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CHAPTER I 

INTRODUCTION 

Hydrologic modeling has become commonplace. Virtually all hydrologic designs, 

more or less, are based on the results of applying a hydrologic model. Many hydrologic 

models, from simple regression to very complicated physically based models, have been 

developed to represent hydrologic systems. In applying a hydrologic model, no matter 

how simple or complex the model is, two important problems must be considered, 

parameter estimation or calibration and model evaluation. Traditionally, scientists 

hypothesize that there exists a set of "true" but unknown constants for input parameters 

in hydrologic modeling. This set of constants can be estimated by adjusting parameters 

in the model to make the model predictions agree with the corresponding observed data. 

With these estimated "true" parameters, most hydrologic models provide certain 

predictions. However, this approach ignores the fact that hydrologic processes such as 

rainfall, runoff, etc., are stochastic. Because any function of a random variable is itself 

a random variable (Haan, 1977), all hydrologic processes are to some degree uncertain. 

Therefore, even though particular predictions are given by a model, uncertainty is 

involved in these predictions because one can not be sure how good these predictions are. 

1 
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Vicens et al. (1975) classified hydrologic uncertainty into three categories: 

1. The inherent variability in natural processes; 

2. Model uncertainty; 

3. Parameter uncertainty. 

The inherent variability in natural processes refers to variability in space and time 

of meteorologic events such as rainfall, temperature, sun radiation, etc. The observed 

data used in hydrologic design are only a small part of the population of these events. 

Uncertainty arises because samples used to calibrate hydrologic models may not 

characterize the population of hydrologic events very well. It can be expected that this 

kind of uncertainty will be reduced when the sample size gets larger. 

Model uncertainty arises because one can not be sure that a specific hydrologic 

process is completely and correctly modeled. Even the most complex physically based 
I 

model is still incomplete simply because the real world is too complicated to model 

exactly. Actually, all hydrologic models are to some degree parametric, empirical, and 

lumped (Haan, 1989). This may indicate that all hydrologic models have to some extent 

uncertainties. With a better understanding and description of the hydrologic process 

being modeled, model uncertainty may be reduced. 

In calibrating a hydrologic model, it is customary to assume that all data used in 

calibration are observed correctly and to assume that all input uncertainties are in the 

parameters. Thus, for a given model, parameter uncertainty reflects incompleteness in the 

model, incomplete information and inadequate parameter estimation techniques (Haan, 
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1989). Different parameter estimation techniques will typically give different parameter 

estimates. There are many kinds of uncertainties involved in parameters. In practice 

parameters are often used to represent nearly all uncertainty in hydrologic modeling. 

With an available model and observed data, we can not control the first and the 

second type of uncertainties, but we can control parameter uncertainty to an extent by 

using an appropriate estimation technique and identifying the uncertainty in input 

parameters. Conventional parameter estimation techniques such as Maximum 

Likelihood, Least Squares and Least Absolute Value, only provide point estimates. 

However, one is not sure how good these point estimates are. In other words, the 

uncertainty involved in these point estimates is unknown. Due to uncertainties in 

parameter estimation, it is impossible to determine exactly the true point estimates. We 

have to settle for the next best: a specification of the most likely range of point parameter 

estimates in the form of a probability density function (pdf). With uncertainty in 

parameters, model predictions must be uncertain. Eventually, the only certainty is 

uncertainty (Morgan and Henrion, 1992). Evaluating the performance of a model 

recognizing uncertainty in input parameters is essential if one wants to assign confidence 

limits to model predictions. 

Objectives 

The objectives of this study were to: 

1. Evaluate the efficiency of the Bayesian methodology by comparing the point
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estimates of input parameters by the Bayesian methodology with those by the 

Least Squares method. 

2. Improve the method of analyzing uncertainty in the parameters of hydrologic 

models. 

3. Evaluate model performance in a probabilistic manner by studying the impact 

of parameter uncertainty on model predictions when parameters are estimated 

using prior information, site-specific information, or posterior information. 

General Procedure 

The Agricultural Non-Point Source pollution model (AGNPS)(Young et al., 1987) 

was selected for this study. Curve Number (CN) and land slope values in AGNPS were 

estimated by the generalized least square approach for multiple model responses 

(minimizing the objective function 0=[~e1/+~ei+•••], where the first subscript of e 

represents the model output being predicted, the second subscript of e represents the 

observation, and e is the error in the prediction). The same parameters in AGNPS were 

estimated by the Bayesian approach based on the same observed data. Comparisons were 

made to see if there was a significant difference between these two sets of parameters 

estimated from the different techniques. 

The Least Squares parameter estimation is the most widely used and accepted 

method in hydrologic and water quality modeling. If the point estimates of input 

parameters by the Bayesian method are close to those by Least Squares, the Bayesian 

method may be considered as a good parameter estimation technique in hydrologic and 
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water quality modeling. Once the Bayesian methodology was proven: effective, the 

Bayesian method was employed to determine the probability density functions of the 

model parameters CN and land slope. 

With the distribution of the model parameters, the probability density function of 

the model predictions can be found by Monte Carlo simulation. Three conditions 

regarding parameter distributions were considered in generating pdfs for the model 

predictions: 1) prior information from published literature; 2) site specific information 

from observed data; and 3) posterior information by incorporating priori information into 

the site specific information. The 90% and 95% confidence intervals were placed on the 

pdfs of the model predictions for different types of parameter information. The width of 

the intervals is a measure of uncertainty in model predictions. If the observed data falls 

within the confidence intervals for some type of parameter information, the model 

predictions in the same case may be viewed as statistically acceptable and the input 

parameters may be considered to be estimated properly. The effects of incorporating prior 

information on the uncertainty of the model responses were studied. 



CHAPTER II 

LITERATURE REVIEW 

Literature reviewed in support of this study included work which addressed parameter 

estimation, uncertainty analysis techniques and model evaluation. Accordingly, this chapter 

discusses four of the most commonly used parameter estimation criteria, namely, Least 

Squares, Absolute Value, Maximum Likelihood Function and Bayesian Determinant criteria. 

Model validation and some criteria for evaluating how well a model with the best estimated 

parameters can predict future events are discussed. Finally three methods of analyzing the 

impact of model input uncertainty on model output uncertainty, Sensitivity Analysis, First 

Order Analysis (FOA) and Monte Carlo Simulation (MCS), are presented. 

Calibration of Hydrologic and Water Quality Models 

Many hydrologic models have been developed to simulate hydrologic systems, 

groundwater systems, water quality systems and/or combinations of these systems. Some 

examples of such models are USLE (Universal Soil Loss Equation), ANSWERS (Areal 

Nonpoint Source Watershed Environmental Response Simulation), AGNPS (Agricultural 

Nonpoint Source pollution model). Any hydrologic model, no matter how simple or 

6 
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complex it is, can generally be represented as (Haan, 1989) 

0 = f (l, P, t) + g (1) 

where O is an nxk matrix of hydrologic responses to be modeled, f is a collection of 

functional relationships, I is an nxm matrix of inputs, f. is a vector of p parameters, t is time, 

~ is an nxk matrix of errors, n is the number of data points, k is the number of responses, m 

is the number of inputs, and p is the number of parameters. 

The inputs I are called variables or state variables by some authors (Troutman, 1985). 

It is not always clear how to distinguish I and f. However, this is not of extreme importance. 

The fact we have classified all model input elements as either I or f. does not necessarily 

mean we are going to calibrate the model by adjusting all the parameters. In practice only 

a few of the most sensitive parameters are estimated by calibration. 

If we let O represent the model predictions· and O represent what actually occurs, then 

the error term~ can be expressed as 

g = o-6 (2) 

0 = f(l,P, t) (3) 

Parameters in the model are usually estimated by comparing the observed data with 

the model predictions based on an objective function related to error terms. This procedure 
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is called model calibration. However, not every parameter has to be estimated by model 

calibration. Some parameters may be directly estimated by measurement or from tables 

and/or charts, and some may be indirectly estimated by calculations based on measurements. 

Lacking measurement data, some parameters may have to be estimated based on personal 

experience or expert judgement. 

Usually, hydrologic models have a large number of parameters. For instance, 

AGNPS has more than twenty parameters for each cell. If the watershed to be modeled is 

divided into ten cells, the total parameters will be more than two hundred. The more 

parameters a model has, the more difficult is the model calibration. It is almost impossible 

to calibrate a model by adjusting hundreds of parameters. In practice there are two cases 

when we do not need to estimate parameters by calibration. We do not calibrate the 

parameters when changing the parameter does not change the model responses very much. 

These parameters are often viewed as insensitive and are usually held constant in model 

calibration. We do not calibrate the parameters if we have independent knowledge about the 

values of these parameters. 

It might be argued that calibration for a physically based model may not be necessary 

since the calibration lessens the extent to which the model may be characterized as physically 

based. However, "performing a calibration, provided it is done and interpreted correctly, 

does not make a model any less physically based ... ", as Troutman ( 1985) pointed out, "Given 

that the model is well-behaved, ... it is a mathematical fact that the parameter estimates will 

tend to be close to the true parameter values." Once we accept the above statement, we may 

say that the degree of difference between the parameter estimates by calibration and the 
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physically based parameters may indicate the degree of physical significance of the model, 

provided that an appropriate calibration scheme is employed and that the calibration data are 

adequate and appropriate. 

The most common parameter estimation schemes reported in water resources 

literature include: 

1. Least squares 

2. Minimization of absolute errors 

3. Maximum likelihood estimation 

4. Bayesian estimation 

The function and efficiency of each method are different. Even for the same model 

and the same observed data, they may produce different sets of parameters. These methods, 

however, are not completely independent of each other. The relationship among them will 

be discussed later. 

Least Squares 

The Least Squares method is the most widely used parameter estimation method in 

hydrologic modeling. Least Squares is a straight forward method and is easy to use. It is 

most widely used in linear regression where it has proven to be an efficient and robust 

method. Least Squares produces model parameters that minimize the sum of the squares of 

the differences between model responses and the corresponding observed data. In the case 

of the linear regression model (Haan, 1977) 
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X=X_ft+g (4) 

where Y is a nxl vector of dependent variables, Xis a nxp matrix of independent variables, 

.ft is a pxl vector of regression coefficients (parameters) and g is a nxl vector of errors. The 

least squares method for this model can be expressed as 

min[OF] 
J! 

n 

= :E [ Y; - X . .ftf 
i=l I 

(5) 

where Yi is the ith observed value of the dependent variable, and x. is the ith row of the nxp 

matrix of independent variables. The best set of parameters is found by adjusting parameters 

(ID until equation (5) is satisfied. Because a linear model using the least squares method 

insures that the sum of the errors between model predictions and the corresponding observed 

data is always equal to zero, least squares' parameter estimates are unbiased. 

It is worth noting that no assumptions have been made to this point concerning the 

regression model. In order to use some well-developed theorems concerning hypothesis 

testing and confidence interval estimation, it is necessary to make the assumption that the gi 

are identically and independently distributed as a normal distribution with a mean of zero and 

a variance of a 2 (Haan, 1977). Based on this assumption, confidence intervals can be placed 

on both model predictions and model parameters. 

When least squares is extended to nonlinear systems, the concept can be expressed 

in the form 
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n 

min OF = ~ [ O; - 61]2 (6) 
I!. i= 1 

where Oi is the observed data, and Qi is the corresponding model predictions. Parameter 

estimation from equation (6) is called the ordinary least squares method (OLS). In nonlinear 

cases, the least squares method can not guarantee that the sum of the errors between model 

predictions and the corresponding observed data is equal to zero. In other words, parameter 

estimates from OLS may not necessarily be unbiased. Note that there are still no 

assumptions concerning the stochastic nature of the errors to be made up to this point. 

Similar to the linear case, in order to make statements about the optimization of the 

parameter estimates, some assumptions concerning the stochastic nature of the errors are 

necessary. The following assumptions have been made for OLS method, because under these 

assumptions, OLS becomes identical to the maximum likelihood method. This gives the 

OLS method more statistical meaning. These assumptions are: 

L The errors have a mean of zero. 

2. The errors are statistically independent of each other. 

3. The errors are identically distributed with a constant variance of a2• 

4. The errors are normally distributed. 

When the above assumptions are satisfied, the least squares estimate will have the 

properties of unbiasedness, minimum variance, and asymptotic efficiency. These 

assumptions should be tested after parameter optimization. Unfortunately, as Clarke (1973) 

and Sorooshian and Dracup ( 1980) pointed out, the least squares assumptions are particularly 



12 

strong and often are not satisfied by the errors of hydrologic models. If one or more 

assumptions are violated, some type of transformation of the model errors should be taken 

to correct the violations of the assumptions, and parameters should be reoptimized. This 

topic will be discussed later. 

Using principles from OLS, some alternative methods have been developed such as 

the weighted least squares (WLS), also called generalized least squares (GLS) ( e.g. Kuczera, 

1982). For instance, in rainfall-runoff models more weight might be assigned to the larger 

runoff since hydrologic designs are usually controlled by peak flow. The objective function 

and the weighting factor used by U.S. Army Corps of Engineers are (Sorooshian and Dracup, 

1980) 

min OF 
ll 

0. + 0 
I 

20 

(7) 

(8) 

where ~T = ( e1 , e2 , ••• , en) is a vector of errors, wi is an nxn specified weight diagonal matrix, 

0 is the average of the runoff. This weighted least squares method will improve the 

reproduction of peak flow because more weight is placed on peak flow. However, placing 

emphasis on fitting the peak flows in the calibration phase may violate the assumption of 

homogeneous variance. Sorooshian and Dracup (1980) indicated the above weighted least 

squares scheme is in direct conflict with the principles of the maximum likelihood theory. 
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To this point the parameter estimation techniques discussed are only for one model 

output (one dependent variable). However, many hydrologic models have more outputs. 

GLS offers a promising approach for dealing with several outputs. For example, for rainfall-

runoff modeling, the model outputs may be peak flow and runoff volume. Let e11 , e12, ... , e10 

represent the errors for peak flow and e21 , e22, ... , e20 represent the errors for runoff volume. 

The vector of errors in equation (7) is substituted by 

(9) 

Kuczera (1982) employed GLS for calibration of a rainfall-runoff model where 

measurements on ground water elevation as well as runoff are available. He points out that 

the ground water data, if properly exploited, can lead to parameter estimates more stable than 

those using only precipitation-runoff data. This error structure can be extended to any 

number of available model outputs. Now if different weights are assigned to each of the 

model outputs, for instance, w 1 to peak flow and w 2 to runoff volume, equation (7) becomes 

n n 

minOF w1}: e1~ + w2}: e~ (10) 
J!. i=l i=l 

where w 1 and w 2 may be related to the importance of peak flow and runoff volume. In this 

study, this form of generalized least squares will be used as a comparison to the Bayesian 

determinant criteria. 
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Minimization of Absolute Errors 

The minimization of absolute errors method (MAE) requires minimizing the sum of 

the absolute errors between model predictions and the corresponding observed data. It can 

be expressed in the form 

n 

minOF = E I oj 6i I (11) 
/l. i=l 

where Oi , Qi and 12 have the same meaning as in equation (6). Similar to the least squares 

method, MAE is a straight forward method. Also, under some assumptions it becomes 

identical to the maximum likelihood method. There are four primary assumptions for the 

MAE method. The first three assumptions for the least squares method still apply to the 

minimization of absolute errors. Only the fourth assumption is different. The assumptions 

for MAE are (Troutman, 1985): 

1. The errors have a mean of zero. 

2. The errors are statistically independent of each other. 

3. The errors are identically distributed with a constant variance of a2• 

4. The errors follow a double exponential distribution. 

Troutman (1985) stated that if a model is correctly specified, in the sense that the 

probability distribution of errors is centered around zero for all events, parameter estimates 

obtained by least squares and those obtained by minimization of sum of absolute errors 

should tend to have the same values as the sample size grows larger. However, in reality no 
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model is perfect. In some circumstances, one method may be superior to the other. 

Troutman (1985) evaluated the least squares method and MAE method both with and 

without a logarithmic transform correction, and concluded that MAE optimization with a 

logarithmic transform seemed to give the best results for the validation period. 

Maximum Likelihood Estimation 

The maximum likelihood technique is probably the most general and widely used 

procedure for parameter estimation in the field of statistics (Troutman, 1985). What makes 

it different from other procedures such as OLS and MAE is that it first has to assume the 

structure of the errors e1, e2, ••• , en. The idea behind the maximum likelihood estimation 

(MLE) method is that the errors are considered as random variables. Their joint probability 

distribution is peC~J2). Since the errors are assumed to be independently distributed, the joint 

probability distribution can be written as p(e/12).p(e/12) ... p(ein). This expression is known 

as the likelihood function. Maximum likelihood estimates are those values which maximize 

the likelihood function. Obviously, when different probability distributions are assigned to 

the errors, the likelihood function will be different. One typical set of assumptions about the 

errors is that the errors are assumed to be identically, independently and normally distributed 

with mean of zero and variance o 2• Under this assumptions, the likelihood function is 

n 

Lip_,s2) = II (21ts2r112exp{-(2s2r1ei2} 
i=l 

(12) 
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where s2 is the sample estimate of error variance a 2• Because taking logarithms is a 

monotonic operator, maximum likelihood estimates are not affected by one to one 

logarithmic transformations. The logarithm of the likelihood function is often used in 

parameter estimation. The log likelihood function corresponding to equation (12) is 

(13) 

Parameter estimates are sought that maximize either equation (12) or (13). 

Because the likelihood function depends explicitly on the assumptions regarding the 

error structure, it is more general and may be applied in situations where the error structure 

is more complicated. Beck and Arnold (1977) and Troutman (1985) demonstrate how the 

maximum likelihood method can be related to other parameter estimation techniques such 

as least squares, weighted least squares and minimization of absolute errors. Sorooshian and 

Dracup (1980) discussed the application of maximum likelihood estimation with correlated 

and heteroscedastic errors. Sorooshian (1981) evaluated MLE, OLS and WLS in a rainfall-

runoff model and concluded that the MLE criterion which was formulated based on the 

heteroscedastic error assumption produced the best set of parameters compared to those of 

OLS and WLS. 

Maximum likelihood estimation is also used with several dependent variables. 

Troutman ( 1985) described the application of the maximum likelihood method in a two 

dependent variables case. In order to apply the MLE procedure, the errors eli , e2i (where the 
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first subscript 1 and 2 refer to two dependent variables, for example peak flow and runoff 

volume in rainfall-runoff modeling) are assumed to have a bivariate normal distribution with 

zero mean and a covariance matrix that is estimated along with the physical parameters. It 

may be shown that maximization of the likelihood function is equivalent to minimization of 

the following equation (Troutman, 1985) 

(14) 

where Oli and 61i are the observed data and predicted value of peak flow, respectively, 0 2i 

and 62i are the observed data and predicted value of runoff volume, respectively. Let 

Substituting these two expressions into equation (14) yields 

n n n 

Will.) = L e~·L e{; - [L e1,e2;]2 (15) 
i=l i=l i=l 

This turns out to be the same as the Bayesian determinant criteria when two model responses 

are concerned. The optimal parameters obtained by use of this procedure produced good 

predictions for both peak flow and runoff volume. While the parameters calibrated only 

based on one series of model responses, for example peak flow, produced good predictions 

for peak flow, they may give poor predictions for runoff volume, and vice versa (Yan, 1990). 
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Bayesian Estimation 

As its name suggests, Bayesian parameter estimation is based on the form of Bayes' 

theorem. Consider a vector of observations y and a vector of parameters 12 . The joint 

probability density function can be expressed as 

/6!.,P.) = /6!.IP.)/(p.) = j(p_/y.)/(J!.) (16) 

By rearranging the terms in equation (16), a form of Bayes' theorem can be found as 

(17) 

Because the likelihood function L(w'y) is numerically equal to f(y/12), and because f(y) 

is equal to the integral of f(y, 12) with respect to 12 evaluated from negative infinity to infinity, 

equation (17) can be expressed in another form of Bayes' theorem by the relation 

L(p_ l)!.)/(p.) 

f L(p_ l)!.'Jj(p.)dP. 
(18) 

where f(l2) can be viewed as the prior distribution of parameters, L(w'y) can be viewed as the 

site-specific information, and f(w'y) can be viewed as the posterior distribution of parameters. 

