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CHAPTER 1 

INTRODUCTION TO 

PHOTOCHROMIC EFFECT IN SPIROOXAZINES 

Photochromism in organic molecules, which involves the switching between two 

states of the compound by optical means, has long been of interest from both theoretical 

and practical viewpoints. 1.1-1.4 Structural transformation is induced, in at least one 

direction, by photon excitation. Relaxation back to the initial state is usually correlated with 

a thermal activation process. Photochromic compounds are of great interest to materials 

researchers, as they can be used in photonic media as optical limiters, switches, or as 

optical information storage media. 

Photochromic compounds have been widely studied for more than 100 years. 

1.2, 1.5, 1.6 The first study of photochromic reactivity was reported by Fritsche in 1867. 1. 7 

In 1871, the first systematic study of photochromic compounds was published by 

Houston. 1.8 However, the term "photochromism" did not appear in the literature until it 

was suggested by Hirshberg in 1950. 1.3 The spiropyrans represent a family of 

photochromic compounds which have not been extensively utilized in device applications, 

as they have proven to suffer from poor cycling fatigue resistance. [Cycling fatigue is 

defined to occur when a photochromic compound is exposed in a cycling manner to light 

such that the photochromic transition is repeatedly induced, eventually leading to a loss of 

color changeability. It results from photo-induced decomposition of the photochromic 

species]. 1.1 Thus, photonic media based on photochromic spiropyrans have only been 

studied as a laboratory "curiosity". Recently a new class of photochromic compounds, the 

spirooxazines, has been the subject of renewed interest in the field. The spirooxazines 

have been found to be resistant to cycling fatigue, a characteristic which makes them 
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especially attractive from an applications perspective. 1.2 Assessment of spirooxazine 

crystal structure, study of the influence of the local environment on photochromic behavior, 

and the preparation of photonically-active solid state media based on spirooxazine dopants 

serve as major focus for the research described herein. 

Spirooxazines comprise a collection of photochromic compounds which are 

reasonably well characterized, but poorly understood compared to the spiropyrans. 

1.2,1.9,1.10 A dilute alcoholic solution containing spiro(l,3,3-trimethylindolo-2,3'

naphth[l,2-b]-1,4-oxazine), a particularly efficient photochromic compound, is colorless in 

the absence of a suitable photoexcitation source, but becomes intensely blue upon exposure 

to ultraviolet light. The intense blue color disappears rapidly when ultraviolet irradiation 

ceases. The colored form, also called the photomerocyanine ( or PMC form), is reported to 

have a lifetime of about 0.5 seconds in common solvents. 1.9 Alcoholic spirooxazine 

solutions are also observed to be highly fluorescent, a characteristic which may be explored 

for the purpose of detailing guest-host interactions. Photochromism in spirooxazine 

compounds generally involves the UV-induced dissociation of the spiro C-0 bond, from 

the oxazine ring, to form the open planar PMC structure. The normal chemical structure of 

the spiro(l,3,3-trimethylindolo-2,3'-naphth[l,2-b]-1,4-oxazine) (also referred as SPl 

hereinafter), and the UV-induced photomerocyanine form, are shown in Figure 1-1. The 

photomerocyanine form is reported to be a mixture of four structurally distinguishable 

isomers (e.g., cis and trans conformations) in common solvents as shown in Figure l-

2.1.11 
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~111111 N, 11111111 UV .~ - ,,.,. ,,,, ~,, 
... ~11111111~---- v -------• 
o~-~ ~-------· 

Vis 

Spiro-form, SPl PMC (isomers shown from 
Figure 1-2) 

Figure 1-1. Chemical structure of SPl (spiro-form) and the corresponding 

UV-induced photomerocyanine form (PMC form). 

N 

< H 0 

0 

Figure 1-2. Four isomers of photomerocyanine form. 

This research project was conducted in order to gain new understanding of the 

behavior of photochromic spirooxazine compounds and to provide a novel route for the 

preparation of solid state photonically-active media. The previously described structural 
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transformations detailed in this section were used to interpret experimental results of the 

research in this dissertation. Effects included the characterization of photochromic and 

non-photochromic spirooxazine compounds using X-ray structure analysis and NMR 

methods. Subsequently, the behavior of photochromic spirooxazine compounds was 

investigated by absorption and luminescence spectroscopies. Finally, background 

information pertaining to known photochromic effects and the assessment of new optical 

properties found for spirooxazine compounds were used to promote the preparation and 

characterization of novel sol-gel derived photochromic media. 
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CHAPTER2 

CRYSTAL STRUCTURE ANALYSIS OF PHOTOCHROMIC 

SPIROOXAZINE COMPOUNDS AND NON-PHOTOCHROMIC 

THIAZOLINOSPIROOXAZINE COMPOUNDS 

2.I. Introduction 

The fundamental relationship between chemical structure and photochromic 

behavior is of interest to researchers in the field. 2.1,2.2 Figure 2-1 shows the mechanism 

of photochromism in spirooxazine compounds in more detail. Spirooxazine compounds 

(spiro form A shown in Figure 2-1) in appropriate solutions undergo a reversible color 

change under the influence of UV irradiation, as shown in Figure 1-1. NMR evidence 2.3 

supports the thesis that photochromism in these systems involves UV-induced dissociation 

of the oxazine's spiro C-0 bond, to form the planar PMC structure, which occurs in at 

least four isomeric forms. Form (B) is stabilized by electron pair donation from the 

adjacent nitrogen atom (as shown in form C). Electron delocalization over an extended 

range occurs when the structural framework is planar as shown in form D. Return to the 

colorless spiro form (A) is driven by heat or photon excitation. 

The crystal structures of photochromic spirooxazine compounds have been studied 

by many researchers. 2.4-2.6 These investigators have analyzed, structures of spirooxazines 

and its derivatives, and have identified specific details which might presage the 

photochromic vs. non-photochromic behavior found in simple solutions. Although 

extensions to solution behavior from solid state structural detail is questionable ( due to the 

unclear role salvation might play in the mechanism of C-0 bond breaking), it is useful to 

assess bond lengths and bond angles in the terms of their fundamental molecular influences 

on photochromic behavior. In Figure 2-1, electron withdrawing substituents are often 
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present at R4 and R6 in spirooxazines, which act to stabilize the molecule. Rl is normally 

a methyl group. According to the literature, 2.5 there appears to be no special requirement 

for R3 and R5. When R2 is a bulky alkyl group, the lifetime of the colored PMC form has 

been reported to diminish significantly. 2.4,2.5 The comparison of photochromic behavior 

of three spirooxazine compounds (Z = (CH3)2C, X = N) in which R2 = H with their non

photochromic counterparts in which R2 = CH3 suggests that steric strain in the planar state 

( conformation C in Figure 2-1) arising from group R2 generally increases the rate of return 

to the twisted form (A in Figure 2-1). 2.7 Thiazo derivatives, however, do not necessarily 

follow this trend. 3-Ethyl-8-methyl-6-nitro-:2H-1-benzopyran-2-spiro-2'-(3'

methylthiazolidine), for example, is photochromic even though there exists an ethyl 

substituent at the R2-equivalent position. 2.8 This compound (represented as example E in 

Figure 2-2) represents the only previously reported structure of a spirooxazine-type 

compound with Z = S (Rl = CH3, R4 = N02, R6 = OCH3, R3, R5 = H, X = CH, 

unsubstituted aromatic ring labeled# not present). 
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Figure 2-1. The mechanism of photochromism in spirooxazine compounds. 

Example E: photochromic 

Figure 2-2. Example of photochrornic thiazo compound 

The crystallographic structures of five previously uncharacterized spirooxazine 

derivatives, including three thiazo-types, have been determined. The bond lengths and 
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bond angles in these compounds have been probed in relation to the fundamental influence 

of bond nature on photochromism in spirooxazines. This work represents a logical 

extension of that performed by other researchers, who have examined bond lengths, 

especially those at the spiro carbon position. It has been reported that photochromic 

spirooxazine compounds have longer and thus weaker C-0 bonds and shorter C(9)-N(8) 

distances, an omen of donation of the unshared pair on nitrogen towards the spiro carbon 

atom. 2.9 These observations reflect facilitation of C-0 bond breakage 2.10 In general, 

photochromic spirooxazine compounds possess C(9)-0(22) bond lengths of 1.46 A or 

greater, and C(9)-N(8) bond lengths of 1.425(6)-1.434(3) A or shorter. 2.9 Similarly, the 

sum of the bond angles at N(*) has been examined for evidence that an sp3 hybridized 

(angle total 3 x 109° or 327°) nitrogen atom tends towards a more stable tetrahedral 

orientation, whereas planar or sp2 hybridized (angle total 360°) geometry promotes electron 

pair donation with inherent stabilization of the cationic species seen in structure C of Figure 

2-1. Thus, bond angle totals approach 360° at N( *) suggest potential photochromism. 

Although photochromic spirooxazine compounds have previously been characterized by X

ray analysis, there is no reported description of the relationship between crystal structure 

and photochromism for thiazolinospirooxazine compounds (where Z =Sin Figure 2-1). 

The research presented in this chapter includes structural analysis of three 

benzothiazolinospirooxazines which do not display photochromism; 1-

me thy lbenzothiazolinospiro-2,3 '-(2' -me thy 1-[3 H]phenanthro[9, 10-b] [ 1,4] oxazine) 

(Structure I, Figure 2-3), 1-methylbenzothiazolinospiro-2,3'-(2'-methyl-[3H]naphth [2,l

b][l,4]oxazine) (II, Figure 2-4) and l-methylbenzothiazolinospiro-2,3'-(2'-methyl-9'-

methoxy-[3H]naphth [2,1-b][l,4]oxazine) (III, Figure 2-5). Two previously 

uncharacterized photochromic spirooxazine compounds, spiro(l,3,3-trimethyl-2'

methylindolo-2,3' -naphth[ 1,2-b ]-1,4-oxazine) (IV, Figure 2-6) and spiro(l ,3,3-trimethyl

indolo-9'-methoxy-2,3 '-naphth[ l ,2-b ]-1,4-oxazine) (V, Figure 2-7) have also been 
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studied. Each compound was characterized using single crystal X-ray methods. The 

purpose of these studies was: (1) to report the single crystal structures, including bond 

angles and lengths, for the previously uncharacterized spirooxazine analogues, and (2) to 

examine the influences of selected substitutions on bond angles and bond lengths, two key 

parameters which determine photochromic behavior in such compounds. This work 

represents the first known discussion pertaining to the influence of heteroatomic 

substitution in the spiro ring on the photochromic behavior of spirooxazine analogues. 

Figure 2-3. Chemical structure of 1-methylbenzothiazolinospiro-2,3'-(2'-methyl

[3H]phenanthro [9,10-b][l,4]oxazine) (Structure I). 

Figure 2-4. Chemical structure of l-methylbenzothiazolinospiro-2,3'-(2'-methyl-

[3H]naphth [2, 1-b ][ 1,4 ]oxazine) (Structure II). 
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CH3 

Figure 2-5. Chemical structure of l-methylbenzothiazolinospiro-2,3'-(2'-methyl-9'

methoxy-[3H]naphth [2,1-b][l,4]oxazine) (Structure III). 

CH3 

Figure 2-6. Chemical structure of spiro(l,3,3-trimethyl-2'-methylindolo-2,3'

naphth[ 1,2-b ]-1,4-oxazine) (Structure IV) 

CH3 

Figure 2-7. Chemical structure of spiro(l,3,3-trimethyl-indolo-9'-methoxy-2,3'

naphth[ 1,2-b ]-1,4-oxazine) (Structure V). 
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2.l/. Experimental Methods 

2.II.A. Synthesis of Title Compounds 

The title compounds were generously supplied by Prof. Meigong Fan, Institute of 

Photographic Chemistry, Chinese Academy of Sciences. The synthetic approach to the 

preparation of substituted spirooxazine compounds has been fully described elsewhere. 

2.11 The synthesis and IR characterization of compound II, 1-methylbenzothiazolinospiro-

2,3'-(2'-methyl-[3HJnaphth [2,1-b][l,4]oxazine), have previously been reported. 2.12 The 

general synthesis of the thiazolinospirooxazine compounds has also been summarized 

elsewhere. 2.13 

2.II.B. Preparation of Single Crystals 

The solid sample was dissolved in a 1: 1 mixture of chloroform and petroleum ether 

in a covered container at room temperature. The covers were perforated to allow solvent 

evaporation in the fume hood. Single crystals were subsequently obtained after a few 

days. Crystals with appropriate dimensions (approximately 0.2x0.2x0.2 mm) were 

mounted on a glass fiber for use in structural analysis by X-ray diffraction. 

2.II.C. Crystallography 

Single crystal specimens with appropriate dimensions were mounted on a Siemens 

P4 automated four-circle diffractometer equipped with a IBM-486DX computer using 

molybdenum radiation (A= 0.71073 A). Unit cell dimensions were determined using the 

centered angles for up to 100 independent strong reflections which were refined using 

least-squares methods by the automated procedure in XSCANS. 2.14 The intensity data 

were collected at room temperature using a variable scan rate, a 8-28 scan mode and a scan 
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range of 0.6° below Ka1 and 0.6° above Ka2 to a maximum 28 value (normally 50.0°). 

Backgrounds were measured at each end of the scan range for a combined time equal to the 

total scan time. The intensities of three standard reflections were remeasuered after every 

107 reflections. 

2./II. Results and Discussion 

Thiazolinospirooxazine compounds (I, II and III) are found to lack photochromic 

properties in solution, while substituent spirooxazine compounds IV and V are found to 

exhibit photochromic properties. All five compounds crystallize with two relatively planar 

moieties ( atoms 1-9 and atoms 10-24) which display interplanar angles close to 90°. Table 

2-1 shows the interplanar angle for all of the five compounds. It can be seen from the table 

that the interplanar angle for photochromic compounds (IV: 77.2 and V: 80.9°) is much 

smaller than that for non-photochromic compounds (I: 103.3, II: 105.0 and III: 103.1 °). 

Table 2-1 

Interplanar Angle (°) of Compounds 

Structure 

I 

II 

III 

IV 

V 

Interplanar angle (°) 

12 

93.3 

105.0 

103.1 

77.2 

80.9 



Since the mechanism of photochromism in spirooxazines involves cleavage of the 

spiro C-0 bond, bond length to the spiro carbon (C9 in all compounds) is of great 

importance. The measured bond length of the spiro carbon ( C9) to sulfur SJ (I, II and III) 

or to corresponding Cl(IV and V), spiro C-0 and spiro C-N of the five compounds is 

shown in Table 2-2. The C(9)-0(22) bond lengths of the non-photochromic 

thiazolinospirooxazine compounds I, II and III [1.422(6) A to 1.437(5) A] are significantly 

shorter than those characteristic of photochromic counterpart (1.463(3) A, structure E in 

Figure 2-2), which is postulated to be a contributing factor in the loss of photochromic 

properties by the thiazolinospirooxazine compounds. Photochromic spirooxazine 

compounds (e.g. SPl) normally display long C-0 at the spiro carbon (C9) atom; 1.454(3) 

A for the C-0 bond, and 1.436(3) A for the C-N bond. 2.9 For the two photochromic 

compounds characterized herein, the C-0 and C-N bonds are longer than those for SP 1, 

1.459(11) A to 1.504(12) A for the C-0 bond and 1.439(10) to 1.462(13) A for the C-N 

bond (indicated in Table 2-2). The shorter C-N bond has also been found for non

photochromic thiazolinospirooxazine compounds comparing photochromic spirooxazine 

compounds (Table 2-2). The C-N bond shortening in non-photochromic compounds may 

be attributed to the presence of the sulfur and the contribution of its two lone pairs to the 

ring on the other side. 
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Structure S(l)-C(9) 

I 1.838(5) 

II 1.829(3) 

III 1.845(4) 

ExampleE 1.852(3) 

IV 

V 

SPl 

Table 2-2 

Bond Length (A) Related to Spiro C 

vs. Photochromic Behavior 

C(l)-C(9) C(9)-0(22) C(9)-N(8) Photochromic 

1.422(6) 1.402(6) No 

1.430(4) 1.409(4) No 

1.437(5) 1.429(5) No 

1.469(3) 1.421(4) Yes 2.7 

1.510(15) 1.459(11) 1.439(10) Yes 

1.590(2) 1.504(12) 1.462(13) Yes 

1.548(3) 1.454(3) 1.436(3) yes 2.6 

Table 2-3 shows the bond angle totals at nitrogen (NB) in the indoline ring. Non

photochromic compounds (I), (II) and (III) display considerable flattening at NB, 350.9(4)° 

for (I), 349.2(2)° for (II) and 350.9(2)° for (III) compared to 338.4 ° total reported for the 

photochromic counterpart (structure E in Figure 2-2). Photochromism is correlated with 

more sp3 hybridized (angle total 3 x 109° or 327°), while non-photochromic compounds 

exhibit more sp2 type (angle total 360°). These results for thiazolino compounds do not 

agree with the previous report on spirooxazine compounds. 2.9 Smaller bond angle totals 

are seen for the photochromic compounds, 347.9(2)° for (IV) and 345.3(2)° for (V) 

compared for photochromic SPl [349.0(2)°]. 
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Table 2-3 

Bond Angle Totals at N8 (°) vs. Photochromic Behavior 

Structure Bond Angle Totals C) Photochromic 

I 350.9(4) No 

II 349.2(2) No 

III 350.9(2) No 

ExampleE 338.4 Yes 2.8 

IV 347.9(2) Yes 

V 345.3(2) Yes 

SPl 349.0(2) yes 2.6 

Table 2-4 shows the bond lengths related to SJ and N8 atoms for thiazolino 

spirooxazine compounds (I), (II) and (III). Compounds (I) and (II) are bright red in color, 

suggesting significant amounts of bond delocalization involving sulfur, nitrogen and the 

adjacent aromatic ring. The bonds between the hetero atoms and this ring [S(l)-C(2) and 

N(8)-C(7)] are much shorter than those of the corresponding photochromic compound 

(example E in Figure 2-2), S(l)-C(2): 1.817, N(8)-C(7): 1.464. The shortness coupled 

with the relative planarity of bonds at N8 suggests a degree of rehybridization at SJ and N 8 

to facilitate delocalization of their lone pairs. Thus, the ability of either hetero atom to 

stabilize a cation developing at the spirocarbon atom is severely reduced. In the 

corresponding thiazolino photochromic compound (structure E in Figure 2-2), which lacks 
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the aromatic ring adjacent to the hetero atoms, unshared pairs on N and S are available to 

stabilize the cation developing at the spiro carbon in the photochromic mechanism. 

