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CHAPTER I

INTRODUCTION

A simplicial complex on n elements labeled with [n] = {1, 2, ..., n} is shifted if we can

replace higher labeled elements with lower labeled elements in a face. That is, for i, j ∈ [n]

and i < j, whenever j ∈ F and i 6∈ F , the set F − j ∪ i is also a face of the simplicial

complex. We can associate a shifted simplicial complex to every simplicial complex while

also preserving some algebraic, combinatorial, and topological properties. Hence, shifted

simplicial complexes have been studied in detail.

In this thesis, we consider a generalization of shiftedness that we call P -shiftedness. A

simplicial complex on [n] is P -shifted if only certain higher labeled elements can be exchanged

with certain lower labeled elements in a face. The information about these exchanges can be

stored in a partially ordered set P. That is, if F is a face; for i, j ∈ [n] and i <P j, whenever

j ∈ F and i 6∈ F , the set F − j ∪ i is also a face. Thus, shifted simplicial complexes can be

thought of as C-shifted simplicial complexes, where C is the n-element chain. Furthermore,

the independence complex of a matroid is a simplicial complex whose faces are exactly the

independent sets of the matroid. Thus, a labeled matroid M on the ground set [n] is P -

shifted if its independence complex is P -shifted. We explore the characteristics of P -shifted

matroids in terms of their bases, circuits, and flats. We also give a condition (that we call

the Gale condition) that relates the order ideals in the poset with a presentation of the

matroid. We show that if M is P -shifted, and M and P satisfy the Gale condition, then

M is a transversal matroid. This result generalizes and recovers a similar result on shifted

matroids.

One-dimensional simplicial complexes have the same structure as simple graphs. We
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study the properties of P -shifted graphs whose vertices are labeled with [n]. We provide a

construction of the maximal poset for which a graph is P -shifted. We say a graph G belongs

to a graph family GP if P is the maximal poset for which G is P -shifted. It is known that

the family of shifted graphs is exactly the family of threshold graphs. We show that GP is a

subfamily of split graphs for a particular poset P = C − {(i < i + 1) ∪ (j < j + 1)}, where

i, i + 1, j, j + 1 are all distinct. Since every threshold graph is also a split graph, our result

extends the classical result on graph shiftedness.
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CHAPTER II

PRELIMINARIES AND BACKGROUND

2.1 Matroids

Definition 2.1.1 A matroid M is a pair (E, I), where E is a finite set called the ground

set and I is a collection of subsets of E called independent sets such that:

1. The empty set is independent: ∅ ∈ I,

2. A subset of an independent set is also an independent set: If A ⊂ B and B ∈ I, then

A ∈ I,

3. Given two independent sets A,B ∈ I such that |A| > |B|, then there exists an x ∈ A\B

such that B ∪ {x} ∈ I.

A subset of E that is not independent is called a dependent set. A minimal dependent

set is called a circuit of M , and a maximal independent set is called a basis of M.

The set C of circuits in a matroid satisfy the following axioms, which can be used as an

alternate definition of a matroid:

1. ∅ 6∈ C,

2. If C1, C2 ∈ C such that C1 ⊆ C2, then C1 = C2.

3. If C1, C2 ∈ C are distinct circuits of a matroid M , and e ∈ C1 ∩ C2, then there is a

circuit C3 such that C3 ⊆ (C1 ∪ C2)r e.

The third axiom is called the circuit elimination axiom.
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An element e in a matroid M is called a loop if {e} is a circuit. e ∈M is called a coloop

if e ∈ B for every basis B in M. Two elements e, f ∈M are called parallel elements if {e, f}

is a circuit in M.

Let G = (V,E) be a graph where V is the set of vertices and E is the set of edges in G.

Definition 2.1.2 Let G be a graph. Then M(G) = (E, I), where I is the set of forests in

the graph, forms a matroid called the graphic matroid.

The circuits of the graphic matroid are set of cycles in G. The graphic matroid is also

referred to as the cycle matroid of a graph.

The following lemma is useful.

Lemma 2.1.1 If B is a basis of a matroid M and e ∈ E−B, then B ∪ e contains a unique

circuit C satisfying e ∈ C.

Proof. By definition, B ∪ e contains a circuit C. Suppose C ′ is another circuit in B ∪ e.

Notice, e ∈ C and e ∈ C ′. Hence, by the circuit elimination axiom, there exists a circuit

contained in C ∪ C ′ − e ⊆ B which is a contradiction.

This circuit is called the fundamental circuit completed by e with B.

The bases of a matroid are equicardinal, and we define the rank of a matroid as the size

of its basis. Let X ⊂ E. Let I|X = {I ∈ I : I ⊆ X}. Then, (X, I|X) is a matroid called

the restriction of M to X, denoted by M |X. We define the rank of X as the rank of the

matroid M |X.

Let cl(X) denote the closure of X, defined as cl(X) = {x ∈ E : rank(X ∪x) = rank(X)}.

A subset X ⊆ E is called a flat of the matroid M if X = cl(X).

We define transversals in a set system and the associated transversal matroid. Let S be

a set and A = {A1, ..., An} be a family of subsets of S. A transversal, also called a system

of distinct representatives, is a subset T of S such that each element in T is a distinct

representative of the subsets Aj, 1 ≤ j ≤ n. More precisely, a transversal T ⊂ S is a set such

that there is a bijection φ : [n]→ T with φ(j) ∈ Aj for every j ∈ [n].
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Let K ⊂ [n]. A partial transversal is a subset T ′ of S such that there is a bijection

φ : K → T ′ with φ(k) ∈ Ak for every k ∈ K.

We can also define transversal matroids using bipartite graphs. Recall that a bipartite

graph G = (V,E) is one whose vertex set V can be partitioned into two independent sets of

vertices V1 and V2 such that an edge in E connects a vertex in V1 to a vertex in V2.

Given a family A = {A1, ..., An} of subsets of a S, and J = {1, ..., n}, we define a

bipartite graph associated with A as follows: The vertex set is S ∪ J and the edge set is

{xj : x ∈ Aj, j ∈ J}.

A matching in a bipartite graph is a subset of edges which do not share a vertex. A

subset T ′ ⊆ S is a partial transversal if and only if there is a matching where every edge has

a vertex in T ′.

Theorem 2.1.1 [11] The partial transversals of a set system A form the independent sets

of a matroid.

Proof. Let I denote the set of partial transversals of A. ∅ ∈ I since the empty set is a

transversal of the empty subfamily of A. Thus Axiom 1 in the independent set definition of

a matroid holds. Now, if I1 is a partial transversal of A, and I2 ⊆ I1, then I2 is also a partial

transversal of A. Thus, Axiom 2 is true.

For Axiom 3, we will use the notion of transversals in a bipartite graph setting. Suppose

I1 and I2 are partial transversals with |I1| < |I2|. Then, in G(A), there are matchings W1

and W2 that match I1 and I2 into J respectively. We color the edges of W1 −W2,W2 −W1

and W1 ∩W2 with red, blue and purple respectively. Let W be a subgraph of G(A) induced

by edges that are red or blue. By assumption, there are more blue edges than red in W.

Since W1 and W2 are both matchings, the degree of any vertex in W is one or two. Thus,

every connected component of W is either a cycle or a path. Since W is a bipartite graph,

every cycle is of even length. As no like-colored edges meet at a vertex, there are equal

number of red and blue edges in every cycle of W and in every even path. Since W has more
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blue edges than red, it must have some path of odd length whose first and last edges are

colored blue. We call this path p with vertices {v1, v2, ..., v2k} in order. Since one of v1 and

v2k is in S and other in J , we assume that v1 ∈ S. As v1 meets a blue edge and not a red

edge, v1 ∈ I2 − I1. Moreover, {v3, v5, .., v2k−1} ⊆ I1 ∩ I2 and {v2, v4, ..., v2k} ⊆ J.

We now interchange the red and blue edges on p leaving the rest of the graph unchanged.

In the new graph, there is an extra red edge than before. Also, every vertex of I1 ∪ v1 is

the end point of a red or purple edge, and this set of red and purple edges form a matching.

Thus, I1 ∪ v1 is a a partial transversal of A. Thus, Axiom 3 holds.

Such a matroid M(A) is called a transversal matroid. The bases of the matroid are the

transversals of the set system A. We call A as the presentation of M.

The following condition is well known to determine the existence of transversals in a set

system.

Theorem 2.1.2 [2] The set system A = {A1, ..., An} has a transversal if and only if the

following condition (called Hall’s marriage condition) holds: for each subfamily B ⊂ A,

|B| ≤ |
⋃

A∈B A|.

Some examples of a transversal matroids are as follows.

Example 2.1.1 Let S = [7] and A = {A,B,C,D} where A = {1347}, B = {235}, C =

{1267} and D = {24567}. Notice that {3, 6, 7} is a partial transversal since A = {1347}, B =

{235}, C = {1267} and D = {24567}. The bijection with matchings in a bipartite graph can

be observed in Figure 1.

Example 2.1.2 Let S = {1, 2, 3, 4, 5} and A = {{1, 2}, {3, 4}, {1, 2, 3, 4, 5}}. Here T =

{1, 3, 5} is a transversal in A. We write T = 135 for simplicity.

The bases of the transversal matroid M(A) are all the transversals.

B = {123, 124, 134, 135, 145, 234, 235, 245}.

6



Figure 1: Transversals in a set system

Example 2.1.3 The uniform matroid, donated by U(k, n) is a matroid on the ground set

with n elements where all subsets of the ground set containing at most k elements are in-

dependent. U(k, n) is transversal for every k, n. The presentation for U(k, n) is given by

[n], [n], · · · [n]︸ ︷︷ ︸
k times

.

The presentation of a transversal matroid may not be unique. For instance, consider the

following uniform matroid:

Example 2.1.4 U(2, 4) is a uniform matroid. Two presentations for this matroid are A =

{{1, 2, 3, 4}, {1, 2, 3, 4}} and A′ = {{1, 2, 3}, {1, 2, 3, 4}}.