Therefore, Bayes' theorem provides a way to incorporate prior information into site-specific 

information to produce a posterior distribution which contains more information about 
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parameters so that it may be reasonable to believe that it would reduce uncertainty involved 

in parameter estimation. Prior distributions may come from literature, regional information, 

expert judgement and so on. Kuczera (1982) employed Bayes' theory to combine regional 

and site-specific information in order to estimate peak flows of desired recurrence intervals. 

In general, the incorporation of regional information reduces uncertainty in the estimation 

of peak flows. Wilson and Haan (1991) developed an approach in Bayesian format to 

combine information from a regional or national data base with site-specific information. 

The prior information in their approach comes from the regression equations of the national 

data base that is obtained as a part of WEPP (Water Erosion Prediction Project) (Wilson and 

Haan (1991). This approach is applied to estimate rill and interrill erodibility by Wilson et 

al. (1991) and Wilson and Haan (1992). Since parameters are represented by probability 

density functions, uncertainty in erosion parameters can be evaluated by examining the 

dispersion or spread in the probability density functions. They conclude that the proposed 

Bayesian approach worked very well resulting in stable and usually smaller spread in the 

pdfs. When simulation methodology is employed to evaluate the performance of models, the 

advantage of using parameter distributions with a smaller variance becomes obvious. 

Site-specific information may come from the calibration of hydrologic models. 

However, the parameter estimation techniques discussed in previous sections, such as Least 

Squares and Maximum Likelihood Estimation, can only produce point estimates for 

parameters. Box and Draper (1965) and Box and Tiao (1973) proposed a Bayesian approach 

to characterize parameter uncertainty from several model responses in the form of probability 

density functions. Suppose the residuals for different model responses follow a multivariate 
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normal distribution, the pdf of parameters l2 given observations y_ can be expressed as 

(19) 

where n is the number of observations, and .filJi}. is a kxk matrix of residuals which is 

defined as .filJi}. = ~T ~-

~ = (20) 

enk 

where k is the number of model responses. Equation (19) is the joint probability density 

function of model parameters. The point estimates of parameters are sought that maximize 

equation ( 19), so it is the mode of the joint pdf. When there is only one model response 

being considered, the point estimate of the Bayesian approach will becomes the same as the 

least squares estimation. However, what makes the Bayesian approach better is that it 

provides a pdf for parameters not just point estimates. 

Kuczera (1983) employed this approach in a rainfall-runoff model for one model 

response, with errors being possibly both correlated and heteroscedastic. Edwards (1988) 

applied this Bayesian approach to fifteen watersheds in the Washita River basin in southern­

central Oklahoma to characterize the mean and variance of model parameters S (retention 

factor) and TP (time to peak) for each watershed, which were used to develop the regional 
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relationship of S and T P for ungaged catchments. 

Up to this point the most widely used parameter estimation techniques have been 

reviewed. The common assumptions for these techniques are independence and constancy 

of variance. These two assumption are particularly strong and are often violated in 

hydrologic modeling as stated by Clarke (1973) and Sorooshian and Dracup (1980). If 

violation of the constancy of variance assumption is suspected, Box and Cox ( 1964) present 

the following general power transformation to achieve constant variance: 

y = (y + K)'- - 1 
Ji. 

Y =log(y + K) Ji. =0 

(21) 

where Y is the transformed response, and Ji. and Kare transformation parameters. The goal 

of such a transformation is to select appropriate transformation parameters so that the 

transformed response has a constant variance. 

If violation of time independence is suspected, an autoregressive-moving average 

(ARMA) time series model can be used to correct this violation. A general ARMA(p,q) 

model is defined as (Haan, 1994) 

Y = ,I,. y + ,1,. _ V + '" +-" V + a - 8 a - 8 a - "' - 8 a t 't'1 t-1 't'y t-2 't'P' t-p t 1 t-1 2 t-2 q t-q (22) 

where cp1 , cp2, ... , cpP are the pth order autoregressive parameters, 81 , 82, ... , 8q are the qth 

order moving average parameters, and 3-i is white noise. In the context of hydrologic 

modeling, a lower order ARMA model such as ARMA( 1, 0) or ARMA( 1, 1) has been often 
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used (e.g. Sorooshian and Dracup, 1980, Troutman, 1983). 

For the continuous daily mode rainfall-runoff model, the residuals are most likely 

correlated because large streamflow today may indicate large streamflow tomorrow. But for 

event based models, because of the way by which the model input and output observations 

are collected independently, there may be less correlation existing between observations. 

Therefore, for event based modeling, it may not be necessary to be concerned about 

correlation in residuals. 

Validation of Hydrologic and Water Quality Models 

Since hydrologic phenomena are too complicated to model exactly, there are currently 

no complete physical hydrologic and water quality models. Many models are developed 

based upon a limited data base in some range (time, location, scale, etc.), then expanded 

beyond the range in which they were developed. For instance, the Universal Soil Loss 

Equation (USLE) model was developed based upon a standard plot with a slope of 9% and 

a slope length of 72.6 feet. When it is expanded to a watershed scale or even basin scale, 

some assumptions or relations made in the model development may not hold firm so that the 

model may or may not give reasonable predictions in this situation. Supposing that scale 

is not a problem, a model may still perform quite differently for different size of events. For 

example, a rainfall-runoff model which is calibrated for peak flow in a wet period may 

produce good peak flow predictions for a wet period but poor peak flow predictions for a dry 

period, and vice versa (Troutman, 1985). Model validation is a process which helps users 

to build confidence in the ability of the model to make reliable predictions for the situation 
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in which the model is intended to be used. 

Definition and Classification of Model Validation 

In recent years "validation" has become an important subject in the field of 

hydrologic and water quality modeling. In spite of this fact, the term "validation" has come 

in use only very recently. Model validation addresses the question of whether or not a model 

adequately represents observed phenomena (Luis and McLaughlin, 1992). There exists no 

widely accepted definition of what constitutes "validation" (Pescatore, 1994). Many 

definitions of validatiqn have been suggested in the published literature. For example, the 

International Atomic Energy Agency (IAEA) proposes the following definition for 

validation (Pescatore, 1994; Tim et al., 1995): 

"Validation is a process carried out by comparison of model predictions with 

independent field observations and experimental measurements. A model can not 

be considered validated until sufficient testing has been performed to ensure an 

acceptable level of predictive accuracy (note that the acceptable level of accuracy is 

judgmental and will vary depending on the specific problem or question to be 

addressed by the model)". 

In a recent editorial in Advances in Water Resources, Hassanizadeh and Carrera ( 1992) 

provided an alternative definition as 

"the process of substantiating that a model possesses a satisfactory degree of accuracy 

and certainty within its entire domain of applicability and over the entire spatial and 

temporal scales for which the model is intended to be used". 
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From a different point of view, one may have a completely different interpretation 

about validation. Pescatore (1994) classifies the definitions of validation into three classes: 

I. Purist view 

The first class of definitions links validation to the desire to predict the 

physical world as faithfully as possible. The definition given by Hassanizadeh and 

Carrera belongs to this class. Based upon this point of view, Konikow (1992) argued 

that in any fashion, "ground-water models can not be validated .... fu any event, the 

accuracy of the prediction can not be assessed until after the predicted period of time 

has passed". Therefore, in this category, one may actually invalidate a model rather 

than validate. 

II. Operational view 

The second class of definitions suggests that validation is accomplished only 

when the results of "blind" tests (split sampling tests) have been predicted. A model 

is calibrated based upon one part of the observed data. The model is considered to 

be validated if it can reproduce the other part of the observed data with an acceptable 

accuracy. 

Alot of hydrologic events, such as rainfall, runoff, etc., are assumed to be 

stochastic processes. They are usually assumed to have the same statistical properties 

over time. If a model is able to reproduce the observations which are not used in 

calibration with an acceptable accuracy, it should have the ability to give predictions 

in the future with the same accuracy. Validating a model by using part of the 

observed data which are used in model calibration is considered not to be sufficient 
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because it only demonstrates the ability of the model to reproduce the history used 

to calibrate the model. 

Ill. A confidence building process 

Since an absolute confidence in the ability of a model to predict reality over 

a long time period can not be guaranteed and even on a limited time scale "sufficient 

validation" entails subjective judgement, the definitions of validation have been 

modified as a process of building scientific and public confidence in the methods 

developed to produce predictions. In the sense of this approach, one may not know 

when a model is validated until it is judged to be acceptable by developers and the 

users after several iterations among them. A model which was considered valid may 

be invalidated at a later date. 

Measures of Model Validation 

The second definition of validation usually applies to hydrologic and water quality 

modeling. Almost ·· all validations· entail the comparison of model predictions with 

observations. The commonly used measure to assess a model's performance is goodness-of­

fit. The American Society of Civil Engineers (1993) recommends some goodness-of-fit 

criteria to evaluate how well model predictions match the observed data being simulated. 

In addition to goodness-of-fit, validation can be measured through a linear regression of 

predictions against observed data. Flavelle et al. (1990) performed the linear regression in 

both the calibration and the validation phases. 
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1. Goodness-of-fit Criteria 

For a single event model, deviation (percent error) of a model response from observed 

data is one goodness-of-fit criterion: 

n 

}:(a, -6,) 
PE(%) = t=I ·100 (23) 

0 

where Oi is the observed data of the model response, <\ is the predicted value of model 

response, and O is the mean of the observed data. This simple test can be used to determine 

if the model predictions are biased. When PE is large, either positive or negative, the model 

predictions must be biased. When the percentage of PE is low, the model predictions may 

be unbiased but still leaving room for the possibility of being biased. 

Another commonly used goodness-of-fit criterion is the sum of squared residuals 

(SSR) or mean square of deviation. 

n 
~ "2 SSR = LJ (01 - O;) (24) 
i=l 

This criterion is an overall measure of goodness-of-fit. The best fit (in a least squares sense) 

is that which minimizes equation (24). Therefore, the best fit parameters must be least 

squares estimates in this sense. However, Sorooshian and Dracup (1980) point out, the SSR, 

although a good test in curve fitting, is not necessarily a good indicator of the best model fit. 

In other words, a good model fit in calibration phase may not necessarily produce good 
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model predictions. The parameter set should give a good model fit in both the calibration 

and prediction phase. 

Sorooshian et al. (1983) used both of the above criteria together with others to assess 

the effectiveness of three parameter estimation techniques, namely simple least squares, 

maximum likelihood for autocorrelated error case, as well as maximum likelihood for 

heteroscedastic error case. 

Another goodness-of-fit criterion is the coefficient of determination, R2, or the 

correlation coefficient between model predictions and observed data. The correlation 

coefficient is simply the square root of the coefficient of determination. 

(25) 

The possible values for R2 are from zero to one. A high value of R2 indicates good results 

from a model, while a low value indicates poor, or even statistically insignificant results. 

The coefficent is a good measue of the degree of association between the observed and 

predicted values (Aitken, 1973). This relationship is good for linear models. Unfortunately, 

most hydrologic and water quality models are non-linear and the values from equation (25) 

may not necessarily be restricted to zero to one. In other words, this criterion may not apply 

to hydrologic and water quality models. 

When there is more than one model response of concern, the Total Sum of Squared 
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Residuals (TSSR) can be used as a measure 

n n 

TSSR = L e1~+ Le{;+··· (26) 
i=l i=l 

where eu is the residual for the first model response, e2i is the residual for the second model 

response, and so on. Since the units for different model responses could be quite different, 

it is better to use the normalized residuals which are the residuals divided by the mean of the 

corresponding model output. 

Yan and Haan (1991) used an alternative criterion to evaluate multiobjective 

optimization against single objective optimization. The average of the square root of the 

normalized residual for each model output is calculated first, then an overall average of all 

concerned outputs is computed as a criterion to evaluate parameter estimation techniques. 

In sum, many goodness-of-fit criteria are commonly used to test how well the model 

predictions match the corresponding observed data in both the calibration phase and the 

validation phase. They are simple and easy to use. When goodness-of-fit criteria are used 

to compare two calibration methods or two models, there are less subjective decisions 

involved than when they are used to validate a model because in the latter case the model 

users must determine under what conditions the model is considered to be validated. 

2. Linear Regression Analysis 

In this method, a simple linear regression of the model predictions versus the 

corresponding measured data is performed. Then the standard error of regression is 
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interpreted as the goodness-of-fit, and the slope and intercept are interpreted as the model 

bias (Flavelle, 1992). 

If the model is perfect and the observed data are error free, the model predictions 

should be exactly the same as the corresponding measured data and the regression line must 

be a straight line with slope of one and intercept of zero. In reality, there is no such model 

and observed data usually contain some degree of measurement errors. The assumptions of 

unit slope and zero intercept can be tested using standard hypothesis tests. Specifically, the 

test of hypothesis concerning slope "b" and intercept "a" can be made by noting that (a-a0)/Sa 

and (b-P0)/Sb both have t distributions with (n-2) degrees of freedom, where Sa is the 

standard error of the intercept and Sb is the standard error of the slope. The null hypothesis 

about the intercept, Ho: a=O, and the alternative hypothesis, Ha: a ;1cQ, is tested by computing 

t = (a -0)/Sa (27) 

The null hypothesis Ho is rejected for a given significance level if the absolute value oft is 

greater than t1_o:l2,n-2 , otherwise Ho is not rejected (intercept equal to zero). Similarly, the null 

hypothesis about slope, H0: P=l, and the alternative hypothesis, Ha: P*l, is tested by 

computing 

t = (b-1)/Sb (28) 

The hypothesis Ho is rejected if the absolute value oft is greater than t1_o:12, n-2 , otherwise, H0 

is not rejected. Failing to reject both null hypotheses does not mean that the model is free 
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of biases, only that this analysis fails to identify model biases (Flavelle, 1992). If biases are 

identified in the model, the regression line will be off the equal value line having a slope of 

one and intercept of zero. 

On the other hand, the standard deviation of the model predictions, y, at any value of 

measured data, x, can be used as a measure of the uncertainty of the model predictions. 

Confidence intervals can be placed on the regression line so that the uncertainty in the model 

predictions can be evaluated at a given level of confidence. 

Simple linear regression is well known and the tools for performing linear regression 

are usually readily available. The results of the linear regression analysis can be presented 

graphically revealing a visual impression about how well the predictions match the observed 

data. 

In addition to measures of goodness-of-fit and linear regression analysis, the residuals 

can be examined against observed data ( or predictions) as a visual test to detect bias in model 

predictions (eg. Edwards and Haan, 1989). If the residuals are not randomly and equally 

distributed around zero as the value of observed data increases, the model is considered to 

have biases. If the residuals are consistently greater than zero the model tends to 

underestimate the observed events. If the residuals are consistently less than zero the model 

tends to overestimate the observed events. 

Uncertainty Analysis 

Traditionally, parameters in the context ofhydrologic and water quality modeling are 

treated as a set of constants. For given model inputs, such as rainfall volume, model 



31 

predictions are fixed values also. However, parameters in hydrologic and water quality 

models should be considered as random variables. This idea has been discussed by many 

scientists (e.g. Haan, 1989; Barfield et al., 1989; Vicens et al., 1975; Beck, 1987). With 

uncertain parameters, a model must give uncertain predictions. It is usually not immediately 

obvious that uncertainty in parameters may significantly affect the model predictions. 

Uncertainty analysis is used to find out the impact of the uncertainty in parmaeters on the 

model predictions. Sensitivity analysis, First Order Analysis (FOA) and Monte Carlo 

Simulation (MCS) are the most widely used uncertainty analysis tools. In the case of one 

uncertain parameter, the output pdf may be determined directly from an analytical 

transformation procedure based on the model and the input parameter pdf. An example can 

be found in the work of Haan and Schulze (1987). 

Sensitivity Analysis 

Sensitivity analysis is a method to identify important input parameters for the model 

being used. The sensitivity with respect to one parameter is determined by changing this 

parameter by a small amount while other parameters are held constant at the most appropriate 

values for the particular condition being studied. 

There are two types of sensitivity coefficients. One is called an absolute sensitivity 

coefficient or simply the sensitivity coefficient, S, and the other a relative sensitivity 

coefficient, Sr. The absolute sensitivity is given by 



s = ao 
a1 
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(29) 

where O and I represent a particular model output and an input parameter respectively. S 

gives the absolute change in O for a unit change in I. The shortcoming of the absolute 

sensitivity coefficient is that its value depends on the units of O and I. This makes it difficult 

to compare the impacts of changes in different input parameters on particular model outputs. 

The relative sensitivity coefficient is introduced to overcome this problem. 

ao 1 
a1 o (30) 

Sr gives the percentage change in O for a 1 % change in I. The relative sensitivity coefficients 

are dimensionless. 

Obviously for most hydrologic and water quality models, because analytic partial 

derivatives can not be obtained, sensitivity coefficients must be calculated numerically. 

ao 
a1 = 0 

I 
= 0 

I 
= (31) 

The importance of input parameters can be ranked on the basis of their relative sensitivity 

coefficients. Only the most sensitive parameters are retained for further uncertainty analysis. 
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First Order Analysis 

The FOA is a simple method to assess the effect of uncertain model parameters on 

model predictions. The term "simple" here implies relatively easy to compute. It only 

requires estimates of the mean and the variance of model parameters, and also the covariance 

of parameters if they are correlated. To demonstrate the application of FOA, consider the 

generalized hydrologic model equation (3). Any model response 6 can be approximated by 

a Taylor series about the expected value of parameters 12 

where an overbar represents a mean value. Neglecting the second and higher order terms 

because they are small compared to the first two terms, and taking expectations on both 

sides, it follows that 

E[ O] ::: ft.l,i,t) (33) 

The variance of 6 can be found from the relation, Var(O) = E(02) - E2(0), by noting that 
l 

the expectation of f(L,i, t) is equal to itself and the expectation of E af l12 (p-pi) is 
i=t Bpi 

equal to zero. The variance can be addressed as 

(34) 
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When the parameters are uncorrelated, the first order approximation of the variance of model 

output can be simplified as 

Var(O) (35) 

where the partial derivative term is the absolute sensitivity with respect to parameter Pi at the 

mean parameter value. This absolute sensitivity can be computed by numerical 

differentiation. Two ways to determine the variances of parameters are from model 

calibration using the Bayesian approach, and, as stated by Prasher et al. (1984), estimated 

from upper and lower bounds appropriate to the parameters. 

When the model being used is linear with respect to parameters, the assumptions of 

first order analysis are perfectly satisfied. However, hydrologic models usually are nonlinear 

models. A FOA variance of model response becomes an approximation in the case of 

nonlinear models. FOA has been shown to produce good estimates of the mean and variance 

of a model response if the coefficient of variation of the input parameter is small and the 

response is nearly linear with respect to the parameter in the range of interest (Haan et al., 

1995). Benjamin and Cornell (1970) point out that a widely used rule of thumb for 

determining if a FOA variance is valid is to restrict parameter coefficient of variation to less 

than 0.2 (Stevens, 1993). More details about the accuracy of FOA can be found in Stevens' 

work. 

Monte Carlo Simulation 

Monte Carlo Simulation (MCS) is a sampling method from the model parameter 
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space. MCS is widely used for characterizing the uncertainties of model output due to the 

parameter uncertainties. It requires a distribution for each parameter. When MCS is applied 

to assess the uncertainty on model outputs in hydrologic modeling, a set of parameters are 

sampled simultaneously from the multivariate distribution of parameters, then a model 

simulation with the sampled parameters' values is performed to produce estimates of model 

outputs. Since parameters are sampled at random, the simulated model outputs are random 

variables. Therefore, statistical methods can be applied to characterize the uncertainty of 

these outputs in the form of mean, variance, pdf and so on. 

The accuracy of Monte Carlo simulation depends on the number of simulation runs. 

The number of simulation runs depends on both the cost of each model run and what 

accuracy needs to be achieved. Morgan and Henrion (1992) presented two methods to 

estimate the number of simulation runs for MCS. One method is based on the idea of 

uncertainty about the mean. To estimate the number of runs by this method, we have to 

make a small number of initial Monte Carlo runs. The mean and variance of model output 

are calculated from the results of these initial runs. Assume model outputs are normally 

distributed. Suppose we want to be sure with a. confidence level that the confidence interval 

around the mean of the initial runs with width of w contains the real mean of model outputs. 

