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CHAPTER I 

PERSPECTIVES AND OVERVIEW 

Introduction 

Lyme borreliosis is the most commonly reported arthropod-borne infection of 

humans in the United States (CDC, 1993; Spach et al., 1993). In the United States, this 

malady was first described by Steere et al., (1977) who reported an epidemic, initially 

suspected to be juvenile rheumatoid arthritis, in the children of three communities in and 

around Lyme, Connecticut. However, geographical clustering of cases and presence of a 

skin rash in some of the patients was suggestive of an arthropod borne infection (Steere et 

al., 1978a, Steere et al., 1978b). These observations were confirmed and it was found that 

the causative agent of Lyme borreliosis is a novel spirochete, Borrelia burgdorferi, which 

is transmitted to the vertebrate host following the bite of infected ixodid ticks (Burgdorfer 

et al., 1982, Barbour et al., 1983a and b, Johnson et al., 1984a). Tick vectors include 

Ixodes ricinus and Ixodes persulcatus in Europe, Ixodes pacificus in the western US, and 

Ixodes scapularis in the Eastern and Midwestern US (Sigal and Curran, 1991). The tick 

originally described as I dammini has been determined to be conspecific with I 

scapularis (Oliver et al., 1993). 

A total of 40,195 cases of Lyme borreliosis were reported to the Centers for 

Disease Control from 1982 to 1991 (CDC, 1993). In 1992, Lyme borreliosis accounted 

for more than 90 % of all vector-borne illnesses reported in the United States with 45 

states reporting at least one case (CDC, 1993). The case density is highest in the coastal 

northeast between Maryland and Massachusetts, in the upper Midwest in Wisconsin and 



Minnesota, and in the West in California and Oregon (CDC, 1993). In Europe, Lyme 

borreliosis has been reported from Austria, France, Germany, Sweden, Switzerland, and 

Russia; and in Asia from China, Japan, and Siberia (Nocton and Steere, 1995). 

In the United States, the larvae of vector tick Ixodes sp. usually get infected after 

feeding on B. burgdorferi infected white-footed mouse Peromyscus leucopus during late 

summer (Levine et al., 1985, Wilson and Spielman, 1985). The mouse acts as a reservoir 

host since it can remain spirochetemic without mounting an inflammatory response 

(Levine et al., 1985). The spirochete stays in the gut of the replete larvae through out 

winter and the resulting infected nymph (transstadial transmission), takes its blood meal 

in late spring or early summer preferably from white-footed mice (Wilson and Spielman, 

1985). This feeding can infect previously uninfected mice which serve as reservoirs for 

subsequent generation of larvae later in the summer, however, accidental attachment of 

these nymphs results in transmission of spirochetes to humans (Levine et al., 1985). The 

nymphs have to remain attached to the host for at least 48-72 hours before the spirochete 

can be successfully transmitted (Ribeiro et al., 1987). Adult ticks although capable of 

transmission of disease usually do not feed on humans and prefer white-tailed deer, 

Odocoileus virginianus (Wilson et al., 1986). 

Lyme borreliosis is a multisystem inflammatory disorder of humans and presents 

varying clinical picture during the course of infection (Steere, 1989). The pathognomonic 

initial skin rash called erythema chronicum migrans (ECM), arising after the infectious 

tick bite, is present or recalled by 50-70 % of patients. This early stage is characterized by 

symptoms such as fatigue, malaise, lethargy, headache, myalgia (muscle pain), arthralgia 

Goint pain), and regional/generalized lymphnadenopathy (Steere et al., 1978b; Sigal, 
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1992a). Several serological tests such as indirect fluorescent antibody test, enzyme linked 

immunosorbant assay, Western blotting combined with history and clinical picture can be 

used at this stage to confirm the diagnosis (Magnarelli, 1995). In the case of failure to 

diagnose and successfully treat the disease with antibiotics at this stage, the clinical 

course progresses to the second stage called early disseminated disease which can have 

associated neurologic symptoms (10-15 % of untreated patients) and cardiac 

manifestations (8 % of untreated patients) occurring within days to 10 months following 

tick bite (Sigal, 1992a). The third stage known as chronic disease has musculoskeletal 

manifestations which may not become apparent for months to years after initial infection 

(Steere et al., 1987). Symptoms may sometimes persist or reappear after treatment, 

particularly in later stages of the disease, and sometimes patients may be refractory to 

therapy (Steere, 1989; Dattwyler and Halperin, 1987). 

Development of a practical and efficacious vaccine for this disease is needed. An 

important aspect of research needed to achieve this goal is a basic understanding of 

pathogenesis of this disease, particularly the tick transmitted infection. Role of spirochetal 

antigens in inducing host cellular/humoral immune responses and in pathogenesis must 

be investigated in order to better understand the disease process and develop rational 

control strategies. 

Convenient animal models such as rabbits (Burgdorfer, 1984), Syrian hamsters 

(Johnson et al., 1984b); rats (Barthold et al., 1988); immunodeficient mice (Schaible et 

al., 1989); inbred mice (Barthold et al., 1990); outbred mice (Masuzawa et al., 1992); 

gerbils (Preac-Mursic et al., 1992); guinea pigs (Sonnesyn et al., 1993); dogs (Appel et 

al., 1993); and Rhesus monkeys (Philipp et al., 1993) have been developed to study 
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various aspects of host immune responses to B. burgdorferi infection and pathogenesis. 

Lyme borreliosis spirochetes and several of their outer surface proteins have been shown 

to induce protective antibody response in animals (Lim et al., 1994). There is a growing 

interest in studies on effects of spirochetes and their antigens on the cellular immune 

pathways of hosts and their role in cell mediated immunity and pathogenesis of disease 

(Lim et al., 1995a; Lim et al., 1995b) 

The vast majority of studies have used needle inoculation of culture grown B. 

burgdorferi to either initiate infection or to challenge vaccinated hosts (Roehrig et al., 

1992). Immune responses to needle inoculated infection differ considerably from the tick

transmitted infection (Roehrig et al., 1992). Antibody responses to outer surface protein 

A (OspA, 31 kDa) and OspB (34 kDa) are produced late in human infection if at all, 

following the bite of an infected tick (Craft et al., 1986; Habicht, 1988). Hamsters needle 

inoculated with either cultured organisms or infected tick homogenates readily produced 

a large amount of antibody to OspA and OspB, but not following the bite of an infected 

tick (Roehrig et al., 1992). 

The delayed immune response to OspA and OspB following the tick transmitted 

infection has not been adequately explained or explored, although, several hypotheses in 

this regard have been proposed. These include B. burgdorferi occupying an immune

privileged site in the host (Habicht, 1988), needle inoculation delivering a much larger 

antigenic load as compared to infected tick bite (Roehrig et al., 1992), expression of 

lower amounts of OspA and OspB in the spirochetes while they are in the tick, and 

regulation by bacteria or tick in presentation of these antigens to host immune system so 

that they appear different from culture grown antigens (Roehrig et al., 1992r More 

4 



recently, Schwan et al., (1995) showed selective down regulation of OspA expression on 

spirochetes during tick feeding with concurrent upregulation of OspC. Complex 

interaction at the tick-host-pathogen interface are critical to the establishment of 

infection. Immunosuppressive and other pharmacological properties of tick saliva might 

affect the nature and magnitude of immune responses generated to the vector-borne 

pathogen (Wikel, 1996a). 

Differences in the cell mediated immune responses following tick initiated versus 

needle inoculation induced infection have been ignored to date and no reports exist in the 

literature in this regard. With a possible role for B. burgdorferi specific T- lymphocytes in 

development of severe destructive arthritis in hamsters (Lim et al., 1995a and b ), it is 

important to investigate the differences in cell mediated immune responses to needle 

inoculated versus tick transmitted infection. 

The working hypothesis of this study was that the nature and magnitude of 

humoral and cellular immune responses differs during tick transmitted infection as 

compared with infection established by needle inoculation of culture grown B. 

burgdorferi. BALB/c mice were infected by either tick-transmission or needle inoculation 

and the nature ofhumoral and cellular immune responses were determined at different 

time intervals during the course of infection. This study was designed as a comprehensive 

investigation into the qualitative and quantitative differences in humoral and cellular 

immune responses to B. burgdorferi infection in BALB/c mice initiated by either needle 

inoculation of culture grown spirochetes or following infestation with infected I 

scapularis nymphs. 
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Comparative antibody responses following infection by either method were 

monitored both qualitatively and quantitatively. Enzyme linked immunosorbant assay 

(ELISA) and immunoblotting were used to monitor immunoglobulin isotype, antigen 

specificity and titer of Borrelia-specific antibodies in sera collected at different intervals 

following infection. An in vitro B. burgdorferi neutralization assay was used to screen 

sera collected at different intervals following infection for the presence ofborreliacidal 

antibodies. Cellular immune responses to whole B. burgdorferi sonicate and defined 

molecular weight fractions obtained by preparative sodium dodecyl sulfate-poly 

acrylamide gel electrophoresis (SDS-PAGE) of whole B. burgdorferi sonicate were 

determined by in vitro proliferative.responses of splenocytes collected from mice at 

different time periods after tick transmitted or needle inoculated infection. 

Specific Aims: 

1) Determine qualitative and quantitative differences in the humoral immune response 

mounted by BALB/c mice against B. burgdorferi infection established by needle 

inoculation of culture grown spirochetes or initiated by an infestation with infected 

I scapularis nymphs. 

a) Determine the differences in immunoglobulin isotypes, their amounts, and 

the time of appearance during the course of infection using isotype specific 

ELISA (lgM and IgG) on the sera collected at different intervals following 

initiation of infection. 

b) Monitor the appearance of borreliacidal antibodies in the sera collected at 

different intervals following initiation of infection by either method using an 

in vitro spirochete neutralization assay. 
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2) Determine the differences in the cellular immune responses mounted by BALB/c 

mice against tick transmitted and needle inoculated B. burgdorferi infection. To 

collect splenocytes from mice infected by either method at different time intervals 

and to study their in vitro proliferative responses against 

a) whole B. burgdorferi extracts. 

b) isolated borrelial antigens obtained by preparative SDS-PAGE 

Literature Review 

A large body of literature on various aspects of the Lyme borreliosis has 

accumulated over the past 20 years since the recognition of this disease in North America 

in Lyme, Connecticut. (Steere et al., 1977). A Medline search with key word "Borrelia 

burgdorferi" for the time period between January, 1996 through April 1997 resulted in 

275 articles indicating the intense research activity related to this topic. The purpose of 

this review is not to list each and every study done to date, but to provide information on 

different aspects of this disease and show how the research described in this dissertation 

relates to and builds upon the published body of knowledge. 

History and Etiology: In early 1920's, scientists in Europe recognized a characteristic 

expanding skin lesion called erythema chronicum migrans (ECM), which was related to 

the bite of the tick Ixodes ricinus (Afzelius, 1921 * ; Lipschutz, 1923 *). Before that, 

Herxheimer (1902*) described a chronic skin disease called acrodermatitis chronica 

atrophicans which was sometimes preceded by an ECM like lesion. A syndrome variously 

called tick-borne meningopolyneuritis, lymphocytic meningoradiculitis, chronic 

• as quoted by Steere, (1989). 
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lymphocytic meningitis, and termed Bannwarth syndrome (Bannwarth 1944 *). A few 

individuals with this syndrome developed erythema, radicular pain followed by chronic 

lymphocytic meningitis, and sometimes cranial or peripheral neuritis. Spirochete-like 

structures were observed in skin lesions of patients with Bannworth syndrome similar to 

ECM by Lenhoff (1948*). This finding resulted in the use of penicillin to treat such 

lesions in Europe, based on the assumption that this constellation of symptoms was due to 

a bacterial infection (Hollstrom, 1951 *). In North America, an epidemic of juvenile 

rheumatoid arthritis in Lyme, Connecticut was found to be associated with ECM (Steere 

et al., 1977). This clustering of the cases in three communities and follow-up studies 

concluded that Lyme disease was a multisystem illness that affected primarily the skin, 

nervous system, heart, and joints with a probable ixodid tick as vector for this malady 

(Steere et al., 1978a; Steere et al., 1978b). 

Burgdorfer et al., (1982) conclusively identified the spirochetal etiology of Lyme 

borreliosis transmitted by ixodid ticks of Ixodes spp. The spirochete was isolated by 

Barbour, (1984) and Johnson et al., (1984a) described this organism as a new species of 

genus Borrelia, Borrelia burgdorferi. A large number of isolates of this organism have 

been recovered from a wide variety of hosts and geographical locations and they have 

been grouped under a single species. However, it has been shown that these strains are 

genomically and phenotypically heterogenous. Bamton et al., (1992) studied 48 different 

isolates and divided them into three DNA groups (genospecies) based on patterns of 

specific rRNA gene restriction, analytical SDS-PAGE, and reactivity with murine 

monoclonal antibodies. Genospecies I contains 28 strains from Europe and the 
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United States and corresponds to Borrelia burgdorferi sensu stricto. Genospecies II 

contains 13 isolates from Europe and Japan and is named Borrelia garinii sp. nov. 

Genospecies III is termed as group VS461 and it includes 7 isolates from Europe and 

Japan. This heterogeneity has far reaching implications on the clinical picture, 

pathogenesis, host responses to Lyme borreliosis and vaccine development. 

Vector: The vector species include I scapularis in northeastern and Midwestern United 

States (Steere and Malawista, 1979), the western black-legged tick I pacificus in the 

western United States (Burgdorfer et al., 1985), I ricinus in Europe (Krampitz, 1986), 

and I persulcatus in Asia (Dekonenko et al., 1988). Conspecificity of I dammini and I 

scapularis has since been established (Oliver et al., 1993). In this literature review, both 

I dammini and I scapularis have been used based upon the original author's usage in the 

particular study being discussed. 

In the United States, the preferred host of larvae of I scapularis is the white

footed mouse, Peromyscus leucopus, which acts as the reservoir host for the spirochetes 

(Levine et al., 1985). Larval ticks feeding on infected mice during late summer acquire 

spirochetes that are maintained through the larval molt and resulting nymphs are also 

infected (transstadial transmission). These nymphs feed in late spring and early summer 

preferably on white-footed mice but can also readily attack humans. In the process, they 

infect mice previously unexposed to B. burgdorferi creating a source of infection for the 

next generation of larvae later in summer (Wilson and Spielman, 1985). The transmission 

of infection to humans is mostly through infected nymphs. In the unfed nymphs, 

spirochetes are mostly restricted to the midgut. When these nymphs attach to a new host 

and feed for several days, spirochetes replicate, penetrate through the midgut wall, invade 
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salivary glands and are transmitted to the tick's host via saliva (Ribeiro et al., 1987; 

Schwan, 1996). An infected tick has to remain attached to the host for at least 48 hours to 

successfully transmit the spirochete (Piesman et al., 1987, Piesman et al., 1991). The 

adult ticks feed in fall on white-tailed deer which are important hosts for tick survival but 

are not a reservoir for the spirochete (Wilson et al., 1988). 

The preferred hosts oflarvae and nymphs of Ixodes pacificus, vector of Lyme 

borreliosis in the western US, are lizards instead of mice (Lane and Lavoie, 1988). The 

lizards unlike mice are not susceptible to B. burgdorferi infection (Brown and Lane, 

1992). In this region, an enzootic cycle is supported by dusky-footed woodrats (Neotoma 

fuscipes) and a nonhuman-biting tick, Ixodes neotomae (Brown and Lane, 1992). A few 

larvae and nymphs of I pacificus that feed on infected woodrats instead of lizards are 

responsible for transmitting the infection to humans (Brown and Lane, 1992). Borrelia 

burgdorferi has been isolated from a wide variety of wild, laboratory, companion, and 

domestic animals such as rats, mice, hamsters, raccoons, dogs, cattle, horses, and birds 

(Barbour, 1988a). 

Disease: Lyme borreliosis has emerged as a disease of global human and veterinary 

public health importance and it is the most common arthropod-borne infection of humans 

in the United States (Spach et al., 1993). During 1992, Connecticut (53.6 cases per 

100,000), Wisconsin (10.7) and California (0.8) reported the highest rates in the 

northeast, north central, and Pacific coastal regions, respectively. Rates in some counties 

in California, Connecticut, Massachusetts, New York and Wisconsin exceeded 200 cases 

per 100,000 (CDC, 1993). 
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Lyme borreliosis is a multisystem illness with a characteristic initial clinical 

symptom of an expanding circular skin lesion called erythema chronicum migrans (ECM) 

(Steere et al., 1978a) which occurs in 50-70 % of patients (Sigal, 1992a). The rash is 

usually accompanied by symptoms such as fatigue, malaise, lethargy, headache, myalgia, 

arthralgia, and regional or generalized lymphadenopathy (Sigal, 1992a). The early form of 

disease can be treated successfully with the use of suitable antibiotics such as 

Doxycycline, 100 mg, orally, twice daily for 3-4 weeks in the initial stages of disease. 

However, failure to diagnose and treat the disease promptly can lead to a debilitating 

chronic form of Lyme disease which is characterized by involvement of the nervous 

system, heart, and development of destructive arthritis in joints (Steere et al., 1987; Sigal, 

1992a). This form of the disease requires much more aggressive antibiotic therapy e.g. 

Ceftriaxone, 2g daily or lg twice daily, intravenous, for 2-3 weeks and may not respond 

favorably to the therapy (Sigal, 1992a). The clinical manifestations exhibited by patients 

with Lyme borreliosis differ in Europe and North America (Steere, 1989). Skin lesions 

such as acrodermatitis chronica atrophicans and neuroborreliosis are more prevalent in 

European patients with the chronic form of disease while arthritic manifestations are 

more common amongst North American patients (Steere, 1989). Although, the underlying 

cause of this variation is not clear but the genetic makeup of patients and heterogeneity of 

the causative agent may have a role. 

Diagnosis: Several laboratory tests such as indirect fluorescent antibody (IF A) staining 

methods, enzyme linked immunosorbant assay (ELISA) and Western blotting combined 

with history and clinical symptoms of the patient have helped in the diagnosis of Lyme 

borreliosis (Magnarelli, 1995). For further confirmation, the spirochete has been 
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recovered from blood (Benach et al., 1983), cerebrospinal fluid (Preac Mursic et al., 

1984), skin biopsies ofECM (Berger et al., 1985), and synovial fluid (Schmidli et al., 

1988). This disease is, however, complicated by problems in the early diagnosis, resulting 

in false negative and more often false positive results (Steere et al., 1993). ELISA, which 

detects IgM or IgG response to B. burgdorferi, is currently the preferred serologic assay 

and should be used for initial screening (Nocton and Steere, 1995). Positive results should 

further be subjected to confirmation with Western blotting to determine the reactivity to 

spirochete specific polypeptides such as 31 kDa OspA protein, 34 kDa OspB protein, and 

the 39 and 93 kDa polypeptides (Zoller et al., 1991). The T cell proliferative assays have 

been used to diagnose Lyme borreliosis in seronegative patients but with inconsistent 

results (Dattwyler et al., 1988). The PCR technique has been used to detect small 

quantities of B. burgdorferi DNA in various body fluids and tissue specimens, however, a 

major concern with this highly sensitive technique is the risk of contamination leading to 

false-positive results (Nocton and Steere, 1995). 

Pathogenesis: The pathogenesis of a disease should be thoroughly understood before 

rational control measures can be developed. A rational vaccine construct will include the 

antigens inducing protective cell mediated immunity (CMI) and humoral immunity and 

would exclude other antigens which could possibly have some harmful effects. Such 

antigens need to be identified and characterized, however, it is important that the methods 

used imitate the natural disease process as faithfully as possible. 

Persistence of the organism is one of the major elements in the pathogenesis of 

Lyme borreliosis. Borrelia burgdorferi causes chronic infections despite measurable B

and T-cell immune responses to spirochete immunogens (Garcia-Monco and Benach, 
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1989). The early IgM and IgG antibody response to the 41 kDa antigen of B. burgdorferi, 

expands to recognize an increasing number of spirochetal antigens with time. Sera from 

chronic Lyme borreliosis patients recognize an extensive repertoire of antigens by 

immunoblot (Craft et al., 1986). Spirochetes can persist in the presence of high titers of 

B. burgdorferi specific antibodies. Similarly, detection of spirochetes in synovium 

(Johnston et al., 1985) and skin (As brink et al., 1984) of chronic patients by 

histopathology indicates the persistence of the organism. 

An autoimmune component to the pathogenesis of Lyme borreliosis has been 

suggested. Cross reaction between B. burgdorferi and human neuronal antigens can occur 

(Aberer et al., 1989; Sigal, 1992b ). Cross-reactivity between B. burgdorferi flagellin and 

human axonal protein with a molecular weight of 64 kDa has been reported (Sigal, 1993). 

Dai et al., (1993) showed that a monoclonal antibody (H9724) specific for the 41 kDa 

protein, flagellin, of B. burgdorferi cross reacts with a 64 kDa protein purified from the 

SK-N-SH human neuroblastoma cell line. This protein was identified to be a chaperonin

HSP-60. This can possibly result in autoimmune reaction leading to immune mediated 

damage to the host nervous system. Girourd et al., (1993) found an association between 

the presence of auto reative antibodies against human heat shock protein 60 (huHsp60) 

and B. burgdorferi infection. Lewis rats immunized with a non-pathogenic strain of B. 

burgdorferi and a chloroform-methanol extract (nonprotein antigens) thereof produced 

antibodies that reacted with gangliosides asialo-GMl and GMl (Garcia-Manco et al., 

1993, 1995). Conversely, antibodies raised against asialo-GMl and GMl also cross

reacted with B. burgdorferi anigens. Results of these studies suggest that molecular 

mimicry may play a role in pathogenesis of Lyme disease. 
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The role of elaboration of various cytokines by host T- and B-cells in 

pathogenesis of Lyme borreliosis has been studied. Proliferative responses of T-cells to 

whole B. burgdorferi were observed in patients with chronic Lyme disease in the absence 

of detectable antibody levels. (Dattwyler et al., 1991 ). However, authors noted that initial 

antibiotic therapy might have resulted in the lack of a humoral response and subsequent 

persistence of organisms in the central nervous system or other privileged sites might 

have resulted in the chronic form of the disease. Patients with prolonged episodes of 

Lyme arthritis have T-cell responses directed against multiple spirochetal proteins 

(Yoshinari et al., 1991). Peripheral blood lymphocytes obtained from such patients 

showed marked proliferative responses to 34, 41, 55/58, and 66 kDa polypeptides. 

de Souza et al., (1992) showed that naive splenocytes collected from both 

C3H/HeJ and BALB/c mice proliferated in response to B. burgdorferi spirochetes, as well 

as recombinant OspA and OspB. Proliferative responses were predominant among the B 

cell enriched fraction of splenocytes. The mitogenic effect was not similar to that induced 

by LPS since B-cells from C3H/HeJ mice (LPS-nonresponder) proliferated to the same 

degree as those from C3H/HeNCrlBr, which is an LPS responder strain. 

Schoenfeld et al., (1992) showed that sonicated preparations of washed 

spirochetes have potent mitogenic activity for B-lymphocytes from naive C57BL/6, 

C3H/HeJ, or BALB/c mice. This activity was only slightly inhibited by polymyxin B. 

