PERTURBATIVE QUANTUM FIELD THEORY AND
OTHER PHYSICAL PERTURBATIONS - GOING TO
HIGHER ORDER WITH ANALYTICAL AND
APPROXIMATIVE SCHEMES

By
ERIC V. STEINFELDS

Bachelor of Arts
Luther College

Decorah, Iowa
May, 1986

Master of Arts
Kent State University
Kent, Ohio
May, 1990

Submitted to the Faculty of the
Graduate College of the
Oklahoma State University
in partial fulfillment of
the requirements for
the Degree of
DOCTOR OF PHILOSOPHY
December, 1997



Name: Eric V. Steinfelds | Date of Degree: December 1997
Institution: Oklahoma State University Location: Stillwater, Oklahoma

Title of Study: PERTURBATIVE QUANTUM FIELD THEORY AND OTHER
PHYSICAL PERTURBATIONS - GOING TO HIGHER ORDER
WITH ANALYTICAL AND APPROXIMATIVE SCHEMES

Pages in Study: 140 Candidate for the Degree of Doctor of Philosophy
Major Field: Physics

Scope and Method of Study: The main areas of research and summary include solving
~ integral equations with application to diffusive scattering studies and calculating
non-relativistic energy levels of particles subject to a tractable radially dependent
potential plus a less manageable, large radially dependent potential term. The
method developed in this thesis for calculating spectra of particles bound in a
complicated radial potential can be applied to various spectrum calculations by
using a good computer (with math co-processor) and the implementation of
Mathematica style source code. Returning to the first mentioned area of rendition
and application, diffusive scattering studies discussed and considered in this thesis
center around the problem of analyzing and solving integral equations involving
the diffusive scattering of radiation in biological material media. There are two
things that are of common issue to both mentioned sub-topics of research. First of
all, the expressions for the essential phenomena and observables can be and are
often expressed as an infinite series. The failure of such an infinite series to get a
convergent summation is the second item of common issue in this thesis. This
problem occurs with integral equations and in the perturbative treatment given to
the quantum mechanical spectra of atomic and nuclear systems. A formalism for
partial fractions known as Padé approximants are introduced. These Padé
approximants are used to make approximations of the sum that a given infinite
series is formally representing.

Findings and Conclusions: Analytical as well as efficient methods for calculating the
difficult higher order terms in many infinite series were successfully developed and
demonstrated in chapters 2 through 5 of this thesis. Padé approximants, in turn
have been applied successfully to all of the examples given (except for one in
chapter 2) in order do find consistent convergent results of the various perturbative

" infinite series involved.

.f/

ADVISOR’S APPROVAL: , l%/? ol ’47/! }{/ gt g s -

? /
VAN




PERTURBATIVE QUANTUM FIELD THEORY AND
OTHER PHYSICAL PERTURBATIONS - GOING TO
HIGHER ORDER WITH ANALYTICAL AND
APPROXIMATIVE SCHEMES

{

By
ERIC V. STEINFELDS

Bachelor of Arts
Luther College
Decorah, Iowa

May, 1986

Master of Arts
Kent State University
Kent, Ohio
May, 1990

Submitted to the Faculty of the
Graduate College of the
Oklahoma State University
in partial fulfillment of
the requirements for
the Degree of
DOCTOR OF PHILOSOPHY
December, 1997



PERTURBATIVE QUANTUM FIELD THEORY AND
PHYSICAL PERTURBATIONS - GOING TO
HIGHER ORDER ANALYTICAL
AND APPROXIMATIVE SCHEMES

Thesis Approved:

A fw//

Thesxs Advisor
_'f/.'%-l 3 / \’ 2 }(* AAA~

. : .
%ﬁ\.’z;(\ AA G 57‘.«/ N{?L_M'—-. [= &_
7 >
( ' ( /7.
g_ Mg, g((,(l;t,f

2 2 2t

p——

/bean of the Graduate College



Acknowledgments

I would like to express my gratitudé to my research advisor, Dr. Mark A. Samuel,
for his guidance and for his strong encouragement towards me to develop and use
computationally oriented skills and insights for a wide array of physical and applied
mathematical calculationé. I also appreciate the example that Dr. Mark Samuel set for me
with his excellent skﬂls in the professional writing of scientiﬁc information in a manner
ﬁtting for current research journals. |

I am especially thankful to Dr. Paul A. Westhaus for his role as a true mentor and
deep instructor towards me in the earlier stages of my studies. I am also thankful to Dr.
Westhaus for his state of always being available when help was needed in a scholastic as
well as professional sense.

I’would like to particularly tﬁank Dr. Satya Nandi and Dr. Xincheng Xie for the
education and broadening of knowledge which I received in courses taught by them. Dr.
Nandi especially has exposed me to a broad and deep base of theoretical knowledge
through his mentoring.

I would like to express my appreciation for very helpful student colleagues.

Last but not least, I would like to express my thanks to my parents for their
constant support and my encouragement from my early years onward. I would like to
especially thank one of my uncles for similar encouragement. I would like to thank my

living grandmother other personal family members for their encouragement.

iii



Table Of Contents

Chapter Page
A1 N0:00)0)0764 0 (0) SV 1
OVEIVIEW ...eeurveeeinreiaretenesseeeesssesssssesasssssesossnssssstssssesssssessessssassssnessassesssssssssssssssssesssens 1
A Cause for Using Padé Approximants in QCD .......ccecovevirerenerenrenerereeereeeseeeennes 13
SUMMATY ..ovvenerrecneeecnceannanee eeetee ettt e ta et st e e st e st e s st e e ennssaesbaenrranenrsreennneanns 13
[I. LINEAR FREDHOLM INTEGRAL EQUATIONS.......coiicireeetrinrernreeeecneeenens 15
Mathematical Justification of Fredholm Series........ccevevereeeeeveieneieeneieecreeeeeeeneeaenn 15
Presentation Of RESUMS........ciiviiieieeeeeceeetere ettt 25
III. THE RADIATIVE TRANSFER EQUATION AND THE H-FUNCTION.........34
Mathematical Introduction, Showing Recursive Relation........cc.coceeeviecveccnenrennenee. 34
Results of Series Iteration and Padé ApproXimants...........cceeeeeveeeeeverveereeevveienennes 42
IV. ANALYSIS OF NONLINEAR INTEGRAL EQUATION ...................................... 48
V. NUMERICAL RESULTS OF ASYMPTOTIC PADE APPROXIMANT
PREDICTIONS ....ooiiiiieitiereerreeteeseesseessersansssearesassessssssessassaesessesssesssesssesasonnenses 53
VI. THE QUARTIC HARMONIC OSCILLATOR AND
PERTURBATION THEORY ....coviiurniririininiiisisiesisiesissesissennensessesesessassessessessens 65
1. Overview ........... teteeerreessreessteenreesstaesraee st et e et et e s a st e s s et anssasnraenssaesbessresssaenns 65
2. The Nature of Perturbation THEOTY.......c.cvviurevemevimiiscnincriiiisiecsssie e 65
3. The Apparent Kinship of Some Perturbative Series to Stieljes Series ..........cu..... 76
4. Introduction to Walker Green's Function Series Iteration..............ccveevvveeueeenennnn. 82
A, OTIENEALION ...eeererieeenreerieeestneeieeeesssteeessessanssnsessastsssasssnsesesssesssssssesssssessensens 82
b. A Scheme for Solving a Truncated Version of Equation (6.15), which is
Catalogued in the Mathews and Walker Text......c.ccccoevvurerreeeeercerereeernrerreenns 84
c. A Scheme for Solving a More Effective Version of a Truncated (Listed)
Equation (6.15) when only 6 or Less Terms are Available.............ccceuueeue...... 86
d. The Algorithm Required in Order to Realize the Concept From
SUDSECHION "4C" ...ccitueeeuieeerecrierrieencrerrseestesecesreseneesssesenssssesssessssesesssessssssenns 86

iv



5. Results of Calculations.........cccveverereiereiverinnsiniecnccesenescsessassenens evereeaes 88
6. Comparison of the Bender Perturbation Series to the Series Extracted From

Optimized Padé APProXimants .........ccceecerinierineeccriosereeesceconecssssenseressesansasnens 108
7. Comment on V"x® Contributions and Closing Statement................c.eeeeeeererrerunes 112

VIL. ESTIMATING PERTURBATIVE COEFFICIENTS IN QUANTUM FIELD

THEORY BY USING PADE APPROXIMANTS .......coemrveerreniescsnemioeseesseenns 113
Padé Approximant Predictions reerrresnsererenes ettt et s et e e b e s naeasbassaenes 113
Predicting Higher Order Terms in QED .....c..oviioninieieieeeeecre e 114
Padé Approximants Applied t0 QED......cccoviiiiiiimiiririeceneetetecee e 117
Applications of PAPs to Perturbative QCD ......coueueevreeereiniriinreeienee e 120
PAPs Applied to the Quantum Chromodynamic R Ratio .....c..cceeeerervevecrecvnnennns 122
Concluding Statement 0f Chapter 7.......c. i 127
BIBLIOGRAPHY ....ccevtieiivirieeeertneeccenesnenceseseessessaneresses et ae et st e ee e s eras 129
APPENDIX B ...cutriiteieeerierieteneetsteeeesessencesseesseseseasessessessesessessasssssassessessasssnssssens 136
APPENDIX C....oooreeriieienrenreiereeiiesseetesesassessesnsstnnsssestestsnsaasssessessessesessasssssessssesans 138
APPENDIX Di....ooiteierrerenreesienreeneesistssee st seesestessesesseseestosessensessessossssssssssensensesans 140



Table

2.1

22
23
24
2.5
2.6

2.7
2.8
2.9
2.10

3.1

3.2

33
3.4
3.5
36
3.7

3.8

List of Tables

Page
RESUItS OF G(X,5) = (X~ J)% voreeesreeeseeeeseceeeseeeesseeessesese oo 26
RESUIS OF GL(K,1) = (X * Y0 vt 26
Results of G1(x,y) = (X * Y) 1orcc..... N 27
Results G(x,y) = (X - y)* + (X * V)" oo, e, ST 28
Results of G(X,9) = (X YV + (X" V) oo, ............................ 28
More results of G(X,Y) = (X7)  (XY)F - oveeeeeeeeee e, 29
Results when this kernel is G(x,y) =X - y/(1 + (XHY)2) oo, 30
Results when the kernel is: G4(x,y) = (x - y) * (1 + (x+y)/ )™ oo, 31
Results when G(X,y) i8 Ei( [X=y] }...oovovoiiiii e, 32
- Results when G(x,y)=Ei(|k-y|)......‘...........‘.....; ..................................... s 33
_ Example 6f the Values of gm(u) for Three Values of u.............cocooooooi, 41
Comparison of the Established Numerically Labored Values of
the H-function to Padé.Approximants ...................... s 43
Table of percent error of the predictions from the book values..... PR, 44
Comparison of Padé Approximants to the Respective Book Values. .................. 44
Table of pércent error of the predictions from the book values.......................... 45
EXAMPIE “3.07 ... i 45
Table of percent error of the predictions from the book values........................... 46
Example when u = oo eeeereeeeres e A6



3.9

4.1

42

5.1

52

53

54

55

5.6

5.7a
5.7b
57.¢c
5.8

6.1

6.2

6.3

List of gs(1.0) whenn={1,2,3 ... 9} ... e 47

Comparison When G(K,Y) = (X * F)% o emeeeeeeeeeeeeeeeeeeeeeeeee e 50
Comparison when GXy = (x - y)’, where G(xy) = 1/(1 + (X + Y)/2)evvvrererr.... 51
H(.8,w) Functions obtained with ordinary Padé Approximants and

with the Assistance of APAPs in PtSum([8]...........ooooiiiiiiioie e 56
Higher order‘Padé Approximants computed with the help of APAP’s................. 57

The Coefficients gy(0.8) for the H(.8,w) Function obtained from the Iteration
Algorithm up to the seventh order and then the: APAP for eighth Order and
BEYOMNA ...t ettt ee e 57

H(1.0,w) function obtained with Padé approximants and from partial sums with
seventh order IteTationS. ...........oooiiiiiirii ittt 58

Coefficients g{n}(1) functions obtained from the iteration algorithm given
Chapter 3 up to the seventh order............c..ccocoioiiiiniiiinii e 59

H(1,w) functions computed Padé[3,4] and from the APAP and Asymptotic Padé

assisted Partial Sum (PS)Methods ...........ccoocioiiiiii 60
Comparison of Predictions of r[n] .................... e e 61
Untitled Bt SEQUENLIAL........oovrvevcrercer 62
Untitled but SeqUENtial............ocooooi oo 62
Comparison of predictions of r{n} in the Case when -APAP[n,l] isused............. 63

When n = 0, the Ground State Level. A Table in which E(V) of the quartic
oscillator is evaluated as a function of V by NPT partial sums,

Padé approximants, and by the numerical spectrum search

explained with equations (6.4 and 6.5).................c..ooo et 74

When n = 1, the first excited level. A Table in which E(V)
of the quartic oscillator is evaluated as a function of V.............................. 74

Table comparing ordinary Padé approximants to the respective
optimal Padé approXimants.............cccceerieeiiiiienieniinieeeie et 90

vii



6.4

6.5
6.6
7.1
1.2
13

7.4

A Table showing the Optimal Padé Approximants, in particular OpOptPadé[2,2],
OpOptPadé]2,3], OpOptPadé[3,3], and OptPadé[3,4], of E(V) when n=0.- (Note

E(V) grows positively With V.).........coooiniiiiii e 92
Table for the case n= 1 (The level of first excitation). ..................c..ccoooeeein.n. 93
Table which lists coefficients of the Bender series for Ground State Energy...... 111
Comparison of the PAP for a, - a. with known resuhs ...................................... 115
Padé Estimates for a. , which are compared to known results ........................... 116
PAPs for au(QED), which are compared to known results.....................oo 1 17
PAPs for the QCD beta function...............ccoccceen.n SOOI e 121

viil



Figure
1.1

1.2

1.3

6.1

6.2

6.3

6.4

List of Figures

Page
Comparison of In(1+x), Padé[2,2], and the Partial Sum ........... e 7
Comparison of the harmonic oscillator’s ground state (spatial
form of 1/(n*yexp(- x*1/2) ) to the fourth order series expression
-of the corrected ground state and the actually expected wave form
of the corrected ground state.............c...ccococooverevenenenn... s 12
Comparison of amp - exp(-x’* .597) to the numerically
predicted corrected ground state and to the Padé[2,2] prediction
for the ground state which has the form 1/(n*) - exp(- ¥*-1/2).
(‘amp’ is an adjustable qUANEILY.) .......oooeiiieiiiee e 12
The exact value for 1/2 +V/3 -V>(1 -1}V +21-V> 31V +_)and |
Padé approximants such as Padé[2,2], Padé[3,2], and Padé[2,3].......cccovevenne.... 80
The exact value for 1/2 +V/5 - V(1 -11-V +21-V* -31-V® + ) and
Padé approximants such as Padé[2,2], Padé[3,2], and Padé[2,3]..........c..c.......... 80
The exact value for 1/2 -V/3 - V*(1 -11-V +21-V2 31-V* +_) and
- Padé approximants.such as Padé [2,2}, Padé[3,2], and Padé[2,3]....................... 81
Optimal Padé approximants for the four lowest levels of the 1-dimensional
Quartic Harmonic OScillator. ..........oooovviiiiiiiiieieee e 95

6.5

6.6

6.7

6.8

6.9

~ Ordinary Padé approximants for the 4 lowest energy levels of the 1-dimensional
Quartic Harmonic OsCHllator.. ..o, 96

Naive Perturbation Theory series compared to the correct spectral

ENETZY LEVELS ..o e 97
Padé Spectrﬁm for the twd lowest energy levels ..., 98
NPT partial sums presented for the two lowest energy levels............................ 99
Padé Spectrum for level s (n=2 )aﬁd (=3) o, 100

ix



6.10

6.11

6.12

6.13

6.14

6.15

6.16

7.1

72

73

7.4

NPT partial sums presented for 2 Upper 0°s........ccceeveveriiiieeiiiiecceeee

Padé Spectrum (including Padé approximants) of the 3 lowest
EIIETEICS. ....o.eiieeieiie et e ettt et e e e et et aebe e st e b e e nr e et et e s s e et e et e et e et eeaseeeaes

Spectrum for the 3 lowest energies including NPT Series as
well as Padé approXimants............cccoueeieoirverueeienieeioiieis et

Energy curve for the lowest possible level when 1 = 0, showing
Padé[2,2], OpOptPadé[2,3], Padé[2,3], and the correct energy.........................

Padé Spectrum for the ground orbit O energy (Padé[2,2] —.
OpOptPadé[2,3] —, Padé[2,3], and exact —) and also the correspondmg
fourth order perturbation theory result —........... eereresteeetnn et st s s saens

Padé Spectrum for the lowest energy level when | = 1, showing
Padé[2,2] —, OpOptPadé[2,3] —, Padéf2,3] —, and the correct energy..........

Padé Spectrum for the lowest energy when when | = 1, showing
Padé[2,2] —, OpOptPadé[2,3] —, Padé{2,3] —, 2nd order NPT series —

.and the COTeCt ENETZY —— .......cviviiiiie et

Comparison of PAP derived r3 — and the analytically known r3 — when
N T e ettt
NE= 5 e s

Comparison of the PAP[1,2] estimate of r4 — with the PAP[2,1] estimate
of r4 and with the estimate using PAP[02] —when Nf=1 ...

Comparison of the PAP[1,2] estimate of 14 — with the PAP[2,1] estimate
of r4 — and with the estimate using PAP[0,2] —when Nf=5. ...



Nomenclature
cf N refer to the previous equation N

denom[N]  denoniater manifested as N

eqn. equation
LHS left hand side of the equation
mini-defn mini-definition -

number[N]  numerator manifested as N

NT - Next Term

PAP | Padé Approximant Prediction

QCD - - Quantum Chromodynamics

QED Quantum Electrodynamics

RHS right hand side of the equation

APAP Asympt‘oﬁc Padé Apprinmant Prediction
W.r.t. : with respect td |



Chapter 1

Introduction

Overview.

The areas of discourse in this dissertation include a fairly broad range of issues.
The three main areas include solving integral equations_with application to diffusive
scattering studies, calculating non-relativistic energy levels of particles subject to a trac-
table radially dependent potential plus a less manageable large radially dependent poten-
tial term, and finally calculating various relativistic field theory quantities which involve
either perturbative QCD or perturbative QED. Calculations of the quantum chromody-
namic beta function are discussed in chapter 7. This Quantum Chromodynamic quantity is
expressed as a perturbative series expanded with respect to the strong coupling constant.
Calculations of the quantum electfodynanﬁc anomalous magneﬁc moments of the elec-
tron and muon are discussed in chapter 7 These two quantities are expressed as a pertur-
bative series expanded with respect to the electrodynamic coupling constant.

The method developed in this thesis for calculating low energy spectra of particles
boundina compiicated radial potential can be applied to various spectrum calculations by
using an adequate work station (such as the DEC Alpha 3000 work station) and the im-
plementation of appropriate source code in Maple or in a Mathematica operation plat-
form. This method of finding energy levels should show much promise in a future en-
deavor in nuclear physics. In nuclear physics, this procedure could be applied to the
modelling of the spectrum of the nucleus in a project such as the extension of the shell

model or the collective model of nuclear physics with the addition of fine tuning potential



energy terms, which do include a mean field approximation of the_eﬁ'ect of neighboring
nucleons. This is of interest in nuclear spectroscopy described in terms of the individual
nucleon [1].

Returning to the first mentioned area of thought and rendition, the diffusive scat--
tering studies mentioned here give insight in the problem of analyzing and solving integral

equations involving the diffusive scattering of radiation in biological material media. For

-example, it would be very useful to be able to analyze more precisely the data of tomo-

graphic scans from an improved theoretically based ‘mo del of radiative scattering of X-
rays. Likewise, improvements in the analysis of ultra-sound imaging based on improve-
ments in phonon scattering theory are desirablé.

There are two things that are of common issue to all three mentioned areas of dis-

course. First of all, the expressions for the essential phenomena and observables can be

and are often expressed as an infinite series. Very often, the coefficients (ocs/47t)n W ofa

given series grow so quickly that only trivially small values for the expansion parameter
will be able to maintain a‘ convergent series. Indeed, the failure to get a COnvergent sum-
mation is a common problem This is the second thing which is of common issue. This
problem occurs with mtégral equations and in the perturbative treatment given to the
quantum mechanical spectra of atomic and low/medium enérgy nuclear systems. This is
especially true in Quantum Chromodynamics (QCD) and in Quantum Electrodynamics
(QED). In QCD the majority of calculations for coupling constant, various system inter-

action strengths, scattering amplitudes, branch ratios for decays, etc. are carried out by

3 gg/amy is the chosen expansion parameter here. Arbitrarily, z could be chosen as the main parameter.



carrying out perturbative quantum chromodynamics. Most félativistic perturbative quan-
tum ﬁeld’theory calculations are infinite series, where as (the strong coupling constant)
and o (1/137) of QED serve as the expansion parameters. Any peﬁurbative series in
quantum chromodynamics is very difficult to work with in the sense that a large or me-
dium numerical value for ais would result m a very (critically) divergent series. Further-
more, it is very difficult to calculate the individual higher order QCD terms. It is not
known precisely what the practical size limit of as is in order to generate a converging
partial sum out to sixth, seventh, or eighth order ofa typical perturbative QCD series.
Asymptotic formulas are known for a number of series in QCD, including ‘the strorié beta
function which determines the gradual energy dependence of as. The terms of the QCD
beta ﬁmction grows at very high order in good approximation as 1/(4n-Bo)(-Bo)"n!(ais)”
as n approaches infinity. B is from the :1 st term of the beta function. (See ref. [2] for
more detail.y However, these asymptotic expressions are not. terribly helpful since they
are not quantitatively reliable until very high orders exceeding 15 in the given perturba-
tive series are reached. Very little is known in between order 7 and order 16. Neverthe-
less, it is especially desirable to find out what the true structure is of a given QCD or
QED perturbative series in terms of o and/or as. Some examples of such functions of o
and as are anomalous magnetic moments of leptons and the QCD beta function, which
determines the enprgy dependence of as. There is a rather reliable way to formally de-
velop a sequence of approximate ﬁmctions that sequentially approaches the correct form
for many of thé functions of o and/or as. This method for approximations involves de-

veloping a rational fraction in such a way that the rational fraction agrees term by term



with the original perturbative series all the way up to the (n+m)™ order, which includes
the coefficient times (as/4n)™™. Such rationél fractions will be demonstrated as being
effective in evaluating the analytical values and the experimentally agreeable values in a
couple of examples of interesting QCD functions. In reference again to integral equa-

tions, it is pvossible to give a very strong argument for the validity and the virtually guar-

‘anteed success of the use of rational fractions as approximations to the solution of Fred-

holm integral equations of the second kind.
These specially adjusted rational fractions, developed as an ever improving se-
quence, are known as Padé approximants®. Padé approximants are expressed as

(a, +a, - x+a,-x*+.a,-x")
(1+b, -x+...b,,-x™)

Pade[n,m], where = Pade[n,m] = (1.1

This rational polynomial fraction is required as the approximation to describe optimally
an infinite series through the technique of coefficient fitting. Alternately stated, these two

expressions are to be matched:

(a,+a,-x+a,-x*+...a, -x")
(+b b, ")

& rotr X4 X2 + ...+I'[n+m] X(n+m) . (12)

The right-hand side is the partial sum of the mfinite series Zr,. -x', where x is the name
i=0

given to the variable expansion parameter. It is necessary to rhatch the coefficients of

like powers of x on the left hand side (LHS) and right hand side (RHS) after multiplying

with the denominator on both sides. Therefore, simultaneously for m equations:

Z I b = 0 ,where (j=n+l,n+2, ..., n+tm). (1.3)

k=0

? Specifically, Padé type I approximants are used in this thesis.



By convention, by =1 .
An additional consequence applies to the a;’s of the numerator on LHS. A local defini-
tion for diffs(i-m) is given. |
diffs(i-m) = ( [i-m| + (i-m) )/2. (Note that diffs(i-m) equals 0 if I < m.)

There are n+1 simultaneous equations for a; to evaluate after solving for by:

4 = Z I b(i-l) H where (1 = 0:13 ,Il) . | (14)

I=diffs(i-m)
After evaluating the a;’s and b;’s, we have the expression

(a,+a,-x+a, x*+..a,-x")
(145, -x+...b,, - x™)

serving as the Pade[n,m] approximant to some function

f(x), expressible as f{x) = ”firj -x' . There is a successive array of Pade[N,M] ap-

i=0
proximants (e.g. Pade[2,3], Pade[3,3], Pade[3,4], Pade[4,4], etc.), where N and M are
arbitfarily large non-negative integers. From the successful results of full PadefN,M]
predictions for hundreds of diverse series and from the guaranteed results of functions
which generate a Stieltjes series [3]; it is known that Pade[n,n+1] and Pade[n,n] give best
approximation values to most of the interesting choices of f{x). One deep implication of
this is that this sequenc'e {Padé[n,n], Pade[n,n+1]} gives apprdximations which approach
the corréct.value and functional form of any member of the family of functions of x ® as
ﬁ sequentially approaches infinity. fun(x) represents all of those family members which
are continuous functions of x which are possible to approximate as these rational poly-

nomials. There might exist some functions of x (or other parameter) which are not effec-

| tively expressed as Padé approximants. It is mathematically true however, that those



functions expressible as er -x', where the limit 1; approaches some KA (KA isa

i=0
geometric series) or Kj” (n is an integer), have a special characteristic which identifies
fun(x). Asn gets very large, Pade[n,n} and Pade[n,n+1] are guaranteed to converge to
the same ﬁmctio_ﬂ with the same value as fun(x).

