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Overview. 

Chapter 1 

Introduction 

The areas of discourse in this dissertation include a fairly broad range of issues. 

The three main areas include solving integral equations with application to diffusive 

scattering studies, calculating non-relativistic energy levels of particles subject to a trac

table radially dependent potential plus a less manageable large radially dependent poten

tial term, and finally calculating various relativistic field theory quantities which involve 

1 

; either perturbative QCD or perturbative QED. Calculations of the quantum chromody

namic beta function are discussed in chapter 7. This Quantum Chromodynamic quantity is 

expressed as a perturbative series expanded with respect to the strong coupling constant. 

Calculations of the quantum electrodynamic anomalous magnetic moments of the elec

tron and muon are discussed in chapter 7. These two quantities are expressed as a pertur

bative series expanded with respect to the electrodynamic coupling constant. 

The method developed in this thesis for calculating low energy spectra of particles 

bound in a complicated radial potential can be applied to various spectrum calculations by 

using an adequate work station (such as the DEC Alpha 3000 work station) and the im

plementation of appropriate source code in Maple or in a Mathematica operation plat

form. This method of finding energy levels should show much promise in a future en

deavor in nuclear physics. In nuclear physics, this procedure could be applied to the 

modelling of the spectrum of the nucleus in a project such as the extension of the shell 

model or the collective model of nuclear physics with the addition of fine tuning potential 



energy terms, which do include a mean field approximation of the. effect of neighboring 

nucleons. This is of interest in nuclear spectroscopy described in terms of the individual 

nucleon [ 1]. 

2 

Returning to the first mentioned area of thought and rendition, the diffusive scat

tering studies mentioned here give insight in the problem of analyzing and solving integral 

equations involving the diffusive scattering of radiation in biological material media. For 

· example, it would be very useful to be able to analyze more precisely the data of tomo

graphic scans from an improved theoretically based model of radiative scattering ofX

rays. · Likewise, improvements in the analysis of ultra-:mund imaging based on improve

ments in phonon scattering. theory are desirable. 

There are two things that are of common issue to all three mentioned areas of dis

course. First of all, the expressions for the essential phenomena and observables can be 

and are often expressed as an infinite series. Very often, the coefficients ( as/41t)n {I} of a 

given series grow so quickly that only trivially· small values for the expansion parameter 

will be able to maintain a convergent series. Indeed, the failure to get a convergent sum

mation is a common problem. This is ~ second thing which is of common issue. This 

problem occurs with integral equations and in the perturbative treatment given to the 

quantum mechanical spectra of atomic and low/medium energy nuclear systems. This is 

especially true .in Quantum Chromodynamics (QCD) and in Quantum Electrodynamics 

(QED). In QCD the majority of calculations for coupling constant, various system inter

action strengths, scattering amplitudes, branch ratios for decays, etc. are carried out by 

{I} as/(41e) is the chosen expansion parameter here. Arbitrarily, z could be chosen as the main parameter. 
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carrying out perturbative quantum chromodynamics. Most relativistic perturbative quan-

tum field theory calculations are infinite series, where as (the strong coupling constant) 

and a (1/137) of QED serve as the expansion parameters. Any perturbative series in 

quantum chromodynamics is very difficult to work with in the sense that a large or me-

dium numerical value for as would result in a very ( critically) divergent series. Further-
r 

more, it is very difficult to calculate the individual higher order QCD terms. It is not 

known precisely what the practical size limit of as is in order to generate a converging 

partial sum out to sixth, seventh, or eighth order of a typical perturbative QCD series. 

Asymptotic formulas are known for a number of series in QCD, including the stron'g beta 

function which determines the gradual energy dependence of as. The terms of the QCD 

beta function grows at very high order in good approximation as l/(4n·j30)·(-130)8·n!·(as)8 

as n approaches infinity. 130 is from the 1st term of the beta function. (See re£ [2] for 

more detail.}However, these asymptotic expressions are not terribly helpful since they 

are not quantitatively reliable until very high orders exceeding 15 in the given perturba-

tive series are reached. Very little is known in between order 7 and order 16. Neverthe-

less, it is especially desirable to find out what the true structure is of a given QCD or 

QED perturbative series in terms of a and/or as. Some examples of such functions of a 

and as are anomalous magnetic moments ofleptons and the QCD beta function, which 

determines the energy dependence of as. There is a rather reliable way to formally de-

velop a sequence of approximate functions that sequentially approaches the correct form 

for many of the functions of a and/or as. This method for approximations involves de-

veloping a rational fraction in such a way that the rational :fraction agrees term by term 
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with the original perturbative series all the way up to the (n+mt order, which includes 

the coefficient times ( as/41t t+m). Such rational fractions will be demonstrated as being 

effective in evaluating the analytical values and the experimentally agreeable values in a 

couple of examples of interesting QCD functions. In reference again to integral equa-

tions, · it is possible to give a very strong argument for the validity and the virtually guar-

anteed success of the use ofrational fractions as approximations to the solution of Fred-

holm integral equations of the second kind. 

These specially adjusted rational fractions, developed as an ever improving se-

quence, are known as Pade approximants2. Pade approximants are expressed as 

Pade[ n,m], where (1.1) 

This rational polynomial :fraction is required as the approximation to describe optimally 

an infinite series through the technique of coefficient fitting. Alternately stated, these two 

expressions are to be matched: 

2 (n+m) ro +r1 X +r2 X + ... +r[n+m] X (1.2) 

The right-hand side is the partial sum of the infinite series Ir;· x;, where xis the name 
i=O 

given to the variable expansion parameter. It is necessary to match the coefficients of 

like powers ofx on the left hand side (LHS) and right hand side (RHS) after multiplying 

with the denominator on both sides. Therefore, simultaneously for m equations: 

m 

I ru-k) ~ = 0 ,where (j = n+ 1,n+2, ... , n+m ). 
k=O 

2 Specifically, Pade type I approximants are used in this thesis. 

(1.3) 



By convention, bo = 1 . 

An additional consequence applies to the a/s of the numerator on LHS. A local defini-

tion for diffs(i-m) is given. 

diffs(i-m) = ( li-mJ + (i-m) )/2. (Note that diffs(i-m) equals O if I ~ m.) 

There are n+ 1 simultaneous equations for ai to evaluate after solving for hie: 

i 

ai = L r1 b(i.J) , where (i = 0,1, ... ,n) . 
l=diffs(i-m) 

After evaluating the a/ s and bi's, we have the expression 

(1.4) 

(a0 +a1 ·x+a2 ·x2+ ... an ·xn) . h d 
----------- servmg as t e Pa e[n,m] approximant to some :function 

(l+b1 ·X+ ... bm •Xm) 

inFini 
f(x), expressible as f(x) = Z:r1 • x; . There is a successive array of Pade[N,M] ap-

i=o 

proximants (e.g. Pade[2,3], Pade[3,3], Pade[3,4], Pade[4,4], etc.), where N and Mare 

arbitrarily large non-negative integers. From the successful results of full Pade[N,M] 

predictions for hundreds of diverse series and from the guaranteed results of functions 

5 

which generate a Stieltjes series [3], it is known that Pade[n,n+l] and Pade[n,n] give best 

approximation values to most of the interesting choices off(x). One deep implication of 

this is that this sequence {Pade[ n,n ], Pade[ n,n+ 1]} gives approximations which approach 

the correct value and functional form of any member of the family of functions ofx <3> as 

n sequentially approaches infinity. fun(x) represents all of those family members which 

are continuous functions ofx which are possible to approximate as these rational poly-

nomials. There might exist some functions ofx (or other parameter) which are noteffec-

tively expressed as Pade approximants. It is mathematically true however, that those 



"' 
functions expressible as :~::>i · x; , where the limit rj approaches some KN (K:A! 1s a 

i=O 

geometric series) or Kl (n is an integer), have a special characteristic which identifies 

fun(x). As n gets very large, Pade[n,n] and Pade[n,n+l] are guaranteed to converge to 

the same function with the same value as fun(x). 

In order to illustrate the effectiveness of the rational fraction, the example of 

Pade[2,2] of ln(l +x) is considered. Let 

f(x) = ln(l + x) = x-x2/2 +x3/3 -x4/4 + ..• (1.5) 

The partial sum is considered up to the fourth order. Exactly as done with equation 

Matching powers ofx, we obtain the following example of equations (1.3) and (1.4): 

1/3 -bi/2 + bi = 0 . 

ao = 0. a1 = 1. 

-1/4 +bi/3 - hi/2 = 0. (1.6) 

(1.7) 

x+x2 

Thea/sand bi's are determined. Then, Pade[2,2] = 2 • Consider the fol-
1 + x + x /6 

lowing comparison to the partial sum ( x -x2/2 +x3/3 -x4/4 ).3 

Observe Figure 1.1 ). 

3 x is the name assigned to the one significant parameter used to generate the series. 

6 
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Figure 1.1) Comparison of Jn(l +x), Pade[2,2], 
and the Partial Sum. 

It is clear from figure 1, that the Pade approximant is much closer to the actual Jn( I +x) 

than ( x-x2/2 +x3/3 -x4/4) is. There are innumerable other examples of infinite series 

where the Pade approximants show this excellent improvement of the numerical values. 

It would be illustrativeto show the general formulas ofPade[l,l], Pade[l,2], and 

inFini 

Pade[2,2] for the series L'i * xi • 

i=O 

Rd - _ rl rO+(-rOr2+rl 2)x 
ae[l,1]- rl-r2x 

Pade = r02 r2-rOrl 2 +(2rlrOr2-rl 3 -r3r02)x 

[ 1, 2] (r3 rl - r2 2) x 2 + (-r3 rO + r2 rl) x + rO r2 - rl 2 

numerat 
Pade[ 2,2] = -

denom 

(1.9) 

(1.10) 

(1.11) 
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2 2 2 numerat = ro r3 r1 - ro r2 + x·r3 r1 - x·r1 r2 - x·ro r1 r4 + 
2 _ _2 2 2 2 _ _2 2 2 3 x·ro r2 r3 + x ·r4 ro r2 - x ·r4 r1 + ·x ·r2 r3 r1 - x ·r3 ro + x ·r2 

(1.12) 

There are more solutions available, including Pade[3,3]. In consideration of ex-

peditious use of space, these other general results are posted in appendix A. 

On many occasions it is desirable to predict the value of the next term of an infi-

nite series which hitherto is known only to the order of n+m. This can be done by adding 

in to the right hand side of equation (2) the additional term of r(m+n+i,x<m+n+I). Then mul-

tiplythe right hand side and the LHS by (1 +b1 · x +bi· x2 + .. bm · xm). We end up with 

a Pade appro:ximant prediction (PAP) of what r(n+m+l) should equal: 

r(n+m+l) ::::; - ( b1 .r(n+m) + bi -f(n+m-1) + b3 .r(n+m-2) + ... bm.r(n+l)), (1.13) 

There are various examples, for instance in electrodynamics, where it is desirable to get 

an estimate of the term of order (n+m+ 1) since calculating the next term exactly becomes 

extremelytime-consunring. 

Let us now continue discussing the material towards which this dissertation is tar-

geted. At the end of this introduction, an overview will be given of the contents of the 

three areas of discourse towards which the progression of chapters of this dissertation are 

directed. These three areas were introduced in the beginning of the text. First in the 

following chapters, integral equations will be discussed. Second, ordinary quantum me-

chanical perturbation theory will be discussed. And third, QCD and inclusively the strong 

coupling constant in high energy physics will be studied. 

The integral equations discussed include the linear Fredholm integral equations of 

the second kind, nonlinear quasi-Fredholm integral equations, and the nonlinear H-
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function integral equation. Linear Fredhohn integral equations have a well developed 

formal solution. However, there are specific cases in which the formal solution is devas

tated by catastrophic singularities. Generating an infinite series for the solution and taking 

a sequence of diagonal Pade approximants (Pade[n,n]) bear convergent numerical pre

dictions which often avoid this catastrophe. 

The nonlinear H-function integral equation is a partial simplification of the radia

tive transfer diffusion equation which is explained in the text by Chandrasekhar. [ 4] The 

insights involved in solving such an equation will be useful in diffusive scattering studies 

of radiation penetrating through biological materials. 

The second area of discourse, spectrum related calculations, will be covered in 

Chapter 6. In Chapter 6, it will be explicitly shown how it is possible to go to higher or

der perturbation theory with the basic tools published and taught by Merzbacher and 

Liboff [ 5 .a Jin non-relativistic quantum mechanics. A second way to do higher order 

perturbation theory will also be demonstrated which is simpler than ordinary perturbation 

theory (the Raleigh Schrodinger procedure) but which involves an input of iterative sub

stitutions for the energy shifts· within the essential perturbative summation calculation 

machinery. The first and immediately important results desired are the corrected energy 

spectra. Moreover, the corrected eigenstates can be estimated in a functional form. 

The issue of why the methods utilizing matrix formalism (e.g. diagonalizing a 60 

by 60 Hamiltonian matrix) are not the superior method for calculating spectra of particles 

in all nomelativistic binding systems will also be addressed in Chapter 6. In brief, these 
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matrix formalism techniques are completely numerical. The scaling parameter of the 

perturbation term has to be set numerically, eliminating any opportunities for concisely 

constructing a symbolic approximation of the eigenvalues as a function of the adjustable 

perturbation parameter. There is a true advantage in having a symbolic expression which 

approximates the new energy levels to high precision. Constructing a perturbation series 

which is explicitly dependent on the symbolic perturbation scale makes it possible to gain 

such an advantage. 

In the discussion of using perturbation theory to make predictions, there is always 

the danger that the perturbation term of the Hamiltonian is too large for a meaningful 

convergent prediction of the new physical solutions. Pade approximants can be used to 

salvage the series to get a meaningful prediction of the new physical solution. These par

tial fractions can be used even when the magnitude of perturbation has significantly ex

ceeded the scale limit of perturbations bearing finite behavior. 

After evaluating one or more ·of the new corrected energy levels of the energeti

cally perturbed particle, it is relatively easy to find the corrected eigenstate of this particle 

described by the new Hamiltonian ( or Lagrangian). The second mentioned method for 

· doing higher order perturbation theory provides the mathematical mechanism for generat

ing the corrected eigenstate.[5.b] The unperturbed eigenstates are written here as u°n, 

where n stands for the n-th energy level. The corrected eigenstate is written as Un. The 

way to find Um is: 
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(1.14) 

The development of this solution can be recognized from treating the perturbation term 

as the inhomogeneous term in a linear differential equation and the unperturbed Hamilto-

nian with the state ( or Lagrangian with field) minus the corrected eigenvalue with the 

state (or Lagrangian with field) as the main open1tor from which the essential Green's 

function is built. By using the Green's function and the homogeneous term, the corrected 

eigenstates Un are built up. If the convergence of the right hand side of equation (1.14) is 

in jeopardy, then it is extremely convenient to take the Pade[n,m] approxnnant of the 

perturbation series. In most instances the best result occurs when m equals n or n+ 1. 

n plus m should equal the order of the perturbation scale parameter of the largest order 

available term in equation (1.14). There is an example in the appendix (See appendix B. 

See newstat3 .ms ) in which a quartic harmonic oscillator is studied. In brie±: the potential 

V-x 4 is added to the Hamiltonian of a harmonic oscillator. The graphical results of the 

correction of the ground state of the energetic system ( (-d2/cb<+ 2·x2) + V·x4 )'¥ are 

displayed in figures (2) and (3); These results for the corrected ground eigenstate are 

very reasonable. Over all, they are modestly successful. The point of this is that it is no 

more difficult in terms of writing and executing software to calculate these corrections to 

the eigenstate than it is to find the eigen-energy of that state. This could serve as a tool 

to qualitatively inspect the change in the spatial form of the eigenstate as the magnitude 

of the perturbing term is increased without spending much CPU time to create the new 

eigenstates. 
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. 
Legend 

1/(n''•)'e( -x2• I/2) -e-+-r>-

Partial Sum 
If l f J t f 

(order 5) 
Pade[2,2] -
Pade[l,l] - ~ 

Partial Sum 
(order4) 

. 

2 

Figure 1.2) Comparison of the harmonic oscillator's ground state 
(spatial form of l/(1e4)'exp(- x2·1/2)) to the fourth order series expres
sion of the corrected ground state and the actually expected wave form 
of the corrected ground state. -

Legend 

Amp·e(-.597-x2) ~ 
Pade[2,2] -
Numerically Pre
dicted Corrected 
Ground State -0--0--0 

Figure 1.3) Comparison of amp · exp(-x2·.597) to the numerically 
predicted corrected ground state and to the Pade[2,2] prediction for 
the ground state, which has the form 1/(n4)'exp(- x2 • 112). ('amp' is an 
adjustable quantity.) 
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A Cause for Using Pade Approximant Predictions in QCD. 

The area of field theory which includes Quantum Chromodynamics and Quantum 

Electrodynamics shall be covered in Chapter 7. Any perturbative series in quantum chro

modynamics is very difficult to work with in the sense that a large or medium numerical 

value for as would result in a critically divergent series. Furthermore, it is not known 

precisely just how large as can be in order to generate a partial sum in a convergent form 

out to seventh or eighth order of the infinite series. Asymptotic formulas are understood 

for as of QCD. But, this is only a limited form of aid. P AP's can be helpful in providing. 

a reasonable estimate of the value of the next term in a QCD. This is useful for calculat

ing a higher precision estimate of a perturbative QCD partial sum out to one order higher 

than has been done presently by analytical means. As was initially announced, the QCD 

beta :function will be given special attention. 

Summary . 

. This completes the overview of the contents of the three areas of discourse of this 

work. In terms of operation overhead, it is of significance that a mere pentium 120 with 

only 24 megabytes of RAM was used for the tedious numerical calculations as well as for 

the involved symbolic information processing. These conventionally tedious numerical 

calculations and the involved symbolic processing are discussed in Chapters 2 through 6. 

No more than twenty minutes of CPU time were required to solve as reliable approxima

tion the H-:fu.nction equation for radiative scattering in chapter 3. No more than seven 

minutes of CPU time were required for the quantum mechanical calculations involving 



fifth order perturbation theory in chapter 6. Indeed, the computations done here in are 

not exhaustive of computer operation power or of CPU time. 

14 
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Chapter2 

Linear Fredholm Integral Equations 

Mathematical Justification of the Fredholm Series 

In this chapter Fredholm integral equations of the second kind will be studied and 

solved in application to various examples. The linear Fredholm integral equation ofthe 

second kind can be expressed as follows: 

. b . 

ftx) = g(x) +l· JG(x,yf f(y) ·dy (2.1) 
a 

The objective is to solve equation (2.1) for ftx). G(x,y) is the kernel of this linear integral 

equation. There is an available formal solution for ftx), which is known as the Fredholm 

solution [6.a]. Although this solution is formally correct, the calculations involved in gen-

erating a particular Fredholm solution as one particular :function ofx and lambda are very 

lengthy and rather tedious. In this chapter, the effectiveness of using Pade approximants 

to solve the Fredholm integral equations will be demonstrated. Furthermore, the smaller 

required computation time. of Pade approximants and the smaller amount of difficulty of 

calculating Pade approximants will be contrasted with the tediousness and occasional 

technical difficulties of carrying out the formalism required to generate the particular 

Fredholm solution for particular equations. 

If'). is small enough for many cases, equation (2.1) can be solved to sufficient pre-

cision by guessing a solution and placing this guess into the right hand side of (2.1 ). This 

results in an improved guess for the solution ftx). This type of iteration could be contin-

ued inde:pnitely, resulting in the infinite series Li ri(x)*')..i , where ').. is the expansion pa-
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rameter. The name of this is the Neumann series. Let us start the iteration with the initial 

guess of g(x) for ftx) (of equation (2.1 )). 

fO(x)= g(x) . 
b 

fl (x)= g(x) + A · f G(x,y) · g(y) · dy ] (2.2) 
a 

Next, r1(x) through rN(x) are symbolically expressed. 

b 

rl(x)= (fl(x)-fO(x)) /).. = J G(x,y) · g(y) · dy. (2.3) 
a 

b b 

f2(x)= g(x) + A ·( J G(x,y) · (g(y) · dy + A · J G(y,z) · g(z) · dz] · dy). 
a a 

b b 

r2(x)= (f2(x) -fl(x) )/().2) = J G(x,y) · J G(y,z) · g(z) · dz] · dy. (2.4) 
a a 

Clearly, rN(x) = ( fN(x) - ftN-11(x) )/().. N) , 
b . . b ' b b 

specifically: rN{x) = J dy1 J dy2 ... J dy(N-I) J dyN 
a a a a . 

. G(x,yl). G(yl,y2) ..... G(YN-2, YN-1)" G(YN-1, YN). g(yN), 

N 

and fN(x)= L q(x) · () .. ) i . 
lFo .. 

(2.5) 

The Neumann series bas just been formally demonstrated. 

It can be easily demonstrated that this Neumann series will accurately generate the 

r solution to the Fredholm equation ifl11 small enough. The question arises of whether a 

real solution to equation (2.1) exists for all real values of A.. There is one unusual condi-

tion where (2.1) very likely does not have a non-zero solution. It can be seen that when ).. 

b 

of the equation ftx) = g(x) +11: JG(x,y) · f(y) · dy equals an eigenvalue of the kernel op-
a 
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erator fG(x,y)dy, then this equation (2.1) very likely does not have a :finite solution in the 

case other than where g(x) equals 0. Eigenvalues and eigensolutions are discussed in 

various texts [6.b]. Such·eigenvalues, however are only a set of isolated points on the 

continuous spectrum of possible real values for 1. 

In order to find out whether there exist real solutions for (2.1) when 1 is large, a 

discussion ofa numerical technique is useful. We can change the expression 

b 

JG( x, u) · f (u) '. du into the discrete sum expressed as: 
a 

( r{i=O,k}G(x[n],z[i]) · y(z[i])) · (b-a)/k, where k is large. (2.6) 

Ask approaches infinity, expression (2.6) approaches equality to the RHS of (2.1). 

Moreover, the following equation, 

y(x[m]) = g(x[m]) + 1 · (r{i=O,k}G(x[m],z[i]) · y(z[i])) · (b-a)/k (2.7) 

approaches equivalence to the equation (2.1) as k approaches infinity. By taking into 

consideration equation (2. 7), it is completely reasonable to write out the next set simulta-

neous expressions of (2; 7). These simultaneous equations are to be used to find the solu-

tion for · y(x[O]), y(x[l]), ... ,y(x[k-1]),y(x[k]). 

(Note that k does not stand for solution function here.) 

y(x[k]) · = g(x[k] ) + 1· (r{i=O,k}G(x[k],z[i]) · y(z[i])) · D 
y(x[k-1]) = g(x[k-1]) + 1· (r{i=O,k}G(x[k-1],z[i]) · y(z[i])) · D 
y(x[k-2]) == g(x[k-2]) + 1· (L{i=O,k}G(x[k-2],z[i]) · y(z[i])) · D 

y(x[l]) = g(x[l]) + 1· (r{i=O,k}G(x[l],z[i]) · y(z[i})) · D 
y(x[O]) = g(x[O]) + 1· (r{i=O,k}G(x[O],z[i]) · y(z[il)) · D. 

Here, z[j] = x[j]. x[O]=a. x[k]=b. D= (b-a)/ k . 

(2.8) 



18 

The set of algebraic values [y(x[O]), y(x[l]), ... ,y(x[k-1]),y(x[k]) l taken together com

prise an estimate for the solution f(x) of (2.1 ). Going along with this discussion, as k ap

proaches infinity, y(x[q]) approaches f(x) of (2.1). Note: 0 ::; q ::; k. Equations (2.8) in 

principle can be solved mathematically by using Cramer's law. By considering the form of 

the solution using Cramer's law, it is clear that if all of the coefficients in equations (2.8) 

are real, then the solution of y(x[O]), y(x[l]), ... ,y(x[k-1]),y(x[k]) exists. Moreover, this 

solution then is real, given that xD] is real. This equation (2.8) will be reviewed later in 

. the discussion of the numerical methods for solving the Fredhohn equation. It has now 

been established that a real valued solution exists for the linear Fredhohn equation of the 

second kind when !Al is small as well as when !Al is large. Only for a very small isolated 

set of eigenvalues might a solution for f(x) not exist. 

