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CHAPTER I 
 

 

INTRODUCTION 

Cardiovascular disease (CVD) and coronary heart disease (CHD) are chronic 

health problems in the United States.  Nearly 126.9 million Americans had some form of 

cardiovascular disease between 2015 – 2018 [1]. CVD resulted in over eight hundred 

thousand deaths in US in the year 2017 [1].  Coronary heart disease is the single leading 

cause of death and claimed the lives of over 42% of Americans in 2018 [1].  Early 

detection and treatment of ischemia may help mitigate CVD/CHD and its associated 

mortality rate.  However, improved medical tests to detect early symptoms of ischemia, 

especially non-symptomatic ischemia, are still in works [2].   

 

STEMI 

At the present time, one of the standard criteria for detecting ischemia, using 12-

lead EKG, is T-wave inversion. Similarly, the criterion for detecting MI in EKG is 

evidence of ST segment elevation or depression [2].   The gold standard for MI detection 

utilizes presence of elevated levels of Troponin I (>0.1 ng/mL, 5-6 hours from onset of 

chest pain) and/or Troponin T enzyme (>0.2 ng/mL, 8-10 hours from onset of chest pain) 
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in blood as confirmation of cardiac cell damage [3].  Sensitivity and specificity can be as 

high as 96% and 80% for Troponin T, and 90% and 95% for Troponin I, respectively [3].  

Evidently, all current available diagnostic options provide information after the injury to 

cardiac muscle cells has occurred.   Hence the need for an early ischemia detection test, 

which is both relatively reliable and inexpensive, cannot be stressed enough.  

 

Alternative Methodologies 

Several scientists have grappled with this problem, and have tried to find ways to 

extract relevant precursor information from the EKG.   In that context, several studies 

have concentrated on using heart rate variability as a key surrogate measure to predict 

early onset of ischemia.   Relatively few studies have concentrated on the QT interval 

length and its significance to ventricular repolarization as ways to predict cardiac 

abnormalities.  While all such studies and solutions have produced mixed results in terms 

of sensitivity and specificity, they have helped advance our knowledge and gain more 

understanding in the area of CVD/CHD [2].  In our lab, we concentrated on QT 

variability and its behavior following acute ischemia and infarction. We focused on the 

QT interval because it is a reflection of the length of the cardiac action potential which is 

sensitive to changes in myocardial oxygen supply (myocardial ischemia). Theoretically, 

QT interval variability should be an important surrogate index of myocardial ischemia.  

Specifically, we concentrated on analyzing QT intervals using vectorcardiography 

(VCG), instead of using the standard 12 lead EKG, to help identify and differentiate 



3 
 

healthy versus acute ischemic/infarct patients.  Our reasons for using VCG instead of 

EKG were based on past studies that highlight limitations of using traditional 12 lead 

EKG feature extraction for quantitative analysis.  Specifically, anatomical positions of 

the heart, left arm characteristics, individual cardiac electrical dipole movement and torso 

characteristics vary from individual to individual. In addition, EKG feature extraction is 

highly dependent on EKG lead selection.  These variations can produce quantitative 

errors within EKG interpretation [4]. VCG analysis overcomes these limitations. Our 

initial results—while not directly resolving the early ischemia detection question—do 

provide a key step toward that direction. Specifically, our criterion is able to identify and 

categorize healthy versus acute ischemic/infarct patients with reasonable accuracy.  It is 

our belief that with future development and continued research, perhaps in combination 

with other existing criteria, our results may be successful in providing an effective test to 

help predict early onset, or risk of ischemia. 

 

Background 

Myocardial cells are affected differently by the ionic balance in their local 

environment, and the reflexive control exacted by a combination of endocrine, nervous 

and intrinsic cardiac systems [5].  The intrinsic cardiac system provides input for 

neuronal compensatory mechanism in case of cardiac abnormalities [6].   Studies have 

shown that cardiac abnormalities and the intrinsic system compensatory mechanism 

affect various electrocardiographic features [2].  Particularly, studies have shown that QT 

variability increases following acute cardiac ischemia and or infarction [7].  Since several 
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studies have investigated heart rate variability as a predictor of ischemia, we concentrated 

on QT variability in our study.  

  

QT Variability 

Myocardial ischemia/infarction alters ventricular repolarization through a variety 

of mechanisms.  These alterations are depicted in patients’ EKG through the variation of 

their beat to beat QT interval lengths [8, 9].  Studies have shown that, an index of QT 

variability (QTVI), is elevated during acute myocardial ischemia and cardiomyopathy 

[8].  This finding indicates that variability in the QT interval may be used as an index of 

myocardial ischemia. However, studies also show that QT interval variability is 

influenced by other factors. Most notable is the fact that the measured value of QT 

interval is dependent on the EKG lead selection. As a result, QT variability is strongly 

influenced by lead selection [5, 10].   

While qualitatively effective when used on the appropriate EKG lead, QTVI is 

limited in its results: it does not define a clear quantitative threshold to differentiate 

healthy versus ischemic patients.  This shortcoming of QTVI is partly due to the fact that 

it has so far has been derived using standard 12 lead EKG.  Studies have shown that the 

standard 12 lead EKG contains errors arising from inherent factors, such as: torso shape 

variation, dipole location variability, left arm characteristics and individual anatomy that 

restrict EKG’s use for pure quantitative analysis [4]. The remaining problem with QTVI 

rests on the coupling of heart rate (HR) with QT variability [5, 10].  QT variability is 
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strongly lead selective as well [5, 10].  Nonetheless, QTVI has helped solidify the fact 

that QT variability increases following ischemia.  Therefore, in order to avoid the 

inherent quantitative shortcomings of the standard 12 lead EKG, coupling of HR with 

QTV, and lead selection, our lab investigated pure QT variability using Frank XYZ 

Vectorcardiography system. The approach to EKG analysis using the Frank XYZ system 

offers advantages that are detailed in the next section. It should be noted that the 

conventional 12-lead EKG system was not adopted as the standard for EKG analysis 

because it’s a superior system. The 12-lead system was adopted because it was used more 

frequently in the middle of the 20th Century when both systems were used and 

conventions were being established. Perhaps if digital computers were widely available at 

the time, it is likely that the Frank XYZ system would have become the most widely used 

system. 

 

Frank XYZ Lead System 

The Frank XYZ lead system provides a three dimensional, orthogonal component 

voltage recording that can be used with considerable accuracy for effective quantitative 

analysis.  This system measures 3-dimensional electrical activity of the heart using a lead 

system based on a 3-dimensional Cartesian coordinate system with each axis 90 degrees 

from the others. The x-axis is comparable to Lead I in the conventional 12-lead system, 

the Y-axis is comparable to lead aVf and the Z-axis is front to back and is similar in 

direction to lead V2. The magnitude of the cardiac vector in the X, Y, and Z direction has 

the same calibration. This is not true for the 12-lead EKG system. It arguably provides a 
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more complete ‘electrical picture’ of the heart, and hence may be considered as the best 

available system for quantitative analysis [4]. We, therefore, investigated an alternate 

approach to measure QT variability using QT Variability Window (QTVW) based on 

vector magnitude derived from the Frank XYZ leads. 

 

Vector Magnitude 

Vector magnitude is calculated using orthogonal leads; and is defined to be the 

magnitude of the cardiac vector as the electrical dipole progresses through the cardiac 

cycle. At the start of the atrial depolarization, the vector magnitude is essentially zero 

volts. As the action potential progresses through the atrium, the magnitude of the vector 

increases to a maximum and decreases back toward zero. Coincidentally, the shape of the 

vector magnitude wave during atrial depolarization is very similar to the shape of the P 

wave in an EKG recording. During ventricular depolarization, the calculated vector 

magnitude increases to a magnitude that is greater than the magnitude during atrial 

depolarization. The size and general shape is reminiscent of the QRS complex. Finally, as 

the ventricle relaxes, the calculated vector magnitude rises and falls as it does during 

ventricular depolarization, however, the shape approximates the shape of a typical T 

wave in an EKG recording. In summary, vector magnitude is calculated from the length 

of the vector in the X, Y, and Z planes. Vector magnitude captures 3-dimensional 

information from the heart and is not subject to the lead specific calculations in the 12-

lead system (see Figure 2 page 24).  
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The shape of the vector magnitude transformation resembles the shape of a frontal 

plane EKG lead.  Transforming three dimensional lead voltage into vector magnitude 

allows intervals of EKG to be determined without measurement error caused by the 

projection of the cardiac vector to the axis of the lead system (12-lead or Frank X, Y, Z 

system). Therefore, we believe that vector magnitude provides the best approach to 

investigate and study electro-cardiologic features compared to any single lead readout at 

any given location.     

 

QT Variability Window (QTVW) 

Based on our analysis of vector magnitude data, in comparison to QTVI, our 

studies showed a promising new criterion that could better assess ventricular 

repolarization during acute myocardial ischemia/infarct.  Specifically, our QT variability 

window (QTVW) analysis showed that the length of the QT interval varied within a 

window of 16 ms (i.e. ±8 ms) in healthy subjects and QT interval frequently varied by 

greater than 16 ms in diseased patients.   

 We conducted our study to test the hypothesis: that vector magnitude derived QT 

variability exceeds 16 ms in acute ischemic/infarcted diseased patients. 
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CHAPTER II 
 

 

LITERATURE REVIEW 

 

Background 

 Normal heart beats are directed by the spontaneous depolarization of the sinoatrial 

nodal cells.  Acute ischemia or infarct of any coronary artery can result in local 

myocardium hypoxia and can lead to localized myocardial cell death.  Preceding such an 

event, it is believed that the neuronal control system—through the aid of various intrinsic 

and extrinsic receptors—detects hypoxic conditions and modulates heart rate to 

compensate for this condition [6].  Hence, heart rate variation, as detected from EKG, and 

the neuronal control and compensation thereof, have been the subject of several extensive 

and complex studies to decipher and predict impending ischemia.  