In order to illustratc the eﬂ'ectiVeness of the rational fraction, the example of

1 Pade[2,2] of In(1+x ) is considered. Let

| fx) =In(l +x) =x -2 +/3 X4 +... . | (1.5)
The partial sum is consideréd up to the fourth order. Exactly as done with equation
(1.2), we end up with (a, +a;x +2,X) & (1 + by x + by X)(x -X/2 +X°/3 -x"/4 ) .

Matching powers of x, we obtain the following example of equations (1.3) and (1.4) :

1/3 -by/2+b,=0. -1/4 +5,/3 - b2/2 = 0. (1.6)
a=0. a=1 a=b-1/2 (1.7
 x+x?
The a’s and by’s are determined. Then, Pade[2,2] = ——————— . Consider the fol-
I+x+x°/6

lowing comparison to the partial sum ( x -x*/2 +x'/3 x'/4 ).?’

Observe Figure 1.1).

! ? X is the name assigned to the one significant parameter used to generate the series.
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Figure 1.1) Comparison of In(1+x), Pade[2,2],
and the Partial Sum.
It is clear from figure 1, that the Padé¢ approximant is much closer to the actual In(1+x)
than ( x X2 +03 X4 ) is. There are innumerable other examples of infinite series
where the Padé approximants show this excellent improvement of the numerical values.

It would be illustrative to show the general formulas of Pade[1,1], Pade[1,2], and

inFini

Pade[2,2] for the series » r; *x'.
i=0

1l r0+(-r0r2 +r12)x

Pade.

(1,11 ri—r2x . (1.9)
r02r2—r0r22+<2r2 rOrZ—rlB—r.?rOz)x
Pade = 5\ o
[1.2] <r3r1—r2 )x +(-r3r0+r2r£)x+r0r2—r12 ) (1.10)
Pade[ 2,2 1= Tmeral (1.11)

denom




2 2
numerat =ror;r;-rory + X131 - X1 r22 - XTI Is+
2 2
XToIa I3 + X "Iy To Iz - )8'1‘4 o+ 2'X2'1'2 I3r; - X2’1'32 g+ X2'I';z3

denom =X, 12 - X3’ - XT1 L4 + X2 T3 + 13 1) - 1 (1.12)

There are more solutions available, including Pade[3,3]. In consideration of ex-
peditious use of spac'e,‘these other general results are posted in appendix A.

On many occasions it is desirable to predict the value of the next term of an infi-
nite series which hitherto. is known only to the order of n+m. This can be done by adding
in to the right hand side of equation (2) the additional term of Iy 1yx™™" . Then mul-
tiply the right hand side and the LHS by (1 +b; - x +b, - X* + .. by - ™). We end up with
a Pade approximant prediction (PAP) of what r(n+m+1) should equal:

Torm) & - (b1 Term) + b2 Ty + b3 Tema) +oobi Tey ) (1.13)
There are various examp]es, for instance in electrodynamics, where it is desirable to get
an estimate of the term of order (n+m+1) since calculating the next term exactly becomes
extremely time-consuming.

‘Let us now continue diséussing the material towards which this dissertation is tar-
getéd. At the end of this introduction, an overview. will be given of the contents of the
three areas of discourse towards which tﬁe progression of chapters of this dissertation are
directed. Th¢se three areas were introduced in the beginning of the text. First in the
following chapters, integral equations will be discussed. Second, ordinary quantum me-
chanical perturbation theory will be discussed. And third, QCD and inclusively the strong
coupling constant in high energy physics will be studied.

The integral equations discussed include the linear Fredholm integral equations of

the second kind, nonlinear quasi-Fredholm integral equations, and the nonlinear H-



function integral equation. Linear Fredholm integral equations have a well developed
formal solution. However, there are specific cases in which the formal solution is devas-
tated by catastrophic singularities. Generating an infinite series for the solution and taking
a sequence of diagonal Padé approximants (Pade[n,n]) bear convergent numerical pre-

dictions which often avoid this catastrophe.

The nonlinear H-function integral equation is a partial simplification of the radia-
tive transfer diffusion equation which is explained in the text by Chandrasekhar.[4] The
insights involved in solving such an equation will be useful in diffusive scattering studies

of radiation penetrating through biological materials.

‘The second area of discourse, spectrum related calculations, will be covered in
Chapter 6. In Chapter 6, it will be explicitly shown how it is possible to go to higher or-
\der perturbation theory with the basic tools published and taught by Merzbacher and
Liboff [5.a} in non-relativistic quantum mechanics. A second way to do higher order
perturbation theory will also be demonstrated which is simpler than ordinary perturbation
theory (the Raleigh Schrédinger procedure) but which involves an input of iterative sub-
stitutions for the energy shiﬂs within the essential perturbative summation calculation
machinery. The first and immediately important results desired are the corrected energy
spectra. Moreover, the corrected eigenstates can be estimated in a functional form.

The issue of why the methods utilizing matrix formalism (e.g. diagonalizing a 60
by 60 Hamiltonian matrix) are not the superior method for calculating spectra of particles

in all nonrelativistic binding systems will also be addressed in Chapter 6. In brief, these
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matrix formalism techniques are completely numerical. Thé scaﬁﬂg parameter of the
perturbation term has to be set numerically, eliminating any opportunities for concisely
constructing a symbolic approximation of the eigenvalues as a function of the adjustable
perturbation parameter. There is a true advantage in having a symbolic expression which
approximates the new energy levels to high precision. Constructing a perturbation series
which is explicitly dependent on the symbolic perturbation scale makes it possible to gain

such an advantage.

In the discussion of using perturbation theory to make predictions, there is always
the danger that the perturbation term of the Hamiltonian is too large for a meaningful
convergent prediction of the new physical solutions. Padé approximants can be used to
salvage the series to get a meanjhgﬁll prediction of the new physical solution. These par-
tial fractions can be used even when the magnitude of perturbation has significantly ex-

ceeded the scale limit of perturbations bearing finite behavior.

After evaluating one or more of the new corrected energy levels of the energeti-
cally perturbed particle, it is relatively easy to find the corrected eigenstate of this particle
described by the new Hamiltonian (or Lagrangian). The second mentioned method for
doing higher order perturbation theory provides the mathematical mechanism for generat-
ing the corrected eigenstate.[5.b] The unperturbed eigenstates are written here as u’, ,
where n stands for the n-th energy level. The corrected eigenstate is written as u,. The

way to find un, is:
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+ > al o 1 (1.14)
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The development of this solution can be recognized from treating the perturbation term
as the inhomogeneous term in a linear differential equation and the unperturbed Hamilto-
nian with the state (or Lagrangian with ﬁ¢1d) minus the corrected eigenvalue with the
state (or Lagrangian with field) as the main operator from which the essential Green’s
function is built. By using the Green’s function and the homogeneous term, the corrected
eigenstates u, are built up. If the convefgenée of the right hand side of equation (1.14) is
in jeopardy, then it is extremely convenient to take thé Pade[n,m] approximant of the
perturbation series. In most instances the best resuit occurs when m equals n or n+1.

n plus m should equal the order of the perturbation scale parameter of the largest order

available term in equation (1.14). There is an example in the appendix (See appendix B.
See newstat3.ms ) in which a quartic harmonic oscillator is studied. In brieﬁ the potential
Vx* is added to the Hamiltonian of a harmonic oscillator. The graphical results of the
correction of the ground state of the energetic system ( (-d*/dx’ + 2-x%) + V-x* ¥ are
displayed in figures (2) and (3). These resuits for the corrected ground eigenstate are
very reasonable. Over all, they are modestly successful. Thé point of this is that it is no
more difficult in terms of writing and executing software to calculate these corrections to
the eigenstate than it is to find the eigen-energy of that state. This could serve as a tool
to qualitatively inspect the vchange in the spatial form of the eigenstate as the magnitude
of the perturbing term is increased without spending much CPU time to create the new

eigenstates.
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Legend

W(mhye( x*1/2) -

Partial Sum | :
(order 5)

Pade[2,2]

Padef1,1] ————

Partial Sum
(order 4)

Figure 1.2) Comparison of the harmonic oscillator’s ground state
(spatial form of 1/(n*yexp(- x*1/2) ) to the fourth order series expres-
sion of the corrected ground state and the actually expected wave form

of the corrected ground state.-
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Figure 1.3) Comparison of amp - exp(-x*.597) to the numerically
predicted corrected ground state and to the Pade[2,2] prediction for
the ground state,which has the form 1/(n*yexp(- ¥ -1/2). (‘amp’ is an

adjustable quantity.)
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A Cause for Using Padé Approximant Predictions in QCD.

The area of field theory which includes Quantum Chromodynamics and Quantum
Electrodynamics shall be covered in Chapter 7. Any perturbative series in quantum chro-
modynamics is very difficult to work with in the sense that a large or medium numerical
value for as would result in a critically divergent series. Furthermore, it is not known
precisely just how large ots can be in order to generate a partial sum in a convergent form
out to seventh or eighth order of the infinite series. Asymptotic formulas are understood
for as of QCD. But, this is only a limited form of eﬁd. PAP’s can be helpful in providing
a reasonable estimate of the value of the next term in a QCD. This is useful for calculat-
ing a higher precision estimate of a perturbative QCD partial sum out to one order higher
than has been done presently by analytical means. As was iﬁitially announced, the QCD

beta function will be given special attention.

Summary.

This completes the overview of the contents of the three areas of discourse of this
work. In terms of operation 6verhead, it is of significance that a mere pentium 120 with
only 24 megabytes of RAM was used for the tedious numerical calculations as well as for
the involved symbolic information processing. These conventionally tedious numerical
calculations and the involved symbolic processing are discussed in Chapters 2 through 6.
No more than twenty minutes of CPU time were required to solve as reliable approxima-
tion the H-function equation for radiative scattering in chapter 3. No more than seven

minutes of CPU time were required for the quantum mechanical calculations involving



fifth order perturbation theory in chapter 6. Indeed, the computations done here in are

not exhaustive of computer operation power or of CPU time.

14



15

Chapter 2

Linear Fredholm Integral Equations

Mathematical Justification of the Fredholm Series
In this chapter Fredholm integral equations of the second kind will be studied and
solved in application to various examples. The linear Fredholm integral equation of the

second kind can be ekpressed as follows:
b ‘ . ’
fx) = g(x) 0 [G(x.3)- ) -y 2.1

The objective is to solve equation (2.1) for f{x). G(x,y) is the kernel of this linear integral
equation. There is an available formal solution for f(x), which is known as the Fredholm
solution [6.a]. Although this solution is formally correct, the calculations involved in gen-
erating a particular Fredholm solution as one particular function of x and lambda are very
leﬁgthy and rather tedious. In this chapter, the effectiveness of using Padé approximants
to solve the Fredholm integral equations will be demonstfated. Furthermore, the smaller
required computation time of Padé approximants and the smaller amount of difficulty of
calculating Padé approximants will be contrasted with the tediousness and occasional
technicél difficulties of carrying out the formalism required to generate the particular
Fredholm solution for particular equations.

If A is small enough for many cases, vequation (2.1) can be solved to sufficient pre-
cision by guessing a solution and placing this guess into the right hand side of (2.1). This
results in an improved guess for the solution f{x). This type of iteration could be contin-

ued indefinitely, resulting in the infinite series Ziri(x)*A’, where A is the expansion pa-
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rameter. The name of this is the Neumann series. Let us start the iteration with the initial
guess of g(x) for f(x) (of equation (2.1)).

DE=g® -
=g +A- [ Gey) - e) dv] . (22)

Next, r;(x) through n(x) are symboﬁcaﬂy eXpressed.

1
| b
\

rl(x)= ({1(x)-00(x) ) /A = f G(x,y) - g(y) - dy . (2.3)

a

B0=20 + 1 (| G0y (@) dv +1- | GG2) - g@) - da] - ).

12(0= (2(9) -f1(x) V) = [ G(xy) - [ G:2) - g(z) - dz) - dy . 2.4)

Clearly, w(x) = (b f(x) -bfm-u(x) )4 (Z»N) s
specifically: m(x) = I dy; I dya ... I ay o1 I dyn
- G(xyl) -aG(yl,y;) et G(;N-z, yn-1) ?G(YN-I, yN) - gy

and x)= Fi 5(®) - (b) 1 . (2.5)
The Neumann series has just been formﬁ]ly demonstrated.

It can be easily demonstrated that this Neumann series will accurately generate the
solution to the Fredholm equation if |A| small enough. The question arises of whether a
real solution to equation (2.1) exists for all real values of A. There is one unusual condi-

tion where (2.1} very likely does not have a non-zero solution. It can be seen that when A

b
of the equation f{x) = g(x) +A- j G(x,y)- f(¥)-dy equals an eigenvalue of the kernel op-
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erator fG(x,y)dy , then this equation (2.1) very likely does not have a finite solution in the
case other than where g(x) equals 0. Eigenvalues and eigensolutions are discussed in
various texts [6.b]. Such eigenvalues, hqwever are only a set of isolated points on the
continuous spectrum of possible real values for A.

In order to find out whether there exist real solutions for (2.1) when A is large, a

discussion of a numerical technique is useful. We can change the expression

b ' e .
IG(x,u) - f () - du into the discrete sum expressed as:

( 2{i=0,k}G(x[n],z[i]) - y(z[i]) ) - (b-a)/k , where k is large. (2.6)
As k approaches infinity, expression (2.6) approaches equality to the RHS of (2.1).
Moreover, the following equation,
y(x[m]) = g(x[m]) + 4 - (Z{i=0.k}G(x[m],2[i]) - y(z[i]) ) - (b-a)/k 2.7)
approaches equivalence to the equation (2.1) as k approaches infinity. By taking into
conside_ration‘equation (2.7), it is completely reasonable to write out the next set simulta-
neous expressions of (2.7). These simultaneous equations are to be used to find the solu-
tion for y(x[0]), y(x[1]), ... ,y(x[k-1]),y(x[k]) -

(Note that k does not stand for solution function here.)

Y[k =g(xik]) + (2{i=0,k} G(x[k]zi]) - y(z[iD) ) - D
y(x[k-11) = g(x[k-1]) + A+ (Z{i=0,k} G(x[k-1],2[i}) - y(z[i]} ) - D
y(x[k-2]) = g(x[k-2]) + A (Z{i=0,k} G(x[k-2].zi]) - y(z[i]) ) - D

;'(X[I]) =g(x[1]) + A (2{i=0,k}G(i[1],Z[i]) "y(i]))-D
y(x[0]) = g(x[0]) + A- (Z{i=0.k}G(x[0,2[i]) - y(z[i) ) - D . 2.8)

Here, z[j]=x[jl. x[0]=a. x[k]=b. D=(b-a)/ k.
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The set of algebraic values [y(x[0]), y(x[1]), ... ,y(x[k-1]),y(x[k]) ] taken together com-
prise an estimate for the solution f(x) of (2.1). Going along with this discussion, as k ap-
proaches infinity, y(x[q]) approaches f(x) .of (2.1). Note: 0 < q < k. Equations (2.8) in
principle can be solved mathematically by using Cramer’s law. By considering the form of
the solution using Cramer’s law, it is clear that if all of the coefficients in equations (2.8)
are real, then the solution of y(x[0]), y(x[1]), ... ,y(x[k-1]),y(x[k]) exists. Moreover, this

solution then is real, given that x[j] is real. This equation (2.8) will be reviewed later in

_ the discussion of the numerical methods for solving the Fredholm equation. It has now

been established that a real valued solution exists for the linear Fredho]m equation of the
second kind wheh |A| is small as well as when |A| is large. Only for a very small isolated
set of eigenvalues might a solution for f{x) not exist.

It is good to know of the existence of a solution for the above equation even when
A is large. Padé approximants are never able to generate accurate approximations of
complex functions represented by an_inﬁnite series givenb by solely real terms. This be-
comes very apparent by reviewing equations (1.3) and (1.4) of Chapter 1 and the solutions

of equations (1.3) and (1.4). An exafnple of a real series which represents a complex

- function is:

log(1-x)y= -x -x*/2 -x’/3 x4 XI5 x°16 X'17 X8 + ... . (2.9)
If x is less than 1, then log(1-x) is real. Or else, log(1-x) is complex. Padé approximants
perpetually give real full value predictions. For examplé, we see that Pade[2,3]= 60.0 ,
Pade[5,6]= -7.30667 , and Pade[8,9]= -3.19488 when x=1.2 in log(1 -x). The actual

log(1-(1.2) ) equals -1.6094379 + 3.1415927 . Clearly, the Padé¢ approximants come
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nowhere close to the correct answer. However, it is clear that the Padé approximants do
not converge to any definite functional value of 1.2 as n of Pade[n,n+1] approaches plus
infinity. Padé approximants fail here, and they indicate they are failing by refusing to con-
verge to any one particular value. There are numerous other examples of real series which
represent complex numbers as a function of large x. In all of these known examples, the
Padé approximants openly advertise the non-applicability by refusing to converge to any
one particular value for a given x.

On the other hand, if |x| is less than 1, then 1og(l-x) is real and the Padé ap-
proximants .give reliable, converging answers. Consider log(1-x) when x =.8. The partial
sum to order 4 equals -1.39307 when x =.8. Pade[2,2] and the actual log(1-x) equal
-1.56422 and -1.60944 respectively. Pade[2,2] is much closer to the correct value than
the partial sum of log(1-x). In brief summary, Padé approximants converge to a definite
real value for the series of log(1-x) around 0 when |x| is less than 1, and Padé ap-
proximants fail to converge to any definite numerical value when x is greater than 1, where
log(1-x) is complex.

It is transparent that the solution of the Fredholm integral equation of the second
kind (where all parameters of the equation are real) must be real in order for Padé ap-
proximants to be a legithnéte »app‘roximation to this solution. The discussion of the simul-
taneous equations (2.8) made it evident that the solutions of Fredholm integral equations
exist and are real. The fact that integral equations are real and exist in the example of the

previous paragraph very strongly suggest the following assertion:
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Padé approximants of sequentially higher order will approach the correct solution
of the Fredholm integral equation of the second kind. (Assertion #1)
There are five conditions which should be met. If not all of these five conditions are met,
then Assertion # 1 somewhat likely does not hold. Before going through this list, a defini-

tion for scaleable infinity is needed. A scaleable infinite kernel is a kernel G(x,y) which

b

results in the following two integrals being finite: j{ G(x,y)dy being less than Infinity and

a

b
jG(x, ¥)-g(¥)-dy is less than Infinity. Here is the list of five conditions required for As-

sertion #1 one to hold:

1.) The upper and lower limits of integration must be real.

2.) It must be true that the upper and lower limits of integration are finite.

3.) Either the kernel must remain finite within the range of upper and lower limits of in-
tegration, or the kernel must be a kernel of scaleable infinity. |

4.) The initial term g(y)‘ of ecjuation (2.1) must remain finite within the range of upper

and lower limits of integration for y.
b
5.) In the RHS expression g(x) +\ _[G(x, V- f()-dy, 4 a b, gkx), and Gx)y) are

required to be real, g(x) and G(x,y) must be real when x and y are real. Padé ap-
proximants might function successfully in some examples where G(x,y) is complex, but

not in all such examples.
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This list shall be called the ﬁve—fold statement. If some of the conditions of the five-fold
statement are not met in a Fredholm equation, then this particular equation shall be de-
scribed for convenience as being a renegade Fredholm equation.

If these five conditions are met, then it is almost guaranteed that Pade[n,n+1] and
Pade[n,n] will converge to the correct ‘functional’ solution of the Fredholm equation.
There are boundless groups of examples wheré this ﬁvé-fold statement is verified by fact.
The author and others of proféssional acquaintance have not found any one example
which contradicts the five-fold statement. In this chapter, five major examples will be
given of integral equations. Padé approximants are completely successful in these exam-
ples. These five examples do fulfill the requirements of the five conditions.

It is occasionally pbssible that Padé approximants can be applied to the Neumann
series even if not all 0f the five conditions are met. As a warning, remember that it is easy
to find various Neumann series which fail the ﬁve-fold statement and which also are un-
fruitful for Padé approximants. When Lambda is greater than 1/z in (2.10), the equation

(2.10) does not have a real solution.

Rx) = 1/(1+xx) +i jm ) dy (2.10)

As a matter of fact, the formal solution of (2.10) is Sty D/(x*+0?) - (Lp)®P. It is obvi-
ous that this formal solution represents non-real values when Lambda is greater than 1/x .

When Lambda - © = 11/10, there is no convergence to an answer with Padé approximants:
Pade[2,3] = .943260; Pade[3,3] = -.969773; and Pade[3,4] = -.104308. (See polel.ma in

dir linintg) This equation is a particular case of equation (2.1). Condition 2.) of the five-
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fold statement is not complied with, making this equation vulnerable to the lack of a real
solution. The proof of existence of the real solution to the Fredholm integral equation
does not appiy to equation (2.10) because limits a and b of the discretely expressed equa-
tions (2.8) are required to be finite real numbers for equations (2.8) to be relevant to the
discussion of the Riemann sum approximation of the integral.

Sometimes though, these renegade éxamples which defy condition 2.) of Fredholm

equations are successful. Consider the following case:

1 "

= l.—_’—_—_ : '. . (
)= 2 (1+1/2-x2) + k_;[(1+y2).(1+x2) SO)-dy . (2.11)

The solution to this example is f(x) = ¥%/(1+% - X°) +—;— ‘e AL w200 - L+ XD,

even if A is larger than the radius of convergence. On a rather random basis, one sees that
renegade Fredholm equations sometimes bear real valued functions and at other times
complex functions as solutions. On the other hand, there are many examples such as the
case of (2.10) and the example In(1 +x) where Padé approximants will not work, espe-
cially if A is large.

In this section only the Fredholm equations which follow the five-fold statement
will be discussed. Equations which follow the five-fold statement shall be freely called by
adjective “adherent” in the re‘st of this thesis. Likewise, the ‘compiled results in the end of

this chapter come solely from equations complying to the five-fold statement. We remem-

ber that f(x) can be expressed formally as the Neumann series Z r;i(x) - A . |rx)

=0

does happen to have an upper bound. Remember that 1N(x) equals:
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b b b b
[ o] dyz | dvoun | dyaGOoyD) Gy1y2) ..o Glywas yer) - Glywsyn) 2.

An upper bound to this quantity is:
509 < Max{Gey)xy} ) - Maxtg)y - (b2 @12)
If there is a weak infinity, then the inequalities of (2.13) apply:
Break G(x,y) into two functions. G(x,y) = H(x,y) - R(x,y) . H(x,y) is finite.

| | R(x,y) is of scaleable infinity.
| ()| < (MaX{H(X,Y);Xay} Y- Max{g(?),y} - (b-a) - [It[R(x,y).{y.a,b}] |
so long as R(x,y) # 0 anywhere in {a,b}.
()} < Max{H(x,y),%y} ¥ Max{g(y),y} - (b-ay - Int[[R(x,y)l,{y.a,b}]

if R(x,y) = 0 somewhere in {a,b}. (2.13)

Furthermore, it is clear that it is very unlikely for r;(x) to suddenly turn into zero. rj(x)
does not ever turn into zero if G(x,y) dqes not change sign in y,{a..b} and if g(y) does not
change sign in y,{a..b}. A lower bound for r;(x) is:

el 2 Min{G(x.y),xy} - Min{g(),y} - (b-a) @19)
Inequalities (2.12), (2.13), and (2.14)? irﬁply that adherent Neumann series tend to asymp-
totically either evolve into a geometric series or into something very similar to a geometric
series such as (geometric series - (N™* + constant) ). If G(x,y) and g(y) are positive
definite (including the possibiﬁty that G(x,y) is of scaieable infinity ), then it is inevitable
that the given adherent Neumann series evolve into a geometric series or into something

integer

very similar to a geometric series such as (geometric series - (N ° + constant)). Geo-
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metric serie.s are very well known. Let us suppose that rj(x) of the Neumann series is ex-
pressible as (C1(x) - all +62(x) a2 +...Cm(x) - am' ), where m= infinity. - Regardless of
the magnitude of the Lambda, the Neumann series of last statement represents the function
Cl(x)/(1 +al - 1)+ C2(x)/(1 +a2 - A) +...+ Cm{x)/(1 +am - A). Naturally, Neumann
series that are Very similar to a geometric series will have solutions that have a structural
form which is very sumlar to C1(x)/(1 +al - &)+ C2(x)/(1 + a2 - A) + etc., at least when
Lambda is within the radius of convergeﬁce. Therefore, if G(x,- ) and g(y) of an adherent
series do not chaﬁge sign with respect to y in the range {a..b} , then it only makes sense
that the solutioh can be approximated by partial fractions with ever increasing success.