We now define a simplicial complex. A k-simplex is defined as the convex hull of k + 1

points in general position. For example, a 2-simplex is a solid triangle and a 3-simplex is

a tetrahedron. The convex hull of any subset of the k + 1 points in general position of the

simplex is called a face of the simplex.

Definition 2.1.3 A simplicial complex ∆ is a finite collection of simplices satisfying

• If F ∈ ∆ is a simplex, and F1 ⊆ F is a face of F , then F1 ∈ ∆.

• If F1 and F2 ∈ ∆, then F1 ∩ F2 is a face of both F1 and F2.

Definition 2.1.4 An abstract simplicial complex is a finite collection of subsets closed under

set inclusion.

7



Figure 2: Simplices

The definition of an abstract simplicial complex is more useful in combinatorial settings.

The k-simplices in a simplicial complex ∆ are also called faces of ∆. A maximal face in

∆ is called a facet. A simplicial complex is called pure if each of its facets have the same

dimension. The combinatorial notion of an abstract simplicial complex is related to the

geometric simplicial complex.

Theorem 2.1.3 An abstract simplicial d-dimensional simplicial complex has a geometric

realization in the Euclidean space R2d+1.

Thus, we use the term simplicial complex to refer to the geometric as well as abstract

simplicial complex.

There is an interesting connection between the independent sets of a matroid and the

faces of a simplicial complex.

Figure 3: Matroid M
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Figure 4: ∆ - Independence complex of M .

Definition 2.1.5 The independence complex ∆ of a matroid is a pure simplicial complex

whose faces are exactly the independent sets I of M.

Example 2.1.5 Consider the following matroid and simplicial complex in Figure 3 and

Figure 4:

We can check that ∆ is the simplicial complex whose faces are exactly the independent sets

of M. ∆ is the independence complex of M.

Moreover, the facets of the independence complex are exactly the bases of the matroid

and the minimal non-faces of the independence complex are the circuits in the matroid.

2.2 Shifted Complexes

Let M be a loopless matroid on the ground set [n] = {1, 2, ..., n}. We assume that the

ordering on the ground set is fixed.

Definition 2.2.1 A simplicial complex ∆ on [n] is shifted if the following condition holds

for any i, j ∈ [n] with i < j : if F is a face of ∆ with j ∈ F and i 6∈ F , then F r {j} ∪ {i}

is also a face of ∆.
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In a shifted simplicial complex, a vertex in a face can be replaced by a smaller labeled

vertex.

Example 2.2.1 ∆ = {∅, 1, 2, 3, 4, 12, 13, 14, 23, 123} in Figure 5 is a shifted complex.

Figure 5: A shifted complex.

Shifted complexes are studied in detail (see [9] ). Any simplicial complex K can be

associated with a shifted complex ∆(K) using algebraic shifting. Algebraic shifting preserves

many algebraic, topological and combinatorial properties.

The f -vector of a simplicial complex is the sequence

(f−1, f0, f1, f2, ...)

where fi denotes the number of faces of dimension i. K and ∆(K) have the same f -vector.

Let H̃i(K) be the reduced homology group of the simplicial complex K in dimension i

over a field k. The Betti numbers are defined as the dimension of these reduced homology

groups.

βi = dim(H̃i(K)).

Algebraic shifting preserves Betti numbers.

However, certain topological properties are not preserved. For instance, every shifted

complex is homotopy equivalent to a wedge of spheres. To understand the combinatorial

properties of shifted complexes see [10].

10



2.3 Borel Ideals

There is a correspondence between shifted complexes and square free Borel monomial ideals.

We need some definitions before we can establish the connection between the combinatorics

of complexes and algebra of ideals. We borrow the notations and terminology from [8].

Let S = k[X] = k[x1, ..., xn] be a polynomial ring where k is a field.

A monomial of S is an element m which factors uniquely as a product of variables in X.

A square-free monomial is one where the power of each factor in the product of variables

is at most one. A monomial ideal I is defined as an ideal whose generating set consists of

only monomials. A square-free monomial ideal is an ideal whose generating set consists of

square-free monomials.

The Stanley-Reisner correspondence identifies a relationship between simplicial com-

plexes and monomial ideals. Let {i1, i2, ..., it} be a subset of [n]. We map this subset to

a squarefree monomial ideal xi1xi2 · · · xit .

Definition 2.3.1 Let ∆ be a simplicial complex on [n]. Then, the Stanley-Reisner ideal of

∆ is the square free monomial ideal generated by the non-faces of ∆.

I∆ = (m ⊂ X : m 6∈ ∆)

Definition 2.3.2 Let I be a square-free monomial ideal. Then, the Stanley-Reisner complex

of I is the simplicial complex consisting of monomials not in I.

∆I = {m ⊂ X : m 6∈ I}

Note that the minimal generators of I∆ are the minimal non-faces of ∆.

The dual complex ∆∨, called the Alexander dual, is defined using the complements of

non-faces of ∆.

Definition 2.3.3 If ∆ is a simplicial complex, the Alexander dual of ∆ is defined as:

∆∨ = {X rm : m 6∈ ∆}

11



Proposition 2.3.1 Let X = x1 · · ·xn be the product of variables. Let ∆ be a simplicial

complex. Then the facets of ∆∨ are the monomials
X

m
, where m ranges over the generators

of m.

An important class of monomial ideals are strongly stable ideals, also called as 0-Borel

fixed ideals, or in short Borel ideals.

Definition 2.3.4 Let m be a monomial in the ring S = k[x1, ..., xn]. A Borel move is an

operation on the monomial m that sends it another monomial m · xi

xj
where i < j and xj

divides m.

Definition 2.3.5 A squarefree monomial ideal B is a Borel ideal if B is closed under Borel

moves.

2.4 Shifted Matroids

A matroid M is shifted if its independence complex is shifted.

Definition 2.4.1 A matroid M on the ground set [n] is shifted if for any i, j ∈ [n] with

i < j : if A is an independent set in M , then the set Ar {j} ∪ {i} is also independent.

Proposition 2.4.1 A matroid M is shifted if its independence complex ∆ is shifted.

Proof. Since ∆ on [n] is shifted, for any i, j ∈ [n] with i < j, if F is a face of ∆ with

j ∈ F and i 6∈ F , then F r {j} ∪ {i} is also a face of ∆. The faces of ∆ are exactly the

independent sets of M. Hence, if A is an independent set in M , then the set Ar {j} ∪ {i}

is also independent.

Equivalently,

Definition 2.4.2 A matroid M on the ground set [n] is shifted if for any i, j ∈ [n] with

i < j : if B is a basis of M , then the set B r {j} ∪ {i} is also a basis of M .

12



Recall that an element e in a matroid M is called a loop if {e} is a circuit. e ∈ M is

called a coloop if e ∈ B for every basis B in M. Refer to Figure 6 for example. Suppose

e ∈ M is a loop. Then, e is not in any basis. Hence, any basis B in M is also a basis in

M − e. Thus, deleting e does not impact shiftedness in M . Similarly, if e is a coloop, then

e ∈ B for every basis B in M. Thus, B−e is a basis of the matroid M−e, and our discussion

about shiftedness would be the same for M and M − e. Hence, we will assume M to contain

no loops or coloops.

Figure 6: Loops and coloops

The following definitions helps us understand the characterization of shifted matroid

complexes.

Theorem 2.4.1 [3] For any matroid M on [n], there is a basis G satisfying the following

property: If B is any other basis of M and g1 < g2 < ..., < gr and b1 < b2 < ... < br be the

elements of G and B, respectively, written in increasing order; then bi ≤ gi for all i. The

basis G is called the Gale basis of the matroid M.

Example 2.4.1 For the matroid in Figure 3, the bases are given by

B = {123, 124, 134, 135, 145, 234, 235, 245}.

Here, G = 245 is the Gale basis of M.

Notice that the Gale basis depends on the ordering of the ground set [n]. We consider an

13



equivalent definition of shifted simplicial complexes and shifted matroids in terms of order

ideals.

Definition 2.4.3 We define a partial ordering on strings of integers as follows: we say

(x1 < x2 < ... < xr) is less than (y1 < y2 < ... < yr) if xi ≤ yi for each i. We call this poset

Ω.

Figure 7: Poset Ω

The order ideals in this poset are the collections of facets of a shifted simplicial complex.

We can say more about shifted matroids.

Proposition 2.4.2 A shifted matroid M is given by a principal order ideal under the partial

ordering Ω.

Proof. Since M is shifted, M is an order ideal in Ω. Now the Gale basis G satisfies the

property: If B is any other basis of M and (g1 < g2 < ... < gr) and (b1 < b2 < ... < br)

be the elements of G and B, respectively, written in increasing order; then bi ≤ gi for all i.

This implies that B <Ω G for any basis B in M.
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Suppose (x1 < x2 < ... < xr) <Ω (g1 < g2 < ... < gr). Then, (x1 < x2 < ... < xr) can be

obtained through a series of shifts. Hence, M is given by the principal order ideal generated

by the Gale basis (g1 < g2 < ... < gr).

Example 2.4.2 The matroid M given by the bases {123, 124, 125, 134, 135} is a shifted ma-

troid. The Gale basis in M is 135. In Figure 7, the principal order ideal generated by

(1 < 3 < 5) is exactly the shifted matroid M.

The Gale basis satisfies:

Theorem 2.4.2 [3] If B is a set of size-r sets, then B is the set of bases of a matroid if and

only if for each labeling of the ground set there exists a Gale basis G.

We now state the characterization of shifted matroids.

Theorem 2.4.3 [10] Let M be a shifted matroid with Gale basis G = {g1, g2, ..., gr}. Then,

M is a transversal matroid with presentation [g1], [g2], ..., [gr].

Example 2.4.3 If M is the shifted matroid with Gale basis {1, 3, 4}. Then, M is a transver-

sal matroid with presentation

{1}, {1, 2, 3}, {1, 2, 3, 4}.