The other aspect of ischemic/infarct heart condition that has been a subject of 

fewer studies is QT variation.  Studies have shown that QT interval of EKG is altered 

primarily due to changes in ventricular repolarization—as depicted by morphological 

changes in T wave [2, 5].  Furthermore, studies have shown that QT variability increases 

following acute ischemia/infarct [7, 8].
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The physiological mechanism underlying increased QT variability following 

acute ischemia or infarction isn’t clearly understood.  The cardiac myocytes depolarize in 

a chain event, with one depolarizing cell leading to depolarization of the other through 

the cell to cell gap junctions.  However, the repolarization process is individually 

achieved by each cell via the cell membrane potassium ion (K+) channels and the sodium 

potassium ion exchange (Na+/ K+) pumps.  It has been argued that in the event of 

ischemia, localized hypoxia caused due to inadequate blood supply leads to localized 

electrophysiological changes in both the intra and extra cellular fluids [5].  These 

localized ionic imbalances subsequently result in a sub or supra optimal performance of 

the cellular channels and pumps which is depicted as abnormalities in the overall cardiac 

electrical vector movement [11].  Studies have shown that the ischemia/hypoxia 

generated abnormalities in the depolarization/repolarization cycles are depicted in the 

EKG as increased QT interval variability [12-14].  In 2005, FDA issued 

recommendations for QT/QTc study to be done with all non-antiarrhythmic medications.  

According to FDA, ventricular repolarization delay is depicted in QT interval 

prolongation in surface EKG [15].  Delays in cardiac repolarization may lead to cardiac 

or ventricular arrhythmias, and, in certain cases, sudden death [11, 15].  Ischemia has 

been known to cause electrophysiological conditions leading to ventricular arrhythmias 

and sudden death [5].  Therefore, ventricular repolarization variations as depicted through 

QTV are being given increasing importance.   

 

Electrophysiology  
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 Normal cardiac myocytes receive depolarizing action potential generated by 

sinoatrial cells through the conduction bundles and Purkinje fiber system.  Myocyte to 

myocyte propagation of action potential, from endocardium to epicardium, during 

depolarizing cycle is conducted through intercellular gap junctions.  Repolarization 

follows a reverse path, from epicardium to endocardium, and is dependent on each 

myocyte’s own ionic channels and pumps.  Repolarization is different from 

depolarization in the sense that it does not require a central action potential generated 

from sinoatrial node—or other likewise cells—to initiate the chain; each myocyte 

performs repolarization after its own specific plateau period. 

 Ischemia alters cardiac myocytes electrophysiology in several different ways.  

Studies using porcine models have shown that the normal resting membrane potential of 

approximately -80 to -90 mV is reduced to -65 to -60 mV in myocytes during ischemia 

[15].  During global ischemia, resting membrane potential has been shown to reduce as 

low as -49 mV using isolated animal heart models [16].  At these reduced membrane 

potentials, the myocytes are considered inexcitable [16].  The likely factor attributed to 

the reduced membrane potential is the elevated extracellular K+ concentration [2].  

Studies using animal models have also shown that in the event of reperfusion within 15 

minutes of occlusion, normal resting membrane potential can be restored [17].  However, 

studies show that after 20 minutes of sustained occlusion, the extracellular K+ 

concentration increase cannot be reversed, even with reperfusion, and the occlusion event 

leads to permanent cellular damage [2].   



11 
 

 Under normal conditions, extracellular and intracellular K+ balance is maintained 

by Na+/ K+ pumps.  These Na+/ K+ pumps require a continuous supply of ATP to ensure 

continuous pump activity. In the event of ischemia/hypoxia, the available intracellular 

ATP reserves are depleted rapidly.  Hence, Na+/ K+ pumps are still able to maintain some 

functionality within the first 10-15 minutes of an ischemic event [5].  Neuronal 

compensation with catecholamine has been shown to prolong the functionality of Na+/ K+ 

pumps and action potentials.  However, resting cellular membrane potential is unaffected 

by catecholamine [6].  Due to reduced oxygen availability in an ischemic event, cellular 

ATP production is affected.  With reduced ATP availability, fast Na+ channels are 

blocked, Na+/ K+ pump activity is reduced, and ATP sensitive K+ channels open.  

Hypoxia also leads to decreased intracellular pH.  Studies have shown that in the event of 

decreased pH, Na+/ Ca+ exchangers are blocked.  This event leads to further reduced Na+ 

conductance through the membrane and affects the overall ionic balance [5].     

 Studies have shown that certain metabolites that have been found to exist in 

ischemic myocardium may have detrimental effects on the myocytes [18].  Specifically, 

lysophosphoglycerides at high concentrations have been shown to cause membrane loss, 

resulting in massive Ca+ influx and cell death [19].  

 Since at reduced membrane potential, fast conducting Na+ channels are impeded 

and Na+/ Ca+ exchangers are blocked due to decreased intracellular pH, the Na+ influx is 

not considered to be the major cause of membrane potential reduction.  At reduced ATP 

levels, ATP sensitive K+ channels open and lead to considerable K+ efflux.  This efflux of 

K+ is considered to be the chief reason for the membrane depolarization and overall cell 
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inexcitability [5].  Consequently, around eight minutes from an ischemic event, elevated 

extracellular K+ levels start to diffuse toward healthy myocardial zones and may reach 

near normal levels after 18-20 minutes near the ischemic/healthy zone juncture [20].  

This overall process presents as a delayed recovery of ischemic myocytes [21].    

 The inexcitable or slightly depolarized state of the ischemic myocardium has also 

been termed as “postrepolarization refractoriness” (PRR) [5].  Experiments have shown 

that myocytes in such PRR states may present delayed recovery—by several 

milliseconds—even after local repolarization process has completed [22, 23].  Ischemia 

has been shown to induce beat-to-beat action potential alternations which may cause 

refractory period to alter as well.   Furthermore, due to localized differences of 

extracellular K+ concentration levels between ischemic and healthy areas of myocardium, 

spatial inhomogeneity of recovery exists within myocardium in the presence of ischemia 

[24].  Spatial inhomogeneity may become apparent in shorter cycle lengths due to 

increased heart rate or premature depolarizations [25].  Such localized inhomogeneities 

may cause inhomogeneity in membrane potentials, action potential length, and the 

recovery time of the myocyte.  Studies suggest that such inhomogeneities are embodied 

in the observations where the ventricular time to recover varies [5].  It is suggested that 

this variation of ventricular time to recover is due to a combination of delayed conduction 

time and the difference in effect ischemia has on various localized regions of 

myocardium.  Another contributing factor to slower conduction velocities is decreased 

cellular electrical coupling or increased resistance.  After 12-18 minutes intracellular 

resistance increases rapidly; and after 24 minutes of ischemia, majority of gap junctions 

in the affected region dissociate [5, 26].  
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 It has been suggested that cardiac ganglia, with the aid of intrathoracic neurons, 

and input from intrinsic mechanoreceptors, chemo and baroreceptors, can control cardiac 

functions independently of the central nervous system during certain instances [27].  

Ischemia has been known to activate cardiac receptors and in turn cause a response from 

the central nervous system and the cardiac ganglia [28].  The compensatory afferent 

commands may lead to heart rate variation and QT variability [29].      

    

Electrocardiography 

  Between 1902 and 1903, Willem Einthoven published his findings on human 

ECG recordings.  Since then, “the basic principles of this technique have remained 

unchanged” [30].  While ECG does monitor cardiac electrical functionality in real time, 

its diagnosing capability is not considered as a good as biomarkers in detecting life 

threatening ischemia (see Table 1).  However, biomarkers, especially Troponin I take 

anywhere from 12 to 24 hours after a myocardial infarct to reach significant levels in 

blood plasma.  The delay in definite infarct diagnosis leads to delay in treatment, which 

can be significant at times [30].   

 ECG is a surface readout of the heart’s overall electrical dipole movement 

through the heart.  Individual anatomical variations and low level cellular 

electrophysiology adds complexities to the overall dipole and its propagation.  As such, 

using ECG to unravel underlying cardiac pathologies is a challenge.  Nonetheless, over 
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the past century, studies have helped enhance our understanding, interpretation and use of 

this very powerful diagnosing tool (see Figure 1.) 

 

Figure 1: Conventional 12 Lead EKG electrode placement and resultant surface electrical dipole 

travel projection. 12 Lead EKG offers a morphological clinical use in cardiac assessment which 

has been favored by physicians. (Reprinted from Bembook)   
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Figure 2: QT and RR intervals on two consecutive vector magnitude beats of a healthy patient. 

The shape of the vector magnitude waves resembles the shape of the P, QRS, and T wave of a 

conventional EKG which facilitates measurements of the RR and QT intervals.  

     

Studies have shown that a small but significant percentage of patients with 

ischemia or infarction present with little or no ECG changes [31].  Established ischemia 

diagnosis criteria for ECG present a variety of sensitivities and specificities. The 

Minnesota code describes an ST elevation of  ≥ 0.1 mV as significant.  The Minnesota 

code has been shown to have a sensitivity of 56% and a specificity of 94%.  Other criteria 

have an overall sensitivity ranging from 45% to 69%, and specificity of 81% to 98% [30]. 

See table 1.  Hence, there still exists a need for a better predicting and real-time 

diagnostic solution. Several scientists have worked toward using complex mathematical 

analyses to extract more information from existing 12 lead ECG. 

 



16 
 

Table 1: Sensitivity and Specificity of ST Elevation According to Methodology Used 

Method Sensitivity Specificity 

McClelland et al 34-45% 98-94% 

Minnesota code 56% 94% 

GUSTO IIa trial 45-69% 98-81% 

Selvester et al 32-72% 95% 

 

 New techniques utilized so far have involved computerized measurements and 

analysis of ST segment and Q wave changes in the 12 lead ECG [10]; various forms of 

scoring techniques by combining ECG information with clinical history [32]; and, 

analyzing HRV and utilizing its coupling with ST elevation [33, 34].  In the recent past, 

exercise tolerance tests (ETT) combined with various computerized complex analysis 

have also proven to be noteworthy [7].  Two new technique called the Athens score and 

ST-HR hysteresis coupled with ETT have also proven to be powerful tools in diagnosing 

ischemia, especially transient ischemia [7].  Additionally, some scientists have suggested 

analyzing QT interval variability to diagnose and predict ischemic conditions.  One such 

technique is QT variability index (QTVI) which makes use of QTV coupled with HRV 

[29]. 

 By definition, QT interval depicts the depolarization and repolarization cycle.  

