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CHAPTER I 
 

 

INTRODUCTION 

 

Research has shown the majority of students primarily reason about the definite 

integral in terms of either prototypical imagery (e.g. area beneath a function, above an !-

axis, and between two boundary lines at ! = # and ! = $), or in purely algorithmic and 

non-quantitative ways (e.g. antiderivative). While these ways of reasoning may provide 

the means to complete the definite integral tasks typically found on US Calculus I final 

exams (Tallman, Carlson, Bressoud, & Pearson, 2016), they do not prepare students for 

applying definite integrals in context. Over the past two decades, a growing body of 

research has identified that connecting definite integrals to Riemann sums and 

quantitative reasoning provides students with robust ways to reason about contextual 

tasks. These studies have primarily focused on constructs in which the differential form 

represents a multiplicative product between a rate of change and a differential quantity, 

what I refer to as a Riemann product. However, limiting students’ definite integral 

reasoning to Riemann product structures has been identified as potentially inadequate for 

a successful transition to other STEM coursework in which the integrand does not 

naturally decompose into a rate of change or density, such as electrostatic(Meredith & 

Marrongelle, 2008; Oehrtman, 2015). This study aims to contribute to the mathematics 
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education field by offering insight into how students can develop an understanding of 

force definite integration which supports the quantitative reasoning necessary to 

productively engage in such tasks.  

Using constructivism as the epistemological foundation, I drew on Simmons and 

Oehrtman’s (2017, 2019) characterization of the Emergent Quantitative Model’s 

framework to engage participants in an eight-week teaching experiment (L. P. Steffe & 

Thompson, 2000) focused on influencing and characterizing their emerging schemes for 

integration consistent with what I refer to as a Quantitatively Based Summation 

conception of integration. Specifically, I was interested in answering the following 

questions: 

RQ1.) How might students develop a quantitative understanding of definite 

integration in a Calculus I course.  

RQ2.) What are the limitations and affordances of a quantitative understanding of 

definite integration? In particular, how does a quantitative understanding of 

definite integration impact Calculus I students' ability to reason about physics-

based integration tasks in which the varying quantity is not a rate of change or 

density function? 
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CHAPTER II 
 

 

REVIEW OF LITERATURE 

  

In the following sections, we will explore some of the most relevant contributions to 

the literature on definite integrals in mathematics and physics education research. 

Quantitative Reasoning 

Thompson’s (1990, 2011) theory of quantitative reasoning is the study of mental 

actions involved in the conceptualization of quantities and relationships between 

quantities. Quantities are measurable qualities of objects which are formed by individuals 

engaging in a dialectic between an object, an attribute of that object which is of interest, 

and a way in which to measure that attribute to solve a problem (e.g. height as tallness of 

a person) (Thompson, 2012, p. 143). Quantities are quantified through a process of 

“settling what it means to measure a quantity, what one measures to do so, and what a 

measure means after getting one” (Thompson, 2011, p. 38). Note that, although the 

concept of number does emerge from reasoning about the measure of a quantity, quantity 

is not equivalent to number (Thompson & Carlson, 2017, p. 425). Thompson refers to a 

quantity that has been measured as a value. 
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The act of creating a new quantity from two or more already-conceived quantities is 

referred to as a quantitative operation. Quantitative operations can be described as 

structures among quantities: the original quantities, the new quantity, and the relationship 

between them. Trying to reason with these structures and communicate their meanings is 

highly demanding for students cognitively (Smith & Thompson, 2007; Thompson, 1995), 

and is the primary focus of most quantitative reasoning research. Research shows that 

reasoning quantitatively is nontrivial, does not necessarily develop quickly, is non-

canonical, and that there are varying levels of complexity in the types of quantitative 

structures students must construct (Smith & Thompson, 2007; White Brahmia, 2019). 

It must be emphasized that just as quantities are not equivalent to numbers, 

quantitative operations are not equivalent to numerical operations (such as addition, 

subtraction, multiplication, and division). Quantities do not need to be calculated to be 

used productively: 

You employ quantitative operations at the first moment of thinking of a situation 

quantitatively. Quantitative operations are the conceptual operations one uses to 

imagine a situation and to reason about a situation— often independently of any 

numerical calculations. (Thompson, 1995) 

Students (and teachers) often conflate quantitative and numerical operations due, in 

part, to their shared symbolic notation (Thompson, 1994). For example, a typical way in 

which the concept of slope is communicated in algebra courses in the US is as a change 

in height (Δ&) divided by a change in width (Δ!). Often the take-away from this 

treatment is that there is no relationship between slope, Δ!, and '& outside of “slope is 

defined to be,” and results in a conception of slope as a numerical operation between two 
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quantities. On the other hand, a quantitative operation between these three quantities 

could be to conceive of slope as a multiplicative comparison between '& and '!. That is, 

a slope’s measure, (, represents how many times greater '& is than Δx ('& = ( ⋅ '!). 

When reasoning quantitatively, it is the characterization and relationships between 

quantities that are of primary focus, not computations. Numerical values and operations 

come as a natural byproduct (Thompson, 1993). 

An inability to separate a quantity from its measure hinders students’ ability to reason 

about quantitative relationships, especially when dealing with quantities of unknown 

value (Thompson, 1988). A focus on numerical (or symbolic) operations is not 

intrinsically harmful but should not be the focus of instruction until the quantitative 

operations that they represent are firmly established. Thompson (1995) laments, “too 

often [we] let students use numbers and operations meaninglessly, to the point where 

meaningless use of numbers and operations becomes their habitual activity.” Smith and 

Thompson (2007) reinforce this sentiment, “when students do not attend to quantities and 

relationships, their problem-solving quickly becomes a matter of ungrounded debate 

about choosing numbers and operations.” By introducing symbolic operations before 

students are ready, we are turning their attention away from conceptual meaning to 

instead learning to play the “school-math game” where math is just about producing the 

answer teachers want to see (Thompson, 1995). Ellis (2007) showed that students’ 

generalizing activity was enhanced by students focusing on quantitative relationships 

rather than numeric patterns. For example, there is a distinction between a recognition 

that rate of change is the proportional relationship between two quantities and a view that 

every time you increase ! by 1 unit, y increases by y’ units. If the goal of mathematics is 
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to understand structural relationships between mathematical objects which numerical 

operations can represent, then quantitative reasoning serves as an important base from 

which to extract that structure (Ellis, 2007; Mayes, 2011; Smith & Thompson, 2007).  

According to Thompson, co-variation is characterized “in terms of conceptualizing 

individual quantities’ values as varying and then conceptualizing two or more quantities 

as varying simultaneously” (Thompson & Carlson, 2017). That is, covariational 

reasoning is reasoning quantitatively in dynamic situations. Just as quantitative reasoning 

is classified as difficult for students, covariational reasoning is non-trivial and a great deal 

of research has been conducted to identify the productive ways in which students can 

reason about dynamic quantities (Carlson, Jacobs, Coe, Larsen, & Hsu, 2002; Carlson, 

Oehrtman, & Engelke, 2010; Moore, 2013, 2014; Moore & Carlson, 2012; Moore, 

Silverman, Paoletti, & Laforest, 2014; Oehrtman, Carlson, & Thompson, 2008). 

The theoretical underpinning of quantitative reasoning is that of Piaget’s (1972) 

genetic epistemology. From this perspective, the interpretations of our experiences, 

including quantities, are not true reflections of some ontological reality but are schemes 

that are constructed and reside within the minds of individuals (Thompson, 1994, 2011, 

2013). Ellis (2007) explains,  

Quantitative operations originate in actions, or activities of the mind (Piaget, 

1967). As a learner interiorizes actions, creating mental operations, these 

operations allow one to comprehend situations representationally. They enable the 

learner to draw inferences, for example, about relationships that may not be 

present in the situation itself. If all mental actions are tied to experience, then any 

meaningful learning in mathematics must be grounded in quantitative referents. 

(p. 441) 
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Not attending to the individualized nature of interpretation can become problematic 

when trying to engage students in activities aimed at quantitative understandings. For 

instance, Thompson (1996) gave an example of a seventh-grade teacher providing the 

following prompt for their students to create a discussion as to when rounding is 

appropriate:  

A grocer buys Sara Lee cakes from his distributor in packages of 8 cakes per 

package. Each package costs $4.25. The grocer figures he needs 275 cakes for the 

next week. How much money should he plan on paying for cakes? 

One student in this class fundamentally could not understand the question being 

asked. This was because, from his perspective, going to the grocery store simply entailed 

picking out the items you need and then taking them to the cashier. This student had no 

conception for restocking shelves, and because, from his experience, the cashier tells you 

how much you owe there was also no need to calculate totals yourself. From this 

student’s point of view, the situation was non-problematic and there was no object in 

need of quantification. This case exemplifies that how an individual conceives of an 

object to be quantified is just as important as how they conceive of measuring it 

(Thompson, 2012). Thompson takes the stance that any “[framework] that puts meaning 

outside of individuals is less helpful for purposes of instructional and curricular design, 

teacher preparation, and teacher development than [one] that puts meaning within 

individuals” (Thompson, 2013). Although approaching quantitative reasoning through 

Piaget’s genetic epistemology takes seriously the contention that everyone’s 

interpretation of situations and quantities are unique, this does not imply that students 

cannot move towards understandings consistent with learning goals. The point is that 
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instructors should be sensitive to these differing perspectives in their classrooms and 

anticipate experiences that facilitate students’ mental actions towards those objectives 

(Moore, Carlson, & Oehrtman, 2009).  

An ever-increasing demand for the ability to understand highly sophisticated 

quantitative problems has highlighted the demand for reasoning quantitatively to be a 

primary focus of mathematics education (Hatfield, 2011). However, while some may 

interpret this as a call to include extremely complex application tasks in curriculum, 

quantitatively rich problems should not be conflated with real-world or applied problems. 

Tasks are quantitatively rich based on the type of engagement in which the students 

participate with the reasoning, not necessarily on the difficulty or number of 

quantifications required. What is important is that students actively attend to identifying 

and characterizing the relationships between quantities while engaging in tasks designed 

to promote the extraction of mathematical structure (Ellis, 2007; Eric, Amy, Torrey, & 

Zekiye, 2014; Moore et al., 2014) 

A great deal of quantitative reasoning research is based within primary education, 

particularly arithmetic and elementary algebra. However, the theory has also been 

utilized in secondary and tertiary education including geometry (Thompson, 1999), 

precalculus (Carlson et al., 2002; Carlson et al., 2010; Moore & Carlson, 2012; Moore et 

al., 2009; Oehrtman et al., 2008; Thompson, 1994), secondary teacher preparation 

(Moore et al., 2014; L. Steffe & Izsak, 2002; Tallman & Frank, 2020; Thompson, 

Carlson, & Silverman, 2007), trigonometry (Moore, 2013, 2014), and calculus 

(Bajracharya & Thompson, 2014; Mkhatshwa, 2019a, 2019b; Mkhatshwa & Doerr, 2018; 

Thompson & Silverman, 2008). According to Moore, a primary benefit of quantitative 
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reasoning at these higher levels of education is that “it enables exploring mathematical 

ideas in non-canonical representations (e.g., input on the vertical axis) and in a variety of 

settings (e.g. polar coordinate systems)” (Moore et al., 2014). 

Symbolic Forms 

The use of formal expressions in physics is not just a matter of the rigorous and 

routinized application of principles, followed by the formal manipulation of 

expressions to obtain an answer. Rather, successful students learn to understand 

what equations say in a fundamental sense; they have a feel for expressions, and 

this understanding guides their work. (Sherin, 2001, p. 482) 

Working with equations is an integral part of students’ interactions with mathematics 

and physics. Considering this, researchers have spent decades seeking to characterize 

how experts interpret various equations and how students learn to work with those 

equations throughout their school curriculum. One of these studies, Bruce Sherin’s How 

Students Understand Physics Equations (2001), introduced the symbolic forms 

knowledge system which linked the naive (or intuitive) physics knowledge literature with 

college students’ creation and interpretations of physics equations.  

The naive physics knowledge literature is centered on the idea that students of 

physics, even at a young age, are not blank slates with which we can directly imprint 

correct ‘knowledge’ through instruction. Instead, “students enter physics instruction with 

quite a lot of knowledge about the physical world, and that this knowledge has a strong 

impact on their learning of formal physics” (Sherin, 2001, p. 484). While much of the 

early research characterized this prior informal learning as simply “preconceptions” or 

“misconceptions” that could be easily corrected with valid principles (e.g. Clement, 
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1993), diSessa argued that there is a sense of mechanism, “a sense of how things work, 

what sorts of events are necessary, likely possible, or impossible” (1993, p. 106), which 

remains resilient to change and which should be accounted for in a theory of learning. 

Other researchers acknowledged the importance of naive knowledge (e.g. McCloskey, 

1983) and hypothesize that these “preconceptions” constitute a fully formed (though 

possibly incorrect) theory of the physical world. However, diSessa’s view was that 

“intuitive physics is a fragmented collection of ideas, loosely connected and reinforcing, 

having none of the commitment or systematicity that one attributes to theories” (diSessa, 

1993, p. 50). He called his framework “knowledge in pieces,” which focused on his 

classification of dozens of phenomenological primitives (p-prims) that are “simple 

abstractions from common experiences that are taken as relatively primitive in the sense 

that they generally need no explanation; they simply happen” (p. 52). These p-prims vary 

in levels of connectivity and are thus activated in varying circumstances; that is to say, 

just because someone holds a certain conception (or p-prim) does not mean that it is 

evident in every situation. Using this knowledge system as a base, Sherin sought to 

identify how naive knowledge impacted students’ formulation of physics equations.  

Like the “knowledge in pieces” framework, Sherin was not necessarily trying to 

identify how students develop the ability to construct equations. Instead, recognizing that 

intuitive knowledge plays a role in development, Sherin wanted to uncover the 

underlying meanings elicited by students when constructing unfamiliar equations, a sort 

of naive equation knowledge, and how those meanings impacted their constructions. 

Through his analysis of third-semester physics students, Sherin identified symbolic forms 

as pieces of knowledge that can be activated by students in equation creation activity. A 
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symbolic form is comprised of two parts: a symbol template and a conceptual schema. 

The symbol template is a sort of placeholder for symbols within an equation, while the 

conceptual schema are the underlying meanings associated with that particular 

arrangement of symbols. For example, Sherin identified a parts-of-a-whole symbolic 

form; the symbol template for which is represented by the pattern of symbols 

[ x + x + x +	… ]. For Sherin, “[t]he x 	refers to a term or group of symbols, typically 

a single symbol or a product of two or more factors. The brackets around the whole 

pattern indicate that the entity corresponding to the entire pattern is an element of the 

schema” (Sherin, 2001, p. 491). The conceptual schema for parts-of-a-whole is that each 

of the generic parts, x , is a contributing factor to a whole entity. That is, if you were to 

remove one of the parts the entity would no longer be whole. It is important to note that 

while the symbol template does represent much of the observable output in students’ 

finished work, the underlying meanings for the arrangement of symbols can be very 

distinct. To illustrate this point, I will expand on an additional symbolic form that looks 

similar to, but is distinct from, parts-of-a-whole. The symbolic form ‘competing terms’ 

has the template x ± x ± x … 1 for which the underlying conceptual schema is that of 

influences in competition. Sherin notes that competing influences are often in association 

 
 

 

 

1 Note that Sherin did not include brackets in this symbol template, denoting that you do not necessarily 
have to consider the whole entity at the time of activation. Instead he defined another symbolic form for 
identity (! = [… ]; anything true on the right is true for the ! ) which could account for this. Sherin 
mentions that the identity form is rarely reflected in student language, but more implicit in their actions.  
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with directional quantities such as forces or energy in diagrams and that the term 

competition is used because the influences are fighting to “have their way.” While the 

observable product of student conceptions (e.g. A+B) could have been developed under 

either conception, the meanings with which the students work have significant influence 

over how they develop and interpret the result. For instance, one could easily imagine a 

student with a reasonably productive image of vector addition speaking in terms of 

competing influences, one vector ‘pulls’ you in one direction, while the other ‘pushes’ 

you in a different direction. It is much less likely, however, that they would speak of 

vectors in terms of the parts-of-a-whole. How can each component vector be ‘part’ of the 

resultant vector when the magnitude of the resultant vector is likely smaller than that of 

the combined parts? In addition, the resultant vector often isn’t even aligned with one, let 

alone both, of the directions of its ‘components.’ What is particularly important about this 

example is that it is not infeasible for students to naively attempt to add vectors in terms 

of parts-of-a-whole. Reasoning about addition in this way is not inherently wrong and is 

productive in many situations, such as computing Riemann sums. However, what some 

might consider a ‘misunderstanding’ about vector addition, is an activation of a specific 

symbolic form that happens to be unproductive in this particular circumstance. 

In his 2001 work, Sherin introduced 21 symbolic forms that he arranged by cluster 

(Figure 1). Similar to diSessa’s knowledge in pieces, Sherin built this framework to 

categorize small-grained, not necessarily connected nor hierarchical, schemata which 

stem from experience of the physical (and school-based) world noting that this was not 

anywhere near an exhaustive list. Sherin was also clear to indicate that this work did not 

claim to describe the genesis of symbolic forms. However, Sherin did claim that some 



 

 
 

13 

symbolic forms are established through experiences in early math and physics 

classrooms, while others, such as balancing, may have developed from associated p-

prims (Sherin, 2001, pp. 504-505). In addition, while Sherin’s work was based in physics 

content and limited to relatively simple equation constructions, he did note that this 

framework could be extended to other areas; a call which was taken up by researchers 

across mathematical fields.  

 

Figure 1: Sherin’s Symbolic Forms (Sherin, 2001, p. 506) 

Now, some twenty years later, there are numerous examples of Sherin’s symbolic 

forms as additions to the framework and tools for analysis from multiple disciplines and 
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differing education levels. For example, Dorko and Speer (2015) identified two symbolic 

forms relating to units of measurement while examining how introductory calculus 

students think about area and volume problems, Rodriguez, Santos-Diaz, Bain, and 

Towns (2018) used symbolic forms as a basis for developing a construct called graphical 

forms to analyze students’ reasoning about graphs in chemical kinetics, and two research 

groups have made headway in identifying symbolic forms in physics-based vector 

contexts (Dreyfus, Elby, Gupta, & Sohr, 2017; Schermerhorn & Thompson, 2017). While 

there is certainly diversity in the application and adaptation of symbolic forms, one area 

of mathematics and physics that stands out as being particularly dense in symbolic form 

research is integral and differential calculus (typically within physics contexts). 

In 2008, Meredith and Marrongelle identified how two of Sherin’s symbolic forms, 

dependence2 and parts-of-a-whole, impacted students’ perceived need for integration 

while working on electrostatic force problems. In particular, they observed students cued 

to integrate through a dependency relationship characterized the need to integrate due to 

the variation of the quantity ! within the integrand. This resulted in what Meredith and 

Marrongelle deemed a “misapplied” symbolic form when students were engaged in 

modeling contexts of a more complicated nature. Specifically, Meredith and Marrongelle 

characterized the dependence symbolic form a “dead end” for contexts in which the 

 
 

 

 

2 Dependence symbolic form: […!… ]; the whole depends on a quantity dependent upon an individual 
symbol (Sherin, 2001) 
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integrand does not represent a density or rate of change. This was a strong stance, 

considering Meredith and Marrongelle had earlier noted that mathematics education 

researchers previously identified coordinating a dependency relationship as “essential in 

understanding functions and integrals” (p. 574). However, Meredith and Marrongelle 

stressed the productivity of participants who viewed the differential form as a part-of-a-

whole quantity. That is, students who viewed a definite integral as an accumulation of 

parts were more successful in writing integral expressions which accurately characterized 

more complicated differential form structures. They noted that even though only 7 out of 

144 students were cued to integrate by the parts-of-a-whole symbolic form (compared to 

53 of 144 for dependence), those students were all successful when presented with an 

integral task of computing the total electrostatic field due to a bar of charge. This finding 

supported Meredith and Marrongelle’s assertion that definite integrals should be framed 

in terms of a parts-of-a-whole symbolic form.  

Extending Sherin’s symbolic forms to integral calculus, a mathematics education 

researcher, Steven Jones, set out to characterize numerous symbolic forms surrounding 

integration (2013, 2014, 2015a, 2015b). Notably, Jones identified three symbolic forms 

that were of particular consequence while analyzing pairs of students working on integral 

problems in mathematics and physics contexts: adding up pieces (later reframed as a 

Multiplicatively Based Summation conception), area and perimeter, and function 

matching which all share the same symbol template: ∫ x
.
. 2 x .  

I begin by discussing the function matching symbolic form as it is the most 

straightforward and most often seen result of calculus courses (Bressoud, 2011). Function 
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matching is closely linked with the anti-derivative process and within this symbolic form. 

The integrand represents the derivative of an “original function,” while the differential 

serves as a dependency cue aiding students in identify how to compute the “original 

function.” The limits of integration serve as a representation of a computation between 

two original values to calculate a difference (see Table 1). Even though the activity 

involved in performing these calculations may appear to be mindlessly procedural, Jones 

argues that there is persistent meaning behind the symbols for students which are 

consistent across groups and situations solidifying its place as a symbolic form. 

Table 1: Jones’ depiction of the conceptual schema for selected symbolic forms (from 
Jones, 2013, pp. 127, 129-130) 

Symbolic Form Conceptual Schema 

Adding up 

pieces; 

Multiplicatively 

Based 

Summation 

conception 

 

Area and 

perimeter 
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The area and perimeter symbolic form is also straight forward but instead of relying 

upon a link between the integral and an original function, it is highly geometric in nature. 

Here the conceptual schema for the entire integrand represents an area, namely the area 

bounded above by the curve of the integrand function, below by the x-axis, and on the left 

and right by vertical lines indicated by the limits of integration3. The most complex of the 

three symbolic forms for definite integrals discussed here is adding-up-pieces. This 

conceptual schema for adding-up-pieces draws upon the parts-of-a-whole symbolic form 

in which the entire integral represents a total amount obtained by the accumulation of the 

area of rectangles: the integrand represents the height of a rectangle and the differential 

its width. The limits of integration indicate the starting and stopping place of the totaling 

process. The complexity of this symbolic form comes in the form of the infinite addition. 

Jones noted, 

 
 

 

 

3 For integrands that take on a negative value Jones notes that some students utilized a cognitive resource 
he called “facing the other way” to explain why it represents a negative area. 

Function 

matching 
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in most instances where the students had activated the adding up pieces symbolic 

form, there was strong evidence that they viewed the rectangles as “infinitely 

thin” and the addition as happening over “infinitely many” rectangles…it seems 

clear that for these students, the adding up pieces symbolic form has embedded in 

it an inherent notion that the rectangles have already achieved the status of being 

infinitely thin and that the addition process requires an infinite summation over 

the infinitely many pieces4 (Jones, 2013, pp. 126-127). 

Jones observed that while every group in his study made productive use of the function 

matching and/or perimeter and area symbolic forms within pure mathematics contexts, 

students unable to adapt to an adding-up-pieces symbolic form when confronted with 

physics-based tasks were unproductive in finding a solution or providing meaning for 

their actions. Jones concluded that “it appears that the choice5 of symbolic form 

activation may have either enhanced or inhibited the students’ ability to work with 

integrals in applied physics problems” (p. 136). After subsequent analysis to identify 

what made this symbolic form more productive for physics tasks, Jones reframed adding-

up-pieces to a Multiplicatively Based Summation conception of definite integrals to shift 

 
 

 

 

4 Jones also described a “miscompilation” of the adding up pieces symbolic form in which students 
conceived as the integral totaling pieces of the integrand and the result is multiplied by the variable of the 
differential (Jones, 2013, p. 135). 

5 Note: I find the phrase “choice” to be highly suspect in this instance. I do not believe Sherin (or even 
Jones) would contend there is a conscious choice for which symbolic forms activate when presented a 
specific task. Certainly, if multiple symbolic forms were activated within a given context then an individual 
could make such a choice. However, it is also possible that a student possesses a symbolic form, has 
demonstrated proficiency with that symbolic form, but the symbolic form was not reactivated when 
presented a task for which that symbolic form might be advantageously applied. 
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focus to the multiplicative relationship between the integrand and differential, rather than 

necessarily one of the generalized rectangles.  

While this was a significant step forward in the accounting for differing variations of 

parts-of-a-whole symbolic forms, the Multiplicatively Based Summation did not fully 

account for the situation that Meredith and Marrongelle described in which the integrand 

is not in the form of a density or rate. In light of this, Oehrtman gave evidence for a new 

symbolic form comprised of the symbol template ∫ xxx
.
. . This symbolic form had a 

similar conceptual schema to that of Jones’ multiplicatively based conception, but with 

the generality that the integrand differential relationship simply indicates a generalized 

piece of the whole quantity being totaled which could later take on the form of [	]2[	]. 

Further elaborated on by Simmons and Oehrtman (2017, 2019), this new symbolic form, 

a Quantitatively Based Summation conception of the definite integral, involved 

subsequent layers of quantitative reasoning which established the differential form as a 

representation of a part of a whole quantity which mirrors the quantitative relationship 

which would hold if the quantities involved were constant. The justification students 

provided for the invocation of this quantitative structure was, at a small enough scale, the 

variation of the quantities within the parts was ‘nearly constant’. In addition, Simmons 

and Oehrtman (2018), described a (potentially problematic) symbolic form associated 

with the symbol template∫ xxx
.
. 2[	] called an Integral as a Transformer. The underlying 

conceptual schema for this symbolic form involved an interpretation that the definite 

integral transforms a quantitative relationship that holds for constant quantities into an 

expression which allows the varying quantity to take on every value within the range 

described by the limits of integration. This was achieved by placing the quantitative 
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relationship which holds for constant quantities directly into the integrand. Similar to the 

function matching symbolic form, the differential variable simply denotes the varying 

quantity. This new symbolic form is potentially problematic as it only produces correct 

solutions when the variation in question is a rate of change or density.  

While mathematics education researchers took on the task of identifying symbolic 

forms for integrals, physics education researchers focused their efforts on the conceptual 

meanings for differentials. Investigating how introductory calculus-based physics 

engineering students connected their mathematical knowledge with physics concepts, Hu 

and Rebello (2013) observed three conceptual schemas for the symbol template of a 

differential (2 x ) contained within integrals. The first, which they called differential as 

the variable of integration, describes the differential term as a variable of integration 

similar to Meredith and Marrongelle’s dependency queue. The second symbolic form, 

differential as an operation, centers on a conceptual schema that the differential term 

indicates the operation of taking a derivative. This is somewhat similar to Jones’ function 

mapping, however, Hu & Rebello were observing this in the context of the more general 

structure ∫ 23
"
#  where total resistance is the integral of the differential resistance rather 

than the differential term being a queue for the variable with which the derivative was 

taken. The last symbolic form involves the differential representing a small amount of 

some quantity. This could take the form of a small bit of the independent variable in an 

integrand differential multiplicative relationship, or a more general construct in which the 

total amount of something is comprised of small (or infinitesimal) pieces of that quantity. 

In addition to these three constructs, von Korff and Rebello (2014) elaborated on three 

additional symbolic forms for the differential, but in this case, they used symbol 
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templates involving ∆ to distinguish between three interpretations of infinitesimal 

quantities: amount, change, and product. The first symbolic form, amount, is very similar 

to Hu and Rebello’s small change symbolic form but differs in the subtlety that the stand-

alone symbol template  ∆ represents an infinitesimal amount of a quantity6. The change 

symbolic form, with the template x − x = ∆, is special in the sense that the terms on 

the left side of the equality are finite, while the ∆ continues to represent an infinitesimally 

small quantity. Von Korff and Rebello used position and mass as examples to illustrate 

that the distinction between these two symbolic forms is of cognitive significance; they 

note that while it makes sense that the difference between two positions makes cognitive 

sense from a change symbolic form (position 2 minus position 1), it is not as productive 

to think about small amounts of mass in the same manner. The final symbolic form von 

Korff & Rebello describe involves the product of a finite term with an infinitesimally 

small quantity which is useful in thermodynamics contexts.  

While the majority of this section has been dedicated to listing various researchers’ 

descriptions of symbolic forms, I hope that the significance of the compilation of results, 

especially within the context of calculus, has become apparent. Assessing a particular 

arrangement of symbols is worthless without some indication of the underlying meaning 

 
 

 

 

6 While von Korff and Rebello acknowledge the different representations of d or ∆ in the mathematics 
literature, they chose not to give a mathematical definition of what it means to be infinitesimal or 
vanishingly small; instead including the differing meanings in an appendix of their 2014 paper. 
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which constitutes its parts. Researchers have shown that there are numerous ways to 

interpret and/or produce the same symbol template, even when the resultant product 

looks the same. This means that researchers, and educators, must be sensitive to the 

underlying meanings that are being associated with specific arrangements of 

mathematical symbols, including their strengths and weaknesses for given situations. 

While this means that individuals should be attentive to the meanings they wish to 

convey when discussing certain aspects of a quantity or equation, for instance the 

different components of a definite integral, it means educators should also be intentional 

about eliciting and analyzing students’ meanings through conversation or written 

explanations. In addition, fully accepting the construction of symbolic forms constitutes 

an acknowledgment that students bring in previous conceptions which inform their 

interpretation and construction of symbolic forms; simply relaying a clearly articulated 

meaning for a construct and why it is applicable is not enough. Learners build their 

symbolic forms through experiences. Students must be engaged in experiences which 

reinforce the productivity of certain symbolic forms, while also being challenged with 

problems that illuminate their limitations. For instance, the research indicates that 

students are entering physics classrooms with an overreliance on dependency queues, 

perimeter and area, and function mapping symbolic forms for definite integrals which are 

hindering their ability to adapt to problems that need to be partitioned and approximated 

using generalized pieces. However, students are passing their calculus courses, so what is 

going wrong? Simply put: Students are not being challenged by the limitations of these 

symbolic forms before physics instruction. They have never (or rarely) been exposed to 

tasks in which the integrand is not a preformed rate of change. Furthermore, many of the 
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studies listed have noted that, during interviews, a posed question about a particular 

component of a symbol template caused some students to reframe their reasoning about a 

particular situation and activate new symbolic forms. This acknowledgment of the 

activation of dormant symbolic forms sheds light on the fact that students are often not 

placed in situations in which they must reflect on the effectiveness of their underlying 

meanings. When students are forced to articulate their reasoning it can cause a shift that 

allows for sense-making to take place.  

I would like to make one point explicit: I am not purporting that one symbolic form, 

or a specific way of thinking, is superior and should be prioritized at the cost of all others. 

Every single symbolic form listed above was productive for students in some way. 

Students’ symbolic forms are not an arbitrary hodge-podge of meaningless symbols that 

serve no purpose, nor are students procedural robots who work with no meaning behind 

their actions. In almost all cases, students have a reason for saying/writing/thinking the 

way they did, which is directly tied to productive prior experience. This means that those 

function mapping and perimeter and area symbolic forms were useful enough to be 

solidified in students’ cognitive arsenals. However, I am suggesting that based on the 

large body of evidence indicating a lack of flexibility in the activation of symbolic forms 

for definite integrals, we acknowledge that most calculus students are from other STEM 

fields which require a broader spectrum of meanings for the definite integrals and 

differentials than the calculus curriculum (as a whole) is currently offering. If we want 

students to have more robust and alternative symbolic forms for definite integrals we 

must provide opportunities for those forms to develop.  
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Definite Integrals in Mathematics and Physics 

One of the earliest investigations into definite integrals was Orton’s (1983) study 

involving 110 students ranging from 16-22 years of age. Orton asked these students a 

series of 38 elementary calculus questions (18 of which related to integration) and 

classified the errors students made into three categories: executive errors (failed 

computational manipulations), structural errors (not attending to relationships of the 

mathematicians within the task—most frequent), and arbitrary errors (not attending to the 

constraints of the task— least frequent). A critical result of Orton’s study was the 

identification that most students were not connecting integration with the limit of 

Riemann sums. Even after thirty years, this lack of connection between definite integrals 

and Riemann sums is observed in mathematics students’ reasoning (Jones, 2013; Rasslan 

& Tall, 2002). In particular, students are found to have a strong tendency to interpret 

definite integrals in terms of anti-differentiation or area under a curve (Jones, 2015a). 

Numerous examples of this same reasoning can be found in the physics education 

literature. In particular, Meredith and Marrongelle (2008), building off the work of 

Sherin’s symbolic forms, observed an over-reliance on what they referred to as a 

dependence cue for the definite integral (anti-differentiation), as opposed to a more 

robust parts-of-a-whole cue (Riemann sum), when physics students were working 

through contextual integration tasks. Nguyen and Rebello (2011) identified that physics 

students often did not reinterpret physics tasks in terms of area under a curve, instead 

relying on the algebraic manipulations of anti-differentiation. When students were 

confronted with an interpretation for definite integrals as an area under a curve, they were 

often unable to identify the quantity which the area represented within the given context.  
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In the following sections, we will outline a few key findings of research into students’ 

understandings regarding definite integrals.  

Integration in Terms of Covariational Reasoning 

Because this text focuses on quantitative reasoning and its implications for 

frameworks involving the definite integral, I would be remiss if I did mention Thompson 

and Silverman’s (Thompson & Silverman, 2008) covariational conception of indefinite 

integrals. Thompson and Silverman do not provide a framework for integration, but 

rather a model for a specific understanding of an indefinite integral (or accumulation 

function) set within the theory of quantitative reasoning. In particular, Thompson and 

Silverman classify an indefinite integral in terms of accumulation involving a quantitative 

understanding of rate of change (Carlson, Smith, & Persson, 2003; Thompson, 1994b).  

 While the particulars of how a student might construct Thompson and Silverman’s 

image for a productive understanding of indefinite integrals is not necessarily relevant to 

our discussion, the authors’ reflections on Riemann sums are. When discussing the 

difficulties student’s face when only regarding integration as an area under a curve, in 

regards to Riemann sums Thompson and Silverman noted, 

If 6 is a function whose values provide measures of a quantity, and x also is a 

measure of a quantity, then 6(8)'!, where 8 ∈ [!, ! + '!], is a measure of a 

derived quantity. The simplest case is when 6(!) is a measure of length and !	is a 

measure of length. Then 6(8)'!	is a measure of area. If 6(!) is a measure of 

speed and x is a measure of time, then 6(8)'!	is a measure of distance. If 6(!) is 

a measure of force and !	is a measure of distance, then 6(8)'!	is a measure of 

work. If	6(!) is a measure of cross-sectional area and !	is a measure of height, 

then 6(8)'!	is a measure of volume. If 6(!) is a measure of electric current and 
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!	is a measure of time, then 6(8)'!	is a measure of electric charge. A Riemann 

sum, then, made by a sum of incremental bits each of which is made 

multiplicatively of two quantities, represents a total amount of the derived 

quantity whose bits are defined by 6(8)'!. Therefore, for students to see “area 

under a curve” as representing a quantity other than area, it is imperative that they 

conceive of the quantities being accumulated as being created by accruing 

incremental bits that are formed multiplicatively. 

That is, for Thompson and Silverman, the integrand and differential are quantities. 

The differential form is a quantification of the multiplicative relationship between the 

integrand and differential which measures “incremental bits” of the desired quantity.  

The Riemann Integral Framework 

Sealey (2014) provided a framework for characterizing students’ understanding of 

Riemann sums and definite integrals in contextual situations. This framework consists of 

five layers—orienting, product, summation, limit, and function—which align with the 

mathematical components which comprise the Riemann integral (see Table 2).  

Table 2: Symbolic representation of R-I framework. (from Sealey, 2014, p. 242) 
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The orienting layer, which Sealey calls a pre-layer, accounts for instances of students 

attempting to make sense of individual quantities in a scenario. That is, when students 

attend to either the 6(!) or Δ! individually without coordinating the two through a 

product. Sealey noted that the orienting layer was an important addition to the 

framework, as students spent a great deal of time orienting themselves in the initial stages 

of problems but they also frequently returned to this layer throughout their problem-

solving activity. In the product layer, students focus on the multiplicative product of the 

differential form. This layer consists of quantifying the product of a function times a 

small change in the independent value of that function, 6(!$ 	) ⋅ Δ!. Sealey notes that this 

was often difficult for students in the context of a Riemann sum due to the need to reason 

about each product over intervals: 

For example, understanding distance as a product of velocity and time requires 

one to coordinate the quantities of velocity and time in a specific way. Moreover, 

it requires one to understand the precise meaning of “time” and “velocity” within 

that context. Specifically, “time” does not refer to the time at which the velocity 

calculation was taken, but instead refers to the elapsed time over which a 

calculation is being made. Similarly, “velocity” refers to a constant velocity on a 

given interval (Sealey, 2014, p. 238). 

In addition, Sealey observed that certain contextual problems, such as the total 

amount of force on a dam, provided base quantities which did not promote students’ 

quantification into an 6(!$ 	) ⋅ Δ! structure. For this case, students were more productive 

when quantifying the total force into pressure × area, rather than pressure-lengths × 

change in width. To account for this Sealey included constants C and 1/C into the product 

and orienting layers.  
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The summation layer represents an accumulation of the product layer into an 

approximation of the desired quantity: a way to account for the entire interval, rather than 

just subsections of it. Sealey observed that within the summation layer was when students 

recognized the Riemann sum as a partition of a whole into parts. Few students in Sealey’s 

study struggled with this layer, but it was most often observed as their entry point into 

reasoning about the tasks. In the function layer, students attend to improving their 

approximation using limits. In other words, this layer represents the link between 

Riemann sums and Riemann integrals. Sealey notes that “distinctions are made within 

this layer between obtaining better approximations to the limit value and obtaining the 

exact value of the limit” but acknowledges that students in her study were only asked to 

approximate the limits and did not make a direct connection to definite integrals. Taking 

into account Thompson and Silverman’s (2008) work on integrals as accumulation 

functions, Sealey included the function layer as a “logical step in the mathematics 

curriculum.”  

Sealey’s framework draws heavily on Oehrtman’s (2004) approximation framework 

and was born out of the epistemological perspective of Piaget’s structuralism (1970, 

1975). Sealey writes, “structure consists not only of elements or aggregates but also of 

the operations on these elements and the relationships between them. Together, these 

elements and operations form an entire structure” which, within the definite integral, 

“would be represented by an understanding of the structure of Riemann sums including 

the structure of the terms in the summation and an understanding of the relationship 

between Riemann sums and definite integrals.” These structures are “self-regulating and 
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are subject to the laws of reversibility, transformation, and wholeness” (Sealey, 2008, pp. 

39-46).  

As Sealey was not attending directly to the limits involved in Riemann integrals for 

this study, she did not explicitly attend to the concept of infinitesimals or differentials. 

However, it is clear by her attention to quantities throughout the framework, that the 

differential within the limit and function layers have units of measure. That is, the 

differential represents a quantity and the differential form represents measures of small 

partitions of the overall quantity desired. 

Layers and Representations 

Physics education researchers Von Korff and Rebello (2012) provided a framework 

for definite integrals set within the context of physics courses. Much of this framework 

mirrors that of Sealey’s (2014) Riemann integral framework, however, Von Korff and 

Rebello characterize Riemann sum and definite integrals with a sequence of levels which 

are differentiated by a distinction between macroscopic quantities ('<) and infinitesimal 

quantities (2<). The levels include four macroscopic levels for Riemann sums, 

macroscopic quantity ('<),	macroscopic product (= ⋅ '<), sum (∑='<), and sum function 

?'!(<) = ∑ =(@'<)'<
!
"!
$%# A, along with four infinitesimal levels related to integrals, 

infinitesimal quantity (2<), infinitesimal product (=2<), integral (∫ =2<), and integral 

function BΔ!(<) = ∫ =(<&)2<&
'
'# C	(Figure 2). Just like Sealey’s framework, the product of 

the differential form represents pieces of the desired quantity, although specific attention 

to approximations is not made. 
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Figure 2: Layers and Representations framework (from von Korff & Rebello, 2012, 
p. 3) 

Von Korff and Rebello noted that distinct paths taken through this framework can be 

indicative of ways students understand integration. For example, during one task a 

student transitioned through the framework in a way described as “limit of the sums” 

(VR1 → VR2 → VR3 → VR3*), and then later took a different route in another task 

(VR1* → VR2* → VR3*) which the authors described as “sum of small quantities.” 

Von Korff and Rebello also provided a classification between differential (and 

consequently integral) types based on the type of quantity the differential represents. In 

particular, they make a distinction between change differentials (e.g. dt represent a 

change in time), and amount differentials (e.g. dm represents a small amount of mass), 

asserting that clearly identifying the type of quantity which is desired allows students to 

reason more easily with the quantities which comprise the differential form.  

What is particularly important about Von Korff and Rebello’s framework is their 

emphasis that it is not harmful for physics students to reason about differentials in terms 

of infinitesimals (or even just really small changes). This allows physics students to 
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productively reason about integration without explicitly discussing limits and Riemann 

sums.  

Resources and Conceptual Metaphors for Differentials 

 Hu and Rebello (2013) investigated students’ conceptions of the differential in 

physics-based integration tasks. Drawing on two conceptual frameworks, resources and 

conceptual metaphors, their study found four different mathematical resources and four 

conceptual metaphors which students draw on to reason about the differential within a 

definite integral as they worked through various integration tasks.  

The four mathematical resources were the differential as a small amount, as a point, 

as associated with differentiation, or as the variable of integration. When reasoning about 

the differential in terms of a small amount, the differential represents a measurable 

quantity, specifically an infinitesimally small quantity. Drawing on the notion of the 

differential as a point conjures imagery of differentials as points on a line or something 

with zero dimension similar to the collapse metaphor described by Oehrtman (2009). 

Reasoning about the differential in terms of differentiation is to associate it with the act 

of the process of differentiation. That is, the symbol d serves as a cue to take a derivative. 

Viewing the differential as a variable of integration was observed when students did not 

articulate a quantitative meaning to the differential. This was often observed when they 

forgot to include the differential in their definite integral at all. 

The four metaphors students drew on for differentials while working through physics-

based integration tasks were differentials as objects, locations, motion along a path, and 

machine. The objects metaphor is similar to viewing differentials as a small amount. Here 



 

 
 

32 

differentials are objects which assist students in the ability to reason quantitatively. 

Invoking a location metaphor involves students’ reasoning about the differential term as 

representing a location in space, while the motion along a path metaphor involves the 

variable of the differential term as representing a traveler along a line. The final 

metaphor, differential as machines, involves thinking about the integral as a function 

machine that performs an algorithm. The symbols ∫  and 2 represent operators which 

execute those algorithms.  

Summary 

Through a review of the literature, I have outlined how mathematics and physics 

education researchers have identified significant advantages afforded to students through 

reasoning about the differential form in terms of quantitative relationships. Specifically, 

students were most productive in contextual physics integration tasks when they ascribed 

quantitative meaning to the differential. Therefore, to engender a quantitative 

understanding for the definite integral as students' schemes were in development, it 

would be important to draw on quantitative interpretations of the differential as part of 

that construction. Specifically, the Quantitatively Based Summation conception of the 

definite integral, which served as a basis for the underlying conceptual understanding I 

hoped to engender in students through this study, was born from an extension of these 

frameworks. Sealey’s observation that students reasoned about fluid force tasks in terms 

of pressure × area, rather than pressure-lengths × change in width, indicated that students 

were more productive when reasoning about the quantitative relationships within the 

differential form by drawing on the same quantitative structure as the desired quantity as 

opposed to re-quantifying these relationships in terms of a rate of change or density 
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function. Hu and Rebello’s correlation between viewing the differential as an object and 

quantitative interpretations for that notation reinforced the quantitative relationships 

within the differential form. That is, a differential should represent a measurable quality 

of an object within a differential form: an amount of mass, a small height, a length of a 

piece of a rod. Finally, Von Korff and Rebello’s observation that physics students could 

productively reason about differentials in terms of small changes, with no necessity to 

invoke limits, suggested constructing a scheme for definite integrals in which the 

differential form represents a macroscopic relationship or “bits” as Thompson and 

Silverman described. That is, by framing the differential form in terms of a measurable 

part of a whole students would be positioned to coordinate the symbolic form of a 

definite integral as the result of a limiting process, rather than the limiting process itself.  
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CHAPTER III 
 

 

THEORETICAL PERSPECTIVE 

 

The underlying theoretical perspective I have adopted for this dissertation research is 

that of radical constructivism (von Glasersfeld, 1995) which is rooted in Piaget’s genetic 

epistemology (Piaget, 1972; Piaget & Duckworth, 1970). From this perspective, learning 

is not a matter of developing cognitive structures in increasing consistency with an 

external objective truth. From a constructivist approach, knowledge is an adaptive 

construct of human minds which is actively created consistent within an individual’s 

conceptual structure through interactions with the outside world (von Glasersfeld, 1995, 

p. 51).  

Assimilation and Accommodation 

The theory of radical constructivism is centered on a cognitive organization of key 

aspects generalized from individuals’ past experiences, called schemes, and how 

individuals interpret and adapt to new situations in terms of those schemes. In Piaget’s 

learning theory, there are two ways an individual can react to a new stimulus, 

assimilation or perturbation (entering a state of disequilibrium). To assimilate a situation 

to a scheme is simply “treating new material as an instance of something known” 
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(von Glasersfeld, 1995, p. 62). That is, assimilation represents a lack of reaction. 

Assimilating a new experience does not mean an individual understands a situation in the 

same way as someone else, or even that they are interpreting the situation in ways 

compatible with their own schemes if pushed. Assimilating an experience simply implies 

an individual interpreted the experience to fit into an already existing scheme along with 

the expectations implied by that scheme. A perturbation on the other hand will induce a 

reaction, whether visible to an outside party or not. A stimulus creates a perturbation 

when something about the situation does not align with (and is noticed as being distinct 

from) a previous scheme which often takes the form of an unexpected result. 

Perturbations are the first step in the progression of scheme development, and for a 

perturbation to result in an adaptation of a scheme it must be accommodated. 

Accommodation is accomplished through abstractions, a semi-hierarchical set of 

cognitive generalizations of an individual’s actions (including mental actions). Piaget 

defined two general types of abstractions, empirical and reflective, and further subdivided 

reflective abstractions into three subcategories, pseudo-empirical, reflecting, reflected. 

According to von Glasersfeld,  

one is called ‘empirical’ because it abstracts sensorimotor properties from 

experiential situations. The first of the three reflective abstractions projects and 

reorganizes, on another conceptual level, a coordination or pattern of the subject’s 

own activities or operations. The next is similar in that it also involves patterns of 

activities or operations, but it includes the subject’s awareness of what has been 

abstracted and is therefore called ‘reflected abstraction.’ The last is called 

‘pseudo-empirical’ because, like empirical abstractions, it can take place only if 

suitable sensorimotor material is available (1995, p. 105). 
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Models and Modeling  

In 1991, Blum and Niss surveyed the mathematics education literature identifying 

five different categories of rationale for the inclusion of modeling in mathematics 

curriculum: formative, critical competence, utility, promoting mathematics learning, and 

picture of mathematics arguments (Blum & Niss, 1991, pp. 42-44). The first category, 

formative, focuses on the affective nature in developing and strengthening students’ self-

confidence regarding creativity and problem-solving abilities. The next categories, 

critical competence and utility, highlight the need for students to be able to function in a 

world that requires analysis and solutions. Critical competence arguments focus on the 

social aspect of a learner, while utility is concerned with directly linking mathematics to 

‘real-world’ situations. Similar to the utility argument, the promoting mathematics 

learning arguments category acknowledges that linking mathematics to ‘real-world’ 

situations is important, however, the distinction lies in the focus on how access to 

modeling tasks provides motivation to learn and retain the mathematical ideas 

themselves. While the first four categories characterize modeling as an independent skill 

that utilizes mathematics in some way, the final argument, picture of mathematics, adopts 

the stance that modeling is an integral part of mathematical practice and should therefore 

naturally be included in the mathematics curriculum.  

Emergent Models of Realistic Mathematics Education 

For this study, I adopted the stance that modeling is an inherent part of the 

mathematics learning process. I drew on realistic mathematics education (RME) which 

views modeling as an integral aspect of what it means to do mathematics and sees 

“mathematics as a human activity” in which contextual problems play a crucial role 
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(Freudenthal, 1973, 1986). RME is a domain-specific instructional theory originating out 

of the Netherlands with three central design heuristics: guided reinvention (Freudenthal, 

1973), didactical phenomenology (Freudenthal, 1986), and emergent models 

(Gravemeijer, 1999). While other instructional design theories, such as modeling cycles 

(e.g. Blum & Leiß, 2007; Blum & Niss, 1991; Niss, Blum, & Galbraith, 2007) or the 

models and modeling perspective (Lesh & Doerr, 2003; Lesh & Sriraman, 2005), frame 

modeling as a process which provides context allowing students to develop deeper 

understandings of already established mathematical ideas, RME emphasizes the 

epistemological role of modeling in the development of mathematical ideas themselves. 

When Gravemeijer references emergent models he is referring to the process by 

which an individual constructs mathematical ideas through the broad act of progressive 

mathematization, abstraction, and generalization. Gravemeijer (2007) explains “the 

process of constructing models is one of progressively reorganizing situations” where 

“the model and the situation being modeled co-evolve and are mutually constituted in the 

course of modeling activity.” RME views modeling as “a form of organizing, instead of 

an act of translation” and Gravemeijer notes the aim of RME is not just to connect 

informal and formal knowledge but to identify and evoke the interplay between informal 

and formal knowledge which allows for new constructions to develop (1997, 1998). 

Additionally, the goal of obtaining ‘a specific model’ or ‘a specific way of modeling’ is 

not the focus of RME and often the notion of a ‘completed’ model does not make sense. 

In RME modeling is the process by which mathematical learning happens and can 

manifest itself in the form of a model of a situation, a scheme, a description, or even a 

way of notation (Gravemeijer, 1998). By viewing modeling in this light, there is no ‘real’ 
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or ‘correct’ model of a given situation; instead, there are numerous iterations, or sub-

models, which evolve as an individual’s understanding of a situation evolves towards 

more formal mathematical reasoning. In this way, models are emergent from one’s 

activity in experientially real situations and are generalized of an evolving level of 

‘common sense.’ From the RME perspective, experientially real does not necessarily 

mean that there must be a real-world context associated with a given task. What is 

important about an experientially real situation is that the meanings associated with the 

models (which are used and developed in the process of working on a task) emerge from 

the interplay between the situation, the student’s activity, and the student’s reasoning in 

relation to the situation; i.e. that models are rooted in student experiences which they both 

reflect on and abstract from. This means abstract mathematical tasks can also be 

experientially real for students and by anchoring the development within student 

experience the resultant knowledge (i.e. model) is regarded as their own. Gravemeijer 

notes that the emergent view of modeling, in alignment with Freudenthal's view that 

mathematics was not a ‘ready-made-system,’ was 

initially developed as an alternative for the common use of what we may call 

'didactical models’, manipulative materials and visual models that are meant to 

make abstract mathematics more accessible for the students… in order to interpret 

these models correctly, students should already have at their disposal, the 

knowledge and understanding that is to be conveyed by the concrete models 

(Gravemeijer, 2007, p. 139).  

Due to the evolutionary nature of emergent models, Gravemeijer identified four levels 

of activity—situational, referential, general, and formal—students encounter as models 

shift from being ‘models of’ specific situations to ‘models for’ more abstract 
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mathematical thinking. The situational level references knowledge and strategies that are 

highly connected to specific contexts, be it a task set within a context, a more abstract 

mathematical query, or a real-world problem. In this layer, students are making sense of 

the task using whatever domain-specific knowledge they can to mathematize, or 

organize, the situation. Here they may act out the activity by physically counting or 

altering the environment. As students begin to organize information in ways that allow 

them to make inferences about the situation, or can use generalizations for the physical 

acts, they have moved into the referential layer. Here models are still situated within the 

context but are abstracted in the sense that they are referential rather than a direct 

generalization of specific situations. As models shift from being tied to specific 

situations, to being able to represent a class of situations it is said to be moving to the 

general level. At this point there the model makes a shift from being limited to a solution 

for a problem, to a potential solution strategy (i.e. a model for a class of situations). 

Transitioning to the general level occurs when students can reason about aspects of their 

models in ways that are not tied to the originating context. In the final layer, formal 

activity, new mathematical realities emerge in the sense that students no longer require 

the need to refer to the activity involved in the model for classes of situations. That is, the 

models themselves become objects and tools in new modeling activity and need not be 

deconstructed to be used.  

In Gravemeijer’s 1999 paper he describes a sequence of tasks designed to promote 

the reconstruction of a ruler as a measurement apparatus. Students are first given a 

context in which they are encouraged to physically act out a measuring process of 

counting how many ‘heel-to-toe’ iterations it would take to traverse a specific length. 
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This task is tied heavily to the situational context. Additional tasks are introduced which 

use slightly different methods of measuring (such as measuring distances using small 

creatures called Smurfs feet length) which are closely related enough that students can 

refer back to their own physical ‘heel-to-toe’ counting. Beginning to recognize the need 

for more standard ways to measure, students generalize their model of measurement. In 

this case, students might begin to use a standardized object to generalize measurement 

(e.g. cans or blocks) but can also transition to an instrument such as a ruler which can be 

generalized to any number of units. As students utilize their generalized model of a ruler 

to measure various situations, a transition can occur in which they begin to reason with 

the idea of measurement itself, rather than the process of measuring. That is, a ruler no 

need not be tied to the actual act of measuring, but can stand in for the idea of what it 

means to measure. This allows students to reason more formally about processes 

involving measurement such as the difference between two measures.  

While many of Gravemeijer’s examples of RME’s emergent models focus on 

elementary mathematical concepts, such as that of counting or measuring, researchers 

have utilized this design heuristic when researching the learning of higher division 

mathematics such as calculus constructs (e.g. Gravemeijer & Doorman, 1999), abstract 

algebra (e.g. Larsen, 2004), differential equations (Rasmussen & King, 2000), linear 

algebra (e.g. Wawro, Rasmussen, Zandieh, & Larson, 2013), and defining as a 

mathematical practice (Zandieh & Rasmussen, 2010). This evolution of what RME 

encompasses is an intrinsic aspect of its theoretical consistency. RME is not considered 

as a fully formed, fixed, instructional theory, but is a way to understand and describe 

students’ reasoning about mathematics. Just as mathematical ideas are shaped through the 
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interactions of human activity, the constructs of RME shall too be shaped by this 

interplay and continue to be refined. 

Emergent Quantitative Models Framework 

In line with Gravemeijer’s approach to modeling as an emergent process, Simmons 

and Oehrtman (2017, 2019) described an emergent quantitative models framework for 

students’ reasoning about definite integrals. In particular, this framework extends 

previous characterizations of students’ reasoning about definite integrals when the 

differential form does not naturally decompose into a multiplicative relationship between 

a function and small change in the variable of that function (a quantitative relationship 

Simmons and Oehrtman call a Riemann product). This framework can be utilized to 

understand, for example, how students reason about physics-based tasks such as Sealey’s 

total force on the dam problem in which students utilized the quantities of pressure × 

area, instead of pressure-lengths × length (or linear force densities × length). The 

framework relies on three conceptual models, basic, local, and global, which students 

draw on when reasoning about definite integrals;  

The basic model represents the quantitative relationship which would apply to the 

situation if the quantities involved were constant values, the local model is a 

localized version of the basic model applied to a sub region of the original 

situation (typically within a partition), and the global model is derived from an 

accumulation process applied to the local model, whose underlying quantitative 

reasoning is encoded in the differential form. (Simmons & Oehrtman, 2019).  

Each of these models interacts with one another in significant ways leading to powerful, 

yet nonlinear development of, understandings of integration in a quantitative way.  
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For example, Simmons & Oehrtman describe two students, Matt and Julia, who 

differed in their conceptions of the same energy task: 

Suppose a 10-meter chain with a total uniform mass of 15kg is freely hanging 

from the roof of a building. Write an integral that represents the total energy 

required to lift the chain to the top of the building. 

When constructing the integral for this task, both participants drew on the same basic 

model ([energy]=[acc_of_gravity]×[mass]×[height]) and had similar overarching 

conceptions (global models) that a definite integral is the accumulation of small 

partitioned bits of the desired quantity. However, these students differed in the way they 

partitioned the situation to construct their global models, influenced by their 

interpretations of the quantities within the basic models and resulted in two quantitatively 

distinct local models for the task.  

 As Matt was constructing his local model, he anticipated the integral summing the 

energy required to pull up the remaining chain over small increments. This interpretation 

resulted in Matt developing a local model that was quantitatively a local Riemann 

product. Julia, on the other hand, conceived of the integral summing the energies required 

to lift each small section of chain the entire distance to the roof. This interpretation of the 

context required Julia to partition the mass along small portions of the chain and resulted 

in the differential being an intrinsic component of a local model that was not a local 

Riemann product, as the differential was quantitatively conceptualized as part of the 

mass. 
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CHAPTER IV 
 

 

METHODOLOGY 

 

To track the development of a Quantitatively Based Summation conception of 

integration I engaged university calculus students in an eight-week-long teaching 

experiment with accompanying task-based clinical interviews. In the following sections, I 

describe what a teaching experiment is, its distinction from other types of learning 

environments and research studies, and how data was collected and analyzed as a part of 

this dissertation research.  

Task-based Clinical Interview Methodology 

For this study, I employed a combination of teaching experiments (L. P. Steffe & 

Thompson, 2000) and clinical interviews (Clement, 2000). A clinical interview can be 

described as a documented (usually video recorded) conversation between researcher and 

participant with the purpose of a researcher constructing second-order models of the 

participants' schemes for a specific topic. A second-order model is a collection of 

underlying reasons which provides rationale, from the researcher’s perspective, for the 

subjects’ observational behavior in a research setting along with the hypothesized 

implications of that way of reasoning. These models do not reflect the actual  
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mathematical knowledge of the participant (which would constitute a first-order model), 

but serve as a reflection of what the researcher believes the student is capable of 

understanding from the researcher’s perspective. An important aspect of building second-

order models of students’ reasoning involves testing the viability of those models. For 

this reason, clinical interviews are meant to be open-ended in the sense that researchers 

can adapt to interesting developments within the interview setting. This allows 

researchers to seek additional information adding clarification and nuance to their 

models.  

A task-based clinical interview introduces mathematical tasks into the research setting 

as a catalyst for discussion related to specific mathematical topics. Participants engaged 

in a task-based clinical interview are asked to reason out loud, and the interviewer asks 

clarifying and investigative questions throughout the problem-solving process.  

Teaching Experiment Methodology 

Steffe and Thompson note that “a primary purpose for using teaching experiment 

methodology is for researchers to experience, firsthand, students’ mathematical learning 

and reasoning” and construct second-order models of students’ mathematical reasoning 

(pp. 267, 269). Unlike a clinical interview, where the goal is to capture students’ 

understanding at a particular instant in time, the goal of a teaching experiment is to 

characterize the development of students’ schemes as those understandings evolve over 

time in an effort to test hypothesized learning trajectories. It should be noted that teaching 

experiments are not analogous to classroom teaching in the traditional sense. Teaching 

experiments are a research tool designed to create models of students’ thinking and map 
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the changes in students’ mathematical schemes, not to statistically evaluate the effect of a 

treatment. In the following sections, I will outline the aspects of the teaching experiment 

methodology which are most pertinent to this study. 

Conceptual Analysis 

According to Steffe, a conceptual analysis is an “answer to the question: ‘What 

mental operations must be carried out to see the presented situation in the particular way 

one is seeing it?’ (von Glasersfeld, 1995, p. 78)” (from Thompson, 2008). A conceptual 

analysis serves as a tool to orient a researcher’s reasoning about what a particular 

understanding of a concept might entail and a foundation for the creation of curriculum 

with which to facilitate that development. An important aspect of a conceptual analysis is 

not a list of facts or procedures, it is a way to discuss the cognitive processes underlying 

particular ways of reasoning (O'Bryan, 2018, p. 125). Thompson details four ways in 

which conceptual analysis can be used by researchers:  

in building models of what students actually know at some specific time and what 

they comprehend in specific situations, 

in describing ways of knowing that might be propitious for students’ 

mathematical learning, and 

in describing ways of knowing that might be deleterious to students’ 

understanding of important ideas and in describing ways of knowing that might be 

problematic in specific situations. 

in analyzing the coherence, or fit, of various ways of understanding a body of 

ideas. Each is described in terms of their meanings, and their meanings can then 

be inspected in regard to their mutual compatibility and mutual support. 

(Thompson, 2008, p. 46) 
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In constructivist research, a conceptual analysis serves as a foundation for, and 

product of, teaching experiments. A conceptual analysis is performed before a study to 

inform the desired outcomes and mental actions an individual could engage in to achieve 

those outcomes. As the study progresses, a conceptual analysis is constantly tested and 

modified against new information, and post study analysis produces a formalized refined 

conceptual analysis.  

