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CHAPTER 1
INTRODUCTION

For over fifty years after the publication of the special
theory of relativity, it was widely assumed and beleived that problems
of imaginary energy and causality would rule out the existence of
faster than light particles (called tachyons) . Einstein himself made
the comment, in his original paper on the specia_ll theory that "velocities
faster than light have no possibilities of existence". In 1962, Dhar,
Bilaniuk, and Suclarsh‘an1 challenged this assumption. By postulating
an imaginary rest mass, they were able to overcome the objections
surrounding an imaginary tachyon energy. Such a postulate ruled out
accelerating a particle from a speed v less than ¢, to v greater
than c, or vice-versa; but it kept open the possibility of tachyon

creation, annihilation or exchange., Since then much has been written

1-19
on tachyons , most of the papers dealing with the classical aspects of

tachyons, But the classical study of tachyons is very limited and quite
unsatisfactory. Feinberg? was the first to examine the quantum aspects
of tachyons. His paper ruled out the possibility of spinless tachyons
being bosons (a marked departure from ordinary particles where spinless
mesons are bosons). Sudarshan3 followed Feinberg, and in his paper
reached quite the opposite conclusions, namely that spinless tachyons
are bosons. On the assumption that spinless tachyons are participants
in radioactive beta decay, Alvager’ made two attempts to discover

1




tachyons, but without success.

There is a major handicap in developing a tachyon theory.
There is no experimental milestone to guide us along. Perhaps that
accounts for the widely differing conclusions drawn by different
tachyon researchers. In this paper an attempt has been made to develop
a scalar tachyon field, that closely resembles the field developed by
Sudarshan and Dhar3, Later the tachyon spinor field is also developed.
We find that in a tachyon spinor field, energy momentum is not an
observable. Helicity acquires an added significance, in that it is one
of the few physical quantities that are conserved in both tachyon and
tardyon spinor fields. We obtain that tachyon exchanges, if they exist,
are likely to be long range in nature; and as such are more likely to
be found in gravitational and coulomb experiments, than in strong and

weak intercation experiments,




CHAPTER 2
CLASSICAL TACHYON THEORY

Einstein's theory of relativity is the only physical theory
that appears to place a limit on how fast objects can travel. This
apparent restriction centers on two factors. The first has to do with
energy expressions becoming imaginary for object velocity v > c.

The second one involves causality. Let us study both these objections
and see how, if at all, we can overcome them,

According to the special theory, the energy of an object of
rest mass m, moving with relative velocity v, with respect to an
observer is, as measured by the observer, given by

mc2

Vi-vZ] cZ

If v > ¢, then assuming the rest mass is real, the energy E becomes

E =

imaginary. But energy is an observable physical quantity, so it must
necessarily be real. Therefore one could argue that faster than iight
velocities are physically impossible.,

But there is a way out, as suggested by Sudarshan!. Why not
assume that objects moving faster than the speed of light have an
imaginary rest mass ? Then the above energy expression becomes real.
We must note that the rest mass is not an observable quantity. All
physical observers move with v < c, and as such can never be in the

rest frame of a tachyon. Hence the imaginary rest mass of a tachyon

3




is not a measurable quantity. This approach closely parallels the one

used for photons. It would be physically impossible to accelerate

a tardyon (an object with v < c) to the speed of light, on account of

the infinite energy required. Yet photons,‘ moving with the speed of

light do exist, although their rest mass is not an observable,
Einsteinian physics splits all particles into three distinct

groups, as shown in the diagram on the next page :

Tardyons , v<e j
Photons , v=_c 3
Tachyons , V>cC .

If a particle belongs to one group, it cannot be accelerated or
decelerated into another group., But this does not rule out particles
from different groups participatf: > in physical phenomena, as it
happens in particle creation, annihilation or exchange.

The more serious objection to tachyon existence centers
around causality. To appreciate the nature of this difficulty, comsider
observers L and L”, having a relative speed v between them. Let
the origins of L and L” have emitters (receivers) A and B as shown :

ER A

A > B
Let us perform a simple experiment involving a tachyon signal sent from
A to B, Let B, on receipt of this message, immediately send a tachyon
reply back to A. Let us study how L and L” will observe these message
transfers.
1) The first tachyon is emitted at A, To L this event occurs at

xl =0, t:1 = t, and the tachyon has a speed u. As L calculates, L“ ought
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to see this event occuring at x; = ~yty, t; = ty, and the tachyon as

having a speed u* = u-v
l-uv/c

2) B absorbs the first tachyon and immediately emits the second tachyon
towards A, To L”, the first tachyon has covered a distance vty, with
speed u”, As such the time interval between the' first tachyon emission and

gbsorbtion is At” = vty = vty(l-uv/c?)

3

u (u-v)

Therefore x” = 0, t* = ty + At’= __ut
2 2 -(_-T_u—v Y

As L” calculates, L ought to observe a time interval At = At”(1l + u’v/c?)y,

as such x = vty = uvt ,t = ut
2 2 (v 2 (v

3) A absorbs the second tachyon, which had a speed uI with respect to L”.

As L sees it, this tachyon has covered a distance uvt with speed u’~v
(=) (T )

As such the time between the second tachyon emission and absorbtion, as seen

by L 1is Atl = uvt(l-u;v/cz)
(u-v) (u;-V)

Therefore to L, the second tachyon has been absorbed at A at the space-

~time position x = 0, t = ut + uvt(l-u’v/c?)
3 3 -(_u-v.) 1

(u-v) (u; -v)

Consider the time difference ( ta-t). Let u = nc?, u; =n, c? ,

v v

vhere n and n_ are positive numbers,
Then we have (t -t) -[(n+n)c2-nn c? - v?
3 ! 1 vt .
(ac? = v)(m o7 - )

This term becomes negative for nn1 > n+ n1 ~ v2/e? .




Therefore 1f tachyon speeds u and u; were so chosen as to satisfy
the above condition, then an observer could receive a reply to a
message, before sending out the message. This is a clear violation
of causality.

