102.015031.

[460] Zhi-zhong Xing. Flavor structures of charged fermions and massive neutrinos. 9 2019.

[461] Zhi-zhong Xing, He Zhang, and Shun Zhou. Updated Values of Running Quark and
Lepton Masses. Phys. Rev. D, 77:113016, 2008. doi: 10.1103/PhysRevD.77.113016.

[462] K. Abe et al. Constraint on the Matter-Antimatter Symmetry-Violating Phase in
Neutrino Oscillations. Nature, 580:339–344, 2020. doi: 10.1038/s41586-020-2177-0.

[463] P.S. Bhupal Dev and Yongchao Zhang. Displaced vertex signatures of doubly charged
scalars in the type-II seesaw and its left-right extensions. JHEP, 10:199, 2018. doi:
10.1007/JHEP10(2018)199.

[464] Yong Du, Aaron Dunbrack, Michael J. Ramsey-Musolf, and Jiang-Hao Yu. Type-II
Seesaw Scalar Triplet Model at a 100 TeV pp Collider: Discovery and Higgs Portal
Coupling Determination. JHEP, 01:101, 2019. doi: 10.1007/JHEP01(2019)101.

[465] K.S. Babu and Sudip Jana. Probing Doubly Charged Higgs Bosons at the LHC through
Photon Initiated Processes. Phys. Rev. D, 95(5):055020, 2017. doi: 10.1103/Phys-
RevD.95.055020.

[466] Subhaditya Bhattacharya, Sudip Jana, and S. Nandi. Neutrino Masses and Scalar
Singlet Dark Matter. Phys. Rev. D, 95(5):055003, 2017. doi: 10.1103/Phys-
RevD.95.055003.

[467] Carolina Arbelàez R, Giovanna Cottin, Juan Carlos Helo, and Martin Hirsch. Long-
lived charged particles and multi-lepton signatures from neutrino mass models. Phys.
Rev., D101(9):095033, 2020. doi: 10.1103/PhysRevD.101.095033.

[468] Pavel Fileviez Perez, Tao Han, Gui-yu Huang, Tong Li, and Kai Wang. Neutrino
Masses and the CERN LHC: Testing Type II Seesaw. Phys. Rev. D, 78:015018, 2008.
doi: 10.1103/PhysRevD.78.015018.

[469] Alejandra Melfo, Miha Nemevsek, Fabrizio Nesti, Goran Senjanović, and Yue Zhang.
Type II Seesaw at LHC: The Roadmap. Phys. Rev. D, 85:055018, 2012. doi:
10.1103/PhysRevD.85.055018.

253



[470] Mayumi Aoki, Shinya Kanemura, and Kei Yagyu. Testing the Higgs triplet model with
the mass difference at the LHC. Phys. Rev. D, 85:055007, 2012. doi: 10.1103/Phys-
RevD.85.055007.

[471] Heath Pois, Thomas J. Weiler, and Tzu Chiang Yuan. Higgs boson decay to four
fermions including a single top quark below tt̄ threshold. Phys. Rev. D, 47:3886–3897,
1993. doi: 10.1103/PhysRevD.47.3886.

[472] Morad Aaboud et al. Search for doubly charged Higgs boson production in multi-lepton
final states with the ATLAS detector using proton–proton collisions at

√
s = 13TeV.

Eur. Phys. J. C, 78(3):199, 2018. doi: 10.1140/epjc/s10052-018-5661-z.

[473] A search for doubly-charged Higgs boson production in three and four lepton final
states at

√
s = 13 TeV. 2017. CMS-PAS-HIG-16-036.

[474] Torbjorn Sjostrand, Stephen Mrenna, and Peter Z. Skands. A Brief Intro-
duction to PYTHIA 8.1. Comput. Phys. Commun., 178:852–867, 2008. doi:
10.1016/j.cpc.2008.01.036.