Truly, the Neumann series whose rj(x) equals

(C1(x) - al’ + C2(x) - a2’ +...Cm(x) - an?)

is exactlly sqlvable with the Padé approximants Pade[m-1,m] and Pade[m,m] and
Pade[m,m+1] and Pade[m+1,m+1} and so forth. The coefficients rj(x) represent exactly
the correct function which the complete summation of the above Neumann series equals
when A is small. See the reference Phys. Rev. E [71, which gives the formal foundation of
- the complete success of reproducing and additive combination of plural geometric series
with Padé approximants;

Let us also consider the case of rj(x)= (C1(x) - all + C2(x)-j-al’ + C3(x) - *a...).
When the coefficients equal (C1(x) - all + C2x)-j- all + C3(x) - j* - a ...), the function
represented by this series is also possible to find exactly by taking Padé approximants of
the series. For a certain large but finite M, the expressions Pade[M,M+1] and

Pade[M+1,M+1}] and Pade[M+1,M+2] and so forth will evauluate perfectly the f(x} repre-
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sented by the series. The reason for this is a very direct implication of the discussion of

geométric series provided in the Phys. Rev. E reference [7}].

Presentation of Results..

Now that Padé approximahts have been demonstrated as being a very strong can-
| didate for finding the solutions of Fredholm integral equations §vhich adhere to the five-
fold statement,.it is time to show various examples of integral equations, the Neumann

series of these Fredholm equations, and the Padé approximémts for thé solutions of these
integral equations. In the rest of the second chapter, five particular Fredholm éxamples
will be studied. Immediately below, is given the subsequent kernels of these five integral
equations.

Gl(xy) = (x"y).

G2y =(x- Y+ y)

G3(xy) = (x- )1 + (x +y)12).

Ga(xy) = (x-¥) - (1 + (cHy)d)™.

G5(x,y) =Ei(| x-y|).

Tables 1.) through 3.) show the results of various approaches to solving the equa-

!
i

tion f{x)=x+A I (x-y)? f (»)-dy . Our G(x,y) equals (x - y)* here. When G(x,y) equals

G1(x,y), ‘functio[x,lam]’, the closed form solution for f{x) is x + x2-5/2-7L/(5 -1).



Table 2.1)

Results of G(x,y) = (x * ).
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Pade[2,1]

x 1% | PT4] | Pade[l2] Pade[2,2] Fanctiolx,am]
0.2 10.11.2010204 | 0.20100503 | 0.201020408 | 0.201020408 | 0.201020408
0.2 10.3 1.2031908 | 0.20304569 | 0.203191489 | 0.203191489 | 0.203191489
021]0.5 0.20555 0.20512821 | 0.205555556 | 0.205555556 | 0.205555556
0;2 0.7 0.2081 i72 0.20725389 | 0.208139535 | 0.208139535 | 0.208139535
0.2 0.9 .2109116 0.20942408 0.210975610 0.210975610 | 0.210975610
0.2 11.110.2139524 | 0.21164021 | 0.214102564 | 0.214102564 | 0.214102564
0.2 2 10.2312 0.22222222 1 0.233333333 | 0.233333333 | 0.233333333
0.2 6 0.4184 0.28571429 | -0.1 -0.1 | -0.10000
0.2 1211.2992 | 0.5 0.114285714 | 0.114285714 | 0.114285714
Table 2.2)
Results of G1(x,y) = (x - y)° .

X | % | PT4] | Pade[0.i] PadelL1] Pade[1,2] functio[x,fam]
0.8 10.11}0.816326 0.816326547 0.816326531 | 0.816326531 | 0.816326531
0.8 ‘ 0.3 10.851053 ‘ 0785106384 .0.851063830 0.851063830 | 0.851063830
0.8 10.510.8888 | 0.88888889 | 0.888888889 0.888888889 0.888888889
0.8 10.710.929875 |0.93023257 | 0.930232558 | 0.930232558 0.9302325581
0.8 1 0.9 | 0.974585 |0.97560977 | 0.975609756 | 0.975609756 | 0.975609756
0.8 | 1.1 | 1.023238 | 1.02564104 | 1.025641026 | 1.025641026 | 1.025641026
0.8} 2 |1.2992 1.33333334 1.333333333 | 1.333333333 | 1.333333333
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0.8 ] 6 |4.2944 -4.0000001 | -4. -4. -4.

0.8 | 8 |7.4048 -1.3333335 | -1.33333333 | -1.33333333 | -1.33333333
0.8 | 12 |{18.3872 -0.5714287 | -0.57142857 | -0.57142857 | -0.57142857

Table 2.3)
* Results of G1(x,y) = (x * y)*.

x| A | PT[4] Pade[0,1] Pade[1,1] Pade[1,2] functiofx,lam]
2. [0.1]2.10204 |2.10526316 | 2.102040816 | 2.102040816 | 2.102040816
2. 10.3[2.31908 |2.35294118 |2.319148936 | 2.319148936 | 2.319148936
2. 10.512.555 2.66666667 | 2.555555556 | 2.555555556 | 2.555555556
2. 107281172 |3.07692308 | 2.81395349 | 2.81395349 | 2.81395349
2. 10.913.09116 |3.63636364 |3.09756098 | 3.09756098 | 3.09756098
2. 10.113.39524 |4.44444444 |3.41025641 341025641 3.41025641
2. |2 }5.12 101.010 5.333333333 5.333333333 5.333333333
2. | 6 [23.84 -1. -28. -28. -28.

2. | 8 14328 20.6666667 | -11.333333 | -11.333333 | -11.333333
2. | 12 1111.92 -0.4 -6.5714286 -6.5714286 -6.5714286

Tables 2.4) through 2.6) show the results of various approaches to solving the

equation f{x)= x+ A I((x P +(x- ) x £()-dy. Our G(x,y) equals G2(x,y), which
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equals (x - y)* + (x - y)* here. When G(x,y) equals G2(x,y), ‘functio [x,]Jam]’, the closed

form solution for f{x) is x + By, J(W)K + Bay(W)x*. Biy(L) equals (M-d{i} +A>p{i})( ag

+bgiy A oAt

Table 2.4)
Results of G(x,y) = (x - y)* + (x - )" .
X A PT{4] Padef1,2]- Padef2,1] Pade[2,2] functio[x,lam]
0.2 0.1 0.20105801 | 0.2010580143 | 0.2010580142 | 0.2010580143 | 0.2010580143
0.2 0.3 | 0.20338084 | 0.2033810707 | 0.2033810702 | 0.2033810718 | 0.2033810718
‘0.2 0.5 0.20602666 | 0.2060298342 0.2060298298 0.2060298443 | 0.2060298443
0.2 0.7 0.20906169 { 0.209080091 0.2090800711 0.2090801362 | 0.2090801362
0.2 0.9 0.212563 0.2126331202 | 0.2126330562 | 0.2126332654 | 0.2126332654
0.2 1.1 0.21661852 | 0.2168273967 | 0.2168272265 | 0.2168277837 0.2168277837
0.2 2 0.24463071 .0.2‘517068237 0.251701417 0.2517191991 | 0.2517191991
0.2 6 0.93779474' 0.1298624528 | 0.1297650737 | 0.1300903226 | 0.1300903226
Table 2.5)
Results of G(x,y) =(x-y')2 +(x -y
X A PT[4] Pade{1,2] Pade[2,1] Pade[é,2] functio[x,lam]
0.8 | 0.1 |0.82354303 | 0.823543046 | 0.823543045 | 0.823543045 | 0.823543045
0.8 | 0.3 | 0.87535527 0.875360552 | 0.875360544 | 0.875360547 | 0.875360547
0.8 | 05 [ 0.93454966 | 0.934622478 | 0.934622405 | 0934622437 | 0934622437
0.8 | 0.7 [ 1.0026402 |1.003062157 | 1.003061831 | 1.003061975 | 1.003061975
0.8 | 0.9 ]1.0813891 [1.082996378 | 1.082995328 | 1.082995791 | 1.082995791
0.8 | 1.1 [1.1728071 [1.177593433 | 1.177590631 | 1.177591864 | 1.177591864
0.8 | 2 [1.8073649 |1.969494306 | 1.969404224 | 1.969443581 | 1.969443581
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6.8 6 |17.629385 |-0.83783352 [ -0.83953130 | -0.83881290 ' -0.83881290
0.8 | 6 |[184.27079 |-0.21517544 |-0.21807626 | -0.21691315 |-0.21691315
Table 2.6)

More results of G(x,y) = (xy)* + (xy)*

X A PT[ 4] i Pade[1,2] fade[z,l] - Pade[z,zj functio[x, lam]
2.0 | 0.1 [2.3786623 |2.378662623 | 2.378662643 | 2.378662635 | 2.378662635
2.0 [ 0.3 §3.2151339 3;215221 196 | 3.215223119 | 3.215222349 | 3.215222349
2.0 | 05 | 4175243 | 4.176452426 | 4.176469535 | 4.176462695 | 4.176462695
2.0 | 0.7 |5.2843612 |5.291384196 | 5.291460749 | 5.291430193 | 5.291430193
2.0 | 0.9 |6.5720219 |6.598799388 6.59904599 6.598947726 | 6.598947726
2.0 1.1 [8.0719208 | 8.151709253 | 8.152367254 | 8.152105495 | 8.152105495
202 18.560607 21.26398424 | 21.2851619 |21.276796 21.2767962
201 6 283.04706 | -26.7017264 -26.2993680 -26.451613 | -26.451613
2.0 ‘9 1099.2202 »-19‘.3586745 -18.8739908 | -19.0518519 | -19.0518519
2.0 | 12 |3074.638 |-17.5413438 | -16.8463607 | -17.093010 | -17.093010

‘Next, tables are given of the f{x) solutions where G(x,y) is set as G3(x,y) and then

as G4(x,y).

G3(xy) = (x - y)/(1 + (x + y)/2).

Galxy)=(x-y) - (1+ (xHy)/4)”.

|

The fourth column of Tables 2.7) through 2.8) is labeled as ‘Fredholm Solw’. The values

of the fourth column were obtained by using a formal Fredholm integral equation solution
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as given in the‘text by Mathews and Walker [6.b]. Truncating the numerator and denomi-

nator components was inevitable.

Table 2.7)

Results when this kernel is G(x,y) = x - y/(1 + (x+y)/2)

X |La |Pade[3,3] Fredholm Solu. | Pade[3 4] Pade[4,3] Part!. Sum(7th)
2 12 1209444959 209447337 | .209444959 209444959 | .209444959
2 16 1230801551 - |.230824825 |.230801551 230801551 | .230801478
2 |8 .242937544 242980808 242937544 242937544 | 242936972
2 1.0 1256230540 256301372 256230540 256230540 | .256227687
2 |1.5 1295756953 295937944 295756953 295756953 |.295701612 ,
12 2.0 1347648840 348021053 347648840 347648840 | .347169427
2 .5 1418781733 419471364 418781733 418781733 | .416072018
12 3.0 1522288136 523507587 522288136 | 522288136 | .510369763
2 PB.5 1686771350 688920771 .686771349 686771349 .641382308
2 #¥.0 1988597736 992578504 988597736 988597736 | .824763068
2 W.5 [1.723037450 | 1.731688626 | 1.723037450 1.723037450 1.081608474
2 p9 479_190256 4.9485.086 4.9190256 4.9190256 1.398385

2 P25 123.51430444 -23.67199915 -23.5143047 | -23.5143047 | 1.66756407 |
2 P45 £4.901950234 | -4.937097054 | -4.901950245 74.90195025 1.87799188
12 5.7 +2.480207897 | -2.499516114 | -2.480207901 | -2.48020790 | 2.18117346
2 6 }1.566373370 | -1.579769179 | -1.566373372 | -1.56637337 | 2.61260900
2 |7 F.717464252 -.725586120 | -.717464253 | -.717464253 | 4.75525166
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1722.8284

2 B.197 {1713.845 1713.8438 1713.8437 1.6161504
12 [5.198 14325.64762 | -4368.55155 | -4325.65459 |-4325.65470 | 1.6171044
Table 2.8)
Results when the kernel is: G4(x,y) = (x - y) - (1 + (x+y)/4)™

x [La |Pade[3,3] Fredholm Solu. | Pade[3,4] Pade[4,3] | Pt. Sum(7)
21.1 207431617 | .207431369 | .207431617 | .207431617 | .207431617
2 1.3 224154144 |.224151730 - | .224154144 - | .224154144 | 224154139
2 1.5 243919600 | 243912286 | 243919600 | .243919600 | 243919271
21.8 281377248 | 281355562 | .281377248 | .281377248 | .281360858
2 | 1.2 |.354655293 | .354593465 | .354655293 | .354655293 | .354123100
2 | 1.8 |.586942002 | .586709853 | .586942002 | .586942002 | .564191676
2 122 ]1.052608132 | 1.051982257 | 1.052608132 | 1.05260813 | .848367842
2 | 2.58 14413194958 | 4.409538238 | 4.413194958 | 4.41319496 | 1.33439330
2 | 2.64 | 8.952364069 | 8.944505104 | 8.952364069 | 8.95236407 | 1.43985646
2 | 2.67 |18.45412287 | 18.43716605 | 18.45412287 | 18.4541229 | 1.49623399
2 | 268 |28.56573659 | 28.53865773 | 28.56573660 | 28.5657366 | 1.51559240
2 | 2.69 |63.20939388 | 63.14420356 | 63.20939388 | 63.2093939 | 1.53524040
2 {2694 122.7838494 | 122.6407043 | 122.7838494 | 122.783849 | 1.54318160
2 270 |-296.631043 | -296.559456 | -296.631043 | -296.631042 | 1.55518207
2 1275 |-10.0597911 | -10.0506349 | -10.0597911 | -10.0597911 | 1.65944106
2 12.8 1-5.11332430 [-5.10843595 |-5.11332430 | -5.11332430{ 1.77167973
2 12.9 |-2.57549830 | -2.57283689 | -2.57549830 | -2.57549830 | 2.02238932
2 13.0 |-1.71970859 |-1.71780031 {-1.71970859 | -1.71970859 | 2.31224235
2 13.5 |-.642941483 | -.641961379 | -.642941483 | -.642941483 | 4.56544993
2 14.0 {-.393339633 |-.392550771 |-.393339633 | -.393339633 | 8.94246821

It is significant to note that the Fredholm formal solution is useless in finding the

solution to the Fredholm integral equation in which (Ei |x-y] ) serves as the kernel G(x,y).

The reason is that G(x,x) equals infinity. The numerator and denominator of the Fredholm
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solution both become a collection of infinities [6]. Due to this failure, there is no Fredholm

solution column in Table 2.9) and in Table 2.10).

Table 2.9)

Results when G(x,y) is Ei( | x-y| )

x |Lam | Seria(ord5) Pade[2,3] Pade[3,2] Pade[2.2]

2 | -2.09 | 18.340754525 | 2.318179190 2.318096492 | 2.362954069
2 |-1.99 |15.603592781 | 1.990174197 . | 1.990108969 | 2.027162828
2 |-1.89 | 13.270037379 | 1.667131299 1.667077716 | 1.699048643
2 |-1.79 |11.291168861 | 1.320900088 1,320853858 | 1.349914408
2 |-1.69 |9.622323568 | .908506593 908463983 | 936774927
2 |-1.59 |8.222895481 | .344757396 344713982 | 375308207
2 |-1.49 |7.056138076 | -.593341676 -.593394444 | -.553816537
2 |-139 |6.088966172 | -2.795127212 | -2.795222310 | -2.719113628
2 7134 |5.670838047 | -5.836192323 | -5.836379393 | -5.681921379
2 |-1315 | 5476621127 | -9.344593075 | -9.344930402 | -9.062801227 |
2 [-129 | 5291757775 | -18.374303249 | -18.375240542 | -17.58790727 _
2 [T1275 | 5.185165431 | -36.822684621 | -36.825798158 | -34.25628334
2 |-124 | 4948531221 | 37.017542031 | 37.015481719 | 38.991500002
2 [-1.19 |4.638155932 | 11.381135887 | 11.381025580 | 11.486444978
2 |-1.09 |4.104870577 | 5.723787227 5.723777550 | 5.733771458
2 [-990 |3.671480382 | 4.242134286 4242132350 | 4.244326319
2 |-790 |3.035854927 | 3.120396382 3.120396246 | 3.120589255
2 |-.490 |2.464054761 | 2.466993833 2.466993831 | 2.466998947
2 [-290 |2.230310578 | 2.230410886 | 2.230410886 | 2.230411087
2 | -9e-5 |2.061735303 | 2.061735377 2.061735377 | 2.061735378
2 |.110 |1.933325456 | 1933325667 1.933325667 | 1.933325667
2 | 310 |1.831102714 | 1.831195307 1.831195307 | 1.831195235
2 | 510 | 1745773071 | 1.747402105 | 1.747402105 | 1.747401498
2 | 710 | 1.666385998 | 1.677045227 1.677045226 | 1.677042930
2 |.910 |1.573993598 | 1.616905440 1616905435 | 1.616899540
2 [1.11 | 1435309769 | 1.564762978 1.564762966 | 1.564750881

For Table 2.10) let G(x,y) equal Ei ( |x-y| ). x equals .6 here.
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Results when G(x,y) =Ei ( l X-y [ )
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x | Lam | Seria( ordS) Pade[2,3] Pade[3,2] Pade[2,2]

.6 [-1.69 | 19.996901720 -3.795400749 -3.798071519 | -4.439191961
.6 | -1.59. ] 16.505757149 -4.978610463 -4.981205278 | -5.586034634
.6 | -1.49 | 13.616222660 -7.238984701 -7.242017914 | -7.949226574
.6 {-1.39 | 11.241556142 -13.032371071 -13.037682151 | -14.31596451
6 | -1.34 | 10.222705503 -21.361524975 . | -21.371912448 | -23.97630833
.6 | -1.315 | 9751427961 -31.166218472 -31.185035552 | -36.10655325
6 |-129 |9.304157181 -57.064642506 -57.118239797 | -72.70931766
6. | -1.275 | 9.046888766 -112.756737525 - | -112.94643477 | -184.1894497
.6 | -1.24 | 8.477553364 90.246348097 90.150410162 | 72.197437162
.6 | -1.19 | 7.735041962 25.665805931 25.660283629 | 24.398926316
.6 | -1.09 | 6.473318181 10.815080174 10.814598385 | 10.692874199
6 |-.990 | 5.465659950 6.998405796 6.998311081 | 6.972371474
.6 | -.790 |4.033918126 4.261025220 4261018778 | 4.258885608
.6 | -.490 | 2.835433636 2.843321011 2.843320909 | 2.843268990
.6 1-.290 |2.392868412 2.393137398 2393137396 | 2.393135448
.6 | -.009 |2.100497580 2.100497780 2.100497780 | 2.100497776
.6 {.1100 | 1.895674823 1.895675390 1.895675390 | 1.895675395
.6 |.3100 | 1.744400324 1.744648142 1.744648141 1.744648771
.6 |.5100 | 1.624517830 1.628875488 1.628875477 | 1.628880659
.6 {.7100 | 1.508911711 1.537411391 1.537411331 1.537430494
.6 |.9100 | 1.348704017 1.463387760 1.463387565 | 1.463435807
.6 { 1.110 | 1.056451538 1.402283414 1.402282933 1.402380088

For the above Fredholm equation where G(x,y)= Ei( |x-y| ), more than one numeri-

cal test was done on prdperly functioning numerical source code in the Maple programs

mistaky6.ms and chek6rhs.ms. A text book entitled Integral Equations [7.b] discusses this

particular integral equation.
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Chapter 3

The Radiative Transfer Equation and the H-function

Mathematical Intreduction, Showing Recursive Relation

In this chapter, radiative scattering off of a semi-infinite, plane-parallel, isotropi-
cally scattering material medium for the transmission of light shall be considered for the
most significant application of extracting solutions to integral equations in this disserta-
tion. Much of the material discussed here is also covered in publication [8]. The intensity
of diffusively scattered electromagnetic radiation is expressed as I(t ,cos(¢)). The integro-
differential equation which describes this diffusively scattered penetration was developed
by Chandrasekhar in [9.a]. In the work discussed here, only the example of a isotropically
scattering material medium was considered.'

The differentio-integral equation which expresses the change in intensity with re-

spect to depth of penetration in the material medium is:

dI(ta,u)
i Ut LA
dfa
Already this equation has been selected for modlﬁcatlon for the isotropic condition. By the

= I(tau) + — II(tau) -du' +dampedAmpe™. (3.1)

use of the conversion factor H(u)and F on equation (1-3), we indirectly end up with the

integral equation: -~ H(u)=1+1/20H(u) .[ H(u‘)‘ di - (3.2)

o (u+u')
H(u) is related to I(0,u,u,) as: I(0,u,u,)= 1/4 -@-F - uy/(utu,) - H(u)-H(u,). See reference
[9.b]. u, is cos(phi) of the incoming plane wave. In equations (3.1) and (3.2), u is equiva-

lent to cos(¢) ,and ta is related to penetration depth through a direct proportionality. The
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more creative and mathematically inclined reader might move to linearly transform (3.1)
into a linear Fredholm integral equation of the second kind. However, if this person
chooses a good transfornﬁng function, the Fredholm equation to solve will involve a for-
midably difﬁcult singularity within the kernel. This is a much more detrimental situation
than the one impoSéd by a “scaleable infinity’ from chapter 2.

A solution to the H-function is proposed to be in the form of the following partial
sum:  Hem(x,W2) = g0[x] ’+Wz'g1[X] +(Wz)2'g2[X] T+ (Wo) g {n}[x],

| | where W,= /2. (3.29)

The RHS of (3.2t) is to be pluggea into (2-3). All of the coefficients of particular integer
powers of ® are match in order to construct a complete successive set of recursive equa-
tions. These recursive steps and assignments to g{m}[x] are given on the next several
lines.

Let us begin an iteration for a recursion. gO[x] equals 1 of equation (3.2). G[u,y]
is built to equal 1/(uty).

The following steps amount to a recursive iteration.

gl[x] =x-g0[x] - | gO[y]-GIx,y] &

© Gy =

1

gl[ylGlxyl dy +xgl[x]- | g0[y-Glxy] dy.

o

g2[x] = x-g0[x] -

© Gy =

1

g2[ylGlxyl dy +xgl[x]- | glly]Glxy] &y +

o

g0lyl-Glx,yl ay . (3.3)

g3[x] = x-g0[x] -

xg2[x]

© Sty O Gy

In repetitive generality, it is clear that:
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Sy [X]=xg0[x] - | glyl'Glxyldy +x81[X]* [ guylylGlxyldy+ ..

X gn13[X] j gllyl'GIxyl dy +xgmlx] J g0[yl-GIx,yl dy . (3.4

In specific application to the H-function, gO[x] and g1[x] are set as:
g0[x] E'l and gl[u]=ulog[(1+u)/u].

Furthermore, f(y) = log((1+y)/y), and gl[y] =y - fly].

The following review steps can be re-stated as a recursive iteration.

gllx]=x+] 1-G[xy]dy,one term.

O oy e

1

g2[x] =x J y - f{y) - G[x,y] dy + x-(x-f[x]) J 1- G[x,y] dy, two terms,

4

1

g3xl= x| y1-[ zflz2]Gly2] d=Glxyldy+x-| yflyl-| 1-Gly.z] dz - Glxy] d+

o

x+ (efix]) - | (Aly)Glxyldy +xx- [ (flylGlxyldy- | 1Glxy]dy+
xx- (eflx)) | LGlxyldy- [ 1Glxyldy), five terms. (3.5)

This can be re-stated at a more simplistic level as:

gOhas 1. gl hasG. G(xy) has G.

glfx] > 1-G. |

2[x] >G-G+tG-G—>2- G-
Bx]>(2-G)-G+G-G-G+(2:-G)-G>5-G .

g4x] >(2-1-5-G)+2-G-2:-G))-G>(10+4)-G-G=14-G*.

The magnitude recursion relation to use is:
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gy [x] > 808mly] "G+ gylx] ‘S [x] G+ 2] ‘Bnlx] -G +
o T 8y [X] - 8y [X] - G +84my [X] - 80 - G- (3.6)
If the recursion relation for term counting is carried out several hundred times on code on
a PC then it becomes evidbentv inductively that g[N+1]/g[N] approaches the value 4 as N
becomes large. Restated, this means that the number of terms in the expression for gn[x]
grows approximately as C - 4" when n i§ vefy_ large. The sigm'ﬁcancé of this is that if the
inductively discovered premise of C - 4" growth i.§ t}‘ue, ?hen gin}[x] asymptotically grows
asa geometric series. Furthermore, by considering also the fact that G(x,y) in this chap-
ter remains finite (except in the one unusual case where external x of G(x,y) equals 0), it
is possible to conclude that g{n}[x] does not grow faster than portrayed by an appropriate
upper bound of the following form:
LargeC - ol - 4", L 3.7

jj is a non-negative constant integer.