This indicates that proliferation was not due to an endotoxin like molecule since such 

proliferation is inhibited by polymyxin B. B-cells not only proliferated but also 

differentiated into antibody secreting cells. In the same study, B. burgdorferi stimulated 

the release of IL-6 from splenocyte cultures. Polyclonal activation of B-cells, along with 
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production of pro-inflammatory cytokine IL-6, could ultimately lead to the appearance of 

autoreactive antibodies which could be involved in the pathogenesis of Lyme borreliosis 

(Schoenfeld et al., 1992). Proliferative responses were not inhibited by polymyxin B 

indicating that a lipid A-containing lipopolysaccharide (LPS) was not involved in these 

responses. 

In a follow up study, Tai et al., (1994) demonstrated that normal human B

lymphocytes, but not T-lymphocytes, proliferated when incubated with either sonicated B. 

burgdorferi or purified OspA. Production of a high level of IL-6 by mononuclear cells 

was observed in response to stimulation by both sonicated B. burgdorferi and purified 

OspA (Tai et al., 1994). 

Lim et al., (1994), established that severe destructive arthritis can develop in 

hamsters vaccinated with a whole-cell preparation of formalin-inactivated B. burgdorferi 

sensu stricto isolate C-1-11 in adjuvant, and followed with a challenge of a homologous 

strain before high levels of protective borreliacidal antibodies developed. Once high 

levels of protective antibody were produced, hamsters were protected from homologous 

challenge and subsequent development of arthritis. However, vaccinated hamsters still 

developed severe destructive arthritis when challenged with other isolates of three 

genomic groups of B. burgdorferi sensu lato (B. burgdorferi sensu stricto isolate 297, B. 

garnii isolate L V 4, and B. aftelli isolate BVl ). Humorally mediated responses did not 

seem to be responsible for the development of arthritis since passive transfer of serum 

from hamsters vaccinated with the same whole-cell preparation did not induce arthritis 

when naive syngeneic recipient hamsters were challenged with the homologous isolate or 

other isolates of B. burgdorferi sensu lato, even after daily administration of serum for 7 
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days (Lim et al., 1994). Involvement of a cell mediated response was hypothesized for 

arthritis development. 

In a follow-up study, T-lymphocytes obtained from inbred LSH hamsters 

vaccinated with the same whole-cell preparation as described above, conferred on naive 

recipient hamsters the ability to develop severe destructive arthritis when, challenged 

with either homologous or heterologous strains of B. burgdorferi (Lim et al., 1995a). 

Borrelia burgdorferi-specific T-lymphocytes could not confer protection on hamsters 

receiving the adoptive transfer against infection with isolates of B. burgdorferi sensu 

stricto, since spirochetes were readily recovered from their tissues. This indicates that T

lymphocytes are not involved in the development of cell mediated resistance but 

contribute to development of severe destructive arthritis. CD4+ T-lymphocytes are 

involved in the development of severe destructive Lyme arthritis (Lim et al. 1995b ). 

When hamsters vaccinated with a whole-cell preparation of Formalin-inactivated B. 

burgdorferi organisms adjuvant were depleted of CD4+ T lymphocytes and challenged, 

they failed to develop severe destructive arthritis. If the repopulation of vaccinated 

hamsters with CD4+ T-lymphocytes was allowed by decreasing the number of anti-CD4 

treatments, severe destructive arthritis readily occurred. Although, the cytokine profile of 

the cells responsible for development of severe destructive arthritis was not determined, 

authors suggested that these might be Thl-lymphocytes. 

Cytokines play a very significant role in regulating the initiation and maintenance 

of immune responses against infectious diseases (Fresno et al., 1997) The role of 

proinflarnmatory cytokines such as interleukin- I (IL-1) and tumor necrosis factor-a 
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(TNF-a) in the pathogenesis of Lyme borreliosis has been studied. Defosse and Johnson, 

(1992) reported elevated levels of TNF-a in the sera and synovial fluids from patients 

seropositive for B. burgdorferi. Interleukin-I is a potent mediator of inflammation 

(Dinarello, 1988a and b ). Habicht et al., (1985) showed that B. burgdorferi stimulates the 

release of IL- I activity from human peripheral blood monocytes and a murine 

macrophage cell line. Kenefic et al., (1992) reported the ability of high- and low-passage 

isolates of B. burgdorferi to stimulate the release of IL-I activity from bovine peripheral 

blood monocytes and that it might contribute to the pathogenesis of arthritis. 

Thioglycollate elicited peritoneal macrophages obtained from BALB/c mice 

produced elevated levels of IL- I and TNF-a when incubated with B. burgdorferi strain 

297 (Ramachandra et al., 1993). This effect was not due to the presence ofLPS since 

addition of polymyxin-B sulfate did not inhibit the elaboration of these cytokines. In 

contrast, macrophages from C3H/HeJ mice failed to produce IL- I levels significantly 

higher than control and no TNF-a activity was noted in the culture supernatants. This 

study showed that these cytokines and their relative amounts are important in the 

pathogenesis of Lyme borreliosis. C3H/HeJ mice suffer from moderate to severe disease 

(Barthold et al., 1990), whereas BALB/c suffer from a milder form of disease resembling 

Lyme borreliosis of humans (Barthold et al., 1990). This difference in severity of disease 

might be related to the cytokine profile during the infection. lnterleukin-6 is also a 

proinflammatory cytokine (Hirano et al., 1990). Borrelia burgdorferi induced a dose 

dependent increase in IL-6 production by C6 rat glioma cells (Habicht et al., 1991). This 
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production of cytokine by CNS cells might have a role to play in the pathogenesis of 

neuroborreliosis. 

Studies mentioned above indicate that several mechanisms might be responsible 

for the final outcome and pathogenesis of Lyme borreliosis. Direct invasion and 

persistence of spirochetes in host tissue combined with cross-reactivity of spirochetal 

antigens with host tissue (auto-immune mechanism) is a major factor. Mitogenic activity 

of spirochetal antigens for host B-lymphocytes, antigen-specific proliferation of host T

cells to B. burgdorferi antigens and elaboration of pro-inflammatory cytokines like IL-1, 

IL-6, and TNF-a are the other contributing factors in Lyme disease pathogenesis. 

Vaccine Development Studies: A suitable vaccine for prophylaxis of Lyme borreliosis is 

desirable. Immunization with whole live and killed spirochetes has been shown to induce 

protective antibodies capable of killing the spirochetes in vitro or preventing 

disease/infection in a number of animal models (Chu e.t al., 1992; Hughes et al., 1993; 

Jobe et al., 1994; Johnson et al., 1986a; Johnson et al., 1986b; Johnson et al., 1988; Levy 

et al., 1993; Lovrich et al., 1991; Pavia et al., 1991; Schaible et al., 1993; Schmitz et al., 

1990; Schmitz et al., 1991). 

Hamsters vaccinated with whole-cell preparation of formalin-inactivated B. 

burgdorferi, develop severe destructive arthritis, when challenged with the homologous 

strain of the spirochete prior to development of protective levels of borreliacidal antibody 

(Lim et al., 1994). A possible autoimmune reaction following immunization with whole 

spirochete suggests that a whole cell vaccine construct may not be a practical 
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prophylactic measure. An alternative approach is development of a subunit vaccine that 

consists of immunoprotective antigens of B. burgdorferi. 

At least 30 different B. burgdorferi proteins have been identified (Craft et al., 

1986). Several outer surface proteins (Osp's) such as OspA (31 kDa), B (34 kDa), C (22 

kDa), D (flagellin, 41 kDa), E (19 kDa), and F (29 kDa) have been screened as vaccine 

candidate antigens in addition to a 39 kDa protein (Seiler and Weis, 1996). 

Fikrig et al., (1990) demonstrated that mice immunized with recombinant OspA 

were protected against B. burgdorferi infection. Similarly, Simon et al., (1991a) reported 

complete protection of severe combined immunodeficient (SCID) mice against a virulent 

challenge with B. burgdorferi following passive transfer of monospecific, hyperimmune 

anti-OspA (recombinant or native) serum. Monoclonal antibodies to flagellin (41 kDa), 

p20, p65, and p70 did not protect the mice (Fikrig et al., 1990). Vaccination with only 

full length recombinant OspA protected mice against Lyme borreliosis whereas 

overlapping truncated fragments failed to do so (Bockenstedt et al., 1993). 

Subsequently, OspA has been evaluated extensively as a vaccine candidate 

antigen (Fikrig et al., 1992a; Fikrig et al., 1992b; Keller et al., 1994; Sadziene et al., 

1993a; Sambri et al., 1993; Schaible et al., 1990; Schaible et al., 1993; Simon et al., 

1991a; Simon et al., 1991b; Stover et al., 1993; Telford et al., 1993). Anti-OspA antibody 

mediates its protective effects by destroying the spirochetes within the tick gut ( de Silva 

et al., 1996). This observation signifies the necessity of existence of high titers of anti

OspA antibodies at the time of exposure to a Lyme borreliosis infected tick. 

OspA has emerged as the most promising vaccine candidate antigen and first 

clinical trials to examine safety and immunogenicity of a recombinant OspA vaccine in 

19 



humans were performed (Keller et al., 1994). However, there are some serious concerns 

regarding the use of an OspA based Lyme borreliosis vaccine. A possible association of 

arthritis in human Lyme borreliosis patients expressing human class II lymphocyte 

antigen (HLA) DR4 and DR2 serotype and anti-OspA and -OspB reactive antibodies 

were reported (Steere et al., 1990 and Kalish et al., 1993). These finding suggest that 

people with these HLA specificities might not be suitable candidates for vaccination with 

an OspA based vaccine. Moreover, heterogeneity in OspA amongst strains can result in 

lack of full cross protection to different strains of B. burgdorferi (Barbour et al., 1985). 

Other studies have also indicated concerns regarding heterogeneity and lack of cross 

protection amongst different strains of B. burgdorferi (Barbour, 1988b; Fikrig et al., 

1992c; Hovind-Hougen et al., 1986; Jonsson et al., 1992; LeFebvre et al., 1989; Wilske et 

al., 1986; Wilske et al., 1988; Wilske et al., 1993; Zumstein et al., 1992). Vaccination 

studies supported in vitro findings, confirming that vaccination with a single OspA type 

does not provide complete protection against challenge with diverse B. burgdorferi 

isolates (Lovrich et al., 1995). Antisera generated by immunization with recombinant 

OspA from B. burgdorferi sensu stricto S-1-10 and C-1-11, B. afzelli BV-1, and B. garnii 

were unable to kill spirochetes from heterologous strains, but the homologous strain was 

killed in an in vitro assay. Loss of OspA expression on the spirochete within the tick 

before transmission to the host can potentially render the anti-OspA antibodies 

ineffective. 

Borreliacidal properties of anti-OspB antibodies have been reported (Coleman et 

al., 1992). Sadziene et al., (1993b) selected a mutant with reduced expression of 

truncated OspB protein which had reduced ( only 3 7 % of wild type) penetration into 
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human endothelium umbilical vein cell monolayer and required 30-300 fold higher 

numbers of spirochetes to establish infection in SCID mice by intradermal route of 

infection. This observation suggests a role for OspB in establishment of infection and 

possibly in pathogenesis. OspB has not received nearly as much attention as a vaccine 

immunogen as OspA. However, it has been the topic of some of the studies in the 

literature (Fikrig et al., 1992b; Probert and Lefebvre, 1994; Sadziene et al., 1993a; 

Sambri et al., 1993; Telford et al., 1993). 

Protective immunity can be induced in hamsters by immunization with a B. 

burgdorferi mutant that lacks OspA and OspB (Hughes et al., 1993). Clearly, other 

potential vaccine candidate antigens exist. OspC has been the focus of attention because 

of the observation that expression of this molecule is up regulated on the spirochete 

surface in the feeding tick with a concurrent down regulation of OspA (Schwan et al., 

1995). Ixodes scapularis larvae were allowed to become infected with B. burgdorferi by 

feeding on infected mice. Following molting, 100 % of the unfed nymphs were found to 

be abundantly positive for expression of OspA by indirect immunofluoresence but none 

was positive for OspC. However, spirochetes in the midgut of partially fed nymphs 

became positive for the expression of OspC but the expression of OspA was decreased 

(Schwan et al., 1995). Thus, anti-OspA antibody will be effective only in a very narrow 

window of time before the OspA expression is lost before or during the transmission of 

the spirochete (de Silva et al., 1996). Immunization of outbred mice with recombinant 

OspC protected them against tick transmitted infection of B. burgdorferi (Gilmore et al., 

1996). OspC purified by preparative SDS-PAGE although immunogenic, did not elicit 

protection, suggesting the presence of a protective conformational epitope. Unlike OspA, 
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anti-OspC antibody does not cause destruction of spirochetes within the tick gut. There 

are other reports regarding the use of OspC as a vaccine antigen (Preac-Mursic et al., 

1992; Probert and Lefebvre, 1994). 

C3H/HeJ mice immunized with recombinant OspF were partially protected from 

both intradermal needle inoculation and tick-mediated transmission of B. burgdorferi 

(Nguyen et al., 1994). However, vaccination with recombinant OspE did not provide any 

protection (Nguyen et al., 1994). A 75 and 90 % reduction in the spirochete load was 

detected in infected nymphal ticks following feeding on OspE and OspF immunized 

mice, respectively. Since it takes at least 48 hours following tick attachment for the 

transmission of spirochete (Piesman et al., 1987), killing of spirochetes within the tick 

could have resulted in a smaller spirochete inoculum. 

Scriba et al., (1993) stimulated peripheral blood lymphocytes of seronegative 

donors in vitro with B. burgdorferi antigen. They prepared three human monoclonal 

antibodies (IgM isotype) which reacted with a 39 kDa spirochetal protein. These 

antibodies were borreliacidal in an in vitro assay. This protein was found to be the same 

that was described by Simpson et al., (1990) and has been named p39. An anti-p39 and 

not anti-OspA response was detected in inbred and outbred mice, following tick mediated 

transmission of the spirochete (Golde et al., 1994). In addition, response to p39 did not 

seem to be MHC restricted, since all the strains of mice used in this study developed anti

p39 antibodies. These findings make p39 a suitable vaccine candidate for protection 

against Lyme borreliosis. 

The Role of Vector Tick: Necessity of the tick vector adds another dimension to the 

discussion of the responses to B. burgdorferi pathogenesis and immune response to Lyme 
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disease. Effects of tick feeding on host hemostatic, inflammatory, and immune 

mechanisms have a very significant impact on disease transmission and establishment 

(Wikel, 1996b). Ticks being long term feeders must maintain a constant flow of blood in 

the bite site. Saliva of I dammini contains the enzyme apyrase, which inhibits platelet 

aggregation by degrading adenosine diphosphate (ADP) (Ribeiro et al., 1985). 

Prostaglandin E2 in the saliva of I dammini has potent vasodilatory effects and it is 

possibly anti-inflammatory by inhibiting neutrophil aggregation and mast cell 

degranulation (Ribeiro et al., 1985). Saliva from I dammini inhibited anaphylotoxin 

induced neutrophil aggregation, N-formyl~methionyl-leucyl-phenyl-allanine (FMLP) 

induced granule enzyme secretion, zymosan-induced superoxide secretion, and 

phagocytosis of B. burgdorferi spirochetes by up to 80 % (Ribeiro and Spielman, 1986). 

Anti-hemostatic effects of saliva from a variety of hematophagous ectoparasites including 

ticks were described by Champagne and Valenzuela (1996). 

The anti-inflammatory effects of saliva are expressed by down regulation of 

various host pro-inflammatory mediators. Ixodes dammini saliva inhibited anaphylotoxin 

activity (Ribeiro and Spielman, 1986) and complement activity (Ribeiro, 1987). 

Dermacentor andersoni salivary gland extracts downregulated the elaboration of 

macrophage pro-inflammatory mediator interleukin-I (IL-1) by 89.8 % and that of tumor 

necrosis factor-a (TNF-a) by up to 94.6 % (Ramachandra and Wikel, 1992). In addition, 

IL-2 and interferon-y (IFN-y) levels were also suppressed. The role of these cytokines in 

initiation, maturation and regulation of host immune response is well documented 

(Dinarello, 1988a and b; Perussia et al., 1988). 
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Immunosuppressive properties of hematophagous, ectoparasitic arthropod saliva 

have been described by Wikel (1996a and b ). Ticks are capable of reducing the 

proliferative responses of different vertebrate host lymphocytes to various mitogens 

(Wikel, 1982; Schorderet and Brossard, 1994, Ramachandra and Wikel, 1992). Inhibition 

of in vitro lymphoproliferative responses to phytohemagglutinin (PHA) was attributed to 

PGE2 in the saliva of Boophilus microplus (lnokuma et al., 1994). A protein with 

molecular weight of 5 kDa or greater in I scapularis saliva inhibited the proliferation of 

mouse splenocytes to Concanavalin A (Con A), and PHA (Urioste et al., 1994). One or 

more polypeptides/proteins in the molecular weight range of 36-43 kDa, obtained by 

preparative SDS-P AGE of D. andersoni salivary gland suppressed the proliferative 

responsiveness of murine splenocytes to Con A in vitro (Bergman et al., 1995). 

Since the spirochete is transmitted to the host at approximately 48 hours following 

tick attachment (Piesman et al. 1987; Ribeiro et al., 1987), it can be postulated that by 

that time there will be a significant level of immunosuppression at the bite site. This 

makes the bite site immunocompromised in that a variety of host inflammatory and 

immune mechanisms are downregulated. Thus, making the local microenvironment more 

favorable site for spirochete establishment. 

Recently, studies using two separate approaches demonstrated the role of tick in 

transmission of the spirochetes. Zeidner et al., (1996) hypothesized that reconstitution of 

cytokines that are suppressed as a result of tick feeding may alter the dynamics of tick 

feeding and disease transmission. They administered cytokines such as TNF-a, IL-2, and 

IFN-y to C3H/HeJ mice for 10 days during an infestation with B. burgdorferi infected I 
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scapularis nymphs. Up to 95 % protection was seen in mice receiving TNF-a. Fifty five 

to 70 % of mice administered IFN-y or IL-2, resisted acute infection as compared to 

untreated controls, in which the vector induced infection rate was 83 .3 %. 

Wikel et al., (1997) infested female BALB/c mice four times with pathogen-free 

I scapularis before a final infestation with B. burgdorferi infected nymphs. Although, no 

sign of acquired resistance to ticks was observed, repeatedly infested mice became 

resistant to tick transmitted Lyme borreliosis. Only 16. 7 % of repeatedly infested mice 

became infected as compared to 100 % of non-infested controls when challenged with 

infected nymphs. Repeated infestation might have enabled the host to counteract the 

immunosuppressive and anti-inflammatory effects of tick feeding. This could have 

resulted in inhibition of transmission of spirochete because of changed microenvironment 

at the bite site which may not be conducive to establishment of infection. 

Surface Antigen Modulation by the Spirochete: Borrelia burgdorferi, by virtue of 

being a tick-b9me pathogen has to adapt to two very different microenvironmental and 

metabolic parameters i.e. ixodid tick, a poikilothermal arthropod and a homeothermal 

mammalian host. It is likely that to survive in these vastly different conditions, 

spirochetes undergo significant structural and metabolic changes when transmitted from 

the tick to the host. In fact, studies have demonstrated that growth temperature changes 

can lead to protein profile change and there are proteins that are only expressed in the 

mammalian host and others that are expressed at a higher level within the tick. 

Cluss and Boothby (1990) studied changes in the protein profiles of B. 

burgdorferi following shifts from 28 °C to higher growth temperatures in vitro. An 
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increase in synthesis of four proteins designated heat stress protein (HSP) 1 through 4 

(75, 42, 39, and 27 kDa, respectively) was noted. In contrast, the amount of a 29.5 kDa 

protein called heat labile protein was decreased at higher temperatures. In a similar study, 

Stevenson et al., (1995) noted an increase in OspC expression levels in the lysates of B31 

and N40 strain of B. burgdorferi, when growth temperature was shifted from 23 to 35 °C. 

Additional antigens with apparent molecular weights of 16, 19, 37, 38, 45, and 52 kDa 

were also present at a higher level in cultures of B31 strain grown at 35 °C than those 

grown at 23 °C. In the case of N40, four antigens, in addition to OspC, with apparent 

molecular weights of 18, 20, 37, and 45 k:Da, were present in the 35° C lysate at higher 

levels than in 23 °C lysate. 

Champion et al., (1994) reported the cloning, sequencing and molecular analysis 

of the gene eppA ( exported plasmid protein A) from virulent B. burgdorferi B3 l, which 

encodes a protein with calculated molecular weight of 17,972 D. Sera from patients with 

Lyme disease and rabbits experimentally infected with homologous spirochete recognized 

recombinant eppA (rEppA). However, hyperimmune rabbit antiserum to rEppA was 

unable to detect the presence of this protein in extracts of spirochetes cultured in BSK II 

or in the culture supernatants. This protein is an outer membrane or secreted protein 

which is only expressed in vivo. Similarly, Suk et al., (1995) identified a novel protein, 

p21 which is expressed only in spirochetes infecting mice but not on culture grown 

borreliae. Wallich et al., (1995) identified a gene pG which was expressed only during 

infection in vivo. Akins et al., (1995) described an OspF homologue which is expressed 

by B. burgdorferi only in infected animals but not in cultured organisms. 
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Montgomery et al., (1996) used fluorescent antibody to monitor the expression of 

OspA and OspC during the course of Lyme borreliosis in mice. The spirochetes recovered 

by peritoneal lavage 30 days after the initiation of infection did not stain with anti-OspA 

antibody but did so with anti-OspC antibody. However, the original inoculum expressed 

only OspA. 

Schwan et al., (1995) showed that the spirochetes in unfed I scapularis nymphs 

express large amounts of OspA but no OspC, however, in ticks fed to repletion on mice, 

the converse was true. This switch in part was regulated by temperature change in that 

OspC was produced at 32-37 °C but not at 24 °C. Blood feeding was noted to be the other 

trigger. Passive administration of anti-OspA antibody can protect mice only if it is 

administered 24 hours prior to or at the time of attachment of infected ticks ( de Silva et 

al., 1996). Anti-OspA antibody provided protection by destroying the spirochetes within 

the tick gut. Thus, the presence of a high titer of anti-OspA antibody is a must in the brief 

window of time between tick attachment and spirochete transmission, since following the 

switch from OspA to OspC, anti-OspA antibody is ineffective. Natural infection in the 

case of individuals immunized with OspA based vaccines may not act as a booster 

because spirochete will have lost the OspA expression by the time they are transmitted to 

the host or shortly thereafter. Furthermore, host adapted borreliae that have no or low 

expression of OspA are unaffected by anti-OspA antibody and are not cleared from an 

OspA immunized individual (Barthold et al., 1995), providing further proof of surface 

antigen modulation. 