The number of simulation runs can be estimated by 

(36) 

where s is the standard deviation estimated from the initial runs and c is the deviation of the 
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standard normal deviate with probability a.

The other method for determining sample size is based on the precision of the 

estimated cumulative distribution. The number of simulation runs is estimated by the 

relation 

n = p(l-p)(�)2

ll.p (37) 

where p is the percentile of model output, c is the deviation of the standard normal deviate 

with probability a, and fl. p is a half of the percentile interval width. Note that this estimate 

is completely independent of the input parameter distribution. This allows one to determine 

the number of model runs before any simulation is done. 

Prabhu (1995) uses another approach to determine the sample size. MCS is done 

many times for different numbers of model runs, say, 100, 200, ... , and the mean of model 

response is calculated for each number of model runs and is plotted against the number of 

model runs. When the mean tends to be stable, it indicates that the number of model runs 

is adequate. 

The Monte Carlo method is used by many authors in hydrologic modeling. It may 

be accurate enough when the number of model runs is large. Prabhu (1995) employed MCS 

to investigate uncertainty of model outputs by sampling at random eight parameters 

simultaneously. Stevens ( 1993) used MCS as a comparison method to analyze the accuracy 

of First Order analysis. Sorooshian ( 1981) employed MCS to generate runoff values with 

and without contaminated errors which were used as calibration data for comparing the 

power and the effectiveness of Maximum Likelihood against least squares. 



CHAPTER III 

THEORY 

This research is mainly based upon present knowledge of two major subjects: 

Bayesian analysis of uncertainty and updating parameter distributions. 

Bayesian Analysis of Uncertainty 

Bayesian analysis is a relatively straightforward method of analyzing uncertainty in 

model parameters. Application of the method requires intensive calculations, especially 

when the number of parameters being analyzed increases. Perhaps this is the reason why 

Bayesian analysis of uncertainty was not widely used in the past years. With the 

development of computer techniques, higher speed computers are available so that less time 

will be consumed in the intensive calculations. The method of Bayesian analysis is built on 

the basis of Bayes' Theorem. Therefore, Bayes' Theorem is a good place to start the 

discussion of uncertainty analysis by Bayesian statistical theory. 

Bayes' Theorem 

Bayes' Theorem by itself is nothing more than a statement of relationships between 

37 
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conditional probabilities. The application of Bayes' Theorem forms a major branch of 

statistical analysis, Bayesian statistical theory. The following is only the general framework 

of the theory. 

Consider the joint probability density function, p(X, 0), where X = [X1, X2, ... xnr is 

a vector of n random variables and e = [81, 82, ••• 8k]T is a vector of k parameters. Note that 

both X and e are treated as random variables. The joint probability density function can be 

evaluated by the conditional pdf p(X/0) and marginal pdf p(0) or by the conditional pdf 

p(0/X) and marginal pdf p(X) as: 

(38) 

For a given set of values of X, the conditional probability density function p(0/X) can 

be obtained by rearranging terms as: 

p(X /fl) ·p(fl) 

p(X) 

Equation (39) is a form of Bayes' Theorem. 

(39) 

In this equation, the expression p(0/X) is known as the posterior probability density 

function of e for given observed values of X. The posterior pdf represents our beliefs about 

parameters after we have obtained the observed data. In the context of hydrologic and water 

quality modeling, the variable X could be runoff, sediment yield, or nutrient loss etc. The 

expression p(0) is known as the prior probability density function of the parameter vector 
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e which represents the information one already knows before any data on X are collected. 

The expression p(X/8) is the conditional probability density function of X given a known 

set of parameters e. However, we often want to think of it as a function of e for given 

values of X, because it could be more convenient for us to observe the values of variables 

X than to observe the values of parameters e. When the pdf p(X/.e.) is regarded as a function 

of e, for given observed values of X, it is called the likelihood function and is often denoted 

by the symbol L(SIX) which is numerically equal to p(X/8). Although the likelihood 

function has the same value as p(X/8), it is not a pdf and does not have quite the same 

properties - for example, it does not necessarily sum to unity for all possible values of 

parameters e. The likelihood function represents the information known about the 

parameters e from the observed values of X. 

The denominator in equation (39) can be evaluated using the definition of marginal 

distribution as: 

p(X) = f p(X, 9)d9 = f L(9/X)p(9)d9 

where the integration is over k-dimensional real space. 

Therefore, another form of Bayes' Theorem can be written as: 

p(S/X) = __ L(_S_IX)_p_(9_)_ 

f L(9/X)p(9)d9 

(40) 

(41) 
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For given values of X, the denominator in equation (41) is a normalizing constant 

which is necessary to ensure that the posterior pdf p(8/X) sums to unity. By dropping this 

constant, Bayes' Theorem can also be written as: 

p(0/X) oc p(0) L(0/X) (42) 

which is probably the most commonly used form of Bayes' Theorem. 

With above definitions of posterior information, prior information and likelihood 

function, we may think of Bayes' Theorem in the more memorable form 

Posterior oc Prior x Likelihood 

Bayesian Analysis of Uncertainty 

Any hydrological and water quality model can be defined by the relation 

(43) 

where Y is an nxp matrix of observed responses, X is an nxm matrix of inputs (state 

variables), 8 is a kxl vector of model parameters, and .§. is an nxp matrix of residuals 

(differences between observed responses and the corresponding model predictions). Note 

that n is the number of the observed data sets, p is the number of model responses, m is the 

number of input variables, and k is the number of parameters. 

When Bayesian techniques are used to estimate parameters for hydrological models, 
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parameters E> are treated as random variables rather than fixed values. Bayesian techniques 

will provide the estimation results in the form of a distribution. Then the point estimates of 

the parameters could be taken as the most probable values of the parameters E>, in other 

words, the mode of the joint distribution of parameters is the point estimate of the 

parameters. 

To begin the estimation of parameters, suppose that each set of observed responses 

Yi = (yil , ... ; Yinf (i = 1, 2, ... , p) is independent and that each set of the corresponding 

residuals s.; = ~ii., ~i2, ••• , ~inf (i = 1, 2, ... , n) is, for given E>, a normal distribution with mean 

zero and the pxp covariance matrix of the residuals ~. Then the joint probability density 

function of the n set of residuals is given by 

n 

p(s.l"JJ, E>) = II PCs. /"JJ,e) 
i=l I 

(44) 

Now let S(E>) be a pxp nonnegative symmetric matrix 

(45) 

where 
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(46) 

Since gt is a pxl vector and ~-1 is a pxp matrix, g/~-1gi will.be a scalar. The sum of 

n scalars is equal to the trace of the sum of the n scalar entries on the matrix diagonal. The 

exponent in equation ( 44) can be expressed as 

(47) 

thus 

(48) 

where "tr" represents the trace of a matrix. Substituting equation (48) into equation (44) 

yields 

(49) 

Given the observed data Y, the likelihood function of uncertain parameters (E>, ~) 

can be written as 

(50) 

To clarify the notation, there is a need to emphasize that Y refers to the nxp matrix 
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of observed values 

Yu 
... 

Y1i 
... 

Y1p 

.r = Y11 
... 

YJi 
... 

Y1p = r-.i, ... ,~, ... ,~] (51) 

Yn1 
... Yn; ... Ynp 

where ~i=[y Ii' .•• , y n) T is the vector of n observations corresponding to the ith model response. 

Similarly, s. refers to the nxp matrix of residuals 

Eu ... Eli . .. Elp 

g = e11 ... eJi ... 
EJP = [e ... E ... E ] (52) 

.:::J.' '-i' '-P 

en] ... eni ... enp 

Application of Bayes' theorem requires prior information regarding the parameters 

of interest. The prior information must generally be expressed as a probability density 

function. Correct specification of the prior probability density function is extremely 

important. It is easy to see from Bayes' Theorem that misspecification of the prior 

distribution would lead to doubtful results. To avoid misspecifying the prior distribution, 

vague prior information is often used. This means we have little idea about the probability 

density function of the parameters of interest so that the posterior probability density function 

of the parameters will be dominated only by likelihood or observed data. 
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To continue, a prior probability density function of the model parameters 0 and the 

covariance matrix~ must be specified. We may assume that 0 and~ are approximately 

independent, then we may write 

p(9, E) = p(0)p(E) (53) 

Then, the non-informative priors are used for both parameters 0 and ~. The parameters 0 

are assumed to have a local uniform distribution: 

p ( 9) cc constant (54) 

and the prior distribution of ~ is specified as 

p(E) cc IE 1-(p+1)12 (55) 

Therefore, the prior distribution of model parameters 0 and covariance matrix ~ can be 

written as 

p(9, E) cc IE 1-(p+1)12 (56) 

By Bayes' Theorem, the posterior joint probability density function of parameters 0 

and covariance matrix ~ is proportional to the product of their prior probability density 

function and their likelihood function. Using equation (50) and equation (56), the joint 

posterior distribution of (0, ~) can be obtained as: 



-.!. tr c~-1som 
p(ft,.E IX.) oc I .E 1-(n+p+l)/2 e 2 
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(57) 

It is sometimes convenient to work with the elements of I!-1 rather than the elements of I! 

(58) 

where the last term in the above equation is the Jacobian of the transformation from the 

elements of I! to the elements of I!-1• It can be shown that (Box and Tiao, 1973) 

(59) 

Now it follows from equations (57) - (59) that the posterior probability density function of 

-.!. tr [.~.-1£(6)] 
p(ft,_E-1/X) cc I.El-(n-p-1)/2e 2 - (60) 

Since we are only interested in the distribution of model parameters 0, the covariance 

term I!-1 is a set of nuisance parameters. The marginal posterior distribution of model 

parameters e can be found by integrating equation (60) with respect to I!-1• By the use of the 

Wishart distribution, Box and Tiao (1973) provide a derivation of the marginal posterior 

probability density function of e, which ends up with a remarkably simple relationship: 
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p(fJ I Y) oc I S(9) 1-nt2 (61) 

where I £(ID I is the determinant of matrix £~). 

The point estimates of parameters 0 are those which maximize the joint posterior 

probability density function of model parameters 0. From the Bayesian point of view, if we 

took I £~) I as a loss function, the Bayes decision function of 0 is the one which minimizes 

I £(ID I. It is equivalent to maximizing I £(ID I -n12 because £(ID is a non-negative symmetric 

matrix. 

Since a non-informative prior distribution was used in the above derivation, the 

posterior probability density function of parameters 0 could be viewed as a distribution 

obtained only from observed data. The marginal distribution of a specific model parameter 

can be found by integrating equation (61) with respect to other parameters. 

Update of Parameter Distribution 

For any hydrologic and water quality model, model users should have some degree 

of beliefs of model parameters based on literature or personal experiences even before any 

observations of the model responses are used to calibrate the model. For instance, one may 

estimate the value of curve number according to the hydrological soil group and land uses. 

In addition, one may already have calibration results of the model parameters from data 

available. When any new observed data come in, there is a need to update the estimation of 

the model parameters. 
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Again, prior information refers to the distribution of parameters estimated before the 

current data are available. The site specific information refers to the calibration distribution 

of the parameters in equation (61) from the current data. Bayes' Theorem is used to 

incorporate the prior information into the site specific information to produce the posterior 

information. fu this study, we will only discuss how to combine the prior information and 

site specific information for the parameters with a normal, distribution or a lognormal 

distribution. 

Normal Distribution 

Suppose that the prior distribution of a parameter 8 is a normal distribution with 

mean of 80 and variance of <p/, so that 

and suppose also that we have an observation of x which is normally distributed with mean 

equal to the parameter of interest and variance of <p2, that is 

where 80, <p/ and <p are known. Then the prior probability density function and the 

likelihood function can be written as: 

p(6) 
1 -- 1 

= (21t<po) 2 exp[--(e-e )2/cp 2 ] 2 0 0 
(62) 



L(6/x) 
1 -- 1 

= ( 2 1C q> ) 2 e X p [ - - ( X - e) I q>2 ] 
2 
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(63) 

It follows from Bayes' Theorem and equations (62) - (63) that the posterior 

probability density function of e is 

p(6/x) cc p(6)L(6/x) 

cc exp[-.!.e2(q>o-2 +q>-2 ) +6(6/q>/ +x/q>2)] 
2 

(64) 

It can be seen that the posterior probability density function is also a normal distribution with 

mean e 1 and variance q> / equal to 

1 q> 2 = 
I 'f>o-2 + q>2 

(65) 

Now, if the calibrated probability density function is a normal distribution, we may assume 

that the mean and the variance of the normal distribution are equal to x and q> 2, respectively. 

Together with the prior mean 80 and variance of q> 02, the posterior distribution can be 

calculated by equation (65). 

Note that the variance of the calibrated distribution was assumed to be the variance 

of N(8, q> 2) • The assumption of sample variance equal to the population variance may not 
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be completely true, but probably that is the best estimate we could give based on the 

available data. 

Lognormal Distribution 

The posterior probability density function of a parameter 8 with lognormal 

distribution can be obtained from the relationship between the normal and lognormal 

-
distributions. If a random variable 8 follows a lognormal distribution with mean of e and 

variance of S/, the variable Y 

Y = 1ne (66) 

will follow a normal distribution with mean Y and variance S/ equal to (Haan, 1977) 

(67) 

S/ = ln(C} +1) 

where Cv is the coefficient of variation of the original variable 8 (Cv = SefB). By this 

transformation, a lognormal distribution can be changed to a normal distribution only by 

calculating the mean and the variance of the normal distribution. 

Suppose now that both the prior distribution of 8 and the likelihood function of 8 

given the data x are lognormally distributed. From the above transformation, both the prior 

distribution and likelihood can be transformed to corresponding normal distributions. Then 

it follows from the previous subsection that the posterior distribution of the transformed 
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variable, p(y/x), will also be a normal distribution with mean of µY and variance of a/, where 

µYanda/ could be determined by equation (65). 

p(ylx) - N(µ>', CJ/) 

Now, the posterior distribution of variable e is 

where 

and hence 

p(Blx) = p(y/x) dy 
de 

dy = 1 
de e 

p(e/x) 
1 = -p(y/x) e 

(68) 

(69) 

(70) 

(71) 

Therefore, the posterior probability density function of variable e is a lognormal 

distribution with mean of µ 6 and variance of a/, where 

µ0 = exp[µ>'+ CJ//2] 
(72) 

CJ a2 = µ/ [ e X p ( CJ/) - 1] 
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In summary, the posterior distribution of a lognormally distributed variable could be 

calculated in three steps: 

1. Transform lognormally distributed prior distribution and likelihood function to 

normal distributions; 

2. Find out the posterior distribution for the transformed variable y; and 

3. Transform the posterior distribution of the transformed variable into the posterior 

distribution of the original variable. 



CHAPTER IV 

DESCRIPTIONS OF AGNPS MODEL AND 

EXPERIMENTAL DATA 

Description of the AGNPS Model 

The AGricultural Non-Point Sources pollution model (AGNPS) was selected as the 

event-based model to be used in this research. AGNPS is a computer simulation model 

developed by the Agricultural Research Service (ARS) in cooperation with the Minnesota 

Pollution Control Agency and the U. S. Department of Agriculture's Soil Conservation 

Service. The objectives of this model were to obtain uniform and accurate estimates of 

runoff quality with primary emphasis on sediment and nutrients to compare the effects of 

various conservation alternatives on implementation as part of the management practices of 

the watershed (Young et al, 1987). 

The AGNPS model has three basic components: hydrology; erosion and sediment 

transport; and transport of nitrogen, phosphorus, and chemical oxygen demand. The model 

provides output on hydrology with estimates of both runoff volume and peak runoff. In the 

erosion and sediment transport portion of the AGNPS model, estimates of upland erosion, 

channel erosion, and sediment yield are provided. Along with these, in the last portion of the 

52 



53 

model, calculations are made for estimating nitrogen (N), phosphorus (P), and chemical 

oxygen demand (COD) concentrations in the runoff and the sediment discharge for a single 

storm event for all points in an agricultural watershed. Table 4-2 lists the outputs of the 

AGNPS model at the outlet of the watershed or for any cells. The AGNPS model can be 

applied to agricultural watersheds ranging in size from a few hectares to upwards of 20,000 

hectares (Young et al., 1989). 

AGNPS is a single-event-based model intended to simulate sediment and nutrient 

transport primarily from agricultural watersheds. The model works on a cell basis. Cells are 

equally sized square areas subdividing the watersheds. fu this model, runoff and upland 

erosion are calculated first, then the detached sediment is routed from cell to cell through the 

watershed to the outlet. Pollutants are routed in a stepwise fashion from the headwaters of 

the watershed to the outlet so that the flow at any point may be examined. Accuracy of the 

simulation results can theoretically be increased by reducing the cell size, but this will 

increase the time to run the model. It is worth noting, however, that more accuracy may not 

be obtained by reducing the cell size after the cell size has been reduced to some degree. 

fuput data for AGNPS can be classified into two categories: watershed data and cell 

data. Watershed data include information applicable to the entire watershed and to the storm 

event to be simulated. Cell data include physical information describing each of the cells 

as well as information based on the land practices in the cell. Table 4-1 lists the inputs for 

the AGNPS model (Young et al., 1989). 
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Table 4-1. Input Data File for AGNPS 

Column# Data 

Watershed Data 

1 Watershed identification 

2 Cell area (acres) 

3 Total number of cells 

4 Precipitation (inches) 

5 Energy-intensity value 

Cell parameters 

1 Cell number 

2 Number of the cell into which it drains 

3 SCS curve number 

4 Average land slope(%) 

5 Slope shape factor (uniform, convex, or concave) 

6 Average field slope length (feet) 

7 Average channel slope(%) 

8 Average channel side slope(%) 

9 Mannings roughness coefficient for the channel 

10 Soil erodibility factor (K) from USLE 

11 Cover and management factor (C) from USLE 

12 Support practice factor (P) from USLE 

13 Surface condition constant (factor based on land use) 

14 Aspect ( one of 8 possible directions indicating the principal drainage direction from the cell) 

15 Soil texture (sand, silt, clay, peat) 

16 Fertilization level (zero, low, medium, high) 

17 Incorporation factor (% fertilizer left in top a cm of soil) 

18 Point source indicator (indicates existence of a point source input within a cell ) 

19 Gullv source level ( estimate of amount, tons, or gully erosion in a cell ) 

20 Chemical oxygen demand factor 

21 Impoundment factor (indicating presence of an impoundment terrace system within the cell ) 

22 Channel indicator (indicating existence of a defined channel within a cell) 



Table 4-2. AGNPS Output at the Watershed Outlet Or for Any Cell 

Hydrology Output 

Runoff volume (inches) 
Peak runoff rate ( cfs) 
Fraction of runoff generated within the cell 

Sediment Output 

Sediment yield (tons) 
Sediment concentration (ppm) 
Sediment particle size distribution 
Upland erosion (tons/acre) 
Amount of deposition (%) 
Sediment generated within the cell (tons) 
Enrichment ratios by particle size 
Delivery ratios by particle size 

Chemical Output 

Nitrogen 
Sediment associated mass (pounds/acre) 
Concentration of soluble material (ppm) 
Mass of soluble material (pounds/acre) 

Phosphorus 
Sediment associated mass (pounds/acre) 
Concentration of soluble material (ppm) 
Mass of soluble material (pounds/acre) 

Chemical Oxygen Demand 
Concentration (ppm) 
Mass (pounds/acre) 
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Algorithms of the AGNPS Model 

As stated in the previous section, the AGNPS model consists of three basic 

components, namely, hydrology, erosion and sediment transport, and chemical transport. An 

overview of the AGNPS model structure is given by Young et al. (1989; 1994). Most of the 

following content draws from these two sources. Haan et al. (1994) is the another source to 

write the following algorithms of the AGNPS model. 

Hydrology 

Runoff volume and peak flow rate are estimated in the hydrology portion of the 

model. Runoff volume is estimated by using the Soil Conservation Service (SCS) curve 

number (CN) method (Soil Conservation Service, 1972). This method was chosen in 

AGNPS because of its simplicity and widespread use. The well-known relationship is given 

by 

Q = (P-0.2S)2 

(P +0.8S) 

where Q = runoff volume (in.); 

P = total precipitation (in.); and 

P"?.0.2S 

S = retention parameter or maximum potential soil moisture storage. 

