INFORMATION TO USERS

This dissertation was produced from a microfilm copy of the original document.
While the most advanced technological means to photograph and reproduce this
document have been used, the quality is heavily dependent upon the quality of
the original submitted. :

The following explanation of techniques is provided to help you understand
markings or patterns which may appear on this reproduction.

1.

The sign or “target” for pages apparently lacking from the document
photographed is ““Missing Page(s)”. If it was possible to obtain the
missing page(s) -or section, they are spliced into the film along with
adjacent pages. This may have necessitated cutting thru an image and
duplicating adjacent pages to insure you complete continuity.

When an image on the film is obliterated with a large round black
mark, it is an indication that the photographer suspected that the
copy may have moved during exposure and thus cause a blurred
image. You will find a good image of the page in the adjacent frame.

When a map, drawing or. chart, etc.,, was part of the material being
photographed the photographer followed a definite method in
“sectioning’’ the material. It is customary to begin photoing at the
upper left hand corner of a large sheet and to continue photoing from
left to right in equal sections with a small overlap. If necessary,
sectioning is continued again — beginning below the first row and
continuing on 'until complete.

The majority of users indicate that the textual content is of greatest
value, however, a somewhat higher quality reproduction could be
made from ‘‘photographs” if essential to the understanding of the
dissertation. Silver prints of ‘“‘photographs’® may be ordered at
additional charge by writing the Order Department, giving the catalog
number, title, author and specific pages you wish reproduced.

University Microfilms

300 North Zeeb Road
Ann Arbor, Michigan 48106

A Xerox Education Company

B T ot



— e e s

s

72-29,877

e o N A

. DWIVEDI, Indresh Hari, 1953-
t GRAVITY'S EFFECT ON POLARIZATION.

The University of Oklahoma, Ph.D., 1972
Physics, general

University Microfilms, A XEROX Company , Ann Arbor, Michigan |

SRR — B T e

3

THIS DISSERTATION HAS BEEN MICROFILMED EXACTLY AS RECEIVED




THE UNIVERSITY OF OKLAHOMA

GRADUATE COLLEGE

GRAVITY’S EFFECT ON POLARIZATION

A Dissertation
Submitted to the Graduate Faculty
in pé,rtial fulfillment of the requirements for the degree of

Doctor of Philosophy

By
INDRESH HARI DWIVEDI
Norman, Oklahoma
June

1972




GRAVITY’S EFFECT ON POLARIZATION

A DISSERTATION

APPROVED FOR THE -DEPARTMENT OF PHYSICS

APPROVED BY

Cfothuan Edpnboanl™
/}7} Mpé(,{

SIS COMMITIEE




PLEASE NOTE:

Some pages may have
indistinct print.

Filmed as received.

University Microfilms, A Xerox Education Company



ACKNOWLEDGEMENT

I want to express my appreciation to Dr. Ronald Kantowski
for suggesting this topic and helping along the way.

The author also desires to thank Professor Jack Cohn, Dr.
Ronald Bourassa, Dr. Neal Huffaker and Dr. Arthur Bernhart for
reading the manuscriptvand for giving some useful suggestions.

" This work is devoted to my Pitaji Dr Shankerhari Dwivedi
and Babhi Uma Sundri Devi and for without whose encouragement,
Patint this dissertation would never have been completed.

I also want to extend my appreciation to Shri N. S. Gautam
and Srimati Vimla Rani Gautam for helping me in several other ways

which helped me to finish this dissertation rather quickly.

iid




(IS

Figure

1.

2,

4,

5.

LIST OF ILLUSTRATIONS

Definition of impact parameter £ and Ad . . .
Motion of a light beam in Schwarzschild field
Graph (R VSe £) o ¢ ¢ o o o o o ¢ ¢ o o ¢ o »
Motion of a light beam in the presence of an

inhomogeneity © o s o 6 s s s s e s s o s s e

Construction of a null tetrad « « « ¢« o« o « &

Page
21
23

29

32

37




TABLE OF CONTENTS

ACKNOWLEDGEMENT. ¢ « ¢ ¢ « ¢« o s o o o o ¢ o s & o o
LIST OF TILLUSTRATIONS: & o o o o o o o o o o o s o o
CHAPTER
I. INTRODUCTIONs ¢ o o o o o o o ¢« o o o o o o
2. GEOMETRICAL OPTICS AND MAXWELL’S EQUATIONS.
3. FIRST ORDER EFFECT ON POLARIZATION. . « . &
4, APPLICATIONS. o« ¢ « o o o ¢ o o o ¢ o o o &
5. CONCLUSIONe « o« ¢ o « o« ¢ o ¢ o s o s o o o
APPENDIXES
1. PARALLEL TRANSPORTED NULL TETRADS AND SELF -
DUAL BIVECIORS: o o ¢ o s o 2 ¢ o s o o ¢
2, MAXWELL’S EQUATIONS: ¢ o o o o ¢ o o o o o o
3. FIRST ORDER CORRECTIONS TO GEOMETRICAL

OPTI CS L L] L] L] L 4 . L . ] . L L ] L L] L] LJ L] L] L]

BIBL IonHY L L L . L] L) L J L] L] L4 L] LJ L] L] L L L ] L] .. L] L] L] L]

Page

14
19

35

37

41

44

52



CHAPTER 1
INTRODUCTION

Geometrical optics was created to explain the nature and
behavior of light and although it provides information about the re-
flection, refraction, and the intensity of light rays, it fails to
furnish information about polarization, interference, and diffraction.
To take these latter phenomena into account geometrical optics has
been extended to higher order optics. So far no attempt has been made
to find observable differences predicted by these two theories in a
curved space time. In this thesis, we make such an attempt, we examine
the effect of a gravitational field on the polgrization of an
electromagnetic wave moving in a curved space time,

In order to estimate the effect of gravity on polarization
we must go to higher order terms in wave length than just the
geometrical optics limit. We therefore present in the next chapter the
theory of bhigher optics in the context of general relativity. We devote
chapter 3 to calculating the effect of a gravitational field on polari-
zation and in the fourth chapter we apply our results to various types

of gravitational fields that exist in nature.