Hypothetical Learning Trajectory  

There are nuanced ways in which hypothetical learning trajectories are discussed 

throughout the mathematics education literature (O'Bryan, 2018). For this study, I 

adopted Simon’s (1995) hypothetical learning trajectory which is comprised of three 

components: a learning goal, learning activities, and a hypothetical learning process. The 

process of creating a hypothetical learning trajectory begins with a learning goal along 

with a model of a student’s (possibly epistemic) current mathematical conceptions. The 

researcher hypothesizes a specific set of conceptions a student should develop to 

transition from their current understanding towards the learning goal. The researcher then 

develops a sequence of experiences that students could engage in to facilitate this 

transition based on their evolving mathematical schemes. These experiences primarily 

take the form of mathematical tasks developed to engender specific types of 

perturbations, problem-solving, and progressive mathematization. It is important to note 

that a hypothetical learning trajectory is not a generalized organization of tasks such as 

classroom curriculum, it is a research hypothesis which must be tested.  
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Teaching Experiment 

The purpose of a teaching experiment is to test the viability of a hypothetical learning 

trajectory. A teaching experiment begins with an episode(s) of exploratory teaching. 

Exploratory teaching is how researchers construct second-order models of students’ 

thinking and is akin to a clinical interview. This involves discussions and/or tasks 

between a researcher and research participants aimed at characterizing their current 

mathematical schemes. Exploratory teaching serves as an important aspect of the 

methodology to trace the changes in students’ schemes throughout the study and can be a 

catalyst for new hypotheses for student reasoning. Steffe and Thompson emphasize that 

from a constructivist perspective in exploratory teaching “ 

the teacher-researcher must attempt to put aside his or her own concepts and 

operations and not insist that the student learn what he or she knows. Otherwise, 

the researcher might become caught in what Stolzenberg (1984) called a “trap”—

focusing on the mathematics the researcher takes as given instead of focusing on 

exploring students’ ways and means of operating (L. P. Steffe & Thompson, 

2000, p. 274).  

While this task is impossible to achieve in its entirety, researchers can draw on their 

advanced understanding of student psychology and mathematics to create and test viable 

second-order models. However, they must also remain sensitive to not imposing their 

own mathematical interpretations or reasoning onto students throughout the interview and 

analysis process.  

As the teaching experiment progresses through the tasks outlined in the hypothetical 

learning trajectory, hypotheses begin to arise regarding the models of student reasoning. 

These new hypotheses must be constantly tested by the researcher through pointed 
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questions and/or tasks. Testing these hypotheses marks a transition between what Steffe 

and Thompson call responsive/intuitive interactions and analytical interactions. Steffe 

and Thompson note that in responsive and intuitive interactions,  

the teacher-researcher is usually not explicitly aware of how or why he or she acts 

as he or she does, and the action appears without forethought… we “lose” 

ourselves in our interactions. We make no intentional distinctions between our 

knowledge and the students’ knowledge…. In essence, we become the students 

and attempt to think as they do, (2000, pp. 279-280). 

In contrast, analytical reactions are “an interaction with students initiated for the purpose 

of comparing their actions in specific contexts with actions consonant with the 

hypotheses” (2000, p. 283). During a teaching experiment episode, teacher-researchers 

will repeatedly transition back and forth between responsive/intuitive and analytical 

interactions to refine their second-order model of student reasoning.  

Throughout the teaching experiment process, the overall hypothetical learning 

trajectory must also be refined in light of new information. 

Teaching Experiment Analysis 

During a teaching experiment there are two phases of analysis, on-going and 

retrospective, which are both analyzed using the constant comparative method. The 

constant comparative method is, 

[a] cyclical, interpretive analysis cycle of segmenting the protocol, making 

observations from each segment, formulating a hypothesized model of mental 

processes that can explain the observations (and suggest others to look for), 

returning to the data to refine and look for more confirming or disconfirming 
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observations, criticizing and modifying or extending the model (Clement, 2000, 

pp. 566-567).  

While the teaching experiment is being performed, a teacher-researcher must 

constantly refine their model of students’ reasoning, as well as the hypothetical learning 

trajectory and conceptual analysis. This takes the form of both adapting in the moment, if 

possible, and a routine of intimate review of the recorded video data to prepare for 

subsequent interviews. Throughout the teaching experiment, protocols and tasks should 

be adapted to the emerging model of students’ reasoning. 

At the conclusion of the teaching experiment, the complete data set must be 

reexamined through retrospective analysis. Throughout the teaching experiment a 

researcher’s model of students’ conceptions should consistently evolve. This means that 

at the conclusion of the experiment a teacher-researcher has a clearer picture of a 

participant’s ways of reasoning which might not have been apparent in the early stages of 

the study. By reexamining all data, researchers are positioned to identify critical 

interactions with students missed in the moment. During this analysis researchers go 

through many iterative cycles of data analysis to both support and refute aspects of their 

models of student thinking as well as the impact of the hypothetical learning trajectory on 

students’ evolving schemes. 

Preliminary Conceptual Analysis and Hypothetical Learning Trajectory 

In Spring 2020 I developed a preliminary conceptual analysis and hypothetical 

learning trajectory for a Quantitatively Based Summation conception of the definite 

integral in service of preparing a Summer 2020 calculus I course sequence. This Summer 

2020 course would serve as the basis for an exploratory study to refine the conceptual 
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analysis and hypothetical learning trajectory for the Fall 2020 teaching experiment. The 

preliminary conceptual analysis is provided in this section and the accompanying 

hypothetical learning trajectory task sequence can be viewed in Appendix A. All of the 

following must eventually fall into place and the ways in which that may happen are 

largely the subject of this study. 

• Definite integrals describe the accumulation of infinitesimal (or very small) 

quantities. As such, students must be positioned to assimilate a total quantity 

as being the aggregation of small quantities which share the same quantitative 

properties and relationships as the whole (a global model).  

• To recognize the necessity of a definite integral, rather than the application of 

a direct quantitative relationship in the form of an equation (a basic model), a 

student must have access to the basic model (including the quantitative 

relationships it represents between constant quantities), an awareness that the 

situation involves a varying quantity making a basic model inappropriate, and 

anticipation that if the situation is partitioned into small enough segments, the 

basic model can be used to approximate the small quantities with negligible 

error7 (a local model). These approximations can then be accumulated to 

 
 

 

 

7 Negligible error refers to the concept that as one partitions the situation into smaller and smaller pieces, 
the error tends towards zero.  
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provide an approximation (with negligible error) or exact value for the entire 

desired quantity (a global model).  

• The symbolic form of the definite integral represents these ways of reasoning 

in the following ways. The ∫ symbol conveys an infinite summing process; 

whether this is through a limit of approximations or the accumulation of 

infinitesimal quantities. The differential form represents a local model in 

which the quantitative relationship is modeled through an approximation of a 

partition using a basic model. The differential represents one quantity (or a 

component of one quantity) which constitutes the basic model’s quantitative 

relationships. The limits of integration are inherently tied to the differential as 

representing the total measure and location of the quantity which was utilized 

in the partitioning of the situation. This typically represents the varying 

quantity which necessitates a definite integral in the problem-solving activity.  

This way of reasoning was identified as advantageous for students working in physics 

tasks in which the differential form is not a Riemann product (Simmons & Oehrtman, 

2017, 2019), but is also compatible with the typical area under a curve application of 

definite integrals in an elementary university calculus course.  

For the design of the hypothetical learning trajectory I primarily drew upon the 

Emergent Models Framework as my explanatory tool for describing the evolution 

students’ schemes. However, I was intentional in incorporating elements of the RME 

design heuristics, such as experientially real tasks and progressive mathematization into 

the task sequence. That is, I designed the task sequence to engage students in tasks that 
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were not simply representations of tasks already performed. To this end, the majority of 

course lessons required students to work through tasks that went beyond those ideas 

directly addressed in video lectures as part of their course notes that were to be turned in 

weekly. For example, in the section which covered the application of definite integrals in 

geometric tasks, the video lectures covered the use of definite integrals to identify the 

total volume of a pyramid, while students were expected to use similar techniques to use 

definite integrals to identify the volume of a cone and a sphere. Similarly, students were 

shown how to identify the total work against gravity for building a cement column but 

were tasked with identifying the work against gravity to build a pyramid, or to lift a chain 

to the top of the building on their own (see Figure 3; note: no similar example was 

provided for the chain task although the concept of linear density was described at the 

beginning of the section). By providing students with tasks that required more than 

simply replacing numbers, the tasks become experientially real. That is the tasks 

introduced perturbations that required students to reason about previous exercises in 

relation to new experiences. In addition, many activities in the task sequence required 

students directly reference their previous problem-solving activity from an earlier 

assigned task or section. By providing an opportunity to reflect on their previous 

problem-solving activity, I positioned students to draw on previous situational models as 

referential experiences towards the construction of a generalized understanding of 

definite integrals.  

Drawing on the emergent models of RME, it was important to situate the construct of 

definite integrals into a space more meaningful to students than abstractions of area under 

a curve. As many students in the Summer 2020 course were engineering majors, this took 
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the form of basic energy tasks, density problems, and identifying the total fluid force of 

water on a dam. Tasks of this concrete contextual nature would serve to provide students 

with a sense that the mathematical models they were developing had meaning beyond 

this particular course. Situating definite integrals within context also provided situational 

models with which students could reflect on as their emergent models for definite 

integrals transitions through iterations of referential, general, and formal levels. 
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Figure 3: Example tasks for Hypothetical Learning Trajectory 

The general trajectory for the structure of the 8-week course is given in Table 3. A 

significant feature of this course design was the introduction of definite integrals as 

models of accumulation for varying quantities at the beginning of the course. The  
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Table 3: Summer 2020 Course Outline 

Week 1 • Some Basics 
o Introduction 
o Quantities 
o The Spread of Disease 

• Accumulation 
o Introduction to Accumulation 
o Left and Right Riemann Sums 

Week 2 • Accumulation 
o Continuously Varying Rates 
o Limits 
o Modeling with Definite Integrals – Geometry 

Week 3 • Accumulation 
o Modeling with Definite Integrals – Density, Work/Energy, 

Force, Reinterpreting Accumulation as Area Under a Curve 
• Rates of Change 

o Approximating Instantaneous Rates of Change; Limits 
Week 4 • Rates of Change 

o The Derivative – Rules 
Week 5 • Rates of Change 

o The Derivative – Techniques 
o The Derivative – Modeling: Basic Applications, Related 

Rates, Limiting Values, Differential Equations 
Week 6 • Rates of Change 

o The Derivative – Modeling: Extreme Values, IVT and 
Monotonicity, Concavity, Drawing Graphs, Applied 
Optimization. 

Week 7 • Bringing It All Together 
o Fundamental Theorem of Calculus Part 1 
o Antiderivatives 
o Fundamental Theorem of Calculus Part 2 

Week 8 • Bringing It All Together 
o Accumulation Functions 

• Review 
 

conceptual analysis for a definite integral described in the previous section is separate of 

conceptions for antidifferentiation. That is, it was the intention of the hypothetical 

learning trajectory that definite integrals and antiderivatives be conceived of as two 

separate mathematical concepts which are connected through the Fundamental Theorem 
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of Calculus. To that end, there was an intentional decision to reorder the course structure 

to separate these two constructs by as much as possible. To compute definite integrals in 

the first weeks of the course, students were shown how to calculate their modeled definite 

integrals using TI-83/TI-84 calculators. 

In addition to the order of the course, the ordering of topic introduction was 

intentional to best align with the conceptual analysis for definite integrals. A chapter on 

quantities, including the distinction between varying quantities and constant quantities, 

the relationship between quantities, and function notation was covered at the beginning of 

the course. An introduction to accumulation focused on approximation methods using 

Riemann sums and the associated error was included early in the hypothetical learning 

trajectory. This early introduction of error provided an opportunity for reflection on how 

the error could be reduced by refining a partition of a global model. The introduction of 

limits into the course was in service of identifying the value which the Riemann sum 

approximations approach. Definite integrals were introduced as the notation used for this 

limiting value.  

Exploratory Study and Implications 

In Summer 2020, I conducted a study with 6 students enrolled in the accelerated 8-

week asynchronous Calculus I course at a large southern university taught by me with 

curriculum based on the hypothetical learning trajectory described in the previous 

section. The primary aim of this study was to investigate students’ reasoning associated 

with differentials as infinitesimal quantities, however, it also provided exploratory results 

towards the refinement of the conceptual analysis and hypothetical learning trajectory for 
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the development of a Quantitatively Based Summation conception of integration prior to 

the Fall 2020 teaching experiment. Students were offered the chance to participate in the 

study with the incentive of a raffle for a 10$ gift card. Data collected included an 

introductory questionnaire which served as a baseline for students’ understandings for 

calculus concepts, all written notes for the course, quizzes, exams, written homework, 

and hour-long task-based clinical interviews mid-semester (immediately following the 

accumulation section) and post final exam. The interviews were conducted through zoom 

using an online collaborative whiteboard. Two students also participated in a series of 

follow-up clinical interviews in Fall 2020 to identify the retention of their conceptions 

from the previous semester. Additionally, there were a series of 25 required short surveys 

throughout the semester, one at the end of each subsection module, in which students 

provided immediate feedback regarding their evolving understanding of calculus 

constructs.  

The course sequence on accumulation was designed to emphasize the quantities 

comprising definite integrals with an emphasis on accumulation as the addition of parts-

of-a-whole. The overall course curriculum followed a non-traditional sequence beginning 

with an emphasis on quantitative reasoning before moving to accumulation and definite 

integrals. The accumulation section was followed by lessons on rates of change and the 

course concluded with the fundamental theorem of calculus and antidifferentiation. 

Because the course was online and asynchronous the primary method of material delivery 

was through recorded videos which were posted in modules in an online Canvas course. 

The material was organized with the intent that the primary learning occurred through 

students' own problem-solving activity during what I called ‘Your Turn’ activities. 
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Throughout the semester Your Turn activities were routinely referenced back when new 

topics were introduced to allow students to reflect on previous problem-solving activity 

as they learned new skills (e.g. Recall Your Turn X.X). For example, once students 

learned the fundamental theorem of calculus they revisited all tasks from the 

accumulation section to rework those solutions by hand. Students were required to turn in 

scans of their handwritten work on the Your Turn activities every Friday for completion 

which accounted for 10% of their overall course grade. Solution keys were posted the 

following day allowing them to check their work. The entire task sequence for this course 

can be viewed in Appendix A. 

For brevity, in this section I will include how the Summer 2020 study directly 

influenced the conceptual analysis and hypothetical learning trajectory for the Fall 2020 

teaching experiment. It should be noted that because I served as an instructor for this 

course, it is likely that anecdotal data from students who did not participate in the study 

also influenced my decision-making processes. 

Time Limitations 

Changes were made to the teaching experiment task sequence due to time and 

coverage needs. In particular, the overall task sequence in the Summer 2020 study served 

as students ‘in-class’ lessons as well as their primary homework source. That is, while 

limited in number, students were presented with tasks covering similar skills to allow for 

additional practice. A primary example of this can be seen in the use of both the total 

energy to compress a spring and total force on a dam adapted from the CLEAR calculus 

curriculum which were included as Your Turns 3.3.6 and 3.3.7 respectively. While these 

two tasks engage students with different basic models, the general task sequence and 
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primary learning objectives were identical to allow for generalization across activities. 

When transitioning to the teaching experiment duplicate tasks of this nature would be 

adapted to include additional cognitive constructs due to time limitations.  

Additionally, because the Fall 2020 teaching experiment would run concurrently with 

students’ Calculus I courses, there was no need to include sections covering rates of 

change or limits in the hypothetical learning trajectory. It would be assumed that students 

covered these concepts through their normal coursework. Introductory questions would 

be included in the initial clinical interview to assess students’ incoming reasoning 

pertaining to quantities and rates of change, and a review of limits would only be 

included if deemed necessary for individual participants.  

Expansion of the Rover Task 

One of the key activities early in the hypothetical learning trajectory for the Summer 

2020 course had students approximate the amount of dust that would accumulate on a 

rover’s solar panels as it traveled on Mars. Students were provided a table of data which 

provided how far along the path the rover was at various sites, along with rates of dust 

accumulation at those sites (Figure 4). The primary goal of this task was to have students 

develop an image of the total approximate amount of dust as being comprised of 6 layers 

of dust that would accumulate on the rover’s solar panels as it traveled between 

neighboring sites. These six layers could then be added to approximate the whole value. 

While students in the course did not find the rover task overly challenging, it did not 

necessarily serve as an initiation to an adding-up-pieces conception in the way it was 

envisioned. In particular, data from handwritten work and quizzes showed that students  
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Figure 4: Summer 2020 rover task 

primarily reasoned about this task in a purely computational fashion. Although results 

were entangled with difficulties of sigma notation (discussed in the next section), some 

students displayed evidence of not attending to all of the relevant quantities. For example, 

for at least one participant in the study, distance was not a meaningful component of total 

accumulation for the rover. In the survey immediately following this subsection he 
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described accumulation as, “taking the rate of change and adding the changes together 

throughout a period of time.”  

As part of the task design for the Summer 2020 course I also left the decision for how 

to identify the approximation of dust between two sites up to students. In this choice I 

anticipated some students would make overestimates while others would compute 

underestimates. Because the rover task followed an instructor-led example, I anticipated 

students would model their computations to mimic that work. Therefore, a solution 

strategy I did not account for was the possibility of students using average values to 

construct estimates. Because I aimed to coordinate definite integral notation with the 

limiting value of overestimates and underestimates through a refinement process, in the 

Fall 2020 hypothetical learning trajectory I would specifically ask students to identify 

both an overestimate and an underestimate value to detour this averaging solution 

strategy.  

Many design decisions for the Summer 2020 course were made due to the constraints 

of an asynchronous and accelerated course. When preparing for the Fall 2020 teaching 

experiment the goal of the hypothetical learning trajectory was for the concept of 

accumulation to develop from students’ problem-solving activity—not an extension or 

reproduction of an instructor-led task. Therefore, I redesigned the rover task with targeted 

objectives of having students develop an adding up pieces conception of accumulation, 

attend meaningfully to all quantities, and clearly identify under what assumptions their 

approximations would hold true. In particular, to provide students with the impetus to 

attend to quantities I removed the table of data from the task. In its place students were 

provided with an applet that included a map of the rover’s path and a slider. As students 
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moved the slider a miniature rover icon would traverse along the path and a readout 

listing travel distance and rate of dust accumulation for that specific site would be 

displayed. To ensure distance was a meaningful quantity the space between locations 

along the path would be non-uniform. Because students would be familiar with the 

concept of rate in the Fall 2020 teaching experiment, the ‘amount of dust per distance 

traveled’ would be identified as ‘the rate of dust accumulation’. I requested students 

create both over and underestimates for the total dust on the rover’s solar panels to avoid 

the impulse to identify approximations using average values and to provide better 

motivation precise mission parameters would be provided. In addition to these 

adjustments, the rover task was expanded to include additional data points so students 

would be provided the opportunity to refine their results. The fully redesigned rover task 

is described in the section on task design. 

De-emphasis of Sigma Notation 

One particularly relevant result of the Summer 2020 study was an observation of 

students’ conflation between Riemann sum and definite integral symbolic forms. Two 

students in the study demonstrated difficulties coordinating the relationship between the 

limits of integration for a definite integral and index notation within a Riemann sum. That 

is, these students imposed the conceptual schema for a Riemann sum onto both templates. 

For one student, this was acutely influential as a strong correlation with index notation 

increasing by increments of one unit influenced his reasoning that partitions of a definite 

integral must also be subdivided into increments of one unit. In the same interview 

session, this student also described the bases of the graphical generalized rectangles of a 

Riemann sum tending towards zero for definite integrals. Due to the similar formatting of 
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symbolic templates for these two structures and the resulting mapping of a conceptual 

schema to both templates, this student was unable to reconcile these conflicting facts 

despite being obviously perturbed. 

In light of students’ demonstrated difficulty transitioning between summation and 

definite integral notation, I made an intentional decision to deemphasize the need for 

student-generated summation notation in the teaching experiment. I would not dissuade 

students from introducing summation notation into their problem-solving process, but it 

would not be required. Although I first considered introducing students to specialized 

summation notation (e.g. the values above and below a summa symbol would represent 

values consistent with the upper and lower limits of a definite integral) I decided against 

it due to participants’ current enrollment in Calculus I courses. All students in the study 

would be expected to learn summation notation as a part of their required coursework at 

some point during (or after) the teaching experiment and I did not want to introduce 

potential issues with their symbolic templates for Riemann sums which might adversely 

affect their course grade. 

Instead, I decided to provide all participants with tools that would support their 

problem-solving process without the need to compute summations using formal notation. 

These tools would include a google sheets spreadsheet for the rover task, and a GeoGebra 

applet for other tasks summation tasks in the teaching experiment. The GeoGebra applet 

would act as a sum calculator (Figure 5) which would allow students to input starting and 

ending values, the number of partitions they wished to compute, and an expression that 

would measure the magnitude of the quantity of a generic piece within the partition. I 
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anticipated students would be familiar with delta notation from their coursework and 

therefore incorporated its use into the GeoGebra sum calculator.  

 

Figure 5: GeoGebra summation applet 

To introduce the summation applet to students I would use their unique solution to the 

second task of the hypothetical learning trajectory to explain how the calculator works. 

Therefore the calculator would be a natural extension of their previous problem-solving 

activity. Once students input the required information, the calculator would compute a 

left sum and a right sum and would list the values for each term in the summation. By 

formatting the inputs and outputs of the Riemann sum calculator in this way I aimed to 

highlight the prevalent quantitative structures for students which would directly map to 

the symbolic template for a definite integral. This included the limits of integration 

representing the beginning and ending of a quantity that was partitioned, the differential 

representing a small change in that partition quantity, and an explicit expression for a 

local model which shares a quantitative structure with a basic model and maps directly to 

the notation for the differential form. The list of individual terms on the left side of the 

GeoGebra applet would act as reinforcement for a parts-of-a-whole global model.  
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Students in the Summer 2020 course were provided instruction on using TI83/84 

calculators for the computation of a definite integral prior to the introduction of 

antiderivatives and the Fundamental Theorem of Calculus. To reduce the time needed to 

instruct students in such a skill I would provide the teaching experiment participants a 

GeoGebra-based integral calculator applet to compute solution totals (Figure 6).  

 

Figure 6: Definite integral GeoGebra applet 

The Resilience of an Antiderivative Symbolic Form 

The majority of Summer 2020 participants had previous experience with calculus 

topics, most through secondary education. This is a common occurrence in U.S. 

universities, however, it means, prior to my course, students in the Summer 2020 study 

already had schemes for accumulation, Riemann sums, and integrals as they engaged 

with lesson sequence. I did not continuously interview participants as they engaged in the 

task sequences for accumulation, so it is not possible to meaningfully speculate on the 

interactions between their incoming schemes with my hypothetical learning trajectory. 

However, by comparing results of the clinical interviews midway through the course it 

was clear that those who displayed a strong association with integrals as antiderivatives 

faced more difficulty with productively constructing local models for definite integrals 
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when the differential form was not a Riemann product. Specifically, students who 

displayed an initial antiderivative conception for integrals tended to revert to non-

quantitative meaning for the differential. For instance, one student, who was enrolled in a 

college calculus course the previous semester, gave specific quantitative meaning for the 

differential in his mid-semester interview and asserted that it must contain units. In fact, 

based on his quantitative reasoning in the mid-semester interview I was hopeful this 

student would be a primary example of how effective the protocol was. However, in his 

post-course interview, after being reintroduced to antidifferentiation, this student claimed 

that differential did not have units and did not contribute any substantive meaning to the 

expression. This association was persistent enough that I spent more than 30 minutes of 

the post-semester interview exploring and probing his schemes before he would even 

consider a differential having a unit of measurement. Because of my intentional design in 

this course to promote a distinction between symbolic forms for antiderivatives and 

definite integrals, continued reference in video recordings to the differential containing 

units, and assigned tasks which had students explicitly write units beneath all terms of 

definite integrals (including differentials), I strongly hypothesize that this students’ 

previous schemes involving integration overrode any development that may have been 
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achieved in the accumulation task sequence8. When unchallenged, antidifferentiation was 

his default way of reasoning about the symbolic forms for definite integrals.  

In addition to the case described, participants who previously completed a calculus 

course displayed a tendency to attempt to solve definite integral tasks in the mid-semester 

interview using antidifferentiation. This was unexpected as the mid-semester interview 

prompts did not request solutions and neither derivatives nor antiderivatives had yet been 

introduced in the course, raising my awareness that continued reliance on 

antidifferentiation schemes could be an issue. Specifically, I anticipated there may be a 

need to address the correspondence between antiderivatives and definite integrals more 

directly than planned in the teaching experiment. It also influenced a decision to move 

away from the tasks in which the differential form was a Riemann product as quickly as 

possible. To provide students with an opportunity to coordinate their developing schemes 

of definite integrals with more generic, non-self-generated, definite integral expressions I 

also developed a task for the hypothetical learning trajectory midway through the 

teaching experiment to have students identify the appropriateness of definite integral 

expressions for a quantitative situation (see Task 5 in the sixth section of this chapter for 

more detail). The aim of including a task requiring students to interpret preconstructed 

 
 

 

 

8 I must note that this student solicited a significant amount of private mathematics tutoring during the 
summer semester. It is likely that experiences with the tutor also contributed to his understanding of 
definite integrals, although I was not privy to the content of their sessions. He did not mention any specific 
instances in his clinical interviews.  
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definite integral expressions was to reinforce quantitative meaning for the elements 

within a symbolic template for a definite integral.  

Early Inclusion of Dam Tasks 

The Summer 2020 tasks most often referenced by students as being helpful for their 

reasoning involved fluid force on dams. More than one participant emphasized how dam 

tasks were directly applicable to their engineering major, providing a sense of real 

purpose for mastering the skills presented in the accumulation chapter. Additionally, 

from the quiz and written homework data, the majority of students in the study were able 

to productively reason about the relevant quantities in rectangular dam prompts. In light 

of this, I adapted the CLEAR Calculus dam task (see the end of Appendix A) to be the 

second major task in the Fall 2020 hypothetical learning trajectory.  

One major adaptation I made from the task, as written in the CLEAR Calculus 

curriculum, was to provide students additional scaffolding in refining their results to be 

within a specified error bound. While identifying the error of an estimation and the ability 

to refine that estimate to be as close to the real value as necessary is a critical aspect of a 

productive conception of a definite integral, the CLEAR Calculus curriculum is 

intentional to predispose students to identify error bounds as meaningful quantities 

throughout its entire design. The primary scaffolding for these constructs is presented 

early in the curriculum and was no longer necessary in the later sections which covered 

integration. Students coming into the teaching experiment were not afforded the 

opportunity to engage in this type of activity in their calculus courses, and therefore it 

would be unreasonable to expect them to engage in such reasoning spontaneously. 

Similarly, I decided to completely remove prompts which asked students to identify “a 
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formula indicating how to find an approximation accurate to within any pre-determined 

error bound, E,” as my goal was not necessarily to have students build a construct for 

definite integrals that was computationally consistent with the formal definition of a 

limit.  

Continued Difficulty Developing Local Models 

Finally, although all but one participant in the Summer 2020 study showed significant 

attention to quantities and quantitative relationships which comprise definite integrals, 

every student interviewed exhibited continued difficulty developing a local model when 

presented with integration tasks where the differential form was not a Riemann product. 

This was true even when participants demonstrated evidence of working similar problems 

in notes, homework, and quizzes. For instance, only one student interviewed was able to 

correctly identify a definite integral expression modeling the total population within 15 

miles of a city center given a radial density function. Although participants were not 

necessarily successful in constructing a productive local model, all other participants who 

attempted this task were aware that there was something wrong, often citing units being 

incorrect. However, they were unable to rectify the issue within their expression. While 

some difficulty stemmed from nonquantitative meaning for the differential, students also 

did indicate that they had developed a general solution strategy for constructing their 

local modes.  

To address the lack of a generalized solution strategy for identifying an appropriate 

local model expression, I supplemented the teaching experiment with an early emphasis 

on creating these expressions which persisted throughout the entire task sequence. 

Additionally, I included a task at the conclusion of the teaching experiment which would 
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require students to explicitly describe how to solve definite integral tasks. The point of 

this capstone prompt was not to evaluate participants’ solutions but to engage students in 

active reflection of their problem-solving activity aimed at extracting commonalities 

across different contexts within the teaching experiment task sequence.  

Summary 

While not isomorphic to a teaching experiment, the preliminary study of the Summer 

2020 calculus course served to greatly improve the overall hypothetical learning 

trajectory. The most significant contribution was identifying notational issues that could 

serve to impede students’ reasoning as their conceptions developed. This was something I 

was forced to spend many weeks thinking about and decide what was important for the 

integrity of the study. Deciding to forgo summation notation was in the best interest of 

the development of a Quantitatively Based Summation conception of integration for this 

particular group of students due to conflicts that may have arisen for them in their 

coursework, however, an alternative solution might be to create notational conventions in 

the classroom which complete the same overall objective.  

The preliminary study also provided clarity on tasks that seemed to work particularly 

well for students and problems which still posed challenges. This allowed me to develop 

a more robust protocol for the limited number of tasks I would be able to engage students 

in during the Fall 2020 teaching experiment. 
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Conceptual Analysis for a Quantitatively Based Summation Conception of the 

Definite Integral 

When developing the conceptual analysis which characterizes a Quantitatively Based 

Summation conception of integration, I must first emphasize that any specified 

interrelationship between basic, local, and global models represents a series of highly 

non-linear developments which build upon one another, in incremental stages, as the full 

conception evolves and coalesces. These relationships are greatly influenced not only by 

incoming conceptions surrounding quantitative relationships which constitute basic 

models, but also through individuals’ schemes associated with notation and ideas 

involving other calculus constructs such as Riemann sums, rates of change, and limits. 

That is to say, due to the complex nature of definite integrals, no single conceptual 

analysis can be viewed as being correct, or even appropriate, for all individuals in an 

instructional situation. I built this conceptual analysis based on my image of the incoming 

knowledge of participants for my study as introductory Calculus I students, along with 

the perceived effectiveness of the initial protocol from the Summer 2020 study. This 

image included anticipation that participants would enter the study with conceptions of a 

rate of change which include a proportional relationship between two quantities, an 

ability to conceive of a limit as a sequence of values that are approaching arbitrarily close 

to some fixed value, and working knowledge of fundamental quantitative relationships 

such as area and volume.  

For a participant to be considered as having constructed a Quantitatively Based 

Summation Conception of integration they must be able to: 
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(1) Justify the inappropriateness of a basic model through the variation of one or 

more quantities in the situation they are engaged in modeling. 

(2) Construct a quantitative image of a situation as small fragments of a quantity 

which, through a process of accumulation, represents an entire desired 

quantity. That is, construct a global model consistent with a parts-of-a-whole 

symbolic form.  

(3) Justify the estimation of elements within their global model through a 

quantification process that shares the same fundamental structure as the basic 

model for the desired quantity. That is, students must be able to develop a 

local model and coordinate the elements within the global model with this 

construct. As part of a local model construction they must: 

(a) Identify an appropriate quantity within the quantitative structure of the 

basic model which can serve as a differential quantity, 2! or Δ!. This 

differential should represent the measure of a quantity over which the 

varying quantity which made a basic model inadequate, !, is of 

negligible variation.  

(b) Conceive of the accuracy of the local model estimation as dependent 

upon the magnitude of the differential quantity. An advanced 

conception of this would include an image of the error in the estimate 

tending towards zero as the differential quantity tends towards zero.  
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(c) Conceive of the global model as being comprised of the number of 

local model elements necessary to cover the entire measure of the 

unpartitioned differential quantity without overlap. 

(d) Coordinate that each element within their global model represents a 

different generalized fragment of the overall quantity, but that each 

element shares the quantitative structure of the local model.  

(4) Coordinate the refinement of a global model with a reduction in the magnitude 

of the local model. This refinement process must increase the accuracy of the 

global model so that a limiting value of an increasingly refined global model 

results in the exact desired quantity.  

(5) Establish a symbolic form for a definite integral which assigns the following 

conceptual schemas to the symbolic template 

F [G]
[)]

[+]
: 

A and B are the values representing the beginning and end of the measure for 

the quantity defined to be the differential respectively. C represents an 

algebraic representation of their local model which shares quantitative 

structure with the desired quantity and must include a measurable differential 

quantity, 2!. The differential quantity must be a multiplicative element within 

the local model, cannot be duplicated, and is inherently tied to the limits of 

integration A and B. The ∫ symbol represents a limiting process of 
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accumulations of increasingly refined global models through the reduction of 

the magnitude of the local model which results in an exact value.  

What I have presented here represents an image of a fully-developed Quantitatively 

Based Summation conception of integration, however, such a construct cannot be built 

linearly. As part of the development of a Quantitatively Based Summation conception of 

integration an individual must progress through various stages of complexity within their 

basic-local-global models, sometimes focusing on individual aspects of a specific model 

and other times coordinating relationships between models9. As the interrelationships 

between models increase, an individual is then positioned to reason bilaterally about 

various components of their model relationships. That is, while the design of the teaching 

experiment might influence the development of a construct in one direction (e.g. 

progressive adding of small estimates (local model) to lead to an estimate for an entire 

quantity (global model)), in later activities students can draw on this relationship in 

reverse (e.g. to anticipate partitioning a global whole into local model estimates). 

Positioning students to reason bilaterally between models provides an opportunity to add 

further nuance to a particular model’s utility as well as its interdependencies within the 

rest of the framework.  

 
 

 

 

9 Note that a nonlinear invocation of the interrelationships between basic, local, and global models is also a 
hallmark of students’ problem-solving when drawing on a mature Quantitatively Based Summation 
conception of integration.  
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The hypothetical learning trajectory for the development of a Quantitatively Based 

Summation involves engaging participants in a continued cycle of progressive 

accommodations to relationships between their basic, local, and global models. These 

cycles would be designed to promote the evolution from a discrete set of model 

constructs used to produce rough estimates for unknown quantities up through a complex 

system of interrelationships described within the conceptual analysis. In the following 

paragraphs, I provide a quick overview of the hypothetical learning trajectory, but a 

detailed description of task design and the hypothesized influence on precise evolution to 

emergent models can be found in the next section of the text.  

As an entry point, I engaged participants in what I call an approximation phase for 

their emergent models. This phase began with tasks that asked participants to identify 

both underestimates and overestimates for unknown quantities with increasing accuracy 

as the task sequence progresses. In the initial task, participants were provided a discrete 

set of data that can only be approximated when using a basic model and requires an 

association that the unknown data must be bounded for estimates to represent useful 

approximations. Participants were encouraged to construct a global model for estimation 

through the progressive addition of smaller estimates. This would create overall 

overestimates and underestimates for the entire dataset (the global model). By 

introducing additional data points I would position participants to establish a correlation 

between more components of the global model and more accurate parameters. 

The next task in the sequence required participants to construct a local model. I 

provided a quantitative scenario in which an original global model estimate did not 

provide accurate enough data to make an informed decision. I requested participants 
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partition the global situation into pieces in service of creating more accurate over and 

underestimates due to the decreased variation between endpoints of the partitions. This 

partitioning process would promote coordination between participants’ basic models, 

their anticipated quantification of those partitions, an image that the collection of 

partitions represents the entire quantity, and anticipation that partitioning leads to a 

smaller error bound between over and underestimates. I encouraged participants to 

continue this refining process to establish a link between the accuracy of their global 

models and the size/number of local model elements. Within this same context, 

participants were asked to identify how many partitions would be necessary to reduce 

their parameters to within a specified tolerance, reinforcing an image that the actual value 

for the desired quantity is somewhere within these two estimates. Finally, to re-establish 

the connection between the basic model quantitative structure with that of both the local 

and global models, I made a slight adaption to the quantitative context, changing the 

geometric shape of the object, which requires participants to adapt their local model in 

light of a new global image. 

A transition from the approximation phase to an exact phase was encouraged in the 

next task. I provided a geometric context in which participants were privy to a way to 

measure a quantity without the use of approximation, however, I would ask participants 

to apply their approximation models to the situation. Making observations about estimate 

values when a real value was known positioned students to draw inferences between 

ever-increasing accuracy and that real value, providing an opportunity to expand a global 

model from an image of an estimation process to one that can provide an exact result. 

Once the relationship between refined approximations and the real value was established, 
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I introduced the notation and symbolic form for a definite integral. To reinforce this 

connection, I asked participants to revisit previous tasks to associate an exact image of a 

global model with their previous approximation activity. Moving forward in the task 

sequence I provided students more complex contexts which required multiple layers of 

quantitative operations to develop a local model expression.  

During the final phase of the hypothetical learning trajectory, I asked participants to 

create a ‘How-To’ guide which required participants to reflect on their previous problem-

solving activity as a way to abstract a definite integral, along with its corresponding 

models, as a generalized problem-solving tool for measuring quantities in which one, or 

more, of the components within the quantitative relationship is varying. The ‘How-To’ 

guide prompt involved participants defining precisely what their interpretation of a 

definite integral is, how it works, and what it is used for along with a detailed description 

of an appropriate problem-solving strategy for using a definite integral to solve novel 

tasks. The point of this exercise was not to have participants produce an exemplary 

description of a ‘complete’ view of definite integrals but to engage them in reflective 

activity and position them to generalize across contexts. The reflection activity would 

provide an opportunity to further enrich the underlying meanings participants have for 

their basic, local, and global models including relationships between them.  

To investigate the impact of the hypothetical learning trajectory, I engaged 

participants in task-based clinical interviews involving two physics-based integration 

tasks in which the differential form was not a Riemann product: kinetic energy and 

gravitational force. To productively reason about these tasks, participants must have a 

conception of integration consistent with the conceptual analysis described above. 
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Additionally, both tasks required an additional level of quantitative reasoning, as 

participants had to coordinate the quantitative relationship for density as part of the 

quantification of a local model.  

 

Hypothetical Learning Trajectory and Task Design 

As part of the Fall 2020 teaching experiment, I developed a hypothetical learning 

trajectory and corresponding task sequence aimed at engendering a Quantitatively Based 

Summation conception of integration. The overall teaching experiment included six 

major tasks as elements of the overarching hypothetical learning trajectory—Curiosity 

Rover, Fluid Force on a Dam, Geometric Volume, Energy to Build a Pyramid, Grading 

Definite Integrals, and Design a ‘How-To’ Guide—along with 2 additional prompts as a 

part of the follow-up task-based clinical interviews. Most major tasks included multiple 

subsections, and sub-prompts, aimed at developing specific aspects of participants’ 

emergent quantitative models. In the following sections, I provide detail for each major 

task, including all sub-prompts and hypothesized learning trajectory, which characterized 

my hypothesized image of how participants would engage with the teaching experiment 

material. 

Task 1: Curiosity Rover 

In the Curiosity Rover task, students were presented with the goal-orientated activity, 

in four parts, of identifying whether the rover would complete its mission on Mars. The 

task provided specific readings for rates of dust accumulation at different geographic 

locations and had a limitation that the rover could not continue operating when it had 

over 400 mg of dust on its solar cells. Students were provided an applet with a slider that 
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presented data for specific sites which included location, total distance along the path 

from the landing site, composition of the surface, and the corresponding rate of dust 

accumulation (Figure 7). 

The Curiosity Rover task was chosen and adapted because of its ability to provide a 

meaningful context for students to motivate the need for identifying an overestimate 

using the accumulation of local estimates (i.e. a global model consistent with an adding 

up pieces conception). I also felt it was important to provide students with a context other  

 

Figure 7: Curiosity rover applet 

then the typical position-velocity-acceleration relationship often used to introduced 

Riemann sums. While velocity problems can provide powerful meaning which provides 

opportunities for sense-making, there is a danger of students over-relying on this 

relationship as a heuristic which can impede their ability to adapt to accumulation 
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problems involving more advanced basic models. I anticipated participants would be 

exposed to a Riemann sum example involving velocity in the course of their regular 

calculus course, so I did not include such an example in the teaching experiment. In the 

following paragraphs, I will describe the hypothetical learning trajectory for the Curiosity 

Rover task. A detailed summary providing the major goals, specific question prompts, 

and hypothesized model development for each prompt is available in Table 4.  

The anticipated conception the Curiosity Rover task aimed to engender most closely 

represents a finite Riemann Sum, however, no formal summation notation or language 

was introduced. Because this task represented the foundation for the rest of the teaching 

experiment, my hypothetical learning trajectory dictated prompts were that were open-

ended yet also steered students’ reasoning towards a specific way of reasoning. By this I 

mean that while many questions within the Curiosity Rover protocol were aimed at 

exploring students’ incoming basic, local, and global models and allowed them to 

demonstrate any associated schemes, the questions were also relatively short and direct 

providing students with clear goals at each step. I planned to provide sub-prompts one at 

a time, and, depending on each groups’ progress through the sequence, decide in the 

moment which to include for each group. 

As an intentional design choice, the Martian sites provided on the applet were not 

uniformly spaced along the rover’s path to require students to attend to the change in 

distance (Δ!) as a meaningful quantity during their problems solving activity. While the 

function which modeled the rate of dust accumulation was non-linear and monotonic, I 

did not explicitly inform students of these facts, only providing data for specific locations 

along the path. The initial applet displayed information for 7 major sites (Parts 1 & 2), a 
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subsequent applet adjustment allowed students to see data for the midpoints between sites 

(Part 3), and a final applet adjustment provided additional readings every 2.5 kilometers 

for a total of 65 data-points (Part 4). In addition to the final applet, I provided participants 

with a google sheets spreadsheet listing the total distance traveled along with 

corresponding rates of dust accumulation. Because the goal of providing the spreadsheet 

was to mitigate transcription errors for the larger data set, during the actual teaching 

experiment I assisted groups by entering spreadsheet formulas to compute values they 

requested.  

In Part 1, I presented groups with a set of seven orienting questions through an 

editable google document. These prompts asked participants to identify and discuss rates 

of dust accumulation at different sites, measure distances between sites, and identify how 

one could approximate the total dust on the rover’s solar cells as it traveled between sites 

if the rate of dust accumulation was constant. Specifically, the inclusion of these 

introductory questions served to (1) familiarize students with using the Curiosity Rover 

GeoGebra applet (2) bring attention to quantities within the task that would be necessary 

to complete their goals in later steps (3) provide an opportunity to explore students’ basic 

models involving rates of change which would be necessary for Parts 3-4. 

Part 2 of the curiosity rover task involved students identifying an overestimate and an 

underestimate for the total dust accumulated on the rover’s solar panels. Through the 

applet, I provided participants information about the rate of dust accumulation at 7 

different sites along the rover’s path and asked questions that built towards having 

students explicitly identify both an overestimate and an underestimate for the total 

amount of dust at the end of the rover’s journey. Despite only needing an overestimate to 
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satisfy the task’s main objective (whether or not Curiosity would be able to complete its 

journey on Mars) I included the need to identify an underestimate due to my anticipation 

of providing participants an opportunity, in Parts 3 and 4, to coordinate that more data 

provides a more accurate global model. Having students identify both these estimations 

also allowed me to naturally deter students from attempting to estimate the ‘actual 

amount of dust’ using average values. I want to clarify that the rest of the Curiosity Rover 

task required students to identify both overestimates as well as underestimates, for the 

reader’s ease I will only reference prompts in terms of overestimates (unless significant) 

in this section.  

In the first two prompts in Part 2, I asked participants to identify an overestimate for 

neighboring locations along the rover’s path which, unlike the sites in Part 1, did not 

share identical rates of dust accumulation. Through these prompts I hoped to extend 

students’ basic models to what I will describe as a gross basic model. A gross basic 

model represents applying a quantitative relationship that holds for constant quantities (a 

basic model) to a quantitative relationship in which one, or more, of the quantities is 

varying. An important aspect of a gross basic model is the recognition that the quantity 

obtained is only an approximation, and that the varying quantity within the gross basic 

model must be bounded (either above or below depending on the desired approximation). 

To support students in the development of a gross basic model I included additional 

prompts asking them to justify any assumptions which must be made to assert their 

estimations are accurate. Following this I hoped to engender an initial conception of a 

global model as being the aggregation of two, or more, values produced by a gross basic 

model applied to each subsection of the journey. Specifically, students would be asked to 
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identify an overestimate for the amount of dust on the rover’s solar panels if its journey 

was extending to the next location along its path. To extend this image of a global model 

I asked groups to progressively identify overestimate values for the amount of dust 

amassed over the next leg of the journey until the entire global model from Bradbury 

Landing to Murray Bates was constructed.  

The final prompt in Part 2 asked students to make a recommendation to NASA based 

on their findings. This question was left open-ended to allow students the opportunity to 

demonstrate any prior basic-local-global model relationship schemes which may exist 

from previous experience. I did not anticipate participants in the study suggesting to send 

the rover as-is because the expected overestimate for the total amount of dust, 471.25 mg, 

was far over the 400 mg limit. However, as I aimed to direct students towards the 

creation of a local model by obtaining additional data, I wanted to steer students away 

from an attempted Curiosity redesign by including a disclaimer in the final prompt, 

“Note: rebuilding Curiosity would cost a considerable amount of time and money. 

Redesign should be suggested only as an absolute last resort.” Although I did not 

necessarily anticipate spontaneous requests for more data in Part 2, I wanted to provide 

participants the opportunity to demonstrate any schemes associated with a refining 

process before I introduced prompts that would directly invoke the concept into the 

teaching experiment. I also hoped that the expected underestimate, 295.75 mg, being 

nearly 200 mg less than the overestimate value would provide students with the impetus 

to identify estimate values that were closer together. To directly introduce this notion, if 

not prompted by students, Part 3 provided context that an intern suggested using 

additional readings from the LiDAR spectrometer to obtain more information. A new 
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Geogebra applet was provided containing readings for the midpoints between each 

original site along the rover’s path with corresponding rates of dust accumulation. Within 

the applet these midpoint locations were referenced as ‘En route to ___.’  

The first question in Part 3 asked students to evaluate the intern’s suggestion, which 

was included to evaluate any schemes students may have for the refinement of an 

approximation now that the idea was introduced directly. Following this participants 

would be asked to again identify overestimates and underestimates for the amount of dust 

the rover would accumulate by the end of its journey on Mars (this time without 

scaffolding questions). The goal of having students rework the task using the new dataset 

was twofold. First, it provided an opportunity to initiate the development of a local model 

as a refinement of a gross basic model through a partitioning process rather than an 

appending process. In this case the partition was created for them, providing data for the 

rate of dust accumulation between each of the 7 major sites, and therefore would not yet 

represent a true local model.. Additionally, the partitioning process would provide an 

opportunity for participants to observe, through their goal-oriented activity, that 

additional data, obtained through a refinement of the original dataset, resulted in a 

smaller difference between their new underestimate (332.325 mg) and their new 

overestimate (420.075 mg). This would begin to inform the development of a critical 

local-global model relationship; that the refinement of a partition will result in a global 

model with less error.  

For the final task in Part 3 I asked for students for new recommendations for NASA. 

By design the overestimate would still lie outside mission parameters, however, the 

approximations were orchestrated so that the overestimate would be closer to the 400 mg 
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limit than the underestimate. I made this choice to, once again, provide students with an 

expectation that they could find a way to guarantee mission success. I anticipated that 

because participants were just provided additional data which resulted in a lower 

overestimate, they would suggest getting additional data about the surface on Mars which 

would act as an additional step towards building the local-global model refinement 

relationship.  

In Part 4 groups were provided an updated applet and Google Sheets spreadsheet 

which contained data for rates of dust accumulation every 2.5 kilometers along the 

rover’s entire path and a single prompt to provide a new recommendation to NASA. The 

overestimate of total dust accumulation with the provided data would fall below the 

critical threshold of 400 milligrams, allowing students to assert that the mission would 

succeed. There were three primary reasons I decided to provide students a spreadsheet 

rather than an applet alone: (1) to mitigate transcription errors, (2) to expedite 

computations, and (3) an expectation that students would be afforded the opportunity to 

observe patterns in their computations. In particular, I anticipated that providing a 

spreadsheet in which underestimates and overestimates for each segment of the journey 

would be computed individually, students would be positioned to identify that when 

distances between data points are a fixed value, the segment terms for their underestimate 

and overestimate share a majority of common values. While not crucial for the 

completion of the Curiosity rover prompts, this observation would serve to help students’ 

problem-solving in the next major task of the teaching experiment in which they would 

need to identify how small they needed to make distances in their local model to obtain 

an approximation within a specified error bound. The primary reason for Part 4’s 
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inclusion into the sequence was to reinforce participants’ schemes for their gross basic, 

local, and global models developed in Parts 2 & 3. Specifically, I wanted participants to 

coordinate that a reduction in the distance between data points (a refined global model 

through a decrease in the distance for the gross basic models) continued to reduce the 

error bound of their global model. Allowing the underestimate (336.7 mg) and 

overestimate (381.25 mg)10 to be well within the 400 mg limit provided a ‘feel-good’ 

stopping point for the task.  

With the inclusion of Part 4 I acknowledged students may not be proficient at making 

computations within a Google Sheets spreadsheet, and therefore anticipated helping with 

that aspect of the task. However, I planned to be careful in only making the specific 

computations requested by participants. The reason for my desire to carefully attend to 

instructions was because, occasionally, when Riemann sums are presented to students 

through regular lecture/coursework, computational shortcuts may be demonstrated. A 

common strategy, anecdotally observed, is when students factor out the quantity which is 

traditionally notated as a '!, a measure of distance in this case, from a string of 

summations, [	]'! + [	]'! +⋯+ [	]'! = (	[	] + [	] + ⋯+ [	])'!, where which each [	] 

represents a rate of change. While such manipulations are algebraically equivalent, they 

 
 

 

 

10 Note that both the underestimate and overestimate in Part 4 are lower than the average value of the 
underestimate and overestimate from Part 2 (383.5 mg). This was part of the data design in case students’ 
displayed a propensity for assuming linearity throughout the rover task.  
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are not quantitatively equivalent. That is, for this context, the desired quantitative 

relationship on the left represents an accumulation of small amounts of dust that were 

collected as the rover traveled along different sections of the overall path, all 2.5 km in 

length. The expression on the right loses this quantitative meaning, changing the 

construct from a parts-of-a-whole symbolic form to some multiplicatively based symbolic 

form. In addition to not representing the quantitative construction, I was aiming to 

engender in students, I also recognized that there is potential for students to conflate an 

algebraically derived symbolic template with the conceptual scheme underlying the basic 

model for a Riemann product (i.e. ([	] + [	] + ⋯+ [	]) would collectively represent a 

single rate of change due to its placement within the symbolic form for a Riemann 

product [	]'!).  
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Table 4: Curiosity Rover prompts and hypothetical learning trajectory 

 

  

Primary Context Prompt Sub-prompts Goal/Hypothesized model development
Part 1 What was the rate of dust accumulation at Bradbury 

Landing? What does this mean?
Establish a baseline for participant's basic model of total 
dust on the rover.

What was the composition of the surface of Mars at 
Yellow-Knife Bay?

Build an association between the magnitude of rate of 
dust accumulation and a quality of the Martian surface.

How far did the rover travel to get from Bradbury to 
Yellow-Knife Bay?

Bring attention to, and evaluate schemes for, the 
quantification of distance. 

What was the rate of dust accumulation at Yellow-Knife 
Bay? Is that rate higher, lower, or the same as the rate of 
dust accumulation at Bradbury Landing?

Establish a baseline for participant's basic model of total 
dust on the rover.

If we assume that the rate of dust accumulation between 
Bradbury Landing and Yellow-Knife Bay was constant, 
how much dust would accumulate on the rover as it 
traveled between those two sites?

Establish a baseline for participant's basic model of total 
dust on the rover.

What was the composition of the surface of Mars at 
Kimberly?

Build an association between the magnitude of rate of 
dust accumulation and a quality of the Martian surface.

How far did the rover travel to get from Yellow-Knife 
Bay to Kimberly?

Bring attention to, and evaluate schemes for, the 
quantification of distance.  

Based on the limited data available from the LiDAR 
Spectrometer, identify an overestimate for the amount of 
dust accumulated on Curiosity’s solar panels as it 
traveled from Yellow-Knife Bay to Darwin. Clearly 
articulate any assumptions that must be made to justify 
your overestimate as an accurate worst-case scenario.

Extend a basic model [total dust]=[constant rate of dust 
accumulation]·[distance traveled] to a gross basic model 
for an overestimate when a rate is non constant, 
[approximate total dust]=[highest rate of dust 
accumulation]·[distance traveled]. Coordinate 
requirement of boundedness for the use of a gross basic 
model. Identify an underestimate for the amount of dust 

accumulated on Curiosity’s solar panels as it traveled 
from Yellow-Knife Bay to Darwin. Clearly articulate 
any assumptions that must be made to justify your 
underestimate as an accurate best-case scenario.

Extend a basic model [total dust]=[constant rate of dust 
accumulation]·[distance traveled] to a gross basic model 
for an underestimate when rate is non-constant, 
[approximate total dust]=[lowest rate of dust 
accumulation]·[distance traveled]. Coordinate 
requirement of boundedness for the use of a gross basic 
model. 

… Darwin to Cooperstown? Same as above.

Before deploying the rover for launch, NASA scientists 
were required to identify the parameters that would 
ensure that Curiosity remained operational for the entire 
mission schedule. This included best-case and worst-case 
scenarios for the accumulation of dust on the solar panels 
as the rover traveled across the Martian surface. 
According to mission parameters, Curiosity’s solar panels 
cannot handle more than 400 mg of accumulated dust 
during its trip from Bradbury Landing to Murray Buttes. 

Major Task: Identify relevant quantities by using the 
Curiosity rover Geogebra applet.

Part 2 Same as Part 1

Major Task: Identify an overestimate and an 
underestimate for the total dust on the Curiosity rover's 
solar panels after traveling from Bradbury Landing to 
Murray Bates using datapoints for 7 major sites along its 
path.
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Primary Context Prompt Sub-prompts Goal/Hyptohesized model development
Part 2 
Cont.

Provide the worst-case and best-case scenario for the 
amount of dust accumulated on Curiosity’s solar panels 
as it traveled from Yellow-Knife Bay to Cooperstown.

Establish a global model for accumulation as the 
aggregation of two gross basic models through an addive 
process. 

from Yellow-Knife Bay to Kimberly? to 663? … Same as above.

Provide the worst-case and best-case scenario for the 
amount of dust accumulated on Curiosity’s solar panels 
for its entire mission from Bradbury Landing to Murray 
Buttes.

Establish a global model for accumulation as the 
aggregation of two, or more, gross basic models through 
an additive process.

Provide a recommendation for NASA based on your 
results. Include the methods by which you arrived at the 
parameters that informed your recommendation. Note: 
rebuilding Curiosity would cost a considerable amount of 
time and money. Redesign should be suggested only as an 
absolute last resort.

Allow for reflection on magnitudes of underestimate and 
overestimates in relation to outlined limitations to support 
global model development (i.e. establish an 
understanding of participants' gobal model schemes in 
relation to the 'actual' amount dust being between these 
two estimate values). 

Provide opportunity for participants to demonstrate any 
prior local/global model relationship through the request 
of additional data/mention of partitioning.

What do you think of the intern's suggestion? What 
affordances would this give the team? What are the 
limitations of her suggestion? Under what conditions will 
her suggestion result in a more accurate assessment of 
the situation?

Initiate the development of a local model as a partitioning 
process. Provide opportunity for participants to 
demonstrate any prior local/global model relationship 
through the request of additional data/mention of 
partitioning.

All of the data suggests that the rate of dust accumulation 
never increases along Curiosity’s path. Under this 
assumption, what is the worst-case scenario for the 
amount of dust accumulated on Curiosity’s solar panels 
for its entire mission from Bradbury Landing to Murray 
Buttes. What is the best-case scenario?

Establish a local model as an extension of a gross basic 
model. Directly introduce the neesessary assumption of 
monotonicity.

Provide a recommendation for NASA based on your 
results. Include the methods by which you arrived at the 
parameters that informed your recommendation 
including a comparison to your previous 
recommendation.

Same as Part 2.

Provide opportunity for participants to demonstrate any 
developing local/global model relationship through the 
request of additional data/mention of additional 
partitioning.

Part 3 An intern suggests using additional surface data from the 
LiDAR Spectrometer. She ran some initial numbers and 
thinks that getting information for the surface 
composition at midpoints between each site will allow for 
better mission projections.

Major Task: Identify an overestimate and an 
underestimate for the total dust on the Curiosity rover's 
solar panels after traveling from Bradbury Landing to 
Murray Bates utilizing additional information provided 
through the applet for the rate of dust accumulation at 
midpoints between the 7 major sites. 
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Primary Context Prompt Sub-prompts Goal/Hyptohesized model development

Part 4 You’ve sent the intern back for more data! She comes 
back a little haggard, but now there is now data every 2.5 
kilometers along the rover’s path. Based on the new data, 
provide a recommendation for NASA based on your 
results. Include the methods by which you arrived at the 
parameters that informed your recommendation 
including a comparison to your previous 
recommendations.

Major Task: Identify an overestimate and underestimate 
for the total dust on the Curiosity rover's solar panels 
after traveling from Bradbury Landing to Murray Bates 
utilizing additional information about the rate of dust 
accumulation every 2.5km along Curiosity's path.

Reinforce development of a local model as an extension 
of a basic model through a partitioning process. 
Emphasize that a refinement of a local model, by 
lessoning the magnitude along the partitioned interval, is 
in service of lowering the error of a global model.

Provide opportunity to observe equivalent values within 
neighboring terms of a Left/Right Riemann sum when 
distance is partitioned uniformly. 

Have participants reflect on their problem-solving 
process. 
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Task 2: Fluid Force on a Dam 

The Fluid Force on a Dam task’s primary objective was to encourage the 

development of a local-global model relationship for accumulation with particular 

attention to the requirements to develop, and impact of, a refined local model. In the 

Fluid Force on a Dam problem, I tasked students with identifying over and 

underestimates for the total fluid force exerted on both rectangular and trapezoidal-

shaped dams. The Fluid Force on a Dam task was situated so that identifying over and 

underestimates was in service of providing parameters that allowed a superior to 

minimize the total cost of the dam. One reason for the choice of context was its ability to 

provide its own intrinsic motivation for identifying estimate values. Based on feedback 

from the summer course, engineering students emphasized that contexts in which they 

could easily see connections with their course majors provided more motivation than 

those which did not. This was particularly true for the dam tasks, which many students 

referenced specifically.  

In addition to the purely motivational, there was a far more important reason for 

including the Total Force on a Dam task early in the teaching experiment sequence. As 

students moved forward in their construction of a scheme for integration, I felt it was 

important to quickly introduce them to tasks involving basic models which did not 

represent a prototypical Riemann product quantitative structure. This would (1) provide 

students an opportunity to reason about such structures as their basic-local-global models 

were in development, and (2) provide a challenge to those students who may have 

already constructed a scheme for integration that was based in antidifferentiation or 

consistent with schemes for the differential as a Riemann product. The Total Fluid Force 
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on a Dam task was a good candidate for this transition because, while possible, previous 

studies indicated that it was unlikely for Calculus I students to reason about this 

quantitative relationship as a Riemann product. Additionally, while the quantitative 

relationship within the Fluid Force on a Dam task is more complex, the basic model still 

represents a relatively simple multiplicative product, [force]=[pressure]⋅[area]. In the 

following paragraphs, I describe the hypothetical learning trajectory for the Fluid Force 

on a Dam task. A detailed summary providing the major goals, specific question prompts, 

and hypothesized model development for each prompt is available in Table 5. 

Because no prerequisite physics knowledge was required for participating in this 

teaching experiment, I included a small preamble outlining fluid force and fluid pressure 

at the beginning of this task providing access to the quantitative structures for these basic 

models. Students were encouraged to voice any concerns/questions they had about these 

quantities which I would clarify. In addition to the introductory paragraph, I prepared a 

GeoGebra applet (Figure 8) and series of prompts, which I called the Box Underwater 

activity, to assist students in familiarizing themselves with the basic models. I planned to 

only introduce The Box Underwater activity if the unfamiliarity of force and/or pressure 

caused too much difficulty for the groups as they worked through the primary task 

sequence. I hypothesized that because students did not quantitatively construct the basic 

models for fluid force and fluid pressure themselves, unfamiliarity with the quantities 

involved may result in improperly assigned values, or an inability to recognize that a 

partitioned area of the dam at a shallow depth would be subject to less force than the 

same sized partition at a lower depth. If such a situation arose, I anticipated students 

would be unable to productively develop an appropriate local model. The GeoGebra 
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applet was a relatively simple construction that allowed students to adjust a slider to 

change the size of a cubed box and to drag a corner of the box below the surface of a blue 

translucent box, representing water, to the desired depth. The applet rendered 2D and 3D 

models of the box and water and displayed the depth and pressure at the bottom edge of 

the cubed box. The Box Underwater task, and corresponding applet, was purely 

supplemental and not planned to be presented to every group.  