(73) 

Runoff will not occur until the total depth of precipitation is greater than 0.2S. The 

retention parameter S (in units of inches) is related to CN by 



S = 1000 -10 
CN 
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(74) 

The curve number CN depends upon land use, hydrologic soil group, soil type, and 

hydrologic soil condition. S is in inches. It can be changed to millimeters (mm) by 

multiplying by 25.4. However, Q, P and S must be in the same units. 

Peak runoff rate for each cell is estimated using the following empirical relationship 

proposed by Smith and Williams ( 1980) 

Qp = 3.79A 0.7 cso.16(R0/25.4)<0.903A 0.011)Lw-0.19 (75) 

where Qp = peak flow rate ( m3/s ); 

A= drainage area ( km2 ); 

CS= channel slope ( mlkm ); 

RO = runoff volume (mm); and 

LW = the watershed length-width ratio, calculated by L2/A where L is the 

watershed length. 

Erosion and sediment transport 

A modified form of the Universal Soil Loss Equation (USLE) is used to estimate 

upland erosion for single storms as follows 
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SL = (El) KLSCP (SSF) (76) 

where SL = soil loss; 

EI = the product of the storm total kinetic energy and maximum 30-minute intensity; 

K = the soil erodibility factor, which is a measure of soil's resistance to the erosive 

powers of rainfall energy and runoff. Experimentally, soil erodibility is the soil loss 

per unit rainfall index on a standard erosion plot; 

L = the slope length factor; 

S = the slope steepness factor, which is used to predict the effect of slope gradient on 

soil loss; 

C = the cover and management factor, which accounts for above-ground effects, 

surface effects, and below-surface effects; 

P = the supporting practice factor, which is used to evaluate the effects of contour 

tillage, strip cropping, terracing, subsurface drainage, and dryland farm surface 

roughening; 

SSF = a factor to adjust for slope shape within the cell. 

After runoff and upland erosion are calculated, detached sediment is routed from cell 

to cell through the watershed to the outlet. The basic routing equation is derived from the 

steady-state continuity equation as 
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QJx) = QJO)+Q8ix!Lr) -JD(x)wdx (77) 
0 

where Qs(x) is the sediment discharge at the downstream end of the channel reach, Qs(O) 

is the sediment discharge into the upstream end of the channel reach, Q8L is the lateral 

sediment inflow rate, x is the downstream distance, Lr is the reach length, w is the channel 

width, and D(x) = the deposition rate. 

Eroded soil and sediment yield are subdivided into five particle size classes, clay, silt, 

small aggregate, large aggregate, and sand. Sediment load for each of the five particle size 

classes leaving a cell can be calculated. For more details refer to Young et al. (1989). 

Chemical transport 

The chemical transport part of the model estimates transport of N, P, and COD 

throughout the watershed. Chemical transport calculations are divided into soluble and 

sediment adsorbed phases. Nutrient yield in the sediment absorbed phase is calculated using 

total sediment yield from a cell as given by 

(78) 

where Nutsect is Nor P transported by sediment, Nu4 is N or P content in the field soil, Qs(x) 

is sediment yield, and ER is the enrichment ratio which is calculated from 
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E = 7 4Q (x)-0·2 T R . s I (79) 

where Tr is an adjustment factor used to correct sediment-adsorbed nutrient enrichment ratio 

for sand and clay soils. 

Soluble nutrient estimates consider the effects of nutrient levels in rainfall, 

fertilization, and leaching. The concentration of soluble nutrients in runoff is estimated by 

the equation given by 

(80) 

where Nut501 is the concentration of soluble N or P in the runoff, C001 is the mean 

concentration of soluble N or P at the soil surface during runoff, Nutext is an extraction 

coefficient of N and P for movement into runoff, and Q is the total runoff volume. 

Experimental Data 

Four small watersheds in Washington County, Arkansas, were chosen for this study. 

There are no special considerations in the selection of these watersheds except they had 

readily available data. Experimental data were provided by Dr. Edwards (Edwards et al., 

1994). The following subsections describe the nature of the data. 

The four watersheds used in this study are located in the Lincoln Lake basin in 

northwestern Arkansas, which is approximately 12 miles away from Fayetteville. The four 



61 

watersheds are RM, RU, WM and WU, respectively. All four watersheds are covered with 

100% pasture. Table 4-3 summarizes some of the characteristics of the study watersheds. 

Figure 4-1 to Figure 4-4 are topographic maps for the four study watersheds (Edwards et al., 

1994). Since AGNPS model is a cell based model, the divided cells for each watershed were 

superimposed onto the corresponding topographic map (Figures 4-1 to 4-4). The four 

watersheds were divided into one to seventeen cells depending on the shape of each 

watershed (see Table 4-3). Since all the four watershed are small and each watershed has 

only one type of soil and the same coverage, they were considered as homogeneous 

watersheds. For each watershed, the same parameters were assigned to each cell. 

Data were collected in order to demonstrate the degree of water quality improvement 

that can accompany Best Management Practices (BMP) implementation. The Arkansas Soil 

and Water Conservation Commission (ASWCC) and US Environmental Protection Agency 

(USEPA) sponsored the monitoring. The watersheds, RM, RU, WM and WU, were 

monitored from September 1991 to April 1994. The observed data used in this study include 

rainfall, runoff and sediment yield for each watershed. There are about thirty events for eahc 

watershed. Table 4-5 to Table 4-8 contain all available data for each watershed. The first 

column in these tables is Antecedent Moisture Conditions (AMC) which is used to adjust 

Curve Number (CN) in the SCS runoff model (Equation (73)). The number of AMC is 

determined based upon the total rainfall amount in the five days preceding the given storm. 

Table 4-4 gives the particular standards to define AMC (Smedema and Rycroft, 1983). The 

application of AMC will be explained in detail in the next chapter. 

Since AGNPS is an event based model, all data in Tables 4-5 to 4-8 were listed 
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randomly rather than chronologically to eliminate the effects of dry season and wet season 

or dry year and wet year. The random arrangement of the data was done in an Excel spread 

sheet. First. of all, rainfall, runoff volume and sediment yield data were entered 

chronologically in three columns so that rainfall, runoff volume and sediment yield for one 

event were in the same row. Secondly, in another column, a set of random numbers 

(between O and 1) with a uniform distribution were generated. Thirdly, all data were sorted 

by the column containing random numbers. 

Data in each table were split up. Half of the data was used for model calibration, and 

the other half of the data served for model evaluation purposes. Because the data were split 

up randomly, we could expect that the part of the data for model calibration should possess 

the same statistical properties as the part of the data for model validation. 



63 

Table 4-3. Summarized Characteristics of the Study Watersheds 

watershed Area Soil Curve Average Number 
(acres) Number Slope(%) of Cells 

RM 1.41 Captina silt loam 61 2 7 

RU 3.04 Fayetteville fine sandy 74 3 1 
loam 

WM 3.61 Hector-Mountainburg 79 4 17 
stony fine sandy 
loam/ Allegheny · 
gravelly loam 

WU 2.62 Linker loam 64 4 16 

Table 4-4. Classification of the Antecedent Moisture Conditions (AMC) 

Total rainfall in the 5 days preceding 
AMC class the given storm 

Dormant Season Growing Season 

I < 12.5mm <35mm 

n 12.5 - 27.5 mm 35 -52.5 mm 

Ill >27.Smm >52.5 mm 
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Y Runoff· Sampling Station 

\ 

--\ 

Figure 4-1. Topographic Map Of Watershed RM 
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T Runoff Sampling Station -·· ,,. 
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Figure 4-2. Topographic Map Of Watershed RU 
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Y Runoff Sampling Station 

Figure 4-3. Topographic Map of Watershed WM 
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T Runoff Sampling Station 

Figure 4-4. Topographic Map Of Watershed WU 
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Table 4-5. Observed Values for Watershed RM 

Date AMC Rainfall Runoff Sediment Yield 
(in) (in) (lbs/ac) 

06/06/92 1 1. 47 0.02 0.14 

05/17/92 2 0. 76 0.03 0.94 

09/21/92 1 3.37 0.54 2.32 

07/05/92 1 1. 26 0.04 0.33 

10/26/91 3 2.25 0.17 27.52 

11/14/93 3 0.64 0.10 0.70 

05/10/93 3 1. 57 0.09 0.16 

07/30/93 1 2.32 0.21 0.67 

05/09/93 1 2.03 0.16 0.69 

11/16/93 3 1. 07 0.08 1. 03 

12/12/91 1 0.41 0.00 0.00 

11/11/92 1 1. 77 0.01 0.23 

04/14/93 1 1. 00 0.01 0.18 

01/04/93 1 1.44 0.14 7.54 

12/15/92 3 2.00 0.50 2.83 

09/14/93 2 1.34 0.08 0.40 

03/03/93 1 0.86 0.04 0.95 

05/11/92 1 2.26 0.07 1. 82 

11/12/92 3 0.90 0.07 2.96 

08/04/92 3 1. 88 0.09 0.16 

06/25/93 2 2.38 0.35 2.49 

04/04/93 2 1. 08 0.03 0.14 

11/14/93 3 0.63 0.14 2.57 

04/15/93 3 1. 89 0.49 1. 89 

09/15/93 3 2.68 0.30 1. 02 

10/14/92 1 1. 80 0.01 1. 22 

10/16/93 1 1.45 0.04 0.24 

10/17/93 3 0.49 0.07 0.52 

01/26/94 1 0.84 0.02 0.82 
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Table 4-6. Observed Values for Watershed RU 

Date AMC Rainfall Runoff Sediment Yield 
(in) (in) (lbs/ac) 

06/25/93 2 2.38 1. 06 5.52 

05/09/93 1 2.03 1. 03 8. 63 

04/15/93 3 1. 89 0.62 5.21 

11/16/93 3 1. 07 0.65 0.88 

10/24/91 1 2.49 0.01 0.08 

04/04/93 1 1.11 0.07 0.36 

12/03/93 2 0.53 0.17 0.65 

05/28/92 1 1.28 0.06 0 .11 

09/21/92 1 3.51 1.51 52.65 

11/11/92 1 1. 77 0.28 1. 58 

05/10/93 3 1. 57 1.22 2.21 

09/14/93 2 1. 34 0.08 0.60 

12/12/91 1 0.47 0.34 4.54 

03/19/93 2 0.90 0.11 1.49 

10/31/91 3 1. 04 0.18 0.12 

12/14/92 3 1. 93 0.69 2.19 

09/15/93 3 2.68 0.66 2.54 

10/26/91 3 2.25 0.65 15.45 

15/11/92 1 2.26 0.25 0.34 

11/14/93 1 2.69 1. 43 1.94 

03/26/94 1 1.51 0.02 0.07 

01/26/94 1 0.84 0.11 1. 79 

01/04/93 2 1.44 0.98 27.29 

02/04/92 3 1. 92 0.70 2.69 

04/14/93 1 1. 00 0.03 0.15 

02/24/93 1 3.37 0.01 0.15 

06/06/92 1 1. 47 0.67 1.21 

12/09/92 1 1.25 0.48 1. 52 

11/16/93 3 1. 07 0.43 0.49 

11/12/92 3 1.11 0.60 5.30 

12/16/92 3 2.01 0.69 1.25 

07/05/92 1 1. 74 0.19 1. 38 

10/16/93 1 1.94 1. 00 2.49 

07/16/92 1 1. 88 0.01 0.06 

07/30/92 1 2.32 0.70 9. 35 
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Table 4-7. Observed Values for Watershed WM 

Date AMC Rainfall Runoff Sediment Yield 
(in) (in) (lbs/ac) 

04/14/93 1 0.69 0.01 0.15 

10/31/91 3 1.37 0.76 2.58 

01/04/93 1 0.95 0.06 0.64 

10/26/91 3 2.32 1. 23 86.33 

10/28/91 3 1.42 0.65 4.42 

10/24/91 1 3.57 0.04 0.32 

12/15/92 3 4. 64 2.67 13.9 

09/15/93 3 3.22 0.75 2.72 

10/20/93 3 1. 02 0.21 0.19 

11/24/93 3 0.54 0.05 0.15 

05/09/93 3 1. 95 0.87 0.79 

11/19/91 3 0.48 0.05 0.09 

11/11/92 1 2.10 0.05 0.25 

08/06/92 3 0. 71 0.27 0.12 

08/05/92 3 2.04 0.69 2.97 

11/16/91 3 1.12 0.61 0.69 

09/15/93 3 2.84 1. 80 2.45 

04/15/93 2 2.08 0.68 1. 72 

05/08/93 1 2.84 0.45 1. 32 

07/30/92 2 3.76 1.13 117.18 

12/09/92 1 1. 50 0.07 0.32 

11/16/93 3 1.18 0.28 0.51 

12/12/91 1 0. 71 0.01 0.20 

10/16/93 1 1.20 0.05 0.12 

06/06/92 2 1. 61 0.62 2.81 

11/12/92 3 0.59 0.03 0.95 

03/26/94 1 1. 87 0.01 0.02 
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Table 4-8. Observed Values for Watershed WU 

Date AMC Rainfall Runoff Sediment Yield 
(in) ( in) (lbs/ac) 

03/26/94 1 1. 87 0.00 0.00 

09/24/93 1 1.32 0.03 0.21 

11/16/93 1 0.94 0.04 1. 91 

12/09/92 1 1. 50 0.03 0.86 

06/25/93 2 2.17 0.31 4. 63 

08/05/92 3 0. 71 0.03 0.42 

12/15/92 3 1. 97 0.44 3.98 

04/15/93 2 2.08 0.34 3.85 

01/09/93 2 0.85 0.09 6.70 

10/19/93 2 0. 77 0.01 0.25 

06/06/92 2 1. 61 0.14 1.05 

10/14/92 1 1.52 0.01 0.03 

10/28/91 3 0.64 0.02 0.08 

11/14/93 2 0.54 0.02 0.22 

05/09/93 3 0.44 0.01 0.20 

07/30/93 2 3.76 0.77 41.84 

11/12/92 3 0.59 0.05 0.54 

08/04/92 3 2.04 0.27 2.02 

10/26/91 3 0.53 0.01 0.03 

05/10/93 3 1.15 0. 30 1. 49 

11/17/91 3 0.83 0.09 0.92 

11/11/92 1 2.10 0.02 0.10 

09/13/93 3 3.22 0.66 5.83 

10/24/91 1 3.57 0 .11 1. 37 

10/26/91 3 1. 79 0.14 18.92 

04/04/93 1 1.15 0.04 0.67 

05/02/93 2 0.68 0.06 1.94 

03/19/93 1 0.95 0.00 0.00 

12/14/92 3 2.30 0.65 26. 20 

10/31/91 3 1.19 0.13 0.53 

10/16/93 3 0.56 0.04 1.10 

01/20/93 3 0.94 0.04 0.80 

06/02/92 2 1.15 0.00 0.00 

05/08/93 1 2.84 0.55 14.65 



CHAPTERV 

ANALYSIS OF PARAMETRIC UNCERTAINTY 

AND PARAMETER ESTIMATION 

The purpose of the analysis of parametric uncertainty was to determine the joint and 

marginal probability density functions of uncertain model parameters. At the same time 

while a joint probability density function of model parameters was calculated, the optimal 

model parameters were considered to be those corresponding .to the mode of the joint 

distribution of model parameters. The joint pdf and the optimal parameters obtained in the 

way described above may be dubious without checking to see if the stochastic nature of the 

associated residuals satisfies the necessary assumptions. If the optimal parameters result in 

residuals which satisfy the necessary assumptions, the joint pdf of the model parameters may 

be regarded as the solution to equation (61); otherwise, a correction is required. The optimal 

values of the model parameters after the correction must be redetermined and the residuals 

rechecked until the assumptions about residuals are satisfied. Then marginal probability 

density functions for each parameter may be derived upon integration of the joint probability 

density function (Edwards, 1988). 

The Bayesian parameter estimation technique provides not only point estimates but 
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probability density :functions for model parameters. It is very difficult for us to verify how 

good the pdfs are. But the point estimates of parameters can be verified by comparing with 

the estimates from Least Squares. Once the point estimates of parameters based upon the 

Bayesian estimator are shown to be efficient, more credit will be added to the pdfs of the 

model parameters because the point estimates are simply the parameter estimates 

corresponding to the mode of the joint pdf of the parameters. 

The model parameters were estimated by the Least Squares method using the same 

model and data. The residuals associated with the optimal parameters by Least Squares must 

be checked to see if the assumptions of Least Squares are valid. Least Squares is the most 

widely used and accepted parameter estimation technique. If the optimal parameters by the 

Bayesian technique are close to those by Least Squares, it may be a demonstration that the 

Bayesian parameter estimation technique is a good method to use in hydrologic and water 

quality modeling. 

Model Parameterization 

Hydrologic and water quality models usually contain many parameters. Estimating 

all parameters by calibration requires intensive work and may not be necessary because 

model performance is often controlled by fewer sensitive parameters. Once these most 

sensitive parameters are well estimated, a hydrologic and water quality model should 

produce fair predictions of the model responses of interest. Therefore, only the parameters 

to which the model performance was sensitive were considered to be uncertain, while the 
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other insensitive parameters were considered as fixed. The sensitivity of the model 

parameters can be determined by sensitivity analysis. 

Prabhu (1995) did a complete sensitivity analysis for the parameters of the AGNPS 

model. The watershed used for his sensitivity analysis was WM which was one of the four 

watersheds in this study. The results of Prabhu's sensitivity analysis were directly applied 

to this study. As far as runoff volume was concerned, curve number was the only sensitive 

parameter. As far as sediment yields were concerned, the most sensitive parameter was land 

slope. The second most sensitive parameter was curve number. Therefore, it was decided 

that only curve number and land slope would be calibrated in this study. Both observed 

runoff volumes and sediment yields were used to calibrate these two parameters. It could 

be expected that the calibration results from both runoff and sediment yield should be better 

than the results from either runoff or sediment yield alone. 

One may argue that there is no need to estimate land slope since land slope is a 

physical parameter which can be measured from a map directly. This is not completely true. 

If we look at the USLE model, equation (76), we will find that both the slope steepness 

factor (S) and the slope length factor (L) are related to the actual land slope. Their values are 

estimated from regression equations over many slopes. The calculated value ofL or S for 

a specific land slope can be considered as an average value over many locations with the 

same land slope. But for a specific location, the values of L and S may need to be adjusted 

up or down to make the predicted sediment yields match the corresponding observed data. 

In the AGNPS model, we are not able to adjust the slope factor (S) and the slope length 

factor (L). Therefore, we should adjust the actual land slope to match the observed sediment 
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yields with the model predictions. 

Parameter Estimation and Uncertainty Analysis 

Least Squares Parameter Estimation Method 

The general concept of the Least Squares method was discussed in the literature 

review and will not be repeated. Some special considerations are still worth mentioning. 

When two model responses are concerned, the Least Squares method can be 

expressed as 

(81) 

where eli is the residual of runoff volume, e2i is the residual of sediment yield, n is the 

number of rainfall events, and e refers to curve number and land slope. 

Problems may arise with equation (81) when the magnitude of the runoff volume and 

sediment yield are significantly different or when different units of runoff or sediment yield 

are used. Consider a situation that the magnitude of sediment yield is ten times bigger than 

that of runoff volume. Assume the relative accuracy of the model predictions for them is the 

same, for example within 5% of the observed data, then on average the residuals of runoff 

volume would be ten times less than the residuals of sediment yields. As a result, the 

sediment term in equation (81) will carry more weight than the runoff volume term. In other 
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words, the calibration results will be dominated by the residuals of sediment yield. The 

calibrated parameters in this situation may give model predictions on sediment yield with 

high accuracy and on runoff volume with low accuracy. Based on the same reason, one 

could imagine that the values of parameters to be calibrated may be different when different 

units are used, because the units would change the magnitude of runoff or sediment relative 

to each other. 