Scope and Significance of the Present Study: The immune response of the host to 

needle inoculated spirochete and to infection initiated by natural feeding of infected ticks 
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differs (Roehrig et al., 1992). In most animals syringe inoculation ofBSK culture-grown 

B. burgdorferi elicits a strong and rapid anti-OspA and -OspB antibody response (Benach 

et al., 1988; Schmitz et al., 1991). In contrast, no or late (months) anti-OspA and -OspB 

response is seen in humans and hamsters in tick transmitted disease (Craft et al., 1986; 

Habicht, 1988). One hypothesis put forward to explain this difference is that B. 

burgdorferi occupies an immune-privileged site in the host (Habicht, 1988), but it seems 

unlikely because a rapid response to other spirochetal antigens is mounted (Roehrig et al., 

1992). Needle inoculation may deliver a large initial antigenic dose as compared to the 

bite of an infected tick. Hamsters infected by tick bite remain carriers for their life, but a 

large anti-OspA and anti-OspB response is not noticed (Roehrig et al., 1992). Ticks can 

play a significant role in altering the presentation of bacterial antigens to the host since 

complex interactions at the tick-host-pathogen interface and the effect of tick introduced 

immunogens on host immunoregulatory and effector pathways is critical to pathogen 

acquisition by the tick, transmission to the host, and establishment of tick-borne pathogen 

in the host (Wikel, 1996a and b ). In most studies, the usual mode of challenge following 

active immunization of the host with either whole-cell preparations or with isolated 

antigens has been by intradermal or subcutaneous inoculation of BSK culture grown B. 

burgdorferi. These routes of inoculation and the spirochetal source do not accurately 

reflect natural infection since it does not take into account the role of the tick during the 

transmission of the spirochete (Roehrig et al., 1992). 

Above outlined differences in the humoral response to needle inoculated and tick 

transmitted infections of Lyme borreliosis are known and more information regarding the 

modulation of spirochete surface antigens in relation to the tick are becoming known. 

28 



However little information regarding the temporal development of differential immune 

responses (both cellular and humoral), isotypes of the antibodies involved, antigens and 

their role in protective immune responses is available. We proposed to study the temporal 

development of these differences by collecting the sera from BALB/c mice at regular time 

intervals starting at three days post-infection through 16 weeks post-infection following 

needle inoculated or tick transmitted infection. At all intervals, sera were tested for 

Borrelia-specific antibodies, their titer, isotype, and the antigens they recognize in the 

whole Borre Zia profile. We used ELISA (isotype specific) and immunoblotting to achieve 

this objective. The role of antibodies in protective immune response was assessed by an 

in vitro spirochete neutralization test. 

This study endeavored to identify the differences in cell mediated immune 

responses of BALB/c mice to B. burgdorferi infection initiated by needle inoculation of 

culture grown spirochetes and those to an infection established by infestation of infected 

I scapularis nymphs. Although a relatively better understanding of humoral immune 

responses to B. burgdorferi is available, not much is known about the role of cell 

mediated immune responses. We collected splenocytes from mice infected by either 

method at similar time intervals as for the studies on humoral immune responses and 

studied their proliferative responses to whole B. burgdorferi sonicate. Further, we 

fractionated the whole-cell sonicates by preparative SDS-PAGE into discreet molecular 

weight fractions. The proliferative responses of splenocytes collected from mice infected 

by needle inoculation or tick transmission were monitored in response to these fractions. 
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CHAPTER II 

MATERIALS AND METHODS 

Experiments were conducted to study the humoral and cellular immune responses 

ofBALB/c mice to B. burgdorferi by using either needle inoculation of culture grown 

spirochetes or by infestation with infected I scapularis nymphs. BALB/c mice were 

infected by either method and systematic studies of sera and splenocytes collected from 

these mice, at different time intervals post-infection, were conducted. Humoral responses 

to B. burgdorferi infection were evaluated in terms of time of appearance of Borrelia

specific antibodies, their isotype, titer, specificity, and in vitro spirochete neutralization 

ability. Differences in these parameters between the sera collected from mice infected by 

needle inoculation versus tick transmitted infection were determined. Groups of mice 

injected with sterile phosphate buffered saline (PBS, pH 7.2, 0.15 M, Appendix I, Section 

1) or infested with pathogen free I scapularis nymphs served as controls for needle 

inoculated and infected tick infestation initiated infection, respectively. 

Systematic studies to determine the cellular responses of BALB/c mice to Lyme 

borreliosis were conducted. Mice infected by either needle inoculation of spirochete or by 

infestation with spirochete infected I scapularis nymphs were sacrificed at selected time 

intervals following initiation of infection to collect splenocytes. Their in vitro 

proliferative responses to whole spirochete extract and isolated borrelial antigens 

obtained by preparative scale SDS-PAGE were determined. Once again, mice injected 

with sterile PBS or infested with pathogen free I scapularis nymphs served as controls 

for needle inoculated and infected tick infestation initiated infection, respectively. 
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Organism and Culture Conditions 

The B. burgdorferi isolate designated B31 was used in this study. It was isolated 

in pure culture from the midgut of an I scapularis tick collected on Shelter Island, NY 

(Burgdorfer et al., 1982). A low passage (Passage 2) culture of B. burgdorferi type strain 

B31, was obtained from the Centers for Disease Control (CDC), Fort Collins, Colorado. 

This organism was cultured in Barbour-Stoermer-Kelly II (BSK II, Appendix I, Section 1) 

medium at 34° Cina bacteriological incubator with air atmosphere (Barbour, 1984). 

Borrelia burgdorferi no longer expresses certain antigens following repeated passages in 

culture (Ramachandra et al., 1994). In order to insure the use of a uniform population of 

spirochetes and the uniformity of B. burgdorferi antigenic profile during this study, a 

master seed of this low passage organism was prepared and it was maintained frozen in 

10% bovine serum albumin fraction V (BSA) at -80°C. A cryovial containing two ml of 

B. burgdorferi culture (passage 2) was rapidly thawed by holding in a 37 °C water bath 

and one ml of this culture was inoculated in nine ml of BSK II in a 15 ml screw cap cell 

culture tube (Coming, New York, NY). After an incubation of24 hrs at 34°C in a dry 

bacteriological incubator, culture was mixed by gentle pipetting and wet smear was 

prepared by placing 10 µl of culture on a microscopic slide and covering it with a cover 

slip. The viability and activity of spirochetes in this unstained smear was determined by 

dark field microscopy at a magnification of 200 X. Five ml of very motile spirochete 

culture was inoculated in 35 ml of BSK II medium (four tubes total) in a 50 ml conical 

tissue culture tube (Falcon, Franklin Lanes, NJ). Following a further incubation of 48 hrs 

at 34 °c, the spirochetes were centrifuged at 2000 X g for 30 minutes at 10 °C using 
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aerosol protection. Pellets obtained from all the four tubes were resuspended in 50 ml of 

fresh BSK II medium and mixed with an equal volume of 20 % BSA, in PBS. Two ml 

aliquots of this suspension were stored frozen at -80 °C in an ultra low temperature 

freezer (Environmental Equipment Company, Cincinnati, OH). For individual 

experiment, a vial of frozen culture was rapidly thawed by holding it in a 3 7 °C water 

bath and inoculated in fresh BSK II medium. A Petroff-Hauser counting chamber 

(Hausser Scientific Company, Horsham, PA) and dark field microscopy was used to 

enumerate the spirochetes. A cover slip was placed on the ruled area of the chamber and 

it was charged with 1: 100 diluted culture suspension. The number of spirochetes per ml 

were determined by the formula: number of spirochetes counted in the central square mm 

area of the chamber X dilution factor X 50,000. In addition to the type strain B31, a 

mutant of the same strain ofB31 was procured as a generous gift from Dr. A.G. Barbour, 

Department of Microbiology, University of Texas Health Center, San Antonio, TX. This 

mutant lacks the 49 kb operon coding for OspA (31 kDa) and OspB (34 kDa), and thus it 

does not express these two molecules. This strain was also expanded in BSK II and a 

master culture was stored in 10 % BSA at -80° C as explained earlier 

Experimental Animals 

Female BALB/c mice, six to eight weeks old, weighing 20-25 g were used in this 

study. Mice were obtained from Jackson Laboratories, Bar Harbor, Maine and housed at 

Laboratory Animal Resources facility of School of Veterinary Medicine, Oklahoma State 

University, Stillwater, OK. at 22° C, and were fed a commercial diet and water ad. 

libitum. 
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Tick Colony 

Adult, replete female Ixodes scapularis were collected from the fields around 

Stillwater, OK, placed in individual vials with plaster of Paris (POP) and charcoal at the 

bottom, and held in a desiccator maintained at 25° C for oviposition and subsequent 

hatching of eggs to obtain larvae. Borrelia burgdorferi is not transmitted by transovarial 

route, thus these larvae were pathogen free. Pathogen free nymphs were obtained by 

feeding these larvae on BALB/c mice. The bottom of a 1.5 ml conical microcentrifuge 

tube was removed and a hole was made in the lid for air circulation. Hair was trimmed 

from the back of a mouse and the tube was glued on it to create a site for infestation that 

could not be groomed. A total of 100-150 (not counted) unfed larvae were deposited into 

the capsule using a camel hair brush. A fine mesh cloth was used while closing the lid to 

allow air circulation and prevent the escape of larvae. Larvae were allowed to obtain a 

blood meal and capsules were checked every day for attachment and collection of replete 

larvae. Twenty five fed larvae were placed into individual vials containing POP plus 

charcoal at the bottom, held in a desiccator with water in the bottom and at 25° C until 

molting to the nymphal stage occurred. 

In order to obtain B. burgdorferi infected nymphs, larvae were fed on BALB/c 

mice that were infected with B. burgdorferi strain B31. One vial (two ml) of frozen B. 

burgdorferi B31 master culture was rapidly thawed and one ml of culture was inoculated 

into each of two 15 ml screw cap tissue culture tubes containing nine ml of fresh BSK II. 

It was incubated at 34 °C for 24 hrs and viability and activity of the culture was checked 

by dark field microscopy as described earlier. One ml of this culture was reinoculated into 

nine ml of fresh BSK II and incubated further for 48 hrs at 34 °C in a bacteriological 
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incubator. At the end of this incubation period, the spirochetes were pelleted by 

centrifugation at 2000 X g for 30 minutes at 10 °C and washed twice by resuspending in 

sterile PBS and recentrifugation. Finally, spirochete pellets obtained from both tubes were 

resuspended in five ml of sterile PBS, they were counted using Petroff Hausser counting 

chamber and the final count was adjusted to 2.0 X 107 per ml. Each mouse was 

inoculated with 0.5 ml of this suspension (1.0 X 107 spirochetes/mouse) by 

intraperitoneal (IP) injection using a 22 gauze needle. Four weeks later, an ear punch 

biopsy was taken from each mouse to confirm infection by the method of Sinsky and 

Piesman, (1989). The ears of mice were surface sterilized by scrubbing with 70% ethyl 

alcohol and a small sterile punch was used to obtain a piece of tissue. It was placed in 

four ml of BSK II medium in a five ml screw cap tube without further triturition and 

incubated at 34 °Cina dry bacteriological incubator. After one week, a wet smear of 

culture medium was examined by dark field microscopy for the presence of spirochetes. 

Following confirmation of infection, mice were infested with unfed larvae and allowed to 

feed to repletion as described earlier. Replete larvae were maintained for molting into 

nymphs as described above. 

Confirmation of Infection in I. scapularis Nymphs 

Following molting, unfed nymphs were examined for spirochetal infection by 

dark field microscopy (Piesman et al., 1987). Two unfed nymphs were randomly picked 

out of the nymphs from each of eight vials in which 25 fed larvae had earlier been placed 

for molting. They were placed in a 20 µl drop of PBS on a microscopic slide and finely 

minced with a sharp scalpel blade. A cover slip was placed on top to prepare a wet smear 
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that was examined by dark field microscopy at 200 X magnification. The unfed nymphs 

molted from larvae obtained following repletion on uninfected mice were also examined 

in a similar manner as control. Observation of one viable spirochete in the smear was 

considered positive infection of the tick. 

Preparation of Whole Spirochete Extracts (WSE) 

One vial (two ml) of frozen B. burgdorferi B3 l master culture was rapidly thawed 

and one ml of culture was inoculated into each of two 15 ml screw cap tissue culture 

tubes containing nine ml of fresh BSK II. It was incubated at 34 °C for 24 hrs and 

viability and activity of the culture was checked by dark field microscopy as described 

earlier. Eight hundred ml ofBSK II medium was distributed (40 ml per tube) in 20 sterile, 

50 ml, conical, screw cap culture tubes (Falcon, Franklin Lakes, NJ) and inoculated with 

one ml of actively growing spirochete culture. Spirochetes were allowed to grow to late 

log phase, for approximately two weeks after inoculation. At this time the medium had 

turned yellow in color and large flakes of spirochetes could be seen settled at the bottom 

of tube. Little motility could be observed in spirochetes on examination of these cultures 

by dark field microscopy, although a large number of spirochetes were present. 

Spirochetes were killed by further addition of a stock solution ofthimersol (10 mg/ml in 

distilled water, 400 µ1/40 ml of culture suspension, 0.01 % final concentration), and 

further incubating the cultures overnight. Spirochetes were pelleted by centrifugation at 

2000 X g at 10 °C for 30 minutes. All the pellets (20) were pooled together. Spirochetes 

were washed three times with sterile PBS, to remove thimersol and media components, 

by repeated centrifugation and resuspension in sterile PBS. Finally, 
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spirochetes were resuspended in 10 ml of sterile PBS. Spirochetes were disrupted by 

sonication at 55,000 cycles/s of one minute in a water bath sonicator for a total of five 

minutes. WSE was held on ice between sonication cycles for cooling. 

Protein concentration of the sonicate was determined by the microtiter plate 

bicinchoninic acid (BCA, Pierce, Rockford, IL) method of Smith et al., 1985, using 

bovine serum albumin (2 mg/ml, in a 0.9 % aqueous NaCl solution, Pierce, Rockford, IL) 

as standard. The standard was diluted with PBS to a protein concentrations of 50, I 00, 

and 150 µg per ml. Whole spirochete extract was serially diluted from I : 20 through I: 

640. Fifty parts of Solution A were mixed with one part of Solution B to obtain the 

working reagent for BCA protein assay. Two hundred and fifty µl of working reagent was 

deposited into each well of a flat bottom, 96 well plate (Coming, New York, NY). 

Twenty µ1 of each standard dilution (1, 2, and 3 µg total protein), and WSE dilution were 

added per well in triplicate. Twenty µ1 per well of PBS added in triplicate served as 

blank. The plate was covered with a lid and agitated on a Genie 2 vortex shaker 

(Scientific Industries, Bohemia, NY) for 2-3 minutes. Plate was incubated at 60 °C for 30 

minutes and optical densities were determined at 562 nm using an automatic microplate 

reader (model no. EL307C, Biotek Instruments, Winsooki, VT). Absorbance values for 

each sample and standard were averaged and protein content of WSE was determined by 

linear regression. The final protein content of WSE was adjusted to one mg per ml. The 

WSE prepared from original B31 strain was used as antigen for determination of B. 

burgdorferi specific antibodies by ELISA, and for lymphocyte proliferation assay. The 

WSE was prepared in a similar manner from the OspA and B negative strain which also 
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served as the starting material for preparative SDS-PAGE fractionation ( explained below) 

in addition to being used in the lymphocyte proliferation assay. 

Fractionation of Whole Spirochete Extract 

Initial attempts fractionate the WSE obtained from B. burgdorferi strain B31 were 

unsuccessful due to the presence of a large amount of OspA in this preparation. The 

entire spectrum of fractions obtained by preparative SDS-PAGE fractionation of this 

antigen using Prep Cell Model 491 (Bio-Rad Laboratories, Hercules, CA) was 

contaminated with OspA. Therefore, WSE prepared from the mutant strain of B3 l, which 

lacks the expression of OspA and B was used for this purpose. 

Whole spirochete extract was fractionated using a Model 491 Prep Cell (Bio-Rad 

Laboratories, Hercules, CA). This apparatus can be used to separate specific proteins 

from complex mixtures by continuous elution electrophoresis. Proteins are 

electrophoresed vertically through a cylindrical polyacrylamide gel, which migrate off the 
1 

gel as individual bands passing directly into an elution chamber that serves as a molecular 

sieve. Elution buffer is drawn radially inward to an elution tube and out to the fraction 

collector. Antigens are, therefore, eluted in different fractions according to their 

molecular weights. 

Preparative SDS-P AGE fractionation was performed by the method outlined by 

Bergman et al.,(1995). All the buffers used and recipes for the preparation of gels with 

different acrylamide concentration are given in Appendix I (Section 2). Three separate 

fractionations were conducted using an approximately nine cm high resolving gel, with 

three different acrylamide concentrations, i.e. 7.5, 10, and 12 %. (Appendix I) and three 

cm stacking gel with 4 % acrylamide concentration (Appendix I) cast in 28 mm internal 

37 



diameter gel tube of the apparatus. Resolving gel was cast, over layered with distilled 

water and allowed to polymerize overnight. A variable speed pump (Bio-Rad 

Laboratories, Hercules, CA) circulated water at room temperature through cooling core of 

the gel tube to remove the heat produced during polymerization. In the morning, the top 

of the resolving buffer was rinsed with electrophoresis buffer and a three cm high 

stacking gel ( 4 % acrylamide) was cast and allowed to polymerize for one to two hours. 

The gel tube was assembled with upper and lower buffer chambers which were then filled 

with electrode buffer (Appendix I, Section 2). 

Whole spirochete extract prepared from OspA and OspB negative mutant was 

prepared for discontinuous SDS-PAGE according to the method ofLaemmli, (1970). 

Two ml of WSE (2 mg total protein) was mixed with 400 µ1 of 3 X sample buffer 

(Appendix I, Section 2) and heated to 95° C for five minutes. The sample was centrifuged 

at 14,000 X g to remove any suspended material. This sample was underlayed the 

electrode buffer in the upper chamber on top of the stacking gel using a syringe attached 

to fine tubing. The whole apparatus assembly was placed in a chromatography chamber 

maintained at 5 °C and connected to a variable speed Tris™ pump (lsco, Lincoln, 

Nebraska) and a fraction collector (Gilson Medical Electronics, Middleton, WI). 

Electrophoresis was conducted at 40 mA constant current using power supply model 

1000/500 (Bio-Rad Laboratories, Hercules, CA). The fraction collector was started once 

the band ofbromo phenol blue dye (present in the sample buffer) reached the bottom of 

resolving gel. Proteins eluting from the gel were captured in deaeriated electrode buffer 
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(elution buffer) flowing at the rate of one ml/min. A total of 128 fractions of2.5 ml each 

were collected at 2.5 minute intervals for each prep-cell run. 

Analytical SDS-P AGE of Fractions 

Selected fractions over the entire spectrum of collected fractions were analyzed by 

analytical SDS-PAGE and gels were silver stained to determine the composition of each 

fraction (Morrissey, 1981). Analytical SDS-PAGE was conducted using Mini-PROTEAN 

II dual slab electrophoresis cell (Bio-Rad Laboratories, Hercules, CA). Four-screw clamp 

assemblies were used to prepare glass plate sandwiches using a pair of 0.75 mm thick 

spacers and aligned on the casting stand. A resolving gel with 12 % acrylamide 

concentration (Appendix I, Section 2) was poured and overlaid with water. It was allowed 

to polymerize for one to two hours. The top of the resolving gel was rinsed with electrode 

buffer and a four percent acrylamide stacking gel was poured on top of the resolving gel. 

A 10 well comb was placed in the stacking gel taking care not to trap any air bubbles. 

Stacking gel was allowed to polymerize for about one hour. Clamp assemblies along with 

gels were snapped onto the inner cooling core which also formed the upper buffer 

chamber. This whole assembly was placed in the lower buffer chamber and both buffer 

chambers were filled with electrode buffer. 

Fifty µl of selected fraction was mixed with 10 µl of 3 X sample buffer and 25 µl 

ofthis sample was loaded per well. One of the wells was loaded with standard low 

molecular weight markers (Sigma, St. Louis, MO). Electrophoresis was carried out at 200 

volts constant voltage for about 45 minutes or until the dye band reached the bottom of 

the resolving gel. 
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Gels were removed from the clamp assemblies following the completion of 

electrophoresis and stained with silver stain using a Silver Stain Plus kit (Bio-Rad 

Laboratories, Richmond, CA). Gels were fixed for 20 minutes in the fixative solution 

(100 ml methanol, 20 ml acetic acid, 70 ml water and 10 ml fixative enhancer 

concentrate). Gels were washed twice for 10 minutes with double distilled water and 

gentle agitation. Gels were stained with stain/developer solution (prepared by mixing 35 

ml water, five ml silver complex solution, five ml reduction moderator solution, five ml 

image development reagent and 50 ml development acceleration reagent in that order 

with constant stirring). Gels were stained for about 20 minutes or until optimal band 

intensity was observed. Staining was stopped by draining the stain solution and adding a 

stop solution of five percent acetic acid in double distilled water. 

Pooling and Removal of SDS From Fractions 

After careful visual analysis of stained gels, the fractions with similar protein 

composition were pooled together. From the pools of fractions, excess SDS was removed 

by precipitation using a potassium salt (Suzuki and Terada, 1988). Dibasic potassium 

phosphate (K2HP04, FW 174.18) was added to each fraction to a final concentration of 

20 mM (50µ1 of 69.7 mg/ml solution in double distilled water per 950 µI of each fraction 

pool), incubated for 15 min. at room temperature and centrifuged for 15 minutes at 

14,000 X g in a high speed centrifuge. Supematants were collected, and dialyzed against 

PBS to remove tris. The constitution of each fraction pool was again determined by 

analytical SDS-PAGE (12 % resolving, 4 % stacking gel) as described for fractions. 

Subsequently, all the fraction pools were sterilized by passing through a 0.22 micron filter 
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(Millipore Corporation, Bedford, MA) and stored frozen in one ml aliquots at -20 °C until 

used in the in vitro lymphocyte proliferation assay. 

Initiation of Infection in BALB/c Mice 

Six to eight week old BALB/c mice were infected with B. burgdorferi isolate B31 

by both needle inoculation of spirochetes grown in BSK II or by infestation with B. 

burgdorferi strain B31 infected I scapularis nymphs. One group of mice ( described 

below in experimental design section) was infected with needle inoculation using exactly 

same procedure as described for infection of mice for raising infected I scapularis 

nymphs. Another group of mice was injected with 0.5 ml of PBS (IP) per mouse to serve 

as matched controls. 

For initiation of tick transmitted infection, six B. burgdorferi B3 l strain infected 

I scapularis nymphs were infested per mouse in a similar fashion as the method 

explained for infestation of larvae. Each mouse was placed in an individual cage held 

over water to prevent the accidental escape of infected nymphs. A control group of mice 

was infested in a similar fashion with pathogen free nymphs. Mice were checked daily for 

attachment and feeding of nymphs. The nymphs were allowed to feed to repletion and the 

capsules were removed one week after the day of infestation. 

Enzyme-linked Immunosorbant Assay (ELISA) 

An ELISA developed and standardized by Ramachandra et al., (1993) was used to 

monitor lgM and lgG immunoglobulins reactive with B. burgdorferi B3 l WSE in the sera 

collected from different groups of mice at intervals explained in the experimental design 

section. Immulon-2, 96-well flat bottomed microtitration plates (Dynatech 
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Laboratories, Chantilly, VA) were coated with WSE (B3 l type strain) at 50 µI/well (2 

µg/ml in PBS, 0.15 M, pH 7.2, 100 ng total antigen/well) and plates were dried overnight 

in a dry bacteriological incubator at 34° C. The antigen containing wells were blocked 

with PBS-0.05% Tween 20 containing 5% horse serum, at 100 µI/well, for 1 hat 37 °C, 

and then washed three times with PBS-Tween 20. Next, 100 µl oftest serum was added 

per well, serially diluted in the plate (1 :20 to 1 :20,480) and incubated for 1 hat 37 °C. 