It is good to know of the existence of a solution for the above equation even when 

A is large. Pade approximants are never able to generate accurate approximations of 

complex :functions represented by an infinite series given by solely real terms. This be

comes very apparent by reviewing equations (1.3) and (1.4) of Chapter 1 and the solutions 

of equations (1.3) and (1.4). An example of a real series which represents a complex 

:function is: 

(2.9) 

Ifx is less than 1, then log(l-x) is real. Or else, log(l-x) is complex. Pade approximants 

perpetually give real full value predictions. For example, we see that Pade[2,3]= 60.0, 

Pade[5,6]= -7.30667, and Pade[8,9]= -3.19488 when x=l.2 in log(l -x). The actual 

log(l-(1.2)) equals -1.6094379 + 3.1415927·i. Clearly, the Pade approximants come 
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nowhere close to the correct answer. However, it is clear that the Pade approximants do 

not converge to any definite functional value of 1.2 as n of Pade[ n,n+ 1] approaches plus 

infinity. Pade approximants fail here, and they indicate they are failing by refusing to con

verge to any one particular value. There are numerous other examples of real series which 

represent complex numbers as a function of large x. In all of these known examples, the 

Pade approximants openly advertise the non-applicability by refusing to converge to any 

one particular value for a given x. 

On the other hand, if lxl is less than 1 , then log(l-x) is real and the Pade ap

proximants give reliable, converging answers. Consider log(l-x) when x = -.8. The partial 

sum to order 4 equals -1.39307 when x = .8. Pade[2,2] and the actual log(l-x) equal 

-l.56422 and-1.60944 respectively. Pade[2,2] is much closer to the correct value than 

the partialsu.in oflog(l-x). In brief summary, Pade approximants converge to a definite 

real value for the series oflog(l-x) around O when lxl is less than 1, and Pade ap

proximants fail to converge to any definite numerical value when x is greater than 1, where 

log(l.:.x) is complex. 

It is transparent that the solution of the Fredholm integral equation of the second 

kind (where all parameters of the equation are real) must be real in order for Pade ap

proximants to be a legitimate approximation to this solution, The discussion of the simul

taneous equations (2.8) made it evident that the solutions of Fredholm integral equations 

exist and are real. The fact that integral equations are real and exist in the example of the 

previous paragraph very strongly suggest the following assertion: 
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Pade approximants of sequentially higher order will approach the correct solution 

of the Fredholm integral equation of the second kind. (Assertion #1) 

There are five conditions which should be met. If not all of these five conditions are met, 

then Assertion # 1 somewhat likely does not hold. Before going through this list, a defini-

tion for scaleable infinity is needed. A scaleable infinite kernel is a kernel G(x,y) which 

b 

1 results in the following two integrals being finite: flG(x,y)l·dy being less than Infinity and 
a 

b 

JG( x, y) · g(y) · dy is less than Infinity. Here is the list of five conditions required for As-
a 

sertion #1 one to hold: 

1.) The upper and lower limits of integration must be real. 

2.) It must be true that the upper and lower limits of integration are finite. 

3.) Either the kernel must remain finite within the range of upper and lower limits of in-

tegration, or the kernel must be a kernel of scaleable infinity. 

4.) The initial term g(y) of equation (2.1) must remain finite within the range of upper 

and lower limits of integration for y. 

b 

5.) In the RHS expressiong(x) +')..: f G(x,y) · f (y) ·try, A, a, b, g(x), and G(x,y) are 
a 

required to be real. g(x) and G(x,y) must be real when x and y are real. Pade ap-

proximants might function successfully in some examples where G(x,y) is complex, but 

not in all such examples. 
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i This list shall be called the five-fold statement. If some of the conditions of the five-fold 

statement are not met in a Fredholm equation, then this particular equation shall be de-

scribed for convenience as being a renegade Fredholm equation. 

If these five conditions are met, then it is almost guaranteed that Pade[ n,n+ 1] and 

Pade[n,n] will converge to the correct 'functional' solution of the Fredholm equation. 

There are boundless groups of examples where this five-fold statement is verified by fact. 

The author and others of professional acquaintance have not found any one example 

which contradicts the five-fold statement. In this chapter, five major examples will be 

given of integral equations. Pade approximants are completely successful in these exam-

ples. These five examples do fulfill the requirements of the five conditions. 

It is occasionally possible that Pade approximants can be applied to the Neumann 

series even if not all of the five conditions are met. As a warning, remember that it is easy 

to find various Neumann series which fail the five-fold statement and which also are un-

fruitful for Pade approximants. When Lambda is greater than 1/n in (2.10), the equation 

(2.10) does not have a real solution. 

00 1 . 
f(x) = 1/(1 +x·x) +1· J · 2 • f(y) · dy 

-(I+(x+y)) 
(2.10) 

As a matter of fact, the formal solution of (2.10) is L{n=l} n/(x2+n2) • (Lpt·l). It is obvi-

ous that this formal solution represents non-real values when Lambda is greater than 1/n. 

When Lambda· n = 11/10, there is no convergence to an answer with Pade approximants: 

Pade[2,3] = .943260; Pade[3,3] = -.969773; and Pade[3,4] = -.104308. (See polel.ma in 

dir linintg) This equation is a particular case of equation (2.1 ). Condition 2.) of the five-
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fold statement is not complied with, making this equation vulnerable to the lack of a real 

solution. The proof of existence of the real solution to the Fredholm integral equation 

does not apply to equation (2. l 0) because limits a and b of the discretely expressed equa-

tions (2.8) are required to be finite real numbers for equations (2.8) to be relevant to the 

discussion of the Riemann sum approximation of the integral. 

Sometimes though, these renegade examples which defy condition 2.) of Fredholm 

equations are successful. Consider the following case: 

1 1 CX) 1 .. 

f(x)= 2 ·(l+l/2·x2) + A.·l(l+y2)·(l+x2) ·f(y)·dy. (2.11) 

The solution to this example is f(x) = Y:z/(1+~ · x2) +.!. · 1t • A /(1 -n/2 ·A)· 1/(1 + x2), 
2 

even if A is larger than the radius of convergence. On a rather random basis, one sees that 

renegade Fredholm equations sometimes bear real valued functions and at other times 

complex functions as solutions. On the other hand, there are many examples such as the 

case of (2.10) and the example In( 1 + x) where Pade approximants will not work, espe-

cially if A is large. . 

In this section only the Fredholm equations which follow the five-fold statement 

will be discussed. Equations which follow the five-fold statement shall be freely called by 

adjective "adherent" in the rest of this thesis. Likewise, the compiled results in the end of 

this chapter come solely from equations complying to the five-fold statement. We remem-

CX) 

her that f(x) can be expressed formally as the Neumann series L q(x) · ('A.l . lri(x)I 
i=O 

does happen to have an upper bound. Remember that rN(x) equals: 
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b b b b 

J dy1 J dy2 ... J dy(N-1) J dyN G(x,yl) ·G(yl,y2) · ... · G(YN-2,,YN-1) • G(yN-1,YN) ·g(yN). 
a a a a 

An upper bound to this quantity is: 

ll)(x)I ~ (Max{G(x,y),x,y} Y · Max{g(y),y} · (b-aY. (2.12) 

If there is a weak infinity, then the inequalities of (2.13) apply: 

Break G(x,y) into two functions. G(x,y) = H(x,y) · R(x,y) . H(x,y) is finite. 

R(x,y) is of scaleable infinity. 

lrj(x)I ~ (Max{H(x,y),x,y} Y · Max{g(y),y} · (b-aY · llnt[R(x,y),{y,a,b}] I 

so long as R(x,y) * 0 anywhere in {a,b}. 

jrj(x)l ~ (Max{H(x,y),x,y} Y ·Max{g(y),y} · (b-aY · Int[IR(x,y)l,{y,a,b}] 

ifR(x,y) = 0 somewhere in {a,b}. (2.13) 

Furthermore, it is clear that it is very unlikely for rj(x) to suddenly turn into zero. rj(x) 

does notever turn into zero ifG(x,y) does not change sign in y,{a .. b} and if g(y) does not 

change sign in y,{a .. b}. A lower bound for rj(x) is: 

jrj(x)I ~ Min{G(x,y),x,y}j · Min{g(y),y} · (b-aY (2.14) 

Inequalities (2.12), (2.13), and (2i 14), imply that adherent Neumann series tend to asymp-

totically either evolve into a geometric series or into something very similar to a geometric 

series such as (geometric series· (Ninteg~r +constant)). If G(x,y) and g(y) are positive 

definite (including the possibility that G(x,y) is of scaleable infinity), then it is inevitable 

that the given adherent Neumann series evolve into a geometric series or into something 

very similar to a geometric series such as (geometric series· (Ninteger + constant)). Geo-
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metric series are very well known. Let us suppose that rj(x) of the Neumann series is ex

pressible as (Cl(x) · alj +C2(x) · a2j + ... Cm(x) · ani ), where m:#infinity. Regardless of 

the magnitude of the Lambda, the Neumann series of last statement represents the function 

Cl(x)/(1 + al · A.)+ C2(x)/(1 + a2 · A-)+ ... + Cm(x)/(1 +am· A-). Naturally, Neumann 

, series that are very similar to a geometric series will have: solutions that have a structural 

form which is very similar toCl(x)/(1 +al · A)+ C2(x)/(1 + a2 ·A)+ etc., at least when 

Lambda is within the radius of convergence. Therefore, if G(x,y) and g(y) of an adherent 

series do not change sign with respect toy in the range {a .. b}, then it only makes sense 

that the solution can be approximated by partial fractions with ever increasing success. 

Truly, the Neumann series whose rj(x) equals 

(Cl(x) · alj + C2(x) · a2j + ... Cm(x) · ani) 

is exactly solvable with the Pade approximants Pade[m-1,m] andPade[m,m] and 

Pade[m,m+ 1] and Pade[m+ l,m+ 1] and so forth. The coefficients r;(x) represent exactly 

the correct function which the complete summation of the above.Neumann series equals 

when A. is small. See the reference Phys. Rev. E [7], which gives the formal foundation of 

the complete success of reproducing and additive combination of plural geometric series 

with Pade approximants. 

Let us also consider the case ofrj(x)= (Cl(x) · alj + C2(x) · j · alj + C3(x) · fa .. ). 

When the coefficients equal (Cl(x) · alj + C2(x) · j · alj + C3(x) · j2 · a ... ), the function 

represented by this series is also possible to find exactly by taking Pade approximants of 

the series. For a certain large but finite M, the expressions Pade[M,M+l] and 

Pade[M+l,M+l] and Pade[M+l,M+2] and so forth will evauluate perfectly the f(x) repre-
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sented by the series. The reason for this is a very direct implication of the discussion of 

geometric series provided in the Phys. Rev. E reference [7]. 

Presentation of Results. 

Now that Pade approximants have been demonstrated as being a very strong can-

didate for finding the solutions of Fredholm integral equations which adhere to the five-

fold statement, it is time to show various examples of integral equations, the Neumann 

series of these Fredholm equations, and the Pade approximants for the solutions of these 

integral equations. In the rest of the second chapter, five particular Fredholm examples 

will be studied. Immediately below, is given the subsequent kernels of these five integral 

equations. 

Gl(x,y) = (x · y)2. 

G2(x,y) = (x · y)2 + (x · y)4. 

G3(x,y) = (x · y)/(1 + (x +y)/2). 

G4(x,y)= (x · y) · (1 + (x+y)/4l·. 

G5(x,y) = Ei( I x -y I ). 

Tables 1.) through 3.) show the results of various approaches to solving the equa-

I 

tion f(x) = x + '),: J (x · y)2 f (y) · dy . Our G(x,y) equals (x · y)2 here. When G(x,y) equals 
0 

Gl(x,y), 'functio[x,lam]', the closed form solution for ftx) is x + x2·5/2·11,/(5- 2) . 
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Table 2.1) 

Results ofG(x,y) = (x · y)2. 

X A PT[4] Pade[l,2J Pade[2,l] Pade[2,2] functio[ x,lam] 

0.2 0.1 .2010204 0.20100503 0.201020408 0.201020408 0.201020408 

0.2 0.3 .2031908 0.20304569 0.203191489 0.203191489 0.203191489 

0.2 0.5 0.20555 0.20512821 0.205555556 0.205555556 0.205555556 

0.2 0.7 0.2081172 0.20725389 0.208139535 0.208139535 0.208139535 

0.2 0.9 .2109116 0.20942408 0.210975610 0.210975610 0.210975610 

0.2 1.1 0.2139524 0.21164021 0.214102564 0.214102564 0.214102564 

0.2 2 0.2312 0.22222222 0.233333333 0.233333333 0.233333333 

0.2 6 0.4184 0.28571429 -0.1 -0.1 -0.10000 

0.2 12 1.2992 0.5 0.114285714 0.114285714 0.114285714 

Table 2.2) 

Results of Gl(x,y) = (x · y)2. 

X A PT[4] Pade[0,1] Pade[l,1] Pade[l,2] functio[x,lam J 
0.8 0.1 0.816326 0.81632654 0.816326531 0.816326531 0.816326531 

0.8 0.3 0.851053 0.85106384 0.851063830 0.851063830 0.851063830 

0.8 0.5 0.8888 0.88888889 0.888888889 0.888888889 0.888888889 

0.8 0.7 0.929875 0.93023257 0.930232558 0.930232558 0.9302325581 

0.8 0.9 0.974585 0.97560977 0.975609756 0.975609756 0.975609756 

0.8 1.1 1.023238 1.02564104 l.025641026 l.025641026 1.025641026 

0.8 2 1.2992 1.33333334 1.333333333 1.333333333 1.333333333 
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0.8 6 4.2944 -4.0000001 -4. -4. -4. 

0.8 8 7.4048 -1.3333335 -1.33333333 -1.33333333 -1.33333333 

0.8 12 18.3872. -0.5714287 -0.57142857 -0.57142857 -0.57142857 

Table 2.3) 

· Results ofGl(x,y) = (x · y)2. 

X /\, . PT[4] Pade[0,1] Pade[l,l] Pade[l,2] functio[ x,lam] 

2. -0.1 2.10204 2.10526316 2.102040816 2.102040816 2.102040816 

2. 0.3 2.31908 2.35294118 2.319148936 2.319148936 2.319148936 

2. 0.5 2.555 2.66666667 2.555555556 2.555555556 2.555555556 

2. 0.7 2.81172 ·3.07692308 2.81395349 2.81395349 2.81395349 

2. 0.9 3.09116 3.63636364 3.09756098 3.09756098 3.09756098 

2. 0.1 3.39524 4.44444444 3.41025641 3.41025641 3.41025641 

2. 2 5.12 101.010 5.333333333 5.333333333 5.333333333 
.·· 

2. 6 23.84 -1. -28. -28. -28. 

2. 8 43.28 -0.6666667 ·. -11.333333 -11.333333 -11.333333 

2. 12 .111.92 ,;.Q.4 -6~5714286 -6.5714286 -6.5714286 

Tables 2.4) through 2.6) show the results of various approaches to solving the 

1 . 

equation f(x)= x+l· j((x·y)2 +(x·y)4)xf(y)·dy. OurG(x,y)equalsG2(x,y), which 
0 
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equals (x · y)2 + (x · y)4 here. When G(x,y) equals G2(x,y), ':functio[x,lam]', the closed 

form solution for f(x) is x + B{l}(l)·x2 + B{2}(l)·x4. B{i}(A) equals (l·d{i} +l2·p{i})/( a{i} 

Table 2.4) 

Results of G(x,y) = (x · y)2 + (x : y)4 . 

X A. PT[4], Pade[l,2] Pade[2,1] Pade[2,2] functio[ x,lam] 
0.2 0.1 0.20105801 0.2010580143 0.2010580142 0.2010580143 0.2010580143 

0.2 0.3 0.20338084 0.2033810707 0.2033810702 0.2033810718 0.2033810718 

0.2 0.5 0.20602666 0.2060298342 0.2060298298 0.2060298443 0.2060298443 

0.2 0.7 0.20906169 0.209080091 0.2090800711 0.2090801362 0.2090801362 

0.2 0.9 0.212563 0.2126331202 0.2126330562 0.2126332654 0.2126332654 

0.2 1.1 0.21661852 0.2168273967 0.2168272265 0.2168277837 0.2168277837 

0.2 2 0.24463071 0.2517068237 0.251701417 0.2517191991 0.2517191991 

0.2 6 0.93779474 0.1298624528 0.1297650737 0.1300903226 0.1300903226 

Table 2.5) 

Results of G(x,y) = (x · y)2 + (x · y)4 

X A. PT[4] Pade[l,2] Pade[2,l] Pade[2,2] functio[ x,lam] 

0.8 0.1 0.82354303 0;823543046 0.823543045 0.823543045 0.823543045 

0.8 0.3 0.87535527 · 0.875360552 0.875360544 0.875360547 0.875360547 

0.8 0;5 0.93454966 0.934622478 0.934622405 0.934622437 0.934622437 

0.8 0.7 1.0026402 1.003062157 1.003061831 1.003061975 1.003061975 

0.8 0.9 1.0813891 1.082996378 1.082995328 · 1.082995791 1.082995791 

0.8 1.l 1.1728071 1.177593433 1.177590631 1.177591864 1.177591864 

0.8 2 1.8073649 1.969494306 1.969404224 1.969443581 · 1.969443581 
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0.8 6 17.629385 -0.83783352 -0.83953130 -0.83881290 -0.83881290 

0.8 6 184.27079 -0.21517544 -0.21807626 -0.21691315 -0.21691315 

Table 2.6) 

More results of G(x,y) = (xy)2 + (xy)4 

X A. PT[ 4] Pade[l,2] Pade[2,1] Pade[2,2] :functio[x,lam J 
2.0 0.1 2.3786623 2.378662623 2.378662643 2.378662635 2.378662635 

2.0 0.3 3.2151339 3.215221196 3.215223119 3.215222349 3.215222349 

2.0 0.5 4.175243 4.176452426 4.176469535 4.176462695 4.176462695 

2.0 0.7 5.2843612 5.291384196 5.291460749 5.291430193 5.291430193 

2.0 0.9 6.5720219 6.598799388 6.59904599 6.598947726 6.598947726 

2.0 1.1 8.0719208 8.151709253 8.152367254 8.152105495 8.152105495 

2.0 2 18.560607 21.26398424 · 21.2851619 21.276796 21.2767962 

2.0 6 283.04706 -26.7017264 -26.2993680 -26.451613 -26.451613 

2.0 9 1099.2202 -19.3586745 -18.8739908 -19.0518519 -19.0518519 

2.0 12 3074.638 -17.5413438 -16.8463607 -17.093010 -17.093010 

Next, tables are given of the f(x) solutions where G(x,y) is set as G3(x,y) and then 

as G4(x,y). 

G3(x,y) = (x · y)/(1 + (x + y)/2). 

G4(x,y) = (x · y) · (1 + (x+y)/4)%. 

The fourth column of Tables 2. 7) through 2.8) is labeled as 'Fredholm Solu'. The values 

of the fourth column were obtained by using a formal Fredholm integral equation solution 
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as given in the text by Mathews and Walker [6.b]. Truncating the numerator and denomi-

nator components was inevitable. 

Table 2.7) 

Results when this kernel is G(x,y) = x · y/(1 + (x+y)/2) 

X La Pade[3,3] Fredholm Solu. Pade[3,4] Pade[4,3]. Partl. Sum(7th) 

2 .2 209444959 .209447337 .209444959 .209444959 .209444959 

2 .6 230801551 .230824825 .230801551 .230801551 .230801478 

2 .8 242937544 .242980808 .242937544 .242937544 .242936972 

2 1.0 256230540 .256301372 .256230540 .256230540 .256227687 

2 1.5 295756953 .295937944 .295756953 .295756953 .295701612 

2 t2.0 347648840 .348021053 .347648840 .347648840 .347169427 

2 t2.5 418781733 .419471364 .418781733 .418781733 .416072018 

2 B.O ~522288136 .523507587 .522288136 .522288136 .510369763 

2 3.5 ~686771350 .688920771 .686771349 .686771349 .641382308 

2 4.0 988597736 .992578504 .988597736 .988597736 .824763068 

2 4.5 l.723037450 l.731688626 l.723037450 l.723037450 l.081608474 · 

2 4.95 t9190256 4.9485086 4.9190256 4.9190256 1.398385 

2 5.25 -23.51430444 -23.67199915 -23,.5143047 -23.5143047 1.66756407 

2 5.45 4.901950234 -4.937097054 -4.901950245 -4.90195025 1.87799188 

2 5.7 ~2.480207897 -2.499516114 -2.480207901 -2.48020790 2.18117346 

2 ~ .. 1.566373370 -1.579769179 -1.566373372 -1.56637337 2.61260900 

2 ii .717464252 -.725586120 -.717464253 -.717464253 4.75525166 



31 

2 S.197 1713.845 1722.8284 1713.8438 1713.8437 1.6161504 

2 S.198 .. 4325.64762 -4368.55155 -4325.65459 -4325.65470 1.6171044 

Table 2.8) 

Results when the kernel is: G4(x,y) = (x · y) · (1 + (x+y)/4i1k> 

X Lia Padef3,3l Fredholm Solu. Padef3,41 Pade[4,3] Pt. Sum(7) 
.2 .1 .207431617 .207431369 .207431617 .207431617 .207431617 
.2 .3 :224154144 .224151730 · .224154144 .. .224154144 .224154139 
.2 .5 ;243919600 .243912286 . :243919600 .243919600 .243919271 
.2 .8 .281377248 .281355562 .281377248 .281377248 .281360858 
.2 1.2 .354655293 .354593465 .354655293 .354655293 .354123100 
.2 1.8 .586942002 .586709853 .586942002 .586942002 .564191676 
.2 2.2 1.052608132 1.051982257 l.052608132 1.05260813 .848367842 
.2 2.58 4.413194958 4.409538238 4.413194958 4.41319496 1.33439330 
.2 i64 8.952364069 8.944505104 8.952364069 8.95236407 1.43985646 
.2 2.67 18.45412287 18.43716605 18.45412287 18.4541229 1.49623399 
.2 2.68 28:56573659 28.53865773 28.56573660 28.5657366 1.51559240 
.2 2.69 63.20939388 63.14420356 63.20939388 63.2093939 1.53524040 
.2 2.694 122.7838494 122.6407043 122.7838494 122~783849 1.54318160 
.2. 2.70 -296.631043 . -296.559456 -296.631043 -296,631042 1.55518207 
.2 2.75 ~I0.0597911 -10.0506349 -10.0597911 . -10.0597911 1.65944106 
.2 2.8 -5.11332430 -5.10843595 "'.5.11332430 -5.11332430 1.77167973 
.2 2.9 -2.57549830 -2.57283689 -2.57549830 -2.57549830 2.02238932 
.2 3.0 -1.71970859 -1. 71780031 -1.71970859 -1.71970859 2.31224235 
.2 3.5 -.642941483 -;641961379 -.642941483 :...642941483 4.56544993 
.2 4.0 .:..393339633 -.392550771 -.393339633 -.393339633 8.94246821 

It is significant to note that the Fredholm formal solution is useless in finding the 

solution to the Fredholm integral equation in which (Ei lx-yl ) serves as the kernel G(x,y). 

The reason is that G{x,x) equals infinity. The numerator and denominator of the Fredholm 
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solution both become a collection of infinities [ 6]. Due to this failure, there is no Fredho1m 

solution column in Table 2.9) and in Table 2.10). 