If we desire to obtain the calibration parameters with which the AGNPS model would 

provide predictions of runoff volume and sediment yields with the same accuracy, the 

residuals in equation (81) have to be normalized. This can be done by having the actual 

residual divided by the mean of its observed data. That is 

e 
observed - predicted 

mean of observed 
(82) 

When this definition of residual is applied to equation (81 ), an approximately equal 

weight will be put on runoff volume and sediment yields because the residuals of both 

runoff and sediment are relative residuals and are dimensionless. In this case, one could 

expect approximately the same accuracy for runoff and sediment, provided that the model 

is good and that the quality of the observed data for them is the same. 

For one model response, no matter what residuals are used, the actual residuals or the 

relative residuals from equation (82), the Least Squares method will give the same 

calibration results. 
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When the constant variance assumptions of Least Squares are not satisfied, the square 

root transformation was selected for use in order to induce homoscedasticity in runoff 

volume and sediment yield residuals. This transformation is a member of the family of Box 

and Cox (1964) transformations presented in equation (21). In this case, the residuals in 

equation (81) are defined as: 

E 
.,/ observed - .,/ predicted 

mean of.,/ observed 

Again, the residuals from the transformed model responses need to be rechecked. If 

(83) 

the assumptions of Least Squares are still not satisfied, another member of the family of Box 

and Cox transformations may be applied. 

Bayesian Parameter Estimation Method 

Equation ( 61) in Chapter III is the Bayesian criterion for estimating the model 

parameters and analyzing uncertainty of the model parameters. But this equation was 

derived without consideration of relative residuals or transformation of the model responses. 

In order to use the Bayesian technique to analyze parameter uncertainty and to obtain the 

optimal parameter estimates, it must be proven that equation (61) still applies to the relative 

residuals of the model responses or transformed model responses. Edwards (1988) proves 

that equation ( 61) still holds for the transformed model responses. In the same fashion, it can 

be proven that equation (61) will also hold for the relative residuals of the model responses 
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and for the relative residuals of the transformed model responses. 

Consider the model presented in Chapter III in equation ( 4 3 ), Y = f (X, fi) + e, where 

the number of the model responses is equal to p=2. The residuals may be expressed as: 

(84) 

(85) 

The relative residuals of the transformed model responses are defined as the 

difference between the square roots of the observations and the square root of the model 

predictions divided by the mean of the square roots of the observations. 

1 
11 1; = - ( /y;;- V fi (X, 0)) 

a 
(86) 

(87) 

where a and b are equal to the mean of the square root of the corresponding data. 

Assume now that the 1l!i are N(O, o/) and the 11 2i are N(O, a/). Then (1l!i, 1) 2J are 

N(.Q, :E). Their joint probability density function may be written as 
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(88) 

where n.i. = ( Tl 1i , Tl 2Y. This probability density function may be related to that of the 

corresponding pair of observations, Yi = (yli, y2i?, by the relation of 

p(~) = P(.!JJ) I JI (89) 

where IJI is the Jacobian of the transformation from n.i to Yi. 

a111; ari 1i 1 0 -- 1/2 
ayli aY2; 2ayli 1 (90) Ill 
ari2, a112; 0 1 4 ab (y 1l2i12 

ayli aY2; 
1/2 

2by2i 

It follows from equations (88) through (90) that the probability density function of 

Yi will be 

(91) 

Now consider all pairs of observations, y = (y1, y2, ••• y0?, and suppose that the Yi are 

independent for all i. The probability density function of y is written as 
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(92) 

where 

(93) 

Given a set of data, y, the function g(y) is a constant, and the residuals ni are a 

function of the model parameters fi. Then the probability density function of y is only a 

function of I: and fi. Therefore, the likelihood function of I: and fi given the data y may be 

written as 

(94) 

This likelihood function is identical to that used in Chapter III for derivation of the 

posterior probability density function. From this point, following exactly the same procedure 

as stated in chapter III, the posterior probability density function identical to equation (61) 

should be obtained. The only difference is that the elements of .S.(fi) are derived from the 

transformed residuals. 
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Procedures 

The Least Squares method and the Bayesian method were two methods chosen for 

this study. For the purpose of comparison, curve number and land slope were calibrated 

under four conditions: 

1). Curve number calibrated only from runoff volume; 

2). Curve number and land slope calibrated only from sediment yields; 

3). Curve number and land slope calibrated by the Least Squares method based upon 

both runoff volume and sediment yields; and 

4). Curve number and land slope calibrated by the Bayesian technique based upon 

both runoff volume and sediment yields. 

The calibration methods were not specified for conditions one and two because the Least 

Squares method and the Bayesian method will give the same estimates of model parameters 

for a single model output. 

Suppose now that there are n rainfall events used for parameter estimation. Assume 

that the values of the other parameters of the AGNPS model are given. The procedures for 

parameter calibration for two conditions, one model response and two model responses, are 

given below: 

Parameter calibration procedure for one model response: 

1. Set upper and lower limits for curve number and land slope, and select proper 

increments for each of the two parameters. 

2. Set the curve number and land slope equal to their lower limits in the AGNPS 

input data file. 
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3. For each rainfall event, update the rainfall amount in the AGNPS input data file. 

Then run the AGNPS model and record the residual of runoff volume or sediment 

yields. Repeat for all rainfall events. 

4. Calculate the sum of the squared residuals. 

5. Increase curve number or/and land slope by one increment. For every possible 

combination of curve number and land slope within their own upper and lower 

limits, repeat step 3 and step 4. 

6. Find out the minimum value of the sum of the squared residuals for all possible 

combinations. The corresponding curve number and slope may be the calibrated 

results. 

7. Check the necessary assumptions of residuals. If the assumptions are satisfied, 

the calibration results above are good. Otherwise, corrective action may be needed. 

Steps 2 to 6 have to be repeated and residuals rechecked. 

Parameter calibration procedure for two model responses: 

1. Set upper and lower limits for curve number and land slope, and select proper 

increments for each of the two parameters. 

2. Set the curve number and land slope equal to their lower limits in the AGNPS 

input data file. 

3. For each rainfall event, update the rainfall amount in the AGNPS input data file. 

Then run the AGNPS model and record the residual of runoff volume and the 

residual of sediment yields. Repeat for all rainfall events. 
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4. Calculate the sum of the squared residuals of runoff volume and the sum of the 

squared residuals of sediment yields. Then add them up to obtain the total residual 

sum of squares over both outputs, equation (81). 

5. Calculate the determinant of .S.(e) in equation ( 61). 

6. Increase curve number or/and land slope by one increment. For every possible 

combination of curve number and land slope within their own upper and lower limits, 

repeat steps 3 to 5. 

7. Find out the minimum of the values obtained in step 4 for all possible 

combinations of curve number and land slope. The corresponding curve number and 

slope will be the calibrated results by the Least Squares method. 

8. Find out the maximum of the values obtained in step 5 for all possible 

combinations of curve number and land slope. The corresponding curve number and 

land slope will be the calibrated results by the Bayesian technique. 

9. Check the necessary assumptions of residuals. If the assumptions are satisfied, 

the calibration results above are good. Otherwise, corrective action may be needed. 

Steps 2 through 8 have to be repeated and residuals rechecked. 

10. The marginal distribution of curve number or slope can be obtained by 

integrating equation (61). 

A C computer program was written to perform the procedures for both one model 

response and two model responses. This program will provide the calibration results of 

curve number and land slope for all four conditions listed in the beginning of this subsection. 
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The program will also provide the marginal distribution of the curve number and the 

marginal distribution of the land slope. The necessary assumptions of residuals need to be 

checked separately to confirm the calibration results by the program. The program was 

verified step by step through comparison of what the program does with what it should do. 

The source code of this program can be found in Appendix A. 

Results and Discussions 

Calibration of Parameters 

The curve number and slope parameters were calibrated using the four conditions 

as stated above for all the four watersheds RU, RM, WM and WU. The point estimates of 

the parameters are shown in Tables 5-1 through 5-4. The model predictions and their 

associated residuals for each watershed are shown in Tables 5-5 through 5-8. When the 

parameters are estimated based upon one model response ( either runoff volume or sediment 

yield), Least Squares and the Bayesian estimator will produce identical results. So the 

optimal methods were not specified in the tables. In order to make a judgement of how 

efficient the Bayesian estimator is, the sum of the squared errors (SSE) corresponding to the 

calibrated parameters were also shown in the tables. Note that both SSE of the runoff 

volume and SSE of the sediment yield were dimensionless so that they could be totaled. It 

is necessary to emphasize that the model residuals associated with the calibrated parameters 

need to be examined to see if the LS assumptions are satisfied. 

Figures 5-1 through 5-8 are plots of residuals based upon the Bayesian estimator 
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against the corresponding rainfall amount for the four watersheds. It can be seen from 

Tables 5-1 through 5-4 that the calibrated parameters by Least Squares are either identical 

to or very close to those by the Bayesian estimator. If the residuals associated with the 

Bayesian estimator satisfy the Least Squares assumptions, the residuals related to the Least 

Squares method would probably satisfy the Least Squares assumptions too. Therefore, only 

the plots of residuals associated with the Bayesian estimator were presented. 

On Figures 5-1 to 5-6, all residuals are distributed more or less around zero. The t 

test was employed to test the assumption of mean of zero. Table 5-9 shows that the null 

hypothesis of mean of zero was not rejected at the significance level of 0.05 for runoff 

residuals and sediment residuals in watersheds WM and WU, and for runoff residuals in 

watershed RU. The null hypothesis of mean of zero was rejected at the significance level of 

0.05 for sediment residuals in watershed RU, but was not rejected at the significance level 

of 0.02. Therefore, the assumption of mean of zero may not be implausible for these three 

watersheds. Note that the t test can not be applied to any set of data which are not from a 

normal distribution. The normality of residuals will be tested later in this section. Figure 

5-7 and Figure 5-8 (for watershed RM) indicate that the model predictions are completely 

biased since almost all residuals are greater than zero which means the AGNPS model 

underpredicts both runoff volume and sediment yields for watershed RM. It will also be 

shown later that the residuals for watershed RM are not normally distributed either. This will 

be explained subsequently. 

Again, from Figures 5-1 to 5-6, there is a trend that the residuals are close to zero 

when the rainfall amount is small and that the residuals tend to increase when the rainfall 



86 

amount becomes larger. It means that the variances of the residuals increase slightly as 

rainfall amount increases. Strictly speaking, the assumption of homogeneous variance is 

violated. However, this phenomenon is not uncommon in hydrological and water quality 

modeling. Consider the situation that the residuals have a constant variance as rainfall 

amount becomes larger. One could expect that a heavy rainfall would generally produce a 

large runoff volume and sediment yield. Using the coefficient of variation (Cv) as a measure 

of accuracy of model predictions, one would expect the accuracy for small events to be 

lower than that for large events because the variances for all events, small or large, are 

identical. This may be desireable when prediction of large events is important, for example, 

flood forecasting. But in many cases, one may be interested only in predicting some events 

on an average basis. Consider now another situation in which the accuracy of the model 

predictions is identical for all size of events. Then the variances of the residuals will be 

small for small events and large for large events. Therefore, a slight increase of variances 

along with the size of the events may not be unacceptable in hydrological and water quality 

modeling. 

The assumption of the normality of residuals was verified by plotting the residuals 

of runoff or sediment on a normal probability scale. This is a visual test. If residuals were 

perfectly normally distributed, the plot would be a straight line. Figures 5-9 through 5-14 

are probability plots of residuals for watersheds RU, WM and WU. The distributions of the 

residuals of runoff volume and sediment yields may be approximated by normal 

distributions. Figures 5-15 and 5-16 indicate that the residuals of runoff volume for 

watershed RM may be normally distributed but the residuals of sediment yields for 
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watershed RM can not be normally distributed. Additionally, the Kolmogorov-Smirnov 

goodness-of-fit test was employed as a quantitative method to verify the assumption of the 

normality of residuals. The results are presented in Table 5-10. The null hypothesis of 

normally distributed residuals of runoff volume and sediment yields was not rejected at the 

0.10 significant level for watersheds RU, WM and WU. For watershed RM, the null 

hypothesis of a normal distribution for the residuals of runoff volume was not rejected at the 

0.10 significant level, but the null hypothesis of a normal distribution for the residuals of 

sediment yields was rejected even at the 0.05 significant level. 

It can be concluded from the above discussion that the calibration results in Tables 

5-1 through 5-3 for watersheds RU, WM and WU are valid. However, the estimates of the 

parameters for watershed RM in Table 5-4 can not be taken as the final calibration results 

since the Least Square's assumptions are not valid. It does not necessarily mean that the 

calibration techniques fail to work for watershed RM. It can be seen from Table 5-5 that the 

real cause of invalid Least Square's assumptions is the limitation of the output accuracy of 

the AGNPS model. 

Table 5-8 provides the residuals and the predictions of runoff volume and sediment 

yields for watershed RM when the calibrated parameters are used in the AGNPS model. It 

can be seen that most model predictions are zero. For the predictions of sediment yields, 

there is only one, out of fifteen, non-zero value. The sediment yields of the AGNPS model 

is given in tons with two decimal place accuracy. When the unit of tons is changed to the 

unit oflbs/acre, 0.01 tons will be 14.29 lbs/ac for the watershed RM. Any values less than 

0.005 tons would be output as zero by the AGNPS model. This is why most of the predicted 



88 

sediment yields are zero and the assumptions of the Least Squares method are not valid. 

Therefore, the AGNPS model may not be able to provide predictions for sediment yields 

accurately for the watershed RM. But this does not mean the AGNPS model is not an 

accurate model because most observations of sediment yields from the outlet of the 

watershed RM are less than 0.005 tons (7 .15 lbs/ac ). In addition, the amount of sediment 

yield of concern is usually much greater than 7 .15 lbs/ac. In those cases, the AGNPS model 

would be a good model to use. 

Probability Density Functions of Retention Parameter and Slope 

Since the Least Square's assumptions were approximately satisfied for study 

watersheds RU, WM and WU, the marginal probability density functions of retention 

parameter and land slope were calculated by integrating Equation (61) and plotted just for 

these watersheds as shown on Figures 5-17 through 5-22. The dashed line represents the 

calibrated probability density function in these figures. Since none of these calibrated 

probability density functions follows exactly a known distribution, it will be difficult and 

very inconvenient to sample a value from such a distribution for use in an uncertainty 

analysis. It was decided that a known distribution would be used to approximate the 

calibrated probability density functions. A statistical software package, Bestfit (Palisade 

Corporation, 1993), was used to find the best approximation of a calibrated probability 

density function. 

A lognormal distribution was chosen by Bestfit to approximate the calibrated 

probability density function of the retention parameter for watersheds RU, WM and WU. 
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For cases where the calibrated probability density function could not be approximated by a 

normal or lognormal distribution, only calibrated distributions were plotted. The 

distributions of land slope for watersheds RU and WM are such examples. In those cases, 

the mean and the standard deviation of the parameter were calculated based on its calibrated 

probability density function. Again, Bestfit was applied to do those calculations. 

Comparison of Bayesian Estimator with Least Squares Technique 

Tables 5-1 through 5-3 show the calibrated curve number and land slope for 

watersheds RU, WM and WU. Four sets of curve number and land slope were estimated, 

one set from runoff volume only, one set from sediment yields only, one set from both runoff 

volume and sediment yields by Least Squares technique, and another from both runoff 

volume and sediment yields by Bayesian estimator. 

When the AGNPS model was calibrated only from runoff volume, land slope was not 

estimated by calibration because the curve number is the only sensitive parameter as far as 

runoff volume is concerned. The "real" land slope was selected as the value ofland slope. 

Four points could be made by observing the results in Tables 5-1 through 5-3: 

I) The sum of squared errors (SSE) of runoff is the smallest when curve number was 

estimated by runoff volume alone, and the SSE of sediment yields is the smallest when the 

parameters were calibrated by sediment yields alone. However, the total SSE of either one 

may or may not be the smallest. 

2) When the parameters were estimated by the Least Squares method based on both 

runoff volume and sediment yields, the SSE of runoff is equal to or very close to the smallest 
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SSE and the SSE of sediment yields is equal to or very close to the smallest SSE of sediment 

too. In addition, the total SSE is always the smallest. 

3) The estimates of curve number by the Least Squares method based upon both 

runoff volume and sediment yields are equal to or very close to those based upon only runoff 

volume. Similarly, the estimates of land slope have this property too. This interesting 

property may be explained by the structure of the AGNPS model. The hydro logic model in 

AGNPS is independent from the Erosion and Sediment transport model. This indicates that 

a stepwise parameter estimation procedure could be applied. So curve number may be 

estimated only from runoff volume data and land slope may be estimated only from sediment 

yields. The estimates of the parameters by the stepwise procedure should be close to those 

by multipurpose objective function. 

4) For the study watersheds WM and WU, the calibrated parameters by Least 

Squares are identical to those by Bayesian estimator. For watershed RU, the estimates of 

land slope by these two methods are the same, but the estimates of the curve number are a 

little different. If we compare the average of predicted runoff volume with the mean of 

observed runoff, we will find that the AGNPS model with the curve number estimated by 

the Least Squares method tends to underestimate the runoff while the model with the curve 

number estimated by Bayesian technique tends to overpredict runoff volume. The degree 

of the overprediction of runoff is less than that of the underprediction. Therefore, we may 

conclude that the Bayesian estimator is just as efficient as the Least Squares method and has 

the advantage of providing a probability density function for the estimate rather than simply 

a point estimate. 



