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CHAPTER I 

INTRODUCTION 

Variations in polymer processing can impart different polymer microstructures that 

can lead to different physical properties. Commonly processed polyethylene (PE) is very 

weak, while drawn PE is at least 3 orders of magnitude stronger as is shown in Table I. 

Polymeric materials can have the strength and sti:flhess to rival steel if the material is 

properly processed. The usual design procedure of a polymer part is to process polymeric 

materials under given sets of conditions, obtain samples and measure the physical 

properties. The selection of the proper material/process combination foi- a needed part is 

found empirically. The advantage of computer analysis tools would be to avoid expensive 

make-test-redesign cycles on a component. However, the iterative experimental approach 

cannot be totally superseded by the computer tools because the micro structure of the 

polymer is difficult to predict. 

Polymer molecules typically consist of a large number of carbon atoms 

successively bonded together by strong covalent bonds to form long chains. The 

configuration of the polymer chain determines the bulk strength. For commonly processed 

polymers, Folded Chain Crystals (FCC) are formed from randomly coiled polymer chains 

as shown in Figure la. For a drawn polymer, Extended Chain Crystals (ECC) are formed 
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TABLE I 

MATERIAL STRENGTH 

Material 
Steel 
Commonly Processed PE 
Drawn melt-crystallized PE 
fibers 
Drawn PE gel fibers 
Drawn single crystal mat of 
UHMWPE 
Theoretical limit for PE 

* 1 GPa = 1.45 x 105 psi 
Collyer and Clegg (1986) 

Tensile Modulus 
(Gpa)* 

210 
1-7 
70 

120-220 
200 

240-250 

Breaking Strength 
(GPa)* 

1-4 
0.001 

1 

.. 
3-6 
6 

35 

from the extended and highly oriented polymer chains during the drawing process as 

shown in Figure lb. 

The anisotropic mechanical properties are intimately related to the orientation of 

the extended polymer molecular crystals. During the crystallization process, the 

crystallization rate of ECC is greater than FCC, due to the fact that the aligned molecules 

diffuse to the lattice sites more readily. Notwithstanding the improvement in mechanical 

properties in one direction, there is also a simultaneous reduction in strength in other 

directions. Hence there is a need to. optimize the extent and direction of flow-induced 

crystallization. 

The research efforts in the field of flow-induced crystallization at Oklahoma State 

University focused on three different aspects of the crystallization process. These areas 

are experimental characterization, development of a mechanistic predictive model and 

optimization of die geometry using information from the experiment and the model. 
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Quiescent 

Folded-Chain Crystal 
(Spherulites) 

(a) 

drawing 

) 

Oriented 

Extended-Chain Crystal 
(Row-nucleated) 

(b) 

Figure 1. The Crystallization Process (Spevacek, 1989) 
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No 

Control Variables 
Afl, T, Geometry 

Eq. of Continuity 
~----f Eq. of Motion 

Simulation 

Micro structure 
( Crystallinity) 

Properties 

Yes 

STOP 

Eq. of Energy 
Eq. of State 
Crystallization Model 
Constraints: E,Su etc. 

Figure 2. Flow Chart of Material Properties Optimization 
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Figure 2 shows an algorithm which describes the different sections of the research project 

and how they are related. The ultimate objective as shown in Figure 2 is to develop an 

optimization package for polymer processes that can produce an extended chain crystal 

structure in commonly encountered polymers. 

5 

The first step is to develop a model based on polymer kinetic theory that would 

predict molecular configurations since one of the goals of this thesis-is to predict the 

microstructure by understanding the flow-induced crystallization process. With a better 

understanding of the crystallization process, the polymer properties can be modified by 

changing the processing parameters, such as die geometry, pressure, strain rate, strain and 

temperature. The extent of model development in this effort includes steady state 

predictions of molecular configurations for different flow fields. A fundamental flow 

dependent crystallization model was developed that is mathematically tractable, but still 

incorporates the basic features of more sophisticated models. _ 

Polymer molecules can be simply represented by dumbbells which have two beads 

joined by a weightless rod. One end of the dumbbell is in the amorphous melt and the 

other end is in the crystal lattice. The probability of the dumbbell being in a certain 

orientation can be obtained by kinetic theory. The crystal will form if the bead in the 

amorphous melt is close enough to the next available lattice site. The number of crystals 

formed will determined the rate of crystallization. The dynamic modeling of the 

crystallization process is part of an ongoing research effort in a parallel project and will be 

eventually combined with the optimization techniques described in this thesis. The next 

step and the most significant achievement in this thesis is to use the model in conjunction 

with the equations of continuity and motion to optimize die design by systematic searching 
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for a specified objective function. This requires the simultaneous solution of the flow 

field, coupled with the molecular model and an optimization algorithm. General solution 

routines were readily available for determining the flow field and for this thesis the Fluid 

Dynamics Analysis Package (FIDAP) was used. 

Optimization strategies have been developed for many industrial processes, such as 

chemical engineering processes, but have only recently been applied-to polymer die design. 

One of the problems involved in die design is that the design variables are defined on the 

domain and/or boundary. The difficulties in shape optimization arise from the fact that the 

objective function usually cannot be explicitly expressed in terms of the design variables, 

especially for field problems. 

Several optimization approaches have been conceived and implemented to 

minimize computational resources (Barone and Caulk, 1982, 1985; Shyy et al., 1988; . . 

Braibant and Fleury, 1985; Baysal and Eleshaky, 1992; Braibant and Fleury, 1985; <;abuk 

and Modi, 1990, 1992). However, the time and effort for developing and solving most 

polymer processing problems are enormous. The advances made in the use of computer 

techniques and numerical methods have made the computational problem tractable though 

a significant effort is still required in developing the program. Nowadays, optimization · 

strategies developed for industrial processes ar~ being used in die design with little regard 

for computational resources since research in this field is still in its infancy. 

In this thesis, the Successive Quadratic Programming by the Han-Powell (SQPHP) 

technique (Chen and Stadtherr, 1983, 1984) was used to optimize the die geometry for a 

typical extrusion process. Having obtained the microstructure from the model, the 

optimization routine will seek the best possible die geometry for specified degrees of 
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strength or anisotropy in two directions. Thus, the process of flow-induced crystallization 

can be exploited to improve mechanical properties in one direction without sacrificing too 

much in the other direction. Thus, this thesis will for the first time, incorporate both flow­

induced crystallization and optimization principles into die design. 

The organization of the thesis is as follows. Chapter 1 (this chapter) provides a 

brief introduction to flow-induced crystallization, polymer modeling-and optimization and 

the specific objectives of this work. Chapter 2 describes these principles in more depth 

with reference to the current state of knowledge. A background of the types of models 

and optimization methods is also included in Chapter 2. Chapter 3 shows the 

mathematical derivation of the model and the development of the optimization algorithm 

along with relevant boundary conditions and optimization parameters. Chapter 4 provides 

the results obtained from various simulations with some discussion and interpretation. 

Finally, in Chapter 5, the work in this thesis is summarized, some conclusions are drawn 

and recommendations are made for future work. 



CHAPTER II 

BACKGROUND 

This chapter provides a description of the fundamental principles involved in 

polymer kinetic theory, flow-induced crystallization kinetics and the theory of 

optimization. In the following discussion, emphasis has been given to how kinetic theory 

is used in flow-induced crystallization models. The optimization theory focuses on 

nonlinear programming and polymer processing optimization. 

Kinetic Theory 

Kinetic theory is a branch of statistical mechanics which is the science of 

determining macroscopic material properties from a microscopic or molecular point of 

view (Bird et al., 1987b). Unlike continuum mechanics, the local material properties (e.g., 

density, velocity, and energy) are not continuous functions of space and time. Kinetic 

theory recognizes forces acting on individual molecules and characterizes the resultant 

motion of molecules. Equation of state and transport properties of gases and liquids are 

intimately related to the forces that exist between the molecules. Expressions for the bulk 

properties in terms of molecular properties and intermolecular forces can be obtained from 

statistical mechanics (Volkenstein et al., 1963; Flory, 1969; McQuarrie, 1976). These 

expressions, along with information about intermolecular interactions, may be used to 
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predict the values of many physical properties for which no experimental data are 

available. Therefore, a model based on kinetic theory is very versatile and usually has 

more physical significance. 

9 

When statistical mechanics originally emerged in the 19th century, it mainly 

focused on equilibrium systems and hence was also called statistical thermodynamics 

(Poisson, 1809). Due to mathematical difficulties, statistical thermodynamics could only 

deal with ideal monatomic (Philippoff, 1935; Kennard, 1938; Hougen and Watson, 1947), 

diatomic and polyatomic gases (Wilson, 1959), monatomic crystals (Barnes, 1932; Kittel, 

1956), and chemical equilibrium constants (Rittenberg et al., 1934; Gould et al., 1934; 

Guggenheim, 1941). 

In the late 1960's and early 1970's, the introduction of computers and numerical 

calculations made the application of kinetic theory to the study of simple dense fluids and 

systems of ionic solutions practical (Rasaiah and Friedman, 1968, 1969; Rasaiah, 1970ab). 

At the same time, the study of non-equilibrium systems started gaining momentum (Bird 

et al., 1969; Bird et al., 1971). Kinetic theory has since been successfully used in the 

development of rheological equations of state (Wedgewood and Bird, 1988; Wiest et al., 

1989; Ng and Leal, 1993; Manke and Williams, 1991, 1993; Bird and Wiest, 1995), in 

Brownian dynamics simulations (van den Brule, 1993a; Ottinger, 1993; Hua and Scheiber, 

1996) and in microrheological modeling of heat conduction (van den Brule, 1993b). 

Other potential applications include the determination of optical, electrical and diffusional 

properties, and the development ofvirial and hypervirial theorems (Bird and Wiest, 1995). 

One example of the successful application of kinetic theory as mentioned before, is 

in the development of constitutive equations for dilute polymer solutions (Bird et al., 
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1987b). The constitutive equation is obtained by construction of the stress tensor which 

connects rheological behavior and fluid dynamics. The contributions of the stress tensor 

are from both solvent and the presence of polymer molecules. Usually, the solvent is a 

low molecular weight substance and a Newtonian equation will be enough to describe the 

system. The polymer contribution can be from intramolecular forces, intermolecular 

forces and the bead motion. 

Depending on the nature of the macromolecule, the polymer can be modeled as 

two beads joined by a weightless rigid rod (i.e., a rigid dumbbell model), such as isotactic 

polypropylene, poly-n-butylisocyanate, proteins in helical forms, DNA in its helix 

configuration, and tobacco mosaic virus. Rigid dumbbell models account for the 

orientability of the polymer molecules in flow fields and ignore the molecular stretching 

and bending motions (Kuhn, 1932; 1933; Kuhn and Kuhn, 1945). The stretching motion 

of a molecule can be modeled by two beads joined with an extensible spring, i.e., an elastic 

dumbbell model (Hermans, 1943; Fraenk:el, 1952). Bending motions have to be modeled 

using more than two beads, such as multibead-rod (Kramers, 1944; Kirkwood, 1967) and 

bead-spring chain (Rouse, 1953; Zimm, 1956) models. 

During the forming of the stress tensor, the Configurational Distribution Function 

(CDF) is needed. The CDF gives the probability of finding the molecular in a certain 

orientation. For equilibrium systems, the CDF expression can be easily obtained from 

equilibrium statistical mechanics (Tolman, 1938; Mayer and Mayer, 1940). For a non­

equilibrium system, the CDF can be obtained from a force balance among hydrodynamic 

drag, Brownian, intramolecular, and other forces. 
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Assumptions for simplifying the mathematical manipulation are necessary during 

the derivation of the CDF and stress tensor. The most common assumption in kinetic 

theory is that the velocity distribution is Maxwellian about the mass-average velocity of 

the solution which is the same as the velocity distribution of a solution at equilibrium 

(Tolman, 1938; Mayer and Mayer, 1940). One example of a Maxwellian distribution is 

the Maxwellian velocity distribution for the elastic dumbbell, and is shown below: 

(2-1) 

where: 

m = mass of the bead, 

!'. = mass-average velocity of the solution, 

t_1,t_2 = velocity of beads 1 and 2, respectively, 

k = Boltzmann constant, 

T = temperature. 

Note should be made that in this study, an underlined quantity is a vector, a doubly 

underlined quantity is a tensor, and a quantity with an overhead dot is a time derivative. 

The Maxwellian velocity distribution for an elastic dumbbell can be considered as the 

product of two normally distributed bead velocities which have the same variance, m I kT, 

about the mass-average velocity of the solution. The Maxwellian velocity distribution 

assumption would simplify the expression for the Brownian force term in the CDF and the 

contribution from the bead motion in the stress tensor. Another assumption for dilute 

solutions is to neglect the hydrodynamic interaction effect, which is caused by the flow 
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field disturbance due to the motion of the polymer molecule through the solvent. The 

hydrodynamic interaction would affect the velocity distribution and the hydrodynamic drag 

term in the CDF. 

For the simplest model, i.e., a rigid dumbbell model with a Maxwellian velocity 

distribution without external forces and hydrodynamic interaction, Stewart and S0rensen 

(1972) obtained a power law expression for simple shear flow. 

where 

17- TJs = 0.678nkT.J.,213y-113 

'¥1 = 1.20nkT}.,213y-413 

7J = shear viscosity, 

7/s = solvent shear viscosity, 

n = the number of dumbbells per unit volume, 

k = Boltzmann constant, 

r = shear rate, 

'¥ 1 = first normal stress coefficient, { -r xx - -r:w) / i ! , 

[TJ]o = zero-shear-rate intrinsic viscosity, or lim TJ- TJs, 
C--+0 . CTJ 
i'--+0 s 

c = mass concentration of the solute, 

M = solvent molecular weight, 

N = Avogadro's number. 

(2-2) 

(2-3) 



13 

Even with the simplest kinetic theory model, shear thinning phenomena and normal stress 

effects can be described. Another approach exists which is used to describe the CDF. 

The "orientation tensor" has been used to describe the probability distribution function of 

the fiber orientation instead of the whole distribution equation (Advani and Tucker, 1987; 

Tucker, 1988; Altan, 1990; Henry de Frahan et al., 1992; Chung and Kwon, 1995). 

Quiescent Crystallization 

Polymer crystallization kinetics under quiescent, isothermal conditions have 

typically been described by the Avrami theory (1939, 1940, 1941). The Avrami equation 

has the following form: 

(2-4) 

where 

<A = crystal volume fraction at time t, 

¢oo = crystal volume fraction at infinite time, 

K = A vrami coefficient, 

t= time, 

n = Avrami exponent. 

The A vrami coefficient and exponent are related to the rate of crystal growth and 

dimension of crystallization process, respectively. The extension of Avrami theory has 

been developed for non-isothermal conditions (Nakamura et al., 1972, 1973; Chew et al., 

1989) and limited volume (Cardew et al., 1984; Billon et al., 1989; Billon and Haudin, 

1989) 
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The application of the Avrami theory to flow-induced crystallization of polymers 

from the melt has been questioned (Point and Dosiere, 1989). However, the Avrami 

approach captures the essential fundamental physics of the early stages of crystallization 

(Cobbs et al., 1952; Godovski, 1969; Minkova et al., 1992). According to the Avrami 

model, the value of the Avrami exponent should be an integer between 1 and 4, inclusive. 

Flow-Induced Crystallization Models 

The properties of semi-crystalline. polymers ultimately depend on the structural and 

morphological features of the system (Blackadder and Lewell, 1970a, 1970b; Barham and 

Keller, 1985; Chen et al., 1992). These characteristics are controlled by the kinetics and 

mechanism of crystallization (Holland and Lindenmeyer, 1962; Gutfinger et al., 1975). 

Unlike the crystallization ofmonatomic materials, the mechanism of polymer . 

crystallization is more complicated, especially for crystallization processes occurring 

during flow (Hua and Scheiber, 1996). Most flow-induced nucleation and growth models 

have been based on the idea that stretching a polymer chain reduced its conformational 

entropy. 

where 

· The change in Gibb's free energy, LlG, for any process can be expressed as 

LlG = Ml - TM 

Ml = the enthalpy change, 

T = temperature, 

LlS = entropy change. 

(2-5) 
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For a solidification process or melting, tiG = 0 which leads to: 

~ = Mfm 
m fiS 

m 

(2-6) 

where a subscript m refers to the melting point. The decreasing configurational entropy 

will eventually elevate the melting point. In consequence of the increased supercoooling, 

nucleation and growth rates are predicted to increase by many orders of magnitude. 

Ho~ever, · it has been experimentally proved in many cases that the melting point elevation 

mechanism has failed (Tree, 1990; McHugh and Spevacek, 1991; McHugh and Yung, 

1992; McHugh et al., 1993). 

Flow-induced crystallization models can be classified into two main categories. 

The first one involves introducing the flow effect into the A vrami equation (Ziabicki, 

1974; Eder and Janeschitz-Kriegl, 1988; Eder et. al., 1990), the second is based on the 

thermodynamics approach (Flory, 1947; McHugh, 1975; Bushman and McHugh, 1996). 

A modified treatment of the Avrami formation was suggested by Eder and 

Janeschitz-Kriegl (1988) as follows: 

(2-7) 

where 

M = vN0 1e-vz (nucleation rate), 

K = f m [ G(t - z )0 2 r (growth rate), 

G = linear growth rate, 

m = dimensionality of growth, 

N = total number of potential nucleation sites per unit volume, 



fm = shape factor, 

t = present time, 

z = past time, 

v = the activation frequency, 

ei = flow factor. 
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The activation frequency, v, and linear growth rate, G, are functions-of the degree of 

undercooling and may be affected by the melting point elevation. The modified A vrami 

model has been successfully used to determine the flow rate dependency in polymer crystal 

growth from solution studies by McHugh and Spevacek (1991). The modified Avrami 

models can be considered as semi-empirical models which do not account for the coupling 

of the rheology and the crystallization in a predictive way. 

McHugh (1975) predicted the crystal nucleation rate of polyethylene from xylene 

solution in terms of the free energy. The free energy was evaluated by means of the elastic 

dumbbell model. It was demonstrated that an increased m.icleationrate was obtained in 

elongational flow compared to shearing flow. 

Bushman and McHugh (1996) developed a crystallization rate model by using 

Hamiltonian Poisson Brackets (Beris and Edwards, 1994). 

where 

~c = { <Pc, J£} + [ <Pc, J£] 

r/)c = crystal volume fraction, 

J£ = Hamiltonian, 

(2-8) 



{ <l>c, Jt} = continuum Poisson bracket, 

[ <l>c, Jt] = dissipative bracket. 

The Hamiltonian, Jt, is the summation of potential and kinetic energies. Potential 

energy is the summation ofHelmhotz free energy, A, of the deformed molecule and the 

free energy of the crystallization. The Helmholtz :free energy for the extended polymer 

chain is given as: 

where 

A=nkTln/ L) \veq 

n = number density of molecules, 

V/eq = equilibrium distribution. 

(2-9) 

The Helmholtz :free energy was obtained by the theory of strain-induced crystallization 

(Gaylord and Lohse, 1976; Gaylord, 1976) and the model ofHookean dumbbell to 
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describe the polymer molecule. The use of "strain" -induced crystallization was based on 

the assumption that the chain entanglements in flow-induced crystallization play the same 

role as the chemical crosslinks in strain-induced crystallization and the relaxation time of 

the molecular entanglement are long compared to the crystallization. However, the model 

concept is not easy to understand. 

Optimization 

Optimization techniques provide the tools for a systematic search for the optimum 

design or set of operating conditions from among all the possible design or operating 

options. The optimal design criterion is defined by an objective function subject to the 
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relevant constraints. Typically, objective functions are related to maximum profit or 

minimum cost: such as minimizing the pressure drop (Cabuk and Modi, 1990, 1992), 

minimizing process time (Mychajluk et al., 1996), minimizing energy input; and obtaining 

an extremum in the material geometry or properties: such as maximizing strength 

(Nonhof, 1996), minimizing the thickness variation (Lee and Soh, 1996; Tucker et al., 

1995). The optimization problem can be stated as a general nonlinear programming 

(NLP) in the following form: 

where: 

Minimize: 

subject to: 

f(~); 

Ci(~)= 0, 

Ci(~)~ 0, 

~ = design variable vector, 

f(~) = objective function, 

i = 1, 2, ... , m 

i = m+l, m+2, ... , p 

i = 1, 2, ... , n 

Ci(~)= 0 (i = 1, 2, ... , m) = equality constraints, 

ci(~) ~ 0 (i = m+ 1, m+2, ... , p) = inequality constraints, 

2Y, ~u = lower and upper limits of variables. 

(2-10) 

(2-11) 

(2-12) 

(2-13) 

The design variables are assumed to be continuous and not functions of time. An 

important concept to keep in mind is that maximizing a function can be considered to be 

the same as minimizing the negative of the function. If the constrains, Ci, do not exist, the 

problem becomes an unconstrained optimization. For constrained optimization, there are 

a number of different techniques that are used such as penalty-functions, augmented­

Lagrange or multiplier methods. 



19 

The following discussion starts with an introduction to the one dimensional 

Newton methods without constraints which is the simplest optimization problem. This is 

followed by multi-dimensional Newton methods, and then the methods related to the 

program (SQPHP) that has been used in this study are discussed: Lagrangian multiplier, 

generalized reduced gradient, penalty-function methods and successive quadratic 

programmmg. 

One Dimensional Newton's Method 

Newton's method starts at an arbitrary initial point Xo. The function takes a Taylor 

series expansion at Xk for the k-th iteration. The function is approximated by a quadratic 

function in which the terms higher than second order are ignored. 