Plates were washed again as above and 100 µl of horseradish peroxidase-conjugated 

rabbit anti-mouse IgG or lgM (Jackson Immunoresearch Laboratory, West Grove, PA) 

diluted to 1 :5,000 in PBS-Tween 20 containing 1 % bovine serum albumin was added to 

each well. Plates were further incubated for 1 hat 37° C. The plates were again washed 

three times and 100 µl of substrate solution containing 40 mg of o-phenylene diamine 

(Eastman Kodak, Rochester, NY), 30 µl of 30% hydrogen peroxide in 100 ml of 

phosphate citrate buffer (pH 5.0, Appendix I, Section 1) was added to each well and color 

allowed to develop for 15 minutes in the dark at 3 7 °C. Reaction was stopped by addition 

of 30 µl of 4N HCl per well and optical densities determined at 490 nm using a 

microplate reader (model no. EL307C, Biotek Instruments, Winsooki, VT). 

Immunoblot Analysis of Sera 

Immunoblot analysis of all the sera collected was carried out using Coomassie 

stained protein gels according to the method of Thompson and Larson (1992) as 

described by Ramachandra et al., (1992). The SDS-PAGE of WSE (prepared from B31 

strain of B. burgdorferi) was conducted using a Mini-PROTEAN II dual slab gel system 

(Bio-Rad, Richmond, CA) as described by Laemmli, (1970). Two hundred µl total 
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volume of WSE (type strain B31 ), containing 10 µg total protein was loaded in the trough 

formed in 4 % stacking gel and was resolved in a 12% acrylamide resolving gel. Standard 

Low Molecular Weight markers (Sigma, St. Louis, MO) were run along side. 

Gels were stained with rapid Coomassie stain (Research Product International 

Corp., Mount Prospect, IL). Gels were fixed by incubating in 12.5 % trichloroacetic acid 

for 10 minutes with gentle agitation at room temperature. Working strength (1 X) stain 

solution was prepared by mixing two ml of stock stain solution with 40 ml of 7.5 % 

methanol-5 % acetic acid. Gels were stained for 20-40 minutes and then destained 

overnight in 7.5 % methanol-5 % acetic acid to remove background staining. 

The stained proteins were electrotransferred to nitrocellulose membrane, using 

Mini Trans-Blot® electrophoretic transfer cell (Bio-Rad, Richmond, CA). Transferred 

proteins remained stained during the immunodetection and thus, were easier to locate and 

determine their molecular weight (Thompson and Larson, 1992). Coomassie stained gels 

were equilibrated in transfer buffer (Appendix I, Section 2) for 15 minutes to remove 

electrophoresis buffer salts and detergents. Nitrocellulose membrane (Bio-Rad, 

Richmond, CA) was cut to the size of the gel and soaked in transfer buffer by sliding it at 

an angle of 45° and allowed to soak for 15 minutes. Pre-cut filters and Fiber pads (Bio

Rad, Richmond, CA) were completely soaked in transfer buffer. Mini Trans-Blot 

electrode (Bio-Rad, Richmond, CA) was installed in the buffer chamber and buffer 

chamber was filled up to half with chilled transfer buffer. A one inch Teflon coated stir 

bar was placed at the bottom of buffer chamber. A Bio-Ice cooling unit (Bio-Rad, 

Richmond, CA) was prepared in advance, by filling it with deionized, distilled water and 
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storing in the freezer. The frozen cooling unit was installed in the buffer chamber, next to 

the electrode. The gel holder cassette was placed in a shallow glass dish containing cold 

transfer buffer with gray panel flat on the bottom of the vessel. A pre-soaked Fiber pad 

was placed on the gray panel. A piece of filter paper saturated with transfer buffer was 

placed on top of the Fiber pad. Surface of the filter paper was saturated with 2-3 ml of 

transfer buffer. Next, equilibrated gel was placed on top of the paper avoiding trapping of 

any air bubbles in between. Surface of the gel was flooded with transfer buffer and pre

wetted nitrocellulose membrane was placed on top of the gel. A small glass test tube was 

rolled over the top of the membrane (like a rolling pin) to eliminate any air bubbles 

trapped between the gel and the membrane. Surface of the membrane was flooded with 

transfer buffer and a sandwich was completed by placing a filter paper and a Fiber pad on 

top. Finally the cassette was closed by securing the latch. The gel holder cassette was 

placed in the buffer tank so that the gray panel of the holder faced the gray cathode 

electrode panel. The buffer tank was placed on top of a magnetic stirrer and filled with 

buffer to slightly above the level of the top row of circles on the gel holder cassette. The 

magnetic stirrer was turned on and the lid was put in place. Transfer of the proteins was 

performed at 100 V constant voltage for one hour. 

The blots were removed from the gel holder cassette and stored in the dark until 

Western blot (immunoblot) analysis was carried out on them. Nitrocellulose blots were 

equilibrated in Tris-saline buffer (10 mM Tris-HCl, 0.9% NaCl, pH 7.4, Appendix I) for 

15 minute and then incubated in Tris-saline buffer containing 5% non-fat dry milk 

(BLOTTO, Bovine Lacto Transfer Technique, Johnson et al., 1983) for 45 minutes at 

room temperature to block non-specific protein binding sites. 
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Membranes were then transferred to a Mini-PROTEAN® II multiscreen apparatus 

(Bio-Rad, Richmond, CA), which enables screening ofup to 20 different serum samples 

at the same time. Sera diluted to 1 :30 in Tris-saline-BLOTTO were loaded into 

multiscreen channels (600 µI/channel) and incubated for 60 minutes at room temperature 

with gentle agitation. Serum samples were then removed by aspiration and membranes 

washed three times each with Tris-saline-BLOTTO and Tris-saline-BLOTTO-Tween 20 

(BLOTTO containing 0.05% Tween-20) for five minutes with gentle agitation. Reacting 

antibodies were detected by HRPO-conjugated, affinity purified, goat anti-murine IgG ( 

Jackson Immunoresearch Laboratories, Inc. West Grove, PA) used at a dilution of 1 :200. 

Blots were incubated for one hour at room temperature. Immobilized labeled antibodies 

were detected by incubation with a substrate solution containing 60 ml of Tris -saline 

buffer, 30: 1 of 30% hydrogen peroxide, 12 ml of 4-chloro-1-naphthol (3 mg/ml in 

anhydrous methanol) for 30 minutes at room temperature. Color development was 

stopped by removing the substrate and washing with Tris-saline buffer. 

In vitro Spirochete Neutralization Assay 

All antisera obtained at different times post-infection were tested for their ability 

to neutralize type strain B31 spirochetes in vitro. The method described by Lovrich et al. 

(1991) was followed with some major modifications. Spirochetes were grown to 4-6 X 

107 /ml in BSK II after reviving a fresh vial of the master seed and adjusted to 2.0 X 106 

/ml by adding fresh medium. 50µ1 (1.0 X 105 spirochetes) of this suspension were added 

in triplicate to 100 µl of 1 :20 dilution of immune or control serum placed in a sterile 1.5 

ml conical centrifuge tube. Twelve µl of guinea pig complement (at least 250 
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complement hemolytic units/ml, Gibco, Grand Island, NY) was added to the suspension 

and final volume brought to 200 µl by adding fresh BSK II medium. This mixture was 

incubated at 37° Cina humidified incubator with five percent CO2 atmosphere (NAPCO, 

Precision Scientific, Chicago, IL) for 6 h. Then, 1 µCi of [3H] adenine, specific activity 

851 GBq/mmol, (20 µl in BSK II) was added along with 600 µl of fresh BSK II medium. 

This mixture was further incubated for 96 h. At the end of the experiment, all 

spirochetes were inactivated with a one hour incubation at 37 °C in Thimersol (10 mg/ml 

in distilled water, 8.2 µI/tube, final concentration 0.1 %). Amount oflabel incorporated 

was determined by immobilizing the nucleic acid content of each tube onto a glass fiber 

filter using an automated cell harvester (Brandel Laboratories, Gaithersburg, MD). Glass 

fiber filters were placed in six ml plastic, screw cap scintillation vials (Wheaton, VWR 

Scientific Products, Suwanee, GA) and covered with two ml Biodegradable counting 

Scinillant (Amersham, Arlington Heights, IL). The incorporation of methyl-tritiated 

adenine radioactivity on the filters was determined by counting in an automatic liquid 

scintillation spectrophotometer (Model LS6000SC, Beckman Instruments, Inc. Fullerton, 

CA). In some tubes heat inactivated (56 °C for 30 min.) pre-immune serum, with or 

without addition of complement was added instead of test serum to serve as control. Also, 

in some tubes only heat inactivated or normal complement alone (no serum) was added as 

controls for this assay. 

In vitro Splenocyte Proliferation Assay 

This assay was conducted as described by Ramachandra and Wikel (1992). 

Experimental or control subgroups of mice were sacrificed at different time intervals 
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post-infection as outlined in the experimental design section. One subgroup each from 

tick transmitted and needle inoculated infection groups was sacrificed providing four 

spleens per subgroup. Spleens from each subgroup were removed, pooled, and placed into 

sterile RPMI 1640 (Gibco, Grand Island, NY, Appendix I, Section 1) containing 10% 

heat inactivated (56 °C, 30 minutes) fetal calf serum (Gibco, Gaithersburg, MD), 2 mM 

glutamine, 100 units penicillin and 1 OOµg streptomycin/ml. A single cell suspension was 

prepared in RPMI 1640 medium by mechanically disrupting the spleens between ground 

glass edges of sterile microscopic slides (Fisher Scientific, Pittsburgh, PA). Slides used 

for this purpose were precleaned by washing in running water for one hour, dried and 

autoclaved. Cells were washed three times by centrifuging at 600 X g for 15 minutes at 

25 °C after resuspension in RPMI 1640 medium. 

The cells were counted using a hemocytometer. Ninety µl of Turk's solution [0.01 

g gentian violet (Mallinckrodt, Paris, KY), 3 ml glacial acetic acid, and 97 ml distilled 

water] were placed in each of three wells of a 96-well round bottom well plate (Becton 

Dickinson and Company, Lincoln Park, NJ) and 10 µl of cell suspension was serially 

transferred from each well to the next with thorough mixing making dilutions of 1: 10, 

1: 100, and 1: 1000. The hemocytometer was charged with appropriate dilution i.e. at 

which the cells could be easily counted. Cells were counted in two diagonally placed 

large squares and a mean was calculated. Cells per ml were calculated by the formula: 

Mean cell count X dilution factor X 104. Cell count was finally adjusted to 5.0 x 106 

cells/ml. 
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One hundred µl ( 5. 0 XI 05 cells) of this suspension was placed in each well of a 

96-well plate. One hundred µl of medium containing one µg Con A (Calibiochem, La 

Jolla, CA), one µg Escherichia coli lipopolysaccharide (LPS) (Sigma, St. Louis, MO), 

one µg whole spirochete extract (B. burgdorferi type strain B31 ), one µg whole 

spirochete extract (B. burgdorferi OspA and B negative mutant) and different fraction 

pools obtained by preparative SDS-PAGE, diluted 1 :2 in 2 X RPMI were added to the 

cells in triplicate. Cells without the addition of any mitogen or antigen served as negative 

control. Also, the splenocytes obtained from control groups were subjected to similar 

assay at the same time. The whole procedure was done in duplicate. In one instance, the 

plates were incubated for 54 h (3 day assay) and then pulsed with 1 µCi oftritiated 

thymidine (NEN Research Products, Boston, MA) per well (20 µl in RPMI 1640). In the 

second instance, cells were incubated for 102 h (5 day assay) before pulsing with tritiated 

thymidine. The amount of label incorporated was determined by immobilizing the nucleic 

acid content of each well onto a glass fiber filter using an automated cell harvester 

(Brandel Laboratories, Gaithersburg, MD). Glass fiber filters were placed in six ml 

plastic, screw cap scintillation vials (Wheaton, VWR Scientific Products, Suwanee, GA) 

and covered with two ml biodegradable counting Scinillant (Amersham, Arlington 

Heights, IL). The incorporation of methyl-tritiated thymidine radioactivity on the filters 

was determined by counting in an automatic liquid scintillation spectrophotometer 

(Model LS6000SC, Beckman Instruments, Inc. Fullerton, CA). 
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Experimental Design 

The infected tick takes at least 36-48 hrs to transmit infection to the host 

following attachment (Ribeiro et al., 1987). Therefore, to synchronize the initiation of B. 

burgdorferi infection by needle and tick transmission, the intraperitoneal injection of 

spirochetes in the group of mice receiving infection by needle inoculation was delayed 

until 3 days (72 hrs) after infestation with infected I scapularis nymphs in the group of 

mice receiving tick transmitted infection. 

Twenty mice were infested with infected I scapularis nymphs ( six nymphs per 

mouse). At the same time, 14 mice were infested with pathogen free I scapularis nymphs 

( six per mouse) to serve as matched controls. The mice were checked daily and the 

nymphs were allowed to feed to repletion. Three days (72 hrs) later, twenty mice were 

injected with culture grown spirochetes (1.0 X 107 spirochetes/mouse), intraperitoneally. 

For this purpose, a vial of frozen master culture B. burgdorferi B3 l strain was rapidly 

thawed and inoculated in nine ml of fresh BSK II medium and incubated at 34 °C. 

Twenty four hrs later, the spirochete activity in the culture was checked by dark field 

microscopy and one ml of this actively growing culture was again inoculated into nine ml 

of fresh BSK II medium in four replicates and incubated for 48 hrs at 34 °C. The cultures 

were once again checked for spirochete activity and viability by dark field microscopy. 

The spirochetes were washed three times with sterile PBS by centrifugation at 3000 X g 

at 10 °C for 30 minutes and resuspension. Aerosol protection was used at the time of 

centrifugation by placing the screw caps on the centrifuge tubes. The spirochetes were 

enumerated and the final count was adjusted to 2.0 X 107 spirochetes per ml. Each mouse 
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was injected with 500 µl (1.0 X 107 spirochetes) of this suspension by intraperitoneal 

route. Fourteen mice were injected with 500 µl of sterile PBS (IP) to serve as matched 

controls. The day of needle inoculation of spirochetes was deemed day zero for both 

methods of infection. 

A pooled serum sample was collected by bleeding four randomly selected mice 

from each infected and control group on days three, 10 and 21. Four mice selected from 

each tick transmitted infection and needle inoculated infection groups were sacrificed at 

one, two, four, eight and twelve weeks post-infection. Blood samples were collected and 

pooled for the respective group to obtain a serum sample. Spleens were harvested and 

pooled to obtain splenocytes to study their proliferative responses to different mitogens 

and antigens. Finally, the urinary bladder from each mouse was dissected and placed in 

four ml ofBSK II medium and incubated at 34° C to confirm infection. Four mice from 

each control group were also sacrificed at similar intervals and processed in the same 

manner with two exceptions. Control mice were not sacrificed at four weeks post

infection. At eight weeks post-infection, two mice instead of four, each from the groups 

injected with sterile PBS or infested with pathogen free nymphs were sacrificed to serve 

as the matched control. 

Serum samples were collected at days three, seven, ten, 14, 21, 28, 56, and 84 post 

infection. The proliferative responses of splenocytes to different antigens and mitogens 

were studied at one, two, four, eight, and 12 weeks post infection. 

50 



CHAPTER III 

RESULTS 

Confirmation of Infection in I. scapularis Nymphs 

A total of 16 nymphs (two nymphs from each of eight tubes containing 25 nymphs 

per tube) molted from larvae fed on B. burgdorferi infected BALB/c mice were 

examined. Observation of a single spirochete by dark field microscopy in a wet smear 

prepared from a triturated unfed nymph was considered to be confirmation of infection. 

The total number of spirochetes per smear was not counted. All the nymphs examined 

were found to be positive for infection. The unfed nymphs from these vials were used to 

infest BALB/c mice to establish tick transmitted B. burgdorferi infection. A same number 

of unfed nymphs received after molting from larvae fed on uninfected mice were also 

subjected to similar examination and spirochetes were not detected in any of these wet 

smears. 

Tick Infestation 

A total of 20, six to eight week old, female, BALB/c mice were infested with I 

scapularis nymphs (six per mouse) confirmed to be infected with B. burgdorferi. Mice 

from this group were used to study different parameters of the immune response against 

tick-transmitted Lyme borreliosis. A total of 82 replete nymphs (68.33 %) were collected 

from 20 mice (120 unfed nymphs). 4.10 ± 0.19 (mean± S.E) replete nymphs were 

obtained per mouse. 
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At the same time, fourteen mice were infested with pathogen-free I scapularis 

nymphs (six per mouse) to serve as matched control for the group with tick-transmitted 

Lyme borreliosis. A total of 66 fed nymphs (78.57 %) were collected with a mean± S.E. 

of 4.71± 0.32 per mouse. All the replete nymphs had dropped off from both the groups by 

day eight following infestation and the retaining capsules were removed from all the mice 

at that time. 

Fractionation of Whole Spirochete Extract 

Three different concentrations ofresolving polyacrylamide gel (PAG) i.e. 7.5, 10, 

and 12 % were used in the 28 mm inner diameter column of the apparatus. The 

concentration of stacking gel was same for all the fractionations i.e. four percent. The 

heights of resolving and stacking gels were approximately nine cm and two cm, 

respectively. Two mg total protein of WSE (OspA and B deficient strain) in two ml 

volume was fractionated as described in the materials and methods section. A total of 128 

fractions, each 2.5 ml in volume, were collected for each fractionation run. Selected 

fractions were analyzed by analytical SDS-PAGE to determine their composition. 

Fractionation 1: Every other fraction, starting with 2nd fraction up to fraction 36 

obtained by a preparative run using 7.5 % acrylamide concentration was examined for its· 

protein composition using a 12 % analytical SDS-PAGE gel stained with silver (Figure 

1). Fractions two, four, six, eight, 10, and 14 showed the presence of more than two bands 

in the molecular weight range of 29 kDa to 45 kDa. Fractions 16 and 18 showed a single 

major band at 45 kDa. Fraction 20 contained three bands in the molecular weight range of 

45 to 51 kDa. Fractions 28, 30, 32, and 34 show one major band at about 56 kDa position. 
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Figure 1. Preparative scale, continuous-flow, SDS-PAGE fractionation of Borrelia 

burgdorferi (OspA and B deficient strain) whole spirochete extract using 7.5% 

acrylamide. 
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Fractions were electrophoresed in analytical polyacrylamide gel containing 12% 
acrylamide and stained with silver. 
M-Low molecular weight standard 
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Thus, with a 7.5 % resolving gel, the best preparative fractionation resolution was 

obtained in the molecular weight range of 45 to 56 kDa. 

Fractionation 2: The second fractionation was carried out using a 10 % polyacrylamide 

resolving gel. Every other fraction, starting with fraction two up to fraction 48 was 

analyzed for its protein composition using an SDS-PAGE gel containing 12 % acrylamide 

stained with silver (Figure 2). A very good separation of different molecular weight 

polypeptides was obtained within the molecular weight range of approximately 10 kDa to 

33 kDa. Fractions two and four did not contain any protein bands in it showing that these 

fractions were collected before the proteins eluted from the resolving gel. Examination of 

subsequent fractions revealed that gradually higher molecular weight polypeptides eluted 

as the fractionation progressed. The molecular weight of each fraction was determined to 

exact value since the purpose was to locate fractions with similar sized proteins so that 

rational pools could be made. 

Fractionation 3: The third fractionation was carried out on similar lines as the previous 

two, using a 12 % polyacrylamide concentration in preparative resolving gel. Figure 3 

shows the protein profile of every other fraction, starting with fraction four up to fraction 

50 as determined by analytical SDS-PAGE using a 12 % polyacrylamide gel stained with 

silver. Fractions four, six, eight, 10 and 12 did not show any protein bands meaning that 

these were collected before any proteins eluted from the resolving gel. Fractions 14, 16, 

and 18 showed a band at less than 5 kDa. Fractions 20, 22, 24, 26, 28, 30, 32, 34, 36, 38 

and 40 showed the appearance of progressively higher molecular weight protein bands in 
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Figure 2. Preparative scale, continuous-flow, SDS-PAGE fractionation of Borrelia 

burgdorferi (OspA and B deficient strain) whole spirochete extract using 10% 

acrylamide. 
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Figure 3. Preparative scale, continuous-flow, SDS-PAGE fractionation of Borrelia 

burgdorferi (OspA and B deficient strain) whole spirochete extract using 12% 

acrylamide. 
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the molecular weight range of approximately 10-20 kDa. However, fractions 42, 44, 46, 

48, and 50 contained the same band with a molecular weight of 20 kDa. The best range of 

resolution with a 12 percent acrylamide concentration in preparative gel was in the range 

of 10 to 20 kDa. 

Pooling of Fractions 

After careful analysis of various fractions obtained by the three preparative SD S

p AGE fractionation runs, fractions with similar protein constitution were pooled together 

to obtain seven different fraction pools. Four separate fraction pools were prepared from 

the 7.5 % run. Two pools were obtained from the 10 % run. One fraction pool was 

obtained from the 12 % run. The fractions were pooled with fractions from with in the 

same run only. After pooling, excess SDS was removed from the pools as described in 

materials and methods section. Fraction pools were dialyzed against PBS and finally filter 

sterilized by passing through a 0.22 micron filter. Each fraction pool was analyzed by 

analytical SDS-PAGE using 12 % polyacrylamide gel stained with silver to determine 

their protein profile (Figure 4). 

Table 1 gives the description of various fraction pools prepared and their protein 

composition. Fractions five through nine, 14 through 19, 23 through 27, and 30 through 

34 obtained from the 7.5 % run were pooled together and were numbered Fraction Pool I 

through 4 (Table 1 ). Fraction Pool 1 showed six different polypeptide bands ranging in 

molecular weights from 30.5 to 38.5 kDa (Figure 4). Fraction Pool 2 contained a single 

major band at 45 kDa (Figure 4). Fraction Pool 3 contained two protein bands at 50 and 

51 kDa position (Figure 4). Fraction Pool 4 showed a single major band at the 56 kDa 

position. 
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Figure 4. Protein profiles of fraction pools prepared with fractions obtained from 

three different preparative SDS-P AGE runs on extract from Borrelia burgdorferi 

whole spirochete extract (OspA and B deficient) as determined by analytical SDS-

PAGE using 12 % polyacrylamide gel stained with silver. 
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Lane Mis LMW standard (Sigma). Lanes 1 through 7 show constitution of pools 1, 2, 3, 

4, 5, 6, and 7 respectively. 
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Table 1. Description and constitution of fraction pools prepared from different 

fractions obtained by three different preparative SOS-PAGE runs on WSE. 

Fraction Pool No. Fractions Pooled Prep run Mol. Wt. (kDa) 
ac lamide % 

Pool 1 5-9 7.5 30.5-38.5 (6 bands) 

Pool 2 14-19 7.5 45 

Pool 3 23-27 7.5 50, 51(2 bands) 

Pool 4 30-34 7.5 56 

Pool 5 32-36 10 27 

Pool6 43-47 10 33 

Pool 7 45-49 12 20 
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Fraction Pools 5 and 6 were obtained by pooling fractions 32 through 36 and 43 

through 47, respectively, obtained from the 10 % preparative fractionation run (Table 1). 