Table 2.9) 

Resuhs when G(~y) is Ei( I x-y I ) 

X Lam Seria< ord5) .. · Padef2,3l · Padef3,2] Padef2,2l 
.2 -2.09 18.340754525 2.318179190 2.318096492 2.362954069 
. 2 -1.99 15.603592781 1.990174197 ·. 1.990108969 . 2.027162828 
.2 -1.89 13.270037379 1.667131299 1.667071716 1.699048643 
.2 -1.79 11.291168861 1.320900088 1.320853858 1.349914408 
.2. -1.69 9.622323568 · .908506593 .908463983 .936774927 
.2 -1.59 8.222895481 .344757396 .344713982 .375308207 
. 2 -1.49 7.056138076 . -.593341676 -.593394444 · -.553816537 
.2 -:-1.39 6.088966172 .:2.795127212 -2.795222310 -2.719113628 
.2 -1.34 . 5.670838047 .;.5.836192323 -5.836379393 . -5.681921379 
.2 -1.315 5.476621127 -9.344593075 -9.344930402 -9.062801227 
.2 -1.29 5.291757775 -18.3743()3249 .· -18.375240542 · -17:58790727 
.2 -1.275 5.185165431 -36.822684621 -36.825798158 -34.25628334 
.2 -1.24 4.948531221 37.017542031 37.015481719 38.991500002 
.2 -1.19 4.638155932 11.381135887 11.381025580 11.486444978 
.2 -1.09 4.104870577 5.723787227 5.723777550 5.733771458 
.2 -.990 3.671480382 4.242134286 4.242132350 4.244326319 
.2 -.790 3.035854927 3.120396382 3.120396246 3.120589255 
.2 -.490 2.464054761 2.466993833 2.466993831 2.466998947 
.2 -:290 2.230310578 2.230410886 · 2.230410886 2.230411087 
.2 -9e-5 2.061735303 2.061735377 2.061735377 2.061735378 
.2 .110 . 1.933325456 l.933325667 1.933325667 1.933325667 
.2 .310 1.831102714 l.831195307 1.831195307 1.831195235 
.2 .510 1. 745773071 1.747402105. 1. 747402105 1.747401498 
.2 .710 1.666385998 1.677045227 1.677045226 · 1.677042930 
.2 .910 1.573993598 1.616905440 1.616905435 1.616899540 
;2 1.11 1.435309769 l.564762978 1.564762966 l.564750881 

For Table 2.10) let G(~y) equal Ei ( lx-yl ). x equals .6 here. 
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Table 2.10) 

Results when G(x,y) = Ei ( I x-y I ) 

X Lam Seria( ord5 ) . P~ef2,3l Pade[3,2] Padef2,21 
.6 -1.69 19.996901720 -3.795400749 -3.798071519 -4.439191961 
.6 -1.59 16.505757149 -4.978610463 -4.981205278 -5.586034634 · 
.6 -1.49 13.616222660 -7.238984701 ":"7.242017914 -7.949226574 
.6 -1.39 11.241556142 ~ 13.032371071 -13.037682151 -14.31596451 
.6 -1.34 10.222705503 -21.361524975 -21.371912448 -23.97630833 
.6 -1.315 9.751427961 ... 31.166218472 -31.185035552 -36.10655325 
.6 -1.29 9.304157181 -57 .064642506 ~57.118239797 -72. 70931766 
6. -1.275 9.046888766 -112. 756737525 -112.94643477 -184.1894497 
.6 -1.24 8.477553364 .90.246348097 90.150410'162 72.197437162 
.6 -1.19 7.735041962 25.665805931 25.660283629 24.398926316 
.6 -1.09 6.473318181 10.815080174 10.814598385 10.692874199 
.6 -.990 5.465659950 6.998405796 6~998311081 6.972371474 
.6 -.790 4.033918126 4.261025220 4.261018778 4.258885608 
.6 -.490 2.835433636 2.843321011 2.843320909 2.843268990 
.6 -.290 2.392868412 2.393137398 2.393137396 2.393135448 

. I ·.6 -.009 2.100497580 2.100497780 2.100497780 2.100497776 
I .6 .1100 1.895674823 1.895675390 1.895675390 1.895675395 

.6 .3100 l.744400324 1.744648142 1.744648141 l.744648771 

.6 .5100 1.624517830 1.628875488 1.628875477 1.628880659 
;6 .7100 1.508911711 1.537411391 1.537411331 1.537430494 
.6 .9100 1.348704017 1.463387760 1.463387565 · 1.463435807 
.6 1.110 . 1.056451538 1.402283414 1.402282933 l.402380088 

For the above Fredholm equation where G(x,y)= Ei( lx~yl ), more than one numeri-

cal test was done on properly functioning numerical. source code in the Maple programs · 

mistaky6.ms and chek6rhs.ms. A text book entitled Integral Equations [7.b] discusses this 

particular integral equation. 
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Chapter3 

The Radiative Transfer Equation and the H-function 

Mathematical Introduction, Showing Recursive Relation 

In this chapter, radiative scattering off of a semi-infinite, plane-parallel, isotropi-

cally scattering material medium for the transmission of light shall be considered for the 

most significant application of extracting solutions to integral equations in this disserta-

tion. Much of the material discussed here is also covered in publication [8]. The intensity 

of diffusively scattered electromagnetic radiation is expressed as I( t ,cos( cl>)). The integro-

differential equation which describes this diffusively scattered penetration was developed 

by Chandrasekhar in [9.a]. In the work discussed here, only the example of a isotropically 

. scattering material medium was considered. 

The differentio-integral equation which expresses the change in intensity with re-

spect to depth of penetration in the material medium is: 

1 
dl(ta u) w J . u· ' = I(ta,u) + -· l(ta,u') ·du' +dampedAmp·eta1u0 • 

. dta 2 .:.1 . · . 

(3.1) 

Already this equation has been selected for modification for the isotropic condition. By the 

use of the conversion factor H(u)and Fon equation (1-3), we indirectly end up with the 

integral equation: H(u) = 1 +1/2·ro·H(u}j_1 _.H(u')·du' . 
o(u+u') 

(3.2) 

H(u) is related to 1(0,u,Uo) as: 1(0,u,uo)= 1/4 ·ro·F · uJ(u+Uo) · H(u)·H(uo). See reference 

. [9.b]. Uo is cos(phi) of the incoming plane wave. In equations (3.1) and (3.2), u is equiva-

lent to cos( cl>) ,and ta is related to penetration depth through a direct proportionality. The 
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more creative and mathematically inclined reader might move to linearly transform (3 .1) 

into a linear Fredholm integral equation of the second kind. However, if this person 

chooses a good transforming function, the Fredholm equation to solve will involve a for-

midably difficult singularity within the kernel. This is a much more detrimental situation 

than the one imposed by a 'scaleable infinity' from chapter 2. 

A solution to the H-function is proposed to be in the form of the following partial· 

sum: H{n}(x,W2) = gO[x] +W2·gl[x] +(W2)2-g2[x] + ... + (Wzt·g{n}[x], · 

where W2= ro/2. (3.2f) 

The RHS of (3.2f) is to be plugged into (2-3). All of the coefficients of particular integer 

powers of ro are match in order to construct a complete successive set of recursive equa-

tions. These recursive steps and assignments to g { m} [ x] are given on the next several 

lines. 

Let us begin an iteration for a recursion. gO[ x] equals 1 of equation (3 .2). G[ u,y] 

is built to equal 1/(u+y). 

The following steps amount to a recursive iteration. 

1 

gl[x] = x·gO[x] · J gO[y]-G[x,y] dy . 
. 0 

1 . . 1 

g2[x] = x·gO[x] · J gl[y]-G[x,y]dy +x·gl[x] · J ~O[y]·G[x,y] dy. 
0 

. 1 1 

g3[x] = x·gO[x] · J g2[y]·G[x,y] dy + x·gl[x] · J gl[y]·G[x,y] dy + 
0 0 

1 

x·g2[x] · J gO[y]·G[x,y] dy. (3.3) 
0 

In repetitive generality, it is clear that: 
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1 1 

g{n+l} [x]= x·gO[x] · f ~[y]·G[x,y] dy + x·gl[x] · f g{n-l}[y]-G[x,y] dy + ... 
0 0 

1 1 

x·g{n-l}[x] · f gl[y]-G[x,y] dy + x·g{n}[x] · J gO[y]·G[x,y] dy. (3.4) 
0 0 

In specific application to the H-function, gO[x] and gl[x} are set as: 

gO[x]= 1 andgl[u]=u·log[(l+u)/u]. 

Furthermore, f(y) = log((l+y)/y), and gl[y] = y · fly]. 

The following review steps can be re-stated as a recursive iteration. 

1 

gl[x] = x · J l · G[x,y]dy ,one term. 
0 

1 1 

, g2[x] = x · f y · f(y} · G[x,y] dy + x·(x·£[x]) · f l · G[x,y] dy, two terms. 
0 0 

1 1 l 1 

g3[x]= x · f rl · f z·f[z]-G[y,z] dz·G[x,y] dy + x · f y:f[y] · J l·G[y,z] dz· G[x,y] dy+ 
0 0 0 0 

- 1 . 1 1 

x · (x·£[x]) ·J (y·f[y])-G[x,y] dy + x·x • J (y·f[y])·G[x,y] dy · J l·G[x,y] dy + 
0 0 0 

1 1 

x·x · (x·£[x]) · J l·G[x,y] dy · J · l·G[x,y] dy ), five terms. 
0 0 

This can be re-stated at a more simplistic level as: · 

gO has 1. gl has G. G(x,y) has G. 
gl[x] ~ 1 · G. 
g2[x] ~ G· G+G· G~2 · G2. 

g3[x] ~ (2 · G2) • G + G · G · G + (2 · G2) • G ~ 5 · G3 . 

g4[x] ~ (2 · 1 · (5 · G3) + 2 · G · (2 · G2)) • G ~ (10+4) · G3 • G = 14 · G4. 

The magnitude recursion relation to use is: 

(3.5) 
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g{n+l} [x] ~ gO·g{n}[Y] ·G + g{l}[x] ·g{n-I}[x] ·G + g2[x] ·g{n-2}[x] ·G + 
~-- + g{n-1} [x] · g{I} [x] · G +g{n} [x] · gO · G. (3.6) 

If the recursion relation for term counting is carried out-several hundred times on code on . 

a PC, then it becomes evident inductively that g[N+ 1]/g[N] approaches the value 4 as N 

becomes large. Restated, this means that the number of terms ,in the expression for gn[ x] 

grows approximately as C · 4n when n is very large. The significance of this is that if the 

inductively discovered premise ofC · 4n growth is true, then g{n}[x] asymptotically grows 

as a geometric series. Furthermore, by considering also the fact that G(x,y) in this chap-

ter- remains finite (except in the one unusual case where external x ofG(x,y) equals 0), it 

is possible to conclude that g { n} [ x] does not grow faster than portrayed by an appropriate 

upper bound of the following form: 

(3.7) 

jj is a non-negative constant integer. 

It was explained in Chapter 2 that a series which has the asymptotic form of (3. 7) is an 

extremely strong candidate for successful estimates to the full value of the g-series 

through the use of Pade approximants. The g-series, of course, is Hfunct(u,w) = Lg{nfw1. 

The recursion relation (3.5) can be used ·to establish.upper bounds <>n the magnitude 

· g{n}(u). Indeed, the maximum possible growth.of approximately 4n w.r.t. n was observed. 

There is a convenient way to keep track of the rate of g{n} through the construction of 

analogous diagra.mswhich_represent g{n}(x). These diagrams follow rules which can be 

viewed as a simplification of the Feynman rules for the diagrams which describe the self-

energy of a fermion. G(u,u') can be treated a the "interaction gauge boson" propagator, 

which is represented by the wavy line ~ . A vertex is a point at which a 'l'(u)* 
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couples .with a G(u,u') propagator and a plane wave state \f(u') . 'P(u)* is used to repre

sent u· l, or u·gO in the H-function expansion. 'P(u') is used to represent 1, or gO. Now, 

the first three diagrams represent gO, gl(u), and g(2)(u) . 

go is depicted as 

gl(u) is depicted as 

g2( u) is depicted as 

• 
plus 

• 

• • 

• • 

• • 

• 

Thus g2(u) is depicted by2 sub-diagrams. Unlike in the Feynman rules for QED, the wavy 

line ~ cannot cross over another wavy line ~ on the planar region of illustration. 

By continuing with the same rules, the reader should with mild effort be able to see that 

g3(u) is depicted by 5 sub-diagrams. g4(u) is depicted by 14 sub-diagrams. It becomes 

clear that the number of sub-diagrams grows exactly at the same rate as the number of 

terms of g{n}, as shown in recursion (3.6). Those readers interested in the growth of the 

number of terms of g{n}(u) and in the number of diagrams should view appendix D. 

CONTINUE. 

Let us consider the first few iterations. 

gO=l. 

f(u)= Jn(l +u) - Jn(u) . 

gl(u)=u · f(u). 



39 

g2(u)= 2 · ln(2)-u · ln(2) · ln((u+I)/(u-1))-u · dilog((u+l)/(u-1)) + 
u · dilog((u+l)/u)+u · dilog(u/(u-1)). (3.8) 

g3(u) is not known with easily manageable known analytical functions. Subse-

quently, it will be even harder to calculate g4(u), g5(u), g6(u), et cetera. In the next sev-

eral statements, an algorithm for construction g3(u), g4(u), et cetera with a polynomial 

fitting method is described. 

The approach used to calculate the g3(u) useful for research of this dissertation 

was one of polynomial approximation of g2(u). In the research pertinent to Chapter 3, the 

polynomial for approximation is denoted as polfg2(u). There where imposed 20 simulta-

neous matchups between polfg2(u) and g2(u), such that polfg2(.02)= g2(.02), 

polfg2(.08)= g2(.08), polfg2(. l)= g2(. l), and so on all the way up to polfg2(.95)= 

g2(.95), and polfg2(1.0) = g2(1.0). polfg2(u) is a nineteenth order polynomial for which 

each of the twenty coefficients are to be determined by the 20 simultaneous matchups. In 

fact twenty simultaneous equations determine the coefficients to polfg2(u). polfg2(u) 

equals Li{ c4ru\ c4i is obtained numerically. However, the expression of polfg4(u) is a 

fairly accurate closed form symbolic expression in function of u. When u>=O and u<= 1, 

the .expression polfg2(u) gives a fairly acicurate representation of g2(u). This is especially 

true because g2(u) does not have any singularities in the range O <u <= 1. In the study of 
. . 

continuous functions, Weierstrauss proved that there does exist a. sequence of polynomials 

ofx which successfully approximates any given singularity free function ofx [10, Weier-

strauss ref]. An immediate implication of the Weierstrauss theorem is that the expression 
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polfg2(u)= L c4i · ui would be even more accurate than the above 19th order represen-
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tation for polfg2(u). Numerically, it was found that the difference between a 15 order and 

19 order polynomial representation of g2( u) when O<u<= I was negligible within J o-8 per-

cent. Clearly for the purposes of approximating gn(u), there would be no significant im-

provement numerically in using the 3 5th order· polynomial representation of g2(u) over the 

19th order representation. 

Once the coefficients of polfg2(u) have been fourid, it is time to insert this into the 

equation of recursion: 

1 

g3[x]= x · gO[x] · f polfg2[y] · G[x,y] dy + 
0 

1 1 

x · gl[x] · f gl[y] · G[x,y] dy + x · polfg2[x] · f gO[y] · G[x,y] dy. See equations (3.3). 
0 0 

g3(x) alsp is a very difficult expression to work with. polfg3(u) is designated as the poly-

nomial representation of g3(u), which has turned into a transcendental function. polfg3(u) 

is taken out to the 19th order. In exactly the same manner that the coefficients of 

polfg2(u) wer~ determined by g2(u), polfg3(u) is also developed by matching polfg3(u) to 

g3(u) for 20 different values ofu in the linearly set interval within O<u<=l. Once polfg3(u) 

is known explicitly as a function ofu, polfg3(u) is plugged in as g3(u) into the recursion 

formula (4-3) used to generate g4(u) from g3(u), g2(u), gl(u), and gO. This time a long, 

unwieldy expression for g4(u) is obtained. It.i.s then imperative to obtain a polynomial ex-

pression pcilfg4(u) for the transcendental function g4(u). And, the whole process discussed 

in the beginning of this paragraph is repeated in order to generate g5(u). Next in tum 

, · g6(u) is calculated. g7(u), g8(u), and g9(u) were also found. In table 3.1) are shown vari-

ous values of g{n}(u). 
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Table 3.1) 

Example of the Values of g{n}(u) for Three Values of u 

u .2. .8 .9 
gl(u) .358351893845610 .648744172973062 . .672492961647198 
g2(u) .275237355339286 .719900556021486 .764383975398485 
g3(u) .287877433553651 .950733073664056 1. 02713349849796 
g4(u) .357372704916896 1.37630275650370 l.50657478108083 
g5(u) .493004968258362 2.11079374260696 2,33454751520814 
g6(u) ·.729201449707502 3 .36926942602789 3.75753189158554 
g7(u) 1.13238361159873 5.53857831222114 6.21921399540239 

. g8(u) 1.82224587124395 9.31253656724590 10.5169867574193 
. g9(u) 3.01278816189040 15.9409717133517 18.0904289321405 

It should be noticed that g{n}(u) is growing approximately at a geometric rate with 

respect to u. 

Below are shown the excellent results for the calculations of H-functions out to 

9th order. Hfuh9(u,W2) shall be defined·as the following expression: 

. . . 2 ( ). 9 h gO+gl(u}W2+ g2(u)·W2 · · · · · · · +g9 u · W2 , w ere W2= ro/2. (3.9) 

This is a· partial sum of the ff.function. In the research involved in presenting the results 

:- .. 

for H-function calculations, Pade approximants were taken ofHfun9(u,w2). The most in-

teresting results are the comparison ofPade[4,5), Pade[5,4], Hfun9(u,w2) and established 

numerical results ofH-funct(u,w2) as presented in Chandrasekhar's text [11]. 

The reader might question the purpose of reproducing Chandrasekhar's results. 

The point is that a tremendously large range ofH-function values can be calculated very 

quickly with algorithms presented in this chapter added with the last step of carrying out 



·' 

42 

Pade approximants. Chandrasekhar's approach is more intensive of computer CPU work 

time. For example somebody might want to reliably calculate H(.223,w2) out to eight 

significant figures. It is more accurate to calculate the partial sum directly and then take 

the Pade approximants than it would be to interpolate H(.223,w2) from the previously 

available. data ofH(.20,w2) and H(.225,w2). 

In the future, the author hopes to do more difficult cases of the H-function in cases 

where equation (3.1) has an anisotropic contribution to_th¢: Kernel of the integral term. 

· Results of Series Iteration and Pade Approximants 

In this section, tables are given in which evaluations of the H-function as a function 

ofu and ware listed. Ninth order.partial sums obtained through the use of the iterated 

g { n} 's are also listed. For the sake completeness, Table 3 .1) on the previous page lists 

gl(u), g2(u), g3(u), through g9(u) for a few values ofu. Table 3.9) lists the corresponding 

values whenu=l.O. 

One exam.pie which.demonstrates the numerical/semi-analytical results shall be 

given. The tables of this chapter were built from-the information of examples such as this 

case when u=0.2. When u=.2, thenineth order partial sum equals: 

1 + (ln(l.2) -ln(0.2)) ·W + (2·ln(2) -0.2·ln(2)·ln((l.2)/(0.2-1)) -0.2·dilog((l.2)/(0.2-1)) + 

0.2·dilog((l.2)/0.2)+ 0.2·dilog(0.2/(0.2--l)) )·W2 + .2878774335536509·W3 + 

.3573727049168958·w4 + .4930049682583625·W5 + .72920144970750169·w6 + 

l.132383611598726·W7 + 1.82224587124395·W8 + 3.01278816189041 ·w9. (3.10) 



The best off-diagonal Pade approxirnant of the ninth order partial sum is: 

Pade[4,5]:= 

(1 -3.9585037921261 ·(w/2)+5. l l 70726839235·(w/2)2-
2.3777169816148·(w/2)3+.28346980726021 ·(w/2)4) 

(1 - 4.3168556859718·(w/2) +6.3887887391104·(w/2)2- 3.7668690168198·(w/2)3 + 
.0.76025376791391 ·(w/2)4 + (-1)-.025121992194445·(w/2)5) 
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(3.11) 

Table 3 .2) uses information based on the simple 'number crunching' of (3 .10) and (3 .11 ). 

Table 3.2) 

Comparison of the Established Numerically Labored Values of the H-function to Pade 
Approximants. 

u w Partl Suin Pade[4,5] Pade[5,4] Book Value* 
.2 0.2 1.038917 .l.038917 1.038917 1.03892 
. 2 0.3 . 1.0611464 1.0611464 1.0611464 1.06115 
.2 0.4 1.0857798 1.0857806 1.0857806 1.08578 
.2 0.5 1.1134523 1.1134608 1.1134608 1.11349 
.2 0.6 1.1451004 1.1451632 1.1451632 1.14517 
.2 0.8 1.2268261 1.2286126 1.2286101 1.2286 
.2 0.9 1.2826089 1.2910541 1.2910254 1.2914 
.2 0.95 1.3162682 1.3352346. 1.3351214 1.3373 
.2 .975 1.3349166.. _ 1.3641043 1.3638625 1.3703 
.2 1.0 1.3549552 1.4013931 1.400834 . 1.4503 

* Note that the book values listed in Tables 3.2) through 3.6) can be found on page 125 

of Chandrasekhar's text Radiative Transfer [9.a]. 
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Table 3.3) 

Table of PercentError of the Predictions from the Book Values. 

u w ErPartl Sum Er Pade[ 4,5] Er Pade[5,4] 
.2 0.2 -0.00028876 -0.000288761 -0;000288761 
.2 0.3 -0.00033926 -0.000339255 -0.000339255 
.2 0.4 -0.000018420 k0.000055260 . 0.000055260 

... 2·· 0.5 :-0.0033858 -0.0026224 . -0.0026224 
.2 0.6 -0.0060777 -0.00059380. -0.00059380 
.2 0.8 -0.14438 0.0010256 0.00082207 
.2 0.9 -0.68074 -0.026785 -0.029007 
.2 0.95 -1.5727 -0.15445 -0.16291 
.2 0.975 -2.5822 -0.45214 -0.46979 
.2 1.0 -6.5741 -3.3722 -3.4107 

Table 3.4) 

. Comparison ofPade Approxiniants to the Respective Book Values. 

u w Partl Sum Pade[4,5] Pade[5,4] Book 
Value 

.5 0.2 1.0611766 1.0611766 1.0611766 1.06117 

.5 0.3 1.0975588 1.0975589 1.0975589 1.09756 

.5 0.4 1.139189 1.1391915 1.1391915 1.14266 

.5 0.5 1.1877068 1.1877338 1.1877338 1.18776 

.5 0.6 ·1.2456059 1.2458041 1.2458041 1.24581 

.5 0.8 1.4074908 1.4132035 1.4131974 1.4132 

.5 0.9 1.5276527 1.5550945 1.555016 1.5560 

.5 0.95 1.6034178 1.6661202 1.6657843 1.6718 

.5 0.975 1.6463203 1.7442425 1.7434834 1.7621 

.5 I. 1.6930899 1.8525719 1.8506767 2.0128 
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Table 3.5) 

Table of Percent Error of the Predictions from the Book Values. 

u w ErPartl Sum Er Pader4,5] Er Pade[5,4] 
.5 . . 0.2 0.00062195 0.00062195 0.00062195 

'.5 0.3 -0.00010933 -0:00010022 -0.00010022 
.5 0.4 -0.30377 -0.30355 -0.30355 
.5 0.5 -0.0044790 -0.0022058 -0.0022058 
.5 0.6 -0.016383 -0.00047359 -0.00047359 
.5 0.8 -0.40399 0.00024767 -0.00018398 
.5 0.9 -1.8218 .:0.058194 -0.063239 
.5 0.95 -4.0903 -0.33974 -0.35983 
.5 0.975 -6.5705 -1.0134 . -1.0565 
.5 1.0 -15.884 -7.9605 -8.0546 

Table 3.6) 

Example "3.6" 

u w PT Pade[4,5] . Pade[5,4] bookvalu 

.8 0.2 1.0731869 1.0731869 1.0731869 1.07319 

.8 0.3 .· 1.117626 1.1176262 1.1176262 1.11763 

.8 0.4 1.1693468 1.1693512 1.1693512 NotlnRec 

.8 0.5 1.2308361 1.2308834 1.2308834 1.23091 

.8 0.6 1.3059536 1.3063032 1.3063032 1.30631 

.8 0.8 1.5255334 1.535742 1.5357329 1.5358 

.8 0.9 1.6961324 1.7459466 1.7458195 1.7474 

.8 0.95 1.8062481 1.9219448 1.9213674 1.9313 
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.8 0.975 1.8693207 2.0525244 2.0511619 2.0833 

.8 1. 1.9385969 2.2437188 2.2400986 2.5527 

Table 3.7) 

Table of Percent Error of the Predictions from the Book Values 

u w · Er Partl · Sum ErPadef4,5] Er Pade[5,4] 
.8 0.2 -0. 00028886 -0.00028885 -0.00028885 
.8 . 0.3 -0.0003579 -0.00034000 -0.00034000 
.8 0.4 ------------- --------------- ------------
.8 0.5 -0.00600369 -0.002161 -0.002161 
.8 0.6 -0.02728 -0.00052 -0.00052 
.8 0.8 -0.668485 -0.0037765 -0.0043691 
.8 0.9 -2.93394 -0.083175 -0.090449 
.8 0.95 -6.4750 -0.48440 -0.51430 
.8 0.975 -10.271 -1.4772 -1.5426 
.8 1.0 -24.057 -12.104 -12.246 

Table 3.8) 

Example when u = .9 

u w PT Padef4,5l Padef5,4l hbook 

.9 0.2 1.0760988 1.0760988 1.0760988 1.07610 

.9 0.3 1.122536 1.1225362 1.1225362 1.12254 

.9 0.4 1.1768049 1.1768099 1.1768099 NotlnRec 

.9 0.5 1.2416375. 1.2416917 1.2416916 1.24171 

.9 0.8 1.5567244 1.5684491 1.5684391 1.5685 

.9 0.9 1.7416792 1.7991723 1.7990297 1.8008 

.9 0.95 1.8617356 1.9959527 1.9952943 2.0065 

.9 0.975 1.9306907 2.1441549 2.1425814 2.1795 

.9 1.0 2.0065636 2.3646482 2.3603886 2.7306 
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Table 3.9) 

List of &i(l.O) when n = {1,2,3 ... 9}. 