 

Figure 8: Fluid Force on a Box GeoGebra applet 

I introduced participants to the Fluid Force on a Dam task through a request to 

articulate why a basic model was not appropriate in this situation. This prompt served 

two purposes (1) to draw attention to, and give students an opportunity to engage with, 

the basic model for fluid force, and (2) to engage students in reasoning about the 

inappropriateness of a basic model when one comprising quantity was varying. Following 

this, I asked participants to identify an overestimate and an underestimate for the total 

fluid force that would be exerted on a rectangular dam. I left this prompt vague in terms 

of precision to allow participants the opportunity to introduce any evidence of local-
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global model development spontaneously. As a part of this prompt, groups were also 

presented with a corresponding GeoGebra applet (Figure 9). Participants could use a 

slider to view pressure at specific depths along with the dam’s vertical height below the 

waterline. The applet was relatively simple, as its only real purpose was to allow students 

to coordinate the information provided in the introductory paragraph a visualization of 

how pressure increases with depth. By visually highlighting the dam’s height along with 

the interval of depths, it also served to provide students with the relevant quantity which 

would need to be partitioned in later prompts.  

 

Figure 9: Fluid Force on a Dam GeoGebra applet 

After identifying initial over and underestimates, I encouraged students to improve 

their estimations based on a supervisor’s feedback to partition the dam into at least two 

pieces. In particular, because in the previous task I provided all data refinement, I 
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anticipated students would provide initial estimates based on the gross basic models 

developed in the Curiosity Rover task. Because students were provided a formula for 

pressure at a given depth, rather than discrete data, the direction to create a refinement 

was to have students extend their gross basic schemes from the previous task from 

discrete to continuous data in which they performed the partitioning and measurement 

process. The required division into two sections also served to engage participants in 

coordinating the total height of the dam with a depth d. In essence, this prompt 

encouraged students to explicitly construct a local model for each half of the dam which 

required them to reason about the quantitative relationships involved in relation to their 

basic and global models. The choice to limit the number of partitions to 2 was to allow 

for direct connections between this task and their previous problem-solving activity in the 

Curiosity Rover task. What precisely was meant by ‘partitioning the dam’ was left to 

students to interpret for themselves as I did not want to explicitly articulate the mental 

activity of assuming constant pressures over two sections of the dam each ½ the original 

area. I wanted this to be an accommodation to the developing scheme from the first task 

as an extension of a gross basic model to a local model. In addition, while it was not 

anticipated to cause difficulty for a rectangular dam, the groups would have to reason 

about a supplied basic model for force by drawing on their area component of the basic 

model as a part of the problem-solving process. 

The next prompt asked students to explicitly describe what informed their partitioning 

process. I anticipated students would bisect the area of the dam at a depth of 12.5m 

without much active consideration for why they made that choice, and by having students 

articulate and justify their precise method of division and computations, I aimed to 
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provide the opportunity to make connections between their intuitive response and the 

varying quantities and partitioned depth. I also wanted the participants to coordinate that 

pressure itself is dependent upon the depth below the waterline which justifies why a 

horizontal, rather than vertical, bisection of the dam area is warranted. Students may have 

reasoned through a similar process internally, but it was important to have a record of that 

reasoning as part of the study. I also left the number of partitions to the participants 

themselves, so as not to limit their solution strategies. I asked participants to compute 

their new totals and draw a diagram of the quantities involved in the task, reinforcing the 

quantitative nature of the values involved in their calculations.  

Part 3 was designed to direct students’ goal-oriented activity towards making a 

connection between the refinement of a local model and the decreased magnitude of the 

global model error bound. I began by asking students to provide a “better set of 

parameters” by partitioning the dam into 5 pieces. This prompt directly informed the 

development of a refinement relationship between their local and global models, while 

allowing participants to extend their previous computations for a previous local model to 

one in which the height of the partition was smaller. I anticipated this would allow 

participants to observe that the overall quantitative structure, and underlying scheme, for 

the local model remains the same under a refinement process, but that the overall 

magnitude of each component of the subsequent global model would decrease.  

Following these computations I asked students, within the given context, to identify 

over and underestimates that are within 50,000 Newtons of the actual value for the 

amount of fluid force that would be exerted on the dam. This prompt aimed to more 

directly coordinate the implication that decreasing the magnitude of the interval length in 
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the local model (through additional partitions) permits one to create a global model that is 

accurate to within a predefined error bound. I believed that such connections had the 

potential to be rapidly produced through productive conversations between participants 

following this prompt, but also anticipated they may find difficulty in noticing the values 

within their previous computations which would aid in the formalization of those 

connections. Specifically, because the dam’s upper edge was at a depth of 0, the 

underestimate value for the fluid force acting on the ‘first’ partition within an 

underestimate global model should be 0. This fact results in the overestimate value for 

the ‘last’ partition within an overestimate global model being equivalent to the error 

bound providing a means to computationally identify how small they must make the 

height of the partitions to have an error bound of less than 50,000 Newtons. To assist 

students in making this connection, I created a supplementary prompt that explicitly 

draws attention to these quantities. I then asked students to identify the number of 

partitions necessary to compute such a value, providing an opportunity to coordinate the 

magnitude of a local model with the number of elements that comprise a global model.  

As a result of the preliminary study, I made the conscious decision to avoid 

introducing summation notation into the teaching experiment and therefore provided 

participants a means of computing the requested over and underestimates through the use 

of the GeoGebra summation applet. The primary purpose of having students compute 

their overestimate and underestimates using the sum calculator was (1) to provide 

computational assurance that their methodology for identifying the number of partitions 

required, reinforcing the link between the refinement process and improved global model, 

and (2) to begin to introduce components of a symbolic template for a definite integral 
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that was inherently tied to their developing basic-local-global models. Although I put 

care into the GeoGebra applet, by design it was not generalizable enough to accept any 

computation/variable. To be able to effectively use the calculator for the dam task, 

students would have to coordinate the quantities and variables they created during their 

problem-solving activity with more traditionally used variables and notation. 

Specifically, the applet introduced the construct of Δ#.	I anticipated students would be 

familiar with Δ#	from their calculus course but would bring different underlying 

conceptions such as “change in #” vs “amount of #.” I designed the applet and task 

sequence to encourage the latter, and, as I will elaborate on in the discussion section, the 

critical conceptual schema students must adopt into their models is that Δ# represents the 

magnitude of a quantity within the local model that is constant across all components of a 

global model. This would correspond to the fact that # was the quantity partitioned in the 

creation of the local and global models and therefore provides the meaning for “starting 

#” and “ending #” to represent the two values whose difference measures the magnitude 

of the entire quantity #. By requiring the inclusion of the Δ# notation, the “expression to 

be summed” entry represents an algebraic representation of their local model (which 

matches the quantitative structure of the basic model). As a final prompt in Part 3, I asked 

students if it was possible to identify estimates accurate to within 1 N of the real amount 

of force on the dam. This question was aimed at eliciting the flexibility of their new 

local-global model refinement relationship for improving the accuracy of a global model.  

In Part 4, I required students to adapt to a similar, but new, global structure by 

changing the shape of the dam to a trapezoid. I included this prompt to require 

engagement with the quantitative reasoning necessary to adapt to a local model in which 
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more than one quantity of the corresponding basic model varies. In this case, through the 

rectangular dam activity, participants had worked with local models in which pressure 

changed between components of the global model but area remained a fixed value. By 

altering the shape of the dam, for two different elements within the global model, the 

values for both pressure and area would be distinct. The prompt itself was left relatively 

open-ended to allow participants to draw on their previous problem-solving activity. For 

the final prompt of the Fluid Force on a Dam task, I asked students to hypothesize a 

method by which they could identify the exact Fluid Force on a Dam, hoping students 

may recognize a connection between their refinement process and the concept of limits 

which they would have covered in their calculus class. This would serve to further 

develop their global models, and potentially their local-global model refinement 

relationship.  
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Table 5: Fluid Force on a Dam prompts and hypothetical learning trajectory 

 

Primary Context Prompt Sub-prompts Goal/Hypothesized model development

Part 1 Create a box with side lengths 4m⨉4m⨉4m  and lower it 
to a depth of 25 meters. What is the fluid pressure at this 
depth?

Coordinate fluid pressure as a quantity varying with 
depth. 

What is the total force acting upwards on the bottom of 
the box?

Establsih use of a basic model for fluid force at fixed 
depth. 

What is the total force acting downwards on the top of 
the box?

Establsih use of a basic model for fluid force at fixed 
depth. Quantify differing forces on top/bottom of box.

Change the box to be 3m⨉3m⨉3m . What is the total 
force acting upwards on the box? What is the total force 
acting downwards on the box? What changed between 
this computation and the last?

Coordinate the basic model for fluid force as a quantity 
varying with area for a fixed depth.

Move the box so that the base is at a depth of 75 meters. 
What is the total force acting upwards on the box? What 
is the total force acting downwards on the box? What 
changed between this computation and the last?

Coordinate the basic model for fluid force as a quantity 
varying with depth for a fixed area.

Compute the total force acting downwards on a box that 
is 1.7 meters tall, 4.26 meters wide, and 2.45 meters 
long, that has been lowered to a depth of 63 meters. 

Reflect on the goel-oriented activity to support basic 
models quantiative structure without support of applet.

Can you use the same computations to find total force 
acting on the sides of the box? Explain why or why not.

Reflect on varying quantities for force. Identify that  
direct application of the baisc model is not warranted.

Explain why we cannot just multiply a pressure times an 
area to compute the fluid force acting on the dam.

Coordinate the inappropriateness of a basic model for 
varying quantities. Motivate creation of a local model. 

Provide an overestimate for the total fluid force on the 
dam. Provide an underestimate of the total fluid force 
force. 

Motivate gross basic model as appropriate tool for rough 
estimate when one a quantitty in basic model varies.

You’ve taken these numbers to your boss and he balked! 
According to him this range of values is entirely too 
large, and you’ll need to provide more accurate 
parameters if he’s going to be able to make an informed 
decision about materials. He suggests that at the very 
least you could partition the dam into 2 pieces before 
computing any approximations for over and 
underestimates. He then waves you away to complete 
the task and returns to an important phone call. Does 
your boss's suggestion have merit? Why or why not?

Promote the development of a local model as a 
partitioning of a whole quantity which is comprised of 
two, or more, pieces which can be approximated 
through a gross basic model. Coordinate a global model 
comprised of local models as being more accurate than 
a gross basic model applied to the entire situation. 

Fluid force is the force on an object submerged in a fluid. This 
is the force divers feel as they descend below the water 
surface. For a uniform fluid pressure, P, across a surface area 
A, the total fluid force is F=PA Newtons*,

Fluid pressure, P, is proportional to the depth of an object and 
does not act in a specific direction. Rather, fluid exerts pressure 
on each side of an object in the perpendicular direction. The 
pressure Pat a depth d, can be measured by P=gd where  is the 
density of the liquid and g is acceleration due to gravity (9.8 
m/s²). The density of water is 1000 kg per cubic meter, so for an 
object submerged in water, fluid pressure can be modeled by 
P=9800d N/m².

*A Newton is a standard unit for force, and 1 N = 1 kg·m/s² 
which is the force required to accelerate a 1 kg mass at 1 m/s².  

Major Task: Preamble provides  access to the quantiative 
structures for pressure and fluid force. Subprompts, and 
corresponding applet, only introduced if deemed necessary.

Part 2 Initial plans for a rectangular dam in Argentina are being 
drawn up as we speak. The dam is planned to be 63.26 meters 
wide and reach a total depth of 25 meters. Decisions must be 
made in order to minimize costs of such a massive project. In 
particular, the type of concrete used to build the dam from will 
reflect a significant portion in the overall budget. In order to 
know which material is appropriate for the job, it will be 
important to identify the parameters for the total fluid force that 
the dam must withstand. You’ve been tasked with identifying 
this figure. Your goal is to provide under and overestimates for 
the total fluid force that is likely to be exerted on the dam. 

Major Task: Identify an over and underestimate for the total 
fluid force on a rectangular dam.
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Primary Context Prompt Sub-prompts Goal/Hypothesized model development

Part 2 
Cont.

How will you partition the dam into two pieces? Explain what 
informed your decision to partition the dam in this way. 

Motivate a gross basic model as an appropriate tool for 
providing a rough estimate when one a quantitty within a basic 
model is varying.

Identify new over and underestimates for the total force acting 
on the dam. Draw a picture of your dam and label it with all 
the quantities involved.

Reinforce connection between the local and global models. 

Part 3 In an effort to impress, identify over and underestimates for 
the total force on the dam if you partition it into 5 pieces. 

Strengthen connection that lowering the magnitude of the local 
models improves the global model. Motivate quantiative 
relationship for Δd as the measure of the entire depth divided 
by the number of partitions. 

You’ve presented your new report to your boss and he’s happy 
with your work so far. However, he notes that this range of 
possible forces doesn’t completely narrow down the choice of 
materials. He’d like you to run some additional numbers and 
get back to him with a range of possible forces that is accurate 
to within 50,000 N.

Motivate an explicit coordination that by reducing the 
magnitude of a local model by a significant enough amount, the 
global model can be made as accruate as a predefined bound. 

* This seems like an impossible task, but as you’re fiddling with 
computations from your most recent report you notice that the 
parameters have an error bound of at most 77493500 N. This 
also happens to be the exact overestimate for the deepest 
partition of the dam from that same report. Why are these 
values the same?

*Supplmental task preprepared. Anticipated students will have 
productive discussions, but will find it difficult to move forward 
computationally. Motivates the comparison of individual values 
produced by local model within the over/under global models 
to provide a means to identify the maximum magnitude of the 
local model. 

How many partitions do you need to make to identify the total 
fluid force on the dam accurate to within 50,000 N?

Create explicit coordination that increasing the number of 
partitions directly impacts the accuracy of a global model. 

Use the GeoGebra Sum Calculator to identify the over and 
underestiamtes. 

Build connections for quantities which will be important to the 
template of a definite integral symbolic form within the context 
of their basic, local, and global models for accumulation. 

While you have these new computations ready to go, 
you’ve decided to make up for your initial report by 
providing even better parameters than your boss 
suggested. 

Major Task: Create an increasingly refined partition of 
the dam in an effort to provide a solution accurate to 
within a predfined error bound. 
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Primary Context Prompt Sub-prompts Goal/Hypothesized model development

Part 3 
Cont.

Could you identify the total fluid force acting on the dam 
accurate to within 1 N? How?

Reinforce explicit coordination that by reducing the magnitude 
of a local model by a significant enough amount, the global 
model can be made as accruate as a predefined bound. 

Your boss would like you to draw up a new report with the 
force information for this new design. 

Reinforce the required quantitative structure of a local model 
matching that of a basic model by changing the way in which 
local model width is quantified along depth. Coordinate need 
for local model to provide accurate approximation for any 
depth and magnitude of partition necessary.

Is there a way to identify the exact force on the dam? Draw out any connections between a refinement process and 
existing conceptions of a limiting process.

Part 4 More information has come in, and it turns out the dam 
won’t be in the shape of a rectangle after all. The canyon 
the dam will be built in is narrower at the base than at the 
top. This means that while the top of the dam will be 63.26 
meters wide, the base will only span 37.92, creating a 
trapezoid. 

Major Task: Engage in the quantiative reasoning 
necessary to adapt their solution from the previous task to 
a similar situation in which the quantitative structure of the 
basic model has changed. 
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Task 3: Geometric Volume 

The primary objective of the Geometric Volume task was to motivate the introduction 

of the conception of a limiting value to the global model refinement process which 

included the notational components which constitute the template for the symbolic form 

of a definite integral (Table 6). The shift in the quantitative structure of the corresponding 

basic model for this task would also allow participants an opportunity to continue 

constructing interrelationships between their basic, local, and global models.  

In this task, participants began with the goal of identifying the volume of a right 

rectangular pyramid measuring 10in tall with a 4in×4in base. Before having participants 

engage in creating over/underestimates for the volume, I first provided an 

acknowledgment that they already had working access to a formula for a right rectangular 

pyramid, " = ("⋅$⋅%)
' , and indicated that one way to arrive at the quantification of that 

formula is through a method of estimates similar to one they had been engaging with. By 

introducing these constructs together, I wanted to bring explicit attention to the 

connection between a real amount of a quantity and their previous goal-oriented activity 

of identifying estimates extending beyond simple estimations. This would prime 

participants for the incorporation of a limiting process into their local-global model 

relationship as they worked through the prompts.  

I began the task by asking participants to identify an overestimate and an 

underestimate for the provided pyramid dimensions without restriction. This would 

provide insight into their anticipation of the required error bound of an acceptable 

approximation. Based on their response I would ask participants to refine their solution 
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further, likely numerous times. By continuing to prompt additional refinements to their 

global model to decrease the magnitude of the error bound, participants would be given 

the opportunity to reinforce connections between their image of the magnitude of their 

local model, the number of partitions/elements within their global model, and the 

accuracy of their global model. Finally, I would prompt participants to compute the ‘real’ 

volume of the pyramid using the provided formula and ask them to make a connection 

between the ‘real’ value for the volume and their global model estimates. 

I did not design any tasks in the teaching experiment to engender a specific scheme 

associated with limiting values prior to this task, however, because I anticipated that all 

participants would enter the study with at least some concept of limits from their calculus 

coursework this part of the task was left-relatively open-ended. Through experience with 

the participants' classroom coursework including the textbook and associated homework 

activities, such as creating limit tables, I anticipated that one image of limits participants 

may have constructed would involve a pseudo-convergence of a sequence of values. 

These values would be obtained by identifying the outputs of a function at inputs with an 

ever-decreasing distance from a point of interest. While I acknowledge that this is not a 

mature view of a limiting value, because I believed it to be a likely construct associated 

limits, I drew upon this idea to promote an association between local/global models and 

limits. In particular, by having participants create a series of overestimates and 

underestimates as they were decreasing the magnitude of their local model (through the 

reduction of a quantity Δ%), they were developing a sequence with which they could 

connect the limiting value of the ‘real volume’ to within their limit scheme. Such a listing 

process would also allow participants with a scheme for limits that was more inherently 
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tied with an error-bound conception to make similar connections. While I constructed the 

prompts to elicit the activation of a limiting scheme, I wanted this problem-solving tool 

to be generated from the participants' problem-solving activity rather than my explicit 

introduction of the construct. This would position participants to view limits as a 

productive tool for identifying the anticipated outcome of a continued refinement process, 

rather than a complicated structure superimposed on their emergent models. If necessary, 

a direct introduction of limits would be made. 

Following a connection to limits, I introduced the symbolic notation associated with 

definite integrals such as the integration sign, limits of integration, and differential form 

(Figure 10). This introduction included rough explanations and I made explicit 

connections between the symbolic template and the meanings participants had 

constructed for aspects of their local/global models when working with the sum 

calculator. I provided an example of definite integral notation for the total fluid force on 

the rectangular dam from Task 2, before prompting participants to create a definite 

integral for the total volume of the pyramid and the total fluid force on a trapezoidal dam. 

For these interactions I took on a primarily instructive role in which I aided students in 

incorporating their basic-local-global models to the symbolic form for a definite integral. 

By revisiting previous prompts I hoped to encourage reflection on previous problem-

solving activity to incorporate an exactness construct upon their global model which had 

previously only exclusively dealt with estimates. By providing a definite integral 

calculator I also provided a means by which (1) participants could check whether their 

constructions were consistent with previous findings, and (2) would promote an 

association with the symbolic form of a definite integral with a single-valued answer 
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promoting a single global model for definite integrals, in contrast to the two global 

models (over/under) for estimates.  

 

Figure 10: Introduction of definite integral notation 

As a final prompt in this task sequence participants would be asked to write a definite 

integral that represented the volume of a sphere with 6in radius. By providing this task I 

hoped to allow participants additional opportunity to coordinate their models with the 

symbolic form for definite integrals by directing their goal-oriented activity to the 

construction of an explicit global model for definite integrals. I chose to ask another 

volume question because this would allow participants to direct the bulk of their 

problem-solving energy towards the creation of the definite integral because, although 
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distinct, the quantification of a local model should be similar enough to their previous 

task that they would not be too terribly taxed. 
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Table 6: Geometric Volume prompts and hypothetical learning trajectory 

 

Primary Context Prompt Sub-prompts Goal/Hypothesized model development

Part 1 Use your method of approximations to find overestimates 
and underestimates for the total volume for a right 
pyramid that is 10 inches tall with a square base of 4 
inches. 

Coordinate the development of a basic-local-global 
model system formatted upon a new basic model 
quantitative structure. 

How accurate can you make your estimates to the real 
value of the volume of the pyramid? Make an 
approximation accurate to within ___ (repeated).

Motivate reflection on estimates in relation to a real 
value for the volume.

Create a sequence of underestimate and overestimate 
values through increased refinement of local-global 
models.

Compute the volume of this pyramid using the provided 
formula. What do you notice about this value in relation 
to your estimates?

Establish an explicit connection between 
under/overestimates, a limiting process, and the real 
value of a quantity into basic-local-global models. 
Identify exact volume as the limiting value of the 
sequence of both the underestimate and overestimate 
values. 

Motivate notational need to represent exact value of this 
process.

Write the exact volume of a right pyramid that is 10 
inches tall with. A square base of 4 inches using definite 
integral notation. 

Establish a symbolic form for definite integrals that is 
rooted in the basic-local-global models for estimates. 
Expand global model to incorporate the construct of 
exactness.

Write the exact total fluid force acting on a trapezoidal 
dam measuring 63.26 m at the top, 37.92 m at the bottom, 
with a  depth of 25 m. 

Coordinate the link between the fledgling symbolic form 
with previous goal-oriented activity. 

Part 3 Write a definite integral that represents the total volume 
of a sphere with radius 6 in. 

Coordinate the development of a basic-local-global 
model system which has incorporated limiting process to 
a slightly different quantitative situation.

Include the meaning of each element in the definite 
integral. 

Explicitly establish conceptual schema for the symbolic 
template which are connected to the quantitatively 
constructed local-global model relationships.

Use the definite integral calculator to identify the total 
volume of the sphere. 

Reinforce image that definite integral represents a single 
value. 

We know the volume of a right rectangular pyramid can 
be found using the equation V=(l*w*h)/3, but where 
does that formula come from? One way to find this 
volume is  through your method of approximations.

Part 2 Introduction of definite integral notation.
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Task 4: Energy to Build a Pyramid 

I introduced the Energy to Build a Pyramid task with the intention of engaging 

participants in the goal-oriented activity of developing an exact global model, in the form 

of a definite integral, for a novel quantitative context. In this task, participants were asked 

to identify the total energy (against gravity) to build the Great Pyramid of Giza which 

measures 146m high with a square base of side-length 230m under the assumption that 

the density of the stone within the construction was 2000 kg/m! (Table 7). The basic 

models for energy, [energy]=[force]⋅[vertical distance traveled], and force, 

[force]=[mass]⋅ [acceleraition due to gravity], were provided based on participants' 

demonstrated comfort with those quantities.  

Table 7: Energy to Build a Pyramid prompt and hypothetical learning trajectory 

 

 

Context Prompt Goal/Hypothesized model development
Built around 2600 BCE, the Great Pyarmid of Giza in 
Egypt is 146m high and has a square base of side length 
230m. Find the energy (against gravity) required to build 
the pyramid if the density of the stone is estimated at 
2000 kg/㎥

Coordinate the refinment of an exact basic-local-global 
model system by providing context in which an 
adaptation of the local model is required. 

Coordinate the development of a local model when 
multiple layers of quantification are necessary due to 
increased  complexity of basic models involved. 

Encourage reflection  problem-solving activity for the 
volume of a pyramid task. Provide opportunity to 
coordinate the incorperation of a previously established 
local model into a new local model requiring a similar 
quantification process. 

*Supplemental information

Work/Energy against gravity: On the earth's surface, 
work against gravity is equal to the force 
(mass·acceleration due to gravity) times the veritcal 
distance through which the object is lifted. No work 
against gravity is done when an object is moved 
sideways. 

E=F·d
F=M·g

Provided if participants unframiliar with quantification of 
basic model for energy

Requires quantification of mass - also provided to 
participants if deemed necessary.
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Due to the multiple layers of quantification involved in the basic model for energy, 

this task would also pose additional challenges to participants' quantification of their 

local model. In particular, as part of the expected solution strategy, I hoped to navigate 

participants towards assigning the differential quantity to the height component of 

volume buried deep within the volume component of the quantitative structure of their 

local model (see Figure 11). It was for this reason that the total volume of a pyramid was 

selected as one of the contexts in Task 3. Specifically, I wished to reduce part of the 

burden of identifying the best quantitative candidate with which to partition their global 

models global model as they were anticipating the development of a local model. By 

having participants draw their previous problem-solving activity of quantifying 

approximations for volume along the vertical height of the pyramid, they would already 

have an image of how such a partitioning could occur. 

 

Figure 11: An expanded basic model for energy 

By lessening the burden of this choice I hoped to accomplish two goals: (1) position 

students to spend more time coordinating the new notation, along with the accompanying 

limit conceptions within a global model, with the development of their local model, and 

(2) because volume was not an immediate component of the provided basic model, I 

hoped to engender sensitivity to this quantity in their problem-solving process. One 
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concern that motivated my sensitivity to making the volume a salient feature of this task 

was anticipation that, because the volume component of the differential was buried deep 

within the quantitative structure of energy, participants overwhelmed by the new notation 

may attempt to assign the variable quantity of distance the differential quantity11.  

Despite preparing to limit the total burden for students’ cognitive processes, I still 

anticipated the quantification of a local model would remain highly non-trivial and would 

require a considerable amount of effort on the part of the students.  

Task 5: Grading Definite Integrals – Mass of Oil Slick 

Task 5 was devoted to strengthening participants underlying basic-local-global model 

relationship with the symbolic form for a definite integral. In this task, my goal was to (1) 

reinforce the image of a definite integral as representing a quantitative object, and (2) 

provide opportunities for participants to solidify their image of specific elements within 

the template through an assessment of work they did not produce themselves in 

coordination with their image of the expected quantities within those template spots.  

In this task, I provided a collection of potential solutions to an oil slick prompt which 

involved writing a definite integral which represented the total amount of oil in a circular 

oil slick with a given radial density. The provided solutions were posed as recreations of 

 
 

 

 

11 I would like to quickly acknowledge that this task can be productively quantified using vertical distance 
traveled as the differential quantity within a local model. In fact, one group in the study did complete the 
task in this way. However, as part of the task design this outcome was not an expected result. 
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student work, and while some were, I added additional solutions which broke traditional 

symbolic template rules such as two differential quantities. Participants were asked to 

evaluate the solutions and to identify those which did not represent the correct 

quantitative representation and justify their response. In particular, this task was designed 

to provide participants access to definite integral expressions and values which did not 

align with their image of the proper template schemas. Such a perturbation would allow 

participants to evaluate their own conception of the proper template schemas, re-evaluate 

the solutions in light of those fresh conceptions, and then either make an accommodation 

into their models/symbolic form or reject the expression as incorrect.  

Table 8: Grading Definite Integral prompt and hypothetical learning trajectory 

 

Task 6: Design a ‘How-To’ Guide for Definite Integrals 

In the final task of the teaching experiment sequence (Table 9) I asked participants to 

provide writeups describing the exact purpose of a definite integral and how it works to 

someone unfamiliar with calculus concepts. By asking participants to perform this task I 

was engaging them in reflecting on the relationship between their basic, local, and global 

models as a construct of a Quantitatively Based Summation conception of integration. In 

particular, this prompt required participants to reflect on how they used definite integrals 

Context Prompt Goal/Hypothesized model development

Below are recreations of student provided solutions to the 
following prompt:

Identify all incorrect responses. Justify your choices. 

Firmly relate the symoblic form of a definite integral with 
participants basic-local-global models. 

Evaluation of definite integral structure reinforces 
definite integral representation of a qantiative object, 
rather than a purely algebraic process.
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throughout the teaching experiment and to explicitly coordinate the development of the 

definite integral construct from a rough approximation of a quantity through their 

complex interrelationships between basic, local, and global models to identify exact 

values. 

Following this initial prompt, I asked groups to provide a write-up that would enable 

a reader to construct a definite integral expression for novel tasks. By engaging 

participants in this task, I was again positioning them to reflect on their problem-solving 

activity across the entire teaching experiment, but in this case, I was having them focus 

on the specific constructs which go into the process of creating a generalized local model 

partition which constitutes the differential form within the symbolic form of a definite 

integral. By asking participants to be general in their suggestions I was encouraging 

engagement in abstracting the commonalities in practice across different tasks which 

enabled their development of explicit local model construction.  

One aspect I would like to make clear was that I did not anticipate evaluating the 

participants' write-ups for correctness. While the final artifact of the activity would 

provide insight into an image of participants' conceptions of their basic, local, and global 

models, the enhancements to participants’ emergent quantitative models were in the 

process of the activity, not the product.  
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Table 9: Design ‘How-To’ Guide prompts and hypothetical learning trajectory 

 

Task-Based Clinical Interviews  

The final two tasks presented to students in this study were positioned to serve as 

tasks within a clinical interview setting after the conclusion of the teaching experiment 

sessions. From the participants' point of view nothing would change, however, I planned 

to take on the role of a researcher, rather than instructor-researcher, to investigate how 

participants were able to productively work through the provided tasks. Because these 

tasks were chosen due to their non-trivial nature, participants' engagement in these 

sessions would undoubtedly contribute to their overall basic-local-global model 

relationships, however, the tasks were not chosen to contribute any specific 

accommodation to the participants' schemes.  

For the first task in this session, participants would be asked to identify the total 

kinetic energy of a rotating rod (Figure 12). This task was chosen due to its non-standard 

nature within a typical calculus I course, particularly as it does not naturally decompose 

into a Riemann product structure. No specific pre-amble for Kinetic Energy was prepared 

Context Prompt Goal/Hypothesized model development

Provide a write-up that describes exactly what a definite 
integral is, and how it works, to someone who has never 
taken calculus before. It is not necessary that the reader 
be able to compute definite integrals by hand, but your 
write-up should enable them to be able to understand the 
quantities involved for definite integrals such as the ones 
you’ve worked on over the past few weeks. Be sure to 
include specific descriptions for the notations you use.

Promote explicit reflection and articulation on symoblic 
form for definite integrals including coordination 
between early interpretation of basic-local-global models 
as estimates and the precise nature of basic-local-global 
models encaptulated by the symbolic form.

Provide a write-up that would enable a reader to 
construct a definite integral for tasks such as the ones 
you’ve worked on over the past few weeks. This write-
up should be specific in its directions, but general enough 
that it can apply to novel tasks.

Promotes explicit reflection and abstraction for the 
development of a basic-local-global model system across 
contexts. 

Provides insight into participants image of their exact 
problem solving process and what aspects of the basic-
local-global model system they place priority upon. 
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for students to evaluate their adaptability to quantitative structures they might not be 

familiar with. If requested, or it became obvious that unfamiliarity proved to be a barrier 

to progress, additional explanation for the quantitative structure of kinetic energy would 

be provided.  

 

Figure 12: Kinetic Energy of a Rotating Rod task 

While the Kinetic Energy task included specific values for the relevant quantities, the 

second task, Gravitational Force Between a Rod and a Particle (Figure 13), did not. This 

introduced an additional layer of difficulty in which participants were required to reason 

about the quantities in the contextual situation devoid of precise measurement values as 

they developed their global and local models. Specifically, without values, participants 

would need to be intentional with reasoning about the method by which they measured 

different quantities. As with the kinetic energy task, the gravitational force task was 

chosen due to its non-standard nature within a typical Calculus I course.  

 

Figure 13: Gravitational Force Between a Rod and a Particle task 
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Both the kinetic energy and gravitational force tasks required that participants 

develop a quantitative relationship for the density of a piece of a rod as an element of the 

mass component within the basic model. Because the expected solution for both tasks 

would situate the differential quantity within the mass component of the local model 

these tasks would demonstrate the success of their development of a Quantitatively Based 

Summation conception of integration and its influence on their ability to model definite 

integral tasks in which the differential form is not a Riemann product. 

Teaching Experiment Data Collection and Analysis 

Note that due to the outbreak of COVID-19 in Spring 2020, data for this study was 

conducted entirely remotely.  

For this dissertation study, I recruited six students from a large southwestern 

university to take part in an eight-week-long teaching experiment near the middle of their 

Calculus I course. The interviews began roughly two weeks before the introduction of 

summation notation and Riemann sums as students were learning about the graphical 

implications of derivative functions. Due to the longitudinal nature of data collection 

which anticipated follow-up studies with these students in future calculus courses, I 

requested all Fall 2020 Calculus I instructors submit recommendations for students who 

they feel would be appropriate for a year-long study. Instructors were asked to make 

these assessments based on the students' engagement in the course, including, but not 

necessarily limited to, interactions in class/office hours, completion of homework, 

attendance, and exam scores. All recommended students were sent emails asking if they 

would like to participate in the study, laying out the time dedication, expectations, how 
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the results would be used, and compensation information. Due to the large time 

commitment necessary, students were paid $20 per hour for their participation. I asked 

interested parties to fill out a small questionnaire listing their course plans for the rest of 

the calculus sequence (spring, summer, fall) and weekly availability. Students were then 

matched into groups of two based on availability. Nine parties requested interest, but only 

six provided availability in time to be a part of the study.  

Due to social distancing restrictions, I interviewed and recorded study participants 

through the Zoom platform. Zoom allows for the recording of the web camera 

conversations, as well as shared screens, and provides a rough transcript of the interaction 

which was used for coding purposes. There were two types of interviews throughout the 

eight-week teaching experiment: paired (approximately one hour) and individual 

(approximately a half-hour). Both types of interviews were planned to take place twice a 

week for a total of 3 hours per week in interviews per participant. Most weeks all 

interviews took place as planned, although due to scheduling conflicts and the decision of 

one participant to drop from the study, adjustments to the schedules were made for all 

groups at some point during the eight-week study.  

During the paired interviews participants worked on teaching experiment task 

sequence, talking with one another through zoom and writing on a collaborative online 

whiteboard, AWWApp.com. During some tasks participants were asked to type on a 

shared google document or google spreadsheet. To have access to what aspects of the 

task participants were referencing, one group member was asked to share their screen 

during the interview. The individual sharing their screen often changed from group one 

interview to the next. I occasionally asked clarifying or directive questions while 
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transitioning between responsive/intuitive and analytical interactions as the students 

progressed through the tasks. After most interviews, I conducted follow-up individual 

interviews to elaborate on students' reasoning demonstrated in the group interview. These 

individual interviews served as intersubjectivity12 checks and aided in the refinement of 

hypotheses with regard to students’ reasoning. The group interviews focused on students 

engaging in the task sequence described in the previous section.  

The decision to conduct paired interviews, rather than individuals, was made for the 

following reasons:  

(1) The goal of the teaching experiment is to hypothesize the nature of students’ 

thinking which requires that they produce utterances and artifacts of that reasoning. 

Having students work in pairs provides an outlet to communicate naturally, 

minimizing the role of an authority figure. 

(2) Having the students engage primarily with the tasks and each other parallels 

classroom interactions more closely than a researcher consistently prompting their 

 
 

 

 

12 On intersubjectivity: conversations enter a state of intersubjectivity when participants have no reason to 
question whether they understand one another; it does not matter if participants ‘actually’ understood each 
other’s meaning. Conversations enter a state of intersubjectivity, not people” (Thompson, 2013, p. 65). By 
individually interviewing students I can further analyze conversations that appeared to be in a state of 
intersubjectivity, but that were not consistent with my current models of one (or both) participants. 
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thinking. This could provide a better implication as to the scalability of a task 

sequence designed to elicit a quantitative understanding of integration. 

(3) Because the retention rate of STEM majors through the calculus sequence is poor, 

and a follow-up study is planned to revisit students during their future calculus 

coursework, the number of research participants must be larger than a standard 

teaching experiment. This will increase the probability of participation in that follow-

up study. However, performing a standard teaching experiment with six students 

individually is not as feasible, timewise. Having the students work in pairs will allow 

for fewer hours of overall data collection per week while still having the same amount 

of screen time with each student.  

(4) It is recommended that teaching experiments have a witness present in all 

interviews because a teacher-researcher can face difficulties in switching between 

roles in the moment and might miss an important interaction or utterance which 

implies a particular way of reasoning. However, due to the large amount of time 

commitment I believed it to be infeasible to request an additional party to commit 15+ 

hours a week to my dissertation project. Structuring the interviews in two parts 

allowed me to more easily attend to these roles individually. While I still transitioned 

between responsive and analytical interactions for both types of interviews, in the 

paired interviews I took on more of a teaching role and in the individual interviews I 

took on more of a research role. This structure of dual interviews also allowed me to 

review the paired interviews and prepare before individual sessions.  
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I analyzed the data for the teaching experiment in two phases: on-going and 

retrospective. As I was engaged in the process of the teaching experiment, I was in a 

mode of continually developing and refining my models of the participants’ 

understandings. This involved taking notes during and after each group interview, noting 

significant interactions, and reviewing clips before conducting the follow-up individual 

interview when possible. Follow-up interviews provided an opportunity to test my 

hypothesized models of participants' reasoning, build a more coherent image of their 

evolving schemes, and let them elaborate on constructs they might not have provided 

enough detail on in the group interview. Such follow-up interviewers were particularly 

helpful in characterizing the evolving schemes of a participant when their partner took 

more of a leading role in the group session. When I developed specific hypotheses 

regarding students’ reasoning that would not be investigated through the normal course of 

the hypothetical learning trajectory, I designed and introduced supplementary prompts 

and tasks which I provided to groups/individuals on an as-needed basis. Specific 

supplementary prompts and activities are described in further detail in the results section. 

At the conclusion of the teaching experiment, I analyzed the data using constant 

comparative analysis using the MaxQDA analytic software. This analysis included 

refining the hypothetical learning trajectory and conceptual analysis based on additional 

passes through the teaching experiment data which characterized participants’ emergent 

quantitative models. I began the retrospective analysis with an initial passthrough of the 

entire dataset writing open-ended memos which described specific interactions, 

implications for participants’ emergent models, and any questions raised about those 

models through those interactions. I incorporated notes made through the on-going 
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analysis, supplementing additional information that might not have been clear to me 

during the time of the teaching experiment. I used this information to enhance my overall 

image of the participants’ emergent models as they progressed through the task sequence. 

Follow-up reviews of the dataset were performed to identify episodes that supported, or 

refuted, my evolving image of the participants' schemes until I felt that the data was no 

longer able to provide additional meaning to questions raised. I concluded with a cross-

comparison between the emergent quantitative models of the different groups to identify 

commonalities and distinctions as they engaged in the teaching experiment task sequence.  

As part of the data collection for this project, there were limitations to conducting the 

experiment online. First, the need for participants to have access to a computer, high-

speed internet, and a web camera placed a potential handicap to the generalizability of 

my study. In particular, participants needed to have access to a private computer with 

internet access for at least three hours a week which means that it is likely my 

participants were of an above-average socioeconomic status. While I devoted a great deal 

of time identifying ways to alleviate this potential economic disparity, such as providing 

equipment at no cost to participants, it was an unavoidable consequence of the semester I 

collected data in.  

In addition to limitations remote interviews placed on participation, I was also limited 

in the ways in which I could capture students’ reasoning which would normally be 

evident in gestures, demeanor, and written work. By only viewing students’ upper bodies 

the recordings I often missed out on slight hand movements, fidgeting, and quick 

scribbles made as they were problem-solving. Additionally, slow internet connections 
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sometimes resulted in choppiness in videos and an inability to clearly identify what the 

participant was relaying.  

Finally, it must be acknowledged that while qualitative data of this nature can assist 

in the development of materials for a generalized population, the participants in my study 

may not be an accurate representation of the general calculus population. In particular, 

these students were handpicked by their professors as being highly engaged and likely to 

succeed through to the next calculus course. There also may have been implicit biases in 

the instructors’ recommendations which affected the outcome of the final participant 

population. This means that while the results of this dissertation can be used in the 

development of larger-scale studies and can serve to inform a generalized curriculum. 

Additional research should be conducted to confirm these results.  

In the following section, I provide an overview of the results for my participants’ 

engagement in the teaching experiment, including significant episodes which 

characterized the development of their emergent models.  
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CHAPTER V 
 

 

RESULTS 

 

In the following chapter, I provide an overview of the Fall 2020 teaching experiment 

and the evolution of the participants’ emergent models as they engaged in various aspects 

of the overall task design. To provide an image of how the teaching experiment 

proceeded, I begin by providing a detailed account of Group A’s progression through the 

entire task sequence. This includes accounts of individual interviews, as well as the 

geneses and implementation of supplemental tasks developed as part of the ongoing 

analysis. In subsequent sections, I provide analytical results for other participants. This 

chapter concludes with an analysis of the supplemental task effectiveness, the task-based 

clinical interview results, and a summary of important relationships between models 

during development. 

I would like to make the reader aware that an original member of Group B withdrew 

from the study in week 3 for personal reasons—I will not include an analysis of this 

participant in this document. The same week a new, irreconcilable, scheduling conflict 

arose for a member from Group C, C2. Coincidently, C2 and the remaining Group B 

member were the only two participants who had not taken a calculus course prior to this 

semester. I originally wanted to pair these two students but was prevented by the 
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availability of other participants. As I will describe later in the chapter, C2’s original 

partner, C1, had a strong understanding of Riemann sums and Reiman integrals when 

joining the study. C1 also displayed an ability to effectively think aloud during problem-

solving without a partner in the first two weeks of the teaching experiment. For these 

reasons, I decided to move C2 from Group C to Group B.  

Group A’s Progression Through Task Sequence 

Group A consisted of two freshman students. A1 was a Caucasian female statistics 

major pursuing a minor in music. She described herself as someone for whom numbers 

“make sense” and felt choosing statistics as a major would prepare her to work in the 

healthcare industry. A1 took Advanced Placement Calculus her senior year of high 

school but described feeling insecure about the second half of the class due to the 

transition to online learning due to the COVID-19 pandemic. In her initial clinical 

interview, A1 displayed an inclination to rely on procedural knowledge without giving 

much thought to the underlying mechanics of a problem unless faced with direct 

questions. For example, she described a “House of Calculus” mnemonic she relied on to 

identify the graphical relationships between a function $, its derivative $′, and its second 

derivative $′′. A1 described her high school and college calculus experience as different 

because in high school it was about “how” you work the problem, while she felt her 

current instructor placed more emphasis on “why” you work the problem.  

A2 was a Caucasian male architectural engineering major who also took a calculus 

course in high school. A2 agreed that it felt like he “missed like the last half of calculus” 

due to COVID. In the initial interview, A2 was much quieter than his partner, so it was 
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difficult to ascertain his specific schemes until later in the teaching experiment. From 

those observations, I believe that, like A1, during his high school experience A2 

developed primarily procedural schemes associated with calculus concepts. For example, 

while A2 demonstrated schemes associated with Riemann sums and limits, at the 

beginning of the teaching experiment the primary scheme activated whenever A2 

discussed integration was that of an antiderivative (described in more detail in upcoming 

sections). 

Group A worked well together and were open about what they were thinking 

throughout the full teaching experiment. As a result, I developed a detailed image of the 

precise development of their basic, local, and global models and corresponding 

relationships between these schemes as they constructed a quantitative understanding of 

definite integrals. In the following sections, I describe Group A’s learning trajectory in 

detail to provide the reader an image of each development within their overall scheme for 

definite integrals.  

Group A: Curiosity Rover 

When answering the first prompt of the task sequence, identify the rate of dust 

accumulation at Bradbury Landing, A1 noted, “So, the rate of dust accumulation was six 

milligrams per kilometer. So every kilometer, they're getting six, average, six milligrams 

of dust on the solar panels.” A1’s inclusion of the word “average” demonstrated that she 

did not necessarily interpret the rate of dust accumulation as a precise measurement at 

Bradbury Landing, but rather as an approximation itself. More importantly, by correcting 

herself, A1 indicated a recognition that this situation is somehow different than a basic 

multiplicative model which would hold for constant rate. That is, the rate would be 
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quantified using an averaging process. When attending to distances, A1 and A2 discussed 

the numeric operations necessary to measure that quantity with ease. While A1 appeared 

to work slightly quicker than A2 early in the interview, the task was unproblematic for 

either subject.  

When transitioning to Part 2, A1 and A2 clarified for themselves, and each other, the 

goal of the task. A1 was particularly diligent to carefully read prompts and identify the 

precise wording for the information requested of her. Within moments of reading the first 

sub-prompt, the link between the requested total amount of dust and the inclusion of a 

rate of change activated an integration scheme for A2 who interjected “so, if we’re going 

from a rate to an amount, are we taking the integral of it?” Although A1 did not reject 

this suggestion for a conceptual reason, she was hesitant to continue because their current 

calculus course had not yet covered integrals, making their use off-limits. Interested in 

exploring A2’s integration schemes, I prompted him to continue by acknowledging both 

participants’ prior calculus experience—providing a sort of authoritative approval to 

draw on that knowledge. I asked A2 to describe what he would do if he wanted to “take 

an integral of it,” to which he replied, very quietly, “A Riemann sum? I don’t know. I 

was always so bad at those.” When A1 expressed confusion about what they would take 

an integral of, A2 continued, 

Well, so it's one, like it's one interval [referring to the segment of path from 

Yellow-Knife Bay to Darwin in terms of the overall path]. I don't, I don't 

necessarily want to take the derivative. I mean, the integral, but going backwards 

from a rate to an amount would be like the opposite of a derivative. So, we'd have 

to take the integral of something to get the amount from the two rates we have. 

And that would be like, the whole overestimate thing just reminds me of how you 
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do the bar graph thing. Where you set it up, and then go over. And you have a 

little bit of excess triangle, that is your overestimate. 

From his response, it was clear that A2 already had a number of different schemes 

associated with integration developed during his high school calculus course. A2’s 

primary triggering scheme coordinated integration with, what I interpreted to be, an 

antiderivative conception—integrals are the way you go from a rate to an amount. This 

scheme, along with the goal of identifying an overestimate, activated related imagistic 

schemes of a visual representation of quantifying area beneath a curve using rectangles, 

or the “bar graph thing”—the excess triangle equating to a larger area and therefore an 

overestimate. A2’s explanation prompted a similar estimation scheme for A1 which aided 

her developing understanding; 

Like right-hand and left-hand? Yeah. Oh, wow, that takes me back. I don't know. 

Because, so, if we're traveling. The rover is traveling. And, at the beginning, it's 

kind of getting dust at six milligrams per kilometer, but slowly, by the end of it, 

it's only getting dust at 3.5 milligrams per kilometer. So, this rate is going to be 

decreasing. Like, if we were to draw a graph. You know what I'm saying? So, I 

think it's wanting us to overestimate. Like, for example, a gigantic overestimate 

for this problem would be 6 times 30. If we just say, well, it just keeps the 6 

milligrams rate the entire time it travels, times 30, which is the kilometers, you 

know, we would get like, what 180? That would be like a massive overestimate, 

because we know it changes because the soil changes. And then like, obviously, 

an underestimate would be the opposite to do it by 30 times 3.5. 

While it is unclear precisely what underlying schemes A1 had for “right-hand” and 

“left-hand” sums, they must have contained elements of the imagery A2 described to be 

evoked. This graphical depiction prompted A1 to evaluate the overall behavior of the 

changes in the Martian surface which allowed her to develop an assumption that the rate 
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of dust accumulation was decreasing along the rover’s path. Under this presupposition 

A1 directly applied her basic model for total dust accumulation, [total dust 

accumulation]=[constant rate of dust accumulation ]⋅[total distance traveled] to that 

distance to create a “massive” overestimate and “massive” underestimate. Thus creating a 

gross basic model.  

Although from my perspective, A1 had developed the underlying scheme I aimed to 

evoke and I assumed the group would move to the next prompt, both A1 and A2 both 

voiced dissatisfaction with A1’s solution. A2 noted that they seemed to be stuck because, 

“without any other points in between, we can’t really find anything more specific. I’m 

sure we can or else she wouldn’t be asking us this problem.” This utterance was 

interesting to me for two reasons: (1) the first sentence indicated that within A1’s 

schemes for integration/Riemann sums there was potential anticipation of a partitioning 

process, and (2) the second sentence implied some threshold of required difficulty for 

calculus tasks which the sub-prompt did not meet. Interested, I chose not to interject here 

and let A1 and A2’s thoughts fully play out. After about 30 seconds they began a two and 

a half minute conversation as to whether they could assume that the rate of dust 

accumulation was decreasing linearly. A2 identified that if the rate of dust accumulation 

was decreasing at a constant rate, then they could assume the rate of dust accumulation at 

the midway point was the average of the two rates. He added that this assumption would 

allow them to make two rectangles for overestimates, pairing his explanation with hand 

gestures indicating that the generalized rectangles would be at different heights which 

reinforced my image of A2’s desire to utilize some form of a local model for this context. 

A2 was hesitant to adopt his strategy noting that the task prompts did not assume 
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linearity. Deciding I obtained enough insight, I reminded A1 and A2 they were only 

asked to find an overestimate, and they reverted back to their original response. 

When transitioning to the prompt asking to identify an under/overestimate for the 

total dust accumulated on the rover between Yellow-Knife Bay and Cooperstown, 

creating a travel pattern from Yellow-Knife Bay (10 km, 6 mg/km) → Darwin (40 km, 

3.5 mg/km) → Cooperstown (60 km, 3 mg/km) , A1 and A2 began by directly applying 

their gross basic model to the entire path, rather than my expected strategy of utilizing the 

computations they had already made for the shorter distance between Yellow-Knife Bay 

and Darwin. That is, they multiplied the values 6 mg/km and 3 mg/km each by 50 km 

(the entire distance from Yellow-Knife Bay to Cooperstown) to obtain 300 mg and 150 

mg respectively. A1 continued by making a critical association that “if we’re saying those 

are the over and under’s, then we’re saying the actual value is going to be somewhere in 

there.” At first, I took this to indicate A1 had coordinated a boundedness component to 

the gross basic model. However, when A1 and A2 began discussing their assumptions 

explicitly, A1 brought that assumption into question: 

For a second I was like, that means [the rate of dust accumulation] can never be 

bigger than six and or ever smaller than 3.5. But there's a lot of space there… 

there's a lot of space in there for averages to fluctuate… but that would still equal 

out to somewhere between 150 and 300… so that's why I was like never mind. 

Specifically, although there are indications that A1 wanted to assert boundedness on the 

rate, she had not yet fully coordinated its absolute requirement to use a gross basic model 

to make any assertions about the actual quantity of dust accumulated.  
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At this point, I began to push on A1’s reasoning by asking her to consider scenarios 

in which the rate fluctuates to 7 mg/km everywhere except right at Yellow-Knife Bay, 

Darwin, and Cooperstown which caused her to conjure images of what the Martian 

surface must be like to satisfy these rate requirements. A1 asserted that the ground might 

be relatively rocky at these sites with looser sand between, which provided more 

evidence that the rate of dust accumulation was a meaningful quantity that was 

intrinsically related to the type of soil (possibly due to the applet design). Before A1 

considered this scenario further, A2 stepped in and indicated that allowing the rate of dust 

accumulation taking on any value would not allow for them to provide any sort of 

meaningful approximation for the total accumulation of dust; “we can say that it's like 70 

and not 7. Because if we assume it could be more [than 6 mg/km] it could be anything 

over. Making assumptions doesn't really make sense if we don't use the numbers.” From 

his phrasing, I did not necessarily view A2 as viewing boundedness as a required 

component of a gross basic model, but rather as a trait imposed by the constraints of a 

mathematical task. 

Because I wanted students to develop a global model through the summation of two 

values by applying a gross basic to subsections of the rover’s path, I introduced a new 

prompt for A1 and A2 to consider.  

While NASA wants the best and worst-case scenarios it is also important to 

provide the most accurate parameters possible. Is there any way you can improve 

on your best and worst-case scenarios by taking into account you know the 

precise rate of dust accumulation at Darwin? 
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When presented with the new prompt, A1 stated “So basically, we can take from 

Darwin to Cooperstown, find our overestimate of that and then add it,” and A2 agreed. 

This ease indicated that the concept of engendering a global model through the 

accumulation of two gross basic models13 was a natural progression when prompted more 

directly, at least for students who had previously taken a calculus course. After making 

those computations, A1 acknowledged “So that’s good. It means we’re getting closer… 

we’re narrowing it down,” which I took to mean that A1 was reflecting on their previous 

computation using the gross basic model applied to Yellow-Knife → Cooperstown and 

recognized that the error bound (the difference between the underestimates and 

overestimates) was decreasing in magnitude. A2’s short explication indicating a sense of 

narrowing in on the real value implied that the real amount of dust accumulated on the 

rover along that path must be trapped between the underestimate and overestimate. 

Finishing the prompt, A1 and A2 added their assumption that within each interval the rate 

of dust accumulation can not exceed the highest and lowest values of the data points 

provided. 

When moving to identify over and underestimates for the amount of dust on the rover 

after its entire journey, Bradbury Landing→ Murray Bates, A1 stated, “I think we need to 

 
 

 

 

13 Note that in this case A1 has not performed any partitioning process. Therefore this construct does not 
satisfy the precise meaning of a local model. 
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do it in chunks though” extending their summation to the 6 values needed to represent the 

amount of dust for the whole journey. In doing so A1 recognized that, although the 

wording asked for the best/worst cases, she was expected to find a solution with the 

smallest error bound. A2 agreed, “yeah, it’s just a bunch of intervals.” I took A2’s reply 

to be a reference to his underlying scheme for Riemann sums. Rather than both work on 

the same computation, A1 and A2 decided to divide and conquer. A1 took on the task of 

computing the ‘worst-case’ scenario, while A2 took on the ‘best-case’ scenario. The 

coordination of ‘best-case’ scenario corresponding to an underestimate and ‘worst-case’ 

scenario corresponded to an overestimate caused A1 confusion, as both group members 

computed the underestimate for the rover’s journey. When I asked A1 about this in her 

individual interview, she asserted that for her there was a correlation between the term 

‘best’ and the most or highest value, while ‘worst’ means least or fewest. This meant that 

even though A1 understood that within this context of the Curiosity rover a worst-case 

scenario involved accumulating too much dust which would result in the rover breaking 

down, she was not really thinking about this aspect as she identified the quantities needed 

to compute her solution. She was computing a worst-case scenario, and therefore set out 

to find the lowest values.  

When asked for recommendations to NASA, A1 and A2 demonstrated an 

understanding that if the rate of dust accumulation was non-zero any unnecessary 

distance would add to the overall total dust on the rover’s solar by suggesting more direct 

routes between sites. A1 even suggested not visiting Yellow-Knife Bay “because 

Bradbury and Yellow-Knife have the same soil type. That's why I'm like… well, if we're 

studying soil, I don't know, they seem similar.” Although not unexpected, neither A1 nor 
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A2 suggested obtaining additional data for this task. However when presented the 

opportunity both agreed that more information would be beneficial. A1 started by 

analyzing the data points midway between sites to verify that the new data was consistent 

with their assumption that the rate of dust accumulation between sites was bounded 

above and below by the primary data points. Although A1 and A2 agreed that more data 

would be helpful, neither explicitly remarked whether the new data points would result in 

new estimate values nor how those estimations might compare with their previous 

computations. Interested in how A1 and A2 might proceed I decided to skip the prompt 

asking them to identify another set of approximations for individual segments of the 

journey and instead asked what their new recommendation to NASA would be. A2 

suggested calculating “another set of intervals… how we did intervals last time, right. 

Yeah, it's the exact same thing, just with more of them, because we can use the 

midpoints.” I took this to mean that A2’s global model included an expectation that a 

refined partition would adjust the overall estimate values. A1 added, “Yeah, we could 

make an even more precise over and underestimate, and see how far away from 400 that 

is… to see if how much like our recommendations need to change,” indicating that A1 

was also developing, or already possessed, an image of a partitioning process, which 

when refined produces a more accurate global model. In other words, I anticipated A1 

and A2 might already possess a local-global model relationship that coordinated the 

number of partitions, and the corresponding size, with the accuracy of the global model 

as it closed in on a real value. However, this assumed association would be challenged as 

A1 and A2 moved onto computations.  
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Once again, A1 and A2 decided to split the workload; A1 undertook to compute an 

underestimate while A2 was to identify an overestimate. While both students were 

working offscreen with physical calculators and pen/paper, A2 voiced unhappiness with 

his result; “So, I think we did it wrong…. Yeah, I got a way higher number,” and 

identified that his overestimate increased from 471.25 mg to 540 mg. Despite A2’s 

unhappiness, A1 was not bothered by an increase in the overestimate, rationalizing that 

because both the over and underestimate increased by roughly the same amount it might 

not necessarily be an issue; “So the good thing is that they both went up by about the 

same amount. Right? You know what I mean? Like, you didn't get 1000, and I got 338. I 

mean, they went up like proportionally. So that's good.” This was in direct conflict with 

my image of her previous statement and signaled that A1 did not possess robust 

coordination between a refinement of the global model through a partitioning process and 

a decrease in an error bound. That is, this relationship between an exact value for the total 

dust accumulation and her global overestimates and underestimates was still in a 

developmental state for A1.  

A2, on the other hand, displayed obvious coordination of these relationships. He was 

displeased that an increase in the number of partitions “didn’t really narrow the interval” 

and that “the smaller value should have gotten a bit bigger and the bigger value should 

have gotten smaller.” He operated with the expectation that more intervals equate to a 

more accurate result and that this phenomenon should act “kind of like limits that should 

approach the actual [value].” I was aware that the overestimate within this section of the 

task should have totaled to 420.075 mg. Based on A1 and A2’s clear articulation of their 

computational methods, and was pleased with what I assumed to be 
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calculator/transcription error was providing such insight into A1 and A2’s developing 

schemes for accumulation. Unfortunately, this unanticipated result led A2 to begin 

suggesting algebraic manipulations to force his computations to match expectations (e.g. 

dividing by the number of intervals). Wanting to redirect A2 from this trajectory, I 

interjected that I was having difficulty following and requested A2 type his computation 

in a google document so we could discuss the values more easily. While there was clearly 

some sort of calculator error involved in his original solution, the expression A2 typed 

outmatched the expected summative computations for the underestimate (Figure 5). A1 

immediately voiced concern;  

Okay, I'm confused again, because I feel like those are the numbers for the 

underestimate. Because like, if you're overestimating it, when it's you never need 

this [gestures to +30(0.2) at the end of the expression], you would need this as 

your last rate, right [moves the slider on GeoGebra applet to the En route to 

Murray Bates position displaying the 0.41 mg/km reading]? Like, you wouldn't 

need that as your last rate [moves the slider on GeoGebra applet to Murray Bates 

position in which 0.2 mg/km is visible]. 

 

Figure 5: Curiosity rover part 3 - A2 computations 
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The coordination of A1’s global and gross basic14 models, along with the recognition 

that the last value in A2’s computation was identical to hers, supported A1’s recognition 

that A2’s expression would compute the underestimate. Specifically, A1 anticipated that 

for an overestimate the final term in the summed expression should represent an 

overestimate of the total dust the rover gathered along the last leg of the journey. This 

value would be identified through a gross basic model which means the rate of dust 

accumulated over those last 30 km should be the larger of the two possibilities, 0.41 

mg/km and 0.2mg/km. A2 quickly agreed that he made the wrong computation, and, after 

writing out the full expression for the overestimate, both participants expressed 

satisfaction with their new result because the overestimate was smaller than the value 

they obtained on the previous section of the task.  

When A1 and A2 directed their attention towards recommendations they noted that 

there was more of a chance of the mission succeeding than not, referencing the 

overestimate laying only 20 mg outside their prescribed limitation while there was 

approximately 70 mg of wiggle room in the underestimate. However, A1 and A2 did not 

use this observation to assert mission success. Indicating she was continuing to assume a 

non-linear decrease in the rate of dust accumulation, A1 noted “that’s not the way chance 

works.” Instead, supported by the construct of a global model as an aggregation of 

 
 

 

 

14 Possibly local models. 
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smaller approximations, A1 and A2 returned their attention to creating a more direct path 

for the rover between sites. By limiting the number of kilometers the rover traveled along 

each subsection, or interval, of the overall path they could limit the total amount of dust 

represented in each of the terms of their summation. This would ultimately reduce the 

total amount of dust.  

As A1 and A2 discussed why a certain subsection of the path was more meandering 

than the others, A2 mentioned that NASA would probably have more data at their 

disposal. When asked to elaborate further, A1 interjected that she wasn’t sure this would 

be true, “I don't know if they necessarily would, because that's kind of the point is like 

they're exploring it… but also, I'm not a scientist, I don't know all the tools they have for 

like imaging, like what they think different images mean.” A2 agreed adding “it could go 

either way, just because we don't know the tools that are available.” From this interaction, 

it became clear that A1 and A2’s unfamiliarity with tools available imposed limitations 

on their ability to productively suggest additional strategies for mission success. I 

suggested it would be worth looking into, by drawing their attention to the fact that the 

LiDAR spectrometer was at least accurate to within 5 km as this was the smallest 

distance between data points in their last computation.  