[475] J. de Favereau, C. Delaere, P. Demin, A. Giammanco, V. Lemaître, A. Mertens, and
M. Selvaggi. DELPHES 3, A modular framework for fast simulation of a generic collider
experiment. JHEP, 02:057, 2014. doi: 10.1007/JHEP02(2014)057.

[476] X. Qian and P. Vogel. Neutrino Mass Hierarchy. Prog. Part. Nucl. Phys., 83:1–30,
2015. doi: 10.1016/j.ppnp.2015.05.002.

[477] Michelle J. Dolinski, Alan W. P. Poon, and Werner Rodejohann. Neutrinoless Double-
Beta Decay: Status and Prospects. Ann. Rev. Nucl. Part. Sci., 69:219–251, 2019. doi:
10.1146/annurev-nucl-101918-023407.

[478] H. Georgi and S. L. Glashow. Unity of All Elementary Particle Forces. Phys. Rev.
Lett., 32:438–441, 1974. doi: 10.1103/PhysRevLett.32.438.

[479] Paul Langacker. Grand Unified Theories and Proton Decay. Phys. Rept., 72:185, 1981.
doi: 10.1016/0370-1573(81)90059-4.

[480] A. J. Buras, John R. Ellis, M. K. Gaillard, and Dimitri V. Nanopoulos. Aspects of the
Grand Unification of Strong, Weak and Electromagnetic Interactions. Nucl. Phys. B,
135:66–92, 1978. doi: 10.1016/0550-3213(78)90214-6.

[481] Howard Georgi. The State of the Art—Gauge Theories. AIP Conf. Proc., 23:575–582,
1975. doi: 10.1063/1.2947450.

[482] Harald Fritzsch and Peter Minkowski. Unified Interactions of Leptons and Hadrons.
Annals Phys., 93:193–266, 1975. doi: 10.1016/0003-4916(75)90211-0.

[483] Jihn E. Kim. Reason for SU(6) Grand Unification. Phys. Lett. B, 107:69–72, 1981.
doi: 10.1016/0370-2693(81)91149-7.

254



[484] M. Fukugita, T. Yanagida, and M. Yoshimura. N anti-N OSCILLATION WITHOUT
LEFT-RIGHT SYMMETRY. Phys. Lett. B, 109:369–372, 1982. doi: 10.1016/0370-
2693(82)91092-9.

[485] Paul A. Abell et al. LSST Science Book, Version 2.0. 12 2009.

[486] Luca Amendola et al. Cosmology and fundamental physics with the Euclid satellite.
Living Rev. Rel., 21(1):2, 2018. doi: 10.1007/s41114-017-0010-3.

[487] Amir Aghamousa et al. The DESI Experiment Part I: Science,Targeting, and Survey
Design. 10 2016.

[488] Peter Ade et al. The Simons Observatory: Science goals and forecasts. JCAP, 02:056,
2019. doi: 10.1088/1475-7516/2019/02/056.

[489] Kevork Abazajian et al. CMB-S4 Science Case, Reference Design, and Project Plan.
7 2019.

[490] Ali Ashtari Esfahani et al. Determining the neutrino mass with cyclotron radiation
emission spectroscopy—Project 8. J. Phys. G, 44(5):054004, 2017. doi: 10.1088/1361-
6471/aa5b4f.

[491] K. Abe et al. Hyper-Kamiokande Design Report. 5 2018.

[492] B. Abi et al. The DUNE Far Detector Interim Design Report Volume 1: Physics,
Technology and Strategies. 7 2018.

[493] Francesco Vissani. Signal of neutrinoless double beta decay, neutrino spectrum and
oscillation scenarios. JHEP, 06:022, 1999. doi: 10.1088/1126-6708/1999/06/022.

[494] Samoil M. Bilenky, S. Pascoli, and S. T. Petcov. Majorana neutrinos, neutrino mass
spectrum, CP violation and neutrinoless double beta decay. 1. The Three neutrino
mixing case. Phys. Rev. D, 64:053010, 2001. doi: 10.1103/PhysRevD.64.053010.