Tt was explained in Chapter 2 that a series which has the asymptotic form of (3.7) is an

extremely strong candidate for’successt;ul estimates to the full value of the g-series
throﬁgh the use of Padé apperimants. The g-series, of course, is Hfunct(u,w) = Xgyw".
The fecu_rsion relation (3.5) can be used to establish upper bounds on the magnitude

g (u). Ihdeed, the maximum possible growth,bf approximately 4" w.r.t. n was observed.
Thére isa conveﬁigerit way to keep track of the rate of g, through the construction of
analogous diagrams which represent g.;(x). These diagrams follow rules which can be
viewed as a simplification of the Feynman rules for the diagrams which describe the self-
energy of a fermion. G(u,u’) can be treated a the “interaction gauge boson” propagator,

which is represented by the wavy line ~~ % . A vertex is a point at which a P(u)*
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couples with a G(u,u’) propagator and a plane wave state ‘¥(u") . ¥(u)* is used to repre-
sent u-1, or u-g0 in the H-function expansion. ¥(u') is used to represent 1, or g0. Now,

the first three diagrams represent g0, g1(u), and g(2)(u).

g0 is depicted as « - e
gl(u)is depicted as . o
g2(u) is depicted as

plus

Thus g2(u) is depicted by 2 sub-diagrams. Unlike in the Feynman rules for QED, the wavy
line #~% cannot cross over another wavy line #\ on the planar region of illustration.
By continuing with the same rules, the reader ‘shouId wﬁh mild effort be able to see that
g3(u) is depicted by 5 sub-diagraﬁls‘ g4(u) is depicted by 14 sub-diagrams. It becomes
clear that the number of sub-diagrams grows exactly at the same rate as the number of
terms of g{n}, as shown in recursion (3.6). Those readers interested in the growth of the
number of terms of g¢,;(u) and in the number of diagrams svhould. view appendix D.
CONTINUE.
Let us consider the ﬁrst few iterations.
g0=1.
f(u)= In(1+v) - Inu) .

gl(uy=u-f(u).
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g2(u)= 2 - In(2)-u - In(2) - In((u+1)/(u-1)) -u - dilog((u+1)/(u-1)) +
u - dilog((u+1)/u)+u - dilog(u/(u-1)) . (3.9)

23(u) is not known with easily manageable known analytical functions. Subse-
quently, it will be even harder to calculate g4(u), g5(u), g6(u), et cetera. In the next sev-
eral statements, an algorithm for construction g3(u), g4(u)? et cetera with a polynomial
fitting method ié described.

The approach used to calculate the 23(u) useful for research of this dissertation
was one of polynomial approximation of g2(u). In the fesearch pertinent to Chaptér 3, the
polynomial for approximation is denoted as polfg2(u). There where imposed 20 simulta-
neous matchups between polfg2(u) and g2(u), such that polfg2(.02)= g2(.02),
polfg2(.08)= g2(.08), polfg2(.1)= g2(.1), and so on all the way up to polfg2(.95)=
£2(.95), and polfg2(1.0) = g2(1.0). polfg2(u) is a nineteenth order polynomial for which
each of the twenty ;:oefﬁcients are to be determined by the 20 simultaneous matchups. In

fact twenty simultaneous equations determine the coefficients to polfg2(u). polfg2(u)

equals Zi(c4u). c4; is obtained numerically. However, the expression of polfg4(u) is a

fairly accurate closed form symbolic expression in function of u. When u>=0 and u<=1,
the expression polfg2(u) gives a fairly accurate representation of g2(u). This is especially
true because £2(u) does not have ahy singtilarities in the range 0 <u <= 1. In the study of
continuous .ﬁmctions;, Weierstrauss proved that there does exist a sequence 6f polynomials
of x which successfully approximates any given singularity free function of x [10, Weier-

strauss ref.]. An immediate implication of the Weierstrauss theorem is that the expression

36 .
polfg2(u)= Z ¢4; - u' would be even more accurate than the above 19th order represen-

H
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tation for poing(u). Numerically, it was found that the difference between a 15 order and
19 order polynomial representation of g2(u) when 0<u<=1 was negligible within 10°° per-
cent. Clearly for the purposes of approximating gn(u), there would be no significant im-
provement numerically in using the 35th order polynomial repr¢sentation of g2(u) over the
19th order representation.

Once the coefficients of polfg2(u) have beeﬁ found, it is time to insert this into the

equation of recursion:

g3[x]= x- g0[x] - | polfe2y]- Glxy] dy +

X gl[x] j' gl[y] - G[x,y] dy + x - polfg2[x] I g0[y] - G[x,y] dv . See equations (3.3).

g3(x) also isa very difficult expression to work with. polfg3(u) is designated as the poly- |
nomial represéntation of g3(u), which has turned into a transcendental function. polfg3(u)
is taken out to the 19th order. In exactly the same manner thét the coefficients of
polfg2(u) were determined by g2(u), pdlfg3 (u) is also developed by matching polfg3(u) to
g3(u) fbr 20 different values of u in the linearly sef interval within O<u<=1. Once polfg3(u)
is }known explicitly asa ﬁnction of u, polfg3(u) is plugged in as g3(u) into the recursion
formula (4-3) uéed to generate g4(u) from g3(u), g2(u), gl(u), and g0. This time a long,
unwieldy expression for g4(u) is obtained. It is then imperative to obtain a polynomial ex-
pression polfg4(u) for the transcendental function g4(u). And, the whole process discussed
in the beginning of this paragraph is repeated in order to generate g5(u). Next in turn
-g6(u) is calculated. g7(u), g8(u), and g9(u) were also found. In table 3.1) are shown vari-

ous values of g{n}(u).



Table 3.1)

Example of the Values of g¢y(u) for Three Values of u

u 2 .8 .9
gl(u) | .358351893845610 .648744172973062 .672492961647198
g2(u) | .275237355339286 .719900556021486 .764383975398485
23(u) | .287877433553651 .950733073664056 1.02713349849796
g4(u) | .357372704916896 1.37630275650370 1.50657478108083
g5(u) |.493004968258362 2.11079374260696 2.33454751520814
g6(u) | .729201449707502 3.36926942602789 3.75753189158554
g7(u) | 1.13238361159873 5.53857831222114 6.21921399540239
g8(u) | 1.82224587124395 9.31253656724590 10.5169867574193
£9(u) | 3.01278816189040 15.9409717133517 18.0904289321405
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It should be noticed that g, (u) is growing approximately at a geometric rate with

respect to u.

Below are shown the excellent results for the calculations of H-functions out to
Sth order. Hﬁm9(u,W2) shall be defined as the following expression:

gO+gl U)Wyt g2(yW,2 - - - - - - +g9(uy W, where W= 0/2. (3.9)
This is a"partial sum of the H-function. In the research involved in presenting the results
for H-function calculations, Padé approximants were taken of Hfun9(u,w2). The most in-
teresting results aré the comparison of Pade[4,5], Pade[5.4], Hﬂn9(u,w2) and established
numerical results of H-funct(u,w2) as presented in Chandrasekhar’s text [11].

The reader might question the purpose of reproducing Chandrasekhar’s results.

The point is that a tremendously large range of H-function values can be calculated very

quickly with algorithms presented in this chapter added with the last step of carrying out
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Padé approximants. Chandrasekhar’s approach is more intensive of computer CPU work
time. For example somebody might want to reliably calculate H(.223,w2) out to eight
significant figures. It is more accurate to calculate the partial sum directly and then take
the Padé approximants than it would be to interpolate H(.223,w2) from the previously
available data of H(.20,w2>)‘and H(.225,w2). |

In the future, the author hopes to do more difficult cases of the H-function in cases

where equation (3.1) has an anisotropic contribution to the Kemel of the integral term.

Results of Series Iteration and Padé Approximants

In this section, tables are given in which evaluations of the H-function as a function
of u and w are iisted. Ninth order partial sums obtained through the use of the iterated
g{n}’s are also listed. For the sake completeness, Table 3.1) on the previous page lists
gl(u), g2(u), g3(v), through 29(u) for a few values of u. Table 3.9) lists the corresponding
values whenu=1.0. | |

One éxé.mple which demonstrates the numerical/semi-analytical results shall be
giveh. The tablés of this chapter were built from the information of examples such as this
case when u=0.2. When u=.2, the nineth order partial sum equals:
1+ (In(1.2) -In(0.2)) W + (2'In(2) ;0.2-1n(2)-1n((1;2)/(0.2-1)) -0.2-dilog((1.2)/(0.2-1)) +
0.2-dilog((1.2)/0.2)+ 0.2-dilog(0.2/(0.2-1)) ) W + 2878774335536509-W* +
.3573727049168958-W* + ‘.4930049682583625°W5 +.72920144970750169-W° +

1.132383611598726*W’ + 1.82224587124395-W* + 3.01278_816189041-\7\’9. (3.10)
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The best off-diagonal Pade approximant of the ninth order partial sum is:
Pade[4,5]:=

(1-3.9585037921261-(w/2)+5.117072683923 5+(w/2)%
2.3777169816148-(w/2)*+.28346980726021-(w/2)* )

(1 - 4.3168556859718-(w/2) +6.3887887391104-(w/2)? - 3.7668690168198-(w/2)* +
0.76025376791391-(w/2)* + (-1).025121992194445-(w/2)")

(3.11)

Table 3.2) uses information based on the simple ‘number crunching’ of (3.10) and (3.11).

Table 3.2)
Comparison of the Established Numerically Labored Values of the H-function to Padé
Approximants. '

u|w Partl Sum Pade[4,5] Padef5,4] Book Value*
2102 1.038917 1.038917 1.038917 1.03892
2103 1.0611464 1.0611464 | 1.0611464 | 1.06115
2104 1.0857798 1.0857806 | 1.0857806 | 1.08578
2105 1.1134523 1.1134608 | 1.1134608 | 1.11349
2106 1.1451004 1.1451632 | 1.1451632 | 1.14517
2108 1.2268261 1.2286126 | 1.2286101 | 1.2286
210.9 1.2826089 1.2910541 | 1.2910254 | 1.2914

2 10.95 | 13162682 1.3352346 | 13351214 | 1.3373
21975 113349166 . | 1.3641043 | 1.3638625 | 1.3703

2 11.0 |1.3549552 1.4013931 | 1.400834 1.4503

* Note that the book values listed in Tables 3.2) through 3.6) can be found on page 125

of Chandrasekhar’s text Radiative Transfer [9.a].



Table 3.3)

Table of Percent Error of the Predictions from the Book Values.

u W Er Partl Sum Er Pade[4,5] Er Pade[5,4]
2 0.2 -0.00028876 -0.000288761 | -0.000288761
2 03 -0.00033926 -0.000339255 | -0.000339255
2 04 -0.000018420 k0.000055260 | 0.000055260
2 0.5 -0.0033858 -0.0026224 -0.0026224
2 0.6 -0.0060777 -0.00059380- -0.00059380
2 0.8 -0.14438 0.0010256 0.00082207
2 0.9 -0.68074 -0.026785 -0.029007

2 0.95 -1.5727 --0.15445 ~0.16291

2 0.975 |-2.5822 -0.45214 -0.46979

2 1.0 -6.5741 -3.3722 -3.4107

Table 3.4)

- Comparison of Padé Approximants to the Respective Book Values.

u |w Partl Sum Pade[4,5] Padé[5,4] Book
| Value
S5 102 1.0611766 1.0611766 1.0611766 |1.06117
5103 | 1.0975-588 1.0975589 1.0975589 | 1.09756
S5 104 1.139189 1.1391915 1.1391915 | 1.14266
5105 1.1877068 | 1.1877338 | 1.1877338 | 1.18776
5106 1.2456059 1.2458041 1.2458041 | 1.24581
5108 1.4074908 1.4132035 1.4131974 | 1.4132
..'5 0.9 1.5276527 1.5550945 | 1.555016 | 1.5560
| .5 6.95 | 1.6034178 1.6661202 1.6657843 | 1.6718
_ S5 10975 | 1.6463203 1.7442425 1.7434834 | 1.7621
S L 1.6930899 1.8525719 1.8506767 {20128
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Table 3.5)

Table of Percent Error of the Predictions from the Book Values.

u w Er Partl Sum Er Pade[4,5] Er Pade[5,4]
S 102 0.00062195 0.00062195 0.00062195
5 0.3 -0.00010933 | -0.00010022 -0.00010022
5 0.4 -0.30377 -0.30355 -0.30355
.5 10.5 -0.0044790 | -0.0022058 -0.0022058
.5 0.6 -0.016383 -0.00047359 -0.00047359
5 0.8 -0.40399 0.00024767 -0.00018398
5 109 -1.8218 -0.058194 -0.063239
.5 0.95 -4.0903 -0.33974 -0.35983
.5 0.975 -6.5705 -1.0134 { -1.0565
5 1.0 _15.884 -7.9605 -8.0546
Table 3.6)
Example “3.6”
u |w PT Pade[4,5] | Pade[5,4] | book valu
8 102 1.0731869 | 1.0731869 | 1.0731869 | 1.07319
8 103 |1.117626 1.1176262 1.1176262 | 1.11763
8 104 1.1693468 | 1.1693512 | 1.1693512 | NotInRec
8 105 1.2308361 | 1.2308834 | 1.2308834 | 1.23091
8 10.6 1.3059536 | 1.3063032 | 1.3063032 | 1.30631
8 10.8 1.5255334 | 1.535742 1.5357329 | 1.5358
8 109 1.6961324 | 1.7459466 | 1.7458195 | 1.7474
8 1095 | 18062481 | 1.9219448 |1.9213674 | 1.9313
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.8 10975 | 18693207 |2.0525244 }2.0511619 |2.0833
8 | L 1.9385969 | 2.2437188 | 2.2400986 | 2.5527
Table 3.7)

Table of Pefcent Error of the Predictions from the Book Values

Er Pade[5,4]

u w Er Partl Sum Er Pade[4,5]
8 0.2 -0.00028886 | -0.00028885 -0.00028885
8 103 -0.0003579 -0.00034000 -0.00034000
8 104 T [Lerm—— ———
.8 0.5 -0.00600369 | -0.002161 -0.002161
8 0.6 -0.02728 -0.00052 -0.00052
8 0.8 -0.668485 -0.0037765 -0.0043691
8 109 -2.93394 -0.083175 -0.090449
.8 0.95 -6.4750 -0.48440 -0.51430
.8 0.975 | -10.271 -1.4772 -1.5426
8 1.0 -24.057 -12.104 -12.246
Table 3.8)
Example whenu =9
u |w PT Pade[4,5] | Pade[5,4] | hbook
9102 1.0760988 | 1.0760988 | 1.0760988 | 1.07610
9103 1.122536 1.1225362 | 1.1225362 | 1.12254
9104 1.1768049 | 1.1768099 | 1.1768099 | NotInRec
9 105 1.2416375 }1.2416917 | 1.2416916 | 1.24171
91038 1.5567244 | 1.5684491 | 1.5684391 | 1.5685
9 109 1.7416792 | 1.7991723 | 1.7990297 | 1.8008
9 1095 |1.8617356 | 1.9959527 | 1.9952943 | 2.0065
9 10975 | 1.9306907 |2.1441549 |2.1425814 |2.1795
9110 2.0065636 |2.3646482 | 2.3603886 |2.7306
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Table 3.9)

List of go(1.0) whenn= {1,2,3 ... 9}.

When u=1.

gl |.693147180559945

g2 | .804053834654890

g3 | 1.09662773728995

g4 | 1.62698942254175

g5 | 2.54414533551182

g6 | 4.12534574676417

g7 | 6.87024271658987

g8 | 11.67869437787

g9 |20.17878923532
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Chapter 4

Analysis of a Nonlinear Integral Equation

In this chapter another nonlinear integral equation will be solved through a method
iteration. The series generated by these iterations will be further investigated with the use
of Padé approximants in almost the.same manner that was done in Chapter 3. The results
of the inspection of the overall results of using Padé approximants for the examples of
Chapter 3 are almost as impressive as the accuracy demonstrated in Chapter 3 with Padé
approximants.

The form of the integral equation to be investigated in Chapter 4 is that of an inte-

gral term whose Kernel is coupled with the solution two-fold. The form appears as:
b
f(x) = gx) +7»'IG(x>y) SO fO)dy . (4.1)

Two particular examples of equation (4.1) shall be studied through the use of iterated se-
ries solutions in this chapter. Although the author does not know of any physical applica-
tions for this equation; it is interesting from a mathematical point of view the nature of the
solution (or 2 solutions) of equation (4.1). Perhaps equation (4.1) is similar enough to the
physically interesting equation (3.1) in order to lead also to illumination and assistance in
some mathematical physics applications. The highest value of content in Chapter 4 is that
it demonstrates the effectiveness of using Padé approximantg for evaluating with much
more precision the solution of (4.1) than one obtains by usel of the series solution alone.
This chapter serves as a nonlinear anecdotal note to the first area of thrust of this disserta-

tion, solutions to integral equations.
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Two particular examples of equétion_ (4.1) are: the case where
g(x) = 1 and G(x,y) = (xy)’

and the case where  g(x) =1 and G(x,y) = 1/(1+(x+y)/2) .
The algorithm for determining the detailed structure of the iterated series estimation of the
nonlinear integral equation is very similar to the algorifhm used to generate the éeries of
the H-function in Chapter 3. In the next paragraph, the coefficients of the series Zgjxy A"
shall be presented. And then, fhe reét of this chapter shall be devoted to the solutions and
improved estﬁnates of the solutions to the two examples where G(x,y) equals (xy)” and
G(x,y) equals 1/(1+(xty)/2) , respectively.

Note that gO[x] equals g(x) of equation (4.1).

The following steps amount to a recursive iteratton.

gllx]= | o[yl g0lyl - G(xy) dy

1

220x]= | (2-g0lyl- 81ly]) - G(x.y) &y

0
1

g3x]= [ (2g0lyl-g2ly] +1sllylglly]) - Glxy) dy

0

glx] = | (2:g0lylg3ly] + 2-8llyl-g2ly] ) - Glxy) dy (4.2)

1

gsx] = | (2:g0lylgAlyl +2-gllyle3lyl + 1-g2[yl-82[y]) - Glxy) dy

0

The higher g,[x] follow the pattern of iteration demonstrated here.
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Nonlinear integral equation (4.1) in the example where g(x)= 1 and G(x,y)= (xy)*
has the closed form solution of f(x,A) = 1 +B(A)x".

Note: B(Lam) = ( -7-(2/5 -1/Lam) +Sqrt[49-(2/5-1/Lam)” - 4-7/3] )/2 . (4.3)
The series solution of the first example is found by using the recursion relations shown in
(4.2). This series solution is to be denoted as H(x,A). A and ) are interchangeable.
Note H(x,A) = g0[x] + A -gl[x] + A?-g2[x] +A® -g3[x] +A* -gd[x]... . H{n}(x,A) is the
partial sum taken to the nth order of A. Following the same mode of thought as in chapter
3, pacie[3,4] is the Padé approximant of H7(x,A) v;fith respect to A in form Za; A" up ton
=3 divided by the denbminator of Zb,x" up to n = four. Likewise, pade[4,4] is the Padé

approximant of HS(X,A) with respect to A. The tables in the rest of this chapter serve to

catalog my fairly successful results of doing the iteration of (4.2) and then applying Padé

approximants.
Table 4.1)
Comparison when G(x,y) = (x - y)*

X [ A | H6(x,7) H8(x,A) pade[3,3] | pade[3,4] | pade[4,4] | exact

2 | -1.40 | 98995478 | 98983706 | .987537 0.987536 0.987536 98753629
2 —3.0‘ 1.3022639 | 2.3765350 | .979862 0.979833 0.979841 97983855
2 1.75 1.0150371 | 1.0151287 | 1.01516 1.01517 1.01517 1.0151658
2 | 1.18 | 1.0349451 | 1.0375611 | 1.04331 1.04466 1.04554 1.0488258
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" These results for the first example, where G(x,y)=(x'y)’ do show successful application of
Padé approximants to reliably calculating the solution from the iterated serial coefficients
of (4.2). The second example ( G(x,y)= V/(1 + (x + y)/2) ) is very similar to the first ex-
ample. |

Howevef, there is no well known closed form solution to equation (4.1) in the
second example. Most probably it is not known. In this example Padé approximants of
sequentially higher order converge to the same result. These cémmon answers of conver-
gence and the similarity of the particular integral equation of example 2 to that of the very
successful example 1 make the reliability of the numerical results of example 2 very plau-
sible.

Let us inspect numerical results of the second case, where G(x,y) = 1/(1 +(x+y)/2).

As in Table 4.1), H{n}(x,A) is the partial sum of H(x,A) taken to the nth order of A.

Table 4.2)

The second case, where G(x,y) = 1/(1 +(x+y)/2)

X | A : H6(x,A) H10(x,A) | pade[4,4] | pade[4,5] | pade[5,4] | pade[5,5]
4 1.300 | 1.3139270 | 1.3231612 1.3256>556 1.3256664 | 1.3279408 | 1.3258301
2 1.200 | 1.1853851 | 1.1858020 | 1.1858196 | 1.1858197 | 1.1858209 | 1.1858203
4 1-70 }1.1668171 | 3.9694534 | .58944410 | .58946170 | .58933952 | .58926976
2 | -.80 |1.9485188 | 14.974905 | .49563233 | 49568671 | 49535798 | .49515534
.5 1-900 | 3.2598878 | 44.740611 | .48200072 | .48207240 | .48145696 | .48101183




Clearly, Table 4.1) demonstrates complete success of the application of Padé ap-
proximants. The results of Table 4.2) suggest very strongly the success of Padé ap-

proximants when G(x,y) = 1/(1 + (x+y)/2).
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Chapter 5

Numerical Results of the Asymptotic Padé Approximant Predictions

In this chapter, Asymptotic Padé Approximant Predictions will be introduced.
Numerical results of Asymptotic Padé Approximant Predictions of different series and the
procedure involved Will be discussed only in this chapter. First the procedure and
formulas involvéd in making the Asymptotic Padé Approximant Predictions are
discussed. Then the results of the Asymptotic Padé Approximant Predictions for the
series of the H-function are presented. And finally, the results of the Asymptotic Padé
Approximant Predictions for the Taylor series of In(1+x)/x is presented.

In addition to the use of Padé approximants and Padé Approximant Predictions, Dr.
Mark Samuel rather recently has developed an improved method for estimating the
successive terms of an infinite series. The predicted next successive term of this proposed
method is called the Asymptotic Padé Approximant Prediction (APAP). With his initial
desire to test APAP’s and with the assistance of the author of this text, Asymptotic Padé
Approximant Predictions have been successfully applied to many series entailing the
inclusion of at least several terms for‘ ahélysis of a desired mathematical function. The
(APAP) procedure relevant for this dissertation text first involves making a Padé
. Approximant Prediction (PAP) for r{n+1} based on the information available in the
precise partial sum 10 +rl-x 2K+ r{n-1}-x""Y +r{n}-x“. (cf. (1.13).) After predicting
r{n+1}, it is then necessary to predict the relative error (in decimal form) of the (PAP) in
order to carry out the Asymptotic Padé approximant prediction. The Asymptotic Padé

approximant prediction is defined in terms of the quantity ‘arr’ by:
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7 {ntm+1} = r{n+tm+1}/(1+arr) , 5.1
where r{n+m+1} is the PAP of thé partial sum r0 +rl-x +r2:x* +... r{n+m-1}-x®™D
+r{n+m}-x™™ and 7 {n+m+1} is the APAP.

The Asymptotic Padé Approximant Prediction has proven to be very helpful in
prediction of the terms g{N}[u] of the H-function series (See equation (3.2f).). For the
H-function, the formula for arr for the Padé approximant prediction [n,m] of equation
(5.1) and 7 {ntm+1} is :

arr = -1-m! -B-(B+1)-(B+2)-(...)(B+m-1)/(L[n,m]*™), (5.2)
where arr is the relative error (i.e., the PAP minus exact r(n+m+1), all divided by
r(n+m+1)) and where

L[nm]=ntm+am+b. (5.3)
Referenées [16] and [8] also explain in futher depth the appropriate formula for ‘arr’.
For the important functional examples of H(1.0,w) and H(0.8,w), the constants B,
a, and b were first determined by examining the numerical values of g1[us], g2[us],
through g7[us], where uy équals either 1.0 or 0.8 for purposes of this chapter. B, a, and b
were secondly determined by cbmpan'ﬁg the values of g1[us], g2[us], g3[us), etc. to the
PAP results of the foliowing equations [17]:
g{nt+2}[u] = (g{n+1}‘[u])2/g{n} [u], Padé approximant prediction [n,1], (5.4)

g{nt3}[u]=
2-g{n}[u]-g{n+1}[u]-g{n +2}[u] - g{n-1}[u]-(g{n+2}[u])* -(g{n}[u+1])°
((g{n}[u])’® - g{n-1}[u]-g{n+1}[u]) '

>

Padé approximant prediction[n,2], (5.5)
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with g{j}[u]=0 for j < 0. ( The method for generating (5.4) and (5.5) is discussed wiﬁh
(1.13) in chapter 1.)

We then evaluated the completé set of quantities B, a, and b of ‘arr’ for the PAPs
of H[1.0,w] for moderately sized n and for small m and determined that ‘arr’ is given by
the error formuia in equation (5.1) with B=1.34, a=-0.5, and b=1.6. This determination of
B, é, and b of L[n,m] was done almost completely by considering examples of L[n,1]
(where m=1) and forcing ( ‘arr’ +1 ) to equal (PAP g{n+1+1}[1.0])/ g {n+1+1}[1.0] for
moderately sized values of n. PAP g{n+1+1}[1.0] is calculated by (5.4). We then used
g {n+1+1}[1.0], applied the PAP again to obtain g{n+1+2}[1.0], and then applied the
correction again after }invoking equation (5.1) in order to obtain the APAP
g {n+1+2}[1.0]. This process can be continuéd indefinitely.

B,a,andb were evaluated a second time, this time for H[0.8,w]. The determination
of B, a, and b of L[n,m] was done completely by considering examples of L[n,2] (where
m=2) and foréing ( ;arr’ +1) to equal g{n+2+1}[0.8} g {n+2+1}[0.8] for those positive
n’s whic;h satisfy the inequality 0 <n+m < 8. Again, B, a, and b were found to equal 1.34,
-0.5, and 1.6 respectively. We then used g {n+2+1}[0.8], applied the PAP again to
obtaiﬁ g{n+2+2}[0.8], and then applied the correction agéin after invoking equation (5.1)

in order to obtain the APAP g {n+2+2}[0.8]. This process can be continued indefinitely.