When I provided A1 and A2 the Google Sheets spreadsheet for the final subsection of 

the Curiosity Rover task, A1 first checked to identify whether the data followed the 

decreasing behavior. I found this pattern of immediately verifying whether her 

expectations were correct to be an important aspect in the development of A1’s models. It 

indicated a strong association between the boundedness of the rate and the ability to 

utilize her gross basic model on subsections of the journey. Although not part of the task 
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design, I am confident that if provided non-monotonic data, A1 would have noticed any 

anomalies and would have been driven by a need to address them directly. In practice, I 

anticipate she would have still drawn on a gross basic model for her computations by 

adapting which ‘side’ of the interval provided the appropriate rate to identify an 

overestimate or underestimate.  

When identifying a computational strategy, A1 began, “So, basically we need to set it 

to make this column [motions to the column B which listed the rates every 2.5 km along 

the path] multiply everything by 2.5, and then get that total. Right? Because if each of 

those is 2.5 increments… Oh, no, not everything, every other one.” Here A1 hesitated, 

showing confusion. A2 quickly stepped in and assured her that she was right the first 

time, and they should multiply 2.5 by every value in the rates column. A1’s momentary 

assertion to only multiply every other cell by 2.5 was caused because she was attempting 

to utilize a gross basic model for a generic stretch of a path that was 2.5km long. 

However, this use of a gross basic model was not in service of explicitly identifying one 

of either an underestimate or an overestimate. Therefore, it became unclear what the 

resultant list of calculations would represent. Would it be a list of overestimates for the 

amount of dust that would accrue along 2.5 km segments, or a list of underestimates? 

Based on previous computations a 2.5 km stretch of the path should have both an 

overestimate and an underestimate. This caused A1 to question whether she should 

somehow skip every other computation for the summation. 

As mentioned in the section on task design, I did not have an expectation that A1 

and/or A2 would be proficient with spreadsheets and assisted with their computations but 

was careful to follow A1 and A2’s explicit instructions. Keeping with their original 
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strategy, A1 directed me to create Column C by multiplying every cell in Column B (the 

list of rates of dust accumulation) by 2.5. Following this, she wanted to sum all the values 

in Column C. Upon arriving at a single solution, both A1 and A2 showed reservations. 

A2 conjectured, “All right, so that is, umm. Is that just an estimate of the actual?...Yeah, 

cause that’s not an over-under.” However, because the question prompts continued to 

situate students’ goal-oriented activity toward identifying both an under and 

overestimate, A1 remained perturbed. Drawing on her earlier correction of A2’s 

overestimate from Part 3 of the task, A1 recognized that the last term in Column C, 0.45, 

would represent an underestimate for the total amount of dust on the rover if it only 

traveled the last 2.5 km of the journey. Excited, A1 explained, 

I was thinking like, if we subtract 0.45 away from [the summed value], we get an 

overestimate. If we subtract 15 from it, we get an underestimate. If we subtract 

0.45 we can overestimate it I'm pretty sure… Because when we found our 

underestimate, we um, we just didn't do the very first-rate. We went all the way to 

the bottom. And when we found our overestimate we didn't do the very last rate. 

Remember, like you had 0.2 and I was like the last one should be 0.41. So I think 

for our underestimate, we need to subtract 15 from this answer at the bottom. 

Okay. And then for overestimate, we need to subtract 0.45. Does that make sense?  

Continuing to work under the assumption that their original spreadsheet computation, 

381.7 mg, was as an approximation of the actual value, A2 voiced concern that their 

newly computed overestimate, 381.25 mg, would be smaller in value. This objection 

reinforced my observations that A2 had a strong association between a partitioning 

processes and reducing the error of an approximation which informed his expectation that 

the real value for the amount of dust must be trapped between their underestimate and 

overestimates. Drawing on her experience working with spreadsheets at a previous job, 
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A1 was able to provide an alternative way to justify why 381.7 mg could not represent 

the total amount of accumulated dust;  

Because if we add up, okay, let's see, two minus, okay 65. Because 65 times 2.5 is 

162.5, and see, we have 65 cells here and our total distance is only 160. So, 

whenever we just look at this, this is too much distance. Does that make sense? 

That's why you have to subtract one or the other to get your over and 

underestimate….So the underestimate is gonna be 364.7, and the over will be 

381.25. Since we've narrowed it to that interval, we know that the rover should be 

able to handle the load of the milligrams of dust.… That's exciting! This is 

exciting, our rover works! At least according to our spreadsheet math. 

This attention to the total distance represented in the 381.7 mg computation was not 

something specifically set out by the task design to highlight, but such an observation 

helped to support A2 in the recognition that 381.7 mg could not represent an 

approximation of the quantity desired—evident by A2 reiterating the same language as 

A1 in his follow-up interview. Because A1 provided the majority of the solution 

strategies within the main session, a large portion of A2’s follow-up interview centered 

on making sure that, based on their problem-solving activity, A2 adopted A1’s 

explanations into his own models and schemes. In particular, he and I spent time working 

on additional spreadsheets to draw correlations between the computations A1 and A2 

made in part 2 of the task. A2’s ability to reproduce similar conclusions led me to believe 

that he had accommodated A1’s explanations into his emergent models.  

Summary 

When A1 and A2 began the Curiosity Rover task they seemed confident in their 

ability to reason quantitively with the basic model, [rate of dust 
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accumulation]⋅[distance]=[total dust accumulation], and the process by which one 

quantifies distance traveled. For A2 there was more evidence that he was able to relate 

the current tasks to his previous experiences in high school calculus. His interjections of 

terms and constructs involving integration, Riemann sums, and limits hinted at complex 

interconnections between schemes. A1 also demonstrated an antiderivative conception of 

integration, however, any additional schemes were not as obvious due to her hesitation to 

utilize such a tool for this context. Specifically, A1 associated an integral with having a 

function that would allow one to compute something. However, because A1 questioned 

A2 as to “what he’d take the integral of” and demonstrated recognition of A2’s imagistic 

description of a graphical Right-hand sum, I did anticipate A1 entered the teaching 

experiment with additional schemes for sums and integrals.  

As a result of the task sequence, both A1 and A2 were able to construct gross basic 

models. A1 demonstrated a stronger association that the varying quantity within a gross 

basic model must be bounded, although A2 never displayed behavior that suggested he 

reasoned differently. When transitioning to the construction of a global model, A1 and 

A2 first applied their gross basic models to the rover’s entire journey, likely due to 

wording in the task design. This required an additional prompt to identify a more accurate 

under and overestimate. A1 and A2 easily transitioned to a parts-of-a-whole conception 

of a global model in which each part of the totality represented a value for the total 

amount of dust obtained by applying their gross basic model to a single portion of the 

path. A1 consistently demonstrated reasoning coherent with a parts-of-a-whole global 

model, while A2’s assertion that their initial solution in Part 4 represented an 

approximation of the actual value for the amount of dust raised questions as to how 
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dominant this scheme was for him. It is likely A2’s initial observation that this task 

would involve integration engendered an expectation that eventually you would be able 

to obtain a single approximation for the total amount of dust, priming A2 to correlate that 

single computational solution with such a value.  

Finally, while neither A1 nor A2 ever explicitly suggested partitioning the data set, 

they did begin the development of a local model as a partitioning process, along with a 

relationship between additional refinement with a lowering of the error bound. A2’s 

incoming schemes supporting this relationship were much stronger than A1’s initially, as 

he was perturbed whenever this expectation was challenged. Additionally, early in the 

task sequence A2 showed signs of attempting to utilize a local model to identify a better 

approximation, but was limited by not having access to a function that modeled the data. 

While I do not necessarily believe A1 developed a true local model throughout the course 

of this task, I am confident in asserting that A1 began to develop an association that more 

data provides you with a lower error bound. 

Group A: Fluid Force on a Dam 

When A1 and A2 began the Fluid Force on a Dam problem, it became clear that, 

although they read the preamble, they did not interpret the quantitative structure 

describing the basic models for fluid force and fluid pressure in the way expected. A1 and 

A2’s first task was to provide an overestimate and underestimate for the total fluid force 

acting on the dam and, working with the values for height and width of the dam provided 

in the prompt, they quickly made a correct computation of 9800*25*63.25*25 to 

represent an overestimate and 0 for an underestimate. However, when I asked why the 

first value represented the maximum force possible A2 replied that anything over 
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“wouldn’t be a horizontal force on the dam” but rather a “vertical force, because it’d be 

more than the height of the dam.” Similar descriptions from A1 indicated that, despite the 

accuracy of their computations, A1 and A2 were envisioning this scenario as different 

levels of water behind the dam at different periods of time. A maximum force would 

represent a water level at the full height of the dam. When there was no water behind the 

dam there would be no pressure so the computational value of force would be 0. In other 

words, the basic model they were drawing on was [force]=[9800*[height of dam’s 

surface area in contact with water]]⋅[dam’s surface area in contact with water].  

While I acknowledge this could be an interesting scenario to investigate once 

participants had a more solid foundation of a global model comprised of local models, a 

focus on adjustments to what would eventually become limits of integration was not the 

aim of this task. To effectively draw on (or construct) a parts-of-a-whole global model, I 

needed A1 and A2 to identify that the pressure acting horizontally on the dam deep below 

the waterline was greater than that same phenomenon near the surface level. Verifying 

their reasoning pattern, I introduced the Fluid Force on a Dam GeoGebra applet and 

provided a brief explanation that for this task the water behind the dam would be at a 

fixed height of 25 meters at all times. The imagery of the dam within the GeoGebra 

applet, along with their initial basic model, caused A1 and A2 to become concerned about 

the depiction of shallow water at the front of the dam acting backward. This was not 

anticipated, and in an effort to direct them towards an image of the basic model consistent 

with the hypothetical learning trajectory, I acknowledged that the issues they raised 

regarding multiple forces acting on the dam would be important to consider in a real-

world scenario, but that we would start off simply so the number of different possibilities 
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would not overwhelm us. I indicated that the only quantity we would concern ourselves 

with would be the horizontal force of the water acting on the back of the dam. In 

response, A1 demonstrated a key component of her developing gross-basic/global models 

for estimates, 

Because, if we look at our, I mean, our area won’t change… So yeah, I mean, 

gravity is not going to change. The density of the water won’t change. So what? 

Like, we need to find a variable that will change to make an over and 

underestimate. Does that make sense? And I guess maybe I’m not understanding 

the problem, but if we have a constant height, water doesn’t change ever. 

Specifically, A1’s image of the reason to invoke a gross basic model is tied to 

variability. To produce an overestimate and an underestimate there must be some 

quantity that is non-constant. In an effort to identify the varying quantity A1 had her 

partner adjust the slider on the Fluid Force on a Dam applet as she spoke aloud: 

And then, let’s just slowly move the slider. Okay, so this applet gives us pressure 

as we move down. Like, the pressure is increasing as the depth is increasing. 

Which, because it’s just a formula. So let’s see what they get at 25… Okay, so I 

guess maybe I was thinking about it like the pressure on the entire dam. But didn’t 

I just point out that it makes sense that there’s different pressures on different 

parts of the dam? So at the bottom, there’s more pressure than there is at the top. 

So maybe that’s the over and underestimate we calculate. Like so, at the top of the 

dam there’s not a whole lot of pressure, because there’s not a lot of water weight 

at the very top…. That’s what I’m thinking.  

While A1 did identify a varying pressure, she justified the variance because the 

pressure was “just a formula.” This indicated that while pressure was a quantitative 

component of the force equation, in the sense that it some quality she had a means to 
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measure, the pressure itself did not represent a true quantitative relationship between the 

acceleration due to gravity, fluid density, and depth. This is not necessarily surprising, as 

pressure is generally quantified as a rate of change of force per unit of area, which is 

beyond the scope of my expectations for someone who has never had a physics course.  

Attempting to support A1’s observation, A2 revealed he had experiences scuba diving 

which made pressure a quality independent of the provided formula; 

I’m not for certain, but I know. I’m a scuba diver. So, in scuba school, they teach 

us about how there’s a ton of forces acting on your ear. Whenever you’re under 

the water it increases as you go down. There’s certain, like, atmospheres I guess is 

how they measure it. So the further you go down, the larger the forces on your 

head. So you have to like equalize the pressure and stuff. And I guess that kind of 

makes sense to me that the further down you do have more pressure horizontally 

on the dam at those points.  

Based on these interactions I decided to supplement A2’s justification with the Box 

Underwater activity to provide A1 an opportunity to reinforce her brief image of pressure 

as a quantity that changes with depth. The supplemental applet and questions were not 

created to support an image of pressure as a rate of force per unit area. In fact, because 

the aim of this hypothetical learning trajectory was to allow participants to engage with 

reasoning about definite integrals that do not naturally decompose into a Riemann 

product, I specifically avoided any mention of pressure as a rate of change. The aim of 

having students work with the applet was to support a meaning for pressure which 

includes an image that (1) the numerical value for pressure increases with depth, and (2) 

support a view that a productive local model for fluid pressure in this task attends to 

horizontal (rather than vertical) surfaces. During the supplemental activity, the pair were 
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asked to identify the pressures at various heights, the total force pushing up vertically on 

the base of a box and pushing down on the top of the box at various heights, and to 

compare those values. A1 and A2 were able to identify these quantities with little 

difficulty, which supported them in concluding that the pressure of water at the surface 

level would indeed be a smaller magnitude than at a depth of 25 meters. This allowed A1 

and A2 to observe that their previous computations provided the correct values but that 

they “just didn’t know why.” Of course, their original computations did make sense as a 

gross basic model applied to the quantitative scenario they envisioned. A1’s observation 

just referenced an acknowledgment that while the solution values remained identical, the 

quantitative meaning which constituted the construction of those values had changed.  

I instructed A1 and A2 to provide new estimates by partition the dam into two pieces. 

A2, very briefly, considered partitioning the dam into two pieces of equivalent force, 

however, he reasoned that “this is what we’re already trying to find” indicating that he 

recognized an inability to identify an exact value for force on a subsection of the dam. 

Instead, the pair decided to divide the dam horizontally at a depth of 12.5m as a simple 

starting point. A2 drew a diagram of the dam with a horizontal line through its middle. 

From here A1 and A2 worked incredibly efficiently. They drew on their diagram, 

identifying over and underestimates for the force on each part of their partitioned dam. 

To accomplish this they directly ascribed the basic model structure to the partitioned 

quantity. That is, they accommodated their gross basic model to be a true local model. 

Although the accompanying board work only displayed their final computation values, 

A1 and A2 clearly articulated the quantitative structure of their local models through their 

solution process. First identifying the pressure at a depth of 12.5 meters, A1 calculated 



 

 
 

147 

the overestimate for the top piece of the dam, “9800 times 12.5 is 122,500. And so, if you 

multiply that by the area of that rectangle, which is 790.75, you get the force to be 

996,875.” By creating a connection from the Curiosity Rover task in which she observed 

that the overestimate for one 2.5km leg of the journey would be identical to the 

underestimate for the subsequent 2.5km section, A1 commented, “but for the bottom 

rectangle, our underestimate won’t be zero. You know what I’m saying? It’ll be 

996,875.” She continued to draw on their previous session’s work, “remember with our 

rover… what we did was we did the underestimate for this distance [creates hand motion 

indicating a small gap] plus the underestimate of this distance [lowers the height of her 

hand motion].” It was clear that in this instance A1 did not believe she was adding 

distances together to get a force. Rather she was reflecting on her previous problem-

solving activity to accommodate the global model developed in that task, which 

constituted a whole quantity as being an accumulation of gross basic models, into a 

global model comprised of local model elements. 

As A1 and A2 attempted to identify an overestimate value for the bottom partition of 

the dam, ranging in depth from 12.5m to 25m, they voiced uncertainty as to which value 

of 25 should be included in their current local model, [force acting on 

partition]=[pressure acting on partition]⋅[area of partition]. What was interesting about 

this exchange was that A1 and A2 were associating that value of 25 to different 

components of their local model. A2 was considering whether to use the value of 12.5 or 

25 for the pressure component of their local model. Specifically, he was attempting to 

rationalize whether or not their local model for the bottom partition should be considered 

in isolation of the overall context. If they were looking at two partitions of the dam in 
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complete isolation then the appropriate depth of water would be 12.5m, as this would be 

the depth of water for a dam that was only 12.5m tall. However, within context, the actual 

depth of the lower edge of the bottom partition was at a depth of 25m. Deciding that the 

local model cannot be in isolation of the global context, A2 voiced support for the value 

of 25 because “it still has the weight of everything on top of it, even if we do break it into 

two parts,” indicating he had associated pressure with a weight which included some 

form of a compounding process. A1 disagreed with A2’s assertion that they should use 

the value of 25, but this was because she was considering whether the value of 25 would 

be an appropriate height of the dam within the area component of their local model. 

Specifically, based on a relationship between a refinement process and the reduction of a 

global model overestimate, A1 had anticipation that creating a local model through a 

partitioning process should similarly result in an overestimate of smaller magnitude. A1 

had already assigned a value of 25 to depth within the pressure component so also 

assigning a value of 25 to height within the area component would have resulted in the 

exact same value as their previous computation which measured an overestimate of the 

force on the dam without partitions. Perturbed with this possibility A1 interjected, “If we 

add the same thing it gets bigger instead of smaller,” indicated that she had envisioned 

adding this overestimate for the lower part of the dam to the overestimate of the top half 

of the dam as part of a global model. Adding an additional, nonzero, value to this 

computation would result in an overall larger overestimate than their previous result. In 

the same instance, A1 also voiced, “the gap between the over and underestimates doesn’t 

change if we just add the same amount to that number.” This statement emphasized A1’s 

explicit expectation that you could lower the magnitude of an error bound through the 
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invocation of a partitioning process on the global model. This served to aid A1 in 

rejecting assigning a quantitative value which would lead to a conflict with this 

expectation and aided her in the adaptation of her local model to [overestimate of force 

on bottom portion of dam]=[9800*[pressure at bottom of dam]]*[area of bottom 

partition]. Bolstered by this computation leading to an expected result, A1 noted, “I feel 

like I might kind of like that. Because then if we add the other, like 96 million… that 

means our total force could potentially be maxed out at 290 [trails off reading 

calculator].” Specifically, she was pleased with the new, refined, overestimate being 

smaller in magnitude than their original estimate. Not mentioning, or likely not realizing, 

that they were discussing different aspects of their local model, A2 agreed with A1’s 

reasoning, allowing the pair to identify new parameters for the total force on the dam 

(Figure 14).  

 

Figure 14: Group A's whiteboard work for the total force on a rectangular dam in 
two pieces 
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Before I had a chance to ask follow-up questions, A2 voiced anticipation of the next 

task in the sequence; “So, I guess just to kind of look ahead. Are we just going to keep 

breaking this up into smaller parts and adding these together to get narrower?... We did 

that before,” clearly indicating that he also shared a [refinement]=[smaller error bound] 

local-global model relationship that was extended from the Curiosity Rover task. Feeling 

like this was a natural transition into the next prompt, I asked Group A to provide a better 

approximation by partitioning the dam into 5 pieces. A1 and A2 were quick to adapt their 

global model using an accumulation of local models with smaller magnitude, taking only 

7 minutes to complete the entire prompt. Despite the brevity, there were many key 

interactions between A1 and A2 during their problem-solving activity.  

First, A1 and A2 did not make adjustments to their drawing to represent five 

partitions instead of two, instead of jumping to writing a summation form of their global 

model which matched a parts-of-a-whole symbolic form. As A1 listed off calculations 

that would identify underestimates for pressure, A2 noted them down on the shared 

whiteboard. A2 began typing “0(9800)+5(” before, prompted by an expectation that the 

local model also represents a force, he spontaneously interjected the phrase “times the 

area” into the conversation. This caused A1 to pause and consider, “oh, I understand. So 

like 5 times 9800 multiplied by the area there. So that we just have the force equations.” 

When A2 agreed A1 provided the area value of 316.3 by reading from a computation she 

already made on her own paper. As A2 began to type the next term in for their global 

model “+10(9800)(63,” A1 saved him the effort of finishing the 63.25*5 computation by 

observing the area will always be “5 times the length [of the dam].”  
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This entire interaction, which only lasted two minutes, was an important glimpse into 

A1 and A2’s developing models for a number of reasons: (1) the ease of transition into 

computations without the support of a diagram indicated that both A1 and A2 had strong 

parts-of-a-whole schemes for their global model as being an accumulation of values 

produced by a local model, (2) the ability to efficiently input the value for depth into each 

element of the global model indicated the generalized nature of their local model to 

estimate the total force on a single element of the global model. That is, they adopted 

using the measurement of the upper or bottom edge of the piece of the dam dependent 

upon whether they were looking for an underestimate or overestimate respectively, (3) 

A2’s interjection of “times the area” indicated that each element within the symbolic 

form for the global model must represent a force, which (4) indicated A2’s local model 

shared the quantitative structure of his basic and global models, (5) A1’s quick adaptation 

to A2’s short utterance hinted that, although not initially an inherent part of her global 

model, a quantitative structure of [force]+[force]+[force]+…+[force] was likely to be 

accommodation into her global model for fluid force on a dam, (6) A1’s pre-prepared 

value for the appropriate area of 1/5th the entire dam signified that she had not 

disregarded the area component of her local model, so (7) her image of a local model 

included a way to quantify the height of that partitioned section. 

A second key interaction occurred immediately following A1’s observation that the 

area component of the local model remained constant. As a means of shortening the 

expression, A2 asked “does that mean we can just multiply it at the end?... Okay, so we’ll 

do that, 316.3 times everything… I guess we could have multiplied 9800 outside also.” I 

illustrate this episode as a separate point because I want to make clear to the reader that, 
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despite the algebraic structure of their final computation, A1 and A2 amassed their global 

model through the progressive addition of local models. I also address this point to 

foreshadow that such algebraic manipulations will introduce difficulty for A1 and A2 as 

they progress further into the teaching experiment.  

 

Figure 15: A2's underestimate global model for the rectangular dam in 5 pieces 

After A2 wrote out all the terms in his global model (see Figure 15), A1 identified an 

issue of too many components within his expression;  

Okay, so 1, 2, 3, 4, 5, 6. Wait… So, if we want to do our underestimate, we’ve got 

to get rid of the 25 times 9800 because we only need five terms if we’re breaking 

it up into five parts. Right? Yeah, and then when we want to do our overestimate 

we won’t include that zero. Well, zero wouldn’t be in there anyway, but like, 

that’s because it’s zero. But you know, we’d want the 25 back for the 

overestimate. Does that make sense? 

Due to a similar observation in the previous session, I could conclude that A1 had a 

strong local-global model relationship which coordinated the size and number of 

partitions. In the Curiosity Rover task A1 had been perturbed when the cumulative 

distance of 65 local models with length 2.5km added to “too much distance,” and she was 

now perturbed because the number of terms within the global model was too high. 

Similarly, from this second instance of remaining unperturbed, it was clear that such a 

link was not yet part of A2’s local-global model relationship.  

Finally, the last observation from this particular prompt was just a quick 

acknowledgment from A1 and A2 that their new computations narrowed the parameters 
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more than their last estimates. While not a new development, a recurrence of the same 

observation did supply additional support of the existence of the desired refinement 

relationship.  

The timing of their completion of this prompt fell near the end of the session. To aid 

in the construction of A1 and A2’s models I asked them to reflect on and summarize their 

activity. This allowed A1 to reiterate her interpretation of their solution strategy, which 

reinforced my image of her current local and global models;  

So basically what we did was we did, um, we just kind of followed the formula 

for force, which is pressure times area. And I think the only kind of like, tricky 

part… like, when we just split [the dam] into two segments, we couldn't just 

assume that the pressure for both of them was the same. … In our computations, 

that's why we had to change the numbers… That's why we have like, the 5 and 

then the 10, and the 15. … we have to multiply [pressure] by the area and the area 

stays the same, you know, whenever you're dividing it into equal segments…. It 

was like the force for each segment added to the next force, all to make the total 

force.  

For the next prompt, I asked A1 and A2 to identify a range of forces accurate to 

within 50,000 N. Before proceeding A1 checked that she understood the implications by 

directly referencing the need to reduce the difference between the over and 

underestimates to less than 50,000. A1 and A2 then checked to see what this difference 

would be for their previous computations noting that it definitely was not close to the 

50,000 mark. A2 stated they could do the same thing they previously tried “but that’d be 

an insane amount of intervals to add,” implying that he did connect a refinement of the 

local model would impact the number of terms within the global model and result in a 

smaller error bound. Both participants felt stuck, noting that there would be “too many 
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intervals to feasibly do.” At this point I interjected that if there was something that they 

would like to try, I could help identify a tool to help; 

So, if there's something that you want to try. If you think, ‘okay, if I could have a 

tool that would do this, then that would solve the problem.’ I might be able to help 

you identify a tool that would help with that… like the spreadsheet last time when 

we just made it do the computations for us. 

By providing A1 and A2 this prompt open-ended I was attempting to gain access to 

how their current models influenced a solution strategy. My suggestion caused A2 to 

interject a thought, “I was thinking, I guess if there's some way to relate depth and force 

kind of like we already have but an equation, then we could use that equation to kind of 

get a more accurate feel for the estimations.” His comment was a little vague, but I took it 

to mean that A2 wanted to develop an explicit formula for a generalized local model. 

That is, A2 wanted to create a generalized quantitative expression that could represent 

any element of a global model. This would allow A1 and A2 to identify an estimate for 

the force acting on a single partition at any specified depth with any specified size. A1 

also took on this meaning, asking “Do you want to write a formula… using a tool to 

compute it?” As they began engaging in the process of creating such a formula, A1 

reflected on the local model within their broader global model expression, noting the 

repeating pattern in their process; “we know we’re just multiplying area times depth 

times 9800, right? And then we’re adding that again. We’re just going to keep going for 

each interval that we decide to do.” This observation spurred A2 to recall his professor’s 

introduction of a sigma sign as “the summation thing” with a recollection that you wrote 

a formula next to the sigma which would repeat if you were to write the whole 

summation expression. From A2’s memory the sigma notation required that the 
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accompanying formula should be written in terms of one variable, impacting his formula 

construction; 

Because if we write area in terms of depth. So break area down into what is it, 

63.26? Times &. Times & again, so & squared… and then multiply by 9800. That 

gives us our same equation, but it's in terms of one variable now… and then we 

can plug any value in for & and get the force at that depth. 

A1 followed A2’s explanation but voiced a slight protest “yeah, that makes sense to 

me. But we'd still have to do it for every single interval. Does [the formula] do that?” A2 

replied, “if we do the summation thing, so like, the full sigma.” A2 then began to attempt 

to fill in the elements of the symbol template for Sigma notation while combining 

numerical values (Figure 16). In this instance, A1 was indicating a recognition that, 

although each element within her global model shared a fixed value for area, these same 

values within the global model were distinct across terms. However, while she was 

uneasy with A2’s proffered formula, she was unable to immediately articulate why. 

Although it is possible that A2 also shared this scheme for a global model, either (1) such 

a connection was not strong enough to contend with the predominant scheme centered on 

creating a formula with only one variable, or (2) because he had not yet considered a 

specific number of partitions he was not envisioning a set of local elements. In either 

case, A2’s conviction in the accuracy of his formula dissuaded his partner from pursuing 

her uncertainty.  
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Figure 16: A2's sigma notation for fluid force on a rectangular dam 

To aid A2 in recognizing the same issue A1 hinted at, I suggested using the sum 

calculator to check their formula by comparing it to the values obtained using five 

partitions that they had just completed. Discussing the limitations of the calculator, such 

as needing to use ' for the variable took a few moments of explanation. A1 and A2 input 

their desired formula into the calculator (Figure 17) and observe a discrepancy between 

their previous values and the new calculator computations with A2 remarking “oh, that’s 

not quite right.”  

 

Figure 17: A2's initial local model expression input in GeoGebra summation applet 

Because A1 had demonstrated concern with the formula, she quickly identified the 

problem;  
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Oh, wait, I know what it is. It's because our depth is not the same as our area. Like 

we don't, because when we're doing the area, we would do like five times 63.26. 

But then when we are needing to calculate our depths, we would change that to 

like, 10, but the area would stay the same. 

A1’s predisposition to attend to which quantities remained fixed versus those that 

changed across elements of her global model allowed her to pinpoint a formulaic error in 

the area component of their local model expression. Specifically, this observation 

allowed her to identify that the quantity for height in the area component of their local 

model was not equivalent to the quantity for the depth component within their local 

model. Therefore they could not use the same variable to represent both quantities. 

Replacing one of the “'” terms and the “63.26” in their initial local model expression 

with 316.3, the value for area, resulted in the GeoGebra applet producing results in line 

with their expectations.  

Bolstered by their success, A1 suggested “do you want to just play around with how 

many partitions it takes to get it down?” A2 agreed, but observed, “I feel like it’s going to 

be a slightly unreasonable amount of partitions.” These acknowledgments from A1 and 

A2 raised my confidence that I had correctly identified a link between a refinement 

process, the number of partitions, and the accuracy of the global model. Although I 

would have typically allowed A1 and A2 to follow their own trajectory, I came across a 

limitation of the GeoGebra applet when working with another group earlier in the week. I 

originally believed that the processing power for computations within GeoGebra applets 

was performed on GeoGebra’s servers and that the ability to display the outputs of the 

applet was the only resource requirement from the participant’s own computers. I was 

incorrect. During testing my personal computer had enough processing power to handle 
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computations involving relatively large numbers, however, less powerful machines did 

not. This resulted in resource issues on the participants' end, often involving long 

computer freezes and crashed applets. I relayed this issue to Group A and suggested “so it 

might be better if we can come up with a way to figure out how many partitions we need, 

instead of just playing around with the numbers,” directing them towards my expected 

solution path15. 

In response, A2 fell back on his local-global model refinement scheme as a way to 

move forward, reflecting “we can just see that more intervals equals a narrower 

approximation, like we knew from the last project. We just need a lot more.” They started 

to compare the error bounds for their different computations, presumably to identify a 

pattern but started discussing their initial strategy of wanting to break the dam into 100 

pieces. I relayed that the calculator would be able to handle 100 just fine. As they turned 

their attention to this line of inquiry A1 observed, “so, 63.26 times .25 to get a new area. 

We’ll have to put a new one in. A new, little, formula in.” A2’s immediate exclamation 

of “oh, yeah you’re right” indicated that, unlike his partner, A2 was still reasoning 

primarily with the area component of the basic model and had not yet fully taken on the 

same fixed vs variable aspect of the quantities within the local model.  

 
 

 

 

15 Fully acknowledging that this was not the only, nor necessarily most intuitive, strategy for this group.  
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While entering their new area value into the applet, A1 and A2 mused that there had 

to be some way to write the formula so that they didn’t have to find the area every time. 

After verifying their precise computational method, the magnitude for the full height of 

the dam divided by the number of partitions, I let A1 and A2 know that I programmed the 

calculator applet to automatically find the height of each partition through the 

computations they had described using the symbol Δ'. This would allow them to use the 

expression 9800 ⋅ ' ⋅ 63.26 ⋅ Δ' in the applet. By introducing this symbol in the moment 

of their expressed need I was hoping they would take on the conceptual schema for Δ[	] 

to take on the quantitative meaning of the magnitude of the partitioned quantity within 

the local model.  

Feeling as though the interactions between A1 and A2 had already been fruitful, and 

not wanting them to get hung up on trying to read my thoughts for a solution strategy, I 

directly pointed out that by scrolling down on the list of values produced in the sum 

calculator (1) they could observe that the cell immediately preceding the final total 

overestimates was exactly the same as the difference between the overestimate and 

underestimate, (2) that this cell’s value represented an overestimate for the total force on 

the bottom partition of the dam, and (3) that the fact that these two quantities being equal 

might help them identify the exact number of partitions they needed. Drawing on 

previous observations she’d made, A1 was quick to realize why the values matched, 

explaining that the last cell was included in the overestimate computation but not in the 

underestimate, so the difference would be equal. A2, less convinced, indicated that the 

first cell in the left-hand column should have been included in the underestimate 

computation. This indicated A2’s scheme for his under vs over global models was 
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beginning to incorporate the same pattern A1 had pointed out: that you can list all of the 

local model values and then “toss out” either the first or last computation depending on 

whether you wanted an overestimate or an underestimate. Wanting to immediately 

validate and reinforce A2’s line of reasoning, I stepped in to note that the very first value 

absolutely plays a role in the error bound, but because it is 0 in this case it just doesn’t 

look like it. 

From here, A1 and A2 again reverted to a guess and check method. While the 

interactions did not add any new developments to their models, their comfort 

coordinating the number of partitions with the height of an individual partition reinforced 

my analysis of their local-global models. When A1’s computer began to struggle with the 

number of partitions (roughly around 1000) I again suggested we try something different, 

this time specifically indicating that they needed to find when the force for the last 

partition was less than or equal to 50,000	4. Based on my suggestion, A2 realized that he 

could solve for Δ' in the expression “619949 ⋅ 25 ⋅ Δ' ≤ 50,000	4"16;  

We have a long hairy decimal here, and if it needs to be less than or equal to 

50,000 we would probably want to go a little bit smaller of interval. So we can 

round off at .003. And that should give us just under 50,000…. So now that we 

have that interval length, we need to know how many intervals are in 25 meters… 

That should be 8333.33 

 
 

 

 

16 Note that 619948 is the product 9800*63.26. 
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A2’s ability to coordinate the value for Δ' ≤ 0.003 and the number of partitions 

indicated Δ' was solidly considered a length of an interval. That is, the vertical side of 

the diagram he’d drawn earlier (a rectangle representing the dam) acted as a number line 

ranging from 0 to 25 which could be partitioned into equal subintervals. How small those 

subintervals needed to be could be solved by isolating the Δ' in the inequality (in this 

case 0.003). In contrast, A1 was reasoning about Δ' only as the height of one generalized 

partition of the dam. She was far less systematic in her computations and, until A2 had 

identified a value, was keeping with the trial and error method by changing Δ' to be 

specific heights. I entered 8334 partitions, as directed, into the GeoGebra sum applet on 

my computer and copy/pasted a screenshot into the shared whiteboard so that A1 and A2 

had a satisfying conclusion to this prompt.  

When moving onto the Trapezoidal Dam task, A1‘s first response was “That's okay. 

We can also do this, it's just going to change our area.” However, A1 was not yet 

coordinating “change our area” with the value for area as varying across elements of her 

global model. She’d simply recognized that the area component of the basic model had 

changed to a different quantitative structure. This was evident because A1 and A2’s first 

method of attack was to first recall/google the formula for the area of a trapezoid before 

computing what I would refer to as “the area of the entire trapezoidal dam,” but which 

they called “our area.” A1 then continued, “I mean, it's just the area times the depth times 

9800” and that they could “set this to 50000.” Noting that “height is the depth” A2 typed, 

“(63.26+37.92)/2*d*24500=50,000 N” on the shared whiteboard before he observed “we 

need :d, right?...that’s what we’re solving for” making the adjustment from & to Δ& in 

the expression. Feeling like something was missing A1 raised an issue stating “this area 
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formula is incomplete,” however A2 managed to justify his reasoning by attending to the 

impact of changing the d to a Δ&, “no, because we’re doing it based on the interval 

length.… we’re just doing the area of the interval we choose.” We were at the end of the 

session time, so I stepped in and pointed out that if they were only looking at a single 

interval for the dam, then the 63.26 wouldn’t necessarily be the measurement for the top 

of the trapezoid. A1 and A2 acknowledged that this would cause a problem and planned 

to work on it in the next session. While I feel it is important to note exactly how A1 and 

A2 were thinking when first introduced to the total force on a trapezoidal dam prompt, 

due to scheduling issues the group didn’t meet again for a full week.  

When we gathered again, A1 and A2 tried to recall their problem-solving strategy for 

the trapezoid problem based on the expression they had written the previous week. After 

recalling the various components of the expression (and their previous issue involving 

area) A1 suggested they “go back to being like, super broad with it,” recognizing there 

was something missing from their problem-solving strategy that had been present in the 

previous task. Attempting to identify what was different, A1 and A2 wrote an equation 

intending to identify an overestimate for the whole dam (1 partition). However, the fact 

that the height of the partition (or interval), Δ&, and the depth, &, were the same value 

resulted in A1 and A2 leaving off one factor of 25 when computing their broad 

overestimate. Compounding upon this issue was a change in language between sessions. 

Previously A1 had been fairly consistent using terms such as “height” or “height of 

partition,” but now occasionally interchanged “depth” for that same quantity. Based on 

the area context in which she was using the terms, it was clear she was not referring to 

the depth of the water but rather some quality of the dam. However, there was also a 
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quantity for depth in the task, and A2 had not demonstrated quite as strong of an 

association with the delta notation representing a fixed quantity correlating with the size 

of a partition. Therefore, A1’s misuse of these terms greatly influenced A2’s 

understanding of the expression as they were composing it, particularly when they began 

to identify an overestimate for a trapezoidal dam with two partitions. Quickly referencing 

the quantitative structure for the global model of their overestimate for a rectangular dam 

in five partitions, A2 began to type out a new expression attempting to match the same 

structure, 

[9800][area]([depth at bottom of partition17]+…+[depth at bottom of partition]). 

This led to an interesting interaction in which A2 was attempting to write out their 

new expression, “9800*,” and then mentioned, “first we need our base area, right? 

Because we’re factoring it out.” Due to her recollection of the previous session’s 

problem, A1 responded that they couldn’t factor area out “cus it’s gonna be different” for 

each partition, but that “our depth can be factored out.” In this context, A1 is only talking 

about the area component of the basic model for force, and the ‘depth’ she is referring to 

is the height of a partition of the dam. Assigning it a value of 12.5, and expanding the 

expression to “9800*12.5(.” A2 did not adopt this same interpretation for the value 12.5 

which became clear a few moments later. As A2 was finishing the expression he 

 
 

 

 

17 A2 might have called this “depth at bottom of interval.” 
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observed that now they would “do our area of each interval” and that if finding an 

underestimate they would multiply the first ‘area’ term “by zero because that’s the top 

part of the interval,” referencing the depth value for an underestimate of the pressure 

component of the local model. While it appeared as if A2’s computation would lead to a 

correct expression for an underestimate when he reached the second factor for ‘area’ the 

previous inclusion of a ‘depth’ of 12.5 caused A2 to pause. He concluded, “I don’t think 

that goes there,” and moved the 12.5 from the beginning of the expression to the last 

term, “9800((50.59+63.26)/2)(0)+(50.59+37.92)/2)(12.5)).” That is, A2 moved the 12.5 

which represented a fixed height of every partitioned segment to instead represent a 

single depth measurement for the underestimate of the force on the second piece of the 

dam. As A2 was calculating the result, I asked the pair to tell me what each of the terms 

represented if you did not factor anything out (Figure 18).  

 

Figure 18: A1 and A2's global model elements with ‘incomplete’ area 

I anticipate that if Group A had finished their computation they may have 

encountered a conflict between their new estimates, the estimates for a dam with 1 

partition, and their local-global model refinement scheme. I decided not to follow this 

course of action in the interview because (1) their previous computations were based on a 

similar structural inconsistency, so I was unaware whether the resultant values would be 

positioned to produce a perturbation, and (2) A1 and A2 had, more than once, already 
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demonstrated that such a conflict would cause them to reevaluate their expressions. 

Instead, I wanted to draw attention to a different aspect of their local-global model 

relationship. In particular, I wanted A1 and A2 to investigate the terms within their global 

models and while drawing on the underlying parts-of-a-whole conception. By 

redistributing the factored out 9800 pressure component and separating the terms, I aimed 

to draw A1 and A2’s attention to the quantitative structure of their local model to provide 

an opportunity for observing their current model’s conflict with the basic model for force.  

In response to my questions, A2 described the first term as “the force for the first 

interval” and the reason it is zero is that it is “the least possible force to underestimate 

because there’s the least pressure at zero.” In this case, even when separated from the 

global model A2 was not fully evaluating or attending to the quantitative structure for the 

area component within his local models for force. This was unsurprising as A2 had not 

explicitly demonstrated a strong recognition that the local model must share the 

quantitative structure as the basic model, however, I do not want to frame A2’s reasoning 

as completely negligent towards the incorporation of this construct into his schemes. In 

going through the effort of identifying a correct quantitative structure for the area of a 

trapezoid and algebraically identifying the width of the dam at a depth of 12.5, A2 was 

operating under the assumption that he’d already attended to the varying area component 

of the dam. He was no longer focused on this aspect of the basic model and therefore did 

not notice that as he made a ‘correction’ to his generalized local model he was deleting 

the quantity for height for the area component of that structure. It also had been a full 

week since he and A2 had referenced the quantitative structure for the area of a trapezoid 

online so it is possible he did not have a strong image of his basic model elements. A1, on 
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the other hand, had shown more compelling evidence that the structure of her local 

models were tied directly to the quantitative relationships within the basic model. A1 

observed, “We're not doing the area yet… we were trying to do the area, but it is 

incomplete. Does that make sense? Like, because we have the bases divided by two, but 

we haven’t multiplied by height.” This allowed A2 to recognize “that’s why we had the 

extra 12.5.”  

Even with this recognition, when I referred A1 and A2 back to the missing height 

component of their expression for over and underestimates using only one partition, A2 

reinterpreted the value of 25, which had represented a depth as part of the pressure 

component of the local model, to the height of the area component within the local 

model. Coordinating the local models for both pressure and area within a local model for 

force, A1 recognized that this would leave the pressure component of the local model 

incomplete, “we have to multiply area, times that gravity number, times the depth, so we 

have to multiply by 25 again” which A2 acknowledged was correct.  

Moving on, A2 motioned to their overestimate expressions and stated, “That's for one 

interval. This is our 2-interval. So, now we need an equation so that we can find it any 

interval.” This indicated that the reason A1 and A2 started by “being super broad with it” 

was to position themselves to be able to focus on each element of their global model 

discretely before trying to coordinate a formulaic representation of their local model 

across elements. However, a lack of clarity in identifying the quantities to which they 

were referring, conflation due to identical values across elements of local models, and 

mismatched quantitative structure of their global models continued to plague A1 and 

A2’s ability to productively reason about the structure of their generalized local model. In 
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fact, after identifying the expression for an overestimate of the final partition from the 

previous rectangular dam task, 9800*25*63.26*Δ', A1 demonstrated that the factored 

form of their current global model, 9800⋅[area of partitioned dam]⋅[depth of pressure 

measurement], influenced her to reinterpret their previous work, “I think that this in this 

equation that we copied and pasted 25 times 63.26 was our area.” Under this hypothesis, I 

stepped in to remind A1 and A2 of the quantitative structure they had previously 

described for this expression, [pressure]⋅[area]=[9800[depth ']]⋅ [[width of dam]⋅[height 

of dam partition Δ']]. When this intervention failed to produce any productivity in the 

A1 and A2’s problem-solving, I also suggested that redistributing the quantities within 

their new overestimates for the trapezoidal dam may help them to notice a similar 

structure. In doing so I was able to contrast the distributed local model against the 

factored version and impart the need for A1 and A2 to be clear about which quantities 

they were referring to as they discussed the task;  

So, I think the fact that there's a 12.5 right here, which is representing a depth, and 

there's a 12.5 here, which is representing a Δ'. Making sure that we keep straight, 

which one we're talking about, whether it's the depth or a length of an interval, is 

going to be important.  

This intervention prompted A1 and A2 to discuss exactly how they wanted to define the 

quantities ' and Δ', settling on ' to represent the “relevant depth” and Δ' as “length of 

interval” to be their current working definitions.  

As evident in her follow-up interview, A1’s previous references to a potential 

relationship between her local and basic models in conjunction with my intervention 

allowed for a quick, and quite powerful, accommodation to her basic-local model 
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relationship to incorporate a required [9800⋅[x]]⋅[area] shaped local model. When I asked 

what the quantities “9800*12.5*((50.59+63.26)/2)(0)” and 

“9800*12.5*((37.92+50.59)(12.5))” represented within this context (expressions in which 

I switched the values for ' and Δ' within a local model), rather than rearrange the 

quantities within the expressions, A1 completely reinterpreted what the meaning for the 

expressions should be18.  

So this 9800 is just like the constant that we need to use in the pressure equation. 

Okay, I think everyone's clear on what that one is. So, and then this 12.5 is a 

depth, it's a depth because whenever we're looking for like our pressure equation, 

it's that constant times depth.… Then this 50.59 plus 63.26, those are both divided 

by two times zero. It's my understanding that those are our that's our area formula. 

… base one base plus base two divided by two times the height. Um, and since 

this one is zero, the reason like the height is zero right now is because we were 

getting an underestimate, so we were using, like, the smallest height. So if we 

wanted an overestimate for like, just this little piece, we would change the zero to 

12.5 to get the largest height. Does that make sense?... 

Bothered by inconsistency with their description from the previous session which did 

not involve an area of measure 0, A1 decided to reassign values within the expressions to 

 
 

 

 

18 Note that there was not a reference to [Force]=[Pressure]⋅[Area], visible on the shared whiteboard. A1 
was drawing on this basic model relationship from her own schemes and was not directly attempting to 
match her explanations to a formula or expression from the group session.  
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properly fit her image of an underestimate for the amount of force on each partition 

(Figure 19). She explained, 

Yeah, but see, the thing is like, I don't know if, huh, okay. So I think that, let me 

change the color of my pen. I think that this one, depending on whether we’re 

doing the underestimate or overestimate, might need to be 25 [writes 25 in purple 

beneath the first 12.5 in the second expression]. Because, like, if this was going to 

be the, this right here [places a star next to the second expression] is going to be 

the underestimate, it would be 12.5. But wouldn’t this [circles the first 12.5 in the 

first expression], like, be zero in that case. Yeah, I don't know. Because I think 

maybe, I think maybe this should always be 12.5 [circles the zero at the end of the 

first expression]. Okay, because we want the area of the whole thing, like no 

matter what. We want this to be the depth [motions to the 12.5 in the first 

expression]. So, I think sometimes this, if we're doing underestimate that might 

need to be zero [writes 0 above the 12.5 in the first expression], and this [motions 

to the first 12.5 in the second expression] can be 12.5. And then if we're doing 

overestimate, this [motions to 12.5 in the first expression] would be 12.5, and that 

[motions to the first 12.5 in the second expression] would be 25…. Because like 

with our zero being right here [motions to the zero at the end of the first 

expression], like that makes this whole computation zero on our area's not going 

to be zero.  

 

Figure 19: A1's reassignment of values to match her basic-local model quantitative 
structure 
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Something of note within this interaction was that A1 acknowledged that the values 

within the expression could be shifted around, however, their placement within the 

overall structure directly influenced her interpretation of their quantitative meaning. If a 

value was directly adjacent to 9800, then it must be in some way related to the 

quantitative relationship for pressure. Similarly, the value at the end of the expression 

must be a part of the quantitative relationship for area.  

My intervention referencing the basic-local model relationship also influenced A2’s 

ability to reason about how to move forward in their goal-oriented activity of identifying 

a generalized local model for the trapezoidal dam. Realizing they already completed the 

general structure of the pressure component of their local model, A2 observed that as part 

of their area component they would “need to write a function, like an equation, that gives 

you the width of the dam at any height.” Because I was not as concerned with A1 and 

A2’s ability to model this particular phenomenon, except in that it is a quantitative 

component critical in their construction of a generalized local model when A1 and A2 

showed signs of struggle I offered suggestions on how they could identify such an 

expression. First I asked them to focus on identifying what the width of the dam would be 

at a specific depth, 7 m, and then drew on the shared whiteboard to bring attention to 

proportional triangles within the ‘missing’ parts of the dam. These small interventions 

allowed A1 and A2 to identify that for any depth, ', the expression 63.26 − 2 ∗ "#.%&'
#(

 

would model the width of the dam.  

Attempting to incorporate this expression into the same quantitative structure as the 

formula for the area of a trapezoid, [*+,-	"]0[*+,-	#]
#

⋅ [height	of	trapazoid], A1 realized 
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that the value for the other base would have to be “based off our interval length.” With 

the assistance of a quick diagram of a generalized partition, A1 and A2 were able to 

develop a generalized local model for the force acting on that partition at a depth '. 

Through this process, they first relied on the use of extra variables, such as '" to 

represent base 1 and '# to represent base 2, and identified that the variable used for depth 

would depend on whether you wanted to identify an overestimate or an underestimate 

(Figure 20). From here, additional suggestions centered on their definition for Δ' allowed 

A1 to rewrite the generalized local model without the subscript notation—'" = ', '# =

' + Δ', and '# − '" = Δ'—although they left themselves a note that the quantity ' 

within the symbolic template for pressure was still dependent on which type of estimate 

they were trying to find.  

 

Figure 20: Group A's initial generalized local model for the trapezoidal dam 

With their generalized local model in hand, A1 and A2 returned to their primary goal 

of identifying an over/underestimate within 50,000 N. In an earlier session I had given 

A1 that their previous strategy of using the magnitude of the last partition would not 

directly translate to this new dam shape. To investigate, A1 and A2 decided to use their 

generalized local model to find over and underestimates for a trapezoidal dam with five 

partitions and compare the values for each element within the global models for their 

over/underestimates to the value for the error bound. When A1 and A2 reported that they 
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could not identify a pattern, I stepped in to explain why this was occurring—in short, 

while in the rectangle dam problem the values for ' in both the pressure and area were 

the exact same, in the trapezoid problem they were, in essence, invoking a second value 

for ' in the area component which was the midpoint between what they had originally 

called '" and '#. I let them know there was a way to rewrite their formula so they were 

always using this midpoint, but that it would make their equation a little messier. At the 

same time I posed a question; “Is it okay, instead of using trapezoids, can you just make 

your approximations using rectangles like you did last time?” A2’s reaction was 

immediate, “Ah, that’s interesting,” continuing while drawing a generalized partition in 

the shape of a trapezoid, he noted “and you just cut off those triangles. And that would be 

your under because the area is less than, and then your over would be if we did it from 

this corner [motioning to the corner of the longest side].”19 What became clear relatively 

quickly was the different interpretations A1 and A2 had with regard to my suggestion. A1 

envisioned making the over/underestimates using a single 63.26 m × 25 m rectangle 

exactly like their last prompt, while A2 interpreted my suggestion as individually 

applying rectangles as estimates to each partition. After realizing they were discussing 

estimating the dam in two different ways A1 decided to adopt A2’s interpretation, 

explaining that by “making a specific size rectangle for each partition” they would be 

 
 

 

 

19 Admittedly, I had not expected both an overestimate and an underestimate for the area component of the 
generalized local model, although in retrospect I should have. 
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“respecting the fact that it’s a trapezoid” which means the estimates would “get closer to 

being exactly right.” A2 added, “this way, as we increase the number of intervals, we'll 

be able to get a more specific value than the other one, that would just be that one block.” 

This indicated that both A1 and A2 had incorporated a new component to their global 

model. Specifically, a global model is more than a random approximation for an 

unknown quantity. If you could not continue to make your global model estimate closer 

to the actual value, then you were not respecting the global context and therefore it was 

not good enough. This adaptation to their global model was subtle and was not so fully 

formed that they could in any way characterize it as an error term tending towards zero. 

In fact, neither A1 nor A2 were able to articulate exactly why they could not just rely on 

the changes in pressure as they increased the number of subintervals. A2 just settled on 

stating that “it's more accurate because we're considering more information that we have 

available to us.”  

Working with the new assumption that they would be using rectangles to approximate 

area, A1 and A2 rewrote a generalized local model for an ‘overestimate’ by drawing on 

their basic-local model relationship as sharing the same quantitative structure (see Figure 

21). It was interesting that, because in that moment their goal-oriented activity had been 

centered on quantifying the area component of the generalized local model, they decided 

to label this expression an overestimate because the area component represented an 

overestimate of the trapezoidal area without any consideration for the pressure 

component of their generalized local model. Moving onto the underestimate, A2 

observed, “[the area is] the exact same thing, but you add delta x… you add it because 

you're going down in interval, or going down the dam.” A1 assimilated his meaning to be 
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that you’d add Δ' to the quantity ' in the area component of the generalized local model, 

however, again neither A1 nor A2 considered the pressure component as contributing to 

the type of estimation their generalized local model was measuring.  

 

Figure 21: Group A's generalized local model using rectangles to approximate the 
area of a trapezoid 

The session had already gone over by 5 minutes, so we had to stop the interview and 

return to this idea later in the week. Luckily this provided time to prepare additional 

support material for Group A. At this point, I decided the trajectory Group A was 

pursuing was not providing a means to develop their models further, however, I wanted 

to respect A1 and A2’s time and commitment to this process. Therefore I decided to be 

more direct in helping them identify the quantitative relationships which would allow 

them to narrow down the height of a partition required for the estimates to be within 

50,000 N while still allowing them to create the final expression themselves. Because A1 

and A2 were using over/underestimates for the area component I anticipated that there 

would be a continued inability to effectively find this value. This was due to the value 

being invoked for the overestimate for pressure, once corrected, would be the value used 

for the underestimate in area and vice versa. To draw attention to this, in the next session 

I first asked A1 and A2 to fill in a table with general expressions that would model 

overestimates and underestimates for (1) pressure, (2) area, and (3) force for a single 
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partition of the dam (Figure 22). In response, A2 wrote the quantitative structure for 

pressure and using this as a reference created a generalized local model expression 

corresponding to the overestimate and underestimate for that quantity. Moving onto area, 

A1 and A2 wrote the area component of a generalized local model for an overestimate as 

[width of the dam at a depth ']⋅[Δ'], and their underestimate as [width of the dam at a 

depth ' + Δ']⋅[Δ']. However, because the dam’s width was decreasing as depth 

increased this would not provide the expected approximations. Based on the previous 

session's work I knew A1 and A2 had been able to quantify this expression, so I drew 

their attention to this inconsistency by having them draw a generic partition of the dam. 

Once they added values to their diagram, A1 and A2 noticed the discrepancy in the area 

component of their expression, but, in a fascinating turn of events, before interchanging 

the area expressions, A2 also interchanged the pressure expressions. A1 began to correct 

A2, “I think [pressure’s] the same. It was how we had it because it would be like the 

depth,” but then changed her mind, “wait, hold on. No, no, I think you're right.” They 

continued back and forth for a full minute before A2 concluded that “something was 

fishy” and I stepped in to ask very targeted questions using their diagram of a general 

piece of the dam, such as “what ' value would you want to use for an overestimate for 

pressure?” As I suspected, A1 voiced that she believed that the inclusion of either an “x” 

or an “' + Δ'” into their expressions “had to match” in the respective columns. It is 

unclear how much of this assumption was born of my earlier suggestion to use rectangles 

instead of trapezoids versus an innate sense of symmetry. Regardless, the assumption was 

in direct conflict with the quantification of A1 and A2’s generalized local models, 

resulting in their inability to productively move forward.  
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Figure 22: Supplemental activity for Group A during trapezoidal dam task 

What is interesting about A1 and A2’s notion that value used for both the pressure 

and area components within the resultant generalized local model for force must match is 

a key factor in being able to use the cancelation of terms which defines a ‘proper’ 

Riemann integral. Unfortunately, this did not match the quantitative situation they had 

constructed, so following this exercise I presented them with pre-computed values 

involving a dam with 3 partitions. This included a diagram with the dam partitions, along 

with a table of values for an estimate of the force acting on each partition using the 

under-under, under-over, over-under, and over-over expressions for pressure and area. 

This allowed A1 and A2 to observe that the values within the under-over and the over-

under columns shared values, and positioned them to isolate an expression to which could 

identify how small to make their Δ' element. While this second activity took nearly a full 

session, there were no noteworthy changes to their basic-local-global models beyond 

having them specifically attend to the quantitative structures of the elements within their 

generalized local models.  

Summary 
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While working through the Fluid Force on a Dam task both A1 and A2 transitioned 

from a global model constructed through an accumulation of gross basic models with 

tentative coordination of refinement and accuracy constructed during the Curiosity Rover 

task to a dynamic system of basic-local-global model relationships for sums. This new 

scheme included an association that (1) the partitions of a global model are made in 

service of estimating a varying quantity (2) increasing the number of partitions leads to a 

global model with smaller error bound, (3) an image that the global model is composed of 

a finite number of elements identified using a local model, (4) the total number of 

elements is inherently linked with the magnitude of an element, Δ', within their local 

model quantification, (5) a generalized local model must share a similar quantitative 

structure to the basic model, (6) the local model must “respect” the global context as 

closely as possible in that the reduction in the magnitude of the local model must always 

lead to a more accurate global model, and (7) the whole system is tied to the variability 

that made the invocation of a local model necessary in the first place. 

During this task, Group A also demonstrated the significance of the quantification 

process in their problem-solving on many occasions. For example, (1) A1 and A2’s initial 

interpretation of the quantitative context produced an expected answer, but for 

unexpected reasons. Specifically, the values A1 and A2 produced were consistent with 

grossly inputting a pressure depth of 0 and a pressure depth of 25 into a basic model for 

force, however, I anticipated the application of the gross basic model would be in service 

of making estimations using the smallest and greatest amount of pressure which could be 

assumed across the entire surface of the dam. Instead, A1 and A2 interpreted the global 

context as varying levels of water making contact with the surface area of the dam. (2) 
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A1’s unfamiliarity with pressure as a quantity in its own right resulted in difficulties in 

identifying the varying quantity, (3) that the specific symbolic template of basic models 

greatly influenced A1 and A2’s understanding of which quantities specific values 

represented within expressions, and (4) A1’s recognition that the constant quantity for the 

height of a partition and the varying quantity for the depth could not be represented by 

the same value within their generalized local model, despite the fact that they draw on the 

same range of numeric values for depth. While this last recognition may seem obvious to 

the reader, it was a significant development in Group A’s ability to reason productively 

about their generalized local model and was only possible through quantitative reasoning 

instead of the formulaic approach A2 initially tried. In fact, because A2 had not fully 

developed the same distinction between fixed and varying elements across a global model 

as early as A1, Group A faced added difficulty of different meanings for notation and 

diagrams which slowed down their overall progress through the task. One particularly 

interesting thing I observed throughout this task was Group A’s almost blinding focus on 

the part of an expression they were currently quantifying. Whenever A1 and A2 were 

focused on one component within the quantitative relationship for force, either pressure 

or area, they often didn’t re-evaluate the other quantitative component at all. When they 

inevitably came up against an unexpected result A1 and A2 would quickly realize that the 

other component also needed to be adapted in some way, but this rarely happened as a 

holistic process for force, either pressure needed attention, or area needed attention.  

In general, at the ending of the Fluid Force on a Dam task, I was confident that A1 

had developed the expected reasoning laid out by the hypothetical learning trajectory, and 

had demonstrated nuances of the development of their basic-local-global models not fully 
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anticipated prior to the teaching experiment. A2 had also developed a set of similar 

schemes, however, there was one clear distinction between the two—how they 

interpreted the notation Δ'. Both were able to describe the computations to arrive at a 

value for Δ', however, A1 viewed this quantity as the height of a partition for the dam, 

while A2 viewed Δ'	as the “length of an interval” on a number line. While this 

distinction generally did not cause major problems for the group, having a more abstract 

notion of Δ' made it more difficult for A2 to keep track of what precisely the Δ' in their 

generalized local models quantified, sometimes assigning it to be a length of an interval 

and other times to be the total number of partitions. A2 even demonstrated difficulty 

consistently referencing which side of a generalized partition the Δ' was referring to in 

an expression for area. Based on language A2 invoked during these instances, such as the 

full interval from 0 to 25 being “weird” because it was “vertical and not horizontal” I 

concluded that A2’s primary source of conflict was due to the influence of an incoming 

scheme for Δ' which associated the notation with an '-axis, traditionally ascribed to the 

horizontal axis in a graphical representation, along with an image that a Δ' represents a 

small portion of that horizontal axis, i.e. the “interval.”  

Group A: Geometric Volume 

Note: Due to scheduling conflicts and more time spent on the Fluid Force on a Dam 

task than expected, the teaching experiment with Group A was running roughly two and a 

half weeks behind schedule. Subsequently, A1 and A2’s main calculus coursework had 

begun to introduce the notion of Riemann sums, antiderivatives, and definite integrals as 

area under a curve concurrent with Group A’s interviews covering the Geometric Volume 

task. Both members of Group A had taken calculus coursework in high school and had 
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mentioned both Riemann sums and integrals in earlier interviews, so I do not believe that 

the integrity of the teaching experiment was compromised as a result. However, because 

Group A drew on schemes involving integrals more readily than one may have expected 

otherwise, I wanted to make the reader aware of the overall timeline.  

Moving into the Geometric Volume task, I asked A1 and A2 to identify overestimates 

and underestimates for the volume of a right pyramid measuring 10 in tall with a square 

base 4in×4in. When starting the task A2 mentioned that he “just kind of thought 

[volume] was the integral of area.” When A1 questioned what “area” he was referring to 

A2 wasn’t able to articulate his meaning, “I guess the area of a triangle, because length 

with height of a cube is '. Wait, that doesn’t work,” before deflecting “never mind, that’s 

for something else.” That is, an integral was A2’s initial problem-solving tool for this 

task. An inability to immediately coordinate his image of “an integral of area” with the 

estimations required from the prompt caused him to disregard this construct, however, it 

was clear that A2 had at least some experience modeling volume in at least one of his 

calculus courses. Moving from his initial thought, A2 began drawing a diagram of the 

pyramid on the shared whiteboard and labeled “b=base=4in” and “ℎ=height=10in” 

below. At first, A2 was stuck on a way to create an estimation for volume, however, his 

image that an area would somehow be involved positioned him to visualize the pyramid 

as being made up of lots of square areas. This influenced the development of a global 

model as being comprised of horizontal partitions of the pyramid ; 

I guess, I really don't know how to think about it in any way other than… Oh, oh, 

oh, oh, oh! Never mind, I do. Just kidding. So this is a four-sided pyramid, right? 