No one has been able to satisfactorily explain this
difficulty. As it stands there is a clear conflict between free
tachyon existence and the maintainance of causality. Nevertheless we
must note that so far we have studied tachyons, only from a classical
viewpoint. All particle physics is basically a statistical quantum
mechanical phenomenon. The classical study of tachyons is very
limited, and could possibly be very misleading. It is with that’
thought in mind that we now develop the quantum field theory of

tachyons.,




CHAPTER 3
REAL SCALAR TACHYONS

The Klein-Gordon equation for a tachyon is ([J + m?) ¢(x) =0,
where m is real, and is the meta mass of a tachyon. Expanding ¢(x) in

*
momentum space, gives

o = m Y2 1 dh o0 e 502 + w2) .

Integrating over |1£| , using the Dirac delta property

‘ f(x)
[ E(x) 8{g(x)} dx = I'g"'(?rgﬂ , where g(x) = 0,
[s)

we obtain

foa 2+ u?)t e )

i@ = @02
2

where |k| = (kg + mz);5 , and [/ d? is the integral of the solid angle over
all directionms.

Separating into positive and negative frequency parts, we have

* Note : the metric (+ 1, - 1, - 1, = 1,) , and natural units in which,
c=4 =1, are used throughout this paper.

8



o0 = @ ra s a0l s )% & 1)
Q

o
+ (_2_11)"3/2 fda S odk (k2 + )t T g
2 ©

In the second integral above, on letting k -+ -k, we have

~3/2

o(x) = (g%) fa f dko(kg + m?-);‘{ o ikx o(k) + Lkx o(~k) } .
(o] .

We define ¢ 70 = @ Vs 5@ 02+ )t )
2 o

and 67 = @0 Y r a1 a2 + )Ry, 2
2 )
so that o(x) = <b"+(x) + ¢ -(x) .

Since ¢(x) is a field operator for real tachyons, we obtain

Wty o7 .

Commutator Expression

We are interested in the commutator expression [¢(x),¢(yi]

for real scalar tachyons. Using eq. 1), we obtain

[¢(x) .,¢-(y)] - @3 s £ &7 Ak 2+ w)? £ 22+ n?)
4 ° 0

. e—i(kx + k*y)

o
-

[0, 606)]
cee 3)
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vhere [k| = (k2 + 2) % , and [k*|= (k7% u?) %,

We do know that

h(x),«b(y)] = a2 st e ) T sae2 - w2

for real scalar tardyonms,

and

lfbm(X),dJn(y)] = (21r)-3 g f a* s(ko) ¢~lk(x - y) S(k )
for photons,

Therefore by comparison we assume that for real scalar tachyons,

4 -ik(x -

@m73 s dkek 3 e V) sk2 + n2) )

[6G0 )]

where e(ko) + 1 for - ko>, 0

= =1 for kocs 0
Note that in the limit m -+ O, the tachyon commutator eéxptesaion
reduces to the usual photon commutator.

One could well question the Lorentz invariance of eq.3”) ,
on account of the presence of e(ko) « To examine this problem in detail,
let us refer back to the special theory of relativity, which defines
energy-momentum, for a tachyon, by

pH = imlg_}su ’

dt

where dr? = dt? - dx* 1is an invariant.
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Tachyons, having space-like momentum, dt is not sign invariant. Therefore,
if we want p]’l to transform like a four-vector, we will have to take drt,

as * (1~ 9_2);5 dt, where u :ii:__g , 18 by definition, the velocity of
dt

e ... mu
the particle., Then we have pu =[i: y ¥ —— ] .
- 1% - n*

Consider the case, when the sign in front of the momentum expression, 1s
negative, This implies that an observer may see a tachyon, whose three
velocity is in opposite direction, to the direction of the relativistic
momentum. One could accept this as amnother strange characteristic of a
tachyon; or one could modify the formalism to remove this particular
tachyon behavior. In essence, it is a question of personal philosophy,
for at this stage, there is no experimental guidepost to help us out, In

this paper, the second approach has been chosen.

Let us consider a one dimensional case of two observers
L and L”, with relative speed v between them. Let L see a tachyon of
energy p , momentum P, and speed u, as shown,
v L”

> .

L
*
->
Po spxtu-

1f energy momentum were to transform as a four-vector, L would calculate,

that L” ought to see the tachyon as having cnergy p;, momentum p°, and
x

speed u”, where

® - o - » u- -
Pg = Py = WY, PL = (P, = WP )Y, and u” = T and v = (1 - v?) %,
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If uv > 1 , u and u” will have opposite directions. But for a tachyon
2 > pg . Therefore p_ and p; are always in the same direction; which implies
that p; and u” are in opposite directions. To remove this discrepancy, we

note that whenever uv > 1 , we have p o < P H

while whenever uv < 1 , we have p o > v, -

Therefore , if we assume that for p_ > vp_, p; = (po - va)Y,

o}
and p; = (px - vpo)v;

while,for p, < vp_, p] = =(p, = VP)Y,
and p; - -(Px - VPO)Y;
then the reldtivistic momentum will alwayg have the same direction as
that of the three velocity. Also, the energy asign would be the same for
all observers.

The assumption made above, implies that energy momentum does

not transform as a four vector, but rather as pu’ = + 'auv pv; where a"v

is the Lorentz matrix, We must bear in mind, that the essential thing in
relativity, is that observers be sble to communicate with each other. It
is not of fundamental importance that energy-momentum be a four vector.
Returning to eq., 3”), on expanding the integral and us:l.ng,‘:t;he
properties of Dirac delta functions, we have
3 © \ " -1k (t - t‘)+i(k§+m2)!’~.(_§-z)
[¢(x).¢(y2‘ - @pTsa s & (2 + o) ek ) e ’

=00

= 1=

'where;--r-l-
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Comparing this last equation with eq.(3), implies

2e (ko)

(600,6") = s D@+ an s, +k . v i)

(kg + mz);s

On observing the right hand side of 4), we find

(e8] = -[67,000) ,

which implies (¢ (k),cp(k‘)J is a commutator, and not an anti-commutator.
The field operators obey Bose-Einstein statistics. Therefore real scalar
tachyons behave like real scalar tardyons, in that both are bosons.