Table 2-4 

Bond Length (A) Related to SJ and N8 for Thiazolino Compounds 

Structure 

I 

II 

III 

ExampleE 

S(l)-C(2) 

1.743(5) 

1.740(3) 

1.742(5) 

1.817(3) 

N(8)-C(7) 

1.385(7) 

1.388(4) 

1.398(6) 

1.464 

S(l)-C(9) 

1.838(5) 

1.829(3) 

1.845(4) 

1.852(3) 

2.IV. Summary and Conclusions 

N(8)-C(9) 

1.402(6) 

1.409(4) 

1.429(5) 

1.421(4) 2.8 

The single crystal X-ray structures of three non-photochromic 

thiazolinospirooxazine derivatives and two photochromic spirooxazine derivatives have 

been determined. A fundamental correlation of the molecular structure and photochromic 

behavior has been obtained. The results suggest that thiazolinospiro derivatives' lack of 

photochromic behavior is due to hetero atom electron pair delocalization which reduces 

potential stabilization of a cationic intermediate. The accurate molecular and crystal 

structure given here could be used for theoretical studies which may give further 

information on the mechanism of photochromism. 
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Table 2-5 

Crystal Data for Compound I 

Empirical Formula C24H1s N2 0 S 

Color; Habit red cube 

Crystal size (mm) 0.2 X 0.2 X 0.2 

Crystal System Monoclinic 

Space Group P21/n 

Unit Cell Dimensions .a= 6.286(3) A 

.h =12.033(5) A 

£ = 24.523(14) A 

/3 = 95.31(4) 

Volume 1846.9(16) A3 

z 4 

Formula weight 382.5 

Density (calc.) 1.375 Mg/m3 

Absorption Coefficient 0.193 mm-1 

F(OOO) 800 
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Atom 

S(l) 

C(2) 

C(3) 

C(4) 

C(5) 

C(6) 

C(7) 

N(8) 

C(9) 

C(lO) 

N(ll) 

C(l2) 

C(l3) 

C(14) 

C(15) 

C(l6) 

C(l7) 

C(l8) 

C(l9) 

C(20) 

Table 2-6 

Atomic Coordinates (x104) and Equivalent Isotropic 

Displacement Coefficients (A2 x103) for Compound I 

X y z U(eq) 

2752(2) 2757(1) 1109(1) 51(1) 

1293(9) 3979(4) 992(2) 44(2) 

1718(10) 5005(5) 1225(3) 59(2) 

344(12) 5856(5) 1072(3) 73(3) 

-1386(13) 5687(5) 711(3) 75(3) 

-1823(11) 4664(5) 479(3) 66(3) 

-428(9) 3802(4) 619(2) 45(2) 

-541(7) 2743(3) 397(2) 46(2) 

630(8) 1956(4) 721(2) 37(2) 

1717(8) 1067(4) 419(2) 40(2) 

2291(7) 166(3) 660(2) 39(2) 

1620(8) -28(4) 1180(2) 38(2) 

2515(8) -947(4) 1491(2) 39(2) 

1634(8) -1249(4) 1969(2) 42(2) 

-190(8) -650(4) 2141(2) 41(2) 

-1193(10) -941(5) 2596(3) 56(2) 

-2943(11) -392(6) 2738(3) 66(3) 

-3779(10) 478(5) 2421(3) 64(3) 

-2812(9) 794(4) 1976(3) 50(2) 

-1020(8) 249(4) 1824(2) 38(2) 
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Table 2-6 (Continued) 

C(21) 30(8) 555(4) 1361(2) 

0(22) -765(5) 1457(3) 1074(2) 

C(23) -2478(9) 2387(5) 85(3) 

C(24) 2247(9) 1267(4) -151(2) 

C(25) 4251(9) -1538(4) 1330(3) 

C(26) 5107(9) -2407(5) 1624(3) 

C(27) 4237(10) -2703(5) 2095(3) 

C(28) 2551(9) -2145(5) 2270(2) 

* Equivalent isotropic U defined as one third of the 

trace of the orthogonalized Uij tensor 
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Table 2-7 

Bond Lengths (A) for Compound I 

S(l)-C(2) 1.743 (5) S(l)-C(9) 1.838 (5) 

C(2)-C(3) 1.376 (8) C(2)-C(7) 1.367 (8) 

C(3)-C(4) 1.369 (9) C(4)-C(5) 1.354 (11) 

C(5)-C(6) 1.372 (9) C(6)-C(7) 1.380 (8) 

C(7)-N(8) 1.385 (7) N(8)-C(9) 1.402 (6) 

N(8)-C(23) 1.441 (7) C(9)-C(10) 1.501 (7) 

C(9)-0(22) 1.422 (6) C(lO)-N(l 1) 1.272 (7) 

C(l0)-C(24) 1.487 (8) N(l 1)-C(12) 1.399 (7) 

C(12)-C(13) 1.429 (7) C(12)-C(21) 1.331 (7) 

C(13)-C(l4) 1.388 (8) C(13)-C(25) 1.391 (8) 

C(14)-C(l5) 1.450 (8) C(14)-C(28) 1.400 (8) 

C( 15)-C( 16) 1.377 (9) C(15)-C(20) 1.405 (7) 

C( 16)-C( 17) 1.356 (9) C( 17)-C( 18) 1.380 (9) 

C(18)-C(19) 1.350 (10) C(19)-C(20) 1.384 (8) 

C(20)-C(21) 1.413 (8) C(21)-0(22) 1.363 (6) 

C(25)-C(26) 1.353 (8) C(26)-C(27) 1.370 (9) 

C(27)-C(28) 1.356 (9) 
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Table 2-8 

Bond Angles (°) for Compound I 

C(2)-S(l )-C(9) 90.7(2) S(l)-C(2)-C(3) 127.5(4) 

S(l)-C(2)-C(7) 110.5(4) C(3 )-C(2 )-C(7) 121.9(5) 

C(2)-C(3)-C(4) 117.6(6) C(3 )-C( 4 )-C( 5) 121.0(6) 

C( 4 )-C( 5)-C( 6) 121.6(6) C( 5)-C( 6)-C(7) 118.2(6) 

C(2)-C(7)-C( 6) 119.6(5) C(2)-C(7)-N (8) 114.5(5) 

C( 6)-C(7)-N (8) 125.8(5) C(7)-N (8)-C(9) 113.1(4) 

C(7)-N(8)-C(23) 119.5(4) C(9)-N(8)-C(23) 118.3(4) 

S(l)-C(9)-N(8) 104.9(3) S(l)-C(9)-C(10) 106.7(3) 

N(8)-C(9)-C(10) 116.1(4) S(l)-C(9)-0(22) 111.4(3) 

N(8)-C(9)-0(22) 108.1(4) C(10)-C(9)-0(22) 109.5(4) 

C(9)-C(10)-N(l 1) 120.0(5) C(9)-C( 1 O)-C(24) 120.0(4) 

N(l 1)-C(10)-C(24) 119.8(5) C(10)-N(l 1)-C(l2) 118.0(4) 

N(l 1)-C(12)-C(13) 118.6(5) N(l 1)-C(12)-C(21) 121.0(5) 

C(13)-C(12)-C(21) 120.0(5) C(l 2 )-C( 13 )-C(l 4) 119.0(5) 

C( 12)-C( 13 )-C(25) 121.6(5) C( 14 )-C( 13 )-C(25) 119.4(5) 

C( 13 )-C(l 4 )-C( 15) 120.2(5) C( 13 )-C( 14 )-C(28) 118.0(5) 

C( 15)-C( 14 )-C(28) 121.8(5) C( 14 )-C( 15)-C( 16) 123.0(5) 

C( 14 )-C( 15)-C(20) 119.0(5) C( 16)-C( 15)-C(20) 118.0(5) 

C( 15)-C( 16)-C( 17) 121.9(6) C( 16)-C( 17)-C( 18) 120.0(7) 

C(l 7)-C(l8)-C(l9) 119.5(6) C( 18)-C( 19)-C(20) 121.5(5) 

C( l 5)-C(20)-C( 19) 119.0(5) C( 15)-C(20)-C(21) 117 .9(5) 

C( l 9)-C(20)-C(21) 123.0(5) C(12)-C(21)-C(20) 123.4(5) 

C( 12 )-C(21 )-0(22) 119.9(5) C(20)-C(21 )-0(22) 116.5(4) 

23 



Table 2-8 (Continued) 

C(9)-0(22)-C(21) 115.7(4) C( 13)-C(25)-C(26) 121.8( 6) 

C(25)-C(26)-C(27) 118.7(6) C(26)-C(27)-C(28) 121.4(6) 

C(l4)-C(28)-C(27) 120.7(6) 

24 



Table 2-9 

Anisotropic Displacement Coefficients (A2 x103) for Compound I 

Atom 

S(l) 49(1) 36(1) 66(1) -1(1) -11(1) -9(1) 

C(2) 51(3) 31(3) 53(4) -5(3) 15(3) -5(3) 

C(3) 69(4) 38(3) 70(5) -11(3) 11(4) -12(3) 

C(4) 103(6) 28(3) 90(6) 1(4) 25(5) -5(3) 

C(5) 106(6) 38(4) 81(6) 25(4) 12(5) 8(4) 

C(6) 73(5) 42(3) 82(5) 13(3) 2(4) 6(3) 

C(7) 54(3) 34(3) 47(4) 0(3) 6(3) -1(3) 

N(8) 53(3) 31(2) 51(3) -2(2) -9(2) -3(2) 

C(9) 38(3) 30(3) 42(3) 0(2) -3(2) 2(2) 

C(lO) 42(3) 35(3) 42(3) -7(2) -2(2) -1(3) 

N(ll) 46(3) 32(2) 38(3) -3(2) -1(2) -5(2) 

C(12) 41(3) 28(3) 44(4) -3(2) 5(3) -4(2) 

C(13) 42(3) 29(3) 46(4) -2(2) 1(3) -2(2) 

C(14) 42(3) 29(3) 53(4) -8(2) -4(3) -1(3) 

C(15) 42(3) 34(3) 48(4) -10(2) 2(3) -5(3) 

C(16) 62(4) 46(3) 62(5) -5(3) 10(4) 2(3) 

C(17) 73(5) 68(4) 63(5) -20(4) 30(4) -3(4) 

C(18) 55(4) 58(4) 82(6) -2(3) 27(4) -9(4) 

C(19) 43(3) 39(3) 70(4) -3(3) 11(3) -11(3) 

C(20) 33(3) 34(3) 48(4) -7(2) 5(3) -9(3) 

C(21) 39(3) 29(3) 39(3) -1(2) 0(3) -3(2) 
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Table 2-9 (Continued) 

0(22) 43(2) 34(2) 60(3) 

C(23) 64(4) 51(4) 65(4) 

C(24) 56(4) 39(3) 62(4) 

C(25) 50(4) 43(3) 57(4) 

C(26) 51(4) 54(4) 67(4) 

C(27) 65(4) 48(3) 69(5) 

C(28) 63(4) 47(3) 48(4) 

The anisotropic displacement exponent takes the form: 

-2n2 (h2a*2U11 + ... + 2hka*b* U12) 
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6(2) 6(2) 5(2) 

-3(3) -14(3) -12(3) 

-5(3) 2(3) 3(3) 

1(3) 4(3) -4(3) 

16(3) -2(3) 0(3) 

14(3) -5(3) 11(4) 

-4(3) 2(3) 7(3) 



Atom 

H(3A) 

H(4A) 

H(5A) 

H(6A) 

H(l6A) 

H(l 7 A) 

H(l 8A) 

H(l 9A) 

H(23A) 

H(23B) 

H(23C) 

H(24A) 

H(24B) 

H(24C) 

H(25A) 

H(26A) 

H(27A) 

H(28A) 

Table 2-10 

Hydrogen Atom Coordinates (x104) and Isotropic 

Displacement Coefficients (A2 xl03) for Compound I 

X y z u 

2957 5119 1478 80 

599 6580 1230 80 

-2331 6298 617 80 

-3061 4546 226 80 

-636 -1553 2817 80 

-3581 -598 3065 80 

-5055 846 2512 80 

-3371 1413 1761 80 

-3119 3003 -117 80 

-2155 1809 -164 80 

-3453 2109 332 80 

2936 622 -284 80 

961 1416 -382 80 

3189 1894 -156 80 

4854 -1321 1000 80 

6306 -2806 1507 80 

4824 -3322 2306 80 

1981 -2357 2604 80 
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Table 2-11 

Crystal Data for Compound II 

Empirical Formula C20H16N2 0 S 

Color; Habit red cube 

Crystal size (mm) 0.2 X 0.2 X 0.2 

Crystal System Monoclinic 

Space Group P21/n 
0 

Unit Cell Dimensions fl= 10.237(3) A 

h =13.364(7) A 

~ = 12.296(14) A 

/3 = 102.16(3) 

Volume 1646.6(14) A3 

z 4 

Formula weight 332.4 

Density (calc.) 1.341 Mg/m3 

Absorption Coefficient 0.205 mm-1 

F(OOO) 696 
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Atom 

S(l) 

C(2) 

C(3) 

C(4) 

C(5) 

C(6) 

C(7) 

N(8) 

C(9) 

C(lO) 

N(ll) 

C(l2) 

C(l3) 

C(l4) 

C(l5) 

C(16) 

C(17) 

C(18) 

C(19) 

C(20) 

Table 2-12 

Atomic Coordinates (x104) and Equivalent Isotropic 

Displacement Coefficients (A2 x103) for Compound II 

X y z U(eq) 

9730(1) 677(1) 1132(1) 45(1) 

8491(3) 1436(2) 361(2) 40(1) 

7618(3) 1201(3) -609(2) 49(1) 

6716(3) 1912(3) -1103(3) 66(1) 

6708(4) 2838(3) -629(3) 69(2) 

7574(3) 3074(3) 346(3) 59(1) 

8474(3) 2366(2) 848(3) 43(1) 

9404(2) 2457(2) 1844(2) 48(1) 

10461(3) 1767(2) 1933(2) 41(1) 

11081(3) 1416(2) 3091(2) 46(1) 

12263(3) 1064(2) 3319(2) 47(1) 

13007(3) 1087(2) 2486(2) 41(1) 

14198(3) 536(2) 2621(2) 42(1) 

14650(3) -90(2) 3534(3) 53(1) 

15809(4) -601(3) 3628(3) 68(1) 

16580(4) -519(3) 2843(4) 77(2) 

16171(3) 76(3) 1952(3) 68(1) 

14983(3) 623(2) 1808(3) 50(1) 

14548(3) 1251(3) 895(3) 58(1) 

13380(3) 1764(3) 759(3) 54(1) 
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* 

C(21) 

0(22) 

C(23) 

C(24) 

12622(3) 

11464(2) 

9718(4) 

10246(3) 

Table 2-12 (Continued) 

1675(2) 

2206(2) 

3443(2) 

1390(3) 

1564(2) 

1430(2) 

2314(3) 

3938(3) 

Equivalent isotropic U defined as one third of the 

trace of the orthogonalized Uij tensor 
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41(1) 

47(1) 

65(1) 

70(1) 



Table 2-13 

Bond Lengths (A) for Compound II 

S(l)-C(2) 1.740 (3) S(l)-C(9) 1.829 (3) 

C(2)-C(3) 1.368 (4) C(2)-C(7) 1.381 (4) 

C(3)-C(4) 1.374 (5) C(4)-C(5) 1.369 (6) 

C(5)-C(6) 1.369 (5) C(6)-C(7) 1.373 (4) 

C(7)-N(8) 1.388 (4) N(8)-C(9) 1.409 (4) 

N(8)-C(23) 1.447 (4) C(9)-C(l0) 1.507 (4) 

C(9)-0(22) 1.430 (4) C(lO)-N(l 1) 1.273 (4) 

C(10)-C(24) 1.480 (5) N(l 1)-C(12) 1.400 (4) 

C(l2)-C(13) 1.404 (4) C(12)-C(21) 1.366 (4) 

C(l3)-C(l4) 1.398 (4) C(13)-C(l8) 1.413 (5) 

C(l 4 )-C(l 5) 1.352 (5) C(15)-C(l6) 1.375 (7) 

C( 16)-C( 17) 1.347 (6) C(l 7)-C( 18) 1.398 (5) 

C(l8)-C(l9) 1.398 (5) C(19)-C(20) 1.358 (5) 

C(20)-C(21) 1.385 (5) C(21)-0(22) 1.362 (4) 
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Table 2-14 

Bond Angles (°) for Compound II 

C(2)-S(1 )-C(9) 89.8(1) S( 1 )-C(2)-C(3) 127.5(2) 

S( 1 )-C(2)-C(7) 111.3(2) C(3 )-C(2 )-C(7) 121.2(3) 

C(2)-C(3)-C(4) 118.8(3) C(3 )-C( 4 )-C( 5) 120.1(3) 

C( 4 )-C( 5)-C( 6) 121.3(3) C( 5)-C( 6)-C(7) 119.0(3) 

C(2)-C(7)-C(6) 119.6(3) C(2)-C(7)-N (8) 113.1(2) 

C( 6)-C(7)-N (8) 127.3(3) C(7)-N(8)-C(9) 112.6(2) 

C(7)-N(8)-C(23) 119.1(2) C(9)-N(8)-C(23) 117.5(2) 

S(1)-C(9)-N(8) 105.0(2) S(l)-'C(9)-C(10) 107.7(2) 

N(8)-C(9)-C(l0) 116.2(3) S(l)-C(9)-0(22) 110.1(2) 

N (8)-C(9)-0(22) 107.9(2) C(l O)-C(9)-0(22) 109.8(2) 

C(9)-C(10)-N(l l) 121.0(3) C(9)-C( 1 O)-C(24) 118.8(3) 

N(l 1)-C(l0)-C(24) 120.0(3) C(10)-N(l 1)-C(12) 117.9(2) 

N(l 1)-C(12)-C(13) 119.6(2) N(l 1)-C(12)-C(21) 120.9(3) 

C( 13)-C( 12)-C(21) 119.5(3) C(l 2 )-C( 13 )-C(l 4) 122.8(3) 

C(l2)-C(13)-C(18) 118.8(3) C( 14 )-C( 13)-C(l 8) 118.4(3) 

C( 13)-C(l 4 )-C( 15) 120.5(3) C( 14 )-C( 15)-C( 16) 121.5(4) 

C( 15)-C( 16)-C( 17) 119.5(4) C( 16)-C( 17)-C( 18) 121.6(4) 

C(l3)-C(l8)-C(l 7) 118.5(3) C(l 3)-C(l 8)-C(l 9) 119.1(3) 

C(l 7)-C(18)-C(l9) 122.4(3) C( 18)-C( 19)-C(20) 121.7(3) 

C( l 9)-C(20)-C(21) 118.7(3) C( l 2)-C(21 )-C(20) 122.3(3) 

C(12)-C(21)-0(22) 119.5(3) C(20)-C(21 )-0(22) 118.2(3) 

C(9)-0(22)-C(21) 114.8(2) 
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Table 2-15 

Anisotropic Displacement Coefficients (A2 x103) for Compound II 

Atom 

S(l) 54(1) 32(1) 45(1) 4(1) 3(1) -5(1) 

C(2) 43(2) 35(1) 42(2) 4(1) 11(1) 4(1) 

C(3) 50(2) 53(2) 44(2) -1(2) 8(2) -2(2) 

C(4) 54(2) 84(3) 57(2) 4(2) 2(2) 10(2) 

C(5) 57(2) 70(3) 77(3) 19(2) 7(2) 24(2) 

C(6) 55(2) 44(2) 81(2) 12(2) 23(2) 6(2) 

C(7) 44(2) 39(2) 48(2) 4(1) 16(1) -1(1) 

N(8) 50(2) 39(1) 55(2) 4(1) 13(1) -14(1) 

C(9) 42(2) 41(2) 41(2) 0(1) 11(1) -9(1) 

C(lO) 46(2) 56(2) 37(2) -3(2) 9(1) -10(1) 

N(ll) 48(2) 58(2) 37(1) -5(1) 11(1) -4(1) 

C(12) 42(2) 43(2) 38(2) -7(2) 7(1) -5(1) 

C(l3) 38(2) 39(2) 48(2) -6(1) 6(1) -8(1) 

C(14) 51(2) 50(2) 53(2) -4(2) 1(2) 2(2) 

C(l5) 65(2) 59(2) 72(2) 6(2) -3(2) 4(2) 

C(16) 55(2) 75(3) 101(3) 19(2) 11(2) -2(3) 

C(17) 52(2) 77(3) 80(3) 8(2) 25(2) -6(2) 

C(l8) 40(2) 52(2) 57(2) -6(2) 12(1) -7(2) 

C(19) 57(2) 62(2) 63(2) -1(2) 32(2) 5(2) 

C(20) 60(2) 55(2) 52(2) -5(2) 23(2) 8(2) 

C(21) 40(2) 37(2) 49(2) -4(1) 13(1) -4(1) 
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Table 2-15 (Continued) 

0(22) 

C(23) 

C(24) 

49(1) 

69(2) 

65(2) 

42(1) 

45(2) 

106(3) 

52(1) 

84(2) 

44(2) 

The anisotropic displacement exponent takes the form: 

-2n2 (h2a*2U11 + ... + 2hka*b*U12) 
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3(1) 

2(2) 

5(2) 

14(1) 

23(2) 

20(2) 

2(1) 

-25(2) 

-5(2) 



Atom 

H(3A) 

H(4A) 

H(5A) 

H(6A) 

H(14A) 

H(15A) 

H(16A) 

H(17A) 

H(19A) 

H(20A) 

H(23A) 

H(23D) 

H(23B) 

H(24D) 

H(24A) 

H(24B) 

Table 2-16 

Hydrogen Atom Coordinates (x104) and Isotropic 

Displacement Coefficients (A2 x103) for Compound II 

X y z u 

7628 551 -940 80 

6104 1759 -1787 80 

6057 3320 -975 80 

7574 3729 666 80 

14144 -160 4104 80 

16108 -1014 4271 80 

17409 -877 2930 80 

16680 111 1380 80 

15068 1311 333 80 

13106 2191 125 80 

10375 3368 2992 80 

10072 3857 1807 80 

8930 3749 2472 80 

10720 1152 4648 80 

9933 2058 4016 80 

9499 960 3663 80 
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Table 2-17 