CHAPTER 2

GEOMETRICAL OPTICS AND MAXWELL’S EQUATIONS

We intend to explore the relationship between geometrical
optics (the branch of optics characterized by the neglect of wave length)
and Maxwell’s electromagnetic theory in the context of general relativi-
ty.

In order to solve optics problems whether in the range of
radio frequencies or light frequencies, one must solve Maxwell’s equations
with initial and boundary conditions. Since Maxwell’s equations can
be solved exactly for very few real problems one frequently resorts to
the simpler methods of geometrical optics., Although these methods have
proved remarkably accurate in the optical domain, they are very much

limited. They do not furnish information about interference, polarization,

or diffraction and say nothing about numerical accuracy.

There have been two significant developments so far which

connect geometrical optics and Maxwell’s theory. The first one is due to

1

Sommerfeld and Runge "and in their treatment a fumction u,which may repre-

sent some component of E or the Hertz vector,'is-.agsumed to satisfy a

reduced scaler wave equation

Au+k2u=0 ’
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where k = (souo =T The solutions sought are of the form

u = A(x’y,z)ei(kS(x,y,z) -ct)

where A is the amplitude of the wave and § is the phase. By requiring
that the assumed solution satisfies the above scaler wave equation and
letting k + = we get the eikonal equation for the phase and a differen-
tial equation for the amplitude A.

The second development is due to Luneburg2 who introduced
the notion of an asymtotic series solution of Maxwell’s equations in
which the geometrical optics field is the first term. He considered so-

lution of the type

Z

>

E= ei(ks - Ct){zo +K}.+-—§- + .o-ooo} ’
(]
B, B
g = ei(ks -Ct) {§0 +E.]L+._g. + c.oo.o} . (2.1)

2
W

If £ and B in equation (2.1) are required to satisfy Maxwell’s equations
to all orders in %-, we find that S satisfies the eikonal equation and

>
vectors Kﬁ, Bn satisfy some differential equations. The zero order terms

represent the geometrical optics field and higher order terms are

corrections to geometrical optics.
Now let us consider the case of curved space time and re-
late geometrical optics and Maxwell’s equations. We will follow the de-

velopment giVen'by Ehlers3 who first writed. the electric and magnetic fields
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in terms of a self dual bivector and then does an expansion similar to
Luneburg.
The source free Maxwell equatlons In vacuum for a curved space

time are given by4

P =0, (2.2)

F*ab = 0 <=>F + F + F =0, (2.3)

;b ab,c be,a ca,b

where ';' represents covariant differentiation, i.e.

a
Va-b = oV + {;Z}Vd ,
’ X
ac 3Va a,.dc c,.ad
Vo D gV v s

and {;d} are the usual Christoffel symbols. F_, is the electromagnetic

*
field tensor and F 20 is the dual of F°P, (See equation Al.6). If

we define a bivector

*
e _ Fab + iF ab , (2.4)

we see that it is self dual, i.e. G:b = - iGab’ and that Maxwell's

equations (2.2) and (2.3) can be replaced by a single equation

6., =0. (2.5)

The electric and magnetic fields, as seen by an observer with four

velocity u? are related to Gabub.

a

E® - iB2 = Gabub . (2.6)

The above relation defines the electric and magnetic fields
only for the observer with four velocity u®. The above relation also

4

states that 54 and B (time components of % and 3) in the observers

rest frame are always zero.
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In order to relate geometrical optics and Maxwell's theory

we consider a power series solution of the type

' d d
Gab(xc’a) G“.-:1_i>(xc’€)eis(x ) /e + Gfb(xc,e)e'is(x Y/ e

(R %@ 15+ ¢t tSe,

(2.7)
where S is a real scaler phase function, £ is a real parameter and Gib(n)
are self dual bivectors. Positive and negative phase represent the right
and left circularly polarized waves and € is related to the wave length
(see equation 3.11).

If we require Gab in equation (2.7) to satisfy Maxwell’s

equation (2.5) to all orders of ¢ we get

P @s,, =0, (2.8)
c®0)s7¢ + ¢2%(0)s°® + c%3(0)s*P = 0 , (2.9)
@, +16P@+ 1S, = 0. (2.10)

Contracting equation (2.9) with S,c gives
Gib(())s"’s,c + ch(O)S’aS,c + Gza(O)S,cS’b =0, (2.11)

From equations (2.8) and (2.11) we get

c;;j"(ms,cs’c =0 . (2.12)



From equation (2.12) it follows that the phase function satifies

ab
g 55,5, =0 . (2.13)
Since S’a;b - S’b;a = 0 , equation (2.13) implies
b
’ =

Equation (2.13) is the well known eikonal equation and says that S =
constant is a null hypersurface. Equation (2.14) implies that ka=S,a is
tangent to a set of null (lightlike) geodesics. Equation (2.8) says that
G:b(()) is a null bivector with eigenvector ka =3 S,a .

The normals ka = S’a to the null hypersurface S = con-
stant giveus a null congurence and allow us to construct parallel trans—
ported null tetrads at every point in space time (see appendix Al). The
self dual bivectors Gib(n) can be written in terms of the null tetrad

(see equation Al.9),
P @) = a,@v® +3,00® + ¢, (mn® . (2.15)

The geometrical optics approximation is identified with the high
frequency limit i.ee >0

Gab is/e

-1S/e

= 60/ + P (0)e . (2.16)
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where 622(0) = A,(0)V® + 3,0V + ¢ (0) ¥ .
Maxwell’s equations appear as differential equations obeyed L- .. (n),

B (n), and C _(n}. To find these we put equation (2.15) in equations

(2,8) and (2.10), we get

A, +A0=0. (2.17)
For n-th order corrections we get,
A @) + A0 - C,(m),, - B,m3" =0, (2.18)
C,(x) + 2,(n)0 = B,(n),, - B,(){& + £} , (2.19)
B,(n), + C,(a),7 + B,(m){0” - vy - Q} = A, ()0 - 20, (n)a
£1B,(+ 1) =0, (2.20)
A,(n),z + C,(m), - A (ME+ 2C,(n)0” + B (n)8
tic,n+ 1) =0, (2.21)

where

' = kav"“ ,



m maV_a ,
e = £,
and

0= Eaka;btb ,
0 = T, E
a = Eaka;bmb s
Y = maka;bmb R
&= ta—a;btb ’
0%= Eama;btb ’
0%= Eama;b?b s
§ = t%n ;bmb ,
Q= ta-fa;bmb ’

.are the scalarQlassociated with the tetrad.