We now discuss two interesting families of shifted matroids. We begin with lattice path

matroids which were defined by Bonin, de Mier and Noy [1].

Definition 2.4.4 A transversal matroid M with presentation [a1, c1], [a2, c2], ..., [ar, cr] where

each [ai, ci] is an interval in the integers, a1 < a2 < ... < ar and c1 < c2 < ... < cr, is called

a lattice path matroid.

We usually assume that a1 = 1. There is a geometric interpretation to lattice path

matroids.

A lattice path p from (0, 0) to a point (n, r) is a particular sequence of steps in a lattice

such that each step is directly north or directly east, and of unit length.
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For a lattice path p, we define a setBp ⊆ [n+r] whereBp = {i : the i-th step of p is north}.

Moreover, given a basis B, we can associate to it a lattice path pB such that BpB = B. Thus,

pB is a lattice path whose i-th step is north if and only if i ∈ B.

Proposition 2.4.3 Suppose M is a lattice path matroid with presentation [a1, c1], [a2, c2], ..., [ar, cr]

where each [ai, ci] is an interval in the integers, a1 < a2 < ... < ar and c1 < c2 < ... < cr.

Let Ba be the basis {a1, a2, ..., ar} and Bc be the basis {c1, c2, ..., cr}. Then, Bp is a basis of

M if and only if p is a lattice path within the region bounded by pBa and pBc.

Proposition 2.4.4 Every shifted matroid is a lattice path matroid

Proof. Using Theorem 2.4.2, we know that a rank r shifted matroid M is a principal order

ideal in the partial ordering Ω generated by the Gale basis G = {g1, g2, ..., gr}. To show that

this matroid is a lattice path matroid, we need to provide the bases Ba and Bc. Bc = G and

Ba = {1, 2, ..., r} which is the smallest element in Ω.

We now compare the poset Ω with an ordering on monomials called the Borel order as

defined in [6].

Notation 2.4.1 Given a monomial m of degree d, we can write m uniquely as m =
∏d

j=1 xij

with i1 ≤ i2 ≤ ... ≤ id.

Example 2.4.4 The factorization of a2bcd3 is aabcddd.

The Borel order Ω(B) is defined on monomials as follows:

Definition 2.4.5 Let m1 and m2 be monomials. Factor m1 =
∏r

j=1 xij and m2 =
∏s

j=1 xkj .

We say: m1 <Ω(B) m2 if r ≤ s and ij ≤ kj for all j ≤ s.

We can associate a square free Borel order ideal I to a shifted matroid M. Let B =

(b1 < b2 < b3 < ... < br) be a basis of M . We map B to the monomial generator (xb1 ·

xb2−1 · xb3−2 · · ·xbr−r+1). In particular, we map the Gale basis (g1 < g2 < g3 < ... < gr) to

the monomial (xg1 · xg2−1 · xg3−2 · · ·xgr−r+1).

16



Example 2.4.5 The borel order ideal associated with the shifted matroid in Example 2.4.2

is shown in figure 8.

Figure 8: Borel order ideal

Proposition 2.4.5 The poset Ω defined on the strings of integers is an interval in the Borel

order Ω(B).

Proof. Let B = (b1 < b2 < b3 < ... < br) and D = (d1 < d2 < d3 < ... < dr) be two bases of

M . Let f denote the function that maps B to the monomial (xb1 · xb2−1 · xb3−2 · · ·xbr−r+1)

in Ω(B). If B <Ω D then bi ≤ di for each i. We show that f(B) <Ω(B) f(D). Notice that

(xb1 · xb2−1 · xb3−2 · · ·xbr−r+1) and (xd1 · xd2−1 · xd3−2 · · · xdr−r+1) are factored forms of the

monomials. Since bi ≤ di, we have bi − i+ 1 ≤ di − i+ 1 and hence xbi−i+1 ≤ xdi−i+1.

2.5 Graphs and Graph Families

We define graphs and graph classes. We borrow the terminology from [4] here.

Definition 2.5.1 Let V be a set of vertices. Let P2(V ) denote the set of all 2-element

subsets of V . A graph G = (V,E) is a pair such that E ⊆ P2(V ) where E is called the set

of edges. If x and y are two vertices, then the edge joining them is denoted by xy.

Definition 2.5.2 A graph G′ = (V ′, E ′) is a subgraph if V ′ ⊂ V and E ′ ⊂ E.
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Definition 2.5.3 A subgraph G′ is an induced subgraph of G if E ′ = {xy : xy ∈ E and x, y ∈

V ′}.

Definition 2.5.4 Let G = (V,E) be a graph. A subset V ′ ⊆ V is an independent set if for

all x, y ∈ V ′, xy 6∈ E.

Definition 2.5.5 Let G = (V,E) be a graph. A subset V ′ ⊆ V is a clique if for all x, y ∈ V ′,

x 6= y, then xy ∈ E.

Graph families are extensively studied for their mathematical structure and uses in algo-

rithmic problems. We discuss two such graph families.

A graph G is called as a threshold graph if there is a way to assign weights to each vertex

such that the total weight of vertices in any independent set in the graph does not exceed a

certain threshold.

Definition 2.5.6 A graph G = (V,E) is called a threshold graph if there exists non-negative

real numbers t and wv for v ∈ V such that for any U ⊆ V ,

w(U) ≤ t if and only if U is an independent set

where w(U) =
∑

v∈U wv

Alternatively, threshold graphs can be defined in a constructive manner. We say a vertex

v is an isolated vertex if it is not connected to any other vertex when added to a graph. On

the other hand, we say that v is a dominating vertex if it is connected to every single vertex

in the graph when added to a graph.

Definition 2.5.7 A graph G = (V,E) is called a threshold graph if it can be constructed

from the one-vertex graph using a sequence of steps by adding either an isolated vertex or a

dominating vertex in each step.

Example 2.5.1 In Figure 9, the threshold graph is constructed from the one-vertex graph by

adding isolated and dominating vertices, labeled as I and D, respectively. Here, D3 denotes
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that the dominating vertex is the third vertex in the graph (or the second vertex added after

the initial vertex).

Figure 9: Threshold graph construction

The second family of graphs that we are interested in are called split graphs.

Definition 2.5.8 A graph G is called a split graph if its vertices can be partitioned into a

clique and an independent set.

Example 2.5.2 In Figure 10, the vertex set is partitioned into a clique on {A,B,C,D} and

an independent set on {E,F,G}.

Figure 10: Split graph

The family of threshold graphs is contained in the family of split graphs.

19



Proposition 2.5.1 If a graph G = (V,E) is a threshold graph, then it is a split graph.

Proof. Let G be a threshold graph. Then G can be constructed by adding isolated vertices

and dominating vertices to the one-vertex graph. Let v be the initial vertex of the one-vertex

graph. We construct a vertex partition in G, V = V1 ∪ V2, where V1 is the set of all the

isolated vertices added to the one-vertex graph and V2 is the set of all the dominating vertices

added to the one-vertex graph and the vertex v. It is clear to see that V1 is an independent

set and V2 is a clique in G. For any two vertices x, y ∈ V1, xy 6∈ E by the definition of the

isolated vertex. On the other hand, for any two vertices x, y ∈ V2, if x is added later than y

then xy ∈ E since x is a dominating vertex. Moreover, xv ∈ E for all x ∈ V2. Thus, G is a

split graph.

Example 2.5.3 In Figure 9, the vertex set of the graph can be partitioned into an indepen-

dent set and a clique as {I4} ∪ {Initial Vertex, D2, D3, D5} respectively.
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CHAPTER III

P -SHIFTED MATROIDS

Our goal in this chapter is to generalize the notion of shiftedness to a larger class of

simplicial complexes and matroids.

3.1 P -shiftedness

A partial order (≤) is a binary relation on a set P satisfying relexivity, anti-symmetry and

transitivity. We can represent a partially ordered set (poset) using a Hasse diagram.

Example 3.1.1 Consider the two posets in Figure 11. The first poset is the partial order on

the divisors of 12 ordered by divisiblity. The second poset is a partial order on sets ordered

by inclusion.

Figure 11: Hasse diagram of posets

We say a poset P labeled with [n] is naturally labeled if it satisfies the order on natural

numbers: i <P j then i < j. Equivalently, P on [n] is naturally labeled if 1 < 2 < · · · < n is

an order completion of P.
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We aim to generalize Theorem 2.4.3 to a larger class of matroids defined as follows:

Definition 3.1.1 Let P be a naturally labeled poset on [n]. We say that a matroid M is

P -shifted if the following holds for any i, j ∈ [n] with i <P j: For any independent set A of

M with j ∈ A and i 6∈ A, the set Ar {j} ∪ {i} is independent.

which is equivalent to

Definition 3.1.2 Let P be a naturally labeled poset on [n]. We say that a matroid M is

P -shifted if the following holds for any i, j ∈ [n] with i <P j: For any basis B of M with

j ∈ B and i 6∈ B, the set B r {j} ∪ {i} is a basis.

Proposition 3.1.1 The two definitions of P -shifted matroids in terms of independent sets

and bases respectively are equivalent.

Proof. Suppose for any i, j ∈ [n] with i <P j and any independent set A of M with j ∈ A

and i 6∈ A, the set A r {j} ∪ {i} is independent. Let B be a basis in M . Since, B is also

an independent set; given a basis B of M with j ∈ B and i 6∈ B, the set B r {j} ∪ {i} is

an independent set for any i, j ∈ [n] with i <P j. Since the sets are equicardinal, that is,

|B| = |B r {j} ∪ {i}|, the set B r {j} ∪ {i} is a basis in M.

For the other direction, let i <P j and suppose that A is an independent set of M with

j ∈ A and i 6∈ A. Then, A can be completed to a basis, that is, A ⊆ B for some basis B

in M. If j ∈ B and i 6∈ B, using i <P j, the set B r {j} ∪ {i} is a basis in M. In this case,

(Ar {j} ∪ {i}) ⊆ (B r {j} ∪ {i}). Thus, Ar {j} ∪ {i} is an independent set. On the other

hand, if i ∈ B, then (Ar {j} ∪ {i}) ⊆ B, and hence (Ar {j} ∪ {i}) is an independent set

in M.