[495] R. N. Mohapatra et al. Theory of neutrinos: A White paper. Rept. Prog. Phys., 70:
1757–1867, 2007. doi: 10.1088/0034-4885/70/11/R02.

[496] Tianjun Li, Junle Pei, Fangzhou Xu, and Wenxing Zhang. SU(3)C × SU(3)L ×
U(1)X model from SU(6). Phys. Rev. D, 102(1):016004, 2020. doi: 10.1103/Phys-
RevD.102.016004.

[497] Ashoke Sen. Sliding Singlet Mechanism in N=1 Supergravity GUT. Phys. Lett. B,
148:65–68, 1984. doi: 10.1016/0370-2693(84)91612-5.

[498] Stephen M. Barr. The Sliding - singlet mechanism revived. Phys. Rev. D, 57:190–194,
1998. doi: 10.1103/PhysRevD.57.190.

[499] Z. G. Berezhiani and G. R. Dvali. Possible solution of the hierarchy problem in super-
symmetrical grand unification theories. Bull. Lebedev Phys. Inst., 5:55–59, 1989.

255



[500] Riccardo Barbieri, G. R. Dvali, and M. Moretti. Back to the doublet - triplet splitting
problem. Phys. Lett. B, 312:137–142, 1993. doi: 10.1016/0370-2693(93)90501-8.

[501] G. R. Dvali. Why is the Higgs doublet light? Phys. Lett. B, 324:59–65, 1994. doi:
10.1016/0370-2693(94)00075-1.

[502] Z. Chacko and Rabindra N. Mohapatra. Doublet triplet splitting in supersymmet-
ric SU(6) by missing VEV mechanism. Phys. Lett. B, 442:199–202, 1998. doi:
10.1016/S0370-2693(98)01263-5.

[503] Riccardo Barbieri, G. R. Dvali, Alessandro Strumia, Zurab Berezhiani, and Lawrence J.
Hall. Flavor in supersymmetric grand unification: A Democratic approach. Nucl. Phys.
B, 432:49–67, 1994. doi: 10.1016/0550-3213(94)90593-2.

[504] Zurab Berezhiani. SUSY SU(6) GIFT for doublet-triplet splitting and fermion masses.
Phys. Lett. B, 355:481–491, 1995. doi: 10.1016/0370-2693(95)00705-P.

[505] N. Abgrall et al. The Large Enriched Germanium Experiment for Neutrinoless
Double Beta Decay (LEGEND). AIP Conf. Proc., 1894(1):020027, 2017. doi:
10.1063/1.5007652.

[506] J. B. Albert et al. Sensitivity and Discovery Potential of nEXO to Neutrinoless Double
Beta Decay. Phys. Rev. C, 97(6):065503, 2018. doi: 10.1103/PhysRevC.97.065503.

256



VITA

Anil Thapa

Candidate for the Degree of

Doctor of Philosophy

Thesis: NEUTRINOS: A GATEWAY TO BEYOND THE STANDARD MODEL

Major Field: Physics

Biographical:

Education:

Completed the requirements for the degree of Doctor of Philosophy with a major in
Physics at Oklahoma State University in July 2021.

Received B.Sc. in Physics and Mathematics at Louisiana Tech University, Ruston,
LA in 2014.

Experience:

Visiting researcher at Theoretical Physics Department, Fermi National Accelerator Lab-
oratory (Fermilab), USA during Summer 2018 - 2019.

Visiting researcher at Theoretical Physics Department, Washington University in St.
Louis, USA during March 2019.

Recognition:

Awarded Visiting Research Assistantship under “Neutrino Theory Network (NTN)”
by Theoretical Physics Department, Washington University in St. Louis, USA in 2019.

Awarded Visiting Research Assistantship under “Fermilab Distinguished Scholars Pro-
gram” by Theoretical Physics Department, Fermi National Accelerator Laboratory (Fer-
milab), USA during 2018-2019.