Now let us take a look at the four differential equations
(2.18), (2.19),(2.20) yand (2.21). Equation (2.19) is a consequance of
equations (2.18), (2.20),and (2.21) (see appendix A2). Equations (2.18),
(2.20),and (2.21) are the ones we will use to find Ai(n), Bt(n),and
Ct(n); The procedure to find these n-th order terms is as follows.

First one finds the null tangent vector ka and calculates



the tetrad field. Next one evaluates all scalars associated with the
tetrad and integrates equation (2.17) for At(O). The remaining equations
(2.18), (2.20) sand (2.21) are solved by an iterative process. Knowing
A+(n), Bt(n),and Ci(n) equations (2.20) and (2.21) are solved for
Bt(n + 1) and Ct(n + 1) . Knowing Bi(n + 1) and Ct(n 4+ 1) equation (2.18)
is then solved for A:(n + 1),

In this thesis we will look at only the first order terms

and they are given by

B,(1) = 5 1A,(0)o , (2.22)

(1) = 1{A,(0),3 - A, (0)E}, (2.23)

Ai(l) = % iAt(O)ft . (2.24)
where ft satisfies

A0, A0, F 3

fi = { Ai(o) - Ai(O) - E,t - 00’} . (2.25)

Equation (2.25) is difficult to integrate , however, if one is interested
only in polarization effe;ts B!(l) is all that is needed. We have
integrated equation (2.25) to get the exact first order correction terms
to geometrical optics in a Schwarzschild gravitational field. Interested
readers should see appendix A3,

For a reader who is not familiar with self dual bivectors »
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the concept of using them to represent electromagnetic fields is rather
difficult to understand. We give an example to clear the air. Let us

consider the simple case of classieal electric dipole radiation. For a

source at the origin and lined up with 2z axis, the far, intermediate,and

5

near fields are given by

E = E(0) + B(1) + EQ) ,
B = B(0) + B(1) + B(2) ,

where

pkzsinG) cos(kS) -»
- T ee ’

E(0) =

_ pkzsiné) cos (kS) A

B(0) = ;

B(1) = Elg_s_:_;g(_lcg){zcose ;r + sin® -9:0},
r

_ pk sin(kS)~»>
B - e sial,

s

E(2) = P—3{2cose gr + sin® Ze}cos (xs) ,
r .

B@2) =0

9

where S = r - ct, k =-‘-°c— , and p is the electric dipole moment.z ,Z and

$

> >
e are unit polar vectors. The E and B are the ones seen by an observer

with four velocity u? = (1,6). The surfaces S = constant are the forward

null cones,

S=1r-ct, => k3= ‘.1.‘_(1’1’0’0) .
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The other tetrad vectors can be taken as

t =

"-1—-‘{30+i§}.

(0,0,1,1)
1 /5_ ¢

Nl

(1,1,0,0) .

'
NI\

The non~vanishing components of g2 -ip? = Ga‘bub are the sparial .

components

F - 48 = {£(0) -iB(0)} + {E(1) - iB(D)} + {E(2) - iB(2)}.

2
- Pk g8in® cos(kS) {;G - ie.} .

E(0) - iB(0) r ;

2

- r;.ls sind 2(kaua)E"cos (xS) ,

Gab (0) ub ’

2
where Gab(O) = - -E-IE sin® cos (kS) k[a'Eb] .

2pk >
E(1) - 18(1) = 2 sino sin(ks) {3, - e} T2 cosOsin(kS)e,,
r
= -1%- {sin® T2 + V2 coso(k® + m®) }sin(kS),
r

Wy, ,

where Gab(l) = P% sin(kS){sin® ic'[a?:b»l + 2c080 (k[amb] + El-atb-])} .
r

E:(Z) - 1§(2) = % cos (kS) {2cos0 -;r + sin® Z¢},

2]

= P—3 cos (kS) {V2cos® (k% + n?) + sino(t® + T 1s
r
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- Gab(Z)ub ’

where Gab(2) ='2§ cos(kS){Zcos@(klan§]+ E[?fhj) + sinO(k[aEB] - m[aEbJ)}.
T

Gab can be written in a power series of ¢ ( ¢ =m%; =

)

t [

Gab - Gibels/e + Gfbe-isle ,

where Gib = Gib(O) + eG:b(l) + ezG:b(Z) .
and where Gfb(n) = A+(n)kl~a-fb] + B+(n)m[atb] + C+(n){k|-amb~] + Elatbl} .

The coefficients A (n), B,(n) and C _(n) are

2
A,(0) = - Pi"f— sind
cr
31(0) = C:(O) =0,
i mz
At(l) =t =5 sin® ,
cr
Bt(l) =0,
2
21
Ci(l) =t 55 2 cosO ,
er
m2 sin®
By2) = - A,(2) = Hp=E
- cr
and
2

n

+

C.(2) I%%-g cos® .
c
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The geometrical optics terms are

ab

6® = ()t

+ c®yei8/e |

2 -
6®(0) = - B2 gm0 k220,
- cr



CHAPTER 3

FIRST ORDER EFFECT ON POLARIZATION

We will examine gravity®’s effect on polarization by re~
stricting our attention to circularly polarized electromagnectic waves. We
will start with a circularly polarized wave at a source and see how a
gravitational field affects it as it propagates through a curved space
time.