In eq. 4), on letting k* + =-k”, the commutator becomes

e(k,) s @ - 59 sl = k) . vu5).

(k 9 ("'k‘) =
(s00,00). @+ n)®

R (k2 + 2)* , 1
If we define a(w,k)) = —75—  ¢(k), where k| = 2 + v*)%,and k> 03

then from eq. 2“), we have
t . 2 + u?)*

a (u,ko) = -—27-2— ¢$(-k) .

The commutator expression 5) becomes:

- "' A -~ ~
(k). @ k)= 8P @=a”) 80, -k .
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Further eq. 2) reduces to

s Yo = (%)‘3’ 2 aq 7 a0l + w2)% X o)
and
o t o
6 T(x) = (%)‘3/ 2 rag K dk (k2 + )% e o (k) . e s6)

Commutator Function

We define the commutator function as A(x-y) = -1 E(x),d)(yﬂ _3
Théréfore AMx) = 41(217)-3 fd4k e'-:"kx e(ko) 8§ (k% m?),

Integrating first over ko’ and then over the solid angle, we have

A (%) 2 (2m)™2 fwdlkl————g‘?'lm(l&m 1n{(? - w2§* t}
X = - 2% sin - m ttr .
m O x(k? -~ o?) -

vhich means A(X) = 0,

t=0

But A(x) being an invariant function, it vanishes for any space-like
vector x. This does not imply that tachyons convey messages with v < c.

For as B:(x),q)(yﬂ _ is a c-number, we have
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[6(x),0(M]_= 9:[¢(x),¢(y)]_wo, where 9, is the vacuum state.

Expanding the right hand side of this equation, into positive and negative

* -
frequency par*s, noting that: ¢ +(ri) 00 = @o é (rz) = 0, we have

b@.eml = e*@ s Mo, - ety e @ e, .

Therefore A(x - y) = 0, implies

xO - yO
neT@ T e = 0 et 6T e,

which means that a transcendental tachyon going from x to y, is equivalent

to one going from y to x.

Consider the commutator function

ik.x % %
_ =X S1(k2 - m2) %t 1(k? - ?)°t
A(x) = -1(2m) 3 ok e {e - e }.
2 k2 - o)
k| >m

Taking the partial differentiation with respect to time, at t = 0, of A(x),

we obtain

A (x) 2(2m)

¥ | = -5(x) + -~ { sin(mx) - mxcos(mx) } .
t=0

(=)
at
t=20

It is worth noting that for real scalar tardyons = -5(x) .
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Hence real scalar tachyons cannot be localized in space--—a quantum
mechanical result in agreement with classical tachyon theory. But

because of the factor 1/x3 , however, 3A(x) +0, as x + =,
ot

t=0

Propagator Function

In the quantum field theory of interacting particles, the vacuum
expectation value of the chronological product plays a crucial role. It
would be appropriate, ‘at this stage to develop the same value for a real
scalar tachyon field. By definition, the vacuum expectation value of the

chronological product is

o T 00,000 PO, = & 66 ¢, , for 0 >y .

¢: ¥ &, for = xy0 . ceed)

where ¢(x) and ¢(y) are field operators at x and y respectively .
Expanding ¢(x) and ¢(y) into positive and negative frequency parts, and

utilising the properties of the vacuum state, we have
* *  + _
o, T{o(x),0(y)} @, = o ¢ "(x) ¢ (y) ¢ , for x> y0,

4»: o Ys) ¢ "o o ,for <yl . .9
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The commutator function {¢ t®,4 “(y)]_ being a c-number,
(0@ ") = o (6 T, @) e .

Utilising the properties of the vacuum state, and the fact that the field

operators obey Bose-Einstein statistics, we have
@ m) = et e m 9, .
Similarly, it can be shown that

(6" T®)_ = -0 4T 6 T o, .

Feeding these expressions into (8), gives

oF o0 ,0mY o) = =8 T(,8 ], for @ <50,
= (67,6 "m]. , for 20> y0 .
Introducing the step function 6(s) = + 1 , fors >0 .

- 0, forsx0 .

glves
or To(®, 0 e, = [0 7@ ,0 "W]_00 - ¥

- [0 T®.0m)_0G° - =0 .
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But from the commutator function,we do know that

[¢'(x).¢ +(y)] ORI LY St

i |.]£|,>4m (5-2 - mz);i
and .
{cp +<x>,qr<y>] _m_2n7d s ak fRE-Y)

2 |~k|>m (1_(-2 - mZ)g )

where k= k2 ~ mz);i;
which implies

o) THO(X) 0} 8 = -<_z%>'3 £ a% TEE DY) g0 -0

2
k| 3n & -
1%, . 1kx
Let us define a function Ac(x) = (217)-4 ! dke

- (m? + 1.(2.*; ic)
[k |>m

c ',
A"(x) has poles in the ko plane at kol and at k 02 ywhere

k - (1_‘-2_ m2);1 - E(&Z - mZ)"!
2

bl

k, =-02~ 2% + 122 - w)7?
02 - ==
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02 "x°>0

To evaluate Ac(x), we can perform contour integrals in the two distinct

cases : a) X > 0,b) x0 < 0.

- ® ~ik.x + ik x0
Case a) : =0 > 0, then AS(x) = @m™* fa%k sak e °

[CRER T ﬁco - kyo)

k[ >m

where the contour integration over ko, involves a pole at koZ' Performing

this integration, Ac(x) reduces to

2% = 1273 £ e e, where k= (62 - w2)? s

k2 - w?)?
|k |>m

Similarly, for X <0 , the pole at kol ig involved, and Ac(x) becomes

2%(x) = 12073 1 dk &, vhere k= (2 - )% .
2 (k2 - mZ);i
k| m™
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Therefore Ac(x) can be written as

28 = ~12m) 31 1 ak & ax®) + £ adk X ox0) 3

k 2k°

!}.‘.I.?rm |k|>m
where k= (k% - )%
Comparing this expression with 9), implies
c ®
A (x=-y) = +#1¢ T { 6(x)59(y) 1 2

ikx .4
* . - :
Therefore & T { ¢(x),¢(y) Yo =-1(m) b J - .e dk )
™+ K2+ ie)
kl>m

We call AS(x - y), the propagator function.