When u=l. 

gl .693147180559945 

g2 .804053834654890 

g3 1. 09662773 728995 

g4 1.62698942254175 

gs 2.54414533551182 

g6 4.12534574676417 

g7 6.87024271658987 

g8 11.67869437787 

g9 20.17878923532 
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Chapter 4 

Analysis of a Nonlinear Integral Equation 

In this chapter another nonlinear integral equation will be solved through a method 

iteration. The series generated by these iterations will be further investigated with the use 

of Pade approximants in almost the same manner that was done in Chapter 3. The results 

of the inspection of the overall results of using Pade approximants for the examples of 

Chapter 3 are almost as impressive as the accuracy demonstrated in Chapter 3 with Pade 

approximants. 

The form of the integral equation to be investigated in Chapter 4 is that of an inte-

gral term whose Kernel is coupled with the solution two-fold. The form appears as: 

b 

f(x) = g(x) +).: J G(x,y) · f (y) · f (y) · cry . (4.1) 
a 

Two particular examples of equation ( 4 .1) shall be studied through the use of iterated se-

ries solutions in this chapter. Although the author does not know of any physical applica-

tions for this equation, it is interesting from a mathematical point of view the nature of the 

solution{or 2 solutions) of equation (4.1). Perhaps equation (4.1) is similar enough to the 

physically interesting equation (3. 1) in order to lead also to illumination and assistance in 

some mathematical physics applications. The highest value of content in Chapter 4 is that 

it demonstrates the effectiveness of using Pade approximants for evaluating with much 

more precision the solution of (4.1) than one obtains by use of the series solution alone. 

This chapter serves as a nonlinear anecdotal note to the first area of thrust of this disserta-

tion, solutions to integral equations. 
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Two particular examples of equation ( 4 .1) are: the case where 

g(x) = I and G(x,y) = (x·y)2 

and the case where g(x) = I and G(x,y) = 1/(1 +(x+y)/2) . 

The algorithm for determining the detailed structure of the iterated series estimation of the 

nonlinear integral equation is very similar to the algorithm used to generate the series of 

the H-function in Chapter 3.. In the next paragraph, the coefficients of the series Lg1cxf An 

shall be presented. And then, the rest of this chapter shall be devoted to the solutions and 

improved estimates of the solutions to the two examples where G(x,y) equals (x-y)2 and 

G(x,y) equals 1/(1 +(x+y)/2), respectively. 

Note that gO[x] equals g(x) of equation (4.1). 

The following steps amount to a recursive iteration. 

I 

. gl[x] = J gO[yJ · gO[y] · G(x,y) dy 
0 

1 

g2[x] = f (2 · gO[y] · gl[y]) · G(x,y) dy 
0 

I 

g3[x] = J (2·gO[y]·g2[y] +l·gl[y]'gl[y]) · G(x,y) dy 
0 

I 

g4[x] = J ( 2·gO[y]'g3[y] + 2'.gl[y]'g2[y]) · G(x,y) dy (4.2) 
o· 

. 1 

g5[x] = J ( 2·g0[y]'g4[y] +2·gl[y]'g3[y] + 1 ·g2[y]·g2[y]) · G(x,y) dy 
0 

The higher gn[ x] follow the pattern of iteration demonstrated here. 
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Nonlinear integral equation (4.1) in the example where g(x)= 1 and G(x,y)= (x·y)2 

has the closed form solution of f(x,A.) = 1 +B(A}x2. 

Note: B(Lam) =( -7·(2/5 -I/Lam) +Sqrt[49·(2/5-1/Lam)2 - 4·7/3] )/2. (4.3) 

The series solution of the first example is found by using the recursion relations shown in 

( 4.2). This series solution is to be denoted as H(x,A). A and A. are interchangeable. 

Note H(x,A) = gO[x] + A ·gl[x] + A2 ·g2[x] +A3 ·g3[x] +A 4 ·g4[x]. ... H{n}(x,A) is the 

partial sum taken to the nth order of A. Following the same mode of thought as in chapter 

3, pade[3,4] is the Pade approximant ofH7(x,A) with respect to A in form Ian·An up ton 

= 3 divided by the denominator ofibn·xn up ton= four. Likewise, pade[4,4] is the Pade 

approximant ofH8(x,A) with respect to A. The tables in the rest of this chapter serve to 

catalog my fairly successful results of doing the iteration of ( 4 .2) and then applying Pade 

approximants. 

X A. H6(x,A.) 

.2 -1.40 .98995478 

.2 -3.0 1.3022639 

.2 .75 1.0150371 

.2 1.18 1.0349451 

Table 4.1) 

Comparison when G(x,y) = (x · y)2 

H8(x,A.) pade[3,3] pade[3,4] 

.98983706 .987537 0.987536 

2.3765350 .979862 0.979833 

1.0151287 1.01516 1.01517 

1.0375611 1.04331 1.04466 

pade[4,4] exact 

0.987536 .98753629 

0.979841 .97983855 

1.01517 1.0151658 

1.04554 1.0488258 
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These results for the first example, where G(x,y)=(x·y)2 do show successful application of 

Pade approximants to reliably calculating the solution from the iterated serial coefficients 

of (4.2). The second example ( G(x,y)= 1/(1 + (x + y)/2)) is very similar to the first ex

ample. 

However, there is rio well known closed form solution to equation (4.1) in the 

second example. Most proba,bly it is not known. In this example Pade approximants of 

sequentially higher order converge to the same result. These common answers of conver

gence and the similarity of the particular integral equation of example 2 to that of the very 

successful example I make the reliability of the numerical results of example 2 very plau

sible. 

Let us inspect numerical results of.the second case, where G(x,y) = 1/(1 +(x+y)/2). 

As in Table 4.1), H{n}(x,A) is the partial sum ofH(x,A) taken to the nth order of A. 

Table 4.2) 

The second case, where G(x,y) = 1/(1 +(x+y)/2) 

X A H6(x,11.) HIO(x,11.) pade[4,4] pade[4,5] pade[5,4] pade[5,5] 

.4 .300 1.3139270 1.3231612 1.3256556 1.3256664 1.3279408 1.3258301 

.2 .200 1.1853851 1.1858020 1.1858196 1.1858197 l.1858209 1.1858203 

.4 -.70 1.1668171 3.9694534 .58944410 .58946170 .58933952 .58926976 

.2 -.80 1.9485188 14.974905 .49563233 .49568671 .49535798 .49515534 

.5 -.900 3.2598878 44.740611 .48200072 .48207240 .48145696 .48101183 



Clearly, Table 4.1) demonstrates complete success of the application ofPade ap

proximants. The results of Table 4.2) suggest very strongly the success ofPade ap

proximants when G(x,y) = 1/(1 + (x+y)/2). 

52 
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Chapter5 

Numerical Results of the Asymptotic Pade Approximant Predictions 

In this chapter, Asymptotic Pade Approximant Predictions will be introduced. 

Numerical results of Asymptotic Pade Approximant Predictions of different series and the 

procedure involved will be discussed only in this chapter. First the procedure and 

formulas involved in making the Asymptotic Pade Approximant Predictions are 

discussed. Then the results of the Asymptotic Pade Approximant Predictions for the 

series of the H-function are presented. And finally, the results of the Asymptotic Parle 

Approximant Predictions for the Taylor series of ln(l +x)/x is presented. 

In addition to the use of Pade approximants and Parle Approximant Predictions, Dr. 

Mark Samuel rather recently has developed an improved method for estimating the 

successive terms of an infinite series. The predicted next successive term of this proposed 

method is called the Asymptotic Pade Approximant Prediction (APAP). With his initial 

desire to test APAP's and with the assistance of the author of this text, Asymptotic Pade 

Approximant Predictions have been successfully applied to many series entailing the 

inclusion of at least several terms for analysis of a desired mathematical function. The 

(AP AP) procedure relevant for this dissertation text first involves making a Pade 

Approximant Prediction (PAP) for r { n+ 1} based on the information available in the 

precise partial sum rO +r 1 ·x +r2·)<' + ... r { n-1} ·x<n-l) +r { n} ·Y!'". ( cf (1.13).) After predicting 

r{n+l}, it is then necessary to predict the relative error (in decimal form) of the (PAP) in 

order to carry out the Asymptotic Pade approximant prediction. The Asymptotic Pade 

approximant prediction is defined in terms of the quantity 'arr' by: 
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f {n+m+l} = r{n+m+l}/(l+arr) , (5.1) 

where r{n+m+l} is the PAP of the partial sum rO +rl·x +r2·x2 + ... r{n+m-l}·x<n+m-I) 

+r { n+m} ·x<n+m) and f { n+m+ 1} is the AP AP. 

The Asymptotic Pade Approximant Prediction has proven to be very helpful in 

prediction of the terms g{N}[u] of the H-function series (See equation (3.2t).). For the 

H-function, the formula for arr for the Pade c!,pproximant prediction [ n,m] of equation 

( 5 .1) and f { n+m+ 1} is : 

arr= -1 ·m! ·B·(B+ 1)-(B+2)-(. . .)-(B+m-1)/(L[n,mJ<2-m> ), (5.2) 

where arr is the relative error (i.e.~ the PAP minus exactr(n+m+l), all divided by 

r(n+m+ 1)) and where 

L[n,m]= n+m +a·m + b. (5.3) 

References [16] and [8] also explain in futher depth the appropriate formula for 'arr'. 

For the important functional examples ofH(l.O,w) and H(0.8,w), the constants B, 

a, and b_were first determined by examining the numerical values of gl[uh], g2[uh], 

through g7[uh], where uh equals either 1.0 or 0.8 for purposes of this chapter. B, a, and b 

. . 

were secondly determined by comparing the values of g 1 [ 1:}h], g2[ llh], g3 [ Uh], etc. to the 

PAP results of the following equations [ 17]: 

g{n+2}[u] = (g{n+l}[u])2/g{n}[ul, Pade approximant prediction [n,1], (5.4) 

g{n+3}[u]= 

2·g{n}[u]·g{n+l}[u]·g{n+2}[u] - g{n-l}[u]·(g{n+2}[u])2 -(g{n}[u+I])3 

((g{n}[u])2 - g{n-l}[u]-g{n+l}[u]) 

Pade approximant prediction[n,2], (5.5) 



with g{j}[u]= 0 for j < 0. ( The method for generating (5.4) and (5.5) is discussed with 

( 1. 13) in chapter 1. ) 
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We then evaluated the complete set of quantities B, a, and b of 'arr' for the PAPs 

ofH[l.O,w] for moderately sized n and for small m and determined that 'arr' is given by 

the error formula in equation (5.1) with B=l.34, a=-0.5, and b=l.6, This determination of 

B, a, and b ofL[n,m] was done almost completely by considering examples ofL[n,1] 

(where m=l) and forcing ( 'arr' +1) to equal (PAP g{n+l+l}[l.O])/ g {n+l+l}[l.O] for 

moderately sized values ofn. PAP g{n+l+l}[l.O] is calculated by (5.4). We then used 

g {n+ 1+1 }[1.0], applied the PAP again to obtain g{n+ 1+2}[1.0], and then applied the 

correction again after invoking equation (5.1) in order to obtain the APAP 

8 {n+1+2}[1.0]. This process can be continued indefinitely. 

B, a, and b were evaluated a second time, this time for H[0.8,w]. The determination 

of B, a, and b ofL[n,m] was done completely by considering examples ofL[n,2] (where 

m=2) and forcing ( 'arr' + 1 ) to equal g{n+2+ 1 }[0.8J/ g {n+2+ 1 }[0.8] for those positive 

n's which satisfy the inequality O < n+m < 8. Again, B, a, and b were found to equal 1.34, 

-0.5, and 1.6 respectively. We then used g {n+2+1 }[0.8], applied the PAP again to 

obtain g{n+2+2} [0.8], and then applied the correction again after invoking equation (5.1) 

in order to obtain the APAP g {n+2+2}[0.8]. This process can be continued indefinitely. 

In the immediately following section, three tables are presented which display the 

successful results of using Asymptotic Pade Approximant Predictions to calculate the H

function H(uh,w) as a function ofw for the two selected choices ofuh. uh=0.8, and 



uh=l.O. In Tables 5.1) through 5.3), u equals 0.8. In Table 5.1), H(.8,w) functions 

obtained with ordinary Pade approximants and the APAP applied to obtain g{8}[.8) in 

order to generate the partial sum PtSum[8] are presented. 

Table 5.1) 

H(.8,w)Functions obtained with ordinary Pade Approximants and with the 

Assistance of AP APs in PtSum[8] 

w Pade[34) Pade[43] PtSum[8] Hbook 

0.2 1.0731869 1.0731869 1.0731869 1.07319 

0.3 1.1176262 1.1176262 1.1176254 1.11763 

0.5 1.2308825 1.2308823 1.2307752 1.23091 

0.8 1.5352571 1.5351955 i.5213527 1.5358 

0.9 1.7415087 1.7410548 1.6840653 1.7474 

. 0.95· 1.9061789 1.9048033 1.786618 1.9313 

0.975 2.0203374 2.0178139 1.8445209 2.0833 

1.0 2.1718993 2.1670136 1.9074508 2.5527 
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Table 5.2 shows the improvement in the calculation ofH(.8,w) which results from 

generating a higher order partial sum via AP AP' s and then taking the Pade Approximents 

of these higher order (11th) partial sums. 



Table 5.2) 

Higher order Pade·Approximants computed with the help of APAP's 

w Pade[4,4] PtSum(8) Pade[5,6] Pade[6,5] Hbook 

0.2 1.0731869 1.0731869 1.0731869 1.0731869 1.07319 

0.3 1.1176262 1.1176254 1.1176262 1.1176262 1.11763 

0.5 1.2308828 1.2307752 1.230883 1.230883 1.23091 

0.8. 1.5353623 1.5213527 1.5355933 1.535593 1.5358 

0.9 1.7423191 1.6840653 1.7447578 1.744752 1.7474 

0.95 1.9087094 1.786618 1.9179995 1.9179702 1.9313 

0.975 2.0250684 1.8445209 2.0446932 2.0446207 2.0833 

I. 2.1812771 1.9074508 2.2265055 2.2263051 2.5527 

In Table 5.3 is listed the coefficients g{n}(0.8) for the H(.8,w) function obtained 

from the iteration algorithm presented in chapter 3 up to the seventh order. For orders 

eight and higher, g{n}(.8) is approximated with AP APs. 

Table 5.3) 

The Coefficients g{n}(0.8) for the H(.8,w) Function obtained from the Iteration 

Algorithm up to the seventh Order and then the AP AP for eighth Order and Beyond 

u=.8 Value of g{n}(u) 

gl(u) .648744172973 

g2(u) . 719900556021 

g3(u) .950733073664 

g4(u) 1.37630275650 
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g5(u) 2.11079374261 

g6(u) 3 .36926942603 

g7(u) 5.53857831222 

gnu8 9.3096352 

gnu9 15.920857 

gnlO 27.601755 

gnll · 48.383159 

t This is the continuation of Table 5.3). 

For the APAP of g{n}[u] ofH(u,w), u is set equal to 1.0 in the next three tables. 

Tabl_e 5.4) 

H(l.O,w) functions obtained with Pade approximants and from partial sums with seventh 
order iterations 

w Pade[3,4] Pade[4,3] Prtl Sum (7) Hbook 

0.3 1.1268.438 1.268438 1.126843 1.126844 

0.5 1.251255 1.251254 1.250940 1.251259 

0.8 1.597426 1.597457 1/571937 1.598219 

0.9 1.842901 1.842344 1.748239 1.850098 

0:95 2.045295 2.043641 1.857371 2.077123 

0.975 2.189267 2.1861712 1.918297 2.270984 

1.0 2.385145 2.378988 1.983958 2.907809 



In Table 5.5), for orders eight and higher, g{n}(l) is approximated with the 

Asymptotic Pade Approximant Prediction (AP AP). 

Table 5.5) 

Co~fficients g{n}(l) for H(l) functions obtained from the iteration algorithm given 
Chapter 3 up to the seventh order. 

u= LO u= 1.0 

gl(u) 0.693147 gnu9 20.178 

g2(u) 0.804054 g9(u) 20.164 ** 

g3(u) 1.096628 gnIO 35.257 

g4(u) 1.626989 gnll 62.263 

g5(u) 2.544145 gnl2 110.84 

g6(u) 4.125346 gnl3 198.62 

g7(u) 6.870243 gnl4 357.89 

gnu8 11.67867 gnl5 647.94 

g8(8) 11.678690 ** gnl6 1177.9 

** Note that the precise numerical values of g8(u) and g9(u) were not used in any 

calculations in this chapter, although they were used to find Pade[4,5] and Pade[5,4] in 
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chapter 3 for cases which include u=.8 and then u=.9 as contributing formal parameters 

for the H-function. 
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Now let us consider H(I.O,w). Note u = 1.0 here. 

Table 5.6) 

H(l,w) functions computed Pade[3,4] and from the APAP and Asymptotic Pade assisted 
Partial Sum (PS) Methods 

w Pade[3,4] (APAP) (PS) Hbook 

0.3 1.126844 1.12684 1.12684 1.126844 

0.5 1.251255 1.25126 1.25094 1.251259 

0.8 1.597526 1.59797 1.57195 1.598219 

0.9 1.842901 1.84833 1.74826 1.850098 

0.95 2.045295 2.07339 1.85740 2.077123 

0.975 2.189267 2.26728 1.91833 2.270984 
I 

1.0 2.385145 2.68543 1.98399 2.907809 

The next series to analyze is the taylor series generated from Log[l+x]/x w.r.t. x. 

This material is from a Mathematica file developed for use for research related to this 

material. For the series of In[ 1 +x ]/x, the predicted error from the AP AP was found to 

equal: 

arr= -1 ·m! ·B·(B+ l)-( .... )(B+m-l)/(L[n,mj<2m) ), (5.6) 

where L[n,m]= n+m +a·m +b. For the series examined, Bis to be set equals to I. 

Forthe series examined, a+b is to be set equal to I. The APAP in turn, equals 

r{n+m+l}/(l+arr). ForLog[l+x]/x, r[n] equals (-1)°·1/(n+l). 
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Tables 5.7a) demonstrates the success of the Asymptotic Pade Approximant 

Prediction in predicting the value of the next r{j} of the series of ln(l+x)/x when m 

equals 2. Tables 5. 7b) artd 5. 7 c) demonstrate simple numerical calculations for the 

function ln(l +x)/x which involve the Assymptotic Pade Approximant Prediction[k,2], 

where k+2+ 1::::;n. 

Table 5.7a). 

Comparison of Predictions of r[ n] 

Value ofn Actual r[n] Asymptotic Pade Pade 
Approximant Approximant 
Prediction Prediction 

9 -0.1 -0.0999719 -0.0999228 

10 0.0909091 0.0908941 0.0908642 

11 -0.0833333 -0.0833248 -0.0833058 

12 0.0769231 0.076918 0.0769054 

13 -0.0714286 -0.0714254 -0.0714168 

14 -0.0625 -0.0624987:. -0.0624943 

15 0.0588235 0.0588226 0.0588194 

16 -0.0555556 -0.0555549 -0.0555526 

17 0.0526316 0.0526311 0.0526293 

18 -0.05 . -0.0499997 -0.0499983 
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Table 5.7.b) 

X -0.400 -0.8 

Pade[2,3] 1.27705628 2.0033670 

Assymptotic Pade Prediction 1.27694742 1.94134577 
generated Partial Sum.[7} 

Assymptotic Pade Prediction 1.27706117 1.99951063 
generated Partial Sum.[13) 

APAP assisted Pade[5,6] . l.27706141 2.0103378 

APAP assisted Pade[6,7} 1.27706145 2.01150116 

Log[l+x]/x 1.27706406 2.01179739 

Table 5.7.c) 

X -0.9 is X -0.95 is X 

Ordinary Pade[2,3) 2.49623305 2.92618057 

Assymptotic Pade Prediction 2.26720653 2.47380541 
generated Partial Sum[7J 

Assymptotic Pade Prediction 2.4514217 2.79046662 
generated Partial Sum[13] 

AP AP assisted Pade[5,6J 2.53954412 3.05131006 

APAP assisted Pade[6,7J 2.55499994 3.12352367 

Log[l+x]/x 2.55842788 3.15340239 

We have looked at the results which use the Assymptotic Pade Approximant 

Prediction[k,2], where k+2+ 1 =n. 
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. Table 5.8) 

Comparison of predictions of r[ n] in the Case when AP AP[ n, I] is used 

Valueofn Actual r[n] Asymptotic Pade Pade 
Approximant Approximant 
Prediction Prediction 

6 .14285714286 , 14285714286 0.138888889 

8 0.11111111111 0.11111111111 0.10937500 

9 -0.1 -0.1 -0.0999228 

10 0.0909091 0.0909091 0.0908642 

11 -0.0833333 -0.0833333 -0.0833058 

12 0.0769231 0.0769231 0.0769054 

13 :.0.0114286 -0.0714286 -0.0714168 

14 .:.0.0625 -0.0625 -0.0624943 

15 0.0588235 0.0588235 0.0588194 

16 -0.0555556 -o·.0555556 -0.0555526 

17 0.0526316 0.0526316 0.0526293 

18 -0.05 -0.05 -0.0499983 

We have looked at the results which use Assymptotic Pade Approximant 

Prediction[k,1], where k+ 1+ l=n. From table 5.8)~ we can infer that APAP's can be 

evaluated successively to generate amazingly accurate terms of the partial sum which 

represe~ts Log( l+x )/x. The numerical value of Pade[j,m] is identical to the numerical 

value of the Assymptotic Pade Approximant Prediction assisted Pade[j,m] in the case 



where APAP[j+m-2,1] is used for the highest order term serving as input in the 

calculation of Pade[j,m]. 

64 

This new method of Assymptotic Pade Approximant Predictions have not been 

formally explained. However, the numerical results in tables 5.7) and 5.8) are worthy of 

consideration .. Furthermore, in consideration ofthe review of tables 5.2) and 5.6), it 

becomes apparent that the use of AP APs in the improvement in the accuracy of the 

estimation of the values of the H-function is quite worthy of consideration. 



65 

Chapter6 

The Quartic Harmonic Oscillator and Perturbation Theory 

1. Overview. 

In this chapter, lower energy perturbation theory of simple quantum mechanical 

systems will be studied. In order to find the correct spectral energies of attractive cores, 

perturbation theory will be carried out to the fifth order in various systems which 

comprise either a one-body problem with external field or a two-body problem reducible 

to a one-body problem. Two different procedures for generating perturbative series to 

evaluate the corrected energy of a given system will be discussed. These two methods 

are: the Raleigh Scbrodinger procedure of perturbation theory for generating a 

perturbative series and a procedure for generating an elegant implicit perturbative series. 

The elegant implicit perturbative series shall be referred to as the Walker Green's 

function Series. (See section 4 below, page 82.) 