It is common practice to characterize the state of polar-

ization by Stokes parameteres Sys Sgs Sgq and 8o which are defined by?

n
]

1= % cos2y cos26 ,

[
il

9 = 8 cos2y sin26 ,

n
]

3~ 8y sin2y ,

where Y characterizes the ellipticity and the sense in which the ellipse

is being described, 8 specifies the orientation of the ellipse and

g = (si + s% + sg);5 is proportional to the total intensity of the wave,

Right or left handed circularly polarized waves are characterized by
s =

1 =8y = 0 and linearly polarized waves by s, = 0.

3

We can take the quantity

14
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1
(s3 + s2)*
P = ————meee » (30 1)
s
0
as a measure of the effect of gravity on polarization. Physically P
represent the ratio of the part of the intensity of the wave which is
linearly polarized to the total intensity of the wave., If we put a
circularly polarized wave in a gravitational field then P will tell us
how much of the wave has become linearly polarized. P defined above can
be related in a simple way to the maximum and minimum values of E2 (i.e.,

the lengths of the major and minor axls of the ellipse described by

the electric vector of the wave)

2 2.%
_ (sl+ sz)

P=—0 = cos2y . (3.2)
0
Since .
e
tany = & ———p—— (3.3)
vei '
min

where * represent the polarization (right and left handed) and E:aax s

Ef:in are the maximum and minimum values of Ez, the P in equation (3.2)
reduces to
2 2
E - E
p-—pax min (3.4)
E2 + E2
max min

In equation (2.6) we have given the electric and magnetic fields seen

by an observer with four velocity ua,




Assuming that the electromagnetic wave is elliptically polarized the

maximum and minimum values of E2 are given by

2 _ ;. a- .2
E .= (€6, + €76 [},
(3.5)
2 _.a: _ .4
Enn = (6§, 'Eial}.
Putting equation (3.5) in equation.(3.4) we get for P
€%, |
P = 2 hd (3.6)

a-
€5
Restricting ourself to right or left circularly polarized waves at the

source and then using equation (2.7) and equation (2.15) to evaluate the

scalar products |€aial and E,aé , we get
a

f

Ii:'aéal = lGachb“aubl

2 abl

l{—ZAtB:t(kamb +mk) + Cpgytuu

- a8, - ¢ , (3.7

and
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g_faﬁa = { leilz(kaua)2 - lBilz(mau&)2 + |ct|2 (kaua)(mbub)
- o) |? - IAE, @ ED - BB, (P )iy
+ 28,8, () (PE) + Zﬂtct(kaua)(fbub)

+ 2§£Ci(uama) (ub'-%) + 2Btat(maua) (tb ub) }.

(3.8

Putting equation(3,7) and equation (3.8) in equation (3.6) and taking
the terms only up to first order in € we get for P

e|A,(0) B Q)
P = 14 Al . (3.9)

2,a .2
|4,€0) | “ (k%)

Using equation (2.22) P reduces to

e|o|

. (3.10)
(kaua) 2

Since ¢ is related to the wave length by

[
(kaua)

=.%; , (3.11)

P in equation (3.10 ) becomes
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Mol

P (3.12)

2n (k%)

The above formula has been developed only for right and left
circularly polarized waves, however, the effect on unpolarized waves
should be no larger because unpolarized waves can be written as linear
combinations of circularly polarized ones.

Equation (3.12) tells us that the first order effect on polar-
ization is proportional to the shear (¢) introduced into the light
waves., Shear is usually introduced into the rays of geometrical optics
by an inhomogeneous index of refraction, however, in curved space time
the gravitational field itself can distort the light rays and produce
shear. In the next chapter we will look at several applications where

shear (0) becomes large and where P is most likely to be measurable.



CHAPTER &
APPLICATIONS

In the preceding chapter we investigated gravity’s effect
on polarization and found it te be proportional to shear. In this chapt-
er we apply our result to light waves propagating in (1) a Schwarzschild
space time (2) an inhomogeneous universe. In order to evaluate P, the
shear introduced into the light waves must be calculated for each case,
The shear (c) can be calculated by integrating the optical scalar equa-

tions along the central null geodesics, 6

o+ 0%+ 12 = 5 v ot (4.1)

o + 200 = Rdabckdkc'ia?:b R (4.2)

where (') represents diff. rentiation with regpect to an affine param-
eter of the central anull ray. The expansion coefficient 0 is real and
shear is in general complex. The procedure for finding o is to evaluate
the driving terms of equations (4.1) and (4.2) along the central null
geodesic and then integrate with appropriate initial conditions.

A

SCHWARZSCHILD GRAVITATIONAL FIELD

19
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Before proceeding with our application let us give a brief
review of the motion of light rays in a Schwarzschild field. The

metric which gives us the gravitational field is
ds? = (1 - %—“—‘)"ldrz + P (sinfods? + @0%) - (1 - Wyar?

' *
where m 1s the Schwarzschild mass. Orienting the coordinates such that

A
e ='% and @ = 0 for our light ray the tangent vector must obey

0=(1- %—’ﬂ)"ldrz + r2ae? - (1 - -i-‘ll)d«c2 .

The components of the tangent vector are easily calculated to be

b4tk
dA 2 ’
(1-29
Krmt 2o (4A. 1)
2
r_Jdr -2 (g - 2myys
kF ==kl -5 (-1,

where A is an affine parameter and £ is the impact parameter defined at

» (see Fig. 1). Integrating equation (4A,1) gives us the trajectory of

*
Note: we use throughout units of ¢ =1, G = 1.

)
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light rays

tg - t, = JL—& — : (4A.2)
R a-Bya-ta- 2y
b o
r
¢0-¢S=£° . “:; . (4A.3)
Ut
ATERACEE)

where ¢8, ts and R are the coordinates of the source at emission and oo
t;o,cbo are the observer’s coordinates.