(2-14) 

The necessary condition for a local minimum requires that/ '(x) = 0. Thus, Eq. 2-14 is 

differentiated with respect to x and the firs~ derivative is set equal to zero. Note should be 

made that the values ofk-th iteration are from the previous iteration and are known 

quantities which should be treated as constants during differentiation. So the Newton 

method predicts the minimum point value at the k-th iteration as 

(2-15) 

The current value of x will be used for the next iteration and the· iteration will be carried 

on until the convergence criteria are met. The Newton's method has a quadratic rate of 

convergence near the solution. 
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If the first and second derivatives in Newton's method cannot be obtained 

analytically, the derivatives can be obtained by numerical methods such as finite difference 

approximations. The truncation error may become important especially for the second 

derivative and computational resources become important for large numbers of variables, 

as will be seen in the following section. 

Multi-Dimensional Newton's Method 

Multi-dimensional optimization is an extension of the one-dimensional case with 

more than one design variable. The objective function of n design variables, which are 

represented in vector form, can be evaluated using a quadratic approximation at '?l. Thus, 

(2-16) 

where~= ~k+I - ~k' and the His the Hessian (second derivative matrix) of the objective 

function. The component ij of H is defined as: 

H .. = IJ2J 
I} a.a. 

I J 

(2-17) 

The quadratic approximation of.I(~) is differentiated with respect to each of the 

components of~. and then equated to zero 

(2-18) 

or 

(2-19) 
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The vector -[ H (!/ r Y..f (!k) represents the search direction and is denoted by S.. If 

H(~) is the identity matrix, the search direction is the steepest descent direction. The 

Hessian matrix is positive definite if the following condition can be met: 

(2-20) 

The solution may find a saddle point if the Hessian H(x) is not positive definite. 

Evaluation of the second partial derivatives in the Hessian matrix is time 

consuming and may not be positive definite. Therefore, many methods have been 

developed to approximate the Hessian matrix by first partial derivatives using the 

previously approximated Hessian matrix, B . Some examples of the Hessian approximate 
=k 

method are the BFGS (Broyden, 1970; Fletcher, 1970; Goldfarb, 1970; Shanno, 1970), 

Brj_rj_TB ggT 
B =B - +=-
=k+1 =k dT Bd grj_ 

. (2-21) 

-

Broyden (1967), 

[g-B4]<J/ 
B =B + - -
=k+I =k dT d (2-22) 

and DFP updates (Davidon, 1959; Fletcher and Powell, 1963) 

(2-23) 

where 

B = approximated Hessian matrix for (k+ 1 )th iteration, 
=k+I 

(2-24) 



(2-25) 

The approximate Hessian matrix for SQPHP was modified from the BFGS method and 

has the following form (Chen and Stadtherr, 1983, 1984): 

where 

17= Bg+(l-B)B <i. 
- - -k 

<:F $_?. 0.24.T Bk 4 

4.r $_ < 0.24.r Bk <i. 

(2-26) 

(2-27) 

(2-28) 

· (2-29) 

Usually, a step length 11, is introduced, which is multiplied by the search direction to 

decelerate or accelerate the search for the stability of convergence. 

Lagrangian Multiplier Method 
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Newton's method only handles problems without constraints and hence may not be 

suitable for many practical problems which may have various governing constraints. 

Typically, the optimization is subjected to two kinds of constraints: equality constraints 

and inequality constraints as shown in Eq s. 2-11 and 2-12. 

The inequality constraints can be converted to equality constraints by introducing 

the square of slack variables, a;2, then 

'("" l 2 . c; ·!/ - a; = 0 , 1 = m + 1, m + 2, ... , p (2-30) 
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When ~ 2 = 0 the constraint is called active or binding; while when a/ * 0 , the constraint 

is called inactive. 

The constraints can be incorporated into the objective function by multiplying by 

the Lagrange multipliers, Wj. The augmented objective function, called the Lagrangian, is 

defined as 

m p 

L(!,!f.!LJ = /(!) + L W;C; (!) + L W; [c; (!)- u;]. 
j,aj icam+l 

The necessary conditions for minimum points are (Dennis, 1959): 

_IJL_(!)_ = 0 
a.vi 

for i = 1, ... , n 

for i = l; ... , p 

IJL(!) .. --= -2w.a:. = 0 for i = m+ 1, ... , p IJa:. I I 

I 

for i = 1, ... , p 

(2-31) 

(2-32) 

(2-33) 

(2-34) 

(2-35) 

The dimensionality of the augmented objective function is increased by introducing 

Lagrange multipliers and slack variables. The Lagrange multiplier also provides 

information on the sensitivity of the objective function with respect to the constraint 

constant. The Lagrange multiplier method is not suitable if the necessary equations (Eqs. 

2-32 to 2-34) are not linear functions. 

Generalized Reduced Gradient Method 

The generalized reduced gradient method uses the linear or linearized equality 

constraint to reduce the number of variables. Suppose the inequality constrains in Eq. 2-



24 

12 do not exist, then m dependent variables,&), can be determined from m equality 

constraints and will be eliminated later. The gradient of the objective function is split into 

two sub-gradients, one containing (n-m) independent variables and the other containing m 

dependent variables, as shown below: 

of 
0!.1 

Y.f = of 

O!v 

The total derivatives of the objective function and equality constraints are 

(2-36) 

(2-37) 

(2-38) 

From the total derivatives of the objective function, the reduced gradient is given as 

(2-39) 

dx · 
The only unknown term d-D in Eq. 2-39 can be determined by the total derivative of the 

!1 

equality constraints in Eq. 2-38 and the reduced gradient vector is given as 

(2-40) 

The advantage of the reduced gradient method is the dimensionality of the reduced 

gradient vector, which can be referred to as the search vector, has been reduced to (n-m). 

One of the more successful codes for optimization, GRG2 that was developed by Lasdon 

and Waren (1978, 1982) at the University of Texas is also available. However, the 
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nominal optimum point in every iteration cannot be guaranteed in the feasible region; in 

some cases it is necessary to change the dependent variable to ensure that an optimum 

point is obtained (Edger and Himmelblau, 1988). 

Penalty Function Method 

The essential idea of a penalty function method is to transfer -the constraints of the . 

optimization problem into a single unconstrained optimization problem. One of the 

penalty functions, P(~. r), for the problem defined in Eqs. 2-10 to 2-12 is 

(2-41) 

where 

r = scalar weight. 

The unconstrained optimization problem can be solved by any·standard technique such as 

Newton, Quasi-Newton, or Secant method. The penalty function is easy to implement and 

theoretically related to successive quadratic programming. However, the method has the 

problems <>f slow convergence properties, unboundedness from below P (i.e., P can 

approach negative infinity), ill"'.'conditioning, and numerical instability. 

Successive Quadratic Programming 

Successive quadratic programming is the name given to the procedure in which 

quadratic programming is used recursively to minimize an objective function,/, that is 

approximated locally by a quadratic function. The constraints are approximated by linear 

functions. The quadratic approximated objective function about ~: 
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(2-42) 

subject to linearized equality 

(2-43) 

where 

H = Hessian matrix 

d. = £Yc+l - £Ye 

A Lagrangian, L, can be constructed based on Eqs. 2-42 and 2-43 (Wilson, 1963): 

(2-44) 

where 

ui = Lagrange multiplier 

The minimum point satisfies the well known Kuhn-Tucker conditions: 

(7_,(d,u.) 
- _, =Hd+V+ -Gu. =0 
od =- .:!J =-· (2-45) 

(2,-46) 

u ~o _, (2-47) 

The set ofEqs. 2-45 and 2-46 are linear and can be easily solved for step _g, and the new 

position, 2Yc+i, can be obtained. For the next iteration, the objective function and 

constraints are approximated about 2Yc+i and QP is performed again until the convergence 

criteria are met. 

The successive quadratic programming technique has the same drawbacks as the 

Newton's method: 1. Requirement of evaluating the second order derivatives, Hessian 
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matrix. 2. The Hessian may not be positive definite, in which case the problem may have 

no solution. 3. The optimization search fails for poor initial guesses. The Hessian matrix 

problem can be avoided by using the approximate matrix fl such as Eqs. 2-21 to 2-23 

(Han, 1976; Powell, 1978). A poor initial guess can be avoided by introducing a minimum 

value search along the search direction 4 (Han, 1977). 

Criteria for Determining the Optimum Solution 

The necessary and/or sufficient conditions provide information at the minimum 

point. For the problem stated in Eqs. 2-10 to 2-13, the Lagrangian is defined as 

m p 

L(!, w .~) = f (!) + L W;C; (!_)- L U;C; (!) (2-48) 
i=I i=m+I 

where 

wi = Lagrange multiplier for equality constraints, 

ui = Lagrange multiplier for inequality constraints. 

The sufficient conditions for a local minimum x * were suggested by Edger and Himmelblau 

(1988) and have been listed as follows: 

(a) ft.:~.), c;(~) are.all twice differentiable. 

(b) The gradients of the binding constraints and the equality constraints are linear 

independent. 

( c) The Lagrange multipliers exist. (The gradients of the binding constraints and equality 

constraints are linear independent.) 

( d) All of the constraints are satisfied at ?f *. 

(e) The Lagrange multipliers ut for the inequality constraints are not negative. 
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(f) For inequality constraints, utci(l) = 0 (complementary condition: either u/ or ci(l) 

equals to zero). 

(g) The Lagrangian function is at a stationary point. 

(h) The Hessian matrix of L is positive definite for all the active and inactive constraints. 

These conditions serve as the basis for the design of some algorithms and as termination 

criteria for others. If all the sufficient conditions can be met, the point :! * is said to be at a 

local minimum. Or on the other hand, the local minimum can be found based on the 

sufficient conditions for a given approximated (linear or quadratic) objective function and 

constraints. In any case, the optimization tools required to optimize polymer processes 

are available. Before embarking on a discussion of how these tools can be used, it is 

necessary to define a few polymer processes and the optimization variables associated with 

them. 

Polymer Processing Optimization 

There have been few reports of optimization techniques being applied to polymer 

processing operations. For different processing techniques, the optimization strategy has · 

different objectives. These research efforts can be classified according to the objective of 

the process: thickness uniformity, thermal uniformity, fiber orientation, cycling time. 

Thickness Uniformity 

The uniformity in thickness of a sheet in the transverse direction is always a major 

concern in extrusion processes. In the industry, usually a coat-hanger die has been 

commonly adopted for delivering the polymer melt from the extruder to form the desired 
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flat shape. However, the melt will not flow evenly inside the die without installing a buffer 

which iri turn increases the pressure drop. The optimization technique provides a tool to 

minimize the sheet thickness variation without sacrificing the pressure drop (Smith et al., 

1994; Tucker et al., 1995; Chen et al., 1997). Other examples of thickness uniformity can 

be found in the area of blow molding. The thickness of the blow molded product (such as 

a milk jar) is usually not uniform. The thickness is highly dependent-on the thickness 

distribution of the parison, which is a hollow preformed polymer before the air is blown 

into the cavity. The thickness distribution of the parison required to produce a highly 

uniform final blow molded product can be determined by optimization techniques (Lee and 

Soh, 1996). 

Thermal Uniformity 

In injection and compression molding, a non-uniform cavity surface temperature 

can cause residual stresses in the parts. Residual stress can be alleviated by holding the 

part in the mo)d longer. This unfortunately will lower the productivity. By reducing the 

temperature variation, the residual stress can be attenuated without sacrificing the 

productivity. By changing the position and power of the heating lines in the mold, a 

uniform mold surface temperature can be achieved (Barone and Caulk, 1981, 1985). 

Fiber Orientation 

The fiber orientation in composite polymers is intimately related to the anisotropic 

strength of the polymer. The material is processed as a suspension of fibers in a polymer 

melt. As the suspension flows through a die or mold, the polymer deforms and the 



30 

deformation changes the orientations of the fibers (Givler et al., 1983; Jackson et al., 

1986; Akbar and Altan, 1992). These orientations are subsequently frozen in as the 

polymer solidifies, and becomes a feature of the finished part. In the tube extruding 

process, the fibers are oriented in the direction of extrusion, which result in good tube 

strength in the longitudinal direction and weak strength in the hoop direction for 

withstanding pressure. By changing the flow or die shape, the hoop··direction orientation 

can be increased (Ausias et al., 1995, 1996). 

Cycling Time 

The cycling time is a major factor in injection, compression and resin transfer 

molding that has to be minimized in order to achieve the maximum productivity. For resin 

transfer molding, the cycling time includes cure reaction and the flow of resin in the mold 

(Manoochehri and Parnas, 1996). During molding, the process variables (injection 

pressures, mold temperature, and initial resin injection temperature) are manipulated to 

ensure that all of the constraints are satisfied. Within the requirements defined by the 

constraints on the processing variables, the process is optimized to minimize the cycling 

time. 

In polymer processing optimization, shape optimization techniques are always 

involved. For shape optimization, some of the design variables are defined on the domain 

and/or boundary geometry. As the boundary geometry changes during the optimization 

process, the domain of the model is altered to conform to the new geometry. One 

example of shape optimization as used in fluid mechanics is in determining the shape of an 

object of a given volume moving in a viscous fluid at constant speed for a minimum drag 
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force (Watson, 1971; Pironneau, 1973, 197 4; Glowinski and Pironneau, 197 5). Shape 

optimization has been used in aerodynamics to design airfoils having maximum lift force 

(Baysal and Eleshaky, 1992; Eleshaky and Baysal, 1993), in structural shapes to minimize 

stress concentration (Zienkiewicz and Campbell, 1973; Francavilla et al., 1975; Dems and 

Mroz, 1978; Braibant and Fleury, 1985), and in designing metal forming dies to minimize 

the variation ofrate of strain during forging of the workpiece (Han et al., 1993). 

For problems without shape optimization, the governing equation is based on the 

correlation between the objective function and the design variables. The problem can be 

easily applied to standard optimization techniques. One example is maximizing the welded 

joint strength by process variables (van Wijk et al., 1996; Nonhof, 1996). Since so many 

process variables (such as heating time, applied force, and temperature) can affect the joint 

strength, extensive experiments have been conducted and the correlation between the 

strength and the process variables is fou~d statistically. Once the correlation has been 

obtained, the standard optimization can be applied to find the maximum strength for 

different combination of the process variables. 

The difficulties in shape optimization arise from the fact that the objective function 

usually cannot be explicitly expressed in·terms of the design variables, especially for field 

problems. The governing equations for field problems usually are expressed as a system 

of partial differential equations which cannot be integrated analytically. Numerical 

methods are required to solve the governing equations. Since the boundary is one of the 

design variables, the boundary needs to be modified constantly in the optimization process. 

Finite difference methods are not very suitable for meshes that are not usually rectangular, 

unless special techniques are used to map an irregular working geometry to a rectangular 
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computational domain. Finite element methods are used because of their well known 

ability to successfully characterize irregular geometries (Dems and Morz, 1978; Shyy et 

al., 1988). 

In the optimization procedure, the derivatives of the objective function and the 

constraints with respect to the design variables are required. The calculation of the 

derivatives is the dominant contributor to computational cost. The study of the 

derivatives is referred to as sensitivity analysis, which has been an active area of 

optimization study. Therefore, it is desirable to have efficient numerical or analytical 

methods to determine the sensitivity coefficients and efficient computational methods to 

' 
solve the resulting equations. A preferable approach is to obtain the. sensitivity 

coefficients analytically from an appropriate set of discretized partial differential equations 

to eliminate the costly analyses. Examples of the evaluation of sensitivity coefficients 

include the work by Baysal and Eleshaky (1992), Eleshaky and Baysal (1993), Smith et al. 

(1994), and Tucker et al. (1995). 

One example of shape optimization by sensitivity analysis was studied by Smith et 

al. ( 1994} for a polymer sheet extrusion die. The flow field was simulated by using the 

generalized Hele-Shaw approximation which can be represented as: 

V ·S(P)VP = O (2-49) 

where 

P = pressure field, 

S = flow conductance. 

For a power-law fluid, the flow conductance is a function of the pressure gradient and the 

half-height of the flow cavity h: 
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h2+1/n · 

S - IIVPll-1+1/n 
- m11n(2+I/n) 

(2-50) 

where 

h = half-height of the flow cavity, 

m = power-law pre-factor, 

n = power law exponent index. 

In a Hele-Shaw approximation, the pressure field is solved first and subsequently the 

velocity field is obtained. Eq. 2-49 implies that the pressure is an implicit function of 

height which is the design variable. It is assumed that the objective function is determined 

by a performance measurement G of the process, and G is implicitly dependent on design 

variable,! through pressure, P, and explicitly dependent on.! as shown in following 

equation. 

f (!) = G(P(!),!) (2-51) 

The design sensitivity ofF is calculated from 

(2-52) 

The partial derivatives : (P(!),!) and : (P(!),!) are readily available, while : (!! 

is implicitly defined by Eq. 2-49. In the formation of the FEM, die half-heights were 

interpolated in the domain as well as the pressure. The derivative : (!) can be obtained 

in the same way as in the standard method of taking derivatives in non-linear FEM. 

As can be seen in the example of Smith et al., the formulation of sensitivity 

analysis is dependent on the problem itself For different problems, the design sensitivity 
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vector specific to that problem needs to be determined. Another technique which is 

analogous to sensitivity analysis is the variational method to obtain the variation of the 

solution of a direct problem due to boundary variation. <;abuk and Modi (1992) used the 

variational method to obtain the optimum shape of a planar diffuser. 

Another method of generating the sensitivity coefficients is by using a finite 

difference approximation to repeatedly analyze the flow-field with incremental values of 

the design variables. This approach though much easier to implement, is potentially 

computer intensive and hence more expensive especially if the governing equations are 

difficult to solve. 

From the previous discussion, it is evident that there is a need to model flow­

induced crystallization for actual polymer processing situations. In the next chapter, the 

techniques described here will be used to produce an optimization methodology based on 

a predictive structural model to characterize polymer processes. This effort represents the 

first time that kinetic theory and successive quadratic programming have been used to 

exploit flow-induced crystallization in the· design and optimization of polymer processing 

equipment. 



CHAPTER III 

MATHEMATICAL AND COMPUTATIONAL MODELS 

In this chapter, an expression for the probability distribution function for molecular 

orientation is derived. The distribution function is used to determine the direction and rate 

of polymer crystallization. The theory of optimization is then described with an emphasis 

on Successive Quadratic Programming by the Han-Powell (SQPHP) method. Finally, the 

implementation of the optimization for flow-induced orientation is outlined. A short 

discussion of spherical coordinates is found in Appendix A which may aid in 

understanding the remainder of this chapter. 

Flow-induced structure formation may include amorphous orientation or the 

formation of extended chain crystals. The model developed in this chapter is for the 

general case of simultaneous formation of extended chain crystals and amorphous 

orientation. In the application of the model (Chapter IV), a simplification can be readily 

made to represent·quiescent crystallization, structure formation in non-crystallizing 

systems, or orientation at temperatures above the melting point .. 

Flow-Induced Structure Formation 

Flexible polymer molecules consist of very large numbers of carbon atoms bonded 

in succession with a nearly free rotation about the bonds. Consequently, polymer 

35 
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molecules are very difficult to rigorously model. However, Bird et al. (1987b) have 

shown that polymer molecules can be represented by "bead" models. In a bead model, the 

mass of the molecule is assumed to be concentrated at discrete points (the beads) which 

are connected together to approximate the molecule. The specific model is determined by 

the number of beads and characteristics of the connectors. The simplest example of a 

bead model is the rigid dumbbell which consists of two beads that ar-e joined by a massless 

rigid rod. 

The configuration of a dumbbell model is determined by specifying the location of 

the beads by means of position vectors with respect to some fixed coordinate system. 

Suppose there are two beads in space, beads -1 and + 1, as shown in Figu_re 3. The 

position of the beads is represented by the vectors r-1 and r+1 with respect to an arbitrary 

origin. The orientation of the rigid connector rod is represented by the connector vector 

which has a fixed length, L. The connector vector can be represented by Ly where y is a 

unit vector. That is 

I+1 - I-1 = Lg· (3-1) 

The length of the dumbbell is fixed. Consequently the motion of the ends of the dumbbell 

will be on the surface of a sphere. Hence, spherical coordinates are the most suitable 

coordinate system for the problem at hand. 
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+l 

-1 

Arbitrary Origin 

Figure 3. Rigid Dumbbell Model 

The assumptions of the model are listed below: 

1. The polymer molecule is modeled as a rigid dumbbell. 

2. The system is at isothermal conditions. 

3. The inertial force in the equation of motion is neglected due to the bead's small mass 

and sluggish movement. 

4. The flow field is homogeneous 3.!1-d the fluid is incompressible. 

5. There is no hydrodynamic bead interaction, i.e., the velocity perturbation term is 

neglected. 

6. The friction tensor is isotropic in the hydrodynamic force term. 

7. Equilibration in momentum space is assumed for the velocity distribution in the 

Brownian motion term, i.e., the velocity distribution is Maxwellian about the mass­

average velocity of the melt at the center of mass of the dumbbell. 

8. Intermolecular forces are neglected. 

9. The rate of polymer crystal growth is proportional to the probability of finding the 

molecule in the orientation direction. 
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The Equation of Motion for the Beads of the Dumbbell 

The forces experienced by the beads are (1) the hydrodynamic drag force, (2) the 

force due to Brownian motion, and (3) the external force as shown in Figure 4. An 

intramolecular force is not included because there is no "spring" in a rigid rod dumbbell. 

The inertial force can be neglected because bead movement is assumed to be very sluggish 

and also because the mass of the bead is very small. 