Studies have shown that QT variability is mostly induced by repolarization instability 

[29].  Studies show that ventricular arrhythmia—a leading cause of sudden cardiac 

death—may be caused by ventricular repolarization instability [5].  The underlying 
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physiology of this instability has been discussed earlier in this chapter.  QTVI was 

proposed as a method to gauge the QTV with respect to HRV [29].   

QTVI, while being a powerful tool, fails to provide a clear threshold or cutoff 

between healthy and diseased patients.  Reasons for this failure include particular lead 

selection and HRV coupling [13, 35].  QTV has been shown in studies to be highly 

dependent on selected lead [13]. Specifically, QTV is not the same in every lead.  

Analysis of our own data also showed similar results (See figure 3 & figure 4).  HRV 

coupling has also been shown in studies to have its own drawbacks.  The relationship 

between HRV and QTV is non-linear: insofar, there is hysteresis involved between HR 

and QT interval [35].  We attempted to negate the setbacks suffered by QTVI by 

analyzing pure QT variability derived from vector magnitude using Frank XYZ lead 

system.   
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Figure 3: QT interval comparison between leads v1, I and VM. QT interval varied from 383 in lead 

v1 to 399 in VM. 12 lead ECG is two dimensional projections, while VM is a more complete 

representation of the three dimensional EHV. QT interval length derived from VM in most cases 

retains the longest interval length of all leads. VM also retains other EKG boundary features.     
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Figure 4: Beat-to-Beat QT interval comparison between EKG leads. QT interval length differs for 

lead to lead. Hence QTV depends on chosen EKG lead.        

 

Vectorcardiography 

In 1956, Ernest Frank introduced a vectorcardiographic system that was argued as 

superior to other likewise systems for quantitative analysis [4]. It is based on the use of 7 

electrodes that help derive 3 orthogonal leads (See figure 5). 
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Figure 5: Frank XYZ VCG electrode placement. Inline boxes represent normalizing electronic 

resistance. Electrode C is placed to normalize anatomical variations and body axis positions. 

(Reprinted from Bembook)       

 

Frank devised this system for accurate quantitative analysis of surface 

electrocardiography, and foretold the need for advances in mathematical analyses of the 

electrocardiograms to further medical diagnosis of cardiac diseases [4].   
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Vector magnitude is calculated using orthogonal leads, and is defined to be the 

magnitude of the cardiac electrical dipole vector as it progresses through the cardiac 

cycle.  The shape of vector magnitude transformation resembles the shape of a frontal 

plane ECG lead.  Transforming lead voltage into vector magnitude allows intervals of 

ECG to be determined without measurement errors caused by the projection of the 

cardiac electrical vector to the axis of the lead system.  Therefore, vector magnitude 

provides the best approach to investigate and study electrocardiologic features compared 

to single lead readout at any given location.  Hence, we utilized vector magnitude for our 

analysis and computations.  

 

Pseudo-vectorcardiography 

Since VCG is not a common undertaking under taking during clinical settings, we 

wanted to investigate if we could extract data similar to VCG from conventional 12 lead 

EKG.  As the conventional 12 lead EKG does not provide true orthogonal leads, we 

identified the “pseudo-orthogonal” leads—and hence the resultant vector magnitude—

“pseudo-vectormagnitude.”  Furthermore, the resultant QTV Window was also renamed 

“pseudo-QTVW” or “pQTVW.”   

To extract pseudo-vector magnitude (pVM), a comparison of standard leads to 

Frank XYZ leads led to 5 reasonable lead choices: I, aVf, V1, V2, and V6.  Figure 6 

explains the arrangement of leads for both systems.   
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Figure 6: Comparison of orthogonal planes to conventional 12 lead EKG electrode placement. Evidently 

aVf resembles y axis. (Reprinted from Bembook)       

 

Based on its orthogonal position, aVf was the clear choice to represent Y; 

additionally, figure 7 demonstrates that aVf is an approximation of Vy.  In Eindhoven’s 

original naming of the coordinates he followed the mathematical conventions of x 

representing left to right (from the physician perspective of the patient), y representing 

foot to head.  When Frank introduced vector cardiography, x and y remained the same 

convention and z represented the anterior to posterior.  Thus the frontal plane is described 

by x & y and the horizontal plane by z & x and the sagittal plane defined by y & z.  aVf is 

the only lead in the y direction thus it was the natural lead choice and starting point for 

choosing representative leads.  All precordial leads are perpendicular aVf since they are 

in a perpendicular plane.  This provides four possible permutations which are 

summarized in Table 2.   
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Figure 7: Comparison of aVf (blue) of the conventional 12 lead EKG and Vy (red) of the Frank XYZ.  

Intervals trace very closely in comparison of one to the other. Tracing illustrated using 

Acknowledge software.       

 

Table 2: Summary of Lead Selections 

Selection 

Number 

Lead Selections 

for x,y,z 

Frontal Plane Horizontal Plane Sagittal Plane 

1 I, aVf, V1 I, aVf V1 aVf 

2 I, aVf, V2 I, aVf V2 aVf, V2 

3 V6, aVf, V1 aVf V6, V1 aVf 

4 V6, aVf, V2 aVf V6, V2 aVf, V2 

 

Selection 1 provides two leads in the frontal plane (I & aVf), one lead in the 

horizontal plane (V1), and one lead in the sagittal plane (aVf). Selection 2 provides two 

leads in the frontal plane (I & aVf), one lead in the horizontal plane (V2), and two leads 

in the sagittal plane (aVf & V2).  Selection 3 provides one lead in the frontal plane (aVf), 

two leads in the horizontal plane (V6 and V1), and one lead in the sagittal plane (aVf). 

And selection 4, provides one lead in the frontal plane (aVf), two leads in the horizontal 
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plane (V6 & V2), and two leads in the sagittal plane (aVf & V2).  Preliminary 

experiments were performed using V6, aVf, & V2.  Results were similar to the work 

using the Frank XYZ system.  Using Biopac software, EKG tracings were overlaid to 

choose the closest representation of the X Z components (see figures 8 and 9.)   Using the 

same sample of Vx both I and V6 were compared to Vx and again both I and V6 had very 

similar shapes but V6 was a better approximation of Vx’s amplitude.  In fact, it was 

almost an identical tracing of Vx. 

 

Figure 8: Comparison of V1 and V6 of conventional 12 lead EKG to Vx of Frank XYZ system.  

Tracing illustrated using Acknowledge software.       
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Figure 9: Comparison of V1 and V2 of conventional 12 lead EKG to Vz of Frank XYZ system.  

Tracing illustrated using Acknowledge software.       

 

While matching the amplitudes is not really important since we are evaluating QT 

interval, it was thought that better consistency could be achieved in choosing the T end 

interval.   Using the same sample of Vz, both V1 and V2 were overlaid and compared to 

Vz to look for the closest waveform which best compares in shape and amplitude. V1 and 

V2 both reciprocated the shape of Vz as expected but V1 was the best approximation of 

Vz’s amplitude (See figure 9.)   
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After several permutations, and comparing derived pVM to VM, leads V6, aVf, 

and V1, were chosen to represent Frank XYZ component leads.  Thus the pVM was 

calculated in the same manner using Pythagorean’s theorem.  Figure 10 compares the 

vector magnitude from the Frank XYZ to the pseudo-vectormagnitude derived from the 

pseudo-orthogonal leads of the conventional 12 lead ECG. 

 

Figure 10: Comparison of VM and pVM.  Tracing illustrated using Acknowledge software. 

 

 

Data Mining 

Data mining (DM) and machine learning techniques (ML) are powerful tools in 

efficiently extracting underlying relationships between data that may otherwise be hidden 

from investigators. We elected to apply DM and ML techniques to our post-processed 

data extracted from VCG derived VM, containing QT and RR intervals, and their 

statistical variables. Our initial goal was to identify obvious patients undergoing MI—as 

evident from their 12-lead conventional ECG depicting an ST elevation. Using ML 

techniques, our goal was to systematically evaluate QT and RR variables to see if they 



27 
 

can help identify healthy and ischemic patients; and which variables out of the two and 

their extracted features prove to be the most significant in predicting healthy and 

ischemic patients. Our method shows promise in automatically identifying MI patients 

based on their QT and RR variables with accuracy of 98.31%, sensitivity of 100% and 

specificity of 96.55% (see results and discussion.) 

Data Mining and Machine Learning Techniques 

Data mining tools and methods have made significant progress in extracting 

useful information from unstructured data. Data mining has made significant progress by 

augmenting machine-learning techniques to help with complex decisions in several 

domains e.g. prediction of medical events, forecasting financial trends, customer choices 

etc. Data mining and machine learning techniques have been synergized with 

exponentially increasing computing power and decreasing cost of computing hardware-

software [36]. Data mining and machine learning techniques have evolved over time, 

with diverse characterization. Data mining is defined as a process to find patterns and 

relationships in the data. The results of data mining are directly affected by the quantity 

and quality of the data [37]. Per Alizadehsani et al. [38], data mining is a process of 

extracting patterns and relationship from single or multiple datasets.   

Machine Learning has evolved significantly since development of first computer 

ENIAC was in 1946. ML is a sub-discipline of artificial intelligence (AI). SAS Institute 

explained machine learning to be a method for automating iterative analytical model to 

learn inductive rules from complex data patterns. Machine learning has been defined as a 

scientific method to develop an optimum program which helps make intelligent decisions 
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by recognizing, learning and improving decisions from complex patterns [39].  Recent 

amalgamation of data mining, machine learning, and cost effective computing power is 

enabling analysis of big medical data to solve practical applications in clinical medicine 

[40] and explore the clinical domain knowledge to support clinical diagnosis and 

prognosis. Data mining along with machine learning methods use various techniques to 

solve wide-ranging problem that stretches to wide-ranging domains. Some of the popular 

methods are prediction, clustering, and classification. Classification analysis occurs in a 

wide range of human activity to make decisions using available information and 

repeatedly making such judgments in new situations [41]. Spam filtering is a classic 

example of machine-learning based classification tools to identify spams and filter them 

from non-spam emails. 