Dynamic Variables

Choosing the Lagrangian for the real scalar tachyon as

*
gt 2 8 4 2420,

L = 1
70 " ot 2

* Note : ¢ 3enotes the normal order product, as in Bogoliubov and
Shirkov. The Latin indices have the range 0, 1, 2, 3.
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we obtain, on applying the Euler-Lagrange equations, the Klein-Gordon eq.

for a tachyon, ([J + %) ¢(x) = 0 . Knowing the Lagrangian, we can

find the energy-momentum tensor

mn mm nn .0 ] m
T = g g 3 —Qm—in IS L.
X 9ox

This leads us to the energy-momentum vector PP - 1 dx .
Let us consider the energy vector operator P° = 5 1°° dx . Plaeing in
the value for T°° in the expression for P°, and expanding our field

operators into positive and negative frequency parts, P° takes on the form

+ .+
X X
+/ {232-—5914‘- 29 ¢ 14
“ax“ ax“ e ? =
+ro30 R R L 2T rax
X 0%

In the above the normal order product has been removed by making use of

the boson property of commutation
Consider the first integral of P°. on expanding the integral
in momentum space, using eq. 6), we find that it contains the factor
-(% knk; + m?). Integrating over x, implies k ~k“, and ko = k;,the.refore
the first integral of P° vanishes, Similarly, the third integral of P°

also vanishes. Let us consider the second integral of P°, Expanding in
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momentum space, this integral takes on the form

(?'—“-)-3 Jaa S S dko(k% + mz);‘ i) dk‘;(k(;2 + mz)l‘ f ax e"i(k - kM)x
2 0 o

A "
o _ 2 o 1
tii (knk.n ) a (m,ko) a(w ,ko) .

Integrating over X, using the Dirac delta properties, this integral
reduces to

co

1‘ ~ ~
2 4 2v% .2
! dSZof dko(ko + m*) k0 a (w,ko) a(w,ko) .

Therefore the energy operator takes on the form

m .r A .Y
pP° = e J de J2 (2 + 12)% a @,k ) alak) .

-~ 2 ;‘ ;i A
Let us define al(m,ko) (ko + m?) ko a(m,ko) ,

then
t oA
al (w ,ko)

toa
a2+ u2)% k% a k) 3
and we obtain the final expression for the energy vector operator as

o toa a
o ¢
AR YE R ENCESIR R

.'- ~ »
The product al(w,ko) al(w,ko) can be interpreted as the average density of

particles of energy k o® Space orientation w, and having no charge or spin.




CHAPTER 4

COMPLEX SCALAR TACHYONS

We develop the complex scalar field in analogy to the real
scalar field, We will now have two mutually conjugate functions
*
¢ and ¢ , obeying the Klien-Gordon equation, Expanding ¢(x) in

momentum space, and then integrating over the radial component h_i‘ ’

we have

o) = @n~ % ran s a e a2 + m?) 12 40
solid_m 2
angle

vwhere [k| = (kZ + n?) 1/2

Splitting ¢(x) into positive and negative frequency parts, gives

-ikx 1/2

i@ = en™Y? ra s a2+ ad)
o ——————t—
5

¢ (k)

0
v @™ ra s &l a2+ 22) 2 g0

-0 —-——2——-— .
In the second integral, on letting k + -k, we obtain

00 = @™ ran s oa, 62+ 0P ST G + g )
° -z

23
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Taking the complex conjugate of the last integral, gives us

'» = e @ s @ 02 + 1) V2R + Tt )
° 2
L . = 2 2 1/4
et us define : a(d,k) = (&2 + me) ¢(k) ,
I
-r
b @k = &2+ m) e
X/

with |k| = (k2 + w2y /4

< t
Then we have : a (#:k ) = (kg + m2) 1/4 ¢*(k)
72
b@k) = 2+ w24 4w
72

and our expressions for ¢(x), ¢*(y) become

o) = e w1 & 2+ a) VT g,k ) + b 0,k )
° 72
and
@ ¥
@ = e ra 1 a 02+ 024 0,k ) + b0,k )
- e T
* -3/2 ® 1/4 -ik
We can now define ¢ (x) = (2) fda J dko(kg + m?) e X a(d,k )
° B
| i} :
F@z en ¥ a, g d (k2 + n?) Yo thx 0,k

° V2
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Then we have qB*-(y) = (211')-3/2 Jdaqe J dko(ki + m?) 1/4 eﬂ‘y

.I.
a (a,ko)
° 7z ’

and
e = eV s a5 a2+ ) T bk,

° 72

- which gives us

oD = 6@ + @
Fe = tm ¢ T,

and

* -
6 X = ¢ Tw.

Commutator Expression

*
To calculate the commutator [¢(x),¢ (yj _ » we utilise

*
the ¢(x) and ¢ (y) expressions developed above. This gives us

[¢(x),¢*(y2] = @mTdrdas et s G+ o) L a2+ 2y’
2 o o oo

1 e-i(kx + k’y) [a(&,ko) sb (6f,k;):’

. t
+ o 1kx-k’y) [g(@,ko),a (1'% IR ()

. ¥
il NCRB RIS

woy et ¥
+ ei(kx + k Y)x_b (a’ko) ,a (aa’k;) }.
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But as with the real scalar field, we assume that

[cp(x),q,*(yﬂ = @2n” 3 ax eCk,) k(X = Y) 502 4 )

Expanding this integral into momentum space, and then integrating over

the radial component |k|, we have

{‘b(x),tb*(yi = (2_11_)"3 [da S odk (k2 + )% [ e ik(x-y) _ dk(x - y),
2 0

Comparing this last equation with eq.(l), gives us

+ (2)
a0,k ). 0"k =8 0-0) 8k, - KD
t (2)
b @b k)] = -5 @ -0 ok, - kD
[acak) ,b(a',k;)]_ = 0

t +
[b (@,k),a @) = 0 -
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" Dynamic Variables

Choosing the Lagrangian for the complex scalar tachyon to be

gnnzal*_gg: + m2:¢*¢: .