For the Schwarzschild metric the optical scalar equations

(4.1) and (4.2) bet:oml!8

]
o+0®+ |o|?=0, C4h. &)
2
]
o + 200 = 3—“‘-’5‘—21‘—- . (4A.5)
X

where the phase of the driving term in equation (4A.5) has been fixed
such that if we start with the shear real it stays real. If we write ©
and 0 in terms of the two dimensions of the wave front (see Fig.2)

c

b4 (4A.6)

(o]
“+
Q
[}
I-i'tj IH-u -

equations (4A.4)and (4A.5) become

" 2,2
b, +3E p -0, 4A.7)
£ * 73
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\

POINT SOURCE
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Fig. 2.

4 OBSERVER

CENTRAL NULL RAY .

Motion of a light beam in Schwarzschild

field.
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The solution for a point source is given by8

D, = sur{e)® 0 dT (4. 8)
+ R 2 {r ir)
D =

_ = 8Br sin(é_ ~ ¢) , (4A.9)

where {r} = {1 - -’%(1 - %‘l)} and B is the isotropy group parameter de-
r
fined in Fig. 2. Putting equations (4A.8) and (4A.9) into equation

(4A.6) and using equation (4A.l) we get for the shear

2 3m
L1 - =)
Tl - Zeot(sy - ) 1
2, 0 ar r2 0 s
r{r} J T
R r{r}*r}

(4A.10)

We observe from equation (4A.10)that shear in a Schwarzschild gravita.
tional field becomes large only near focus (Loge $g~ 05 »>nm). There are
two cases in nature where the gravitational field is appropriatly de-
scribed by Schwarzschild and where light focusing may be seen. The first
case 1s that of a stationary demse star (for example a neutron star)and

the second a collapsing star as it approaches it’s Schwarzschild radius.
(L)
A STATIONARY DENSE STAR

Since the shear becomes large only near focus we will
estimate the value of P around the focus¢d region, Frist we estimate the

size of P for a single point source and then by assuming that the
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surface of the star is covered with point sources we integrate to get

the total P, For a point source the shear near focus can be approximated

by
2k
o= 2%t - ¢ ) |
Tr
0.
. “kz - (4A.11)
ZrOM

where A¢ is defined in Fig.l. The P from equation (3,12) becomes

x (i
P = (roA‘b) loro ) (4Ao 12)

Consider the case of a point source on the gurface of a dense star (for

example a neutron star) where £ = 10km and X, = 10 14km then

P =10 Y2y (4A.13)

If we put a radio antenna with it’s center at the focus point equation

(4A.13) tells us that the size of the région around focus where P = 1 is

14

of the order of 10 ~'A. If we take the aitenna of the size 100X we see

from equation (4A.13) that the P at the edge of the antenna is of the

16 which implies that the amount of energy of the wave that

order of 10
will become linearly polarized is very small and hence our antenna will
not be able to detect it. If we assume the entire star is covered with

point sources the average P. is given by
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ZP In
—2a_ (4A. 14)

av]|
it

where Pn are the average values of P near focus for the point sources

and In are the apparent average intensities near focus of the point
sources in the small piece of the surface SA (see Fig. 1). We see from
equation (4A.14) that P is very small even if light from each point source
is focused. The conclusion is that we will not be able to observe any
polarization effects due to gravity when we observe a dense star even

if the gravitational field is strong enough to focus the light we

observe.

(2)

COLLAPSING STAR

The case of a collapsing star is of special interest be-
cause in thelate stages light rays are focused many times at different
points before reaching the observer and we might expect to find large
amounts of shear in the multi-focused rays. The luminosity of a collaps=~

6’7’8. However we will

ing star has been calculated by several authors
take only the results of I.Dwivedi and R.Kantowski® who give the lumi-

nosity of a collapsing star as

2 2 2
Ly max ;2,(1 - -Rﬂ)(l - vOa

w0 (- By @B+ vrrD
0

where L0 is the total luminosity of the star, v is the collapse velocity,
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and imax is given by

The average P is defined by

J PSI
_ star
P = . (4A.16)
J 81
star

Using equation (3.12) P becomes

. a
* Loaplol MKTu, 8T
L (4A0 17)

rol
(]

2 LearST

where 81 is the apparent luminosity of a small piece of the surface and
the integration is taken over the surface of the star, Using equation

(4A.15) and equation (4A.11) we get for P

sk

fmax 2
R

A % L
0 (v + {R}Y) (1 + v{R}")

) 2m, 2 2
o imax ;5‘1 - ﬁgb (1 - v
41r(kaua) rg J — >
0 (v + {RYH(1 + v{R}®

Qa - %‘1‘-)2(1 -9 cot ($5-4,) ds

Le-]]
]

. (4A.18)

Equation (4A.18) gives us the average value of P for a collapsing star,
To find P in the late stages we have to evaluate the integrals in the
denominator and in the numerator. The integral in the denominator has

been calculated before 8.
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Lk 2m, 2 2
2(1--11-) (1-v)de 2

fmax R ) (1- v3m) to—tam—ro

i) I I . exp (- ~———),

0 (v + {R})(1 4+ w{R}?) 3m 33
(4A.19)

where Van is the collapse velocity at R = 3m as seen by an rest observer
with coordinates to,ro',and t3m is the time when the star crossed R = 3m.
To evaluate the numerator of equation (4A.18) we must find cot(cbo B H

(4>0 - cbs) is given by equation (4A.3). In the late stages we can approxi-

s
mate  (¢y = ¢.) by

t, -t

PP A 3m_ 0
0 s 52'c 3/3m

) (4A.20)

where Ec = 3/3 m., Puting equation (4A.20) in equation (4A.18) for P we

get for the numerator (call it I.)