Predicting medical outcomes with increasing accuracy, is a goal of clinical and 

data science researchers. Prediction of severe health manifestation before it deteriorates 

to permanent damage, may help in managing and reversing the trend of health outcome 

with timely treatment. Dangare and Apte showed that heart diseases may be predicted 

using individual behavioral and personal data [42]. Alizadehsani et al, proposed inclusion 

of discriminative features to increase prediction accuracy for diagnosing coronary artery 

disease [38]. There is, however, an opportunity cost for adding a new feature to the mix 

for performing prediction using data mining techniques; and therefore equilibrium is 

essential to optimize the use of prediction techniques by utilizing minimum parameters 

and predicting with highest accuracy. Appropriate attention towards data preparation and 

selection of machine learning techniques helps limit false positives and negatives in the 

results; and allowing the complete classification process to be more robust in its 
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deployment. This study is limited to using classification tools to identify infarcted 

patients and heathy patient. As such, it does not focus on any indicator to classify the 

various levels of myocardial ischemia or blockage, or the severity of Myocardial 

Infarction. 

The next section covers methods of data collection; data preparation; introduction 

to various machine learning subroutines and evaluation methodologies utilized in this 

study; and K-Fold cross validation techniques.   
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CHAPTER III 
 

 

METHODS 

 

Data Source 

Data for our study were acquired from the PTB database, which is a part of 

Physionet – an online repository of medical research data maintained by MIT Laboratory 

for Computational Physiology [43]. Both conventional 12 lead, and Frank XYZ, data of 

healthy controls and diseased patients are contained in the PTB database. PTB database 

contains records from 290 patients: 52 are healthy controls, while the remaining are 

diseased patients with or without co-morbid abnormalities associated with their hearts.  

 

Data Preparation 

We limited our study to include only acute myocardial ischemic and infarcted 

patients for our initial investigation. Our study excluded patients with ectopic beats or 

arrhythmias; non-infarcted patients; patients without catheterization data; and patients 

with excessively noisy signals. We selected 29 diseased patients (mean age 54.4 ± 9.8 

years, 7 females) and 30 healthy controls (mean age 53.6 ± 16.8 years, 5 females). A



31 
 

cardiologist independently read subject patient’s 12 lead conventional ECG data to verify 

presence or absence of ischemia or infarction, and also identify and exclude patients that 

matched our exclusion criteria. Data in PTB database are limited in the number of beats 

per patient. We therefore investigated and included 90 beats per patient to standardize RR 

and QT extractions per patient. Selected patients’ XYZ lead data was downloaded and 

analyzed using Biopac’s Acqknowledge software [44]. To eliminate a common low 

frequency noise inherent in most ECG signals, (called baseline wander) [45], individual 

VCG data for each patient was filtered using bandpass filter (Blackman -61dB window, 

low pass at 0.6 Hz and high pass at line frequency 60 Hz), and zeroed with respect to 

vertical (mV) axis using Acqknowledge’s built-in functions.  Although other researchers 

have advocated use of Blackman window [46], we arrived at the choice after multiple 

iterations of various filters available in the Biopac software on multiple patients’ ECG 

signals. Blackman window with settings stated above proved superior to all other filters 

in our testing. Subsequently Vector magnitude (VM) was derived from the orthogonal 

VCG leads. QT intervals were marked on the vector magnitude using Acqknowledge’s 

ECG boundary locating function based on ECGPUWave algorithm [43], and identified 

by manual inspection by both the principal and one of the co-investigators.  

Approximately 5% of the intervals were misidentified and manually corrected. 

Computer assisted and manually marking method of picking Q and T points is an 

acceptable method as suggested by FDA [47, 48]. As previously stated, ninety beats were 

selected and QT intervals for each subject were marked, verified, and analyzed. Feeny et 

al [45], showed that QT variability is evident in as little as ten seconds of ECG data 

which amounts to less than twenty beats. Use of ninety beats afforded us an adequate data 



32 
 

set for our feature extraction required for machine learning analysis. Figure 2 provides a 

visual representation of QT and RR interval extraction from two consecutive beats from a 

healthy patient’s VM signal. 

To avoid effects of hysteresis, we looked towards studies that have shown that 

effects of hysteresis are eliminated when short intervals of patients’ data are studied [45].  

Therefore, we opted to conduct our study over 90 beats per patient to avoid the hysteresis 

effect.   

 

Machine Learning Classification Routines 

The correct choice of algorithms to be used, amongst several available, in ML 

technique is essential. While several researchers have addressed qualifying best 

classification algorithm, all classification algorithms have their pros and cons, depending 

upon the data and the domain being analyzed. Our team used IBM SPSS Modeler 17.0 

(SPSS) and chose the following four algorithms: Artificial Neural Networks (ANN), 

Support Vector Machine (SVM), Decision Tree-C5, and Ensemble method for 

classification analysis.  
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Figure 11: Flow chart representation of Data Mining process flow. 
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Artificial Neural Networks (ANN) 

Artificial neural networks (ANNs) derive its foundation from the brain’s cognitive 

neural connection. Neural Networks are highly sophisticated non-linear statistical data 

modeling techniques. Neural networks can be supervised or non-supervised [49], to 

model complex relationships between inputs and outputs, or to find patterns in a given 

dataset [38]. We used supervised learning Multi-layer perceptron (MLP) ANN with back-

propagation a powerful function for prediction and classification problems [36]. 

 

Support Vector Machine (SVM) 

Support Vector Machine (SVM) is a robust classification and regression 

technique used to optimize model for accuracy and overfitting data with very large 

numbers (for example, thousands) of predictor fields (IBM). We chose predictor 

importance for model evaluation and raw propensity scores to analyze the data.  

 

Decision Tree- C5  

Decision trees algorithm is another popular machine-learning algorithm and 

works by splitting the sample based on the field that provides the maximum information 

gain (IBM). Process works by splitting subsample and the process repeats until the 

subsamples cannot be split any further. We ran several decision tree model, e.g. CHAID; 
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and based on accuracy we chose C5.0 for our final analysis. We chose predictor 

importance for model evaluation and raw propensity scores to analyze the data. 

 

Ensemble 

Advancement in computing power and convergence of data mining and machine 

learning techniques have allowed development of a very powerful software algorithm 

that automatically runs multiple algorithms simultaneously; compares their results and 

predictive strength of each algorithm; and finds the best algorithm amongst all used ones. 

We chose Ensemble method for obvious reasons: to compare different models for binary 

outcomes and automatically choose the best approach for the analysis by comparing the 

measure of sensitivity, specificity, and accuracy against the other three methods selected 

for analysis.  

Beat-to-beat derived QT and RR variables are represented as time series with non-

linear, non-stationarity features [7, 50]. Feature extraction is an essential step in data 

mining process for proper application of meaningful ML techniques [50]. We used QT 

and RR time series to extract first and second order statistics (FSST) features to represent 

the original characteristics for better classification results [50]. FSST used in this study 

represents average, minimum, maximum, range, standard deviation, and variance. FSST 

features are derived from all 59 patients’ QT and RR time series records. Researchers 

have established that ECG is a nonstationary and nonlinear time series physiological 

signal [51]. Challis et al defined stationarity as a quality of a process in which the statistic 
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measures such as mean and standard deviation do not change with time [52]. Therefore, it 

is important to select features that accurately represent non-linear and non-stationary 

characteristics of the ECG signal. Kanters et. al. proved that standard deviation of the R-

R intervals explains the non-linearity characteristics of the heart rate [50]. Similar, in this 

study we chose condition (Healthy and MI - 0 and 1) as our target response variable.  

 

Analysis 

Each patient’s XYZ data was downloaded and analyzed using Biopac’s 

Acqknowledge software [44].  To reduce high frequency noise, individual XYZ data for 

each patient was filtered, using bandpass filter (Blackman -61dB window, lowpass at 0.6 

Hz and highpass at line frequency 60 Hz), and zeroed with respect to vertical (mV) axis 

using Acqknowledge’s built-in functions.  The three dimensional vector magnitude (VM) 

was then calculated using the three dimensional Pythagorean theorem represented below 

in equation (1): 

𝑉𝑀 =  √Vx2 + Vy2 + Vz2                 (1)  

To pick ‘QRS’ onset and ‘T’ end points, we looked for an established standard. 

FDA has established guidelines for picking QT intervals to conduct long QT studies for 

pharmaceutical approval procedures [15, 47].  Per FDA guidelines, QT intervals may be 

picked with the assistance of computer software, followed by an independent verification 

and correction as required.    
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Hence, we used BIOPAC to pick QT intervals on the vector magnitude using 

software’s EKG boundary locating function which is based on ECGPUWave.  QT 

intervals for all 59 patients were visually verified by the principal investigator and 

independently verified by a second investigator. A total of 90 beats for each subject were 

marked and analyzed.  If the signals were deemed too ‘noisy’ (difficult for software or 

the investigator to pick or verify Q or T points), we opted to reject that signal.  

The pseudo vector magnitude (pVM) was calculated using three dimensional 

Pythagorean theorem represented below in equation (2): 

𝑝𝑉𝑀 =  √V6
2 + aVf2 + V1

2           (2)  

 

To compare our study to the established QTVI [8], we calculated QTVI, and its 

requisite statistical parameters from vector magnitude of same patients’ data.  QTVI is a 

ratio of QT variability to HR variability. A logarithm of the ratio is taken to introduce 

Gaussian statistics [8].  Statistical Mean QT interval length (𝑄𝑇m), Mean HR (𝐻𝑅m), and 

statistical QT and HR variances (𝑄𝑇v  and 𝐻𝑅v , respectively) were also calculated from 

vector magnitude.  These values were used for QTVI calculation using formula 

represented in equation (3): 

𝑄𝑇𝑉𝐼 = 𝑙𝑜𝑔10 [
(𝑄𝑇v)/(𝑄𝑇m)2

(𝐻𝑅v)/(𝐻𝑅m)2
]            (3) 

It should be noted, however, that our SB-QTVW method uses beat-to-beat QT 

variability and is designated in the paper as QTV; while QTVI uses statistical QT 

variance of a patient’s data set, and is designated as 𝑄𝑇v.   
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Our QTVW was established as QTV boundaries that we observed when QTV data 

was plotted versus beat number for each patient after initial experiments were conducted.  