Table 5-1. Calibrated Parameters by Different Methods for Watershed RU 

Optimization Calibrated 

& criteria Curve Number 

Runoff 82 

Sediment 80 

Runoff& 80 

Sediment 

(LS) 

Runoff& 86 

Sediment 

(Bayesian) 

* SSE = Sum of the squared errors 

** Total SEE= column 4 + column 5 

Calibrated SSE* of SSE of 

Slope(%) Runoff Sediment 

14.7 316 

1 14.7 51.3 

1 14.7 51.3 

1 16.6 59.2 
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Total SSE** 

330.7 

66.0 

66.0 

75.8 



Table 5-2. Calibrated Parameters by Different Methods for Watershed WM 

Optimization Calibrated 

& criteria Curve Number 

Runoff 72 

Sediment 60 

Runoff& 72 

Sediment 

(LS) 

Runoff& 72 

Sediment 

(Bayesian) 

* SSE = Sum of the squared errors 

** Total SEE= column 4 + column 5 

Calibrated SSE* of SSE of 

Slope(%) Runoff Sediment 

1.5 31.3 

1 2.3 16.6 

0 1.5 16.9 

0 1.5 16.9 
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Total SSE** 

32.8 

18.8 

18.4 

18.4 



Table 5-3. Calibrated Parameters by Different Methods for Watershed WU 

Optimization Calibrated 

& criteria Curve Number 

Runoff 66 

Sediment 68 

Runoff& 66 

Sediment 

(LS) 

Runoff& 66 

Sediment 

(Bayesian) 

* SSE = Sum of the squared errors 

** Total SEE= column 4 + column 5 

Calibrated SSE* of SSE of 

Slope(%) Runoff Sediment 

4.7 13.0 

5 4.8 10.9 

5 4.7 10.9 

5 4.7 10.9 
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Total SSE** 

17.7 

15.7 

15.6 

15.6 



Table 5-4. Calibrated Parameters by Different Methods for Watershed RM 

Optimization Calibrated 

& criteria Curve Number 

Runoff 52 

Sediment 40 

Runoff& 52 

Sediment 

(LS) 

Runoff& 50 

Sediment 

(Bayesian) 

* SSE = Sum of the squared errors 

** Total SEE= column 4 + column 5 

Calibrated SSE* of SSE of 

Slope(%) Runoff Sediment 

25.1 27.3 

8 30.3 27.3 

3 25.1 27.3 

3 25.3 27.3 
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Total SSE** 

52.5 

57.6 

52.5 

52.6 
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Table 5-5. Model Predictions and Residuals for Watershed RU 

AMC Rainfall Predicted Residuals* of Predicted Residuals of 
Runoff Runoff Sediment Sediment 

(in) (in) (in) Yields (lbs/ac) 
(lbs/ac) 

2 2.38 1.15 -0.09 19.74 -14.22 

1 2.03 0.31 0.72 6.58 2.05 

3 1.89 1.21 -0.59 13.16 -8.95 

3 1.07 0.51 0.14 6.58 -5.7 

1 2.49 0.52 -0.51 13.16 -13.08 

1 1.11 0.03 0.04 0 0.36 

2 0.53 0.02 0.15 0 0.65 

1 1.28 0.06 0 0 0.11 

1 3.51 1.13 0.38 39.47 13.18 

1 1.77 0.20 0.08 6.58 -5 

3 1.57 0.93 0.29 13.16 -10.95 

2 1.34 0.39 -0.31 6.58 -5.98 

1 0.47 0 0.34 0 4.54 

2 0.90 0.15 -0.04 0 1.49 

3 1.04 0.48 -0.30 6.58 -6.46 

3 1.93 1.25 -0.56 13.16 -10.97 

3 2.68 1.95 -1.29 32.89 -30.35 

3 2.25 1.55 -0.90 19.74 -4.29 

* residuals= "observed" - "predicted" 
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Table 5-6. Model Predictions and Residuals for Watershed WM 

AMC Rainfall Predicted Residuals* of Predicted Residuals of 
Runoff Runoff Sediment Sediment 

(in) (in) (in) Yields (lbs/ac) 
(lbs/ac) 

1 0.69 0 0.01 0 0.15 

3 1.37 0.41 0.35 5.60 -3.02 

1 0.95 0 0.36 0 0.64 

3 2.32 1.10 0.13 11.20 75.13 

3 1.42 0.44 0.21 5.60 -1.18 

1 3.57 0.27 -0.23 5.60 -5.28 

3 4.64 3.13 -0.46 28.01 -14.11 

3 3.22 1.85 -1.10 16.81 -14.09 

3 1.02 0.21 0 0 0.19 

3 0.54 0.02 0.03 0 0.15 

3 1.95 0.81 0.06 5.6 -4.81 

3 0.48 0.01 0.04 0 0.09 

1 2.10 0.01 0.04 0 0.25 

* residuals = "observed" - "predicted" 
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Table 5-7. Model Predictions and Residuals for Watershed WU 

AMC Rainfall Predicted Residuals* of Predicted Residuals of 
Runoff Runoff Sediment Sediment 

(in) (in) (in) Yields (lbs/ac) 
(lbs/ac) 

1 1.87 0 0 0 0 

1 1.32 0 0.03 0 0.21 

1 0.94 0 0.04 0 1.91 

1 1.50 0 0.03 0 0.86 

2 2.17 0.21 0.10 7.81 -3.18 

3 0.71 0.03 0 0 0.42 

3 1.97 0.63 -0.19 7.81 -3.83 

2 2.08 0.18 0.16 7.81 -3.96 

2 0.85 0 0.09 0 6.70 

2 0.77 0 0.01 0 0.25 

2 1.61 0.06 0.08 0 1.05 

1 1.52 0 0.01 0 0.03 

3 0.64 0.02 0 0 0.08 

2 0.54 0 0.02 0 0.22 

3 0.44 0 0.01 0 0.20 

2 3.76 0.95 -0.18 23.44 18.40 

3 0.59 0.01 0.04 0 0.54 

3 2.04 0.68 -0.41 7.81 -5.79 

* residuals= "observed" - "predicted" 
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Table 5-8. Model Predictions and Residuals for Watershed RM 

AMC Rainfall Predicted Residuals* of Predicted Residuals of 
Runoff Runoff Sediment Sediment 

(in) (in) (in) Yields (lbs/ac) 
(lbs/ac) 

1 1.47 0 0.02 0 0.14 

2 0.76 0 0.03 0 0.94 

1 3.37 0 0.54 0 2.32 

1 1.26 0 0.04 0 0.33 

3 2.25 0.34 -0.17 14.29 13.23 

3 0.64 0 0.10 0 0.70 

3 1.57 0.10 -0.01 0 0.16 

1 2.32 0 0.21 0 0.67 

1 2.03 0 0.16 0 0.69 

3 1.07 0.01 0.07 0 1.03 

1 0.41 0 0 0 0 

1 1.77 0 0.01 0 0.23 

1 1.00 0 0.01 0 0.18 

1 1.44 0 0.14 0 7.54 

3 2.00 0.24 0.26 0 2.83 

* residuals = "observed" - "predicted" 
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Table 5-9 T Test Results for Watersheds RU, WM and WU 

RU WM WU 

Runoff Sediment Runoff Sediment Runoff Sediment 

# of Samples 18 18 13 13 18 18 

Mean -0.14 -5.20 0.045 0.035 0.07 0.42 

Stdev 0.50 9.34 0.21 2.07 0.14 0.96 

Tvalue 1.17 ·2.36 0.22 0.06 2.08 1.88 

Significance 0.05 0.05 0.05 0.05 0.05 0.05 
Level a: (0.02) 

Table value 2.11 2.11 2.18 2.18 2.11 2.11 

(tl-u/2, n-1) (2.57) 

H0: µ=O not rejected rejected not not not not 
(not rejected) rejected rejected rejected 

rejected 
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Table 5-10 Tests ofNormality by Kolmogrov-Smimov 

Maximum Significance K-S Ho: Normally 
Deviation level a: Critical Distributed 

Values 

Runoff 0.166 0:10 0.304 not rejected 
RM 

Sediment 0.347 0.10 (0.05) 0.304 (0.338) rejected 

Runoff 0.21 0.10 0.278 not rejected 
RU 

Sediment 0.11 0.10 0.278 not rejected 

Runoff 0.18 0.10 0.325 not rejected 
WM 

Sediment 0.28 0.10 0.325 not rejected 

Runoff 0.19 0.10 0.278 not rejected 
WU 

Sediment 0.10 0.10 0.278 not rejected 



101 

4 

3 -

- 2 -C: -=-en 
ca 
:l 1 -"O 
"in • Cl) .. • • 0::: .... Cl) 0 - • • E • • :l • • 
~ -1 - • 
:i:: • 0 
C: 
:l -2 -0::: 

-3 -

-4 I I I I I I I 

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 

Rainfall (in) 

Figure 5-1. Runoff Volume Residual Plot for Watershed RU 



102 

40 -
,-... 
0 
ca -en 
..c 
:::=., 

20 -en 
ca • ::J 

:'Q 
en • Q) 0 - • • •• • 0:: 

"'C • • • • 
Q) • ' '>, •• +-' 
C -20 -Q) 

E 
:a • Q) 
Cf) 

-40 -

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 

Rainfall (in) 

Figure 5-2. Sediment Yield Residual Plot for Watershed RU 



103 

0.8 

(fJ 0.6 -
ctl 
:::J 

:!2 
0.4 -(fJ 

Q) 

0::: 
Q) • • E 0.2 -
:::J ,. • 0 • > • ti:: 0.0 - • • 0 
C 
:::J • 0::: 

"'O -0.2 -
Q) 

E • ,.._ 
.E -0.4 -
(fJ 
C • ctl ,.._ 
I- -0.6 -

-0.8 -
1 I I I I I T T T T l 

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 

Rainfall (in) 

Figure 5-3. Transformed Runoff Volume Residual Plot for Watershed WM 



104 

10 

8 -
(/) 

ro 
:J 6 - • :'Q 
(/) 
Q) 

Cl'.'. 4 -
"'C 
Q) 

2 -~ ..... .. C •• • Q) 0 -E I ~ 
Q) 

-2 - • • • (/') • "'C 
Q) 

E -4 -
'-
J2 
(/) 

-6 -C 
ro 
'-
I-

-8 -

-10 I I I I I I I I I 

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 

Rainfall (in) 

Figure 5-4. Transformed Sediment Yield Residual Plot for Watershed WM 



105 

0.8 

en 0.6 -
ro 
::::i 

"'O ·u; 0.4 -
Q) 

c::: • Q) 

E 0.2 - • • •• ::::i ., . • 0 • • > 
ti:: 0.0 - - • 0 
C • ::::i • c::: 

"'O -0.2 -
Q) • E ,_ 
.E -0.4 -en 
C 
ro ,_ 
I- -0.6 -

-0.8 I I I I T 1 1 

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 

Rainfall (in) 

Figure 5-5. Transformed Runoff Volume Residual Plot for Watershed WU 



106 

8 

en 6 -
ca 
:, 

"t:I ·w 4 -
(l) 

c:::: 
"t:I • (l) 2 -
~ • • - .,.- •• C •• (l) 0 - • E 
"t:I ... 
(l) • Cl) 

-2 -"t:I 
(l) 

E .... 
.E en -4 -
C 
ca .... 
I- -6 -

-8 I I I I I I I 

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 

Rainfall (in) 

Figure 5-6. Transformed Sediment Yield Residual Plot for Watershed WU 



107 

0.8 

0.6 -

• - 0.4 -C 
:;:;, 

"' ro • :::::i 0.2 - • "'O 
'in • • Q) • •• 0:: • • • Q) 0.0 - • • • E 

:::::i 
0 

-0.2 - • > 
ti:: 
0 
C 
:::::i -0.4 -0:: 

-0.6 -

-0.8 I I I I I I I 

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 

Rainfall (in) 

Figure 5-7. Runoff Volume Residual Plot for Watershed RM 



108 

14 

• 
12 -0 

~ 
1/) 

10 .0 
::::=.. 
1/) 

ca 
::J 

"C 8 'in • Q) 

0::: 
"C 

6 Q) 

5= _.. 
C 
Q) 

4 E 
ti 
Q) • (J) 

2 • 
•• • • 0 • 

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 

Rainfall (in) 

Figure 5-8. Sediment Yield Residual Plot for Watershed RM 



109 

1.0 -

en • ctl 
::J 0.5 -"O 

"in •• • (]) 

c::: ••• (]) 

E 0.0 - ••• ::J • 0 
> •• :t: 
0 -0.5 - ••• C 
::J 

c::: 

• -1.0 -

• 
-1.5 I I I I I 

1 10 30 50 70 90 99 

Probability(%) 

Figure 5-9. Probability Plot of Runoff Volume Residuals for Watershed RU 



(J) 

ctl 
:::J 
:'2 
(J) 
Q) 

a::: 
"'O 

10 -

0 -

a, -10 -
>= -C 
Q) 

.; -20 -
Q) 

(f) 

-30 - e 

•• •• 
••••• • 

• 
• ••••• 

-40 ----+-~~~~-1~~~-1~~-1~~-1~~~-1~~~~---l 

1 10 30 50 70 90 99 

Probability(%) 

Figure 5-10. Probability Plot of Sediment Yield Residuals for Watershed RU 

110 



ca 
ca 
::::, 

:'Q 
(/) 
Q) 

0:::: 
Q) 

E 
::::, 
0 
> 
::::: 
0 
C 
::::, 

0:::: 
"O 
Q) 

E ,_ 
.E 
(/) 
C 
ca ,_ 
I-

0.4 

0.3 -

0.2 -

0.0 -

0.0 -

-0.1 -

• 
-0.2 -

-0.3 - • 
-0.4 -

-0.5 • I 

1 10 

• • 

I 

30 

•• 

I 

50 

• ••• 

I 

70 

Probability(%) 

• • 

I 

90 99 

Figure 5-11. Probability Plot of Runoff Volume Residuals for Watershed WM 

111 



112 

3 • 
en 
co 2 -
:J 

"O 
"ci) 
Q) 

c::: 
"O 1 -
Q) • 5= •••• • _.. 
C 
Q) 0 -E 
~ • Q) 

en • "O 
Q) -1 -
E 
I.... 

.E • • en 
C • co -2 -I.... 

I-

• 
-3 I I I I I 

1 10 30 50 70 90 99 

Probability(%) 

Figure 5-12. Probability Plot of Sediment Yield Residuals for Watershed WM 



113 

0.4 

en 0.3 - • cu 
::, 

:-Q 
0.2 - • en 

Q) ••• 0::: 
Q) •• E 0.0 - ••••• ::, 
0 
> 
ti= 
0 

0.0 - ••• 
C 
::, 

0::: 
-0.1 - • '"O 

Q) • E ,_ 
J2 -0.2 -
en 
C cu ,_ 
I- -0.3 - • 

-0.4 I I I I I 

1 10 30 50 70 90 99 

Probability(%) 

Figure 5-13. Probability Plot of Runoff Volume Residuals for Watershed WU 



114 

3 

• 
U) 

ct! 
::I 2 -
:2 
U) 
Q) • O'.'. • "'O 
Q) 

1 - •• >= ..... •• C 
Q) 

E •••• 
"'O •• Q) 
Cf) 0 - • "'O 
Q) 

E ,_ • .E • • U) 
C -1 -
ct! ,_ 
f- • 

-2 I I I I I 

1 10 30 50 70 90 99 

Probability (%) 

Figure 5-14. Probability Plot of Sediment Yield Residuals for Watershed WU 
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CHAPTER VI 

INCORPORATING PRIOR INFORMATION INTO SITE-SPECIFIC 

INFORMATION AND EVALUATION OF AGNPS 

WITH UNCERTAIN PARAMETERS 

The ultimate purpose of calibrating the parameters of a model is to make better use 

of the model to predict future events. However, the model with calibrated parameters may 

not be employed for predictions before it is validated. In this chapter, an effort will be made 

to evaluate the AGNPS model with uncertain curve number and land slope. 

Evaluation of the AGNPS Model 

The conventional method of validating a model is to check to see if the model with 

calibrated parameters could repeat the observations which are not used in the model 

calibration. A model would be considered validated if the model predictions match the 

corresponding observations. In this study, the calibrated parameters were considered to be 

uncertain. Instead of fixed values, the parameters were represented in the form of probability 

density functions. In this case, not only will the AGNPS model with point estimates of the 

calibrated parameters need to be validated, but also with all possible values of the calibrated 
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parameters. In other words, the input parameters for the AGNPS model need to be sampled 

by the Monte Carlo techniques from the calibrated or specified distributions, and the model 

is run for all sampled input parameters. Then the statistical characteristics of all possible 

model predictions are compared to the corresponding observations. Since the parameters 

were expressed in the form of a prior distribution, site specific distribution and posterior 

distribution, the AGNPS model was validated as described above for these three conditions 

separately. The prior distributions of parameters were obtained from literature; the site 

specific distributions were from the calibration of the AGNPS model; and the posterior 

distributions were the combinations of the prior distributions and the site specific 

distributions. 

Since the model parameters were regarded as uncertain and were expressed in the 

form of probability density functions, the model responses must be random variables and 

may be described in the form of probability density functions also. The purpose of this study 

was trying to predict runoff volume and sediment yield on an average basis. The average of 

runoff volume and the average of sediment yield over many rainfall events would be 

considered as random variables and the distributions of them may be found by Monte Carlo 

simulations. Confidence intervals at some significance level can be then placed on the 

distribution of runoff or sediment yield. If the means of their observations fall into the 

corresponding intervals, it may be concluded that the model is validated at that significance 

level. Note that 90% confidence intervals mean that there is a 90% chance a model 

prediction would fall into the intervals. Here the model predictions were viewed as random 

variables. The AGNPS model with uncertain input parameters was evaluated over the data 



from watersheds RU, WM and WU. 

Procedures 
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Suppose that there are n rainfall events for the model evaluation that were not used 

in the model calibration. The distribution of the mean of simulated runoff volume and the 

distribution of the mean of simulated sediment yield may be found as follows: 

1) Generate a random number from a lognormal distribution with specified mean 

and standard deviation for curve number, and for land slope. 

2) Update curve number and land slope in the AGNPS input file with the generated 

values. 

3) Run AGNPS for one rainfall event. Record the predicted runoff volume and 

sediment yield. 

4) Repeat steps 1 through 3 for all rainfall events. Then calculate the mean of runoff 

volume and the mean of sediment yield. 

5) Repeat steps 1 through 4 many times, say N times. Then there would be N 

values of the mean of runoff and N values of the mean of sediment. The 

determination of the number N will be described later in the subsection of Monte 

Carlo simulation. 

6) Use the software Bestfit to analyze the two samples above separately. The 

distribution of the mean of runoff volume and the distribution of the mean of 

sediment yield can be obtained. 
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AC computer program was written to perform the procedure from step 1 to step 5. 

Step 6 has to be done manually. The random numbers generated by the program were 

checked to make sure that they follow the specified lognormal distribution with correct mean 

and variance. The source code of the program can be found in Appendix B. 

Monte Carlo Simulation 

Monte Carlo simulation is the most commonly used method for uncertainty analysis. 

The variance of the simulation results can be reduced simply by increasing the number of 

simulation runs. It is considered to be an accurate method compared to other uncertainty 

analysis methods, such as sensitivity analysis and First-Order analysis. Stevens (1993) 

employed Monte Carlo simulation as a standard comparison method to analyze the accuracy 

of First Order analysis. Now an important step of Monte Carlo Simulation is to determine 

an appropriate number of simulation runs so that the desired accuracy can be reached while 

keeping the simulation time as low as possible. 

The number of simulation runs was decided by plotting the mean of the model 

response of interest against different numbers of simulation runs. The AGNPS model was 

run different numbers of times for a rainfall (3.76 inches) in watershed WM. The mean of 

runoff volume predictions and the mean of sediment yield predictions were plotted against 

the number of simulation runs as shown in Figure 6-1 and Figure 6-2. It can be seen that 200 

simulation runs would be appropriate for runoff volume. However, the curve for sediment 

yields still oscillates a little bit when the number of simulation runs was 200. It was decided 

that it was safer to choose 400 runs because an increase of 200 simulation runs was 
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affordable in this study, i.e. it takes only about four seconds to run the AGNPS model once. 

The same procedure was repeated for another rainfall event (4.64 inches) in watershed WM. 

Similar results, which are not presented here, were acquired. 

The number of simulation runs may be related to the number of uncertain parameters, 

the degree of uncertainty in parameters and sensitivity of uncertain parameters. These factors 

are quite similar to one another for watersheds RU, WM and wn Therefore, it was decided 

that 400 simulation runs were applied to all the three watersheds. 

Haan (1995) points out that two checks that should be incorporated into any Monte 

Carlo simulation are an examination of the correlation structure of the randomly generated 

parameter values and an examination of the probability density functions of the randomly 

generated parameter values. If the intent was to generate independent random variables but 

in fact a high degree of correlation ends up in the generated parameters, the output variance 

will be incorrectly estimated. If the probability density functions of the generated parameters 

are significantly different from the target probability density functions, the output uncertainty 

may also be incorrectly estimated. In this study, curve number and land slope were regarded 

as independent random variables. 400 curve numbers and land slopes were generated by the 

program mentioned in the previous subsection and the correlation matrix was found as 

follows: 

~[ 1 0.01] 
_e 0.01 1 
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It can be seen from the correlation matrix that the off-diagonal elements in the matrix are 

very close to zero. This indicates that correlation structure of the generated parameters 

matches statistically the target correlation structure (independent parameters). It was 

determined by the software Bestfit that both distributions of generated curve number and 

generated land slope match the target probability density functions approximately. 

Distributions of the Model Parameters 

Three types of information, prior information, site-specific information and posterior 

information, are described in this section. The prior information in this study was from 

Prabhu's thesis (1995) and was collected from a variety of literature sources. For example, 

the prior information on curve number was from Haan and Schulze (1987). The site-specific 

information was the calibration results from the previous chapter. And the posterior 

information was calculated using equations (65) through (72) in Chapter III based upon the 

prior and site-specific information. 

The retention parameter S ( S=lOOO/CN-10 ) was assumed to have a lognormal 

distribution and a coefficient of variation, Cv, of0.5. Assuming the curve number estimated 

from tables for the existing soils and cover condition as the mean value, together with the 

value of Cv, the variance of S can be found. The land slope was assumed to have a 

coefficient of variation equal to 0.3, and the estimated land slope of a watershed was 

considered to be the mean of the land slope. The land slope was also assumed to be 

lognormally distributed. A lognormal distribution is often used to describe parameters in 

hydrologic and water quality models because it has a very nice property of being bounded 
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by zero. 