Crystal Data for Compound III 

Empirical Formula C21 His N2 02 S 

Color; Habit colorless chunk 

Crystal size (mm) 0.2 X 0.2 X 0.2 

Crystal System Orthorhombic 

Space Group Peen 

Unit Cell Dimensions i! = 26.769(9) A 

h =10.889(6) A 

.£ = 12.748(5) A 

Volume 3713(3) A3 

z 8 

Formula weight 362.4 

Density (calc.) 1.297 Mg/m3 

Absorption Coefficient 0.192 mm-1 

F(OOO) 1520 
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Atom 

S(l) 

C(2) 

C(3) 

C(4) 

C(5) 

C(6) 

C(7) 

N(8) 

C(9) 

C(lO) 

N(l 1) 

C(l2) 

C(l3) 

C(l4) 

C(l5) 

C(16) 

C(l7) 

C(l8) 

C(19) 

C(20) 

Table 2-18 

Atomic Coordinates (x104) and Equivalent Isotropic 

Displacement Coefficients (A2 x103) for Compound III 

X y z U(eq) 

5468(1) 182(1) 2551(1) 52(1) 

5967(2) 769(5) 1830(4) 49(2) 

6244(2) 191(6) 1056(4) 74(2) 

6630(3) 846(8) 600(5) 98(3) 

6746(2) 1996(8) 924(6) 96(4) 

6474(2) 2582(6) 1683(5) 73(2) 

6086(2) 1951(5) 2148(4) 47(2) 

5774(1) 2384(3) 2945(3) 44(1) 

5310(2) 1740(4) 3013(4) 36(2) 

5088(2) 1657(4) 4101(4) 42(2) 

4619(1) 1559(3) 4233(3) 42(1) 

4298(2) 1619(4) 3355(4) 36(2) 

3785(2) 1325(4) 3462(3) 36(2) 

3578(2) 907(4) 4419(4) 41(2) 

3089(2) 626(5) 4489(4) 53(2) 

2775(2) 797(5) 3616(4) 67(2) 

2962(2) 1185(5) 2690(4) 57(2) 

3471(2) 1467(4) 2572(4) 43(2) 

3676(2) 1891(4) 1621(4) 49(2) 

4167(2) 2161(4) 1530(4) 48(2) 
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* 

C(21) 

0(22) 

C(23) 

C(24) 

0(25) 

C(26) 

4480(2) 

4970(1) 

5768(2) 

5432(2) 

2850(1) 

3154(2) 

Table 2-18 (Continued) 

2006(3) 

2314(3) 

3701(4) 

1599(5) 

189(4) 

-192(5) 

2403(4) 

2289(2) 

3221(5) 

5014(4) 

5358(3) 

6215(4) 

Equivalent isotropic U defined as one third of the 

trace of the orthogonalized Uij tensor 
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40(2) 

44(1) 

69(2) 

59(2) 

72(2) 

72(2) 



Table 2-19 

Bond Lengths (A) for Compound III 

S(l )-C(2) 1.742 (5) S(l)-C(9) 1.845(4) 

C(2)-C(3) 1.386 (8) C(2)-C(7) 1.386 (7) 

C(3)-C(4) 1.384 (10) C(4)-C(5) 1.355 (12) 

C(5)-C(6) 1.368 (9) C(6)-C(7) 1.380 (7) 

C(7)-N(8) 1.398 (6) N(8)-C(9) 1.429 (5) 

N(8)-C(23) 1.477 (6) C(9)-C(10) 1.511 (7) 

C(9)-0(22) 1.437 (5) C(lO)-N(l l) 1.273 (6) 

C(l0)-C(24) 1.485 (7) N(l 1)-C(12) 1.411 (6) 

C(l2)-C(l3) 1.418 (6) C(12)-C(21) 1.373 (7) 

C(l3)-C(l4) 1.414 (6) C(13)-C(18) 1.421 (7) 

C(l4)-C(l5) 1.348 (6) C( 15)-C( 16) 1.408 (7) 

C(l5)-0(25) 1.364 (6) C( 16)-C( 17) 1.351 (8) 

C(l 7)-C(l8) 1.403 (6) C( 18)-C( 19) 1.410 (7) 

C( l 9)-C(20) 1.350 (7) C(20)-C(21) 1.403 (7) 

C(21 )-0(22) 1.363 (5) 0(25)-C(26) 1.424 (6) 
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Table 2-20 

Bond Angles (°) for Compound III 

C(2)-S(l)-C(9) 90.4(2) S( 1 )-C(2)-C(3) 128.2(4) 

S(l)-C(2)-C(7) 111.3(4) C(3 )-C(2)-C(7) 120.5(5) 

C(2 )-C(3 )-C( 4) 117.7(6) C(3 )-C( 4 )-C( 5) 121.3(6) 

C( 4 )-C( 5)-C( 6) 121.7(6) C(5)-C(6)-C(7) 118.2(6) 

C(2)-C(7)-C(6) 120.7(5) C(2)-C(7)-N(8) 112.8(4) 

C(6)-C(7)-N(8) 126.5(5) C(7)-N(8)-C(9) 113.5(4) 

C(7)-N(8)-C(23) 120.4(4) C(9)-N(8)-C(23) 117.0(3) 

S(l)-C(9)-N(8) 103.4(3) S(l)-C(9)-C(l0) 109.2(3) 

N(8)-C(9)-C(l0) 115.1(4) S( 1 )-C(9)-0(22) 109.9(3) 

N(8)-C(9)-0(22) 107.3(3) C(10)-C(9)-0(22) 111.5(3) 

C(9)-C(l0)-N(l 1) 120.9(4) C(9)-C( 1 O)-C(24) 118.6(4) 

N(l 1)-C(l0)-C(24) 120.4(4) C(l0)-N(l l)-C(12) 119.4(4) 

N(l 1)-C(l2)-C(l3) 120.1(4) N(l 1)-C(l2)-C(21) 120.0(4) 

C(l3)-C(12)-C(21) 119.8(4) C( 12)-C( 13 )-C( 14) 122.4(4) 

C(l2)-C(13)-C(l8) 118.2(4) C( 14 )-C( 13)-C(18) 119.5(4) 

C(l 3 )-C(l 4 )-C(l 5) 120.7(4) C( 14 )-C( 15)-C( 16) 119.8(5) 

C( 14 )-C( 15)-0(25) 126.1(4) C( 16)-C( 15)-0(25) 114.0(4) 

C( 15)-C( 16)-C( 17) 120.7(4) C(16)-C(l 7)-C(18) 121.5(5) 

C(l3)-C(18)-C(l 7) 117.7(4) C(l3)-C(l8)-C(19) 119.4(4) 

C( 17)-C( 18)-C( 19) 122.9(4) C( 18)-C( 19)-C(20) 121.7(4) 

C( 19)-C(20)-C(21) 119.1(4) C(12)-C(21)-C(20) 121.8(4) 

C(l2)-C(21)-0(22) 120.6(4) C(20)-C(21 )-0(22) 117.5(4) 

C(9)-0(22)-C(21) 115.7(3) C( 15)-0(25)-C(26) 117.1(4) 
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Table 2-21 

Anisotropic Displacement Coefficients (A2 x103) for Compound III 

Atom U11 

S ( 1) 59(1) 35(1) 63(1) 1(1) 9(1) -4(1) 

C(2) 48(3) 57(3) 44(3) 12(3) -3(3) 4(3) 

C(3) 73(4) 92(5) 56(4) 40(4) 11(3) 2(4) 

C(4) 66(5) 173(8) 54(4) 57(6) 18(4) 29(6) 

C(5) 37(3) 153(8) 98(6) 6(5) 8(4) 64(6) 

C( 6) 37(3) 85(4) 96(5) 1(3) 5(3) 42(4) 

C(7) 32(2) 59(3) 49(3) 3(3) -3(3) 24(3) 

N(8) 41(2) 35(2) 56(3) -5(2) -3(2) 3(2) 

C(9) 37(2) 29(3) 44(3) 1(2) 3(2) -1(2) 

C(lO) 41(3) 40(3) 45(3) 1(2) 3(3) -6(3) 

N(l l) 40(2) 45(2) 41(2) 3(2) -2(2) -3(2) 

C(12) 39(3) 29(3) 41(3) -3(2) 4(2) -4(2) 

C(l 3) 44(3) 25(2) 40(3) -3(2) 2(2) -1(2) 

C(14) 38(3) 46(3) 40(3) -2(2) 0(2) -4(3) 

C(l5) 44(3) 60(4) 53(3) 2(3) 8(3) 13(3) 

C(l6) 37(3) 93(4) 70(4) -14(3) -1(3) 20(4) 

C(l 7) 38(3) 71(4) 63(4) -5(3) -12(3) 11(3) 

C(l8) 43(2) 39(3) 48(3) 0(2) -7(3) 4(3) 

C(l 9) 54(3) 45(3) 49(4) -9(3) -9(3) 11(3) 

C(20) 57(3) 47(3) 41(3) -6(3) -2(3) 10(3) 
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Table 2-21 (Continued) 

C(21) 

0(22) 

C(23) 

C(24) 

0(25) 

C(26) 

37(2) 

40(2) 

68(4) 

52(3) 

47(2) 

62(3) 

29(2) 

44(2) 

50(3) 

83(4) 

108(3) 

100(5) 

56(3) 

48(2) 

89(5) 

43(3) 

63(2) 

54(4) 

The anisotropic displacement exponent takes the form: 

-2n2 (h2a*2U11 + ... + 2hka*b*U12) 

44 

-1(2) 

-3(1) 

-6(3) 

0(3) 

-4(2) 

-3(4) 

4(3) 0(3) 

-2(2) 12(2) 

-15(3) 3(3) 

-2(3) -2(3) 

5(2) 26(2) 

11(3) 18(4) 



Atom 

H(3A) 

H(4A) 

H(5A) 

H(6A) 

H(14A) 

H(16A) 

H(l 7 A) 

H(l9A) 

H(20A) 

H(23A) 

H(23B) 

H(23C) 

H(23D) 

H(23E) 

H(23F) 

H(24E) 

H(24F) 

H(24A) 

H(24B) 

H(24C) 

Table 2-22 

Hydrogen Atom Coordinates (x104) and Isotropic 

Displacement Coefficients (A2 xl03) for Compound III 

X y z u 

6167 -638 857 80 

6814 477 36 80 

7026 2402 606 80 

6553 3407 1893 80 

3789 814 5023 80 

2424 643 3692 80 

2747 1259 2091 80 

3460 1974 1024 80 

4302 2461 881 80 

6098 4035 3143 80 

5542 4130 2768 80 

5662 3792 3936 80 

5783 4003 2531 80 

5391 3905 3636 80 

6135 3738 3616 80 

5767 1634 4743 80 

5392 802 5324 80 

5245 1550 5655 80 

5641 886 4948 80 

5637 2323 5023 80 
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H(24D) 

H(26A) 

H(26B) 

H(26C) 

5410 

2946 

3370 

3353 

Table 2-22 (Continued) 

2251 

-483 

-843 

484 

46 

5632 

6775 

5983 

6459 

80 

80 

80 

80 



t 

C15 

~ 

Figure 2-11 Projection View of IV 



Table 2-23 

Crystal Data for Compound IV 

Empirical Formula C23 H22N2 0 

Color; Habit yellow plate 

Crystal size (mm) 0.2 X 0.2 X 0.1 

Crystal System Monoclinic 

Space Group C2/c 

Unit Cell Dimensions .a = 26.564( 16) A 

h =8.321(5) A 

£ = 16.22200) A 

/3 = 97.47(4) 0 

Volume 3556(4) A3 

z 8 

Formula weight 342.4 

Density (calc.) 1.279 Mg/m3 

Absorption Coefficient 0.079 mm-1 

F(OOO) 1456 
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Atom 

C(l) 

C(2) 

C(3) 

C(4) 

C(5) 

C(6) 

C(7) 

N(8) 

C(9) 

C(lO) 

N(l 1) 

C(l2) 

C(l3) 

C(14) 

C(l5) 

C(16) 

C(17) 

C(l8) 

C(l9) 

C(20) 

Table 2-24 

Atomic Coordinates (x104) and Equivalent Isotropic 

Displacement Coefficients (A2 xlQ3) for Compound IV 

X y z U(eq) 

3889(3) 4546(13) -371(5) 40(3) 

3907(3) 5569(14) 376(5) 39(4) 

3712(3) 7032(14) 494(5) 49(4) 

3813(3) 7777(13) 1260(6) 54(4) 

4114(4) 7024(15) 1886(6) 56(4) 

4330(3) 5537(14) 1789(5) 49(4) 

4221(3) 4866(12) 1013(5) 36(4) 

4402(3) 3388(12) 749(4) 43(3) 

4078(3) 2959(13) 0(5) 43(4) 

4337(3) 1842(13) -542(5) 39(4) 

4113(3) 712(11) -995(4) 50(3) 

3602(3) 417(14) -893(6) 45(4) 

3320(3) -561(13) -1470(5) 45(4) 

3499(4) -1194(13) -2174(6) 54(4) 

3213(4) -2131(15) -2713(6) 68(5) 

2725(5) -2543(14) -2588(6) 74(5) 

2533(3) -2015(14) -1900(7) 67(5) 

2827(4) -1032(12) -1325(5) 48(4) 

2637(3) -428(14) -616(6) 57(4) 

2908(3) 566(13) -80(6) 54(4) 
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* 

C(21) 

0(22) 

C(23) 

C(24) 

C(25) 

C(26) 

3392(3) 

3667(2) 

4591(3) 

4253(3) 

3358(3) 

4899(3) 

Table 2-24 (Continued) 

1031(12) 

2047(9) 

2178(13) 

5245(13) 

4488(13) 

2018(13) 

-242(5) 

293(3) 

1342(5) 

-939(5) 

-888(5) 

-566(5) 

Equivalent isotropic U defined as one third of the 

trace of the orthogonalized Uij tensor 
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40(4) 

44(2) 

66(4) 

61(4) 

61(4) 

68(5) 



Table 2-25 

Bond Lengths (A) for Compound IV 

C(l)-C(2) 1.476 (13) C(l)-C(9) 1.510 (15) 

C(l)-C(24) 1.534 (13) C(l)-C(25) 1.545 (11) 

C(2)-C(3) 1.346 (16) C(2)-C(7) 1.372 (12) 

C(3)-C(4) 1.384 (13) C(4)-C(5) 1.361 (13) 

C(5)-C(6) 1.381 (17) C(6)-C(7) 1.372 (12) 

C(7)-N(8) 1.407 (13) N(8)-C(9) 1.439 (10) 

N(8)-C(23) 1.438 (12) C(9)-C(10) 1.505 (14) 

C(9)-0(22) 1.459 (11) C(lO)-N(l l) 1.291 (12) 

C( 1 O)-C(26) 1.505 (12) N(l 1)-C(12) 1.409 (12) 

C(12)-C(13) 1.386 (13) C(12)-C(21) 1.358 (14) 

C(13)-C(14) 1.396 (14) C(13)-C(l8) 1.415 (14) 

C(14)-C(15) 1.333 (14) C( 15)-C( 16) 1.381 (17) 

C(l 6)-C(l 7) 1.360 (16) C( 17)-C( 18) 1.401 (14) 

C(18)-C(19) 1.409 (14) C(19)-C(20) 1.340 (14) 

C(20)-C(21) 1.400 (13) C(21 )-0(22) 1.355 (11) 
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Table 2-26 

Bond Angles (°) for Compound IV 

C(2)-C( l)-C(9) 101.8(7) C(2)-C( 1 )-C(24) 108.6(8) 

C(9)-C( 1 )-C(24) 111.6(8) C(2 )-C( 1 )-C(25) 113.2(8) 

C(9)-C(l)-C(25) 114.9(8) C(24 )-C( 1 )-C(25) 106.7(6) 

C(l)-C(2)-C(3) 131.7(8) C(l )-C(2)-C(7) 108.9(9) 

C(3)-C(2)-C(7) 119.1(8) C(2)-C(3)-C(4) 120.0(8) 

C(3 )-C( 4 )-C(5) 119.3(10) C( 4 )-C( 5)-C( 6) 122.7(9) 

C(5)-C(6)-C(7) 115.3(8) C(2)-C(7)-C( 6) 123.6(9) 

C(2)-C(7)-N(8) 110.0(8) C(6)-C(7)-N(8) 126.5(8) 

C(7)-N(8)-C(9) 106.5(7) C(7)-N (8)-C(23) 120.8(7) 

C(9)-N(8)-C(23) 120.6(9) C(l)-C(9)-N(8) 104.5(8) 

C( 1)-C(9)-C(10) 117.4(7) N (8)-C(9)-C( 10) 112.2(7) 

C( 1 )-C(9)-0(22) 111.1(7) N(8)-C(9)-0(22) 104.2(6) 

C( 1 O)-C(9)-0(22) 106.7(8) C(9)-C(10)-N(l 1) 124.8(8) 

C(9)-C( 1 O)-C(26) 119.0(8) N(l 1)-C(10)-C(26) 116.2(9) 

C(10)-N(l 1)-C(12) 116.0(8) N(l 1)-C(12)-C(13) 117.9(9) 

N (11 )-C(l 2)-C(21) 121.8(8) C( 13)-C( 12)-C(21) 120.3(9) 

C(12)-C(13)-C(14) 124.2(9) C(l2)-C(13)-C(l8) 118.8(9) 

C(14 )-C(13)-C(18) 116.9(9) C(13)-C( 14)-C( 15) 122.2(10) 

C( 14 )-C( 15)-C( 16) 120.9(10) C(15)-C(l6)-C(l 7) 120.1(10) 

C( 16)-C( 17)-C( 18) 119.9(10) C( 13)-C( 18)-C( 17) 120.0(9) 

C( 13 )-C( 18)-C( 19) 118.4(9) C( 17)-C( 18)-C( 19) 121.6(9) 

C( 18)-C( 19)-C(20) 122.0(9) C( l 9)-C(20)-C(21) 118.6(9) 

C( 12 )-C(21 )-C(20) 121.5(9) C( 12 )-C(2 l )-0(22) 119.3(8) 
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Table 2-26 (Continued) 

C(20)-C(21 )-0(22) 119.0(8) C(9)-0(22)-C(21) 118.8(6) 
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Table 2-27 

Anisotropic Displacement Coefficients (A2 x103) for Compound IV 

Atom 

C ( 1) 43(6) 45(7) 33(5) -14(6) 13(4) 7(6) 

C(2) 35(6) 42(8) 38(6) -6(6) -1(5) -3(6) 

C(3) 51(7) 51(9) 46(6) -7(7) 11(5) -11(6) 

C(4) 60(7) 40(8) 67(7) -6(7) 29(6) 0(7) 

C(5) 57(7) 74(9) 38(6) -16(8) 12(5) -1(7) 

C( 6) 40(6) 67(9) 39(6) -2(7) 3(5) 7(7) 

C(7) 29(6) 45(8) 36(6) -4(6) 11(5) -12(6) 

N (8) 31(5) 67(7) 29(4) -4(5) 3(4) 1(5) 

C(9) 37(6) 49(8) 41(6) -26(6) 2(5) 0(6) 

C(lO) 29(6) 44(7) 47(6) 4(6) 13(5) -2(6) 

N(l 1) 46(5) 61(7) 46(5) -6(5) 15(4) -10(5) 

C(l2) 38(6) 56(8) 42(6) -5(7) 6(5) -2(6) 

C(l 3) 43(6) 53(8) 39(6) 3(7) 6(5) 12(7) 

C(l4) 54(7) 58(9) 47(6) 0(6) 1(6) -4(6) 

C(l 5) 66(9) 71(10) 68(8) -3(8) 8(7) -11(7) 

C(l6) 86(10) 70(10) 57(8) -6(8) -18(7) -15(7) 

C(l 7) 50(7) 68(9) 78(7) -27(7) -7(6) -11 (8) 

C(l8) 50(8) 37(8) 55(7) 7(6) -4(6) 11(6) 

C(l 9) 36(6) 68(9) 70(7) -2(7) 17(6) -13(7) 

C(20) 37(7) 64(9) 64(7) -11(7) 24(5) 4(7) 

C(21) 46(7) 40(8) 35(6) -9(6) 11(5) -5(5) 
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Table 2-27 (Continued) 

0(22) 

C(23) 

C(24) 

C(25) 

C(26) 

40(4) 

51(7) 

64(7) 

37(5) 

36(6) 

58(5) 

75(9) 

85(10) 

89(9) 

80(9) 

37(3) 

71(7) 

36(5) 

51(5) 

92(8) 

The anisotropic displacement exponent takes the form: 

-2rr2 (h2a*2U 11 + ... + 2hka*b* U 12) 

55 

-11(4) 

16(7) 

0(7) 

0(7) 

-8(7) 

11(3) 

-1(5) 

15(5) 

-17(4) 

22(5) 

-6(4) 

5(8) 

9(6) 

1(7) 

-11(8) 



Atom 

H(3A) 

H(4A) 

H(5A) 

H(6A) 

H(14A) 

H(15A) 

H(l6A) 

H(l 7 A) 

H(l9A) 

H(20A) 

H(23A) 

H(23B) 

H(23C) 

H(24A) 

H(24B) 

H(24C) 

H(25A) 

H(25B) 

H(25C) 

H(26A) 

Table 2-28 

Hydrogen Atom Coordinates (x104) and Isotropic 

Displacement Coefficients (A2 x103) for Compound IV 

X y z u 

3508 7557 40 80 

3671 8812 1353 80 

4181 7531 2421 80 

4546 5011 2228 80 

3838 -927 -2271 80 

3348 -2542 -3193 80 

2521 -3207 -2984 80 

2195 -2309 -1807 80 

2306 -763 -509 80 

2775 963 404 80 

4797 2684 1800 80 

4312 1635 1542 80 

4792 1414 1085 80 

4586 5313 -631 80 

4261 4544 -1408 80 

4144 6296 -1131 80 

3262 5530 -1109 80 

3365 3739 -1336 80 

3117 4134 -535 80 

5011 1227 -933 80 
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H(26B) 

H(26C) 

4962 

5081 

Table 2-28 (Continued) 

3073 

1884 

57 

-769 

-19 

80 

80 



U\ 
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Figure 2-12 Projection View of V 



Empirical Formula 

Color; Habit 

Crystal size (mm) 

Crystal System 

Space Group 

Unit Cell Dimensions 

Volume 

z 

Formula weight 

Density (calc.) 