Example 3.1.2 Consider the matroid in Figure 12. The bases of the matroid are B =

{123, 124, 134, 135, 145, 234, 235, 245}. M is P -shifted for the poset in Figure 13. We can

check for instance that 245 ∈ B and since 3 <P 4, the set 235 is also a basis. However,

1 6<P 4, and therefore the set 215 (or 125) is not necessarily a basis and in fact is not a basis

of M.
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Figure 12: P -shifted matroid M

Figure 13: Poset P

Suppose e ∈ M is a loop. Then, e is not in any basis. Hence, any basis B in M is also

a basis in M − e. Thus, deleting e does not impact P -shiftedness in M . Similarly, if e is a

coloop, then e ∈ B for every basis B in M. Thus, B − e is a basis of the matroid M − e,

and our discussion about P -shiftedness would be the same for M and M − e. Hence, we

will assume M to contain no loops or coloops. In such a setting, every element e in M is

contained in some circuit C in M.

Shiftedness can be similarly generalized for simplicial complexes.

Definition 3.1.3 Let P be a naturally labeled poset on [n]. A simplicial complex ∆ on [n]

is P -shifted if the following condition holds for any i, j ∈ [n] with i <P j : if F is a face of

∆ with j ∈ F and i 6∈ F , then F r {j} ∪ {i} is also a face of ∆.

Proposition 3.1.2 A matroid M is P -shifted if its independence complex ∆ is P -shifted.

Proof. Since ∆ on [n] is P -shifted, for any i, j ∈ [n] with i <P j, if F is a face of ∆ with
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j ∈ F and i 6∈ F , then F r {j} ∪ {i} is also a face of ∆. The faces of ∆ are exactly the

independent sets of M. Hence, if A is an independent set in M , then the set Ar {j} ∪ {i}

is also independent.

The definition of P -shiftedness generalizes shiftedness. This can be observed by looking

at shifted matroids as C-shifted matroids, where C is the n-element chain.

3.2 Q-Borel Ideals and P -shiftedness

The idea of P -shifted simplicial complexes has a naturally correspondence with the idea of

square free monomial Q-Borel ideals defined by Francisco, Mermin and Schweig in [7]. We

assume that all our complexes are pure and all ideals are squarefree monomial ideals.

Definition 3.2.1 Let I ⊆ k[x1, ..., xn] be a monomial ideal, and let Q be a naturally labeled

poset on {x1, ..., xn}. An ideal I is Q-Borel if it satisfies the following condition: whenever

xi <Q xj and m ∈ I is a monomial divisible by xj, then m · xi

xj
∈ I.

We define the notion of anti P -shifted complexes and anti Q-Borel ideals.

Definition 3.2.2 Let P be a naturally labeled poset on [n]. A simplicial complex ∆ on [n]

is anti P -shifted if the following condition holds for any i, j ∈ [n] with i <P j : if F is a face

of ∆ with i ∈ F and j 6∈ F , then F r {i} ∪ {j} is also a face of ∆.

Definition 3.2.3 Let I ⊆ k[x1, ..., xn] be a monomial ideal, and let Q be a naturally la-

beled poset on {x1, ..., xn}. An ideal I is anti Q-Borel if it satisfies the following condition:

whenever xi <Q xj and m ∈ I is a monomial divisible by xi, then m · xj

xi
∈ I.

Proposition 3.2.1 If ∆ is P -shifted then I∆ is anti P -Borel.

Proof. Let ∆ be the independence complex of a matroid M. Let m be a monomial in I∆.

Then, m is a non-face of ∆ and thus a dependent set in M . Suppose i <P j and i ∈ m and

j 6∈ m. Using Proposition 3.5.2, if C ⊆ m and i ∈ C then C − i ∪ j is dependent and hence

m · xj

xi
∈ I∆. If i 6∈ C, then C ⊂ (m− i∪ j) and hence is dependent. That is, m · xj

xi
∈ I∆.
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Proposition 3.2.2 If I is a P -Borel ideal then ∆I is anti P -shifted.

Proof. Let ∆I be the independence complex of a matroid M. Now, ∆I is the simplicial

complex consisting of monomials not in I. Suppose i <P j and i ∈ F and j 6∈ F for a face F

of ∆I . We claim that F − i ∪ j is a face of ∆I . Suppose not. Then, F − i ∪ j is a monomial

in I containing j and not containing i. Hence, F − i ∪ j − j ∪ i = F ∈ I contradicting our

assumption that F is not in I.

Example 3.2.1 Consider the matroid and poset in Example 3.1.2. Let ∆ be the indepen-

dence complex of M and ∆ is P -shifted. I∆ = (125, 345, 1234) is generated by the minimal

non-faces of ∆. Here, I∆ is anti P -Borel. For instance, we can check that since 4 <P 5, the

monomial generator 1234 ∈ I∆ forces 1235 ∈ I∆.

Using Proposition 3.2.1 and Proposition 3.2.2, we can recover an association between

shifted complexes and Borel ideals.

We say that a simplicial complex is antishifted if it is anti C-shifted. We say a squarefree

monomial ideal is antiBorel if it is anti C-Borel, where C is the n-element chain.

Proposition 3.2.3 If a simplicial complex ∆ is shifted then the square-free monomial ideal

I∆ is antiBorel.

Proposition 3.2.4 If a squarefree monomial ideal I is Borel then ∆I is an antishifted sim-

plicial complex.

3.3 The Maximal Poset

A simplicial complex ∆ and a matroid M can be P -shifted for different choices of the poset

P.

Example 3.3.1 A shifted matroid is P -shifted for every naturally labeled poset P.
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Definition 3.3.1 [5] For a fixed n, let Λn denote the poset of all the naturally labeled posets

on [n] ordered by inclusion of sets of relations. That is, if P and Q are two naturally labeled

posets on [n], then P ≤Λn Q if and only if i <P j implies i <Q j for all i, j ∈ [n].

Lemma 3.3.1 Let P and Q be naturally labeled posets on [n]. If M is Q-shifted and P ≤Λn

Q, then M is also P -shifted.

Proof. Suppose M is not P -shifted. Then, there exists some i, j ∈ [n] for i <P j such that

for an independent set A with i ∈ A, j 6∈ A, the set Ar {i} ∪ {j} is not independent. Since

P ≤Λn Q, i <P j implies i <Q j. Thus, M is not Q-shifted.

The n-element chain is the unique maximal element and the n-element anti-chain is the

unique minimal element in Λn.

Figure 14: Λ3, the lattice of naturally ordered posets on n = 3.

The meet of two naturally labeled posets P ∧ Q in Λn is defined as the intersection of

the sets of relations in P and Q.

26



Example 3.3.2 In Figure 14, let P denote the naturally labeled poset with relations (1 <

2, 1 < 3), and Q denote the naturally labeled poset with relations (1 < 3, 2 < 3). Then,

P ∧Q = 1 < 3 which is the intersection of the set of relations in P and Q.

We show that Λn is a lattice. In this direction, we recall that a poset Λ is a meet-

semilattice if any two elements in Λ has a meet. We refer to the following proposition from

[12].

Proposition 3.3.1 Let Λ be a finite meet-semilattice with a unique maximal element 1̂.

Then Λ is a lattice.

Proposition 3.3.2 For a fixed n, Λn is a lattice.

Proof. For a fixed n, Λn is finite. Let P and Q be naturally labeled posets on [n]. Then,

P ∧ Q given by the intersection of sets of relations in P and Q is also a naturally labeled

poset on [n]. Therefore, Λn is a meet-semilattice. Since the n-element chain is the unique

maximal element, Λn is a finite meet-semilattice with 1̂, and is thus a lattice.

Let P ∨Q denote the join of the naturally labeled posets P and Q in Λn defined as the

transitive closure of the union of their relations.

Proposition 3.3.3 If M is both P -shifted and Q-shifted, then M is also P ∨Q-shifted.

Proof. Let i, j ∈ [n] and i <P∨Q j. Since P ∨Q is the transitive closure of the union of the

set of relations in P and Q, there exists a sequence i = k0 < k1 < k2 < ... < kt−1 < kt = j

such that each inequality is either in P or Q. Let A be an independent set in M. Using

induction, it follows that if j ∈ A and i 6∈ A, then A ∪ {i}r {j} is also independent.

To illustrate the above idea, consider P1 = 1 < 2 and P2 = 2 < 3, where P1, P2 ∈ Λn

for some fixed n. If we take the join of these two posets, P1 ∨ P2 = 1 < 2 < 3. Let M be

a matroid that is P1-shifted and P2-shifted. We show that M is P1 ∨ P2-shifted as follows:

Let A be an independent set such that 3 ∈ A but 1 6∈ A. There are two cases depending on
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whether 2 ∈ A or 2 6∈ A. Suppose 2 6∈ A, then by P2-shiftedness, A∪{2}r{3} is independent.

Since 1 6∈ A ∪ {2}r {3}, (A ∪ {2} − {3}) ∪ {1} − {2} is also indepedent by P1-shiftedness.

Thus, A ∪ {1}r {3} is independent.

If 2 ∈ A, then by P1-shiftedness, A∪ {1}r {2} is independent. Since 2 6∈ A∪ {1}r {2},

(A ∪ {1} − {2}) ∪ {2} − {3} is also indepedent by P2-shiftedness. Thus, A ∪ {1} r {3} is

independent.

Example 3.3.3 Let P1 = 1 < 2 and P2 = 2 < 3. If we take the join of these two posets,

P1 ∨ P2 = 1 < 2 < 3 is the chain on 3 elements. Let M be a matroid on the ground

set {1, 2, 3} whose bases are given by B = {12, 13}. M is P1-shifted and P2-shifted, and

consequently P1∨P2-shifted. Moreover, since M is P1∨P2-shifted it is also P3-shifted, where

P3 = 1 < 2, 1 < 3, since P3 ≤Λ3 P1 ∨ P2 as observed in Figure 14.