They contained protein bands at 27 and 33 kDa, respectively (Figure 4). Fractions 45 

through 49 obtained from the 12 % fractionation were pooled together to give Fraction 

Pool 7 which contained a single band at 20 kDa position (Table 1, Figure 4). All these 

fraction pools in addition to WSE (B. burgdorferi type strain B31 ), WSE (B. burgdorferi 

OspA and OspB deficient) and a recombinant OspA (31 kDa) were tested for their effects 

on proliferative responses of splenocytes obtained from B. burgdorferi infected (by 

needle inoculation and infected tick infestation) and control mice (PBS injected and 

infested with pathogen-free Ixodes scapularis nymphs). 

In vitro Splenocyte Proliferation Assay 

The splenocytes obtained from mice infected with Lyme borreliosis either by tick 

transmission or needle inoculation of B. burgdorferi were tested for their in vitro 

proliferative responses to different antigens and mitogens as described in the Material and 

Methods section. The data presented in this section is in terms of stimulation indices 

(SI's) calculated by dividing mean counts per minute (CPM) obtained from different 

treatment wells (antigen/mitogen) by the mean CPM obtained from respective control 

wells i.e. cells incubated in medium alone. An SI of four and above was considered 

significant proliferation. The actual mean CPM ± S.E obtained are presented in similar 

tables in Appendix 2. 

One week post infection, three day assay: Table 2 shows the SI's obtained in a three 

day assay performed on splenocytes obtained from mice with tick-transmitted and needle 
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inoculated infection of Lyme borreliosis, to determine their proliferative responses to 

different mitogens and antigens. Matched controls infested with pathogen free ticks and 

injected with PBS were also employed. The actual CPM ± S.E. for this experiment are 

provided in Table A (Appendix 2). 

On incubation with T cell mitogen Con A, an SI of 44. 77 was obtained for 

splenocytes from mice with tick-transmitted Lyme borreliosis which was 17.89 % less 

proliferative response as compared to the splenocytes from matched control group of 

mice with pathogen-free tick infestation (SI 54.53). The proliferative response of 

splenocytes from mice with needle inoculated infection was 52.76 % lower (SI 26.15) 

than their matched control i.e. splenocytes from mice injected with PBS (SI 55.35), and 

41.59 % lower than that of splenocytes from mice with tick transmitted infection. 

The proliferative response of splenocytes, from mice with needle inoculated 

infection, to B-cell mitogen LPS was also suppressed (25.79 %, SI 5.64) as compared to 

the matched control i.e. PBS injected (SI 7.6). The LPS stimulation indices for 

splenocytes from mice with tick-transmitted infection and infestation with pathogen free 

ticks were 8.0 and 7.16, respectively. 

The whole spirochete extracts from both B3 l strain (WSE B31) and OspA and B 

negative mutant (WSE AB deficient) caused the splenocytes from all the groups to 

proliferate significantly. Upon incubation with WSE (B31), Si's of 10.76, 9.62, 12.32, 

and 12.56 were obtained for splenocytes from mice with tick transmitted infection, needle 

inoculated infection, pathogen free tick infestation, and PBS injection, respectively. In the 

same order, Si's obtained upon incubation of splenocytes from respective groups with 
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Table 2. In vitro proliferative responses of splenocytes from BALB/c mice infected 
with B. burgdo,feri, either by tick transmission or by needle inoculation, to 
Concanavalin A (Con A), Lipopolysaccharide (LPS), whole spirochete extract from 
type strain B31 (WSE B31), whole spirochete extract from OspA and B negative 
mutant (WSE AB def.), Fraction Pools from preparative SOS-PAGE ofWSE (AB 
def., Pool 1 through 7), and recombinant OspA (Rec. OspA). One week post-
inf ection, three day assay 

Treatment Tick trans. Inf. Needle inoc. inf. Uninfected ticks PBS inject. 

Con A 44.77 26.15 54.53 55.35 

LPS 8.00 5.64 7.16 7.6 

Cells Alone 1.00 1.00 1.00 1.00 

WSE (831) 10.76 9.62 12.32 12.56 

WSE (AB def.) 11.17 10.69 13.21 11.04 

Pool 1 2.71 1.79 1.44 2.64 

Pool2 0.92 0.90 0.67 1.19 

Pool3 2.79 1.57 1.84 3.02 

Pool4 0.93 0.97 0.72 1.41 

Pool5 1.42 0.81 0.66 1.32 

Pool 6 0.85 0.83 0.62 1.19 

Pool 7 13.69 4.60 6.68 11.44 

Rec. OspA 1.70 2.06 1.32 2.09 

5 X 105 splenocytes were incubated with respective antigen/mitogen or without 
stimulation ( cells alone) in triplicate for 54 hrs and then pulsed with one µCi of 3H-
thymidine per well. Cells were harvested 18 hrs later and radioactivity incorporation 
determined by counting in liquid scintillation counter. Data is presented as stimulation 
indices obtained by dividing the mean CPM obtained from different treatment wells by 
mean CPM obtained from control wells with cells incubated with medium only. 

Splenocytes from mice infested with pathogen free ticks or injected with PBS served as 
matched controls for tick transmitted and needle inoculated infection, respectively. 
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WSE (AB deficient) were 11.17, 10.69, 13.21, and 11.04. Slight suppression in responses 

of groups infected with Lyme borreliosis was observed to both WSE's as compared to 

their respective matched controls. 

Fraction Pools 1 through 6 and recombinant OspA failed to induce significant 

proliferative response in splenocytes from any group of mice (SI <4). However, Fraction 

Pool 7 caused significant proliferation of splenocytes from all the groups. An SI of 13 .69 

was obtained for splenocytes from mice with tick transmitted infection meaning a 51.20 

% higher proliferation as compared to the matched control i.e. splenocytes from mice 

with pathogen free tick infestation (SI 6.68). In contrast, upon incubation with Fraction 

Pool 7, the proliferative responses of splenocytes from mice with needle inoculated 

infection were 59.80 % lower (SI 4.60) as compared to their matched control i.e. PBS 

injected mice (SI 11.44). Overall, with all antigens/mitogens, the proliferative responses 

of splenocytes from mice with needle inoculated infection were suppressed as compared 

to other groups. 

One week post infection, five day assay: The stimulation indices for all treatments were 

lower than the respective number in the three day assay (Table 3). The actual mean 

CPM±S.E obtained are shown in Table B (Appendix 2). The Con A stimulation indices 

for splenocytes from mice with tick transmitted infection, needle inoculated infection, 

pathogen free tick infestation, PBS injection were 42.54, 23.15, 45.06, and 47.40, 

respectively. This shows a respective reduction of 4.98, 11.47, 17.37, and 14.36 % in 

proliferative responses observed in the three day assay. Significant proliferation was no 

longer seen in the case of LPS stimulation of splenocytes from mice with needle 
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Table 3. In vitro proliferative responses of splenocytes from BALB/c mice infected 
with B. burgdorferi, either by tick transmission or by needle inoculation, to 
Concanavalin A (Con A), Lipopolysaccharide (LPS), whole spirochete extract from 
type strain B31 (WSE B31), whole spirochete extract from OspA and B negative 
mutant (WSE AB def.), fraction pools from preparative SOS-PAGE ofWSE (AB 
def., Pool 1 through 7), and recombinant OspA (Rec. OspA). One week post
infection, five day assay 

Treatment Tick trans. Inf. Needle inoc. inf. Uninfected ticks PBS inject. 

Con A 42.54 23.15 45.06 47.40 

LPS 4.69 2.95 2.91 4.07 

Cells Alone 1.00 1.00 1.00 1.00 

WSE (B31) 2.99 3.95 3.42 2.18 

WSE (AB def.) 3.05 4.03 3.24 2.91 

Pool 1 1.24 1.16 0.81 1.19 

Pool 2 1.21 1.35 0.98 1.27 

Pool3 1.32 1.11 0.92 1.28 

Pool 4 0.64 1.36 1.24 1.23 

Pool5 0.67 1.40 1.14 1.27 

Pool6 1.54 1.18 0.92 1.06 

Pool 7 0.76 2.04 2.7 2.8 

Rec. OspA 1.62 0.91 0.47 0.50 

5 X 105 splenocytes were incubated with respective antigen/mitogen or without 
stimulation (cells alone) in triplicate for 102 hrs and then pulsed with one µCi of 3H-
thymidine per well. Cells were harvested 18 hrs later and radioactivity incorporation 
determined by counting in liquid scintillation counter. Data is presented as stimulation 
indices obtained by dividing the mean CPM obtained from different treatment wells by 
mean CPM obtained from control wells with cells with cells incubated with medium 
only. 

Splenocytes from mice infested with pathogen free ticks or injected with PBS served as 
matched controls for tick transmitted and needle inoculated infection, respectively. 
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inoculated infection and pathogen free tick infestation. Barely significant proliferation 

with LPS was seen in splenocytes from mice with tick transmitted infection and those 

injected with PBS (SI's 4.69 and 4.07, respectively). None of the other SI's obtained were 

significant except for a 4.03 for splenocytes from mice with needle inoculated infection 

incubated with WSE (AB def.). 

The urinary bladders from all mice were individually cultured in BSK IL After 

one week of incubation wet smears from these cultures were observed by dark field 

microscopy. Culture from all the mice that were either infested with infected ticks or 

given spirochetes IP were found to be positive for infection with B. burgdorferi. All the 

control animals were negative for the presence of spirochetes in their urinary bladder 

culture. 

Two weeks post infection, three day assay: The stimulation indices obtained following 

a three day in vitro proliferation assay on splenocytes obtained from mice two weeks after 

they were given tick transmitted or needle inoculated infection with Lyme borreliosis are 

shown in table 4. The actual mean CPM ± S.E. obtained for this experiment are shown in 

table C (Appendix 2). 

A Con A SI of 25.80 was observed for splenocytes from mice with tick 

transmitted infection, which is, respectively, 63.66, 59.21, and 52.89 % less proliferation 

as compared to splenocytes from mice with needle inoculated infection (SI 70.99), 

pathogen free tick infestation (SI 63.25), and PBS injection (SI 54.77).The LPS 

stimulation index for proliferative response of splenocytes from mice with tick-
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Table 4. In vitro proliferative responses of splenocytes from BALB/c mice infected 
with B. hurgdorferi, either by tick transmission or by needle inoculation, to 
Concanavalin A (Con A), Lipopolysaccharide (LPS), whole spirochete extract from 
type strain B31 (WSE B31), whole spirochete extract from OspA and B negative 
mutant (WSE AB def.), fraction pools from preparative SOS-PAGE ofWSE (AB 
def., Pool 1 through 7), and recombinant OspA (Rec. OspA). Two weeks post
infection, three day assay 

Treatment Tick trans. inf. Needle inoc. inf. Uninfected ticks PBS inject. 

Con A 25.80 70.99 63.25 54.77 

LPS 4.54 8.09 11.21 9.36 

Cells Alone 1.00 1.00 1.00 1.00 

WSE (B31) 7.77 12.19 10.40 9.73 

WSE (AB def.) 7.55 14.52 12.67 8.69 

Pool 1 2.51 3.39 2.87 3.22 

Pool2 0.63 1.15 0.91 1.12 

Pool3 1.97 3.82 3.92 2.55 

Pool 4 1.36 1.74 0.91 1.41 

Pool 5 1.10 1.12 1.05 1.10 

Pool6 0.67 1.00 0.96 0.86 

Pool7 7.90 13.68 15.08 12.36 

Rec. OspA 1.35 2.72 2.19 1.84 

5 X 105 splenocytes were incubated with respective antigen/mitogen or without 
stimulation ( cells alone) in triplicate for 54 hrs and then pulsed with one µCi of 3H-
thymidine per well. Cells were harvested 18 hrs later and radioactivity incorporation 
determined by counting in liquid scintillation counter. Data is presented as stimulation 
indices obtained by dividing the mean CPM obtained from different treatment wells by 
mean CPM obtained from control wells with cells incubated with medium only. 

Splenocytes from mice infested with pathogen free ticks or injected with PBS served as 
matched controls for tick transmitted and needle inoculated infection, respectively. 
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transmitted infection was 4.54, which means a respective suppression of 43.88, 59.50, 

and 51.50 % as compared to splenocytes from mice with needle inoculated infection (SI 

8.09), pathogen free tick infestation (SI 11.21) and PBS injection (SI 9.36). 

Significant proliferative responses (SI>4) were mounted in response to both whole 

spirochete extracts i.e. WSE (B31) and WSE (AB def.) by all groups of mice. The 

response of splenocytes from mice with tick transmitted infection to WSE (B31) and 

WSE AB def.) was 25.29 and 40.41 % lower (SI 7.77 and 7.55, respectively) as compared 

to response of splenocytes from matched control that was given a pathogen free tick 

infestation (SI 10.40 and 12.67, respectively). As in the case ofresponses to mitogens 

Con A and LPS, the proliferative responses of splenocytes from mice with needle 

inoculated infection to WSE (B31) and WSE (AB def.) were higher by 20.18 and 40.15 

% (SI 12.19 and 14.52) as compared to responses of the matched control i.e. splenocytes 

from mice with PBS injection where SI 9.73 and 8.69 were recorded to WSE (B31) and 

WSE (AB def.), respectively. 

The only other antigen which caused the splenocytes to proliferate significantly 

was the Fraction Pool 7. The respective SI's were 7.90, 13.68, 15.08, and 12.36 for 

splenocytes from mice with tick transmitted infection, needle inoculated infection, 

pathogen free tick infestation, and PBS injection. The proliferative responses of 

splenocytes from mice with t1ck transmitted infection to Fraction Pool 7 were respectively 

42.25 and 47.61 % less as compared to splenocyte from mice with needle inoculated 

infection and those with pathogen free tick infestation. 

Two weeks post infection, five day assay: The results (as SI's) of the five day 

splenocyte proliferation assay conducted at two weeks post infection are shown in table 5. 
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Table 5. In vitro proliferative responses of splenocytes from BALB/c mice infected 
with B. burgdorferi, either by tick transmission or by needle inoculation, to 
Concanavalin A (Con A), Lipopolysaccharide (LPS), whole spirochete extract from 
type strain B31 (WSE B31), whole spirochete extract from OspA and B negative 
mutant (WSE AB def.), fraction pools from preparative SDS-PAGE ofWSE (AB 
def., Pool 1 through 7), and recombinant OspA (Rec. OspA). Two weeks post
infection, five day assay 

Treatment Tick trans. inf. Needle inoc. inf. Uninfected ticks PBS inject. 

Con A 22.99 36.24 47.24 71.35 

LPS 3.10 3.57 6.65 8.95 

Cells Alone 1.00 1.00 1.00 1.00 

WSE (B31) 3.17 3.75 3.07 3.00 

WSE (AB def.) 3.45 4.88 3.21 3.38 

Pool 1 2.11 3.28 2.08 2.44 

Pool 2 1.58 0.76 0.80 0.50 

Pool 3 1.61 3.53 2.16 2.42 

Pool4 3.48 0.96 0.65 0.64 

Pool 5 1.49 0.94 0.71 0.90 

Pool 6 0.68 0.63 0.74 0.49 

Pool 7 3.92 5.78 5.31 9.23 

Rec. OspA 0.55 1.31 0.48 0.55 

5 X 105 splenocytes were incubated with respective antigen/mitogen or without 
stimulation ( cells alone) in triplicate for 102 hrs and then pulsed with one µCi of 3H-
thymidine per well. Cells were harvested 18 hrs later and radioactivity incorporation 
determined by counting in liquid scintillation counter. Data is presented as stimulation 
indices obtained by dividing the mean CPM obtained from different treatment wells by 
mean CPM obtained from control wells with cells incubated with medium only. 

Splenocytes from mice infested with pathogen free ticks or injected with PBS served as 
matched controls for tick transmitted and needle inoculated infection, respectively. 
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The actual mean CPM ± S.E. obtained for this experiment are given in table D (Appendix 

2). Significant proliferative responses to Con A were seen in all groups where SI's of 

22.99, 36.24, 47.24, and 71.35 were obtained for splenocytes from mice with tick 

transmitted infection, needle inoculated infection, pathogen free tick infestation, and PBS 

injection, respectively. However, splenocytes from mice with tick transmitted infection 

and needle inoculated infection no longer showed significant proliferation in response to 

LPS (SI's<4). The matched controls i.e. splenocytes from mice with pathogen free tick 

infestation and PBS injection showed significant proliferation in response to LPS (SI's 

6.65 and 8.95) but lower as compared to three day assay (respective SI's 11.21 and 9.36). 

A barely significant (SI 4.88), proliferative response of splenocytes from mice 

with needle inoculated infection was observed in response to WSE (AB def.). The 

splenocytes from other groups did not respond significantly to stimulation with either of 

the WSE's. The only other significant proliferative responses observed were upon 

stimulation with Fraction Pool 7 in splenocytes from mice with needle inoculated 

infection, pathogen free tick infestation and PBS injection (SI's 5.78, 5.31, and 9.23, 

respectively). These responses were 57.75, 64.79, and 25.32 % lower than the respective 

responses in the three day assay. 

Once again, urinary bladder cultures from mice given infection by either route 

were positive for the presence of spirochetes after one week of incubation in BSK II. All 

the control mice were negative for the infection. 

Four weeks post infection, three day and five day assay: The results of both three day 

and five day in vitro splenocyte proliferation assay at four weeks post infection are shown 
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in Table 6 as stimulation indices. The actual mean CPM ± S.E. obtained are shown in 

table E (Appendix 2). As explained in material and method ( experimental design) section, 

the matched controls i.e. groups of mice with pathogen free tick infestation and PBS 

injection were not employed at this interval. 

In the three day assay, the proliferative response of splenocytes from mice with 

tick transmitted infection to T cell mitogen Con A (SI 31.08) was 44.22 % less than that 

of splenocytes from mice with needle inoculated infection (SI 55.72). A similar 

observation was made for the response of both groups in the five day assay where the Con 

A Si's were 32.54 and 60.04, respectively for splenocytes from mice with tick transmitted 

infection and needle inoculated infection. However, the proliferative response of 

splenocytes from mice with tick transmitted infection group and needle inoculated 

infection group to B cell mitogen LPS was almost same (SI 5.70 and 5.61, respectively) 

in the three day assay. However, in the five day assay, the proliferative response (to LPS) 

of splenocytes from mice with tick transmitted infection was no longer significant (SI 

2.86) and those of needle inoculated infection were only slightly significant (SI 4.08). 

In the three day assay, the splenocytes from mice with tick transmitted infection 

upon stimulation with WSE (B31) and WSE (AB def.) showed Si's of 6.79 and 5.99, 

respectively. These responses were 39.70 and 43.11 % lower than those for splenocytes 

from mice with needle inoculated infection which showed Si's of 11.26 and 10.53 upon 

stimulation with WSE (B31) and WSE (AB def.). However, in the five day assay, 

proliferative responses of splenocytes from mice with tick transmitted infection to either 

of the WSE's were no longer significant. In contrast, proliferative response of splenocytes 
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Table 6. In vitro proliferative responses of splenocytes from BALB/c mice infected 
with B. burgdorferi, either by tick transmission or by needle inoculation, to 
Concanavalin A (Con A), Lipopolysaccharide (LPS), whole spirochete extract from 
type strain B31 (WSE B31), whole spirochete extract from OspA and B negative 
mutant (WSE AB def.), fraction pools from preparative SOS-PAGE ofWSE (AB 
def., Pool 1 through 7), and recombinant OspA (Rec. OspA). Four weeks post
infection, three and five day assay 

Three dal'. assal'. Five dal'. assal'. 
Treatment Tick trans. inf. Needle inoc. inf. Tick trans. inf. Needle inoc. inf. 

Con A 31.08 55.72 32.54 60.04 

LPS 5.70 5.61 2.86 4.08 

Cells Alone 1.00 1.00 1.00 1.00 

WSE (B31) 6.79 11.26 2.01 4.09 

WSE (AB def.) 5.99 10.53 2.06 5.11 

Pool 1 2.48 4.08 2.08 2.67 

Pool2 1.22 1.77 1.30 1.87 

Pool3 3.02 4.35 1.47 3.08 

Pool4 1.51 2.42 1.44 3.41 

Pool 5 1.28 1.50 1.13 1.29 

Pool6 1.18 2.01 1.62 1.82 

Pool 7 11.28 19.54 7.67 10.57 

Rec. OspA 3.28 2.57 1.28 1.08 

5 X 105 splenocytes were incubated with respective antigen/mitogen or without 
stimulation (cells alone) in triplicate for 54 and 102 hrs (for three day and five day assay, 
respectively) and then pulsed with one µCi of 3H-thymidine per well. Cells were 
harvested 18 hrs later and radioactivity incorporation determined by counting in liquid 
scintillation counter. Data is presented as stimulation indices obtained by dividing the 
mean CPM obtained from different treatment wells by mean CPM obtained from control 
wells where cells were incubated with medium only. 
Splenocytes from mice infested with clean ticks or injected with PBS which served as 
matched controls for tick transmitted and needle inoculated infection, respectively, were 
not done. 
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from needle inoculated infection to WSE (B31) and WSE (AB def.) were significant (SI' s 

4.09 and 5 .11, respectively). 

In the three day assay, a significant proliferation was seen in response to Fraction 

Pools 1 and 3 (Si's 4.08 and 4.35, respectively) in the case of splenocytes from mice with 

needle inoculated infection. A similar response was not seen in the case of splenocytes 

from mice with tick transmitted infection. This response disappeared even for splenocytes 

from needle inoculated infection in the five day assay. 

In the three day assay, splenocytes from mice with tick transmitted infection 

proliferated 42.27 % less as compared to the splenocytes from mice with needle 

inoculated infection upon incubation with Fraction Pool seven (respective SI' s 11.28 and 

19.54). Surprisingly, the proliferation levels in response to Fraction Pool 7 for 

splenocytes from both groups of mice were much higher even as compared to stimulation 

with either of WSE' s. In the five day assay, the proliferative response of splenocytes to 

Fraction Pool 7 was still significant with Si's 7.67 and 10.57, for tick transmitted 

infection and needle inoculated infection groups, respectively, although lower than in the 

three day assay. All the mice were confirmed to be positive for B. burgdorferi infection 

by urinary bladder culture. 

Eight weeks post infection, three day assay: The results of this experiment in terms of 

stimulation indices are shown in table 7. The actual mean CPM ± S.E. obtained are 

presented in table F (Appendix 2). As explained in the material and method (experimental 

design) section, Fraction Pools 1 through 6 and recombinant OspA were not tested at this 
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Table 7. In vitro proliferative responses of splenocytes from BALB/c mice infected 
with B. burgdorferi, either by tick transmission or by needle inoculation, to 
Concanavalin A (Con A), Lipopolysaccharide (LPS), whole spirochete extract from 
type strain B31 (WSE B31), whole spirochete extract from OspA and B negative 
mutant (WSE AB def.), and Fraction Pool 7 obtained by preparative SDS-PAGE of 
WSE (AB def.). Eight weeks post-infection, three day assay 

Treatment Tick trans. inf. Needle inoc. inf. Uninfected ticks PBS inject. 