L
2 t, - t, -1
tax iz(l - 2201 - v?)eoti( 0 o)1 14
- 33 m c
IL - f ] ;ﬁ 15 3
(v+ {R}) (1 + v{R}")
(4A.21)

Next take a look at the curve which relates R and £ (see Fig. 3)8 . Accord~
ing - to Fig.3 the value of % remaine close to zc as R goes from R = 3m

to 2m. We also observe from equation (4A.21) that the major part of IL

comes from R = 3m and that the part coming from R = 2m is negligible..We

therefore approximate IL by

2
2 (1 -v_) t,.-t, -1
1L=c _ 3m c0‘:(0 3o

v

t - T
”‘0 Yexp (-2 3m 0)
3m 33 n 3¥3m

(4A.22)
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R=3m[1+1/2 exp(-y)] R=3m[1+exp(-y)]

b=, [1-3/2 exp(-2y)] f=2.[1+3/2 exp(-2y)]

R

P\
n
2B | e e e e —

.F——

3/ 42063@ (-v)
: ‘ L
- - —
° ‘ R )

c

Fig.4.R(R) curve for typical cbllaps'mg star given analytically for; Rt2m by
R« 3_%1, {1+ [1-2/3(1-&2/2c2)exp{+7}]1/2}/ (1-1/2exp{~y}) where ys(to-ro-t:’:m)/3v’5m and 2c§3{3’“‘
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Using equations (4A.18), (4A.19),and (4A.22) we get P for a rest

observer
t,. -t -1
P = "3‘/2 B oot (3B 9y (4A.23)
lnrro 3/3 n
To estimate the size of P let us put Az = 10"3%n'and nelkn we get for P
o
_ _ t -t -1
P e 10 3%0p- 0300y | (4A.24)
33 n

Equation (4A.24) tells us that when we observe the late stages of a
collapsing star P = 1 for only 10_37sec, much to short a time to

measure P,

INHOMOGENIOUS UNIVERSE

In the previous calculations we used a strong gravitational
field (short focal . length) to focus light but when we did achieve
focusing the region of high . shear was very small, In this section we
use a weak gravitational field (long focal length) and repeat the
caleulation.

We intend to examine possible polarization effects on the
primevél fireball remnants due to inhomogeneities in our universe. We

could calculate o (and hence P) by using equations (4.1) and (4.2), how-




31

ever we will instead use a simple geometrical procedure. The shear is

defined in terms of the two dimensions of the wave front (see Fig.4) by6

? ?
D, D

o=k -3 . (48.1)
+ -

] 1

D, D_

We calculate D and 7 follows: Consider a single light beam coming
+ -

from a source S (see Fig.4) passing by a inhomogeneity of mass M, Let

B, Yy be the angles defined in Fig.4 , % be the closest distance of
approach and DS, DI be the distances of the source and the inhomogeneity
at the time rays arrive. Let a be the deflection angle due to an inho-
mogeneity. D+ and D_ can be taken as shown in Fig.4 and their calcula-

tion is straight forward. We first calculate D_.

D_ = (Dyy - Dya)s , (4B.2)

where the angle 6 is defined in Fig.4. y is related to B8 by

v - bf (48.3)
Ds - DI
Hence we get for D_
DsDI
D = (T)-S-—_—BI - DIG)G . (4B.4)

Using the Einstein bending formula for o




o + Ao
o = 4Gm
D+ czg .
AR
B + A8
A
S
2
: fo / I Y +ay
< DI \\\\:i’////INHOMDGENEITY SOURCE
- S
D_ < DS >
Motion of a light beam in the presence of an inhomogeneity.
a =y

cAT

Change in D_.

Fig. 4.

A3
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o = .‘*_‘Z?L‘ , (4B.5)
c R
we can write D_ as
2
(4B.6)

DD 8
s 1 0
D, - D 3 ?

where B, is the angle at focusing (see Fig.4) and is related to g by

D8
s 0 (4B.7)

]
To calculate D_ let AD_ be the change in D_ for a small change in T

(time) then (see Fig.4)
¢ AT(a - Y)8 , => D_= cla - ¥)5 . (4B.8)

]

AD_ =

Using equations (4B.3), (4B.5), (4B.6), (4B.7),and (4B.8) we get for -ﬁf-

82 D
] _(_.9 — __I_)
D g2 D,
— Y (4B09)
D_ 52
0
D, (1 - —
1 B2

\]
Similarly we can calculate El-_ and it is given by
D
+




34

2 2
D B D_8
: 2+ e+ =7
D, 1 8 D;8 .
== = . (4B.10) -~
+ DI

Therefore from equations (4B.1), (4B.9). and (4B.10)

2 2 2 2
D. B D_8 By D 8
0 _ -
- e ha 2 - gha- 5
T s B DIB B s B
(4B.11)

Near focus the first term is negligible and we can approximate ¢ by

2 2
B D B
1 0 I 0,1
0 % (= =) (1 - =) (4B.12)
2DI B2 DS BZ ?
and P by
33 I Bg -1
P« %{)—1-‘(—5 - -7 . (4B. 13)
18 8 B

To estimate the value of P we put a radio antenna of angular size BO
at focus at time t = 0 and let it rotate with the earth. Let us also put

the inhomogemeity half way between the source and the antenna, we get

for P

P = E%Ft , (4B, 14)
where w is the angular velocity of the earth. If we take'%; o 10-19 and
let w = lo-srad/sec , we see from equation (4B.14) that the measurable

effect on P lasts enly 10-15 sec which is clearly too short a period of

time to measure P,




CHAPTER 5

CONCLUSION

According to geometrical optics, a plane or circularly
polarized wave at the source will remain plane or circularly polarized
as it propagates through a curved space time, however, according to the
first order correction to geometrical optics the gravitational field
does alter the polarization of the wave. The effect is proportional to
the shear introduced into the light rays by the gravitational field. If
a circularly polarized wave is put in a curved space time, part of the
wave becomes linearly polarized due to the gravitational field. The
intensity of this part is proportional to the shear (o).