Hydrodynamic Drag Force. The hydrodynamic drag force is the force due to the 

difference between the velocity of the bead and the surrounding fluid. Thus, the drag 

force can be represented as (Bird etal., 1987b): 

(3-2) 

where 

k = friction tensor, 

IItv] = velocity-space averaged bead velocity, 

Yv = velocity of the surrounding fluid at bead v, 

y' v = perturbation velocity of the flow field. 

The subscript v identifies the bead and may take on values of+ 1 and -1. In most cases, 

the friction tensor k is isotropic (i.e., ( = g, where the scalar l;; is called the friction 
. = = 

coefficient and §, is the unit tensor). The velocity-space averaged bead velocity for the 

rigid dumbbell is defined as: 

(3-3) 
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(a) Hydrodynamic Drag Force 

(b) Brownian Force 

(c) Intermolecular Force 

Figure 4. Forces Acting on Dumbbell 



where: 

E = velocity distribution function 

f+1, t_1 = bead velocity 
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Examination ofEq. 3-3 shows that determination of a numerical value for [tv] requires a 

priori knowledge of the distribution function. However, determination of the distribution 

function is the goal of this derivation. Hence, [tv] is a variable. 

The fluid velocity at position r can be defined as 

(3-4) 

where ~ is the transpose of the velocity gradient tensor and the subscript v = + 1, -1 : 

~ = (Vv)f and (3-5) 

:!'.'.o is a vector independent of position. 

The trace of~ must be zero (i.e., Ku + K22 + K 33 = 0) if the fluid is incompressible. The 

perturbation velocity y' v of the flow field at bead v results from the motion of the other 

bead and is referred to as hydrodynamic interaction. The hydrodynamic interaction is 

assumed to be insignificant for reasons of simplicity. 

Using Eqs. 3-2and 3-4, the difference between the hydrodynamic forces acting Qn 

the two beads is given by 

K+1 (h) - K-1 Ch) = -l:[lli+1 ]-Yo -(~ · !:+1)] + l:[ [L1 ]- Yo -(~ · !:-1)] (3-6) 

Assuming that the bead -1 is in the crystal, and the bead + 1 is part of a polymer chain that 

is in the amorphous melt, it is evident that the total mass of the crystal is much greater 

than ( even at the nucleation stage) that of the polymer chain in the melt. Hence, it can be 
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said that the ccystal is moving with the fluid with velocity :!:o , and experiences no drag or 

Brownian forces. Since the placement of the origin is arbitracy, it can be placed at the 

ccystal, bead -1. Then, the position vectors are: 

[t+1] = :!:o +L(~·~) 
(3-7) 

[ f ]-v --1 - -0 

Substituting Eq. 3-7 into Eq. 3-6, the following equation can be obtained 

F (h) _:,. F _ (h) = _rL[ITu]-(K. u)] 
-+I - I ~ ~ = - . (3-8) 

Brownian Force. The Brownian force is due to the thermal fluctuations in the liquid 

which causes the beads to be jostled about in an irregular manner. The effect of the 

hydrodynamic force is to distort the probability distribution function in space, while the 

effect of the Brownian force is to make the probability distribution function evenly 

distributed. 

A simple form for the average velocity term in the force due to Brownian motion is 

obtained by using the Maxwell velocity as defined in Eq. 2-1. This is tantamount to using 

the classical "equilibration in momentum space" assumption, since the bead momentum · 

was defined as the product of the bead mass and the Maxwell velocity distribution 

function which is in "equilibrium." The details of the derivation of this equation are 

available in Appendix B following the work of Bird et al. (1987b) 

F Cb)= - kT(_£1n ) 
-+I L OU 1/f (3-9) 

where \JI = configurational probability distribution function, 
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T = absolute temperature, 

k = Boltzmann constant. 

The configurational probability distribution function \11(0, <I>) is defined so that the 

probability of a dumbbell oriented between the angles 0 and (0 + d0), <I> and (<I>+ d<I>) is 

given by \11(0, <l>)sin0d0d(j>. Note that (sin0d0d<I>) is a differential increment of area on the 

"surface" of the unit sphere. 

External Force. Examples of external forces are gravitational and electrical force. 

Gravitational and electrical forces are important in high speed centrifugal fields and 

electrical charged (ionic) polymers, respectively. The intermolecular force can be 

represented by the negative of the gradient of the jntermolecular potential, r 

Cr) 1 8 
F =---r 

+I L !Ju . (3-10) 

The intermolecular force acting on bead -1 is not present, because the bead is already in 

the crystal. One commonly used pc;>tential is the Lennard-Jones potential which is shown 

in Figure 5 and is defined as: 

[( Jl2 ( J6] 8 8 
r-4E - - -

7sep 7sep 

(3-11) 

where: 

E = maximum depth of the potential well, 

rsep = separation distance from the bead in the crystal, 

cr = distance at which potential is zero. 
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r 
fsep 

Figure 5. Lennard-Jones Potential 

The differences between forces acting on the two beads are added together and the 

9- and <!>-components are projected out by multiplying the summation of forces by 

(o-uu)·[(F Ch) -F Ch))+(F Cb) -F Cb))+(Fcr) '-per))]= O 
= - +1 -1 +1 -1 +1 -1 (3-12) 

When the force expressions from_E.,qs. 3-8 to 3-10 are substituted into Eq. 3-12 the result 

1s: 

(3-13) 

The momentum-space averaged rate of change of the orientation vector Ill!] can be 

obtained from a rearrangement ofEq. 3-13. Thus, the result is: 

(3-14) 

where 'A. = ~L2 /12kT is the time constant for the rigid dumbbell. 
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Equation of Continuity for the Distribution Function 

For the rigid dumbbell model, the bead on the end of the rod can only be found on 

the surface of the hemisphere with radius Las shown in Figure 6. Only a hemisphere was 

considered instead of a unit sphere because the other hemisphere was occupied by the 

crystal. The rate of change of probability for finding a bead on the surface element A is 

; If/( 8, rp, t)A8sin 8A</J (3-15) 

Notice that the "sin8" in Eq. 3-15 is the scale factor for the azimuthal (i.e., in the <I> 

direction) unit vector, 1, in the spherical coordinate system. The rate at which beads enter 

the surface element A is 

where 

([ B]lf/ )1 0 sin 8A<jJ - ([ B]lf/ )lo+M sin 8A<jJ 

+([¢]1f')I~ A8-([¢]1f')l~M AB 

[ B] = [ d 8] = average time rate of change of the. coordinate 8 
dt 

. d</J 
[ r/J] = [ dt ] = average time rate of change of the coordinate <I> 

(3-16) 

Equating Eqs. 3-15 and 3-16 and dividing by AB sin 8A<jJ; when AB and A</J are allowed 

to approach zero, the following expression can be obtained. 

Off/ = -( 1 b[ 8] sin elf/ + 1 b[ ~]If/) 
ot sin 8 88 sin 8 8</J 

(3-17) 

Eq. 3-17 can be represented in term of the average unit vector [u] as: 
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Figure 6. Surface Element sin BABA.¢ on Hemisphere 
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(3-18) 

The main idea of an equation of continuity for the configurational probability distribution 

function is that dumbbells leaving one orientation must end up in another, and is analogous 

to the equation of continuity in continuum fluid mechanics. 

Substitution of the expression for I@.] from Eq. 3-14 into t~e equation of 

continuity gives the diffusion equation: 

o 1 ( o o ) o 1 o (of ) -,,,=- -.-,,, --·[K·u-1c:uuu]11r+ · -,,, (3-19) ot" 121 ~ ~.,, ~ = - = -- .,, 12kTl ~ ~ .,, 
Brownian Hydrodynamic Intermolecular 

Eq. 3-19 is the general diffusion equation for the rigid dumbbell model. Any external 

force is assumed to be relatively small compared to the hydrodynamic force. The 

assumption is especially true in polyolefins in which only short range weak van der Waals . 

forces are present. Therefore, no external forces are included in the present derivation. 

For more detailed work about unsteady-state modeling in the presence of an 

intermolecular force resulting from a Lennard-Jones potential, refer to Mendes' work 

(1997). In order to make the equation useful, the flow field must be defined and 

converted to spherical coordinates to obtain the probability distribution function. 

The effect of the flow field enters into the diffusion equation through the tensor !£ . 

For a general, two-dimensional, homogeneous velocity field, the rate of strain tensor is the 

same at all points in the flow field. The velocity is linear and defined in the following 

equations. 



ux =ax+by+c 

Uy =dx+ey+ f (3-20) 

where a, b, c, d, e and fare coefficients related to the type of flow under consideration. 

The transpose of the velocity gradient tensor in the rectangular coordinate system 

becomes 

a b 0 

K=d e 0 

0 0 0 

(3-21) 
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The tensor~, as well as the other terms in the diffusion equation (i.e., Eq. 3-19) must be 

represented by spherical coordinates, i.e., the polar angles 9 and q>. 

The velocity components in spherical coordinates ua and u, are defined as the 

partial derivatives of the 9 and <I> coordinates with respect to time. The velocity in the 9 

direction, ua can be rela,ted to Cartesian coordinates by the chain rule: 

t3() t3() ox t3() oy i}f) oz 
u =-=--+--+--

6 8t ox 8t oy 8t oz iJt_ (3-22) 

The derivatives with respect to Cartesian coordinates can be obtained from the definition 

of the spherical coordinate system which is defined in Appendix A. Then, the 9 directional 

velocity can be obtained as: 

(3-23) 

The Cartesian velocities in Eq. 3-23 are defined in Eq. 3-19. When the Cartesian 

coordinates are converted to spherical coordinates: 

u6 = rsin0coso(acos2 ¢+ (b +d)sin¢cos¢+esin2 ¢] 

+ccos0cos¢+ f cos0sin¢ 
(3-24) 



By the same approach, uci> can also be obtained: 

u!p = - sin <fmx + cos </my 

uf = rsine((e-a)sin¢cos¢-bsin2 ¢+dcos2 ¢] 

-csin¢+ f cos¢ 

(3-25) 

(3-26) 

Similarly, the transpose of the velocity gradient tensor can be expressed in spherical 

coordinates as: 

ror 

it 
roe 

K=-
= it 

at!p 

it 

_! ror Ue 

r 88 r 

1 roe Ur --+­
r 88 r 

1 at!p 
r iJ() 

1 atr u((J 

rsine 8¢ r 
1 me u((J 
. 8 a~ --cote r sm 'f' r 

1 ro,p Ur Ue 
. e ;:u. +-+-cote 

r sm V'f' r r 

(3-27) 

Only two components are required in the derivation, as can be seen from the following 

expression which is the only term containing the ~ tensor in Eq. 3-19: 

Again, ~ and t are the unit vectors in the e and ¢ direction respectively. 

The two components K21 and K31 of the transpose of the velocity gradient are 

K 21 =; = sinecose[acos2 ¢+(b+d)sin¢cos¢+esin2 ¢] 

at 
K 31 = ; = sine((e-a)sin¢cos¢-bsin2 ¢+dcos2 ¢] 

(3-28) 

(3-29) 

Upon substitution, the second term on the right hand side ofEq. 3-19 becomes: 

8 ( 8 1 8) - . r1e. u -1e:uuu]111 = s- + t--- . (SK21'11 + tJc.31111). 8g ~ - = --- 't' - ae - sin 8 8<1> - 't' - 't' 
(3-30) 

Talcing the dot product on the right hand side ofEq. 3-28 which becomes 
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o o ( ) cos e 1 o ( ) -·[K·U-K:uuu]'" = - K 11, +--K 11,+---- K 11, 
.;::i.. - - - -- 't" a1n 21 't' . e 21 't' • e au. 31 'f' vu - - u filn filn ~ 

(3-31) 

Substituting the components of [ (i.e., Eq. 3-29) into Eq. 3-31 and performing the 

differentiation with respect to e and ¢> 

a: · [~ · !:! - ~: !:!!:!!:!]\JI = [ a cos 2 <I> + (b + d) sin <I> cos <I> + e sin 2 <I>] 

[ ( 2 cos 2 e - sin 2 e )\JI + sin e cos e a\jl J 
00 (3-32) 

+[ ( e - a){ cos 2 <I> - sin 2 <I>)- (2b + 2d) sin <I> cos <I> ]\JI 

+[ ( e - a) sin <I> cos <I> - b sin 2 <I> + d cos 2 <I>] : 

The first term on the right hand side of the Eq. 3-19 can be obtained by performing 

8- 8 1 8 .. 
a standard dot product operation of the vector 01:!. = §. 8() + t sine orj> with itself That · 

gives: 

a a 82 \jl cos8 8\j/ 1 82\j/ 
-·-\j/ = --+----+----
8g 8g 00 2 sine ae sin 2 e a4>2 

(3-33) 

A more detailed derivation can be found in Appendix A. 

The probability distribution function, \JI, for molecular configurations can be 

obtained by substituting Eqs. 3-32 and 3-33 into Eq. 3-19, and assuming that the 

molecular configurations are in steady state. After some rearrangement, the diffusion 

equation (i.e., Eq 3-19) yields: 

(3-34) 

where: 
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A= _I_ (3-35a) 
122 

B = I (3-35b) 
122sin 2 B 

C = cos_B - sin BcosB{a + [(e-a)sin ¢ + (b + d)cos<jJ]sin ¢} (3-35c) 
122smB 

D = [(a-e)cos<jJ+(b+d)sin ¢]sin¢-d (3-35d) 

· . . (1 + 3 cos2Bj 
E = -{a+[(e-a)sm¢+(b+d)cos¢]sm¢} 2 (3-35e) 

+ (a -e)cos2¢ + (b + d)sin2¢ 

Since the bottom hemisphere (in Figure 6) has been occupied by the crystal, a no-flux 

boundary condition, or 0'4flae = 0, applied is at the equator. In the computational domain 

boundary, the probability at <I> = 0 is the same as the probability at <I> = 1t. Another point 

needs to be specified to determin:,j the solution in conjunction with the above two 

boundary conditions. Physically :he north pole is a point, but mathematically the point is 

represented by a line of8 = 0 with arbitrary (j>. The value of the point at the north pole 

will be assigned a finite number frst, and the probability distribution function will be 

solved in the whole domain. Then the probability distribution function 'V would be 

determined by the normalization condition: 

r211: r11:12 
Jo J01.f/SinfHfH</J=l. (3-36) 

Boundary conditions then are 

At 8 = 0, 'V = finite constant 

At 8 = 1t/2, 8'4'/88 = 0 
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Eq. 3-34 is an elliptic partial differential equation with variable coefficients. This equation 

has to be solved numerically in most cases. A few exceptions do exist, two of which are 

described below. 

Analytical Solutions for Diffusion Equation 

Two analytical solutions are available for the diffusion equation. These are for 

steady planar elongational and simple shearing flows. 

Steady Planar Elongational Flow. A steady planar elongational flow is given by the 

velocity field 

u = ix· u = -.R\J" u = 0 X > y -.r > Z (3-38) 

in which the elongation rate e is not a function of time. The coefficients in Eq. 3-20 

become a=&, e=-e and b = c = d = f= 0. 

(3-39) 

where A and Oe are linear operators: 

Aw = [-1 ~(sine O\JI) +-1- &w] 
sin 0 ae ae sin2 0 ae2 ' 

(3-40) 

(3-41) 

The probability distribution for steady planar elongational flow has the form: 

'1/(B,<jJ) = exp(6lesi~2 Bcos2</J) (3-42) 
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where J is the normalization constant 

f2"' f "'/2 
J = Jo Jo exp(6A&sin 2 fJcos2¢)sin(tilJd¢ (3-43) 

Steady Simple Shearing Flow. The velocity field of a steady simple shearing flow is given 

by 

u yy· u = O· u = 0 x= , y , z (3-44) 

in which the shear rate y is not a function of time. The coefficients in Eq. 3-20 become 

b = y and a= c = d = e = f = 0. Eq. 3-34 then becomes 

(3-45) 

··-

where A is the same operator defined in Eq. 3-40 and Os are linear operator for shearing 

flow: 

[ sincpcoscp o ( . ) o ( . )] 
Qs \Jf = . . sm 2 8cos8\jf - -. sm 2 cp\Jf . 

filn8 00 . ~ 
(3-46) 

The probability distribution for steady simple shearing flow can be obtained using 

the perturbation method (Bird et al., 1971). The solution has the form: 

(3-47) 

(3-48) 

(3-49) 

(3-50) 

.4,. _ 1 po 23 p2 121 po 3 p2 
'+' 4 - - 10395 2 Co - 45360 2 C2 - 720720 4 Co - 616000 4 Cz 

7517 p4 1 pO 71 p2 1 p4 + 864864000 4 C4 - 110880 6 Co + 139708800 6 C2 + 39916800 6 C4 (3-51) 

71 p6 I pO 1 p4 I p8 
- 3353011200 6 c6 + 823680 8 Co - 1037836800 8 C4 + 99632332800 8 Cg 
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(3-52) 

cm= cosm<I> (3-53) 

The P: are defined as: 

(3-54) 

where Pn are the Legendre polynomials which are defined as: 

P (x)= (-It ~(l-x2)n 
n 2nn! dxn 

(3-55) 

For spherical harmonics x = cos8. The properties of spherical harmonics are described in 

more detail by Hirschfelder, Curtiss and Bird (1964). As seen in Eqs. 3-48 to 3-51, the 

numbers of terms increases dramatically as· the desired precision increases. The 

perturbation method is only good for 'A:y less than or equal to 1.0 (Stewart and S0rensen, 

1972). 

The effect of the flow field on the probability distribution function is determined by 

the introduction of the Weissenberg number (We) 

We= AK (3-56) 

where A is the characteristic time, and K is a characteristic strain rate in the flow. The 

characteristic time 1 is defined as follows for the rigid dumbbell. 

1 = f,£2 /I2kT (3-57) 

The characteristic strain rate, K, is defined as 

K = ~11/2. (3-58) 
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where 

II = tr(y: r) = second invariant, 

r = (V~) t + (V~) = rate of strain tensor. 

In shearing flow, the characteristic strain rate is the shear rate while in elongational flow, 

the characteristic strain rate is twice the elongation rate. 

A scalar description of the orientation state predicted by the probability 

distribution function can be found by determining the orientation parameter. The 

orientation parameter represents the degree of the molecular orientation with respect to 

the x-axis and is defined as: 

(3-59) 

where: 

1 ) r211 r1112 
\ sin 2 8 COS2 <p = Jo Jo \j/(8, <p )sin 2 8 COS2 <p sin 8d8d<p (3-60) 

The expression in the angle brackets is the· square of the projection of the orientation 

vector onto the x-axis. The corresponding quantities for they- and z-directional 

orientation parameters are(sin 2 8sin2 ~) and (cos2 e), respectively. The expression 

( cos2 8) has been used in the well known Hermans orientation parameter (Hermans, 

1946) to characterize axisymmetry with respect to the z-axis. The values of the 

orientation parameter become 1, 0, and -1/2 for molecules perfectly aligned in x-direction, 

totally random, and perpendicular to the x-axis, respectively. 

Polymer crystal growth is highly dependent on the molecular orientation. The 

polymer crystal forms when certain orientations of the polymer molecule fall into the 
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lattice site. Assuming that the molecules which are oriented close to the lattice site are 

near enough, the polymer crystal will form, while molecules far away from the lattice site 

are still considered to be in the amorphous state. The idea can be visualized by 

considering the existence of an infinitely deep square well potential near the lattice site as 

shown in Figure 7. The distance from the lattice site to the bead in amorphous state is 

represented by the distance l, while lo represents the well width. Since the well depth is 

infinite, once the molecule falls into the lattice site it will never be able to bounce back to 

the amorphous region. The probability of :finding a molecule in the lattice site If c can be 

obtained as 

f2" f"/2 
If c = Jo Jo'//¢, If sin BdfJd(jJ (3-61) 

where 

If/¢,= probability of the molecule falling into the lattice site 

ct>( l 

l 

00 

I< lo >l 

Figure 7. Square Well Potential 
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The value of f//; depends on the nature of the potential considered. In this case, 

i.e., for a square-well potential, the probability of the molecule falling into the lattice site is 

given by 

f//; = 1 V ls;. 10 

f//; = 0 V l > 10 
(3-62) 

For simple elongational flow, and arranging the spherical coordinate system such 

that the north pole points in the direction of flow, the molecule orientation is 

. (3-63) 

where 

& = elorigational rate, 

r2n rn/2 ( 9 . ~ 
J = normalization constant which is Jo Jo -exp. 2 Jecos2 8) sin6i6irp. 

Then, the probability of finding a molecule in the lattice site which is at the north pole of 

the spherical coordinate system is 

1 I2nI8o (9 · ) =- exp -Jecos2 8 sin6i6irp 
J O O 2 

(3-64) 

where 

8 0 = the angle corresponding to the distance lo. 

Eq. 3-64 suggests that f// c is a function of the elongational rate and potential width. 

Assuming that the rate of polymer crystal growth is proportional to f// c and the effect of 

the potential width can be absorbed into the proportionality constant, then the rate of 

polymer crystal growth is proportional to \jl. Hence, the probability of molecular 
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orientation is proportional to the amount of the polymer formed in the direction of 

orientation and is indicative of the relative strength of the material in a given direction. 

The molecular orientation can be projected onto the x and y axes and will provide a 

measure of the material strength in the x- and y-direction. Thus the relative x- and y-

directional strength is 

r2n rn/21 I sx = Jo Jo sin2 ecosf/Jl//d(Hrp (3-65) 

r2" r"'2 I I SY= Jo Jo sin2 ()sin(/Jl//dfHrp (3-66) 

The objective function of optimization is based on the Sx and Sy. 

SQPHP Method 

In this section, the optimization program used in this study is outlined (Chen and 

Stadtherr, 1983). SQPHP combines four successfullyimplemented optimization 

algorithms as mentioned in Chapter II: successive quadratic programming, Lagrangian 

multiplier method, generalized reduced gradient method and penalty method. The basic 

ideas of the SQPHP are briefly described in the following paragraph. 