Site-specific distributions of retention parameter and land slope were shown in 

Figures 5-17 through 5-22. For the convenience of Monte Carlo simulation, only the 

approximate probability density functions in these Figures were utilized. Figures 5-18, 5-20 

and 5-22 suggest that land slope does not follow a lognormal distribution. However, land 

slope was assumed to be lognormally distributed for the Monte Carlo simulation in this 

study. Haan (1995) states that the order of expected value, variance and distributional shape 

is the order of priority in describing uncertain input parameters. Al-Issa (1995) investigated 

the effects of different distributions of input parameters on the model responses for AGNPS 

using the data from watershed WM and concluded that the type of distribution of the input 

parameters has a small effect on the uncertainties of the model responses. He also concluded 

that it is the variances of the input parameters that have a significant impact on the 

uncertainty of the model responses. Therefore, it may not be implausible to take a lognormal 

distribution as an approximation to the calibrated distribution of land slope, but the mean 

and the variance of the lognormal distribution were assigned to be identical to those of the 

calibrated distribution. 

Since the prior and the site-specific distributions of the input parameters are 

lognormal, the posterior distributions of the input parameters are lognormal too. The mean 

and the standard deviation of the posterior distributions for retention parameter S were listed 

in Table 5-1, and the mean and the standard deviation of the posterior distributions for land 

slope were given in Table 5-2. It can be seen from the tables that the mean of the posterior 

distribution is always between the mean of the prior distribution and the mean of the site-



132 

specific distribution, and that the coefficient of variation for the posterior distribution is 

always the smallest one among the prior, site-specific and posterior distributions. For a 

normal distribution, the mean of the posterior is actually a weighted average between the 

mean of the prior and the mean of the site-specific. As we know, if a variable Y = ln(X) 

follows a normal distribution, then X will follow a lognormal distribution. Since X and Y 

have a one-to-one monotonic relationship to each other, the mean of the posterior for a 

lognormal distribution must be between the means of its prior and its site-specific 

distribution. 

For the convenience of comparison, the prior, site-specific and posterior distributions 

of retention parameter or land slope for each watershed were plotted on the same graph, as 

shown in Figures 6-3 through 6-8. Figures 6-3, 6-5 and 6-7 show that the posterior 

distribution of the retention parameter S is closer to the site-specific distribution than to the 

prior distribution. This suggests that the site-specific distribution of the retention parameter 

dominates the posterior. Figures 6-4, 6-6 and 6-8 show that the posterior distribution of the 

land slope is closer to the prior distribution thati to the site-specific distribution, which 

indicates that the prior information is stronger than the site-specific information. It may not 

seem reasonable if the prior information is collected from literature. The information about 

parameters from literature should not be stronger than that from observed data. Otherwise, 

why waste money on observing data? But if the prior information is based upon the previous 

data and the site-specific information is from newly observed data, the prior information 

could be stronger the site-specific information. 
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Results and Discussions 

Following the procedures described in the first subsection, the mean of the predicted 

runoff volume and the mean of the predicted sediment yield were simulated for different 

types of information (prior, site-specific or posterior) and for different watersheds (RU, WM 

or WU), respectively. These simulated means were analyzed using the software Bestfit to 

find the best fitting distributions. The frequency histograms and the best fitting distributions 

are shown in Figures 6-9 through 6-14 for watershed RU, in Figures 6-15 through 6-20 for 

watershed WM and in Figures 6-21 through 6-26 for watershed WU. 

It can be seen from Figures 6-9 through 6-26 that the mean of runoff volume for all 

three watersheds was found to be normally distributed, and that the mean of sediment yield 

was found to be lognormally distributed for watersheds RU and WM and normally 

distributed for watershed WU. 

Based upon the Central Limit Theorem, if a random variable X is made up of the 

sum of many small effects, then X might be expected to be normally distributed. One may 

expect that the mean of runoff volume and the mean of sediment yield follow a normal 

distribution because both of them can be viewed as a sum of n small random components 

where n is the number of rainfalls used in the model evaluation. The degree of uncertainty 

in those small components determines how large n needs to be for the sum to be 

approximated by a normal distribution. So it was not a surprise to see that the mean of 

runoff volume for all watersheds and the mean of sediment yield for watershed WU follow 

a normal distribution, and that the mean of sediment yield for watershed RU and WM 

follows a lognormal distribution. One can expect that they all can be approximated by a 
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normal distribution when the number of rainfall events used in the model evaluation becomes 

very large. 

Confidence intervals were calculated for every distribution. For a normal 

distribution, the lower and upper confidence limits can be determined from 

- (95) 
Ux= X+Zl-cz/2C1x 

where z1_,.12 is the value of Z from the standard normal distribution such that the area to the 

right of Z is a./2 in percentage and x bar is the mean and ox is the standard deviation of the 

normal distribution. 

For a lognormal distribution, the confidence intervals can be found in three steps: 

1) Transform the lognormal distribution into a normal distribution based upon the 

relation Y=ln X, and calculate the mean and standard deviation of the normal 

distribution. 

2) Use Equation (95) to calculate the confidential limits for the normal distribution. 

3) The antilog of the confidence limits for the normal distribution will be the 

confidence limits for the lognormal distribution. 

The 90% and 95% confidence intervals are given in Tables 6-3 and 6-4 for every 

distribution in each watershed. The width of confidence intervals in the tables may indicate 

to some extent the uncertain degree of the model predictions. 

As shown in Figures 6-27 through 6-32, in order to make it easy to compare the 
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model responses for the prior, site-specific and posterior input parameters, the mean of runoff 

volume associated with them was plotted on one graph for each watershed, and the mean of 

sediment yield associated with them was plotted on one graph for each watershed. The 

corresponding confidence intervals were placed on the graphs. The mean of the observed 

values was also plotted on the graphs. Table 5-5 contains the values of the observed means 

for each watershed. 

Figures 6-27, 6-29 and 6-31 show that the observed mean of runoff volume falls into 

the 90% confidence intervals of runoff predictions with prior, site-specific and posterior 

input parameters for every watershed. This does not mean all model predictions with the 

prior, site-specific and posterior input parameters are equally good because the interval width 

is different. For instance, the 90% interval width of runoff predictions with prior input 

parameters for watershed RU is 0.26 inches, 0.20 inches with site-specific input parameters 

and 0.16 inches with posterior input parameters. It can be seen from Table 6-3 that the order 

of interval width (from wide to narrow) for each watershed is the prior, the site-specific and 

the posterior runoff predictions. Obviously, the uncertainty involved in the posterior runoff 

predictions is the smallest and the uncertainty involved in the prior runoff predictions is the 

biggest. Therefore, as far as the confidence intervals are concerned, incorporating the prior 

information into the site-specific information does reduce the uncertainty in runoff 

predictions for each watershed. Again, Figures 6-27, 6-29 and 6-31 show that the 

distributi0n of posterior runoff predictions is closer to the distribution of site-specific runoff 

predictions for each watershed. This is because the site-specific information of retention 

parameter dominates the posterior information ofretention parameter. Since the observed 
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mean of runoff volume falls into the confidence intervals of the prior runoff predictions, it 

may be concluded that the prior information of Curve Number is relevant. 

It can be seen from Figure 6-28 that the observed mean of sediment yield falls only 

into the 90% confidence intervals of the site-specific sediment predictions for watershed RU. 

Figure 6-30 shows that the observed mean falls out of all 90% confidence intervals for 

watershed WM but within the 95% confidence intervals of the site-specific sediment 

predictions. Therefore, site-specific sediment predictions are probably plausible for 

watersheds RU and WM. The AGNPS model with the prior and posterior input parameters 

was not able to provide proper sediment predictions for watersheds RU and WM. 

Furthermore, the confidence intervals of the site-specific sediment predictions are the 

narrowest. The distribution of the posterior sediment predictions is closer to that of the prior 

sediment predictions for these two watersheds (Figures 6-28 and 6-30) because the prior 

distribution ofland slope dominates the posterior. It may be concluded that the specification 

of prior information (both mean and coefficient of variation) about land slope was irrelevant 

for watersheds RU and WM. 

From Figure 6-32 and Table 6-4, we can see that the observed mean of sediment yield 

for watershed WU falls into the 90% confidence intervals of the site-specific sediment 

predictions and falls into the 95% confidence intervals of both the prior and the site-specific 

sediment predictions. The means of the prior, site-specific and posterior sediment 

predictions are close to each other. The intervals of the prior sediment predictions are 

narrower than those of the site-specific sediment predictions, which results from stronger 

prior information about land slope. The intervals of the posterior sediment predictions are 
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the narrowest. It could probably be surmised that if the prior information of land slope had 

not been assumed so strong (to have a larger coefficient of variation instead) the intervals of 

the posterior sediment predictions would be wider to contain the observed mean of sediment 

yield. Therefore, we may conclude that the mean of land slope was properly estimated for 

the prior information of land slope in watershed WU but the coefficient of variation was 

specified too small. 

Based upon the interval widths for both runoff predictions and sediment predictions, 

we can find that when the mean of the prior information about input parameters was properly 

specified the interval width of the posterior predictions is the smallest. This may be viewed 

as an indicator to see if the mean of the prior information is specified appropriately. 

The observed mean of sediment yield falls into the 95% intervals of the site-specific 

sediment predictions and falls out of the 95% intervals of the posterior sediment predictions 

for all three watersheds. Thus, we can conclude that incorporating a misspecified prior into 

the site-specific information of input parameters will lead to worse or even false model 

predictions rather than reduce the uncertainty of the model predictions. 
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Table 6-1 Distribution of Retention Parameter for All Watersheds 

Prior Site-specific Posterior 
Watersheds 

Distribution Distribution Distribution 

Mean 3.51 2.47 2.67 

RU Stdev 1.76 0.78 0.70 

Cv 0.5 0.32 0.26 

Mean 2.66 4.06 3.68 

WM Stdev 1.33 0.80 0.66 

Cv 0.5 0.20 0.18 

Mean 5.63 5.73 5.55 

WU Stdev 2.81 1.08 0.97 

Cv 0.5 0.19 0.17 
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Table 6-2 Distribution of Land Slope for All Watersheds 

Prior Site-specific Posterior 
Watersheds 

Distribution Distribution Distribution 

Mean 3.00 0.52 2.36 

RU Stdev 0.90 0.50 0.66 

Cv 0.30 0.96 0.28 

Mean 4.00 1.02 3.39 

WM Stdev 1.20 1.16 0.97 

Cv 0.30 1.14 0.29 

Mean 4.00 5.80 4.46 

WU Stdev 1.20 2.35 1.06 

Cv 0.30 0.41 0.24 
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Table 6-3 Confidence Intervals on the Mean of Runoff Volume for All Watersheds 

RU WM WU 
Watersheds 

90% 95% 90% 95% 90% 95% 

lower 0.19 0.17 0.16 1.12 0.23 0.20 

Prior upper 0.45 0.47 1.52 1.56 0.48 0.50 

width 0.26 0.30 0.36 0.44 0.25 0.30 

lower 0.32 0.30 0.90 0.89 0.24 0.23 

Site-
0.52 0.54 · 1.08 1.09 0.34 0.35 

specific 
upper 

width 0.20 0.24 0.18 0.20 0.10 0.12 
,, 

lower 0.30 0.29 0.97 0.96 0.25 0.25 

Posterior upper 0.46 0.47 1.13 1.14 0.35 0.36 

width 0.16 0.18 0.16 0.18 0.10 0.11 
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Table 6-4 Confidence Intervals on the Mean of Sediment Yield for All Watersheds 

RU WM WU 
Watersheds 

90% 95% 90% 95% 90% 95% 

lower 11.22 10.20 23.43 22.51 3.84 3.55 

Prior upper 30.82 33.95 35.38 36.78 6.94 7.23 

width 19.60 23.75 11.95 14.27 3.10 3.68 

lower 5.29 4.95 10.63 10.22 3.47 3.08 

Site-
10.41 11.11 16.10 16.76 7.51 7.90 

specific 
upper 

width 5.12 6.16 5.47 6.54 4.04 4.82 

lower 12.44 11.75 19.34 18.75 4.04 3.80 

Posterior upper. 22.51 23.83 26.74 27.58 6.50 6.74 

width 10.07 12.08 7.40 8.83 2.46 2.94 

Table 6-5 Observed Mean of Runoff Volume and Sediment Yield for All Watersheds 

Watershed RU Watershed WM Watershed WU 

Runoff Volume 
0.42 

(in) 
1.04 0.26 

Sediment Yield 
5.50 

(lbs/ac) 
16.20 6.98 
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CHAPTER VII 

SUMMARY AND CONCLUSIONS 

Summary 

This dissertation has presented two important aspects in uncertainty analysis for 

hydrologic and water quality modeling: estimating the uncertainty of input model 

parameters in the calibration phase and evaluating the model performance with uncertain 

input parameters. It has also presented the development of the methodology incorporating 

the prior information into the site-specific information to produce the posterior information 

for any input parameter. The AGNPS model was used in this study to illustrate the method 

of uncertainty analysis and updating uncertain input parameters. Data used in this study 

were from four small watersheds in Arkansas. 

Calibration and evaluation are two important aspects of hydro logic and water quality 

modeling. There are many methods to calibrate a model. All these traditional calibration 

techniques assume that there exists a "true" fixed value for each input parameter and only 

a point estimate for each input parameter is provided. However, the model parameters 

should be considered as random variables. One estimate is not enough to capture the 

statistical properties of a random variable. Bayesian estimation can furnish not only a point 
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estimate for each input parameter but also a marginal distribution for each input parameter. 

The Least Squares method is the most widely used and accepted method not just because of 

its simplicity but its efficiency as well. The point estimates of input parameters by Bayesian 

estimation were compared with those by Least Squares to test the efficiency of Bayesian 

estimation. 

A very important procedure in model calibration, which is often ignored, is the 

verification of the Least Squares assumptions. Once the Least Squares assumptions are 

proven valid, the calibration results could be taken as the final calibration results. The Least 

Squares assumptions were checked for the calibration results by Bayesian estimation. Then 

marginal distributions of S and land slope were taken as the site-specific information for S 

and land slope. 

The prior information about S and land slope was from the values reported in 

literature. The prior information was incorporated into the site-specific information to 

produce the posterior information about Sand land slope. The performance of the AGNPS 

model was evaluated for these three types of information about S and land slope, 

respectively. Since input parameters were assumed as random variables, the model 

responses were random variables too and were expressed in the form of probability density 

functions. Confidence intervals were placed on the mean of runoff predictions and sediment 

predictions for different types of information about Sand land slope. If the observed mean 

falls into the confidence intervals for the prior, site-specific or posterior information about 

S and land slope, the model predictions in the same case may be termed as statistically 

acceptable. 
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It is reasonable for one to expect that better model predictions should be obtained 

when more information is used to estimate input parameters of the model. An effort was 

made to see whether the uncertainty of model predictions was reduced by incorporating the 

prior information with the site-specific information. 

Conclusions 

Based upon the results of this study, the following conclusions can be drawn: 

1) The point estimates of S and land slope by Least Squares are identical to or very 

close to those by Bayesian estimation for all watersheds used in this study. 

Therefore, Bayesian estimation is just as effective as Least Squares. However, in 

addition to point estimates of S and land slope, Bayesian estimation has the 

advantage of providing probability density functions for S and land slope as well. 

2) The observed means of runoff volume and sediment yield fall into all the 

corresponding 95% confidence intervals of the site-specific predictions for all study 

watersheds. This proves from another point of view that Bayesian estimation can 

give good estimates for model parameters. 

3) The prior information for retention parameter S is properly specified. The 

uncertainty in the runoff predictions of the AGNPS model is reduced by combining 

this prior information with the site-specific information of S for all three watersheds 

used in the model evaluation. 

4) When the prior information is mis-specified, such as land slope in this study, 

incorporating the prior into the site-specific information will not reduce the 
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uncertainty in model predictions but will lead to worse or false model predictions. 

Therefore, more caution needs to be taken in specifying the prior information for a 

parameter. If one is not sure that the prior information is good for the specific use, 

it is better to use the site-specific information alone to give model predictions. 

Recommendations for Further Research 

The following topics are suggested for further research: 

1) The procedure and methodology for uncertainty analysis elucidated in this 

dissertation should be applied to other hydrologic and water quality models to see if 

consistent results are obtained. 

2) The risk associated with the uncertainty of model predictions should be studied 

further. 
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BY BOTH LEAST SQAURES AND BAYESIAN ESTIMATION 
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/********************************************************************** 

This program is writen to execute the AGNPS model for different rainfall 
events and adjusted slope and curve number. What this program does is: 

1) Read rainfall depth and sediment yield and runoff from a data file called 
rainsed.dat. 

2) For each possible combination of slope and curve number, update a input 
data file for AGNPS model for each rainfall event, Then run AGNPS model for 
all combinations of slope and curve number and rainfall events. 

3) Record simulated sediment yield and runoff volume and compare them 
with measured values, calculate and record errors between simlulated values and 
measured values. 

4) Find the least sum of squared errors and corresponding slope and cover 
factor under three conditions: runoff alone, sediment alone and the sum of runoff 
and sediment. 

5) Find the calibrated slope and curve number based on Bayesian estimator. 
Then calculate the marginal distributions of slope and Curve number, 
respectively. 

**********************************************************************! 

#include <stdio.h> 
#include <process.h> 
#include <math.h> 
#include <io.h> 

#define ncell 7 /* # of cells * I 

#define N 31 /* # of rainfalls used in calibration * I 

#define SN 11 /* number of increment of slope * I 
#define deltas 1. 0 /* increment of slope * I 
#define slpmin 0.0 /* minimum value of slope */ 

#define NC 25 /*#of the increment ofCN */ 
#define deltac 2 /* increment of CN * I 
#define cnmin 40 /* minimum value of CN * I 



#define trans O /* transformation factor-- 0 or 1 
0 = no transformation 
1 = square root transformation * I 

/* sed[] - observed sediment discharge 
runoff[] - observed runoff volume 
rain[] - rainfall depth 
slp[] - slope 
curve[] - curve number 
sederr[] [] [] - sediment discharge errors 
rverr[] [][] - runoff volume errors 
serr 1 [] [] - sum of the squared errors of sediment discharge 
serr2[][] - sum of the squared errors of runoff volume 
serr12[][] - sum of the production of the.sediment error 

and runoff volume error 
sum[][] = serr 1 [][] + serr2 [][] 
bayes[][] = the determinant of IS(x)I 
slpdist[] - marginal distribution of slope 
cndist[] - marginal distribution of CN * I 

main() 
{ 

int i, j, k, m, n, curve[NC]; 
int amc[N]; /* amc - antecedent moisture condition*/ 
float slp[SN]; 
float rain[N], sed[N], runoff[N]; 
float energy[N], S, C; 
float serrl [SN][NC], serr2[SN][NC], serr12[SN][NC], 

sum[SN][NC]; 
double slpdist[SN], cndist[NC]; 
double bayes[SN][NC], power; 

int CN, length, COD; 
float eng, duration, rainfall, nitro; 
float manning, kft, cft, pft, sec, msed, mrv; 
float en, rv, sederr[N], area, areac, e; 
float ropk, tss, tp, rverr[N]; 
char type[16], command[20], string[66], f[8], g[8]; 
int a, b, c, d; 
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FILE *ifp; /* open the rainfall data file for reading. */ 
FILE *temp, *fp, *ofp; 

ifp = fopen(''rainsed.dat", "r"); 

/* Initiate all arrays to zero * I 

for(i=O; i<N; i++) { 
amc[i]=O; 
rain[i]=O.O; 
sed[i]=O.O; 
runoffli]=O.O; 
energy[i]=O.O; 
sederr[i]=O.O; 
rverr[i]=O.O; 

} 

for(i=O; i<NC; i++) { 
curve[i]=O; 

} 

for(i=O; i<SN; i++) { 
slp[i]=O.O; 

} 

forG=O; j<NC; j++) { 

serrl [i]O]=O.O; 
serr2[i] [j]=O.O; 
serr12[i]O]=O.O; 
sum[i]O]=O.O; 
bayes[i]O]=O.O; 

} 

for(i=O;i<N ;i++) { 
fscanf(ifp, "%d%f0/of0/of', 

&amc[i],&rain[i],&runoffli],&sed[i]); 

/*----------------------------------. --------------------------------
Calculate the rainfall energy for each rainfall. 