L{x) = I
n an an

we obtain the energy-momentum tensor

* *
mm nn ] ] ] 9 mn
Tmn = g g :—Qm-_in + -inlm= ..g L’
X 9x 9x~ ox

which leads to the energy momentum vector

o= s Tond_ig .

% %*

Consider Too==_8_<k_ 3¢ + 3% 3¢ s -L,
0o .0 0,0
9x  9x X ox

On placing the value for L, 7°° becomes,

Therefore on expanding into positive and negative frequency parts,
the energy operator P° will take on the form,
4+ +
. *
PO o= sz B2 2" frax +

n ax“ ax“
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e+ -
R e S AR R

X 93X
e~
+ J R L Y PPl R
i o,n ,n =
x  9x
-
+ TR R R N T ..2)
" o

In the above expansion we have utilised the boson property of
commutation of the field operators. Let us expand into momentum space

the first integral in 2) . Then we have

L
: 3¢ 9 o B +
fax{ g 2202 - w2
9x~ 9%

= (ﬁf_)-'3 fdq fdaa” f dko(k% + mz)% I dk;(kgz + mz)‘ﬂ fax o—ix(k + k)
2 0 o .

B . o 2 ", o
f=5 k k2 - Ja(@,k)) b(@3k))

On integrating over x , we find that the factor { X kk’ - n? }

- goes to zero, Therefore the integral in question vanishes. Similarly,
we find that the third integral in 2) also vanishes, Let us comsider

the second integral in 2). Expanding it in momentum space ,we obtain

Fax {32 2 | 2%,
- "1n .n n
9x ox
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(g_w_r_)'?’ rdQ rae* s dkockg + m2)% J dic? (k22 + )% rdx ik - k)x

, +
{ -Ikke - n }a @,k a((B,ko).

On integrating over x , the above integral becomes

® +
. 2 12 2
rda OJ' dko(ko + m?) k2 a (d),ko) a(a,ko) .

Similarly, the last integral of 2) reduces down to

°° +
L
[ae of dko(kg + m) kg b (ds,ko) b_(d!,ko) .

Hence the energy vector operator takes on the form

© . -|- 1-
P°= fdR S &k (2 + 2)4 K2{a (0,k) a@k) + b (Bk) b@k) L

(o]

= (k2 + g2y 1k
I1f we let al(a ,ko) (ko + m?) kS a(d!,ko)
and

e (k2 + g2y 13
bl(a,l;o) (ko + m*) ko b(a,ko) ’ ) )
then p° reduces to
- -[- +

o ,
P = [dn of dko ko { al(a,ko) al(a,ko) + bl(a,ko) bl(@,ko) }.



Charge

The current four-vector > can be determined from the

Lagrangian, and for a complex scalar field, it is

R Y T X T
n

ox "
Therefore the charge of the field, which is Q = [ 1° dx , becomes

Q = 4/ {6 2% _ 20 ¢t: dx .
0 (o]

ox ox

Splitting into positive and negative frequency parts, and removing the
normal ordered product, by utilising the boson property of commutation,

the charge takes on the form

Q = 1/ { o™t | 2™
3x° on

+1700 3 6T e Y ax
x° 2’
+170 67 - ¢ Yax
(o] (o)
9x Ix
+17 0 67 a8 | 2 ¢ Yax o)
[o) e .

ax° 9%
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On expanding the first integral of 4) ,into momentum space, we have

10t | ot et ra
x’ ax°

-3 - 2 . ;5 ® AL @ ;‘ -
= (_2__21;) fdae s 4o of dko(kg + m) of dko(k°2+ m?) (ko - k)

[ dx e-i(k + k)x

b(w‘,k;) a(w,"ko) .
On integrating over x , we find that the factor (ko - k;) goes to
zero . Therfore the entire first integral of 4) vanishes, Similarly,
we can show that the third integral of 4) also vanishes, On expanding

into momentum space, the second integral of 4), and then integrating

over x , we obtain

11‘{-—‘”~¢M— IRTI
30 : [o] —_—
>4 9x

® +
- - 2 k%
;an fdlco(ko+m2) kob

o @,k,) b(&,ko) .

Similarly, the last integral of 4) reduces to
® 5 3 toa -
s da o.f dk (k2 + w?)" k& (k) alw,k) .

We thus obtain the charge of the field as proportional to
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2 4 2y -
S dan of dko ko(ko + m)” {a (w,ko) a(m,ko) b (w,ko) b(w,ko)}.

Q

Introducing al(w,ko) and bl(to,ko) as defined in eq. 3), we obtain

Q= [ do of dko { al(m,ko) al(w,ko) - bl(w,ko) bgm,ko) |

It follows from the structure of P* and Q, that a.:(;,ko)
is the operator for the creation of a particle with energy-momentum k
and charge : 1; while a.;l((:),ko) 1s the annihilation operator for
the same, bl(gs,ko) is the creation operator for a particle of energy-

momentum k and charge - 1 3 while b'(w,ko) is the annihilation

operator of the same,




CHAPTER 5

TACHYON SPINOR FIELDS

The tachyon Dirac equation is { % yn -a—n + ml}yx =0,
ox

where the Yn are the Dirac matrices. As Y(x) also satisfies the Klein-
-Gordon equation ([J+ m?) ¥(x) = 0, we have,on expanding y(x) in

momentum space,

b @ = (am~3? ; g olkx b, (k) 8(k2 + m2) | o)

where ¢(k) satisfies the Dirac equation in momentum space ¢

n
(knv

Integrating (1) over the radial component |k|, using the properties of
the Dirac delta functions, we obtain

b x = (_2_129"3’ Pra o a0+ mt S a0,

vhere [k| = (k2 + mz);! 3

Splitting this last integral into positive and negative frequency parts,

we have

33
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~3/2 -ikx

b, () = (_z_;) rda of ak (k2 + 2)% e 8, 0)