Absorption Coefficient 

F(OOO) 

Table 2-29 

Crystal Data for Compound V 

C23 H22N2 02 

red cube 

0.1 X 0.1 X 0.1 

Monoclinic 

P21/a 

fl= 6.286(3) A, a = 90° 

12 =12.033(5) A, /3 = 95.31(4)° 

f = 24.523(14) A, y = 90° 

1964(3) A3 

4 

358.43 

1.212 Mg/m3 

0.078 mm-1 

760 
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Atom 

C(l) 

C(2) 

C(3) 

C(4) 

C(5) 

C(6) 

C(7) 

N(8) 

C(9) 

C(lO) 

N(ll) 

C(l2) 

C(13) 

C(l4) 

C(l5) 

C(l6) 

C(l7) 

C(l8) 

C(19) 

C(20) 

Table 2-30 

Atomic Coordinates (x104) and Equivalent Isotropic 

Displacement Coefficients (A2 x103) for Compound V 

X y z U(eq) 

5809(22) 5914(5) 1924(12) 62(4) 

7233(25) 6365(6) 1987(15) 75(5) 

7374(25) 6737(6) 1137(13) 86(6) 

8798(32) 7095(7) 1492(19) 127(9) 

10030(33) 7109(8) 2660(18) 138(9) 

9842(24) 6749(6) 3470(14) 90(6) 

8491(23) 6361(6) 3168(15) 69(4) 

8008(18) 5956(5) 3822(10) 72(4) 

7041(23) 5587(5) 2972(12) 55(4) 

5804(20) 5262(5) 3614(11) 76(5) 

5834(17) 4783(4) 3477(8) 77(4) 

7136(21) 4558(5) 2698(10) 51(4) 

7098(24) 4075(5) 2469(12) 61(4) 

5633(24) 3756(5) 2961(12) 77(5) 

5619(27) 3275(7) 2748(14) 80(5) 

6944(25) 3045(5) 2008(13) 92(6) 

8347(24) 3361(6) 1514(11) 88(6) 

8484(23) 3868(5) 1744(12) 66(4) 

9969(21) 4179(6) 1302(10) 78(5) 

9957(22) 4654(5) 1563(11) 74(5) 
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* 

Table 2-30 (Continued) 

C(21) 8515(21) 4851(5) 2231(11) 

0(22) 8778(13) 5334(3) 2474(7) 

C(23) 9520(21) 5780(4) 4865(11) 

C(24) 3752(19) 6052(4) 2252(10) 

C(25) 5475(16) 5629(4) 702(10) 

0(27) 4428(18) 2918(3) 3233(10) 

C(28) 3127(23) 3096(5) 4039(12) 

Equivalent isotropic U defined as one third of the 

trace of the orthogonalized Uij tensor 
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57(4) 

68(3) 

125(6) 

101(5) 

94(5) 

111(4) 

131(7) 



Table 2-31 

Bond Lengths (A) for Compound V 

C(l)-C(24) 1.495(14) C(l)-C(25) 1.539(13) 

C(l)-C(2) 1.55(2) C(l)-C(9) 1.59(2) 

C(2)-C(3) 1.40(2) C(2)-C(7) 1.43(2) 

C(3)-C( 4) 1.38(2) C(4)-C(5) 1.41(2) 

C(5)-C(6) 1.35(2) C(6)-C(7) 1.40(2) 

C(7)-N(8) 1.389(14) N(8)-C(9) 1.462(13) 

N(8)-C(23) 1.483(13) C(9)-C(l0) 1.458(13) 

C(9)-0(22) 1.504(12) C(lO)-N(l 1) 1.330(12) 

N(l 1)-C(12) 1.433(12) C(12)-C(13) 1.356(13) 

C(l 2 )-C(2 l) 1.366(14) C(13)-C(l8) 1.412(14) 

C(13)-C(l4) 1.46(2) C(14).-C(15) 1.35(2) 

C(l5)-C(l 6) 1.42(2) C(15)-0(27) 1.41(2) 

C(l 6)-C(l 7) 1.43(2) C(l 7)-C( 18) 1.42(2) 

C( 18)-C( 19) 1.43(2) C( l 9)-C(20) 1.343(14) 

C(20)-C(21) 1.39(2) C(21)-0(22) 1.367(12) 

0(27)-C(28) 1.401(12) 
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Table 2-32 

Bond Angles (°) for Compound V 

C(24 )-C( 1 )-C(25) 108.5(12) C(24 )-C( 1 )-C(2) 110.1(11) 

C(25)-C( 1 )-C(2) 117.2(12) C(24 )-C( 1 )-C(9) 110.9(11) 

C(25)-C( 1 )-C(9) 109.4(11) C(2)-C( 1 )-C(9) 100.5(12) 

C(3)-C(2)-C(7) 121(2) C(3)-C(2)-C(l) 131(2) 

C(7)-C(2)-C( 1) 108(2) C(4)-C(3)-C(2) 117(2) 

C(3)-C(4)-C(5) 124(2) C( 6)-C( 5)-C( 4) 119(2) 

C(5)-C(6)-C(7) 122(2) C(6)-C(7)-N(8) 133(2) 

C(6)-C(7)-C(2) 118(2) N (8 )-C(7)-C(2) 109(2) 

C(7)-N(8)-C(9) 110.1(11) C(7)-N(8)-C(23) 118.9(14) 

C(9)-N(8)-C(23) 116.3(12) N (8)-C(9)-C( 10) 110.1(11) 

N (8 )-C(9)-0(22) 105.7(12) C( 1 O)-C(9)-0(22) 113.1(10) 

N (8)-C(9)-C(l) 101.2(10) C( 1 O)-C(9)-C( 1) 115.9(13) 

0(22)-C(9)-C( 1) 109.7(10) N(l l)-C(10)-C(9) 122.7(13) 

C(10)-N(l 1)-C(l2) 121.2(12) C(13)-C(l2)-C(21) 120.6(14) 

C(13)-C(l2)-N(l 1) 122.6(13) C(21)-C(l2)-N(l l) 116.7(12) 

C(l2)-C(13)-C(l8) 120(2) C(l2)-C(l3)-C(14) 121.4(14) 

C(l8)-C(l3)-C(14) 118.2(14) C(l 5)-C( 14 )-C( 13) 121(2) 

C( 14 )-C( 15)-C( 16) 123(2) C( 14 )-C( 15)-0(27) 128(2) 

C( 16)-C( 15)-0(27) 109(2) C( 17)-C( 16)-C( 15) 115(2) 

C(16)-C(l 7)-C(l8) 124(2) C(13)-C(l8)-C(l 7) 118(2) 

C(13)-C(l8)-C(l9) 118.1(14) C(l 7)-C(l8)-C(l9) 124(2) 

C(20)-C( 19)-C( 18) 119.2(14) C( l 9)-C(20)-C(21) 121.3(14) 

0(22)-C(21 )-C(20) 114.1(13) 0(22)-C(21 )-C( 12) 125.2(13) 
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C(20)-C(21)-C(l2) 

C(28)-0(27)-C( 15) 

Table 2-32 (Continued) 

120.3(13) 

114.5(12) 

64 

C(21 )-0(22)-C(9) 116.3(10) 



Table 2-33 

Anisotropic Displacement Coefficients (A2 x103) for Compound V 

Atom U11 

C(l) 61(12) 72(10) 56(9) -18(9) 24(9) 9(10) 

C(2) 68(13) 79(13) 82(12) 5(11) 22(11) 32(11) 

C(3) 96(16) 90(12) 79(11) 19(11) 41(11) 36(12) 

C(4) 151 (25) 62(13) 196(22) 15(17) 120(19) -16(15) 

C(5) 146(23) 109(17) 179(22) -46(20) 94(18) -55(16) 

C( 6) 88(14) 100(13) 87(12) -24(11) 25(10) -53(12) 

C(7) 39(11) 87(13) 81(13) -14(11) 9(10) 1(11) 

N( 8) 74(10) 81(10) 62(8) 16(8) 14(7) -4(9) 

C(9) 77(12) 33(8) 56(9) 18(8) 18(9) 13(9) 

C(lO) 85(13) 55(9) 93(11) -19(9) 31(9) -37(10) 

N(l 1) 97(10) 85(9) 55(7) 4(7) 36(7) 18(9) 

C(l2) 57(11) 55(9) 45(8) 0(7) 19(7) -1(10) 

C(l 3) 57(12) 73(11) 52(9) 1(9) 6(8) 6(11) 

C(l4) 95(15) 71(11) 58(10) -30(9) -11(9) 31(12) 

C(l 5) 83(15) 96(15) 60(11) 22(11) 7(10) -3(13) 

C(l 6) 104(17) 86(13) 84(12) 10(11) 3(11) -9(12) 

C( 17) 112(17) 107(14) 44(9) -21(9) 3(9) 30(13) 

C(l 8) 66(13) 65(11) 66(10) -11(9) 9(9) 17(10) 

C( 19) 80(13) 109(13) 56(9) 2(10) 50(9) -10(12) 

C(20) 91(14) 66(11) 64(10) 11(9) 5(9) 0(11) 

C(21) 48(11) 67(10) 61(9) -10(9) 22(8) -4(9) 
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Table 2-33 (Continued) 

0(22) 

C(23) 

C(24) 

C(25) 

0(27) 

C(28) 

66(8) 

201(19) 

101(15) 

77(12) 

130(11) 

183(20) 

71(6) 

95(12) 

153(13) 

134(12) 

91(8) 

93(12) 

71(6) 

75(11) 

47(9) 

71(10) 

116(9) 

128(14) 

The anisotropic displacement exponent takes the form: 

-2TC2 (h2a*2U 11 + ... + 2hka*b* U 12) 
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3(5) 

-21(9) 

-6(9) 

13(9) 

-16(7) 

-25(10) 

25(5) 

7(12) 

1(9) 

15(9) 

34(8) 

62(13) 

7(6) 

45(13) 

42(12). 

-3(10) 

-11(8) 

-28(12) 



Atom 

H(3A) 

H(4A) 

H(5A) 

H(6A) 

H(lOA) 

H(14A) 

H(16A) 

H(l 7 A) 

H(l 9A) 

H(20A) 

H(23A) 

H(23B) 

H(23C) 

H(24A) 

H(24B) 

H(24C) 

H(25A) 

H(25B) 

H(25C) 

Table 2-34 

Hydrogen Atom Coordinates (x104) and Isotropic 

Displacement Coefficients (A2 x103) for Compound V 

X y z u 

6559(25) 6740(6) 336(13) 80 

8893(32) 7355(7) 920(19) 80 

10946(33) 7378(8) 2860(18) 80 

10682(24) 6750(6) 4264(14) 80 

4909(20) 5400(5) 4143(11) 80 

4701(24) 3887(5) 3476(12) 80 

6910(25) 2702(5) 1867(13) 80 

9250(24) 3229(6) 983(11) 80 

10932(21) 4047(6) 810(10) 80 

10974(22) 4864(5) 1299(11) 80 

10047(21) 6049(4) 5370(11) 80 

8873(21) 5555(4) 5356(11) 80 

10629(21) 5623(4) 4540(11) 80 

2994(19) 6245(4) 1614(10) 80 

2979(19) 5766(4) 2378(10) 80 

3987(19) 6235(4) 3004(10) 80 

4710(16) 5818(4) 58(10) 80 

6806(16) 5555(4) 485(10) 80 

4750(16) 5334(4) 808(10) 80 
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H(28A) 

H(28B) 

H(28C) 

Table .2-34 (Continued) 

2353(23) 2833(5) 

3919(23) . 3250(5) 

2201(23) 3328(5) 
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4316(12) 

4737(12) 

3604(12) 

80 

80 
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CHAPTER3 

ACIDICHROMIC EFFECTS IN PHOTOCHROMIC 

SPIRO(l,3,3-TRIMETHYLINDOL0-2,3'-NAPHTH[l,2-B]-1,4-0XAZINE): 

ABSORPTION CHARACTERISTICS 

3.l. Introduction 

Photochromic spirooxazines have been of much interest in the field of materials 

chemistry. 3.1,3.2 Most studies ofspirooxazines have emphasized the synthesis of new 

photochromic analogues and potential device applications. 

Recently, Rys et a[.3.3 found that the absorption bands of protonated 

spironaphthoxazines were shifted to shorter wavelengths when the alcoholic solution pH 

was decreased from 4.52 to 1.28. They concluded thatprotonation of the nitrogen of the 

indoline moiety caused the hypsochromic shift. 

The research presented in this chapter focuses on photochromic effects in alcoholic 

solutions containing spiro(l ,3,3-trimethylindolo-2,3'-naphth[l ,2-b ]-1,4-oxazine) (referred 

to as SPl hereinafter). Among the findings, SPl has been observed to be quite sensitive to 

proton activity in solution. When an alcoholic SPl solution is made acidic by addition of 

HCl, absorption and photochromic characteristics were found to be substantially changed. 

The phrase "acidichromic" has been coined to indicate such phenomenon, wherein the 

spectral characteristics of a photochromic species are reversibly changed by proton activity 

in solution. 3.4 It is believed that research in the area of acidichromic systems will become 

quite active, as the absorption and emission characteristics of such chromophoric species 

may be tuned by adjusting proton activity. 
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Results described herein focus on activity-dependent acidichromic and 

photochromic processes in solution. Discussion of the observed acidichromic 

photoproduct decay kinetics is also included. 

3.11. Experimental Methods 

SPl was synthesized from 2-methylene-1,3,3-trimethylindoline and l-nitroso-2-

naphthol; the synthetic approach has been fully described elsewhere. 3.5 SPl solutions for 

acidichromic studies were prepared by dissolving SPl in anhydrous reagent grade 

isopropanol (Fisher Scientific Company). Proton activity (or concentration of H+) in the 

solution was adjusted by dropwise addition of 0.01 M HCl in isopropanol. The UV 

irradiation source was a B-lOOSP 160-W (Fisher Scientific Company) UV Lamp with peak 

emission at 365 nm and a manufacturer-specified irradiation intensity of 11,600 µW/cm2. 

The distance between the lamp and samples was 15 cm. Absorbance spectra were 

determined using a Cary SE spectrophotometer (2.0 nm spectral band pass) and 1.0 x 10-5 

M SPl solution in quartz cuvettes with 1 cm pathlength. All spectral measurements were 

conducted at room temperature. 

3.Ill. Results and Discussion 

Figure 3-1 shows the acidichromic effect in a 0.01 mM SPl isopropanol solution. 

Curve A represents the absorption spectrum of SPl dissolved in pure isopropanol. An 

intense peak centered at 320 nm and exhibiting a shoulder at 350 nm was observed. [As an 

aside, this absorption band structure was found to be comparatively insensitive to the 

presence of water. Isopropyl alcohol solutions containing SPl and up to 20 vol. % H20 

were found to have absorption spectra which were indiscernible from that shown in Curve 
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A of Figure 3-1.] Upon acidification by addition of alcoholic HCl, the optical density at 

wavelengths less than the region below 360 nm was noticeably perturbed. The HCl/SPl 

ratio in isopropanol solution was increased from O (Curve A) to 1 (Curve H) and 2 (Curve 

B). Similarly, a proton activity increased from Oto 2, a new absorption band appeared in 

the visible region CA.max = 430 nm) with steady growth in intensity upon acid addition. 

Over this range, an isosbestic point was observed, indicating that only two distinct species 

are involved in the acidichromic process associated with Curves A, H, Band Jin Figure 3-

1. The indicated acidichromic reaction is hypothesized to result in the protonation of SP 1, 

i.e.: 

SPl + HCl ~ SPleHCl (3-1) 

where SPl •HCl represents the acidichromic product. HCl activity-dependent equilibria 

between the SPl and SPleHCl species are readily noted by comparison of Curves H, B 

and J in Figure 3-1. 
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Figure 3-1. Absorption spectra of alcoholic spirooxazine solutions (1.0 x 10-s M) as a 

ftmction of proton activities. HCl:SPl: (A) O; (H) 1: 1; (B) 2: 1; (J) 4: 1. 

Further spectral investigation was focused on the assessment of photochromic 

products in alcoholic solutions. Figure 3:-2 represents the absorption characteristics of four 

readily distinguished species which result from acidification and/or UV irradiation. Curves 

A and B are associated with the absorption spectra of SPl in anhydrous isopropanol and 

acidified alcoholic solutions, respectively (also shown as Curves A and B in Figure 3-1 ): 

Irradiation of the acidichromic product (B) with UV light yielded the measured absorption 

spectrum indicated as Curve C in Figure 3-2. The photoproduct (C) shown was found to 

be long-lived in solution, as indicated later in this Chapter (Figure 3-6). Curve D is taken 

from the work by Bohne et al., indicating the corresponding absorption band of PMCl 
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(species D, shown in Figure 3-2), which reportedly peaks near 600 nm in acetonitrile. 3.6: 

The indicated peak was obtained by a high speed laser photolysis method; the 600 nm peak 

reportedly does not change its position significantly in different organic solutions. 3.7 

Because of the comparatively short-lived nature of the PMCl (D) species, it is difficult to 

observe its absorption spectrum by conventional methods. 

The photochromic product of the SPl •HCl complex, (C), exhibits a new 

absorption band centered at 526 nm. This represents a hypsochromic shift of some 74 nm 

compared with Curve D, the reported absorption spectrum of UV-irradiated SPl. Thus, 

photochromic effects which are observed in SPl solutions are also observed for solutions 

containing the acidichromic product, SPl•HCl. The unique aspect of this work, however, 

is that the peak position of the photochromic band is dependent upon proton activity. 

Photochromic effects in the SPl•HCl solutions were found to be completely reversible, an 

effect that is particularly useful for colorometric applications. The reversible tuning of 

photochromic absorption bands using acid/base, i.e., acidichromism, has not been 

previously reported for any photochromic compound. An interesting aspect of this work is 

that similar effects may be found in other photochromic systems, thereby marking the 

initiation of a new research area. 
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Figure 3-2. 
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Absorption spectra of four species. (A). alcoholic SPl solutions; (B). 

acidichromic product SPl•HCl formed at HCl/SPl = 2; (C). photochromic 

product of SPl•HCl, PMCl•HCl; (D). photochromic product of SPl in 

acetonitrile, data from Ref. [6]. 

A proposed molecular model, given in Figure 3-3, suggests a chemical mechanism 

associated with the observed acidichromic and photochromic processes. Transformation of 

SPl (A) to SPl•HCl (B) represents the protonation process which is evidenced by the 

spectral shifts observed in Figure 3-1. Conversion of the SPl•HCl (B) form to the 

protonated photomerocyanine fonn, PMCl•HCl (C), is the UV-induced photochromic 

process evidenced by the shift associated with Curve C in Figure 3-2. It is known that 

PMCl (D), the photochromic product of SPl (A) generated by UV irradiation under neutral 

74 



conditions, is a blue species with a confonnational lifetime of approximately one-half 

second in common solvent. 3.6 Photomerocyanine products are postulated to undergo 

reversible protonation/deprotonation process, similar to SPl, as indicated by the dashed 

arrow in Figure 3-3, although this has not been observed. 