--------------------------------------------------------------------*/ 
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energy[i] = 17.90 * pow(rain[i], 2.0619); 
energy[i] = energy[i] I pow(24.0, 0.4134); 

printf("%4d%8.2f0/o8.2f0/o8.2f0/o8.2f\n", amc[i], rain[i], 
energy[i], runoff[i], sed[i]); 

} 

fclose(ifp ); 

putchar('\n\n'); 

msed=O; 
mrv= O; 

for(k=O; k<N; k++) { 

} 

if( trans == 1) { 
sed[k] = pow(sed[k], 0.5); 
runoff[k] = pow(runoff[k], 0.5); 

} 

msed += sed[k ]IN; 
mrv += runoff[k ]IN; 

/*++++++++I I I I I I l+++++++++++++I I I I I I I+++++++++++++++++++++++ 

The following part of the program updatas the input data file for AGNPS 
(input.dat) for every rainfall event and all possible combinations of slope and 
Curve number. Run AGNPS model and record sediment yield and runoff 
volume loading for each run. 

+++++++++++++I I I I I l++++++I I I I I I I I++++++++++++++++++++++++++*/ 

ofp = fopen("cnslp.out","w"); 
fprintf( ofp, 
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" Slope CN Sum Bayes sederr rverr\n\n"); 
fclose( ofp ); 

for(i=O; i<SN; i++) { 
slp[i] = i*deltas + slpmin; 

forG=O; j<NC; j++) { 
curveO]=j *deltac + cumin; 

for(k=O; k<N; k++) { 

ifp = fopen("input.dat", "r"); 
temp = fopen("temp.dat", "w"); 

for(m=O; m<=5; m++) { 

} 

fgets(string, 65, ifp ); 
fputs(string, temp); 

fputc('\n', temp); 

/* updata the file input.dat * I 

fscanf(ifp, "%s%f0/of0/of0/of\n", 
type, &eng, &duration, &rainfall, &nitro ); 

/* update energy value and rainfall value * I 

fprintf(temp, "%16s%8.2f0/o8.lf0/o8.2f0/o8.2f\n", 
type,energy[k ],duration,rain[k ],nitro ); 

/* update curve number * I 

for(m=O; m<ncell; m++) { 

fscanf(ifp, "%d%s%d%s%d%d%f0/od", 
&a,&f,&b,&g,&c,&CN,&e,&d); 
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/*------------------------------------------------------
Calculate CN for different amc. 

-----------------------------------------------------*/ 

switch (amc[k]) { 

case 1 : /* antecedent moisture condition I * I 
en= (4.2*curve[j])/(10 - 0.058*curve[j]); 
CN= en+ 0.5; 
break; 

case 2: /* antecedent moisture condition II*/ 
CN = curve[j]; 
break; 

case 3: /* antecedent moisture condition III * I 
en= (23*curve[j])/(10 + 0.13*curve[j]); 
CN =en+ 0.5; 
break; 

default: 

} 

printf("\nERROR: Unexpected rainfall type\n"); 
printf("antecedent moisture condition: %d\n", 

amc[k]); 
exit(O); 

fprintf(temp, "%8d%8s%8d%8s%8d%8d%8.1 :fl>/o8d\n", 
a,f,b,g,c,CN,slp[i],d); 

fscanf(ifp, "%d%:fl>/o:fl>/o:fl>/o:fl>/o:fl>/od", 
&length,&manning,&kft,&cft,&pft,&scc,&COD); 

fprintf(temp, "% 16d%8.3:fl>/o8.2:fl>/o8.4:fl>/o8.2:fl>/o8.2:fl>/o8d", 
length,manning,kft,cft,pft,scc,COD); 

for(n=O; n<9; n++) { 
/*no fertilizer application, otherwise, k<IO.*/ 

fgets(string, 65, ifp); 
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} 

fputs( string, temp); 
} 

printf("\n\nCN = %d %d\n", CN, amc[k]); 
printf("slope = %5.2f Curve# =%4d", 

slp[i], curve[j]); 
printf(" storm#= %3d\n", k); 

fclose(ifp ); 
fclose(temp ); 

/* -----------------------------------------------------------------------------------------

Run AGNPS model and calculate and record the following results: 

1) land slope(%); 
2) curve number; 
3) rainfall depth (in); 
4) simulated sediment discharge; 
5) simulated runoff volume; 
6) residuals which are the difference between simulated values and 

measured values; 

-----------------------------------------------------------------------------------------*/ 

sprintf(command,"agrun %s", "temp.dat O O O"); 
printf("%s\n", command); 
system( command); 

putchar('\n'); 

/* pick up interested results from the output file 
of AGNPS model. * I 

ifp = fopen("temp.nps", "r"); 

for(m=O; m<4; m++) { 
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} 

fgets(string, 65, ifp); 
} 

fscanf(ifp, "%:f0/of%>f'llo:f0/od%s%:f0/o:f0/of', 
&area,&areac,&rainfall,&eng,&a,&g, 
&rv,&ropk,&tss); 

printf("%5.2f %5.2f %5.2f %5.2f\n", 
rainfall, rv, ropk, tss); 

/*-----------------------------------------------------------
. residual is defined as 

"measured value" - "simulated value" 

---------------·-------------------------------------- -----*/ 

tss=tss*2000.0/area; 

if(trans = 1) { 
tss=pow(tss, 0.5); 
rv=pow(rv, 0.5); 

} 

sederr[k] = sed[k] - tss; 
rverr[k] = runoff[k] - rv; 

sederr[k] = sederr[k ]/msed; 
rverr[k] = rverr[k ]/mrv; 

printf("%4. lf %4d %4.2f %8.2f %8.2f %8.2f %8.2f\n", 
slp[i],curve[j],rain[k],rv,rverr[k], 
tss,sederr[k ]); 

fclose(ifp ); 

ofp=fopen("cnslp.out","a"); /* "a" -- append*/ 
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} 

} 

for(k=O; k<N; k++) { 

} 

serrl [i][j] += sederr[k]*sederr[k]; 
serr2[i][j] += rverr[k] * rverr[k]; 
serr12[i][j] += sederr[k]*rverr[k]; 

sum[i][j] = serrl [i][j] + serr2[i][j]; 

bayes[i][j] = ( double )(serrl [i]D]*serr2[i][j]); 
bayes[i][j] +=( double )(-serr12[i][j] *serr12[i][j]); 
power= (double)(-N/2.0); 
bayes[i][j] = pow(bayes[i][j], power); 

fprintf( ofp, 
"%4. lf %4d %6.2e %6.2e %6.2e %6.2e\n", 
slp[i], curveO],sum[i][j],bayes[i][j], 
serrl [i][j],serr2[i][j]); 

fclose( ofp ); 

ofp = fopen("cnslp.out", "a"); 
fputc('\n', ofp); 
fclose( ofp ); 
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/* -----------------------------------------------------------------------------------------------

1) Find the minimum value of "sum" and corresponding slope and 
CN, if there are more than one minimum value, record how many 
there have. 

2) Find the maximum value of "bayes" and correspinding slope and 
CN, check to see ifthere are more than one maximum. 

--------------------------------------------------------------------------------- -------------*/ 

ofp = fopen("cnslp.out", "a"); 

S = slpmin; 
CN=cnmin; 
m=O; 
tss = sum[O][O]; 

for(i=O; i<SN; i++) { 

forG=O; j<NC; j++) { 

} 

if(sum[i][j] = tss){ 
m+= 1; 

} 

S = slpmin + i*deltas; 
CN = cnmin + j*deltac; 

if(i == 0) { 
ifG =O) 

m=O; 
} 

if(sum[i][j] < tss) { 
tss = sum[i][j]; 

} 
} 

S = slpmin + i*deltas; 
CN = cnmin + j*deltac; 
m=O; 
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fprintf(ofp,"\n LS error: %6.2e S=%4.lf CN=%4d\n", 
tss, S, CN); 

fprintf(ofp, "# of LS error: %2d\n\n", m+ 1); 

S = slpmin; 
CN=cnmin; 
m=O; 
tss = serrl [O][O]; 

for(i=O; i<SN; i++) { 

} 

forG=O; j<NC; j++) { 

if(serrl [i]O] == tss){ 
m+= 1; 

} 

S = slpmin + i*deltas; 
CN = cnmin + j *deltac; 

if(i == 0) { 
ifG == O) 

m=O; 
} 

if(serrl [i]O] < tss) { 
tss = serrl [i]D]; 

} 
} 

S = slpmin + i*deltas; 
CN = cnmin + j*deltac; 
m=O; 

fprintf(ofp,"\n LS error(sediment): %6.2e S=%4.lf CN=%4d\n", 
tss, S, CN); 

fprintf(ofp, "# of LS error: %2d\n\n", m+l); 

S = slpmin; 
CN=cnmin; 
m=O; 
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tss = serr2[0][0]; 

for(i=O; i<SN; i++) { 

} 

forG=O; j<NC; j++) { 

if(serr2[i]O] == tss){ 
m+= 1; 

} 

S = slpmin + i*deltas; 
CN = cnmin + j*deltac; 

if(i == 0) { 
ifG == O) 

m=O; 
} 

if(serr2[i]U] < tss) { 
tss = serr2[i]O]; 

} 
} 

S = slpmin + i*deltas; 
CN = cnmin + j*deltac; 
m=O; 

fprintf(ofp,"\n LS error(runoff): %6.2e S=%4.lf CN=%4d\n", 
tss, S, CN); 

fprintf(ofp, "# of LS error: %2d\n\n", m+ 1); 

S = slpmin; 
CN = cnmin; 
m=O; 
power= bayes[O][O]; 

for(i=O; i<SN; i++) { 

forG=O; j<NC; j++) { 

if(bayes[i]O] == power){ 
m+= 1; 
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} 

} 

S = slpmin + i*deltas; 
CN = cnmin + j*deltac; 

if(i == 0) { 
ifG == O) 

m=O; 
} 

if(bayes[i][j] > power) { 
power= bayes[i][j]; 

} 
} 

S = slpmin + i*deltas; 
CN = cnmin + j*deltac; 
m=O; 

fprintf(ofp,"\n Bayes error: %6.2e S=%4.lf CN=%4d\n", 
power, S, CN); 

fprintf( ofp, " # of Bayes error: %2d\n\n", m+ 1 ); 

I*-------------------------------------------------------------------

Calculate the marginal distribution of slope 

--------------------------------- -----------------------------------*/ 

for(i=O; i<SN; i++) { 

} 

slp[i] = i*deltas + slpmin; 
slpdist[i] = 0.0; 

forG=O; j<NC-1; j++) { 

CN = cnmin + j*deltac; 
S = 1000.0/CN - 10.0; 
S += -(1000.0/(CN+deltac) - 10.0); 

slpdist[i]+=S *(bayes[i] O]+bayes[i] [j+ 1 ])/2; 
} 
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power= 0.0; /* the area under the pdf slpdist[i] */ 

for(i=O; i<SN-1; i++) { 
power+= deltas*(slpdist[i]+slpdist[i+ 1 ])/2.0; 

} 

fprintf(ofp,"\n Slope distribuion\n"); 

for(i=O; i<SN; i++) { 

slpdist[i] = slpdist[i]/power; 

fprintf(ofp," %5.2f %8.2f\n",slp[i],slpdist[i]); 

} 

/* -------------------------------------------------------------

Calculate the marginal distribution of CN 

----------------------------------------------------------------*/ 

for(i=O; i<NC; i++) { 

} 

curve[i] = i*deltac + cnmin; 
cndist[i] = 0.0; 

forG=O; j<SN-1; j++) { 

cndist[i]+=deltas*(bayesO][i]+bayesu+ l][i])/2.0; 
} 

power= O; /* the area under the pdf cndistO] * I 
for(i=O; i<NC-1; i++) { 

CN = cnmin + i*deltac; 
S = 1000.0/CN - 10.0; 
S += -(1000.0/(CN+deltac) - 10.0); 

power+= S*(cndist[i]+cndist[i+ 1])/2.0; 
} 
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} 

fprintf(ofp,"\n CN S distribuion\n"); 

for(i=O; i<NC; i++) { 

} 

cndist[i] = cndist[i]/power; 
CN = cnmin + i*deltac; 
S = 1000.0/CN - 10.0; 

fprintf(ofp," %4d %5.2f %6.2f\n", 
CN, S, cndist[i]); 

fclose( ofp ); 

return O; 
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APPENDIX B 

COMPUTER PROGRAM FOR MONTE CARLO SIMULATION 
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/********************************************************************** 

This program was designed to perform Monte Carlosimulation on AGNPS 
model under following conditions: 

1 ). Curve number with specified lognormal distribution 
2). Slope with specified lognormal distribution 

Requirements to run this programm: 

a. "input.dat" for AGNPS model 
b. "paramt.dat" to specify rainfall, mean and standard deviation for CN 

and Slope. 
c. define # of simulation and # of rainfall events 

**********************************************************************/ 

#include <stdio.h> 
#include <process.h> 
#include <math.h> 
#include <io.h> 

#define ncell 1 /* # of cells * I 

#define NSIMU 400 /* # of simulations * I 

#define N 8 /* # of rainfall * I 

float stdnorm(void); 
float lognorm(float, float); 

main() 
{ 

int i, j, k, m, amc[N]; 
float slp, rain[N], sed, runoff, energy[N]; 
float cnbar, sen, slpbar, sslp, S; 

int CN, length, COD, en; 
float eng, duration, rainfall, nitro; 
float manning, kft, cft, pft, sec; 



float rv, area, areac, e; 
float ropk, tss, tp; 
char type[16], command[20], string[66], f[8], g[8]; 
int a, b, c, d; 

FILE *ifp; 
FILE *temp, *ofp; 

ifp = fopen("paramt.dat", "r"); 

for(i=O; i<N; i++) /* initialaze all arrays*/ 
{ 

} 

amc[i] = O; 
rain[i] = O; 
energy[i] = O; 

fscanf(ifp, "%d%f0/of0/of0/of0/of\n", 
&amc[O],&rain[OJ,&cnbar,&scn,&slpbar,&sslp ); 

printf("%4d%8 .2f0/o8 .2f0/o8 .2f0/o8 .2f0/o8 .2f\n", 
amc[OJ,rain[OJ,cnbar,scn,slpbar,sslp ); 

if(N>l) 
{ 

} 

for(m=l; m<N; m++) 
{ 

} 

fscanf(ifp, "%d%f\n" ,&amc[ m ],&rain[ m ]); 
printf("%4d%8.2f\n",amc[m],rain[m]); 

fclose(ifp ); 

putchar('\n'); 
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/*----------------------------------------------------------------------
Calculate the rainfall energy for each rainfall. 

-----------------------------------------------------------------------*/ 

for(i=O; i<N; i++) 
{ 
energy[i] = 17.90 * pow(rain[i], 2.0619); 

energy[i] = energy[i] I pow(24.0, 0.4134); 

printf("%4d%8 .2:f0/o8 .2f\n" ,amc [i ],rain[i] ,energy[i]); 
} 

putchar('\n\n'); 

I*-------------------------------------------------------------------------------------------------

The following part of the program updatas the input data file for AGNPS. 

-------------------------------------------------------------------------------------------------*/ 

ofp = fopen("simu.out","w"); 
fprintf( ofp, 
" Slope S CN runoff sediment\n\n"); 

fclose( ofp ); 

for(m=O; m<N; m++) 
{ 

for(i=O; i<NSIMU; i++) 
{ 

/*-----------------------------------------------------------------------
generate random numbers for CN and slp with 
specified lognormal distribution. 

-------------------------------------------------------------------------*/ 

S = lognorm( cnbar,scn); 
CN = (int)(l000.0/(S+ 10.0)); 

201 



slp = lognorm(slpbar,sslp); 

/*-----------------------------------------------------------
calculate CN for different amc. 

-----------------------------------------------------------*/ 

switch (amc[m]) { 

case 1 : /* antecedent moisture condition I * I 
en= (int)((4.2*CN)/(10 - 0.058*CN)); 
break; 

case 2: /* antecedent moisture condition II * I 
en= CN; 
break; 

case 3: /* antecedent moisture condition III * I 
en= (int)((23.0*CN/(10.0 + 0.13*CN))); 
break; 

default: 

} 

printf("\nERROR: Unexpected rainfall type\n"); 
printf("antecedent moisture condition: %d\n", 

amc[m]); 
exit(O); 

printf("\nCN = %3d slope= %5.2f simu# = %4d\n", 
CN, slp, i+l); 

ifp = fopen("input.dat", "r"); 
temp = fopen("temp.dat", "w"); 

forG=O; j<=5; j++) { 

fgets(string, 65, ifp); 
fputs( string, temp); 

} 

fputc('\n', temp); 
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/* update energy value and rainfall value * I 

fscanf(ifp, "%s%fU/ofU/ofU/of\n", 
type, &eng, &duration, &rainfall, &nitro ); 

fprintf( temp, "% 16s%8 .2fU/o8 .1 fU/o8 .2fU/o8 .2f\n", 
type,energy[ m ],duration,rain[ m ],nitro ); 

/* update curve number and slope factor * I 

for(k=O; k<ncell; k++) { 

} 

fscanf(ifp, "%d%s%d%s%d%d%fU/od", 
&a,&f,&b,&g,&c,&COD,&e,&d); 

fprintf(temp, "%8d%8s%8d%8s%8d%8d%8. l fU/o8d\n", 
a,f,b,g,c,cn,slp,d); 

fscanf(ifp, "%d%fU/ofU/ofU/ofU/ofU/od", 
&length,&manning,&kft,&cft,&pft,&scc,&CO D ); 

fprintf( temp,"% l 6d%8 .3 fU/o8 .2fU/o8 .4 fU/o8 .2fU/o8 .2fU/o8d", 
length,manning,kft,cft,pft,scc,COD); 

forG=O; j<9; j++) { 
/*no fertilizer application, otherwise, k<lO.*/ 

} 

fgets(string, 65, ifp); 
fputs( string, temp); 

fclose(ifp ); 
fclose(temp ); 
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I*-----------------------------------------------------------------------------------------------

run AGNPS model and calculate and record the following results: 

1) land slope (% ); 
2) curve number; 
3) simulated sediment discharge; 
4) simulated runoff volume; 

--- ---------------------------------------------- ---------------------~ -----------------------*/ 

sprintf(command,"agrun %s", "temp.dat O O O"); 
printf("%s\n", command); 
system( command); 

putchar('\n'); 

/* pick up interested results from the output file 
of AGNPS model. */ 

ifp = fopen("temp.nps", "r"); 
ofp = fopen("simu.out", "a"); 

forG=O; j<4; j++) { 
fgets(string, 65, ifp ); 

} 

fscanf(ifp, "%f0/of0/of0/of0/od%s%f0/of0/of', 
&area,&areac,&rainfall,&eng,&a,&g, 
&rv ,&ropk,&tss ); 

tss=tss*2000.0/area; 

printf("%5.lf %3d %5.2f %6.2±\n", 
slp,CN,rv,tss); 

fprintf(ofp,"%5.lf %5.2f %3d %5.2f %6.2±\n", 
slp,S,CN,rv,tss); 
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} 

} 

fclose(ifp ); 
fclose( ofp ); 

ofp = fopen("simu.out","a"); 
fprintf( ofp, "\n"); 
fclose( ofp ); 

} 
return O; 

/*-------------------------------------------------------- ----------------------------------------
This function generates numbers with standard normal distribution, z(O, 1) 

---------------------------------------------------------------------------------------------------*/ 

float stdnorm(void) 
{ 

} 

float R, vl, v2, z; 
do 
{ 

} 

vl = 2.0*randQ/32767.0 - 1.0; 
v2 = 2.0*randQ/32767.0 - 1.0; 
R = vl *vl + v2*v2; 

while(R> 1.0); 
z = sqrt(-2.0*log(R)/R); 
z *= vl; 
return z; 

/*-------------------------------------------------------------------------------------------------
This function generates numbers with a log-normal distribution with mean of mu 
and variance of sigma 

---------------------------------------------------------------------------------------------------*/ 

float lognorm(float mu, float sigma) 
{ 
float Cv, y, ybar, Sy, x; 
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} 

Cv = sigma/mu; 

ybar = 0.5*log(mu*mu/(Cv*Cv + 1.0)); 
Sy= sqrt(log(Cv*Cv + 1.0)); 

y = ybar + Sy*stdnorm(); /* normal distribution*/ 

x = exp(y); /* lognormal distribution*/ 

return x; 
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