---"'--""""" "-~"~--·--·-· 
Con A 84.86 141.35 87.34 93.72 

LPS 31.43 75.04 36.73 45.74 

Cells Alone 1.00 1.00 1.00 1.00 

WSE (B31) 25.09 66.20 29.10 31.54 

WSE (AB def.) 15.30 30.43 19.33 15.49 

Pool 7 24.56 45.04 20.93 24.76 

5 X 1 splenocytes were incubated with respective antigen/mitogen or without 
stimulation (cells alone) in triplicate for 54 hrs and then pulsed with one µCi of 3H
thymidine per well. Cells were harvested 18 hrs later and radioactivity incorporation 
determined by counting in liquid scintillation counter. Data is presented as stimulation 
indices obtained by dividing the mean CPM obtained from different treatment wells by 
mean CPM obtained from control wells with cells incubated with medium alone. 

Splenocytes from mice infested with pathogen free ticks or injected with PBS served as 
matched controls for tick transmitted and needle inoculated infection, respectively. 
Fraction Pools one through six and recombinant OspA were not tested. 
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interval. Also, only two mice instead of four were used in each control group i.e. 

pathogen free tick infested and PBS injected. 

The level of proliferation of splenocytes from mice with tick transmitted infection 

in response to Con A and LPS (SI's 84.86 and 31.43, respectively) was almost same as 

for splenocytes from mice with pathogen free tick infestation (SI's 87.34 and 36.73, 

respectively for Con A and LPS). However, splenocytes from mice with needle 

inoculated infection proliferated to a much higher degree (SI 141.35 for Con A and 75.04 

for LPS) as compared to the matched control of splenocytes from mice with PBS 

injection which showed SI 93.72 with Con A (33.70 % less) and SI 45.74 with LPS 

(39.04 % less). Also, response of splenocytes from mice with needle inoculated infection 

was 39.96 % and 58.11 % higher as compared to splenocytes from mice with tick 

transmitted infection upon incubation with Con A and LPS, respectively. 

The SI's obtained upon incubation with WSE (B31) were 25.09, 66.20, 29.10, and 

31.54, respectively for splenocytes from mice with tick transmitted infection, needle 

inoculated infection, pathogen free tick infestation, and PBS injection. With WSE (AB 

def.) the respective SI's were 15.30, 30.43, 19.33, and 15.49. The response of splenocytes 

from tick transmitted infection to WSE (B31) and WSE (AB def.) was almost same or 

slightly lower than that of matched control of splenocytes from mice with pathogen free 

tick infestation. However, the splenocytes from mice with needle inoculated infection 

responded 52.36 and 49.10 % higher than the splenocytes from the matched control i.e. 

mice with PBS injection in response to WSE (B31) and WSE (AB def.), respectively. 

Similarly, the response of splenocytes from mice with needle inoculated infection was 
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62.09 and 49.72 % higher than that of splenocytes from mice with tick transmitted 

infection, to WSE (B31) and WSE (AB def.), respectively. 

Incubation with Fraction Pool 7 resulted in significant proliferation of splenocytes 

from all groups of mice. The SI's obtained were 24.56 for mice with tick transmitted 

infection, 45.04 for mice with needle inoculated infection, 20.93 for mice with pathogen 

free tick infestation, and 24.76 for mice with PBS injection. The response of splenocytes 

from mice with needle inoculated infection was 45.03 % higher than the matched control 

of splenocytes from mice with PBS injection and 45.47 % higher than splenocytes from 

mice with tick transmitted infection. The response of splenocytes from mice with tick 

transmitted infection was slightly higher (14.78 %) as compared to the matched control of 

splenocytes from mice with pathogen free tick infestation. 

Eight weeks post infection, five day assay: The results of this experiment in terms of 

stimulation indices are shown in table 8. The actual mean CPM ± S.E. obtained are 

presented in table G (Appendix 2). As explained in the Material and Method 

( experimental design) section, Fraction Pools 1 through 6 and recombinant OspA were 

not tested at this interval. 

The SI' s upon incubation of splenocytes from mice with tick transmitted 

infection, needle inoculated infection, pathogen free tick infestation, and PBS injection 

were 46.69, 50.45, 55.02, and 54.51, respectively. The respective SI's for LPS were 4.24, 

9 .81, 6.03 and 10.00. The proliferation level of splenocytes from mice with tick 

transmitted infection and PBS injection were no longer significant in response to 

incubation with WSE (B31 ). The SI' s for splenocytes from mice with needle inoculated 
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Table 8. In vitro proliferative responses of splenocytes from BALB/c mice infected 
with B. burgdo,feri, either by tick transmission or by needle inoculation, to 
Concanavalin A (Con A), Lipopolysaccharide (LPS), whole spirochete extract from 
type strain B31 (WSE B31), whole spirochete extract from OspA and B negative 
mutant (WSE AB def.), and Fraction Pool 7 obtained by preparative SDS-PAGE 
fractionation of WSE (AB def.). Eight weeks post-infection, five day assay 

Treatment Tick trans. inf. Needle inoc. inf. Uninfected ticks PBS inject. 

Con A 46.69 50.45 55.02 54.51 

LPS 4.24 9.81 6.03 10.00 

Cells Alone 1.00 1.00 1.00 1.00 

WSE (B31) 2.90 13.80 4.32 3.19 

WSE (AB def.) 1.96 4.89 2.56 1.70 

Pool 7 2.79 5.31 2.77 1.86 

5 X 105 splenocytes were incubated with respective antigen/mi to gen or without 
stimulation (cells alone) in triplicate for 102 hrs and then pulsed with one µCi of 3H
thymidine per well. Cells were harvested 18 hrs later and radioactivity incorporation 
determined by counting in liquid scintillation counter. Data is presented as stimulation 
indices obtained by dividing the mean CPM obtained from different treatment wells by 
mean CPM obtained from control wells with cells incubated with medium only. 

Splenocytes from mice infested with pathogen free ticks or injected with PBS served as 
matched controls for tick transmitted and needle inoculated infection, respectively. 
Fraction pools one through six and recombinant OspA were not tested. 

76 



infection and pathogen free tick infestation were respectively 13.8 and 4.32 in response to 

WSE (B31). 

The splenocytes from mice with needle inoculated infection showed significant 

proliferation in response to incubation with WSE (AB def.) and Fraction Pool 7. The 

respective Si's were 4.89 and 5.31 respectively. The splenocytes from the other three 

groups did not show significant proliferation in response to either WSE (AB def.) or 

Fraction Pool 7. 

All the mice infected by either needle inoculation or tick transmission were 

positive for infection as determined by the urinary bladder culture. All the control mice 

were negative for infection. 

12 weeks post infection, three day assay: The results of this experiment in terms of Si's 

are shown in table 9. The actual mean CPM ± S.E. obtained are presented in table H 

(Appendix 2). The proliferative response of splenocytes from mice with tick transmitted 

infection showed an SI of 44.47 as compared to an SI 97.61 (54.44 % higher) obtained 

with matched control of splenocytes from mice with pathogen free tick infestation. The 

splenocytes from mice with needle inoculated infection proliferated almost to the same 

level as matched control of splenocytes from mice with PBS injection. The respective 

Si's were 61.21 and 66.72. The proliferation of splenocytes from all the groups was 

almost to the same level in response to incubation with LPS where Si's 4.98, 6.04, 6.42, 

and 5.76, respectively were obtained for splenocytes from mice with tick transmitted 

infection, needle inoculated infection, pathogen free tick infestation, and PBS injection. 
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Table 9. In vitro proliferative responses of splenocytes from BALB/c mice infected 
with B. burgdorferi, either by tick transmission or by needle inoculation, to 
Concanavalin A (Con A), Lipopolysaccharide (LPS), whole spirochete extract from 
type strain B31 (WSE B31), whole spirochete extract from OspA and B negative 
mutant (WSE AB def.), fraction pools from preparative SDS-PAGE ofWSE (AB 
def., Pool 1 through 7), and recombinant OspA (Rec. OspA). 12 weeks post
infection, three day assay 

Treatment Tick trans. inf. Needle inoc. inf. Uninfected ticks PBS inject. 

Con A 44.47 61.21 97.61 66.72 

LPS 4.98 6.04 6.42 5.76 

Cells Alone 1.00 1.00 1.00 1.00 

WSE (B31) 10.61 16.25 13.99 16.09 

WSE (AB def.) 7.32 14.05 6.35 8.76 

Pool 1 1.03 0.97 1.24 1.39 

Pool2 0.90 1.07 0.98 1.27 

Pool 3 1.12 1.55 1.39 1.75 

Pool 4 0.64 0.95 0.85 1.00 

Pool 5 0.82 0.93 1.07 1.31 

Pool 6 0.61 1.02 0.85 6.32 

Pool 7 3.39 6.52 6.59 1.21 

Rec. OspA 2.59 4.77 4.19 4.68 

5 X 105 splenocytes were incubated with respective antigen/mitogen or without 
stimulation (cells alone) in triplicate for 54 hrs and then pulsed with one µCi of 3H-
thymidine per well. Cells were harvested 18 hrs later and radioactivity incorporation 
determined by counting in liquid scintillation counter. Data is presented as stimulation 
indices obtained by dividing the mean CPM obtained from different treatment wells by 
mean CPM obtained from control wells with cells incubated in medium only. 

Splenocytes from mice infested with pathogen free ticks or injected with PBS served as 
matched controls for tick transmitted and needle inoculated infection, respectively. 
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In the case of stimulation with WSE (B31 ), the proliferation response of 

splenocytes from mice with tick transmitted infection (SI 10.61) was slightly lower (24.16 

% ) than the matched control of splenocytes from mice with pathogen free tick infestation 

(SI 13.99). On the other hand the splenocytes from mice with needle inoculated infection 

proliferated to the same level as their matched controls i.e. splenocytes from mice with 

PBS injection and the SI's obtained were 16.25 and 16.09, respectively. Stimulation 

indices of 7.32 and 6.35 were obtained for splenocytes from mice with tick-transmitted 

infection and pathogen free tick infestation, respectively upon stimulation with WSE (AB 

def.) The proliferative response of splenocytes from mice with needle inoculated infection 

(SI 14.05) was 37.65 % higher than that of the matched control i.e. splenocytes from mice 

with PBS injection (SI 8.76) to WSE (AB def.).The response of splenocytes from mice 

with needle inoculated infection was 3 7 .65 % higher as compared to splenocytes from 

mice with tick transmitted infection upon stimulation with WSE (AB def.). 

Fraction Pools one through six did not cause splenocytes from any group to 

proliferate significantly. The splenocytes from mice with needle inoculated infection and 

those infested with pathogen free ticks showed SI's 6.52 and 6.59 when incubated with 

Fraction Pool 7. Surprisingly, splenocytes from either mice with tick transmitted infection 

or those with PBS injection did not proliferate significantly when stimulated with 

Fraction Pool 7. 

The splenocytes from mice with needle inoculated infection, pathogen free tick 

infestation, and PBS injection showed SI's 4.77, 4.19, and 4.68 upon incubation with 
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recombinant OspA. The splenocytes from mice with tick transmitted infection did not 

proliferate significantly in response to recombinant OspA. 

Twelve weeks post infection, five day assay: The SI' s deduced for this experiment are 

presented in table 10. The actual mean CPM ± S.E. obtained are presented in table I 

(Appendix 2). The proliferative responses to Con A by splenocytes from mice with 

pathogen free tick infestation (SI 85.81) and those from mice with PBS injection (SI 

107.61) were respectively, 22.34 and 27.73 % higher than their matched experimental 

groups i.e. tick transmitted infection (SI 66.64) and needle inoculated infection (SI 

77.77). Stimulation indices obtained following incubation with LPS gave SI's 7.66, 8.35, 

9.02, and 6.34 for splenocytes from mice with tick transmitted infection, needle 

inoculated infection, pathogen free tick infestation, and PBS injection. 

The proliferative response upon incubation with WSE (B31) for splenocytes from 

mice with tick transmitted infection (SI 7.77) was 49.90 % less as compared to the 

matched control of splenocytes from mice with pathogen free tick infestation (SI 15.51). 

However, splenocytes from mice with needle inoculated infection responded at slightly 

higher level than their matched control group of splenocytes from mice with PBS 

injection (SI's 11.77 and 8.22, respectively). The similar trend between respective groups 

was maintained for stimulation with WSE (AB def.) where SI's 6.07, 9.01, 10.95, and 

8.65 were determined for splenocytes from mice with tick transmitted infection, needle 

inoculated infection, pathogen free tick infestation, and PBS injection, respectively. 

Incubation with Fraction Pools one through six did not cause a significant level of 

proliferation (all SI's<4) in splenocytes from any group of mice. Fraction Pool 7 caused 
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Table 10. In vitro proliferative responses of splenocytes from BALB/c mice infected 
with B. burgdor/eri, either by tick transmission or by needle inoculation, to 
Concanavalin A (Con A), Lipopolysaccharide (LPS), whole spirochete extract from 
type strain B31 (WSE B31), whole spirochete extract from OspA and B negative 
mutant (WSE AB def.), fraction pools from preparative SOS-PAGE ofWSE (AB 
def., Pool 1 through 7), and recombinant OspA (Rec. OspA). 12 weeks post-
inf ection, five day assay 

Treatment Tick trans. inf. Needle inoc. inf. Uninfected ticks PBS inject. 

Con A 66.64 77.77 85.81 107.61 

LPS 7.66 8.35 9.02 6.34 

Cells Alone 1.00 1.00 1.00 1.00 

WSE (B31) 7.77 11.77 15.51 8.22 

WSE (AB def.) 6.07 9.01 10.95 8.65 

Pool 1 0.65 0.80 1.40 0.94 

Poo12 0.59 1.01 0.79 1.09 

Poo13 0.76 1.17 1.71 0.99 

Pool 4 0.78 0.85 1.04 0.79 

Pool 5 0.63 0.65 0.77 0.63 

Poo16 0.73 0.65 0.82 1.33 

Pool 7 3.09 5.13 3.59 4.46 

Rec.OspA 1.82 2.84 4.88 3.33 

5 X 105 splenocytes were incubated with respective antigen/mitogen or without 
stimulation (cells alone) in triplicate for 102 hrs and then pulsed with one µCi of 3H-
thymidine per well. Cells were harvested 18 hrs later and radioactivity incorporation 
determined by counting in liquid scintillation counter. Data is presented as stimulation 
indices obtained by dividing the mean CPM obtained from different treatment wells by 
mean CPM obtained from control wells with cells incubated in medium only. 

Splenocytes from mice infested with pathogen free ticks or injected with PBS served as 
matched controls for tick transmitted and needle inoculated infection, respectively. 
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low level proliferation in splenocytes from the group of mice with needle inoculated 

infection (SI 5.13), and its matched control of splenocytes from mice with PBS injection. 

The splenocytes from mice with tick transmitted infection and those with pathogen free 

tick infestation did not proliferate significantly upon incubation with Fraction Pool 7. 

Recombinant OspA caused barely significant proliferation in splenocytes from 

mice with pathogen free tick infestation only (SI 4.88). All the mice that were given B. 

burgdorferi infection either by tick transmission or by needle inoculation of culture 

grown spirochetes were confirmed to be positive for infection by urinary bladder culture. 

The control mice were negative for infection with Lyme borreliosis. 

Antibody Response 

The serum samples collected at different intervals from groups of mice infected 

with B. burgdorferi (tick transmission and needle inoculation) were examined for the 

presence of anti-spirochete antibodies. A sensitive ELISA protocol was used to monitor 

both IgM and IgG isotypes. Sera collected at similar intervals from control mice i.e. 

pathogen free tick infested and PBS injected served as controls. The sera were available 

for day three, seven, ten, 14, 21, 28, 56, and 84 post-infection. 

The mean absorbance values obtained for the presence of B. burgdorferi specific 

IgM antibodies in the sera collected at different intervals are plotted in Figure 5. The data 

presented is at a dilution of 1 :5120 for all sera. The mean absorbance value obtained for 

direct binding of second antibody i.e. anti-mouse IgM-HRPO conjugate (at a dilution of 

1:5000) to B. burgdorferi antigen was 0.036. In the case of needle inoculated infection 

anti-spirochete IgM antibody was detectable as early as third day post infection (mean 

absorbance value 0.112) and peaked at day seven (mean absorbance value 0.203). 
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Figure 5. Borrelia burgdor/eri specific IgM antibody response in BALB/c mice 

infected by tick transmission or needle inoculation of the spirochete as determined 

by enzyme linked immunosorbant assay. 
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Thereafter, a drop was observed at day 10 and 14 (mean absorbance values 0.122 

and 0.097, respectively). On day 21, the anti-spirochete IgM antibody showed a rise 

(mean absorbance value 0.149) and peaked at 28 days post-infection (mean absorbance 

value 0.160). On day 56 and 84 post-infection, the mean absorbance values obtained were 

0.101 and 0.119, respectively. For the matched control, i.e. sera from mice that received a 

PBS injection, the mean absorbance values were 0.058, 0.064, 0.089, 0.064, 0.067, 0.076, 

0.069, and 0.080 at day three, seven, 10, 14, 21, 28, 56, and 84, respectively. 

In the sera collected from mice with tick-transmitted infection, some anti

spirochete lgM antibody was detectable at day three post infection (mean absorbance 

value 0.116). The mean absorbance value for the serum collected from mice given an 

infestation with pathogen free ticks (matched control) was 0.058. A very low level of 

anti-spirochete lgM antibody was detected in sera collected from mice with tick 

transmitted infection at subsequent intervals as compared to the sera from mice with 

needle inoculated infection. The mean absorbance values for sera collected from mice 

with tick transmitted infection at days seven, 10, 14, 21, 28, 56, and 84 were 0.079, 0.071, 

0.072, 0.073, 0.077, 0.110, and 0.085. The mean absorbance values at the same intervals 

for sera from mice with pathogen free tick infestation were 0.059, 0.065, 0.052, 0.045, 

0.058, 0.052, and 0.064. 

The mean absorbance values obtained for detection of anti-spirochete lgG 

antibody in sera collected from different groups of mice are plotted in Figure 6. The data 

used is at 1 :20 dilution for all sera. The mean absorbance value for direct binding of 
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Figure 6. Borrelia burgdorferi specific lgG antibody response in BALB/c mice 

infected by tick transmission or needle inoculation of spirochetes as determined by 

enzyme linked immunosorbant assay. 

1.6 

A 1.4 
B 
s 1.2 
0 
R 1 

B 
A 0.8 

N 
C 

0.6 

E 
0.4 

0.2 

0 
3 7 10 14 

DAYS POST INFECTION 

85 

21 28 

-<>- PBS inject. 

-o- Uninfected ticks 

........_ Needle inoc. infec. 

___._ Tick trans. infec. 

56 84 



second antibody i.e. anti-mouse IgG-HRPO conjugate (1 :5000) with B. burgdorferi 

antigen was 0.058. 

Anti-spirochete IgG antibody was also detectable as early as three days post 

infection in the case of sera collected from mice with needle inoculated infection. The 

mean absorbance value for serum from mice inoculated with needle inoculated infection 

at three days post infection was 0.309 as compared to serum from mice given PBS 

injection where the mean absorbance value was 0.200. The sera collected from mice with 

needle inoculated infection at subsequent intervals thereafter showed a gradual increase in 

the amount of anti-spirochete IgG antibody. The mean absorbance values were 0.378, 

0.392, 0.445, 0.633, 0.723, 1.198, and 1.515 at seven, 10, 14, 21, 28, 56, and 84 days 

post-infection, respectively. The matched control of sera collected from mice with PBS 

injection (matched control) showed mean absorbance values of 0.205, 0.202, 0.206, 

0.231, 0.224, 0.214, and 0.287 respectively for seven, 10, 14, 21, 28, 56, and 84 days 

post-infection, respectively. 

In contrast to the sera from mice with needle inoculated infection, the sera from 

mice with tick transmitted infection showed much less titer of anti-spirochete IgG 

antibody. In fact, no significant anti-spirochete IgG was detectable till day 56 post

infection. The mean absorbance values for sera from mice with tick transmitted infection 

at day three, seven, 10, 14, 21, and 28 post-infection were 0.180, 0.200, 0.252, 0.243, 

0.240, and 0.228 respectively as compared to the matched control of sera from mice with 

pathogen free tick infestation where mean absorbance values were 0.196, 0.222, 0.337, 

0.253, 0.267, and 0.242, respectively at the same time intervals. However, at day 56 and 

84, a respective mean absorbance value of 0.876 and 0.862 was recorded, showing the 
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appearance of anti-spirochete IgG. The mean absorbance values recorded for matched 

control sera at day 56 and 84 were 0.263 and 0.298 respectively. 

Immunoblot Analysis 

All the sera studied by ELISA were also available for Western immunoblot 

analysis. Once again both IgM and IgG isotype anti-spirochete antibodies were 

monitored. Anti-spirochete IgM reactive with 39 and 24 kDa spirochetal proteins was 

detectable as early as three days after infecting by needle inoculation (Figure 7). This 

reactivity remained detectable at seven, ten, 14 and 21 days post infection. At 28 days 

post infection reactivity to the 24 kDa protein was lost, however, anti-39 kDa activity was 

still present (Figure 8). After 28 days post infection no anti-spirochetal IgM antibody was 

detected in the sera from mice infected by needle inoculation. 

At ten days post infection, an IgM reactivity to a 39 kDa protein was evident in 

serum collected from mice infected by tick transmitted infection and remained detectable 

on days 14 and 21(Figure 7). Thereafter no anti-spirochetal IgM reactivity was present in 

these serum samples (Figure 7). None of the control sera showed any reactivity against 

borrelial proteins. 

An IgG reactivity at ten days post infection was detectable against 39 kDa and 31 

kDa protein in the sera collected from mice needle inoculated with spirochete (Figure 8) 

and lasted through the duration of experiment. In contrast, no IgG reactivity against the 

31 kDa protein was detectable in the sera collected from mice infected by tick

transmission of the spirochete at any time during the experiment. The only reactivity 

detected was against the 39 kDa protein that appeared at 28 days post infection and 

remained detectable through 84 days post infection. 
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Figure 7. Immunoblot analysis of sera collected at different intervals from infected 

and control mice for anti-Borrelia burgdorferi IgM antibodies 
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Figure 8. Western blot analysis of sera collected at different intervals from infected 

and control mice for anti-Borrelia burgdorferi IgG antibodies 
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In vitro Spirochete Neutralization Assay 

Various sera collected at different intervals i.e. three, seven, ten, 14, 21, 28, 56 

and 84 days post infection, from mice infected by needle inoculation or tick transmission 

of B. burgdorferi tested for their ability to kill the spirochetes in vitro. The sera collected 

from clean tick infested and PBS injected mice at three, 28, and 84 day interval served as 

negative controls. 

Spirochete neutralization activity appeared as early as three days post infection in 

serum collected from mice which were needle inoculated with spirochetes (Table 11 ). 

This activity lasted the entire duration of the study. In contrast, no such activity was 

detected in sera collected from the group of mice infected by ticks or the control groups at 

any time interval. 