For each patient data, after extracting QT interval on a beat to beat basis, we plotted the 

intervals on a time interval versus beat number basis.  We observed that QT variations for 

each patient had a mean value or baseline different than others.  Therefore, we subtracted 

each patient’s respective mean QT interval from their individual beat to beat QT intervals 

and plotted those (See figure 13).  As normal EKGs usually have millisecond resolution, 

we rounded our resultant data to the nearest millisecond and then subsequently analyzed 

it.  

After initial experiments, it was evident that QTV of healthy controls appeared to 

be constrained within a certain time frame (See figure 13, Panel A), while of diseased 

patients appeared to exceed such a constraint—specifically a range of ±8 milliseconds 

(See figure 13, Panel B).  We then proceeded to define a healthy QTV boundary and 

conducted further experiments.  We double checked our methods and concluded that our 

initial data indeed showed an existence of a constraint that healthy controls’ QTV lies 

within.  We termed that constraint as Sewani-Benjamin QT Variability Window (SB-

QTVW)—a window of time representing the maximum variations of QT intervals in 

healthy heart. We, therefore, propose that SB-QTVW is a method that provides QT 

variability threshold between healthy controls and infarcted patients, and that it may be 

used to separate healthy subjects from patients with acute myocardial ischemia and/or 

infarction. We then conducted blind experiments of patients, plotted their QTV 

accordingly, and analyzed results accordingly.   
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Methodology for data analysis for pSB-QTVW was exactly similar, except we 

used leads V1, V6 and aVf instead.  From the previously selected list of patients, a total 

of 29 healthy controls and 25 diseased patients were selected for analysis using pVM.  

Reduction in numbers was primarily due to excessive noise in the lead signals for the 

rejected patients.  

All data analyzed for this study was acquired from PTB database and can readily 

be accessed from its repository (https://www.physionet.org/physiobank/database/ptbdb/). 

 

Accuracy, Sensitivity, and Specificity 

In this study, we used three performance measures: Accuracy, Sensitivity, and 

Specificity. Refer to equations 4-6 below: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒+𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑡𝑖𝑣𝑒+𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒
   (4) 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒
   (5) 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒+𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒
   (6) 

 

Sensitivity measures the proportion of correctly predicted positives outcomes; 

also sometimes refer to as “true positive rate”. Specificity (also called the true negative 

rate) measures the proportion of correctly predicted negatives outcomes also sometimes 
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refer to as “true negative rate”. In our study, the sensitivity calculates percentage of 

correctly predicted healthy people, while specificity calculates percentage of correctly 

predicted diseased patient. Accuracy measures proportion of correctly predicting positive 

and negative outcomes and measures correctly predicting healthy and diseased patients in 

our study. Theoretically, results should be of high accuracy, sensitivity, and specificity. 

However, optimized solutions do compromise one or the other factors.   

 

K-Fold Cross-Validation 

According to Kohavi, a good estimation method should have low bias and low 

variance [53]. We chose k-fold cross-validation method vs random sampling validation 

method to support high classification accuracy, also called rotation estimation [36]. We 

also used stratified 10-fold cross-validation method for all techniques used for 

classification of myocardial infarction. There are three cross-validation methods: a) 

Random Subsampling, b) K-Fold Cross-Validation, c) Leave-one-out Cross-Validation. 

Our dataset was divided into ten mutually exclusive train/test sets (folds) samples for 

training and testing (Refer to figure 12). Also for each set 10% of the data was allocated 

for training the algorithm. Stratified cross validation method breaks the dataset into equal 

portion for every fold. Ten-fold cross validation method repeats each fold ten times to 

remove bias from random sampling. We followed the three-step 10-fold cross-validation 

procedure to estimate the error rate; a technique explained by Delen et al [36]. Accuracy 

of 10-fold cross validation is defined by equation: (7), where CVA is overall average 

validation accuracy of k number of fold. 
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𝐶𝑉𝐴 (𝐶𝑟𝑜𝑠𝑠𝑉𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦) =
1

𝑘
∑ 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝑖

𝑘
𝑖=1          (7) 

 

Figure 12: 10-fold Cross Validation Procedure 

 

Statistical Analysis 

 All statistical analyses were conducted using SPSS software version 19.0 [54].  

All data was expressed at the mean ± standard deviation.  Each parameter values were 

calculated separately for each group.  Data was compared using t-test.  Statistical 

significant level was accepted at P<0.05.  Sensitivities and Specificities were calculated 

for various thresholds and plotted using Receiver Operator Curve (ROC) for further 

analysis.     
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CHAPTER IV 
 

 

FINDINGS 

SB-QTVW 

As figure 13, plate A shows that majority of healthy controls’ QTV varied within 

±8 ms window from their mean QT interval length.  4 out of 30 healthy controls 

exceeded the ±8 ms window limitation, resulting in 4 false positives; while 2 out of 29 

diseased patients remained within the window, resulting in 2 false negatives. Overall 

mean QT interval lengths of healthy and diseased patients were determined to be 395 ± 

28.66 ms and 391 ± 38.79 ms, respectively.
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Figure 13: 90 beat QT interval dispersion comparison. Mean QT interval lengths of healthy were 

395±28.66 ms, and diseased patients were 391± 38.79 ms, respectively. Plate A, top panel, shows 

healthy QT intervals. Plate B, bottom panel, shows QT interval dispersion of MI patients on a beat 

to beat basis. Healthy controls’ QTV appears constrained within a window (SB-QTVW +/-8ms), 

while diseased patients’ QTV exceeds the window.  MI QT dispersion extended to +/-150ms.  

However, for purpose of visual comparison we truncated outliers beyond +/- 15ms.   

 

To further explore the QTV, we conducted histogram analysis of our data.  As 

figure 14 shows, 99.7% of healthy controls’ QTV data was within ±8 ms window.  87.5% 

of healthy controls’ QTV data was within -2 and +4 ms window.  As expected, diseased 

patients’ QTV data is spread wider than that of healthy controls. 99.2% of diseased QTV 

data falls within -20 ms to +40 (See figure 14). 87.5% of diseased patients’ data fell 

within ±10 ms.  Healthy and diseased QTV means were 0.457 and -0.194 ms, and 

standard deviation 2.48 and 8.23 ms, respectively (See figure 14).   
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Figure 14: HR and QTV histogram comparison. VM derived HR and QTV histogram comparison of healthy 

and diseased patients. Total number of 2700 and 2610 HR and QTV data points for healthy and diseased 

patients respectively used for analysis.   

 

HR histogram analysis showed healthy controls centered at approximately 70 

beats per minute.  Diseased patients were centered at approximately 80 beats per minute 

(See figure 14). Healthy and diseased mean HR was 68.6 and 80.5 beats per minute 

(bpm), and standard deviation 10.83 and 14.5 bpm, respectively.     

QTVI analysis of our data shows diseased patients having elevated variability 

numbers than healthy controls.  Healthy controls’ index numbers ranged from -1 to -3.5, 

while diseased patients’ index numbers ranged from -2.8 to +1.5 (See figure 15).  Healthy 

and diseased mean QTVI was -1.825 ± 0.584, and -0.4595 ± 0.894, respectively. 
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Figure 15: QTVI. VM derived QTVI comparison of healthy and diseased patients. Total number of 30 

healthy controls and 29 diseased patients respectively were used for analysis.  Diseased patients show 

elevated QTVI. Healthy and diseased mean QTVI were -1.825 ± 0.584 and -0.4595 ± 0.894 respectively. 

 

Comparing average QTV standard deviations of healthy versus diseased patients, 

we noticed a significant difference (p<0.01). Average standard deviations of healthy 

controls and diseased patients were 2.48 and 8.23 ms respectively (See figure 16).  

Overall average means did not depict a significant difference.  Average means for healthy 

and diseased patients were 0.0457 and -0.1934 ms respectively.  
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Figure 16: Standard deviation comparison of VM derived QTV of healthy and diseased patients. 

Total number of 30 and 29 healthy and diseased patients respectively used for analysis.  Healthy 

and diseased QTV standard deviations were 2.48 ± 0.45 and 8.23 ± 2.0, respectively. 

 

Sensitivity and specificity analysis showed a 93.1% sensitive and 86.7% specific 

test using ±8 ms cutoff for SB-QTVW.  Overall results show 26 true negatives (healthy 

controls), 4 false positives (mis-identified healthy controls), 27 true positives (diseased 

patients), and 2 false negatives (mis-identified diseased patients) (See table 3). 

Table 3: Sensitivity and Specificity* 

RESULTS DISEASED HEALTHY 

POSITIVE 27 (True Positives)   4 (False Positives) 

NEGATIVE   2 (False Negatives) 26 (True Negatives) 

 
*Sensitivity (93.10%) and specificity (86.67%) test.  
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A ROC curve analysis appears to optimize at a value of ±9.5 ms with a sensitivity of 

93.3% and specificity of 89.7%.  With a ±9.5 ms (19 ms) window, we achieve 26 true 

positives, 2 false positives, 28 true negatives and 3 false negatives (See figure 17).    

  

Figure 17: ROC analysis. VM derived results. True positive rate (Sensitivity) vs false positive rate (1 – 

Specificity). Results optimized at ±9.5 ms. 

 

Further analysis using SPSS’ logistic regression using maximum QTV for each 

patient produces a 91.5% overall predictability, with a sensitivity of 93.3% and 

specificity of 89.7%.  The log-odd equation has QTV coefficient calculated to 0.868 and 

intercept at -8.370. 

 

QTVW optimized at ±9.5 ms 

Sensitivity 93.10% 

Specificity 86.67%  
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Pseudo-QTVW 

 Pseudo-vector magnitude analysis from the standard 12 lead ECG produced 

results similar to those found using vector magnitude from the Frank XYZ system, albeit 

with a different QTVW size. From the previously selected list of patients, a total of 29 

healthy controls and 25 diseased patients were selected for analysis using pVM.  

Reduction in numbers was primarily due to excessive noise in the lead signals for the 

rejected patients.  

Using the ROC analysis, the pVM derived QTVW optimized at a value of ±13 ms 

(see figure 18); however, a value of ±10 was chosen as a value more suited for a 

screening test producing a sensitivity and specificity of 100% and 76% respectively; with 

7 false positives and no false negatives.  Figure 18 shows the QTVW and can be 

compared to figure 17 for similarities. The size of the QTVW depends on the specific 

purpose for the test.  
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Figure 18: ROC analysis. pVM derived results. True positive rate (Sensitivity) vs false positive rate (1 – 
Specificity). Results optimized at ±13 ms. 