HCI 
PMCI(D) .------------~ PMCl•HCl (C) 

HCI 
SPl (A) SPl•HCl (B) 

Figure 3-3. Proposed transfonnation among A, B, C and D forms. 

Although the structures of SPl•HCl (B) and PMCl•HCl (C) are not reported in the 

literature, it is possible to conjecture on conformational changes induced by protonation 

through interpretation of spectroscopic data. SPl (A) is known to have a twist arrangement 

between the two ring systems as described in Chapter 2, section 2.III. 3.6 In the absence 

of substantial molecular rearrangements, bathochromic shifts such as the one observed 

(Curves A and B, Figure 3-1) are associated with the formation of a more planar molecular 

conformation, resulting in resonance forms having increased effective conjugation lengths: 

Conversely, PMCI •HCl (C) was found to exhibit a large hypsochromic shift compared to 

the spectrum reported for the PMCI (D) fonn. This result has been interpreted as follows: 

In PMCl (D), the indolino-nitrogen acts as an electron-donor, while the oxygen atom 

bound to the naphthyl ring serves as an electron-withdrawing species. PMCI (D) may 

exist as a planar, fully conjugated structure having an extensive delocalized Jr-electron 

system which results from the donor-acceptor resonance structure shown as structure 
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PMCl (D) in Figure 3-4. This is consistent with the large bathochromic shift compared to 

the SPl (A) form. When hydrogen chloride begins to react with the conjugated 

photomerocyanine system, the donor-acceptor system is destroyed through the formation 

of an internal salt, i.e., structure PMCl•HCl (C) in Figure 3-4. The loss of the donor

acceptor system is associated with reduced n-system delocalization and is consistent with 

the hypsochromic-shift observed in the absorption spectrum found in going from the 

PMCl•HCl (C) to the PMCl (D) band. 

PMCl (D) 

Amax: 60011111 

+HCl 

PMCl•HCl (C) 

Amax: 526 11111 

Figure 3-4. Proposed acidichromic process of the photomerocyanine form. 

Results reported by Rys et al.3·3 indicated that protonation of the indolino-nitrogen 

heteroatom was the dominant structure for spirooxazine-type molecular forms under mildly 

acidic conditions. These authors, however, did not indicate an absorption peak for 

spirooxazine in the visible region; instead, the maximum absorption wavelength for the 

base spirooxazine compound was below 250 nm. Conversely, it appears from the 

spectroscopic data gathered on the spirooxazine compound presently studied that 

substantial conjugation results from the protonation. This suggests ligation of the c1- anion 

to the protonated indoline nitrogen atom, with donation of n-electron density from c1- into 
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the indoline ring. Such donation would serve to yield the more conjugated ring system 

needed to account for the observed absorption band in the blue region. 

The proposed chemical structure SP 1 • HCl product may be represented as 

indicated in Figure 3-5. 

~111111 N,. 11111111~ 
,,~ - ,,,,. ,'\\'\\ - '1,,1 .. ___ pllllllll~ _______ ., 
0~ -.-------· 

HCl 

SPl (A) SPl•HCl (B) 

Figure 3-5. Proposed acidichromic process between SPl(A) and SPl•HCl (B). 

The photochromic product PMCl•HCl (C), which is generated upon UV excitation 

of SPl•HCl (B), spontaneously decays back to the SPl•HCl (B) fonn at room 

temperature. This transfonnation is apparently thennally activated. Decay kinetic data 

associated with the PMCl•HCl (C) to SPl•HCl (B) transition are shown in Figure 3-6. 

The change in optical density (absorption 'A = 526 nm) was measured as a function of time 

immediately following a two-minute irradiation exposure at 365 run (estimated to be 14 

mJfcm2). A plot of the natural logarithm of relative absorbance (A/Ao) versus decay time 

was found to be of first order, with a correlation coefficient of 0.999 (over nearly three 

lifetime periods as indicated in the Figure 3-6 inset). The thennally-induced relaxation 

lifetime of the acidichromic product (C) was found to be 115 seconds. Thus, the 

protonation product of PMCl, PMCl•HCl (C), was found to have a much longer 

confonnational lifetime (by more than 2 orders of magnitude) than that of the free PMCl 

form, which has been reported to be about one-half seconds. 3.6 HCI induced 
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acidichromism, therefore, is noted to have unique effects on both the absorption spectrum 

and on the UV-photoproduct lifetimes. Such changes are of potential interest in various 

device applications, such as optical information storage and/or opto-chemical transducers. 

0.25 

0.00 
0 50 100 150 200 250 300 

Time (Seconds) 

Figure 3-6. Time evolution of alcoholic SPl•HCl solution absorbance at 526 nm, 

following UV irradiation. 

Inset: Zn (A/Ao), versus decay time (11, = 526 nm); ( ... ) = actual data, ( - ) 

= single exponential fit. 

3.IV. Summary and Conclusions 

HCl activity-dependent photochromic effects in alcoholic spirooxazine solutions 

were investigated. A new tenn, acidichromism, was coined to describe the reversible 

effects observed for spirooxazine under conditions of varying HCl activity. Spirooxazine 
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(SPl) and its acidichromic product (SPl•HCl) exhibit dramatically different spectral 

characteristics; a new absorption peak at 430 nm for SPl•HCl was observed. In addition, 

the absorption band of PMCl•HCl was found to have undergone a substantive 

hypsochromic shift, by 74 nm, with respect to the peak reported for PMCl. This 

hypsochromic shift is hypothesized to be due to changes in the donor-acceptor character of 

the PMCl fonn, resulting in a perturbation to the conjugated n-electron system of 

photomerocyanine. Thennally-initiated relaxation kinetics of PMCl•HCl to SPl•HCl 

were found to be first order at room temperature, with a computed relaxation time of 115 

seconds compared to approximately 0.5 seconds for the PMCl form. A model for 

acidichromic and photochromic processes in these systems has been proposed. 

Preliminary results indicate that spirooxazine compounds are potentially useful in a variety 

of device applications. 
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CHAPTER4 

ACIDICHROMISM IN PHOTOCHROMIC SPIROOXAZINES: 

STRUCTURAL EFFECTS 

4.1. Introduction 

In Chapter 3, it was stated and demonstrated that acidichromism in spirooxazine 

compounds is a unique phenomenon wherein the spectral characteristics of a 

photochromic species are reversibly changed by varying solution proton activity. 4.1 The 

research in the area of acidichromic systems is believed to be one which will become 

quite active as similar effects are likely to be found in other photochromic systems. 4.2 

The ideas presented in this chapter focus on achieving a better understanding of 

the mechanism of photochromism and acidichromic behavior through the study of 

representative spirooxazine compounds and the effects of moiety substitution and proton 

activity dependence on absorption characteristics. Discussion of the potential 

mechanisms associated with acidichromic and photochromic reactions of various 

spirooxazine compounds is included. 

Title compounds are given in Figure 4-1. The abbreviated names are designated . 

as SPl, SP2, SP3 and SP4, respectively, according to the Rl and R2 substituents as 

indicated. 
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SPl: R1 = CH3, R2 = H; 

SP2: R1 = CH3, R2 = OCH3 ; 

SP3: R 1 = CH3, R2 = OH; 

SP4: R1 = C8H37, R2 =OH. 

Figure 4-1. Chemical structure of photochromic SPl, SP2, SP3 and SP4 compounds. 

4.II. Experimental Methods 

Title compounds SPl, SP2, SP3 and SP4 were synthesized by Prof. Meigong 

Fan, Institute of Photographic Chemistry, Chinese Academy of Sciences using modified 

literature preparation methods. 4.3,4.4 The 365 nm light source was a low pressure 

mercury lamp. All of the solvents were purified by distillation before use. Absorption 

spectra were recorded using a Hitachi-557 spectrometer. All of the absorption 

measurements were carried out in the dark at room temperature. 

4.lll. Results and Discussion 

4.lll.A. Proton Activity Dependence of Absorption Spectra 

Figure 4-2 shows the representative acidichromic effect in a 0.01 mM SP3 

isopropanol solution. Curve 1 represents the absorption spectrum of SP3 dissolved in 

pure isopropanol. No absorption band was observed in the visible region. Upon HCl 
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addition to the SP3 solution, an intense new absorption band appeared in the visible 

region (Amax = 490 nm) with steady growth in intensity as shown in Curves 2, 3 and 4 in 

Figure 4-2. 

In Chapter 3, it was stated that addition of HCl into an isopropanol solution of 

SPl gave rise to a new absorption band centered at 436 nm. The absorption intensity of 

the new peak was found to increase as a function of HCl activity. Subsequent 

measurements have shown that SP2 and SP4 exhibit inherently comparable behavior, 

with the onset of an HCl-induced absorption band in isopropanol solution centered 

around 436 and 492 nm, respectively. 4.1,4.2 By analogous reasoning to the ideas 

presented in Chapter 3, the new peaks have been assigned as the protonated product of 

SP4 (i.e. SP2•HC1, SP3•HC1 and SP4•HC1). 
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Figure 4-2. The absorption spectra changes of SP3 in acidic isopropanol solutions at 

low (Curve 1, HCl: SP3 = 1:3), moderate (Curves 2 and 3, HCl: SP3 = 

2:3 and 1:1), and high (Curve 4, HCl: SP3 = 3:2) HCl activities. 

SP3 and SP4 each have a hydroxyl group attached at the 9'-position of 

naphthooxazine moiety, creating a ,B-naphthol (abbreviated SPOH) functionality which 

is known to behave as a weak acid. 4.5 When isopropanol solutions of SP3 and SP4 

were made basic by addition of sodium hydroxide, new absorption bands centered at 

404 and 405 nm, respectively, were found to result (see Figure 4-3 for SP3 results; SP4 

similar). Base-induced products formed in the isopropanol solution are proposed to 

have a salt-like structure of the type SPO"Na+. It should be noted that the postulated 

conjugated base SPO-Na+, which is formed in basic solution, is not very stable. The 

intensity of the absorption bands centered at 404 and 405 nm were found to decrease 

slowly when solutions were stored in the dark. 
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Figure 4-3. The absorption spectra changes of SP3 in basic isopropanol solutions at 

low (Curve 1, NaOH: SP3 = 1:3), moderate (Curves 2 and 3, NaOH: 

SP3 = 2:3 and 1:1), and high (Curve 4, NaOH: SP3 = 3:2) sodium 

hydroxide concentrations. 

The acid and base-induced peaks were found to be completely reversible. When 

sodium hydroxide was added into the acidic solution containing SP3•HC1, the 

absorption band centered at 490 nm gradually disappeared. This is consistent with 

regeneration of SP3 in the alcoholic solution. Addition of sodium hydroxide in excess . 

of HCl equivalence gave rise to the 404 nm absorption band which is characteristic of 

the SPO-Na+ conjugate base. Conversely, when hydrogen chloride was added to the 

basic solution, the 404 nm band was replaced by a 490 nm peak. 

4.III.B. Photochromic Character of the Acidichromic Compounds 

Photochromism of acidichromic compounds of SPl has been previously 

addressed in Section 3 of Chapter 3. As discussed in Section 1 in this chapter, the 

acidichromic products associated with SP3 and SP4 compounds are readily 

distinguishable in both acidic and basic solutions. SPl and SP2, by comparison, did not 

show base-induced chromophoric modifications. 

The acidichromic products were found to be sensitive to blue light. The · 

acidichromic product SP3•HC1 is used as an example; all others were comparable. 450 

nm irradiation of SP3•HC1 in isopropanol leads to a smooth decrease in absorption 

intensity of the 490 nm peak, as shown in Figure 4-4. There was a concomitant increase 

in absorption intensity at 340 nm. The increasing 340 nm band is consistent with 

elevated activities of the free SP3 form. Thus, 450 nm irradiation provides a secondary 

path for formation of SP3 from SP3•HC1. 
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The base-induced acidichromic products were found to be sensitive to UV light. 

Curve a of Figure 4-5 represents the absorption spectrum of base-induced acidichromic 

SP3 product (SPO-Na+), centered at 404 nm. When the specimens were irradiated with 
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365 nm light, the 404 nm-centered band decreased in intensity as a function of 

irradiation time (Curves b and c of Figure 4-5). At the same time, the 340 nm 

absorption band intensity increased, again consistent with a secondary photochemical 

path for regeneration of free SP3 in solution. Thus, SP3 can be produced by both 

thermal and photochemical routes. 
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Figure 4-5. The absorption spectra change of basic isopropanol solution of 

SP3 with various irradiation time by 365 nm light. 

Curves a = unirradiated; b = 5 min. irradiation; 

c = 10 min. irradiation. 

Substituent Effects on the Absorption Maxima of Acidichromic Products 

The absorption maxima (Amax) of four protonated products (SP•HCl) in acidic 

isopropanol are summarized in Table 4-1. The difference of absorption maxima of four 
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acidichromic products is probably due to the 9'-position substituent (see Figure 4-1) 

electron donating effect. The electron donating groups are believed to favor the more 

planar structure, which results in the shift of absorption spectra to longer wavelengths. 

Thus, SP3•HC1 and SP4•HC1 exhibit bathochromic shift, owing to the electron donating 

nature of the hydroxyl group placed at the 9'-position. 

4.IJI.D. 

Table 4-1 

Amax of protonated product in isopropanol solutions 

Protonation product 

SPhHCl 

SP2•HC1 

SP3•HC1 

SP4•HC1 

9'-position substituent 

-H 

-OCH3 

-OH 

-OH 

A/nm 

436 

460 

490 

492 

Discussion of the Acidichromic Mechanism for the Hydroxylated 

Spirooxazine Compounds 

It was noted that sodium hydroxide addition to isopropanol solutions of SPl and 

SP2 did not result in any changes to the absorption spectra. 4.1,4.2 The preparation of 

SP3 and SP4 compounds, introducing a hydroxyl group at the 9'-position, gives rise to 

fundamentally different acid-base chemistry. In the case of SP3 and SP4 solutions, 

acidichromic effects were observed. A proposed acidichromic conversion mechanism 
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diagram is given in Figure 4-6, based on the available data. In the figure, SPOH 

represents the shorthand notation for the hydroxylated (,8-napthol) SP3 and SP4 

compounds. Reversible conversions which were directly observed are shown as solid 

arrows, while those which remain conjectural are shown as dashed arrows. 

The open photomerocyanine form of SPQ- and SPO-Na+ were not be observed 

using steady state spectroscopic methods. These species are expected to have a very 

short lifetime, precluding their observation by classical steady state methods. 

HCl HCl 
PMC-Na+ :.;,;::::::::::~ PMC :.;,;::::::::::~ PMCI,HCl 

I I 

Vis!! UV 
, •or6 
I I 
I I 
I I 

f: 

NaOH NaOH 

Vis 

HCl 

UV 
or6 

HCl 

Vis 365nm 
light or 6 

spo- Na+ -... ---1•~ SPOH -... ----•.- SPOHI,HCl 
NaOH NaOHor 

blue light 

Figure 4-6. The proposed mechanistic scheme of acidichromism for SP3 and 

SP4 behavior in isopropanol solutions. 

The indicated mechanism is supported by the following observations. (1) All of 

the photon and acid/base induced processes were found to be reversible, a characteristic 

of acidichromic and photochromic reactions. (2) Hydroxylation of the parent 

spirooxazine molecule leads to acidichromism effects in both acidic and basic solutions. 

The protonation product SPOH•HCl is thermally stable in acidic solutions, while the 

conjugate base SPO-Na+ was found to be unstable in basic solutions. Decomposition of 

the SPO-Na+ species is hypothesized to occur by a thermally-initiated mechanism, 

yielding the parent species through a solvation process. (3) The protonation product 

SPOH•HCl was found to exhibit two photochromic pathways. When irradiated using 
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blue light, ( A.ex = 450 nm), it bleached to form SPOH and HCL The protonation product 

SPOH•HCl was slowly reproduced after the irradiating source was turned off. 

Alternatively, when this protonated product was irradiated with UV light (A.ex= 365 

nm), another photochromic reaction was observed, leading to the indicated protonated 

product photomerocyanine•HCl (PMC•HCl). (4) The acidichromic product SPO-Na+ 

salt, formed under basic conditions, is a newly observed conjugate base which exhibits 

unique photochemical behavior and could be induced to reproduce the parent SPOH 

compound by photochemical means. 

While many of the suggested mechanistic processes remain to be substantiated, it 

is clear these compounds display highly unusual optical properties which may occur due 

to chemical conditions. This work represents the first documentation of acid- and base

induced colorimetric shifts associated with photochromic compounds. 

4./V. Summary and Conclusions 

Four photochromic spirooxazine compounds were studied by absorption spectra. 

Acidichromic effects were found in both acidic and basic solutions when an OH group 

was added at the 9'-position of the parent spirooxazine. The absorption spectra of 

acidichromic product in both acidic and basic solutions are bathochromic compared with 

that of parent spirooxazine. Proton activity and substituents effects of structures on 

acidichromism were systematically studied. 
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CHAPTERS 

ACIDICHROMIC EFFECTS IN 

SPIRO(l,3,3-TRIMETHYLINDOL0-2,3'-NAPHTH[l,2-B]-l,4-0XAZINE): 

FLUORESCENCE STUDIES 

5./. Introduction 

Photophysical and photochemical processes result from the interaction of light 

and matter. The jump of an electron from one orbital to another is a transition between 

two energy states. Such transition requires an input of energy, in the form of a photon of 

light for example. This is the absorption of light energy by the atom. A reverse 

transition is accompanied by the release of energy, typically by photon and/or phonon 

emission. Radiative decay is the process of emission or luminescence. The 

luminescence of photochromic compounds comprises part of this work because of the 

information which may be acquired pertaining to the ground state and excited states. 

Photochromism has been characterized mainly through the use of steady state and 

transient time-resolved absorption spectroscopy. 5.1,5.2 Literature references to 

luminescence studies on photochromic spirooxazine compounds are sparse. 5.3-5.5 To 

date, no fluorescence studies associated with the molecular conformers of photochromic 

SPl have been reported. 

Spirooxazine compounds have been found to be quite sensitive to proton activity 

in alcoholic solutions as described in Chapter 3 and 4. The acidichromic effect provides 

a novel route for tuning the optical properties of the spirooxazines. 5.6 A better 

understanding of this tunable acidichromism is of great importance for the utilization of 

the photochromic spirooxazine in a liquid solution or a solid matrix. Research described 

in this chapter focuses on photophysical and photochemistry aspects of spirooxazine. 
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Acidichromic and photochromic products are probed using conventional cw fluorescence 

methods. 

5./1. Experimental Methods 

SPl was synthesized from 2-methylene-1,3,3-trimethylindoline and l-nitroso-2-

naphthol by Prof. Meigong Fan, Institute of Photographic Chemistry, Chinese Academy 

of Sciences. His synthetic approach has been described elsewhere in detail. 5.7 SP 1 

solutions for luminescent studies were prepared by dissolution of SPl into anhydrous 

reagent grade isopropanol (Fisher Scientific Company). The concentration of SPl for all 

luminescent studies was 1.0 x 10-s Min alcoholic solution. The proton activity of the 

solution was adjusted by the dropwise addition of 0.01 M HCl in isopropanol. The UV 

irradiation source was a B-lOOSP 160-W UV Lamp (Fisher Scientific Company) with 

peak emission at 365 nm and a manufacturer-specified irradiation intensity of 11,600 

µW/cm2. Continuous wave front face excitation and emission spectra were measured at 

room temperature using a Spex Industries Model Fl 12A spectrofluorimeter. Excitation 

and emission band passes of 5.55 nm and 2.58 nm, respectively, were used. All 

luminescence spectra were corrected for instmment response. 

5./Il. Results and Discussion 

5./Il.A. Fluorescence Emission and Excitation Spectra of SP 1 

Figure 5-1 shows the fluorescence excitation and emission spectra of SPl m 

isopropanol solution. A pair of excitation bands, centered at 310 nm and 350 nm, were 

observed (Curve 1 of Figure 5-1) for an emission wavelength of 450 nm. This is a 

previously described characteristic of the SPl molecule (Chapter 3, section 3.111). Curve 
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2 shows the emission spectrum of SPl under 350 nm excitation. The intense band 

centered at 435 nm is attributed to radiative relaxation from the first excited singlet state 

of SPl. 