(o}
+ (21:)"3/2 fa&e S dk (k2 + m?)% e'ikx¢ x) ,
"5 o O a

-0l

In the second integral above, changing k + -k, gives

3/2 -ikx

sa 1 a2+ 5 10 + & 0,

p (%) = (2m)~
* 2 )

.'.
Introducing the Dirac conjugate Y(x) = V¢ (x)yo‘, we obtain

T = e V2 r; s 62+ M wn® ¢ gy
2

0

-~ V) ~ 1
Let us define s z . a (w,k ) Uu(m,ko) 3 ¢a(k) s

]
+

™

+ v
o u ~ - 1 s
and b“(w,ko) Va(m’ko) 3 ¢a( k) ,

pn==x1
vhere, as usual, [k| = (k2 + mz);i P
Then we obtain for the conjugate expressions

) :
~ - 1l * °
\ E .1 8v(w’ko) U (u,k ) 7 9o, ®)Y
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Therefore our field operators become

_ -3/2 ® o o+ oY, ~ikx ~ v,*
wa(x) = (27) fan of dko(ko + m%)“{e 3 av(w,ko) Ua(w’ko)

1kx T AT
+e I bu(w,ko) Va(m’ko) },

M
and

T = @0~ ?sa FEXCN u2) ¥ &1 ﬁbﬁ(‘;’ko) Tk

¥
iky ° =V
+ e ﬁ av(w,ko) UB(m,ko) }eeo2)

Let us define

v @ =0 ra el s w2)% &Ik : a (k) U,k

- - ® + A ~
W @ = (2m 32 ;49 K d (2 + 2)% lkx ﬁ b (ykg) ViGusky)

PANORE @n2 ;@ K dk (k2 + w2y o 1kY : b (,k,) ook »
and

-— - - ® 1- A o
R R L X u2)® 'Y 2 a,Goiky) ToGanky)

so that ¥(x) = y& (X + ¥ (¥ , and V(y) = Tt +7 .
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‘Anti-Commutator Expression

Knowing wa(x) and _ﬁs(y), we are now in a position to

determine the anti~commutator [wd(x) ’EB (y?] + From eq., 2), we obtain

[wa(x) ,EB(yJ + = (Zw)-s rde fdﬂ‘of dko(kg + mz)%of dk;(k;z + mZ)”

. o

. —i(kx - k' a ' A‘ . P —_ A' .

{e (o ylzv[av(w’ko)’au(w ’ko}+U:(m’kO)Ug(w ’k°)
H}

-i(kx + k’}’) [ " Aa '9 AV wH Aa »
+ e uI:va.v(l.o,k.c) ,bu(w ’ko +Ua(m,ko)VB(m ,ko)
9

. . . :
1(kx + k* ~ ORI 0® k?
+e (kx y:‘lz‘l;bv(m’ko) ’au(w ’kolvz(m,ko)ﬁg(w ’ko)
9

3 o

i(kx - k’Y) " “a ;3 v,* wH Aa » ™

+e f\,ﬁ’v(“”ko) b @) Tk TG ) ) 3
»

We choose the following anti-commutation rules :

‘ P + ' + a PN z PN ~
['av(w,ko),au(w‘,k;iL = [bv(w,ko) ,bu(w’,k;g_‘ = 5 (w - 6(k° - k;)Guv,

and

N Coa t oA LS
[av(m,ko),bu(m‘,k;% = [bv(m,ko),a'u'(m‘,k;a* = 0.

Note that choosing these rules, implies that the field operators obey.

Fermi-Dirac statistics.,
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Then the anti-commutator expression becomes

-]

- _ -3 s ~ik(x -y v,° =, *
[ 5,0, = e ™ran 7 a0 4 I e B UGk )Ty )

ik(x - ). .0, =u," ~
+ e z Vu(w’ko)v(’ (w,ko) J

H

oo.l})

To further simplify the anti-commutater expression, we would need to

determine the matrices U (w,ko)'and V”(m,ko).

Matrix Solutions of the Wave Equations

The matrices U"(w,ko) and Vu(w,ko) satisfy the following egs.:

the Dirac equations, (k:nyn + imuv’ (m,ko)

and
k" - 1V k)
and the helicity eqs., kiinv(;,ko)
. and
ko ,k )

=

0,

kav(m,ko) .

ukVu(c;,ko) .

In solving these equations we will use the following representation for -

Dirac matrices:




Tl 0 0
0 1 0
YO_
0 0 -1
. 0 0 0
r 0O 0 0
0 0 i
¥% =
0 i 0
s 0 o
r 0
and v5 = 0
1
-0

If we define k.1

k,

kq

then (kny':1 +

38

0 /0 0 O 11'
0 0o 0 1 0
1.
0| " Y 0 -1 0 O
-1 A (-1 0 0 0/
-1 0 0 1 0)
0 0 0 0 -1
’ 'Y3 =
0 -1 0 0 0
0 L 0O 1 0 0
0 1 0)
o 0 1 -
0 0 O
i 0 0/
E(kg+m2);i wed fa)
A A 1 ~
= 2+ %03, amdv@k)=|°|,
A A [}
z (kg + mz);2 w.k
L d)
1 &
im) U (m,ko) = 0, implies
0 k, ky - “‘ﬂ
k +in ky + 1k, kg
~(k, - 1k,) -(k, = im) 0

k3 0 -(ko. « im) /

\ d /
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1 A~ 1 ~
while ko~ U (o,k ) = kU (u,k ) , implies

R ¢
k, K, - ik, 0 o 1[a a)
ky + 1k, “k, 0 0 bl |
c s k [
0 0 ky k, - ik,
o 0 K, + 1k, %, Jl4a, )