As in successive quadratic programming, the objective function is approximated by 

a quadratic function, and the constraints are linearized. The approximate Hessian matrix, 

B , is obtained by the modified BFGS method to ensure a positive definite matrix. The 

upper and lower limits of the variables are treated as additional inequality constraints. The 

constraints as well as the upper and lower limits were multiplied by Lagrange multipliers 

and incorporated with the objective function to form a Lagrangian. By the same technique 

used in the generalized gradient method, the linear equality constraints can be eliminated 
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by Gaussian elimination. The reduced quadratic programming was performed to obtained 

the search direction S.. A line search procedure was conducted to make sure that the 

objective function is not only reduced, but also satisfies the constraints along the search 

direction. The line search procedure determines the step length, which can be used to 

avoid the problem of having a bad starting point, &- The schematic flow chart of the 

SQPHP code is shown in Figure 8. A description of each step is given below: 

(1) The iteration number k is set to zero. The optimization begins with a starting point, 

&, in the space of the variables. The approximate Hessian matrix, Bo, of the 

Lagrangian, L(~ ~ y), and the vector of the penalty parameters, r, are set to the 

identity matrix and the zero vector, respectively. 

(2) The functions, constraints, and their first derivatives are computed at &-

(3) A Quadratic Programming step (QP) is performed to obtain the search direction, Sic, 

and the Lagrange multipliers, Yk, for k-th iteration. 

(4) The penalty parameters are updated as [k = max.{l~kf, 0.5(rk+l~kl)}. 

(5) If the convergence criterion, CONV, is small or equals a user-specified acceptable 

tolerance, ACC, the program stops, otherwise it proceeds to update the penalty 
. . 

parameters. 

(6) A line search is performed to determine the step-length parameter, tk. Failure checks 

and evaluation of functions and derivatives at trial points are also performed during 

this step. 

(7) Let Xk+ 1 = xk + t~ for the next iteration. 

(8) VL~+1, Yk) is computed at Xk+1 and l!ic+1 is updated. The approximate Hessian matrix 

is computed using the previous Hessian and the gradient of the Lagrangian function 



Set 
k=k+l 

Compute 

(9) 

YL(:&c+1, YJc), !h+1 (8) 

k=O 
r=.Q 
!!o=! (1) 

Compute 
f(~), Yf(~), £i(~o), Ye(~) (2) 

Perform QP 
fu,Yk 

Update 
r 

'----.....-----' 

(3) 

(4) 

Yes 

Calculate Evaluate step length 
:&c+ 1 = :&c + tk.fu: ..... ~----1 1k 

.___ ___ __.. (7) (6) .__ _____ __, 

Figure 8. Flow Chart of SQPHP 
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(9) Set k = k + 1 and return to step (3). 



CHAPTER IV 

RESULTS AND DISCUSSION 

In this chapter, the behavior of the probability distribution function will first be 

described. The results obtained from the numerical simulation are compared with the 

analytical solution for elongational flow and are also compared with the results obtained 

by using the perturbation method at low Weissenberg number (We) in shearing flow. 

Next, the interface between FIDAP and the optimization routine will be described using a 

test case. Finally, a die geometry optimization, subject to anisotropy and strength 

constraints, will be presented. 

Probability Distribution Function Prediction 

The probability distribution function (PDF) was obtained as described in Chapter 

III. The following discussion is divided into different sections according to the different 

flow fields under consideration: elongational, simple shear or general flows. 

Planar Elongational Flow 

Steady planar elongational flow was examined first because an analytical solution 

was available for this flow. The planar elongational flow field is described by 

u = ix u = _J;.r u = 0 
X ' y -..r, Z 

(4-1) 

61 



62 

where 

x, y = Cartesian coordinates 

e = elongation rate. 

The elongation direction for this flow field is in the x-direction. 

The flow field is illustrated in Figure 9, with the hemisphere representing the 

possible positions of the dumbbell ends. The hemisphere is analogous to the north 

hemisphere of earth. If the earth's axis of rotation is taken to be the z-axis, the point 

where the hemisphere intersects the z-axis is called the north pole, while the circle line 

where the hemisphere intersects with the x-y plane is called the equator. The arrows 

indicate the direction and the magnitude of the flow velocity. 

The distribution function, \JI, is plotted for various values of We in Figure 10. The 

probability distribution function on a 3-D spherical surface is shown in thee and <I> 

domain. The point at the north pole corresponds to the line e = 0°, while the e = 90° line 

represents the equator. The positive and negative x-axis corresponds to <I> = 0° and 

<I>= 180°, respectively. Only O ~ fjJ::;; 180° was shown in the figure instead of 

0 ::;; fjJ ::;; 360° , because V'I, = V'lt1+1so•. 

The crystallization direction depends on the molecular orientation. The polymer 

orientation will be preferred (high distribution function) or excluded (low distribution 

function) in certain directions due to the hydrodynamic force under flow conditions. For 

quiescent conditions ( y = 0 s·1, We = 0), the distribution function is a constant with a value 

of - 1- . Therefore, the polymer will crystallize at the same rate in all directions. 
2,r 
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Figure 9. Planar Elongational Flow Pattern 
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The two peaks on each graph of Figure 10 represent the preferred orientation in the 

elongational directions. For a small elongation rate, i.e., We= 0.05 (Figure 10a), the 

profile is flat compared to Figures 10b and 10c where the Weissenberg numbers are 0.2 

and 1.0 respectively., and the orientation parameter, Ox, is close to zero which indicates 

that the molecular orientation is totally random. As the elongation rate increases, the peak 

becomes higher, and the value of the orientation parameter increases-. The higher peak 

represents a large number of polymer molecules oriented in the peak direction which is to 

say that the molecules Will preferentially grow as an extended chain crystal in that 

direction. 

Figure 10 also shows a large variation near the equator because the velocity 

gradient occurs in the x-y plane. According to the equation of continuity, the increased 

probability of orientation at the equator results in a reduced probability at the north pole as 

shown in Figure 10. 

When the numerical results were compared with the analytical solution (Eq. 3-39), 

a percentage error was determined according to the following equation. 

0,, numerical solution - analytical solution x 1000,,0. ,o error = . .. ,c 
· analytical solution 

(4-2) 

The mesh size affects the accuracy of the solution at high We, especially in 

elongational flow. Figure 11 shows the percentage error for different mesh sizes for 

We= 1.0. By inspecting Eq. 3-39, the solution is seen to be an exponential function and 

has a maximum value at 0 = 90° and <I>= 0°, and a minimum value along <I>= 40° and 135°. 

Figure 11 shows that the numerical solution has a positive deviation from the analytical 

solution near 0 = 90° and <I> = 0°, which corresponds to the flow direction and the 
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maximum PDF value. Also, Figure 11 shows a negative deviation from the analytical 

solution near the north pole. The percentage errors at the maximum value of PDF are 

within 8, 2 and 1 % for 20 x 22, 40 x 44, and 60 x 66 mesh size, respectively. The 

maximum errors near the north pole (0 = 0°) correspond to the minimum value of the 

analytical solution and since the magnitude of the value at this point is very small 

compared to the rest of the domain, th~ error introduced is not important. Notice that the 

area near the north pole always looks bigger on the map compared to that on the globe 

(sphere). So the actual negative areas on the hemisphere in.Figure 11 are relatively 

smaller than the positive area. A 40 x 44 mesh size was used in the optimization 

calculations. 

The solutions obtained in Figure 12 are based on a 60 x 66 mesh. The percentage 

errors in the region ofinterest (i.e., near e = 90° and <I>= 0°} are about 0.08% and 0.92% 

for We= 0.2 and 1.0, respectively. The region near the north pole has a larger error; 

however, since the region has relatively small values of \j/, hence the overall error is not 

significant as explained in the previous paragraph. Thus, the numerical method could 

predict probability distributions in the region of interest with at least 99% accuracy. 

Steady Simple Shear Flow 

Steady simple shear fl.ow was examined because a perturbation method solution 

and experiment results of polymer orientation were available. The simple shear flow field 

as illustrated in Figure 13, is described by 

U ='!Ar U =0· U =0 X (J> y > Z (4-3) 
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Figure 13 . Simple Shear Flow Pattern 



where 

Ux, Uy, uz= x-, y- and z-component of velocity 

y = shear rate 

y = coordinate. 
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The distribution function, \jf, is plotted for various values of We from small to large 

shear rates in Figure 14. As in elongation flow, the profile is relatively flat for small shear 

rates, while the height of the peak increases with increasing shear rate. 

The peak of the PDF (usually at the equator, 8 = 90°) moves toward the shearing 

direction (i.e., <I>= 0°) as the shearing rate increasing. Shearing flow can be thought of as 

elongational flow with the coordinate system rotated 45°. The peak is close to <I>= 45° for 

small shearing rates as showed in Figure 14a, and shifts to 20° for We = 1. 0 as seen in 

Figure 14c. 

The value of<!>, corresponding to the maximum in the distribution function is 

plotted as a function of We in Figur~ 15. Note that discrete values of the angle are used 

(i.e., the graph is not continuous) because a finite number of mesh points were used to 

calculate the probability distribution function. However, the trend shows a monotonic 

decrease in the maximum PDF angle with increasing We. 

The reason for the position of the peaks shifting with increasing shear rate is 

because shearing flow is a rotational flow. If a dumbbell is placed in a shearing flow field, 

it will rotate in a pattern similar to a Jeffery orbit (Jeffery, 1922). A Jeffrey orbit describes 

the locus of the end of a fiber rotating about the z-axis of a frame of reference which 
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moves with the fluid and the origin of which is at the center of mass of the fiber. The fiber 

rotates rapidly in the vicinity of rjJ = 90° and very slowly near rjJ = 0° . In contrast, a 

dumbbell in an elongational flow will tend to be aligned in the direction of flow, and hence 

the height of the peak greater than in shearing flow. A comparison of Figure 14c and 10c 

for We= 1.0 shows that the height of the.probability contour in elongational flow is much 

greater than that in shearing flow. This explains why extended chain- crystals are more 

readily formed in elongational flow than shearing flow. 

The numerical solution was found to be in good agreement with the solution 

obtained from the perturbation method for low We. The percentage errors shown in 

Figure 16 are no more than O. 002% and O .25% for We values of O.01 and O .1, 

respectively. The solution for steady shearing flow is a series expansion in terms of 

spherical harmonics as shown in Eq. 3-47. The perturbation method can only describe 

conditions close to the quiescent condition. This seems reasonable since by analogy, a 

Taylor series can only describe a function near the point of expansion. A truncation error 

analysis has been conducted for truncating terms after 5th term in Eq. 3-47, and the results 

indicate that the truncation error is relatively important for small values of 8. For small 

We (such as We= 0.01), the truncation error phases out very quickly, and th~ error is 

mainly contributed from the size of the mesh. For We= 0.1, the truncation error becomes 

relatively important for small value of 8. However, the maximum percentage error is still 

only 0.25% and hence, the model can be considered to be reasonably correct in its 

prediction. 

A similar form ofEq. 3-45 using a coefficient of 6 instead of 12 was used to 

describe the rigid dumbbell probability distribution in dilute polymer solutions (Bird and 
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Warner, 1971). The numerical solution did not compare favorably with the perturbation 

method solution for We greater than one. Nonetheless, the solution thus obtained was 

qualitatively consistent with the expected behavior. 

The model was also compared with experimental results. Hongladarom et al. 

(1996) used X-rays to measure the orientation ofhydroxypropyl cellulose (HPC) in water 

undergoing shear flow. HPC has a rigid backbone and is classified as a liquid ciystalline 

polymer (LCP). Consequently, at zero shear rates some degree of order was observed. 

The comparison between the model and the experimental data is shown in Figure 17. 

Below a critical value of shear rate y the flow had veiy little effect. One interpretation 

for this is that below a critical shear rate, thermal agitation dominates. Both experiment 

and model showed an increase in orientation with increasing shear rate above the critical 

value. The model does not account for the pre-existing molecular order in LCP. One way 

of modeling the pre-existing molecular order is by including the hindrance to the motion of 

the polymer chain by the adjacent polymer. However, the rigid-rod model still shows the 

right qualitative trend for the molecular orientation. 

General Flow 

Since no constraints were imposed on the flow tensor ~ in the development of the 

diffusion equation, the most significant feature of the model is its capability to solve 

general flow problems without the assumption of a symmetric ~- The probability 

distribution function for We= 0.1 with different flow fields is shown in Figure 18. The 

flow fields for different graphs are defined in Table II. The flow field in each case can be 

considered to be the summation of appropriately weighted shearing and elongational 
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flows. Note that the gradient tensors are not symmetric except in the elongational flow 

case (f). · Figure 18 shows the maximum probability angle shifting from <I> approximately 

equal to 41 ° for pure shearing flow (a) to <I> equal to 0° for elongational flow (f). The 

magnitude of the peaks does not change significantly (0.5%) for different velocity 

gradients, but the height of the peaks should change for higher We, e.g., Figures 10c and 

14c for We= 1.0, as mentioned before. The orientation parameters change substantially 

frorh 0.0131 in shearing flow to 0.0616 in elongational flow for the same We. 

TABLE II 

THE VELOCITY GRADIENT TENSOR FOR DIFFERENT FLOW FIELDS 

(a) (b) (c) (d) (e) (f) 

K. 0 1 0 0.1 ../24/s 0 0.2 .Jlfs 0 0.3 0.8 0 
1°~4 

0.6 0 05 0 0 
0 0 0 0 -0.1 0 0 -0.2 0 0 -0.3 0 -0.4 0 0 -0.5 0 
0 0 0 0 0 0 0 0 0 0 0 0 Jo 0 0 0 0 0 

Ox 0.0131 0.0242 0.0345 0.0442 0.0532 0.0616 

Implementation of Optimization 

The primary goal of this work was to optimize polymer processes. The SQPHP 

was used to find optimum points for the die configuration. In the process of optimization, 

the velocity field is required to evaluate the probability distribution function. Since 

analytical solutions are generally not available, some numerical method such as the Finite 

Element Method (FEM) must be used. The commercial software package FIDAP, which 
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is based on FEM, was used to solve many aspects of the flow problem. FIDAP obviated 

the need to develop a code to solve the fluid flow problem and to generate the necessary 

mesh for FEM. Since FIDAP is based on FEM, complicated geometries with complicated 

boundary conditions could be simulated. The only disadvantage in using FIDAP is that 

the source code for the program was not available. The non-availability of the source 

code was not a significant drawback because of the inherent flexibility and relatively user­

friendly interface and extensive documentation provided by the FIDAP vendor. 

In FEM, the entire flow domain is divided into a finite number of elements. In this 

study, a 9-node quadrilateral elem~nt was used as shown in Figure 19a. The FEM 

technique results in values of the velocity field at the nodes. The velocity field inside the 

element was found by interpolation with a quadratic equation. 

r 

7 3 

6 s 
9 

L 5 2 

(a) (b) 

Figure 19. Definition ofNatural Coordinates 
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In order to obtain the velocity components, the finite element needs to be further 

divided into 8 triangle sub-element as shown in Figure 19b and the velocity coefficients 

(i.e., a, b, c, d, e, and fin Eq. 3-20) in the sub-elements can be obtained by the velocities 

on the 3 comers of the triangle element. 

A molecular configuration that reached steady state instantaneously was assumed. 

So instead of tracing out the change in the flow field along the trajectory of the fluid inside 

the flow domain, only the molecular configuration at the exit is required for analysis. 

Since the source code of FIDAP was not available, the necessary parameters for 

optimization were stored in files to pass between programs. The curve to be optimized 

was defined by points which were stored in the file geo. The probability distribution 

function was evaluated after FIDAP finished the velocity calculations. The program 

rd.base. f, provided by FIDAP,was modified to read the results database and to 

evaluate the objective function. The value of objective function was saved to a file called 

obj for further optimization using SQPHP. 

As mentioned in Chapter III, the SQPHP algorithm requires the first derivative of 

the objective function and constraints to evaluate the Hessian matrix. There is no explicit 

expression for the relation between the geometry and objective function. Hence, the first 

derivative is obtained numerically by forward differences. 

Optimization 

The optimization algorithm, SQPHP, was first tested with 13 standard nonlinear 

constrained problems in the literature (Himmelblau, 1972; Betts, 1978; Dayde, 1989). 

The main purpose of testing the SQPHP code was to check for correctness rather than 
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efficiency. Some standard test problems were available in the literature, and the tested 

problems are listed in Appendix B with the solutions from the literature and the SQPHP 

program. The SQPHP solutions (i.e., the minimum point obtained and the corresponding 

objective function) agreed with the solution provided in the literature except for problems 

4, 11, and 12 as shown below. 

Problem 4 (Dayde, 1989) 
Minimize: f(x) = lOO(x2 - xi2)2 + (I - x1)2 + 100(x3 - x/)2 + (1 - x2)2 ( 4-4) 
Subject to: 9x1 + 6x2 + X3 - 100 = 0 (4-4a) 

IOx1 + 20x2 + X3 - 100 ;;?:_ 0 (4-4b) 
40 - x1 - 2x2 - 4x3;;?: 0 (4-4c) 
2H;;?:0, i=l,2,3 (4-4d) 
&>=[I, 1, If 
f(&>) = 0 

~ .. = [6.67, 6.67, O]T 
f(~"') = 3.3xl05 

SQPHP results, same as High (1991) 
~ .. = [6.5983, 5.8663, 5.4173] . 
f(~') = 2.26~105 - .. 

Problem 11 (Himmelbalu, 1972; Betts, 1978; Dayde, 1989) 
Minimize: f(~) = -0.5(:xix.i - X2X3 +x.;x:9·~ X5X9 + xsxs - X6X1) 
Subject to: I - x/-x.i2 ;;?: O 

1-x/;;?:0 
I - x/ - X6 2 ;;?: 0 
I - x12 - (x2 - x9)2 ~ 0 
I - (x1 - xs)2 - (x2 - X6)2 ;;?: 0 
I - (x1 - x1)2 - (x2 - Xs)2 ;;?: 0 
I - (x3 - xs)2 - (x.i - X6)2 ;;?: O 
l- (X3 - X1)2-(X4- Xs)2 ~ 0 
I - xl - (xs - x9)2 ~ 0 
X1X4 - X2X3 ;;?: 0 
X3X9;;?: 0 
-X5X9;;?: 0 
X5Xg - X(;X7 ~ 0 
X9;;?:Q 
Xi=l, i=l, ... ,9 
f(&>) = 0 

(4-5) 
(4-5a) 
(4-5b) 
(4-5c) 
(4-5d) 
(4-Sf) 
(4-Sg) 
(4-5h) 
(4-Si) 
(4-5j) 
(4-Sk) 
(4-51) 
(4-Sm)' 
(4-5n) · 
(4-So) 



~ .. = [0.9971, -0.0758, 0.5530, 0.8331, 0.9981, -0.0623, 0.5642, 0.8256, 
0.0000024r (Himmelblau, 1972) 
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~ .. = [0.91878, 0.39476, 0.11752, 0.99307, 0.91878, 0.39476, 0.11752, 0.99307, 
-0.60445xl0-14]r (Betts, 1978; Dayde, 1989) 

f(~) = -0.8660 
SQPHP results 

* T ~ = [0.86602, 0.5, 0, 1.0, 0.86602, 0.5, 0, 1, OJ 
f(~') = -0.86602 

Problem 12 (Himmelblau, 1972; Betts, 1978) 
Minimize: f(x) = -75.196 + 3.8112 x1 - 0.12694x/ + 2.0567xl0-3xi3 

- 1.0345x10-5x/ + 6.8306x2 - 0.030234x1x2 + 1.28134xl0-3x2x/ 
- 3.5256x10-5x2xi3 + 2.266x10-7x2x/ - 0.25645x/ + 3.4604xl0-3x/ 
- 1.3514x10-5x/ + 28.106/(x2 + 1) + 5.2375x10-6x/x/ (4-6) 
+ 6.3x10-8x/x/- 7x10-10xi3x/ - 3.4054xl0-4x1x/ 
+ 1.6638x10-6x1x/ + 2.8673exp(0.0005x1x2) 

Subject to: 0 ::;; x1 ::;; 75 
0 :S; X2 :S; 65 
X1X2 - 700 2:: 0 
x2 - 5(xi/25)2 2:: 0 
(x2 - 50)2 - 5(x1 - 55) 2:: 0 
&> = [90, 1or 
f(&>) = 82.828 

£ = [75, 65r 
f(~) = :..58.903 
SQPHP results 
'6, .. = [46.2, 50.63r 
f('J,") = -6.58 

(4-6a) 
(4-6b) 
(4-6c) 
(4-6d) 
(4-6±) 

For problems 4 and 11, the minimum points obtained were different than the literature 

values. However, SQPHP reached solutions that had smaller values of the objective 

function than those reported in the literature. Hence the SQPHP code has the ability to 

search for and determine the minimum point with greater accuracy than the techniques 

reported in the literature. In problem 12, the value of the objective function provided in 

the literature cannot be obtained even by substituting the minimum value determined in the 
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same work. A possible explanation is that the problem or solution in the literature (Betts, 

1978) may have a typographical error. In conclusion, from the results of the test cases 

considered, SQPHP is observed to be more than adequate to meet the requirements of the 

shape optimization. 

Verification Case - Diffuser Shape Optimization 

In order to verify the technique, a die optimization problem was found with a 

known solution. The problem involves the maximization of the pressure rise in a diffuser. 