With a square base. Then we’re looking at… that square base just gets smaller as 
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it goes up. We can still do intervals of area, right? Okay. So, we'll probably end 

up drawing little lines like this [draws four yellow horizontal lines distributed 

throughout the pyramid’s height]. 

 

Figure 23: A2's horizontal partitioning of a right pyramid 

I do want to be clear that A2’s exact words in this instance were “intervals of area,” 

and not “integrals of area,” consistent with his reference to delta notation as “interval 

lengths” in the previous task. That is, while his image that volume, integrals, and area 

were connected influenced the way in which he partitioned his global model, his goal-

oriented activity was directed at trying to quantify an under and overestimate for the 

volume of the pyramid—not to write an integral of any kind.  

It was interesting that A2 did not attempt to immediately identify a gross estimate 

value for the volume of the pyramid using any formula available from recollection. That 

is, he didn’t try to immediately apply a basic model. The anticipation of drawing on the 

parts-of-a-whole aspect of his global model motivated A2’s need to coordinate the 

partitioning of the pyramid with a basic model which could accurately characterize the 

decreasing side-length along the pyramid’s height.  
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While A1 made no objections to A2’s partitions, she did make a reference to “us[ing] 

the volume equation” and that “only the top” partition would remain pyramid-shaped. 

This indicated that A1 wasn’t yet anticipating using a formula other than the one for 

volume which was provided in the prompt, M = (O ⋅ P ⋅ ℎ)/3. Feeling like A1’s inability 

to recognize a need for estimates may have been caused by the wording of the prompt, I 

stepped in to make my intention for including the formula more clear;  

I just put [the formula for volume] in there because I probably shouldn’t have 

because I think it just leads to more confusion… I wanted to acknowledge the fact 

that we know there's actually an equation out there for volume of a pyramid. But 

this equation came from somewhere, it didn't just come out of thin air. This 

process is one method for finding that equation. 

Understanding that she would be expected to explicitly use estimates, A1 turned her 

attention to identifying a rectangular prism as an appropriate local model for volume,  

So what if we made it… if we just took it and made it into a rectangle like with a 

base of 4 and a height of 10? A rectangular prism… I’m totally blanking on what 

the formula would be… oh yeah, just length times width times height. 
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Agreeing A2 drew a green rectangle around his diagram which measured the full 

height of the pyramid, and, after making a quick computation using a local model20, 

labeled the overestimate as 160 and the underestimate as 0.  

In the next session, I asked A1 and A2 if there was a way they could make their 

original estimates better. In response, A2 began to describe a method of using his 

horizontal partitions to create a sequence of rectangular prisms with decreasing base 

lengths. Drawing generalized images of the boxes on his diagram (in green) it became 

clear that A2’s image of the local model elements within his global model did not have a 

common fixed height, but stretched from the partitions original placement in the pyramid 

up through the full height of 10in (Figure 24). In fact, based on A2’s language which 

included getting “smaller squares” and how “add[ing] more squares” would enable them 

to “get closer to our actual area,” I did not believe that his diagram truly represented 3-

dimensional shapes in the same sense as A1’s rectangular prism basic model. A1 did not 

mention a need to adjust the diagram and instead focused on the fact that A2’s 

description captured the decreasing side-length of the pyramid which would provide a 

way to model that behavior as closely as possible consistent with a global model which 

“respects” the global context; “Yeah, I see.… kind of like how we did with the dam, we 

want to make it more precise. So yeah, that makes sense to me.” A1 added “So, I guess 

 
 

 

 

20 Representing the single element within the current global model as they were already envisioning a 
partition process.  
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you’d probably want to write a formula?” anticipating her partners’ desire to create an 

algebraic representation of their local model as they had in the previous task.  

As A2 turned his attention to creating a generalized local model, the need to create an 

explicit formula led him to question the qualities of the objects he’d suggested for a local 

model; “Are these cubes or squares? I guess they’re cubes, right?” A2’s adjustment to his 

description of the local model from 2-dimensional to 3-dimensional objects represented a 

direct consequence of his desire to quantify a global model for volume which enforced a 

 

Figure 24: A2's diagram depicting his initial local model for the Volume of a 
Pyramid 

need for the generalized local model to also represent a volume. In passing, A1 attempted 

to correct A2’s use of the term “cubes” to “rectangular prisms” because cubes “have to be 

the same length on length on height.” However, as A1 and A2 began to try and identify a 

way to algebraically capture the decreasing side-length, A2 was still operating with an 

image of local models spanning up to a height of 10in. This caused him to assert that “our 

height is going to change also.” Being confronted directly with this conception, A1 

squarely rejected A2’s image of a local model, “our height will be Δ, or like, the Δ'. It’ll 
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be the length of the interval… :' will be the height divided by the number of intervals, 

so it'll be like the height of the individual partitions.” This description clearly indicated 

that A1’s global model included a common fixed height for all elements, represented by 

Δ', and therefore her local model must satisfy a compatible quantitative structure.  

A2 followed A1’s explanation, and, recalling that not clearly defining their variables 

in the Fluid Force task caused difficulties in creating a generalized local model, A1 and 

A2 began making a list of quantities in the task, assigning variables, descriptions, and 

values along the way. A2’s first order of business was to change the “height of partitions” 

from Δ' to ΔS, so that the S could “equal the height of everything.” A1 then assigned a 

value of 10 to S which indicated that, while within her local model there was a 

coordination between the height of the partitions, ΔS, with the full height of the pyramid, 

10, S was just a label and not yet a true variable quantity. A2 defined the base to be “T =

4in” before questioning whether they should also have ΔT. A1 responded, “yeah, it's like 

we need some sort of general formula that we can use to calculate each of the B’s, like 

for each rectangular prism,” indicating that at this time the symbolic form A1 and A2 

were operating under for delta notation, Δ[	], had the underlying schema of ‘magnitude of 

the quantity [	] for a single partition.’ However, previous coursework involving rates of 

change brought in other schemes related to delta notation. Specifically, A2 introduced the 

idea of taking the derivative of the volume equation, M = T#S, to obtain a formula 

involving ΔT and ΔS,	likely drawing on images of implicit differentiation tasks. A1 did 

not like this approach, citing that they had not used strategies involving rates in previous 

tasks, and instead drew on their previous activity which involved quantifying the width of 

the trapezoidal dam; “We need to write a formula, kind of like how we wrote for our 
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other rectangles, our rectangles on the trapezoid, to show how that changes. How the base 

changes.” Meaning A1 was engaged in the activity of trying to quantify the base 

component of a generalized local model by adapting her local model. That is she was 

attempting to generalize the component [side-length of a partition] to an adaptable 

quantity [side-length of any partition] flexible enough to capture the varying base lengths 

across different elements of her global model.  

Drawing on proportional reasoning between the full height and a side length of the 

pyramid, A1 and A2 were able to recognize a 10:4 ratio, but as they began to explicitly 

write a formula for ΔT their lack of a quantity that could capture a variable height caused 

difficulty. When A2 input an H into an expression, ΔT = 4 − "1

2
S, A1 said “H is 10” 

causing A2 to question whether they should use ΔS instead. A1 did not approve of this 

change, saying that ΔS is the “size” of the partition and that “ΔS will be the same for 

every partition.” They could not use ΔS in their expression, because that “would make 

our base be the same for every single partition.” So at this point, while the ΔH 

represented a fixed value, it was not a connection with the notation itself, but a result of 

their choice in global model partitioning. This observation, paired with the inability to 

place one of their defined ‘variables’ into the expression engendered the need for A1 and 

A2 to redefine “S = 10in” to “Height of pyramid = 10in” and “B = 4in” to “Base of 

pyramid = 4in” and introduce a variable quantity “ℎ =	height above ground.” A1 noted 

that this would allow ℎ to adapt to whether they were identifying an under or 

overestimate satisfying an aspect of the need for a generalized local model to adapt to 

these two scenarios.  
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 As A1 and A2 began to discuss the exact structure of the ΔT formula, A2 noticed 

that they had not defined precisely what ΔT stood for. This caused A1 to voice an 

objection to using this notation,  

I don’t know if we should call that ΔT or if we should just call that little W… It’s 

just a measurement of the base. It’s not necessarily, I just don’t know if I feel 

comfortable calling it a rate. It probably is, but I don’t know.  

Just like A2, the use of delta notation was invoking schemes involving rates of 

change, and while her reference to ΔT as a “rate” was inconsistent with my image of 

what a calculus student should view as a rate of change, the disparity between the rate at 

which something changes and an expression which models a changing value was enough 

to make A1 discount the delta notation as inappropriate for their desired use. In A1’s 

follow-up interview, after she described Δ to represent “change in,” I asked her why she 

felt so strongly that they shouldn’t use ΔT, but decided to keep ΔS. Through a few 

minutes of conversation, it became clear that for A1 there was a distinction between “a 

change in	'” which represented a fixed value, and “a changing '” which represented a 

variable quantity; “our B would be different because it was getting smaller, as we went 

up our pyramid… but the ΔS was always the same.” That is across elements of A1’s 

global model the ΔS represented a fixed value, while the expression they wrote for ΔT 

represented a propositional relationship. Therefore giving them the same notation wasn’t 

appropriate.  

Constructing a new variable W to represent the “base based on height” or “frustum 

bases,” A1 and A2 wrote the expression W = 4 − 23

"1
, which A1 noted should be squared 

because the base is “length times width.” This illustrated a small discrepancy in A2’s 
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image that W represented an area versus A1 view that W was the length of one side of the 

base. This distinction did not cause too much difficulty as A1 and A2 coordinated the 

development of their generalized local model by assimilating each other’s precise 

phrasing into their own schemes. Drawing on the quantitative structure for the volume of 

a rectangular prism, [volume]=[length]⋅[width]⋅[height], to construct their local model, 

A1 and A2 squared their new expression for W, and then multiplied it by ΔS because A1 

said they needed “the height of our partition, which we decided was the big height 

divided by the number of intervals.” This resulted in two compatible local models, 

A1:[volume of partition]=[length of partition base]2	⋅	[height of partition] and 

A2:[volume of partition]=[area of base of partition]	⋅	[height of partition], which they 

expressed through their algebraic representation M = (4 − 4ℎ/10)^2Δℎ (Figure 25). 

A1’s observation also illustrated the strong connection between the number of 

expressions in A1’s global model with the number and size of partitions. 

  

Figure 25: A1 and A2's defined variables along with their generalized local model 
for the Volume of a Pyramid 
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Before declaring victory, A1 and A2 decided to “test” their formula by using it to 

identify an overestimate using one partition to “see if we can get 160” (and 0). While 

checking an algebraic formula might just seem like good mathematical practice to engage 

in, doing so also reflects the direct coordination between A1 and A2’s generalized local 

model and the need for it to be generalizable to whatever number of pieces they decide to 

partition the global model into. Having already done the work for 1 partition, they could 

quickly and easily verify this adaptability directly. Making the appropriate computations, 

and excited that their “equation works,” A1 explicitly described what their expression 

measures; “it’s the length times width times the height. So, that way we can find the 

volume of the different frustums.” When I pointed out that length times width times 

height measures the volume of a box and not a frustum, A1 continued, that this was an 

“approximation formula” and that on their diagram they were “drawing rectangles” and 

they would “make more and more rectangles” to make their estimates “more specific.” 

Explaining that the original green lines on their diagram were just their “preliminary 

thought process” A1 and A2 redrew their picture to display that their local model would 

identify overestimates (red boxes) or underestimates (purple boxes) by adjusting the 

variable ℎ in their generalized local model (Figure 26).  
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Figure 26: A1 and A2's updated diagram representing their final local models for 
the Volume of a Pyramid 

Unprompted A1 and A2 reviewed the main task objective and reminded themselves 

that they were supposed to identify an overestimate and underestimate for the volume of 

the pyramid. Deciding to use the sum calculator to identify these values using 5 

partitions, A1 and A2 identified new estimates of 70.4 and 38.4 noting that doing so 

“significantly narrows our approximation.” Unsure of the required accuracy for the task, 

A2 asked “how specific does the pharaoh want his pyramid to be approximated?” 

Because they had already created a general formula for their local model, I prompted 

“what if he wanted to know the exact value? What would we do?” Referencing her 

individual interview from two days prior, A1 immediately responded “oh no, not this 

limit business again.”  

  

A1’s Schemes Associated with Integrals, Sums, Antiderivatives, and Area 

While the primary source of model development was meant to occur during the main 

group interviews, during an individual follow-up interview A1 and I explored her models 
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for integrals and sums constructed through her normal calculus coursework which 

undoubtedly impacted her associated schemes in the main teaching experiment. As 

mentioned previously, a delay in the overall timeline meant her class was already moving 

into these constructs so, in addition to those developed in the teaching experiment, her 

schemes were a conglomeration of her images of calculus constructs developed in high 

school along with topics discussed more recently in class. The following few paragraphs 

detail those schemes she demonstrated through the course of the individual interview. 

In her interview, A1 described a tentative link between sigma notation for a right-

hand and left-hand Riemann sum with the overestimates and underestimates she and A2 

had been identifying in the rover and fluid force tasks. Her schemes for sums included a 

symbol template that involved indices which started at 0 (left) or 1 (right) and a function 

$ evaluated at Y + ZΔ' multiplied with a Δ'. Flipping through her class notes she mused, 

“we either took the limit or the integral,” indicating that there was a link between her 

schemes for sums, limits, and integrals but that this association was more a recollection 

of the order in which they covered the topic rather than a direct association between two 

distinct global models. Finding her place in the notes she identified that they “took the 

limit of the sums,” but that she wasn’t sure how that was related to integrals; 

I remember we did that. And then I'm like, ‘Where did we ever do any of the 

actual limits, though?’ You know what I mean? Like, what does? And then 

somehow we got into integrals. Which the integral is the accumulation. Like, if 

$(') is the rate, the integral is the accumulation. Yeah, because whenever you go 

backwards, the integral you go back. It's an antiderivative, so you would go back 

to like a rate. Okay. So I feel like maybe if we could take that if we could find that 

integral, we could find the accumulation because that's what we're doing now, 
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we're doing accumulation.… Like, it's weird, because this is the part of 

understanding all the concepts or you're trying to, like weave them together, but I 

feel like I still have some roadblocks in understanding how they're all woven 

together. Does that make sense? I'm still trying to process through. Which is part 

of the reason why I'm like, ‘Okay, so we've got that limit, and a sum.’ And then I 

know the integral, I know that's the accumulation, and we take the derivative and 

we get back to, quote, unquote, the original equation, which would have been the 

rate of change. But I can't remember how the limit of the sum relates to that or if 

it even relates to that. 

Ignoring21 A1’s non-standard interpretations of an antiderivative producing a rate of 

change or “tak[ing] a derivative” inside an integral, from this description it was clear that 

A1 has two separate schemes for a definite integral which were not working in harmony. 

On one hand, some schemes were associated with antiderivative processes, while on the 

other she was working with a global model which was tied to some form of an 

accumulation process. While she was able to associate sums (and potentially limits) to 

this second scheme, the first conception clouded the ability to do so fluidly. A1 continued 

thinking aloud about limits of a Riemann sum, which revealed an exactness condition of 

her global model for sums when a limit is involved, “since there is a limit it’s not an 

approximation anymore, it’s the actual,” and that the limit of the left Riemann sum and 

 
 

 

 

21 A1’s coursework had just started covering definite integrals and had not begun antiderivative 
techniques, so her descriptions of the antiderivative process were recalled from high school coursework 
over 6 months prior. Because the teaching experiment was not concerned with antiderivative techniques or 
encouraging a direct link between antiderivatives and definite integrals I did not interrupt her train of 
thought to further investigate these non-standard interpretations.  
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the right Riemann sum produce the “same answer.” This observation of exactness, along 

with her image that both Riemann sums and integrals involved accumulation allowed A1 

to conclude that “[Riemann sums with limits] are related to the integral” because “the 

equation” that comes after the integral sign was an “accumulation equation.” Asking her 

to say more, A1 defined an “accumulation equation” to be the function that defines the 

upper boundary of a graphical area consistent with an area and perimeter conception of a 

definite integral. Working with the specific equation [ = ', A1 was able to write a 

definite integral expression that would measure the area under a curve between 0 and 3, 

including a &' at the end22, and even corrected her earlier derivative vs antiderivative 

procedural confusion. However, connecting her class coursework with the teaching 

experiment tasks she began to wonder, 

But my question now is that I'm like, looking at these things. We already talked 

about, like, we know, I'm fairly confident that [limit of sums and integrals] are 

related. But now I'm wondering, what does this equation look like? Like, how did 

we get from this equation [$(Y + Z)Δ' in the summation] to that equation 

[differential form in an integral]?… I’m trying to remember if we even talked 

about how we get from that equation. I'm trying to look back to figure it out. 

Because, the whole point is how can we get our rectangle slash trapezoids, how 

can we take the integral of that to get the exact [value]?” 

 
 

 

 

22 No specific quantification of "# was mentioned.  
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Having coordinated a relationship between Riemann sum and definite integrals, A1 

now wanted to identify a direct correlation between the local models she and A2 had 

developed in the Fluid Force task and the “accumulation equations” that were a part of 

the symbol template for a definite integral. However, her image that “accumulation 

equations” (and therefore definite integrals) represent graphical areas prevented her from 

doing so. 

Because in my mind, I'm like, ‘Okay, well, we know it's area under a curve,’ but 

then you're like, ‘Well, how do you put a trapezoid on a graph? You don’t.’ … the 

equation can't just be, I don't think at least, it can’t just be the area. I guess it could 

be the area of a trapezoid? I don't know. I'm still trying to connect those dots. 

A1’s inability to coordinate these two ideas exemplifies the difficulty students face 

when attempting to attend to definite integral tasks in which the differential form is not a 

Riemann product. Throughout the teaching experiment, and this individual interview, A1 

had continuously demonstrated a strong ability to reason quantitatively, however, an 

image of an integral as only measuring area blocked her from being able to use an 

integral as a tool to find the exact fluid force as she desired. 

  

Returning to the main group interview A2 also quickly drew a connection between 

integrals and exact values. Because A1 and A2 were a few weeks behind in the teaching 

experiment a definite integral calculator was available at the very bottom of the interview 

page for other groups' use. When I asked about identifying an exact value A2 moved his 

screen to the integral calculator and asked “is that this thing?” while circling his mouse 

around the integral expression. Because A1 and I had already been discussing a link to 
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integral notation, and A2 had clearly demonstrated pre-existing schemes for integration 

as exact values for volumes, I decided to let A1 and A2 pursue that line of inquiry. 

Building on our discussion for appropriate expressions for differential form, A1 asked 

A2, “what do you think we need to put in there as our formula?” He replied that he was 

not sure, but referenced back to the expression they had placed in the sum calculator 

saying he assumed they would put in that formula (their generalized local model). A1 

agreed that they should try using that expression to “see what they get” and whether it 

provided a value “between our left and right sum.” Because I wanted to engender a direct 

correlation between their generalized local model and the differential form, I was happy 

to let A1 and A2 approach this link through a method of trial and error with an 

expectation that the exact value must lay between their two estimates. Demonstrating 

some familiarity with the integral notation, along with an observation that there was a dx 

in the example expression, A2 decided to change the Δ' in their generalized local model 

to a &' when he placed the expression in the integral calculator. This change, along with 

entering the value of 0 and 10 for the limits of integration, resulted in a value of 53.33 

which A1 expressed excitement about (Figure 27);  

Oh, that’s in between [160 and 0], and it’s in between this one too [70.4 and 

38.4]… I wonder how. Let’s see… I think that might work. I think that might be 

what we’re supposed to do… Should we ask the pharaoh? 

This allowed me to inquire if they had already been introduced to integrals in their 

current calculus course and A1 verified they had begun that section earlier in the week. 

She now demonstrated that after this lesson her image of integration was more related to 

an “accumulation” which is just “adding” and therefore an integral was appropriate 
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because they were trying to find “the accumulation of the volume.” When I asked why 

they were pleased with the value the calculator produced a solution between 70.4 and 

38.4, A2 explained that he had taken the average of those two values as a sort of guess for 

the real value, noting that the average value “might be a little bit off.” A1 said she had 

similarly found the average value, but knows you “can’t just use the average” otherwise 

you would “never need to take an integral… the whole point of having an over and 

under[estimate] is that the real [value] is in the middle23.” This indicated that A1 had a 

global model for integrals that included a link to nonlinear variation of quantities in a 

basic model. She added that comparing the integral value to the average was just 

“encouraging” because it was “in the right ballpark.” Following up on this I asked A1’s 

expectations if they were to increase the number of partitions in the sum calculator from 

5 to 50 and she replied,  

I think it would narrow, yeah, narrow it down to closer to what we got with our 

integral. Narrow it down to the exact. Which is exactly what we said, the more 

partitions the closer we get to an accurate approximation. Or the accurate? Yes, 

the real accumulation. It’s not an approximation anymore. 

Although A1 did not directly reiterate her earlier terminology involving limits, she 

demonstrated clear coordination between an increase in the number of elements in a 

global model with the error of her accumulation estimates converging upon an exact 

 
 

 

 

23 Her usage of middle here is ‘trapped between’ and not ‘equidistant.’  
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value. Asking in a more direct fashion I revoiced A1’s mention of “oh no not that limit 

business again,” and asked, “where is the limit in this situation?” A2 drew on a scheme 

for derivatives that involved limits to explain a similar process for integrals;  

So let me go back to that split-screen thing over here, so this is a Riemann sum 

calculator. And as we get closer, as we add more partitions, we're moving into 

like an infinite amount of partitions is I guess how I thought about it when A1 

said limit. And we touched on in class—the limits of Riemann sums, notation, and 

all that. So, whenever we move towards infinity, we get closer and closer to our 

53 and a third, because that's just, like, we're getting more accurate with more 

intervals. So that's the limit. That's the same way, like, the derivative works. As 

you get closer and closer to infinity. You get closer and closer to the actual 

derivative. 

While A2 was not precise in what it means to get “close to infinity,” he did demonstrate 

the existence of a relationship between the refinement of a global model for estimates and 

a global model for an exact value.  

 

Figure 27: A1 and A2's definite integral expression for the Volume of a Pyramid 

Following up on other aspects of the symbolic form for the definite integral, I asked 

A1 and A2 why they put specific elements in the places they chose. Describing their 

placement of the values 0 and 10, A1 explained that the “accumulation [was] only 
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happening from 0 to 10.” That is, A1 had coordinated the limits of integration with her 

global model for estimates in which 0 to 10 represented the full magnitude of the height 

of the pyramid. This full length was partitioned in service of creating estimates using a 

local model which was then accumulated through her global model. The 0 and 10, 

therefore, represented a starting and stopping point for the global model accumulation 

through progressive addition. Specifically, you would begin the global model 

accumulation by identifying an estimate for the first partition at a height of 0. To that, 

you would add the estimate for the second partition, and then the third, and so on. You 

would continue adding estimates for partitions until the top edge of a partition is 10 

inches above the ground.  

A1 continued, “and then the &' is there, because that’s like, Δ' is the change in x. 

And that’s kind of that’s why the dx is there.” I found the phrase “change in '” to be an 

interesting divergence from A1’s, previously consistent, descriptions of Δ' as a “height” 

or “length of an interval.” I was curious if this was just her way of measuring that 

“length” or if the transition to &' in the integral notation was retroactively imposing a 

schema for &' onto her image of Δ'. Bringing attention to this directly I asked, “So, your 

Δ' is a change in, it was a length of your interval, right?” A1 and A2 both agreed, so I 

continued “Is dx the length of an interval?” This caused an obvious perturbation in both 

participants indicating that their current scheme for &' did not include this association; 

A2: Yes, because it’s still… [9-second pause] No, no it’s not. It’s the derivative. 
Or, it’s… 

[2-second pause] 

A1: I think it’s… [7-second pause]. Yeah, I don’t know what it is actually.  
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A2 then expanded on his reference to the &' being a derivative, describing &' as a 

demarcation that a derivative process is complete;  

Whenever we do the derivative of like '#, we always do it and then put &' at the 

end [types “('#)&'” on the shared whiteboard], I guess just to note that this is 

what we’re taking the derivative of. I don’t know if this is right, but I’ve always 

thought of it, like, whenever truckers use the radio, and then they say over at the 

end of it. That’s just, how do you know that we’re done taking the derivative…. 

So I guess this would just notate for me what we’re done taking the integral of.  

Needless to say, this scheme was incompatible with my view for a productive image of 

derivatives and one I believed would directly favor an antiderivative conception of 

definite integrals over a Quantitatively Based Summation conception. I did not want to 

derail the group interview, but A2 and I spent nearly his entire follow-up individual 

interview exploring his conception in more detail.  

As a quick summary of this follow-up interview, I came to understand that throughout 

his calculus coursework A2 had developed two schemas for Δ': the first was consistent 

with calculus concepts often deemed productive in which Δ	stood for “a change in,” 

while his other scheme assigned the phrase “derivative of” along with all associated 

procedures to that same notation. Having never really been faced with a conflict between 

these schemes, A2 found it difficult to be able to describe whether the &' at the end of 

the differential form represented a height or just signified the end of a derivative;  

[the &'] signifies the end. Like we’re done taking the derivative now, and this 

would signify to me that we’re done taking the integral, I guess. But it doesn’t… 

because it means something else [referencing the height from the local model]. 



 

 
 

200 

Maybe it meant something else up here too [motions to where he had written 

('#)&']. I just never thought too hard about it. 

Being familiar with A2’s specific course curriculum, I knew that his instructor spent a 

great deal of class time devoted to illustrating rates of change as proportional 

relationships, Δ$ = [rate	of	change] ⋅ Δ' and &$ = [rate	of	change] ⋅ &'. Therefore, in 

the follow-up interview I was positioned to quickly verify my suspicion that somewhere 

along the way A2 had internalized the expression “&$ = [rate	of	change] ⋅ &' “ to 

represent the phrase “the derivative of $ is equal to [rate of change]” where the &'′] only 

role is to signify the termination of a derivative process. Because this way of reasoning 

about derivatives would directly conflict with A2’s ability to productively view &' as a 

meaningful quantity I spent the rest of his individual interview session addressing the 

issue and being quite explicit that the “&'" within a derivative expression, 45
4'
=

[rate	of	change],	still represented “a change in '.” While he seemed to take on this 

information, I wouldn’t really know if A2’s derivative schemes had been accommodated 

until later sessions24.  

In the group session, I wanted to redirect the discussion away from A2’s 

unconventional invocation of derivatives, so I asked A1 if she thought about the &' 

differently. A1 admitted, “I don't really know why it's there. I don't really think about it, 

 
 

 

 

24 Spoiler: Although this scheme did occasionally result in A2 not ascribing a quantitative meaning to "#, 
A2 never explicitly referred to a differential as representing “the end” of a derivative or integral again. 
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to be honest,” so I followed up by asking what the “(4 − 4'/10)#” represented. A2 

chimed in noting that this was “the equation for the bases at any given height,” which 

caused A1 to speculate, “I mean, maybe the &' is the height, or is the Δℎ…It has to be 

related because otherwise, we don't have the same equation… we're just taking like the 

accumulation of lines25” with A2 adding “Yeah, this is our third dimension.” This 

interaction represented a critical first step in the accommodation to their conceptual 

schema for differential notation. Specifically, the image that a global model in this 

context is an accumulation of volumes required that the elements they were summing to 

also be volumes, even within the structure of a definite integral. This allowed for direct 

coordination between their generalized local model and the differential form within a 

definite integral and promoted a correlation between a Δ' and &' representing the same 

quantity. A2 even tried to replace the &' within the definite integral calculator with a Δ' 

just to see if it would work26. 

Feeling like A1 and A2 had modified their models in the desired ways I provided 

them with the short prepared writeup describing the symbolic form for definite integrals. 

 
 

 

 

25 Based on the coherence of A1’s quantification earlier in the task I believe it’s fair to assume she was 
referring to area in this case and not lines. The partitions within the diagram the pair drew had perfectly 
horizontal lines moving up the pyramid, so imagining the collapse of the height dimension to zero would 
result in only an image of a line rather than an area. I have complete confidence that had I pointed out the 
slip, A1 would have immediately corrected herself.  

26 I had to inform A2 that I didn’t build the calculator to be able to interchange "# and Δ#. Although if I 
were to use the same calculator in future studies, it could be an interesting feature to incorporate.  
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I also provided an example expression that modeled the exact fluid force on a rectangular 

dam from Task 2 so they could associate the notation with their previous activity. 

Following this, I asked A1 and A2 to identify an appropriate definite integral expression 

for the exact fluid force acting on the trapezoidal dam from Task 2. Demonstrating the 

expansion of her local-global model relationship to include the exactness of a definite 

integral expression, A1 observed they just used the formula “they’d already written” 

referring to their generalized local model expression. While there was a little difficulty 

with mismatched parentheses when inputting the expression into the calculator, A1 and 

A2 were able to adapt their expression for the overestimate of the last partition into an 

appropriate expression for the differential form by changing the depth measurement from 

the pressure component of their local model to an arbitrary ', Δ' to &', and identifying 

their “bounds” as 0 and 25. 

Moving onto the next task in the sequence, I asked A1 and A2 to find the volume of a 

sphere with a 6-inch radius. At the start of the task, A1 and A2 felt fairly relaxed, saying 

that “it was kind of the same concept.” Both deciding to use “the volume of a rectangular 

prism, like how [they] did with the pyramid” A2 began drawing a diagram of a sphere 

with horizontal partitions and rectangular prisms for over and underestimates27. A1 

 
 

 

 

27 I immediately knew that A1 and A2’s choice to use rectangular prisms instead of cylinders would not 
result in a correct value for the volume of a sphere. However, wanting this conflict of expectations to 
represent a genuine perturbation rather than one superimposed by an authority figure, I let A1 and A2 
proceed without indication that this local model would not lead to a correct solution.  
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observed that this problem “might be weird” because the symmetry of the sphere 

indicated that their estimates would be “getting bigger and then getting smaller,” so A2 

suggested just finding the volume for half the sphere. A1 agreed, observing they could 

just multiply their volume by 2.  

Viewing this new task as similar to their previous work, A1 and A2 went back and 

copied their generalized local model for the volume of a pyramid and set forth on 

“adjusting” that formula to represent their sphere. A1 and A2’s first attempt at this was to 

literally adjust the numbers in their previous local model, M = ^4 − 23

"1
_
#
ΔH, to the new 

values within the sphere equation, M = ^12 − #3

%
_
#
ΔS. Following the prompt, A1 and 

A2 listed out their interpretations for each component of their local model (Figure 28). 

 

Figure 28: A1 and A2's adaptation of a local model for the Volume of a Pyramid to 
the local model for the Volume of a Sphere 

After defining their ‘factors,’ A2 began writing out the values which would test their 

local model expression. That is she attempted to use their generalized local model to 

identify over and underestimates using a single partition. This led to an issue as their 
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underestimate came out to be 1200	in3 instead of the value of 0 in3 they expected. A1 

recognized that there must be an error in the “proportion,” referencing the 2ℎ/6 element 

in their expression but wasn’t sure what they should change it to. This resulted in A2 

reanalyzing their expression and identifying an issue with their quantification of the 

width of their rectangular prisms;  

So I think if that proportion would work just fine if. Yeah, hold on. We used it in 

the triangles because the rule of similar triangles and stuff. So if the thing was like 

this [draws a chord from the left edge of the horizontal diameter to the top of the 

vertical diameter in the diagram of the sphere], that would work. But since this is 

a circle we gotta figure out something else. 

Realizing A2 was correct, A1 identified that to move forward they need “to figure out 

how to find those lines,” referencing the length of horizontal partition demarcations A2 

had drawn on the diagram. A1 suggested they “start with 12” because that was the length 

of the diameter. To find the length of the next partition’s base they should subtract “those 

little bitty pieces on the edges,” but A1 also noticed that as you traveled up the sphere 

vertically the “pieces” were increasing in size; “look at how much those lines that your 

cursor is hovering over right now are barely any away from each other. And then like 

further up are quite a bit away from each other.” This led A1 to reemphasize A2’s point 

that they “probably should not be using a proportion” because the size of the “pieces” 

which were being deducted from the side length was “not constant.”  

I let A1 and A2 spend about 8 minutes trying to identify a way to quantify the 

phenomena they were noticing into a formula, before stepping in to offer a nudge in the 

right direction. They had already made a connection that they could somehow model the 

width of their partitions using trigonometry but were having difficulty recalling a helpful 
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expression. I suggested they try using the Pythagorean Theorem. Both A1 and A2 were a 

little confused as to how they would proceed using my suggestion, so I followed up by 

drawing a right triangle on their diagram with the hypotenuse a radius length, drew two 

blue lines on their diagram indicating a correlation between the base of the triangle and 

half the length of one of their partitions, and reminded them that they knew the 

hypotenuse would always be 6 inches (Figure 29). With this hint, A1 was able to make a 

connection that they could identify the height of the triangle based on the number of 

partitions which would allow them to identify the length of the blue line. This motivated 

A1 and A2 to return to trying to write a general expression for the width of their  

 

Figure 29: Interviewer’s Pythagorean Theorem hint to A1 and A2  

partitions, however, during this process A1 encountered a conflict with their 

quantification of the height of the triangle and their desire to create a generalized local 

model;  
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If we knew how many partitions beforehand, we would know what our ΔS could 

be multiplied by… But that won't work either. Because that one is always going 

to be like five or four… I don't think that's right. Because like, for our that top 

partition part, or the very first Pythagorean Theorem triangle that we looked at 

with the blue lines. If we wanted that height, that height would be ΔS times 3. 

Because we were taking the height from three partitions and adding those 

together, but we'd still need that whole thing squared, the three heights squared. 

Specifically, A1 was recognized that by relying on the height of each partition to 

identify the height of the triangle meant they would have to preemptively decide how 

many partitions they were breaking the sphere into. Trying to construct a local model in 

this way did not fit within her image of the generalized local model that would flexibly 

adapt to any partition height and could identify any partition’s base length within the 

sphere.  

Refocusing A1 and A2’s attention on their list of variables I pointed out that they had 

already defined ℎ to be the height above the diameter on the sphere. Identifying that this 

solved her dilemma, A1 assisted A2 in writing out the Pythagorean Theorem using ℎ as 

the height of the triangle and acknowledging that they had to “unfortunately” define 

another variable, ' = half the width of a partition, but that “they weren’t going to have ' 

in [their] equation” because they were going to solve for it right away. Doing so they 

were able to quickly identify an expression for a generalized local model of a sphere, M =

`^2a(36 − ℎ#)_
#
b ⋅ Δℎ which they multiplied by 2 to simultaneously capture the 

measurement for the reflected partition at the same time. A1 and A2 asserted that this 

expression must work because it fit into their image of a local model for volume, [volume 

of a rectangular prism-shaped partition]= [length of base partition]2⋅[height of partition].  
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A1 and A2 placed their generalized local model into the integral calculator which 

resulted in an output of 576. Even though they “knew they were right,” A1 wanted to 

check their solution using the known formula for the volume of a sphere28. When they 

identified that the volume of their sphere should have been 288c they realized something 

was not right. Reviewing their work, A1 wondered aloud “where are we wrong” 

searching through each expression in their local model. A1 then asked for a link to the 

sum calculator to check if that would provide a different solution, and, after receiving the 

same answer, concluded that they must have entered the right expression into the integral 

calculator because the exact value was between the two estimates. We were right up 

against the time for the session to end, so I mentioned that “the big, glaring obvious thing 

to me is that there's a c in this one and there's not a c in yours.” This observation caused 

immediate exclamations from A2 of “oh my gosh” and A1 to note that “we weren’t 

trying to do anything that required c though. We were trying to do our square over and 

underestimates.” I assured A1 that the integral they wrote did compute the volume of a 

shape using boxes, just as they intended, but that the shape this would create would be a 

“bubble pyramid,” not a sphere. This characterization was proffered to draw on A1 and 

 
 

 

 

28 The 576 was off by a factor of 2 due to a misplaced parentheses (the 2 in their [length of partition] 
element didn’t get squared). I didn’t catch this during the interview, but because A1 and A2 were extremely 
clear about their quantification process I don’t believe it had any impact on the outcome.  
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A2’s desire for their local model to “respect” the global context and caused A2 to suggest 

that they should have used circles in their local model instead of squares.  

When A1 and A2 returned to this task the following day, A2 set about making sure 

they were on the same page about what local model they were trying to quantify,  

So I'm going to get rid of this square, just to eliminate confusion [erases an earlier 

diagram showing a top view of the partitions with consecutively smaller squares]. 

All right. Then do a new circle, and this will be like our side view like this was 

[motions mouse to the main diagram they had been using]. Okay, so we have our 

diameter, and then we go up [draws a circle to represent the sphere, and then adds 

horizontal partition lines]. And so, these are circles now not squares. Yeah. But 

they're still they still have interval height. 

 

Figure 30: A2's diagrams for Group A’s different local and global models for the 
Volume of a Sphere 

What I found interesting about A2’s sketch of a new diagram (Figure 30) was not the 

added view that they were using cylinders instead of prisms (although this was certainly 

important)—the day before A2 had already added an image depicting a top view of the 

partitions using cylinders which included consecutively smaller circles. What was 

important about this interaction was that A2 was going through full consideration of 

             

   Diagram for rectangular prisms partitions        Diagram for cylindrical partitions  
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whether adjusting the base shape of the partitions would have an effect on the rest of the 

quantification of the local model, specifically the height. This represented an evolution of 

A2’s adjustment process for the quantification of a local model. In the Fluid Force task, 

A1 and A2 would focus on specific elements of their local model without consideration 

for how changing those components may affect other components within their 

generalized local model. By redrawing the diagram from both vantage points A2 was 

making sure they were attending to that possibility.  

As A1 and A2 were constructing their new local model, A2 emphasized an important 

shift in their structural thinking as part of this quantification process. Early in the Fluid 

Force on a Dam task, when working with strings of summed elements as a written artifact 

of their global model, A1 and A2 had factored elements such as the area from their 

expression. As discussed in the previous section, this led to difficulties attempting to 

write a formula as they shifted to a generalized local model. During the Geometric 

Volume tasks, with an expectation of using the online calculators, A1 and A2 were free 

to focus explicitly on their leveraged local model for structure. Not having to write out 

summation notation, simplify terms, or factor quantities to make computational inputs 

into a calculator easier allowed A1 and A2 to more effectively focus on their generalized 

local model in ways consistent with the quantitative structures they were trying to 

capture. For example, by drawing on the equation for the area of a circle, d = ce#, A2 

convinced A1 to square the √36 − ℎ# term they had identified as half the width of their 

base using the Pythagorean Theorem; “We would have to square it since it's… that's c, 

and [sqrt(36-ℎ#)] will be our e right? So, we do have the square that because it's c	e 

squared.” Neither A1 nor A2 attempted to simplify g√36 − ℎ#h
#
 to 36 − ℎ# at any point 
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in the rest of the task, which positioned them to consistently identify what that quantity 

represented within their generalized local model structure.  

After A1 and A2 corrected their integral, I asked why their first instinct was to use 

rectangular prisms. A2 explained that they had used boxes on all the previous tasks, and 

A1 added that even when A2 suggested using an arc length early in the task she figured 

“there could be other ways to do it, but that [rectangular prisms] should work too.” 

In my conceptual analysis, I indicated that an accurate local model would include 

coordination with an error term tending towards zero, however, I did not include this 

conception into the main hypothetical learning trajectory. This decision was made 

primarily due to time constraints and a focus on positioning participants to successfully 

construct a generalized local model. I anticipated that building a productive conception of 

an error term would require a considerable amount of tasks devoted to that one construct. 

While there is curriculum positioned to leverage such an understanding, such as 

Oehrtman’s CLEAR Calculus which draws on an approximation framework as a unifying 

theme across calculus constructs, no participants would be enrolled in courses using that 

curriculum. I did not believe it would be feasible to condense these ideas into a few short 

tasks, however, A1 and A2’s use of rectangular prisms instead of cylinders suggested 

there might be an opportunity to explore the idea of an error term for an approximation. 

Therefore I developed a supplemental activity for A1 and A2 to engage in with the goal 

of identifying the commonality between tasks where their use of an alternative expression 

as the quantitative structure for their local model had produced an accurate global model.  

Summary 
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A1 and A2’s basic-global-local models expanded a significant amount as they worked 

through the Geometric Volume tasks. First, both A1 and A2 demonstrated the 

applicability of the schemes they developed in the Fluid Force task. That is, when 

encountering a request to approximate the volume of the pyramid they were able to draw 

on their parts-of-a-whole global model and anticipation of creating partitions to identify 

an appropriate basic model, the volume of a rectangular prism, with which to construct 

their local model estimates. Having experienced difficulties associated with simplifying 

expressions, A1 and A2 began to format their local model expressions to be consistent 

with the same quantitative structure as their basic model. That is if the basic model is a 

length times a width times a height, then the local model is a length times a width times a 

height, and they would keep the ordering of these quantities. This allowed A1 and A2 to 

communicate effectively about their developing generalized local model expression as 

well as identify inconsistencies with their own expectations of the quantitative structure 

of individual local models.  

In the Geometric Volume tasks, A1 demonstrated that she coordinated Δ notation to 

be a fixed value across elements of her global model, in this case, a fixed height. While 

increasing the number of elements of the global model impacts the size of this fixed 

value, it is always the same within a given partition. When A2 used ΔT to represent the 

base length of a partition, the image that base lengths were not constant across every 

element in her global model allowed A1 to reject this notational usage as part of their 

local model expression. A1 and A2 also engaged in more consistent practices of checking 

that adjustments to certain components of their generalized local model expressions 
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would not have repercussions on the quantification of other elements within the local 

model.  

Due to the introduction of an exactness condition the largest adaptation to their model 

development was to their global models and local-global model relationships. 

Specifically, through coordination of adapting their generalized local model to be the 

differential form, A1 and A2 coordinated their previously finite and approximate global 

model to one that contained an element of exactness. This was closely tied to the 

refinement relationship they had been developing in previous tasks and allowed them to 

anticipate that as you transitioned from approximate global models (sums) to an exact 

global model (integral) through progressively “zooming in” on the real value by using 

more and more partitions to find over and underestimates.  

In terms of local model development, A1 and A2’s decision to use rectangular prisms 

to find the Volume of a Sphere demonstrated an interesting limitation to their previous 

desire to “respect” the global situation in the trapezoidal task. In particular, A1’s 

continued confusion about why using boxes did not work allowed her to be curious when 

you are allowed to invoke a local model that is not a perfect generalization of an original 

basic model quantitative relationship, such as using area of rectangles to approximate the 

area of trapezoids. While I did not expect such a course of action, reflecting on the 

ordering of the tasks within the teaching experiment I am not surprised by this result.  

The most critical episode within Group A’s Geometric Volume task was undoubtedly 

their accommodation to differential notation, &'. When A1 and A2 placed their 

generalized local model into the integral calculator and made the adjustments from Δ' to 
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&', their language surrounding that quantity changed. For A2, &' just marked the end of 

an integral and for A1 it changed from a “length” to “a change in '.” These schemes were 

a part of A1 and A2’s incoming understanding of differential notation which was 

incompatible with a Quantitatively Based Summation conception of integration. By 

noticing this distinction immediately and directly providing an opportunity for A1 and A2 

to be perturbed by these conflicting schemes29, I positioned them to draw on their 

problem-solving activity which had assigned Δ' clear quantitative meaning to coordinate 

that &' must also share that same quantitative meaning. This allowed A1 and A2 to 

engage in further coordination between the generalized local model for approximations 

with the differential form within the symbol template of a definite integral.  

Supplemental Task: Can we use a rectangle to approximate the area of an annulus? 

In the supplemental task, I asked A1 and A2 to try and identify whether or not they 

could use a rectangle to approximate the area of an annulus (Figure 31). In an effort to 

draw their attention to the error term between an approximate local model and a real 

measurement I provided A1 and A2 with diagrams of generalized local model partitions, 

corresponding measurements, and error terms for each task they had already engaged in: 

the trapezoidal dam (Figure 32), the volume of a pyramid (Figure 33), and the volume of 

 
 

 

 

29 By posing the question “So, your Δ# is a change in, it was a length of your interval, right? Is dx the 
length of an interval?” 
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a sphere (Figure 34). Within the volume of a sphere diagram I compared the local models 

for both a rectangular prism and the cylinders they had just completed.  

 

Figure 31: ‘Can you use a rectangle to approximate the area of an annulus?’ 
subtask 
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Figure 32: Error in trapezoidal dam local model 

 

Figure 33: Error in Volume of a Pyramid local model 
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Figure 34: Error in Volume of a Sphere using rectangular prism local models 

Because A1 and A2 showed evidence of proportional reasoning, I hoped to draw on 

the structural relationship between the error of their different local model approximations. 

Specifically, I wanted A1 and A2 to notice within every error expression that accurately 

modeled the quantitative situation, the error term did not contain any single factors of 

their Δ element. That is, I wanted them to identify that the error of a local model cannot 

have a linear relationship with their Δ quantity.  

Despite drawing on A1 and A2’s local models, there was a significant amount of 

information in this activity for A1 and A2 to unpack. Because they did not write the 

formulas personally, A1 and A2 spent a significant amount of time making sense of, and 

asking questions about, the expressions I wrote. However, A1 was able to identify the 

crux of the situation. With a gut feeling, A1 explained, 
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I would say yeah, you could. I mean, if it's an under approximation. My thing is 

like, because last time when we did it with the rectangular prisms with a sphere, 

the problem was as we would have gotten more specific, we would have gotten 

away… our under and over, like, started out as like 1728 and 0… And so like, as 

we would have gotten more specific, we would have, passed 904. We would have 

zoomed in on something that was not 904. Does that make sense?… And so my 

question is like with this under approximation, is it specific? Would it be specific 

enough that as we started narrowing it, we would zoom in on the right one? Or 

would it be like whenever we use those rectangular prisms that wouldn't have 

zoomed in on the right one? 

That is, A1 recognized that as they created a global model with more partitions, it was 

critical to know whether the value the overestimate and underestimate approached was 

truly the exact value they were seeking to find and that this was somehow tied to the local 

model estimates. This need to have both an underestimate and overestimate that can 

“zoom in” influenced A1 and A2 to spend a few minutes discussing how they could 

overestimate the area of an annulus using a rectangle, eventually deciding they would just 

add Δe to the quantity e in the length component of the area. Building back on A1’s 

earlier statement I informed A1 and A2 that the question I was essentially asking was, 

without the use of the integral calculator or using antiderivatives, could they tell me 

whether the definite integral ∫ 2ce&e(

1
	measured the area of a circle with a radius of 5. 

When presented this way there was a direct conflict between A1’s scheme for an 

expression that measures the area of a circle, d6 = ce#, and the integrand expression 

which represented circumference of a circle. This caused her to change her mind, “our 

answer is no,” but that they needed to figure out a way to justify it without using 

antiderivatives. 



 

 
 

218 

A1 and A2 then turned their attention to the other examples in the task, deciding to 

compare errors using a Δ[	] value of 1. This comparison did not really provide leverage to 

move forward in their problem-solving. As they were thinking A1 began reflecting on 

their previous day’s activity and realized she still did not understand why their initial 

solution had not worked; “So, I'm gonna be honest. I'm still like, I'm so confused about 

why what happened yesterday happened. Why it didn't it at least, why didn’t the 

rectangles work?” A2 responded by redrawing a picture of a circle. He then inscribed and 

circumscribing the circle with two squares and explained that “those can’t get closer 

together. Just because, you can't add more and get a more specific than that right there 

[motioned between the difference between the corner of the smaller square and the 

corresponding corner of the larger square].” I took A2’s “add more” to mean making 

more partitions, indicating that no matter how ‘short’ they made their partition as a result 

of having “more” there would still be an error in the base area between the circle and the 

square. This was the exact conception I wanted A1 and A2 to take on, so I revoiced A2’s 

statement while making an explicit connection to Δℎ, “a good thing to point out is that it 

doesn't matter how small you, kind of what A2 said, no matter how small you make Δℎ, 

that difference doesn’t get any smaller.” With this in mind, A1 and A2 returned to the 

new task and, via a suggestion from me, engaged in comparing the errors of the different 

local models to try and identify similarities and differences. Noticing that the trapezoidal 

dam error had a :S# term, that the volume of a pyramid had :S# and :S!, A1 observed 

that the error in between a cylindrical prism vs a rectangular prism had a term of only 

ΔS. This allowed me to introduce a link between A1’s observation and A2’s description 

of the overestimates of squares never getting close to the area of a circle. By leveraging 



 

 
 

219 

specific values for Δℎ I engaged A1 and A2 in examining the non-simplified error 

expressions and discussions about what would happen to the terms which had a (Δℎ)# 

and (Δℎ)! in comparison to those terms that only had Δℎ as they used smaller Δℎ′] such 

as "
#
, "
2
, etc. This aided A1 in observing that those values would be much smaller 

comparatively, and allowed her to conjecture, “that probably has something to do with 

the fact that it doesn't get any closer.” Not wanting to spend too much time on this side 

activity, I agreed with A1 and directly tied the error expression, Δℎ(36 − 12c), to A2’s 

diagram; “Yeah… because the area doesn’t get any closer, you’re always going to have 

an error that is proportional to 36-12c. That’s just the error between the area of a circle 

and the square.” This link enabled A1 to recognize that by calculating an error expression 

for an annulus approximated using a rectangle, they could see whether the delta terms 

“had an exponent.” Working through the computations and canceling like terms, to obtain 

c(Δe#), A1 observed “maybe we can use a rectangle.”  

During some follow-up discussion, A2 made it clear that he had followed and agreed 

with A1’s conclusion that they could use a rectangle to approximate the area of an 

annulus, however, he voiced confusion about “Why in the world you would ever need to 

do this?” Specifically, A2 felt it would be “so easy” to identify the actual area of the 

annulus by deducting the area of a circle with radius e from the area of a circle with 

radius e + Δe, so estimating this value with a rectangle was adding needless 

complication. This observation from A2 indicated that, despite the seeming opportunity 

to introduce a discussion about errors and their relationship to local models, this task 

design had not provided enough intellectual need for A2 to engage in the reasoning I 

envisioned as necessary for motivating these observations. It is possible that A2 simply 
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did not need such an activity because he had realized the previous day that rectangular 

prisms would not model a sphere accurately enough, but I do not think this was the case. 

I did answer A2’s question by quickly reviewing the upcoming oil slick task which used 

a radial density function (promoting the need to measure a circle using rings), and using 

the Fundamental Theorem of Calculus (which A1 and A2 were both familiar with) to 

show that using the ring method was one way to prove the area of a circle with radius e is 

ce#. However, I believe that had I incorporated one of these activities as the motivating 

factor to investigate the ring method, the problem-solving activity involved would have 

been positioned to provide that intellectual need for A2. 

Group A: Energy to Build a Pyramid 

Based on Group A’s basic-local-global model development in the previous tasks I 

predicted the Energy to Build a Pyramid task would be a relatively straightforward 

process. I had an expectation that they would draw on their image of a global model to 

anticipate breaking the pyramid into partitions, that this would inform their need to draw 

on basic models to develop a local model with which they could make a gross 

approximation, and that they would the quantification of their gross approximation to aid 

in the creation of a generalized local model. While my hypothesis was not far from how 

this task ultimately played out for Group A, the early aspects of the task did not go as 

smoothly as I anticipated. 

When I introduced Group A to the Energy to Build a Pyramid task I was familiar with 

A1’s slight anxiety with physics contexts. To ease that burden I provided some additional 

context such as covering the units for Joules and Newtons as well as providing the 

approximation for the acceleration due to gravity, j ≈ 9.8	l/]#. Upon receiving this 
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additional information, A1 began to dissect the expressions provided in the main prompt, 

m = n ⋅ & and n = o ⋅ &, to decide what pieces of information the task provided versus 

what they needed to find; “So, we have our height, or we have our we have our vertical 

distance. We have j, so, we need our mass.” Notice that at this early stage, due to her 

unfamiliarity with the concept of energy, A1 was not viewing vertical distance as a 

variable quantity. Instead, the & in the equation represented the 146m height of the 

pyramid. A2, on the other hand, was more comfortable with the context of energy and 

had constructed an image of the pyramid being built one stone at a time. Anticipating that 

he would need to identify “how high off the ground” the stones were a part of the 

quantification for energy, A2 was attempting to identify a way to figure out the exact 

height of each stone layer. That is, there was an interrelationship between A2’s image of 

a pyramid built in layers, that these layers were at different heights, and that it takes more 

energy to lift a stone to a higher layer. By reasoning about this quantity in two different 

ways, A1 and A2’s discussion about possible ways to solve the task was not progressing 

in a productive way. A1 wanted to plug values into the basic models and A2 wanted to 

figure out how many stones were in the pyramid. A discussion over whether & 

represented a variable distance came to the forefront of the conversation about ten 

minutes later when A2 observed that they “still need[ed] to find vertical distance.” A1 

objected that this would just be the height of the pyramid, but A2 defended his claim 

noting that “not every stone was carried 146m high… because if it was just at 146 that 

means the pyramid would sit up here on the two-dimensional plane and it would just be 

like all spread out at that height.” The depiction of a whole set of blocks comprising the 

pyramid being 146m off the ground aided A1 in recognizing & as a variable quantity, and 
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positioned A1 to “see why [they] need the number of stones.” However, A1 thought they 

could “do it in a different way,” because if they were not provided the number of stones 

in the prompt then they “can probably do it without.” A1 went onto suggest that for this 

prompt maybe they were just supposed to just find a “massive overestimate and a 

massive underestimate” and that they would be provided the number of stones after they 

completed that step because “whenever you put in the layers; that’s kind of like 

partitions.” However, the anticipation of making partitions positioned A1 to draw on her 

local-global model relationship to suggest developing a generalized local model; “we 

don’t need the number of blocks if we’re chopping it up… we could just make a formula 

for the base.” Beginning the quantification for their local model A1 drew on a 

quantitative structure for mass as part of the basic model for force, 

[mass]=[density]⋅[volume]. The need to construct a local model involving volume for a 

pyramid reminded A1 and A2 of the Geometric Volume task. A2 observed, “So, just like 

before, we're gonna make our underestimate a rectangular prism [draws a diagram of the 

pyramid with a generalized underestimate partition]. Okay, the overestimate is also 

rectangular prism [draws a generalized overestimate partition].”  

After spending some time computing a “massive” overestimate for energy A1 

reviewed their string of expressions and noted;  

I think I mean, all we need to mess with is this mass formula. Like, it's like, 

obviously, our force, we can do mass times 9.8. So all we have to figure out is the 

mass, and then plug that into our bigger formula. 

In other words, as A1 was envisioning making a generalized local model she was 

attending to which of the quantities in the overestimate computations would need to be 
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adaptable. Recognizing that the & component of the energy expression was the element 

that corresponded to the different local model overestimate or underestimate, A1 

narrowed in on the mass as being the quantity that must contain the Δ element. A2 

disagreed because “all the mass information was given,” since density was provided and 

they could identify the exact volume that they should “change distance.” A1 attempted to 

go with her partners’ suggestion, but by assuming a fixed mass she immediately ran into 

an issue when she envisioned finding an overestimate using two partitions;  

If we do 73 and say that's like an overestimate for our first partition, and then we 

do the same thing times 146. That's going to give us like, an even bigger number 

than what we have right now. 

This conflict within A1’s local-global model refinement relationship caused her to 

reassert, “I think we need to split our mass up for like, this is the first partitioned mass 

and this is the second partition mass.” 

An important note I would like to address is that when A1 and A2 made their 

“massive” overestimate for the amount of energy required to build the pyramid, they 

made their computation by drawing on a local model which used a rectangular prism as 

part of the volume component. They did not articulate their basic model when they made 

their volume computation, so I am unsure if this was a conscious decision or not. In either 

case, when A2 had mentioned making partitions using rectangular prisms, A1 wanted to 

adjust their overestimate computation to reflect this. Oddly, when they realized that their 

computation already represented the volume of a rectangular prism they decided to ‘fix’ 

this solution by dividing it by 3 so that the volume would be exact. I do not know what 

prompted this decision, but the desire to use exact volumes continued to permeate the 
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discussion. Specifically, when they were trying to write a general expression for the mass 

component of their local model A2 suggested identifying the exact volume of the bottom 

partition by subtracting the volume of the top partition from the volume of the entire 

pyramid30. I am honestly unsure what prompted A2 to revert to this way of thinking. It is 

possible that this was a result of the issue that arose in the volume of a sphere task and 

supplemental task, but when I asked A2 about it he was unable to recall what he was 

thinking when he made this suggestion.  

When A1 and A2 realized that there wouldn’t be an easy way to generalize finding 

volume in this way, A1 suggested they look back at their old work to aid them in finding 

the different bases for their local model; 

Okay. So yeah, this is good we use this is where we use the proportion that I tried 

to use on everything since then… see we do need those boxes. So, we need to get 

our different bases and find a formula for any number of partitions. 

Recalling their earlier use of proportionality, A1 identified an expression for the width of 

the pyramid at a height ' above the ground to be ""('
&!
.	This quantity wasn’t quite correct, 

actually representing the width of the pyramid at a vertical distance ' from the pyramid's 

peak, however, I did not intervene hoping that something in their problem-solving would 

cause the issue to arise naturally. At this point A2 gave an excellent articulation of their 

 
 

 

 

30 Particularly interesting as A2 was the one to suggest the use of rectangular prisms to make 
approximations. 



 

 
 

225 

construction of a generalized local model by drawing on the quantitative structure for the 

volume of a rectangular prism; 

Good. Okay. So that's proportion, then we can insert it into, this will give you the 

base for anything. So, before we like, move on from that part. The base is so that 

we can find the area of the square of the prism. So area equals 115 times ' 

divided by 73, and that's going to be squared. 

In a bit of a light-hearted moment, when A1 and A2 recognized they would need to 

multiply this expression by Δ', A2 flipped back a few pages to find the delta symbol 

since they had been copy-pasted it in for each use and A1 joked “Let's see, we made it 43 

minutes without finding our delta.” While made in jest, this comment does indicate that 

A1 and A2 had developed a sort of expectation that these tasks would always involve a 

quantity which they would label with a delta symbol which, so far, had always 

represented a height of a partition. Moving on, A1 and A2 worked together to find the 

rest of the generalized local model expression. The following interaction allows for a 

glimpse into how A1 and A2’s current local models allowed for them to quickly draw on 

their local model, [energy to lift a partition to 4’th spot]=[density]⋅[volume]	⋅ [9.8] ⋅

	[distance to get to N’th position], to construct their generalized expression. However, it 

also demonstrates a lingering limitation in their ability to coordinate their variable 

quantity ', which they had defined to be the height above the ground, with a way to 

measure the position of an element in the global model; 

A1: So cool. Now we can find our mass. This is good. 

A2: So mass, maybe 2000 thousand times this monstrosity. 

A1: Okay, and so now to find our force, we just multiply all of that by 9.8. 

… 
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A1: Okay, cool. So yes. Now our energy 

… 

A1: Also by Δ'? Like another Δ' don’t you think? 

A2: Energy is force times distance off the ground? So I would assume. 

A1: Oh, off the ground?  

A2: Off the ground, yeah. 

A1 So, what should we do? We can't just do 146 minus Δ', that won't work. We 
have to do. It's like Δ' times 4, but we don't want to put 4 in there. 

A2: Z? 

A1: So Δ' is like, I have the height of our intervals and 4 is like the number of 
intervals. So like, if we said two times Δ', we'd have, like, the second partitions 
off the ground? Well, we probably could throw 4 in there, honestly, because 
that's easy enough to know how many intervals we're doing. 

A2: What have we been doing? 

Int: Usually, if you’ve had an Z times Δ' you've just been making that an '.31 

A1: But that won't work. Because x in our problem right now is height. And so if 
we do, like say our height right now… 

A2: It’s always height. 

Int: I'm having trouble keeping track. Are you talking about the height from the 
top of the pyramid to the bottom, or from the bottom of the pyramid to the top? 
Because those are two different measurements. 

A1: The bottom to the top. 

A2: So ' works just fine. 

A1: Oh. Yeah, it does. Okay. 

 
 

 

 

31 A2’s reference to an index % caused me to confuse Group A with Group B who had been routinely using 
%Δ# notation in their problem-solving.  
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A2: Is that right? Just that? 

A1: Yeah, I was definitely overthinking it on that one.  

This indicated that while A1 and A2 were defining ' to be a quantity in the sense that 

it could represent different heights between 0 and 146, they weren’t really thinking of the 

' as a dynamic element within their generalized local model. It was simply a means for 

identifying the width of an arbitrary partition's base. To address this I include a 

supplemental activity at the end of their session, which I will cover in the next section. 