This result may be interpreted as follows: the SPl molecule can be divided into 

functional regions by the spirocarbon atom: an indoline and a naphthooxazine moiety. In 

general, conjugation effects do not extend over the two moieties, due to their nearly 

orthogonal relationship. The two excitation bands centered at 310 and 350 nm are 

postulated to correspond to selective excitation of the two constituent moieties of the of 

SPl molecule. 350 nm excitation gave rise to a fluorescence band centered at 435 nm, 

which is postulated to represent the excited naphthooxazine moiety. Such results are 

qualitatively similar to that found for a monomeric analog, naphth[l,2-d]oxazol. 5.8 The 

intense emission band was observed to remain essentially unchanged over· excitation 

wavelengths ranging from 310 to 350 nm, indicating that intramolecular energy transfer 

between two orthogonal parts may occur in the SPl molecule. As discussed by Becker et 

al. 5.9 in a similar photochromic naphthospiropyran compound, the results indicate that 

the emissions are localized or originate from a particularly efficient fluorochromic 

portion of the molecule. Based on the characteristics of SPl emission and the image 

relationship of emission and absorption, the fluorescence of the SPl molecule is assigned 

as originating from its first excited singlet state. 
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Figure 5-1. 

5.Ill.B. 
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Fluorescence emission and excitation spectra of alcoholic SPI solution. 

(1). excitation spectrum (Aem = 450 nm); 

(2). emission spectrum (Aex = 350 nm). 

Fluorescence Emission and Excitation Spectra of SP 1 •HCZ 

When hydrogen chloride was added to make a 1: 1 SPl/HCl molar ratio solution, a 

new fluorescence band centered at 560 nm appeared (Curve 2 of Figure 5-2). The onset 

of this band is consistent with the formation of the protonated product SPl • HCI as 

described in Section III of Chapter 3. The new fluorescence emission band is attributed 

to radiative relaxation from the first excited singlet state of acidichromic product, 

l(SPl•HCl)*. The excitation spectrum of SPl•HCl is shown in Curve 1 of Figure 5-2 

with a peak centered around 450 nm, indicating the acidichromic product has an 

excitation spectrum which is dramatically different from the excitation spectrum of the 
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free SPl form (Curve 1, Figure 5-1). Similarly, the emission spectrum of the excited 

state singlet has a substantially different energy (Curve 2, Figure 5-2), Aem peaked at 560 

nm, compared to the free SPl fonn (Curve 2, Figure 5-1), Aem which peaked at 440 nm. 

It was stated in Chapter 3 that SPl is very sensitive to proton activity in alcoholic 

solutions, and the photochromic characteristics are substantially changed as a result. The 

results presented herein indicate that the luminescence spectra of SPl are also quite 

sensitive to proton activity in solution. This is believed to be the first report on the 

luminescence spectra change for photochromic spirooxazine as a function of proton 

activity. 
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Figure 5-2. Fluorescence emission and excitation spectra in acidified SPl solution 

(HCl:SPl = 1: 1 ). 

(1). excitation spectrum (Aem = 560 nm); 

(2). emission spectrum (Aem = 435 nm). 
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5.III. C. Proton Activity Dependence of Fluorescence Spectra 

Figure 5-3 shows the fluorescence emission spectra of SPl and SPl • HCl, at 

different proton activities in solution, using the same excitation sources. Curve 1 of 

Figure 5-3 shows the fluorescence spectrum of SPl in isopropanol solution (i.e. HCl/SPl 

= 0) with Aex = 370 nm. Only one emission band, centered at 435 nm, was observed. 

Upon the addition of hydrogen chloride to the solution, an acidichromic process occurred 

as previously described in Chapter 3, section 3.111. Curve 2 of Figure 5-3 was generated 

when HCl/SPl = 1 (Aex = 370 nm). The emission spectrum shows two bands, one 

centered at 440 nm and the second at 560 nm. The fluorescence spectrum for a solution · 

containing an elevated proton activity (HCl/SPl = 3) appears as Curve 3 in Figure 5-3. 

The intense 560 nm exists as the major emission feature. High proton activity is believed 

to have significant influences on the equilibrium between SPl and SPl •HCL Thus, the 

fluorescence intensity of SPl•HCl (Amax= 560 nm) is much stronger than that of SPl 

(Amax = 440 nm). The fluorescence studies strongly correlated with the earlier absorption 

spectroscopy findings in the sense, that proton activity in solution plays an extremely 

important role in the establishment of the equilibrium condition between SPl and 

SPI •HCl, as indicated in equation 3-1 and Figure 3-1 in Chapter 3. Elevated HCl 

activities produce more of the acidichromic product, resulting in an increase of the 

intensity of the green emission band centered at 560 nm. 
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Figure 5-3. Fluorescence emission spectra of SPI in isopropanol solution at different 

HCI:SPl value (A.ex= 370 nm). 

(1). HCl:SPl = O; (2). HCl:SPl = 1:1; (3). HCI/SPI = 3:1. 

5./ILD. Fluorescence Emission. of PMCJ •HCl 

When the acidified SPl solution was irradiated with UV light for 2 minutes, 

(yielding the protonated product PMC l • HCI) with subsequent irradiation at 525 nm light, 

another fluorescence band appeared (Curve 3 of Figure 5-4). The appearance of the new 

band was accompanied by a pronounced decrease in the intensity of the 560 nm band. 

The band (Amax= 612 nm) is consistent with the results reported by Schneider et aL 5.3 
I 

pertaining to SPI. The 612 nm band is believed to result from radiative relaxation out of 

the first excited singlet state of the protonated product of photomerocyanine, 
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l(PMCl•HCl)*, formed via UV excitation in acidified solution. Curve 1 and 2 in Figure 

5-4 were taken from Figure 5-1 and Figure 5-2, respectively, for comparison. 
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Figure 5-4. The fluorescence emission spectra of SPl, SPl•HCl and PMCI•HCI in 

isopropanol solution. 

(1) HCl:SPl = 0, excited at 350 nm, taken from Curve 2 of Figure 5-1; 

(2) HCl:SPl = 1:1, excited at435 nm, taken from Curve 2 of Figure 5-2; 

(3) HCl:SPl = 1: 1, excited at 525 nm, after 2-minute UV irradiation of (2). 

The three fluorescence bands shown in Figure 5-4 correspond to three distinct 

chemical species: SPI (Curve 1), SPI•HCI (Curve 2) and PMCl•HCl (Curve 3). The 

fluorescence spectrum of PMCI in solution was not determined, due to the short-lived 

nature of the photoproduct. 
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In light of these findings and those reported by other authors, 5.3-5.5 the 

structure/transition diagram given in Figure 5-5 represents the interconversion of states 

found for SPl under the conditions investigated. 

l(PMCl)* 

l 
l(SPl •HCl)* 

l(SPl)* 

1 2 

5 6 
3 4 

; 

PMCl _ ... _ 9_..,. SPl ... IO • SPl•HCl - l l 

l(PMCl •HCl)* 

7 8 

•-PMCl •HCl 

Figure 5-5. Photophysical and photochromic processes of SPl and its product. 

Each process in Figure 5-5 is explained in more details according to the 

following. Processes 1 to 8 represent absorption and fluorescence decay transition for 

different species. Among them, the dashed arrows ( 1 and 2) refer to the processes which 

were not directly observed in this research. Process 9 indicates the UV-induced 

photochromic process of SPl as discussed in Chapter 1. The reverse process is initiated 

by visible light or heat. Process 10 represents the acidichromic process as discussed in 

Section 3 of Chapter 3 and earlier in this chapter. This is the reversible HCI-induced 
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acidichromic process. Process 11 refers to the photochromic process of SPl•HCl. The 

reverse reaction is found to be thermally activated and PMCl•HCl has a lifetime of 115 

seconds. 5.6 

It is found in this research that acidichromic product of SPl (i.e. SPl•HCl) has a 

unique fluorescence spectrum and photochromic behavior. This is the first report 

regarding the fluorescence spectra of photochromic spirooxazine and its acidichromic 

product. In addition to absorption spectroscopy, luminescence is proved to be a new 

method to study this tunable photochromism-acidichromism in spirooxazine compounds 

because it provides more information on the excited states of the molecule. 

5.IV. Summary and Conclusions 

The photophysical, photochromic, and acidichromic behaviors of SPl and its 

acidichromic product SPl•HCl have been investigated. The fluorescence spectra of SPl, 

SPl•HCl, and PMCl •HCI have been observed. The fluorescence bands found in this 

work were attributed to radiative relaxation from the first excited singlet state of SPl, 

SPl • HCI, and PMC 1 • HCl, respective! y. The results are believed to be important for 

understanding of photochromic spirooxazine compounds from the viewpoint of 

photophysics, photochemistry, and material sciences. The research indicates these 

photochromic spirooxazine compounds may be potentially useful in a variety of 

applications, including tunable photochromic and optical storage media based on their 

unique properties in acid-base conditions. 
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CHAPTER6 

NMR SPECTROSCOPIC STUDIES ON STRUCTURE OF 

SPIRO(l,3,3-TRIMETHYLINDOL0-2,3'-NAPHTH[l,2-B]-1,4-0XAZINE) 

6.I. Introduction 

NMR spectroscopy has been widely used as a powerful tool for structural 

determinations. The value of the resonance frequency of a particular nucleus depends 

upon molecular structure and is influenced by the distribution of electrons in the 

molecule and its chemical environment. All kinds of organic compounds can be 

identified by NMR in solution or solid state, in crystalline or non-crystalline forms. 6.1-6.4 

NMR has been frequently used for structural elucidation of photochromic compounds, 

but in most cases it has been limited to identification of special functional groups or 

structural units. 6.5,6.6 To date, there are no extensive studies reporting all NMR 

assignments or conformational structures for a photochromic spirooxazine. 

This chapter involves the application of two dimensional Homonuclear Double 

Quantum Filtered Correlation Spectroscopy (DQFCOSY), Heteronuclear Multiquantum 

Coherence Spectroscopy (HMQC), and Heteronuclear Multibond Correlation 

Spectroscopy (HMBC) methods to establish the full resonance assignments of 

photochromic spirooxazine compound and to derive its conformational structure. 

Complete interpretation of spiro(l ,3,3-trimethylindolo-2,3 '-naphth[ 1,2-b ]-1,4-oxazine), 

SPl, is included and the chemical shifts of all proton and carbon atoms have been 

resolved. 

It was indicated in Chapter 3, 4 and 5 that photochromic spirooxazine compounds 

have shown unique effect in acidified alcoholic solutions. This unique effect, which is 

coined as acidichromism, is described in early chapters. However, the structure of the 
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protonated product of SPl or PMCl (SPl•HCl or PMCl•HCl) is under investigation. 

The research described in this chapter also included the use of NMR for the structure 

identification of the protonated product in alcoholic solution. 

6./1. Experimental Methods 

Spiro(l ,3,3-trimethylindolo-2,3'-naphth[l,2-b ]-1,4-oxazine), SPl, was supplied 

by Prof. Meigong Fan as described in early chapters. Solvent d-chloroform was obtained 

from Aldrich. SPl solutions for 2D NMR studies were prepared by dissolution of SPl 

into d-chloroform. Deuterium chloride (D, 99.5%, DCl 20% w/w solution in D20) and 

CD30D were ordered from Cambridge Isotope Laboratories. SPl solutions for proton 

NMR studies were prepared by dissolution of SPl into CD30D. 

NMR experiments were performed on a Varian UNITY INOV A 400 with a 

Nalorac 5-mm PFG indirect detection probe. 2D DQFCOSY, HMQC, and HMBC 

methods were used for resonance assignment. All measurements were taken at 30°C. 

6./II. Results and Discussion 

6./II.A. 1 H Assignments by DQFCOSY 

The chemical structure of spiro(l,3,3-trimethylindolo-2,3'-naphth[l,2-b]-1,4-

oxazine) (SPl) is shown in Figure 6-1. The molecular formula of the identified 

compound is C22H20N 20. 
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1 
N 

I 
Figure 6-1. Chemical structure of spiro(l ,3,3-trimethylindolo-

2,3'-naphth[l,2-b]-1,4-oxazine) (SPl) (I) 

Figure 6-1 illustrates labeled carbon positions for the SPl molecule. 

Corresponding hydrogen positions are obtained using these positions. Hydrogen atoms 

are omitted from the figure for clarity, except in the case of methyl groups. The 1 H and 

13C signal assignment and confirmation were carried out by a combined use of 2D 

DQFCOSY, HMQC, and HMBC methods. 

DQFCOSY was used to assign the 1H spectrum of SPl. The DQFCOSY 

spectrum of SPl is shown in Figure 6-2. DQFCOSY shows crosspeaks of all protons 

which have J coupling magnitude large than -6 Hz. SPl is expected to have three JHH 

because of its aromatic rings. They are JO "" 7-10 Hz, J rn"" 2-3 Hz and J p "" 0.1-1 Hz. 6.3 

The only single spin system at 7.747 ppm is found in Figure 6-2. It is assigned to 

the 2' proton because it has no other protons as its direct neighbor. Two 4-spin systems · 

are also observed. The first is tentatively assigned as proton 4 (7.079 ppm), 5 (6.898 

ppm), 6 (7.213 ppm) and 7 (6.569 ppm). The second 4,-spin system is tentatively 

assigned as proton 7' (7.736 ppm), 8' (7.385 ppm), 9' (7.570 ppm) and 10' (8.563 ppm). 

The only 2-spin system is observed and tentatively assigned as 5' (7.003 ppm) and 6' 
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(7.647 ppm). The tentative assignment is shown in Figure 6-3; it is confirmed by 2D- · 

HMBC experiment as discussed in Section 6.III.B. 

7.079(d,d) 

8 
CH3 

8·56~ 7.570(d,d,d) 
10' 9' 

6.898( d,d,d) 

7.213(d,d,d) 

6.569 (d,d) 

7.003(d) 7.647(d) 

Figure 6-3. Tentative assignment of 1H by DQFCOSY 

6./Il.B. He Assignment by HMQC and HMBC 

The PFG-HMQC experiment was used to assign the protonated 13C resonances. 

The PFG-HMQC spectrum of SPl is shown in Figure 6-4, which indicates crosspeaks 

between direct bonding of 1H and 13C. From Figure 6-4, one may conclude that carbons 

at 2(3'), 4a, 7a, la', 4a', 6a' and 10a' positions have no direct proton attached. The 

protonated 13C resonances as methyl 8, 9 (20.6, 25.2 ppm), methyl 10 (29.4 ppm), 3 (51.6 

ppm), 4 (121.36 ppm), 5 (119.7 ppm), 6 (127.8 ppm), 7 (107.0 ppm), 7' (127.6 ppm), 8' 

(124.0 ppm), 9' (126.9 ppm), 10' (121.3 ppm), 5' (116.6 ppm) and 6' (130.1 ppm). The 

quaternary carbon appeared at high field (51.6 ppm) is assigned to carbon 3. The carbon 

at low field (150.7 ppm) is associated with the singlet proton (7.747 ppm) and is assigned 

as carbon 2'. The result of 13C assignment by PFG-HMQC is shown in Figure 6-5. 
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Figure 6-5. 13C assignment by PFG-HMQC 

Figure 6-6 shows the HMBC spectrum of SPI. Crosspeaks between 1 H and 13C 

can be seen in HMBC experiment if their J coupling constants are about -8 Hz. Proton 4 

should have a crosspeak with carbon 3, and proton 7 should not have crosspeak with 

carbon 3. A crosspeak at (7 .079 ppm, 51.6 ppm) is observed, indicating 7 .079 ppm is for 

proton 4 instead of proton 7. Thus, the tentative assignment shown in Figure 6-3 from 

DQFCOSY for protons 4, 5, 6 and 7 is confirmed. For 1H-13C long range coupling 

constant of aromatic compounds, 2JCH is about 1 Hz, 3JCH is about 8 Hz and 4Jc8 is about -

1.2 Hz. Thus, only 3Jc8 is expected to yield crosspeaks in HMBC experiment. For 

hetero-aromatic ring, 2Jc8 will be about 8 Hz if proton is on the o-position of 

heteronucleus, which will also have cross peaks in HMBC spectrum. 

The assignment of carbons in the spiro ring can be made as follows. The 

crosspeaks related with proton 4 can be found in HMBC spectrum in Figure 6-6. Meta · 

Carbons 3, 7a, and 6 are assigned because of their crosspeaks at (7.079 ppm, 51.6 ppm), 

(7.079 ppm, 147.4 ppm) and (7 .079 ppm, 127.8 ppm), respectively. In the same way, 

proton 5 will have crosspeaks with meta carbon 4a and 7. They are at (6.893 ppm, 135.7 
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ppm) and (6.893 ppm, 107 .0 ppm), respectively. Proton 6 will have crosspeaks with 

carbon 4 and 7a, which are at (7.647 ppm, 121.4 ppm) and (7.647 ppm, 147.4 ppm), 

respectively. Proton 7 will have crosspeaks with carbon 5 and 4a. They are at (6.569 

ppm, 119.7 ppm) and (6.569 ppm, 135.7 ppm), respectively. The assignment of proton 

and carbon atoms in the spiro ring is described in Figure 6-7. 

(7.647) 

(147.4) 

1 
N 

I 

Figure 6-7. The assignment of proton and carbon atoms in the spiro ring from HMBC. 

The assignment of carbon atoms in the oxazine ring can be made in the same way 

and the result is shown in Figure 6-8. Proton 5' will have crosspeaks with carbon la' and 

6a'. They appear at (7.003 ppm, 122.8 ppm) and (7.003 ppm, 129.1 ppm), respectively. 

Proton 6' will have crosspeaks with carbon 4a', 10a' and 7'. They are at (7.647 ppm, 

143.9 ppm), (7.647 ppm, 130.7 ppm) and (7.647 ppm, 127.6 ppm), respectively. Proton 

2' will have crosspeaks with carbon 3' and la'. They are at (7.747 ppm, 98.4 ppm) and 

(7.747 ppm, 122.8 ppm), respectively. Proton 7' will have crosspeaks with carbon 6', 10a' 

and 9'. They are at (7.736 ppm, 130.1 ppm), (7.736 ppm, 130.7 ppm) and (7.736 ppm, 

126.9 ppm), respectively. Proton 8' will have crosspeaks with carbon 6a' and 10'. They 

are at (7.385 ppm, 129.1 ppm) and (7.385 ppm, 121.31 ppm), respectively. Proton 9' will 

have crosspeaks with carbon lOa' and 7'. They are at (7.570 ppm, 130.7 ppm) and (7.570 

ppm, 127.6 ppm), respectively. Proton 10' will have crosspeaks with carbon la', 6a and 
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CHAPTER 7 

STUDY OF ALUMINOSILICATE GELS DOPED WITH 

PHOTOCHROMIC SPIROOXAZINE 

7.1. Introduction 

Sol-gel chemistry provides new and interesting approaches in the field of material 

science, especially in the area of photonically-active media. Synthesis is typically 

performed at or near room temperature so that organic molecules, such as photochromic 

spirooxazine can be incorporated inside the inorganic matrix leading to new hybrid 

materials. 7.1,7.2' Solid state media are achieved through a two step reaction which 

involves the hydrolysis of an alkoxide precursor, such as tetramethoxysilane, followed by 

polycondensation. Typically, dopants are incorporated into gel hosts via dissolution of 

soluble species into the initial precursor sol. Solutions may be coated onto various. 

substrates, thin films or cast into bulk monoliths. Thus, sol-gel based media appear to be 

promising candidates for the development of new optical device sources. 

The sol-gel preparative method provides a route by which a variety of novel solid 

state materials may be prepared. 7 .1-7.4 The tremendous inherent processing flexibility 

and potential for good optical transparency over extended regions of the visible and near 

IR spectrum make sol-gel materials of potential use in the development photonically

active media. Additionally, the solution synthetic aspect of sol-gel processing facilitates 

the incorporation of active species within the nanostructured sol-gel network. This 

method is easily adapted to the deposition of thin films on substrates such as optical 

fibers and planar waveguides by simple coating methods. 

The host gel medium which serves as the basis of this work is prepared using di

sec-butoxyaluminoxytriethoxysilane (DBATES), a silicon-aluminum double-alkoxide 
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8'. They are at (8.563 ppm, 122.8 ppm), (8.563 ppm, 129.1 ppm) and (8.563 ppm, 124.0 

ppm), respectively. 

Figure 6-8. The assignment of proton and carbon atoms in the oxazine ring from HMBC. 