 

Table 4: Diagnostic Implications of QTVW Size 

QTVW SENS SPEC PPV NPV 

10 100% 76% 78% 100% 

11 or 12 88% 76% 77% 88% 

13 84% 86% 84% 86% 

14 80% 90% 87% 84% 

15 76% 90% 86% 81% 
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Histogram analysis of pVM showed that 99.0% of data points lie within ±10 ms 

window; with 87.5% data points falling within +6 and -2 ms window for healthy controls. 

97.5% of diseased QTV data fell within +60 and -20 ms window; with 87.5% QTV data 

falling within +40 and -12 ms (figure 19).   A comparison of the standard error for QTV 

for healthy and ischemic patients demonstrates that there is increase variance between 

subjects in the QT interval in the diseased state (figure 18). 

Selecting a pQTVW of 10 msec was more useful when ruling out the disease than 

ruling in the disease, as that yielded a negative predictive value of nearly 100%.  

Optimization of a test for sensitivity and specificity parameters are defined based on the 

needs of a particular test.  The advantage of selecting a lower pQTVW value sets the test 

better as a diagnostic test than as a confirmatory one: the test increases in sensitivity.  In 

general, the less the QT variability, more the subsequent confidence in the test that 

ischemia is not preset; and, vice versa, the greater the QT variability, the more the 

likelihood for presence of ischemia. 
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Figure 19: HR and QTV histogram comparison. pVM derived HR and QTV histogram comparison of healthy 

and diseased patients. Total number of 2700 and 2610 HR and QTV data points for healthy and diseased 

patients respectively used for analysis.   

 

Machine Learning Classification Results 

 

The results indicated that the Decision tree (C5-DT) method is the best predictor 

with 98.31% accuracy on the holdout sample. Decision tree (C5-DT) and ensemble 

method had accuracy of 98.31%, however the sensitivity is 100% and 96.55% for C5-DT, 

Support Vector Machine (SVM) with 88.14% accuracy and the Artificial Neural Network 

models has the lowest accuracy of 86.4% among the selected method for the study. 

Sensitivity and specificity of SVM is the second highest, however the accuracy is lower 
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by ~ 10%. Refer to Table 5 for accuracy, sensitivity, and specificity summarizing details 

of classification results: accuracy, sensitivity, and specificity for all ML methods utilized 

for the study. Refer to equation 1-3 showing expressions used to calculate the measures 

of classification results. 10-fold cross validation is applied to the data set to predict the 

performance of machine learning classification techniques.  

 

Table 5: Confusion Matrix-Machine Learning classification performance 

Method 

Confusion Matrix 

(Rows: predictions) Accuracy Sensitivity Specificity 

Decision Tree (C5) 

30 0 

98.31 100.00 96.55 

1 28 

SVM 

28 2 

88.14 93.33 82.76 

5 24 

ANN 

27 3 

86.44 90.00 82.76 

5 24 

Ensemble 

29 1 

98.31 96.67 100.00 

0 29 

 

 

Predictor Importance  

One of the main criticisms of machine learning methods is the inability to explain 

the results and the underlying mechanism used to derive the classification result. Refer to 

Tables 6 and 20 showing predictor (or feature) importance for all models used in the 



53 
 

study. Predictor importance is simply ratio of the model error (R2) without the predictor 

variable and model error (R2) with all predictor variable included in the model [55].  

 

Table 6: Predictor Importance (Normalized)  

  ANN  SVM C5-DT Ensemble FUSED 

QT_StDev 1.000  1.000 0.844 1.000 1.000 

QT_Range 0.421  0.686 1.000 0.643 0.715 

RR_StDev 0.353  0.711 0.000 0.286 0.351 

RR_Max 0.242  0.619 0.000 0.286 0.298 

QT_Max 0.369  0.260 0.000 0.500 0.294 

RR_Range 0.150  0.128 0.324 0.286 0.231 

RR_Var 0.266  0.154 0.000 0.286 0.183 

RR_Min 0.160  0.279 0.000 0.214 0.170 

RR_Avg 0.207  0.274 0.000 0.071 0.144 

QT_Var 0.124  0.196 0.000 0.214 0.139 

QT_Min 0.172  0.092 0.000 0.000 0.069 

QT_Avg 0.000  0.000 0.000 0.000 0.000 

 

 

Predictor importance results where normalized for easy comparison between 

different methods and relativity importance of predictor. Table 6 summarizes the 

normalized predictor importance results for all models. The central idea behind the 

predictor importance is that higher particular variable contributes to the accuracy of the 
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model, higher would the ratio of error (importance) in the absence of the predictor 

variable and consequently decreased performance. 

  

  

Figure 20: Relative importance of variables—per model type 

 

QT features are more prominent e.g. QT_StDev is most importance predictor for 

ANN, SVM and Ensemble method and second important predictor for Decision Tree 

(C5) method. QT_Range is in top four importance predictors for all models. Three out of 

four top predictor are QT features for C5, SVM and ANN. Decision Tree model with 

highest accuracy (98.3%), Sensitivity (100%) and Specificity (96.55%) has only four 

predictor variable that have normalized importance above zero (0) and with importance 

indictor value above “0.5”. (Please refer to 20). Results indicate that QT variability (or its 

features) bears more predictability value than RR variability. Model when studied 

independently with each indicator features (RR and QT) resulted in a lower accuracy, 
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sensitivity, and specificity. In conclusion, we can conclude with confidence that “QT” is 

a more importance predictor of heart health and adding variable features in addition to 

“RR” increases results with sensitivity, specificity, and accuracy between 96 % to 100%.  

 

 

Classification Performance 

Accuracy is number of correct prediction results by a given model; however, 

accuracy can be misleading as it includes correct prediction of positive and negative 

outcomes (Refer to equation (1)). Hence the need for sensitivity for correct prediction of 

favorable (true, positive) outcome and need for specificity for correct prediction of 

unfavorable (false, negative,) outcome.  

We can see from Table 5, that although the accuracy from model C5 and 

Ensemble are equal (98.31% / 98.31%), sensitivity (100% / 90%) and specificity (96.55% 

/ 82.76%) measures are lower for Ensemble model. We chose ensemble model to 

compare weighted prediction accuracies of different models to enhance confidence in our 

results. First phase or input phase includes pre-processed data after merging, aggregating, 

cleaning, selecting right patients, and finally transformed data to use for analysis via 

ANN, SVM, DT/C5, and ensemble methods. Second phase of the process or Training & 

Testing phase splits the 10 folds sample (Refer to figure 12) for developing the model for 

training as each fold or sample of data is processed and simultaneously calibrating of the 

model. All methods (ANN, SVM, C5, and Ensemble) follow the same process of training 

and testing. Calibrated model is then used to test the model and finally calculates the 

predictor importance for each model. Predictor importance is calculated to test the model 
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performance in absence of the predictor variables. Final phase or Output phase compiles 

all the data to output the classification result (Table 5: Confusion Matrix-Machine 

Learning classification performance and normalized predictor importance summary 

(Table 6) to help make conclusion from the model analysis.  

As stated earlier machine learning helps us detect patterns; rules in an 

unstructured data and the ability of machine learning method to detect relationship 

between variables helps refine prediction accuracy. In our study we learned that C5-

decision tree used 66% less predictor variables as compared to other model and generated 

highest accuracy of correctly prediction true and false classes. We started with the 

hypothesis that QT interval enhances the accuracy of the prediction for diagnosis of 

myocardial ischemia as studies have established an abnormal dynamicity of QT interval 

during ischemic conditions [8] and from predictor importance results, indicators 

representing QT interval, show higher contribution towards increased accuracy of the 

prediction class.  
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Figure 21: A Graphical Depiction of the Model Building and Testing Process
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CHAPTER V 
 

 

CONCLUSION 

SB-QTVW 

Myocardial ischemia/infarction alters ventricular repolarization in various ways.  

Studies have shown that this repolarization variability is depicted in the QT interval 

variations of surface electrocardiograms.  We set about to devise a method by which this 

variability can be gauged between healthy and diseased patients.  We utilized three 

dimensional vector magnitude derived from Frank XYZ leads, instead of standard 12 lead 

EKG, to overcome quantitative limitations and lead selection issues.  We also analyzed 

QT variability independent of HR to avoid limitations incurred due to hysteresis effect 

between the two factors.  Our goal was to achieve two distinct and identifiable groups: 

healthy and diseased, based on their QT variations.  Our initial experiments showed 

promise and further experimentation led to a criterion we named as Sewani-Benjamin QT 

Variability Window (SB-QTVW)—a window of time representing the maximum 

variations of QT intervals in healthy heart EKG.  Our results show that it is possible to 

parse the two groups based on SB-QTVW.   

Results from 30 healthy and 29 diseased patients supported our preliminary 

studies.  While using three times the standard deviation for the QTV for healthy controls 

gave us a cutoff of 7.44 ms, choosing ±8 ms not only adapts well to contemporary 
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electrocardiographic equipment millisecond resolution, but also encompasses 99.7% of 

healthy QTV data.   We investigated the reasons that caused SB-QTVW to misclassify 

patients, resulting in false positives and false negatives.  However, limitations in the type 

and amount of data available constrained this analysis.   

It is interesting to note that the ROC curve optimized at 9.5 ms.  With a 9.5 ms 

selection, the sensitivity and specificity improves by 0.2% and 3% respectively.  

However, since ±8 ms encompass 99.7% healthy controls, we opted to retain the more 

conservative definition for our upper and lower window limit.  

With the window set with limits as stated above, healthy controls mostly fell 

within a SB-QTVW of 16 ms (±8 ms) and QT variability for ischemic patients frequently 

exceeded the SB-QTVW of 16 ms.  Furthermore, in a considerable number of cases, our 

algorithm was able to differentiate between the healthy controls and ischemic patients 

using as few as 20 consecutive beats.  

HR histogram analysis showed diseased patients with a significantly higher heart 

rate than healthy (mean HR of 80.5 vs 68.6 bpm; p<0.01) (See figure 14).  This may 

suggest a shift in autonomic regulation favoring sympathetic tone in presence of ischemia 

or infarct.  The average standard deviation comparison of healthy controls versus 

diseased patients showed a significant difference.  This difference provides an indication 

of increased QT variability in diseased patients as compared to healthy controls.  