For naturally labeled posets P1, P2, ..., Pt, their join is defined as the transitive closure of

the union of their sets of relations.

Proposition 3.3.4 Let K ⊆ Λn be the set of all posets P for which a matroid M is P -

shifted. Then K has a unique maximal element with respect to Λn order.

Proof. Let Pmax denote the join of all the posets in K. Since M is P -shifted for all P ∈ K,

M is also Pmax-shifted, and Pmax ∈ K.

Thus, for any matroid M , there is a unique maximal poset Pmax such that if Q is another

poset for which M is P -shifted, then Q ≤Λn Pmax.

Figure 15 is an example of a poset such that the matroid M is Pmax-shifted.

3.4 Main Results

In this section, we prove the generalization of Theorem 2.4.3 for P -shifted matroids. We

recall the standard definitions of an order filter and an order ideal in a poset P .

28



Figure 15: Pmax

Definition 3.4.1 A non-empty subset I of P is called an order ideal if it is closed down-

wards, that is, for every x ∈ I and y ∈ P , if y ≤P x then y ∈ I.

Definition 3.4.2 An order ideal generated by a single element x ∈ P is called a principal

order ideal, and is denoted by I(x).

I(x) = {y : y ≤P x}

Definition 3.4.3 An order filter F is a non-empty subset of P that is closed upwards, that

is, for every x ∈ F and y ∈ P , if x ≤P y then y ∈ F.

An order filter is the dual of an order ideal.

Definition 3.4.4 Let A ⊂ P. The smallest order filter in P containing A is called the order

filter generated by A, and is denoted by F (A).

Let G be the Gale basis of M , and let P be a poset for which M is P -shifted. For a set

A ⊆ [n], we define G(A) as:

G(A) = G ∩ F (A).

Thus, G(A) denotes the elements of in the Gale basis closed upwards of A.

Definition 3.4.5 We say that M and P satisfy the Gale condition if, for any A 6⊆ G, the

set A ∪G(A) is dependent.

In fact, to satisfy the Gale condition, we only need to check for single elements.
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Proposition 3.4.1 For any P -shifted matroid M with Gale basis G, M and P satisfy the

Gale condition if and only if {a} ∪G(a) is dependent for any a 6∈ G.

Proof. Consider A 6⊆ G, and let a ∈ A r G. Then, {a} ∪ G(A) is dependent. Since ({a} ∪

G(a)) ⊆ (A ∪G(A)), the set A ∪G(A) is dependent as well.

Proposition 3.4.2 If M and P satisfy the Gale condition, then all the maximal elements

belong to G.

Proof. Suppose not. Let x be a maximal element in P and x 6∈ G. Then, G(x) = ∅ and

{x} ∪G(x) = {x} which is dependent. Thus, x is a loop contradicting the assumption that

M is loopless.

Proposition 3.4.3 If M and G satisfy the Gale condition and a 6∈ G is an element in M ,

then a ∪G(a) = C is the unique circuit completed by a with G.

Proof. Since a 6∈ G, a completes a unique circuit C with G. We claim that C contains all

the elements in G(a). If not, there exists some x ∈ G(a) such that x 6∈ C. Now, a <P x and

hence C − a∪ x is dependent using Proposition 3.5.1. However,C − a∪ x ⊆ G contradicting

the fact that G is independent. Now, suppose y ∈ C such that y ∈ G−G(a). Then, C− y is

an independent set. However, a ∪G(a) ⊆ C − y and a ∪G(a) is dependent by assumption.

Thus, such a y does not exist and a ∪G(a) = C.

We note that if M is P -shifted and M is a particular transversal matroid given by the

presentation {I(x) : x ∈ G} then M and P satisfy the Gale condition.

Proposition 3.4.4 If M is P -shifted and M is a transversal matroid given by the presen-

tation {I(x) : x ∈ G}, then M and P satisfy the Gale condition.

Proof. Using Proposition 3.4.1, it is enough to prove that for any element a 6∈ G, the set

a ∪ G(a) is dependent. Suppose on the contrary that there exists some a 6∈ G such that

A = a∪G(a) is an independent set. Let A = (a, x2, ..., xk) for some k and {x2, ..., xk} = G(a).
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Here, the xi’s are all distinct. Since {I(x) : x ∈ G} is a presentation of M , there exists

{y1, y2, ..., yk} ∈ G such that a <P y1 and xi ≤P yi for all 2 ≤ i ≤ k. Now, yi ∈ G(a) for

all 1 ≤ i ≤ k since xi ∈ G(a) for all 2 ≤ i ≤ k. Thus, {y1, y2, ..., yk} = G(a). However, this

contradicts the cardinality of G(a) and the result follows.

We now prove the main theorem of this section. Recall that a shifted matroid is a

transversal matroid with presentation given by its Gale basis elements. We show that if a

P -shifted matroid M satisfies the Gale condition, then M must be a transversal matroid.

In fact, the presentation of the matroid can be given by the principal order ideals in the

poset P generated by the Gale basis elements. Thus, conditions on the poset determines the

presentation of the matroid.

Theorem 3.4.1 If M and P satisfy the Gale condition, then M is a transversal matroid

given by the presentation {I(x) : x ∈ G}, where G is the Gale basis and I(x) is the principal

order ideal generated by x.

Proof. We show that M is transversal by proving that the set {I(x) : x ∈ G} is a presentation

for M.

Suppose {a1, ..., ak} is an independent set in M. We need to show that for every i, there

is a distinct element xi ∈ G such that ai ∈ I(xi) for all 1 ≤ i ≤ k.

We define a set A to be covered if |A| ≤ |G(A)|. By Hall’s marriage theorem, our

proposition is true if every subset of any independent set is covered. Since a subset of an

independent set is independent, we only need to prove that any independent set is covered.

We proceed by proof by contradiction. Suppose every independent set is not covered. Let

k be the size of the largest independent set that is not covered and let A be the lexicographic

largest such independent set of size k.

Since |A| > |G(A)|, it is possible that G(A) ⊂ A. Then A = G(A) ∪ A is independent

contradicting the Gale condition. Thus G(A) 6⊂ A. Let x ∈ G(A)rA be the largest labeled

element in the set. We claim that x is labeled larger than any element in ArG(A). Suppose
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on the contrary that a ∈ A r G(A) is labeled greater than x. Notice that all elements in

G(a) are labeled greater than x since P is a naturally labeled poset. Since x is the largest

labeled element in G(A)rA, G(a) ⊂ A. This implies, a∪G(a) ⊂ A. By the Gale condition,

a ∪ G(a) is dependent contradicting the independence of A. Thus, x is labeled larger than

any element in ArG(A).

Consider the set A1 = Ar{a}∪{x} for some choice of a ∈ ArG(A). Notice that |A1| =

|A|. Since x ∈ G(A), G(A1) ⊂ G(A). Hence, |G(A1)| ≤ |G(A)| and thus |A1| > |G(A1)|.

Thus, A1 is not covered. A1 is larger than A in the lexicographic order and therefore A1 is a

dependent set. (since A is the lex largest size k independent set in M that is not covered.)

Since A1 is dependent, let C1 ⊂ A1 denote the unique circuit obtained by adding x to A.

There is some a′ ∈ C1 for a′ ∈ ArG(A). If not, C1 ⊂ G. Let A2 = A1 r {a′} ∪ {x}. By the

same argument, A2 is dependent and contains a circuit C2 containing x. For the circuits C1

and C2, there exists a circuit C such that

C ⊂ C1 ∪ C2 r {x} ⊂ A

which contradicts the hypothesis that A is an independent set.

Figure 16: Gale condition

Let us look at the example in Figure 16. M is P−shifted with Gale basis {2, 4, 5}. We

can check that {1} ∪ G(1) = {1, 2, 5} and {3} ∪ G(3) = {3, 4, 5} are dependent sets. Thus,

P satisfies the Gale condition. Therefore, using Theorem 3.4.1, M is a transversal matroid.
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The presentation of M is given by the order ideals in P generated by the elements of the

Gale basis. Thus, A = {{1, 2}, {3, 4}, {1, 2, 3, 4, 5}} and M = M(A).

If we change the labeling of the ground set in Figure 16 by swapping 3 and 5, we get

a different matroid. The maximal poset for this matroid is shown in Figure 17. Here,

{3} ∪G(3) = {3} is independent. So, M and P do not satisfy the Gale condition.

We can recover Theorem 2.4.3 from Theorem 3.4.1 as a corollary.

Theorem 3.4.2 Let M be a shifted matroid with Gale basis G = {g1, g2, ..., gr}. Then, M

is a transversal matroid with presentation [g1], [g2], ..., [gr].

Proof. Since M is shifted, M is C-shifted, where C is the n-element chain. Let a be an

element in M such that a 6∈ G. Let D be the unique circuit contained in G ∪ a. We claim

that a is labeled smaller than every element in D . If not, let x ∈ D be an element labeled

smaller than a. Then, the basis Gr {x} ∪ {a} contradicts our assumption that G is a Gale

basis. Since C is the n-element chain, D ⊆ F (a). Thus, D ⊆ {a}∪G(a). Since D is a circuit,

{a} ∪G(a) is dependent for every a 6∈ G. Thus, M and C satisfy the Gale condition and M

is a transversal matroid with presentation [g1], [g2], ..., [gr].

Figure 17: Non example

We define an order on the bases of M based on the P -shifts.

Definition 3.4.6 Given bases (x1, ..., xr) and (y1, ..., yr) of a matroid M , we define an order

(x1, ..., xr) <P (y1, ..., yr) if we can obtain (x1, ..., xr) from (y1, ..., yr) using P -shifts.