In the immediately following section, three tables are presented which display the
successful results of using Asymptotic Padé Approximant Predictions to calculate the H-

function H(u,,w) as a function of w for the two selected choices of u,. u,=0.8, and
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uy=1.0. In Tables 5.1) through 5.3), u equals 0.8. In Table 5.1), H(.8,w) functions
obtained with ordinary Padé approximants and the APAP applied to obtain g{8}[.8] in

order to generate the partial sum PtSum|[8] are presented.

Table 5.1)

H(.8,w) Functions obtained with ordinary Padé Approximants and with the

Assistance of APAPs in PtSum(8]

W Pade[34] Pade[43] PtSum|8] Hbook
0.2 1.0731869 1.0731869 1.0731869 1.07319
03 1.1176262 1.1176262 1.1176254 1.11763
0.5 1.2308825 1.2308823 1.2307752 1.23091
0.8 1.5352571 1.5351955 1.5213527‘ 1.5358
0.9 1.7415087 1.7410548 1.6840653 1.7474
0.95 1.9061789 1.9048033 1>.7866‘l8 1.9313
0.975 2.0203374 2.0178139 1.8445209 | 2.0833
1.0 2.1718993 2.16701‘36 1.9074508 | 2.5527

Table 5.2 shows the improvement in the calculation of H(.8,w) which results from
generating a higher order partial sum via APAP’s and then taking the Padé Approximents

of these higher order (11th) partial sums.



Table 5.2)

Higher order Padé Approximants computed with the help of APAP’s

\4 Pade[4,4] | PtSum(8) | Pade[5,6] Pade[6,5] Hbook
0.2 1.0731869 | 1.0731869 | 1.0731869 1.0731869 1.07319
0.3 1.1176262 | 1.1176254 | 1.1176262 1.1176262 1.11763
0.5 1.2308828 | 1.2307752 | 1.230883 1.230883 1.23091
0.8 1.5353623 | 1.5213527 | 1.5355933 1.535593 1.5358
0.9 1.7423191 | 1.6840653 | 1.7447578 1.744752 1.7474
0.95 | 1.9087094 | 1.786618 1.9179995 1.9179702 1.9313
0.975 | 2.0250684 | 1.8445209 | 2.0446932 2.0446207 2.0833
1. 2.1812771 | 1.9074508 | 2.2265055 2.2263051 2.5527

In Table 5.3 is listed the coefficients gg,;{0.8) for the H(.8,w) function obtained
from the iteration algerithm presented in chapter 3 up to the seventh order. For orders

eight and higher, guy(.8) 1s approximated with APAPs.

Table 5.3)
The Coefficients g;,;{0.8) for the H(.8,w) Function obtained from the Iteration

Algorithm up to the seventh Order and then the APAP for eighth Order and Beyond

v=.28 | Value of g{n}(u)

.648744172973
719900556021
950733073664
1.37630275650

gl(u)
g2(u)
g3(u)
g4(u)
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For the APAP of g{n}[u] of H(u,w), u is set equal to 1.0 in the next three tables.

g5(w)

2.11079374261

g6(u)

3.36926942603

g7(w)

5.53857831222

gnug

9.3096352

gnu9

15.920857

gnl0

27.601755

gnll

48.383159

T This is the continuation of Table 5.3).

Table 5.4)
H(1.0,w) functions obtained with Padé approximants and from partial sums with seventh
order iterations

w Pade[3,4] | Pade[4,3] | Prtl Sum (7) | Hbook

0.3 1.1268‘438 1.268438 1.126843 1.126844
0.5 1.251255 1.251254 1.250940 1.251259
0.8 1.597426 1.597457 1/571937 1.598219
0.9 1.842901 1.842344 1.748239 ’ 1.850098
0.95 | 2.045295 2.043641 1.857371 2.077123
0.975 2.189267 |2.1861712 | 1.918297 2.270984
1.0 2.385145 2.378988 1.983958 2.907809




In Table 5.5), for orders eight and higher, g{n}(1) is approximated with the

Asymptotic Padé Approximant Prediction (APAP).

Coefficients g{n}(1) for H(1) functions obtained from the iteration algorithm given

Chapter 3 up to the seventh order

Table 5.5)

u=1.0 u=10
gl(u) | 0.693147 gnu9 | 20.178
g2(u) | 0.804054 29(u) | 20.164 **
| 23(u) | 1.096628 gnl0 | 35257
g4(ﬁ) 1.626989 gnll | 62.263
g5(u) | 2.544145 gnl2 | 110.84
g6(u) | 4.125346 gnl3 | 198.62
g7(u) | 6.870243 gnl4 | 357.89
gnu8 | 11.67867 gnl5 | 647.94
g8(8) | 11.678690 ** gnl6 | 1177.9

** Note that the precise numerical values of g8(u) and g9(u) were not used in any

calculations in this chapter, although they were used to find Pade[4,5] and Pade[5,4] in
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chapter 3 for cases which include u=.8 and then u=.9 as contributing formal parameters

for the H-function.



Now let us consider H(1.0,w). Note u = 1.0 here.
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Table 5.6}
H(1,w) functions computed Pade[3,4] and from the APAP and Asymptotic Padé assisted
Partial Sum (PS) Methods | ‘
w ‘ Pade[3,4] (APAP) (PS.) Hbook
0.3 1.126844 | 1.12684 1.12684 1.126844
0.5 1.251255 1.25126 1.25094 1.251259
0.8 1.597526 1.59797 1.57195 1.598219
0.9 1.842901 1.84833 1.74826 1.850098
0.95 |2.045295 2.07339 1.85740 2.077123
0.975 | 2.189267 2%6728 1.91833 2.270984
1.0 2.385145 2.68543 1.98399 2.907809

The next series to analyze is the taylor series generated from Log[1+x]/x w.r.t. x.

This material is from a Mathematica file developed for use for research related to this

material. For the series of In[1+x]/x, the predicted error from the APAP was found to

equal:

arr= -1-m! -B-(B+1)-(... )B+m-1)/(L{n,m]*™), (5.6)

where L[n,m]= n+m +a-m +b. For the series examined, B is to be set equals to 1.

For the series examined, a+b is to be set equal to 1. The APAP in turn, equals

r{n+m+1}/(1+arr). For Log[1+x}/x, r[n] equals (-1)™1/(n+1).



Tables 5.7a) demonstrates the success of the Asymptotic Padé Approximant

Prediction in predicting the value of the next r{j} of the series of In(1+x)/x when m

equals 2. Tables 5.7b) and 5.7¢) demonstrate simple numerical calculations for the

function In(1+x)/x which involve the Assymptotic Padé Approximant Predictionfk,2],

where k+2+1=n.

Table 5.7a)

Compan'son’ of Predictions of r{n]

Value of n Actual r[n] Asymptotic Padé | Padé
: Approximant Approximant
Prediction Prediction
9 -0.1 -0.0999719 -0.0999228
10 0.0909091 0.0908941 0.0908642
11 -0.0833333 -0.0833248 -0.0833058
12 0.0769231 0.076918 0.0769054
13 -0.0714286 -0.0714254 -0.0714168
14 -0.0625 -0.0624987 -0.0624943
15 0.0588235 0.0588226 0.0588194
16 -0.0555556 -0.0555549 -0.0555526
17 0.0526316 0.0526311 0.0526293
18 -0.05 1 -0.0499997 -0.0499983




Table 5.7.b)

X -0.400 -0.8
Pade[2,3] 1.27705628 2.0033670
Assymptotic Pade Prediction | 1.27694742 1.94134577
generated Partial Sum{7]

| Assymptotic Pade Prediction | 1.27706117 1.99951063
generated Partial Sumf{13]
APARP assisted Pade[5,6] 11.27706141 2.0103378
APAP assisted Pade[6,7} 1.27706145 2.01150116
Log[1+x}/x 1.27706406 2.01179739

Table 5.7.¢)

X -0.9 isx -0.95 isx
Ordinary Pade{2,3] 2.49623305 2.92618057
Assympiotic Pade Prediction | 2.26720653 2.47380541
generated Partial Sum(7]

| Assymptotic Pade Prediction | 2. 4514217 2.79046662
generated Partial Sumf[13]
APARP assisted Padef5,6] 2.53954412 3.05131006
APARP assisted Pade[6,7] 2.55499994 13.12352367
Log[1+x]/x 2.55842788 3.15340239

Prediction[k,2], where k+2+1=n.

We have looked at the results which use the Assymptotic Padé Approximant



-Table 5.8)

Comparison of predictions of r[n] in the Case when APAP[n,1] is used
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Value of n Actual r[n] Asymptotic Padé | Padé
Approximant Approximant
Prediction Prediction
6 14285714286 .14285714286 0.138883889
8 0.11111111111 O.Iilllllllll 0.10937500
9 0.1 o 20.0999228
10 0.0909091 0.0909091 0.0908642
11 -0.0833333 -0.0833333 -0.0833058
12 0.0769231 0.0769231 | 0.0769054
13 -0.0714286 -0.0714286 -0.0714168
14 -0.0625 -0.0625 -0.0624943
15 0.0588235 0.0588235 0.0588194
16 -0.0555556 -0.0555556 -0.0555526
17 0.0526316 0.0526316 0.0526293
18 -0.05 -0.05 -0.0499983

We have looked at the results which use Assympfotic Padé Approximant
Prediction[k,l]; where k+1+1=n. From table 5.8), we can infer that APAP’s can be
evaluated successively to generate amazingly accurate terms of the partial sum which
represents Log( 1+x )/x. The numerical value of Pade[j,m] is identical to the numerical

value of the Assymptotic Padé Approximant Prediction assisted Pade[j,m] in the case
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where APAP[j+m-2, 17 is used for the highest order term serving as input in the
calculation of Padefj,m].

This new method of Assymptotic Padé Approximant Predictions have not been
formally explained. However, the numerical results in tables 5.7) and 5.8) are worthy of
consideration. Furthermore, in consideration of the review of tables 5.2) and 5.6), it
becomes apparent that the use of APAPs in the improvement in the accuraby of the

estimation of the values of the H-function is quite worthy of consideration.
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Chapter 6

The Quartic Harmonic Oscillator and Perturbation Theory

1. Overview.

In this chapter, lower energy perturbation theory ‘of simple quantum mechanical
systems will be studied. In order to find the correct spectral energies of attractive cores,
perturbation theory will }be carried 6ut to the fifth order in various systems which
comprise either a one-body problem with external field or a fwo-body problem reducible
to a one-body problem. Two different procedures for generating perturbative series to
evaluate the corrected energy of a given system will be discussed. These two methods
are: the Raleigh Schrodinger procedure of perturbation theory for generating a
perturbative series and .a pfocedure for generating an elegant implicit perturbative series.
The elegant implicit perturbative series shall be referred to as the Walker Green’s
function Series. (See section 4 below, page 82.)

Two mathematical types of examples will be examined: They are the one-
dimensional harmonic oscillator with a supplemental quartic term, and the spherical
harmonic oscillator with an extra quartic term. These two types of examples will be

elaborated upon before a complete discussion of the results is given.

2. The Nature of Perturbation Theory.
The spherical harmonic oscillator is especially interesting. We shall study the three
lowest energy levels in the two orbital configurations in which { =0 and { = 1. Those

simple quantum systems with a spherical attractive potential given in general as
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Vi) =r'+ b'r4 +erf+dr? ‘ (6.1a)
can be evaluated with relative ease for their spectral energy levels by using the methods
demonstrated in this chapter. In principle, the methods used to find the energy levels for
spherical systems of the potential ~ V(1) =r* + V'-r* (6.1b)
are eqﬁally“valid in the semi-analytical evaluation of the energy levels of systerﬁs with

V@) =r*+br+ cr®+dr’. (6.1¢)
A quickef yet reliable way to find the spectra of sﬁch spherical system could be useful for
the carefui and the time-efﬁcient modeling of the spectrum of a Shell Model form core
before applying a spherical symmetry breaking perturbation to a particle bound in a cbre
styled after the Nuclear Shell Model [12].

Now we shall consider the two types of examples of Hamiltonian systems selected
for ext_c_nsive examples in this chapter. Be,fdre discussing the 1-dimensional and spherical
types of examples of Hamiltonian systems, the author would like to point out that Carl
Bender and Ta1 Tsun Wu have done substantial work in the perturbative evaluation of the
spectrum of the quartic harmonic oscillator [12.b][12.c]. Some of the material in this
chapter_’ (involving the Raleigh Schrﬁdinger procedure and especially the Taylor series
representation of the Walker Green's Function) is similar in many respects to Carl
Bender’s work on the perturbative representation for the quartic harmonic oscillator.
However, the algorithms presentéd in this chapter for carrying out the Raleigh
Schrodinger procedure of perturbation theory and the procedure for the construction of
and optimizing of the ‘Walker Green’s function series’ are general enough to be easily

applicable to harmonic oscillator systems in which the perturbation is V'-1* or V'-r® or
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even V'+(t* + ¢"1%)... . Furthermore, the method which is based on the construction of
and optimizing of the ‘Walker Green’s function Series’ can be applied to three
dimensional examples of quantum systems (with more than variable) for which the
algebraic approach of references [12.b} and [12.c] is not an effective vehicle for the
computation 6f the perturbative coefficients. The algebraic approach developed by
Bender and Wu is designed to work with only one spatial variable rather than two or
three variableé. The ‘Mathews and Walker’ text inspireﬂ results (See [5.b].) in this
chapter for the ground state energy of the quartic harmonic oscillator are very good. The
lowest energy results are extremely close algebraically to those of the perturbative series
formulated and worked out in ref. [12.b]. See section # 6, page 111 for a comparison.

The 1-dimensional quartic harmonic oscillator exmnple has a non-relativistic
Hamiltonian of the following form:

H = (-dds* + &) + V'x*. (6.2)

The first part (-d%/dx* -_sz) has well known eigenstates and a well known spectrum of
eigenvalues. The perturbation is V'-x’. The eigenvalues for the energies of the
Hamiltonian including V'-x* are known numerically as a function of V’, but not in closed
analytical form. (It is well known that if V' = 0, then E(n) = 2:n+1. ) By carrying out fifth
order perturbation theory, one can find a polynomial of the form (2-n+1) + (V') +
(V'Y + 13:V? 414V +15(V 'Y in order to approximate what the eigenenergies are as a
function of n and the magnitude of the perturbing V' factor. Such an approximation is
valid only when V'<< (2-n+1) for a given integer n. The Padé approximants Pade[2,2],

Pade[2,3], and Pade[3,2] have been applied to the expression (2:n+1) +r°(V') + ro:(V 0%
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+ 13V 414V + 152(V"). It will be demonstrated through the comparison of the Padé
approximants to carefully worked out numerical data that Padé approximants are a very
efficient and effective way of finding the eigenstates of the quartic one-dimensional
harmonic oscillator.

The spherical quartic harmonic oscillator as a Hamiltonian of the form

H=(-1-V2 +)+ V1. (6.2b)
By carrying out fifth order perturbation theory fdr the expression in (6.2b) where V'-r*is
the perturbing element, one can find another polynomial of the (2:n+1) + 1;-(V') + r2+(V')?
+13°V? 414V + 15-(V’)’ in order to approximate what the eigenenergies are as a
| function of the quantum number n and of the magnitude of the perturbing V' factor.

The numerical calculation of the eigenenergies of the spherical harmonic
oscillator with V'-1* is difficult. Whéreas all of the work for the Padé approximants and
one-dimensional eigenenergies are Vdone vﬁth Maple source code, the high precision
numerical calculation of the eigenenergies of the quartic harmonic oscillator has to
usually be done with»well designed numerical source code. This is done much better
through the use of C or Fortran compilations than with the use of the Maple command
package. This situation cleafly illustrates that it is desirable tb eveh have an approximate
formula for the corrected eigenenergies of the modiﬁed (quartic in this chapter) spherical
harmonic oséillator. This approximate formula obviously is to be a closed-form function
of V'. In spite of nontrivial difficulties, there is a numerical plot in the section entitled
‘Results of Calculations’ (section # 5) of the corrected eigenenergies provided for the

case when n=1 and 1=0 (the ground state level in the spherical potential) and for the case
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when n=1 and 1=1 (the lowest level for spin 1). Indeed, it is desirable to have a tool or
algorithm from which one can quickly picture the dependence of spherically attractive
spectrum as a function of the perturbation magnitude V'.

Now a brief review of eigenenergies of matrices is given. The eigenvalues of a
Hamiltonian can be written as H(Ax) ¥o=E, ¥, . The operator fo) usually is -dHdx® +

V(x). A reasonable approximation of the matrix representation of fo) for many one-
body problems can be written as an N x N matrix where N'= 11. In the perturbation
theory of nearly harmonic systems, the part -d*/dx® + x'x is the operator whose

eigenfunctions comprise the basis for the matrix representation of the total Hamiltonian,

H, which is in the oscillator’s diagonal representation, is constructed from this. The

perturbation V-x* is represented in matrix form by Q(n,m). Let Q(n,m) = <\y IVA 'I‘P > .

(6.3)
Through review, the following 3 by 3 matrix represchtation becomes transparent:

rr=10010) ol 0(1,2)

00 00D 0@2).

and A EO0O O 0
H =0 El 0
0 0 E2
. 6.4)
0

Yi= ol (6.5)

1i
Gl Y2=
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In (6.4) and (6.5), Ho, W1, \¥», and W5 are clearly in the diagonalized represent-
ation with respect to the operator Ho . EO is the unpurturbed ground state eigenenergy.

E1 is the second eigenenergy, or first excitation level. If we include the perturbation ¥,

then Ho + V' must of course be considered and diagohalized for eigenvalues.

Thus for an 11 by 11 matrix representation, Ho(i,j)= 8(i,j)-Eoj. Eoj is the i® level

A

eigenenergy of Ho. V'(Lj) = { W:|V''|¥ ). For the examples in this chapter, the

maximum i equals 11, and j goes to 11. For the spherically distributed examples ** |

Vi, )= J‘exp(—%rz) osHle(r,i)o (V'r*) e sHle(r, j) exp(—-—;-rz)dr
o (6.5b)
With this notation, we can write the following matrix equation:
Ho(ij) “Fjug + V'(1) - Yigg = Eo + AE) Wiy . (6.6)
The required task is to find the eigenvalues of the matrix equation {(6.5), where the
eigenvalues are ( Ejj + AEj ). AE] is the correction in energy due to the perturbation. The

larger maximum i and maximum j are for this matrix equation (6.5), the more accurate the

values of Ej + AEj will be as estimates of the actual eigenenergies of the Hamiltonian

operator IA-I o+ I;' . It is the matrix equation (6.6) which was solved for most of the
perturbed harmonic oscillator exaniples of this chapter. Most of these examples were
double-checked by diagonalizing and solving the 9 by 9 matrix representation, the 10 by
10 matrix representation, and the 11 by 11 representation. The lowest three eigenvalues

of the these three representations all mutually agreed to precision of at least 5 significant

figures.
** Note: sHle(r,j) = rl/r-exp(-r-r/2)-Laguerre(r2) ,when { = 0.
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This matrix diagonalization procedure for equation (6.6) involves solving the
secular equation of a sufficiently large matrix so as to require the numerical solving of the
secular equation. The processes of rep‘eatedly generating the secular equation for
different values of V' (of the perturbant) by taking the determinant of such an n by n
matrix equation and then solving the secular equation take a not so small amount of
computer time. This ever repeating demand for central processing time is a strong source
of motivation for finding a method which finds a reliable closed-form approximation of
the eigenenergies of a quantum mechanical sYstemas‘ a function of the magnitude of
coefficient V' of the perturbing potential. The Raleigh Schrodinger procedure combined
 with the use of Padé approximants is very suitable for fulfilling this role for cases in which
the coefficient V' is small or of inte_rmediate magnitude. The V' polynomial expressions
available from non-degenerate perturbation. theory alone is not reliable when V' is of
intermediate magnitude.

This reality of naive perturbation theory giving us meaningful information only
when V' is very small can be seen from the fo!lowing results. Non-degenerate fifth order
perturbation theory was individually applied by the author to fhe 1-dimensional harmonic
oscillator with V'-x* added in. The author fouﬁd from careful calculation that the ground
state energy of this quartic harmonic oscillator is expressed as the following Naive:

Perturbation Series:

E5(V’) : =1+ 3/4 - V'-1.312500000000 - V" + 5.20312500000 - V"* +
(-1)-30.56103515625000 - V'* -10023.08297538757 - V. (6.7)
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V' is the perturbative expansion parameter. When V' equals .1, the first three terms grow
progressively smaller. However, the last two terms, 30.56 - V'"* and -10023 - V*°,
progressively grow larger in magnitude. It is clear from inspection and the properties of
asymptotic series that when V' is in the order of magnitude of .2 or .1 or smaller that
useful information for the energy level estirhate can be directly obtained from only the
first 3 terms. As is immediately above written, these first three terms are:
1+.75000000000 - V’-1.3125000000 - V' . DPade22 1 and DPade23_1 are Padé
approximants of the series presented in (6.7). DPade22_l means Pade[2,2] of (6.7).

Next, DPade22 1, DPade23 1, and DPade32 1 are written out.

(1 +8.132560483870968-V +10.20640120967742-V?)

DPade22 1 :=
(1+7.382560483870968-V +5.981980846774194-V®) ;  (6.8)
(1-853.0243826429354 -V -3477.479218453888 -V?)
Dpade23 1 :=
(1 -853.7743826429354-V -2835.835931471687 - V* +
1001.094946384912 - V*) ; (6.9a)
(1 -1020.37612983630-V-4838.47742459-V* -1708.059074996-V>)
DPade32 1:=

(1-1021.126129836-V -4071.320327-V? ) . (6.9b)

Nondegenerate fifth order perturbation theory was applied to the 1-dim harmonic
oscillator with V'-x* added in. The first éxcitation energy of this harmonic plus quartic
oscillator is expressed as the following Naive Perturbation Series:

ES(V") =3+ 15/4 - V' -10.31250000000 - V'* +

61.17187500000 - V** -533.66455078125 - V"* +
-(1):1006630.1143169 - V* . (6.10)
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When V' here equals .1, the first three terms grow progressively smaller. However, the
last two terms, 533.6 - V'* and 1006630 - V'° , grow progressively larger in magnitude.
It is clear from inspection and the properties of asymptotic series that when V* is in the
order of magnitude of .2 or .1 or smaller that useful information for the energy level
estimate can be directly obtained from 'obnly the first 3 terrﬁs. As is immediately written
above, these first three terms are: 3‘ +3.7500 - V' -10.3125000 - V>, DPade22 3 and
DPade23_3 are Padé approximants o‘f the series expressed in equation (6.10), the case of
the first excitation. DPade22 3 means Pade[2,2] 0f(6.8). Next, DPade22 3 and

Dpade23 3, and DPade32 3 are written out.

(3 +37.16183035714287-V + 74.39732142857151-V?)

DPade22 3 := -
(1+11.13727678571429-V + 14.31501116071430-V?); (6.11)

(3 -14882.42427584945-V -92240.54171072470-V?)
DPade23 3 := -

(1 - 4962.058091949817-V - 24540.83712197096-V +
13598.58108638621-V%)  (6.122)

(3 -17732.28186947236-V -127542.5165228015-V*
-70673.92380614-V?)

DPade32 3 := -
(1-5912.010623157456-V + (-1)-35120.72139532036-V?) . (6.12b)

On the next page, a table is given in which E(V) of the quartic oscillator is

evaluated as a function of V.
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When n = 0, the Ground State Level.
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A Table in which E(V) of the quartic oscillator is evaluated as a function of V by NPT
partial sums, Padé approximants, and by the numerical spectrum search explained with

equations (6.4) and (6.5).
V| - seri3 seri4’ seri5 | Pade[2,2] * | Accurate Pade[2,3]
Value © .
.1 [ 1.0670781 | 1.06402202 | .963791191 | 1.06520567 | 1.0652857 | 1.0657139
2 | 11391250 | 1.09022734 | -2.1171592 | 1.11745262 | 1.1182933 | 1.1218277
| 3 | 1.2473594 | 999814990 | -23.356277 | 1.16125079 | 1.1640550 1.1749381
4 | 1.4230000 | .640637410 | -101.99573 | 1.19875340 | 1.2048479 | 1.2279363
S [ 1.6972656 | -.21279907 | -313.43414 | 1.2313168 | 1.2419573 | 1.2824305
.8 | 3.4240000 | -9.0938000 | -3293.4576 | 1.30775761 | 1.3376248 | 1.4649341
1. | 5.6406250 124.920410 | -10048.003 | 1.34629859 | 1.3925661 | 1.6109689
1->2 9.0010000 | -54.370363 | -24995.008 | 1.3 7801754 1.4425051 | 1.7855402

® Note that the ‘Accurate Value’ is found by diagonalizing an 11 x 11 matrix (or better).

When n = 1, the first excited level.