The flow field in the diffuser was assumed to be 2-dimensional incompressible, laminar 

flow governed by the steady-state Navier-Stokes equation. The configuration of the plane 

diffuser shown in Figure 20. The entrance height was W1 and'length L. Only the upper 

half of the diffuser was modeled, because of symmetry. 

fw 

fo 

fc 
' ---------·-· ---------------------- ~ ~ -

L 

X 

Figure 20. Schematic Diagram of a Plane Diffuser 

A no-slip condition was imposed on the die wall, r w- A parabolic velocity profile · 

(i.e., slit flow) was imposed at the entrance, r1. There was no y-component of velocity on 

the center line, r c. Thus, we have the following 



U =U =0 X y 

u = 0 y 
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(4-7) 

When the fluid passed through the diffuser the velocity decreases and the kinetic energy is 

converted to a static pressure rise. In terms of energy, the kinetic energy has been 

transferred to work due to flow. The maximum pressure rise can be reached by 

minimizing the friction lose on the wall of the diffuser. The velocity weighted pressure 

was chosen as the objective function to account for the pressure variation along the inlet 

and outlet regimes of the diffuser. 

(4-8) 

It should be noted that the objective function was multiplied by -1 for convenience. This 

operation is justified since maximization of the positive objective function is the same as 

minimization of the negative objective function, which was required by the SQPHP code. 

The shape of the diffuser can be defined by drawing a spline between points on the 

wall. The shape of the diffuser can be assumed to be a straight line. Since the inlet width 

is specified, maximum pressure can be achieved by varying the height of the exit. For a 

parabolic shape diffuser, two design variables are required viz. the heights at the middle 

and at the exit of diffuser. The desired shape of the diffuser can be defined by using higher 

degrees of the spline line. 

The Reynolds number for diffuser is defined as follows. 
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T¥; VavgP 
Re=---"-- (4-9) 

µ 

where 

p = density 

µ = viscosity 

The diffuser was modeled for Re = 200 with the following parameters: 

V~vg = 4. cm/sec 

W1 = 1. cm 

L = 3. cm 

p = 1. g/cm3 

µ = 0.02 g/cm-sec 

A 9-node quadrilateral element was used for the velocity variables, while the pressure was 

discretized using the bilinear approximation. · The size of the mesh was 31 x 15 elements. 

One of the typical concerns for models using the FEM is mesh distortion. For the worst 

case considered, the mesh still remained regular as shown in Figure 21. The shapes for 

different number of design variables are plotted in Figure 22, along with the results 

obtained for a similar optimization by <;abuk and Modi (1992). The comparison between 

this work and <;abuk and Modi's work can not be exact, because the boundary conditions 

were different. <;abuk and Modi specified three additional boundary conditions, as shown 

in the following equations: 
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Figure 22. Diffuser Shape for Different Number of Design Variables 
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(4-10) 

When the boundary condition is specified as the outer normal derivative on the boundary, 

it is referred to as a Neumann-type boundary condition. The Neumann-type velocity 

boundary conditions cannot be specified by FIDAP. However, the diffuser shapes in 

Figure 22 are at least qualitatively similar to those of (:abuk and Modi. The 

corresponding objective functions are shown in Table III. 

TABLE III. 

THE EFFECT OF DESIGN VARIABLES TO OPTIMIMUM OBJECTIVE FUNCTION 

Number of Design, Variable One Two Three Four Five 

J(-£) -5.656 -6.201 -6.357 -6.395 -6.413 

The pressµre rise based on the shape obtained by (:abuk and Modi has a value of 5.656 

which is approximately the value for the straight shaped diffuser in Figure 22. A higher 

pressure rise can be achieved by using a higher spline order. The objective function is 

plotted as a function of the number of iterations in Figure 23. The objective function 

dropped rapidly in the first couple of iterations and slowly plateaus out which indicated 

that the optimum shape did indeed converge to the minimum point. The figure also 

showed that lower objective functions can be achieved by using more design variables. 
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Figure 23. Objective Function for Different Number of Design Variables 
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Verification Case - Slit Flow 

Before introducing the model to the optimization algorithm, a well characterized 

slit flow which is defined as fluid flow between two parallel plates as shown in Figure 24, 

was first used to demonstrate the effect of the flow field on the x-direction strength. The 

flow field can be described by the following equation: 

L 

L 
center line 

Figure 24. Slit Die 

u = w 2 dP [1 -(L) 2 ] 

X 2µ dx w 

where W is the half width of the slit, and ! is given by 

0 y 0 
W2 dP 

K=---0 0 0 
= µ dx 

0 0 O 

w 

(4-11) 

(4-12) 

Eq. 4-12 suggests that the shear rate is zero at the center and linearly increases to a 

maximum on the wall. The flow field was solved by FIDAP with the following boundary 

conditions. 



where 

u =C X 

U =U =0 X y 

u =0 
X 

Ox = x component of total normal stress, g: 

The total normal stress vector, g:, was defined as 

where 

o = unit tensor 

n = outward normal unit vector 

(4-13) 

(4-14) 

For slit slow, the x-direction normal stress equals pressure, while for other cases the x-

direction normal stress is not the same as pressure. However, in a rough sense the 

pressure drop was still used to characterize the stress. The following parameters were 

used for the slit flow calculations. 

O"x = 2 X 106 dyne/cm2 

W=l.cm 

L=3. cm 

p = 0.9 g/cm3 

µ = 7.083 x 104 g/cm,sec 
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The x-direction strength, as shown in Figure 25, increases from the center where the shear 

rate is zero, to a maximum at the wall where the shear rate is highest. 
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Figure 25. x-Direction Strength Along Width 
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Minimizing x-Direction Strength Variation 

The goal of the optimization is to design an extruder die which can produce a 

material with the minimum variation ofx-directional strength. Hence, the objective 

function}{~) was defined as the standard deviation of the x-direction strength along the 

die exit. 

~:(wisxi - sx}2 

/(!_)= i 

n 
(4-15) 

where 

S x = average of relative x-direction strength, 

Wi = weighting factor, 

n = number of sub-elements across the exit. 

The weighting factors depend on the mesh spacing. For non-uniform mesh 

spacing, the weighting factors are not all the same, i.e., for larger spacing the weighting 

factors are greater than those for smaller spacing. In this case, however, a uniform mesh 

spacing was used and hence the weighting factors were identically equal to one. 

The shape of the die was defined by a 3 point spline which had the x-coordinates 

of 0, 1.5, and 3 cm as shown in Figure 26. The optimization was performed by varying 

the height of two points, x = 0 and x = 1.5, while the point on the exit was kept fixed 

(x = 3. cm, y = 1 cm). The material properties were the same as those for the slit flow 

calculation. The total normal stress was specified as 2 x 105 dyne/cm2 at the die inlet. 

Also, the initial shape of the die was a straight converging channel. Since instantaneous 
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attainment of the equilibrium molecular configurations was assumed, it is sufficient to 

consider molecular configurations at the die exit only. 

Fixed 

Flow 1cm 

Center Line 

3cm 

Figure 26. Configuration for Die Geometry Optimization . 

The x-direction strength change during the optimization is shown in Figure 27, and 

the corresponding shape is shown in Figure 28. In the converging channel, the center 

portion is dominated by extensional flow while near the wall, shearing flow is the 

dominant flow field. As discussed in the section on Probability Distribution Function 

Prediction earlier in this chapter, extensional flow is more effective than shearing flow in 

aligning molecules in the flow direction. Also since the x-direction strength is assumed to 

be proportional to the orientation, there is, therefore, a variation in the x-direction strength 

along the y direction as shown in Figure 26. If the angle of convergence is increased, the 

effect of extensional flow at the center correspondingly increases. Hence, the molecules 

are more aligned than before and the corresponding variation in the x-direction strength 
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along they direction in Figure 27 is less than that for the original converging channel. 

Sometimes there is a chance that the x-direction strength at the center is higher than other 

regions as shown in the 4th iteration ofFigure 27. In this situation however, the resultant 

increase in entrance width will increase the flow rate through the die and also the shear 

rate near the wall. The optimized die has a fairly uniform x-direction strength along the 

die. Figure 28 shows that the shape of the die required to maintain the specified pressure 

drop changes dramatically within the first four iterations and finally converges after 20 

iterations to an 9ptimum shape. 

The effect of varying the pressure differences was also studied, and the resultant 

shapes obtained are shown in Figure 29. Figure 29 shows that as the pressure drop 

increases, the angle of convergence decreases and the shape of the die tends to be more 

parabolic in nature. The corresponding objective function.is plotted as a function of the 

number of iterations required for convergence in Figure 3 0. In all cases, it is observed that 

the program was successful in reaching the minimum value of the objective function. 
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CHAPTERV 

SUMMARY, CONCLUSIONS AND RECOMMENDATIONS 

Summazy and Conclusions 

This work was successful in achieving both of its main objectives viz. the 

development of an elementary kinetic model which qualitatively describes molecular 

orientation and the design of a die geometry optimization technique which incorporates 

the molecular model and which can account for anisotropic effects in the mechanical 

properties of the polymer during the formation of extended chain crystals. The main 

conclusions are summarized below. 

1. A molecular model based on polymer kinetic theory was developed for predicting the 

steady state configuration of polymer molecules in a flow field. This model was 

sufficiently general that it could handle a variety of flow conditions. Some of the flow 

fields that· were tested were planar elongational flow, simple .shearing flow and mixed 

heterogeneous flow. In all cases, the overall molecular configurations predicted by the 

model were at least qualitatively in agreement with expected results. · 

2. The Weissenberg number (YI e) was used as the rheological parameter for 

characterization of the process and different values were used to correlate the behavior 

of the model for various flow fields. Published results and analytical solutions 

(wherever available) were used to verify model predictions and in all cases were seen 
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to be in reasonable agreement with the model. The maximum in the probability 

distribution function or the most preferred orientation for various flow fields was 

plotted and was seen to be consistent with expected preferences for different flow 

fields. 

3. The model predictions were also compared with results from x-ray diffraction 

experiments using an orientation parameter as the basis of comparison. The results 

were in very good agreement. 

4. A die optimization technique was developed which combined elements of the model 

and the Successive Quadratic Programming by the Han-Powell optimization algorithm. 

This was the.first time that flow-induced crystallization concepts were combin~d with 

optimization principles in a die design process. 

5. The die design optimization technique was tested for a planar diffuser ·and slit flow and . 

the results obtained were qualitatively consistent with published results. 

6. The optimization technique was used to generate an optimum die geometry for a given 

degree of anisotropy. This was a three-step process that involved determination of the 

.flow field using FIDAP, prediction of:niolecular configurations using the model, and 

. ' ' . 

using these results in the optimization algorithm to minimize the objective function and 

determine the best possible geometry for the given conditions. 

Recommendations 

Although the work described in this thesis represents a significant development in 

the area of polymer processing, die design using FIC principles still remains essentially 

uncharted territory and hence, there is room for improvement and refinement in the 



techniques used in modeling polymer orientation and optimization of die design. The 

following recommendations are made for future research: 
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1. The unsteady-state kinetic model needs to be developed to account for the different 

flow field experienced by the molecules from entrance to exit of the die. The model in 

this thesis assumes steady-state and would only work for systems which have a very 

quick response or for small changes of flow field in the trajectory of the fluid in the 

domain under consid~ration. For systems with low response the molecular orientation 

would be much slower due to the flow field change. 

2. The model should include the effect ofrestrict~d motion of the polymer chain 

segments in the presence of the other molecules in the neighborhood. The effect of 

restricted motion cannot be achieved by introducing the general phase-space kinetic 

theory. 

3. Potential functions and effects of other forces including intermolecular and 

intramolecular forces can be included to account for interactions that may exist in 

polymer solutions and melts. Also, the effect of hydrodynamic interaction using 

suitable hydrodynamic interaction tensors is a possible area of investigation. 

4. The computational resources required for obtaining probability distribution function of 

molecular orientation need to be reduced. By introducing the orientation tensor to 

approximate the probability distribution, a substantial reduction in system resources 

can be expected. 

5. A freely jointed bead-rod chain configuration can be used to represent the polymer 

molecules. This will more accurately capture the nature and the physics of the 

polymer orientation process. 



6. The computational resources required can be substantially reduced by performing a 

sensitivity analysis to determine the first derivative in the optimization algorithm 

instead of using finite difference method. 
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APPENDIX A 

SPHERICAL COORDINATES AND EXPRESSIONS 

Spherical coordinates·are useful in the derivation of working equations for 

problems with spherical boundaries. Chapter ill a dumbbell is considered. The length of 

the dumbbell is fixed. Consequently, if the origin is on the dumbbell, the motion of the 

ends of the dumbbell will be on the surface of a sphere. Hence, spherical coordinates are 

the most suitable coordinate system for describing the position of the ends of the 

dumbbell. 

Figure A-1 shows a Cartesian frame of reference and the definitions of the angles 

associated with the spherical coordinate system. The quantity r is the length of the 

position vector. 0 is the angle (0 ~ 0 ~ 1t) between the position vector and the z-axis in 

the plane containing the position vector and the z-axis (spherical.polar angle). <I> (0 ~<I>~ 

21t) is the angle between the x-axis and the projection of the position vector on the x-y 

plane (spherical azimuthal angle). 

In working with bead-rod models a nomenclature has developed by analogy to the 

earth. The spherical coordinates 0 and <I> are similar to the geographic coordinates of 

latitude and longitude. If the earth's axis of rotation is taken to be the z-axis, the north 

and south pole correspond to the points where 0 = 0 and 0 = 1t, respectively. The equator 

corresponds to the line where 0 = n/2. 
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Figure A-1. Spherical Coordinate System 
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Spherical coordinates are related to rectangular coordinates as follows: 

x = rsin0 cosq>, r = ~x2 + y2 + z2 , 

y = rsin0sinq>, 0 = arctan(~x2 + y2 /z), (A-1) 

z = rcos0, q> = arctan(y/x). 

Unit vectors are defined as vectors of unit magnitude in the direction of each 

coordinate. They are denoted by Qi where the subscript i refers to the coordinate 

direction. For example, §.x represents the unit vector in the x-direction. The relationship 

between unit vectors in the rectangular and spherical coordinate systems is shown in Eq. 

A-2 

Qr= (sinBcos¢)§_x +(sinBsin¢)§.y +(cosB)§_z, 

§.8 = (cosBcos¢)§_x +(cosBsin¢)§_Y +(-sinB)§_z, 

§_~ = (- sin ¢)§.x + ( cos ¢)§.y. 

(A-2) 

In order to be consistent with the notation in Bird et al. (1987), the unit vectors Qr, 

.Qe, and .Q+ will henceforth be repres~nted as y, ~ and 1, respectively. Unlike Cartesian 

coordinates, the unit vectors in spherical coordinates are not constant. The spatial 

derivatives of unit vectors y, ~ and 1 with respective to spherical coordinates are shown 

below in Eq. A-3 

a a a 
-u -s -t or- or- or-

[ 0 
0 

0 ] a a a 

-!!Sin0 °- §COS0 

(A-3) -u -s -t 

= !S:n0 
-!! ae- ae- ae-

a a a tcos0 
-u -s -t oq>- oq>- ap-

The following linear operators are needed for development of models in spherical 

coordinates: 
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The gradient operator, Y., in the spherical coordinate system is defined as 

. iJ 1 iJ 1 iJ 
V=u-+s--+t--- - a- - r iJ8 - r sin B 8¢ 

(A-4) 

The partial derivative with respect to the r-directional unit vector is similar to V except 

that the 8-, and <I>- components are projected out by multiplying the V by (§,- uu) and r: 

~ = r[(o - uu). v] = s~+ t-1-~ 
~ - = - - - iJ(} - sine 8¢ 

(A-5) 

The time derivative of the unit vectors can be obtained using the chain rule. 

. d !! ar B!! as B!! o<1> a!! U=-=---+--+--
- dt at ar at as at· o<1> 

(A-6) 

The relationships for 8!!, O!!, and <7!! in Eq. A-3 can be substituted in~o Eq. A-6 to· ar as aJ> , 

obtain 

~ = i}+ fr/JsinB. (A-7) 

Vector operations in spherical· coordinate are different than those in the more 

familiar Cartesian coordinates. The following vector operations are used in the derivation 

in Chapter III. A detailed derivation will be helpful for understanding the context of this 

study. 

The expression ~ · !! - ~: u u u looks complicated. However, it can be simplified to 

terms that are easily understood. The idea can be easily explained by adopting an 
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analytical viewpoint. Tensor~ can be expressed as the summation of each component of 

the tensor times the dyadic products Q&j. That is 

x = "" ""6. 6 .1( .. = £..J£..J-1-J IJ 
i j 

(A-8) 

Note that the dyadic products are tensors with unit magnitude. For the following 

manipulation, the unit vectors y, ~. and 1 are written as Qi, Qi and .QJ, respectively. 

~-~ = LLQiQjKij ·QI 
i j . 

i j 

= LL401Kij 
i j 

in which Oj1 is the Kronecker delta and has the following properties 

{ 011 = 1, ~ = 1 

°i·1 = 0, J * 1 

Hence, Oj1Kij will be zero except 011K1~, Eq. A-9 becomes 

K·U = ""B-K-1 = - £.J-1 l 
i 

i j 

i J 

= LL0n°j1KiJ1 
i j 

Combining Eqs. A-11 and A-12 

(A-9) 

(A-10) 

(A-11) 

(A-12) 



K·U-lCUUU = """'"'6-6-K-- ·61 - """'"""'6-0-K--:610 10 1 = - = - L.iL.i-t-J lj - L..iL..J-1-J IJ - - -
i j i j 

= """'6 -K -1 - """'"""' 0 -10 -1K ·· 6 1 L..i-t I L.iL.i I J IJ-
j i j 

= (Q.1K11 +Q.2K21 +Q.3K31)-Q1K11 

= Q2 K21 + Q3K31 

The unit vectors Qi and Q3 are ~ and 1, respectively. 

! -~-g-!S,:uug]\11 can be obtained fromEqs. A-5 and A-14 

Taking dot product ofEq. A-15 

.!!_.r,c.u-x:uuu]11, = s-( 8~),c '"+s-s.!!_(,c "')+ l7!:! ~ - = -- T - .8(} 21T - - I}() 21T 

S· ( ot_)K '" + S· t.!!_(K 11,) + - iJ{J 31T" - -iJ{J 31T 

_L.(0~)K 11,+t•s.!!_(K 11,)+ 
sin B 8<jJ _21..,, - - Of) 21..,, 

(A-13) 

(A-14) 

(A-15) 

(A-16) 

Using the relation given in Eq. A-3 to evaluate the derivative of the unit vector with 

respect to the coordinates 
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o o 
__ rK·U-K:UUU]lf/ = s·(-u)K lf/+S·s-(K If/)+ ou ~ - = - - - 21 - - i}f) 21 

0 
~-(O)K311f/+~·f i}f)(K311f/)+ 

t o 
. - e ·(f cose)K21 If/+ f · ~ ~ (K21 If/)+ 

sm v.,, 
(A-17) 

_J_. (-u sin e- s cos e)K If/ + _J_. t _!_(K If/) 
sine - - 31 sine -arp 31 

Keeping the non-zero terms which contain dot product of unit vector and itself 

o o ( } cosO 1 o ( } -·[K·U-,-K:UUU]lf/ =- K If/ +--K If/+--- K If/ ~- _ - _ - ~ 21 . (} 21 . (} ~ 31 
~ - - ~ ~n ~n ~ 

a a 
(2) -·-\j/ 

O!! O!! 

Expanding Eq. A-19, the following equation can be obtained 

J___~,1, = s-~(s O\V) +s-~(t-1 O'lf) 
8g O!!"' - 00 - 00 - 80 - sine 8<!> 

+-1-t. ~(s O'lf) ~ _I_ t. ~(t-1- O'lf) 
sine - 8<!> - 00 sine - 8<1> - sine 8<1> 

Expanding the derivative in every terms ofEq. A-20 

. _£_ _ _£_,1, = s·(O§) O'lf +s·s 82\lf +s·(8!·) _1_8'11 . 
O!! O!! 'I' - ae 00 - - 802 - ae sine 8<!> 

+-·_J_S·t( 02\j/) +-1-t· 0§ O'lf +-1-t· S O'lf 
sine - - aeap sine - 8<!> ae sine - - ae 

+-1-t· 01 O'lf +-l-t·t 02\jl 
sin 2 e - 0q> 0<p sin 2 0 - - 8q>2 

(A-18) 

(A-19) 

(A-20) 

(A-21) 

Using the relation given in Eq. A-3 to evaluate the derivative of the unit vectors ~th 

respect to the coordinates 
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j__j_"' = s·(-u)o\jl +s·s 02\JI +s·(O)-l_o\JI 
OU OU 'Y - - 00 - - 892 - sine B<I> 

1 ( 82 \Jf) 1 O\JI +--s·t -- +--t·tcos8-
sin 8 - - 888<1> sine - - 00 

(A-22) 

1 O\JI 1 8\Jf 1 82 \Jf 
+--t·s-+--t·(O)-+--t·t-

sine- - 89 sin 2 e- 8q> sin 2 e- - 8q)2 

Since the unit vectors are perpendicular to each other, the dot product of unit vectors is 

zero, except when doted into itself, we obtain . 

. 8 8 82 \j/ cose O\Jf 1 o2 \JI 
-·-\Jl=--+----+--
0!:!_ O!:! 892 sineae sin2 e8q>2 

(A-23) 

(3) .!._·it= 1 88sinB +-1_8¢ 
~ - sinB 8B sinB q6 

(A-24) 

The expressions .!.._ and !! were defined in Eqs. A-5 and A-7, respectively. Therefore fJu . . 