We tried several applications the first of which was to
light coming from a dense star. The conclusion was that due to the size
of our antenna we are not able to detect any polarization changes, even
when the light we observe is focused by the gravitational field of the
star. Our next application was to light coming from the late stages of
a collapsing star. Here the measurable effect lasted for such a short
period of time that it was not measurable. The final cases we tried was
that of black body radiation passing near a inhomogeneity before reach-
ing an antenna fixed on the earth. In this .case the measurable effect

15

lasted only 10 ~second and was therefore not detectable, Before closing

we should mention a hypothetical case where the effect is measurable.

35
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If an observer who is close to a neutron star (r0 = 6R) observes radia-
tion coming from behind the star, he will be abie to detect an effect
on polarization. If we put an antenna of the size 100X with its center

3

at focus then P at the edge of antenna is down only to 10 ~ which is

detectable.

Although the first order corrections to geometrical op-
tics are of theoratical interest their observational consequences are
negligible. Our calculations were done only for polarization effects,
however, other first order effects (interference. etc.) should be

similarly small.




APPENDIX 1
PARALLEL TRANSPORTED NULL TETRADS AND SELF DUAL BIVECTORS

When one is working with null geodesics (light rays) a
convienent way to handle the radiation fields that flow along these null
directions is by the use of parallel transported null tetrads, The con~
struction of a null tetrad everywhere along a null congruence is done by
first building the null tetrad at some point on each geodesics of

the congruence and then parallel tramsporting it along those null geodesics

(see Fig.5).

NULL RAY L

P

Figure 5.

Let k2 be the null tangent vector at point P on some null ray L. Let us

construct two null vectors m> and t2 at point P satisfying




kaka=kta=mam=tt==mt=0, (Al.1)

where m> is a real null vactor and t? is complex.

The complex vector t? has real and imaginary parts

2 =L 41, (A1.2)
/2

where pa and qa are real orthogonal space like unite vectors. From

equation (Al.l) it follows that
(A1.3)

Now we parallel transport the null tetrad defined at P

along the null ray L
(Al1.4)

k? is the tangent vector to a geodesic and is automatically parallel
transported. Since parallel transport preserves }engths and angles,
n® , 2 ,and k? continue to satisfy the orthonmormality relations (Al.1).

The null tetrad defined above forms a basis in terms of

which we can decompose tensors of any order, for example the metric
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tensor can be expressed as
R G R G (A1.5)

The self dual bivector is an another interesting tensor that we want to
express in terms of these null vectors. A self dual bivector, a neces-
gary tool for doing geometrical optics, is a two index antisymmetric ten-

sor having the following property

*
Fab = -iFab . (A1.6)
*
where Fab denotes the dual of Fab and is defined by
* cd (A1.7)

Fab =% v/—g eabch

where €bed is the Levi-Chavita alternating symbol and g is the

determinent of metric 8b°

There are only three independent self dual bivector and

they can be taken as

Vab - Zk'[azb] = ka'fb _ kb'ia

v® 2p(3cb] = m@eb _ pb2 (Al.8)
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oI ER) IR ) ST
+ %P - P,
Any other self dual bivector must be a linear combination of the three

self dual bivectors defined above., For example if Gab is a self dual

bivector then

@ = av® 4+ pu® + o® , (A1.9)

where A, B and C are complex scalars.




APPENDIX 2

MAXWELL’S EQUATIONS

The purpose of this appendix is to varify the statement
that of the four Maxwell’s equations only (2.18), (2.20),and (2.21) are
needed for doing geometrical optics.

We can rewrite equation (2.10) as

ab i ,ab, _ a a a -a
G, ;bi-EG_kb =EX +Fm + Gt +HE =0, (A2.1)
where
- < .. 1
Et = At’?: - Atg + Ci”m - B:G + ZCiO * P Ct =0, (A2,2)
] -
FiECt+ZCte-Bi’t+Bt(a+g) =0, (A2, 3)
G:E-Bi’m-ct’E+Aio-Bi( 9'+Q—y)+2cia
+e = ’ ¢
! o
H, 24, +A0~C,;-B9"=0, (A2,5)

are Maxwell’s four (complex) equations. However only three are independ-

41
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ent due to the fact that the divergence of equation (A2.1) vanishes. To

find the dependent equation we take the divergence of equation (AZ,1)

- a a a =a
G&.kb),,a = (E:k + Fo” + Gtt + Hit );a. (A2.6)

o

Since Gab is a antisymmetric tensor and ka°b is symmetric, the left hand
9

side of equation (A2.6) expands to

R,

The right hand side becomes

a a a -a _ ! b
(Etk + th + Git + Hit );a = Ei + ZEtO + Ft’m+ th sb
b -b
G+ G FHLp FRE 4
{A2.8)

Puting equation (A2.7) and equation (A2,.8) in equation (A2.6) we get

-1 _ ! b b
R R R TR
=b
+ H + H t (A2.9)
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If equations (A2,2), (A2,4),and (A2.5) are satisfied then equation (A2.-

9) implies that
+i =
_"e"F =0, (A2,10)

This equation has only one solution analytic at € = 0 and that is

F, =0 . If we insert that F,(e = 0) = 0 for the geometrical optics

limit then F_ = 0 for all e.




APPENDIX 3

FIRST ORDER CORRECTIONS TO GEOMETRICAL OPTICS

The solution of Maxwell’s equation to first order in A
for a single point source located in a Schwarzschild space time will be
presented here. The procedure of finding the solution will be the same
as given in chapter 2.