With their final, slightly flawed, expression for their generalized local model, without 

performing their usual check against their initial under and overestimates, A1 and A2 

immediately placed the expression into the derivative calculator. Recognizing that the 

issue would not arise naturally, I drew A1 and A2’s attention to the error they made in 

quantifying their local model side-lengths by pointing out that if ' represents the height 

above the ground, then at a height of 0 their equation says that the length of the green line 

in their diagram (representing the width of the pyramid) would be zero. Realizing that 

“'” in their formula should measure the distance from the top of the pyramid to that 

green line, A1 rewrote ' as 146 − ' and corrected their expression in the integral 

calculator. 

Supplemental Task: Do These Integrals Measure the Energy to Build a Pyramid? 

In their teaching experiment, Group B solved their Energy to Build a Pyramid task in 

an interesting, but highly unexpected, way. Believing that having A1 and A2 examine 

Group B’s final definite integral expression would position them to develop better 

coordination between a variable quantity ' and a differential quantity &' in their local 
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model, I presented the expressions in Figure 35 in their individual sessions32 and asked 

“whether these definite integrals made sense for this task” and “what exactly the ' was 

measuring in each expression.” In my presentation of the definite integral expressions, I 

made sure to keep the overall structure of the local model consistent with the expansion 

of the energy expression, m = n ⋅ &. 

 

Figure 35: Group B's definite integral expression for the Energy to Build a Pyramid 
task (black) along with an adapted expression (red) 

When A2 was considering the first integral, he found himself unsure of “what exactly 

is going on here,” but by coordinating the basic model and his own local model, [energy 

to lift a partition to a height ']=[density]⋅[length of partition base]2⋅[height of a 

 
 

 

 

32 For both group members I initially only presented the first expression in Figure 35 which was Group B’s 
actual solution. I created the second expression in A2’s interview because I believed he’d be able to quickly 
identify what the # in the second expression measured despite difficulty with the first. I also presented the 
second expression to A1 after getting her initial thoughts on Group B’s solution. 
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partition][acc. due to gravity]⋅ [distance partition traveled above the ground], he was able 

to identify that “2000 is definitely density” but, 

they're doing 230 minus ', which assumes ' is their height. But I guess that 

doesn't have to be the case. That's not the case. What are they doing is they're 

squaring this, like it's their base area. So our integral we did our area is the 

proportion of our base area. And so they did it by subtracting x. But I'm not sure 

what they're calling x.  

I was not surprised that A2’s initial inclination was to superimpose his own 

quantification of height above the ground onto the variable ', but his image that the 

second element should represent an area of a partition was not compatible with the 

expression 230 − '. This allowed him to conclude that ' must represent some other 

measurement although it was not immediately obvious what. By drawing on the limits of 

integration, 0 and 230, he concluded that ' must have something to do with the side 

length, but still could not coordinate 230 − ' with what he concluded must be the length 

of the base of a partition; 

Okay. So they're trying. I guess over here, ours is trying to find the length of a 

base at a specified height. And their equation is looking for the height at a 

specified base length [draws a diagram of a pyramid].… So they have, like, we're 

always trying to find our green line here [draws a line horizontally midway up the 

pyramid]. So, we do it based off of our height, which is our red line. So they are 

saying that if we have a base, that is, let's say we want to find what the height is at 

a base area, or base length, like the width of one side at x equals like 30. Right? 

So then. Why would they? Why have they subtracted the 30 though? 

As I mentioned, Group B’s local model construction was unexpected. As A2 

pondered, I realized that although he had clearly been able to coordinate how one would 
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develop a local model using a base length rather than height, identifying that ' was the 

negative image of his green lines (i.e. ' represented the amount of base length deducted 

from the full width) was likely too big of a stretch to recognize in someone else’s work. 

To capitalize on his productive interpretation, I wrote the second integral in which ' did 

represent a base length and asked him to interpret its meaning instead. His response was 

instant, 

So this would be the base length. Okay, so this whole x squared represents the 

base area, and to find volume, you have to multiply by height. And I guess that’s 

this proportion. Okay, so this makes a lot more sense. But how is? I just don't 

understand what this one. Like this [circles the second integral expression] makes 

sense to me. This is force due to gravity or acceleration due to gravity is the 9.8. 

And the 2000 is your density. And this is your area, which means that this is your 

height. Which means that this together is your volume…. And they're trying to 

find mass in the beginning. Right? You do mass times your volume, or density. 

Density times volume to get mass is what we decided. So that's what this whole 

part is, is the mass and the mass times acceleration due to gravity to get force, and 

the force times distance to get energy and this distance is the vertical proportion. 

The ability to coordinate an alternate quantification of a definite integral through its 

quantitative structure indicated that A2’s symbolic form for integrals had incorporated 

the basic-local-global model relationships which characterize a Quantitatively Based 

Summation conception of integration. 

Returning to the first integral A2 was still unable to quite identify what ' measured, 

although he firmly stated that the (230 − ')# must be “a base area” and "2%
#!1

' “has to be a 

distance.” Asking if I would tell him because he was “really curious,” I explained that it 

might help to think about what the endpoint values for ' would represent; when ' is 0 the 
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side-length is 230 and distance is 0, and when ' is 230 the side-length is 0 and the 

distance is 146, so you can find which green lines that would represent on the diagram, 

the lowest and highest respectively. This discerption enabled A2 to recognize that if he 

were to draw a generalized partition on the diagram, the top edge of the rectangle not 

inside the pyramid was what ' measured.  

Unfortunately, A1’s interpretation of the expressions did not demonstrate the same 

coordination with her symbolic form for definite integrals. Specifically, A1 recognized 

that the change in the limits of integration from 0 to146 to 0 to 230 represented a shift 

from ' measuring height to ' measuring side length. However, I believe a preexisting 

scheme involving integration along the y-axis prompted A2 to rotate her pyramid 

diagram so the base ran along a vertical axis which she then partitioned horizontally 

(Figure 36). That is, A1 has an association with changing the limits of integration to be 

the ‘other’ type of measurement in a situation that is linked with a graphical 

representation for finding an area where horizontal rectangles, rather than vertical 

rectangles, are employed.  
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Figure 36: A1's rotated pyramid partitioned along with the base measurement 

Attempting to draw A1’s attention back to the context of this particular task and the 

implied quantification involved, I asked her whether or not this would work because 

when she and A2 had discussed the task they said that it takes more energy to take things 

to the top of the pyramid, so if you were to divide the pyramid in this way would it 

actually measure the energy required to build that piece? This question made A1 start to 

evaluate the quantitative structure of the differential form in comparison to her own local 

model. While A1 was able to make some connections, such as the links in the density and 

gravity constants, but in attempting to coordinate the quantities in the differential form, 

her own local model, and the rotated diagram A1 was not able to meaningfully discuss 

what the other elements represented.  

Believing that maybe she would have better luck with the second expression I 

switched focus. She spent some time trying to figure out why the proportion was inverted 

from their expression. As she made her computations off-screen she said in a surprised 

tone, “x is a base. A base of what?” I had been keeping notes for her on the shared 

whiteboard, so I asked, “x is a base? Is that what you said?,” which made A2 attempt to 

reason out what her computation implied,  

Well, it's like, it has to be. Not necessarily a base because. Yeah, so like because 

there's an x squared, and the only reason we need to square anything, at least me 

and A2’s equation was because it’s side-length or like a base. Like we squared it 

to make a base for our volume. 

Working from here A2 was able to rationalize what each element within the 

differential form represented by coordinating it with her local model. However, when she 
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attempted to demonstrate these values on the diagram it became clear that she was not 

fully drawing on the last element in the local model as being [height that a partition was 

lifted] but rather just [height to the top of the partition].  

A2’s desire to partition along the base remained consistent throughout her interview, 

even when rotating the pyramid to have a horizontal base she drew vertical partitions. 

Her image of the partitioning process also remained resilient to evaluating partitions at 

specific values for ' such as 0 and 230. This told me that in addition to graphical imagery 

which prompted the initial 90-degree rotation, A2 had also developed a strong 

coordination between the limits of integration representing a length or distance and that 

partitions must be created by chopping that length into segments. To use the same 

partitioning method, but quantify it in a different way was not possible.  

Group A: Grading Definite Integrals – Mass of Oil Slick 

Due to a scheduling issue, A1 and A2 started task 5 individually and then gathered 

together to finish the task later in the week. Each had slightly different approaches to 

starting the task. A1 wanted to write her own definite integral first and then compare it to 

the other solutions, while A2 jumped into evaluating the definite integral expressions by 

trying to recognize whether the differential form represented the right type of expression. 

 When evaluating an expression of the form 

p [density	at	e][expression	for	the	area	of	a	circle	with	radius	10000][&e]
"11111

1
	

A2 identified a basic model [mass]=[density]⋅[area]. As he began to identify whether it 

was an appropriate expression A2 observed, 
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I'm wondering I guess, if this 10,000 is, or should be noted by e, because this 

[motions mouse at the variable e in the density equation] is variable. And since 

this [motions to the limits of integration] is the, these are e values, because it's the 

radius values… Yeah, because this e value [motions to the 10,000] that would 

make you only be able to put in 10,000 for this e in the denominator [of the 

density expression]…  

While there were multiple issues with this particular expression, what allowed A2 to 

reject it as a viable candidate was that a local model which produced the expression 

would not be adaptable to a varying radius component in both the density and the area 

components. Recognizing that the next expression was the same exact values with the 

constants “pulled out” of the integral, A2 concluded that the 10,000 should still be an e. 

In addition to the need for adaptability, A2 demonstrated that the differential form had to 

have an e somewhere in it with an image that without the variable e there would be no 

need to go from 0 to 10000. 

As A2 moved on, a pattern emerged in which he was primarily attending to the 

structure of a basic model and not a local model. This was particularly interesting when 

he inspected a correct, integral of the form ∫ 	 (1
"07

⋅ 2ce&e"1111

1
; 

This is the density, and this 2ce	is circumference. Right. So that's interesting. It's 

not area, so I'm not so sure. No, that shouldn't. That shouldn't work…. well. It 

gives you sort of circumferences from zero to 10,000. I guess that works. For 

circumferences, for radii from 0 to 10,000. I guess that would not work. I don't 

know. I'm gonna give it a yellow box. 

With the image that the integrand should represent a mass, which is density times 

area in this case, A1 was conflicted because the second term he was considering was a 
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circumference and not an area which clearly did not match the basic model. However, 

when he conjured an image of an infinite number of circumferences he could envision 

these concentric circles as an aggregation of elements within the interior of a circle—not 

as an accumulation of a quantity. This type of approach is not uncommon, however, it 

certainly did not reflect A2’s inclusion of the differential quantity when he evaluated 

Group B’s integral in the supplemental task.  

As A2 continued, he came across an expression of the form ∫ (1

"087!
"1111

1
&e which he 

rejected; 

I don't think that's right, and I'm not even sure why other than he doesn't have like. 

So I guess I'm probably comparing this against the standard of what I think should 

be right. I'm imagining integral from 0 to 10,000… 50 divided by one plus R, 

because that what's given to us is the density formula. And then, as I said up here, 

and M has to equal D times A, like we said originally, so mass equals density 

times area. So I think that you should then multiply by ce#. 

That is, when A2 was constructing his own definite integral expressions during the 

teaching experiment the differential represented a meaningful quantity, but not when 

evaluating preconstructed integral expressions. This marked the end of A2’s session, so 

in the next few paragraphs, I will cover A1’s progress through the task. 

When A1 started the task she decided to write her own integral expression first which 

she could use to compare to the provided examples.  

Our integral needs to be density times area … and we have a density 

equation…Now we need a, we need to write an area… So the area of a circle is 

ce#, which is good because we have e in our problem…. So we should have a 

mass because that would be density times an area. At least that's what I'm 



 

 
 

236 

thinking. And then let's see if we're looking to find mass….then our accumulation 

equation is just those two multiplied… Okay, bounds are from zero to 10,000… 

Similar to A2, A1’s desire to match the quantitative structure for mass led her to draw 

on the corresponding algebraic expression for density (provided) and area of a circle, 

however, she was not really envisioning a local model and did not mention partitions. 

Indicating that the expression she just described,∫ (1

"07

"1111

1
ce#, was somewhere on the 

whiteboard prompted A1 to express uneasiness with there not being a differential, 

So we need to put a &e	at the end, but then I was thinking. I was like, well, 

whenever we wrote our other equation like we had the :' in there already, or :ℎ, 

and that's what we changed. Whereas for this, I feel like I'm kind of just like, 

throwing the &e	in at the end. 

The coordination between the differential and the Δ notation which represented a 

physical quantity was enough to cause A1 to pause and reevaluate her approach. 

Specifically, she asked herself “what’s going to be changing in our formula?” Observing 

that the “obvious” answer is the density as the oil expands along the radius, so “the radius 

is what’s changing in the formula.” This changing value that A1 was trying to identify 

was the motivating factor for why there should be an integral in the first place. In 

explicitly identifying that quantity A1 was trying to anticipate how she could partition the 

situation so that the different densities could be captured.  

Deciding to develop in an explicit local model, A1 began a 30-minute long 

quantification process which required a number of interventions. Specifically, despite 

knowing that she could not just “stick” the &' or Δ' onto the end of an expression, she 

continued to draw on the quantitative structure for mass which involved an area 
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component and the obvious area of a circle was ce#. I was able to aid A1 in confronting 

this assumption by having her attend to the units that would be involved in each quantity. 

A1 was confident enough to assign a unit of meters to the differential, so when there was 

an extra component of mass in her definite integral expression she knew there must be 

something wrong with the area, but was unable to conceptualize what this might be. In 

post analysis, I identified this issue to be a non-recognition that the elements of her local 

model were overlapping. Recalling the work she and A2 had done with the supplemental 

error task, A1 returned to that page to observe that she could use circumference times a 

Δ'	to obtain an area. Finally arriving at an expression ∫ (1

"07
⋅ 2ce&e"1111

1
 A1 checked the 

units for each element of her local model to match her image that the differential form 

should represent a partition of mass; “then we have kilograms per meter squared times 

meters. And those will cancel. And we'll just get kilograms. Which is good. That’s what 

we want.” 

Once A1 fully constructed a definite integral that was consistent with her image of a 

basic-local-global model relationship, she was able to draw on this structure along with 

an image of an appropriate local model to quickly classify the rest of the definite integral 

expressions. This included a need to have a differential quantity in the differential form, 

otherwise the integral was “incomplete,” that e needed to be a variable quantity within 

the circumference element of the local model because there “needs to be a way for the e 

to change along with the &e, and that the integral sign marks the beginning of the 

elements you want to accumulate so any varying quantities cannot be factored out front 

of the integral sign. When A1 was confronted with local models which did not conform 
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to her same quantification, such as ∫ (1

"07
(c(e + &e)# − c(e)#)"1111

1
, she explicitly 

constructed a diagram of the corresponding local model to identify that the area of the 

ring in this definite integral was being measured by finding the area of an outer circle and 

then deducting the area of an inner circle. However, her image of the symbol template for 

an integral involving a single differential made her hesitant to conclude that this was an 

appropriate integral; “ 

I guess it actually does work when they write it like this. But also this is &e 

squared…I mean, the &e can be squared, because we're. So, I think this one's 

okay. Because it gives us the area of each ring and multiplies it by the density. 

Which is what we want it to do. Like that's what we did with our 2ce, we got an 

area of a ring, then we multiplied it by density. And so I'm thinking this one's 

okay. 

That is, A1’s desire to connect the differential form with an appropriate local model 

superseded an image that a definite integral can only have one differential term.  

When Group A gathered together for the next session A1 described her solution 

process to A2, which he said he understood. To draw a connection between A1’s 

explanation and A2’s initial reasoning, I pointed out they both began the problem in very 

similar ways—thinking about mass as density times area—but that A1’s inclusion of the 

dr allowed her to see that the expression could not be correct because the resulting units 

did not represent a mass. Then I emphasized that in her final expression the 2ce&e was 

still an area, so it matched the structure they wanted to find. Because A1 had gone 

through the entire task already I decided to move on to the next problem in the teaching 

experiment. 
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Group A: Design a ‘How-To’ Guide for Definite Integrals 

A2 began trying to identify what a definite integral was and commented, “I don't even 

know. I can differentiate between indefinite integral, but we've done so many different 

things with it that I can't I don't know how to like conceptualize the entire subject, like, in 

a couple of sentences,” which I felt was a pretty accurate reflection of the task I had taken 

on with this project. Recall that the point of this activity was not to evaluate the final 

product for correctness, but to engage A1 and A2 in the act of reflecting and generalizing 

the activity they had engaged in over the previous weeks. This means that the primary 

concern of this section was to map their evolving definitions and instructions through 

their constant revision of phrasing, word choice, and the order in which the constructs 

activated relevant schemes.  

As A1 and A2 began to define what an integral was, they had difficulty finding the 

right word to use to note that an integral represents an accumulation process. They 

decided to begin by defining “the formula family for finding the exact accumulation of a 

quantity/value/thing/object.” By “formula family” they were referring to the symbolic 

template which was adaptable to be applied in multiple situations. Not sure exactly how 

to improve their definition, A1 suggested “So, maybe if we talk a little bit about how it 

works that will help us like make our definition better.” Switching to this mode of 

reasoning A1 coordinated the need for a definite integral being tied to variability; “we 

could say the exact accumulation of a changing. It's like, we always include something 

that's changing… like, equation for finding the exact accumulation of a changing 

quantity?” However, A2 was not completely satisfied with this classification because the 
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integral does not “find the change” in a quantity, it finds the “exact value,” even though 

they “use changes” in the form of &e, &ℎ,	etc.  

Continuing to describe how an integral works A1 voiced her evolving conception by 

first drawing on her local-global model relationship, “we take a formula for a small piece 

of what we're trying to accumulate like we take a small part and we add those up. Like 

that's what the integral is. So we could say, ‘using tiny pieces of the whole thing’…” 

which conjured images of physical objects. Feeling like this was not generalized enough 

A1 had difficulty choosing the right phrasing because a definite integral is “not 

specifically for area or volume” which caused A2 to suggest “partitions of the whole.” 

A1 agreed was a good way to phrase it. Prompted to describe a local model by this image 

of elements within a global model, A2 typed “Using partitions of the whole added 

together to approximate” which caused A1 to object because a definite integral “is not 

approximating.” A2 defended the usage because “the basis of integral integration is the 

Riemann sum things” which allowed A1 to also identify that the basis of their global 

model were these local model elements. Wanting to capture the exact nature of a definite 

integral A2 continued typing “approximate the value of the whole with infinite partitions 

creating an exact value.” Reflecting on their sentence A2 observed that “it seems 

counterintuitive” because “we’re using approximations” to find an “approximation of the 

whole thing, infinitely.” The task setup asked A1 and A2 to try and describe this idea to 

someone who had never taken a calculus class before to dissuade them from just drawing 

on calculus jargon, but as a result, they found themselves tripping over how to 

incorporate a limit idea into their description. Specifically, they wanted to capture how 

creating more partitions led to the “exact” answer, so they changed the “infinite partitions 
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creating an exact value” to “increasing partitions that move toward the exact value of the 

whole.” 

When trying to define the quantities which comprise a definite integral represented, 

A1 tried to distinguish between a variable, ', and differential quantity, &'; 

So when we make a partition, we're making some sort of shape in our thing. So 

we have a quantity that's like always going to be changing, which is the &' or 

whatever variable we're using for that problem. Right? And that is normally like 

it's a set number because like, it's the same for each partition whenever we make 

partitions like because it's the length… for each Riemann sum we calculate, it's 

the same for that for one Riemann sum…. So it's hard to explain that the dx is 

changing, but it's not changing at the same time. You know? 

That is, prompted by her local-global refinement relationship, A1 was attempting to 

describe a dynamic relationship between the differential quantity &' and the accuracy of 

the approximation.  

At this point, A1 and A2 decided to move on to the second task to see if would help 

them write a better description. This second prompt asked A1 and A2 to write general 

problem-solving guidelines someone has to go through to solve a novel definite integral 

task which engaged them in explicitly reflecting on previous tasks. Identifying that they 

usually identified the variables and formulas from the task prompt their next step was 

usually to draw a picture and envision “what the shape of the partitions will be.” Through 

this particular phrasing, A1 and A2 were identifying that can use the context within the 

prompt to identify a varying quantity which will promote a partitioning in a specific 

order.  
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Flipping back to the Energy to Build a Pyramid Task to recall what steps they had 

taken, A2 noted that this task “was different because we had to go inside of four 

equations” in which he was referred to the multiple quantitative relationships they had to 

draw on to write their generalized local model expression (e.g. m → n ⋅ & → o ⋅ j ⋅ & →

M ⋅ x ⋅ j ⋅ &). A1 observed, “normally we have to write some sort of equation to help us 

find… the measurements of the partitions as they change.” In this reflection, A1 and A2 

were observing that as part of the quantification of their generalized local model they had 

to draw directly on the structure of the basic model along with other algebraic 

expressions as part of that process. 

Building from this basic-local model relationship for structure, A1 appended 

coordinated a basic-global model relationship for structure,  

Maybe we should have a step that talks about, like how we have to think about the 

integral. Like, for example, if we're doing an area, we need to have the area 

formula. I don't know how to write ‘decide what quantities need to be in your 

integral design.’ Decide what the integral is supposed to be measuring.  

Considering the differential form, A1 asked A2 to add something to the partitioning 

section of their write-up specifying a need to explicitly identify “what’s changing” so you 

can find your &'. Because A2’s differential scheme did not share the same dynamic 

property when A1 referred to a “changing” quantity he envisioned the '. Drawing on the 

same symbolic template he demonstrated in the previous task which did not give 

quantitative meaning to the differential, A2 wrote out a new step: "Add changing variable 

in the notation d(x).” A1’s need for the generalized local model, which contained an 

inherent differential quantity, to have quantitative meaning caused her to object,  
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My only issue with that is that normally… when we're writing the equation for the 

size of the partition, that already has the &'. Does that make sense? So that's why 

I'm like, I want to make it clear, because I know that's normally it’s a really 

important step for us in writing our integral is deciding what is changing and 

where how that relates to the partitions measurements, or size, or whatever we 

want to call that. 

Catching on to the different usage of “changes” in their language, along with his own 

image of a generalized local model, A2 revoiced A1’s statement into his own words “So, 

&e changes when N changes, the number of intervals, but e changes as you switch 

partitions. So we have to recognize, this is so weird.” Having difficulty identifying a 

succinct way to describe this they left it to be an aspect of the more general “write an 

equation” step which referenced the development of a generalized local model. 

Expanding on this step A2 also reflected on some tasks requiring the quantification of the 

local model in terms of the variable quantity, ', so they added, “solve for everything in 

terms of one variable.”  

Turning their attention to the limits of integration, A2 commented that defining these 

values was difficult because “it depends on the problem,” specifically commenting on the 

different types of quantities the limits of integration could represent (e.g. heights, depths, 

radii). During this discussion, there was a reemergence of A1’s chopping up and 

graphical conception between the limits of integration and the differential quantity, but 

the pair ultimately decided to just say “Set the limits of integration as relevant quantities 

for the whole being measured and the employed variables.” By this phrasing, A1 and A2 

expressed a desire to capture the adaptability of a definite integral to measure a quantity 

in more than one way like they had observed in the energy to build a pyramid task. That  
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Figure 37: Group A's "How-To" guide for definite integrals 

is, at least A2 had incorporated an image of differing quantification processes into their 

local and global models. By employing the term “employed variables” A1 and A2 were 

attempting to capture a correspondence between the limits of integration and the 

corresponding generalized local model. For example, they mentioned that if your ' and 

&' measure a height your limits of integration should be height values. Reflecting on 

their overall writeup (Figure 37) A2 commented that writing a definite integral “Sounds 

so simple but, it’s definitely not.” 
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Important Aspects of C1’s Emergent Models 

C1 was a Caucasian male freshman majoring in Mechanical and Aerospace 

Engineering currently enrolled in a Calculus I course along with a 1-hour honors course 

which focused on visual representations of calculus topics. As part of his secondary 

education, C1 attended a “pre-engineering academy” and passed the AP Calculus exam. 

He also took a calculus-based physics course and numerous engineering courses in high 

school which he often referenced when providing examples for how he was reasoning 

about particular tasks. C1 decided to enroll in Calculus I, rather than advancing 

immediately to Calculus II, because the transition to online coursework during the 

COVID-19 pandemic left him feeling less confident with his understanding of topics 

covered towards the end of his coursework. 

As I will describe below, C1 entered the teaching experiment with a fairly robust 

understanding of integration which involved links between Riemann sums, area under a 

curve, rates of change, and antidifferentiation which, (1) dramatically impacted how he 

interpreted and reasoned through tasks within the teaching experiment, and (2) provided 

detailed insight into the affordances and limitations of this hypothetical learning 

trajectory to engender a broader Quantitatively Based Summation conception of 

integration for students who have already developed coherent schemes for integration. 

C1’s Incoming Schemes for Riemann sums and Integrals 

When introduced to the Curiosity Rover task, despite only being asked to identify an 

overestimate for a single segment of the rover’s journey, C1’s coordination between 

schemes involving decreasing rates of change, an image of negative slope, and the need 
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to identify an overestimates resulted in the recognition that this task was related to 

Riemann sums. This provoked C1 to immediately attempt to identify an overestimate for 

the rover’s entire journey. C1’s partner did not share these same schemes and so C1 spent 

time articulating exactly how his basic-local-global models were working in tandem to 

help him solve the task; 

Since we're finding an overestimate, we don't know exactly at what point the rate 

goes from 6 to 3.5. So, since we're getting an overestimate, we just want to grab 

the highest number there and say this is the worst-case scenario. This is how 

much sand it will have maximum… So it's going from 6 to 3.5. But for all we 

know, after that 30, it's 6 milligrams per kilometer all the way until the last bit, 

and that's when it becomes 3.5. And then it goes 40 to 60. So that's 20 kilometers 

from 3.5 to 3, so that's 20 kilometers at 5. And then that's 25 at 3, then that one is 

15 at 1.75. And then 60 at 1. So let's see if we just take the sum here… 

Here C1’s global model was squarely centered on a parts-of-a-whole conception. That is, 

he obtained the whole by the summation of overestimates for the amount of dirt the rover 

obtained as it traveled between neighboring sites along its journey. From C1’s immediate 

transition to identifying the global model, rather than just an estimate for the requested 

segment, it was clear that his image of those elements within the global model were local 

models. That is, his goal was to identify the whole and so he found the parts. Providing 

additional imagistic justification for his overestimate local models, C1 drew a graph 

along with a generalized rectangle (Figure 38) and explained that the rectangle represents 

an overestimate because the “little outcropping” provides “more than what it would be.” 

He added that they “can’t really safely get an average or middle of the way number” to 

get calculations because they don’t have the function, so they “just use six and then take 

it as an overestimate.”  



 

 
 

247 

 

Figure 38: C1's generalized rectangles for his Curiosity Rover local models 

By drawing this graphical representation C1 revealed that he envisioned some 

underlying function that could model the real rate of dust accumulation, supporting my 

image that his global model elements were local models. His diagram also invoked 

schemes associated with integration and allowed C1 to reveal important distinctions 

between integrals and sums.  

And so this is supposed to be, this is kind of representing the estimate that we've 

made. Since it's a rate of change graph, it's basically an $ prime graph. We’re 

mapping rates of change, instead of just values. And so, when you want to, when 

you want to know, like, what the, I guess displacement, or what the Δ' is for the 

original graph, you would take the integral in calculus. But we don't have the 

actual equation. So, instead of being able to take the appropriate area under the 

curve, we have to take either an over or underestimate. And so it's uhh. 

Contextualizing it using physics again, if you have a velocity graph, so if like 

your velocity is like this, then the area under a velocity versus time graph is your 

displacement. And so this is kind of a rate of change. And so the rate at which you 

accumulate the dust if you take the area under that curve, that is how much dust 

there is. 

Due to C1’s mention of an integral shortly after reading the prompt for Part 2, along 

with his description’s heavy reference to rates of change along with my image of his 
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basic, local, and global models I suspected C1 may have entered the study with a 

Multiplicatively Based Summation conception of integration. However, his primary 

references to integrals in terms of an antiderivative heuristic and area cautioned me from 

being too hasty.  

In C1’s follow-up interview, I explicitly investigated this further by asking him to 

describe the difference between Riemann sums and integrals and how the constructs were 

related. His initial response was to again describe integration as area under a curve and 

referenced Riemann sums as “lower resolution integral[s] because you’ve got all these 

sharp corners that are going to poke out” or don’t “quite reach.” Continuing, C2 

redemonstrated that when trying to precisely describe what an integral was would revert 

to antiderivative explanations,  

So, okay, I'm going to try to remember how you do integrals. And that's, you take 

the reverse derivative of it. And then you take. Then. You're not really getting a 

finer. Uh, it's not really finer. What am I trying to say? You're getting a block, 

you're getting the displacement here, you don't know how far it's gone when you 

just know what it's covered. And so what's happening is you're taking the end, and 

you're taking the beginning, and you're finding out how far you've gone… So you 

won't know exactly how much it moves it for each individual segment but you 

know how far you've gotten total. 

C1’s specific phrase “getting a block” referenced that when you were talking about an 

integral there were no longer generalized rectangles that measure displacement over 

subsets of the longer interval. You can only talk about displacement between endpoints. 

C1 went onto explain that Riemann sums were just the “stepping stone” to integrals 

indicating that it was a way to approximate the total area prior to obtaining a more 
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powerful tool (antiderivatives) that would allow you to identify the exact value for the 

area.  

However, in the same interview, C1 was able to describe how the progressively 

smaller error bounds, through the refinement of the global model (through creating more 

partitions) lead to an integral through a limiting process.  

We kind of briefly touched on limits, when we're talking about getting the over 

and the underestimate closer and closer to this correct integral value. Because the 

overestimate was getting closer, and it was decreasing, and the underestimate was 

getting closer and increasing. And so the limit there between the over and the 

underestimate would be that correct integral value… We just didn't really explore 

much further because there wasn't really anywhere to go from that. Because we 

weren't getting more and more points. But I did briefly mention it. If you the more 

points you get, the closer you get from your estimate being the real thing.… Well, 

you know, the more data points you have, the finer it's going to be. And there's 

only so many data points you can have before you're not really able to work 

something out. I mean, you know, there's a there's a limit to how a person how 

many times a person can plug some numbers into a calculator. But if you were to 

be able to plug those infinite number of points into this, this Riemann sum that we 

have set up, you would get that interval. 

This description, along with C1’s mention of integrals early in the task demonstrated 

that while the primary schemes activated for C1 when reasoning about integrals are those 

concerned with antidifferentiation and area, C1 did have a scheme akin to a 

Multiplicatively Based Summation conception. However, this scheme was only activated 
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through graphical imagery of area under curves—not inherently tied to the symbol 

template for an integral33.  

The Development of Two Distinct Global Models for Integrals 

Throughout the teaching experiment C1 increasingly drew on his image of a definite 

integral as area under a curve. Based on C1’s first few sessions it was clear that these 

schemes were well established before the teaching experiment began, and their increase 

in use was tied to the progression of increasing difficulty in the tasks presented. During 

early group interviews, where C1 was not asked to identify exact values or find a definite 

integral expression, these schemes were not activated as often unless asked specific 

questions which prompted C1 to draw a graphical diagram. However, after integral 

notation was introduced, C1 consistently drew on these schemes as part of his problem-

solving process. Due to the intentional design of the tasks in the teaching experiment, C1 

was often unable to directly apply his antiderivative or area under a curve schemes to 

solve the tasks which led C1 to develop two separate global models for integration, one 

for the accumulation through a parts-of-a-whole conception of quantities alongside his 

global model for antiderivatives and area under a curve. These two global models had 

corresponding local models: with the global modal involving accumulation taking on a 

trivial local model generalized [small partition of desired quantity] and local model for 

 
 

 

 

33 C1 also expressed that he “think[s] about derivatives graphically,” and not really in terms of rates of 
change. 
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area under the curve taking on the form [function expression for dependent quantity – 

height]⋅[differential expression for independent quantity – width]. In the following 

section, I will refer to these sets of constructs as a sum-model and an integral-model 

respectively. As I will describe below, C1 became consciously aware of these two 

distinct systems of models and made comments when a task resulted in an integral 

expression that was more of a “sum” than a “real integral.” 

C1 became explicitly aware he was operating with two schemes for integrals during a 

variation of the Energy to Build Task in which he was asked to identify the energy 

required to construct a rectangular column measuring 5m high with a square base 

2m×2m. This supplemental task was added to C1’s task sequence because his honors 

course had covered the Volume of a Sphere the previous day. This resulted in C1 solving 

the Sphere task in a fraction of the time I had expected. Because C1 had completed the 

Volume of a Pyramid task earlier in the same session, I did not want him to progress 

immediately to the Energy to Build a Pyramid task. That is, by placing the Volume to 

Build a Sphere between these two tasks, I wanted to provide participants the opportunity 

to reflect on their problem-solving activity. For this to be a productive reflection, I 

desired at least some time to pass between these tasks to ensure any problem-solving 

activity wasn’t directly copied from previous work. C1 was presented the Energy to Build 

a Pyramid Task in the following session. With no time to prepare such an activity, I 

selected an Energy Against Gravity task from C1’s calculus textbook.  

Prompted by the equation for work, C1’s initial activity centered on drawing a force 

vs distance(height) graph. Shortly after constructing this image, C1 voiced confusion by 
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the premise of the task. With a solid image of work measuring dynamic systems, C1 was 

having trouble coordinating energy or work with a stationary object,  

When I think of work, I think of moving something. Because of when I took the 

principles of engineering class, I think of, you know, pulley systems or levers or 

pushing or pulling it. It's weird to think of the work required to build a cement 

column. I mean, something like this would be, you know, a mold would be set up, 

and then some it would be poured in, and then you just have a column. 

In other words, C1 couldn’t identify a need to quantify this task in a way consistent with 

the need for a definite integral due to a lack of motion in the context. To realistically 

build a column you’d have to lift all the cement to at least 5m. After some discussion, I 

told him “if I remember right, the textbook authors were thinking of this being built layer 

by layer kind of like the pyramids.” This phrasing was to introduce an image of motion 

into the context, through the partitions being raised to their appropriate heights.  

After constructing an appropriate local model for force through horizontal partitions, 

each measuring Δℎ tall and raised to a height of ℎ, C1 considered his expression in 

relation to his graph. Consistent with his previous graphical depictions C1 had 

constructed an image in which the independent quantity was along the horizontal axis. He 

had not coordinated this graphical representation with a partitioning process but voiced 

that there must be a linear relationship between the two quantities to justify his linearly 

increasing n(ℎ). Perturbed by the fact that the forces in his quantification were constant, 

but that his graphical representation showed an increasing relationship between force and 

distance, C1 tried to rectify these two images. He found himself unable to move forward, 

so I attempted to aid him in the recognition that Δℎ within his generalized local model 
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was not the same quantity as the Δℎ in his graphical depiction by asking him to explicitly 

identify the various components of his generalized local model.  

 

Figure 39: The quantities in C1's Energy to Build a Cement Column task 

After completing this task (Figure 39), I asked C1 to identify those same quantities on 

his graph diagram, however, this did not play out as I expected. While C1 quickly noticed 

that the ℎ9 and Δℎ quantities were “switched”, he did not make an accommodation to his 

graphical depiction as I anticipated. Instead, C1 completely re-quantified how he 

envisioned the partitioning and accumulation process would occur within his sum-model. 

Specifically, he adapted from horizontal partitions of the column with height Δℎ being 

lifted a distance ℎ, to summing an increasing sequence of larger and larger blocks of the 

column all being lifted a height of Δℎ.  

This second conception was compatible with his integral-model and was therefore 

incorporated into that scheme as being the preferred method of partitioning if possible. In 

particular, C1 drew on this image directly when he wrote a definite integral for the energy 

to build a pyramid, imagining progressively larger pyramids all being lifted a height Δℎ. 
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Coordinating the distinction between these two concepts C1 drew diagrams of both 

scenarios. When I asked him why both of those quantifications could be written in terms 

of the same definite integral expression (Figure 40) C1 thought about it for a while, drew 

some graphs, and considered the labels he assigned to the axes. He then decided that the 

identical graphical representations he drew did not make sense for the sum-model and 

explained,  

Okay, so, in this case, we have an integration of the area under a curve of n with 

respect to ℎ. And this scenario, this is more like a one of the Riemann sums that 

we were performing before, where we're taking volumes, and we're adding them 

up. And so we're not really taking, we're taking less of the area under a curve and 

we're doing more of an accumulation of values like we were doing with the dam, I 

got a dam. When we took an integration, we ended up with moment instead of 

force. When we were just adding up the values, we were able to get force like we 

needed. So in this case, this is less of a integration and more of a sum. 

 

Figure 40: C1's diagrams for two emergent model systems (integral, left; sum, right) 

When C1 entered the teaching experiment he was drawing on his integral-model to 

construct his summation expressions. It was not until he was asked to begin ascribing 

limits and definite integral notation to this model that it transitioned to the sum-models I 
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described above. The most prominent feature of C1’s two model systems was the 

activation order. C1 always attempted to apply his integral-model to a situation first. A 

primary example of this was in the “Grading Definite Integrals Task.” Due to C1’s 

ongoing preference for his integral-model, I presented the Total Mass of Oil Task before 

providing the pre-prepared definite integral expressions. When C1 began to work on the 

task his first inclination was to write a generalized local-integral-model, (1
"07

ce#&e, 

matching a [Mass]⋅ [&[	]] structure. Recognizing that the units were incorrect, C1 drew a 

diagram of a circle representing the oil spill but did not draw any partitioning features on 

that diagram. He then drew a set of graphical axes using the quantity he identified as 

dependent x, on the vertical axis, leaving d, to be placed on the horizontal axis, 

indicating d must be the independent quantity, which prompted a local model of the form 

x&d and motivated C1 to rewrite x to be dependent on d. C1 rewrote the density 

equation by using a symbolic manipulation of the equation for a circle to replace e in 

x(e). Due to an alternate line of questioning, C1 did not attempt to solve this definite 

integral, but I anticipate he would have adjusted the limits of integration as he referenced 

their incorrectness. In summary, if it became obvious that the integral-model was 

inappropriate, C1 would attempt to modify the situation so that it fits within this image 

before resorting to his sum-model.  

When creating his ‘How-To’ writeup C1 demonstrated that even at the end of the 

teaching experiment he still viewed a definite integral as an area under a curve. 

Specifically, the integral-model is what he referred to as “an integral.” Although C1 

recognized an ability to write the sum-model using definite integral notation, this global 

model was a limit of a general sum, not the limit of a Riemann sum. C1 also reflected on 
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an instance when an invocation of his integral-model became problematic by referencing 

the Kinetic Energy of a Rotating Rod task,  

I guess just the way I was integrating, it was wrong…. I was integrating the area 

under the curve, which was the wrong way to do it…. I guess the problem was 

that I was taking the integral of a function. And I think this is kind of a different 

method. Because what I was doing was I was taking the integral of Kbar, which is 

to say, I did this [writes ∫ y(e)&e]. And that gives me the area that gives me the 

area of this curve. Which outputs jewel meters, which is not something I need.  

That is, the distinction between global models had clearly different quantification 

processes and corresponding local models which C1 now recognized. C1 observed that 

by invoking an integral-model he was setting himself to obtain an inappropriate unit 

within his differential form which did was not consistent with either local model's 

requirements. C1 was cognizant of his continued reliance on his integral-model, noting 

frustration that the same problem occurred repeatedly: 

Let’s take a closer look at the catastrophe. Let's see what happened here….And so 

that was where I went wrong… I just plugged numbers in and then put a dr at the 

end. Which was, I think what I did a lot… I mean, this was after this pyramid one, 

which I solved flawlessly. I don't understand what I forgot in the in-between 

times. Yeah, I leaked it into my pillow through my ear, I guess. For a lot of these 

questions, what I did was really wrong, I just wrote down the formula and then 

added dx at the end of it, and that's just not how you do it. I needed to find out 

what in the equation was the &', if you just slap a &' on the end of it, then you're 

going to be ending up with, you know, the wrong integral. You’re going to have 

the wrong units, joules becomes joule meters, you know? If you slap it onto the 

end of like a velocity equation, then you're going to end up with like, well, you're 

going to end up with displacement. But if you're trying to find velocity, it's going 

to be a problem.  
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While this self-reflection marks a significant step towards C1’s ability to model these 

types of quantitative situations in the future without repeating the same misapplication of 

his integral-models, the unfortunate truth is that C1’s upcoming calculus coursework will 

primarily focus on antiderivative techniques with only rare opportunity to reinforce the 

awareness he demonstrates in this statement. While C1 did not make the same error in his 

task-based clinical interview, his admission that he reverts to his image of an integral as 

an area under a curve means that it is unclear if any major adjustments resulted from this 

observation. Because I will be following up with this student in Fall 2021 I will have an 

opportunity to investigate a longer-term outcome of the final reflection task.  

Collapse Metaphor Strengthened by Basic Model 

When engaging in the Geometric Volume of a Pyramid Task, C1 created a finite-

sum-model for over and underestimates, and when I asked if we could obtain an exact 

answer he was able to transition to definite integral notation without issue. Prior to this 

transition, C1 had described the elements of his finite-sum-model to be volumes, 

specifically, volumes of rectangular prisms which decreased in side-length as height 

increased above the ground. Each of these prisms shared a similar height, Δℎ. However, 

after C1 wrote his integral expression, 

p `
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I observed a change in his language. When describing the differential form of his definite 

integral, C1 explained, 

That's the length of one of our sides of our square base [motioning to #
(
ℎ]. So, you 

square that you get the area, and then you do change in height so that you can get 
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the area moving down the triangle. And then if you add all of those together, 

you'll get the volume. 

Specifically, there was a clear distinction between ‘multiply by a height to get a volume’ 

which characterized his previous descriptions, to “do the change in height” to “get area 

moving down.” So I asked how adding areas would produce a volume. He replied,  

You’re multiplying them by Δℎ, and that's going to be your extra inches. The 

Δℎ′] are infinitesimally small. So, they don’t change the number at all…. So the 

goal is to get as Δℎ approaches 0… If you're getting the limit, as it approaches 

zero, you're getting just as close to zero as possible. And so you'll end up getting 

kind of, basically zero, you won't change the number at all, but you won't make it 

zero like you won't be multiplying by zero. 

When I asked what he meant by “not changing the number at all” and he continued, 

You're just getting the area, you're adding up the areas. But it's kind of like, the 

volume of a cylinder is the area of the base times the height. Right? And that just 

means that you have for that height, you have this area, and then you just have it 

all throughout.  

C1 continued in this fashion, reaffirming that in the sum version “you’re multiplying by a 

big chunk” so “you’re adding up volume because you’re taking these big building bricks, 

whereas when you’re taking the integral you’re adding up kind of slices.” 

This interaction was demonstrating that C1 was invoking a clear collapse metaphor 

for a volume integral (Oehrtman, 2009). In brief, a collapse metaphor characterizes a 

students’ image of the objects which measure a quantity, such as rectangular areas to 

quantify area under a curve, collapsing in 1-dimension as a result of the limiting process. 

In other words, the rectangles “become” lines. C1’s image of a basic model for volume, 



 

 
 

259 

which characterizes geometric prisms as an aggregation of areas along a height ℎ, was 

supporting, perhaps even engendering, this metaphor.  

Although students can productively reason about many integration tasks by drawing 

on collapse metaphors, I was trying to engage students in the reasoning necessary to 

construct definite integrals where the differential quantity plays a key, quantitatively 

measurable, role. Therefore, I engaged C1 in a series of discussions aimed at 

accommodating the differential as being a measurable quantity, in this case, &'	should 

continue to be a height. In particular, I entered the summation expression into an online 

calculator, WolframAlpha.com, in a way so it would provide a sequence of values that 

represented C1’s summation expression evaluated at 1-partition, 2-partitions, 3-partitions, 

up through 15-partitions as this was the limitation of the calculator. Instead of viewing 

the limiting process as dynamically squeezing generalized rectangles until they are 

basically lines, I wanted C1 to envision discrete computations which continued 

indefinitely, but whose values approach a limiting number. This is the understanding I 

designed as a part of the hypothetical learning trajectory, but due to C1’s past calculus 

experience, he did not fully engage in these aspects of the task sequence. For example, he 

did not create an estimate for the rectangular dam with 1-partition, 2-partitions, 5-

partitions, 100-partitions, 1000-partitions, up through 8000-partitions, and then have to 

go through a similar process with the trapezoidal dam and volume of a pyramid. C1’s use 

of sigma notation, and ability to create formulas, allowed him to make one quantitative 

operation that computed all these computations for him. Because the presentation of the 

sequence of values was, in essence, a similar use of notation, I accompanied it with an 

explanation explicitly describing this way I sometimes think about limits of sums,  
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Int: So, it is two partitions, three partitions, four partitions, five partitions. And 

each one of these, you're still adding up volumes, and you're just getting new 

values every time.  

C1: And the limit is actually what is the sequence going towards? 

Int: Yeah, so it's not necessarily that you're suddenly adding up areas. It's that 

each one of those sums is adding up little tiny volumes.  

C1: Yeah, yeah, I see. It's, it's approaching the value 53.33. So if you were to take 

the limit of the overestimates, so from z is one up to {, it would be getting 

smaller and smaller, closer and closer, that same limiting value. 

Although this was just a verbal explanation with a diagram of values, C1 was able to 

accommodate this view of a limiting process to his sum-model, as was evident by his 

continued description of the differential quantity measuring an aspect of a partition. 

Summation Notation – Affordances and Setbacks 

When I provided C1 and C2 the general prompt for Fluid Force on a Rectangular 

Dam task, which only asked for an overestimate and underestimate for the fluid force on 

the dam, C1 introduced summation notation unprompted as a method of finding a 

formulaic approach to the task. In particular, C1 was unsatisfied with only applying a 

gross basic model to the dam, observing that doing so would give a “really over” and 

“really under” estimate, which he felt wasn’t good enough. C1 voiced wanting to create a 

formula instead. That is, he had anticipation that identifying appropriate estimates for the 

total fluid force would require the use of a global model which was dynamic in nature 
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and would require the coordination of writing an explicit expression for his representative 

local34.  

While summation notation did provide C1 an avenue to quickly compute values for 

global models, the necessity to adapt his reasoning to specific notation often complicated 

C1’s problem-solving process. Compounded with a propensity for simplifying 

expressions by combining and rearranging terms within the expression to allow easy 

input into a TI 84 calculator, C1 spent a significant amount of time unpacking or 

rederiving entire sequences of expressions to locate a computational or quantitative error. 

For example, due to C1’s strong coordination with physics quantities and units, a 

consistent method of introducing perturbations was to have him evaluate the units of his 

differential form. C1 always assigned units to his delta and differential quantities and had 

a clear expectation that his local model, regardless of global model association, should 

share units of the desired quantity. However, when such a perturbation was achieved, 

C1’s effort was spent unpacking his simplifications to be able to map the corresponding 

quantities rather than making a direct connection to the initial quantities which comprised 

his local models. The added coordination required to reconcile the relationship between 

an index, z, and number of intervals, {, masking quantities that were needed as 

productive transitions to integral notation, as '9 and Δ', meant that I often had to step in 

 
 

 

 

34 Interestingly, C1 also mentioned that he felt like he was missing something important that “had to do 
with integrals” as he was trying to create a dynamic formula, but he did not explore it further. 
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to aid C1 in locating the critical step of a computation despite his strong quantitative and 

algebraic skills.  

One prominent instance of this occurred when C1 was working on the Kinetic Energy 

of a Rotating Rod Task35. Drawing on his sum-model, C1 created an appropriate 

generalized local model using summation notation.  
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However, by accidently ascribing the z ^7
:
_ to &e, rather than e9 , C1 ended up with a 

generalized local model expression y = 8!

%111
&e! (in integral notation) which was wholly 

incompatible with his image of the differential form of a definite integral. C1 then began 

reviewing each line of his work to identify why this made sense but was unsuccessful 

until I stepped in to ask directly if that z ^7
:
_ in the first equation was meant to be a &e. 

Furthermore, when, C1 attempted to verify the units of his corrected generalized local 

model, y = 8!

%111
e9#Δe, he misassigned the units of mass, zj/]#,	to the constant quantity, 

8!

%111
, which led him to assume he had made an error in the quantification of his local 

 
 

 

 

35 Due to C1’s ability to find ways to interpret tasks in the teaching experiment in terms of area under a 
curve, I moved the Kinetic Energy of a Rotating Rod Task to come before Task 5: Grading Definite 
Integrals.  
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model. After a few minutes, I stepped in to help C1 identify that the 8!

%111
 did not represent 

a scaled mass because the Δe was a part of his quantification of that element by pointing 

out the relevant step in which he moved the 1/m element out of that unit.  

The transition to a definite integral was not the only problem that arose for C1 when 

using summation notation. When provided the initial fluid force on a dam prompt, C1 had 

voiced a desire to “get all the gold stars” by creating a dynamic formula that adapted to 

any number of partitions automatically. Although C1 did get a rough form of summation 

notation into that early assignment, his partners’ unfamiliarity with the notation and no 

anticipation of needing to create a global model with thousands of elements meant C1’s 

partner wanted to move on in the task sequence quicker than C1. When his partner 

switched groups I asked C1 if he wanted to return to that goal and he agreed. In a 

fortuitous36 turn of events, C1’s calculus section had covered Riemann sum notation the 

previous day. C1 wanted to practice the ∑ $(';)Δ'<="
9>1  notation, so, despite having 

originally quantified the global model for the fluid force to be equivalent to, 

�619948&9Δ&
#2

9>1

, 

C1 wrote out a new expression for a left Riemann sum. By ascribing $(') to be the 

function of interest, force in this instance, along with an image that you append Δ' to this 

 
 

 

 

36 For my research. Not for C1’s understanding. 
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function when C1 rewrote the expression global model he included an extra factor of Δ&. 

Because this adaptation was undoubtedly linked with C1’s coordination between 

Riemann sums, definite integrals, and his integral-model, it provided evidence for a 

potential source of some students' misapplication of an extra differential quantity within a 

Riemann sum.  

 

Figure 41: C1's rewritten global model expression for the rectangular dam task 

C1’s use of sigma notation and algebraic manipulation demonstrated considerable 

skill, which superseded that of most Calculus I students I have encountered both as an 

instructor and a researcher. The reason I reference the computational mistakes made by 

C1 when using summation notation is to emphasize that even for students who have a 

fluid understanding of notation and the ability to quantitatively construct formulaic 

representations, extraneous notation which students must keep track of adds to the 

cognitive burden of their problem-solving process and can have the potential to detract 

from the primary objective of a learning experience. That is not to say that integral tasks 

should be designed to avoid the use of sigma notation, as it is a highly useful 

mathematical construct, especially in calculus. However, when designing tasks to 

engender targeted reasoning the employ of this notation can interfere with that goal and 

must be attended to. 
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Important Aspects of Group B’s Emergent Models 

B1 and C2 were both Caucasian male freshmen majoring in Mechanical and 

Aerospace Engineering currently enrolled in a Calculus I course along with a 1-hour 

honors course that focused on visual representations of calculus topics. This was B1 and 

C2’s first experience with calculus, neither having taken it during their secondary 

education. B1 and C2 were roommates and requested to be paired in the interview 

sessions, but due to scheduling conflicts with other study participants, they were 

originally paired in separate groups. Due to B1’s partner dropping from the study in week 

3, and new scheduling in C1 and C2’s availability I decided to move C2 from Group C 

into Group B in week 3.  

As I will discuss in more detail below, this decision made an impact on Group B’s 

development of their emergent models which persisted throughout the teaching 

experiment. Specifically, C2’s original partner introduced the notion of summation 

notation into the early task sequence. C2 took on this notation on as the ‘proper’ way to 

solve the tasks, and continued to rely on summation notation throughout the entire task 

sequence. Although C2 developed basic local and global model relationships consistent 

with a quantitative understanding of definite integrals, framing the final “How-To” guide 

in a notational framing impacted C2’s ability to reason about definite integrals in which 

the differential form is not a Riemann Product. B1 on the other hand, built his generalized 

local model using notation from the sum calculator I provided, which kept his focus on 

the quantitative structure of his local models rather than trying to match a formulaic 

structure.  
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The Effect of the First Two Tasks on B1’s Emergent Model Development 

Note that B1’s original partner only sporadically joined the sessions in the first two 

weeks before dropping from the study in week 3. Therefore, in the early stages of the 

study, I took on the role of acting as a sounding board and pseudo-partner for B1 more 

often than with other groups. This meant that occasionally I was more forthright with 

introducing alternate solution strategies, as B1 did not have a partner to naturally 

introduce discourse into his problem-solving.  

During the Curiosity Rover task, B1 acknowledged that he had never identified 

overestimates and underestimates before. Therefore this task represented the development 

of a brand new construct. Throughout the task B1 consistently referenced average values, 

such as trying to find a better approximation by taking the averages of his overestimates 

and underestimates. I hypothesized that this could be the result of an attempt to 

coordinate the “rate of dust accumulation” with a scheme involving rates of change as a 

limit of average values (which would have been covered recently in his calculus course). 

Because I did not plan to use rates of change beyond the first task I decided did not to 

investigate this further unless it became problematic in later tasks. It is also possible that 

identifying an average value was simply a scheme evoked through coordinating an 

average with a type of approximation. Regardless of its origin, because identifying 

averages became the most prominent solution strategy, B1 did not fully adopt the 

refinement of the dataset as overestimates and underestimates converging on a ‘real’ 

amount of dust accumulated on the rover. That is, B1 did not fully coordinate that a gross 

basic model provided a boundary on his overestimate and underestimate values.  
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When dealing with the actual computations involved in these tasks, B1 had a strong 

command of the quantities which composed his gross basic model, and, from his 

responses in Part 1, he had constructed his gross basic model using the same quantitative 

structure of his basic model through proportional reasoning. That is, when asked how 

much dust would accumulate on the rover if we assume that the rate of dust accumulation 

between Bradbury Landing (0 km, 6 mg/km) and Yellow-Knife Bay (10 km, 6 mg/km) 

was constant, B1 stated, that “you would just multiply the milligrams times 10.” When 

asked to elaborate further B1 continued,  

if the rate at which the dust is accumulating stays constant at six milligrams per 

kilometer, then if you increase by a product of 10, then you would also have to do 

the same to the milligrams. You’d do the same to the milligrams as you would to 

the kilometers. So the kilometers multiplied by 10, so you have to do milligrams 

multiplied by 10. 

From this interaction, I understood the quantitative relationship for B1’s basic model 

to be that of a relationship between milligrams of dust and kilometers traveled which 

scaled with magnitude. You begin with 6 milligrams of dust for every 1 kilometer 

traveled. Because you are scaling the distance (1 kilometer traveled) by a product of 10, 

you must also scale the dust (6 milligrams of dust) by a product of 10 to maintain the 

relationship between the two quantities. This provided the solution of 60 kilograms of 

dust per every 10 kilometers traveled.  

B1 naturally created the development of a gross basic model when asked to identify 

overestimates for the neighboring sites (e.g. Yellow-Knife Bay (10 km, 6 mg/km)	→ 

Darwin (40 km, 3.5 mg/km)). Not having access to the precise behavior of the rate of 
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dust accumulation along the route influenced B1’s development of a gross basic model 

consistent with my hypothesized structure. Describing this process B1 explained,  

so to overestimate it, I would just. I'm not too familiar with that, but what I would 

do is take the distance between them, which is 30, and multiply that by, probably 

6. Because I don't know when it changes from 3.5 to 6, or 6 to 3.5… the rate of 

accumulation cannot go past 6 milligrams per kilometer.  

B1 was able to extend, or apply, his gross basic model to identify an underestimate along 

the same stretch of road stating he would “basically do the same thing but using Darwin’s 

rate of accumulation,” and that “for that to be true, the rate of accumulation cannot drop 

below 3.5” indicating B1 had developed the appropriate initial models intended by these 

two prompts.  

As B1 moved to identifying an overestimate for longer stretches of the rover’s 

journey, (e.g. (Yellow-Knife Bay (10km, 6 mg/km)	→ Darwin (40km, 3.5 mg/km)	→ 

Cooperstown (60 km, 3 mg/km)), he again drew on his gross basic model multiplying the 

rate of dust accumulation at Cooperstown and the 50 km distance traveled from Yellow-

Knife Bay to Cooperstown to identify the underestimate. I had to intervene to have B1 

view longer segments of the journey as the progressive addition of two values obtained 

by using a gross basic model on each segment. I introduced this alternate strategy by 

inquiring what the “likelihood” of the rover only gathering 90 mg of dust would be, and 

asked B1 to identify a “better” overestimate for the rover’s journey from Yellow-Knife to 

Cooperstown. B1 responded coherently, but not in the way I hoped. Specifically, B1 did 

not feel that the underestimate of 90 mg was very probable, and responded with an 

anticipated solution strategy of taking average values to find a “better” approximation of 
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the real value. However, at the same time, B1 hedged, “but I don't know how I would get 

an overestimate or an underestimate for it” which indicated the structure of the prompts 

requiring both an underestimate and overestimate dissuaded him from adopting an 

averaging strategy. From this interaction I realized that, despite the introductory context 

implying an overall task goal, B1’s goal-oriented activity was focused on each prompt of 

the task sequence discretely without anticipation of connection between them. NASA’s 

job was to identify whether the rover could complete the mission, B1’s job was to answer 

the individual prompts as they were provided.  

Attempting a more direct route I explicitly asked B1 to identify the underestimates for 

the path from Darwin to Cooperstown. He computed this value easily but did not attempt 

to add this value to the underestimate from Yellow-Knife Bay to Cooperstown. Because a 

parts-of-a-whole symbolic form was a critical component of the global model, and B1 did 

not have a partner to work with, I decided explicitly introduce the solution strategy of 

summing the two underestimates for the shorter segments together, explaining that 

NASA would like to have a narrower range in the possible parameters. B1 acquiesced 

and computed the required value as well as a corresponding solution for the overestimate. 

As B1 moved on to the tasks of computing under/overestimates for the entire journey, 

Bradbury Landing (0 km, 6 mg/km)	→ Murray Bates (160 km, 0.2 mg/km), he continued 

to use a parts-of-a-whole method for computation, but it was clear from his language that 

he was simply following my strategy and that this was not yet a product of his global 

model. B1 described, 

Doing what you just told me, I could take the worst and best-case scenarios of 

each one of these, from one point to the other, all the way from Bradbury. So like 



 

 
 

270 

going Bradbury to Yellow-Knife, from Yellow-Knife to Darwin, and Darwin to 

Cooperstown. Cooperstown to Kimberly, Kimberly to 603, and 603 to Murray. 

Do all those individually, and then add them together to get a more specific 

answer. 

In particular, B1 was still attached to using an average value to identify a more accurate 

approximation as evident by his recommendations in the final prompt of Part 2;  

I think what I do… I would…take the… average amount that it drops per 

kilometer between these two or between any of these two, and like, use that to get 

the average. Which would be a number between these two, between the best and 

worst-case scenario. And depending on where that falls is where I would make 

my decision, because if it's pretty far below 400, then I would not rebuild this 

rover. 

There was no time left in this session, and, because the next session began with B1 

catching up his partner on what they had missed, B1 and I did not return to this particular 

idea. However, I anticipate that questions aimed at whether the data was linear could 

have challenged B1’s desire to reason using average values. In particular, I would have 

asked B1 to compare the average rates for subsets of the path in comparison to longer 

stretches to have him identify the discrepancies between the two. The goal of such a 

prompt would serve to help B1 identify that the rate of dust accumulation was not linear 

over the rover’s path. In addition, I would ask B1 to consider scenarios in which using an 

average value would produce a worse result than applying a gross basic model, which 

would reinforce his coordination between using a basic model as a shared template for an 

estimate with the required property of boundedness.  
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When I asked B1 to catch his partner up on what we had done in the previous 

interview, B1 did so in a very matter-of-fact manner, describing his aggregation of gross 

basic models to find total estimates. His phrasing during this explanation did include 

more self-identity talk, such as “what I did” versus questions “she asked.” B1’s use of “I” 

language when describing the subsequent addition of overestimates for subsection to 

identify an overestimate for the whole journey indicated he had taken a parts-of-a-whole 

(through progressive addition of gross-basic models) on as his global model. 

Due to B2’s addition into the task sequence at a natural breaking point, I had Group B 

move on to Part 3 of the task in which I introduced the additional context prompt and 

corresponding applet. When evaluating the intern’s suggestion, B1 acknowledged noted 

that additional data will “allow our best and worst-case scenarios to be more precise. 

Because I also saw that the numbers for dust accumulation changed,” while B2 added,  

since we have that dust accumulation of the midpoints we can adjust our best and 

worst-case scenarios because instead of taking the whole thing over-under, we can 

just take like halves of the sections we were doing before and over under them. 

So, that it’ll be more accurate. 