Table 6.2)

A Table in which E(V) of the quartic oscillator is evaluated as a function of V

\Y% seri3 seri4 seriS Pade[2,2] | Accurate Pade[2,3]

' Value
1 13.3330469 | 3.2796804 | -6.7866207 | 3.3055207 | 3.306903 3.3116866
2 13.8268750 }2.9730117 |-319.14863 | 3.5284374 | 3.5394276 | 3.5741362
3 14.8485156 | .52583276 | -2445.5853 | 3.7026702 | 3.7337016 | 3.8338461
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4 16.7650000 |-6.896813 |-10314.789 | 3.8433961 |3.9031801 | 4.1087816

S 19.9433594 | -23.41068 | -31480.602 | 3.9596626 | 4.0547397 | 4.4101973

.6 14750625 |-54.412301 | -78329.97 |4.0574218 | 4.1925630 | 4.7481120

7 121.553828 | -106.57903 | -169290.90 | 4.1408038 {4.3194790 | 5.1335601

.8 130.720000 |-187.86900 | -330040.42 | 4.2127809 | 4.4375323 | 5.5801733

9 142616172 |-307.52114 | -594712.54 | 42755527 | 4.5482651 | 6.1059375

1.0 |57.609375 |-476.05518 | -1007106.2 | 4.3307842 | 4.6509386 | 6.7357008

Pade[2,2] for the lowest energy, or DPade22 1, DPade23 1, and the lowest

H ey A

w1

numerical eigenvalue of [I'ji, H,, ’HJ , which represents H i, . Likewise, DPade22_3
H 32 ]

representing Pade[2,2] of the 1st excitation, DPade23_3, and the 2nd lowest eigenvalue

H H ‘et
of E—(;', H;: Hj4l- Clearly, the Padé approximants get very close to the correct answer

v

% H3 2 %
when V' is less than or equal to 0.5. On the other hand, when V' equals 0.5, the fourth

order and fifth order Naive Perturbation Theory series (NPT) fails miserably. Indeed,
solving the secular equation of an Ni by Ni matrix is the most reliable (where Ni is a large
+ integer). However, the unwieldiness of an Ni by Ni matrix should be considered. Given
a particular value for V', algorithmically setting up and solving the large secular equation
for such an Ni by Ni matrix is much more time consuming than numerically evaluating the
Pade[2,2] and Pade[2,3] partial fractions by substituting for V'.

Clearly, the thought of doing higher order perturbation theory is convenient in an
academic computational setting. However, there is one source of concern for applying

ordinary non-relativistic perturbation theory to various simple attractive potential
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systems. There are examples in which the coefficients of the Naive Perturbation Theory
(NPT) series grow at a rate which is faster than that of geometric growth. For the sake of
discussion, a Naive Perturbation Theory series of simple Hamiltonian operator plus
perturbation shall be expressed as
| Taln V" . . (6.13)

In some chaﬂenging examples, 1, grows as quickly as (n!) in mégnitude or almost
as quickly as n-factorial as n progresses in size. In the ‘anharmonic’ oscillator examples
of this éﬁapter (e.g. quartic harmonic and even octant harmonic), r, grows approximately
as quickly as (n!), for all eigenenergy levels. In Chapter 2 there was written assertion #1
for Fredholm integral equations. The requirement for the reliable application of assertion
#1 and thereby Padé approximants on integral equations requires that the Neumann series
asymptotically grow as a géometric series. A geometrically evolving NPT series can be
succéssﬁllly analyzed and estimated through the use of Padé approximants due to reasons
very similar to the reasons given in Chapter 2 for the justification of assertion #1 (and the
five-fold statement of qualification) for the Neumann series of Fredholm integral
equations. When r, of (6.13) grows in an n-factorial manner, the claim of the previous
sentence for the reliability of Padé approximants can no longer be applied with deep

certainty.

3. The Apparent Kinship of some Perturbative Series to Stieljes Series
However, there still is a very good chance for the reliable application of Padé

approximants to (6.13). There are three sources of confidence for such reliability:
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1) The evidence of success of Padé approximants of all of the NPT series
examples included in this chapter when compared to the precise numerical matrix
eigenvalues of the Hamiltonian;

| 2) the fact that these series grow in mannér which is very similar to the manner of
growth of a Stieltjes series with respect to n; and

3) the fact that the Padé Approximants of Stieljes series, which appear similar to
the NPT series of this chapter, are inherenﬂy reliable, especially for large N of Pade[N,N]
and Pade[N,'Nm .
Futhermore, if a perturbative series of a function is available up to order 2-N+1 where N
is very large, then very often it is possible to witness the convergence of Pade[N,N],
Pade[N,N+1], and Pade[N+ 1,N] to a common value for sequentially larger values of N.

Several examples of functions which generate terms that are almost the same as a
Stieljes series (Stieljes functions) will be given. Before giving these examples of near-
Stieljes functions, the properties of all Stieltjes series ‘in relation to Padé approximants
will be reviewed.

~ The topic of Stieljes séries is thoroughly discussed in numerically oriented
mathematical text books such as Advanced Mathematical Methods for Scientists and

Engineers by Bender and Orzsag [13a]. A Stieltjes series can be precisely expressed as:

Stiel(z) = Z a.(-x)" . a, is equal to j‘ JSun(t)-t" -dt , where fun(t) in an arbitrary but

n=0 0

well behaved function of t. Let us define Ft(x):

Ft(x)= T Fun(t) [ (1+x-1)-dt. (6.13b)
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Padé approximants can be taken of Stiel(x) with respect to x. Chapter 8 of reference
[13.a] explains and shows the following bounds on the Padé approximants of Stiel(x):
Pade[0,1]<=Pade[1,2]<=Pade[N,N+1]<=Ft(x)<=Pade[N,N]<=Pade[2,2]<=Pade[1,1] .
Chapter 8 explains thoroughly that limit {n—inf} of Pade[n,n+1] ~F(x) ~limit{n—inf}
of Pade[n,n]. In essence this is saying that Pade[N,N+1] and Pade[N,N] provide precise
lower bound and upper bound values for Ft(x) when N is large.

An additional property of Stieltjes functions, as is explained in reference [13.b], is
the fact that Pade[N+l,N] is less than Pade[N,N+1] of the same Stieltjes series.
Therefore, an extension of the inequality of the previous paragraph is:
Pade[N+1,N]<Pade[N,N+1]<=Ft(x)<=Pade[N,N] <= Padef2,2]<=Pade[1,1] .

Now a particular choice for fun(t) of (6.13b) relevant to this chapter shall be
given. Let fun(t) equal exp(-t). Then a, equals n!. In this case, Stiel(x) = Z ni(-x)".
n=0
This shows n factorial growth. Padé af)proximants are guaranteed to produce

convergently more precise approximations of what Ft(x), fexp(—t) [(Q+x-1)-dt,
) 0

actually equals at a given value bf X.

Now that the relevant properties of Stieljes func'tio‘ns and their Stieljes series have
been diséussed, Several examples of functions which generaie terms which are almost the
same as a Stieljes series (of Stieljes functions) will be given. These examples all
demonstrate the sarhe patterns of proximity and boundary formation around the correct
value as all of the NPT perturbation series (at least those which are so far available)

which exist for the quartic harmonic oscillator and the spherical quartic harmonic
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oscillator. They also match the pattern of the Padé approximants taken of the NPT
perturbation series resulting from the Hamiltonian of a harmonic oscillator plus V-x°.
However, the NPT series fqr H tharmonic} T+ Vx° is not shown in length (See appendix c).
The examples included in this paragraph will lead to a strong case for the Source of
Conﬁdence clause number 2).

In Mathematica program files developed by the author, series were generated for

the functions 1/2 +V/5 -1-V2 «( _{ borr(V,1) dt ), 1/2 +V/3+(~1)- V2 ( j borr(V,t)dr ),
¢ 0
and 1/2 -V/3-1- V* ( j' borr(V.t) dt ), where borr(V,t) was chosen to equal exp(-t)/
0

(1+V-t). In accordance with (6.13b), ( j' borr(V,t) dt ) is a Stieljes function. The Stieljes
0

series genérated by each of these three exémplary functions is: ag bV -1-v? (1-1+V +
21:v2 313 +.), whére ag=1/2 and by € {1/5,1/3,-1/3}. Various Padé approximants were
taken of these three series. Pade{n,n], Pade[n,n+1], and Pade[n,n+1] were calculated for
the cases n=1, n=2, and n=3. Plots of the values of Pade[n,n], Pade[n,n+1], and
Pade[n+1,n] are given in Figures 6.1), 6.2), and 6.3). The result of these Padé
approximant calculations is fchat an observed (See Figures 6.1) and 6.2)) pattern is
consistently followed: Pade[n,n} < exact value of function < Pade[n+1,n] < Pade[n,n+1].
2 bV -1-VE(1 —11-V 421 V2...) not a Stieltjes series. However, it is very similar to a
Stieltjes series, which always follows the inequality Pade[N+1,N]<Pade[N,N+1]<=

Stieltjes function(x) <=Pade[N,N]. This pattern of inequality is not completely different.
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On the next two pages, Figures 6.1), 6.2), and 6.3) are shown. The pattern of

Pade[n,n] < exact value of function < Pade[n+1,n} is clearly manifested.

1| Legend
1{Padef2,3} —o—s——o—
1|Pade[3,4] ~——"—
1|Pade[3,2] ~4—+——=-
< 1|Pade[4,3] -+~
S 4| Actual
11 curve
1|Pade[3,3] &—=—=—=
1{Pade[2,2] —+———

Figure 6.1)

The exact value for 1/2 +V/3 = V(1 -11:V +21-V2 31v2 + )
and Padé approximants such as Pade[2,2], Pade[3,2], and Pade[2,3}

-1 Legend

Pade[2,3] ~o—o—o—=-
1Pade[3,4] ~——2—
{ Padef3,2] —4+—a—4—4
Pade[4,3] -ttt

Actual
1 curve
|| Pade[3,3] —=—s—5—
Padef2,2] —+—+——

Figure 6.2)

The exact value for 1/2 +V/5 - V3(1 -11-V +21-V? 31y +.)
and Padé approximants such as Pade[2,2], Pade[3,2], and Padef2,3]
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0.4 1
—
Legend
0.2 1
Padef2,3] -o—s—o- |
0 Pade[3,2] —~4—
Actual
curve
-0.2 1 iide{z’zl e
-0.4
0 0.2 0.4 0.6 0.8 1

Figure 6.3)
The exact value for 1/2 -V/3 - V(1 11V 421V2 362 )y
and Padé approximants such as Pade[2,2], Pade[3,2], and Pade[2,3]
‘Tables 6.1), 6.2), and 6.3) completely and unambiguously demonstrate the

pattern Pade[n,n]< exact value of energy < Pade[n,n-fl] for the NPT series of the
quartic harmonic oscillator. As was earlier explained, Table 6.1) involves the
perturbation series of tl;e ground state, and Table 6.2) involves the perturbation series
of the first excitétion. By insf)ecting the RHS expressions of (6.9b) and (6.12b), one can
see thét by substituting_émall as well as larger positive values of V that one shall get
fruitful values for comparisdn from Pade[3,2]. Sucha compaﬁson within Tables 6.1) |
and 6.2) will definitely show that also for the quantum mﬁChMcd perturbation theory
series that the Padé approximants form the following inequality: Pade[n,n]< exact <

Pade[n+1,n] < Pade[n,n+1]. This exactly the same inequality that exists for the series of

e)

at) with respect to V.
(1 +Vet)

generated by the function a, + by -1-V+( I

0
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Padé approximants are reliable and are very accurate at high enough order for the

series generated by a, +b, -1-V2~( j borr(V,t) dt ) . Since the Padé approximants of the
: 0

NPT series for the quartic harmonic oscillator have the same bounds (Pade[n,n]< exact <
Pade[n+1,n] < Pade[n,n+1]) and since Tables 6.1) and 6.2) demonstrate successful
numerical results, source of confidence clause nﬁmber 2)in vreference to the quartic
harmonic oscillator is }ﬁghly plausible. Furthermore, it is highly plausible that Padé
approximants are reliable and are very accurate when the order of V* is sufficiently high
for the NPT series involving the quartic harmonic oscillator.

The virtually guaranteed success of Stieltjes series, the fact that the perturbative
quantum mechanical series in this chapter gfow approximately at a rate of n-factorial
(Many Stieljes series grow at the approximate rate of n-factorial.), and the fact that there
exist near-Stieltjes functions which yield the same type of results for Padé approximants
as the perturbative quantum mechanical series ‘in this chapter all favor in combined
consideration the hypothesis that Padé apprqximants éan be applied to the perturbative
quantum mechanical series which represent the spectral energies of the quartic harmonic
oscillator. However, the success of all of the examples and calculations of chapter 6 does

not prove such a hypothesis; it merely strengthens it.

4. Introduction to Walker Green's Function Series Iteration
4a. Orientation
The Raleigh Schrédinger procedure for Perturbation Theory, as used for equation

(6.10), is the commonly taught formalism for estimating energy level shifts of one-body
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or two-body quantum mechanical systems. There is at least one other formalism which
described perturbative energy shifts in term of a series. This formalism is developed from
Green’s functions generated by unperturbed eigenstates. The proof and formalism are
discussed in chapter 10 of Matthew and Walker’s mathematical methods text [14].

For very smgll V, the following series equation enables us to calculate the

corrected energy Lam(m,V)‘ as a function of V.

qop ) 2 G(m,n)-G(n,m)
Lam(m,V) =L"(m) fV Gm,m) +V ;Lam(m,V)—L" (M)

Goyy G Gp)Gem
(Lam(m V)~ 1°(r)- (Lam(n )~ ' (p)

nzm pzm

(6.14)

This series is refered to the Walker Green's Function Series in this chapter ®. Tt should
be noticed that Lam(m, V) is found on both the right hand side as well as the left hand
side of (6.14). This makes it very difficult to solve (6.14), even when (6.14) is written out
only to the third order. However, one can make an initial guess to what Lam(m,V)/Lo(m)
should equal. Let “sca” equal the initial guess for Lam(m,V)/Lo(m) for given m and V.
Lam(m,V) can be estimated in terms of this “sca” parameter. This initial estimate of

Lam(m,V) is to be known as Lam(m,V,sca):

Lam(m,V,sca)= L°(m) +V-Gm,m) +V" - 3" (s(i(ﬁf()%f—(??g))

G(m>n) ) G(n> p) ) G(p>m)

V3 - ;;(sca - L°(m) — L° (n))- (sca- L’ (m) — L°(p)) o (619)
Note that V-G(m,n) = Q(m,n) (6.159)

in this chapter. L°is A°in [14], and Lam(m,V) is A(m,V) in [14].

® Note that the Walker Green’s Function Series equals the Series in Brillouin Wigner P.T..
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4b. A Scheme for Solving a Truncated Version of Equation (6.15), which is
partly catalogued in the Mathews and Walker Text

There is an iteration algorithm that the author proposes in order to get very

accurate values of the estimated Lam3(m,V,sca). If [V] is much less than ( |G(m,m)| /

(Z G(i,m)z) ), then let sca(n) equal Lam(m,V,sca(n-1))/Lo(m) in such a way that:
J . :

- G(m,n)-G(n,m)
rem (SCA(s = 1) L7 (m) — L (n))
e pem(S€a(s =1) - L (m) = L* (m)) - (sca(s = 1)- L* (m) - L (p))
(6.16)

Lam3(m,V,sea(s)) = L(m) + V-G(m,m) +V* -

The RHS of (6.16) needs to be calculated. Next, Lam3(m,V,sca(s)) needs to be re-
expressed as a Taylor series expanded with respect to V up to the third order. This is

| Series(Lam3(m,V sca(s)), V,3). Subsequently, the ratio

sca(s+1) = Series(Lam3(m,V,sca(s)), V,3)/L°(m) (6.17)
needs to be found. Then one should calculate Ser‘ieTs(Lam3'(m,V,sca(s+l)), V,3) by using
equation (6.15). Again suBsequently, the ratio

sca(s+2) = Series(Lam3‘(.m,V,sca(s+1)),V,3)/L°(m)
needs to be found. This iteiation should be carried out at least two times. Four times is
completely sufficient. This method of subsection 4b.) is very effective for finding the
corrected energy Lam(m, V) and is Within the requirements for the approximate
convergence of a truncated perturbative serives, SO 1ong as if the following two conditions

are met: A.) the ihitia.l guess for the scaling factor sca(first) needs to be reasonably close

to the correct choice for sca(n); and B.) (V)2 Z G(i,m)2 needs to be much less than

J
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V+|G(m,m)]. Condition B.) can be re-stated as V << |G(m,m)| (> G(j,m)* ). The

choice sca(first) = 1 is to be avoided. A good starting choice for sca(n) is sca(1) = (L°(m)

+V-G(m,m))/L°(m) , presuming that V <<|G(m,m)}/ ( D G(j,m)* ).

From ordinary perturbation theory, as is discussed in the two texts by Merzbacher

[15.a] and Liboff [15.b], the corrected energy Lam(m,V) can also be expressed as:

Lam(m,V) = L'(m) +V - G(mm) + v2- 3, @200

v L (M)~ 17 (n)
VY Yy

G(m,n)-G(n,p)- G(p,m)

2 Z T (m) - L) - (L) - L' (p)
: V3 G(m,n)-G(n,m)- G(m,m)
DV L= o - )’

+ V(5 terms)... . (6.18)

While the RHS of equation (6.18) has five compact summation terms, equation (6.14)
has only four compact summation terms. Through analytical review, it can be
-rediscovered that there is only one compact sunimation term‘ which has V* as a coefficient
in (6.14). On the other hand, (6.18) has five compact sumrhation terms (See *) which have
V*as fheir coeﬁicient‘. The number of compact summation terms in Naive Perturbation
Theory (6.18) Which have V™ as their coefficient grows at least as quickly as the rate of 2"
as n increases. The nﬁmber of compact summation terms in Walker Perturbation Theory
(6.14) remains constant (one) ;egardless of how large n of the V" becomes.

For the sake of easy reference, the expression in equation (6.14) shall be called a
‘Walker Green's Function Series’. As has already been briefly explained in the beginning
of this chapter on pg. 7>1, the expression in equation (6.18) is to be called a Naive
- Perturbation Theory series.

% The five compact summation terms for the V* contribution are available upon request.
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4c. A Scheme for Solving a more Effective Version of a Truncated Equation
(6.15) when only 6 or Less Terms are Available.

The algorithm discussed in the last two paragraphs is a method for the
approximate solving of equaticn (6.14) when V is very small. Now an iterative method
similar to (6.16) and (6.17) shall be introduced and explained for cases where V is not

necessarily so small. kLet us look at (6.15) again.

Lam(m,V,scay= Lom) +V - Gmm) + V- 3 (scj(zj(nn)z 'Tf;)(f,llf‘l’)(n))

. Vl-ZZ G(m,n)-G(n,p)-G(p,m) + (6.15)

v pom (SC2 - L (m) = L* (n)) - (sca - L (m) - L (p))

It is a very useful idea to re-express the RHS of (6.15) of as a Padé approximant, where
V is the adjustable expansion parameter. It is straight forward to picture how this would
be done on (6.15) when ‘sca’ is an initial numerical guess. However, a second, third, and
maybe a fourth value will be assigned to sca. Just as in (6.16) (found two pages back),
sca will servé as the vehicle of iteyation in a scheme in which this iterated parameter will
be inserted into the RHS of (6.15) several times. The main advancement in this scheme is
that the RHS of (6.15) will be replaced by a Padé approximant in which V is the

expansion.

4d. The Algorithm Required in order to Realize the Concept from
Subsection “4¢”.

Let us look at the optimization scheme algorithm for the iteration method inspired
by (6.16) and (6.17). We recall equation (6.15). For the purposes of the interesting

examples in this chapter, (6.15b) needs to be expanded all the way out to the V° term. -
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Lams(m,V,sca) = L(m) +V-G(m,m) +V*- . (sz,(fyzf ()m)G—(nLn(ll)l)) |

i Gon S Gy SEEERST. (615)
v pem (sc@- L (m) = L (m)) - (sca- L*(m) = L (p)) o B

We benefit from some specific function definitions: Pade22(f(V),V) is the approximant
Pade[2,2] taken of f(V), where V is the expansion parameter. Pade23(f(V), V) is the
approxiﬁlant Pade[2,‘3] taken of f(V), where V is the expah'sion parameter.
Pade3v2(f(V),V) is the Padé appoximant Pade[3,2]. Now several algorithmic functions
shall be introduced. These algorithmic functions serve as the essential operational
mechanisms of the optimization scheme algorithm. First note the following two mini-
defn’s: For almost all examples in chapter 6, it suffices to set ‘N’ equal to 5. The
operational function ‘Expand’ is defined as Expand[ f{(V),V,N], where
Expand[ f(V), V,N]=
f(0)+1 - £(0) - V+1/2! - £(0) - V*+ .. +1/NL- £ (0) - VN,
The task at hand is to establish the equality
sca - L°(m)= Pade23( Lam(m,V,sca),V ) . | (6.19)
First of all, a fairly géod numerical guéss for sca should be made. A good way to obtain a
good gﬁess for sca for a harmonic oscillator plus polynomial system is to solve equation
(6.15b) in terms of sca for the specific case where V equals 1/2-L°(m). It is suggested to
use the se‘cant method to carry out this root search of sca. Next, it is gbod to plug this
numerical gueés for sca into ﬁmctional execution equation (6.15b) one additional time.
firstpade23 (V,sca) =Pade23( Lam5(m,V,sca),V ) (6.20)
seril(V, sca) = Expand[Lam5(m,V, firstpade23(V,sca)/L°(m) ), V, Num] (6.21)

seconpade23(V,sca) = Pade23( seril(V,sca),V ) (6.22)
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seri2(V,sca) = Expand [Lam5(m,V, seconpade23(V,sca)/L°(m) ), V,Num] (6.23)

thirdpade23(V,sca) = Pade23(seri2(V,sca),V) (6.24)

seri3(V,sca)y= Expand [Lam5(m,V, thirdpade23(V,sca)/L(m) ), V, Num] (6.25)

.. continue along ...

Nthpade23 (V,sca) = Pade23( seri'{N_minus_l }(V,sca),V) (6.26)

seriN(V,sca) = Expand [LémS(m,V, Nthpade23 (V,sca)/L"(m) ), V, Num] (6.27)
In order to carry out the optimization scheme algorithm successfully, firstpade23(V, sca),
seril, seconpade23(V,sca), seri2, thirdpade23(V,sca), seri3, and fourthpade23(V,sca)
should be evaluated in sequential order. The idea behind all of this is to find a nearly
correct solution to represent Lam(m,V) in (6.14). Lam(m,V,sca) is a very close
approximation to Lam(m,V) of (6.14). As is explained in the Mathews and Walker text
[14], Lam(m,V) also is the correct m—_th level eigenvalue of the Hamiltonian studied,

where the perturbing potential of magnitude V is included.

Next, the results of Calculations which include Padé approximants and optimized
Padé approximants is discussed and presented in numerical terms.

5. Results of Calculations.

There should be negligible difference between thirdpade23(V,sca) and
fourthpade23(V,sca), as seconpadé237(V,sca), thirdpad¢23(V,sca), and
fourthpade23(V,sca) are designed to be quickly converging to a common answer. It is
good for the initial guesé of ‘sca’ to be carefully obtained in manner similar to the
procedure described in subsection 4b, which starts in the printed vicinity of equation

(6.16). However, even if sca'L°(m) and Pade23( Lam(m,V,sca),V ) disagree with each
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other by as much as 3 percent, the sequence seconpade23(V,sca), thirdpade23(V,sca),
and fourthpade23(V,sca) will converge to the same common answer as if the choice of
sca caused a 1/2 percent initial error. Eqn (6.19) alludes to the desire for agreement
between sca-L°(m) and Pade23( Lam(m,V,sca),V ). This statement is about to be
demonstrated as being realistic in all of the spectral energy calculations presented in this
final major section, # 5, of this chapter.

The optimal Padé approxima‘nt’ fuﬁctions firstpade23(V,sca), seconpade23(V,sca),
thjrdpade23 (V,sca), and fourthpade23(V,sca) shall be referred to by the names
firstpade23(V), OptPade23(V), OpOptPade23(V), and OpOpOptPade23(V), respectively
in the next few paragraphs. Some of the successful results of the optimization scheme
algorithm applied to the one-dimensional harmonic oscillator shall now be demonstrated.
A table and graphs will be présented in which E-corrected(V,m), seri4(V,m), Pade[2,3]
of seri5(V,m), Pade[3,2] of seri5(V,m), OptPéde23(V) at m and OpOptPade23(V) at m.
It will be seen from the numerical data that OptPade23(V) and OpOptPade23(V) will be

even clbser to E(V,m) than Pade[2,3] of seri5(V,m) is.

Energy level number m = 0 here. (ground)
Naive Perturbation Series:

E5(V) = 1 + 3/4-V -1.312500000000000 -V + 5.203125000000000-V3 +
(-1)30.561035156250000-V* - 10023.082975388-V° . (6.28)

Lam(m=0,V, 1.1187): = 1 +.75000000000000-V - 1.3497292852074-V? +
5.71457138071564459-V° - 34.521611060067-V* +
262.299588070097-V° : (6.29)
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firstpade23(V, 1.1187):=
(1+11.27840723109600-V +23.28916552015348-V?)

(1+10. 52827840723 110-V +16.74258938203889-V> +

(-1)-4.061013850845145 V*) . (cf. 6.20).
OpOptPade[2,3]: =
(1 +11.062298768334 V +22.285122511754 V?)
(1+10.312298768334 V +15.863398843550 V* -
3.5657816931888 V°) (6.30)

In equation 6.30b), the Taylor series of OpOptpade[2,3] has been generated with

respect to V out to the fifth order.

Taylor Series of OpOptPade[2,3] = 1+ .75000-V - 1.3125-V? +
5.203125:'V° +(-1):30.16113-V* + 223.8113-V® .