From the last two matrix equations, we obtain a general expression for

1 »
U (m,ko) , Where

1 -
1] (m,ko) = 3

———

4+ k)E( 1 )
A

(k1 + ikz)
(k + k3)
ko + i}g

k

-(ko + im) (lc1 ,+‘ik2)
L k(k+ k3)' / e

Note that [k + k3};5 is the normalization constant.
4k

Similarly for U-l(w,ko) we get
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U—l(t:),ko) = (k + kB\;;i ( . )
4k -

~
[y

:(ko +.1im) (kl.-é'.”ikz)
k(k + k

3)
. (ko 4+ .im)
\ k y ‘

Similarly, on applying the egs., (k.nyn - im) Vu(w,ko) =0

and kicl Vu(m,ko) = ukvu(w,ko), we can show that

3

Vl((:s,ko) =k +k ;ﬁ' _ (& + i)’ )
4K X

(k.o + im) (kl + ik.z)
k(k + k

Y
1
.(k.1 + ikz)

L k.+k3 p ’

and

N

v"l(&,ko) - (k + k3 (k, + im) (k) - 1k))
4k - k(k + k3)
(ko + 1im)
%
- (kl - .ikz)
Tk TR,
| 1 .
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Note that in all of these above expressions k = (kg + mz)k.

The transcendental frame has an analogous significance for

tachyons, as the rest frame has for tardyons, In the tramscendental frame,

A A ~n A N, A

ko=0,w.k=1, and we.i = w.j =0 3

therefore k1 = k2 =0, and k = k3 = m,
Then the matrix solutions become:
1 ~ _ ) _1 A . 1 ~ , _1 ~ _ ,
U (w,0) = 1y U "(0,0)=¢0Y V(w,8)= (-1 ) and V "(0,0)= 0
0 1 4] i
1 , 1 1 1 -
V2 |-i 2 0| ° V2l 1 |° V2| 0
\ 0 ’ . i Vg L 0 1 *

Knowing the general expressions for the matrices, we can now
gimplify the anti-commutator expression (4). Using the solutions for ~

UV((;),ko) s we have :

3 U"(w,ko) TJ"(m,ko) = (& I- 1m°) (k ny‘? + im)
v

z(kfJ + m?)
Similarly, using the solutions for Vu(w,ko), gives us

T Vu(w,ko) -\;n(m,'ko) = (koI + imyo) Ak nYt.l - im)
u

(12 2
2(k°+m)

Then expression (4) becomes :
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- _ -3 ¥ -dk(x - ¥) o n
[lba(x) ,’JJB(YS_'_ = (_?_12_!_) / dﬂof dk e {(koI - imy )(kn'y + im)} of

+@n™> raa £ @ T
2

y) ' 0 n ‘v
; {(kOI + imy )(knY - im) }aB°

In the second integral above, on changing k + ~k, we have

[‘lla(x) "'T’.g(yi{. = (_2_3_)-3 fae r dkoe-ik(x -

-0

) o n :
{(koI - {my )(kny + im) }GB-

Expressing this in four space, noting that by the properties of Dirac

matrices :

(koI - imyo) (knyn + im) = -kiciys(knyn + im),

the commutator expression becomes

[;pa(x) ,EB(Y}_,_ = '-(2‘")_3 fdhk c-:'.'-ik(x -y §(k2 + m?) {c:.gys(knyn + im) }GB .

4

" Let us define A(;B (x) = -(21r)-3f d'k: é‘ikx 5(k2 + m?) {;.gys(knyn 4+ im) }aB'

Integrating this expression over ko’ and then taking the value at t=0,gives

/ » .
28| = -0 ak e-i-li'z{{w.g‘fs((lj.z -ua?) %2 + kv + in) } 8
at t‘o. 2 . (kz - m2) * ¢

+ {;.3)‘{5(-(1:.2 - mz);"' Y° + k&yu + iu) }OA.
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Using matrix calculations, we find 7'.'ha't:'A':;B (x)l / 0, for all a,B.
t=0

So the equal time anti-commutator for a tachyon spinor field is not equal
to zero. It is also worth noting, that in general, the tachyon spinless
commutator A(x), and the gorreapondi_ng spinor commutator A”({x)-are not
related by A;B(x) = { auy“ - in }dB A(x). This is in contrast to the
relationship that exists between the two commutators in the tardyon case.
But in the limit of a massless tachyon, and at time t = 0, we do have

» - wH et
A otB(x) = { auy im }aBA(x)°

Dynamic Variables

Taking the Lagrangian of a tachyon spinor field to be

L = i: 2'{%5*{@2“ - ﬂn‘ﬁvnw b - dmo: Wiy s,
2 n ox ax ’

we obtain,on applying the Euler-Lagrange equatioms,

the Dirac equation I yné-y-'; - mp = 0
n 8%

and the conjugate eq., Zlﬂnyn - mw = 0,
n x

Note that the Lagrangian reduces to zero, for y and v aatiafying the

field equations., Knowing the Lagrangian, we can obtain the tensor
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ST - m'a“ 3y m oy,
R e N
ox 9x

On account of the factor Yo, T transforms under spatial inversion,
like an angular momentum, and not like an energy-momentum tensor. As
such we cannot identify T as the energy-momentum tensor,

Consider the operator PO = fToo‘dg_ .On placing in the value

of T°°, this becomes
A R s 2 y5y%p 2oax .
2 9x Ix

Expanding the field operators into momentum space, and then integrating
over x , noting that :

() @072 raxed®E o w(a),

’

+
H 5 4 = - ’
(2) U y>TU B GI-W

F‘Ioﬁ‘

=

3 .
U .5 oY - - . .
3 VvV y>v uGW o 3

ul

we obtain,

. o . E I . ‘ ) :
P° = ~rdn rx2 2+ mz)';‘.'dko ta_a - da +'bb - b_b_ :
0 1 -1 11 1
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Removing the normal ordered product, by utilising the fact that the
operators obey Fermi-Dirac statistics, gives
o o + ) + ¥

Po= [ 40 S d kz(k2+m2);5'{aa + bbb - a a - b b }.
o o o Y 11 11 =1 -1 =1 "1

1¢h 2 4 w2v% . o
Let us define au(w,ko) ko(ko + m<) au(m,ko) R

and
ieh = 2 %000 ]
bu(m,ko) = k (k2 + ) bu(m,ko) :
then we have
o © ¢ + + o
P° = rdo/f dk {alal + blbl - alal =~ plply,
R o 1:1 1 1 -1 =1 -1 -1

From the nature of the P° expression, it is clear that P° can be
identified with the total helicity of the tachyon field, Hence for a

tachyon field, total helicity is a conserved quantity,

As discussed earlier in this chapter, the tensor ™ cannot
be identified with energy-momentum, This raises an interesting question,
The field operators VY and Tp' obey the Klein~Gordon equation. The energy
-momentum tensor for a complex scalar field is given :ln" Ch, 4, eq.(4).