Because these two interactions happened so quickly together I am unsure whether 

B1’s use of the term “more precise” was an indication that somehow this new data would 

in a lower overestimate and a larger overestimate resulting in a smaller error bound, or 

from his observation that the values for the rates of dust accumulation “changed” 

somehow implied the data was simply more accurate now. Based on the rest of the data I 

suspected the latter, but regardless, B2’s assimilation of the addition of more data to a 
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local-global model relationship allowed the two to move forward and quickly compute 

new under/overestimate pairs. 

When asked if B1 or B2 had any new suggestions based on their new overestimate 

remaining 20 mg over the limitation of 400 mg, B1 and B2 conjectured ways to mitigate 

the total amount of dust through adding components to the rover (despite the disclaimer 

to avoid redesign within the prompt) such as adding a windshield wiper or compressed air 

cans. Neither participant considered the underestimate until I specifically reminded them 

that the intern’s suggestion had allowed them to move forward. B2 observed, “Yeah, it’s 

narrowing down the difference between the two,” to which B1 interjected, “I’m sure if 

we took another, like, half…,” and B2 finished “maybe closer together, yeah.” By 

reminding B1 and B2 about the intern was asking them to reflect on what specifically 

about that suggestion allowed them to make progress. This helped them to identify that 

narrowing the difference between the over/under allowed them to shorten the distance 

between their over/under values and established an initial connection between a refining 

process and the narrowing of those estimates. I asked B1 to say more about how “the 

over and underestimates were getting closer together,” to which he replied, 

because the first, whenever I look at it as just the first graph that you gave me, the 

numbers were so far spaced apart. That the over and under were, like, extremely 

far off from each other. But getting them closer together gets closer averages for 

the rate of dust. 

I did not notice the significance of B1’s reuse of the term “averages” in this case. Unlike 

B2, B1 did not appear to view the over and underestimates as converging on some ‘real’ 
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value for the amount of dust that would accumulate on the rover but was instead trying to 

lower the error between the estimates and the average value between them.  

Because B1’s partner was not present in the first half of this task, B1 and B2’s 

suggestion that partitioning the path in half again in Part 3, the pair’s clear articulation of 

how they obtained their computations, and time constraints, I made an in-the-moment 

decision to provide B1 and B2 the total values for the over and underestimates for part 4 

rather than have them compute those values themselves. B1 and B2 both agreed that 

based on the total over and underestimates provided by the new data points they would 

feel safe sending the Curiosity Rover to Mars as is.  

When transitioning to the Fluid Force on a Dam task, I began by introducing B1 and 

his partner to the Fluid Force on a Box task because B1 had mentioned not knowing a lot 

about physics. This task took longer than expected because B1’s partner was not 

attending to the prompt, “What is the fluid force acting on the bottom of a 

4m × 4m × 4m whose base is at a depth of 25 meters?” instead of attempting to identify 

the force on the whole box rather than just the bottom face. However, by reading the 

prompt and referencing diagram I made of the box, B1 was able to gather the intended 

implications of pressure acting on horizontal surfaces would be dependent on the depth of 

the horizontal surface in question. He made suggestions for changes to his partner's 

computations, such as only including the computation for the area of the face (as opposed 

to the cubic meters of the entire box) and that the force acting on the top of the box and 

the force acting on the bottom of the box would be different due to these surfaces being 

located at different depths. I had B1 and his partner work a few additional computations, 

such as the force acting on the top of the box and the bottom of two additional boxes: one 
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measuring 3m × 3m × 3m at the same depth of 25 meters, and another measuring 

2.45m × 4.2m × 1.7m at a depth of 63 meters. I then asked if they could use this same 

strategy to identify the fluid pressure acting on the side of the box and B1 responded, 

“No. Because the depth is always changing for like the area.”  

Transitioning into the main task, I asked B1 and his partner if they could use the 

equation, force equals pressure times area, to find the fluid force acting on the dam. Both 

acknowledge that they could not, so I asked them to identify an overestimate and 

underestimate for the fluid force acting on the dam. B1’s partner had two years of high 

school physics experience, so he introduced the notion of using the midpoint as a 

delineation between the overestimates and underestimate values37. That you could use 

any pressure value before 12.5 for an underestimate and any pressure value after 12.5 to 

be an overestimate. This reactivated B1’s image of average values,  

 

Is the pressure that's being applied on here and linear. Cause if it is, then 12.5, 

would be the average pressure that's being applied throughout the whole thing. I 

think we can use that. Like, I know that the pressure is linear… but I also think 

the area times pressure formula is also linear. 

Wanting to redirect B1 back to identifying overestimates and underestimates I interjected 

a comment referencing that if his boss asked for overestimates and underestimates and 

 
 

 

 

37 As a reminder, I am not including an analysis of B2’s reasoning, just the effect it had on B1.  
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you came back with the 12.5 number, you would probably need to have really good 

justification for why you can use this value since they would spend billions of dollars on 

the project.  

B1’s partner did not attend sessions again, so when returning to this prompt B1 did not 

return to the 12.5 linearity strategy. Instead, B1 explained that for the overestimate you 

would compute, 

9800 times 25 for the pressure that's being applied. And then for the force on the 

dam, you'd have to take the surface area of the whole damn, … 245,000 times 

area of the dam 63.26 times 25 is the whole surface area. 

And an underestimate is “just 0 because the smallest depth you can have is 0 and you’d 

multiply that by 9800 times surface area.” That is B1 applied his gross basic model to the 

entire dam to find his estimates. When asked to identify an overestimate for the dam in 

two pieces B1 extended his gross basic model to a local model, calculating 

9800*12.5*12.5*63.25 and 9800*25*12.5*63.25 and adding those values together to 

“bring it down to 290 million.” That is B1 had an expectation that adding the values of 

these two values would result in a lower overestimate than his previous computation of 

387 million. B1 noted that for an underestimate it would be “just zero for the top half” so 

the underestimate would just be 96.9 million. B1 did not perform any new computations 

on his calculator during this step, implying he recognized he had already computed the 

9800*12*12.5*63.25 when calculating the overestimate. During this time B1 was 

working on his calculator off-screen so as he talked out loud I took notes for him on the 

shared whiteboard since he didn’t have a partner. 
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I asked B1 why he so “naturally” cut the dam in half horizontally rather than 

vertically and he said, “because depth.” When I asked if we could have done the same 

thing by cutting vertically and get the same answer he agreed we could. I asked him to go 

ahead and compute those numbers, and upon doing so he realized he got the same value 

as his original overestimate. This was unexpected and B1 reflected, “if you don't use 

depth, it definitely causes a big problem. Because then your overestimate and 

underestimate aren’t gonna change.” That is, B1 was recognizing that useful partitions for 

a global model should reduce the error between your underestimate and overestimate. 

When reflecting on the vertical partitions, B1 recognized that he was just dividing the 

original overestimate in two and added it back together, stating, 

It’s not actually changing anything that you're multiplying. You're just cutting it 

in half. Like you're cutting the values that you're multiplying in half for the 

vertical cut into two pieces. But for the horizontal cut and changing the depth, 

you're actually changing the values that you’re multiplying instead of just 

changing the surface area. The surface area doesn't really affect anything if you're 

still taking the whole surface area. 

I then asked B1 to create cut the dam into five pieces instead of two. As he worked on 

his calculator finding the expected computations, I took notes for him on the shared 

whiteboard. After he finished, B1 explained how he made his calculations;  

I cut the damn and five individual parts. So the surface area is always going to 

stay the same for each individual part. So that's the 5 times 63.26. The 9800 is a 

constant that you gave to me. Not really sure what it means but…[I provided a 

quick reminder of the quantities making up that value]... Okay, yeah. All right. 

And then that's my constant for the fluid pressure formula. And then five is the 
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depth for the overestimate. So like, the deepest that this surface area would take 

on for the overestimate. 

Notice that B1 is already noticing patterns in his computations, i.e. surface area is 

“always going to stay the same” and the constant 9800. When I introduced the next 

prompt,  

 

 

Figure 42: B1's original computations for the Fluid Force on a Rectangular dam in 5 
pieces (typed by me – answers rounded by B1) 

needing to identify an overestimate and underestimate accurate to within 50,000 N, B1, 

shocked and laughing he said “Wait, did you say 50,000? 50,000? Not 50,000,000?”  

At first, B1 did not know exactly how to proceed and spent a few minutes looking at 

the expressions I wrote on the whiteboard with his computations (Figure 42). Then B1 

drew on his proportional reasoning to recognize that “maybe there's like something 

plugging in a variable for 5 or something. To the 5 and maybe the first number as well. 

The depth.” He continued that “all these numbers are proportional.” That is, B1 

recognized that the second expression was 2 times the first expression, the third was 3 

times the first expression, and so on. With his recognition, I introduced the idea that the 

difference between the overestimate and underestimate was exactly equal to the 
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77,000,000 N value in the last of those underestimate values. This led B1 to conclude that 

by solving for ' in the expression 5(9800' ∗ 63.26') = 50,000 N he could identify the 

length of the interval, ' = 0.127. B1 did his scratch work off-screen and did not talk 

aloud, so I am unsure exactly how he came to this solution. However, his ' values were 

meant to represent a length of a partition, so I believe the 5 (rather than a 25/x which 

would represent the number of arbitrary partitions) was a consequence of working from 

the list of expressions for five subintervals. Although this answer was not quite correct 

(yet) I asked him how many times he’d have to partition the dam and he concluded 197 

times. Recognizing that B1 had recognized the aspects of the equations necessary to 

construct a generalized local model, but that his goal was not to create such a formula, I 

used this as an opportunity to introduce the sum calculator so we could check the answer. 

Because he defined ' to be the length of the subintervals I was more direct in explaining 

how the calculator worked than I might otherwise have been, explaining that the Δ' was 

his ' value, and the ' was the changing depth that would be automatically taken care of 

with the calculator. This computation allowed B1 to see that his number was not quite 

right, which led him to reevaluate his expression and identify (again off-screen) that the 5 

should be adjusted to ^#(
'
_ leading to 7750 partitions. Entering this value into the sum 

calculator B1 was pleased his estimates were within 50,000 N.  

In the trapezoidal dam task, B1 began by applying a gross basic model to find an 

initial overestimate and underestimate. He then continued to draw on his proportional 

reasoning as a way to quantify the lengths of a base for a partition in anticipation of 

generalizing as he had before. As he started this process B1 commented,  
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I dunno, like on the last one that we did. I think I did like five for the intervals. I 

just had interval five on the base. But I’m gonna have to find each one of these 

[motions to the width of the dam], like, this is going to be different for each, like 

fifth interval. I’m gonna have to use the formula four times. So, I guess I can find 

a formula for it. See… how long the bottom side is. 

That is, B1 recognized that for each of his dam pieces the top width and the bottom width 

would be changing. And he did not want to have to compute the answer by hand 

repetitively. He decided he would start with cutting the dam into 5 and identify the area 

for each piece of the dam. B1 spent a long time working these computations off-screen on 

his calculator, and only provided the final computations for the whiteboard. I attempted 

to suggest that we just write down what the values were, and not worry about the final 

totals quite yet, but he continued for roughly 7 minutes working through computations. 

After he provided the second overestimate I interjected more directly, 

I can almost tell just, kind of like by your defeatedness that this putting it into the 

calculator thing is getting old already. [B1: Yeah] So, maybe we can try and come 

up with a quicker way to do this, instead of doing them individually that will kind 

of give us maybe the exact force for any kind of piece that we want for any depth. 

Maybe we can try and work on like creating a formula like that… Let’s start with 

the exact length of the purple line [the width of the dam] for any depth.  

B1 agreed and worked on his own paper for about a minute and a half before 

announcing “All right, I have something,” and dictated that the length of the purple line, 

at a depth &, would be equal to 37.92 + `2 ^12.67 ∗ #(=4
#(
_b. To arrive at this formula B1 

drew on proportional reasoning for similar triangles. This was a strategy I introduced 

when he was trying to identify the area of the second trapezoid section in the middle of 

the dam. Building off his formula, and acknowledging how difficult it would be to find 
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the length of a second purple line, I suggested using a rectangle instead of a trapezoid, 

asking B1 if this was okay. B1 was hesitant because this was not the shape of the dam. 

However, he agreed that this would provide “a very rough overestimate for sure.” B1 was 

able to identify that to find the area of a rectangle at a depth & he would multiply the 

length of the purple line by the length of an interval (which I labeled Å), and that to find 

an overestimate for force you would multiply that value by 9800*(& + Å) since you want 

to take your depth measurement at the bottom of a partition. As we transitioned to try to 

enter this into the sum calculator, so we didn’t have to compute the values by hand, B1 

asked how certain values were input into the calculator. By drawing on computations he 

suggested for how 5 partitions would work,  

9800*(0 + Å) ∗ Area + 9800 ∗ (5 + Å) ∗ Area + 9800 ∗ (10 + Å) ∗ Area + 9800 ∗

(15 + Å) ∗ Area + 9800 ∗ (20 + Å) ∗ Area. 

I suggested using 1Å, 2Å, 3Å, 4Å, and 5Å for the parentheses, which was a pattern B1 

observed in the rectangular dam task. When he agreed, I informed B1 that the sum 

calculator recognized those values as just an ' and would compute them automatically 

based on the number of partitions he entered. 

B1’s computer had difficulty running the computation, so I shared my screen and 

entered it into the calculator. I then asked B1 how he was feeling about this and he 

replied “it seems very complicated.” When I asked what he meant, he just said “all the 

ideas coming together.” When I asked B1 if there would be a way to find the exact force 

on the dam, he said that he’s not so sure about the trapezoid, but, 
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[for] the rectangle it’d be a lot easier to figure it out. You’re just like taking the 

average of the pressures… Like the 12.5 would be like, the average over all of it 

because it's increasing like linearly. So the middle of it is going to be the average. 

B1’s revoicing of drawing on the linear relationship of the rectangular dam indicated 

that while he acknowledged that the overestimates and underestimates were improving, 

he had not yet coordinated a ‘real’ value being the number which these estimates were 

converging upon. This prevented him from feeling confident about making any assertions 

about the real value for force on the trapezoid dam.  

Summary 

As B1 worked through the first two tasks he obtained the primary basic, local, and 

global models intended by the task sequence. In the Curiosity Rover task, B1 constructed 

a global model through the successive addition of gross basic models, and in the Fluid 

Force task, he seamlessly extended his gross basic model to a local model which shared 

the same structural properties as the basic model. B1 demonstrated an expectation that 

partitioning the dam into more than one piece the expectation was that it should create 

more accurate overestimates and underestimates. That is, he developed a relationship 

between his local and global models that the shape of the local model should improve the 

accuracy of the global model. Because B1 reasoned about the task which required the 

number of partitions to be accurate to within 50,000 N proportionally he did not need to 

create an explicit generalized local model. However, B1 did engage in the same 

generalization across elements of his global model to identify what quantities were 

varying and which were constant to coordinate his recognition of the proportional 

relationships into an equation which would allow him to identify the number of partitions 



 

 
 

282 

he needed to complete the task. In the trapezoidal dam task, B1 was able to engage in this 

ability to recognize values that were varying and those which were staying constant when 

I suggested he make an explicit formula for identifying the total force on an arbitrary 

subinterval of the dam. The “limitations” of the calculator also supported my effort to 

reframe his variable definitions for important quantities into those which would position 

him to be successful as he transitioned to definite integrals while drawing on his 

underlying quantitative reasoning which contracted those quantities (e.g. redefining the 

length of his intervals ' into Δ' and the proportional counters 1L, 2L, 3L, into x’s).  

Because B1 did not have a partner for the majority of these first sessions I often 

interjected solution strategies quicker than I would have for a grouped pair. For example, 

once B1 coordinated the need to quantify a length for the base for the trapezoid-shaped 

section of the dam, I explicitly suggested a method I believed to facilitate this 

quantification. I also wrote out the equations B1 voiced aloud down on the shared 

whiteboard, anticipating his future need to reference more than just his final 

computations. Despite my greater involvement, B1 was fully engaged in the activity of 

constructing his basic, local, and global model relationships.  

The Effect of the First Two Tasks on C2’s Emergent Model Development 

As described in the section outlining C1’s incoming schemes, during the first few 

tasks of the sequence C1 performed most of the primary problem solving for Group C. 

This meant that C2, for the most part, was just internalizing explanations C1 provided for 

why he solved a task a particular way and did not have a chance to fully engaged in the 

primary reasoning the task sequence was designed to evoke. This was through no fault of 

C2. He demonstrated a desire to work through the tasks and asked C1 many follow-up 
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questions when he did not understand. He simply did not have the pre-existing schemes 

his partner demonstrated, and therefore could not quickly assimilate the goal of the tasks 

to pre-existing tools. In other words, C2 did was not provided the opportunity to 

authentically construct his basic, local, and global models through active engagement 

with the tasks themselves. Instead, C2 developed his early basic, local, and global models 

through the active engagement of observing and questioning C1’s actions.  

Early in the Curiosity Rover task C2 showed a propensity for thinking about the 

quantities involved. For example, when I asked whether C1’s precise phrasing “for every 

kilometer [the rover] travels, it accumulates six milligrams of dust” implied the rover had 

to drive for a whole kilometer, C2 disagreed, explaining “because it wouldn’t, like, as 

soon as you hit a kilometer six milligrams wouldn’t just appear on the panel.” In this 

case, C2 was reasoning about a proportionality between the amount of distance traveled 

and total dust on the panels. If the rover travels 1 kilometer at 6mg/km the total dust 

amount would be 6 mg, and if the rover only traveled ½ a kilometer he was able to 

identify the total amount of dust would only be 3 mg.  

When asked to identify the overestimate and overestimate for one segment of the 

rover’s journey C1 anticipated needing to identify an overestimate and underestimate for 

the entire journey and began making those computations immediately. When C2 showed 

confusion C1 described his justification for directly applying the basic model to each 

subsection of the path;  

Since we're finding an overestimate, we don't know exactly at what point or at 

what rate it goes from 6 to 3.5. So, since we're getting an overestimate, we just 

want to grab the highest number there and say this is the worst-case scenario. 
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During this period C2 began to adopt some of these constructs, building models from his 

understanding of C1’s explanations. When asked about any assumptions that must be 

made to justify their overestimate C2 explained, “We know eventually, somewhere 

between Yellowknife Bay and Darwin [the rate] goes to 3.5, and we know it starts out at 

6. Yes. So we just use the max rate that we have, cause we know it's an overestimate. It 

has to be the worst case.” In this case, C2 was mostly rephrasing C1’s earlier explanation 

into his own words, however, because this concept made sense to C2 in a way that he was 

confident enough to put forth his answer means that, at least on a single subsection of the 

overall journey, C2 had at minimum established a gross basic model to overestimate the 

total amount of dust by applying the larger of the two rates of change available to him.  

As mentioned C1 had already completed listing the values necessary to compute 

estimates for the rover’s entire journey, so when I decided to present that question next 

C2 immediately interjected “Okay, our assumption was right… Yes, this is what we were 

preparing for” to which C1 added “We were working towards this. I knew this was 

coming.” While this response from Group C was delivered as light-hearted banter, it does 

clearly illustrate the anticipatory nature of their work. C1 likely did not need any 

scaffolding questions for this task and could have jumped straight to the prompt which 

asked for recommendations to NASA. However, because C2 had no experience with 

Riemann sums or integrals I believed it important to provide the opportunity to continue 

to identify both an over and underestimate. This would provide computations that could 

be directly compared to future calculations in Parts 3 and 4 and provide an opportunity to 

construct the local-global model relationship relating refinement of a partition with a 

smaller error bound. When discussing how to take an underestimate C2 described, “the 
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inverse or the opposite of the other assumptions we made, instead of taking the highest 

rate, we take the lowest rate” illustrating that his gross basic (and/or local) model was 

adaptive to the goal of the task. C1 also introduced the idea that they “have to assume that 

[the rate of change] doesn’t make any dramatic dips anywhere along the path,” which 

was the first indication he gave that there was a strict boundedness aspect to these local 

models.  

When I introduced the option for more data C2 was immediately able to identify the 

implications, “that way our overestimates and understate are closer to the actual values,” 

implying that not only had he constructed a local model from C1’s detailed explanations 

in Part 2 but that his local model was already tied closely with the image that lowering its 

magnitude directly improves its accuracy to the “actual” amount of dust on those 

subintervals. 

When evaluating their overestimate, still larger than the limitation of 400 mg, C2 

introduced the idea of averaging the underestimate and overestimate,  

What if we take the average between those two. That would be the closest that, 

it’ll be close to the actual. It seems like approaching the actual value of the data. 

So wouldn’t the actual value be like 376.2 milligrams? 

Such an invocation of averages indicated that although C2 coordinated the underestimate 

and overestimates getting closer to one another, he did not necessarily appreciate the 

possibility that the average value could be significantly different than the real value. C2 

also did not stand by this statement when I followed up with him by asking directly if he 

would approve the mission based on this observation he stated “I wouldn't say so. I think 
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that's just the average. If you're like, say, run it like 10 times, it still could have a worst 

case of the project.”  

During Part 4 both C2 and C1 expressed that they weren’t familiar with excel 

commands, so I had them direct me on what they would like to compute. C1 suggested 

calculations in the excel sheet which resulted in a new underestimate of 187.425, a value 

significantly lower than their previous underestimate. I had C2 and C1 explicitly remind 

me what that value had been. C1 acknowledged that the previous estimate was “a lot 

higher than that,” but C2 wasn’t bothered, noting, “I mean, I think we’re right. I think I 

think we are. I mean, if that's our underestimate our overestimate should be way under.” 

This illuminated a very subtle, but important distinction, between C2 and C1’s local-

global38 model relationships. C1 had an image that the refinement of any partition would 

result in an overestimate getting smaller and an underestimate getting larger and that this 

new interval would be a subset of the original range in values. While C2 equated the 

same refinement with a reduction of the magnitude between overestimate and 

underestimate, but no correspondence with the previous global model partition. C1’s 

understanding of this relationship allowed him to be perturbed by the new, lower, 

underestimate and prompted him to reevaluate the computations I had input into the 

 
 

 

 

38 I am unsure if C2 currently constructed a local model or a gross basic model at this point. I hypothesize 
the later as he didn’t talk about partitions, subintervals, or similar constructs.. 
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spreadsheet. C1 quickly corrected the error and C2 and C1 were satisfied that this new 

computation resulted in an overestimate lower than the limitation of 400 mg.  

When beginning the Fluid Force on a Rectangular Dam task which asked for an 

overestimate and underestimate for the fluid force on the dam C2 commented, 

So is the over and under actually going to be the 25 meters is the highest amount 

of pressure. And then would you put in zero meters? Er, I guess we need to think 

about this, is that what they’re asking? 

That is, C2 recognized the variation of pressure along the dam’s depth and his initial 

instinct was to apply a gross basic model to identify those estimates. C1 showed 

hesitancy to follow this strategy, anticipating that this would be a task he was used to 

which would require him to identify a better estimate, but C2 justified “Yeah. I mean, if 

you have that information, like, if you know the maximum amount of pressure it's going 

to take, so all you really need is an overestimate for this.” C1 agreed to calculate those 

values, which C2 commented were “very large” numbers and asking if they seemed 

“reasonable.” In reply, I commented that usually forces like these are written in scientific 

notation because they get so large, so it was not abnormal to get a value that large. C1 

continued to think about this task aloud, injecting ideas of using specific areas for 

specific depths in anticipation of creating a formula. Building off C1’s desire, I suggested 

C1 and C2 create overestimates and underestimates for two pieces of the dam, sort of like 

the rover task. Before computing these values C2 suggested writing the formula to be 

n = 9800& ∗ 63.26&. This provided evidence that without a partitioned dam with at 

least two elements and corresponding expressions for force on each subsection (either 

explicitly written or anticipated) the creation of a generalized formula was non-trivial. 
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C1, anticipating writing expressions for two separate partitions recognized that the &′] in 

the formula did not measure the same value, which C1 explained to C2, 

If we were to cut the area there in half the kind of cross-sectional area that we're 

pushing up against… what we do is we take the force of the lowest times the area 

of the, like, the area that we would be multiplying… if they're equal segments, 

you know, the top one is going to be zero, and then the bottom ones just going to 

be the same area times the, you know, the most. So it would kind of be just half 

the force. 

C1 then worked off-screen to compute the overestimate and observed that “it would 

change.” This led C1 into providing C2 a very long explanation about breaking the dam 

into two pieces, the corresponding force equations on each piece, and linking it with a 

“better” estimate because it provided more data. Although these explanations were 

coherent, they removed a lot of the cognitive steps for C2 to have built himself. In other 

words, C2 was again just internalizing C1’s explanations rather than fully engaging in the 

task sequence as intended. This is not to say that C2 did not construct schemes associated 

with C1’s explanations. When C2 and I discussed this episode he was able to discuss the 

dam being split into different pieces and that their equation was to identify what the force 

acting on those pieces of the dam was. I had him calculate the overestimate and 

underestimate value for the partitioned dam he drew (25 pieces) and he was able to 

identify the expected underestimate, 9800 ∗ 24 ∗ 63.26 ∗ 1, and overestimate 9800 ∗

25 ∗ 63.26 ∗ 1. I then asked what would change if he divided the dam into 50 pieces 

instead,  

So if you chopped it into 50 slices, instead of 25, the distance between your like 

sections. I guess the height of your sections would get smaller and smaller. And 
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so the actual, the actual values of n would be a lot lower for the whole because 

the entire the forces for the entire section. So since the section is smaller, that 

would get smaller. And then but you'd also be more accurate. For each like, point, 

the more you divided the more accurate you get. 

Based on C1’s coordination of the height of the sections and the number of slices 

indicated that he had incorporated a refinement relationship between his local and global 

models. When C1 is referring to accuracy in this case he is not referencing the global 

model becoming more accurate with extra partitions, but the measurement of the force on 

the partition. When you make the sections smaller the total force on that section is 

smaller, but it is closer to the real force.  

When C1 explained that he wanted to construct a formula that would calculate parts 

of the dam that were so thin they were basically zero, this evoked schemes for C2 related 

to rates of change and he suggested using Δ& for the height of the subsections. C2’s 

suggestion, along with his desire for a formula, motivated C1 to introduce summation 

notation into the task, writing general global model expressions,  

�9800{Δ&(63.26Δ&)
#(

:>"

 

�619948{Δ&#
#(

:>"

 

Although in the group interview C2 did not object to C1’s use of summation notation, 

in his individual interview C2 admitted to not fully understanding what all the parts 

referred to. When trying to make sense of it C2 described, 
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So that's basically the force formula. In terms of like, it's for any change in & 

between 1 and 25. So if you're, like {, I don't necessarily get why we had the { 

and the Δ&. Let me look and see if I can figure it out. So Δ& would be the height 

that I have, { with the depth, pressure takes. Okay, so the { is for the pressure 

formula because you need to have the actual depth. Not just that, because Δ& 

would technically be the height which you use for area. And so that's what you 

have in the area side of the formula, because like, so over here you have area, and 

over here you have pressure, pressure times area. So the 9800n times Δ& is the 

pressure side of the formula. Yesterday, the Δ& made a lot more sense to me. 

C2 has coordinated that whatever is on the inside of this equation represents a force of 

one of the sections of the dam and that the structure must represent pressure times area. 

That is, C2’s local model had taken on the property that it must have the same 

quantitative structure as the basic model. Additionally, although he was not sure precisely 

how summation notation works, C2 recognized that this set of symbols represents the 

total force, or the global model. C2’s confusion over the { and its relationship to Δ& as 

he’s assimilating { to represent the depth, not a counter. When I asked C2 what the ∑ 

symbol means, he replied 

I have two different ideas. One is that maybe it means, like you take n 1 through n 

25, add them all together and take the average of them. Or if it just is the notation 

of saying, this is like, the function next to it only goes from 1 to 25. 

While I could have explained in the moment, I wanted to provide C1 the opportunity 

to realize some constructs he was drawing upon were tools C2 might not be familiar with. 

So, I suggested that we discuss this more during our next meeting to make sure we were 

all on the same page. Unfortunately, while I did bring this up in the group setting, C1 just 

offered a quick explanation that you would add things and n would be a “step” counter so 
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you’d plug in { = 1 and add that to { = 2, etc. That is, they did not discuss the notation 

with relation to capturing the different depths for the pressure component. C1 also used 

his calculator off-screen to compute the overestimate and underestimate values for 25 

partitions, later providing a verbal explanation to C1 how to do this computation on his 

own calculator. 

When I asked C1 and C2 to identify an estimate accurate to within 50,000 N, C1 

again took the lead off-screen quickly using proportional reasoning to identify that you’d 

need 8000 partitions to find an answer this accurate. When C1 explained that he 

recognized that when he changed his counter from 25 to 100 the difference in the 

overestimate and underestimate would reduce by a factor of 4 so he just used that same 

idea, C2 said he would have just “used trial and error.” 

When I introduced the trapezoid problem, C2 observed “we just have to divide it into 

sections again, it’s just a bunch of trapezoids” indicated that his local models took on the 

shape of the global context and that he recognized that the basic structure of the local 

model would stay the same, É ⋅ d. C1 was again able to quickly identify the problem 

posed by the new context, voicing that they needed to find the width of the dam for any 

step. C2 suggested identifying the force on two rectangles, one rectangle measuring 

37.29m × 25m which represented the middle section of the trapezoid added to a smaller 

rectangle measuring 12.985m × 25m which represented two triangles placed together 

from the extra part of the trapezoid (Figure 43). C1 followed this strategy, but adapted 

C2’s additive process into a subtraction between two summation expressions with five 

partitions, 
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�619948{(Δ&)# −�127253{(Δ&)#
(

:>"

.
(

:>"

 

 

Figure 43: C1 and C2's two rectangle strategy for the trapezoidal dam task 

More than once in this interview C2 voiced confusion about these two expressions, 

which led me to suggest that C1 write these expressions out the long way without 

combining terms. Above the summation, C1 wrote out, 

(9800{Δ& ⋅ 63.26Δ&) − (9800{Δ& ⋅ 12.985Δ&). 

After C2 wrote out this expression, I asked C1 and C2 to explain whether their 

expression was different than 

!9800%Δ' ⋅ 50.275Δ'
#

$%&
, 

and if not, was that okay or did it pose a problem for computing the value of the forces 

for the trapezoid. When C1 attempted to run numbers and compare values I explained 

that I was just writing the expression for a dam that was 50.275 meters wide, which was 

the value of 63.26-12.985. C2 did not observe a problem with this computation, “I don't 

see why it wouldn’t work. I mean, we're just taking and moving certain things. I mean, 
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obviously, you can't move the actual dam. But the math should add up.” This indicated 

that the notation was clouding C2’s ability to identify that subsections of the two triangles 

he moved to combine into one rectangle would not properly account for the increase in 

pressure along with the depth. C2 also recognized this difficulty as his next suggestion 

was to just try and write expressions for the dam in two pieces. This allowed C1 and C2 

to recognize there was an issue with their overall method.  

C1 and C2 returned to trying to quantify their trapezoid, and because they recognized 

that they needed to identify the width of a dam at any spot, but were having trouble 

identifying how I introduced the idea of using similar triangles. C1 was able to recognize 

the proportionally and translate it to summation notation (Figure 44), but C2 voiced 

confusion again and had to ask C1 what he was doing.  

 

Figure 44: C1's summation notation for the side length of the triangles for the kth 
partition 

My repeated reference to C2’s confusion is not a judgment of something lacking in 

C2’s computational or reasoning ability. During his individual interviews, C2 continued 

to demonstrate that he understood the quantities involved, was reasoning in terms of 
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basic, local, and global models, and could take on C1’s explanations with fairly good 

incorporation into his schemes. However, the use of notation was continuing to hinder 

C2’s ability to recognize which quantities C1 was referring to. In C2’s follow-up 

interview I noticed that when he wrote out his expressions it was always in the form of 

pressure times area, so I asked why this was a more comfortable way to write the 

expression, as opposed to C1’s tendency to combine terms. C2 explained,  

Because it like derives from the original formula we got, like the force equals 

pressure times area. I was just dividing it into pressure and then the area… I like 

that in-between stuff a little better. I still wasn’t completely comfortable, so I 

kinda needed a few extra steps.  

Summary 

During the first two tasks, C2 demonstrated that he had coordinated the structure of a 

local model with a basic model, that a global model was an accumulation of local models, 

and that an increase in the number of sections of the dam you increase the accuracy of the 

overestimate and underestimate values. C2 also displayed anticipation that you could 

adjust the summation formula to as many partitions as necessary, identifying that you 

would just need to adjust the value for Δ& to be the total length divided by the number of 

sections you are computing.  

C2’s partner went through the task prompts much faster than C2 was necessarily 

comfortable with, often anticipating future questions before they were asked. This speed 

denied C2 an opportunity to fully engage in a lot of the prompts planned throughout the 

task sequence. Therefore, when the scheduling conflict arose and B1’s partner dropped 

out I decided it was in both C1 and C2’s best interest that I move C2 to Group B. This 
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would allow C1 to move through the task sequence at his own pace, provide B1 a partner, 

and provide C2 the opportunity to actually engage in the tasks as planned rather than just 

trying to keep up with C1.  

The “How-To” Guide Fiasco 

Throughout the rest of the teaching experiment, B1 and C2 constructed their 

emergent models fairly robustly, however, they never became particularly proficient at 

creating generalized local models. Part of this difficulty was that often B1 and C2 

reasoned about the quantification of their local models in different ways. For example, 

during the energy to build a pyramid task, C2 initially reasoned about quantifying the 

volume component of their local models using a variation of height, while B1 thought 

about measuring those same volumes as the portions of the side length were removed. 

That is, B1 envisioned different slabs of the pyramid being lifted to different heights and 

noticed that the quality that was changing between these partitions was a decrease in the 

width of the base length. Deciding to go with B1’s quantification, C2 had to reason about 

the task in a way that wasn’t inherently natural for him. On the other hand, C2 would 

regularly fall back on using summation notation for various tasks throughout the teaching 

experiment. B1 found the need to rewrite things in terms of summation notation tedious, 

wanting to write his generalized local models directly into definite integral notation. 

While these differences in approaches were not insurmountable obstacles, they did pose 

added challenges along the way and were, in part, a result of their different introduction 

into the task sequence. However, what was important about B1 and C2’s emergent 

models is that they were built on an image that their basic model dictated the shape of 

their local models which informed the quantitative structure their differential forms 
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needed to be in, they ascribed a meaningful quantity to the differential as a measure of 

the length of an interval for their local model and were persistent in their quantification 

process once a productive partition which would allow them to reduce variation was 

made. All of these elements helped them to produce definite integral expressions required 

throughout the teaching experiment, even if the path to each expression was not a 

straightforward quantification of a generalized local model.  

It was for the reasons above that I was surprised by the “How-To” write-up activity. 

Like the other two groups, B1 and C2 were asked to answer the following two prompts: 

1. Provide a write-up that describes exactly what a definite integral is, and 

how it works, to someone who has never taken calculus before. It is not 

necessary that the reader be able to compute definite integrals by hand, but 

your write-up should enable them to be able to understand the quantities 

involved for definite integrals such as the ones you’ve worked on over the 

past few weeks. Be sure to include specific descriptions for the notations 

you use. 

2. Provide a write-up that would enable a reader to construct a definite 

integral for tasks such as the ones you’ve worked on over the past few 

weeks. This write-up should be specific in its directions, but general 

enough that it can apply to novel tasks. 

 This prompt was placed at the end of the learning trajectory to serve as a reflection 

activity. That is, its sole purpose was to encourage participants to review their work 

throughout the teaching experiment, identify common practices between different tasks, 

and position them to consciously recognize some of their emergent model structure (e.g. 

creating partitions, adding up quantities, over and underestimates, etc.) However, during 

this task B1 and C2 did not review any of their previous work instead of providing 
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explanations for definite integrals in terms of “area under a curve,” velocity and position 

heuristics, and “$(') times &'.” Because we had not discussed area under a curve nor 

velocity at any point during the teaching experiment I understood that B1 and C2 were 

describing the schemes for definite integrals developed in their calculus coursework, not 

from the teaching experiment.  

As B1 and C2 moved onto the second prompt, the activity seemed to be towards the 

intended trajectory because C2 said “I mean, no matter what we did, we always divided 

something up into a bunch of pieces. I think that’d be important for someone to know 

trying to set one up.” C2 followed this up by talking about needing to use summation 

notation before moving into integral notation, which I took to mean he was reflecting on 

needing to imagine actual physical partitions which he could measure, however, he 

followed this up with a generic Riemann Product description of summation notation, 

$(';)Δ'; 

So where do we start with an integral? I still really can't just write an integral, I 

always go from summation notation to integral notation… if you go from some 

summation notation, you can just say, you know find Δ' you got to find '; and 

then you multiply Δ' times $(';). " 

I attempted to direct B1 and C2 to reflect on some of the specific activities they 

worked on, like the pyramid and the dam, and identify things in common such as C2’s 

example of “dividing things up.” However instead C2, without objection from B1, wrote 

steps that framed the aspects of the definite integral in terms of notation rather than 

quantities: e.g. find Δ' which is ?=@
<

, write an equation Δ'	$(';) (Figure 45). 
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Unfortunately, working with this list of steps in mind, C2’s answer to the Kinetic Energy 

of a Rotating rod task resulted in a solution consistent with an Integral as a Transformer 

conception (i.e. the differential was appended to the end of the basic model). Although 

B1 was able to recognize an issue with appending a differential quantity to the basic 

model, C2’s easy reversion to not attending to the quantitative structure that the local 

model must share with the basic model provides more evidence of the difficulties 

students face when they have an image of $(';)Δ' as their image for a local model. 

Following the Kinetic Energy task B1 and C2 returned to their “How-To” guide to 

rewrite their steps, as C2 realized they were not effective. This included B1 and C2  

 

Figure 45: B1 and C2's initial "How-To" write a definite integral task 

discussing the mental actions they took to solve the tasks such as identifying variation, 

identifying a basic model, focusing on how to measure local model elements, etc. (Figure 

46). 
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Figure 46: B1 and C2's "How-To" guide rewrite 

As a direct result of reframing how they thought about working through definite 

integral tasks to focus on primary aspects of their model relationships, B1 and C2 were 

successful in solving the Gravitational Force task with little difficulty.  

Supplementary Tasks as a Part of On-Going Analysis 

As each group made their way through the planned task sequence I made changes to 

the hypothetical learning trajectory due to my ongoing analysis of each group's individual 

needs as planned. This often took the form of making slight changes to the ordering or 

inclusion of specific sub-prompts but also included occasional suppletory tasks for the 

participants to engage in. Many of these supplementary tasks were presented in the 

follow-up clinical interviews in service of developing a more nuanced image of their 

incoming and evolving schemes (e.g. “what is lim
'→B

"

'
?”), however, there were also 3 

major changes that I made to the overall task sequence. This included the two suppletory 



 

 
 

300 

tasks I designed for Group A, and the inclusion of one of the task-based clinical interview 

questions to be present for C1 prior to his final reflection task.  

As described in the last chapter, the decision to include the Kinetic Energy of a 

Rotating Rod task in C1’s hypothetical learning trajectory was due to his continued 

attempts to directly apply his integral-model to tasks or to conform a definite integral he 

created using his sum-model to a partitioning consistent with his integral-model. Because 

the hypothetical learning trajectory developed as a part of this study was in service of the 

developing of a quantitatively based summation conception of integration, and not 

replacing an already existing scheme for Riemann integrals, most tasks contexts within 

the task sequence did not require the use of such an understanding of integration. This 

was intentional because most contexts which require a Quantitatively Based Summation 

conception of integration are inherently more difficult to quantify.  

By moving the Kinetic Energy of the Rotating Rod task into the task sequence I 

positioned C1 to be able to reflect on his problem-solving activity for this task during his 

“How-To” guide. This resulted in a direct identification that he had been unable to 

conform this sum-model into his existing integral-model and a conclusion that attempting 

to apply this second set of schemes to a context of this nature was “the wrong way to do 

it.” As he reviewed more of his tasks he identified his common theme of always 

attempting to directly apply his integral-model to every task and that some contexts just 

aren’t appropriate for his integral-model. While the design of this study was not 

positioned to aid C2 in identifying a way to immediately identify which of his schemes 

would be appropriate. It did serve to engender the development of a quantitatively based 

conception for definite integrals (his sum-model) and a recognition that this scheme is 
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more appropriate for some types of tasks. This suggests that for students who enter 

calculus with a highly developed scheme for Reimann integration, this learning trajectory 

can serve to engender the development of a Quantitatively Based Summation conception 

of integration, possibly by the creation of a new scheme entirely. This result also provides 

an avenue to address a common misapplication of definite integral notation observed in 

students, appending a &' to a generic basic model as the differential form within definite 

integral notation. C1’s integral-scheme is not the only reason students might append a &' 

to a basic model (e.g. students who do not ascribe units to a differential quantity or don’t 

include one at all), but for those who display a similar understanding, this case-study 

provides a potential series of events which led to a critical perturbation for the correction 

of such an error. They must (1) develop a sum-model, (2) cognitively recognize that they 

have two separate schemes for accumulation (3) observe a repeated behavior of their 

direct application of an integral-model, and (4) observe that at least one of these 

examples could not be re-conformed to their integral-model.  

Another adjustment I made was the inclusion of the “Can we use a rectangle to 

approximate the area of an annulus?” task into Group A’s task sequence immediately 

following their Volume of a Sphere task. I included this task because, while A1 and A2 

recognized that the answer their definite integral expression provided was not the same 

value as the “real” volume of a sphere, they could not identify why their method of using 

rectangular boxes didn’t work. I had to inform them that the shape they actually found the 
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volume for was a “bubble pyramid39” which allowed them to recognize they should use 

cylindrical prisms instead.  

Believing that this might provide a good opportunity to have A1 and A2 investigate 

when it’s appropriate to use a basic model different than an exact shape, I provided A1 

and A2 a synthesis of the error for their previous computations and asked them whether 

they could use a rectangle to approximate the area of an annulus if they were trying to 

create an integral modeling the area of a circle. Through quite a bit of guidance from me, 

A1 and A2 were eventually able to recognize that if the error had a linear relationship 

with the differential quantity then they could not use that shape to make the 

approximation, however, I do not believe this task was a productive addition to the 

teaching experiment. In particular, when A1 re-voiced confusion about why their 

rectangular prisms didn’t work during this activity, A2 succinctly explained that you 

could not estimate the area of a circle using a square. While an excellent question and 

amazing response, this exchange effectively removed the intellectual need to investigate 

this question any further. While A1 remained invested in the broader image of wondering 

when they could just ‘decide’ to replace a quantitative element within a local model, A2 

was focused on the specific question I’d posed regarding the area of an annulus. Because 

A1 deemed this to be an unnecessary estimation to make, due to the ability to find the 

 
 

 

 

39 I drew on the terminology from the Pyramid task immediately preceding this task 
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exact area of an annulus by finding the difference between the two corresponding circle 

areas, the task was not engaging. Additionally, and perhaps more importantly, the task 

sequence was not designed to meaningful leverage the connection to error in the later 

tasks. While A1 and A2 did reference this activity when they needed to model the Total 

Mass of a Circle Oil Spill, the geometric shapes A1 and A2 were invoking for the rest of 

the sequence had already been identified as acceptable. Therefore they did not have a 

need to investigate error throughout the rest of the sequence.  

A much more successful addition to the hypothetical learning trajectory was the “Do 

These Integrals Model the Energy to Build a Pyramid?” task in which I provided, correct, 

integral expressions which were quantified through a partitioning process distinct from 

each group’s approach. While this task was conceived of as a direct result of the 

discourse between B1 and B2 during their own pyramid task, I included it for Group A 

(individually) after they finished the corresponding task and for C1 within their “Grading 

Definite Integrals” task. The inclusion of this task sequence was particularly successful 

for Group A for 3 reasons. 

(1) The task provided a concrete example that there is not a canonical way to set up 

definite integrals. Group A had been excellent about communicating throughout 

the semester and building the local models, including their quantification, was 

always a team effort. Although there was already planned inclusion of alternate 

expressions in the “Grading Definite Integrals” task, this example added a second 

context to observe that property.  
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(2) It positioned A1 and A2 to compare the symbol template of the definite integral 

for an expression by directly comparing to their work. By matching the 

differential form to their generalized local model structure, A1 and A2 were able 

to coordinate the precise quantification of different elements of the definite 

integral through their image of those components.  

(3) Most important, this task revealed a critical element that was missing from my 

hypothetical learning trajectory. Specifically, this task was positioned to reveal 

the exact correspondence A1 and A2 had between a partitioning process and the 

limits of integration within the symbolic form of a definite integral. While their 

own choices for the limits of integration were obvious through their 

correspondence during the development of a generalized local model, A1’s 

interview during this subsequent task revealed she had an incoming scheme for 

the limits of integration which were tied to graphical imagery of changing the axis 

which you were partitioning. Although A1 could meaningfully identify the 

purpose of each element within the differential form, changing the limits of 

integration from measuring heights to measuring widths imposed a scheme for the 

rotation of the partitions to run vertically rather than horizontally. More 

accurately, A1 envisioned the pyramid physically rotating so that she could 

envision the partitioning process as a form of subdividing the base of the pyramid 

rather than the height which they had done before. Although I tried to induce a 

perturbation of this image through coordination of vertical partitions not 

providing an appropriate way to estimate varying energy, A1’s unfamiliarity with 

physics, made her resilient to such inquiries, as she assimilated specific values for 



 

 
 

305 

the partitioning process into her diagram. Unfortunately, due to limited time in the 

individual interviews and scheduling issues due to the holidays, A1 and I were not 

able to resolve this issue. Because I did not have a task of this nature, a chance to 

revisit this idea did not arise naturally. In a subsequent study I will have an 

opportunity to investigate A1’s reasoning again, in which I plan to reintroduce 

this prompt to identify whether this conception is still present, and if so, have a 

preprepared task to attempt to induce a necessary perturbation.  

Results of Task-Based Clinical Interviews 

At the conclusion of the teaching experiment, I engaged participants in identifying 

definite integrals for two tasks in which the differential form was not a Riemann product: 

Total Kinetic Energy of a Rotating Rod, and Gravitational Force Between a Rod and a 

Particle. These tasks incorporated new challenges for the participants due to the 

presentation of a fixed quantity for the mass of a whole rod which required the need to 

conceive of the differential quantity, or fixed value across elements of their global model, 

as an element of their quantification of a constant mass for a local model. Although a 

direct comparison cannot be made between individual students, to serve as a baseline for 

what a student may have learned through the course of their normal college calculus 

course work, I interviewed one additional student who successfully completed a calculus 

course with the same instructor as four of the study participants. I discuss the results and 

implications for the students’ emergent models below.  
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Total Kinetic Energy of a Rotating Rod 

The Total Kinetic Energy task requested students model the kinetic energy for a rod 

rotating about one end. Students were provided a way to situate this knowledge within 

already existing schemes for motion by the additional context (like the second hand of a 

clock). By providing a radial unit to characterize the behavior of rotation (1 rev/min) an 

additional level of complexity existed in this task due to variability not being 

immediately obvious.  

Group A’s Kinetic Energy Task 

The Kinetic Energy task posed a problem for A1 and A2 due to the perceived lack of 

variation in the context. A2 began by drawing a diagram of their interpretation of the 

situation, including quantities and values, as well as the basic model expression, y =

"

#
oÑ#. A2 observed, “I guess the first thing we have to do is find these speeds because 

we know our mass is constant.” The need to identify a varying quantity but assimilating 

the 1 rev/min to be a constant speed made A1 question whether mass would indeed be 

constant in this context; “Is it? I thought our speed would be the 1 revolution per minute.” 

Reorienting herself A1 noted,  

Okay, so we're trying to think about what to do, what we want our equation to be 

measuring. So, we know we needed to measure kinetic energy, and we have that 

formula.… So, we've decided that our mass is going to be constant no matter 

what. So our big M is a constant. So that means the only variable is Ñ in that 

equation. 

In this observation, A1 is demonstrating that she is attempting to identify exactly 

what could be varying in this context. A1’s need to isolate the varying element is driven 
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by the anticipation of creating a local model which will measure the kinetic energy of 

partitions of her global model. A2 added, 

Speed will be our changing variable. So I'm trying to figure out, it's one 

revolution per minute, right here at the end, right. So because the minute hand 

goes all the way around in one minute, but here, it goes around at a different 

speed, right? Because there's less distance travel that goes with this guy [drawing 

the path of rotation for a piece of the rod near the center of the circle]. 

A2’s recognition that the end of the rod covers more distance than the center as it 

rotates is informing his image of where a partition should occur. That is, he anticipates 

that by breaking the rod into partitions along its length, they will be able to reduce the 

variation in speeds between the endpoints of each partition. However, by drawing out the 

paths of these different sections, A2’s memory of two tasks involving concentric rings 

prompts him to suggest that their partitions should “be the ring.” A1 contended that 

“they’re cutting the length in pieces.” After reviewing their work on the ring activity they 

realize they’re trying to find kinetic energy, not area, so A2 returns to trying to capture 

the variable speed,  

Is it just the circumference, we need to find the distance that travels. And then we 

can read a proportion. Based on the length of one meter. It goes around one 

revolution per minute. So we need to find a base of 0.05 meters. It would go at, I 

guess two meters per second, right? 

This observation caused A1 difficulty; “I don't know. To be honest, I'm a bit 

confused. Because it's like, the bottom part is still doing one revolution per minute.” That 

is, A1 correlated revolutions per minute with the speed of the rod at all parts along its 

length. Even with a partitioned length, all pieces of the rod would travel the same 
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‘distance’ of 1 full revolution. This conflict poses a significant challenge for A1 who 

described her meaning using her pencil in the video screen;  

But let's think if we had partitions, like I guess, if we were to cut it into partitions, 

it would be like the bottom partition. Because what I'm thinking is if I'm taking 

my pencil and I'm moving it like this [rotates the pencil around its base], all my 

hands are moving at the same, like my hands are both moving the same…This is 

only one speed, my hand is only going one speed. And it's making the whole 

thing. Does that make sense?  

It was clear that A1 was attempting to suggest that no matter how she chopped up the 

pencil her hand would always travel 1 full revolution in the same amount of time, it 

would go the same “speed.” After some back and forth A2 observed, 

Okay, so in our formula, here we have mass and speed. But mass is definitely not 

changing. Because it's constant. It's the rod. But speed is changing. Except our 

units are revolutions per minute. And every minute, every part of this thing makes 

one revolution. Except this part here at the middle isn't going as fast. So speed 

must not be one. I think we're defining our speed wrong… So right now, we said 

that speed equals one revolution per minute. And I don't think that's right.  

This conflict between whether the speed was constant or changing persisted and 

required that I point out that velocity would be measured in a length of distance, like 

meters, over an interval of time. This prompted A2 to begin writing the algebraic 

expression for their generalized local model, y = "

#
(0.03) ^4

C
_
#
, noting, 

So in our like actual equation here, K equals one half 0.03 times distance divided 

by time squared. Because our mass is constant, and this defines our speed. Our 

time is constant too because it's one minute. Yeah. So it’s just divided by one. 



 

 
 

309 

Which means that speed in this case is just distance. But I'll leave [1] there for 

clarity. 

Attempting to measure this speed, A1 and A2 commented that they needed to rewrite 

speed in terms of the length of the rod because that is how they made the partitions.  

The diagram markings, which looked like rings, caused A1 and A2 to continue 

referencing back to the concentric ring method for finding area, but they could not 

coordinate this with needing to find a distance. A1 and A2 knew they were trying to 

quantify a variable speed, but due to not having familiarity with measuring velocities on 

circles they were unable to meaningfully measure that quantity. To aid them in moving 

forward, I drew a dot on their diagram at a distance e and asked how far that dot would 

travel if it went around the ring, to which they replied 2ce meters. I then asked long it 

took, which they replied was 1 minute. This allowed A1 and A2 to coordinate that the 

velocity of that dot would be 2ce/1 m/min. 

The introduction of the velocity element of their generalized local model raised a new 

issue for A1 and A2 because they realized that there was no differential quantity in their 

expression,  

A2: So 2cO is the largest distance, which means it's traveling the fastest. At the 

very outside point. So if we do 2cO minus. I just can't figure how to do it without 

writing ΔO on there. That doesn't make sense though. 

A1: We need it in our problem. 

A2: Yeah, I know, that has to be there somewhere. But I don't know why. Well, I 

do know why. So it is since it's 
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A1: It's the length of our interval. The length of the partition of the rod, like as the 

rod has been chopped. 

I recognized that while A1 and A2 understood that ΔO would represent the length of a 

partition, they were not thinking about a single partition. That is, they were focusing on 

attempting to write their generalized local model too abstractly and not considering single 

partitions as they had before. I verified this by asking what their y expression represented 

and A2 said “it’s the kinetic energy of the whole rod.” I countered by asking whether y 

or ∫ y1."

1
 would be the kinetic energy of the whole rod. A2 acknowledged “this is just the 

equation for the kinetic energy of this rod at like this point.” This refocused A1 and A2 

on writing an expression that would represent a point on the rod, and not the entire rod 

itself. This led A1 to rewrite y = "

#

1.1!

4D
^#8D
"
_
#
	,	however, A2 said that did not make sense 

because you’d divide the 0.03 by the number of partitions, {, not &O. This led to a series 

of attempts to “make the math work” where A1 threw out ideas of what they could divide 

by. Realizing she was suggesting random numbers and was not making progress, A1 

reoriented herself,  

Because it would work if we said 0.03 divided by 2. Yeah, but [the number of 

partitions] is not what we decided &O is.… Okay, let's think about how do we even 

get &O to begin with? We do the total divided by { and that's how we get our &O… 

So we need to solve for &O in that equation.  

A1’s observation that &O = [E-FGHI	JK	LIJE-	MJN]

[FOP*-M	JK	Q+MHRHRJF,]
 positioned A1 and A2 to rewrite 0.03 

to be | 1.1!

S
"."$
%& T
} and conclude that their generalized local model expression was their 

“general version for the size of the partition.” Which they entered into their K equation, 
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rewriting it as (0.03) ^ 4D

1.1"
_. There was not a method to input an integral sign into the 

whiteboard, so A1 and A2 directed me on how to write their final integral expression on 

the whiteboard, resulting in a global model expression, ∫ "

#
(0.03) ^ 4D

1.1"
_ ^#8D

"
_
#
.1."

1
  

When I asked A1 and A2 how they knew their expression was right, A2 suggested 

that they enter it in the integral calculator. When I asked how getting a specific value 

from the calculator would tell him he had the right answer, he realized he was not sure. 

A2 then worked on his own sheet of paper to “check” whether their expression was 

correct. A1 inquired “how” he was “checking it,” asking “Are you writing like a Riemann 

sum or something?” A2 responded, “Well, I mean, I was just gonna do an overestimate 

for like, the big one. So a Riemann sum, yeah, but just like the biggest possible 

overestimate… To make sure we're ballparking it.” I then asked A2 if he was using his K 

formula for the Riemann sum because if so then the definite integral value will be lower 

than an overestimate of that value. A2 clarified “I'm just making sure I have my variables 

correct,” indicating he was verifying that the K equation would position him to identify 

the correct values for the quantities necessary to create an overestimate if they only used 

a single partition. A1 and A2 went on to discuss what values different quantities in their 

K equation would take on for an overestimate and underestimate with 1 partition, for 

example, the &O would be 0.1 “because dl is the length of the partition” but they would 

adjust the O within the speed component. This allowed A2 to conclude,  

So conceptually, I guess we know it's right because it tracks here [referencing the 

generalized local model expression]… once you have that equation, all you're 

doing is changing from a ΔO to a &O. So because we know [the generalized local 

model] equation tracks, then we know [the global model expression] is accurate. 
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That is, the generalized local model A1 and A2 constructed effectively positioned 

them to be able to identify the kinetic energy of a piece of the rod for a specified partition 

that is compatible with the structure of the basic model. Therefore including the same 

expression within the integral, switching Δl′] to dl’s, would identify find the exact value 

that bounded by those over and underestimates.  

Note that A1 and A2’s final expression did not measure kinetic energy in Joules, as 

they measured their time in units of minutes. Due to the time limitation of the session, 

and A1 and A2’s unfamiliarity with common physics units like Joules, I did not view it as 

productive to revisit this task the following day to have them rewrite their final 

expression in terms of Joules. I am confident that had I pointed out the error they would 

have quickly adjusted the 1 minute within their generalized local model, which was still 

clearly identifiable, to 60 seconds. 

Group B’s Kinetic Energy Task 

When Group B began their kinetic energy task, C2 drew a diagram noting the end of 

the rod would have more kinetic energy than its base, however, there was tension over 

the existence of a varying speed. B1 was uncomfortable with partitioning along the rod 

because the units of 1 rev/min implied a constant speed, so he was “confused on how we 

find speed.” Attempting to coordinate measurements of speed, C2 stumbled over his 

words, but eventually realized, 

Because like its circle has lesser circumference… Because this is the distance 

traveled over time. And so I’ve got to find the circumference of the circle with a 

radius r, and if we call e from there to the blue line. Speed equals distance over 

time. 



 

 
 

313 

Convinced speed was changing, and anticipating making the velocity the variable 

expression, B1 voiced that the limits of integration should be the minimum and maximum 

speed rather than lengths of the rod’s measure as C2 depicted on the diagram. C2 did not 

understand B1’s intentions. This caused him to discount B1’s suggestion, who became 

frustrated and just supported C2’s solution moving forward.  

In anticipation of placing the expression he was constructing into summation 

notation, C2 prewrote wrote .";
<

 on the side of the shared whiteboard. This expression 

represented the Δ' quantity of the symbolic template necessary for a Riemann sum 

∑$(Y + ZΔ')Δ'. C2 then focused on identifying the function component of this 

template, $, writing length of the rod as (0 + ') and completed his expression for speed, 

#8(10')

"(PRF)
 which was simplified to 2c'. Because C2 already accounted for the Δ' as an 

element independent of his $ element, he was unperturbed by the lack of Δ' in the kinetic 

energy formula he created, $ = "

#
(. 03)(2c')#. C2 finished his summation and definite 

integral expressions by adjoining his Δ'(&') element and his constructed $(Figure 47).  
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Figure 47: C2's solution to the Kinetic Energy task 

I was disappointed that, by framing the steps in the “How-To” guide in symbolic 

terms such as “write an equation where $ = (Δ') ∗ $(';)” C2 lost track of the need for 

each element in his summation to represent an element of kinetic energy (i.e. that the 

‘parts’ of the whole must be kinetic energy). That is, by focusing his attention on 

attempting to match the symbolic template of a Riemann sum he was not positioned to 

observe that appending a Δ' to the basic equation could not result in kinetic energy. C2 

had shown evidence throughout the teaching experiment of creating generalized local 

models for which the Δ element represented a quantity within the quantification of a 

generalized local model. Therefore, I attempted to engage B1 and C2’s emergent models 

without summation notation interfering by appealing to B1’s distaste for writing 

expressions in that manner; 

I know that [B1], I guarantee you probably wouldn't have written this in sum 

notation at all. So, maybe how would you have attacked this? To see if you would 

come up with the same answer. 

Because B1 did not have a tablet, I wrote the expressions for him as he explained, 

I think I would have gotten the (2c')# there. Then the mass I would have gotten 

0.3 for. And then over 2 because of the one half. I guess I’m confused about the 

dx. I'm thinking about units. Like, we were messing up with the units on the other 

one. So like, this would be kinetic energy right here. And then adding on a dx, I 

don’t know what that does to it. 

This observation from B1 was enough to perturb C2 as well, so they both looked at the 

equation more. B1 then asked for clarification on what “a uniform mass of 0.03 kg” 

meant. From this suggestion, I inferred that B1 was attempting to identify how the 
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differential, which is measured in meters, could be incorporated into their expression. I 

explained that a uniform mass of 0.03 kg meant that the rod had the same density 

throughout, so if you cut it in half each piece would be 0.015 kg. This intervention 

allowed B1 and C2 to identify that the definite integral expression C2 had written, 

∫ 1.1!

#

1."

1
(2c')#&',	should be adjusted to ∫ 1.!

#

1."

1
(2c')#&' to account for the density 1.!

1."
 

kg/m. Recognizing that this second expression was the “correct” definite integral was no-

trivial for B1 and C2, because they were not constructing this new global model 

expression in a vacuum. That is, B1 and C2 were attempting to adjust C2’s original 

expression to represent the correct units, not construct a generalized local model from 

scratch. So, even though they identified replacing the mass with density 1.1!
1."

 would fix the 

units, B1 asserted they could not “just throw it in there.” As they discussed the issue 

further, C2 verified the length of an “interval” was &', but then said “but we can’t have 

more than one &'” which indicated he was attempting to quantify the mass of one piece 

of one interval of the rod, but the preexistence of the &' at the end of the expression 

made the 0.3 density and length &' two distinct elements, not a mass. To check I asked 

B1 and B2 what the mass of a piece of the rod would be, which they verified was 0.3&' 

and then B1 said, “Oh, so then that [second expression] is right.” That is, by identifying 

the structure of the mass component as a single expression he recognized that the two 

elements, density, and length, separated in the global model expression represented the 

mass. This was compatible with B1’s expectation that the structure of the basic model 

dictates the structure of the generalized local model. 
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Before concluding, I informed B1 and C2 that their answer was not actually in terms 

of Joules. Their inattention to this detail was expected due to their unfamiliarity with 

physics units, so it was an easy fix for them to make once I made them aware. 