Two mathematical types of examples will be examined: They are the one

dimensional harmonic oscillator with a supplemental quartic term, and the spherical 

harmonic oscillator with an extra quartic term. These two types of examples will be 

elaborated upon before a complete discussion of the results is given. 

2. The Nature of Perturbation. Theory. 

The spherical harmonic oscillator is especially interesting. We shall study the three 

lowest energy levels in the two orbital configurations in which t = 0 and t = 1. Those 

simple quantum systems with a spherical attractive potential given in general as 
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V(r) = r2 + b·r4 + c·r6 + d·r8 (6.la) 

can be evaluated with relative ease for their spectral energy levels by using the methods 

demonstrated in this chapter. In principle, the methods used to find the energy levels for 

spherical systems of the potential V(r) = r2 + V'·r4 (6.lb) 

are equally-valid in the semi-analytical evaluation of the energy levels of systems with 

V(r) = r2 + b·r4 + c·r6+ d·r8. (6.lc) 

A quicker yet reliable way to find the spectra of such spherical system could be useful for 

the careful and the time-efficient modeling of the spectrum of a Shelf Model form core 

before applying a spherical symmetry breaking perturbation to a particle bound in a core 

styled after the Nuclear Shell Model [12]. 

Now we shall consider the two types of examples of Hamiltonian systems selected 

for extensive examples in this chapter. Before discussing the I-dimensional and spherical 

types of examples of Hamiltonian systems, the author would like to point out that Carl 

Bender and Tai Tsun Wu have done substantial work in the perturbative evaluation of the 

spectrum of the quartic harmonic oscillator [12.b][l2.c]. Some ofthe material in this 

chapter (involving the Raleigh Schrodinger procedure and especially the Taylor series 

representation of the Walker Green's Function) is similar in many respects to Carl 

Bender's work on the perturbative representation for the quartic ~onic oscillator. 

However, the algorithms presented in this chapter for carrying out the Raleigh 

Schrodinger procedure of perturbation theory and the procedure for the construction of 

and optimizing of the 'Walker Green's :function series' are general enough to be easily 

applicable to harmonic oscillator systems in which the perturbation is V' ·r6 or V' ·r8 or 
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even V' ·(r4 + c' ·r6) .... Furthermore, the method which is based on the construction of 

and optimizing of the 'Walker Green's :function Series' can be applied to three 

dimensional examples of quantum systems (with more than variable) for which the 

algebraic approach ofreferences [12.b] and [12.c] is not an effective vehicle for the 

computation of theperturbative coefficients. The algebraic approach developed by 

Bender and Wu is designed to work with only one spatial variable rather than two or 

three variables. The 'Mathews and Walker' text inspired results (See [5.b].) in this 

chapter for the ground state energy of the quartic harmonic oscillator are very good. The 

lowest energy results are extremely close algebraically to those of the perturbative series 

fonnulated and worked out in ref. [12.b]. See section# 6, page 111 for a comparison. 

The I-dimensional quartic harmonic oscillator example has a non-relativistic 

Hamiltonian of the following form: 

(6.2) 

The first part ( ..;d2/dx: +x2) has well known eigenstates and a well known spectrum of 

eigenvalues. The perturbation is V'·x4• The eigenvalues for the energies of the 

Hamiltonian including V' ·x 4 are known numerically as a :function ofV', but not in closed 

analytical form. ( It is well known that ifV' = 0, then E(n) = 2°n+ l. ) By carrying out fifth 

order perturbation theory, one can find a polynomial of the form (2°n+l) + r1·(V') + 

r2·(V')2 + r3·V'3 +r4·V'4 + r5·(V')5 in order to approximate what the eigenenergies are as a 

:function ofn and the magnitude of the perturbing V' factor. Such an approximation is 

valid only when V'<< (2°n+ 1) for a given integer n. The Pade approximants Pade[2,2], 

Pade[2,3], and Pade[3,2] have been applied to the expression (2·n+ 1) + r1 ·(V') + r2·(V')2 
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+ r3·V'3 +r4·V'4 + rs"(V')5. It will be demonstrated through the comparison of the Pade 

approximants to carefully worked out numerical data that Pade approximants are a very 

efficient and effective way of finding the eigenstates of the quartic one-dimensional 

harmonic oscillator. 

The spherical quartic harmonic oscillator as a Hamiltonian of the form 

H = (-1 · V2 + r2) + V'·r4. (6.2b) 

By carrying out fifth order perturbation theory for the expression in ( 6.2b) where V' ·r4 is 

the perturbing element, one can find another polynomial of the (2·n+l) + r1-(V') + r2·(V')2 

+ r3·V'3 +r4·V'4 + rs-(V')5 in order to approximate what the eigenenergies are as a 

function of the quantum number n and of the magnitude of the perturbing V' factor. 

The numerical calculation of the eigenenergies of the spherical harmonic 

oscillator with V'·r4 is difficult. Whereas all of the work for the Pade approximants and 

one-dimensional eigenenergies are done with Maple source code, the high precision 

numerical calculation of the eigenenergies of the quartic harmonic oscillator has to 

usually be done with well designed numerical source code. This is done much better 

through the use of C or Fortran compilations than with the use of the Maple command 

package. This situation .clearly illustrates that it is desirable to even have an approximate 

formula for the corrected eigenenergies of the modified ( quartic in this chapter) spherical 

harmonic oscillator. This approximate formula obviously is to be a closed-form function 

ofV'. In spite of nontrivial difficulties, there is a numerical plot in the section entitled 

'Results of Calculations' (section# 5) of the corrected eigenenergies provided for the 

case when n=l and 1 =O (the ground state level in the spherical potential) and for the case 



when n=l and 1 =1 (the lowest level for spin 1). Indeed, it is desirable to have a tool or 

algorithm from which one can quickly picture the dependence of spherically attractive 

spectrum as a function of the perturbation magnitude V'. 

Now a brief review of eigenenergies of matrices is given. The eigenvalues of a 

Hamiltonian can be written as H(x) 'Pn = Ri'Pn. The operator H(x) usually is-d2/cbc + 

. 
V(x). A reasonable approximation of the matrix representation of H(x) for many one-

body problems can be writt~ as an N x N matrix where N·= 11. In the perturbation 

theory of nearly harmonic systems, the part -d2/d}(' + x·x is the operator whose 
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eigenfunctions comprise the basis for the matrix representation of the total Hamiltonian. 

I\ 

. H , which is in the oscillator'·s diagonal representation, is constructed from this. The 

- '¥ n y· • '¥,. • Perturbatio. n V·x4 is represented in matrix form by Q(n,m). Let Q(n,m) - ( I I ) 

(6.3) 

Through review, the following 3 by 3 matrix representation becomes transparent: 

and 

I\ Q(O,O) 

V' =. Q(l,O) 

Q(2,0) 

Q(0,1) 

Q(l;l) 

Q(O,l) 

· [EO 0 
; 0 = 0 EI 

0 0 

Q(0,2) 

Q(l,2) 

Q(2,2) 

~ l 
E2 

~,=[:J ~=m ~3= m· 
(6.4) 

(6.5) 
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I\ 

In (6.4) and (6.5), Ho, '¥1, '¥2, and '¥3 are clearly in the diagonalized represent-

ation with respect to the operator Ho . EO is the unpurturbed ground state eigenenergy. 

" 
El is the second eigenenergy, or first excitation level. Ifwe include the perturbation V', 

I\ " 

then Ho + V' must of course be considered and diagonalized for eigenvalues.· 

Thus for an 11 by 11 matrix representation, Ho(ij)= B(ij)'Eoj. Eoj is the t level 

eigenenergy i,f Ho . V'(iJ") = ( 'l'i IV 'l'P} For the examples in this chapter, the 

maximum i equals 1 I, and j goes to 11. For the spherically distributed examples ** , 

V'(i,j) = jexp(-.!.r2 ) •sHle(r,i) • (Vr 4 )• sHle(r,j) • exp(-.!.r 2 )dr 
0 2 2 (6.5b) 

With this 11.otation, we can write the following matrix equation: 

Ho(iJ) ·'Pj{kl + V'(ij) · 'Pj{kl = CEo + AE)''Pi{kl . (6.6) 

The required task is to find the eigenvalues of the matrix equation (6.5), where the 

eigenvalues are ( Eqj + AEj ). · AEj is the correction in energy due to the perturbation. The 

larger, maximum i and maximumj are for this matrix equation (6.5), the more accurate the 

values ofEqj + AEj will be as estimates of the actual eigenenergies of the Hamiltonian 

" 
operator Ho + V'. It is the matrix equation (6.6) which was solved for most of the 

perturbed harmonic oscillator examples of this chapter. Most of these examples were 

double-checked by diagonalizing and solving the 9 by 9 matrix representation, the 10 by 

10 matrix representation, and the 11 by 11 representation. The lowest three eigenvalues 

of the these three representations all mutually agreed to precision of at least 5 significant 

figures. 
** Note: sIDe(r,j) = r1/r·exp(-r·r/2)'Laguerre(r2) ,when t = 0. 
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This matrix diagonaliz.ation procedure for equation (6.6) involves solving the 

secular equation ofa sufficiently large matrix so as to require the numerical solving of the 

secular equation. The processes of repeatedly generating the secular equation for 

different values ofV' (of the perturbant) by taking the determinant of such an n by n 

matrix equation and then solving the secular equation take a not so small amount of 

computer time. This ever repeating demand for central processing time is a strong source 

of motivation for finding a method which finds a reliable closed-form approximation of 

the eigenenergies of a quantum mechanical system as a fimction of the magnitude of 

coefficient V' of the perturbing potential. The Raleigh Schrodinger procedure combined 

with the use of Pade approximants is very suitable for :fulfilling this role for cases in which 

the coefficient V' is small or of intermediate magnitude. The V' polynomial expressions 

available froni non-degenerate perturbation theory alone is not reliable when V' is of 

intermediate magnitude. 

This reality of naive perturbation theory giving us meaningful information only 

when V' is very small can be seen froni. the following results. Non-degenerate fifth order 

perturbation theory was individually applied by the author to the I-dimensional harmonic 

oscillator with V'·x4 added in. The author found from careful calculation that the ground 

state energy of this quartic harmonic oscillator is expressed as the following Naive 

Perturbation Series: 

E5(V'): = 1 + 3/4 · V'-1.312500000000 · V'2 + 5.20312500000 · V'3 + 
(-1)·30.56103515625000 · V,4 -10023.08297538757 · V'5• (6.7) 
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V' is the perturbative expansion parameter. When V' equals .1, the first three terms grow 

progressively smaller. However, the last two terms, 30.56 · V'4 and -10023 · V's, 

progressively grow larger in magnitude. It is clear from inspection and the properties of 

asymptotic series that when V' is in the order of magnitude of .2 or .1 or smaller that 

useful information for the energy levelestimate can be directly obtained from only the 

first 3 terms. As is immediately above written, these first three terms are: 

1 +. 75000000000 · V'-1.3125000000 · V'2 • DPade22 _ 1 and DPade23 _1 are Pade 

approximants ·of the series presented in (6.7). DPade22_1 means Pade[2,2] of(6.7). 

Next, DPade22_1, DPade23_1, and DPade32_1 are written out. 

(1 +8.132560483870968·V +10.20640120967742·V2) 

DPade22 1 := 
(1+7.38l560483870968·V +5.981980846774194·V2) (6.8) 

(l-853.0243826429354 ·V -3477.479218453888 ·V2) 

Dpade23 _ 1 := 
(1 -853.7743826429354·V -2835.835931471687 · V2 + 

1001.094946384912 · V3) ; (6.9a) 

(1 -1020.37612983630·V-4838.47742459·V2 -1708.059074996-V3) 

DPade32 1 :=--------,.-------------
(I -1021.126129836·V -4071.320327·V2 ) . (6.9b) 

Nondegenerate fifth order perturbation theory was applied to the 1-dim harmonic 

oscillator with V'·x4 added in. The first excitation energy of this harmonic plus quartic 

oscillator is expressed as the following Naive Perturbation Series: 

E5(V') := 3 + 15/4 · V' -10.31250000000 · V'2 + 
61.17187500000 · V'3 -533.66455078125 · V'4 + 
-(1)'1006630.1143169 ·V's. (6.10) 
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When V' here equals .1, the first three terms grow progressively smaller. However, the 

last two terms, 533.6 · V'4 and -1006630 · V'5 , grow progressively larger in magnitude. 

It is clear from inspection and the properties of asymptotic series that when V' is in the 

order of magnitude of .2 or .1 or smaller that useful information for the energy level 

estimate can be. directly obtained from only the first 3 terms. As is immediately written 

above, these first three terms are: 3 + 3.7500 · V' -10.3125000 · V'2• DPade22_3 and 

DPade23 _ 3 are Pade approximants of the series expressed in equation ( 6.10), the case of 

the first excitation. DPade22_3 means Pade[2,2] of(6.8). Next, DPade22_3 and 

Dpade23_3, and DPade32_3 are written out. 

(3 +37.16183035714287·¥ + 74.39732142857151 ·V2) 

DPade22 3 := ----------------
- (1 +l Ll3727678571429·V + 14.31501116071430·V2); 

(3 -14882.42427584945·¥ -92240.54171072470·V2) 

DPade23 3 :=----------------
- (1 - 4962.058091949817·¥ - 24540.83712197096·V2 + 

13598.58108638621 ·V3) 

(3 -17732.28186947236·¥ -127542.5165228015·¥2 

-70673.92380614·V3) 

DPade32 3 := ------'-------------'---

{6.11) 

(6.12a) 

. - ( 1 - 5912.010623157456·V + (-l)-35120.72139532036·V2) • (6.12b) 

On the next page, a table is given in which E(V) of the quartic oscillator is 

evaluated as a function ofV. 
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Table 6.1) 

When n = 0, the Ground State Level. 

A Table in which E(V) of the quartic oscillator is evaluated as a function ofV by NPT 
partial sums, Pade approximants, and by the numerical spectrum search explained with 
equations (6.4) and (6.5). 

V . seri3 seri4 seri5 Pade[2,2] Accurate Pade[2,3] 
Value (*) 

.1 1.0670781 1.06402202 .963791191 l.06520567 1.0652857 1.0657139 

.2 1.1391250 1.09022734 -2.1171592 1.11745262 l.lt82933 l.1218277 

.3 1.2473594 .999814990 -23.356277 1.16125079 l.1640550 l.1749381 

.4 1.4230000 .640637410 -101.99573 l.19875340 1.2048479 1.2279363 

.5 1.6972656 -.21279907 -313.43414 l.2313168 l.2419573 1.2824305 

.8 3.4240000 -9.0938000 -3293.4576 1.30775761 1.3376248 1.4649341 

1. 5.6406250 -24.920410 -10048.003 1.34629859 . l.3925661 1.6109689 

1.2 9.0010000 -54.370363 -24995.008 1.37801754 1.4425051 1.7855402 

<*> Note that the 'Accurate Value' is found by· diagonalizing an 11 x 11 matrix ( or better). 

Table 6.2) 

When n = 1, the first excited level. 

A Table in which E(V} of the quartic oscillator is evaluated as a function of V 

V seri3 seri4 seri5 Pade[2,2] Accurate Pade[2,3] 
Value 

.1 3.3330469 3.2796804 -6.7866207 3.3055207 3.306903 3.3116866 

.2 3.8268750 2.9730117 -319.14863 3.5284374 3.5394276 3.5741362 

.3 4.8485156 .52583276 -2445.5853 3.7026702 3.7337016 3.8338461 
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.4 6.7650000 -6.896813 -10314.789 3.8433961 3.9031801 4.1087816 

.5 9.9433594 -23.41068 -31480.602 3.9596626 4.0547397 4.4101973 

.6 14.750625 -54.412301 -78329.97 4.0574218 4.1925630 4.7481120 

.7 21.553828 -106.57903 -169290.90 4.1408038 4.3194790 5.1335601 

.8 30.720000 -187.86900 -330040.42 4.2127809 4.4375323 5.5801733 

.9 42.616172 -307.52114 -594712.54 4.2755527 4.5482651 6.1059375 

1.0 57.609375 -476.05518 -1007106.2 4.3307842. 4.6509386 6.7357008 

Pade[2,2] for the lowest energy, or DPade22_1, DPade23_1, and the lowest 

~
H,, I-Ii,. ··d " numerical eigenvalue of ~11 HH ~ 3l. , which represents. _H to1a1. Likewise, DPade22 _3 
• l-13~ • . 

representing Pade[2,2] of the 1st excitation, DPade23_3, and the 2nd lowest eigenvalue 

rr" Hu. ··J .. . .. 
of f:1,., H,.1 ~;l . Clearly, the Pade approximants get very close to the correct answer 

: H.31 •, . 

when V' is less than or equal to 0.5. On the other hand, when V' equals 0.5, the fourth 

order and fifth order Naive Perturbation Theory series (NPT) fails miserably. Indeed, 

solving the secular equation of an Ni by Ni matrix is the most reliable (where Ni is a large 

+ integer). However, the unw:ieldiness of an Ni by Ni matrix should be considered. Given 

a particular value for V', algorithmically setting up and solving the large secular equation 

for such an Ni by Ni matrix is much more time consuming than numerically evaluating the 

Pade[2,2] and Pade[2,3] partial fractions by substituting for V'. 

Clearly, the thought of doing higher order perturbation theory is convenient in an 

academic computational setting. However, there is one source of concern for applying 

ordinary non-relativistic perturbation theory to various simple attractive potential 
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systems. There are examples in which the coefficients of the Naive Perturbation Theory 

(NPT) series grow at a rate which is faster than that of geometric growth. For the sake of 

discussion, a Naive Perturbation Theory series of simple Hamiltonian operator plus 

perturbation shall be expressed as 

(6.13) 

In some challenging examples, rn grows as quickly as (n!) in magnitude or almost 

as quickly as n-factorial as n progresses in size. In the 'anharmonic' oscillator examples 

of this chapter (e.g. quartic harmonic and even octant harmonic), rn grows approximately 

as quickly as (n!), for all eigenenergy levels. In Chapter 2 there was written assertion #1 

for Fredholm integral equations. The requirement for the reliable application of assertion 

#1 and thereby Pade approximants on integral equations requires that the Neumann series 

asymptotically grow as a geometric series. A geometrically evolving NPT series can be 

successfully analyzed and estimated through the use of Pade approximants due to reasons 

very similar to the reasons given in Chapter 2 for thejustification of assertion # 1 ( and the 

five-fold statement of qualification) for the Neumann series of Fredholm integral 

equations. When rn of (6.13) grows in an n-factorial manner, the claim of the previous 

sentence for the reliability of Pade approximants can no longer be applied with deep 

certainty. 

3. The Apparent Kinship of some Perturbative Series to Stieljes Series 

However, there still is a very good chance for the reliable application of Pade 

approximants to (6.13). There are three sources of confidence for such reliability: 
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1) The evidence of success ofPade approximants of all of the NPT series 

examples included in this chapter when compared to the precise numerical matrix 

eigenvalues of the Hamiltonian; 

2) the fact that these series grow in manner which is very similar to the manner of 

growthof a Stieltjes series with respect ton; and 

. 3) the fact that the Pade Approximants of Stieljes series, which appear similar to 

the NPTseries of this chapter, are inherently reliable, especially for larg~ N of Pade[N,N] 

and Pade[N,N+ 1] . 

Futhermore; if a perturbative series of a function is available up to order 2·N+ 1 where N 

is very large, then very often it is possible to witness the convergence of Pade[N,NJ, 

Pade[N,N+ 1 ], and Pade[N+ 1,NJ to a common value for sequentially larger values ofN. 

Several examples of functions which generate terms that are almost the same as a 

Stieljes series (Stieljes :functions) will be given. Before giving these examples of near-

Stieljes functions, the properties of all Stieltjes series in relation to Pade approximants 

will be reviewed. 

The topic of Stieljes series is thoroughly discussed m. numerically oriented 

mathematical text books such .as Advanced Mathematical Methods for Scientists and 

Engineers by Bender and Orzsag .[13a]. A Stieltjes series can be precisely expressed as: 

w w 

Stiel(z) = L an·(-xt . an is equal to J fun(t) · tn · dt, where fun(t) in an arbitrary but 
n=O 0 

well behaved function oft Let tis define Ft(x): 

w 

Ft(x)= J fun(t) l(I +x· t)-dt. (6.13b) 
0 
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Pade approximants can be taken of Stiel(x) with respect to x. Chapter 8 of reference 

[13.a] explains and shows the following bounds on the Pade approximants ofStiel(x): 

Pade[O, 1 ]<=Pade[ 1,2]<=Pade[N,N+ 1 ]<=Ft(x)<=Pade[N,N]<=Pade[2,2]<=Pade[ 1, 1] 

Chapter 8 explains thoroughly that limit{n-+inf} of Pade[n,n+l] ~F(x) ~limit{n-+inf} 

of Pade[ n,n]. In essence this is saying that Pade[N,N+ 1] and Pade[N,N] provide precise 

lower bound and upper bound values for Ft(x) when N is large. 

An additional property ofStieltjes functions, as is explained in reference [13.b], is 

the fact that Pade[N+ 1,N] is less than Pade[N,N+ 1] of the same Stieltjes series. 

Therefore, an extension of the inequality of the previous paragraph is: 

Pade[N+ 1,N]<Pade[N,N+ 1 ]<=Ft(x)<=Pade[N,N] <= Pade[2,2]<=Pade[l, 1] . 

Now a particular choice for fun( t) of ( 6.13b) relevant to this chapter shall be 

00 

given. Let fun(t) equal exp(-t). Then aa equals n!. In this case, Stiel(x) = L n!·(-xt. 
n=O 

This shows n factorial growth. Pade approximants are guaranteed to produce 

00 

convergently more precise approximations of what Ft(x), J exp(-t) I (I+ x · t) · dt, 
0 

actually equals at a given value of x . 

Now that the relevant properties of Stieljes functions and their Stieljes series have 

been discussed, Several examples of functions which generate terms which are almost the 

same as a Stieljes series (of Stieljes functions) will be given. These examples all 

demonstrate the same patterns of proximity and boundary formation around the correct 

value as all of the NPT perturbation series (at least those which are so far available) 

which exist for the quartic harmonic oscillator and the spherical quartic harmonic 
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oscillator. They also match the pattern of the Pade approximants taken of the NPT 

perturbation series resulting from the Hamiltonian of a harmonic oscillator plus V ·x6. 

However, the NPTseries for H{]umnonic} + V·x6 is not shown in length (See appendix c). 

The examples included in this paragraph will lead to a strong case for the Source of 

Confidence clause number 2). 

In Mathematica program files developed by the author, series were generated for 

00 00 

the functions 1/2 +V/5 -l ·V2 ·(J borr(V,t) dt ), 1/2 +V/3 +(-1)· V2 ·(J borr(V,t)dt ), 
0 0 

00 

and 1/2 -V/3-1· V2 ·(J borr(V,t)dt ), where borr(V,t) was chosen to equal exp(-t)/ 
0 

00 

(l+V·t). In accordance with (6.13b), (J borr(V,t) dt) is a Stieljes function. The Stieljes 
0 

series generated by each of these three exemplary functions is: 3q +bq·V -l·V2·(1 -l!·V + 

2!·V2 -3!·V3 + .. ), where aq=l/2 and bq E {1/5,1/3,-1/3}. Various Pade approximants were 

taken of these three series. Pade[n,n ], Pade[ n,n+ 1 ], and Pade[ n,n+ 1] were calculated for 

the cases n=l, n=2, and n=3. Plots of the values of Pade[n,n:], Pade[n,n+ l], and 

Pade[n+l,n] are given in Figures 6.1), 6.2), and 6.3). The result of these Pade 

approximant calculations is that an observed (See Figures ,6.1) and 6.2)) pattern is 

consistently followed: Pade[n,n J < exact value of function < Pade[ n+ l,n] < Pade[ n,n+ 1]. 