This ordering defines a partially ordered set Ω(M) on the bases of a matroid.
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Proposition 3.4.5 Suppose M is P -shifted, and M and P satisfy the Gale condition. Then

the Gale basis G is the unique maximum element in Ω(M).

Proof. Let G = (x1, x2, ..., xr) be the Gale basis. Since M and P satisfy the Gale condition,

M is a transversal matroid given by the presentation {I(x) : x ∈ G}. Let B be any other

basis in M. We can write B as (b1, b2, ..., br) where bi ≤P xi for all 1 ≤ i ≤ r. Since M is

P -shifted, (b1, x2, ..., xr) is also a basis in M since b1 ≤P x1. Using the same idea, we can

obtain (b1, b2, ..., br) through a sequence of P -shifts as follows:

(x1, x2, ..., xr)→ (b1, x2, ..., xr)→ ...→ (b1, b2, ..., br−1, xr)→ (b1, b2, ..., br)

Hence, (b1, b2, ..., br) ≤Ω(M) (x1, x2, ..., xr).

We can also say that M is the principal order ideal generated by the Gale basis in Ω(M)

if M and P satisfy the Gale condition.

For the example matroid discussed in Figure 15, M is P -shifted and since M and P

satisfy the Gale condition, M is a transversal matroid with the Gale basis {2, 4, 5}, written

as 245 in short. In the partially ordered set Ω(M), of the bases of the matroid M ordered

by P -shifts, 245 is the maximal element. We can observe this accurately in figure 18.

Figure 18: Gale basis is maximal

On the other hand, in our non-example as mentioned in Figure 17, M and P do not

satisfy the Gale condition. Here, the Gale basis is not maximal in Ω(M).
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Figure 19: Gale basis is not maximal

Proposition 3.4.6 If M is P -shifted, and M and P satisfy the Gale condition with Gale

basis G. Then M has the (componentwise) smallest f -vector among all such matroids M ′

that are P -shifted with Gale basis G.

Proof. Since M and P follow the Gale condition, and M is P -shifted, every basis B can

be obtained from G using P -shifts. Moreover, any independent set can be obtained from a

subset of B using P -shifts. Let M ′ be any other matroid that is P -shifted with the same

Gale basis. Then, every independent set in M is also independent in M ′ since it can be

obtained from G using P -shifts. Hence, M has the smallest f -vector.

Question 3.4.1 If P is a fixed poset, is there a matroid M or simplicial complex ∆ such

that P = Pmax for M or ∆?

The answer to Question 3.4.1 for a fixed dimension is no, and is discussed in detail in

Chapter 3. However, for an arbitrary dimension, constructing such a matroid or simplicial

complex is not known.

In [10], Klivans showed that the number of shifted matroids on [n] of rank k is
(
n
k

)
. Can

we obtain a general enumeration in case of P -shifted matroids?

Question 3.4.2 If P is a fixed poset, can we enumerate the number of P -shifted simplicial

35



complexes and P -shifted matroids of dimension d?

Recall that the Hasse diagram of a poset is a graph with the vertex set V given by

the elements of the poset, and the edge set E is given by the cover relations between two

elements.

Question 3.4.3 Can we characterize P -shifted matroids based on the connectedness of the

Hasse diagram of Pmax?

The connectedness of the poset Q is helpful in the study of Q-Borel ideals and could play a

role in P -shifted matroids.

3.5 Circuits and Flats

We present some results which are helpful in understanding the relationship between the

matroid M and poset P. In this section, we assume M is a P -shifted matroid and that

P = Pmax, which means that P is the maximal poset for which M is P -shifted.

Definition 3.5.1 Let i, j ∈ [n] with i < j. Then i <P j if and only if, for every basis B of

M with j ∈ B and i /∈ B, the exchange B − j ∪ i is a basis.

Proposition 3.5.1 Let i, j ∈ [n] with i < j. Then i <P j if and only if, for any circuit C

containing i,

rank(C) = rank(C ∪ j).

Proof. We first suppose that rank(C) = rank(C∪j) for every circuit C containing i. Consider

a basis B containing j not containing i. The set B∪ i contains a unique circuit C containing

i. Suppose j 6∈ C. Then, C ∪ j − i is an independent set with rank(C ∪ j r i) = |C| since

|(C ∪ j r i)| = |C|. Thus, rank(C ∪ j) = |C|. However, rank(C) = |C| − 1 contradicting our

assumption. Hence, j ∈ C and B ∪ ir j is a basis.

On the other hand, if rank(C) 6= rank(C∪j) for some C containing i. Cri is independent

and so is C ∪ j r i. Now, (C ∪ j r i) ⊂ B for some basis B. Since the unique circuit formed

by adding i to B is C and j 6∈ C, the set B ∪ ir j is not a basis and i 6<P j.
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Proposition 3.5.2 For two elements i, j with i < j, we have i <P j if and only if, for each

circuit C with i ∈ C and j /∈ C, C − i ∪ j is dependent.

Proof. Suppose i <P j, and let C be a circuit with i ∈ C and j /∈ C. If C − i ∪ j were

independent, we could complete it to a basis B. But then C ⊆ B− j ∪ i, meaning we cannot

replace j with i in B.

For the other direction, suppose i ≮P j. Then there would be a basis B with j ∈ B and

i /∈ B, such that B − j ∪ i is not a basis. Let C be the unique circuit in B − j ∪ i. Then

i ∈ C, and C − i ∪ j is independent, as it is contained in B.

Proposition 3.5.3 Suppose M is a graphic matroid with no parallel edges. If i <P j, then

for any circuit C with i ∈ C and j 6∈ C, we can write C ∪ j = C1 ∪C2, where C1 and C2 are

circuits satisfying C1 ∩ C2 = {j}

Proof. Let C be a circuit containing i and not containing j. Using the above proposition,

C−i∪j is dependent, and contains a unique circuit, say C1. This circuit necessarily contains

j.

Since M is a graphic matroid, we can express the circuit C as the sequence of vertices

v0, v1, ..., vk where vi are all distinct and v0 = vk. Let the edges i = vtvt+1 and j = ww′. where

v0 ≤ t < t+ 1 ≤ vk−1 Then, the vertices in C − i ∪ j are given by the set {v0, v1, ..., vk−1} ∪

{w,w′} r {vt, wt+1}. Since C1 is a cycle, w = vi1 and w′ = vi2 for some i1, i2 ∈ {0, .., k}.

Thus, C1 = vi1 , vi1+1, ..., vi2 , vi1 and C2 = vi1 , vi1−1, ..., vi2 , vi1 is also a circuit. That is,

C ∪ j = C1 ∪ C2, where C1 and C2 are circuits satisfying C1 ∩ C2 = {j}.

When the above proposition holds, we say that j splits the circuit C.

Let B be a fixed basis, and let G be the Gale basis. For an element x of G r B, let Cx

denote the unique circuit contained in B ∪ x, and let C̄x = Cx − x.

Lemma 3.5.1 Let w ∈ GrB. If x ∈ GrB is in F (C̄w), then C̄x ⊆ C̄w.
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Proof. Since x ∈ F (C̄w), there is some i ∈ C̄w with i < x. Cw ∪x is the union of two circuits

C1 and C2, with C1 ∩ C2 = {x}. Since the only element in Cw not contained in B is w, one

of these two circuits is contained in B ∪ x, and the result follows.

The poset P is linked with the cyclic flats of M as follows.

Definition 3.5.2 (see, for instance, [2]) A cyclic flat of M is a flat that is a union of

circuits.

Cyclic flats are studied in detail in [1]. Bonin and de Mier showed that every lattice is

isomorphic to the lattice of cyclic flats of some matroid.

We prove the following two lemmas for completeness, but these do not refer to the

relationship between M and P.

Lemma 3.5.2 Suppose X is a union of circuits, and let i be an element of M with rank(X) =

rank(X ∪ i). Then X ∪ i is a union of circuits.

Proof. If i ∈ X, there is nothing to prove. Assume that i 6∈ X. Let Y be the smallest

flat containing X, and consider the matroid M ′ obtained by restricting M to Y . Then

rank(Y ) = rank(X), so X contains a basis B of M ′. Then B ∪ i contains a circuit C. Since

M ′ is the restriction of M to a flat, C is a circuit in M , and by construction i ∈ C ⊆ X ∪ i.

Lemma 3.5.3 Let C be a circuit. Then C must be contained in some cyclic flat X with

rank(C) = rank(X).

Proof. If C is a flat, then C is a cyclic flat.

Suppose C is not a flat. Then, there is some i 6∈ C such that rank(C ∪ i) = rank(C).

Using Lemma 3.5.2, C ∪ i is a union of circuits. If C ∪ i is not a flat, then there exists some

i′ 6∈ C ∪ i such that rank(C ∪ i ∪ i′) = rank(C ∪ i) and using 3.5.2, C ∪ i ∪ i′ is a union of

circuits.
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Since M is a finite matroid, we can repeatedly apply 3.5.2 to show that C ⊂ X with

rank(C) = rank(X), where X is a cyclic flat.

Proposition 3.5.4 Let X be a cyclic flat of M . Then X is an order filter of P .

Proof. Given i ∈ X, we want to show that j ∈ X for all i ≤P j. If rank(X) = rank(X ∪ j),

then j ∈ X since X is a flat. Suppose not. Then, rank(X ∪ j) = rank(X) + 1. Since X is

a cyclic flat, there is a circuit C ⊂ X with i ∈ C. C − i is an independent set and can be

completed to a basis B of X.

Since rank(X∪j) = rank(X)+1, B∪j is an independent set in M. Now, C−i∪j ⊆ B∪j

which contradicts Proposition 3.5.2 (C − i ∪ j is dependent.)

We note that non-cyclic flats may not be order filters. For instance, in Figure 15, the

{1, 2} is a non-cyclic flat which is not an order filter.

Proposition 3.5.5 Let C be a circuit, and let F (C) be the order filter in P generated by

the elements of C. Then rank(F (C)) = rank(C).