(6.30b)
Now finally let us look in Table 6.3) at the numerical results of the partial
fractions OpOptPade[2,3] from (6.30) and OpOptPade[2,2]. The quantity CorrtNum is

defined as the precise numerical value of the corrected energy E;;(V) as found by

" ~

diagonalizing the 10 by 10 matrix representation of* (HO + V). V, of course, is either

V-r*or Vex*. CorrtNum is in the fourth column,

| Table 6.3)
A“Table comparing ordinary Padé Approximants to the respective Optimal Padé
Approximants
i)Pade[Z,Z] OpOptPade[2,2] | CorrtNum OpOptPade(2,3] DP‘ade[2,3]
1.06520537 | 1.065217852 1.0652857 1.065308122 | 1.06571394
1.11745262 1.117540578 | 1.1182933 1.118685796 | 1.1218277
1.16125079 | 1.161484673 1.1640550 | 1.165753269 | 1.17493806
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4 1.19875340 | 1.199186277 1.20484792 | 1.209242312 | 1.22793626
) 1.2313168 1.231983692 1.24195727 | 1.250732168 1.28243049
.8 ['1.30775761 | 1.309214986 1.33762481 | 1.371831520 | 1.46493406
1.0 | 1.34629859 1.348289097’ | 1.39256605 1.454787979 | 1.61096887
1.2 | 1.37801754 | 1.380516749 1.44250506 1.542612005 1.78554017

Now the partial fractions which represent the optimized Pade[3;3] and the
op."[imized. Pade[3,4] are shown. These partial fractions are the best semi-analytical
approximations of the ground state energy level presented in this thesis. These partial
fractions were difficult to calculate vﬁth a PC, so, the optimized Pade[3,3] and optimized

Pade[3,4] have not been calculated for any other examples besides the ground state.

(1 +16.432997853186-V+ 65.231699776538-V2+52.980300915 123-V?)

OptPade[3,3]: =
(1+15.682297853186-V + 54.782476386649-V* +
27.273334557443-V°)
(1 +16.4215261870-V +65.1319296262-V> +52.85484017-V°)
OpOptPade[3,3]: = : :
(1+15.67152618701-V +54.690784986-V* + 27.202504553-V?)
: (6.31)
(1 +20.98561776412-V +115.5690757218-V>+
154.3460752284-V?)
OptPade[3,4]: = —
(1 +20.23561776412-V +101.7048623987-V* + v
99.42355174470-V> + (-1)116.21861239183-V*) . (6.32)

In equation 6.32b), the Tayldf series of OpOptpade[3,3] has been generated with

respect to V out to the sixth order.
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Taylor Series of OpOptPade[3,3] ~ 1+.750000000000-V- 1.31250000-V2 +

+5.20312500-V° - 30.16113274852:V*+223.8112786-V° +

-1999.4641-V° (6.32b)

The coefficients of (6.32b) are compared in section # 6 (starting at pg. 108) with
the coefficients of the perturbation series algebraically constructed by Bender and Wu for
the ground state energy [12.b].

The numerical values of rational fractions (6.31) and (6.32) are listed in the next

table.

Table 6.4)

A Table showing the Optimal Padé .Approximants, in particular OpOptPade[2,2],
OpOptPade[2,3], OpOptPade[3,3], and OptPade[3,4], of E(V) when n=0.
(Note E(V) grows positively with V.) -

V OpOptPade[2,2] | OpOptPade[3,3] | CorrtNum | OptPade[3,4] OpOptPade[2,3]

| 1 1.0652178524 1.0652808767 | 1.0652857 | 1.0652874852. | 1.0653081223
2 1.1175405783 1..11818.37963 1.1182933 1.1185537985 1.1186857964 |
3 1.1614846726 1.1635245536 1.164055Q 1.1644047064 | 1.1657532690 |
4 1.1991862772 | 1 .20339600‘3. 1.2048479 | 1.2059244869 | 1.2092423122
5 1.2319836920 | 1.238985777 | 1.2419573 | 1.2443796126 | 1.2507321681
.8 1.3092149855 1.326833793 1.3376248 1.3495820325 l.3718315197v
1.0 | 1.3482890967 1.3737995 14 1 1.3925660 | 1.4159944441 | 1.4547879794
1.2 | 1.3805167486 | 1.413985969 | 1.4425051 | 1.4820791599 1.5426120052
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Energy level number m = 1 here. (first excitation)
Naive Perturbation Series:

ES5(V') == 3+ 15/4 - V' - 103125/10000 - V"> + (61.171875000...)-V" +
(-1)533.6645507812500 - V'* -1006630.1143169 - V*° . (6.33)

Lam(m=1,V, 1.182) := 3 + (3.7500000...)-V -11.86314860074428 - V> +
91.33004682241915 - V* -919.3773392928851 - V* +
10799.34913764610 - V° . (6.34)

ﬁrstpade23(V ,1.182):=
(3 +51.38565359127636-V +165.8842074872459-V?)

(1 +15.87855119709212-V +39.40092969963158-V* + |
(-1)16.90464026013591-V?) ;

OpOptoPadef2,3]:=
(3 +46.28303681613-V +135.9104699873'V2)

(1+14.17767893871-V +31.01889132237-V2 +
(-1)10.42846780116:V?) . (6.35)

Table 6.5)

Table for the case n = 1 (The level of first excitation).

V | Pade[2,2] (mot | OpOptPad[2,2] [ CorrtNum OpOptPad[2,3] | Pade[2,3]
‘| Opto scheme)

A 3.3055207 3.306041716 - | 3.306903 3.307199507 | 3.3116866

2 3.5284374 3.531438673 | 3.5394276 3.543662961 | 3.5741362

3 3.7026702 3.709684230 | 3.7337016 3.750511512 | 3.8338461

4 3.8433961 3.855217625 |3.9031801 3.944577621 | 4.1087816

S 3.9596626 3.976599700 | 4.0547397 4.134740033 | 4.4101973

.6 4.0574218 4.079500103 | 4.1925630 4326486101 | 4.7481120

i 4.1408038 4167893532 | 4.3194790 4.523695390 | 5.1335601
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V | Pade[2,2] (mot | OpOptPad[2,2] | CorrtNum OpOptPad[2,3] | Pade[2,3]
Opto scheme) .

8 4.2127809 4.244671513 | 4.4375323 4.729465705 | 5.5801733

.9 4.2755527 431 1996 156 | 4.5482651 4.946549448 | 6.1059375

1.0 | 4.3307842 4371519961 | 4.65093864 |5.177616202 | 6.7357008

Next, many graphs will be presented which display the correct spectrum and the

very good results from Padé approximants for the one-dimensional quartic harmonic

oscillator.

These graphé are presented on the next several pages.
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Figure 6.4

Optimal Padé Approximants for the four lowest levels of
the 1-dimensional
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Legend of Figure 6.5
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Figure 6.5

Ordinary Padé Approximants for the 4 lowest energy levels of
the 1-dimensional Quartic Harmonic Oscillator.
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Naive Perturbation Theory Series compared to the correct
spectral Energy Levels.
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Legend of Figure 6.6
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Figure 6.6

Naive Perturbation Theory Series compared to the correct
spectral Energy Levels.



Legend of Figure 6.7
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Figure 6.7

Pade Spectrum for the two lowest Energy Levels.
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Legend of Figure 6.8
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NPT Partial Sums presented for the two lowest Energy Levels.
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Figure 6.8




_Legend of Figure 6.9
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Figure 6.9
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Padé Spectrum for excitation levels (n=2) and (n=3).
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Legend of Figure 6.10
n=3. OpOptPade[2,3] — |n=2. OpOptPade[2,3]
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Figure 6.10

NPT partial sums presented for 2 upper n’s.

The spherical harmonic oscillator spectrum is shown on the next few pages for the
three lowest energy levels in the case where orbital angular momentum is 1 = 0. We first

examine the example of the spherical quartic harmonic oscillator in the case where



102

orbital angular momentum | equals zero. Figures 6.11), 6.12), 6.13) and 6.14) are all of
the results for the three lowest possible energy levels when | equals 0. Note that T is the

spectral energy level number of the spherical harmonic oscillator.

Legend of Figure 6.11

T=0 Pade[2,3] T=3 Pade[2,3]
OpOptPade[2,3] OpOptPade[2,3]
Correct Value Pade[2,2] —
Pade[2,2] ”

T=1 Pade[2,3] —
OpOptPade(2,3]
Pade[2,2]

Figure 6.11

Padé Spectrum (including Padé approximants) of the 3 lowest energies.
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Figure 6.12

Spectrum for the 3 lowest energies including NPT
Series as well as Padé approximants.
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Now T is set equal to 1. The choice 1 is the smallest possible choice for T when

the orbital angular momentum is 1 = 0. In figure 6.13, I does still equal zero.

Legend of Figure 6.13

—— V vs Pade[2,2]

—— V vs Correct Value
—— V vs OpOptPade[2,3]
—— V vs Pade[2,3]

Energy Prediction

0.0 0.2 0.4 0.6 0.8

Figure 6.13
Energy Curve for the lowest possible Level when | = 0, showing
Pade[2,2], OpOptPade[2,3], Pade[2,3], and the correct Energy.
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The lowest possible energy curve when =0 shall be refered as the ‘ground orbit 0 energy’

curve.

0 005 01 015 02 025 03 0.35

Figure 6.14

Padé Spectrum for the Ground Orbit 0 Energy ( Pade[2,2] —,
OpOptPade[2,3] —, Pade[2,3] , and Exact — ) and also the
corresponding fourth order Perturbation Theory Result —.
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The Spherical harmonic oscillator spectrum is shown next for the lowest energy
level in the case where orbital angular momentum quantum number | equals 1. In the next
two pages we examine the example of the quartic harmonic oscillator in the second
rotational case, where orbital angular momentum | equals one. Figures 6.15) and 6.16)

are all of the results for the condition 1= 1.

Figure 6.15

Padé Spectrum for the lowest Energy level when I= 1, showing
Pade[2,2] —, OpOptPade[2,3] —, Pade[2,3] —, and the
correct Energy
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Figure 6.16

Padé Spectrum for the lowest Energy level when I=1, showing
Pade[2,2] —, OpOptPade[2,3] , Pade[2,3] —, 2nd order
NPT series —, and the correct Energy —.
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6. Comparison of the Bender Perturbation Series to the Series extracted from
Optimized Padé Approximants.

This section is dedicated strictly to making numerical comparisons with the older
work of Bender and Wu. All of the r‘esults in this section involvev perturbation series and
the Padé approximant related expressions of these series for the ground state quartic
harmonic oscillator. The Optimized Padé approximants are quoted from the equations
written out in section # 5. From equation (6.30) we remember that

OpOptPade[2,3] : =
(1 +11.0622987683344406 V +22.2851225117544846 V?)

(1 +10.3122987683344406 V +15.86339884355036541 V? -
3.5657816931887873 V). (6.36)

We remember that in section “5.” the series expansion of OpOptPade[2,3] was found.
The perturbative series calculated by Bender and Wu takes on the following appearance:
BenderSum(U) = 1/2 +3/4-U -21/8-U% +333/16°U° -30885/128-U*+ ... . (6.37)
This represents the ground state energy curve. None of the exact perturbation series
representations of any of the energy levels of excitation are given in reference [12.b]. The
coefficients of Bender's ground energy expression come frofn the list on page 1233 of
- reference [12.b]. In this chapter of the dissertation, the main 1-dimensional Hamiltonian
is: (-d%dx* + x%) +V-x*. Bender uses the Hamiltonian (-d%/dz” + %-z%) + ¥%-U-z*, where
% U-Z" is the per'turbation.. V matches 2-U, and x matches 1/42 -z. Keeping this linear
transformation of parameters in mind, it is correct to compare 2-BenderSum(V/2) with
the optimal Padé approximant of the ground state energy for the quartic harmonic
oscillator as a function of V. In terms of V and x (x for the eigenstates), Bender's

perturbation series grows in the following manner:
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BenderSum(V/2)-2 = 2+(1/2 +3/4-(V/2) -21/8-(V/2)* +333/16-(V/2)* +
(-1)(-30885/128)-(V/2)* +(916731/256)(V/2)* +
(-1)-(65518401/1024)-(V/2)° +(2723294673/2048)-(V/2) ... (6.38)

Also see page 1233 of reference [12.b]. Numerically to the seventh order,

BenderSum(V/2)-2 ~ 1+ 75000000-V - 1.3125000-V2 +5.2031250-V° -

30.161133-V* + 223.81128-V® - 1999.4629-V°® +20777.089*V" +.._ .
(6.39)
We remember that in section # 5 the series expansion of OpOptPade[2,3] was shown to

equal:

Taylor Series of OpOptPade[2,3] =~ 1+ .75000000-V - 1.3125000-V? +
5.2031250-V® + (-1)30.16113-V* + 223.8113-V' + O-V* . (6.40)

Clearly, there is close agreement between the serial representation of the optimal Padé
approximant and Bender’s séries out to fifth order. OpOptPade[2,3] underwenf twb
successive iterations.

We should consider the results of the opti_mized Padé approximants
OpOptPade[3,3] , OptPade[3,4], OpOptPade[3,4], and the Taylor series of these rational
fractions. There is éoéd agreement with the seventh Qrder partial sum of the series
BenderSum(V/2)-2. One can review from equations (6.3 i) and (6.32) of section “5.” the
semi-analytical expressions for OpOptPade[3,3] and OptPade[3,4] for the ground state
energy. . |

OpOptPade[3,3] := o
(1+16.4215261870-V +65.1319296262-V* +52.85484017-V°)

(1+15.671526187012-V +54.6907849859-V? + 27.202504553-V?) |
(6.41)
OptPade[3,4} = . '
(1 +20.985617764121528-V +115.5690757218338-V*+
154.34607522835382-V°)

(1 +20.2356177641215284-V +101.70486239874675-V> +
99.42355174470327-V® + (-1)-16.2186123918274-V*) . (6.42)
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OpOptPade[3,4] :=
(1 +20.99762723050-V +115.7541242119793-V:+
154.83380302920-V?)

(1 +20.247627230500-V+101.88090378910-V*+
99.795010927405-V> + (-1)-16.317374593559-V*) . (6.43)

In additibn to inspecting t-he‘ successful numerical resulté of the optimized Padé
approximants in table 6.4) of section # 5, it is instructive and encouraging to see that the
Taylor series of the second iterated optimized Pade[3,3] (OpOptPade[3,3]) matches term
by term to the perturbative series of Bender and Wu at more than six significant figures.

Bender’s series is shown to seventh order. (Also see equation (6.39).)

BenderSum7(V/2)-2 = 1 +.75000000-V - 1.3125000-V* +5.2031250-V* -
©30.161133-V* + 223.81128-V° - 1999.4629-V® +20777.089-V’. (6.44)

Taylor Series of OpOptPade[3,3] ~ 1-+.750000000-V-
1.31250000-V>+5:20312500-V* - 30.161132748522-V*
+223.8112786-V>-1999.4641-V® (6.45)

‘Taylor Series of OpOptPade[3,4] ~ 1+.750000000-V-

1.31250000-V>+5.20312500-V> - 30.1611328-V*
+223.8112796-V°-1999.4664-V® + 20777.186-V’ (6.46)

Table 6.6) will show in explicit numerical form the first ten coefficients of the
series BenderSum(V/2)-2. The ﬁrsi eight coefficients of the Taylor series of
OpOptoPade[3,3] and/or those of OpOptPade[3,4] for the ground state energy as well as

the first ten coefficients BenderSum(V/2)-2 from (6.39) are included in Table 6.6).
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Table 6.6)

Table which lists coefficients of the Bender series for Ground State Energy

Order # 0 |1 2 3 ' 4 ,
Bender’s 1 75000000 -1.3125000 | 5.2031250 -30.161133

Optimized 1 750000000 | -1.31250000 | 5.2031250 --30.16113275
Padé |

Order# |5 6 7 8 9
| Bender’s | 223.81128 | -1999.4629 | 20777.089 -245689.177 | 3256021.9

‘ Optimiz- 223.8;1'128 -1999.4641 | 20777.186** | unknown unknown
| ed Padé

** 20777.186 comes from OpOptPade[3,4], which is more accurate than OptPadef3,4].

It is worth noting that for orders 1 through 5 there is agreement at least to eight
significant figures between the coefficients by Bender and the coefficients from the
optimized Padé approximants. For order 6 there is agfeement to six significant figures
betwéen the coeﬁicieﬁt by Bender and.the coefficients from the optimized- Padé
approximant. For order 7, there is agreement to five signiﬁéant_ figures. If the partial
ﬁ'actiori OpOpOptPade[3,4] were itefatively constructed, it is plausible to believe that
there would be agreement to six significant figures for theb seventh order. However, it
becomes very difficult to do more thaﬁ one iteration of the optimized Padé approximaﬂt
[3,4] due to limitations of available RAM on the particular PC used for research. Overall,
it is good to see that there is agreement to at least five significant figures for the first

eight terms of the NPT series.
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7. Comment on V’-f contributions and Closing Statement

All of the results presented in this chapter have been for the quartic harmonic
oscillator. However, it is only moderately more difficult to calculate to good
approximation of the lowest several energy curves of the harmonic oscillator with a
‘hexic’ perturbatibn of the form V'-x% by using optinﬁzed Padé approximants.
Appendix C presents the results of the optimized perfurbative calculation of the ground
state energy of the hexic (sixth order) harmonic oscillator. The V" dependent perturbative
sén’eé of the optimized perturbative calculation is equiVélent to the s‘en'es‘ that can be
generated by the recursive method described by Bender and Wu in [12.b]. While this
perturbative series of the ‘hexic’ energy curve quickly diverges, the optimized Padé
approximants OpOptoPade23 and‘ OpOptoPade33 for the “hexic’ harmonic oscillator
provide reaSQnable prediCtiohs for the> energy spectrum. See appendix C for results. This

discussion does conclude chapter 6.
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Chapter 7

Estimating Perturbative Coefficients in Quantum Field Theory
by using Padé Approximants

Padé Approximant Predictions

The calculations of quantities and observables requiring Quantum Electrodyﬁamic
and Quantum Chromodynamic theory shall be discussed in the entirety of this chapter.
Padé Approximant Predictions shall be used for most of the informative calculations.
However, in the middle of this ‘chapter, Padé Approximant results shall be shown for the
anomalous magnetic moment calculation of the muon.

The method for generating Padé Approximant Predictions should be remembered
from equation (1.13) of chaptgr- 1. Given a series 10 +rlex +r2x” +... , r(n+m+1) can be
predicted usﬁally to hjgh level of accuracy by taking the Padé Approximant
prediction[n,m] ( PAP[n,m] ) from the partial sum going all the way up to r(n+m) "™,
We remember (1.13) as:

ey ~ = ( bl'-r@ + by® Tty + D3*Tarm) +-..Dm*Teaey ) (7.1)
bl, b2, b3, ... ,bm are calculated by using the method demonstrated in equations (1.6),
(1.7),and (1.8). Ina m‘annér consistent with equations (5.4} and (5.5), the standard
results for PAP[1,1], PAP[2,1], PAP[O,Z]; and PAP[1,2] are listed:
I r3{ estimatéd}_ = (r2)’/r1 , (7.2a)
r4{estimated} = (13)"/12 , (7.2b)

i 13 {estimated} = 2+r1e12/10 -(r1’/(r0> | (7.2¢)
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2r1-12-13-10-13% -12°
(r1* -10-12%)

I ' r4{estimated) = (7.2d)

Results I, II, and ITI, which are PAPs for r3 and r4,' will be used frequently in the
applications of this chapter. |

In chapter 7, the partial sum r0 +r1°)§ +12o%7 +.. Hr(ntm-1)sx™ ™D + p(ndm)ex™™
shall always end up representing one of the perturbati§e qu-antum field theory expressions
mentioned in the first paragraph. From éll of the diverse examples of chapters 2 through 6
and vall of the insights and near-theorems, if shouldr be clear that Padé approximants and
PAPs are more reliable and successful when a large number of terms are supplied from a
series than when only a small number of terms is supplied from a series representing a
perturbative function. In QED and in QCD to a lesser extent, it 1s with higher order
partial sums of series that Padé ‘approximants and PAPs are the most useful, since
analytically oﬁe has hundreds of Feynman diagrams and then thousands of Feynman
diagrams with complicated calculations. The mvateriallin the next several paragraphs is

based on results in a Physical Review D publication. [18]

Predicting higher ofder T erms in QED.
We begin with the difference between the muon and the electron anomalous magnetic
moments »(QED contributions)[19]:
2y -8c = 1.00%% + 22.87+x + 1270 + 570(140)x", | (7.3)
where x = (0/m) and 570(140) means 570 % 140, and the coefficient of X isa

conservative estimate. The results are given in Table 7.1). It can be seen that there is a
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beautiful agreement with the known results. Moreover the next term is predicted to be

about 2500, and this agrees well with an estimate performed by Kinoshita

a(12),= 10°K>~a(6)*u(gg)= 2500(900) ,

(7.4)

where we take 2<= K <=2.5. (See Kinoshita, Nizic, and Okamoto [20] for a discussion

of this method.) For the next-next term, we estimate, using K=2.5,

a(14),= 15*K*+a(6)*u(gg)= 12,500(4000) .

(7.5)

NT means the next (unknown) term. NNT means the next-next term, or the second

unknown tern.

Table 7.1)

Comparison of the PAP for a,-a. with the Known Results

a,-a, Equation ~ Estimate Known result
I 705 570(140)
I 2558 1600-3400 NT
1 11480 8500-16500 NNT
11 2415 1600-3400 NT
o 11480 8500-16500 NT
11 2362 1600-3400 NT
111 11480 8500-16500 NNT

Next, we consider the anomalous magnetic moment of the electron [21]:

8. =x/2 03285 + 1.176°x° -1.434+x" .

The results are given in Table 7.2).

(7.6)
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Table 7.2)

Padé Estimates for a. , which are compared to known Resuits

a. Estimate Known result.
Equation

I -421 - -4.23 .

I : 1.74 NT

I _ -2.12 _ ' NNT-

I -1.40 -1.43

111 ' C | 322 NT

111 | -2.13 . - | NNT

Again there is good agreement\ with the known results, especially >for the eighth-order
coefﬁcie_nt from fesult 11, where the prediction is -1.40 and the anwn result is -1.43.
Moreover, the next term may be about 2.5. It is interesting to note that, if this is correct,
the perturbation series for a. continues to be an oscillating series. The next term,
predicted to be -2.12, conﬁﬂues thié pattem. We now consider the perturbation
expansion for- |

8= x/2 +0.7655%% + 24055 + 125.6°%* + 573(140)%" , . (1.7)
where the x’ coeﬂi__cient is a conservative estimate. The results are shown in Téble 53). It
can be seen that the agreement with the known values is quitey. good and the prediction for
the next term and the éecond unknown term agree very well With the very well with the

estimates using Kinoshita’s method. (See equations (7.4) and (7.5).)
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Table 7.3)

PAPs for a,(QED), which are compared to known Results

a, Equation Estimate Known result
1 656 573(140)
2614 1600-3400 NT
e 11925 | 8500-16500 NNT
Im | 71.8 : 125.6
2559 1600-3400 NT
‘ : 11925 8500-16500 NNT
111 2548 ' 1600-3400 NT
111929 ‘ 8500-16500 NNT

Padé Approximants applied to QED.
The first the terms of Equation (7.3) for a,-a. can be calculated out to higher

precisidn. This has been done carefully in a fourth order (wrt x) calculation [19],[21]:

au-ac = 1.09433583(7)°x" +22.869265(4)*x" +127.00(41)*x" . (7.8)

diffaOQerxz = (Partial Sum of (7.8))/(x%) . (Local definition). (7.9)
As in (7.4), x equals (a/r). In some cases in which eﬁough initial information is given,
Padé¢ approximants reveal more fully the functional dependeﬁce of a perturbative QED
eXpresSion on o than the NPT series of the same QED expression. In a SLAC
Publication[22], .the Padé approximant Pade[1,1] is taken of diffaOverx2 of (7.9). By
plugging in the precise value of o, one obtains the value

x**(Pade[1,1]) = 6194839(12)*101? (7.10)

The value from the partial sum in (7.8) is:

Sum of (7.8) = 6194791(12)*10%"2, (7.11)
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a. has been carefully evaluated as:

Value of a. = 1159652173.5(24.0)-10"‘2’ [22] (7.12)
Electro-weak corrections and quantum chromodynamic hadronic corrections [23],[24] to
the QED perturbation series (7.8) also need fo be considered. These corrections are
shown and explained in references [23] and [24]. In these references, there are two
independent phenoinénalogical results given for the hadronic correction of a,. The most

recent known results are givenin (7.13) a, b, and c.