However, no significant difference was observed between healthy controls and diseased 

patients while comparing overall mean lengths of QT intervals.   This may lend to the 

notion that QT interval length by in itself may not be the significant marker, unless it’s 

beyond FDA recommended corrected values (>500 ms) [15].  Histogram analysis of our 
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data does provide us that notion that HR and QTV vary differently than each other.  

Hence, coupling the two may be problematic. 

 

 

QTVI 

QTVI analysis does depict elevated QT variability.  However, we did not observe 

a clear threshold for healthy versus diseased patients (See figure 13.) Furthermore, no 

significant difference in QT variability means suggests that a single summarizing number 

index may be unable to capture the beat-to-beat dynamics of QT variability—which is the 

basis of our argument in devising the alternate SB-QTVW methodology to analyze beat-

to-beat QT variability dynamics.  Therefore, we believe that our SB-QTVW is more 

effective in providing tangible thresholds to separate healthy and diseased patients.  

 

 

Ectopic Beats 

Although we rejected patients with ectopic beats, we did conduct a limited study 

of those patients’ data.  We observed that the QT intervals of ectopic beats exceeded the 

SB-QTVW bounds as well.  Furthermore, the pattern of beat-to-beat QT variation data 

dispersion immediately before, during and following the ectopic beats appeared different 

than ischemic patients.  We surmised that the dispersion of QTV data in itself may 

contain characteristic signatures which may pinpoint to the likely probability of 

pathologies.  This obviously is a vast subject in itself and may warrant future 

investigations.  
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Post-Cath Analysis 

Since decreased circulation due to acute ischemia or infarct showed increased QT 

variability, out of curiosity, we analyzed available post-cath EKG data from of our 

selected patients to see if following intervention and resolution of coronary circulation, 

any decrease in QT variability was observed as well.  Data for only two patients from our 

selected patient group was available. Both patients were deemed “resolved” by our team 

cardiologist still showed excursions outside the SB-QTVW in their post-cath EKG data.  

However, we did observe a reduction in their overall QT variability: standard deviation 

pre-cath and post-cath of 8.99 and 4.54, and 24.85 and 6.26 for the two patients 

respectively.   

 

 

Statistical Analysis 

Statistical analysis and optimizations support our hypothesis to be correct and 

increase confidence in use of our SB-QTVW system to differentiate healthy and ischemic 

patients.  However, our data was limited to stabilized, supine patients.  Non-stationarity, 

resulting from exercise or data extracted from holter readings, may not necessarily reflect 

the same SB-QTVW rule.  We also excluded arrhythmic, ectopic beat, bundle branch 

block, and other patients not categorized as ischemic or infarct.  

It was interesting to observe that healthy controls’ data depicted range of QT 

variability within the window.  This may lend to a variable threshold SB-QTVW 
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depicting varied levels of coronary health. However, to achieve a correlation between 

various thresholds and percentage occlusion will need intensive clinical data and analysis.   

 

 

Conclusion and Future Work 

Further studies may be needed to assure validity and confidence in SB-QTVW 

system.   Future controlled studies in clinical settings may also provide beneficial 

understanding of various levels of SB-QTVW thresholds and their clinical significance. If 

in fact the SB-QTVW system holds validity, it may be able to provide an independent 

novel alternative criterion to STEMI, and Non-STEMI, for diagnosis of ischemia and 

infarction.  Additionally, further studies within clinical settings, may deem patients 

falling between 2 and 3 standard deviations in risk zone and target of pre-emptive 

intervention. 

Therefore, we believe that our SB-QTVW system warrants further studies to 

validate its performance under various clinical conditions. 

 

Machine Learning 

As the results showed, we have solutions via ML techniques which can correctly 

identify MI and healthy patients. Although computer assisted, this methodology now 

provides an alternate to ST elevation criteria on a limited basis. The accuracy is 98.31%, 

sensitivity is equal to 100% and specificity equal to 96.55% with the C5 algorithms. 

Other methods did not have as high accuracy as C5, however showed more than 90% 
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sensitivity (ability to correctly predict true positive class.) Although we limited our initial 

study, we feel that it is an encouraging initial step towards developing confidence in our 

methodology and proof of concept. Furthermore, results of this study show that QT 

variability bears far more importance than RR variability in predicting coronary health 

condition. RR variability, though heavily researched so far, proves to be a lesser predictor 

than the QT variability. However, combined variables predict the best overall results. 

Therefore, the synergistic value of the two variables combined is proved with this study; 

and we believe that this approach would be the best for future heart health predictability 

studies. 

 

 

Data Collection 

In medical research data fidelity is very important, especially when dealing with 

life threatening disease such as one considered by this study—myocardial infarction. 

However, it is extremely difficult to find clean data set for such diagnostics. We started 

with a total of 295 patients’ records, and, after exclusion criteria, were left with only 59 

patient records that were effective for our analysis. Although the sample size of 59 was 

limited, it isn’t unusual in clinical data mining settings since in clinical settings, each set 

of corresponding data points bears a lot more meaning and importance compared to say a 

marketing or business dataset [56]. Using 10-fold cross-validation reduced some of our 

concerns related to bias and overfitting, we believe a larger dataset may provide increased 

confidence to support our research findings. Physionet’s PTB database [43] provided de-

identified data. Hence, our study process did not include an IRB approval process.  
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Classification Methods 

Our research explored various literatures on prediction of heart failure or 

diagnosis. Recent effort has shown tremendous influence of machine learning methods to 

predict or diagnose the heart health. Refer to Table 7 for all methods used for comparing 

our selected model for accuracy, sensitivity, and specificity. 

 

 

Table 7. Ensemble- Machine Learning Classification Model 

 

 

We believe past research have focused on comparing different techniques and 

optimizing methods. However, clean and cost effective cardiac variable selection to use 

for analysis has been absent. It had been widely established that in data mining or any 

other such analytical process: “garbage in and garbage out”. We ensured to focus our 
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study to ensure that raw data, although medical grade, was pre-processed before it was 

used for classification prediction. Data preparation built our confidence in including only 

selected and the most preferred methods. Moreover, we also ran Ensemble method—

which is an aggregate of several other methods—to ensure choice of best methodologies 

amongst several available options.  

 

 

Conclusion and Future Work 

Our study shows that, given appropriate emphasis on predictor selection, ensuring 

high fidelity of data especially when we are dealing with human health prediction and 

diagnosis, we can develop a high accuracy of prediction, along with high sensitivity and 

specificity. High accuracy (98.31%) and sensitivity (100%) increases the enthusiasm to 

develop non-invasive diagnostics methods that can help in managing and may reverse the 

trend of coronary artery disease [57] as the number one killer of humans with timely 

treatment.  We started with the hypothesis that QT interval enhances the accuracy of the 

prediction for diagnosis of myocardial ischemia, as studies have established an abnormal 

dynamicity of QT interval during ischemic conditions [8]; and from predictor importance 

results, indicators representing QT interval, show higher contribution towards increased 

accuracy of the prediction class. We also believe that VCG derived QT interval also 

aided towards the increased accuracy of the results. Furthermore, we also showed that QT 

variability bears a higher intrinsic value as compared to RR variability—a variable highly 

researched hitherto in studies. 
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Above observations and conclusion strengthens our conviction to continue the 

research and we plan to collect a larger sample of patient data that would help broaden 

our current study to include additional patient condition and reduce limitations placed in 

this study. Generalizing our results to a wider patient population will provide our method 

a wider acceptance as a clinical tool. 



67 
 

REFERENCES 
 

 

1. Association, A.H., 2021 Heart Disease and Stroke Statistics Update Fact Sheet 

At-a-Glance 2021. 

2. Herring, N. and D.J. Paterson, ECG diagnosis of acute ischaemia and infarction: 

past, present and future. QJM, 2006. 99(4): p. 219-30. 

3. Ebell, M.H., D. Flewelling, and C.A. Flynn, A systematic review of troponin T 

and I for diagnosing acute myocardial infarction. J Fam Pract, 2000. 49(6): p. 

550-6. 

4. Frank, E., An accurate, clinically practical system for spatial vectorcardiography. 

Circulation, 1956. 13(5): p. 737-49. 

5. Couderc, J.P., Cardiac regulation and electrocardiographic factors contributing 

to the measurement of repolarization variability. J Electrocardiol, 2009. 42(6): p. 

494-9. 

6. Huang, M.H., et al., Effects of transient coronary artery occlusion on canine 

intrinsic cardiac neuronal activity. Integr Physiol Behav Sci, 1993. 28(1): p. 5-21. 

7. Murabayashi, T., et al., Beat-to-beat QT interval variability associated with acute 

myocardial ischemia. J Electrocardiol, 2002. 35(1): p. 19-25. 

8. Berger, R.D., QT variability. J Electrocardiol, 2003. 36 Suppl: p. 83-7.



68 
 

9. Berger, R.D., et al., Beat-to-beat QT interval variability: novel evidence for 

repolarization lability in ischemic and nonischemic dilated cardiomyopathy. 

Circulation, 1997. 96(5): p. 1557-65. 

10. Malik, M., Beat-to-beat QT variability and cardiac autonomic regulation. Am J 

Physiol Heart Circ Physiol, 2008. 295(3): p. H923-H925. 

11. Downar, E., M.J. Janse, and D. Durrer, The effect of acute coronary artery 

occlusion on subepicardial transmembrane potentials in the intact porcine heart. 

Circulation, 1977. 56(2): p. 217-24. 

12. Clerico, A., et al., High-sensitivity troponin: a new tool for pathophysiological 

investigation and clinical practice. Adv Clin Chem, 2009. 49: p. 1-30. 

13. Coronel, R., et al., Distribution of extracellular potassium and its relation to 

electrophysiologic changes during acute myocardial ischemia in the isolated 

perfused porcine heart. Circulation, 1988. 77(5): p. 1125-38. 

14. Couderc, J.P., Measurement and regulation of cardiac ventricular repolarization: 

from the QT interval to repolarization morphology. Philos Trans A Math Phys 

Eng Sci, 2009. 367(1892): p. 1283-99. 