3q +bq·V -l·V2·(1 -1 !·V +2!· V2 ••. )not a Stieltjes series. However, it is very similar to a 

Stieltjes series, which always follows the inequality Pade[N+ l,N]<Pade[N,N+ 1 ]<= 

Stieltjes_function(x) <=Pade[N,N]: This pattern of inequality is not completely different. 
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On the next two pages, Figures 6.1 ), 6.2), and 6.3) are shown. The pattern of 

Pade[n,n] < exact value of function< Pade[n+ 1,n] is clearly manifested. 
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The exact value forl/2 +V/3 - V2·(1 -l!·V +2!·V2 -3!·V3 + ... ) 
and Pade approximants such as Pade[2,2], Pade[3,2], and Pade[2,3] 
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The exact value for 1/2 +V/5 - V2·(1 -1 !·V +2!·V2 -3!:v3 + ... ) 
and Pade approximants such as Pade[2,2], Pade[3,2], and Pade[2,3] 
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The exact value for 1/2 -V/3 - V2·(1 -l!·V +2!·V2 -3!·V3 + ... ) 
and Pade approximants such as Pade[2,2], Pade[3,2], and Pade[2,3] 

· Tables 6.1), 6.2), and 6.3) completely and unambiguously demonstrate the 

pattem Pade[ n,n ]< exact value of energy < Pade[ n,n+ 1] for the NPT series of the 

quartic harmonic oscillator. As was earlier explained, Table 6.1) involves the 

perturbation series of the ground state, and Table 6.2) involves the perturbation series 

of the first excitation. By inspecting the RHS expressions of (6.9b) and (6.12b), one can 

see that by substituting small as well as larger positive values of V that one shall get 

fruitful values for comparison from Pade[3,2]. Such a comparison within Tables 6.1) 

and 6.2) will definitely show that also for the quantum mechanical perturbation theory 

series that the Pade approximants form the following inequality: Pade[n,n]< exact< 

Pade[n+ 1,n] < Pade[n,n+l}. This exactly the same inequality that exists for the series of 

• 2 c"'J ei(--t) ) . generated by the function an + bit -1 · V · dt. wrth respect to V. 
0 (1 +V•t) 
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Parle approximants are reliable and are very accurate at high enough order for the 

co 

series generated by an +bn -l ·V2·(J borr(V,t) dt). Since the Parle approximants of the 
0 

NPT series for the quartic hannonic oscillator have the same bounds (Parle[ n,n ]< exact < 

Pade[n+l,n] < Pade[n,n+l]) and since Tables 6.1) and 6.2) demonstrate successful 

numerical results, source of confidence clause number 2) in reference to the quartic 

harmonic oscillator is highly plausible. Furthermore, it is highly plausible that Pade 

a:pproximants are reliable and are very accuratewhen the order ofVn.is sufficiently high 

for the NPT series involving the quartic harmonic oscillator. 

The virtually guaranteed success of Stieltjes series, the fact that tlie perturbative 

quantum mechanical series in this chapter grow approximately at a rate of n-factorial 

(Many Stieljes series grow at the approximate rate ofn-factorial. ), and the fact that there 

exist near-Stieltjes functions which yield the same type of results for Pade approximants 

as the perturbative quantum mechanical series in this chapter all favor in combined 

consideration the hypothesis that Parle approximants can be applied to the perturbative 

quantum mechanical series which represent the spectral energies of the quartic harmonic 

oscillator. However, the success ofaUofthe examples and calculations of chapter 6 does 

not prove such a hypothesis; it merely strengthens it. 

4. Introduction to Walker Green's Function Series Iteration 

4a. Orientation 

The Raleigh Schrodinger procedure for Perturbation Theory, as used for equation 

( 6.10), is the commonly taught formalism for estimating energy level shifts of one-body 
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or two-body quantum mechanical systems. There is at least one other formalism which 

described perturbative energy shifts in term of a series. This formalism is developed from 

Green's functions generated by unperturbed eigenstates. The proof and formalism are 

discussed in chapter 10 of Matthew and Walker's mathematical methods text [14]. 

· For very small V, the following series equation enables us to calculate the 

I· corrected energy Lam{m,V) as a function ofV. 
! 

Lam(m,V)=Lo{m)+V·G(m,m)+V2· L G(m,n)·G(n,om) + 
· n>'m Lam(m,V)- L (n) 

v3. LL G(m,n~·G(n,p)·G(p,m) 
0 

+... (6_14) 
n>'mpo'm (Lam(m,V)- £ (n)) · (Lam(m,V)- L (p)) 

This series is refered to the Walker Green's Function Series in this chapter (3>_ It should 

be noticed that Lam(m, V) is found on both the right hand side as well as the left hand 

side of (6.14). This makes it very difficult to solve (6.14), even when (6.14) is written out 

only to the third order. However, one can make an initial guess to what Lam(m, V)/Lo(m) 

should equal. Let "sea" equal the initial guess for Lam(m, V)/Lo(m) for given m and V. 

Lam( m, V) can be estimated in terms of this "sea" parameter. This initial estimate of 

Lam(in,V) is to be known as Lam(m,V,sca): 

Lam(m, V,sca)= Lo(m) +V·G(m,m)+V2. L G(m,n)·G(n,m) + 
n.,m(sca· L 0 (m)-L0 (n)) 

v3. LL. .· G(m,n)·G(n,p)·G(p,m) + .... (6_lS) 
no'mp>'m(sca· L0 (m)- L0 (n))· (sea· L0 (m)- L0 (p)) 

Note that Y.G(m,n)= Q(m,n) (6.15f) 

in this chapter. L0 is 1,,0 in [14], and Lam(m, V) is l(m,V) in [14]. 

(ll) Note that the Walker Green's Function Series equals the Series in Brillouin Wigner P.T .. 
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4b. A Scheme for Solving a Truncated Version of Equation (6.15), which is 
partly catalogued in the Mathews and Walker Text 

There is an iteration algorithm that the author proposes in order to get very 

accurate values of the estimated Lam3(m,V,sca). If lVI is much less than ( IG(m,m)I I 

(I G(j,m)2) ), then let _sca(n) equal Lam(m, V,sca(n..:1))/Lo(m) in such a way that: 
j 

· • · . _.2 · G(m n)·G(n m) 
Lam3(m, V,sca(s)) = L0(m) + V·G(m,m)+v · L . ' · ' + 

m•m(sca(s- I)· L0 (m)- L° (n)) 
y3. · . G(m,n)·G(n,p)·G(p,m) . 

·· ~~ (sca(s-1) · L0 (m)- L0 (n)) ·(sca(s- I)· L0 (m)- L0 (p)) 

(6.16) 

The RHS of (6.16) needs to be calculated. Next, Lam3(m,V,sca(s)) needs to be re-

expressed as a Taylor series expanded with respect to V up to the third order. This is 

Series(Lam3(m,V,sca(s)), V,3). Subsequently, the ratio 

sca(s+ 1) = Series(Lam3(m, V,sca(s)), V,3)/L 0(m) (6.17) 

needs to be found. Then one should calculate Series{Lam3(m, V,sca(s+ 1 )), V,3) by using 

equation (6.15). Again subsequently, the ratio 

sca(s+2) = Series(Lam3(m, V,sca(s+l)),V,3)/L0{m) 

needs to be found. This iteration should be earned out at least two times. Four times is 

completely sufficient. This method of subsection 4b.) is very effective for finding the 

corrected energy Lam(m, V) and is within the requirements for the approximate 

convergence of a truncated perturbative series, so long as if the following two conditions 

are met: A.) the initial guess for the scaling factor sca(first) needs to be reasonably close 

to the correct choice for sca(n); and B.) (V)2 • L G(j,m)2 needs to be much less than 
j 
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V·IG(m,m)I. Condition B.) can be re-stated as V << IG(m,m)I I ( L G(j,m)2). The 
. j 

choice s~a(first) = 1 is to be avoided. A good starting choice for sca(n) is sca(l) = (L0 (m) 

+V·G(m,m))/L0 (m), presuming that V << IG(m,m)I I ( L G(j,m)2 ). 
j 

From ordinary perturbation theory, as is discussed in the two texts by Merzbacher 

[ 15. a] . and Liboff [ 15. b], the cof(ected energy Lam(m, V) can also be expressed as: 

Lam(mV). =L0(m)+V· G(mm)+V2 ·"G(m,n)·G(n,m) + 
_·· ' ' f;:, L0 (m) ~ L0 (n) 

v3 G(m,n)·G(n,p)·G(p,m) 
. ~°'f,(L0 (m)-L0 (n))· (L0 (m)-L0 (p)) + 

(-1) .y3."' G(m,n)·G(n,m)·G(m,m) + v"-(5 terms) .... (6.18) 
f;:, (L0 (m)-L0 (n))2 

While the RHS of equation (6.18) has five compact summation terms, equation (6.14) 

has only four compact summation terms. Through analytical review, it can be 

rediscovered that there is only one compact summation term which has v4 as a coefficient 

in ( 6.14). On the other hand, ( 6.18) has five compact suilllhation terms (See s) which have 

V4 as their coefficient. The number of compact summation terms in Naive Perturbation 

·. . 
Theory (6.18) which have V1 as their coefficient grows at least as quickly as the rate of2n 

as n increases. The number of compact summation terms in Walker Perturbation Theory 

(6.14) remains constant (one) regardless. of how large n of the V1 becomes. 

For the sake of easy reference, the expression in equation (6.14) shall be called a 

'Walker Green's Function Series'. As has already been briefly explained in the beginning 

of this chapter on pg. 71, the expression in equation (6.18) is to be called a Naive 

· Perturbation Theory series. 

s The five compact summation terms for the v4 contribution are available upon request. 



86 

4c. A Scheme for Solving a more Effective Version of a Truncated Equation 
(6.15) when only 6 or Less Terms are Available. 

The algorithm discussed in the last two paragraphs is a method for the 

approximate solving of equation (6.14) when Vis very small. Now an iterative method 

similar to (6.16) and (6.17) shall be introduced and explained for cases where Vis not 

necessarily so small. Let us look at (6.15) again. 

Lam(m,V,sca)= L0 (m) +V · G(m,m) + v2 · L G(;n) · G(n,~) + 
· n"'l'm (sea· L (m,V)- r.; (n)) 

v3. · G(m,n)·G(n,p)·G(p,m) 
. ~~(sea· L0 (m)-L0 (n))·(sea· L0 (m)-L0 (p)) + 

(6.15) 

It is a very useful idea to re-express the RHS of ( 6.15) of as a Pade approximant, where 

V is the adjustable expansion parameter. It is straight forward to picture how this would 

be done on (6.15) when 'sea' is an initial numerical guess. However, a second, third, and 

maybe a fourth value will be assigned to sea. Just as in (6.16) (found two pages back), 

sea will serve as the vehicle of iteration in a scheme in which this iterated parameter will 

be inserted intothe RHS of(6.15) several times. The main advancement in this scheme is 

that the RHS of (6, 15)will be replaced by a Pade approximant in which Vis the 

expans10n. 

4d. The Algorithm Required in order to Realize the Concept from 
Subsection "4c". 

Let us look at the optimization scheme algorithm for the iteration method inspired 

by (6.16) and (6.17). We recall equation (6.15). For the purposes of the interesting 

examples in this chapter, (6.15b) needs to be expanded all the way out to the V5 term. 
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Lam5(m, V,sca) =Lo(m) +V·G(m,m) +V2· L G(m,n)·G(n;m) + 
.· . nc1cm (sea· L° (m)- L0 (n)) 

v3. LL G(m,n)·G(n,p)·G(p,m) ' : + ... +vS.:rLLL" ... ". (6.15b) 
nctcmp,;tm (sea· L0 (m)- L0 (n))· (sea· L0 (m)- L0 (p)) 

We benefit from some specific function definitions: Pade22(f(V),V) is the approximant 

Pade[2,2] taken off(V}, where Vis the expansion parameter. Pade23(f(V),V) is the 

' ' ' 

approximant Pade[2;3] taken off(V), where Vis the expansion parameter. 

Pade32(f(V},V} is the Pade appoximantPade[3,2]. Now several algorithmic functions 

.shall be introduced. These algorithmic functions serve as the essential operational 

mechanisms of the optimization scheme algorithm. First note the following two mini-

defn's: For almost all examples in chapter 6, it suffices to set 'N' equal to 5. The 

operational function 'Expand' is defined as Expand[ f(V},V,N], where 

Expand[ f(V}, V, N] = 
f(O)+ 1 · f (0) · V+ 1/2! · f'(O) · V2+ ... + 1/N! · f(N) (0) · yN. 

The task at hand is to establish the equality 

~c·a · L0(m)= Pade23( Lam(m,V,sca},V). (6.19} 

First of all, a fairly good numerical guess for sea should be made. A good way to obtain a 

good guess for sea for a harmonic oscillator plus polynomial system is to solve equation 

(6.15b) in terms of sea for the specific Gase where V equals l/2·L0(m). It is suggested to 

use the secant method to carry out this root search of sea. 'Next, it is good to plug this 

, numerical guess for sea into functional execution equation ( 6.15b) one additional time. 

firstpade23(V,sca) =.Pade23( Lam5(m,V,sca},V) (6.20) 

seril(V, sea)= Expand[Lam5(m, V, firstpade23(V,sca}/L0(m) }, V, Num] (6.21) 

seconpade23(V,sca) = Pade23( seril(V,sca},V) (6.22) 
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seri2(V,sca) = Expand [Lam5(m,V, seconpade23(V,sca)/L0(m) ), V,Num] (6.23) 

thirdpade23(V,sca) ~ Pade23(seri2(V,sca),V) (6.24) 

seri3(V,sca)= Expand [Lam5(m, V, thirdpade23(V,sca)/L0(m) ), V, Num] (6.25) 

. . . continue along ... 

Nthpade23(V,sca) = Pade23( seri{N_minus_l }(V,sca),V) (6.26) 

seriN(V,sca) = Expand [Lam5(m, V, Nthpade23(V,sca)/L0(m) ), V, Num] (6.27) 

In order to carry out the optimization scheme algorithm successfully, firstpade23(V,sca), 

seril, seconpade23(V,sca), seri2, thirdpade23(V,sca), seri3, and fourthpade23(V,sca) 

should be evaluated in seqqential order. The idea behind all of this is to find a nearly 

correct solution to represent Lam(m, V) in (6.14). Lam(m, V,sca) is a very close 

approximation to Lam(m,V) of (6.14). As is explained in the Mathews and Walker text 

[14], Lam(m, V) also is the correctm-:th level eigenvalue of the Hamiltonian studied, 

where the perturbing potential of magnitude V is included. 

Next, the results of Calculations which include Pade approximants and optimized 

Pade approximants is discussed and presented in numerical terms. 

5. Results of Calculations. 

There should be negligible difference between thirdpade23(V,sca) and 

fourthpade23(V,sca), as seconpade23(V,sca), thirdpade23(V,sca), and 

fourthpade23(V,sca) are designed to be quickly converging to a common answer. It is 

good for the initial guess of 'sea' to be carefully obtained in manner similar to the 

procedure described in subsection 4b, which starts in the printed vicinity of equation 

(6.16). However, even ifsca·L0 (m) and Pade23( Lam(m, V,sca),V) disagree with each 
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other by as much as 3 percent, the sequence seconpade23(V,sca), thirdpade23(V,sca), 

and fourthpade23(V,sca) will converge to the same common answer as if the choice of 

sea caused a 1/2 percent initial error. Eqn (6.19) alludes to the desire for agreement 

between sca·L0(m) and Pade2J( Lam(m, V,sca),V ). This statement is about to be 

demonstrated as being realistic in all of the spectral energy calculations presented in this 

final major section,# 5, of this chapter. 

The optimal Pade approximant functions firstpade23(V,sca), seconpade23(V,sca), 

thirdpade23(V,sca), and fourthpade23(V,sca) shall be referred to by the names 

firstpade23(V), OptPade23(V), OpOptPade2J(V), and OpOpOptPade23(V), respectively 

in the next few paragraphs. Some of the successful results of the optimization scheme 

algorithm applied to the one-dimensional harmonic oscillator shall now be demonstrated. 

. . 

A table and graphs will be presented in which E-corrected(V,m), seri4(V,m), Pade[2,3] 

of seri5(V,m), Pade[3,2] of seri5(V,m), OptPade23(V) at m and OpOptPade23(V) at m. 

It will be seen from the numerical data that OptPade23(V) and OpOptPade23(V) will be 

even closer to E(V,m) than Pade[2,3] ofseri5(V,m) is. 

Energy level number m = 0 here. (ground) 

Naive Perturbation Series: 

ES(V) := 1 + 3/4·V -1.312500000000000 ·V2 + 5.203125000000000·V3 + 
(-1)"30.561035156250000·v4 - 10023.082975388·V5 . (6.28) 

Lam(m=O,V, L1187): =I+ .75000000000000·V - 1.3497292852074·V2 + 
5.71457138071564459·V3 - 34.521611060067·v4 + 
262.299588070097·V5 (6.29) 



firstpade23(V, 1.1187):= 
( 1 +l l.27840723109600·V +23.28916552015348·V2) 

( 1 + 10.52827840723110·V +16.74258938203889·V2 + 
(-l)-4.061013850845145 V3). (cf 6.20). 

OpOptPade[2,3]: =. 
(1 +1L062298768334 V +22.285122511754 V2) 

(l + 10.312298768334 V + 15,863398843550 V2 -
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3.5657816931888 V3) (6.30) 

In equation 6.30b ), the Taylor series of Op0ptpade[2,3] has been generated with 

respect to V out to the fifth order. 

Taylor .Series of OpOptPade[2,3] ~ 1 + .75000·V - l.3125·V2 + 
5.203125·V3 + (-l)-30.16113·V4 + 223.8113·V5 . 

Now finally let us look in Table 6.3) at the numerical results of the partial 

(6.30b) 

fractions OpOptPade[2,3] from (6.30) and OpOptPade[2,2]. The quantity CorrtNum is 

defined as the precise numerical value of the corrected energy Ermi(V) as found by 

,A I\ A 

diagonalizing the l O by 10 matrix representation of (Ho + V ); V, of course, is either 

V·r4 or V·x4. CorrtNum is in the fourth column. 

Table6.3) 

A table comparing ordinary Parle Approximants to the respective Optimal Parle 
· Approximants 

V DPade[2,2] Op0ptPade[2,2] CorrtNum OpOptPade[2,3] DPade[2,3] 

.. 1 1.06520537 1.065217852 1.0652857 l.065308122 1.06571394 

.2 1.11745262 1.117540578 1.1182933 1.118685796 1.1218277 

.3 1.16125079 l.161484673 1.1640550 1.165753269 1.17493806 



.4 1.19875340 1.199186277 1.20484792 1.209242312 1.22793626 

.5 1.2313168 1.231983692 1.24195727 1.250732168 1.28243049 

.8 1.30775761 1.309214986 1.33762481 1.371831520 1.46493406 

1.0 1.34629859 1.348289097 . 1.39256605 1.454787979 1.61096887 

1.2 1.37801754 1.380516749 .• 1.44250506 1.542612005 1.78554017 

Now the partial fractions which represent the optimized Pade[3;3] and the 

optimized Pade[3,4] are shown. These partial fractions are the best semi·analytical 

approximations of the ground state energy level presented in this thesis. These partial 

91 

fractions were difficult to calculate with a PC, so, the optimized Pade[3,3] and optimized 

Pade['.3,4] have not been calculated for any other examples besides the ground state. 

(1 +16.432997853186-V+ 65.231699776538·V2+52.980300915123·V3) 

OptPade[3,3]: = ------------------~~

(1+15.682297853186-V + 54.782476386649·V2 + 
27.273334557443·V3) 

OpOptPade[3 ,3]: = 

(1 +16.4215261870·V +65.1319296262·V2 +52.85484017·V3) 

(1+15.67152618701·V +54.690784986-V2 + 27.202504553·V3) 

(6.31) 

(1 +20.98561776412·V + 115.5690757218·V2+ 
154.3460752284·V3) 

OptPade[3,4]: = ----------------
(1 + 20.23561776412·V +101.7048623987·V2 + 

99.42355174470·V3 + (-1)·16.21861239183·\14) . (6.32) 

In equation 6.32b), the Taylor series of0p0ptpade[3,3] has been generated with 

respect to V out to the sixth order. 



Taylor Series of Op0ptPade[3,3] ~ 1 +. 750000000000·V- 1.31250000·V2 + 
+5.20312500·V3 - 30.16113274852·v4 + 223.8112786·V5 + 

92 

-1999.4641 •v6 (6.32b) 

The coefficients of (6.32b) are compared in section# 6 (starting at pg. 108) with 

the coefficients of the perturbation series algebraically constructed by Bender and Wu for 

the ground state energy [12.b]. 

The numerical values of rational fractions (6.31) and (6.32) are listed in the next 

table. 

Table 6.4) 

A Table showing the Optimal Pade Approximants, in particular OpOptPade[2,2], 
OpOptPade[2,3], OpOptPade[3,3], and OptPade[3,4], ofE(V) when n=O. 

(Note E(V) grows positively with V.) 

V OpOptPade[2,2] OpOptPade[3,3] CorrtNum OptPade[3,4] OpOptPade(2,3] 

.1 1.0652178524 1.0652808767 1.0652857 1.0652874852 1.0653081223 

.2 1.1175405783 1.1181837963 1.1182933 · 1.1183537985 l.1186857964 

.3 1.1614846726 1.1635245536 1.1640550 1.1644047064 1.1657532690 

-· 

.4 1.1991862772 1.203396003 1.2048479 1 :2059244869 1.2092423122 

.5 1.2319836920 · 1.238985777 · 1.2419573 1.2443796126 1.250732 I 681 

.8 1.3092149855 1.326833793 1.3376248 1.3495820325 1.3718315197 

1.0 1.3482890967 1.373 799514 1.3925660 1.4159944441 I. 4547879794 

1.2 1.3805167486 1.413985969 1.4425051 1.4820791599 1.5426120052 
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Energy level number m = 1 here. (first excitation) 

Naive Perturbation Series: 

V 

.1 

.2 

.3 

.4 

.5 

.6 

.7 

E5(V') := 3 + 15/4 · V' - 103125/10000 · V'2 + (61.171875000 ... )-V'3 + 
. (-1)-533.6645507812500 · V'4 -1006630.1143169 · V's . (6.33) 

Lam(m=l,V, 1.182) := 3 + (3.7500000 ... )·V -l l.86314860074428 · V2 + 
91.33004682241915 · V3 -919.3773392928851. v4 + 
10799.34913764610 · vs . (6.34) 

firstpade23(V,l.182):= 
(3 +51.38565359127636-V + 165.8842074872459·V2) 

. (1 +15.87855119709212•V +39.40092969963158·V2 + 
· (-1)-16.90464026013591 ·V3) ; 

OpOptoPade[2,3]:= 
(3 +46.28303681613·V +135.9104699873·V2) 

(1 +14.1776789387l·V +31.01889132237·V2 + 
(-1)·10.42846780116-V3 ). (6.35) 

Table 6.5) 

Table for the case n = 1 (The level of first excitation). 

· Pade[2,2] (not OpOptPad[2,2] · CorrtNum OpOptPad[2,3] Pade[2,3] 
Opto scheme) . 

3.3055207 3.306041716 3.306903 3.307199507 3.3116866 

3.5284374 3.531438673 3.5394276 3.543662961 3.5741362 

3.7026702 3.709684230 3.7337016 3.750511512 3.8338461 

3.8433961 3.855217625 3.9031801 3.944577621 4.1087816 

3.9596626 3.976599700 4.0547397 4.134740033 4.4101973 

4.0574218 4.079500103 4.1925630 4.326486101 4.7481120 

4.1408038 4.167893532 4.3194790 4.523695390 5.1335601 
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V Pade[2,2] (not OpOptPad[2,2] CorrtNum OpOptPad[2,3] Pade[2,3] 
Opto .scheme) 

.8 4.2127809 4.244671513 4.4375323 4.729465705 5.5801733 

.9 4.2755527 4.311996156 4.5482651 4.946549448 6.1059375 

1.0 4.3307842 4.371519961 4.65093864. 5.177616202 6.7357008 

Next, many graphs will be presented which display the correct spectrum and the 

· very good results from Pade approximants for the one-dimensional quartic harmonic 

oscillator. 

These graphs are presented on the next several pages. 
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Figure 6.5 

Ordinary Pade Approximants for the 4 lowest energy levels of 
the I-dimensional Quartic Harmonic Oscillator. 
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Naive Perturbation Theory Series compared to the correct 
spectral Energy Levels. 