8 . ( a. 1 8)· (,.L} </J . . o) -·u= s-+t--- · :,u+t sm 
~ - - 8B - sin B 8</J - -

(A-25) 

8 . 8 . 8 .. · 
-·u = s--(5{})+s·-(t"'smB) ~-_-8(}- _8(}_.,, 

t 8 · t 8 . . · +--:-=- · -(§.0) + -. -- · -(t</J sm B) 
smB 8¢ smB q6 

(A-26) 

Expanding the derivatives on the right hand side ofEq. A-26: 

8 . (8 )· I}() (8 )·. o(¢sinB) -·u = S· -s B+s·s-+s· -t -"'smB+s·t--'------'-
~ - - 8(}- - - 8(} - 8()- 'I' - - 8(} 

t (8)· t 88 t (8)·· +---· -s B+---·s-+---· -t <jJsmB 
sinB qb- sinB - q6 sinB 8</J-

(A-27) 

t 8(¢sinB) 
+--·t---

sinB - 8</J 
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The derivatives of unit vectors with respect to the coordinates on the right hand side of 

Eq. A-27 can be substituted from Eq. A-3, and rearranged to obtain 

8 . I IJesinB I 8<p 
-·U= +----
~ - sin B 8B sin B 89) 

(A-28) 



APPENDIXB 

PHASE-SPACE THEORY AND BROWNIAN FORCE 

PHASE-SPACE THEORY 

The position of bead v in the space can be represented by the position vector Iv 

with respect to an arbitrary reference point as shown in Figure B-la. The velocity of the 

bead can be represented by t. v with respect to the fixed arbitrary reference point, and 

defined as the time derivative of the vector r v, a~ shown below: 

f = d,:_v 
-V dt (B-1) 

The momentum of bead v is 

(B-2) 

The total momentum of the molecule can be found as the sum of the momenta of all beads 

or the total momentum can be described by the velocity of the center of mass of the 

molecule: 

where 

f!..c = L mvtv = m/ .. c 
V 

m =""'m p L.i V 

V 
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(B-3) 

(B-4) 
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bead3 

bead 1 

!1 

arbitrary reference point 

(a) 

. ' ' .. .. ' ~ 

----------~--- ·~··-....... ._l,,,/ Y2 bead 1 

.. -... _ X2 ':. . / Y1 
,I,, ···-... .·• 
'l'l ·- ... _ ' ' _____________________________________ ...... _.\ .. 

X1 

(b) 

Figure B-1. Definition of Position Vectors and Coordinates 
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(B-5) 

If the reference point of the coordinate system is on the center of mass of the molecule, 

the position vectors Rv and velocity vector Rv can be defined with respect to the center of 

the mass as shown in Figure B-1 a. Thus, Rv is the position vector from the center of mass 

of the entire molecule to the center of mass of the vth bead, and Rv-is the bead velocity 

with respect to the center of mass of the molecule. 

The total kinetic energy x(r)is the sum of the kinetic energy of every bead. Total 

kinetic energy can also be treated as the kinetic energy of the center of mass and the 

kinetic energy ofbeads with respect to the center of mass 

X(T) = l."""' m f 2 
2 ,4-1 V-V 

s 

The momentum l2c in Equation (B-3) can be also treated as 

P = _!!__ x(T) 
-C iJf 

-C 

Generalized Coordinate System: 

(B-6) 

(B-7) 

The Cartesian coordinate system is the most easy to understand; however, for the 

problem at hand, a spherical coordinate system is more convenient. One example of the 

generalized coordinates required to describe the orientation of the rods for a three bead 

rod model are the coordinates 01, <!>1, 02, and <1>2 which are shown in Figure B-lb. The 
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subscripts refer to the bead as reference point. Before further derivation, the base vector 

and metric matrix need to be defined as: 

Q\6 =Jm: ~ RV 
-s 

(B-8) 

(B-9) 
V 

The conjugate momentum, P. , associated with generalized coordinate Qs can be defined in 

a manner similar to the definition of momentum, p , in Equation (B-7) 
-C 

(B-10) 

The internal kinetic energy can also be represented by the metric matrix ~ and ge11eralized 

coordinates as · 

s 

= ~~~~( fo: ~. R,){ fo: ~' R.}2,Q, (B-11) 

I . . 
= 2 LL gstQsQt 

s t 

By using Equation (B-10) the. internal kinetic energy can be represented in term of 

generalized momentum as follows 

xint = t LLGstP.~ (B-12) 
s t 

where 

Gst: is the inverse of the metric matrix 

The Hamiltonian of a single molecule is defined as the sum of internal kinetic and potential 

energy, as shown below: 
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(B-13) 

. The Hamiltonian of the entire system is given by 

(B-14) 

where 

</J(e) : potential which describe the "external" force on a molecule of species a 

ct> : intermolecular potential associated with the forces between the molecules 

The Greek indices·(a, j3, y, ... ) are used to indicate the molecular species, and the Italic 

indices (i, j, k, ... ) are used to label the various molecules of each species. 

Definition ofForces 

The force on the center of mass of molecule i of species a due to the external force . 

is given by 

(B-15) 

The force on the center of mass of molecule i of species a due to all the other molecules is 

given by 

(B-16) 

The following forces are associated with the coordinate Qs: 

Force ~(k)ai arising from the use of non-Cartesian coordinates 

(B-17) . 
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lntramolecular forces: ~<;)ai =· - ~ai <pai (B-18) 

External forces: (B-19) 

Intermolecular forces y._(d)ai = -~ct> 
s t;Q; (B-20) 

Hamilton's equation of motion can be written as 

• ai iJf,(T) 1 ai 

r. = opai = ma Ee 
-e 

(B-21) 

. . a,ecr) """" . . 
Q; = a>_ai = ~ Gs~ ~a, 

s t 
(B-22) 

(T) .· 

• ai = -~ = p<e)ai + pai Ee ora, - - (B-23) 

(B-24) 

where 

(B-25) 

The general equation of change for an arbitrary dynamical variable B(x) is given by 

o(B) = (JB) 
a 

J, is the Liouville operator and is defined as 

() . . a I:. aJ +[Fe a, +Fa,]·--.+ 3.ai --. 
- - i} a, s a>.a, p s s 

-e 

(B-26) 

(B-27) 
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The dynamic variables B, after taking the average over the phase-space, is represented as 

follows 

(B) = fafr.,Q,p ,P,t) 
-c 

; ( ~ O(r" -[)O(Q"' - Q)O(f_: - p_)o(P"' - P)) (B-28) 

The angular bracket.represents the average of the quantity over the phase-space which is 

defined as 

where 

f: phase-space distribution function 

n: number of polymer molecules per unit volume 

V: volume 

The Direc delta function has the property that 

f o(x-a)f(x)dx = f(a) 

Equation (B-26) becomes: 

where: 

paP = - 8a q,aP = total force on a molecule of a by a molecule of f3 
8r 

(B-29) 

(B-30) 

(B-31) 

(B-32) 
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:;sap = - _!_ cpaP = generalized force on bead s of a molecule of species a aJ; . 

due to a molecule of species f3 (B-35) 

When Equation (B-31) is multiplied byJ?. and then integrated over the momenta, the 

equation becomes: 

!(ffeJ"'I'.)+ ~. v-([p.E.]"'I'.)+ ~~. (a.,[P,E.]"'I'.) 
(B-36) 

= (p(e)a +N p(h)a )q, a 

where 

(B-37) 

N : average number of beads per molecule of species a 

(B-38) 
a 

Na: the number of beads making up a molecule of species a 

x a : mole :fraction of species a 

(B-39) 
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Equation B-36 is also called the equation of motion for the centers of mass of molecules 

of specie's a.. After rearranging, Equation (B-36) becomes 

ma[!(tPa)+V·(!:~'f'a)]+ !(ITEc -ma~]a'Pa)+ 

V ·(illfc -ma~]a'f'a) + V · (ITEc -ma~]a~q,a) 

= (F(b)a + p(e)a + N p(h)a )'¥a 

p<b)a = - m}lf/ a v. (IT(Ec - ma ~)(Ee - ma :!:)r If/ a) 

--1 L ~ (as,ITPiEcrlf/ a) 
If/ a st -s 

(B-40) 

(B-41) 

The Brownian force has the form of the divergence of a momentum flux with respect to 

the solution velodty y at the center of mass of the molecule. 

Brownian Force for Equilibration irt Momentum Space: 

If the phase space distribution function is assumed to be in equilibrium (i.e., the 

velocity distribution function is the same as Eq. 2-1 for elastic dumbbell model), the 

momentum space distribution is: 

f., = exp{-![(£, -m,~E, -m,y)jlkT) 
Jf exp{-t[(Ec -mp:!:)(fc -mp:!:)]! kT~eIP 

(B-42) 

The following expressions hold by using Equation (B-42) 

(B-43) 

(B-44) 
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(B-45) 

[~p ]=0 
-C 

(B-46) 

Then, the Brownian force becomes 

(B-47) 

FCb) = -kTV In If/. a (B-48) 



APPENDIXC 

TEST PROBLEMS 

Problem 1 (Himmelblau, 1972; Dayde, 1989) 
Minimize: f(~) = 1000 - x/ - 2x/ -x/ -x1x2 - X1X3 
subject to: · x/ + x/ + x/ - 25 = 0 

8x1 + 14x2 + 7x3 - 56 = 0 
0::;; Xi::;; 100, i = 1, 2, 3 
&i = [2, 2, 2]1 - Infeasible 
f(~) = 976 

~* = [3.5121, 0.2169~, 3.5522]1 

f(~*) = 961.715 

Problem 2 (Himmelblau, 1972; Betts, 1978; Dayde, 1989) 
Minimize: f(~) = (x1 - 2)2 + (x2 - 1)2 
Subject to: -x/ + x2 ~ 0 

-X1 - X2 + 2 ~ 0 
&i = [2, 2]1 ·-Infeasible 
f(&i) = 1 

~· = [1, 1] 
f(~") = 1 

Problem 3 (Himmelblau, 1972; Betts, 1978; Dayde, 1989) 
Minimize: f(~) = (x1 - 2)2 + (x2 - 1 )2 
Subject to: x1 - 2 x2 +1 = 0 

-x/14 - xl + 1 ~ 0 
&i = [2, 2]1 - Infeasible 
f(&i) = 1 

£ = [0.82287, 0.91143]1 

f(~") = 1.3934 
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Problem 4 (Dayde, 1989) 
Minimize: f(~) = 100(x2 - x/)2 + (1 - x1)2 + 100(x3 - x/)2 + (1 - x2)2 
Subject to: 9x1 + 6x2 + X3 - 100 = 0 

l0x1 + 20x2 + X3 - 100 ~ 0 
40 - x1 - 2x2 - 4x3 ~ 0 
~ ~ 0, i = 1, 2, 3 
:?fa= [l, 1, l]T - Infeasible 
f(:?fo) = 0 

• T ~ = [6.67, 6.67, O] 
f(~*) = 3.3xl05 

SQPHP results, same as High (1991) 
£ = [6.5983, 5.8663, 5.4173] 
f(~) = 2.26x 1()5 

Problem 5 (Himmelblau, 1972; Betts, 1978) 
Minimize: f(~) = 100(x2 - x/)2 + (1 - x1)2 + 90(:x.i - x/)2 

+(l-x3)2+ l0.l[(x2- l)2+(x.i- l)2]+ 19.8(x2- l)(x.i- l) 

Subjectto: -10 ~Xi~ 10, i = 1, 2, 3, 4 
v_ = [ -3 -1 -3 -l]r -Feasible 
20 ' ' ' 
f(:?fo) = 19192 

£ = [1,.1, 1, If 
f(~·) = 0 

Problem 6 (Betts, 1978; Dayde, 1989) 
Minimize: f(~) = O.OOlx1 + x2 
Subject to: 105(x2 - x12) = 0 

-100 ~Xi~ 100, i = 1, 2 
:?fa= [l, If -Feasible 
f(:?fo ) = 1.001 

~· = [-0.49999xl0-3, 0.25xl0-6f 
f(£) = -0.249999xl0-6 

Problem 7 (Dayde, 1989) 
Minimize: f(~) = 0.00lx1 + x2 
Subject to: -lOOOx/- lOOx/ + x3 = 0 

lOOx/ + 400x/ + x3 - 0.01 = 0 
-lO~Xi~lO, i=l,2,3 
:?fa= [l, 1, l]T - Infeasible 
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~&) = 1.001 

~· = [-0.20908x10"5, -0.44721x10"2, 0.2x10"2]T 
~~·) = -4.7721x10·3 

Problem 8 (Dayde, 1989) 
Minimize: ~~) = 5exp(x1:xi,) + X2"J42 - X3Sin(2x1) + xs2 - lOxsxs 
Subject to: -x2 + 15x3 + :xi, - x1 + 3Xs - 25 = 0 

"14 - Xs + 5:xi, - lOxs - 27 = 0 

8 - X3 + 5xs - X6 + X1 ~ 0 
200- X1 - X2 - 3}4 - Xs - 1x1 ~ 0 
-3x2 - 8x3 + Xs + 6x1 - 10 ~ 0 
x1 + 15x2 + xs + 8:xi, - 17 ~ 0 
X1 - 2x2 - 8x3 + 5}4 + xs - 7:xi, + lOx1 + 3xs -50 ~ 0 
Xi~ 0, i = 1, 2, 3, 4 ,5, 6, 7, 8 
& = [-1, 0, -1, 0, -1, 0, -1, O]T -Infeasible 
~)=5.091. 

• . . T 
~ = [O, 0, 1.89014, 3.5, 0, 4.7, 8.05211, O] 
~~") = 5.727 

Problem 9 (Betts, 1978; Dayde, 1989) 

Minmnze: f\x)= tx,[ A, +l~(x,tx;)] 
A1 = -6.089 A2 = -17.164 A3 = -34.054 
~ = -5.914 As= -24.721 · Ao= -14.986 
A1 = -24.10 As= -10.708 A9 = -26.662 
A10 = -22.179 

Subject to: x1 + 2x2 + 2x3 + X6 + x10 - 2 = 0 
"14 + 2xs + X6 + X1 - 1 = 0 
X3 + X7 + Xg + 2X9 + X10 - 1 = 0 
10~5 S Xi S 10, i = 1, 2, 3, ... , 10 
Xi= 0.1, i = 1, ... , 10 - Infeasible 
~&>) = -20.961 

~· = [0.040668, 0.14773, 0.78315, 0.0014142, 4.8524, 0.00069317, 0.027399, 
0.017947, 0.037314, 0.096871f 

~~") = -47.761 

Problem 10 (Himmelblau, 1972; Betts, 1978; Dayde, 1989) 
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Minimize ft:x) - t exp(x; { A; +x; - In( i exp(x))] 

A1 = -6.089 A2 = -17.164 A3 = -34.054 
~ = -5.914 As= -24.721 At;= -14.986 
A1 = -24.10 As = -10. 708 A9 = -26.662 
A10 = -22.179 

Subject to: exp(x1) + 2exp(x2) + 2exp(x3) + exp(X6) + exp(x10) - 2 = 0 
exp(X-4) + 2exp(x5) + exp(X6) + exp(x1) - 1 = 0 
exp(x3) + exp(x1) + exp(Xs) + 2exp(x9)+ exp(x10) - 1 = 0 
-100 ~Xi~ 100, i = 1, 2, 3, ... , 10 
Xi = -2.3, i = 1, ... , 10 - Infeasible 
f(:&) = -21.0145 

x* = [-3.2024, -1.9123, -0.24441, -6.5606, -0.72166, 7.2736, -3.5965, -4.0206, 
-3.2885, -2.3344f 

f(~;*) = -47.760 

Problem 11 (Himmelblau, 1972; Betts, 1978; Dayde, 1989) 
Minimize : f(~) = -0.5(X1X4 - X2X3 + X3X9 - X5X9 + X5Xg - X(;X7) 
Subject to: 1 - x/ -'42 ~ 0 

1-x/~o 
1 - xs2 -X6 2 ~ 0 
1 - xi2 - (x2 - X9)2 ~ 0 
1 - (x1 - xs)2 - (x2 - X6)2 ~ 0 
1 - (x1 - x1)2 - (x2 - Xs)2 ~ 0 
1 - (x3 - xs)2 - (X-4 - X6)2 ~ 0 
1 - (X3 - X7)2 - ('4 - Xg)2 ~ 0 
1 - xl - (Xs - X9)2 ~ 0 
X1X4 - X2X3 ~ 0 
X3X9~0. 

-X5X9 ~ 0 
X5Xg - X6X7 ~ 0 
X9~0 
Xi= 1, i = 1, ... , 9 -Infeasible 
f(:&) = 0 

~· = [0.9971, -0.0758, 0.5530, 0.8331, 0.9981, -0.0623, 0.5642, 0.8256, 
0.0000024f Himmelblau (1972) 
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~· = [0.91878, 0.39476, 0.11752, 0.99307, 0.91878, 0.39476, 0.11752, 0.99307, 
-0.60445x10·14f Dayde (1989); Betts, (1978) 

f(~'") = -0.8660 
SQPHP results 



~: = [0.86602, 0.5, 0, 1.0, 0.86602, 0.5, 0, 1, O]T 
fl~*)= -0.86602 

Problem 12 (Himmelblau, 1972; Betts, 1978) 
Minimize: flx) = -75.196 + 3.8112 x1 - 0.12694x/ + 2.0567x10-3x/ 
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- 1.0345x10-5x/ + 6.8306x2 - 0.030234x1x2 + 1.28134xl0-3x2x/ 
- 3.5256xlff5x2x/ + 2.266x10-7x2x/ - 0.25645x/ + 3.4604xl0-3x/ 
- 1.3514x10-5x/ + 28.106/(x2 + 1) + 5.2375x10-6x/x/ 
+ 6.3x10-8x/x/- 7x10-10x/x} - 3.4054x104 x1x/ 
+ 1.6638x10-6x1xi3 + 2.8673exp(0.0005x1x2r 

Subject to: 0 5 x1 5 75 

~· = [75, 65]T 
~·") = -58.903 
SQPHP results 

X1X2 - 700 ;?: 0 
x2 - 5(x1 I 25)2 ;?: 0 
(x2 - 50)2 - 5(x1 - 55) ;?: 0 
& = [90, 1 O]T - Infeasible 
fl&)= 82,828 

~· = [46.2, 50.63f 
fl~")= -6.58 

Problem 13 (Himmelblau, 1972; Betts, 1978) 
Minimize: flx) = 5.3578547x/ + 0.8356891x1x5 + 37.293239x1 - 40792.141 
Subject to: 

0 5 85334407 + 0.0056858x2x5 + 0.0006262x1x.i - 0.0022053x3x5 5 92 
90 5 80.51249 + 0.0071317X2X5 + 0.0029955x1X2 + 0.0021813x/ 5 110 
20 5 9.300961 + 0.0047026X3X5 + 0.0012547X1X3 + 0.0019085X3X4 5 25 
78 S: X1 S: 102 
33 5 X2 5 45 
27 5 X3 5 45 
27 5 X4 5 45 
27 S: X5 S: 45 
& = [78.62, 33.44, 31.07, 44.18, 35.22]T -Feasible 
fl&)= -33217 

~· = [78, 33, 29.995, 45, 36.776]T 
fl2{) = -30665.5 



APPENDIXD 

COMPUTER CODES 

The optimizations in this study required several programs as listed below: 

opt.f 
sqphp.f 
opt.FDREAD 
rdbase.f 
psi.f 
linpac.f 

An utility program called ''make" which is very common in UNIX system and clone was 

used to determine automatically which pieces of a large program need to be recompiled 

and issue the commands to recompile them. A file called the "Makefile" that describes 

the relationships among files in the program, and the states the commands for updating 

each file was written and list below. 

Makefile: 

SHELL = /bin/sh 

INC = $(PLAT)/include 
LIB DIR = $(PLAT)/lib 
BIN DIR = 
SRC DIR = $(PLAT)/src/utility/rdbase 
MSRC INC = $(FIDAPSOURCE)/include 
MSRC DIR = 

CFLAGS = $(STD CFLAGS) $(NOPTL_CFLAGS) -I$(INC) -
I$ (INC)/fidap -
FFLAGS = $(STD FFLAGS) $(NOPTL_FFLAGS) -I$(INC) -
I$(INC)/fidap -
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FFILES = $(SRC DIR)/futility.o 
CFILES = $(SRC=DIR)/cutility.o 
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rdbase.o linpac.o psi.o 

##### Machine specific definitions######################### 

LDFLAGS = -L$(PLAT)/lib -lint -ldb -lm 

OPTFILE = opt.o sqphp.o 

###Turnoff implicit rules for o files from c files 

#%.o %.c 
#%.o %.f 

######################## 
### Build executable### 
######################## 

opt: $(0PTFILE) objfun 
@echo COMPILING opt 
xlf -o opt $(0PTFILE) 

objfun: rdbase.o psi.o linpac.o 
@echo. LINKING objective function 
xlf -o objfun $(FFILES) $(CFILES) $(LDFLAGS) 

rdbase.o: rdbase.f 
@echo COMPILING rdbase.f 
xlf -c -I$(INC)/fidap rdbase.f 

The opt file which was compiled from opt. f and sqphp. f is the main 

program for the optimization. The opt perform SQPHP (Chen and Stadtherr, 1983) 

optimization algorithm and evaluate objective function and derivatives for SQPHP. The 

objective function was evaluated the flow field by FIDAP first and calucalte the x-

directional strength based on the output file from FIDAP. The FIDAP input file is 

opt. FDREAD. The rdbase. f program read the database from FIDAP, while the 

subroutine in psi . f was called to evaluate the probability distribution function. The file 

linpac. f (Riggs, 1988) was used for evaluating the matrix when caluclates probability 

distribution function. The objective files: futility. o, futility. o; libraries and 



include files under$ (PLAT) I sub-directory are provided by Fluid Dynamics 

International ( or Fluent Inc. after been purchased) without providing source codes. 
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opt.f 

C 8/25/96 PROGRAM opt.f 
IMPLICIT REAL*S (A-H, 0-Z), INTEGER*4 (I-N) 

C Maximum number of variables 
PARAMETER (MNV = 35) 
Dimension MTYPE(3) 
Dimension X(MNV),XMIN(MNV),XMAX(MNV),DELTA(MNV), 

$ WVF(775),WQP(2220),G(MNV),CN(36,3),C(3) 
CALL READATA(M,MEQ,MXITER,ACC,IPRINT,STEPBD,MODE,MTYPE,N,X) 
LCN=N+l 
NP =N+l 
NR =NP-MEQ 
LWVF=l+2*M+N*(N+9)/2 
LWQP=4*NP+3*M + NR*(3*NR+7)/2 
WRITE(*,1200) LWVF, LWQP 
do 50 i=l,n 
xmin(i)=0.5 
xmax(i)=3.0 
delta ( i) =l. 