The analogous energy-momentum tensor for a spinor field will be
T, ™ - gm gnn :_8_11:: 3y + ') ﬂ : - g™ Zgaa:'&' '-?-'ka: - ngnh:-wiw'

. 8 LA J
N ax“. Izt axm a ax“ ax
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Can the operator p° = f’rloo'dgc_‘, be identified with the energy vector ?

[»)

On placing the value for Tl © in the expression for P° 1 » Ve have, on

expanding into positive and negative frequency parts,

(o] _ . 9 ] - 2 — + + .
P, = f'{%—w'n —‘P-n Yy ¢y )} oadx
X 9x

. aw a i - -
+f'{121~n ln - w2y P }ooodx
9x 9%
5ot ooy~ -4 -
e & - m? v} osdx
n .n =
9x 39X
5 " sy T -+
P R - m®y ¢ }:dx .
n .n =
X X

Consider the first integral of PQ1 . On expanding it into momentum space,
we note that this integral contains a factor ( I k k* + m?) . On
integrating over x , using the Dirac delta properties, this factor goes
to zero, Therefore the first integral of Pol vanishes. In the same way,
we find that the second integral of P° |

1 also gives a zero value.Let us

now consider the third integral,

T -+ -
A N A AR RN
9x 9xX

Expanding in momentum space, and then integrating over x, this integral
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becomes

®© A~ .‘. A ) A
2 2 2 ) . " . v I
2 fdQ of dko(k° + m?) ko { nz; bu(w,ko) bv(w,ko) : Vl(w,ko) v (w,ko)}.
s .

But V' (w,k ) v"(m,ko) =0,
therefore the entire integral in question is also zero. Similarly, we get

—-— +

P S

pap 2 B - ¥y Tha - o0,
X X

and so P°1 = 0, and the total energy operator of a free tachyon spinor
field is just zero.

It should be noted that the Hamiltonian of a Dirac tachyon
field is not hermitean. As such the energy of a tachyon is not a real

observable for a tachyon spinor field.



CHAPTER 6
TACHYON EXCHANGE SCATTERING

Consider a two particle scattering problem, involving a single
meson exchange. From S-matrix theory, the scattering amplitude in the
center of mass frame is given by

82

A= 1 .

ui + 2k2(1 - cosd)

where gi is the coupling constant of the field theory,
k is the incoming momentum of the particles,

ul is the meson mass,

and 6 1is the scattering angle,

1f the exchange particle were a tachyon, rather than a meson, the

scattering amplitude would have been

&

2
A = ]

2 -ui + 252(1 - cos6)

where M, 1s the tachyon meta mass, and k is restricted such that k? > ui.

-y r
We notice that on placing the Yukawa potential V, = e 1
T

into the expression for the first Bom approximation, reduces the latter

48
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to the meson scattering amplitude A1 « Similarly we note that on placing
the potential V2 = (cos uzr)/r, in the first Born approximation, the

latter reduces to the tachyon scattering amplitude A2 . Also, on placing
the potential VE = ( sin uzr)/r, we obtain the scattering amplitude 14,.
Just as the Yukawa potential describes meson exchange in strong

interactions, we can say that V2 describes tachyon exchanges. As can be
noticed from its form, V2 goes to zero much slower than the Yukawa

potentiai.‘ Therefore tachyon exchanges are long range in nature. If long
range, strong and weak interactions had existed, we would have, most
probably, observed them already. As such one can conclude that the place
to look for tachyon exchanges would be in either gravitational or coulomb -
interaction experiments. In this respect it is worth noting that, in the
massless tachyon limit, the tachyon potential reduces to the coulomb

potential.




CHAPTER 7

CONCLUSION

We have examined the classical difficulties.presented by
tachyon existence. The problem of imaginary energy has been successfully
overcome. But the causality objection still persists. Classically, tachyons
raise a perplexing problem, In the transcendental frame, the observer notes
that the tachyon has zero energy, a finite non-zero momentum, and that it
exists for one particular moment of time. This implies that at one time,
the observer finds a tach}‘ron having a finite non-zero momentum; at all
other times, he does not observe the tachyon at all., Does this violate
the conservation of momentum ?

A quantum field theory of scalar tachyons is developed. The
commutator function obtained is found to vanish at all space-like points.
This does not imply that tachyons convey messages with a speed less than
the speed of light. Rather it means that a tachyon .going from' the space-
time point x te the_si;acé ;tfni point y, is equivalent tc one going from
y to x,

A tachyon spinor theory developed shows some very interesting
features. Energy-momentum is not an observable of a tachyon spinor fleld;
as the Hamiltonian of the field is no longer hermitean., Helicity takes on
an added significance, as it is the only physical quantity that remains a
constant of the motion of the field, for both tachyons and tardyonms.

The brief scattering problem discussion implies that tachyon
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exchanges are long range in nature. The place to look for tachyon exchanges
would more likely be in gravitational or coulomb interactions, rather than
in strong or weak interactions. This is further reinforced by the fact
that for large distances, as well as in the limit of zero tachyon mass
interaction, the tachyon potential reduces to the coulomb potential, If
tachyon exchanges are found to be present in nature, then it would have
vast re;;ercussions in physics. For this would as such return us to the

Newtonian concept of action at a distance.
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