For a poiﬂt source situated in a Schwarzschild space time
the vector k2 which is normal to the null hypersurface and tangent to

the out going null geodesics is given by 8

dt kt = k ’
a* -
r
2 %
dE T o - degn - 2my Lk
i Sk SRS D
(A3.1)

d¢ _ k¢ - ZkcosB
dA 2 .2 ’

r sin" 0

49 _ , 0 _ %ksing cos$ ,
dx 2

where A is the affine parameter of the central null geodesic, % is the
impact parameter, and B is the isotropy parameter. The parameters £ and

B label the different geodesics of the null congruence but are constant

44
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along each nullgeodesic . The null vectors m" and t" of the null tetrad
can be calculated from equation (Al.1) and the condition that they be

parallel transported along the null geodesics. The vector n® is given by

2
o - G - M ],
2r (1 - -z"-) k
3 2
r _k r 2, % 2ar
of = B[ Iy 2o B
2r2 k2 k
(A3.2)
. 2,2
m0= cos¢ sinB [)\k - 1]
2r r2 ’
¢ _ _cosB [kzkz _ 1]
. 2 2 ’
2rsin @ r
and t2 by
2
t k r
t = ————————( = =}) ,
/ir(l - Im k
r
r k2 r, %
= —[ -2 1,
V2r
(A3.3)
t@ _ 1 ,2kcos¢$ sinf icosB)
= - ( - R
/ir T sino®
¢ 1 AkcosB
£? = - ¢ + dicos¢ sinB) .
V2rsin® rsind

Some of the scalars associated with the null tetrad needed later are

given by

’ (A3.4)

UIH-U-
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t

AD
°‘=_L{_Di-1-_ll)— , (A3.5)
V24 + +
1
;. AD
E=7£;{-D——-l} s (A3.6)
A2D % Y
1 "% rix) r{r}® , 21
y = + -+ BEL 22T (A3.7)
02 D, k S D~ ’
1
D, D _— ;
o =x [E-g— 0l + Iy + Lo BT, sy
- g,])_'_ k L L7k
where _ = IO SInd o p(rfi g, na s = r P
r {r}

Before proceeding with Maxwell’s equation , let us derive
certain relations, the usefulness of which will become clear later. From

the definition of the Riemann tensor
Zka;[b;cl - ded.abc ’

Zta;ﬁ);c] - thdabc ’

we can drive the following relations

a 1:bT:c ,

(B + ) - 200% + (G0” + 05°) - 2¢F = Edadabct

' .
‘ne i) o -a b . c
0% + oo’ + 00 de dabct tk™ .




47

Using the fact that for the Schwarzschild metric R

b 0 and combining

the above two equations we get

. -a b ¢ ' 2
2€,, + boo” = 4dedabct K - 207 + 28° . (43.9)

To derive the next useful relation we consider

. (A3.10)

From equation (A3.10) it follows that

( Dy g PPy Doy o @."0.)
D, '°t 2 D - i
+ D +
+
For the Schwarschild metric this becomes
2 1
(o, = dy, ~qa+q”)=(R D), (A3.11)
where we have put
D,, .
__‘;t=_a+q . e (A3.12)
+
R from equation (A3.10) turns out to be
2 Lok
_ 1 X ri{r}
R=[D (), + - ]. (A3.13)

f2w+ /é:w+
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Some other useful relations for Schwarzschild space time are given below

D_,
D, !
-t A"
=> = [ ] (A3.15)
v’ /ag_
and
2 b 2 '3
-a,b, ¢ A
o - 4dedabct tk ~ 3¢ [‘Y + -‘-/ZQ:'E] . (A3.16)

Now let us go to Maxwell’s equations. We first calculate

A,(0) by integrating equation (2.17)
1
A (0) +A.(0)e=0.

Using equation (A3.4) we have

P, (%,8)
A Q) = —— , (A3.17)
- /. D_ 4
where P, (%2,8) are constants of integration and are functions of 2 and 8.

Knowing A _(0) and the scalers the calculation of B (1) and C LD is

straight forward from equations (2.22) and (2.23)

B:(l) =3 iAi(O)G = - e (- —) (A3.18)
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iPt(R,,B) Pi T D.s

C,(1) = ¢

/D,D_

P = 34( ———+ B} . (A3.19)

+

In order to evaluate A (1) we must integrate equation (2.25) which is

given by

Ai(o) ’-t’t

A0, _

£, = {

* At(O)

At(O) E - E,t had 00‘} .

Using equation (A3.17) and expanding the terms we get

1

£,=1,+L, , (A3.20)
where
P, ,- P, P
_ t’t’t ’t,
Li = lg(Za,t - 2q,t -~ 2qa + az + q2 - Zg,t - EZ - 400%).
(A3.22)
Integrating equation (A3,20) we get
= fI,dx + /L _d) + constant , (A3.23)
Using equations (A3.9), (A3.11), and (A3.16) we can write L_ as
1 ' |
L, ="+ (v + 2 - 2 {R,tD },
- V24,
hence
fLd) = %(- R, D, + 20" + v - sfan + 28 | (320

V24

To evaluate fqsz we first calculate q from equation (A3.12) for the

Schwarzschild metric
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1]
t
2 ; 3/K, D, , dr
12 (1 -2alD) 4 4/
q= -7 + 5 (A3.25)
2k~ r2{r} +

+

where
(A3.26)

_ A1 = 2m/x)d)
Ke=l5—
r{r}

q in equation (A3.25) can be squared and integrated to get
'2. ;é \i 2 .
K+r{r} 3PK, x {r}

2
rfa =L p AU dpd . LT, o
2k r {r} + D,
3
2.3, =
- é&l%ﬁiéj , (A3.27)
Dy
where
(A2.28)

p o U= 2mar
G .2
r {r}

Putting equation(A3.27) in equation (A3.24) completes the integration

of L .
To integrate I  we make a coordinate transformation from
(r,0,0,t) to (A,B,R,,ts). In the new coordinates I_ is written as
2 2
y 4R,y &R /2, dP,
I = — (5 =) +——(G>
2p,Dy A2 2p,D” d8 P,Dy
/Ein_,t dp,
+ '—'—2—-—(?) . (A3.29)
P.D

+ -
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Using equation (A3.10) and equation (A3.15) we can integrate I_ as

2 2 :
o= - r{r]!i(d'Pi) _ ___cotd 4 P:) + /iR,dP:)
- \ \
+ I,+kzn+ 102 P Zksing 2 P, dr
ain Py
+ =) . (A3. 30)
v D@

When this integral along with /L _d\ is placed in equation (A3.23) we
have completely determined the first order corrections to geometrical

optics in a Schwarzschild . space time.
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