Proof. By Lemma 3.5.3, C is contained in some cyclic flat X with rank(C) = rank(X). Since

X is an order filter, C ⊆ F (C) ⊆ X, and the result follows.

Recall that e is a loop if {e} is a circuit and that two elements e, f ∈ M are parallel if

{e, f} is a circuit. A matroid without loops or parallel elements is called a simple matroid.

We study simple graphic matroids in the following proposition. Recall that we already

assumed that we are discussing matroids without loops or coloops.

Proposition 3.5.6 Let M be a simple graphic matroid. If M and P satisfy the Gale con-

dition and x, y 6∈ G, then x and y are incomparable in P.

Proof. Assume to the contrary that x <P y. Since M and P satisfy the Gale condition,

x ∪ G(x) and y ∪ G(y) are dependent sets. Therefore, there is a circuit C1 containing x

such that C1 ⊂ x ∪ G(x). and a circuit C2 containing y such that C2 ⊂ y ∪ G(y). Notice,

G(y) ⊂ G(x) since x <P y.
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Since x <P y and y 6∈ C1, y splits C1 using Proposition 3.5.3 . Thus, y ∪ C1 = D1 ∪D2

for the circuits D1, D2 satisfying D1 ∩D2 = {y}.

Assume x 6∈ D1. Note that y ∈ C2 and y ∈ D1. Using the matroid circuit axioms, there

exists a circuit C satisfying

C ⊂ C2 ∪D1 r {y} ⊂ G

which contradicts the assumption that G is a basis.

Using Proposition 3.5.6, we can classify simple graphic matroids that are shifted.

Proposition 3.5.7 Let M be a simple graphic matroid on [n] that is shifted. Then, M ∼=

M(Cn), where Cn is the n-cycle graph.

Proof. Using Proposition 3.5.6, if x, y 6∈ G, then x and y are incomparable. Since, M is

shifted, there are no such incomparable elements. Hence, |G| = n or |G| = n − 1. Since

M has no coloops, every element is contained in some circuit and |G| = n − 1. Hence,

M ∼= M(Cn).

This result also characterizes the simple uniform matroids that are graphic since U(k, n)

is shifted for all k and n.

Corollary 3.5.1 Let M be a simple uniform matroid U(k, n). Then, M is graphic if and

only if M is isomorphic to U(n− 1, n).

Proof. Using Proposition 3.5.7, M is a rank n− 1 matroid. The result follows since

U(n− 1, n) ∼= M(Cn).

If we expand our attention to matroids with coloops then,

Observation 3.5.1 Let M be a simple graphic matroid on [n] that is shifted. Then, M ∼=

M(Ck ∪ Tn−k) for n ≥ 0, where Tk is the k-forest.

Observation 3.5.2 Let M be a simple uniform matroid U(k, n). Then, M is graphic if and

only if M is isomorphic to U(n− 1, n) or U(n, n).
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The uniform matroid U(n− 1, n) is an n-cycle and U(n, n) is a forest on n-edges.

We prove a special case for graphic matroids when P has a unique minimal element.

Corollary 3.5.2 Let M be a simple graphic matroid on [n] that is P -shifted. If P contains

a unique minimal element, then M is isomorphic to U(n− 1, n).

Proof. Suppose 1 ∈ P is the unique minimal element. If 1 ∈ G, then 1 ∈ B for all bases

B in M since G is maximal basis using Theorem 2.4.1. That means that {1} is a coloop.

Hence 1 6∈ G. Now, 1 <P x for all x 6= 1. Using Proposition 3.5.6, x ∈ G for all x 6= 1 or else

there exist two comparable elements are not in the Gale basis. Since M is P -shifted, we can

replace x with 1 to obtain a basis in M. Thus, every set of cardinality (n − 1) is a basis in

M and M is isomorphic to U(n− 1, n).

The case for the shifted simple graphic matroids in Corollary 3.5.1 can be recovered from

Corollary 3.5.2 since C, the n-element chain has a unique minimal element.
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CHAPTER IV

P -SHIFTED GRAPHS

In this chapter, we consider the idea of shifted simplicial complexes and P -shifted simpli-

cial complexes for small dimensions. In particular, one dimensional simplicial complexes are

simple graphs. Thus, the study of one dimensional shifted and P -shifted simplicial complexes

is the study of shifted and P -shifted simple graphs.

4.1 P -shiftedness

Definition 4.1.1 A graph G on n vertices is shifted if there exists a labeling on the vertex

set V with the set [n] so that if jk is an edge of G, then ik is also an edge for all i < j.

Note that in this definition of shiftedness, we don’t require the vertex set to be pre-labeled.

We can define shiftedness for labeled graphs.

Definition 4.1.2 A labeled graph G on n vertices is shifted if the following condition holds:

if jk is an edge of G, then ik is also an edge for all i < j.

We assume all our posets P to be naturally labeled posets on [n]. Consider the following

relaxation:

Definition 4.1.3 A graph G on n vertices is P -shifted if there exists a labeling on the vertex

set with the set [n] so that if jk is an edge of G, then ik is also an edge for all i <P j.

Definition 4.1.4 A labeled graph G on n vertices is P -shifted if the following condition

holds: if jk is an edge of G, then ik is also an edge for all i <P j.

Here, the naturally labeled poset P captures the pairs of vertex exchange that is possible.

A shifted graph is thus a C-shifted graph, where C is the chain of size n.
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Example 4.1.1 Consider the labeled graph G with E = {12, 14, 23, 24, 34} . Here, G is P -

shifted for the given poset. For instance, 34 is an edge in G and following the poset relation

1 <P 3, we can check that 14 is also an edge in G. However, G is not C-shifted since 14 ∈ E

but 13 6∈ E.

Figure 20: G is P -shifted

4.2 The Maximal Poset

Notice that a graph can be P -shifted for several choices of P. A shifted graph is P -shifted

for all possible naturally labeled posets on [n]. Moreover, every graph is A-shifted, where A

is the anti-chain. This begs the question:

Question 4.2.1 If G is a labeled graph on [n] vertices, is there a unique poset which captures

the notion of P -shiftedness of G?

Definition 4.2.1 Fix n. For any two naturally labeled posets P and Q, we define P <Λn Q

if i <P j =⇒ i <Q j for any i, j ∈ [n].

Here, Λn is the poset of all naturally labeled posets, and as we have seen in Chapter 2,

Λn satisfies the following properties.

• Λn is a lattice.

• The antichain A on [n] is the unique minimal element in Λn.

• The chain C on [n] is the unique maximal element in Λn
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Notice that if a labeled graph G is P -shifted, then G is also Q-shifted for P <Λn Q. The

operation P ∨Q denotes the transitive closure of the union of relations of P and Q . If G is

P -shifted for the posets P1, ..., Pt, it is also (
∨k

i=1 Pi)-shifted for the join
∨k

i=1 Pi of the posets

P1, ..., Pt. Hence, for a labeled graph G, there is a unique maximal poset, denoted by Pmax,

which can be obtained by taking the join of all posets for which G is maximally P -shifted.

In example 4.1.1, the poset is Pmax for the labeled graph. Let us relabel G by exchanging

the labels 1 and 4. In this case, E = {12, 13, 14, 23, 24} and G is C-shifted. Thus, Pmax

depends on the labeling of G.

We give the following optimal labeling of G that gives us a Pmax with the highest rank

(i.e. most relations) in Λn. We first need some standard definitions, for instance, from [4].

The neighborhood N(i) of a vertex i in G is the set of all vertices adjacent to i. The closed

neighborhood is defined as N [i] = N(i) ∪ i. The binary relation 4 is defined on the vertex

set V as follows: i 4 j ⇐⇒ N(i) ⊂ N [j]. This relation creates a preorder on V called as the

vicinal preorder.

Definition 4.2.2 The relation 4 satisfying: i 4 j if and only if N(i) ⊂ N [j] is called the

vicinal preorder on V.

The vicinal preorder is not a partial order because there are vertices satisfying N(i) ⊂

N [j] and N(j) ⊂ N [i]. For these vertices i, j, we write i ∼ j.

Definition 4.2.3 The optimal labeling on the vertices is as follows:

• If i 4 j then j is labeled with a smaller index than i.

• For i1 ∼ i2 ∼ · · · ∼ ik , label the elements in an increasing linear order: il+1 = il + 1

for all 1 ≤ l < k.

We note that the optimal labeling is not unique. In Figure 21, graph G can be labeled in

two different ways, providing us with two optimal labelings and their corresponding maximal

posets.
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Figure 21: Optimal labelings are not unique

This labeling on the vertex set provides us a highest rank (i.e. with most relations)

Pmax, which is the maximal poset for which G is P -shifted. This highest ranked Pmax can

be defined as an reverse order extension of the vicinal preorder.

Definition 4.2.4 The reverse order extension poset on [n] (<Proe) is defined as:

• For i 4 j, define j <Proe i

• For i1 ∼ i2 ∼ · · · ∼ ik, define ik lProe ik−1 lProe ...lProe i1.

Proposition 4.2.1 A graph G with the optimal labeling is Proe-shifted. In fact, Proe = Pmax

Proof. If j 4 i then j is labeled with a smaller index than i in G and N(j) ⊂ N [i]. That is,

given l ∈ V such that jl ∈ E =⇒ il ∈ E. Hence, G is shifted for a poset where i and j are

not comparable and maximally shifted for a poset where i < j.

Suppose j ∼ i. Then, we choose to label j with a smaller index than i in G. In this case,

given l ∈ V , jl ∈ E ⇔ il ∈ E. Hence, G is shifted for a poset where i < j.

Suppose i and j are not comparable under 4 . Then, N(i) 6⊂ N [j] and N(j) 6⊂ N [i].

That is, there exists l, l′ ∈ V such that il ∈ E but jl 6∈ E and jl′ ∈ E but il′ 6∈ E. Hence, G

is shifted for a poset where i and j are not comparable.