50 continue 

100 

200 

300 

C 

C 

c400 

1000 
1100 
1200 

delta (n+l )=l·. 
CALL SQPHP5(N, X, XMIN,XMAX) 
INF=O 
CALL FUNCONS(X,F,C) 
IF(INF .EQ. -1) GO TO 300 
CALL FDGRAD(M,LCN,X,G,CN) 

CALL SQPHP(N,M,MTYPE,X,F,G,C,CN,LCN,MXITER,ACC,IPRINT,INF, 
$ WVF,LWVF,WQP,LWQP,XMIN,XMAX,DELTA,STEPBD,MODE) 

do 400 i=l,n 
write(*,' (fl0.8,lx,i3) ')x(i),inf 
continue 

IF(INF .EQ. -1) GO TO 100 
IF(INF .EQ. -2) GO TO 200 
WRITE(6,1000)F 
WRITE(6,1100) (I,X(I) ,I=l,N) 
FORMAT(3X,4HF = ,Gl5.8) 
FORMAT(3X,2HX(,I2,2H)=,F8.4) 
FORMAT(3X,.'LWVF= (', I4, ') LWQP (', I4, ')') 
STOP 
END 

C EVALUATE OBJECTIVE FUNCTION & CONSTRAINTS 
C 

SUBROUTINE FUNCONS(X,F,C) 
IMPLICIT REAL*S (A-H, 0-Z), INTEGER*4 (I-N) 
dimension C(*),X(*) 

open(ll,file='geo',status='old') 
c rewind 11 

write(ll,*) '/geometry' 
write(ll,*) '$Yl= ', x(l) 
write(ll,*) '$Y2= ', x(2) 

.write(ll,*l '$Y3= ' x(3) 
close (11 l 
call system("fidap -id conv -new -in opt.FDREAD") 
open(l2,file='obj',status='old') 
read(12,*) F 

c F=-F 

C 

C(l) = X(3)-3. 
close(12) 

RETURN 
END 

SUBROUTINE FDGRAD(M,LCN,X,G,CN) 

C FORWARD DIFFERENCE METHOD TO FIND G AND CN 
C 

IMPLICIT REAL*S (A-H, 0-Z), INTEGER*4 (I-N) 
PARAMETER (MNV = 35) 
dimension X(*), G(*),CN(LCN,*) 
dimension BX(MNV),C(3),BC(3) 
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N=LCN-1 
DELX = 1. OD-2 
CALL FUNCONS(X,F,C) 
BF=F 
DO 10 I= 1,N 
BX(I) = X(I) 

10 CONTINUE 
DO 20 I= 1,M 
BC(I) = C(I) 

20 CONTINUE 
DO 30 I= 1,N 
X(I)=X(I)+DELX 
CALL FUNCONS(X,F,C) 

C GRADIENT VECTOR OF OBJECTIVE FUNCTION 
G(I) = (F-BF)/(X(I)-BX(I)) 
X(I)=BX(I) 

30 CONTINUE 
DO 40 I= 1, N 
DO 40 J = 1, M 

C MATRIX OF CONSTRAINT NORMALS 
C CN(I,J) = (C(J)-BC(J))/(X(I)-BX(I)) 

CN(I,J) = 0.0 
40 CONTINUE 

CN (1,1 )=1. 
C CN(N,2)=1. 

RETURN 
END 

SUBROUTINE READATA(M,MEQ,MXITER,ACC,IPRINT,STEPBD,MODE 
& ,MTYPE,N,X) 

IMPLICIT REAL*8 (A-H, 0-Z), INTEGER*4 (I~N) 
Dimension MTYPE(*),X(*) 
CHARACTER INAME*80 

C PRINT*, 'PLEASE TYPE INPUT FILE NAME' 
C READ ( *, 1.00) INAME 

INAME='opt.dat' 
100 FORMAT(80A) 

OPEN( 10, FILE=INAME, STATUS= 'OLD') 
READ(lO,*) M,MEQ,MXITER,ACC,IPRINT,STEPBD,MODE 
WRITE(*,*) M,MEQ,MXITER,ACC,IPRINT,STEPBD;mode 
READ(lO,*) (MTYPE(I), I= 1, M) 
WRITE(*,*) (MTYPE.(I), I= 1, M) 
READ ( 10, * ) N 
WRITE(*,*) N 
OPEN( 11, FILE="geo", STATUS= 'OLD')· 
DO 200 I=l,N 
READ(ll,*) INAME, X(I) 

200 CONTINUE . 
CLOSE ( 10) 
CLOSE(ll) 
RETURN 
END 
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opt.FD READ 

I Any input data beginning with the character"/" is a comment. 
FI-GEN ( ELEMENT=l,POINT=l,CURVE=l,SURFACE=l,NODE=O,MEDGE=l,MLOOP=l,MFACE=l, 
BEDGE=l,SPAVE=l,MSHELL=l,MSOLID=l,COORDINATE=l ) 
readfile(file="geo",nointeractive) 
/Generate the points necessary to define the geometry. 
point(add,coordinates,x=O,y=O) 
point(add,coordinates,x=3,y=O) 
point(add,coordinates,x=3,y=l) 
point(add,coordinates,x=l.5,y=$yl) 
point(add,coordinates,x=O. ,y=$y2) 
/connect the points to lines 
point(select,ID,window=l) 

5 
1 
2 
3 

curve(add,line) 
/Define the shape of the die to be optimized. 
point(select,ID,window=l) 

3 
4 
5 

curve(add) 
/Create a surface on which node points are to be created 
curve(select,id,window=l) 

1 
2 
3 
4 

surface (add,wire.frame, edglcnt=l, edg2cnt=l, edg3cnt=l, edg4cnt=l I. 
/Define the number and location of points on the edges 
curve(select,id,window=l) 

1 
3 

medge(add,successive,intervals=20,ratio=0.000000,2ratio=O.OOOOOO, 
pcentr=0.000000) 
curve(select,id,window=l) 

2 
4 

medge(add,successive,intervals=40,ratio=0.000000,2ratio=O.OOOOOO, 
pcentr=0.000000) · 
/Specify groups of curves which define bounding edges 
curve(select,id,window=l) 

1 
2 
3 
4 

mloop(add,map,visible,noshowlabel,edglcnt=l,edg2cnt=l,edg3cnt=l,edg4cnt=l) 
/Identify the faces on which mesh generation is to occur 
surface (select, id., window=!) 

1 
utility(highlight=9) 
mloop(select,id,window=l) 

1 
utility(highlight=3) 
mface(add) 
/Generate the mesh 
mface(select,ID,window=l) 

1 
element(setdefaults,quadrilateral,nodes=9) 
/element(setdefaults,triangle,nodes=3) 
mface(mesh,map,entity="fluid") 
END 
options(cnragl=l4) 
FI-BC 
bgadd(select,edge,include,id,window=l) 

1 
bgadd(add,edge,entity="inlet",include) 
bgadd(select,edge,include,ID,window=l) 

4 
bgadd(add,edge,entity="wall",include) 
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bgadd(select,edge,include,ID,window=l) 
3 

bgadd(add,edge,entity="outlet",include) 
bgadd(select,edge,include,ID,window=l) 

2 
bgadd(add,edge,entity="symmetry",include) 
/Inlet Boundary Condition: Total normal stress 
bcsgroup(bcflux) 
bcsgroup(select,ID ,window=l) 

2 
BCFLUX(X, GSELECT, constant=5.e6) 
utility(unselect,all) 
/Inlet Boundary Condition: Uy= 0 
bcsgroup(bcnode) 
bcsgroup(select,ID ,window=l) 

2 
BCNODE( UY, GSELECT, ZERO) 
utility(unselect,all) 
/Wall Boundary Condition: Ux Uy .0 
bcsgroup(bcnode) 
bcsgroup(select,ID,window=lJ 

3 
BCNODE( VELOCITY, GSELECT, ZERO 
utility(unselect,all) 
bcsgroup(bcnode) 
/Symmetric Boundary Condition: Uy 0 
bcsgroup(select,ID ,window=l) 

5 
BCNODE( UY, GSELECT, ZERO) 
utility(unselect,all) 
END 
FI PREP 
DATAPRINT( ADD, NORMAL) 
PRINTOUT( ADD, ALL, BOUNDARY) 
PROBLEM( ADD, 2-D, INCOMPRESSIBLE, STEADY, LAMINAR, NONLINEAR, NEWTONIAN, 
MOMENTUM, ISOTHERMAL, FIXED, SINGLEPHASE ) 
SOLUTION(N.R. = 10) 
EXECUTION( ADD, NEWJOB) 
ENTITY( ADD, NAME="fluid", FLUID) 
ENTITY( ADD, NAME="inlet", PLOT) 
ENTITY( ADD, NAME="wall", Pl.OT) 
ENTITY( ADD, NAME="outlet", PLOT) 
ENTITY( ADD, NAME="symmetry", PLOT 
DENSITY( CONSTANT=0.9) 
VISCOSITY( CONSTANT=7.083e4 ) 
pressure(MIXED=O.le-9, CONTINUOUS) 
END 
CREATE(FISOLV) 
RUN( FISOLV) 
/Evaluate objective function 
config(user="objfun") 
system(user) 
END 
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rdbase.f 

PROGRAM RDBASE 
C 

c------------------------------------------------------------------------------
C 
C THE PURPOSE OF THIS PROGRAM IS TO CALCULATE THE OBJECTION FUNCTION 
C BY THE FIDAP MODEL DATABASE (FDBASE) AND THE RESULTS DATABASE (FDPOST) 
C 
C THE DEFINATION OF THE VARIABLE CAN BE REFERRING TO 
C $FIDAPROOT/src/utility/rdbase/rdbase.f 
C 
C THE PROGRAM ASSUMES THE FOLLOWING FILE NAMES: 
C 
C 1. FDBASE IS THE FIDAP MODEL DATABASE 
C 2. FDPOST ID THE FIDAP RESULTS DATABASE 
C 3. FDNEUT IS THE FIDAP NEUTRAL FILE 
C 

c---------· --------------------------------------------------------------------
C 

INCLUDE 'IMPLCT.COM' 
INCLUDE 'CNTRLC.COM' 
INCLUDE 'LEVEL.COM' 

C MAXIMUM NUMBER OF NODAL POINTS (THIS WILL NEED TO BE INCREASED 
C BASED ON MPDEL SIZE) 

PARAMETER (MNONP=SOOOO) 
C MAXIMUM NUMBER OF SPECIES EQUATIONS+ 1 

PARAMETER (MNOSE=16) 
C NO. OF COORDINATE DIMENSIONS (2 OR 3) 

PARAMETER (NOCD=3) 
C NO. OF VELOCITY COMPONEN.TS ( 2 OR 3) 

PARAMETER (NOVC=3) 

C 

PARAMETER (MELEM=lOO) 
DIMENSION XYZ(MNONP*NOCD), UF(NOVC*MNONP), P(MNONP) 
DIMENSION NODE(27), IFLAGS(S); VAL(lOOO), RFLAGS(S) 
dimension nodef(27),geo(l~),velo(18),aam(20) 
DIMENSION IDOS(MNONP), NELPAR(175) 
DIMENSION W3(3),S3(3),AN(3),ANS(3) 
DATA S3/-0.77459666924148,0.0,0.774596669241480/, 

$ W3/0.555555555555560,0.888888888888890,0.555555555555560/ 
CHARACTER*20 ELMMAT,FDBASE,FDPOST 

C NEUTRAL FILE UNIT NUMBER 
!NEUT= 10 

C 
OPEN (20, FILE='narne', FORM='FORMATTED') 
READ ( 20, *) FDBASE 
READ ( 20, *) FDPOST 
CLOSE(20) 
IERD = 0 
IDBOPE = 0 
ZRO = 0 

C 

C --------------------
C 0 P E N F I L E S 
C --------------------
C 
C OPEN THE NEUTRAL FILE 
C 

C OPEN (!NEUT, FILE='FDNEUT', FORM='FORMATTED',position='append' 
OPEN (!NEUT, FILE='FDNEUT', FORM='FORMATTED' 

- , ERR=lOO) 
GO TO 110 

100 CALL JDBERR ( ' FORTRAN OPEN' , 1, 0) 
C 
C INITIALIZE THE DATABASE SYSTEM 
C 

110 IERD = JLMINI ( 0) 
CALL JDBERR ( 'JLMINI I' IERD, 0) 

C 
C SET NO. OF DATABASE PAGES 
C 

NDBPGS = 500 
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CALL FGTVAL (15, NDBFSV, ELMMAT) 
IF (NDBFSV.NE.-1) NDBPGS = MAX (500, NDBFSV) 
CALL DBPSMB ( NDBPGS, IERD) 
CALL JDBERR ('DBPSMB', IERD, 0) 

C 
C CHECK FORMAT OF DATABASE 
C IDBCOM O COMPRESSED 
C = 1 UNCOMPRESSED 
C 

IERD = JLMUNC (FDBASE, IDBCOM) 
IF (IERD.NE.0) THEN 

C UNRECOGNIZED DATABASE 
CALL JDBERR ('JLMFUNC: UNRECOGNIZED MODEL DATABASE', IERD, 0) 

ENDIF 
C 
C OPEN THE FIDAP MODEL DATABASE 
C 

IF (IDBCOM.EQ.O) THEN 
C COMPRESSED FORMAT 

IERD = JLM02E ('FDTMPl', 6, FDBASE, 2) 
CALL JDBERR ('JLM02E', IERD, 0) 

ELSE 
C UNCOMPRESSED FORMAT 

C 

IERD = JLMOPE (FDBASE, 6, 1, 2) 
CALL JDBERR ('JLMOPE', IERD, 0) 

ENDIF 

C -------------------------------------
C C O N T R O L I N F O R M A T I O N 
C ---------- --------------------------
C 
C 
C READ CONTROL INFORMATION FROM NODE DATABASE 
C 

C 

C 
C 

CALL READCN (0, O, 2, IERD) 
CALL JDBERR ('READCN', IERD, 1) 

IF (NUMNP .GT. MNONP) CALL JDBERR ( 
1 'NUMBER OF NODES. P~EASE INCREASE MNONP.', 1, 1) 

IF (NDFVL.EQ.0) THEN 
NDFVL = 2 
IF (IDIM.GE.2) NDFVL 3 

ENDIF 

C ---------------------------------
C N O D A L C O O R D I N A T E S 
C ---------------------------------
C 
C 

C 

IF (NUMNP.EQ. 0) 
1 CALL JDBERR (' NODES. NO NODES IN THIS PROBLEM.', 1, 1) 

C GET THE MODEL COORDINATES 
C 

C 

IERD = JNGXYZ (1, NDFCD, NUMNP, XYZ, IDOS) 
CALL JDBERR ('JNGXYZ', IERD, 1) 

C SCALE COORDINATES 
C 

C 

C 
C 
C 

C 

DO 115 I=l,NDFCD 
NDBEG = NUMNP*(I-1) 
DO 115 N=l,NUMNP 

XYZ(NDBEG+N) = XYZ(NDBEG+N)*SCLDOF(I) 
115 CONTINUE 

DO 120 INODES=l,NUMNP 

GET THE EXTERNAL NODE NUMBER FOR MODE NOD 

IERD = JNGITE ( IDOS ( INODES) , NOD) 
CALL JDBERR ( 'JNGITE', IERD, 1) 
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120 CONTINUE 
C 
C OPEN THE RESULTS DATABASE 
C CHECK FORMAT OF DATABASE 
C 

IERD = JLMUNC (FDPOST, IDBCOM) 
IF (IERD.NE.0) THEN 

C UNRECOGNIZED DATABASE 
CALL JDBERR ('JLMFUNC: UNRECOGNIZED RESULTS DATABASE', IERD, 0) 

ENDIF 
IF (IDBCOM.EQ.0) THEN 

C COMPRESSED FORMAT 
IERD = JLM02R ('FDTMP2', 6, FDPOST, 2, !PST) 
CALL JDBERR ('JLM02R', IERD, 0) 

ELSE 
C UNCOMPRESSED FORMAT 

C 

IERD = JLMOPR (FDPOST, 6, 1, 2, !PST) 
CALL JDBERR ('JLMOPR', IERD, 0) 

ENDIF 

C -------------
C R E S U L T S 
C -------------
C 
C 

C 
C 

C 

S O L U T I O N V E C T O R S 

NUMNPM = NUMNP 
CALL READCN (1, !PST, 2, IE~D) 
IF (NUMNP.NE.NUMNPM) 

1 CALL JDBERR ('READCN. INCOMPATIBLE MODEL AND RESULTS DBS', 
2 1, 1) 

C GET THE NUMBER OF TIME STEPS 
C 

C 

C 
C 
C 

C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

C 
C 
C 
C 
C 
C 
C 
C 
C 

IERD = JQGN.TS (!PST, IDENTR, NSTEP) 
CALL JDBERR ('JQGNTS', IERD, 1) 
IF (NSTEP.EQ.O) 

1 CALL JDBERR ('JQGNTS. 0 TIME STEPS DETECTED.', 1, 1) 

!SEQ= 3 
DO 900 KSTP = 1, NSTEP 

TIME STEP HEADER INFORMATION 

IERD = JQGHSE (!PST, !SEQ,. IDENTR, KSTEP, TIME, OT, RNORM) 
CALL JDBERR ('JQGHDI', IERD, 1) 
!SEQ 2 

WRITE (!NEUT, 1070) KSTEP, TIME, OT 

VELOCITY RECORDS 

UF: VELOCITY VECTOR - VELOCITY COMPONENTS FOR NODE I ARE STORED 
AS UF(2*I-l), UF(2*I) FOR NDFVL=2 AND 
AS UF(3*I-2),UF(3*I-l),UF(3*I) FOR NDFVL=3. 

GET THE VELOCITY SOLUTION 

K = 1 
IERD = JQGRBT (!PST, IDENTR, KSTEP, K, NUMNP, NDFVL, 

1 1, 0, 0, UF) 
IF (IERD .EQ. -1) GO TO 400 
CALL JDBERR ('JQGRBT: VELOCITIES', IERD, 1) 

PRESSURE RECORDS 

(P(I,I=l,NUMNP) IS THE PRESSURE AT NODE I. 