Based on the above discussion on 2D-NMR spectroscopy, the chemical shifts of 

all proton and carbon atoms in SPl have been assigned. The results are summarized as 

Table 6-1 and 6-2. 
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Table 6-1 

Chemical Shifts (8/ppm) of Protons 1:1,Ild H-H Coupling Constants 

No. 8 (ppm) H-H coupling constants (Hz) 

4 7.079, d,d(Q) 14,5 = 7.6 Hz, 14,6 = 1.2 Hz 

5 6.898, d,d,d(Hexa) 15,4 = 15,6 = 7.6 Hz, 15,1 = 1.2 Hz 

6 7.213, d,d,d(Hex) 16,5 = 16,7 = 7.6 Hz, 16,4 = 1.2 Hz 

7 6.569, d,d(Q) 17,6 = 7.6 Hz, 11,5 = 1.2 Hz 

2' 7.747, s 

5' 7.003, d 15',6' = 8.6 Hz 

6' 7.647, d 16',5' = 8.6 Hz 

7' 7.736, d,d(Q) 17',8' = 8.4 Hz, 17',9' = 1.2 Hz, 

8' 7.385, d,d,d(Hep) 1s',7' =8.4 Hz, ls•,9• =7.2 Hz, ls·,10· =1.2 Hz 

9' 7.570, d,d,d(Hep) 19•,10• =8.4 Hz, 19',8' =7.2 Hz, 19•,s• =1.2 Hz 

10' 8.563, d,d(Q) 110' ,9' =8.4 Hz, 110' ,8' = 1.2 Hz 

8 1.352, s 

9 1.345, s 

10 2.725, s 
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Table 6-2 

Chemical Shifts (6/ppm) of Carbon Atoms 

Number of carbon atom Chemical shifts (6/ppm) 

2 (3') 98.4 

3 51.6 

4a 135.7 

4 121.4 

5 119.7 

6 127.8 

7 107.0 

7a 147.4 

2' 150.7 

4a' 143.9 

5' 116.6 

6' 130.1 

6a' 129.1 

7' 127.6 

8' 124.0 

9' 126.9 

10' 121.3 

10a' 130.7 

la' 122.8 

8 20.6 
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9 

10 

Table 6-2 (Continued) 

6.//l. C. Conformational Structure of SP 1 

25.2 

29.4 

According to structure I in Figure 6-1, the shielding effect through the bond 

transfer is the same for Cg and C9, but the chemical shift positions of two methyl groups 

(BC and 1 H) are found to be different as shown in Table 6-1 and 6-2. 

In Chapter 2, the X-ray crystal analysis of similar spirooxazines indicated that 

benzo and naphtha rings of SPl are planar, but the oxazine ring and pyrrole ring are 

nonplanar. Torsion angles of N(l ')-C(2')-C(3')-0(4') and C(3')-0(4')-C(4a')-C(la') were 

found to be 17.1(6)° and 14.5(5)°, respectively. Thus, a half boat conformation of the 

oxazine ring could be described as shown in Structure (II) in Figure 6-9. 

Figure 6-9. Conformational structure of oxazine ring (Structure II) 

According to structure (II) in Figure 6-9, C(4a'), C(la'), N(l '), C(2') and C(3') are 

almost coplanar, but the 0(4') oxygen is forward out of the planar. 

Concerning the dihydropyrrole ring, torsion angles of C(2)-C(3)-C(4a)-C(7a), 

C(2)-C(3)-C(4a)-N(l), and C(4a)-C(7a)-N(l)-C(2) were found to be 14.4(4)°, -0.5(6)° 
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and -15.6(4)° by X-ray analysis, respectively. The three torsion angles indicated that the 

dihydropyrryole ring forms a chair-like conformation. Figure 6-10 shows the 

conformational structure of SPI based on these interpretations. 

Figure 6-10. Conformational structure of SPl (Structure nn 

According to Figure 6-10, carbon 9 and its bonded hydrogen atoms in SPl 

molecule are located in the deshielded area of 1t'-electron conjugated systems. The 

chemical shift position of Be is expected to be larger than that of 13C in the other methyl 

group C(8). The differences between C(8) and C(9) lie in their relationship to the remote 

naphthalene part of the heterocycle. The nonplanar indole 5-membered ring may also 

affect where C(8) and C(9) sit in the ring currents of the benzene and naphalene rings. 

C(8) at 20:6 ppm must be more crowded by neighboring lH's than C(9) at 25.2 ppm. In 

addition~ methyl groups connected to a saturated tertiary carbon in liquid solution exhibit 

typical chemical shifts of 28.7 ppm. 6.1 However, both C(8) and C(9) have chemical 

shifts much less than this value. The discrepancy may be due to the steric crowding 

effects between C(8) and C(9) methyl groups with C(2') hydrogen, which results in 

upfield chemical shift. The results presented indicated the conformational structure 

derived from X-ray analysis agrees with the NMR data. 
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6.III.D. Structure Determination of the Protonated Product of SP 1 

Figure 6-11 shows the ID proton spectrum of SPI in CD30D solvent. The single 

peak at 2.725 ppm was assigned as proton 10 (Table 6-1). This methyl group is directly 

bonded to the nitrogen in the spiro ring. 

Figure 6-12 shows the ID proton NMR spectrum of SPI in CD30D solvent after 

addition of DCl in CD30D. The peak at 2.725 ppm almost disappeared, and a new peak 

at 4.235 ppm is found in Figure 6-12. The proton chemical shift of this methyl appeared 

at low field, indicating that a conjugated ring system may have formed as a result of 

protonation. All of the aromatic chemical shifts also appear to change, further evidence 

for ring opening. The photo product of SP 1, PMC 1 species, is postulated to react with 

HCl to generate a more stable form, PMC 1 • HCl, under such conditions. The chemical 

structure of protonated product of the open form (PMC 1 • HCl) was proposed in Figure 3-

4 in Chapter 3. 

Protons are not assigned in Figure 6-12, but clearly there are large changes to both 

the benzene and naphthalene rings. This result may be useful for the identification of an 

acidichromic product, and provide more information on the mechanism of the associated 

acid-base chemistry. 

6.IV. Summary and Conclusions 

High resolution 1 H and 13C NMR signals were completely assigned for 

photochromic compound spiro(l ,3,3-trimethylindolo-2,3'-naphth[l ,2-b ]-1,4-oxazine). 

The signal assignments were performed using 2D DQFCOSY, HMQC and HMBC 

methods. NMR data is consistent with the result from X-ray structure analysis on 

conformational structure of spirooxazine. The protonated product of SPl and/or PMCl 

was investigated by proton NMR spectrum. The results presented here indicate NMR 

spectroscopy method could be potentially used to identify the functional groups and 
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provide much information on the conformational structure of organic photochromic 

compounds. 
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CHAPTER 7 

STUDY OF ALUMINOSILICATE GELS DOPED WITH 

PHOTOCHROMIC SPIROOXAZINE 

7.I. Introduction 

Sol-gel chemistry provides new and interesting approaches in the field of material 

science, especially in the area of photonically-active media. Synthesis is typically 

performed at or near room temperature so that organic molecules, such as photochromic 

spirooxazine can be incorporated inside the inorganic matrix leading to new hybrid 

materials. 7.1,7.2 Solid state media are achieved through a two step reaction which 

involves the hydrolysis of an alkoxide precursor, such as tetramethoxysilane, followed by 

polycondensation. Typically, dopants are incorporated into gel hosts via dissolution of 

soluble species into the initial precursor sol. Solutions may be coated onto various 

substrates, thin films or cast into bulk monoliths. Thus, sol-gel based media appear to be 

promising candidates for the development of new optical device sources. 

The sol-gel preparative method provides a route by which a variety of novel solid 

state materials may be prepared. 7 .1-7.4 The tremendous inherent processing flexibility 

and potential for good optical transparency over ·extended regions of the visible and near 

IR spectrum make sol-gel materials of potential use in the development photonically

active media. Additionally, the solution synthetic aspect of sol-gel processing facilitates 

the incorporation of active species within the nanostructured sol-gel network. This 

method is easily adapted to the deposition of thin films on substrates such as optical 

fibers and planar waveguides by simple coating methods. 

The host gel medium which serves as the basis of this work is prepared using di

sec-butoxyaluminoxytriethoxysilane (DBATES), a silicon-aluminum double-alkoxide 
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precursor which may be used to prepare porous 1: 1 alumina-silica copolymers. The 

chemical structure of the DBATES precursor is given in Figure 7-1. The preparation of 

chromophore-doped aluminosilicate gels, and the characterization of the gellation process 

using DBATES precursor, have been previously described by several groups. 7.1-7.4 The 

aluminosilicate host was chosen because of the open pore structure and the amphoteric 

nature of the double-alkoxide precursor. Dunn et al. 7.2 studied the photochromism of 

spiropyrans in aluminosilicate gels. The properties of these specimens were found 

significantly different from those in silicate glasses. Freshly prepared gels containing 

spiropyrans were clear and highly photochromic. Aging of the gels significantly changed 

the photochromic properties. Photochromism was lost in the xerogel stage. The use of 

acid or basic catalysts with DBATES precursor results in the formation of opaque media 

composed of micron-dimensional particles. The amphoteric nature of the precursor 

promotes gellation under neutral pH conditions; thus, pH-sensitive chromophores can be 

incorporated into the solid state aluminosilicate host without undergoing decomposition 

or protonation-deprontonation reactions. The open, interconnective pore structure of the 

resulting xerogels facilitates photo-induced molecular rearrangements in photochromic 

compounds, such as spirooxazines. 

Figure 7-1. Chemical structure of di-sec-butoxyaluminoxytriethoxysilane (DBATES). 
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Practical device considerations for sol-gel synthesis dictate the encapsulation of 

monomeric photofunctional compounds into a stable, chemically inert solid state host 

matrix. Development of photonically-active media requires a good understanding of the 

structure of doped sol-gel networks and of the conditions that the oxide matrix imposes 

on the dopant at a molecular level. Such interactions have important effects on the 

optical properties of entrapped photonically-active species. 7.4-7.6 Spiro(l,3,3-

trimethylindolo-2,3'-naphth[l,2-b]-1,4-oxazine), SPl, hereinafter, has been used to 

investigate as a probe within the gel network at the molecular level. 

This chapter is focused on the characterization of spirooxazine-doped 

aluminosilicate gel specimens. The studies of the nature of spectroscopic changes to SPl 

doped in transparent gels prepared by the sol-gel process have been carried out. Changes 

to the spectral character of spirooxazine dopant yielded insights into the evolution of the 

DBATES-derived gel due to the strong influence exerted by the local chemical 

environment on the luminescent photochromic guest. 

7.II. Experimental Methods 
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Bulk gel ~peciin.ens were ·prepared µsing a modified sol~gel process which was 
."j ' •. ·•. . . · •. ' \ ' • ; ., 

previously reported by Pouxviel et al. 7.1-7.3 Briefly, the DBATES precursor was 

diluted using isopropanol to get a 1: 1 volume ratio binary solution (solution 1). A 
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separate solution containing a 1: 1 volume ratio of water to isopropanol was prepared. 

SPl was dissolved in the latter, forming solution 2. Solution 2 was subsequently added, 

in a dropwise fashion with constant stirring, to solution 1, producing the initial sol. The 

final SPl concentration was 0.1 mM. The resultant sol was hydrolyzed in a covered 

container at room temperature overnight, poured into lxlx4.5 cm3 polystyrene cuvettes, 

covered, and allowed to gel. Gellation of specimens prepared in this manner occurred 

within three days. Gels were aged in the covered cuvettes for two weeks. After aging, 

the covers were perforated to allow solvent evaporation. Gel specimens were allowed to 

dry under ambient conditions for three weeks until air-stable xerogels were obtained. 

Optical characteristics of the precursor solutions, aged gels, and air-stable xerogels were 

periodically determined. The dopant molecular number densities (Nv) of entrapped SPl 

in the air-stable xerogel specimens were calculated, based upon the final dimensions of 

the bulk monoliths, to be 8.2x1Q16 cm-3. 

7./l.B. Apparatus and Spectral Measurements 

The ultraviolet excitation source was a model 160-W UV Lamp (Fisher 

Scientific Company) with peak emission at 365 nm and a manufacturer-specified 

irradiation intensity of 11,600 µW/cm2. Absorbance spectra were determined using a 

Cary 5E spectrophotometer (2.0 nm spectral band pass). Continuous wave front face 

excitation and emission spectra were measured using a Spex Industries Model Fl 12A 

spectrofluorimeter; excitation and emission band passes were 1.85 and 0.86 nm, 

respectively. All luminescence spectra were collected in the dark at room temperature 

and corrected for instrumental response. 
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7.Ill. Results and Discussion 

7./II.A. SP 1 Spectra in the DBATES 

Curve 1 of Figure 7-2 shows the fluorescence emission spectra of SPl doped 

aluminosilicate sol excited at 370 nm. The intense emission band centered at 430 nm 

was observed to remain essentially unchanged over excitation wavelengths ranging from 

320 to 370 nm. A much smaller peak, which is not apparent on the primary scale 

shown, can be found at 643 nm in Curve 2 (intensity increased 10-fold with respect to 

Curve 1). This weak 643 nm emission band was also observed when an excitation 

wavelength of 540 nm was used as shown as Curve 1 in Figure 7-3. 
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0.6 2 
X 10. " .. • · .. • 
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400 450 500 550 600 650 700 
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Figure 7-2. Fluorescence emission spectra of SPl doped DBATES sol, Aex = 350 nm. 
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Figure 7-3. Fluorescence emission spectra of SPl doped DBATES sol, A.ex= 540 nm. 

These results may be interpreted as follows: An equilibrium state exists between 

SPl and PMCl in the DBATES sol, as indicated in Figure 7-4. The intense emission 

band centered at 430 nm (Curve 1 of Figure 7-2) is assigned to radiative relaxation from 

the lowest excited singlet state of SPl. The weak 643 nm (Curve 2 of Figure 7-2) 

emission band is attributed to radiative relaxation from the lowest excited singlet state of 

PMCl, which is present at low concentration in the sol. The PMCl --> PMCl * 
transition has a smaller energy gap, and for this transition is more efficiently probed 

using the 540 nm excitation wavelength (Curve 1 of Figure 7-3). The intense 643 nm 

emission band (PMCl --> PMCl *) is easily observed, to the exclusion of a high energy 

SPl --> SPl * transition. 
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SPl* PMCl* 

Aex = l! Aem = Aex = l! Aem = 
350 nm 430 nm 540 nm 643 nm 

UV 
SPl .... ..-11----•- PMCl 

(where* denotes an excited singlet state) 

Figure 7-4. An equilibrium between SPl, PMCl and their excited states. 

The emission band of PMC 1 is not observable in pure isopropanol solution, 

where strong solute-solvent interactions dominate. It is expected that such interactions 

provide a very rapid collisional nonradiative deactivation pathway for electronically 

excited states. In the sol stage, however, the viscosity has greatly increased, due to 

oligomerization in the sol, with respect to alcoholic solution. Thus, the PMCl product 

may be spectroscopically observed in the sol even though it is not readily studied in 

alcoholic solution. 

Photochromic effects were studied in the sol as given in Figure 7-5. The optical 

absorption spectrum of SPl dissolved in an aluminosilicate sol is shown in Curve 1 of 

Figure 7-5. This spectrum consists of two absorption shoulders peaking at 320 nm and 

350 nm, in the absence of UV irradiation, and corresponds to the SPl form of the 

molecule. After 2 minutes of UV irradiation, a new absorption band centered at 610 nm 

appeared (Curve 2 of Figure 7-5). The onset of a 610 nm absorption band is associated 

with the formation of the ring-opened merocyanine or PMCl conformation, a result 

which is consistent with findings reported by Schneider et al. using laser photolysis 

methods. 7.8 
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Figure 7-5. Absorption spectra of SPl doped DBATES sol 

(1). before UV irradiation; (2). after 2-min. UV irradiation. 

The PMC 1 form exhibited a lifetime of approximately 20 seconds in the 

aluminosilicate sol, a relaxation rate which is much slower than that observed in 

common solutions, which typically has a lifetime of approximately 0.5 seconds in 

acetonitrile. 7.9 This result is consistent with the higher local viscosity in the DBATES 

sol, showing the molecular rearrangement responsible for the regeneration of SPl from 

PMCl. Other mechanisms, such as SPl molecule binding with the oligomeric 

fragments in the sol, may also be used to explain this phenomenon. 

The most dramatic macroscopically-observed physical changes occur during 

gellation, when the initial sol is transformed into a rigid solid. At gellation the solvent 

phase consists of excess isopropanol and water with the additional ethanol and butanol 
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produced by the hydrolysis of the DBATES alkoxy groups. In an unaged gel, solvated 

dopants such as SPl are not constrained by the ramified and open gel structure. Thus, 

the luminescence spectra of SPl and PMCl species in the unaged gel are essentially the 

same as those observed for these species in a liquid solution. 

7.Ill.B. SP 1 Spectra in the Aged Gel 

During aging, the gel is kept in a closed container and no evaporation of the 

organic molecules occurred. Thus, a substantial amount of solvent remains in the 2-

phase matrix of an aged gel. The fluorescence spectra of an aged SPl-doped specimen 

are shown in Figure 7-6. The fluorescence band centered at 440 nm (Curve 1 of Figure 

7-6; Aex = 370 nm) is essentially the same as that observed in the sol (Curve 1 of Figure . 

7-2). An intense new fluorescence band, centered at 540 nm, was observed when the 

excitation wavelength was increased to 435 nm (Curve 2 of Figure 7-6). This band is 

quite similar to one found in isopropanol solutions acidified by the addition of HCl as 

shown as Figure 5-2 in Chapter 5. 7.10 This band was previously assigned to the 

protonated product of SPl, SPl•HCl, in acidic alcoholic solution. The absence of HCl 

from the preparation, however, necessitates consideration of other possibilities. It is 

proposed the formation of a new species in the aged gel, which is postulated to be the 

protonated product of SP 1 by acidic metal hydroxide sites in the aluminosilicate 

network according to equation 7-1: 

I 

SPl + H-O-M- ......... 1--•- H+sp1-
1 

where M represents Si or Al , and the product us the protonated product. 

(7-1) 

When the excitation wavelength was increased to 540 nm, in addition to the 
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weak emission band centered at 643 nm (previously attributed to singlet state emission 

from (PMCl)*, see Curve 2 of Figure 7-2), a new band centered at 580 nm was also 

observed (Curve 3 of Figure 7-6). 
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Figure 7-6. Fluorescence emission spectra of SPl doped aluminosilicate aged gel at 

different excitation wavelength. 

(1). Aex = 370 nm; (2). Aex = 430 nm; (3). Aex = 540 nm. 

It is suggested that the new band results from the excited state of a protonated 

product of PMCl. Similar to SPl, the photochromic compound PMCl (Figure 7-1) may 

also interact with acidic metal hydroxide sites to yield the acidichromic product of 

PMCl, as shown in equation 7-2: 
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I 
PMCl + H - 0- M- -.. ------:1.-~ H+PMCl-

1 
(7-2) 

Aged aluminosilicate gels consist of network polymers formed by Si-0-Si, Si-

0-Al and Al-0-Al linkages. These systems contain large quantities of charged polar 

species such as Si-OH and Al-OH groups. SPl and PMCl may interact 

electrostatically with these inorganic species, resulting in the formation of the 

protonated product such as, SPhHO-M and PMCl•HO-M type. The ready formation 

of open-form merocyanine conformers indicates that the aged gel is still comparatively 

low in density, permitting the necessary molecular rearrangement of SPl to proceed. 

Photochromic behavior of SPl is retained in the solvent-rich aged gels, as shown 

in Figure 7-7. Curve 1 of Figure 7-7 shows the absorption spectrum prior to UV 

irradiation. Two shoulders on the main UV absorption band, peaking at 320 nm and 350 

nm, were observed. These shoulders correspond to the presence of the SP 1 

conformation as previously seen in Curve 1 of Figure 7-5. The intense absorption band 

centered at 450 nm, which is not seen in Figure 7-5, is assigned to the acidichromic 

product of SPl (simplified as SPhHO-M species). After 2 minutes of 365 nm 

irradiation, an intense peak centered at 560 nm was observed (Curve 2 of Figure 7-7). 