90 



Table 11. In vitro spirochete neutralization activity of sera collected at different 

intervals from BALB/c mice infected with B. hurgdorferi either by needle 

inoculation or by tick transmission 

Days Post Clean ticks PBS injected Needle inoc. Tick trans. 
Infection Infec. infec. 

3 1,753 ± 19 1,616 ± 171 312 ± 1 1,464 ± 52 

7 424 ± 30 1,979 ± 85 

10 388 ± 5 1,654 ± 47 

14 789 ± 29 2,041 ± 140 

21 603 ± 18 1,353 ± 88 

28 1,403 ± 101 1,391 ± 121 413 ±15 1,408 ± 40 

56 359 ± 42 1,862 ± 265 

84 1,686 ± 167 1,595 ± 93 408 ± 39 1,457 ± 47 

1 X 105 spirochetes were incubated with 1 :20 diluted sera from different groups in the 
presence of guinea pig complement in a total of 200 µl BSK II. Six hrs later, one µCi of 
3H adenine (20 µl of BSK II) was added along with 600 µl of fresh medium, and 
incubated further for 96 hrs. Amount of label incorporated was determined and all values 
are presented in CPM ± S.E. 
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CHAPTER IV 

DISCUSSION 

The biological transmission of any kind of pathogen by an arthropod vector 

involves complex interactions at the host-vector-pathogen interface (Wikel, 1996a). The 

adaptations made by all the players for their survival are quite elegant and extremely 

intricate. Hematophagous arthropods such as ticks have developed antihemostatic, anti

inflammatory, and immunomodulatory properties in their saliva for successful acquisition 

of a blood meal. (Ribeiro et al., 1985). The process of blood feeding makes use of a large 

number of redundant mechanisms to out wit the host homeostatic machinery. Saliva of 

hematophagous insects interferes with the host clotting mechanism at a variety of steps in 

the intrinsic and extrinsic mechanism of clotting (Champagne and Valenzuela, 1996). 

Similarly, diverse anti-inflammatory and immune mediators are dowmegulated by blood 

feeding arthropods during feeding (Wikel, 1996a). 

The vector borne pathogens have exploited such adaptations on the part of the 

vector arthropod for their own transmission, establishment, and survival in the vertebrate 

host. The adaptations made by pathogens are equally remarkable in terms of their ability 

to cope with two completely different and potentially hostile environments i.e. 

homeothermal vertebrate host and a poikilothermal arthropod vector. It is likely that a 

large number of changes are necessary in their metabolic profile for their survival during 

transmission from vector to host. Thus, it is logical to conclude that the metabolic and 

morphological (surface coat proteins) make up of a pathogen while in the vector might be 

quite different from that in the vertebrate host. In addition, isolation of a pathogen either 
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from a vertebrate host or arthropod vector, and subsequent prolonged cultivation in vitro 

in emiched media can result in changes in the protein profile of the pathogen 

(Ramachandra et al., 1994). 

Lyme borreliosis is a multisystem disorder involving predominantly the skin, the 

nervous system, and joints (Steere, 1989). It is caused by spirochete B. burgdorferi which 

is transmitted by ixodid ticks of the I ricinus complex (Burgdorfer et al., 1982). This 

organism has been isolated from a variety of vertebrate hosts and the vector ticks (Nocton 

and Steere, 1995). This organism can be cultured in vitro continuously in a complex and 

highly emiched medium called BSK II (Barbour, 1984). 

A large number of initial studies conducted to understand various laboratory and 

clinical aspects, pathogenesis, and for development of prophylaxis against this malady 

were performed by needle inoculation of such culture grown spirochetes in different 

experimental models (reviewed by Sigal, 1997). This approach has the obvious flaw that 

it completely leaves out the role of vector tick in terms of its effects on host homeostasis 

at the time of pathogen transmission. The down regulation of host hemostatic, 

inflammatory and immune mechanisms especially at the tick bite site might create a 

compromised microenvironment which can have profound effect on subsequent 

spirochete establishment and the nature of host immune responses mounted against it. 

The immune response mounted by the vertebrate host against the needle 

inoculated and tick transmitted B. burgdorferi differs (Roehrig et al., 1992). The role of 

the tick vector in the modulation of the host immune response is beginning to be realized 

(Wikel et al., 1996a and b ). The adaptations made by the spirochete in terms of selective 

expression of certain proteins in the vertebrate host as compared to that with in the tick 
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are becoming known (Schwan et al., 1995). Several studies have identified spirochetal 

proteins that react with sera from infected patients or animals but are not expressed by 

cultured spirochetes (Champion et al., 1994; Akins et al., 1995; Suk et al., 1995; Wallich 

et al., 1995; Seiler and Weis, 1996). 

The purpose of the present study was to determine the differences in the hum oral 

and cellular immune responses mounted by BALB/c mice against tick transmitted and 

needle inoculated infection with B. burgdorferi strain B31 at different time intervals 

during the course of infection. BALB/c mice were selected for this study because they can 

be infected experimentally resulting in development of mild lesions and symptoms which 

resemble human Lyme borreliosis (Barthold et al., 1990; Ramachandra et al., 1993). Low 

passage B. burgdorferi strain B31 was used in this study to infect I scapularis nymphs 

and BALB/c mice. The presence of a large amount of OspA in the whole spirochete 

extract prepared from this strain interfered with preparative SDS-PAGE fractionation 

using Prep Cell Model 491 (Bio-Rad). OspA contaminated the entire spectrum of 

fractions obtained . Therefore, a mutant strain of B31 which lacked the expression of 

OspA and B was used for this purpose. 

A 100 % infection rate in I scapularis nymphs with B. burgdorferi was obtained 

by feeding unfed larvae on infected BALB/c mice. An infection rate of2::_ 80 % has been 

reported by Piesman (1993) using the same technique to rear infected I scapularis 

nymphs. Wikel et al. (1997) reported an infection rate of 100 % in I scapularis nymphs 

reared in the same manner. These nymphs successfully transmitted infection to BALB/c 

mice on subsequent feeding as evidenced by reisolation of the spirochete from the urinary 

bladder of all such mice. Wikel et al., (1997) reported that 100 % naive mice (no previous 
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exposure to ticks) when infested with six infected unfed I scapularis developed B. 

burgdorferi infection as evidenced by isolation of the spirochete from the ear punch 

biopsies. 

Similarly, successful infection of BALB/c mice by intraperitoneal inoculation of 

spirochetes was achieved during this study. Spirochetes could be reisolated from urinary 

bladders of all the mice inoculated with spirochetes intraperitoneally. Similar results were 

reported by Ramachandra et al., (1993) who used IX 107 spirochetes to inoculate 

BALB/c mice by intraperitoneal route. Establishment of Lyme borreliosis by 

intraperitoneal inoculation of 1 X 108 spirochetes has also been reported by Benach et al., 

(1988). 

Spirochetes could be consistently isolated as early as seven days post infection 

from the urinary bladders of all the mice infected with Lyme borreliosis either by needle 

inoculation or by tick transmission. Schwan et al. (1988) have reported the urinary 

bladder of mice to be a consistent source of spirochetes in infected mice. de Souza et al., 

(1993b) could also isolate spirochetes from the urinary bladders of C3H mice at four days 

post infection following intradermal inoculation. Ramachandra et al., (1993) reisolated 

spirochetes from urinary bladders of BALB/c mice at four weeks after needle inoculation 

of spirochetes. 

From 20 mice infested with B. burgdorferi infected I scapularis nymphs (six 

nymphs per mouse, 120 total), 82 (68.33 %) were recovered after feeding to repletion. 

Wikel et al., (1997) reported a recovery of 65 % following infestation of naive mice with 

similar number of nymphal I scapularis ticks. For pathogen free ticks, 66 replete nymphs 

(78.57 %) were recovered from 14 mice (six nymphs per mouse, 84 total) in the present 
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study. Wikel et al., (1997) recorded a slightly lower recovery rate of 55.60 % for 

pathogen free ticks infested on BALB/c mice. 

Use of Prep Cell model 491 (Bio-Rad) allowed an excellent fractionation of a 

complex mixture of proteins present in the whole spirochete extract of OspA and B 

negative mutant of B. burgdorferi strain B31. The usefulness of this technique has 

previously been demonstrated. Brown et al., (1995) fractionated merozoite membranes 

and whole merozoite antigens of Babesia bovis using 10 and 15 % acrylamide 

concentration in the fractionation resolving gel. Subsequently, they used these fractions 

for the tentative identification of relevant molecules that stimulate proliferation of T

helper cell lines and clones derived from cattle immune to challenge infection with B. 

bovis. 

Since, SDS-PAGE fractionation is done under reducing conditions, 

conformational epitopes on different polypeptides will be likely destroyed. However, 

because of the reducing conditions, both soluble and membrane bound proteins can be 

targeted with this technique (Brown et al., 1995). Bergman et al., (1995) used the same 

technique to fractionate salivary gland extract from Dermacentor andersoni using 5, 7.5, 

or 10 % acrylamide in the resolving gel. Various proteins present in these fractions were 

tested for their effects on Con A-induced blastogenesis of normal murine splenocytes. 

In the present study, seven different fraction pools with diverse protein 

constitution were obtained by pooling fractions obtained from three different prep cell 

runs using 7.5, 10, and 12% acrylamide in the resolving gel. The fractionation with 7.5 % 

acrylamide concentration gave best resolution of polypeptides in the molecular weight 

range of 45-56 kDa. Similarly, respective best ranges for 10 and 12 % acrylamide were 
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10-33 kDa and 10-20 kDa in the present study. Brown et al., (1995) using 10 % 

acrylamide concentration were able to obtain good resolution in the molecular weight 

range of 20-95 kDa. With the 15 % acrylamide gel, they obtained a step-wise progression 

of bands ranging from 14-25 kDa. Bergman et al., (1995) used acrylamide concentrations 

ranging from 5 to 10 % to obtain fractions containing proteins in the molecular weight 

range of approximately 12 to 230 kDa. The apparent differences in the best resolution 

range could be due to the initial amount of total protein loaded on the gel as well as the 

length of resolving gel. 

The fractions were pooled only with fractions from the same fractionation run. 

The fractions with similar protein profiles were pooled in order to obtain enough quantity 

that could be used in splenocyte proliferation assays conducted at five different time 

intervals post infection. The purpose of testing these fraction pools was to identify any 

polypeptides that induced a differential proliferative response in splenocytes from mice 

with tick transmitted infection and needle inoculated infection. 

Whole spirochete extracts obtained from both the strains of spirochete, all fraction 

pools, and recombinant OspA (31 kDa) were tested for their effects on in vitro 

proliferative responses of splenocytes obtained from BALB/c mice infected with B. 

burgdorferi by either tick transmission or needle inoculation. Splenocytes obtained from 

groups of mice infested with clean nymphs and injected with sterile PBS subjected to 

similar stimulations were used as matched controls for tick transmitted and needle 

inoculated infection, respectively. In addition to all the spirochetal antigens, effects of 

Con A (T-cell mitogen) and LPS (B-cell mitogen) on proliferative responses of 

splenocytes from all the groups were also tested. The splenocytes were collected at week 
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one, two, four, eight and 12 post infection and were subjected to a three day and five day 

lymphocyte proliferation assay. 

In three day culture assay, the Con A responsiveness of splenocytes from mice 

with tick transmitted infection was impaired as compared to the splenocytes from mice 

with needle inoculated infection at all the interval tested except at one week post 

infection. The splenocytes from mice infected by tick transmission of B. burgdorferi 

showed reduced proliferation in response to Con A as compared to their matched control 

of splenocytes from mice infested with pathogen free ticks also. Con A response of 

lymphocytes from human patients with active Lyme disease was reduced as compared to 

healthy controls (Dattwyler, 1986). Benach et al., (1988) have reported reduced 

proliferative responses to Con A by splenocytes from mice with Lyme borreliosis as 

compared to normal mice suggesting a period of decreased mononuclear cell function. 

Both C3H and BALB/c mice infected for seven and 14 days had diminished responses to 

Con A and LPS relative to those of controls ( de Souza et al., 1993a). de Souza et al., 

(1993b) also found that lymphocytes derived from the spleens of C3H mice infected with 

needle inoculation of spirochetes in the shoulder at seven and 14 days post-infection 

showed impaired proliferative responses to both Con A and LPS. 

The Con A response of needle inoculated infection mice was much lower than 

that of the tick transmitted infection group in the present study at one week post infection 

(three day assay). The larger number of spirochetes (1 X 10 7) given by needle might have 

caused overwhelming infection resulting in reduced responsiveness of the splenocytes to 

Con A. In the tick transmitted infection, a single tick injects only about 103 to 104 

spirochetes during feeding to repletion (Burgdorfer et al., 1982). The Con A response of 
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splenocytes from mice with needle inoculated infection was lower than the matched 

control (PBS injected) one week, and almost the same at 12 weeks post infection but 

showed hyper-responsiveness at two and eight weeks post infection. It is possible, that 

following the initial period of overwhelming infection, the splenocytes recovered and 

proliferated vigorously in response to Con A. Hyper-responsiveness of lymph node cells 

obtained from mice with inoculation of spirochetes in the foot pad to LPS has previously 

been reported (de Souza et al., 1992). Responses to Con A were not tested in this study. 

Splenocytes from both the control groups showed equally significant (SI>4) 

proliferation in response to Con A at all the intervals except at 12 weeks where the 

splenocytes from mice given pathogen-free tick infestation showed higher responses as 

compared to PBS injected mice splenocytes. Tick infestation has been shown to reduce 

responsiveness of lymphocytes to mitogens. Infestation of guinea pigs with tick 

Dermacentor andersoni reduced the in vitro responsiveness of lymphocytes to T-cells 

mitogen Con A (Wikel, 1982). Salivary gland extracts prepared from female D. andersoni 

suppressed normal murine lymphocyte responsiveness to Con A in vitro. Wikel et al., 

(1997) observed that repeated infestation with I scapularis nymphs did not induce any 

acquired resistance to subsequent feeding. However, following repeated infection with 

pathogen-free nymphs, there was a definite interference with transmission of B. 

burgdorferi by infected ticks. This indicates that, upon repeated infestation, mice 

acquired the ability to neutralize certain factors in tick saliva that help in establishment of 

infection. These factors can be immunosuppressive but may be acting locally and do not 

affect the responsiveness of splenocytes to mitogens in case of I scapularis. 
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In the five day assay, the similar trend of Con A responsiveness by different 

groups was maintained in general but the SI' s were numerically smaller in most cases. 

The five day assay was performed since the conventional antigen-specific responses, 

involving very small percentages of cells generally require five days for maximal 

expression (Colligan et al., 1991). The mitogenic responses involving entire populations 

of cells are maximal in two to three days, with the decline during longer incubation being 

due to depletion of nutrients. Thus, higher SI' s at an incubation period of 72 hours point 

towards the nonspecific mitogenic effects of Con A. Surprisingly, the numerical values of 

SI' s for Con A responsiveness were higher in the five day assay as compared to those in 

the three day assay except in the case of mice with uninfected tick infestation. 

The LPS induced proliferative responses of splenocytes from mice with tick 

transmitted infection, when compared with those of splenocytes from needle inoculated 

infection, were variable. The SI's were smaller as compared to those for stimulation with 

Con A, which can be attributed to the presence of smaller number of B-cells as compared 

to T-cells among the splenocytes. The LPS response of the tick transmitted infection 

group splenocytes was higher at one week, lower at two weeks, similar at four weeks, 

much lower at eight weeks and once again similar at 12 weeks post infection as compared 

to splenocytes obtained from needle inoculated group. The LPS induced proliferation in 

splenocytes from mice with tick transmitted infection was diminished than their matched 

control of splenocytes from mice given an infestation with pathogen free ticks except at 

one week post-infection where almost the same level of responsiveness was noted. The 

LPS response of splenocytes from mice with needle inoculated infection was lower at one 

week, up to same level at two weeks, much higher at eight weeks and almost similar at 12 
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weeks post-infection as compared to their matched control i.e. PBS injected group. The 

hyper-responsiveness observed at eight weeks was also observed for Con A stimulation at 

this interval. de Souza et al., (1993b) have reported such enhanced responses to LPS in 

the lymph node cells obtained from mice inoculated with spirochetes in the foot pad but 

not to Con A. The impaired LPS responsiveness of splenocytes from mice administered 

infection by needle in the shoulder has also been reported ( de Souza et al., 1993b ). They 

did not test for LPS responses of splenocytes from mice with tick transmitted infection. 

In the five day assay numerically smaller SI's were observed for all groups. In 

fact, the SI' s for tick transmitted and needle inoculated infection groups dropped below 

significant level i.e. less than four at certain intervals. Only at 12 weeks post-infection, 

five day assay, the SI's were numerically slightly larger than those at three day assay. 

In the present study, the whole spirochete extracts obtained from both type strain 

B31 and OspA and B deficient strain of B. burgdorferi caused significant proliferation of 

splenocytes from both infected (needle or tick) and control groups. This observation 

reflects the presence of nonspecific mi to gens in the spirochete extracts which has 

previously been reported in the literature. Lymphocytes from uninfected healthy human 

subjects, serving as controls for patient studies, were found to proliferate when incubated 

with B. burgdorferi antigen (Zoschke et al., 1991). de Souza et al., (1992) showed that B. 

burgdorferi antigens induced nonspecific proliferative responses in B-cell enriched 

fraction of naive murine splenocytes. This effect was dissimilar to that of LPS because 

splenocytes from C3H/HeJ mice showed proliferation although this strain of mice is an 

LPS non-responder. Schoenfeld et al., (1992) demonstrated a B-lymphocyte mitogen 

produced by B. burgdorferi which had potent mitogenic activity when cultured with 
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lymphocytes from naive C57BL/6, C3H/HeJ, or BALB/c mice. Tai et al., (1994) have 

reported that normal human B-cells and not I-cells proliferated when incubated with 

sonicated B. burgdorferi. Antigen specific proliferative responses to borrelial antigens 

have also been described. Yoshinari et al., (1991) have described the proliferation ofT

cells obtained from Lyme disease patients in response to different B. burgdorferi 

antigens. Dattwyler et al., (1986) did not see any proliferation in lymphocytes from 

normal human subjects in response to B. burgdorferi antigens whereas proliferative 

cellular response in patients with Lyme disease were consistently present. de Souza et al., 

(1993a) observed that at seven days post-infection (needle inoculation), responses of 

splenocytes from C3H mice to B. burgdorferi as stimulus were decreased. Elevated 

responses to borrelial antigens were observed only at 26 weeks and later, post-infection in 

C3H mice. In BALB/c splenocytes, elevated responses were not seen, except at two and 

52 weeks post-infection, but proliferation at those times was only marginally higher for 

splenocytes from infected mice than for those from control mice (de Souza et al., 1993a). 

In the present study, the proliferative response of splenocytes from mice with tick 

transmitted infection to WSE (B31) were lower than that of splenocytes from mice with 

needle inoculated infection at all intervals post-infection, except at one week post

infection where they were at equivalent levels. When compared to matched controls, the 

proliferative responses of splenocytes from mice with tick transmitted infection had 

diminished responses to WSE (B31) as stimulant at all intervals post-infection. Whereas 

responses of needle inoculated infection mice to WSE (B31) were variable being lower at 

one week, slightly higher at two weeks, much higher at eight weeks, and equivalent at 12 

weeks post-infection as compared to their matched control. The results of five day assay 
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were similar with SI's falling below the cutoff value of four, indicating reduced viability 

of cells. 

Ma and Weis (1993) showed that the B. burgdorferi lipoproteins OspA and OspB 

could cause naive murine B cells to proliferate in vitro and have cytokine-stimulatory 

properties. Tai et al., (1994) showed similar effects of B. burgdorferi antigens on normal 

human B lymphocytes and mononuclear cells. However, our results show that whole 

spirochete extract from B31 strain that lacked OspA and B expression also induced 

significant proliferation of splenocytes from both infected and control mice indicating 

presence of non-specific mitogenic properties. Difference in proliferative responses of 

lymphocytes from mice with tick transmitted infection versus needle inoculated infection 

to WSE (AB def.) was quite apparent. At all intervals tested tick transmitted infection 

lymphocytes proliferated at lower level than the needle inoculated infection lymphocytes, 

except at one week post infection where the responses were equivalent. As compared to 

the matched controls, lymphocytes from mice with tick transmitted infection had 

diminished responses whereas those from needle inoculated infection had elevated 

responses. The results of five day assay were similar except for much smaller SI values. 

Our results strongly indicate the presence of antigens other than OspA and B 

having nonspecific mitogenic effects on murine splenocytes. In fact, fraction pool seven, 

obtained by SDS-PAGE fractionation ofWSE (AB def.), which contained a 20 kDa 

borrelial protein showed non-specific mitogenic effects on splenocytes from both B. 

burgdorferi infected and control group. The proliferative responses to fraction pool seven 

were lower in tick transmitted infection group than those of needle inoculated infection 

group at all intervals, except at one week post-infection where the opposite was true. An 
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overwhelming number of spirochetes, causing generalized immunosuppression might 

have been the reason for this observation. When compared to its matched control, 

proliferative responses of the tick transmitted group to fraction pool seven were variable 

being higher at one week, lower at two weeks, higher at eight weeks and lower again (in 

fact, SI<4) at 12 weeks post infection. In contrast, proliferative responses of splenocytes 

from needle inoculated infection group to fraction pool seven were consistently elevated 

as compared to the matched control of PBS injected mice except at one week post

infection. The results followed the same trend in the five day assay also. 

The possible existence of mitogenic lipoproteins other than OspA and B produced 

by B. burgdorferi has been discussed by Tai et al., (1994). A major low-molecular-weight 

10 kDa-Mr protein purified and characterized by Katona et al., (1992) is one such 

possibility. The recombinant OspA tested for it's stimulatory effects on splenocytes from 

both naive and infected mice in the present study was non-lipidated. In keeping with the 

previous findings (Weis et al., 1994), it lacked any mitogenic effects. 

The borrelial antigens present in fraction pool one through six, respectively 

containing 30.5-38.5 kDa, 45 kDa, 50 and 51 kDa, 56 kDa, 27 kDa, and 33 kDa borrelial 

proteins did not cause significant level of proliferation in splenocytes from mice with tick 

transmitted infection or in both the control groups. However, at four weeks post-infection 

(three day assay) splenocytes from the needle inoculated infection group showed barely 

significant proliferation in response to fraction pool one (30.5-38.5 kDa) and fraction 

pool three (50 and 51 kDa) with respective Si's of 4.08 and 4.35. 

Antigen-specific responses to borrelial antigens have been difficult to study using 

unfractionated cell populations because it has led to variable and conflicting conclusions 
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( de Souza et al., 1993a). One reason for this is the non-specific mitogenic effects of B. 

burgdorferi antigens on even naive lymphoid cell populations. As discussed above, 

amount of initial spirochete inoculum, route of inoculation, site of inoculation, and the 

source of lymphoid cell populations complicate the interpretation of results 

In the present study, an attempt was made to study the differences in antibody 

response to Lyme borreliosis initiated by tick transmission versus needle inoculation. Sera 

collected at three, seven, ten, 14, 21, 28, 56, and 84 days post infection were monitored 

for the presence of spirochete specific IgM and IgG by a sensitive ELISA protocol, and 

their specific reactivity with borrelial antigens was determined by Western immunoblot 

using whole spirochete extract from B. burgdorferi B31 strain. Distinct differences in 

time of appearance, magnitude and specificity ( determined by Western immunoblot) of 

anti-spirochete IgM and IgG antibody were found in tick transmitted versus needle 

inoculated infection with B. burgdorferi. In the sera from needle inoculated mice, the 

anti-spirochete IgM antibody response was apparent as early as the third day post

infection, peaked at day seven and then an additional peak was observed at day 21 and 28. 