97 

0.4 



1 

12 

10 

2 

D 

Legend Qffigure 6,6 

n=3 NPT Partial Sum -- n=2 NPT Partial Sum -
(order 4) 

Correct Value -- Correct Value --
n=l NPT Partial Sum -- n=O NPT Partial Sum 

Correct Value - Correct Value --

0 0.1 0.3 

Figure 6.6 

Naive Perturbation Theory Series compared to the correct 
spectral Energy Levels. 
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NPT Partial Sums presented for the two lowest Energy Levels. 
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Figure 6.9 

Pade Spectrum for excitation levels (n=2) and (n=3). 
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Figure 6.10 

NPT partial sums presented for 2 upper n's. 

The spherical hannonic oscillator spectrum is shown on the next few pages for the 

three lowest energy levels in the case where orbital angular momentum is l = 0. We first 

examine the example of the spherical quartic hannonic oscillator in the case where 
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orbital angular momentum l equals zero. Figures 6.11 ), 6.12), 6.13) and 6.14) are all of 

the results for the three lowest possible energy levels when I equals 0. Note that Tis the 

spectral energy level number of the spherical harmonic oscillator. 
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Figure 6.11 

Pade Spectrum (including Pade approximants) of the 3 lowest energies. 
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Now T is set equal to 1. The choice I is the smallest possible choice for T when 

the orbital angular momentum isl= 0. In figure 6.13, I does still equal zero. 
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Energy Curve for the lowest possible Level when l = 0, showing 
Pade[2,2], OpOptPade[2,3], Pade[2,3], and the correct Energy. 



i 

! 
l 
! 
I 
r··· .. -

t 

f =-·' -----· ---- ----·---··-~---.-.•-., --.... ,..- - ... --··----•• I 

i I 
[~,S.jsb6'l ,t.v V ·-·-·-···- I 

eu!sV 1:;;is1wO :~v V ! 
[t.}::Jebs9iq0q0 av V 

[c,S:}ebsct ev V 
L.~----···----~--····---· ....... +,•---... - -··-··- ___ "··-··--··, .. ,. f 

I 
I 
! 
! 
L. 
I 

( 

' ' I 
l ·,.,., 

l 
I 
I 

r 
~ .. --------------·---, ------·----· .. -. I--·---------------- --r-·-·-· ·------------..... ! .. · 

8.0 -8.0 5:.0 0.0 

V 

t.l .~ ,,iJ~il 
m1iwofi0 3) ~"' I n~rhv bv:JJ ti!cifa:,1uu t2sNoI :)r!t 10'-l ov11..0 yµ:1:;;,td · 
~· . •• . . t ~-

i{.~fl'.:)il:1 Jo~1·10:, t,ti:/ hrn; ,[2,~~]~hi}l ,[f.,S]shs<l.JqOqO ,[S:JJ~heci 

c 
;:; ,~ . 
• ,,.J) . ... 
~-
1;.--

G} .. , 
~O 

~"'< 
(0 

.,JI 

~ 
Ul 
::l 
1..lJ 

t 



105 

The lowest possible energy curve when l=O shall be refered as the 'ground orbit O energy' 

curve. 
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1 
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-1 

-2 

0 0.05 0.1 0.15 V 0.2 0.25 0.3 0.35 

Figure 6.14 

Pade Spectrum for the Ground Orbit O Energy ( Pade[2,2] - , 
OpOptPade[2,3] -, Pade[2,3] , and Exact - ) and also the 

corresponding fourth order Perturbation Theory Result - . 





106 

The Spherical harmonic oscillator spectrum is shown next for the lowest energy 

level in the case where orbital angular momentum quantum number I equals 1. In the next 

two pages we examine the example of the quartic harmonic oscillator in the second 

rotational case, where orbital angular momentum l equals one. Figures 6.15) and 6.16) 

are all of the results for the condition I = 1. 
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Pade Spectrum for the lowest Energy level when l= 1, showing 
Pade[2,2] -, OpOptPade[2,3] - , Pade[2,3] - , and the 

correct Energy 



gniworll . ! ""I m;dv.1 lin0l '•(gt~Ki :l .t2:,wo! ::irh 161 rmnt);;q?, ::;b_i1cI 
"-rl'" ~>·,-,.~ ···-~·· rr <,·1!"b·1,n ······ [f r']""~f,q-1,10n()" -·- l" <:l...,,l)f'cr ,.JJ4 J .f/. 1-r.!.i "'. lt· .... <.'"".i·.># J"l. ~- - .. ~ ,,,;,~...1 .... .... ~i!.,i:'.,_. ·l,. ·.• t'""'',~""·J....,~ .::i ~~ 

"{,:fH'.H13. :tOST!()'.) 



3 

2 

0 0.1 0.2 
V 

0.3 0.4 0.5 

Figure 6.16 

Pade Spectrum for the lowest Energy level when l=l, showing 
Pade[2,2] - , Op0ptPade[2,3] , Pade[2,3] - , 2nd order 

NPT series - , and the correct Energy - . 
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6. Comparison of the Bender Perturbation Series to the Series extracted from 

Optimized Pade Approximants. 

This section is dedicated strictly to making numerical comparisons with the older 

work of Bender and Wu. All of the results in this section involve perturbation series and 

the Pade approximant related expressions of these series for the ground state quartic 

harmonic oscillator. The Optimized Pade approximants are quoted from the equations 

written out in section# 5. From equation (6.30) we remember that 

OpOptPade[2,3]: = 

(1 +l l.0622987683344406 V +22.2851225117544846 V 2) 

(1 +10.3122987683344406 V +15.86339884355036541 V2 -

3. 5657816931887873 v3). ( 6.36) 

We remember that in section "5." the series expansion ofOpOptPade[2,3] was found. 

The perturhative series calculated by Bender and Wu takes on the following appearance: 

BenderSum(U) = 1/2 +3/4•U -21/8·U2 +333/16·U3 -30885/128·u4+ ... . (6.37) 

This represents the ground state energy curve. None of the exact perturbation series 

representations of any of the energy levels of excitation are given in reference [ 12. b]. The 

coefficients of Bender's ground energy expression come from the list on page 1233 of 

reference [12.b]. In this chapter of the dissertation, the main I-dimensional Hamiltonian 

is: (-d2/dx2 + x2) +V·x4. Bender uses the Hamiltonian (-d2/dz2 + Y4·z2) + Y4·U·z4, where 

Y4·U·z4 is the perturbation. V matches 2·U, and x matches 1/ .[i ·z. Keeping this linear 

transformation of parameters in mind, it is correct to compare 2·BenderSum(V/2) with 

the optimal Pade approximant of the ground state energy for the quartic harmonic 

oscillator as a function ofV. In terms ofV and x (x for the eigenstates), Bender's 

perturbation series·grows in the following manner: 



BenderSum(V/2)-2 = 2·(1/2 +3/4·(V/2) -21/8·(V/2)2+333/16·(V/2)3 + 
(-1)-(-30885/128)·(V/2)4 +(91673 l/256)·(V/2)5 + 

109 

(-l)-(65518401/1024)·(V/2)6 +(2723294673/2048)-(V/2)7 ... . (6.38) 

Also see page 1233 ofreference [12.b]. Numerically to the seventh order, 

BenderSum(V/2)·2 ·~ I+ .75000000·V - l.3125000·V2 + 5.2031250·V3 -

30.161133·\74 + 223.81128·V5 - 1999.4629·v6 +20777.089*V7 + .... 
(6.39) 

We rememberthat iri section# 5 the series expansion ofOpOptPade[2,3J was shown to 

equal: 

Taylor Series of0pOptPade[2,3] ::::: I+ .75000000·V - l.3125000·V2 + 
5.2031250·V3 + (-1)·30.16113·v4 + 223.8113·V5 + O·v6. (6.40) 

Clearly, there is close agreement between the serial representation of the optimal Pade 

approximant and Bender's series out to fifth order. OpOptPade[2,3J underwent two 

successive iterations. 

We should consider the results of the optimized Pade approximants 

Op0ptPade[3,3], OptPade[3,4], OpOptPade[3,4], and the Taylor series of these rational 

fractions. There is good agreement with the seventh order partial sum of the series 

BenderSum(V/2)·2. One can review from equations (6.31) and (6.32) of section "5." the 

semi-analytical expressions for OpOptPade[3,3J and OptPade[3,4] for the ground state 

energy .. 

OpOptPade[3,3J := . . 
(1 +16.4215261870·V +65.1319296262·V2 +52.85484017·V3) 

(1+15.671526187012·V +54.6907849859·V2 + 27.202504553·V3). 

(6.41) 
OptPade[3,4] := . 

(1 +20.985617764121528·V + 115.5690757218338·V2+ 
l 54.34607522835382· V3) 

(1 + 20.2356177641215284·V + 101.70486239874675·V2 + 
99.42355174470327·V3 + (-1)·16.2l86123918274·v4). (6.42) 
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OpOptPade[3,4] := 
(1 +20.99762723050·V +l 15.7541242119793·V2+ 

154. 83 3 803 02920· V3) 

(1 +20.247627230500·V+ 101.88090378910·V2+ 
99.795010927405·V3 + (-1)·16.317374593559·v4). (6.43) 

In addition to inspecting the successful numerical results of the optimized Pade 

approximants in table 6.4) of section# 5, it is instructive and encouraging to see that the 

Taylor series of the second iterated optimized Pade[3,3] (OpOptPade[3,3]) matches term 

by term to the perturbative series of Bender and Wu at more than six significant figures. 

Bender's series is shown to seventh order. (Also see equation (6.39).) 

BenderSum7(V/2)·2 = 1 + .75000000·V - 1.3125000·V2 + 5.2031250·V3 -
30.161133·v4 + 223.81128·V5 - 1999.4629·\16 +20777.089·V7. (6.44) 

Taylor Series ofOpOptPade[3,3] ~ l+.750000000·V
l.31250000·V2+5.20312500·V3 - 30.161132748522·v4 
+223.8112786·V5-1999.464 I ·v6 

Taylor Series ofOpOptPade[3,4] ~ 1+.750000000·V-
1.31250000·V2+5.20312500•V3 - 30.1611328·V4 

+223 .8112796·V5 -1999.4664·\16 + 20777. l 86•V7 

(6.45) 

(6.46) 

Table 6.6) will show in explicit numerical form the first ten coefficients of the 

series BenderSum(V/2)·2. The first eight coefficients of the Taylor series of 

OpOptoPade[3,3] and/or those ofOp0ptPade[3,4] for the ground state energy as well as 

the first ten coefficients BenderSum(V/2)-2:from (6.39) are included in Table 6.6). 
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Table 6.6) 

Table which lists coefficients of the Bender series for Ground State Energy 

Order# 0 1 2 3 4 
Bender's 1 .75000000 -1.3125000 . 5.2031250 -30.161133 

Optimized · .. 1 .750000000 .. -1.31250000 5.2031250 · -30.16113275 
Pade 

Order# 5 6 7 8 
' 

9 
· Bender's· 223.81128 -1999.4629 20777.089 ~245689.177 3256021.9 

Optimiz- 223.81128 -1999.4641 20777.186** unknown unknown 
· ed Pade 

* * 20777 .186 coines from OpOptPade[3, 4 ], which is more accurate than OptPade[3, 4] . 

.. It is worth noting that for orders · l through 5 there is agreement at least to eight 

significant figures between the coefficients by Bender and the coefficients from the 

optimized Pade approximants: For order 6, there is agreement to six significant figures 

between the coefficient by Bender and the coefficients from the optimized Pade 
. . 

approximant. For order 7, there is agreement to five significant figures. If the partial 

fraction OpOpOptPade[3,4] were iteratively constructed, it is·plausible to believe that 

there would be agreement to six significant figures for the seventh ordec However, it 

becomes very difficult to do.more than one iteration ofthe optimized Pade approximant 

[3, 4] due to limitations of available RAM on the particular PC used for research. Overall, . 

it is good to see that there is agreement to at least five significant figures for the first 

eight terms of the NPT series. 
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7. Comment on V'·x6 contributions and Closing Statement 

All of the results presented in this chapter have been for the quartic harmonic 

oscillator. However, it is oniy moderately more difficult to calculate to good 

approximation of the lowest several energy curves of the harmonic oscillator with a 

'hexic' perturbation of the formV'·x6 by using optimized Pade approximants. 

Appendix C presents the results cif the optimized perturbative calculation of the ground 

state energy of the hexic (sixth order) harmonic oscillator. The V' dependent perturbative 

series of the optimized perturbative calculation is equivalent to the series' that can be 

generated by the recursive method described by Bender and Wu in [12.b]. While this 

perturbative series of the 'hexic' energy curve quickly diverges, the optimized Pade 

approximants OpOptoPade23 and OpOptoPade33 for the 'hexic' harmonic oscillator 
. . . 

provide reasonable predictions for the energy spectrum. See· appendix C for results. This 

discussion does conclude chapter 6. 



Chapter 7 

Estimating Perturbative Coefficients in Quantum Field Theory 
by using Pade Approximants 

Pade Approximant Predictions 

the calculations of quantities. and observables requiring Quantum Electrodynamic 

and Quantum Cliromodynamic theory shall be discussed in the entirety of this chapter. 

Pade Approximant Predictions shall be used for most of the informative calculations. 
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However, in the middle of this chapter, Pade Approximant results shall be shown for the 

anomalous magnetic moment calculation of the muon. 

The method for generating Pade Approximant Predictions should be remembered 

from equation (1.13) of chapter 1. Given a series rO +rl •x +r2•x2 + ... , r(n+m+ 1) can be 

predicted usually to high level of accuracy by taking the Pade.Approximant 

prediction[n,m] ( PAP[n,m]) from the partial sum going all the way up to r(n+m) •x<n-tml_ 

We remember(l.13)·as: 

. . 

b 1, b2, b3, ... ,bm are calculated by using the method demonstrated in equations (1.6), 
. . . 

. . 

(1.7), and (1.8). In a manner consistent with equations (5.4) .and (5.5), the standard 

results forPAP[l,1], PAP[2,l], PAP[0,2], and PAP[l,2] are listed: .. . . 

I 

II 

r3 {estimated} ;:::: (r2)2/r 1 

r4{estimated} ;:::: (r3)2/r2 

. 3 2 
r3{estimated};:::: 2•rl•r2/r0-(rl) /(rO) 

(7.2a) 

(7.2b) 

(7.2c) 
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III 
2r 1 · r2 · r3 - rO · r3 2 - r2 3 

r4{estimated},= -------
(rl2 -rO·r22) 

(7.2d) 

Results I, II, and III, which are P APs for r3 and r4 ,' will be used frequently in the 

applications of this chapter. 

In ch~pter 7, the partial sum rO +rl-x +r2•x2 + ... +r(n+m-l)•x<n+m-I) + r(n+m)•x<n+m) 

shall always end up representing one of the perturbative quantum field theory expressions 

mentioned in the first paragraph. From all of the diverse examples of chapters 2 through 6 

, and all of the insights and near-theorems, it should be clear that Parle approximants and 

'PAPs are more reliable and successful when a large number of terms are supplied from a 

series than when only a small number of terms is supplied from a series representing a 

perturbative function. In QED and in QCD to a lesser extent, it is with higher order 

partial sums of series that Parle approximants and P APs are the most useful, since 

analytically one has hundreds of Feynman diagrams and then thousands of Feynman 

diagrams with complicated calculations. The material in the next several paragraphs is 

based on results.in a Physical Review D publication. [18] . 

Predicting higher order Terms in QED. 

We begin with the difference between the muon and the. electron anomalous magnetic 

moments (QED contributions)[ 19]: 

au -ae = 1.09•x2 + 22.87•x3 + 127•x4 + 570(140)•x5 , (7.3) 

where x = (ahr.) and 570(140) means.570± 140, and the coefficient ofx5 is a 

conservative estimate. The results are given in Table 7.1). It can be seen that there is a 
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beautiful agreement with the known results. Moreover the next term is predicted to be 

about 2500, and this agrees well with an estimate performed by Kinoshita 

a(12)u= 10•K3•a(6)•u(gg)= 2500(900), (7.4) 

where we take 2<= K <= 2.5. (See Kinoshita, Nizic, and Okamoto [20] for a discussion 

of this method;) For the next-next term, we estimate;; using K=2.5, 

a(14)u~l5•K4•a(6)•u(gg)= 12,500(4000). (7.5) 

NT means the next (unknown) term. NNT means the.next-pext term, or the second 

unknown term. 

Table 7.1) 

Comparison of the PAP for au-Be with the Known Results 

au-ae Equation Estimate Known result 
I 705 570(140) 
I 2558 1600-3400 NT 
I 11480 8500-16500 NNT 
II 2415 1600-3400 NT 
II .11480 8500-16500 NT 
III 2362 · 1600-3400 NT 
III 11480 8500-16500 NNT 

Next, we consider the anomalous magnetic moment ofthe electron [21]: 

· 2 . 3 4 
Be= x/2 -0.3285•x + L176•x -1.434•x . (7.6) 

The results are given in Table 7.2). 
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Table 7.2) 

Pade Estimates for a., , which are compared to known Results 

a., Estimate Known result. 
Equation 

I -4.21 -4.23 
I 1.74 NT 
I -'-2.12 NNT 
II -1.40 -1.43 
III 3.22 NT 
III -2.13 NNT 

Again there is good agreement with the known results, especially for the eighth-order 

coefficient from result II, where the prediction is -1.40 and the known result is -1.43. 

Moreover, the next term may be about 2.5. It is interesting to note that, if this is correct, 

the perturbation series for a., continues to be an oscillating series. The next term, 

predicted to be -2.12, continues this pattern. We now consider the perturbation 

expansion for 

au= x/2 + 0.7655•x2 + 24.05•x3 + 125.6•x4 + 573(140)•x5 , (7.7) 

where the x5 coefficient is a conservative estimate. The results are shown in Table 5.3). It 

can be seen that the agreement with the known values is quite good and the prediction for 

the next term and the second unknown term agree very well with the very well with the 

estimates using Kinoshita's method. (See equations (7.4) and (7.5).) 
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Table 7.3) 

P APs for au(QED), which are compared to known Results 

au Equation Estimate Known result · 

I 656 573040) 
2614 1600-3400 NT 
11925 8500-16500 NNT 

II 71.8 125.6 
2559 · 1600-3400 NT 
11925 8500-16500 NNT 

Ill 2548 1600-3400 NT 
.. ·.11929 8500-16500 NNT 

Pade Approximants applied to QED. 

The first the terms of Equation (7.3) for au-Ile can be calculated out to higher 

precision. This has been done carefully in a fourth order (w.r.t x) calculation [19],[21]: 

au-ae = 1.09433583(7)•x2 +22.869265(4)•x3 +127.00(41)•x4 . (7.8) 

diffa0verx2 = (Partial Sum of (7.8))/(x2). (Local definition). (7.9) 

As in (7.4), x equals (a.he). In some cases in which enough initial information is given, 

Pade approximants reveal more fully the functional dependence of a perturbative QED 

. . 

expression on a than the NPT series of the same QED expression. In a· SLAC 

Publication[22], the Pade approximantPade[l, 1] is taken of diffa0verx2 of (7.9). By 

plugging in the precise value of a, one obtains the value 

x2•(Pade[l,l]) = 6194839(12)•10<·12> (7.10) 

The value from the partial sum in (7.8) is: 

Sum of (7.8) = 6194791(12)•10<·12>. (7.11) 
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ae has been carefully evaluated as: 

Value of ae = 1159652173.5(24.0)•10<-12> .[22] (7.12) 

Electro-weak corrections and quantum chromodynamic hadronic corrections [23],[24] to 

the QED perturbation series (7.8) also need to be considered. These corrections are 

shown and explained in references [23] and [24]. In these references, there are two 

independent phenomenalogical results given for the hadronic correction of au. The most 

recent known results are given in (7.13) a, b, and c. 

First recorded: Aau{hadronic} = 69500(1500)•10<-12>[24]; · 

Separately recorded: Aau{hadronic} = 70110(940)• l o<-12>[24]; 

For the weak correction: Aau{E.W.} = 1510(40)•10c-i2>[23]. 

(7.13a) 

(7.13b) 

(7.13c) 

After adding (7.12) to (7.10) and after adding the small hadronic contribution of (7.13a) 

and theweak contribution (7.13c), one obtains first the phenomenalogical theoretical 

value au= 1165918022.5(1576.0)•10<-12> (7.14) 

for the anomalous magnetic moment of the muon. On the other hand after adding the 

small hadronic contributions of (7.13b) and the same weak contribution (7.13c), one 

obtains the other phenomenalogical theoretical value of 

au= 1165918632.5(1016.0)•10<-12> (7.15) 

for the anomalous magnetic moment of the muon. The two resulting theoretical values of 

au which are based on the partial sum{7.8) and the contributions of (7.13)(a,bc) are: first 

with the addition of (7.13a) plus (7.13c): l 165917975(1576)•10<-12> (7.16a) 

and secondly with the addition of (7.13b) plus (7.13c): 1165918585(1016)•10<-12>. (7.16b) 

The experimental valu,e [25][26] of au was found to be: 



119 

au{experimnt} = 1165923000(9000)•10<-12) (7. 17) 

Comparison should be made of(7.14) (which is from x2•(Pade[l,l]) with the NPT value 

effected by (7. 16a) and of (7 .15) with the NPT value effected by (7. l 6b ). Equations 

(7.17b), (7. 17c), (7. 17d), and (7. l 7e) show such comparisons: 

The closeness of results with the assistance of the Pade approximant: 

percent difference between au {experimnt} and (7. 14) := -4.269158962•10<-S> %; (7. 17b) 

percent difference between au {experimnt} and (7. 15) :~ -3.745966226•10<-3> %. (7. 17c) 

The closeness ofresults with the use of just NPT: 

percent difference between au{experimnt} and (7.16a) := -4.309899392•10<-3> %; (7.17d) 

percent difference between au{experimnt} and (7.16b) := -3.786706634•10<-3> %. (7. l 7e) 

From these comparisons, it becomes apparent that au of(7.14) and (7.15) is slightly more 

· accurate ( closer to the known experimental value) than the value of au obtained solely 

from talcing the partial sum of the QED series added to the hadronic and weak 

contributions. In summary, it can be said that the Pade[l,1]/(x2) applied to the QED 

series (7.8) leads to slightly closer agreement to the experimental au than the plain QED 

partial sum which (7.8) displays. 

In order to ever improve the ability to test and understand QED, it is 

quantitatively desirable to calculate exactly the fifth order term and to then use the fifth 

order partial'sum version of(7.8). Then in great likelihood the partial sum for au plus the 

hadronic and weak contributions, and to even closer proximity the calculation 

x2•(Pade[l,2]) of au plus the hadronic and weak contributions, will lead to a more precise 

theoretical value of a.1 which disagrees with the experimental value by only one decimal 



place with respect to the experimental value of 1165923(9)•10(-9)_ Note that this 

experimental value holds today in 1997, just as it did in 1977. [25] [26] 

Applications of PAPs to perturbative QCD 
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As our first example relevant to strong force phenomena, we tum to the beta 

function of QCD. A paper which treated the PAPs applied to f3Qco was submitted in 1993 

[18]. The QCD beta function has recently been calculated to the fourth order.[27] [28]. It 

is given by the serial expression . 

f3QCo/(g2)= (-11 +2/3•Nr)•(z) +(-102 +38/3•Nr)•(z)2 

+ (-2857/2 +5033/18•Nr-325/54•(Nr)2) •(z)3 + 

(-29243.0 +6946.30•Nr-405.089•N/ -J.49931•Nr) •(z)4 ... , (7.18) 

where z= g2/(41t)and Nris the number of fermions (quarks). For the sake facilitating the 

· clarity ofresults of the data table of this section, we conveniently use the symbol b(n) for 

the beta function over (g2) of(7.15):. 

(7.18b) 

Before the end of 1996, only bco> , b(l) , . and bc2> · of (7 .18b) were known. bco> shall be 

treated as 'rO'. b(l) shall be treated as 'rl ', and so forth. 