As previously discussed, in light of their solution to the kinetic energy problem, and 

reflecting on how the two different approaches led to two different answers, C2 and B1 

returned to their “How-To” guide to rework their reflection on how they solved problems. 

C1’s Kinetic Energy Task 

Recall C1 was introduced to the Kinetic Energy task during his main learning 

trajectory. During that activity, C1 mentioned that the task was “easier” than it could 

have been because the rod had a uniform density. He was not sure if he would be able to 

solve a similar task with a non-uniform density. Therefore, instead of presenting the exact 

question again, I made a slight adjustment to have the density of the rod linearly increase, 

0.05 kg/m at the center to 0.3 kg/m at the end. Because C1 already worked through 

creating a generalized local model, he did not have to go through those steps again. 

Instead, C1 began by writing down his basic model expression. His next expression 

expanded the quantitative relationships within the basic model. That is, he identified a 

way in which he could quantify mass, a density times a length (x ⋅ e) and recognized he 

already quantified the velocity element during his previous problem, ^87
!1
_
#
. This new 

expression engendered a need to identify the quantitative relationship for the linear 

density. C2 described this process aloud,  

I think this, what this would change… [rereading prompt] okay linearly increasing 

density with .05 kilograms per meter at the center to .3 kilograms per meter at the 
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end. So it increases .25 over .1 meter. So, 2.5 is the rate of change there…. Okay, 

so last time I just had it be the density times the, what's it called? times the slice? 

Since it's you know, it was uniform. This time, I have to find the specific density. 

I'm at, you know, whatever point with that find me make sure.  

C2’s comment that the density expression should identify the density at a point 

caused him to realize he left off the initial value for his linear expression, which he 

corrected before moving on.  

 Finally, C1 created a generalized local model, simplified the expression, and created 

the algebraic representation of his global model—the symbolic form for the definite 

integral (Figure 48).  

 

Figure 48: C1's Kinetic Energy of a Rotating Rod board work 

C1 took less than 7 minutes to complete this entire prompt including the time to 

explain his reasoning and correct the density expression after realizing he left off the 

1/20. When I asked him why he expressed concern about a non-uniform density C2 

replied, 
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I um, once I kind of sat down, looked at it, thought about it for a bit. I was able to 

figure out what I needed to do, which was, you know, just kind of find the density 

at each point and then multiply that by &e. Since I knew that the &e was going to 

go in there, I just kind of tackled it as its own kind of nested problem… I kind of 

dealt with it like, we were accumulating density first.  

C1’s mention of “accumulating density first” prompted me to ask if the expression 

p |p `
1
20 +

5
2 eb &e

1."

1
} `
1
2b ^

ce
30_

#

	
1."

1
 

would work for this prompt. C1 quickly replied,  

I think the problem with this part is that you have the accumulation inside the 

accumulation. This right here is just the mass, right? And so, what you have is the 

accumulation of the mass times, you know, the one half and then the velocity. But 

it's not going to kind of it, it's going to do the accumulation on the inside before 

the outside. So every time you're just going to have the full mass.  

What was important about this interaction is that it demonstrated C1’s ability to (1) 

identify that the inner integral represented the mass of a rod of length 0.1, and (2) 

coordinate that if you were to compute that integral to get mass then your next integral 

would assume a constant mass for each e along its length. Such a quick observation 

means that he was able to assign quantitative meaning to definite integral expressions that 

were not constructed using his emergent models, but which he could anticipate would 

create a conflict with those models. Specifically, each piece of the rod would have the 

entire mass of the rod ascribed to it. This speaks to the integrity of C1’s local model—the 

global model is not just an accumulation of every individual quantity within the 

generalized local model expression, the mass within the local model is a local 
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measurement of mass. He also added that the second definite integral would be missing a 

&e, but if you were to add that &e you would get J⋅m which is not the units you want for 

energy. That is, the units of a generalized local model with this structure did not match 

his expectation that the units should be the same as the global and basic models.  

C1 clarified that when he mentioned “accumulating density” he was just talking about 

realizing the mistake he made deriving x(e) by not including his “starting point.”  

Total Gravitational Force Between a Rod and a Particle 

The Gravitational Force task provided new challenges to students by providing 

variables for quantities that had previously been ascribed a specific value (e.g. instead of 

a length of 5 meters, participants were provided a generic length O). This provided 

students an opportunity to generalize their generalized local model construction and 

would require additional coordination between identifying the fixed and variable 

quantities across elements of their global model. An additional challenge was that this 

context was the first time the value of zero would not represent their lower limit of 

integration.  

Group A Gravitational Force task 

When A1 and A2 began the Gravitational Force task, their lack of familiarity with the 

Law of Universal Gravitation resulted in them imposing a sense of movement between 

the rod and the particle, as if they were being pulled into one another and would 

eventually collide. An additional challenge this task posed was the lack of values for 

specific quantities. A2 described,  
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Because length is denoted as l, we don't have a measurement for it. So it’s almost 

like, it may not matter. And our mass is also not given for either of them. But I 

feel like that does matter, and we don't have it. We only have the gravitational 

constant. Our distance is the measurement that the gravitation all energy will be 

dependent on…. I feel like I don't know because it's in the n equation. Length 

isn't, but mass one and mass two are. I would imagine they would matter. 

After more discussion, A2 voiced that he “feel[s] like there's a lot of this question that 

we're just not understanding conceptually.” I took this as a cue to introduce the general 

principles of The Law of Universal Gravitation, and that the objects in this context were 

fixed in place. Drawing on A2’s example about the earth “holding the moon in place” I 

explained that objects pull on each other, but that the distance between them matters, so 

the gravitational force between the particle and the closest end of the rod will be a lot 

stronger than the pull between the particle and the farthest point on the rod. This allowed 

A2 to recognize, 

O does matter because the way that this whole distance thing works is the particle 

is Y distance away from the rod right now. And we're looking at, like, how, how 

much gravitational forces is on the particle from the rod at this point? And then 

this point, and this point and this point. 

This indicated to me that had A1 and A2 been more familiar with the physics 

principles targeted in the question prompt, they would have been better situated to 

identify the variation inherent in the context. Recognizing that the distance between the 

two points in question was the varying quantity, A1 and A2 partitioned their rod along its 

length (Figure 49). A1 described, 

So I think I think what we're gonna end up doing is like, we're going to partition 

the rod. Right? I think we're on the same page that we're going to partition the 
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rod. Yeah. And so it'll be like a really little problem we did whenever we met last, 

we did, like the length, we had to find like the mass of each part of the partitions, 

and we wrote a kind of a general thing that could work that could find the mass 

depending on how many partitions like however long they were. I think we need 

to do that again, for this equation. And then like, I think you're on the right track. I 

think we're on the right track was saying like, okay, yes, we're gonna have to add 

whatever that partition length is, or like, however many however much of the rod 

we're using, add that to the distance a, so what we're just going to add a plus 

whatever the distance of the rod we're using. Okay, but then we're also going to 

have to look at the mass of the rod in our equation and change that for like, how 

much of the rod we're using. Does that make sense? 

During the interview, I missed A1’s language referencing “how much” of the rod they 

were “using,” but it was something to which I should have been more attuned. That is, 

when A1 and A2 were trying to identify how much gravitational force there was between 

the point mass and the midpoint of the rod, A1 was envisioning also accounting for the 

entire first half of the rod in that single additive component of the global model. That the 

pull of this last little bit in the middle of the rod would push on the preceding half of the 

rod as well. It is not uncommon for students unfamiliar with the Law of Universal 

Gravitation to envision this type of compounding process for gravitational force. Had I 

caught it in the moment, I would have intervened. However, I interpreted A1’s 

description as an indication that she wanted to define the variable and differential 

quantity to measure changes in the length of the rod, O and ΔO, in contrast to A2’s 

descriptions of measuring the situation in terms of the distance from the point mass and 
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the subinterval of the partition, e and Δe40. Therefore I did not interject. What transpired, 

as a result, was an inability for A1 and A2 to create a generalized representative model 

because they were unable to generalize across elements of their global model. They could 

write an equation for the first subinterval of the partition of the rod in their diagram, but 

when they looked at the next partition element on their diagram they were unable to 

coordinate a way to account for represent the quantities that were changing and staying 

fixed as a generalized expression. For example, A1 and A2 wanted to write (Y + ΔO)# in 

for the dominator to account for the extra sections of the length being compounded at 

each step, but also had an expectation that a and ΔO were fixed values. This conflicted 

with a need for (Y + ΔO) to represent a varying quantity. They discussed adding an 4 into 

the equation somehow (as a counter to increase the number of ΔO′] to add, but were 

unsure how that would work within the global model as they had never incorporated an 4 

before. With no way to seemingly add on an extra element of ΔO at each iteration, they 

were unable to make progress. 

 
 

 

 

40 To quantify this situation in terms of the length of the rod would result in limits of integration from 0 to 
& and a denominator of (( + [variable])' as opposed to in terms of the distance from the point mass which 
would result in limits of integration from a to ( + & and a denominator of ([variable])'.  
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Figure 49: Group A's diagram for the Gravitational Force task 

The next day A1 and A2 were talking about their expression and decided to use 

numbers instead of variables to see if that would help, however, they still ran into the 

same issue. Using a rod with a length of 5 meters (with 5 partitions) that was 1 meter 

from the point mass, A2 explained, 

but I think we still have the same issue at the bottom. It's still always going to be 

one plus one. Like the distance won't change. So I think maybe we do we need to 

have O? No. I think that's why we talked about switching it to e. Maybe we have to 

have e in the bottom.  

Finally realizing what the issue might be, I asked A1 and A2 what the gravitational 

force between one subinterval of the partition and the point mass would be, shading in a 

single subinterval partition on their diagram in blue. They decided to create an 

underestimate and overestimate using the lines on each side of the subinterval. After 

creating their overestimate value, A1 voiced that their underestimate expression would be 

“the same thing. It's just the fact that e would be different.” Writing these expressions, 

A1 realized that this might have been the intent of the task,  

I think yesterday, like, I was confused because I think I was thinking, in my mind 

that we needed to write an equation that would somehow include the mass of… 
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the mass all of this stuff for r equals 3 [shades in the distance from the point mass 

to the third subinterval of the rod]. And then include the blue for e equals four… 

But this makes sense. Because it's like, well, we just want for the partitions to do 

like an accumulation situation. Yeah. I think we can probably adjust our integral 

now. To say what we just wrote down. 

A1 and A2’s quick adaptation verified that their ability to reason about this task in 

terms of their emergent models was not at fault for the difficulty in writing the 

generalized local model. Adjusting their expression, A2 declared that this solution 

“deserve[d] a green box.” 

A1 and A2 then reflected on their “How-To” guide and how they might make 

adjustments to make it better. A2 suggested, “Do you want to do a step in here 

somewhere that says, write a hypothetical over-under approximation to help, like, 

validate the question?” A1 replied, “Yes!” and A2 added “If confused, write an 

over/underestimate for one hypothetical partition” to their write-up. By this statement, A1 

and A2 were recognizing that writing an explicit overestimate and underestimate 

expression for one subinterval of their partition had been a critical activity in the creation 

of their generalized local model. They also added “draw a picture,” “redraw the picture,” 

and “draw another picture,” throughout their steps.  

Group B Gravitational Force task 

After having made a complete revision to their “How-To” guide for definite integrals, 

B1 and C2 approached the second clinical interview task without the burden of writing 

things in summation notation. C2 began by drawing a diagram (Figure 50) and observed, 
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Okay, so I feel like what this is asking. So the gravitational force as you go, like 

from this point [motions mouse curser to l#] to that point [draws red line closest 

to l#] is more than this point [draws second red line] than this point [draws third 

red line]. And you're way down here [motions mouse cursor to the end of the rod]. 

So I feel like our integral for finding interval I would say, I don't know. I got it. I 

got it. I’ll also start writing like this. Closest distance Y farthest distance is Y + Å. 

I feel like that would be the interval. 

By drawing his diagram, C2 positioned himself to identify where the variation is 

occurring within this context. Extracting the meaning for gravitational force from the task 

prompt, C2 recognized the distance between the particle and different parts of the rod 

was increasing along the length of the rod. This provoked him to envision a partitioning 

of the rod along its length.  

 

Figure 50: C2's diagram for the Kinetic Energy task 

After some discussion, B1 and C2 decide to write keep their variable as an e, with B1 

noting that this will capture the whole length of the rod between Y and Y + Å. When 

trying to write their generalized local model, C2 noted he thought they could rewrite o’s 

in terms of e’s, cause “mass is just density times volume, or area or whatever” and B1 

added that they know density is uniform. An unfamiliarity with linear density resulted in 

C2 trying to identify an area. Unsure how to proceed, B1 asked “if we throw a dr on end, 
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it messes it up doesn’t it?” Identifying that such an act would result in the wrong units, 

B1 said they  

need to relate l" to e somehow… wait, would it be l" over O times &e… the 

density times the interval... that’ll get you like mass, at a certain instant41… 

that’ll make our units correct. I’m pretty sure this is right. 

B1 adjusted the l" in the integral expression he wrote earlier to 

p
6.67 × 10=""	4l#/zj# ^oO _ 	l#

e# &e
@0W

@
.	

When I asked why they were so confident that this was the correct answer, C2 responded 

that the e was the distance and it would take on all the values of Y to Y + Å. C2 

continued, 

So it had to be our masses and the mass of the particle isn't going to change. 

That’s going to stay there. So the only thing that’s going to change is the mass of 

each individual section, like the section &e. So, we knew we had to divide the 

mass divided by the length to get the density, times the dr would get us the mass 

of that section. 

That is, their global model was correct because their generalized local model reflected 

how you would quantify one subinterval the same structure in the same quantitative 

manner as the basic model.  

 
 

 

 

41 B1’s use of certain instant in this case was referring to a specific subinterval.  
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Although there are slight distinctions between the way B1 and C2 referred to the 

partitioned rod, for B1 ^X
D
&e_	was the mass at an “instant” and for C2 it was a “mass of 

that section,” they were both able to productively reason about the quantitative structure 

required of the mass element. Because they wrote the X
W

 and &e separate within their 

global model I verified that these two elements were supposed to go together. I 

completed the interview asking B1 why the &e was at the end of the definite integral 

expression and he replied “I just did that for like uh, that’s how it usually looks. Like 

that’s standard, &e comes at the end.” When I asked why he thought that was B1 said he 

did not know, but “it just looks nice” and C2 added, 

In different problems you don't have to necessarily, I don’t know, like, volume 

problems are common sense. You just kind of find the formula put it in there and 

put &e next to it. Because &e is just like the height. So, that makes sense. So you 

take the area times the height, get the volume. Problems like this are a little bit 

more complex.  

This statement from C2 is particularly powerful because it (1) indicates a recognition that 

problems such as gravitational force are quantitatively different than a Riemann Product 

structure which cannot be solved by appending a differential quantity, (2) that even 

within a Riemann Product structure, such as volume, the generalized local model still 

represents a piece of the desired whole, and (3) such an interpretation positioned him to 

generalize across all volume problems to identify that the differential form is just “area 

times the height.” 

C1 Gravitational Force task 
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Like the previous task, C1 completed this prompt in very little time (roughly 8 

minutes total). He began by attempting to apply a general formula using the middle point 

along the rod before realizing the prompt asked for a definite integral. However, the 

diagram he drew as part of that process, along with his experience with the quantities 

involved, allowed C2 to fluidly reason through writing his generalized local model and 

the definite integral expression required (An important aspect of C1’s “times dx” is that it 

was a part of the mass component of his generalized local model, as is evident in his final 

generalized local model expression. It was not conceived of as an integrand function 

times a dx. C1’s symbolic template for definite integrals just carries the requirement to 

write the dx at the end of an expression, which he performs as a later algebraic 

manipulation, in anticipation of identifying an antiderivative.  

So in that case, I should… force is GMm over e#. And in this case, e# would be… 

a plus, and then that would be Å. Our current Å, so we’ll call that Å9 since we’re 

not in integral form yet. And why don’t we write this in terms of '. I'll deal with 

that in a second. In this case, I just kind of want to do a plus, Å would be '	:'. 

Um, no that would be, just equal to x… It would be Y plus ', just ' should be 

fine… Yeah, that should do. And then in that case, let's try to get I think capital o 

was the rod. Yes. In that case, that would be Öl over (Y + ')#. Um, and then I 

want to solve o as being the, um, how do I think about density. So it should just 

kind of be the same as last time, which would be M over L, that would be the 

density. Times dx.  
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Figure 51: C1's board work for the Gravitational Force task 

An important aspect of C1’s “times dx” is that it was a part of the mass component of 

his generalized local model, as is evident in his final generalized local model expression. 

It was not conceived of as an integrand function times a dx. C1’s symbolic template for 

definite integrals just carries the requirement to write the dx at the end of an expression, 

which he performs as a later algebraic manipulation, in anticipation of identifying an 

antiderivative.  

Non-Teaching Experiment Task-Based Clinical Interview 

Based on previous work, I had a reasonable expectation that a calculus student who 

engaged in a traditional calculus course that introduced integration in terms of graphical 
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area and antiderivatives would be unsuccessful in solving the tasks laid out in this 

teaching experiment. Therefore, I made adjustments to the protocol to spend more time 

attending to participants’ (1) schemes for definite integrals as abstract objects, (2) 

schemes for Riemann Integrals in context, and (3) the impact of 1 and 2 on their ability to 

productively reason about the Fluid Force on a Rectangular Dam task and the Kinetic 

Energy of a Rotating Rod task. In the protocol design, I did not include the 

supplementary activities for the Dam task however I would provide explanations of 

quantities involved if students (1) asked, or (2) it became clear that a non-standard 

interpretation or inability to reason about the quantities involved was presenting progress. 

I recruited 3 participants for this phase of data collection. Unfortunately, only 1 

participant attended their interview. Subsequent requests for volunteers did not result in 

additional subjects. Therefore this section will only reflect the views of one student, D1 

who participated in a single hour and a half long interview covering 5 prompts. D1 was a 

Latinx female who was a mathematics tutor at the university tutoring center. As 

mentioned, D1 was enrolled in a calculus course with the same instructor as four of the 

five teaching experiment participants during the same university semester. Therefore, her 

exposure to topics related to definite integrals at the university level is as close to the 

teaching experiment participants as feasibly possible.  

When asked what the expression ∫ $(')&'?

@
 mean to her, D1 first referenced that it 

was an antiderivative, but when explaining her meanings she primarily relied on an area 

and perimeter symbolic form. That is, she identified $(') as a prototypical function, 

sketching graphical axes, identifying the purpose of a definite integral to be finding the 

area bounded between a line at ' = Y, ' = W, the graph of f, and the '-axis. The 
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differential did not have any substantive meaning for D1, as she commented that you 

couldn’t leave the &' off of the differential form expression but she was “not really sure 

why. I just know [the integral sign and the &'] have to go together.”  

Next, I asked D1 two prompts related to contextual Riemann Integrals: 

(1) Watson is filling a huge beaker with water from a faucet. He is playfully 

turning the facet up and down so that the water’s flow rate is continually 

changing. There is a flow meter on the faucet that tells him this flow rate, 

e(Ü), in ounces/sec, where Ü is measured in seconds after Watson first turns on 

the faucet. What does ∫ e(Ü)&ÜY

!
 measure? 

(2) Acero owns a small maple grove that produces syrup. The rate at which his 

grove produced syrup steadily increased during the month of April, from 6 

gal/day at the beginning of the month to 8 gal/day at the end. Write a definite 

integral that will identify how many gallons of syrup Acero produced in the 

month of April. (Note there are 30 days in the month of April).  

For the flow rate prompt, D1 commented that normally integrals were about area under a 

curve, but that “this one was different.” Not having a primary scheme to draw on for this 

task she drew on her two schemes for definite integrals to decide that this expression 

represented the “change in flow rate.” That you are finding the “difference” between e(8) 

and e(3), and that this “difference” was kind of like an “average.” Her use of the term 

“average” bothered her, and she added, “most of the time when you’re taking an integral. 

It’s not going to be something linear or constant.” To clarify her meaning, I drew 

diagrams of two functions with different concavity but equivalent e(8) and e(3) values. I 

then asked D1 if the averages would be the same value. She replied, 
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Um, no, I would think the averages are different because from what I remember 

when we learned about like the definition of integrals. It was more like the area 

under the curve. So between the curve and the '-axis and it looks like you have a 

much bigger area on the right graph than the left one. 

That is, the faucet task activated D1’s schemes associated with both antidifferentiation, 

and the Mean Value Theorem for Definite Integrals, e(Ü) = ∫ 7(C)4C
(
)
Y=!

. Because D1 did not 

give quantitative meaning to the differential form, i.e. &Ü was not a base length of a 

rectangle42, she was unperturbed by the missing denominator in the provided expression. 

Cued by the symbolic form of a definite integral to take a difference of values while 

coordinating a scheme for averages applied to a flow rate expression combined to 

become a difference of flow rates (i.e. “a change in flow rate”). Careful not to ask more 

questions that might perturb her schemes, I did not point out any further conflict in this 

reasoning.  

An anecdotal scheme revealed by the syrup task was D1’s decision to make the limits 

of integration go from 1 to 30 which she realized she had done because “there is no day 

zero” on a calendar. However, she mused that if it had been measured in hours she 

probably would have put 0. While she demonstrated difficulty writing the linear 

expression, she knew that the equation she was attempting to construct would represent 

 
 

 

 

42 Verified at the end of the task. As in the previous task, "4’s only purpose was to inform the dependency 
of your function.  
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the inside of the integral and would create an upper boundary for the area under a curve 

the expression would find. This was consistent with her original description of a general 

definite integral and no new significant schemes were demonstrated.  

During the Fluid Force task43, D1 demonstrated an unfamiliarity with the equations 

and units for force and pressure. For example, after reading 

n = É ⋅ 	d	4	(Newtons; 	1	4 = 	1	zj/l]#)	

in the task prompt, D1 asked if force was “P times A times N.” Therefore, I offered 

explanations for the quantities involved, including a diagram indicating she only needed 

to worry about the water on one face of the dam and an explanation that pressure would 

increase the deeper underwater you were. For this explanation, I drew on A2’s diver 

analogy to provide a context she might be more familiar with. 

As she thought about the prompt to find the fluid force, D1 observed, “I feel like we 

could solve this without an integral” and wrote the expression of the basic model with the 

largest depth in place of x. This implied that she had associated the task sequence with 

definite integrals but this problem did not conform to her schemes for the appropriate use 

of a definite integral. When I asked D1 why she did not need an integral, she expressed, 

“it already gives us the equation for force,” so she just needed to “plug in all the 

knowns.” When I asked if we cut the dam in half whether the top half of the dam and the 

 
 

 

 

43 Note that D1 was measuring the force on a dam measuring 50 meters tall by 75.5 meters wide. This was 
an oversight from pulling the prompt wording from the summer 2020 interview protocol. 
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bottom half of the dam would have the same force acting on it, she replied that if “the 

water pressure is still the same, I would think yes… otherwise you could just change the 

formula.” Her mention of pressure being constant indicated that, despite my brief 

explanation that pressure increased with depth, her unfamiliarity with this quantity 

persisted and she was still unable to recognize the variation within the context.  

To introduce the idea of variance, I asked D1 about what the expressions would look 

like for the top half of the dam and the bottom half of the dam. In her initial explanation, 

she said that the “equations would stay the same” but that you would need to change the 

area to reflect the new height of 25 meters instead of 50 meters. I then directly asked her 

about the pressure element of her expression, drawing a purple arrow below the 50 in her 

first expression, and whether that would need to change. D1 responded 

I guess that would change. So for the top half it would be, I guess if we’re 

splitting it down the middle it’s only 25 meters down from the surface, then in the 

second one, I guess it would have to be 50 because it’s the full 50 meters below 

the surface.  

I then wrote two expressions below her original expression to represent the 

quantification she just described: 9800 ⋅ 25 × 25(75.5) and 9800 ⋅ 50	 × 25(75.5). D1 

acknowledged “I guess they would be different forces.” I then asked D1 if the fact that 

these were different forces was something she needed to attend to or if it was taken care 

of automatically in the first expression, 9800(50) × 	50(75.5). She replied, “It seems 

like they're kind of averaged out. I would say it's the pressure on the whole thing, not just 

the bottom specifically or the tops specifically.” This provided further evidence that the 

reason D1 did not see a need for an integral was because the force for formula would 
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somehow account for these differences. While the prompt did state that the formula for 

force only worked for a uniform pressure P, D1 either did not notice or had assimilated 

that into an image of “continued” pressure in which the water was always pushing against 

the dam.  

Interested in how D1 would attempt to solve the problem if she had she been cued to 

integrate via variation, I used an on-screen calculator to compute the values of the three 

expressions we discussed and pointed out that the sum of the two expressions for the dam 

thought about in two different pieces did not provide the same value as her original 

expression. Bothered, D1 replied that she thought that the equation for force should have 

somehow “averaged” things, but she was “not sure why” this did not work, but “maybe if 

we take the integral of that whole thing” it would work. However, looking at the 

expression she had written with a 50 in for pressure, she said “but we don’t have a 

variable.” She then started to examine the expressions I had introduced below her original 

equation and noticed which quantities were changing and which were staying the same, 

drawing black lines below them (Figure 52). By looking across the expressions for 

different partitions of a global model, D1 wrote the expression,  

p 9800& ⋅ ℎ
(1

1
75.5	&. 

As she wrote D1 identified one of the variables as acting more like depth, d, and the 

other as acting more like height, h. As she was writing the beginning of the differential d 

at the end of her definite integral expression D1 commented, “but now I don’t know what 

to take it with respect to.” D1 pondered this for a while but concluded that she was 
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“stuck” because she did not know which variable to take the antiderivative with respect 

to.  

 

Figure 52: D1’s observation of changes across different partitions of a dam. 

I did not pre-plan to introduce the notion of generalizing across different partitions 

into this interview. By writing expressions for the top part of the dam and the bottom part 

of the dam, I was simply attempting to position D1 to recognize that the equation for 

force would not automatically account for the variation in depth. However, by matching 

the structure of her original expression I also positioned D1 to recognize which elements 

in her expression would be “changing.” Based on D1’s solution, in the next task, I 

hypothesize her strategy would have been to write an expression equivalent to, 

p 9800'[some	expression	for	height:	likely	50	or	']
(1

1
75.5&'.	

However, attempting to incorporate her generalizations across different partitions of a 

global model into her already existing schemes led to a conflict of too many changing 

values which she could not reconcile. Because her schemes for definite integrals did not 

ascribe a meaningful quantitative purpose to the differential notation, D1 was not able to 
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coordinate that one of those variables would be her differential element. This supports the 

need for the creation of a generalized local model to be a fundamental part of the genesis 

of students’ conceptions of a definite integral and not an aspect that can be trivially 

incorporated at a later time. 

When D1 began the Kinetic Energy of a Rotating Rod task, she quickly noticed that 

the units of 1 rev/min did not match the units for time provided in the kinetic energy 

formula, so she converted 1 rev/min to 1 rev/60 s. D1 then commented that her “instinct” 

was to “just solve this with what we have” but that she “has a feeling we’re gonna have to 

take the integral somewhere.” Listing her observations, she noted “mass is gonna be 

constant,” “the length is gonna be constant,” “that’s moving at a constant speed too,” and 

“we don’t have anything that would tell me that we have bounds to take,” concluding that 

“everything is going to be constant the whole time, so there’s nothing to plug in. No 

variable that’ll change.” When I asked D1 why she mentioned using an integral she 

confirmed that it was just the previous tasks that prompted even looking for something 

that would change.  

I asked D1 to explain a little more about what she meant about the rod moving at the 

same speed and she explained, “Well, I guess if it's like if we're thinking of it as like a 

hand on a clock rotating. And it does tell us it's a constant speed, so it'll be constantly 

moving.” This once again indicated that if you are unable to recognize the variation in a 

task, integration schemes will not be activated. This was not unsurprising, so I asked D1 

if the outermost half of the rod was moving at the same speed as the innermost half of the 

rod. Recognizing what I meant D1 observed, “No. So, I guess that’s going to be our 

changing variable.” D1 then drew a diagram of a circle with a line from the center 
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representing the rod, noting it is length. Circling the 0.5 m on her diagram with her 

mouse curser, she said “that’s what’s changing,” and proceeded to write a definite 

integral expression consistent with an Integral as a Transformer conception. That is, she 

interpreted a definite integral as a way to transform the basic model for kinetic energy 

into an expression that would capture the variation along the rod. To accomplish this, she 

placed the formula for kinetic energy into the integrand of a definite integral expression 

(Figure 53). 

 

Figure 53: D1's board work for the Kinetic Energy of a Rotating Rod task 

Implications 

As I have demonstrated, all groups in the teaching experiment were successful in 

modeling definite integral tasks in which the differential form was not a Riemann 

Product. In claiming these students were successful, I am not suggesting these tasks, nor 

those in the teaching experiment itself, were non-problematic. To verify that students 

developed a quantitative understanding of definite integrals which would enable them to 

solve tasks in which the differential form is not naturally composed as a Riemann Product 
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required the final tasks to introduce problematic elements. Similarly, due to the complex 

interrelationships which compose students' basic local and global models each task in the 

teaching experiment needed to problematize at least one aspect of their emergent model 

system. What I am claiming is, except for C2’s initial response during the kinetic energy 

task, each participant was able to recognize when a global model expression was 

incorrect and could draw on the relationships between their basic, local, and global 

models to effectively quantify the scenarios presented to them. The largest difficulties 

presented by these tasks were the unfamiliarity of the physics quantities (and 

corresponding context) and recognizing variation when those quantities appear to be 

“constant.”  

The interview with the student who was not a part of the teaching experiment also 

offered insight into how students might approach these tasks without having engaged in 

the learning trajectory laid out by this study. I was not surprised D1 was unable to 

correctly solve the tasks which were presented to her. A long history of research shows 

that D1 is not alone in having a nonquantitative interpretation of differentials and primary 

relying on antiderivative and area under a curve schemes of definite integrals which have 

been shown to be inadequate for supporting students’ ability to reason about tasks of this 

nature. However, D1’s attempt to incorporate the mental activity of generalizing across 

elements within a partition and between two different partitions into her preexisting 

schemes for integrals indicated that this would be a non-trivial accommodation requiring 

an equivalent intervention to the hypothetical learning trajectory designed for this study. 

By not ascribing a meaningful quantity to the differential, D1 was not positioned to 

coordinate what those differences between over and underestimates might indicate about 
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the structure of her differential form. This suggests that the development of a generalized 

local model should be a fundamental aspect of the development of students’ schemes for 

definite integrals, rather than an addendum.  

Summary of the Evolution of Students’ Emergent Models  

Throughout the design, implementation, and analysis of this study the significant 

foundational aspect of the students’ emergent models was the relationships between 

models—not necessarily the models themselves. These relationships co-evolve, resulting 

in highly personal model systems.  

One benefit of these results is the variety of calculus backgrounds of the participants. 

C1 came into the teaching experiment with a robust pre-existing system of models 

associated with Riemann Integrals. A1 and A2 had taken a calculus course before but 

reasoned about definite integrals in primarily procedural terms at outset of the study. B1 

and C2, who were grouped in week 3, had never taken a calculus course. This level of 

variation allowed me to understand nuances of students’ emergent models as they drew 

on different sets of incoming schemes. In the following sections, I will describe 

constructs that proved to be important aspects of the evolution of these students’ 

emergent models. 

Assimilation of a Global Context 

An expected result of the study acknowledges that the fundamental ways students 

assimilate or accommodate the provided context greatly influenced their productive 

engagement in the tasks. Many of the tasks within the hypothetical learning trajectory 

involve physics contexts with quantities and expressions that are not familiar to all 
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calculus students. For one student, prior physics coursework provided him alternate 

avenues for reasoning about the physical contexts themselves, such as drawing a force vs. 

distance graph to identify variational relationships. This background also presented 

challenges. For example, when tasked to identify the energy to build a column, this 

participant could not identify any meaningful movement within that context. While he 

could acknowledge a superimposed aspect of movement, he was derailed by the concern 

that you “wouldn’t build a column like that.” That is, his understanding of the underlying 

principles of energy subdued the activation of a global model.  

Alternately, one group had little experience with physics contexts. When tasked with 

identifying the total fluid force on a rectangular dam, this group did not interpret the 

context in an anticipated way, as a fixed height of water behind a dam where the 

increasing pressure along the depth imposes different levels of force on the dam at 

varying depth. Instead, they assimilated the context to their own experience with dams, in 

that water levels do not remain fixed–they rise and fall. With this image of the context, an 

overestimate would measure a ‘full’ dam, while an underestimate represents an ‘empty’ 

one. With this interpretation of the global context, if you have not already constructed a 

system of models for a definite integral, what exactly is there to partition? How would 

you develop a local model?  

I took care throughout the study to recognize issues with students’ familiarity with 

various quantities early and provide supplementary materials. However, the issue remains 

a critical aspect of students’ ability to develop desired aspects of an emergent model, 

such as a local model construct.  
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The Role of Variation 

Within this study, variation played a number of different roles in students’ reasoning 

in terms of their basic, local, and global models.  

First, and fundamentally, how a quantity is changing within a basic model promotes 

the need for a method of estimation. This means that the variation of a quantity within the 

context should serve as a cue for the invocation of a global model. While later tasks in the 

sequence were positioned to engage students in this activity, due to their association with 

me, their partner, and the task setting, I cannot be sure if a quantity changing prompted 

the need to integrate. For similar reasons, I chose not to ‘check’ if variation cued the need 

to integrate during the final interview setting. As an intentional design choice, early tasks 

explicitly prompted participants’ estimation activity. For tasks in which variation was not 

explicitly visible, this prompt served as a cue to identify a varying quantity. This suggests 

that variation and their model systems are connected, however, for my specific 

participants, I can only prove this relationship one way. Intertwined with this notion is the 

perceived lack of variation (e.g., the energy task I described in the previous section). 

When students were unable to identify a varying element within the context, their global 

and local models were only cued by the perceived expectation of the task sequence.  

Variation also serves as a meaningful way with which to choose a partition (i.e. the 

shape of the local models). Global model partitions must be made in such a way that the 

increase in the number of partitions, or decrease in the magnitude of a local model, 

results in a more accurate estimate. There is more than one way to achieve this 

relationship. One method focuses this construct within a relationship between the basic 

model and local model, where a local model’s size can be made so small the varying 



 

 
 

343 

quantity is of negligible variation. In this study, I engendered this same meaning through 

a process of increased refinements to the global model which reduced the corresponding 

over and underestimates for that global model. This created a sequence of over and 

underestimate values that converged to the ‘real’ value of the desired quantity. This 

design was in service of supporting students’ image of a definite integral as the limiting 

value of this sequence of estimations. This means that the variation relationship my 

students coordinated was intertwined within the refinement relationship between local 

and global models.  

Refinement Relationships - The Issue with Area and Volume 

As described, a refinement relationship between local and global models was a 

specific target of the hypothetical learning trajectory. In early tasks, a refinement process 

was imposed on students to engender recognition that additional data reduces the 

discrepancy between their overestimate and underestimate values. This positioned 

students to later coordinate a partitioning act to produce a similar overestimate and 

underestimate relationship for their global model which was in service of coordinating an 

image of a definite integral as the limiting value of the refinement process.  

One interesting consequence of my decision to place the focus on global accuracy as 

a relationship between global models and local models (as opposed to local models and 

basic models) was a nonstandard application of rectangular prisms as local models for 

identifying the volume of a sphere. Because these students justified their choice due to 

the previous tasks in the sequence (rectangles were used to estimate the area of a 

trapezoid and rectangular prisms for the volume of a pyramid) I did not immediately 
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recognize the implications44. My analysis revealed an interesting issue. By having 

students construct their emergent model systems with a focus on the whole, they weren’t 

positioned to immediately recognize that their square bases could never approximate a 

circle. This was compounded because students do not naturally draw on rectangles for 

their basic models of area. If students know a formula for computing a more complicated 

area or volume, they often draw on that equation as their basic model. For instance, all 

students engaged in the trapezoid dam task first used the volume of a trapezoid to 

measure the area of their local models. This means care must be made to (1) include 

coordination that a refinement process must also result in less error between the local 

model and basic model, (2) support an accommodation to the image of a basic model for 

volume to identify the ‘varying’ element of the shape in question, (3) an eventual 

adjustment to their local model to fit the Riemann sum structure, or (4) some combination 

thereof.

 
 

 

 

44 Although the other two groups completed this task, their honors calculus course was ahead of the 
primary calculus sequence and covered the same context the day before presented with the Volume of a 
Sphere task. This resulted in a primarily re-presented approach from both groups.  
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CHAPTER VI 
 

 

DISCUSSION 

 

This dissertation study was developed to characterize the development of a 

quantitative understanding of definite integrals which positions students to productively 

engage in definite integral tasks in which the differential form is not a Riemann product. 

To meaningfully capture such a development, I drew upon the design heuristics of 

Realistic Mathematics Education and Constructivist Teaching Experiment methodology 

to create a hypothesized learning trajectory aimed at engendering a Quantitatively Based 

Summation conception of definite integrals. Before conducting the primary 8-week study, 

I created a preliminary conceptual analyses and hypothetical learning trajectory and 

conducted an exploratory study to refine my hypotheses. The results of the exploratory 

study revealed unanticipated difficulties students faced during their construction of 

schemes related to definite integrals, such as continued difficulty constructing local 

models and conflation between sum and integral notation. Informed by these findings, I 

further clarified the conceptual analysis and redesigned the hypothetical learning 

trajectory to explicitly target the mental activity identified as productive in the 

exploratory study. This careful preparatory work resulted in the refined hypothetical 

learning trajectory which positioned 5 freshman calculus participants to successfully 
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develop a quantitative understanding of definite integrals through their engagement in an 

8-week teaching experiment. To accurately characterize students’ model development, I 

supplemented the paired group task-based interviews with individual follow-up sessions, 

allowing further refinement and testing of my evolving second-order models of the 

participants’ reasoning. Through careful ongoing and retrospective analysis, I was able to 

characterize students’ emergent models for definite integrals throughout various stages of 

their development. Due to the diverse schemes demonstrated by participants at the outset 

of the teaching experiment, from no knowledge of integration through robust schemes for 

Riemann integrals, I am able to provide a refined hypothetical learning trajectory and 

implications for instruction which proved successful for a wide range in students’ pre-

existing calculus knowledge.  

In this chapter, I begin by outlining two contributions to the Emergent Quantitative 

Models framework which (1) provided useful analytical insight into the evolution of my 

participants’ emergent models, and (2) served as critical aspects of the mental activity 

which promoted their development of a quantitative understanding of definite integrals. 

Next, I provide an overview of adjustments to the hypothetical learning trajectory as a 

result of the teaching experiment with notes regarding implications for instruction. I 

conclude the discussion chapter with an outline of implications for future research.  

Contributions to the Emergent Quantitative Models Framework 

Recall that the Emergent Quantitative Models framework, which characterizes my 

design and analysis, relies on three quantitative schemes, basic, local, and global models, 

which students draw on when reasoning about definite integrals;  
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The basic model represents the quantitative relationship which would apply to the 

situation if the quantities involved were constant values, the local model is a 

localized version of the basic model applied to a sub-region of the original 

situation (typically within a partition), and the global model is derived from an 

accumulation process applied to the local model, whose underlying quantitative 

reasoning is encoded in the differential form. (Simmons & Oehrtman, 2019).  

The iteration of the framework I drew on for the design of this study was developed as a 

method of characterizing students’ basic, local, and global models for definite integrals. 

While this framework described relationships between model systems as highly 

interconnected, the constructs of these models and relationships within the framework 

had already been developed through prior research. Therefore, the analysis of this 

dissertation characterizes additional nuance to the co-emergent influences as students’ 

models are in their initial stages of development. In this section, I review two emergent 

model constructs established in service of describing the results of this study, gross basic 

models and generalized local models.  

Gross Basic Model 

I created the gross basic model construct to engender students’ goal-oriented activity 

towards identifying estimations for a whole through the direct application of a basic 

model. In support of generating a global model as an accumulation of elements of the 

same quantitative type as the basic model, I engaged students in the act of progressive 

addition of gross basic models to create a global whole. This positioned students to create 

a local model, as a new construct, through an accommodation of applying a gross basic 

estimate to a partitioned element of a global model. The result of this design choice, and 
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the development of a gross basic model, offered affordances and limitations to students’ 

reasoning as they progressed throughout the rest of the task sequence.  

(1) When asked to identify “an overestimate and underestimate” only one group 

spontaneously created a local model, and this was a result of a previously-

constructed scheme for Riemann sums. This was not an unexpected result, as 

neither the hypothetical learning trajectory nor the gross basic model construct 

was designed to promote this development. However, it is a limitation of 

employing a gross basic model early in a task sequence.  

(2) Due to a gross basic model’s cultivation as a way to estimate when one element of 

a basic model was non-constant, its activation through a request for estimation 

prompted students to look for variation within the context. For some students, a 

prompt to seek ‘something’ to estimate aided in their ability to recognize the 

intended variation within the task context, while for others it imposed a need to 

ascribe an image of variation to that context.  

(3) Participants showed evidence of extending the quantitative structure of their 

initial global model (created through progressive addition) to a global model 

comprised of local model elements. For example, students demonstrated a 

propensity for writing a global model for the fluid force on a dam as 

[force]+[force]+[force]+…+[force], either horizontally or vertically. This 

positioned students to make comparisons across elements of their global model to 

recognize which components of the quantitative relationship of force remain fixed 

and which varied and supported the productive development of a generalized 
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local model. Although I describe this construct in more detail in the next section, 

in short, a generalized local model is a result of the mental activity students 

engage in as they generalize the structure of a local model across elements of their 

global model. While the desire to create a generalized local model is often 

initiated through the goal-oriented activity of creating an explicit formula that can 

represent any element of a global model, including a change in partitioning, an 

algebraic representation is not required. Students can also engage in this same 

mental activity as they coordinate various actions, decisions, and observations 

across instantiations of their global model.  

One unanticipated result of the introduction of a gross basic model was one group’s 

extension of identifying a gross overestimate to create maximum and minimum estimates 

throughout the entire task sequence. In the Fluid Force on the Dam task, the gross basic 

model and global model with 1-partition took on the same algebraic structure, providing 

worst-case and best-case scenarios, which served as a method of checking whether their 

quantification of subsequent partitioning(s) of the global model did not extend beyond 

those initial bounds. When this group moved to contexts where the algebraic 

representation of a gross basic model and a global model with 1-partition were no longer 

identical, such as being asked to explicitly estimate the volume of a pyramid, they 

extended their gross basic model by identifying an appropriate local model, a rectangular 

prism, and identified their bounds using a single partition.  

Generalized Local Model 

I identified a generalized local model to be a critical element in the evolution of 

students’ emergent models. This construct is a result of the mental activity students 
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engage in as they make comparisons across elements of their global model to coordinate 

which quantitative components vary and which remain fixed. In this study, the genesis of 

a generalized local model emerged from students’ need to create an explicit formula for 

their local (or global) model which would allow them to identify the value of any element 

of a partition, for any size partition, in service of identifying the number of partitions 

necessary to be within a given tolerance. The mental activity required for such an activity 

is cognitively distinct from that of computing explicit values for partitions through a 

measurement process and is at the crux of the difficulty in students’ ability to 

productively model complex quantitative situations using definite integrals. If students 

cannot coordinate across partitioned elements to identify those components of the 

quantitative structure which vary or remain fixed, they will not be positioned to 

productively identify the variable and differential quantities for a differential form. 

Perhaps most critically, the results of the task-based clinical interviews suggest that a 

generalized local model is most productively quantified when only considering a local 

model. That is, whenever students attempted to write an expression for a differential form 

from a perspective of a global model, either implicitly or explicitly, they were less 

successful in identifying the differential quantity.  

The most obvious outside behavior students engage in as part of their development of 

a generalized local model is the algebraic representation of this activity. However, as a 

generalized local model becomes a more engrained aspect of their emergent model 

system, students draw on this same mental activity to anticipate the applicability of a 

partition for a global model. That is, if participants cannot ascribe a way to meaningful 

notice variation across a partitioned quantity, then they will look for an alternative 
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partitioning process. While this activity aided students in their ability to identify viable 

partitions, it also faced limitations. For example, in one group’s final interview an 

unfamiliarity with the units of kinetic energy for a rotating rod resulted in an inability to 

reconcile their choice of partition with a lack of variation. That is, they wanted to 

partition the length of the rod, however, from their point of view, every element of that 

partition would be moving at the same “speed” of 1 revolution per minute. Therefore 

there was no variation across elements to capture with their estimation process. This 

conflict prompted a need to seek alternative partition options, such as creating concentric 

annuli. To allow this group to move on, I had to refocus their attention on the required 

units of the velocity element to allow them to reconcile their conflicting image of the 

partitions covering different distances but all traveling at the same “speed.”  

The hypothetical learning trajectory task sequence and supplemental materials were 

designed to engender the development of generalized local models as part of their 

emergent modeling, serving as both a “model of” their prior quantitative reasoning and as 

a “model for” subsequent generalized activity. As described, the employment of a gross 

basic model positioned students to write expressions in a format that supported their 

future generalization activity. That is, by explicitly writing the quantities which compose 

each element, students were positioned to coordinate which quantities varied or remained 

fixed across elements of the global model. Additionally, the employment of tools, such as 

spreadsheets and the GeoGebra sum calculator, situated students to keep their primary 

focus on the quantitative structure of their expressions. This allowed students’ problem-

solving effort to be engaged exclusively in the activity of creating a generalized local 

model. 
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During its conception, the task sequence was designed to lay a solid foundation for 

the creation of an explicit local model formula. The critical nature of the generalized 

local model reemphasizes this need. As a part of the study, an issue arose in which more 

than one student simplified their computational expressions which added difficulty to (1) 

coordinating the components of the local model remained fixed and variable across 

elements of a global model, and (2) superimposed different quantitative meaning for 

rearranged elements during this generalization process. This supports the need for 

algebraic expressions to be left in terms of the individual values which constitute the 

quantitative relationship of the local model. Such activity allows students to coordinate 

the components of their local model with the structure of the basic model and supports 

their eventual ability to interpret other definite integral structures in terms of those 

expected placeholders for quantitative relationships. Conversely, the rearrangement of 

elements within the differential form can result in students divorcing the differential from 

its quantitative interpretation.  

Hypothetical Learning Trajectory Adjustments and Implication for Instruction 

The mental activity required for the development of a quantitative understanding of 

integrals was based on a substantial body of preliminary groundwork, however, the 

teaching experiment identified significant improvements that could be made to the 

hypothetical learning trajectory. While many of these adjustments have been mentioned 

at various points throughout this dissertation, I will explicitly readdress my suggestions 

below:  
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Curiosity Rover Task 

The Curiosity Rover task served as an important introduction to the overall task 

sequence to support students in developing a conception of a global model as an 

estimation produced through the progressive addition of gross basic model estimates. By 

providing limited data, the task successfully oriented participants’ mental activity 

towards the actions necessary to construct gross basic and global models even when 

schemes for Riemann sums and antidifferentiation were activated. However, a great deal 

of scaffolding can be removed from this task. Specifically,  

(1) Remove introductory tasks. Part 1 of the Curiosity Rover task was devoted to 

ensuring participants understood the quantities involved and the GeoGebra applet. 

These questions are best utilized as supplemental questions instructors can 

introduce if students demonstrate difficulty with the quantification of dust 

accumulation. 

(2) Only ascribe the terms “best-case” and “worst-case” to global models for entire 

contexts, not subparts. Creating this association between the largest and smallest 

values an estimate can take on supports the creation of initial boundary 

conditions. 

(3) Remove the prompts requesting recommendations for NASA. These prompts 

were included in the teaching experiment to provide participants an opportunity to 

display pre-existing schemes and did not result in significant advancements in 

their model development.  
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Fluid Force on a Dam Task 

The primary function of the Fluid Force on a Rectangular Dam task served to (1) 

promote the creation of a local model, (2) cultivate a local-global model refinement 

relationship, and (3) promote the development of a generalized local model. The critical 

nature of a generalized local model suggests the inclusion of a prompt specifically 

devoted to the explicit creation for this expression. Therefore, after the prompt requesting 

students identify how small a partition needs to be to find estimates within 50,000 N of 

the real fluid force, the following prompt should be added to the learning trajectory: 

Create an expression that will allow you to identify the fluid force acting on a 

generic piece of the dam if it were cut up into 4 pieces. 

Although students will likely develop their own notation for this prompt, the introduction 

of the GeoGebra sum calculator promotes a transition from their mental activity into a 

standardized notation which will support their successful progression to integral notation.  

The Trapezoid Dam task was more problematic during the teaching experiment. This 

task served to engage students in the creation of a second generalized local model. 

However, by defining the top of the dam to be the longer base, participants were forced to 

coordinate overestimate and underestimate values using different sample points for each 

subinterval. Mathematical structures of this type are worthwhile to investigate as part of 

an overall learning trajectory for definite integrals, however, its inclusion so early in the 

task sequence obscured the primary purpose of this task. Therefore I suggest defining the 

top of the dam to be the shorter base and to request students identify overestimates and 

underestimates using a partition with 8000 pieces. Additional scaffolding should also be 
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included to support students in adopting rectangles as an appropriate quantification for 

the area of each subsection.  

Geometric Volume Tasks 

As designed, the two Geometric Volume tasks served to support students’ transition 

to definite integral notation. By activating their local-global refinement relationship and 

drawing on their expectation that a geometric shape has a precise, exact, volume, I 

positioned students to coordinate the definite integral with the limiting value of their over 

and underestimates. This series of tasks also introduced new basic models. I would make 

the following adjustments:  

(1) Remove the expression for the volume of a pyramid from the main context 

prompt—it was unnecessary and caused confusion about the goal of the task. This 

expression should be provided at a later point as a means to ‘verify’ their limiting 

value. 

(2) Remove the word “partitioned” from the introduction to the definite integral 

notation handout. “Partitioned” is not consistent with the conceptual analysis’ 

characterization of the limits of integration.  

The data supports the Volume of a Pyramid task as an effective transition to definite 

integral notation due to participants’ familiarity with exact expressions for volume. 

However, instructors should be aware of the possible implications of using volume 

contexts for students' first experience with integral notation. Participants with previous 

calculus experience demonstrated nuanced changes in their language precisely at the 

introduction of definite integral notation. Specifically, Δ' was a length, but &' was a 
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“change in” a variable or simply a demarcation for the end of an integral. This is a non-

trivial shift in reasoning and requires students to be confronted with their two separate 

meanings. This can usually be accomplished by introducing the question “Δ' was a 

[quantitative description] is &' a [same quantitative description]?” Additionally, a new 

prompt should be appended to this task which asks students to explicitly classify each 

component of both their generalized local model and their definite integral expression. 

Prior to moving on, an accommodation to their scheme for dx to incorporate their current 

image of Δ' must be made. 

Instructors should also be prepared to intervene if a collapse metaphor is evoked (i.e. 

recognizing language about “adding areas”). Supported by his basic model (volume of a 

rectangular prism measured through an aggregation of area along the height) one student 

demonstrated such an understanding of volume integrals. Through the activity of creating 

a sequence of converging values for over and underestimates of the volume of a pyramid, 

students can be productively positioned to develop an image of a definite integral as the 

limiting value of a sequence.  

Energy to Build a Pyramid 

I would not make adjustments to this task. The Energy to Build a Pyramid task 

engaged participants in the activity of constructing a definite integral in which the 

differential form was not necessarily a Riemann Product. It also positioned students to 

draw on their previous problem-solving activity to support their recognition that the 

differential quantity was an element of the volume component of their local model.  



 

 
 

357 

Grading Definite Integrals 

The Grading Definite Integrals task was designed to promote students' coordination 

between the quantities in a definite integral expression with the quantities of a basic 

model. Although this task did offer affordances I would replace it with the Supplemental 

Task: “Does this integral also measure the energy to build a pyramid?” I would only 

include the integral constructed using ' as either a side-length or as a height dependent 

on students’ solutions. This supplemental task served the same hypothetical purpose of 

the grading definite integrals task with two added advantages; it 

(1) did not require students to quantify a new definite integral expression. At this 

stage of the learning trajectory, additional tasks were not necessary for 

generalization across context. 

(2) is positioned to reveal a misapplication of the partitioning process and provide 

instructors an opportunity for intervention. This could be accomplished by 

including additional prompts to the task requiring students to draw a diagram and 

label the relevant quantities on both the diagram and the definite integral itself.  

Additional tasks requiring students to evaluate preconstructed definite integral 

expressions would pair nicely with this task. In particular, including an incorrect 

quantification of a differential form. For example, the expression ∫ x(e)2ce&e"1111

1
	from 

the Mass of Oil Slick task can provide an opportunity to reinforce the need for the 

differential quantity to represent a quantitative component of the generalized local model.  
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Kinetic Energy of a Rotating Rod 

As discussed in the results section, some students enter a calculus course with robust 

schemes for Riemann sums and Riemann integrals which can be resistant to 

accommodation. Therefore, before engaging students in generalizing across contexts, I 

recommend including a definite integral task that cannot be trivially conceived of in 

terms of a Riemann product such as the Kinetic Energy of a Rotating Rod task. My data 

suggested that this task was not required for the development of a quantitative 

understanding of definite integrals, however, it served as a task that provided a clear 

necessity for reasoning about definite integrals in a quantitative way rather than in terms 

of antidifferentiation and area under a curve. 

Design a “How-To” Guide 

I would only make surface-level adjustments to Design a “How-To” Guide task. This 

prompt served as an important capstone activity by engaging students in the active 

reflection and generalization across their problem-solving activity. To better position 

students to engage in this activity, I would remove the constraints of having them provide 

explanations to someone who has never had calculus before.  

Future Work 

As I began this study, I set out to answer two questions;  

RQ1.) How might students develop a quantitative understanding of definite 

integration in a Calculus I course.  

RQ2.) What are the limitations and affordances of a quantitative understanding of 

definite integration? In particular, how does a quantitative understanding of 

definite integration impact Calculus I students' ability to reason about physics-
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based integration tasks in which the varying quantity is not a rate of change or 

density function? 

I was able to answer these questions by designing, testing, and refining a conceptual 

analysis and hypothetical learning trajectory which was shown to promote the 

development of a quantitative understanding of definite integration. While some 

participants faced difficulty using physics quantities they were not familiar with, all 

participants were able to write correct definite integral expressions for novel physics-

based integration tasks in which the varying quantity was not a rate of change or density. 

Although this learning trajectory was successful in engendering a quantitative 

understanding of definite integrals for my participants, I do not assert that it is the only 

path towards a quantitative understanding of integration. However, one benefit of this 

study was the wide variation in the participants' prior experience with definite integrals, 

suggesting curriculum founded on this conceptual analysis and hypothetical learning 

trajectory has the potential to productively engage a wide range of students in the activity 

necessary to construct a quantitative understanding of definite integrals.  

Despite these results, there is more work that can be done to support students’ 

development of quantitative reasoning for integration tasks. First, in service of promoting 

students' ability to productively construct a generalized local model, my hypothetical 

learning trajectory did not emphasize the basic-local model refinement relationship’s 

importance in the overall accuracy of a global model. This refinement relationship 

between basic and local models is an important cornerstone of the emergent model 

system, and therefore its inclusion into the overall learning trajectory needs to be 

carefully orchestrated. The supplemental activity developed during the teaching 
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experiment to address the basic-local model refinement relationship was not as successful 

as I would like. Therefore, moving forward, I plan to conduct additional teaching 

experiments with more meaningful incorporation of tasks and sub-prompts devoted to 

cultivating this relationship. 

I also plan to revisit the dataset with an eye towards reflective and reflected 

abstraction. When designing this dissertation research I anticipated the need to actively 

engender the development of specific schemes, therefore I drew on constructivist 

epistemology for the teaching experiment methodology. However, due to the co-

evolutionary nature of model development, I analyzed the data using the Emergent 

Quantitative Models framework. This means, that although a generalized local was a 

critical aspect of students' emergent models, I was only able to characterize it in terms of 

a relationship between models and the outward behavior of writing an algebraic 

expression. By framing this same phenomenon in terms of reflective and reflected 

abstraction, I anticipate being able to provide more explanatory power for how a 

generalized local model can later provide students’ anticipatory expectations as they 

contemplate different global model partitioning and quantification possibilities.  

Finally, this fall I will conduct a study that is a direct continuation of this dissertation 

work. Specifically, I will follow up with these research participants during the final 

course in their calculus sequence to investigate the resilience of their quantitative 

understandings of the definite integral as they progressed through their traditional 

calculus coursework, and how engagement in the experiment influences their 

development of multivariable integration and other calculus constructs. 
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Calculus I

Your Turn 3.3.6: Total Energy Required to Compress a Spring

Sam is tired of walking up two flights of stairs to get to calculus class every day, so he enlists Kelli to

help him build a giant spring to lift him perfectly up to the second floor window. They order a two-story

tall spring from Katelyns Giant Spring Limited Liability Co. When it arrives, it is packaged already

compressed down 5 m shorter than its resting length. They figure they need to compress it another 5 m

in order to climb on from ground level before launch. Tony walks by and points out this will take a lot

of energy, saying:

For a constant force* F to move an object a distance d requires an amount of energy** equal to

E = Fd. Hooke’s Law says that the force exerted by a spring displaced by a distance x from its

resting length (compressed or stretched) is equal to F = kx, where k is a constant that depends on

the particular spring.

*The standard unit of force is Newtons (N), where 1 N = 1 kg·m/s
2

or the force required to

accelerate a 1 kg mass at 1 m/s
2
. Increasing either the mass or the acceleration rate therefore

requires a proportional increase in force.

**The standard unit of energy is Joules (J), where 1 J = 1 Nm or the energy required to move

an object with a constant force of 1 N a distance of 1 m. Increasing either the force or the

distance requires a proportional increase in energy.

Sam and Kelli’s spring has a spring constant of k = 155 N/m.

A. Draw and label a picture of a spring initially compressed 5 m from its natural length then com-

pressed to a displacement of 10 m.

B. Does it take less, the same, or more energy to compress the spring from 5 m to 7.5 m than it takes

to compress the spring from 7.5 m to 10 m? Explain.

C. Explain why we cannot just multiply a force times a distance to compute the energy.

D. Use Riemann sums with 4 terms to find both an underestimate and overestimate for the energy

required to compress the spring from 5 m to 10 m. Write out your sums numerically and with

summation notation. Illustrate the terms of your sum on your picture.

E. Write an algebraic expression for your error (use L to represent the quantity ”Actual total energy

required to compress the spring measured in Joules”). What is the bound on the error for your

approximations? What is the range of possible values for the energy (in Nm) required to stretch

the spring from 5 m to 10 m?

F. Find an approximation accurate to within 0.5 Joules.

G. Write a formula indicating how to find an approximation accurate to within any pre-determined

error bound, e .
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Calculus I

Your Turn 3.3.7: Total Force Exerted on a Dam

Oh no! Chris accidentally broke Horsetooth Dam! Specifically, they cracked it loose from the canyon
walls and floor, leaving nothing to hold back the tremendous force of water in the reservoir. Luckily, Erin
is thinking quickly and braces herself against the dam to hold back the impending flood. Josh decides he
should figure out exactly how much force Erin needs to exert to hold up the dam. Luckily Jarrod is able
to provide the key information to figure this out:

A uniform pressure P** applied across a surface area A creates a total force* of F = PA. The
density of water is 1000 kg per cubic meter, so that under water the pressure varies according to
depth, d, as P = 9800d. In this activity you will approximate the total force of the water exerted
on a dam 63.26 meters wide and extending 25 meters under water.

*The standard unit of force is Newtons (N), where 1 N = 1 kg·m/s2 or the force required to
accelerate a 1 kg mass at 1 m/s2. Increasing either the mass or the acceleration rate therefore
requires a proportional increase in force.

**Pressure is the force per unit area, P = F/A, so for example a force of 6 N applied over
a 2 m2 area would generate a pressure of 3 N/m2. Increasing the force would increase the
pressure proportionally. Increasing the area would decrease the pressure proportionally (an
inverse proportion).

A. Draw and label a large picture of a dam 63.26 m wide and extending 25 m under water.

B. Is there less, the same, or more force on the top half of the dam or the bottom half? Explain.

C. Explain why we cannot just multiply a pressure times an area to compute the force.

D. Use a Riemann sum with 5 terms to find both an underestimate and overestimate for the total force
of the water exerted on this dam. Write out your sums numerically and with summation notation.
Illustrate the terms of your sum on your picture.

E. What is the error bound for each of these approximations?

F. Find an approximation accurate to within 50,000 N.

G. Write a formula indicating how to find an approximation accurate to within any pre-determined
error bound, e .
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