GET THE PRESSURE SOLUTION 

400 K = 2 
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IERD = JQGRBT (IPST, IDENTR, KSTEP, K, NUMNP, 
1 1, 1, O, 0, P) 

IF (IERD .EQ. -1) GO TO 900 
CALL JDBERR ('JQGRBT: PRESSURE', IERD, 1) 

C 
900 CONTINUE 

C 

C ----------------------------
C E L E M E N T G R O U P S 
C ----------------------------
C 
C 
C 
C 

ELMMAT: ENTITY NAME TO WHICH ELEMENT GROUP·BELONGS 
(20 CHARACTERS) 

C LOOP OVER ELEMENT GROUPS 
C 

C 
C 
C 

C 
C 
C 

C 

C 

obj=O.O 
NG= 0 
DO 290 NGG=l,NELGPS(l) 

GET NEXT ELEMENT GROUP NUMBER 

IERD = JGGSEQ (NG) 
CALL JDBERR ('JGGSEQ', IERD, 1) 
IF (NG.EQ.0) GO TO 300 

GET THE ELEMENT GROUP INFORMATION RECORD 

IERD = JGGELG (NG, NELPAR, ELMMAT) 
CALL JDBERR ('JGGELG', IERD, 1) 

NOP 
NELGP 
NFTYP 
IGEOM 

SLETH=O.O 

NELPAR(6) 
NELPAR(5) 
NELPAR(4) 
NELPAR(l6) 

if(elmmat .eq. 'fluid') then 
ngf=ng 
nelgpf=nelgp 
igeomf=igeom 

c nftypf=nftyp 
c write ( *, *) "ngf", ngf, nelgpf, igeomf, nftypf 

endif 
c write(*,*) igeom 

C 
C 
C 
C 

C 
C 
C 
C 
C 

C 
C 
C 

1 

sleth = 0. 0 · 
if(elmmat .eq. 'outlet') then 

ELEMENT CONNECTIVITY RECORDS 

obj=O.O 
is = O 

DO 280 NE=l,NELGP 

NE: GLOBAL ELEMENT NUMBER 
NODE: LIST OF NOP NODES DEFINING ELEMENT (SEE FIPREP 

USERS MANUAL, CHAPTER 12 FOR ORDERING CONVENTIONS) 

IERD = JGGEL2 (NG, NE, 1, NUMRET, NELNUM) 
CALL JDBERR ('JGGEL2', IERD, 1) 
IF (NUMRET.EQ.O) 

CALL JDBERR ('JGGEL2. NUMRET=O', 1, 1) 

GET THE ELEMENTS OF THE ELEMENT GROUP 

IERD = JEGELE (NELNUM, IGEOM, NOP, IFLAGS, NODE, NGRP, 
1 ICOL, IVIS) 

CALL JDBERR ('JEGELE', IERD, 1) 
do 2040 nef=l,nelgpf 

ierd = jggel2 (ngf, nef, 1, NUMRET, NELNUMf) 
CALL JDBERR ('JGGEL2', IERD, 1) 
IF (NUMRET.EQ.O) 

1 CALL JDBERR ('JGGEL2. NUMRET=O', 1, 1) 
IERD = JEGELE (NELNUMf, IGEOMf, NDPf, IFLAGS, NODEf, NGRP, 
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1 ICQL, IVIS) 
CALL JDBERR ('JEGELE', IERD, 1) 

ncount=O 
do 2010 i=l,ndpf 
do 2010 j=l,ndp 
if(nodef(il .eq. node(j)) ncount=ncount+l 

2010 continue 
C 

c *** find the velocity gradient tensor, and calculate the probability 
C distribution function 
C 

if(ncount .eq. 3) then 
c write(*,*) ncount 

geo(l)=xyz(nodef(4)) 
geo(2)=xyz(nodef(5)) 
geo(3)=xyz(nodef(6)) 
geo(4)=xyz(nodef(4)+numnp) 
geo(5)=xyz(nodef(5)+numnp) 
geo(6)=xyz(nodef(6)+numnp) 
velo(l)=uf(2*nodef(4)-l) 
velo(2)=uf(2*nodef(4)) 
velo(3)=uf(2*nodef(5)-l) 
v.elo ( 4) =uf ( 2*nodef ( 5) ) 
velo(5)=uf(2*nodef(6)-l) 
velo(6)=uf(2*nodef(6)) 
call psi(geo,velo,sx,sy) 
is= is+ 1 
sam( is) =sx 
tlong =dabs(xyz(nodef(6)+numnp)~ xyz(nodef(5)+numnp)) 

c obj=obj+sx*tlong 
sleth = sleth + tlong 
geo(l)=xyz(nodef(6)) 
geo(2)=xyz(nodef(7)) 
geo(3)=xyz(nodef(9)) 
geo(4)=xyz(nodef(6)+numnp) 
geo(5)=xyz(nodef(7)+numnp) 
geo(6)=xyz(nodef(9)+numnp) 
velo(l)=uf(2*nodef(6)-l) 
velo(2)=uf(2*nodef(6)) 
velo(3)=uf(2*nodef(7)-ll 
velo(4)=uf(2*nodef(7)) 
velo(5)=uf(2*nodef(9)-l) 
velo(6)=uf(2*nodef(9)) 
call psi(geo,velo,sx,sy) 
is= is+ 1 
sam(is)=sx 
tlong =dabs(xyz(nodef(7)+numnp)- xyz(nodef(6)+numnp)) 

c obj=obj+sx*tlong 
sleth = sleth + tlong 

c write(*,*)sleth 
C 
C*** EVALUATE OBJECTIVE FUNCTION 
C sum of square error 

endi f 
2040 continue 
280 continue 

avg= 0.0 
do 2050 i 1, 2*nelgp 
avg= avg+ sam(i) 

2050 continue 
avg=avg/dble(nelgp)/2. 
do 2060 i 1, 2*nelgp 
obj= obj+ (avg-sam(i))*(avg-sam(i)) 

2060 continue 
obj=dsqrt(obj/20.) 
open(ll,file='obj',status='unknown') 
write(ll,*) obj 
close(ll) 
else if(elmmat .eq. 'wall') then 

DO 285 NE=l,NELGP 
IERD = JGGEL2 (NG, NE, 1, NUMRET, NELNUM) 
CALL JDBERR ('JGGEL2', IERD, 1) 
IF (NUMRET. EQ. 0) 

1 CALL JDBERR ('JGGEL2. NUMRET=O', 1, 1) 
IERD = JEGELE (NELNUM, IGEOM, NDP, IFLAGS, NODE, NGRP, 
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1 ICOL, IVIS) 
CALL JDBERR ('JEGELE', IERD, 1) 

C 
DO 285 INOD=l,NDP 
WRITE (INEUT, *) XYZ(NODE(INOD)), XYZ(NODE(INOD)+NUMNP) 

285 continue 

C 

C 

endif 
290 CONTINUE 

write ( *, *) 'OBJECTIVE: ' obj 
300 CONTINUE 
950 STOP 

1070 FORMAT ('TIMESTEP: ' IS, ' TIME: 
1 ' INCRMNT: ' El5.7) 

END 

El5.7, 

SUBROUTINE READCN (IOPT, IPSTFL, INDEX, IERR) 
C 

c------------------------------------------------------------------------------
c GET CONTROL INFORMATION FROM DATABASE 
C 
C 
C 
C 
C 

IOPT = 0 

1 

READ FROM GEOMETRY DATABASE 

READ FROM RESULTS DATABASE IPSTFL 

C INDEX O IGNORE 
C 1 FIPREP RECORD 
C 2 FISOLV RECORD 
C 3 MESH RECORD 
c------------------------------------------------------------------------------
c 

INCLUDE 'IMPLCT.COM' 
INCLUDE 'CNTRLW.COM' 

C 
IERD = 0 
LRDATA = 600 
LI DATA 450 
LCDATA = 9*80 

C 
C GET SIMULATION CONTROL INFO 
C 

C 
C 
C 

C 
C 
C 

C 

C 

IF (IOPT.EQ.O) THEN 

GET THE SIMULATION CONTROL INFO: MODEL 

IERD = JUGSC2 (INDEX; LRDATA, RDATA, LIDATA, IDATA, LCDATA, 
1 CDATA) 

1 

ELSE 

GET THE SIMULATION CONTROL INFO: 'RESULTS 

IERD = JUGRS2 (IPSTFL, INDEX, LRDATA, RDATA, LIDATA, IDATA, 
LCDATA,· CDATA) 

ENDIF 
IF (IERD.NE.0) IERR = 1 
RETURN 
END 

SUBROUTINE JDBERR (TEXT, IERRNUM, ICDBF) 

c------------------------------------------------------------------------------
c DB ERROR ROUTINE. 
C 
C 
C 

TEXT THE TEXT TO PRINT IN CASE OF AN ERROR 

C IERRNUM THE ERROR FLAG; POSSIBLY RETURNED FROM A DATABASE TOOL 
C -1 NO ERROR BUT REQUESTED INFO WAS NOT FOUND 
C O NO ERROR 
C 1 ERROR 
C 
C 
C 
C 
C 

ICDBF THE CLOSE DATABASE FLAG 
0 A DATABASE CLOSE DOES NOT NEED TO BE PERFORMED 
1 = A DATABASE CLOSE IS NECESSARY 

c------------------------------------------------------------------------------
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C 

C 

C 
C 
C 

C 

C 

C 

CHARACTER*(*) TEXT 

IF (IERRNUM .GT. 0) 
WRITE (*, I (I'*** 
WRITE ( *, I ( I I 
IF (ICDBF .EQ. 1) 

THEN 
ERROR IN I I , A) ' ) TEXT 
RDBASE RUN ABORTED.'')') 
THEN 

CLEAN UP THE DATABASE 

IERD = JLMCLE (0) 
IF (IERD .NE. 0) THEN 

WRITE (*, '(''*** ERROR IN JLMCLE'') ') 
WRITE (*, '('' RDBASE RUN ABORTED.'')') 

ENDIF 
ENDIF 
GOTO 100 

ENDIF 

IF (IERRNUM .LT. 0) THEN 
WRITE (*, '(''*** WARNING: NO'', A, '' IN THIS PROBLEM.'', 

2 A)') TEXT 
WRITE (*, '('' RDBASE RUN ABORTED.'')') 
RETURN 

ENDIF 

RETURN 

100 STOP 
END 

C##################################### 
C################ SUBROUTINE QS.HAPE 
C##################################### 

SUBROUTINE QSHAPE(S,AN,ANS) 
C 
C CALCULATE THE DERIVATIVES OF 
C 1). SHAPE FUNCTIONS FOR THREE-NODE EDGE ELEMENT W.R.T. S 
C 2). X AND Y W.R.T. S , IN GAUSS INTEGRATION POINT-- -
C R --- NATURAL COORDINATE OF DIRECTION 1 
C 

C 

C 

INCLUDE 'IMPLCT.COM' 
DIMENSION AN(3),ANS(3) 

AN(l) 0.5*S*(S-1.) 
AN(2) = 1.-S*S 
AN(3) = 0.5*S*(l.+S) 

ANS(l) 
ANS(2) 
ANS(3) 

RETURN 
END 

S-0.5 
-2.*S 
S+0.5 

C###################################f# 
C################ SUBROUTINE LSHAPE 
C##################################### 

SUBROUTINE LSHAPE(S,AN,ANS) 
C 
C CALCULATE THE DERIVATIVES OF 
C 1). SHAPE FUNCTIONS FOR THREE-NODE EDGE ELEMENT W.R.T. S 
C 2). X ANDY W.R.T. S, IN GAUSS INTEGRATION POINT 
C R --- NATURAL COORDINATE OF DIRECTION 1 
C 

C 

INCLUDE 'IMPLCT.COM' 
DIMENSION AN(3),ANS(3) 

AN(l) 0.5*(1.-S) 
AN(2) = 0.5*(1.+S) 
AN(3) = 0.0 

ANS(l) -0.5 
ANS(2) 0.5 
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C 
ANS(3) 

RETURN 
li:ND 
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psi.f 

C********************** ABSTRACT ********************************** 
C 

C THIS PROGRAM CALCULATES THE PROBABILITY DISTRIBUTION fUNCTION IN 
C THE GENERALIZED fLOW fIELD. 
C A TWO-DIMENSIONAL BOUNDARY VALUE PROBLEM. 
C 
C********************** NOMENCLATURE ****************************** 
C LAMBDA: TIME CONSTANT fOR THE RIGID DUMBELL 
C ZETA: friction Coefficient of rigid durnbell 
CL: LENGTH or RIGID DUMBELL 
CT: TEMPERATURE 
CK: Boltzmann constant 
C 
C********************* 
C 

INPUT DESCRIPTION ************************** 

C INPUT IS PROVIDED TO THIS PROGRAM BY STATEMENTS AT BEGINING or 
C THE PROGRAM. PHYSICAL PARAMETERS AND NUMERICAL PARAMETERS ARE 
C PROVIDED IN SEPARATE SECTIONS. 
C fLOW rIELD Ux = vrc ( 1) *X + vrc ( 2) *Y + CON TANT 
C Uy= VfC(3)*X + VfC(4)*Y + CONTANT 
C VfC(S) = LAMBDA (TIME CONTANT, ZETA*L*L/(12*k*T) 
C 

subroutine psi(geo,velo,totalx,totaly) 
PARAMETER (M = 41, N = 45) 
IMPLICIT DOUBLE PRECISION (A-H, 0-Z) 
DIMENSION f(N*M),COE(N*M,N*M),XX(N*M) 
DIMENSION IPVT(N*M),VARC(5),VfC(5) 
dimension geo(6),velo(6),pm(6) 

C******************************************************************************* 
C**** INPUT DATA ***** 
C******************************************************************************* 
C****************** SET PHYSICAL PARAMETERS 

call para(geo,velo,pm) 

VfC(l) 
VfC(2) 
VfC(3) 
VfC(4) 
vrc(Sl 

(pm(l)-pm(S) )/2. 
pm(2) 
pm( 4) 

(pm(S)-pm(l))/2. 
O.ldO 

c write(*,*) ''a,b,c,d",vfc 
c return 

second=4.*vfc(l)*vfc(1)+2.*(vfc(2)+vfc(3))**2.+4.*vfc(4)*vfc(4) 
c write(*,*) "second invariant",second 
C****************** SET NUMERICAL PARAMETERS 

PI=4. *ATAN ( 1.) 

THETA=PI/ 2. 
C THETA=PI 

DX=THETA/ fLOAT (M-1·) 
PHI=PI 
DY=PHI/fLOAT(N-1) 
DXZ=DX*DX 
DY2=DY*DY 
NM=N-1 
MM=M-1 

C******************************************************************************* 
C**** INITIALIZE COEffICIENT MATRIX ***** 
C******************************************************************************* 

NBM=N*M 
DO 10 I=l,NBM 
f(I) = 0.0 
DO 10 J=l,NBM 
COE(I,J)=O.O 

10 CONTINUE 
C 
C****************************************************** 
C Boundary conditon at NORTH POLE, THETA= 0.0 
C****************************************************** 

DO 20 J=l,N 
IJ = 1 + (J-l)*M 
COE(IJ,IJ)= 1. 
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F(IJ)=l. 
20 CONTINUE 

C****************************************************** 
C Boundary conditon at EQUATOR, THETA= PI/2 
C****************************************************** 

DO 30 J=l,N 
IJ = J*M 
COE(IJ,IJ) 3. 
COE(IJ,IJ-1)= -4. 
COE(IJ,IJ-2)= 1. 

30 CONTINUE 
C****************************************************** 
C Boundary conditon at PHI= PI, PERIODIC 
C****************************************************** 

35 

DO 35 I=2,MM 
IJ =I+ (N-l)*M 
Jl = I 
COE(IJ,Jl) 
COE(IJ,IJ} 
CONTINUE 

1. 
-1. 

C****************** INTERIOR POINTS 
DO 40 J=l,NM 
DO 40 I=2,MM 
IMJ = I-l+(J-l)*M 
IF(J.EQ.1} THEN 

C IJM = I +(N-l)*M 
IJM = I +(N-2}*M 
ELSE 
IJM = I +(J-2}*M 

ENDIF 
IJ = I + { J-1} *M 
IPJ = I+l+{J-l)*M 

C IF(J .EQ. N} THEN 
C IJP = I + M 
C ELSE 

IJP = I +J*M 
C ENDIF 

X=DX*DBLE{I-1) 
Y=DY*DBLE { J-1} 
CALL VAR{X,Y,VFC,VARC} 
COE(IJ,IMJ}={VARC{l} - VARC(3}*DX(2.}*DY2 
COE(IJ,IJM}=(VARC(2) - VARC(4}*DY/2.)*DX2 
COE(IJ,IJ}= -2.*VARC(l)*DY2 -2.*VARC{2)*DX2 + VARC(5}*DX2*DY2 
COE(IJ,IPJ)={VARC{l} + VARC(3}*DX/2.)*DY2 
COE(IJ,IJP}=(VARC(2} + VARC(4}*DY/2.}*DX2 

40 CONTINUE 
CALL LINPAC{NBM,COE,F,XX,IPVT} 

C******************************************************************************* 
C**** Normalize the probability distribution ***** 
C******************************************************************************* 

IF{MOD(N,2} .EQ. 0 .OR. MOD{M,2} ,EQ. 0 ) THEN 
WRITE{*,*)"NEED ODD NUMBER FOR SIMPSON'S INTEGRATION" 

ENDIF 
TOTAL=O.O 
DO 60 J=l,N 
SUM=O.O 
DO 50 I=l,M 
IJ=I+(J-l)*M 
if (XX{IJ} .lt. 0.) write{6,*}"warning! negative PDF",vfc 
IF(MOD(I,2}.EQ.0} THEN 

FAC = 4. 
ELSE IF{I .EQ. 1 .OR. I .EQ. M} THEN 

FAC 1. 
ELSE 

FAC 2. 
ENDIF 
X=DX*DBLE(I-1) 
SUM=SUM+FAC*XX(IJ)*SIN(X} 

50 CONTINUE 
IF(MOD{J,2}.EQ.0) THEN 

FAC = 4. 
ELSE IF{J .EQ. 1 .OR. J .EQ. N) THEN 

FAC = 1. 
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ELSE 
FAC = 2. 

ENDIF 
SUM= SUM*DX/3. 
TOTAL= TOTAL+ FAC*SUM 

60 CONTINUE 
TOTAL= TOTAL*DY/3. 

C 
C******************************************************************************* 
C**** PRINT OUT THE PROBABILITY DISTRIBUTION ***** 
C******************************************************************************* 
C 
C 

C 

C 

C 

C 

C 

C 

70 

C 

302 
304 

WRITE(6,302) 
WRITE(*,304) TOTAL 

DO 70 J=l,N 
WRITE(6,*) 

DO 70 I=l,M 
IJ = I+(J-l)*M 

X=DX*DBLE(I-1)*180./PI 
Y=DY*DBLE(J-1)*180./PI 

XX(IJ)=XX(IJ)/TOTAL/2. 
XX(IJ)=XX(IJ) 
WRITE(6,*)X,Y,XXCIJ) 

CONTINUE 
FORMAT(/) 
FORMAT("# TOTAL =",El4.7) 

C**********************************~*******~************************************ 
C**** CALCULATE THE PROJECTION ON THE X ANDY DIRECTION **** 
C******************************************************************************* 
C 

TOTALX = 0.0 
TOTALY = 0.0 
DO 90 J=l,N 
SUMX=O.O 
SUMY=O.O 
DO 80 I=l,M 
IJ=I+(J-l)*M 
IF(MOD(I,2).EQ.O) THEN 

FAC = 4. 
ELSE IF(I .EQ. 1 .OR. I .EQ. M) THEN 

FAC L 
ELSE 

FAC 2. 
ENDIF 
Y=DY*DBLE(J-1) 
X=DX*DBLE(I-1) 
SUMX=SUMX+FAC*XX(IJ)*SIN(X)*SIN(X)*abs(COS(Y)) 
SUMY=SUMY+FAC*XX(IJ)*SIN(X)*SIN(X)*SIN(Y) 

80 CONT.INUE 
IF(MOD(J,2) .EQ.0) THEN 

FAC = 4. 
ELSE IF(J .EQ. 1 .OR. J .EQ. N) THEN 

FAC 1. 
ELSE 

FAC 2. 
ENDIF 
SUMX= SUMX*DX/3. 
SUMY= SUMY*DX/3. 
TOTALX = TOTALX + FAC*SUMX 
TOTALY = TOTALY + FAC*SUMY 

90 CONTINUE 
TOTALX= TOTALX*DY/3. 
TOTALY= TOTALY*DY/3. 

c write(*,*) "Sx,Sy", totalx, totaly 
RETURN 
END 

C########################################################################### 
C##### SUBROUTINE FOR EVALUATE VARIABLE COEFFICIENTS OF DIFFUSION EQUATION 
C########################################################################### 

SUBROUTINE VAR(X,Y,VFC,VARC) 
IMPLICIT DOUBLE PRECISION (A-H, 0-Z) 
DIMENSION VARC(5),VFC(5) 
S2X = SIN(X)*SIN(X) 
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C 

C 

C 

C 

C 

C 

C 

S2Y = SIN(Y)*SIN(Y) 
C2Y = COS(Y)*COS(Y) 
SCY = SIN(Y)*COS(Y) 
VARC(l) = S2X/12./VFC(5) 
VARC(2) = 1./12./VFC(S) 
VARC(3) = COS(X)*SIN(X)/12./VFC(5) - (VFC(l)*C2Y+ 

& (VFC(2)+VFC(3))*SCY+VFC(4)*S2Y)*SIN(X)**3.*COS(X) 
VARC(4) = ((VFC(l)-VFC(4))*SCY+VFC(2)*S2Y-VFC(3)*C2Y)*S2X 
VARC(5) = (-(VFC(l)*C2Y+(VFC(2)+VFC(3))*SCY+VFC(4)*S2Y) 

& *(1.+3.*C0S(2*X))/2.+(VFC(l)-VFC(4))*(C2Y-S2Y) 
& +(VFC(2)+VFC(3))*SIN(2.*Y))*S2X 

RETURN 
END 

subroutine para(geo,velo,pm) 
IMPLICIT DOUBLE PRECISION (A-H, 0-Z) 
dimension geo(6),velo(6),am(3,3),bm(3),xm(3),ipvt(3) 
dimension x(3),y(3),ux(3),uy(3),pm(6) 

Node numbering in this program. 

X (.1) geo(l) 
x(2) geo(2) 
x(3) geo(3) 

y(l) geo(4) 
y(2) geo(5) 
y(3) geo(6) 

Ux(l) velo(l) 
Uy(l) velo(2) 
Ux(2) velo(3) 
Uy(2) velo(4) 
Ux(3) velo(5) 
Uy(3) velo(6) 

write(*,*)"x",x 
write ( *, *) "y", y 
write(*,*)"Ux",ux 
write(*,*)"Uy",uy 

am(l,1) x(l) 
am ( 1, 2 ) y ( 1 ) 
am(l, 3) 1. 
bm ( 1 ) = ux ( 1 ) 
am(2,1) = x(2) 
am ( 2, 2) = y I 2) 
am(2,3) = 1. 
bm(2) = ux(2) 
am(3,l) = x(3) 
am(3,2) = y(3) 
am(3,3) = 1. 
bm(3) = ux(3) 
CALL LINPAC(3,Am,Bm,Xm,IPVT) 
pm(l)=xm(l) 
pm(2)=xm(2) 
pm(3)=xm(3) 

am(l,1) = x(l) 
am(l,2) = y(l) 
am(l, 3) = 1. 
bm(l) = uy(l) 
am(2,1) = x(2) 
am ( 2 , 2 ) = y I 2 ) 
am(2,3) = 1. 
bm(2) = uy(2) 
am(3,l) = x(3) 
am(3,2) = y(3) 
am(3,3) = 1. 
bm(3) = uy(3) 
CALL LINPAC(3,Am,Bm,Xm,IPVT) 
pm(4)=xm(l) 
pm(5)=xm(2) 
pm(6)=xm(3) 
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C write(*,*)pm 
return 
end 
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