15. Food and H.H.S. Drug Administration, International Conference on 

Harmonisation; guidance on E14 Clinical Evaluation of QT/QTc Interval 

Prolongation and Proarrhythmic Potential for Non-Antiarrhythmic Drugs; 

availability. Notice. Fed Regist, 2005. 70(202): p. 61134-5. 

16. Han, J. and G.K. Moe, Nonuniform Recovery of Excitability in Ventricular 

Muscle. Circ Res, 1964. 14: p. 44-60. 



69 
 

17. Hirche, H., et al., Myocardial extracellular K+ and H+ increase and 

noradrenaline release as possible cause of early arrhythmias following acute 

coronary artery occlusion in pigs. J Mol Cell Cardiol, 1980. 12(6): p. 579-93. 

18. Janse, M.J., et al., Variability of recovery of excitability in the normal canine and 

the ischaemic porcine heart. Eur Heart J, 1985. 6 Suppl D: p. 41-52. 

19. Janse, M.J. and A.G. Kleber, Electrophysiological changes and ventricular 

arrhythmias in the early phase of regional myocardial ischemia. Circ Res, 1981. 

49(5): p. 1069-81. 

20. Janse, M.J. and A.L. Wit, Electrophysiological mechanisms of ventricular 

arrhythmias resulting from myocardial ischemia and infarction. Physiol Rev, 

1989. 69(4): p. 1049-169. 

21. Katz, A.M., Membrane-derived lipids and the pathogenesis of ischemic 

myocardial damage. J Mol Cell Cardiol, 1982. 14(11): p. 627-32. 

22. Kleber, A.G., Resting membrane potential, extracellular potassium activity, and 

intracellular sodium activity during acute global ischemia in isolated perfused 

guinea pig hearts. Circ Res, 1983. 52(4): p. 442-50. 

23. Kleber, A.G., et al., Mechanism and time course of S-T and T-Q segment changes 

during acute regional myocardial ischemia in the pig heart determined by 

extracellular and intracellular recordings. Circ Res, 1978. 42(5): p. 603-13. 

24. Kleber, A.G., et al., Changes in conduction velocity during acute ischemia in 

ventricular myocardium of the isolated porcine heart. Circulation, 1986. 73(1): p. 

189-98. 



70 
 

25. Kodama, I., et al., Combined effects of hypoxia, hyperkalemia and acidosis on 

membrane action potential and excitability of guinea-pig ventricular muscle. J 

Mol Cell Cardiol, 1984. 16(3): p. 247-59. 

26. Lamfers, E.J., et al., Prehospital versus hospital fibrinolytic therapy using 

automated versus cardiologist electrocardiographic diagnosis of myocardial 

infarction: abortion of myocardial infarction and unjustified fibrinolytic therapy. 

Am Heart J, 2004. 147(3): p. 509-15. 

27. Bruce, R.A. and J.R. McDonough, Stress testing in screening for cardiovascular 

disease. Bull N Y Acad Med, 1969. 45(12): p. 1288-305. 

28. Lehtinen, R., ST/HR hysteresis: exercise and recovery phase ST depression/heart 

rate analysis of the exercise ECG. J Electrocardiol, 1999. 32 Suppl: p. 198-204. 

29. Conrath, C.E. and T. Opthof, Ventricular repolarization: an overview of 

(patho)physiology, sympathetic effects and genetic aspects. Prog Biophys Mol 

Biol, 2006. 92(3): p. 269-307. 

30. Bahit, M.C., et al., Thresholds for the electrocardiographic change range of 

biochemical markers of acute myocardial infarction (GUSTO-IIa data). Am J 

Cardiol, 2002. 90(3): p. 233-7. 

31. Levites, R., et al., Effects of procainamide on the dispersion of recovery of 

excitability during coronary occlusion. Circulation, 1976. 53(6): p. 982-4. 

32. McCallister, L.P., S. Trapukdi, and J.R. Neely, Morphometric observations on the 

effects of ischemia in the isolated perfused rat heart. J Mol Cell Cardiol, 1979. 

11(7): p. 619-30. 



71 
 

33. Michaelides, A.P., et al., New coronary artery disease index based on exercise-

induced QRS changes. Am Heart J, 1990. 120(2): p. 292-302. 

34. Minisi, A.J. and M.D. Thames, Activation of cardiac sympathetic afferents during 

coronary occlusion. Evidence for reflex activation of sympathetic nervous system 

during transmural myocardial ischemia in the dog. Circulation, 1991. 84(1): p. 

357-67. 

35. O'Connor, R.E., et al., Part 10: acute coronary syndromes: 2010 American Heart 

Association Guidelines for Cardiopulmonary Resuscitation and Emergency 

Cardiovascular Care. Circulation, 2010. 122(18 Suppl 3): p. S787-817. 

36. Delen, D., G. Walker, and A. Kadam, Predicting breast cancer survivability: a 

comparison of three data mining methods. Artif Intell Med, 2005. 34(2): p. 113-

27. 

37. Jonsdottir, T., et al., The feasibility of constructing a Predictive Outcome Model 

for breast cancer using the tools of data mining. Expert Systems with 

Applications, 2008. 34(1): p. 108-118. 

38. Alizadehsani, R., et al., A data mining approach for diagnosis of coronary artery 

disease. Comput Methods Programs Biomed, 2013. 111(1): p. 52-61. 

39. Intelligence, S.A., What is Machine Learning? 2007. 

40. Abdo, A.A., et al., The Fermi Gamma-Ray Space Telescope discovers the pulsar 

in the young galactic supernova remnant CTA 1. Science, 2008. 322(5905): p. 

1218-21. 

41. Abson, A., et al., Chemistry of pseudomonic acid. Part 16. Aryl and heteroaryl 

ketone derivatives of monic acid. J Antibiot (Tokyo), 1996. 49(4): p. 390-4. 



72 
 

42. Dangare, H.M., et al., Cri du chat syndrome: a series of five cases. Indian J Pathol 

Microbiol, 2012. 55(4): p. 501-5. 

43. Goldberger, A.L., et al., PhysioBank, PhysioToolkit, and PhysioNet: components 

of a new research resource for complex physiologic signals. Circulation, 2000. 

101(23): p. E215-20. 

44. BIOPAC Systems, I., Acqknowledge. 42 Aero Camino, Goleta, CA. 

45. Feeny, A., L. Han, and L.G. Tereshchenko, Repolarization lability measured on 

10-second ECG by spatial TT' angle: reproducibility and agreement with QT 

variability. J Electrocardiol, 2014. 47(5): p. 708-15. 

46. Abanto, C., et al., Predictors of functional outcome among stroke patients in 

Lima, Peru. J Stroke Cerebrovasc Dis, 2013. 22(7): p. 1156-62. 

47. Darpo, B., et al., Man versus machine: is there an optimal method for QT 

measurements in thorough QT studies? J Clin Pharmacol, 2006. 46(6): p. 598-

612. 

48. Darpo, B., et al., Cardiac Safety Research Consortium: can the thorough QT/QTc 

study be replaced by early QT assessment in routine clinical pharmacology 

studies? Scientific update and a research proposal for a path forward. Am Heart 

J, 2014. 168(3): p. 262-72. 

49. Dash, Y., Maintainability Prediction of Object Oriented Soware System by Using 

Artificial Neural Network Approach. International Journal of Soft Computing and 

Engineering, 2012. 2(2): p. 420-423. 

50. Kanters, J.K., et al., Short- and long-term variations in non-linear dynamics of 

heart rate variability. Cardiovasc Res, 1996. 31(3): p. 400-9. 



73 
 

51. Zebrowski, J.B., R, Nonlinear Instabilities and Nonstationarity in Human Heart-

Rate Variability. Computing in Science & Engineering, 2004. 6: p. 78-83. 

52. Challis, R.E., Kitney, R.I., Biomedical signal processing (in four parts). Med. 

Biol. Eng. Comput., 1991. 29: p. 1-17. 

53. Kohavi, D., et al., Adsorption of salivary proteins onto prosthetic titanium 

components. J Prosthet Dent, 1995. 74(5): p. 531-4. 

54. IBM Corp., IBM SPSS Statistics for Windows, Version 19.0. Armonk, NY. 

55. Davis, F., Perceived Usefulness, Perceived Ease of Use, and User Acceptance of 

Information Technology. MIS Quarterly, 1989. 13(3): p. 319-340. 

56. Bellazzi, R., Telemedicine and diabetes management: current challenges and 

future research directions. J Diabetes Sci Technol, 2008. 2(1): p. 98-104. 

57. World Health Organization. Cardiovascular disease Fact sheet N*317. January 

2015  [cited 2015 January 30th]; Available from: 

http://www.who.int/mediacentre/factsheets/fs317/en/. 

 

 

 

http://www.who.int/mediacentre/factsheets/fs317/en/


 

VITA 

 

Rahim Ruknudin Sewani, D.O. 

 

Candidate for the Degree of 

 

Doctor of Philosophy 

 

Dissertation:  SB-QTVW: AN ALTERNATE INDEX TO DIFFERENTIATE 

BETWEEN HEALTHY AND ACUTE ISCHEMIC/INFARCTED 

PATIENTS USING VECTOR MAGNITUDE DERIVED QT 

VARIABILITY.  

Major Field:  Biomedical Sciences 

 

Biographical: 

 

Education: 

 

Completed the requirements for the Doctor of Philosophy at Center for Health 

Sciences, Oklahoma State University, Tulsa, OK in July 2021. 

 

Completed the requirements for the Doctor of Osteopathic Medicine at College 

of Medicine, Oklahoma State University, Tulsa, Oklahoma in May 2020. 

 

Completed the requirements for the Bachelor of Science in Aerospace 

Engineering at Iowa State University, Ames, Iowa in August 1995. 

 

Experience:   

 

Currently, PGY-2, Family Medicine Residency at the Cherokee Nations 

Outpatient Clinic and W. W. Hastings Hospital, Tahlequah, Oklahoma. 

 

Worked as Senior Powerplant Engineer at American Airlines from January 

2006 to August 2010. 

 

Worked as Crew Chief/Aircraft Maintenance Technician at American Eagle 

Airlines from March 2004 to December 2004. 

 