These are precisely the relations in Proe and thus G is Proe−shifted and Pmax = Proe.
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4.3 Graph Classes

Our next goal is to classify graphs that are maximally P -shifted for a fixed P. We assume

that every graph G is optimally labeled.

Definition 4.3.1 Fix P. Let GP be the family of graphs for which P = Pmax.

It is known that GC , namely the shifted graphs, is the family of threshold graphs [4],

where C is the n-element chain.

Example 4.3.1 In Figure 22, the threshold graph that was constructed from the one-vertex

graph admits the following optimal labeling: D5 = 1, D3 = 2, D2 = 3, and initial vertex = 4,

I4 = 5. This graph is C-shifted for the chain on 5 elements.

We check that E = {12, 13, 14, 15, 23, 24, 34} and G is C-shifted as in Figure 23.

Figure 22: Constructing a threshold graph

In general, on a threshold graph with n vertices, an optimal labeling using [n] can be

obtained by first labeling the dominating vertices starting with the dominating vertex that

is added last followed by the dominating vertex added second to last and so on. The isolated

vertices are labeled next starting with the initial vertex followed by the isolated vertex added

first. The isolated vertex that is added last gets labeled as n.
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Figure 23: Threshold graph is C-shifted

Proposition 4.3.1 [10] If P = C, the n-element chain, then GC is the family of threshold

graphs.

We show that for P = C − {i < i + 1}, a poset obtained by removing a relation in the

chain, GP = ∅, and for P = C − {(i < i + 1) ∪ (j < j + 1)}, where i, i + 1, j, j + 1 are all

distinct, GP is a subfamily of split graphs.

Proposition 4.3.2 If P = C − {i < i+ 1}, where i, i+ 1 ∈ [n], then GP = ∅.

Proof. Suppose not. Let G ∈ GP . We know that Pmax = Proe. Since i 6<P i+1, N(i) 6⊂ N [i+1]

and N(i + 1) 6⊂ N [i]. Hence, there exists some l ∈ V such that il ∈ E but (i + 1)l 6∈ E and

some l′ ∈ V such that (i+ 1)l′ ∈ E but il′ 6∈ E. However, l and l′ are related in P.

Consider the case when l <P l′. The edge (i + 1)l′ ∈ E forces (i + 1)l ∈ E which is

a contradiction. By symmetry, assuming l′ <P l, il ∈ E implies il′ ∈ E which is again a

contradiction. Thus, our supposition that P is maximal is false and GP = ∅.

We now classify the family of graphs shifted for P = C − {(i < i + 1) ∪ (j < j + 1)},

where i, i+ 1, j, j+ 1 are all distinct. In that regards, consider the following characterization

of the class of threshold graphs using induced subgraphs. Let P4 denote the path on four

vertices, C4 denote the cycle on four vertices and C̄4 is the complement of the cycle on four

vertices.

Theorem 4.3.1 [4] A graph is threshold if and only if it has no P4, C4 or C̄4 as its induced

subgraphs.
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Lemma 4.3.1 Let P = C−{(i < i+ 1)∪ (j < j+ 1)}, where i, i+ 1, j, j+ 1 are all distinct.

If G ∈ GP , then there is an induced path on the four vertices {i, j, j + 1, i+ 1}.

Proof. We assume that j+1 <P i without loss of generality. We construct a path by noticing

that certain edges cannot be part of the graph. Using the fact that i 6<P i+1, N(i) 6⊂ N [i+1]

andN(i+1) 6⊂ N [i]. Hence, there exists some l ∈ V such that il ∈ E but (i+1)l 6∈ E and some

l′ ∈ V such that (i+ 1)l′ ∈ E but il′ 6∈ E. We claim that {l, l′} have to be exactly {j, j + 1}.

If not, l and l′ are related in P. If l <P l
′ : (i+1)l′ ∈ E implies (i+1)l ∈ E whereas, if l′ <P l,

then il ∈ E implies il′ ∈ E which are both contradictions. Let U = {i, j, j + 1, i + 1} ⊂ V.

We consider two cases and note that they are analogous.

Case 1: l = j and l′ = j + 1. Thus, ij ∈ E and (i + 1)(j + 1) ∈ E but i(j + 1) 6∈ E

and (i + 1)j 6∈ E. Since j + 1 <P i, ij ∈ E implies (j + 1)j ∈ E. However, i(i + 1) 6∈ E. If

i(i + 1) ∈ E, then i(j + 1) ∈ E through j + 1 <P i + 1 which is a contradiction. Thus, on

U , the induced subgraph is given by the edges {ij, j(j + 1), (i+ 1)(j + 1)}. This is a P4.

We now construct a P4 using similar arguments in case 2 as follows. Case 2: l = j + 1

and l′ = j. Thus, i(j + 1) ∈ E and (i + 1)j ∈ E but ij 6∈ E and (i + 1)(j + 1) 6∈ E. Since

j <P i, i(j + 1) ∈ E =⇒ (j + 1)j ∈ E. However, i(i+ 1) 6∈ E. If i(i+ 1) ∈ E, then ij ∈ E

through j <P i+ 1 which is a contradiction. Thus, on U , the induced subgraph is given by

the edges {i(j + 1), j(i+ 1), j(j + 1)} which is a P4.

Proposition 4.3.3 Let P = C − {(i < i + 1) ∪ (j < j + 1)}, where i, i + 1, j, j + 1 are all

distinct. If G ∈ GP , then G is not a threshold graph.

Proof. This follows directly from Theorem 4.3.1 and Lemma 4.3.1.

Definition 4.3.2 A graph is a split graph if its vertices can be partitioned into a clique and

an independent set.

Proposition 4.3.4 Let P = C − {(i < i + 1) ∪ (j < j + 1)} where i, i + 1, j, j + 1 are all

distinct. If G ∈ GP , then G is a split graph (that is not a threshold graph).
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Proof. Suppose G ∈ GP . Without loss of generality, assume j + 1 < i. Using Lemma 4.3.1,

there is a path on U = {i, j, j + 1, i+ 1} ⊂ V. We consider here the path given by the edges

{ij, j(j+ 1), (i+ 1)(j+ 1)}. The case with path on the edges {i(j+ 1), j(i+ 1), j(j+ 1)} will

follow similarly.

We show G is a split graph by partitioning V into an independent set and a clique. We

construct the independent set as follows.

Let I1 = {k : k >P (i + 1)}. We claim I1 is an independent set. To this end, if kk′ ∈ E

for k, k′ ∈ I1, then k(i + 1) ∈ E through k′ >P (i + 1). Thus, j(i + 1) ∈ E using k >P j

contradicting the induced path P4 on U.

In general, kt 6∈ E for any t >P j and k ∈ I1. If not, kj ∈ E and thus (i + 1)j ∈ E.

Moreover, since i(i+ 1) 6∈ E, I1 ∪ {i, i+ 1} is an independent set.

Let A = {l : i >P l >P j + 1}. For l ∈ A, (i + 1)(j + 1) ∈ E implies l(j + 1) ∈ E and

ij ∈ E implies lj ∈ E. Now, il 6∈ E and (i+ 1)l 6∈ E for any l ∈ A. If not, i(j + 1) ∈ E and

similarly, (i+ 1)j ∈ E which is a contradiction to the induced P4 in G.

Let H be the induced subgraph on A. We consider edges in H to be ordered pairs (fa, sa),

where fa > sa. We call an edge (fa, sa) maximal if there is no other edge (α, β) in H such

that α >P fa and β >P sa. Let E1 be the set of maximal edges in H. Notice that for any

two edges (f1, s1) ∈ E1 and (f2, s2) ∈ E1, if f1 <P f2, then s1 >P s2 by maximality of edges

in E1. Let (f, s) ∈ E1 be the edge such that f ≤ fa and s ≥ sa for all (fa, sa) ∈ E1. Consider

the set I2 = {s + 1, ..., i − 1}. We claim that I2 is an independent set. If not, let qq′ be an

edge in H for q, q′ ∈ I2 such that q >P q
′. Either qq′ ∈ E1 or there is a maximal edge (fa, sa)

such that q <P fa and q′ <P sa. If qq′ ∈ E1, then q′ ≥ s which is contradicts the definition

of (f, s). Else, we have the maximal edge (fa, sa) such that q <P fa and s < q′ <P sa which

contradicts the definition of (f, s).

Thus, I = I1 ∪ {i, i+ 1} ∪ I2 is an independent set.

Consider the set V − I = {1, ..., s}. We know that (f, s) ∈ E1. Since f >P s − 1 by

the definition of (f, s), fs ∈ E =⇒ (s − 1)s ∈ E. This further forces all mm′ ∈ E for
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m,m′ ∈ V − I since s >P m and s− 1 >P m
′. This shows that V − I is a clique.

Thus, V = I ∪ (V − I), a partition of the vertex set into an independent set and a clique.

G is a split graph that is not a threshold graph.

Example 4.3.2 Let G be an optimally labeled graph on the vertex set {1, 2, ..., 8}. The edge

set of G is E = {83, 81, 72, 71, 63, 62, 61, 54, 53, 52, 51, 43, 42, 41, 32, 31, 21}. The maximal

poset for which G is Pmax-shifted is C − {(7 < 8) ∪ (2 < 3)} where C is the chain on 8

elements. Moreover, there is an induced path P4 on {8, 7, 3, 2} given by the edges {83, 32, 27}.

Notice that G is a split graph with a vertex set partition U1 ∪ U2 where U1 = {8, 7, 6, 5}

is an independent set and U2 = {4, 3, 2, 1} is a clique. Thus, G satisfies Proposition 4.3.4.

Figure 24: A split graph G

Figure 25: Pmax: Split graph G is Pmax-shifted

By Proposition 2.5.1, the threshold graphs family is a subclass of the split graphs family.
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Our result gives an association between a fixed poset and a well studied graph family.

Since there are other well known graph families such as chordal graphs and perfect graphs,

we ask:

Question 4.3.1 Is there a characterization of graph families or a subclass of graph families

for a fixed poset P?
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