First recorded: Aay{hadronic} = 69500(1500)=10'2[24]; - . (7.13a)
Separately recorded: Aa,{hadronic} = 70110(940)*10°'2[24]; (7.13b)
For the weak correction: Aa,EW.} = 1510(40)-10°[23] . (7.13¢)

After adding (7.12) to (7.10) and after adding the small hadronic contribution of (7.13a)
| and the.}weak contn'bution (7.13¢), one obtains first the phenomenalogical theoretical
value | a= 1165918022.5(1576.0)+10""? (7.14)
for the anomalous magnetic moment of the muon. On the other hand after adding the
small hadronic contn'buﬁons of (7.13b) and.t‘he same weak contribution (7.13c), one
obtainsj the other phénomenaiogical theoretical value of |

a= 1165918632.5(1016.0)-10"12) (7.15)
for the anomalous magnetié moment of the muon. The two resulting theoretical vatues of
a, which are based on the partial sum (7.8) and the contributions of (7.13)(a,bc) are: first
with the additién' of (7.13a) plus (7.13c¢): 1165917975(1576)*10'? (7.163)
and secondly with the addition of (7.13b) plus (7.13¢): 1165918585(1016)*10°'?. (7.16b)

The experimental value [25][26] of a, was found to be:



119

2, =Pt = 1165923000(9000)+10712 (7.17)

Comparison should be made of (7.14) (which is from x*(Pade[1,1]) with the NPT value
effected by (7.16a) and of (7.15) with the NPT value effected by (7.16b). Equations
(7.17b), (7.17¢), (7.17d), and (7.17€) show such comparisons:
The closeness of results with the assistance of the Pade approximant:

percent difference ‘between 2, 7™ and (7.14) =  -4.269158962+10 %; (7.17b)

percent difference between a,'"*™™ and (7.15) == -3.745966226+10°® %, (7.17¢)
The closeneSS of results with the use of just NPT: |

percent difference between 2,"*"™ and (7.16a) = -4.309899392:10® %; (7.17d)

percent difference between a,"“**™ and (7.16b) := -3.786706634+10® %. (7.17¢)
From these comparisons, it becomes apparent that a, of (7.14) and (7.15) is slightly more
accufate (closer to the known exeerimental value) than the value of a, obtained solely
from>taking the partial sum of the QED series added to the hadronic end weak
contributions. In summary, it can be said that the Pade[1,1]/(x") applied to the QED
series (7.8) leads to slightly closer agreement to the experimental a, than the plain QED
partial sum which (7.8) displays. |

In order to ever improve the ability to test and understand QED, it is

quantitatively desirable to calculate exactly the fifth order term and to then use the fifth
order partial sum version of (7.8). Then in great likelihood the partial sum for a, plus the
hadronic and weak contributions, and to even closer proximity the calculation
x*+(Pade[1,2]) of a, plus the hadronic and weak contributions, will lead to a more precise

theoretical value of a, which disagrees with the experimental value by only one decimal
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place with respect to the experimental value of 1165923 (9)-10('9). Note that this

experimental value holds today in 1997, just as it did in 1977. [25] [26]

Applications of PAPs to perturbative QCD

As our first example relevant to strong force phenomena, we turn to the beta
function of QCD. A paper which treated the PAPs applied to Bocp was submitted in 1993
[18]. The QCD beta function has recently been calculated to the fourth order.[27] [28]. It
1s given by the sen'ai expression |

Boco (g2)= (-11 +2/3°N9)+(2) +(-102 +38/3:N9)*(2)*

+ (-2857/2 +5033/18°N-325/54+(Np)?) *(2)° +

(-29243.0 +6946.30°N¢ -405.089°N# -1.49931NP) o(2)* ...,  (7.18)
where z= g%/(47) and N is the number of fermions (quarks). For the sake facilitating the
clarity of results of the data table of this section, we conveniently use the symbol b(n) for
‘the beta function over‘(gz) of (7.‘1 5):

Boco/(&)=boyz + b(l)',(z)2 +ber(@)’ + bar@"* ... . ~ (7.18b)
Before the end of 1996, only b, , by , and by, of (7.18b) were known. by, shall be
treated as ‘r0’. by, shall be treated as ‘fl»’ , aﬁd so forth.

Brief numerical results of PAPs are presented in Table 7.4) to predict the fourth
coefficient for the cases when Ny= 5, 3, and 1. The results for N&=5 are very good. The
results for Ng=3, and 1, altho'ugh‘ ﬁot as good, ’are still reasonable. For the case Ng=6, no

- prediction of sign nor order‘of magnitude was given due to the ominous failure to predict

the correct sign of by, from by and by with the Padé Approximant Prediction (I). (See
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equations (7.2a) for (I).) In the cases of Ng=1, Ng=2, through N=5, it was the fairly
accurate results of the PAP (I) of by, and the numerical consistency of the PAP (I) and
PAP (II) of bgs) that gave the author confidence in making a rough estimate of bs;,. Before
- 1996, it was helpful and conducive for discussion to uée these PAPs for predicting the
sign of b(s) and the order of magnitude 6f bg) (that is the predicted bg, +/- 70% of the
correct by ).

Next, Table 7.4) is presented.

Table 7.4)

PAPs for the QCD beta Function

PAP formula | N¢ | PAP Known results Exact b, results
for B of which exclude the
Bocn/(2) Casimir terms ***
I* 5 |1-195.0 -189.9 for by, --not applicable--
» 5 |-846.3 -4826.14 forbg ** | -2909.40
I* 5 |-841.2 -4826.14 for b ** | -2909.40
I 3 |-4551 - | -643.9
3 -6480 -12090.4 ** -9135.95
I 3 -5921 -12090.4 ** -9135.95
I 1 -772.3 1155 ] e
' 1 -14931 -22703.3 * -18658.3
IL 1 |-13292 22703.3 ** | -18658.3

* The PAP formulas T and II are written out in (7.2a) and (7.2b).
** The fourth order results, b (for z") were not available at the time of publication in

which the estimates in Table 7.4) were first presented. The two references [27] and [28]
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contain the formula for calculating bg, as a function of Ny analytically and approximately,
respectively.
*** The Casimir terms consists of the following single expression:
N2 (N*+36)/24+( -80/9 +704/3°¢(3) ) + nf*Ne(N*+6)/48+(512/9 -1664/3+¢(3) ) +
‘nf2°(N4 -6°N? +18)/(96°N?)*(-704/9 +512/3+¢(3) ) , where N=3.
The exact expression of b, which is explained on pages 381 and 382 of [27], includes

this single expression.

PAPs applied to the Quantum Chromodynamic R ratio
The material in this section is based on results in Physical Review E publication
[17]. We will consider the R ratio in perturbative QCD [29 to 32]. The R ratio is defined

as follows:

o(e’e” ~> hadrons)

R= — — (7.19)
o(e'e —> py)
We first consider R in the general MS-type renormalization scheme given by the
parameter t, A= exp(-t/2)*Ams-bar - | (7.20)

Obviously t=0 corresponds to the MS-bar scheme. t= In(4w) -y = 1.95 represents the MS
scheme. t equals -2.0 for the G scheme. t=4-(3)-11/2 =-0.692 yields the special MS
scheme selected for reference [29]. The scale-dependent R (in the general MS-type

scheme) is given by

R=3+(3"(QINE)**R()) -1.24*(3 QINf])*x* (721)
N N
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where x= ay/m and Nf'is the number of fermions (quarks). We neglect the second term in

equation (7.21) as it is small in all cases of interest. R(t) is given by

R(t)= 1+ x +x>*[(1.9857+2.75+t) -Nf+(0.1153 +0.1667+t)] + x>* [
(NEP( (-1) *.0052+.0384+t +.0278+) ) + (-6.6369 +17.2964t +7.5625+¢) +

(-1)'Nf(1.2001 +2.0877t +0.9167t) ] . (7.22)

For the sake of back referencing, (7.22) shall also be express‘ed as:

R(t)= 1 +xer] +x%+12 +x°*13 . | (7.22b)

Padé Approximant Predictions have been calculated for the coefficients of the series R(t)
with respect to x. Exact calculations and PAPs of these coefficients are displayed in

Figures 7.1), 7.2), 7.3), and 7.4).

It can be seen that the method works very well, and we can predict with confidence
the unknown next term (NT), r4°x4.vFigures 7.1),7.2),7.3), 7.4) are presented on the
next tﬁree pﬁges. It is clear that there is almost complete agreement between the
predictions ‘of r4 of the R(t) perturbativ¢ series from PAP[1,2] and PAP[2,1] in Figures

7.3) and 7.4), especially when t is large.
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Figure 7.1)

Comparison of PAP derived 13 and the analytically
known r3 -#—8 When Nf=1.
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| Figure 7.2)
Comparison of PAP derived 13 ~— with the analytically
known 13 -8 When Nf=5.
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. Figure 7.3) 4
Comparison of the PAP[1,2] Estimate of r4 “*~* with the PAP[2,1]
Estimate of r4 % and with the Estimate using PAP[0,2] r4 ——— When Nf=1.
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Figure 7.4)
Comparison of the PAP[1,2] Estimate of 14 -+ with the PAP[2,1]
Estimate of 14 “##and with the Estimate using PAP[0,2] — When Nf=5.

In Figures 7.1) and 7.2), we plotted the estimated and exact values of 13 as a
function of t for the two representative valués of Nf (Nf=1 and NE=5 , Tespectively). It can
be seen that the agreement is excellent for t >1 and improves as t increases. The reason
for this behavior can be seen as follows.

By taking the Padé Approximant Prediction [1,1] of the RHS of (7.22), we obtain
3= 12%/r1 = 3.943 +10.92¢t +7.5625¢t> -Nf+( .458 +1.2962+t +0.9167+t%)

+NF(0.0133+ 03840t +0.0278+t%) . (7.23)
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The exact result is given by the X term in equation (7.22). It can be seen by comparing

this term with equation (7.23) that the t*, t**Nf, t*Nf, and t*N coefficients agree. In
fact, this agreement is exact. Now we understand why the estimate and the exact result
agree so well for large t.

The reason for the agreement of the coefficients can be seen as follows [29].

Consider the function givenby ~ D(q*u’a)= Y Ri(a/m)' =R(®) . (7.24)

The perturbation series for D is
D = 1 +D0+(0/47) +(D1 -Bo*DO*In(q*/u?)*(os/4m)* +

(D2 ~(B1°D0 +2+B0-D1)*In(q%u?) +( Bo2DO+( In(q?/u?)?)*(ats/4r)° (7.25)
Where Bo and B; are the first two coefficients of the beta function. Siﬁce t= In(q/(u?) ),
one can see that (2)%r1= (D1 -B,+DOt)>/D0O . (7.26)
The t* coefficient is Bf-DO which agrees with the coefficient of the t?eq? term even if DO
does not equal 1. The cross term in equation (7.25) is -2*B,°D1+t. This agrees with one of
the ’t*(ocs»)3 terms. However, the other one does not have an Nf’ contribution. Thus the

t*Nf* coefficients also agree. Thus; 'part of the r3 coefficient was predicted exactly by the

Padé Approximant Prediction [1,1].

Concluding Statement of Chapter 7
In conclusion, it has been shown how one can estimate coefficients of a perturbation
series in perturbative quantum field theory. The results in the two QED sections agree

well with known results for a, - a, a., and a,.



128

Padé Approximant Predictions were less effecttve in providing accurate estimates
for the QCD beta function. -Neverthele‘ss, we (the authors of Journal publication [18])
obtained somewhat reasonable results which are of the correct sign and the correct order
of magnitude for the prediction of b, of (7.18b) before by was known analytically.

The use of PAPs for estimating the next term in the QCD series for the R(t) of the
R ratio of (7.21) does show more promise than the estimates attempted on the Quantum
Chromodynamic Beta function. The very close agreement of PAP [1,1] to the exact 13 in
Figures 7.1) and 7.2) is impressive. The close agreement of PAP [1,2] and PAP [2,1] in
Figures 7.3) and 7.4) is quite reassuring for the estimate of the apparently unknown value
of r4, which is the next coefficient beyond 3 to be included in the perturbative series of
R(t).

In the not too far future, the value of r4 ought to be calculated analytically with the
assistance of human mathematical prowess and a good symbolic software package such
as Mathematica 3.0 on Linux or Umx Soon after this accomplishment with modest
additional effort, the author proposesb that tﬁe Padé approximants Pade[2,2], and

Padef3,1] be taken of the perturbative Quantum Chromodynamic expression for R(t)

with respect to z, that is a/4w. Perhaps there will be close agreement between Padef2,2]

and Pade[3,1] as two estimates of the entire function of R(t) when ay/x is sufficiently

. small at reasonably high energies.
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APPENDIX A

The general formulas of Padé approximants Padef2,3}, Pade[3,2], and
Pade[3,3] are listed among equations (8.1), (8.2), and (8.3) below. These Padé
approximants shall be taken of the series 10 +11-x +12:x” +13-x’ 414" +15%° +16x° +..
with respéct to x. In this appendix, r0 equals 1o of chapter 1. r1 equals r; of chapter 1.

12=rn,, r3=r1;, r4 =14, and so forth.

Pade[2,3] equals:

(r4r02r2—-r0r4r12—r0r23+2r0r2r3rf—r32r02+( BVISENN L
+2r2r3r12——2r2r32r0 r5r02r2+r0r5r32+r0r3r22+r4r3r02)x+(
28 r0r22 = 21278 P12 =12 43122 P3Pl = 272 P32 KO- 2 P P5 PO P2 415 113
—r32r22+2rfr4r3r0—r02r42+r02r3r5)x2)/(
(-2r3r4r2+r33+rfr42—rfr3r5+r5r22)x3
+(-r0'r42+r0r3r5+r4r22—r2r32—r2r3r5+r4r3m’}x2
(57072475712 473122 132 11 47873 10— 1812 F1 ) 2+ 747072 — rd 712
=723 421213 11 - 132 40)

(8.1)

Pade[3,2] equals:
(r0r2 r4—r0r32+(ri r2rd4d —ri r32—~r0r2 r3+r0r3 }'4)x
+ (r22r4—r2 r32—ri r2r5+rirs3 r4—r0r42+r0r3 r5)x2
+(2r3r2ra-r33 722 r5—ri ra% 47173 75)x3)[(
(-r42 +r3 r.5)x2 +(-r2 r5+7r3 réyx+r2rd— r32) (8.2)
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Pade[3,3] equals:

(2r3 ré4 r0r2—r33r0—-r} r0r42+rf rOrs3 r5——r5r0r22+(2 rér2riri—ri r33
—r42rf2+r3 r5rf2-—r22rf rS—r0r6rir? +rOr6r22+rOr4 r32—r0r42 r2
+r0rSrdri—-ror3 r5r2)x+(2r3 ré r22—r2r33— 2r2ri r42—r5r23
R B T LIRS B SO LIS SR LIRS S e LR, oy R ger S, 5 S0, VR g v
1073782107312 6+ 107872 r5) 22+ (3732 1812 = 3% = 213 11 142
232 S 235 P22~ 22 M6 P3Pl 416120 — P82 P22 £ 2 2 5 pa 4]

+ 712 r8 16— P12 P52 4 10783 — 21074 £3 PS5 — 1072 P8 PG+ 1072 152 + 1O 16 732)
x3)/((r43—- 2rérs r5‘—r2 réré+r2 r52+r6r32)x3
+Cr1 r8r6— 11 752 45732 — 3 r8% — 13 72 16 + 74 72 £5) 22
A r6r3 it 4r6r22 4 r8r3% - 42 2 PSPPI~ 3 5 P2) x4 203 1d 12 — £33
—rlr8% rlr3rS—rs r22)
(8.3)

It ought to be remembered that equations (1.9) of chapter 1 give the full formula

inFini
for Pade[2,2] of the series » 7, *x' .

i=0

| t |
Pade[2,2] equals; (8.4)
denom

2 2 2 )
numerat =13 -fofy T XL -XTiL -XTor s+
o2 2 2 2
XToTa I3 + X Iy Top - XTIy + 2x ‘T3 1) - ){2'1'32 o+ X2’I'23 .

denom=xX"T4 - XT3 - XN L+ XT3+ 131 - T . (8.5)
Next, a sequence of Padé Approximant Predictions is giVen for: Pade[1,2],
Pade[2,1], Pade[2,2], Pade[3,2], Pade[2,3], and Pade{3,3], and Pade[3,4]. The Padé

Approximant Prediction [n,m] shall be written as PAP[n,m].

PAP[1,1]= (r2)¥(r1) . (8.6)
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2 —_— - _— - -
PAP[1,2] = r2-(-r2° +r1-r3)—-r3 (2 r0-r3+rl-r2) . &7
r0-r2-rl
PAP[2,1]= (r3)%/(12) . (8.8)
3 r3 D A —ra-(~r1- .
PAP[2.2] = r3-(-r3*+r2-rd)-r E ri-r4+r2-r3) ' .9
ri-r3—-r2
PAP[2,3] =

(r3(r33- 203278472 742 — 113 r5+175r22)
—-r4 (—r0r42+r0r3 r5+r22r4—r2 rirs—r2 r32+r3 rl r4)
—r5(-r5r0r2 +r5r£2+r3 r22—rf r32+r4 rOr3—r2ri r4))/(

223422t P P2 rd— r0r32 £ 1072 rh)

(8.10)

_r4.(_r42 +r‘3.r5)—r5-(2——r2-r5+r3-r4). (811)
r2-r4—r3

PAP[3,2] =

PAP[3,3] =

(—r4 (-2 r4r5r3+r43+r2r52-—r2 ré4 r6+rt‘5r32)
—r5(-r} r52+r1 ré r6+r5r32—r3 r2r6—r3 r42+r5r4 r2)
—r6 (622161 #3 474732 = 142 12 415 r8 11 = r5 3 r2)) [

5722 e r Sl r3 - P33 4 2P rdr2— rd2 pl)

(8.12)
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PAP[3,4)=

(org (1153472262 1152132 - 133 17 4182 - 272 142 16- 315 142 13 4 21812 152 42132 1 16
F2r 63l P35Il F3 P60 =182t T 122 ST 4 202 A r3 T = 212 r6 153 ) - 15 (
2 F0PA 16 r5+ 10755 = 1073 3 17+ 1073 162 + 082 17 ~ 14 122 17 475122 164732 17 12
-r2ri r62-— 2r52r2 r3+r42r2r5+r2 ri r5r7+r42r6rl +r3rirbri+2r4 r32r5—r52r4 rl
~ 1331613 3 - 13 71 17 14) =16 (1072 P 17 - 1072 6%+ 1076 142 = 10 14752 = 0 P4 3 7
FrOr6r5r3+rdr2% 6 - 122 r3 7 -1 12412l 17 P~ r2 1675 1l +13% 1672 + rd2 32
P82 Rl PS5 =313 el 6 rd—r3rT 12 41523l 4162 112 4032 11 17 - 133 15) - 7 (022 14 77
Fr072 73 r6— 10752 r3 41032 17 - rOrd r3 6+ 1042 5417 123~ 122 13 16— 2122 5 pd
+r2r32r5+2r2r42r3+r2r52r}—2r2r3rl ri+rirdrl ré—r43r1~r33r4—r5r6r32
413211 1641417 112) [(0r2 476 1072 152 = 10132 16— 10 P43 210 r5 rh 15— 6123
F2r2% PSP+ r 2t 42 =32 P4 P32t = 2 PSP Pl + 272 P3P L r6+ 232 F12 4 r3 40042 p3 1
27513211 -rhr 11%)

(8.13)
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APPENDIX B

‘Sca’ equals approximately 1.182. V equals 1/5 in this example. In all of this
text, a one dimensional quartic harmonic oscillator is defined as a harmonic oscillator
whose potential energy is modified by tvhe‘ additional term V'-x*. The estimated ground
state of a quartic harmonic oscillator is: |

7511255444649425 %1 — 03045053710822796 {4. x2 - 2.) %1
~ 002272479705501470 { 16. x4 - 48 x2 +12.) %1
~ 0001373877831248834 { 64. 6 — 480, x% +720. 22 - 120.)%1
- 5961771313873175 103 (256, x8 - 3584. x5 + 13440, x4 - 13440. x2 + 1680.) %1 —
9638767990754212 107 ( 1024, £ 10 - 23040, x8 + 161280. x© - 403200, x% + 302400, z2 - 30240.) %1
— 4812018743154766 1072 (4096 x12 - 135168 %10+ 1520640 107 x8— 7096320 107 x6
+ 13305600 108 2% — 7983360 107 x2 + 665280.) %1

2
%1 = e"5000000000000000 x

| ©.1)
Note that the symbol ‘%1” signifies exp(-1/2xX).

| Mathematical expression (9. 1) comes from the following representation of a

perturbative series:

Z - G(m,n) - ¥°(n)

| ly(m,V) ) TO(m) v n=m Lam(ms V) - L° (Il)

v’ P2 Z (Lam<m, g)(r_n ;er’)(n?)(-n(’ fszm(vp; —I’(p)

V3 Ty G(m,n)-G(n,p)-G(p,q9) - ¥°(9)
nem pmgzm (Lam(ms V) - (n)) : (Lam('m9 V) -r (p)) ‘ (Lam(m, V) - I (q)) ’

where Lam(m,V) = Sca*L’(m) . (9.2)
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V is the adjustable strength of the perturbation. It should be clear that this perturbative
series has been written out to the third order of V. Sca can be considered a rather
insensitive function of V. In this appendix, Sca has been set equal to the constant value
of 1.182. If V equal 25/100 rather than 1/5 with Sca still set equal to 1.182, the x
dependent results from expression (9.1) are still very good. Taking Pade approximants of
thé series in equation middlium results in even more precise expressions for the corrected
ground level eigenstate ¥ (m,V).

It w111 be eXplained in chapter 6 that the Hariltonian for ¥(m,V) is:
H= (-d2./dx2 +%%) + V'x* . The ground state is ¥°=1/((n)"*)*exp(- Y2*x’), and the

corresponding Hamiltonian part is: (-d%/dx’ + x*).



138

APPENDIX C

The 1-dimensional hexic (sixth order) anharmonic oscillator example has a non-

relativistic Hamiltonian of the following form:
H=(-d¥dx + %) + V'8, (10.1)

whefe V’~x6 is tl-le’ perturbation. Optﬁnal Padé approximanfs OpOptoPade[2,3] and
OpOptoPade[3,3] (See chapter 6) have been calculated by the author. ‘Partial Sum-5’ is
deﬁnéd as the Taylor series of OpOptoPade{2,3] calculated all the way out to the fifth
order with respect to V'. QpOptoPade[3,3], which was generated by using (-d*/dx* + x°)
as the sourée Hamiltonian and V'-x° as the perturbation, was found to equal the following

approximation:

1, + 330.70629531100 ¥+ 19530.460544024 ¥ + 145663.31 125222 9
1.+ 328.83129531100 V' + 18941.206552816 72 + 117916.56460719 ¥

(10.2)

Table 10.1) pfesents the numerical results for the ground state energy curve of the hexic
(sixth order) anharmonic oscillator as a function of V. & ranges from 0.010 to 0.400.
OpOptPade[3,3], OpOptPade[2,3], thje'accurate numerical spectral solution (Matrix

perturbation theory), and ‘Partial Sum-5’ are included.
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The Ground State Energy Curve of the Hexic Harmonic Oscillator as a Function
of the V' of the Perturbation Term V'-x°

A4 OpOptpad[2,2] | OpOptpad[3,3] | Correct | OpOptpad[2,3] | Partial
Numerical Sum-5
. Value

0100 |1.0167006723 1.0167327438 | 1.01674 | 1.0167618210 | 1.01762054
.0200 1.03 05136592 | 1.0307630468 | 1.03090 | 1.0311365003 | 1.06740993
.0250 |1.0366161960 | 1.0370588083 | 1.03734 | 1.0378343516 | 1.15449503
10500 | 1.0612898525 1.0633090088 1.06538 | 1.0690724201 | 5.24199021
.1000 | 1.0928577335 | 1.0991372237 | 1.10924 | 1.1293709422 | 143.142854
1500 | 1.1122290121 | 1.1225710481 | 1.14437 | 1.1929614129 | 1103.44810
2000 | 1.1253321830 | 1.1391144363 | 1.17447 | 1.2625602570 | 4698.69986
3000 | 1.1419304475 |{1.1609343594 | 1.22553 | 1.4269013644 | 36084.6504
4000 | 1.1520090416 | 1.1746834602 | 1.26879 | 1.6386073341 | 152946.484

many of the perturbative coefficients generated for the quartic harmonic oscillator.

It was explained chapter 6 that Carl Bender’s publication [12.b] includes a list of

However, Carl Bender’s publications [12.b] and [12.c] do not include any specific list of

an exact perturbative series generated for the hexic anharmonic oscillator. The author was

not able to find any publications by Bender from the 1970’s or later which is dedicated

specifically to the hexic anharmonic oscillator.
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APPENDIX D

The number of terms in the coefficient g{n}[u] from the serial expression for the
H-function of chapter 3 has been partially discussed in chapter 3. H,;(u, W) equals gO[u]
+ Wygl[u] + (W,)*g2[u] + ... + Wy g{n}[u] , where W,= w/2. Asymptotically, the‘
number of terms in each g{n}[u] as an integer numerical function of n grows as
Constant-4®. The one table in this appendix gives list of this number of tefms, as found by
use of the recursive coﬁnting algorithm (see ‘relationship (3.6) in chapter 3). This one
particular table also gives the successful estimates for the number of term by a method
very similar to but more specialized than the method of Padé Approximant Predictions.
This method involves Asymptotic Padé Approximant Predictions (APAP’s). Asymptotic
Padé Approximant Predictions are introduced and explained chapter 5.
Now let us examine the results of the predictions for the number of terms in a given
g{n}[u]. It was only for values of n larger than 16 where disagreement for the number of
terms occurred between the APAP results and the Analytical predictions.

Compilation of the Number of terms for the first ten
Perturbative Coefficients of the H-function

Value | Analytical APAP
of | Recursive Results
Order n | Results

1 11 NA.
2 2 N.A.
3 5 N.A.
4 14 14

5 42 42

6 132 132

7 429 429

8 1430 1430
9 4862 4862
10 16796 16796

N.A. =Not Available.
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