It is believed that the new band, centered at 560 nm, results from the formation 

of a protonated product of photomerocyanine derived from SPl•HO-M (e.g., 

PMCl•HO-M). Thus, photochromic effects which are observed in SPl aluminosilicate 

sols are also observed for aged gels containing the acidichromic product. Photochromic 

effects in the aged gels were found to be completely reversible. This result is very 

similar to the acidichromic effects previously reported for SP 1 in alcoholic solutions. 7 .10 

The colored protonated product of merocyanine (PMCl•HO-M) generated by 
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irradiation with ultraviolet light slowly decays, by a thermally activated mechanism, to 

SPleHO-M. The thermal decay event obeys first order kinetics with a rate constant of 

0.359 min-1 at room temperature (correlation coefficient is 0.992). Because of the 

interactions between the photochromic compound and condensing polymeric host 

material, the decay process in the aged gel is orders of magnitude slower than that in 

alcoholic solutions. 
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Figure 7-7. Absorption spectra of SPl doped aluminosilicate aged gel. 

(1). before UV irradiation; (2). after 2-min. UV irradiation. 

7.III.C. SP 1 Spectra in Air-stable Xerogel Specimens 

The third stage of the process is the drying of the gel. When the free solvent 

species evaporate, the aluminosilicate gel structure collapses and the gel shrinks 

dramatically. The final volume is approximately one fifth that of the aged wet gel. The 
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oxide network becomes substantially more compact, and the flexibility decreases with 

the departure of the solvent. This state is typically referred to as the xerogel phase. 

The four species SPl, PMCl, acidichromic product of SPl (SPl•HO-M) and 

acidichromic product of PMCl SPl •HO-M are found in the xerogel stage as shown in 

Figure 7-8. As discussed earlier, the intense emission band at 460 nm is from the lowest 

excited singlet state of SPl. This band exhibited a bathochromic shift of 30 nm 

compared with the result in the aluminosilicate sol, which is due to the changes in 

matrix rigidity at this stage. This phenomenon was previously reported by Dunn et al. 

for bipyridyltriscarbonylchlororhenium(I), ReCl(C0)3bipy and was described as 

rigidochromism. 7.11 The 643 nm peak is from the photochromic product PMCl. The 

acidichromic product SPhHO-M is responsible for the fluorescence band centered at 

540 nm, whereas PMChHO-Mis for the peak centered at 580 nm. All four species are 

also observable at the final stage of the xerogel. However, photochromic behavior is not 

observed for DBATES-type xerogels because of the acidichromic effects, matrix rigidity 

changes and solvent loss. The results are of importance for the understanding of 

interactions between dopant and matrix and provide insight regarding the preparation of 

photochromic media. The issue of developing a novel, air-stable, solid state 

photochromic material using sol-gel processing is examined in the next chapter. 
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Figure 7-8. Fluorescence emission spectra of SPl-xerogel at different excitation 

wavelength. (1). A.ex= 370 nm; (2). Aex = 435 nm; (3). Aex = 540 nm. 

7.IV. Summary and Conclusions 

The photochromic compound, SPl, is found to be sensitive to changes in the 

local environment associated with the various stages of the sol-gel process. The sol, 

aged gel and xerogel transitions can be monitored by the evolution of absorption, 

luminescence and photochromic behavior of SPl doped into the aluminosilicate host 

gel. Photochromism is retained through the aged gel stage, but is lost in the initial air

stable xerogel. The appearance of new fluorescence peaks, such as those shown in 

Figure 7-6, is consistent with the formation of protonated product of the probe 

chromophore by HO-M surface groups in the gel. The observed rigidochromism is in 
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good agreement with the result previously reported by Dunn. 7.11 This result also agrees 

with the previous report of SPl in alcoholic solution with the formation of protonated 

product spirooxazine•HCI as detailed in chapter 3, section 3. 
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CHAPTERS 

PREPARATION OF AIR-STABLE PHOTOCHROMIC XEROGEL 

USING SPIROOXAZINE DOP ANTS 

8.1. Introduction 

The low temperature synthesis of inorganic oxide glasses by the sol-gel method 

allows the incorporation of organic molecules into the gel matrices. 8.1,8.2 Unlike most 

of the other sol-gel matrices, organically modified silicates (ORMOSILs) possess 

organic functionality, such as acrylate, epoxide, 1,2-ethanediol, etc. The precursor for the 

epoxy ORMOSIL pr~paration is 3-glycidoxypropyltrimethoxysilane (GPTMS, an epoxy 

modified silicate). The chemical structure of GPTMS is shown in Figure 8-1. The 

GPTMS has three hydrolyzable alkoxide groups which will form Si-0-Si linkages upon 

complete condensation. After the alkoxide hydrolysis and condensation reactions, a 

hybrid organic/inorganic polymer can be formed by crosslinking of the organic phase. 

Thus, ORMOSILs are widely used in sol-gel synthesis for the purpose of making 

photonically-active media. 8.3,8.4 

Figure 8-1. Chemical structure of 3-glycidoxypropyltrimethoxysilane (GPTMS) 
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An idealized epoxy-diol ORMOSIL structure is shown in Figure 8-2. In the 

ORMOSILs, organic groups may behave as plastilicizers or network formers. They 

provide for the formation of an organic polymer network which is intimately mixed with 

the inorganic one. It is widely held that the mechanical and optical properties of hybrid 

gels can be modified by varying the organic/inorganic phase ratios, preparative 

flexibility, which provides a wide range of opportunity for the preparation of 

photonically-active materials. 8.3-8.5 

ORMOSIL 

I I I I I 
0 0 0 0 0 
I I I I I 

-Si- Si- Si-0 Si-O--Si-0--
I I I I I 
CH· 0 CH2 CH2 CH2 I 2 I I I I 
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CH2 CH2 CH2 CH2 
I I I I 
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I I 

HO-CH HC-OH CH CH / 
I I / 'c-cf 'c-o 

H2C c-c- CH2 H2 H2 
H2 H2 

Ethylene Glycol Linkage Poly(Ethylene Oxide) Linkage 

Figure 8-2. Ideal Structure of Epoxy-Diol ORMOSIL. 

Spirooxazine compounds do not exhibit photochromic properties in pure solid 

form. Spirooxazines are photochromic when dispersed in a host medium, such as an 

alcoholic solvent. Thus, either for fundamental research or for application development 
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they must be dissolved in an appropriate solvent. Device applications dictated the use if 

all solid state media. The goal with the work described in this chapter is the development 

of a solid state spirooxazine-doped medium that retain its photochromic character in an 

air-stable form. 

The studies on preparation of sol-gel derived photochromic materials have been 

of interest to many researchers. Avnir et al. 8.1,8.6-8.8 were the first to study the 

photochromic dye aberchrome-670 and spiropyrans in sol-gel. They observed unusual 

optical properties in these materials using tetramethoxysilane or polydimethylsiloxane 

precursors. They concluded that the photochromic behavior was strongly tied to the 

polarity of the cage within which chromphores were prepared. reverse photochromism 

They found that the photomerocyanine form of spiropyran compound was stabilized by 

strong hydrogen bonds to silanols of the cage. Thus, the stable state for spiropyrans in 

these gel hosts was the PMC rather than the spiro form. They termed this behavior as 

reverse photochromism. Previous work on the encapsulation of photochromic 

compounds included two major motivations: First, photochromic glasses used in the real 

world are based on a very limited selection of inorganic dopants. The ability to entrap 

photochromic materials in sol-gel glasses provides the possibility to use a much wider 

variety of photochromic molecules to tailor desired properties such as the nature of 

photochromism. The successful preparation of solid state photochromic materials using 

organic dopants is very important for practical device applications, and is the focus of 

much activity for companies such as Transition Optics. 8.1,8.8,8.9 A second aspect of this 

research pertains to the natural sensitivity advantage for molecules that undergo 

photochromic rearrangements. This promotes the study of environmental parameters, 

subtle influences exerted by permitting one to follow the structural and chemical changes 

which occur during the sol-gel process. For example, polymerization, aging, and drying 

are associated with physicochemical changes that may be probed spectroscopically. 

8.2,8.10,8.11 The studies of photochromic properties of spirooxazine in sol-gel media 
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began in 1994. 8.12,8.13 Spirooxazine doped materials have been previously prepared 

using ethyltriethoxysilane or di-sec-butoxyaluminoxytriethoxysilane as sol-gel 

precursors. 8.14-8.17 However, little is known concerning the interaction between guest 

and sol-gel matrix in spirooxazine doped photochromic glasses. The photochromic 

properties and luminescence of spirooxazine doped sol-gel derived ORMOSIL materials 

have not been reported. 

This chapter includes the study of the of spirooxazine doped air-stable ORMOSIL 

gels prepared by the sol-gel process. The ORMOSIL gel system of interest is an epoxy

diol modified silicate containing ethylene glycol and GPTMS ORMOSIL. The 

preparation and investigation of photochromism and luminescence effects of 

spirooxazine in air-stable sol-gel media is the major focus in this work. 

8.11. Experimental Methods 

8.l/1.A. Materials 

SPl was synthesized from 2-methylene-1,3,3-trimethylindoline and 1-nitroso-2-

naphthol by Prof. Meigong Fan. 8.18 Tetramethoxysilane (TMOS) was obtained from 

Fluka Company and used without further purification. GPTMS (96%) was purchased 

from Aldrich. Anhydrous reagent grade ethylene glycol (BG) was obtained from Fisher 

Scientific Company. The water was deionized and distilled. The ultraviolet excitation 

source was a model 160-W UV Lamp (Fisher Scientific Company) with peak emission at 

365 nm and a manufacturer-specified irradiation intensity of 11,600 µW/cm2. 

8.III.B. Sample Preparation 

Bulk epoxide ORMOSIL gel specimens were prepared using TMOS, GPTMS, 

EG, and 0.040 M aqueous hydrochloric acid as precursors. Molar ratios of 1.0 TMOS: 
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1.0 GPTMS: 1.0 EG: 4.5 H20: 3.2xl0-3 HCl were employed. A typical synthesis 

involved reacting 15.7 ml of TMOS and 6.7 ml of 0.040 M HCl in a Bransonic model 3 

ultrasonic cleaner until it forms a sol within 5 minutes at room temperature. Then 23.6 

ml of GPTMS, 1.9 ml of additional 0.040 M HCl, and 5.9 ml of EG were added to the 

mixture. The resulting sol was allowed to react in the sonicator for an additional 15 

minutes. 

Doping was achieved by the addition of SPl in ethanol to the precursor solution, 

providing a final dopant concentration of 1x10-4 M. Since the SP 1 compound is very 

sensitive to high proton activity in alcoholic solution, 8.19 a 0.2 M ammonium hydroxide 

solution in ethanol was added to the hydrolyzed sol in a dropwise fashion, with stirring to 

adjust the pH back to about 7 (using pH paper) before the addition of SPl. The resulting 

solution was poured into transparent polystyrene cuvettes and kept in covered containers 

at room temperature until the onset of gellation. After gellation, the covers were 

perforated to allow solvent evaporation. Aging and drying were allowed to proceed 

under ambient conditions for 3 to 4 weeks. Optical characteristics of the air-stable 

xerogels were subsequently determined. The final SPl dopant number densities (Nv) in 

the air-stable epoxide ORMOSIL gels were calculated to be 3.0x1Q17 cm-3. 

8.Ill.C. Spectral Measurements 

Absorbance spectra were determined using a Cary 5E spectrophotometer (2.0 nm 

spectral band pass). Continuous wave front face excitation and emission spectra were 

measured using a Spex Industries Model F112A spectrofluorimeter; excitation and 

emission band passes were 1.85 and 0.86 nm, respectively. All luminescence spectra 

were collected in the dark at room temperature and corrected for instrumental response. 

Time-resolved luminescence measurements of the SPl-doped gels utilized a 

frequency-doubled dye laser (5 ps pulse width; 82 MHz repetition rate). 300 nm output 
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from the dye laser was obtained upon frequency doubling of the 600 nm oscillation 

produced upon pumping via modelocked Nd:YAG laser (Spectral Physics 3800; 

frequency doubled 532 nm output). Temporal luminescence characteristics were 

obtained using a 0.5 M dispersing monochromator in conjunction with a synchronscan 

streak camera (Hamamatsu C5690, temporal resolution < 2 ps). The overall time 

resolution of detection system, including timing jitter, was less than 20 ps. The 

experimental apparatus is schematically shown in Figure 8-3. 

FL 

Modelocked Nd: Y AG Laser 

Frequency 
Doubler 

Frequency 
Doubler 

Dye Laser ( R6G) 

Monochromator Streak 
Camera 

Sample 

FL = Focusing Lens; CL = Luminescence Collection Lens 

Figure 8-3.Schematic diagram of experimental setup for time-resolved measurements of 

photochromic SPl-doped gels. 
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8.111. Results and Discussion 

8.III.A. Photochromic Effects in SP I-doped ORMOSIL Xerogels 

Figure 8-4 shows the optical absorption spectra of SPl-doped epoxide ORMOSIL 

xerogels before (Curve 1) and after (Curve 2) a 1 minute UV irradiation. The gel 

samples were observed to be colorless before exposure to the UV light source. Their 

absorption spectrum (Curve 1 of Figure 8-4) showed an intense band centered around 350 

nm. There was no peak in the visible region. Upon exposure to UV irradiation, the 

samples turned blue, resulting from the onset of an absorption band at 612 nm with a 

shoulder around 575 nm (Curve 2 of Figure 8-4). After irradiation ceased, the samples 

returned to their original colorless form and the bands in the visible region disappeared. 

The appearance of the 612 nm band was attributed to the formation of the 

photomerocyanine (PMC) product, as described in Chapter 3, section III (Figure 3-3). 

These results indicated that the SPl-doped ORMOSIL matrices result in the formation of 

air-stable photonically-active solid state bulk media. The retention of photochromic 

activities in the ORMOSIL gels, in contrast to the findings for the aluminosilicate gels, is 

attributed to the presence of organic groups, which provide the local environment for the 

molecular rearrangement. 
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Figure 8-4. Absorption spectra of SPl-doped epoxide ORMOSIL gels 

(1). before UV irradiation; (2) after 1 min. UV irradiation. 

8.III.B. Decay Rate Measurements 

The colored form (PMC) generated by illumination with ultraviolet light decays 

over a period of 50 seconds at room temperature to the colorless form in the ORMOSIL 

xerogel specimens. A typical thermal decay rate measurement is shown in Figure 8-5. 

The plot shows the decrease in the optical density for epoxide ORMOSIL after removing 

the UV irradiation. A plot of the natural logarithm of relative absorbance (A/Ao) versus 

decay time (inset of Figure 8-5) is linear, indicating that the decay is a first order reaction. 

The lifetime for SP 1 doped gels is calculated from the slope of the natural 

logarithm of the absorbance versus time plot. It is calculated to be 7.4 seconds for air-

stable epoxide ORMOSIL gels. The lifetime of photomerocyanine (PMC) in epoxide 

142 



ORMOSIL gels is much longer than that in the common solvents, which is reported to be 

approximately 0.5 seconds in common solvents. 8.20 Interactions between the 

photochromic compound and gel host material cause the thermalization process in the 

solid state sol-gel media to be much slower than that in common solutions. Molecular 

rearrangements clearly occur much more slowly in the dense, solid host. 
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Figure 8-5. Time evolution for SPl doped air-stable epoxide ORMOSIL xerogel 

absorbance at 612 nm following UV irradiation. 

Inset: Zn (A/Ao), versus decay time (A= 612 nm); 

( ... ) = actual data, ( - ) = single exponential fit. 
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8.III.C. Fluorescence Studies of SP I-doped ORMOSJL Xerogels 

Figure 8-6 shows the fluorescence emission spectra of SP 1 doped epoxide 

ORMOSIL xerogels excited at 350 nm (Curve 1) and 480 nm (Curve 2). The intense 

emission band centered at 430 nm was observed to remain essentially unchanged over 

excitation wavelengths ranging from 320 to 370 nm. This band is assigned to radiative 

relaxation from the lowest excited singlet state of SPl. A new much weaker 

fluorescence band, centered at 550 nm, was observed when the excitation wavelength 

was increased to 480 nm (Curve 2 of Figure 8-6). This band did not exist at the 

beginning of the sol, but was detected as the gellation processed. It was found that the 

550 nm band is quite similar to one found in isopropanol solutions· acidified by the 

addition of HCl as shown in Figure 5-2 in Chapter 5. This band was previously assigned 

to the protonated product of SPl, SPl•HCl, in acidic alcoholic solution. This suggests 

the formation of a new species in the aged gel, SPl •HO-Si, which is postulated to result 

from protonation of SPl by acidic Si-OH sites in the gel network. This finding is 

consistent with that reported for the all-inorganic aluminosilicate gel specimens. 

These results indicate that the acidichromic process is observed to occur in the 

sol to gel transition process for both the aluminosilicate gel (Chapter 7, section 7.III.B.) 

and ORMOSIL hosts. 8.11 Unlike SPl in aluminosilicate gel, the acidichromism process 

did not dominate during the development of air-stable organically silicate gel 

preparations. A small portion of SPl was retained in the form of a protonated product 

prior to irradiation, while the majority of SPl remained in its spiro form. This is part of 

the reason that the photochromism is still observed in the xerogel stage for ORMOSIL, 

while the photochromism is lost for aluminosilicate gel. 
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Figure 8-6. Fluorescence emission spectra of SPl doped epoxide ORMOSIL gels. 

(1: A.ex= 350 nm; 2: A.ex= 480 nm) 

8.III.D. Time-resolved Fluorescence Decay of SP 1 Doped Gels 

Fluorescence decay curve for epoxide ORMOSIL xerogel is shown in Figure 8-7 

(A.ex = 300 nm; A.em= 430 nm). Radiative decay curves of the SPl guest were fit to a 

double-exponential relaxation behavior according to equation (8-1 ). Correlation 

coefficient of 0.993 were found for epoxide ORMOSIL gels. 

k = fit exp (-xi't1) + Ji2 exp (-x/'t2) (8-1) 
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Figure 8-7. Radiative decay curve of SPl doped epoxide ORMOSIL gel 

The radiative lifetime of the long ( 'rJ) and short ( r2) components were found to be 

2.64 nsec and 194 psec for epoxide ORMOSIL gels. The fractional intensity of the 

components were.fi1 = 0.22 and.fi2 = 0.78; fluorescence decay was fitted using a double

exponential model. The longer lifetime (2.64 nsec) has been tentatively assigned to a 

radiative relaxation from the lowest excited singlet state of SPl to the ground state. The 

fractional intensity of this radiation is only 22% of the total emission intensity. This 

indicates that most of the first excited singlet state S 1 energy is transferred to a secondary 

intermediate. According to the literature, 8.21 there is no excited triplet state involved in 

the photochromic process of SPl. The second decay component, having a very short 

lifetime of 194 psec, is tentatively assigned to a radiation process out of the excited state 
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intermediate, designated X 1 *. It is noted in the literature 8.20 that cleavage of the spiro C

O bond, which initiates photochromic rearrangement of SPl, occurs on a picosecond 

scale. Because the ultrafast photochromic reaction, the lifetime of X 1 * is very short. In 

other words, the observed fluorescence lifetime r2 will depend on the competition 

between the radiative, photo-initiated chemical reactions, and other competing non

radiative processes according to equation (8-2): 

't = 1/(kj+ k,+ kn) (8-2) 

In this equation, kJ is the radiation relaxation rate, kr is the initial chemical 

reaction rate of photochromism of SPl and kn refers to all of the non-radiative relaxation 

rate except mentioned chemical reaction. r2 represents the lifetime of the first excited 

singlet state of the intermediate, X 1 *. 

The results of the radiative lifetimes indicate that only part of the fluorescence is 

from the lowest singlet state of SPl. The fast radiative lifetime is very short compared 

with the longer S 1 to So transition. The photochromism is observed for this organic 

modified sol-gel derived media in the air-stable xerogel stage. It is postulated that the 

sol-gel host slows the photo-initiated molecular rearrangement reaction to the extent that 

it may be observed using the apparatus shown in Figure 8-3. 

8.IV. Summary and Conclusions 

Photochromic epoxide ORMOSIL glasses containing spirooxazine have been 

prepared and investigated. These specimens show regular photochromism instead of 

reverse photochromism which was observed by Avnir et al. 8.1,8.6-8.8 for spiropyrans. 

The photochromic properties and thermal decay of these sol-gel derived glasses are 

studied. The thermal decay of spirooxazine doped xerogels is found to be much slower 
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than that in common solutions because of the presence of hybrid organic/inorganic 

polymers. The fluorescence spectra of SPl doped specimens have been conducted 

indicating that acidichromism which observed in aluminosilicate is not a main process for 

ORMOSIL preparation. Picosecond lifetime studies show a double exponential decay. 

The photophysical process of SPl derived media has been discussed. 
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