Brief numerical results ofPAPs are presented in Table 7.4) to predict the fourth 

coefficient for the cases when Nr = ,,5; 3, and 1. The results for NFS are very good. The 

results for NF3, and 1, although not as good, are still reasonable. For the case NF6, no 

· prediction of sign nor order of magnitude was given due to the ominous failure to predict 

the correct sign ofbc2> from b(l> and bco> with the Pade Approximant Prediction (I). (See 
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equations (7.2a) for (I).) In the cases of NF 1, NF2, through NFS, it was the fairly 

accurate results of the PAP (I) of ~2> and the numerical consistency of the PAP (I) and 

PAP (IT) of b(3) that gave the author confidence in making a rough estimate of bc3,. Before 

1996, it was helpful and conducive for discussion to use these P APs for predicting the 

' ' 

sign ofb<3> and the order of magnitude of b(3) (that is the predicted b(3) +/- 70% of the 

correct bc3> ). 

Next, Table 7.4) is presented. 

Table 7.4) 

P APs for the QCD beta Function 

PAP formula Nr PAP Known results Exact bc3> results 
for J3(n) of which exclude the 
J3orn!(l) Casimir terms *** 
I* 5 -195.0 -189.9 for b(2) -not applicable--

5 -846.3 -4826.14 for bm ** -2909.40 

Il* 5 -,841.2 -4826.14 forbm ** -2909.40 

I 3 -455.1 -643.9 ------------------
3. -6480 -12090.4 ** -9135.95 

Il' 3 -5921 . -12090.4 ** -9135.95 

I . 1 -772.3 -1155 .-----------------
l -14931 -22703.3 ** -18658.3 

n 1 -13292 -22703.3 ** -18658.3 

* The PAP formulas I and II are written out in(72a) and (7.2b). 

** The fourth order results, bc3> (for z4) were not available at the time of publication in 

which the estimates in Table 7.4) were first presented. The two references [27] and [28] 
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contain the formula for calculating bc3> as a function ofNr analytically and approximately, 

respectively. 

* * * The Casimir terms consists of the following single expression: 

N2•(N2+36)/24•( -80/9 +704/3•~(3)) + nf•N•(N2+6)/48•(512/9 -1664/3•~(3)) + 

nf•(N4,"'.6•N2 +18)/(96•N2)•(-704/9 +512/3•~(3)), where N=3. 

The exact expression ofb(3>, which is explained on pages 381 and 382 of [27], includes 

this single expression. 

PAPs applied to the Quantum Chromodynamic R ratio 

The material in this section is based on results in Physical Review E publication 

[17]. We will consider the R ratio in perturbative QCD [29 to 32]. The R ratio is defined 

as follows: 

R= 
u( e + e- ~ hadrons ) 

u(e+e- ~ µ+µ-) 

We first consider R in the general MS-type renormalization scheme given by the 

parameter t, A1= exp(-t/2)• AMS-bar . 

(7.19) 

(7.20) 

Obviously t=O corresponds to the MS-bar scheme. t= ln(41t)-y = 1.95 represents the MS 

scheme .. t equals -2:0 for the G scheme. t= 4·~(3)-11/2 = -0.692 yields the special MS 

scheme selected for reference [29]. The scale-dependent R (in the general MS-type 

scheme) is given by 

R= 3•(1)Q[Nf])2•R(t)) -1.24•(L Q[Nf])2•x3 , (7.21) 
1f 1f 



123 

where x= aJ1t and Nfis the number of fermions (quarks). We neglect the second term in 

equation (7 .21) as it is small in all cases of interest. R( t) is given by 

R(t)= 1+ x +x2•[(1.9857+2.75•t) -Nf•(0.1153 +0.1667•t)] + x3• [ 

< N:f·< c-1) •.0052+.03s4-t +.021s•t2). > + (-6.6369 +11.2964•t +7.5625-t2) + 

(-l)•Nf•(l.2001 +2.0877•t +0.9167•t2) ] . (7.22) 

For the sake of back referencing, (7.22) shall also be expressed as: 

2 3 R(t)= 1 +x•rl +x •r2 +x •r3 . (7.22b) 

Pade Approximant Predictions have been calculated for the coefficients of the series R(t) 

with respect to x'. Exact calculations and P APs of these coefficients are displayed in 

Figures 7.1), 7.2), 7.3), and 7.4). 

It can be seen that the method works very well, and we can predict with confidence 

the unknown next term (NT), r4•x4. Figures 7.1), 7.2), 7.3), 7.4)are presented on the 

next three pages. It is clear that there is almost complete agreement between the 

predictions ofr4 of the R(t) perturbative series from PAP[l,2] and PAP[2,1] in Figures 

7.3) and 7.4), especially when tis large. 
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Figure 7.1) 
Comparison of PAP derived r3 - · and the analytically 

known r3 ++- When Nf= 1. 
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Figure 7.2) 
Comparison of PAP derived r3 - with the analytically 

known r3 -a-e- When Nf=5. 
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Comparison of the PAP[l,2] Estimate ofr4 .1 .... :,., with the PAP[2,l] 
Estimate ofr4 ++and with the Estimate using PAP[0,2] r4 - When Nf=l. 
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Figure 7.4) 
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Comparison of the PAP[l,2] Estimate ofr4 ++ with the PAP[2,1] 
Estimate of r4 ++ and with the Estimate using P AP[0,2] ·--·- When Nf=5. 
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In Figures 7.1) and 7.2), we plotted the estimated and exact values ofr3 as a 

function oft for the two representative values ofNf (Nf=l and Nf=5, respectively). It can 

be seen that the agreement is excellent for t > I and improves as t increases. The reason 

for this behavior can be seeri as follows. 

By taking the Parle Approximant Prediction [1,1] of the RHS of (7.22), we obtain 

r3= r22/rl = 3.943 + 10.92•t +7.5625•t2 -Nf•( .458 +1.2962•t +o.9167•t2) 

+Nf•(ff 0133+ .0384•t +0.0278•t2) . (7.23) 
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The exact result is given by the x3 tenn in equation (7.22). It can be seen by comparing 

this tenn with equation (7.23) that the t2, t2•Nf, t2•Nf, and t•Nf coefficients agree. In 

fact, this agreement is exact. Now we understand why the estimate and the exact result 

agree so well for large t. 

The reason for the agreement of the coefficients can be seen as follows [29]. 

Consider the function given by (7.24) 

The perturbation series for D is 

D = 1 +DO•(a.J41t) +(DI -P0 •DO•ln(q2/u2))•(a.J4x)2 + 

(02 -(PI •DO +2•PO•Dl)•ln(q2/u2) +( p/•DO•( ln(q2/u2)2)•(a.J41t)3 (7.25) 

where Po and P1 are the first two coefficients of the beta function. Since t= ln(q2/(u2) ), 

one can see that (r2)2/rl= (DI -Po•DO•t}2!DO. (7.26) 

The t2 coefficient is p/•DO which agrees with the coefficient of the t2•a} term even if DO 

does not equal 1. The cross tenn µi equation {7 .25) is -2•Po •D 1 •t. This agrees with one of 

the t•(CLs)3 tenns. However, the other one does not have an Nf contribution. Thus the 

t• Nf coefficients also ·agree. Thus, part of the r3 coefficient was predicted exactly by the 

Pade Approximant Prediction [ 1, 1]. 

· Concluding Statement of Chapter 7 

In conclusion,• it has been shown how one can estimate coefficients of a perturbation 

series in perturbative quantum field theory. The results in the two QED sections agree 

well with known results for ~ - a.:, a.:, and ~-
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Pade Approximant. Predictions were less effective in providing accurate estimates 

for the QCD beta function. Nevertheless, we (the authors of Journal publication [18]) 

obtained somewhat reasonable results which are of the correct sign and the correct order 

of magnitude for the prediction of b(3) of (7 .18b) before b(3> was known analytically. 

The use ofPAPs for estimating the next term in the QCD series for the R(t) of the 

R ratio of (7.21) does show more promise than the estimates attempted on the Quantum 

Chromodynamic Beta function. The very close agreement of PAP [1,1] to the exact r3 in 

Figures 7 .1) and 7 .2) is impressive. The close· agreement of PAP [1,2] and PAP [2, 1] in 

Figures 7.3) and 7.4) is quite reassuring for the estimate of the apparently unknown value 

of r4, which is the next coefficient beyond r3 to be included in the perturbative series of 

R(t). 

In the not too far future, the value of r4 ought to be calculated analytically with the 

assistance of human mathematical prowess and a good symbolic software package such 

as Mathematica 3.0 on Linux or Unix.· Soon after this accomplishment with modest 

additional effort, the author proposes that the Pade approximants Pade[2,2], and 

Pade[J,1] be taken of the perturbative Quantum Chromodynamic expression for R(t) 

with respect to z, that is aJ41r.. Perhaps there will be close agreement between Pade[2,2] 

and Pade[3,1] as two estimates of the entire function ofR(t) when aJn is sufficiently 

small at reasonably high energies. 
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APPENDIX A 

The general formulas of Pade approximants Pade[2,3], Pade[3,2], and 

Pade[3,3] are listed among equations (8.1), (8.2), and (8.3) below. These Pade 

approximants shall be taken of the series rO +tl~x +r2·:x2 +r3·x3 +r4·x4 +r5·x5 +r6-x6 + ... 

with respect to x. In,this· appendix, rO equals roof chapter 1. rl equals r1 of chapter 1. 

r2 = r2, r3 = r3, r4 = r4, and so forth. 

Pade[2,3] equals: 

(r4 ro2 r2- ror4 r1 2 -ror23 + 2 ror2 r3 r1 -r32 ro2 +C-r4 r1 3 - r1 r23 

+ 2 r2 r3 r1 2 - 2 rl r3 2 r0-r5 r02 r2 +r0r5 rl 2 +r0r3 r22 +r4r3 ro2)x + ( 
2 r4 r0r2 2 -2 r2 r4 rl 2 - r24 + 3 r22 r3 rl- 2 r2 r32 rO- 2 rl r5 r0r2 +r5 rl 3 

- r3 2 rl 2 + 2 rl r4 r3 rO- r02 r4 2 +ro2 r3 r5)x2)f ( 
{-2 r3 r4 r2 +r33 +rl r42 -rl r3 r5 +r5 r22)x3 

+ C-rO'r4 2 +r0r3 r5 +r4 r2 2 -r2 r3 2 -:- r2 rl r5 +r4 r3 rl} i.2 

+ ( ..;.rJ r0r2 +r5 rl 2 +r3 r2 2 - r32 rl +r4 r3 rO- r4 r2 rl} x +r4 r0r2- r4 rl 2 

..;.; r2 3 + 2 r2 r3 rl - r3 2 ro) 

Pade[3,2] equals: 

(rOr2 r4- r0r3 2 + (rl r2 r4- rl r3 2 -rOr2 r5 +r0r3 r4):x 

+ (r22 r4- r2 r3 2 - rl r2 r5 +rl r3 r4-r0r42 +r0r3 r5) x 2 

+ (2 r3 r2 r4- r3 3 - r2 2 r5- rlr4 2 +rl r3 r5) x 3)f ( 
(-r4 2 +r3 r5) x2 + (-r2 r5+r3 r4) x +r2 r4- r3 2) 

(8.1) 

(8.2) 



Pade[3,3] equals: 

(2 r3 r4 r0r2- r3 3 rO- rl r0r42 +rl r0r3 r5- r5 r0r2 2 + (2 r4 r2 r3 rl - rl r33 

-r42 rl 2 +r3 r5 rt2-r22 rl r5-r0r6 r3 rl +r0r6 r22 +r0r4 r3 2 -rOr42 r2 

+r0r5 r4rl -r0r3 r5 ri) x + (2 r3 r4 r2 2-r2 r33 - 2 r2rl r4 2 -r5 r2 3 
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-r6r3 rl 2 +rl r6 r22 +rl r4 r3 2 +r5 r4 rl 2 +rOrlr4 r6-r0rl r52 +r0r5 r32 

- r0r3 r42-rOr3 r2 t6 +r0r4 r2 r5) x2 + (3 r32 r4 r2- r34 - 2 r3 rl r42 

+ 2 rl r32 r5- 2 r3 r5 r22 - 2 r2 r6 r3 rl +r6 r23 -r42 r22 + 2 r2 r5 r4 rl 

+rI2 r4 r6-rl 2 r52+r0r43 - 2 r0r4 r3 r5-r0r2 r4 r6+r0r2 r52 +r0r6 r3 2) 

x 3)f ( (r43 - 2 r4 r3 r5- r2 r4 r6 +r2 r52+r6 r32) x 3 

+ (rl r4 r6- rl r52 +r5 r32 -r3 r42- r3 r2r6 +r4 r2 r5)x2 

+(-r6 r3rl +r6 r22 +r4 r32 - r42 r2 +r5 r4 rl -r3 r5 r2) x + 2 r3 r4 r2-, r3 3 

· ·""" rl r42 +rl.r3 r5- r5 r22) 

(8.3) 

It ought to be remembered that equations (1.9) of chapter 1 give the full formula 

inFini 

for Pade[2,2] of the series L ri * l . 
i=O 

numeral 
Pade[2,2] equals: --

denom 

. 2 2 2 · numerat = ro r3 r1 -ro r2 + x·r3 r1 - x·r1 r2 -- x·ro r1 r4 + 

(8.4) 

__ 2 2 2 2 2 2 2 __ 2 3 x·ro r2 r3 + x ·r4 ro r2 - x ·r4 r1 + ·x ·r2 f3 r1 - x ·r3 ro + x ·r2 . 

(8.5) 

Next, a sequence ofPade Approximant Predictions is given for: Pade[l,2], 

Pade[2,1], Pade[2,2], Pade[3,2], Pade[2,3], and Pade[3,3], and Pade[3,4]. The Pade 

Approximant Prediction [n,m] shall be written as PAP[n,m]. 

PAP[l,1] = (r2)2/(rl) . (8.6) 
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PAP[l,2] ~ -r2·(-r22 +rl·r3)-r3·(-r0-r3+rl·r2) (S.7) 
r0-r2-rI2 

PAP[2,1] = (r3}2/{r2) . {8.8) 

~r3·(-r32 +r2·r4)-r4· (-rl~r4 +r2-r3) 
P AP[2,2] = (8. 9) 

rl·r3-r22 

· PAP[2,3] = 

(-r3 (r3 3 - 2 r3 r2 r4 +rl r4 2 - ~l r3 r5 +r5 r2 2) 

- r4 (-r0r4 2 +r0r3 r5 +r22 r4- r2 rl r5 ~ r2 r3 2 +r3 rl r4) 

- r5 (-r5 r0r2 +.r5 rl 2 +r3 r2 2 - rl r3 2 +r4 rOf3...., r2 rl r4))f ( 

-r23 + 2 r2 rl r3-ri2 r4- r0r3 2 +r0r2 r4) 

(8.10) 

-r4. (-r42 + r3. r5)- r5. (-r2. r5 + r3. r4) 
PAP[3,2] = 2 (8.11) 

r2·r4-r3 

PAP[3,3] = 

(-r4 (-2 r4 r5 r3 +r43 +r2 r52 - r2 r4 r6 +r6 r3 2) · 

- r5 (-rl r52 +rl r4 r6 +r5 r32 -r3 r2 r6- r3 r42 +r5 r4 r2) 

· - r6(r6 r22 -r6 rl r3 +r4 r3 2 - r4 2 ;2 +r5 r4 rl- r5 r3 r2))f ( 

-r5r2 2 +r5rl r3-r33 +2r3 r4r2-r4 2 rl) 

(8.12) 
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PAP[3,4]= 

(_,4 (_,1 r.53 +r22 r62+r52 r32-r33 r7 +r44- 2 r2 r42 r6- 3r5 r42 r3 + 2 r4 r2 r52+2r32 r4 r6 

+2r4 r6 r5 rl +rl r3 r5r7-rl r3 r62-r42 rl r7-r22 r5 r7 + 2 r2 r4 r3 r7- 2r2 r6r5 r3)-,s( 

-2 r0r4 r6 r5 +r0r53-rOr3 r5r7 +r0r3 r62 +r0r42 r7-r4 r22 r7 +r5 ,22 r6+r32 r7r2 

-r2 rl r62- 2 r.52 r2 r3 +r42 r2 r5+r2 rl r5r7 +r42 r6 rl +r3 rl r6 r5 +2 r4 r32 r5-r52 r4rl 

- r33 r6-r3 ,i-r3 rl r7 r4)-,6(rOr2 r5r7-r0r2 r62 +rOr6r42-rOr4r52-rOr4 r3 r7 

+"rar6 r5 r3 +r4r22 r6- r22 r3 r7-r43 r2 +r2 rl r7 r4-r2r6r5 rl +r32 r6 r2 +r42 ,32 

+r42 rl r5-3r3 rl r6r4-r5r7rl 2+r52 r3 rl +r62 rl2+r32 rl r7-r33 r5)-r7(-rOr2 r4r7 

+r0r2 r5r6-r0r52 r3 +r0r32 r7-r0r4 r3 r6 +r0r42 r5+r7 ,23-,22 r3 r6-2 ,22 r5r4 

+r2 r32 r5 + 2 r2 ,42 r3 +r2 r52 rl- 2r2r3 rl r7+r2 r4 rl r6-r43 rl-r33 r4-r5 r6rl2 

+r32 rl r6+r4 r7 ,12))f (r0,2 r4 r6-r0r2 rs2-rOr32 r6-r0r43 + 2r0r5 r4r3-r6 r23 

+ 2 r2 2 r5 r3 +r22 r42- 3 r2 r4r32- 2 r2 r5r4 rl + 2r2 r3 rl r6 +r52 rl 2+r34 +2r42 r3 rl 

- 2 r5 r32 rl-:- r4 r6 ,12) 

(8.13) 
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'Sea' equaJs approximately 1.182. V equals 1/5 in this example. In all of this 

text, a one dimensional quartic harmonic oscillator is defined as a harmonic oscillator 

whose potential energy is modified by the additional term V'·x4• The estimated ground 

state of a quartic harmonic oscillator is: 

.7511255444649425 %1- .03045053710822796 (4 . .x 2 - 2)%1 

- .002272479705501470 ( 16 . .x4 - 48 . .x 2 + 12.) o/o 1 

- .0001373877831248834 (64. x 6 - 480 . .x4 + 720. x 2 - 120)%1 

- .5961771313873175 10-5 (256 . .x8 - 3584 . .x6 + 13440. x4 -13440. x2 + 1680.)%1-
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.9638767990754212 10-7 ( 1024 . .x 10 - 23040 . .x8 + 161280. x6 -403200. x4 + 302400. x2- 30240)%1 

- .4812018743154766 10-9 (4096. x 12 - 135168. x lO + .1520640 10 7 x8 - .7096320 10 7 x6 

+ .13305600 108 .x4 - .7983360 10 7 x 2 + 665280)%1 

% l := e -.5000000000000000 X 2 

Note that the symbol '% 1' signifies exp(-1/2•x2 ). 

Mathematical expression (9 .1) comes from the following representation of a 

perturbative series: 

'P(m, V) = 'Po(m) + V . L G(m,n). 'Po ~n) + 
n,,,mLam(m,V)-I.; (n) 

y2.LL · . G(m,nJ·G(n,p),'P0 (p) 
0 

+ 
n,t,mp,t,m(Lam(m,V)- £ (n)) · (Lam(m,V)-£ (p)) 

(9.1) 

y3. L LL oG(m,n). G(n,p). G(JJ;q). 'Po(q) o ' 
n,t,mp,t,mq,t,m(Lam(m,V)- L (n)) ·(Lam(m,V)- £ (p)) ·(Lam(m,V)- £ (q)) 

where Lam(m, V) = Sca•L0(m) . (9.2) 
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Vis the adjustable strength of the perturbation. It should be clear that this perturbative 

series has been written out to the third order of V. Sea can be considered a rather 

insensitive :function of V. In this appen~ Sea has been set equal to the constant value 

of 1.182. If V equal 25/100 rather than 1/5 with Sea still set equal to 1.182, the x 

dependent results from expression (9.1) are still very good. Taking Pade approximants of 

the series in equation middlium results in even more precise expressions for the corrected 

ground level eigenstate 'P(m, V). 

It .will be explained in chapter 6 that the Hamiltonian for 'P{m, V) is: 

fr = (-d2/dx2 + x2) + V'·x4 • The ground state is 'P0=1/((nf4)•exp(- 1/~), and the 

corresponding Hamiltonian part is: (-d2/dx2 + x2 ). 
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APPENDIXC 

The }.,.dimensional hexic (sixth order) anharmonic oscillator example has a non-

relativistic Hamiltonian of the following form: 

H = (-d2/cb(' + x2) + V'·x6 , (10.1) 

where V' ·x6 is the perturbation. Optimal Pade approximants OpOptoPade[2,3] and 

OpOptoPade[3,3] (See chapter 6) have been calculated by the author. 'Partial Sum-5' is 

defined as the Taylor series of OpOptoPade[2,3] calculated all the way out to the fifth 

order with respect to V'. Op0ptoPade[3,3], which was generated by using (-d2/cb(' + x2) 

as the sourceHamiltonian and V'·x6 as the perturbation, was found to equal the following 

approximation: 

1. + 330.70629531100 v + 19530.460544024 v2 + 145663.31125222 v3 

1.+ 328.83129531100 v + 18941.206552816 v2 + 117916.56460719 v3 

(10.2) 

Table 10.1) presents the numerical results for the ground state energy curve of the hexic 

(sixth order) anharmonic oscillator as a function ofV'. V' ranges from 0.010 to 0.400. 

OpOptPade[3,3], OpOptPade[2,3], tb,e accurate numerical spectral solution (Matrix 

perturbation theory), and 'Partial Sum-5' are included. 
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Table 10.1) 

The Ground State Energy Curve of the Hexic Harmonic Oscillator as a Function 
of the V' of the Perturbation Term V'·x6 

V' Op0ptpad[2,2] Op0ptpad[3,3] Correct OpOptpad[2,3] Partial 
Numerical Sum-5 
Value 

.0100 l.0167006723 · l.0167327438 1.01674 .. 1.0167618210 1.01762054 

.0200 l.0305136592 · 1 !0307630468 1.03090 1.0311365003 1.06740993 

.0250. l.0366161960 l.0370588083 1.03734 l.0378343516 1.1.5449503 

:0500 l ;0612898525 l.0633090088 .· 1.06538 l.0690724201 5.24199021 

.1000 1.0928577335 1.09913 7223 7 1.10924 1.1293709422 143.142854 

.1500 l.1122290121 1.1225710481 1.14437 l.1929614129 1103.44810 

.2000 1.1253321830 1.1391144363 1.17447 1.2625602570 4698.69986 

.3000 1.1419304475 1.1609343594 1.22553 1.4269013644 36084.6504 

.4000 1.1520090416 1.1746834602 1.26879 .· 1.6386073341 152946.484 

It was explained chapter 6 that Carl Bender's publication [12.b] includes a list of 

many of the perturbative coefficients generated for the quartic harmonic oscillator. 

However, Carl Bender's publications [12.b] and [12.c] do not include any specific list of 

· an exact perturbative series generated for· the hexic anharmonic oscillator: The author was 

not able to find any publications by Bender from the 1970's or later which is dedicated 

specifically to the hexic anharmonic oscillator. 
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APPENDIXD 

The number of terms in the coefficient g { n} [ u] from the serial expression for the 

H-function of chapter 3 has been partially discussed in chapter 3. Htn>Cu,W2) equals gO[u] 

+ W2·gl[u] + (W2)2-g2[u] + ... + (W2t·g{n}[u], where W2= ro/2. Asymptotically, the 

number oftemis in each g{n}[u] as an integer numerical :function ofn grows as 

Constant·4n. The one table jn this appendix gives list of this number ofterms, as found by 

use of the recursive counting algorithm (see relationship (3.6) in chapter 3). This one 

particular table also gives the successful estimates for the number of term by a method 

very similar to but more specialized than the method of Pade Approximant Predictions. 

This method involves AsymptoticPade Approximant Predictions (APAP's). Asymptotic 

Pade Approximant Predictions are introdu~d and explained chapter 5. 

Now·let us examine the results of the predictions for the number of terms in a given 

g {n} [ u]. It was only for values of n larger than 16 where disagreement for the number of 

terms occurred between the AP AP results and the Analytical predictions. 

Compilation of the Number of terms for the first ten 
· Perturbative Coefficients of the H-function 

Value Analytical APAP 
of Recursive Results 
Ordern .· Results 
1 .1 N.A 

.2 2 N.A 
3 5 N.A 
4 14 14 
5 42 42 
6 132 132 
7 429 429 
8 1430 1430 
9 4862 4862 
10 16796 16796 

N.A =Not Available. 
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