On Western immunoblot analysis, the reactivity was against 39 and 24 kDa antigen which 

lasted till 21 days post-infection. On day 28, reactivity to only the 39 kDa protein was 

observed which disappeared at 56 and 84 days post-infection. In contrast, sera from mice 

with tick transmitted infection did show same level of absorbance on day three post

infection but no anti-spirochete IgM reactivity was observed on Western blot analysis 

until day 10 post-infection and that too only against 39 kDa protein. This reactivity lasted 

only until day 21 post-infection. Overall, the magnitude of anti-
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spirochete IgM was higher in needle inoculated infection as compared to tick transmitted 

infection. 

Ramachandra et al., (1993) using needle inoculation methods of infection in 

BALB/c mice found a similar trend oflgM response with spirochete specific IgM 

antibodies appearing as early as three days post-infection, peaked on days eight and nine, 

and gradually declined after day 12. Immunoblotting analysis for the specificity of anti

spirochete IgM antibody was not done in this study. de Souza et al., (1993b) using C3H 

mice showed that the route of inoculation of spirochetes cause variation in the antibody 

response. Shoulder- but not foot-inoculated mice developed IgM reactivity to B. 

burgdorferi on day seven. However, they did not study the kinetics of antibody response 

following tick-transmitted infection. Schwan et al. (1989) studied the antibody response 

of white-footed mouse, Peromyscus leucopus, following needle inoculation of2 X 108 

spirochetes by intraperitoneal route. They detected anti-spirochete IgM antibody in 

circulation within one or two days after inoculation, with a peak at four or five days post 

inoculation. A secondary peak in IgM was observed on day 21 post-inoculation. These 

results are in agreement with our findings. 

Differences in spirochete specific IgG antibody elaboration by mice receiving 

needle inoculated and tick-transmitted infection were also seen. Anti-spirochete IgG 

antibody was detected on third day post infection and there after showed a gradual 

increase through out the duration of experiment with maximum absorbance value on day 

84 in the case of needle inoculated infection. However, specific reactivity, by 

immunoblotting, to borrelial antigens was not observed until day 10 post-infection when 

the serum reacted with a 39 kDa and a 31 kDa (OspA) protein. Subsequently, this 
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reactivity was maintained throughout the course of this study. In contrast, absorbance 

values not more than those for control sera were observed in the sera from mice infected 

by tick transmission till day 56 when significant levels of IgG were detected. On day 84 

post infection, about the same amount of IgG was again detected but level was still much 

lower than that in case of needle inoculated infection. The only reactivity in the sera from 

mice given tick transmitted infection was to the 39 kDa protein which was observed 56 

days post-infection and also at 84 days post infection. 

Schwan et al., (1989) found that white-footed mouse, P. leucopus began 

circulating anti-B. burgdorferi antibodies as early as one or two days post inoculation and 

showed a continuous increase in circulating antibody out to day 84. On immunoblot 

analysis, the sera showed reactivity to a large number of spirochetal antigens at different 

times post-infection. Ramachandra et al., (1993) detected specific IgG in sera of mice 

needle inoculated with spirochetes at days seven and eight post infection. They observed 

a constant increase in titer throughout the eight week duration of the experiment. By 

immunoblotting, they observed that the BALB/c sera reacted only with one polypeptide 

band of approximately 39 kDa starting at 14 days post-infection and persisting throughout 

the course of study. Barthold et al., (1990) showed that sera from mice infected by needle 

inoculation reacted with 20 kDa, 31-32 kDa (OspA), 36 kDa (OspB) and 41 kDa 

(flagellin). de Souza et al., (1993b) showed IgG seroconversion among shoulder 

inoculated C3H mice on day 10 and among foot inoculated mice on day 14. The minor 

differences in these results can be attributed to the strain of spirochetes and mice used. 

None of the above mentioned studies used tick transmission method of spirochete to 

study the antibody response kinetics. 

107 



The lower levels and later appearance of antibodies observed during tick 

transmitted infection in the present study could be because of small inoculum of infection 

injected by the ticks as compared to the needle inoculation. It is estimated that 103 to 104 

organisms are transmitted by each tick (Burgdorfer et al., 1982). In addition the 

immunosuppressive properties of tick saliva may interfere with the proper presentation of 

antigen and subsequent development of immune response. An anti-31 kDa (OspA) 

antibody was detected in sera from mice with needle inoculated infection and appeared as 

early as ten days post infection. The sera from mice with tick transmitted infection lacked 

anti-OspA response at all times. These results are in accordance with those of Roehrig et 

al., (1992) who did not find any anti-OspA and -OspB response in hamsters infected by 

tick transmission of the organism. In human patients also, an anti-OspA or -OspB 

response is not detected till much later in the disease course if at all (Steere, 1989). 

Several explanations for the lack of anti-OspA response in natural (tick 

transmitted) Lyme borreliosis have been put forward. Small inoculum of spirochetes 

given intradermally mimics the natural infection and no anti-OspA response is seen in 

such animals (Barthold et al., 1995). More recently, surface antigen modulation by the 

spirochetes has been determined during tick transmission. Schwan et al., (1995) 

demonstrated a decrease in expression of OspA and increase in expression of OspC on B. 

burgdorferi during acquisition of blood meal by the tick. This change was not due only to 

temperature change but also due to other environmental changes associated with blood 

meal. Further, de Silva et al., (1996) using fluorescent immunostaining showed that the 

spirochetes in fed ticks lacked OspA expression whereas it was present in unfed ticks. 
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In the present study, spirochetes could be reisolated from the urinary bladder of 

mice infected by either tick transmission or needle inoculation of spirochete at all time 

intervals. The persistence of spirochetes in the face of humoral immune response in 

immunocompetent animals has been described earlier also (Seiler and Weis, 1996). 

Existence of B. burgdorferi in an immunologically privileged site, surface antigenic 

modulation and debatable hypothesis of intracellular localization of spirochetes are some 

of the explanations put forward to explain this phenomenon (Seiler and Weis, 1996). 

The role of anti-B. burgdorferi antibodies in providing protection against Lyme 

borreliosis is well documented (reviewed by Simon et al. 1991 b; N octon and Steere, 

1995; and Seiler and Weis, 1996). Highlevels ofborreliacidal antibodies develop in 

response to needle inoculation of hamsters with Lyme disease spirochete (Schmitz et al. 

1991; Lovrich et al. 1991). In the present study, the development ofborreliacidal 

antibodies in the sera from mice with tick transmitted and needle inoculated infection was 

monitored using an in vitro spirochete neutralization assay using complement mediated 

killing. Borreliacidal antibodies were present in sera from needle inoculated mice at all 

the time intervals tested appearing as early as three days post-infection. In contrast, the 

sera from mice with tick transmitted infection did not have any borreliacidal activity at 

anytime. 

BALB/c mice suffer a mild form of Lyme borreliosis which is accompanied by a 

relatively poor antibody response to B. burgdorferi as compared to more susceptible mice 

such as C3H mice (Barthold et al. 1990; Ramachandra et al. 1993). Further, tick 

transmitted infection group had lower amount of anti-spirochete antibody than the mice 

with needle inoculated infection group in the present study. Finally, lack of anti-OspA 
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response in tick transmitted infection may be another reason for lack of borreliacidal 

activity in the sera from such mice. 
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Section 1: Buffers and Media Compositions 

Phosphate Buffered Saline (PBS, 0.15 M, pH 7.2) 

1. Dissolve the following in 900 ml of triple distilled water. 
Potassium phosphate (monobasic, KH2P04)) 2.45 g 
Sodium Phosphate (dibasic, Na2HP04) 8.10 g 
Sodium Chloride (NaCl) 4.38 g 

2. Bring the final volume to one liter. The pH does not need to be adjusted. 

Barbour-Stoenner-Kelly II Medium (BSK II) 

1. Dissolve 100 ml of 10 X CMRL (Gibco, Grand Island, NY) in 900 ml of triple 
distilled water to prepare 1 X solution. 

2. Dissolve the following constituent in order in 1 X CMRL 1066. 
Neopeptone 5 g 
BSA Fr. V 50 g 
Y eastolate 2 g 
HEPES 6g 
Glucose 5 g 
Sodium Citrate O. 7 g 
Sodium Pyruvate 0.8 g 
N-Acetylglucosamine 0.4 g 
Sodium Bicarbonate 2.2 g 

3. Adjust pH to 7.6 with IN NaOH 
4. Filter sterilize using 0.22 µm nitrocellulose membrane sterivex filter unit with 

bell fitting (Millipore, Bedford, MA) 
5. Prepare 200 ml of 7 % Gelatin in distilled water and autoclave at 121 °C for 15 

minutes. Let it cool down to room temperature and add to the medium under 
sterile conditions. 

6. Add unheated rabbit serum (Gibco, Grand Island, NY) to 6 %. 
7. Incubate 10 ml of this medium at 37 °C overnight for sterility check. 
8. Store the medium in one liter media bottles (Coming, New York, NY) under 

refrigerator. 

Phosphate Citrate Buffer (pH 5.0) 

1. Solution A: 0.1 M Citric acid. Dissolve 10.5 g Citric acid (monohydrate) in 500 
ml distilled water. 

2. Solution B: 0.2 M Sodium phosphate (dibasic). Dissolve 14.2 g Sodium 
phosphate dibasic) in 500 ml distilled water. 

3. Mix 48.5 ml of solution A with 51.5 ml of solution B. pH should be around 5.0. 
Adjust if necessary. 
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Tris-Saline Buffer (10 mM Tris-HCl, 0.9 % NaCl, pH 7.4) 

1. Dissolve the following in one liter of distilled water. 
Tris base 2.42 g 
NaCl 18.0 g 

2. Adjust to pH 7.4 with 1 N HCl, and adjust the final volume to two liters. 

RPMI 1640 Medium 

1. Dissolve one packet ofRPMI 1640 medium powder (Gibco, Grand Island, NY) in 
900 ml of triple distilled water in a 2000 ml flask. Place a Teflon coated stir bar at 
the bottom of flask and place it on a magnetic stirrer. 

2. Add 2.0 g of sodium bicarbonate. 
3. Dissolve one vial of 200 mM L-Glutamine (Gibco, Grand Island, NY) in 20 ml of 

MEM-non essential amino acid solution (10 mM, 100 X) (Gibco, Grand Island, 
NY) and add 10 ml of this solution to the medium. 

4. Add 10 ml ofMEM vitamin solution (100 X) (Gibco, Grand Island, NY). 
5. Dissolve all the components by with gentle stirring for about 2 hrs. 
6. Adjust pH to 7.1 with IN HCL 
7. Bring the total volume to one liter. 
8. Filter sterilize using 0.22 µm filter with bell fitting (Millipore, Bedford, MA) 
9. Mix 87.75 ml of the above medium with 10 ml of heat inactivated (56 °C for 30 

minutes) fetal calf serum (Gibco, Grand Island, NY), 2 ml of 
Penicillin/Streptomycin solution (Penicillin 5000 units, Streptomycin 5000 µg per 
ml) (Gibco, Grand Island, NY) and 0.25 ml of Gentamicin solution (10 mg/ml) 
(Gibco, Grand Island, NY) to get the final working medium. 

Section 2: Electrophoresis Reagents and Recipes 

Resolving Gel Buffer stock (LS M Tris-HCl, pH 8.8) 

1. Dissolve 27.23 g Tris base in approximately 80.0 ml distilled water. 
2. Adjust pH to 8.8 with 6 N HCL Make to 150.0 ml with distilled water and store at 

4 °C. 

Stacking Gel Buffer Stock (0.5 M Tris-HCl, pH 6.8) 

1. Dissolve 6.0 g Tris base in approximately 60 ml distilled water. 
2. Adjust to pH 6.8 with 6 N HCL Make to 100.0 ml with distilled water and store at 

4 °C. 
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Polyacrylamide Gel Recipes: 

Resolving Gel (Preparative and Analytical SDS-P AGE) 

Percent Acrylamide Concentration 

Resolving gel stock 20.0 ml 20.0ml 
Deionized water 39.8 ml 33.1 ml 

Acrylamide/bis stock 20.0 ml 26.7 ml 
(30% T/2.67% C) 
10% Ammonium 0.2 ml 0.2 ml 

persulphate 
TE MED 0.02 ml 0.02 ml 

Stacking gel, Four percent (Preparative and Analytical SDS-P AGE) 

Stacking gel stock 
Deionized water 

Acrylamide/bis stock 
(30% T/2.67% C) 
10% Ammonium 

persulphate 
TE MED 

Acrylamide cone. 

20.0 ml 
39.8 ml 
20.0 ml 

0.2 ml 

0.02 ml 

10 X electrode/tank buffer (25 mM Tris, 192 mM Glycine, pH 8.3) 

1. Dissolve the following in 900 ml of distilled water. 
Tris base 30.3 g 
Glycine 144.0 g 

2. Adjust the volume to one liter. 

20.0 ml 
27.8 ml 
32.0 ml 

0.2 ml 

0.02 ml 

3. To make one liter SOS-PAGE electrode buffer, dissolve 1 g SDS in 100 ml of 
distilled water, add 100 ml of 10 X electrode/tank buffer and bring the volume up 
to one liter. Keep chilled in the refrigerator. 

3 X SDS PAGE sample buffer 

1. Dissolve 2.28 g tris base in 40 ml distilled water. 
2. Adjust pH to 6.8 with lON HCI. 
3. Dissolve 5.0 g SOS in the above. 
4. Add 30.0 ml glycerol. 
5. Add 3.0 ml of 0.05 % bromophenol blue. 
6. Bring the volume up to 85.0 ml with distilled water. 
7. Add 150 µl of $-mercaptoethanol to 850 µl of the above solution. 
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APPENDIX II 

In vitro splenocyte proliferation assay data presented as actual CPM ± S.E obtained in 
response to different mitogens and antigens at different intervals following infection of 

BALB/c mice by tick transmission or needle inoculation of Borrelia burgdorferi. 

Table Page 
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D. Two weeks post-infection, five day assay ............................. 136 

E. Four weeks post-infection, three and five day assay ..................... 137 

F. Eight weeks post-infection, three day assay ........................... 138 

G. Eight weeks post-infection, five day assay . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139 

H. Twelve weeks post-infection, three day assay .......................... 140 

I. Twelve weeks post-infection, five day assay ........................... 141 
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Table A. In vitro proliferative responses of splenocytes from BALB/c mice infected 
with B. burgdorferi, either by tick transmission or by needle inoculation, to 
Concanavalin A (Con A), Lipopolysaccharide (LPS), whole spirochete extract from 
type strain B31 (WSE B31), whole spirochete extract from OspA and B negative 
mutant (WSE AB def.), fraction pools from preparative SDS-P AGE of WSE (AB 
def., Pool 1 through 7), and recombinant OspA (Rec. OspA). One week post 
infection, Three day assay 

Treatment Tick trans. inf. Needle inoc. inf. Uninfected ticks PBS inject. 

Con A 20,238 ± 392 15,091± 364 37,522 ± 731 24,521 ± 543 

LPS 3,616 ± 24 3,255 ±35 4,928 ± 177 3,371 ± 131 

Cells Alone 452 ± 24 577 ± 15 688 ± 37 443 ± 12 

WSE (B31) 4,864 ± 102 5,553 ± 181 8,480 ± 235 5,566 ± 169 

WSE (AB def.) 5,050 ± 303 6,169 ± 74 9,088± 187 4,892 ± 72 

Pool 1 1,227 ± 85 1,038 ± 93 997 ± 31 1,170±21 

Pool 2 416 ± 32 524 ± 38 465 ± 1 529 ± 11 

Pool3 1,264 ± 43 909 ± 22 1,271 ± 63 1,341 ± 136 

Pool 4 421 ± 36 560 ± 14 502 ± 33 623 ± 25 

Pool 5 645 ± 128 469 ± 19 459 ± 15 586 ± 5 

Pool 6 387 ±25 483 ± 19 428 ± 5 528 ± 24 

Pool 7 6,192 ± 305 2,658 ± 116 4,597 ± 240 5,069 ± 342 

Rec. OspA 772 ± 117 1,191± 58 909 ± 64 927 ± 57 

5Xl splenocytes were incubated with respective antigen/mitogen or without 
stimulation (cells alone) in triplicate for 54 hrs and then pulsed with one µCi of 3H-
thymidine per well. Data is presented as mean CPM ± S.E obtained after harvesting the 
cells 18 hrs later and counting in liquid scintillation counter. 

Splenocytes from mice infested with pathogen free ticks or injected with PBS served as 
matched controls for tick transmitted and needle inoculated infection, respectively. 
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Table B. In vitro proliferative responses of splenocytes from BALB/c mice infected 
with B. burgdoiferi, either by tick transmission or by needle inoculation, to 
Concanavalin A (Con A), Lipopolysaccharide (LPS), whole spirochete extract from 
type strain B31 (WSE B31), whole spirochete extract from OspA and B negative 
mutant (WSE AB def.), fraction pools from preparative SDS-PAGE ofWSE (AB 
def., Pool 1 through 7), and recombinant OspA (Rec. OspA). One week post 
infection, Five day assay 

Treatment Tick trans. inf. Needle inoc. inf. Uninfected ticks PBS inject. 

Con A 29,230 ± 426 16,536± 556 30,867 ± 47 32,804 ± 207 

LPS 3,223 ± 164 2,109 ± 126 1,999 ± 60 2,821 ± 137 

Cells Alone 687 ± 19 714 ± 553 685 ± 33 692 ± 21 

WSE (B31) 2,055 ± 3 2,821 ± 214 2,344 ± 178 1,510 ± 34 

WSE (AB def.) 2,097 ± 82 2,881 ± 134 2,221 ± 107 2,016 ± 23 

Pool 1 856 ± 39 833 ± 88 560 ± 30 828 ± 51 

Pool 2 830 ± 37 966 ± 45 677 ± 5 879 ± 94 

Pool 3 908 ± 52 795 ± 25 637 ± 28 892 ± 111 

Pool 4 446 ± 57 978 ± 71 855 ± 53 855 ± 11 

Pool 5 461 ± 39 1,004± 29 784 ± 41 885 ± 29 

Pool 6 1059± 46 843 ± 54 637 ± 31 739 ± 11 

Pool 7 525 ± 11 1,458 ± 70 1,877 ± 32 1,974 ± 52 

Rec. OspA 1,115 ± 82 650 ± 79 325 ± 26 348 ± 13 

5Xl splenocytes were incubated with respective antigen/mitogen or without 
stimulation (cells alone) in triplicate for 102 hrs and then pulsed with one µCi of 3H-
thymidine per well. Data is presented as mean CPM ± S.E obtained after harvesting the 
cells 18 hrs later and counting in liquid scintillation counter. 

Splenocytes from mice infested with pathogen free ticks or injected with PBS served as 
matched controls for tick transmitted and needle inoculated infection, respectively. 
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Table C. In vitro proliferative responses of splenocytes from BALB/c mice infected 
with B. burgdorferi, either by tick transmission or by needle inoculation, to 
Concanavalin A (Con A), Lipopolysaccharide (LPS), whole spirochete extract from 
type strain B31 (WSE B31), whole spirochete extract from OspA and B negative 
mutant (WSE AB def.), fraction pools from preparative SOS-PAGE of WSE (AB 
def., Pool 1 through 7), and recombinant OspA (Rec. OspA). Two weeks post 
infection, Three day assay 

Treatment Tick trans. inf. Needle inoc. inf. Uninfected ticks PBS inject. 

Con A 17,686± 1102 21,583± 466 21,000 ± 637 13,638 ± 410 

LPS 3,109 ± 68 2,460 ± 147 3,722 ± 81 2,333 ± 31 

Cells Alone 684± 36 304 ± 10 332 ± 14 249± 7 

WSE (B31) 5,321± 95 3,708 ± 233 3,463 ± 173 2,425 ± 87 

WSE (AB def.) 5,166 ± 95 4,416 ± 438 4,208 ± 252 2,165 ± 254 

Pool l 1,720 ± 39 1,032 ± 52 956 ± 20 802 ± 164 

Poo12 437 ± 19 351 ± 17 303 ± 14 280 ± 5 

Pool3 1,352 ± 110 1,163 ± 203 1,303 ± 88 636 ± 30 

Poo14 934 ± 60 529 ± 47 303 ± 18 353 ± 57 

Pool 5 759 ± 41 341± 26 350 ± 51 274 ± 25 

Poo16 465± 15 306 ± 8 321 ± 12 216 ± 8 

Pool 7 5,409 ± 225 4,160 ± 246 5,009 ± 218 3,078 ± 17 

Rec. OspA 930± 12 829 ± 116 729 ± 56 460 ± 30 

5 X 105 splenocytes were incubated with respective antigen/mitogen or without 
stimulation ( cells alone) in triplicate for 54 hrs and then pulsed with one µCi of 3H-
thymidine per well. Data is presented as mean CPM ± S.E obtained after harvesting the 
cells 18 hrs later and counting in liquid scintillation counter. 

Splenocytes from mice infested with pathogen free ticks or injected with PBS served as 
matched controls for tick transmitted and needle inoculated infection, respectively. 
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Table D. In vitro proliferative responses of splenocytes from BALB/c mice infected 
with B. burgdorferi, either by tick transmission or by needle inoculation, to 
Concanavalin A (Con A), Lipopolysaccharide (LPS), whole spirochete extract from 
type strain B31 (WSE B31), whole spirochete extract from OspA and B negative 
mutant (WSE AB def.), fraction pools from preparative SDS-PAGE ofWSE (AB 
def., Pool 1 through 7), and recombinant OspA (Rec. OspA). Two weeks post 
infection, Five day assay 

Treatment Tick trans. inf. Needle inoc. inf. Uninfected ticks PBS inject. 

Con A 14,671± 1870 14,642 ± 1300 22,769 ± 1034 20,977 ± 1079 

LPS 1,983 ± 88 1,445±110 3,212 ± 161 2,633 ± 188 

Cells Alone 638 ± 36 404 ± 22 483 ± 12 294 ± 15 

WSE (B31) 2,024± 147 1,516±120 1,485 ± 86 883 ± 74 

WSE (AB def.) 2,204 ± 86 1,973 ± 106 1,552 ± 188 996 ± 87 

Pool 1 1,349 ± 167 1,326 ± 116 1,007 ± 21 720 ± 41 

Pool 2 1,009 ± 155 308 ± 32 391 ± 33 149 ± 9 

Pool 3 1,031 ± 129 1,429 ± 55 1,045 ± 47 714 ± 80 

Pool 4 2,226± 149 391 ± 30 316 ± 29 190 ± 28 

Pool 5 953 ± 74 382± 57 344 ± 29 267 ± 16 

Pool 6 435± 25 255 ± 37 358 ± 21 146 ± 6 

Pool 7 2,501 ± 102 2,336 ± 143 2,567 ± 256 2,715± 365 

Rec. OspA 352 ± 48 531 ± 59 236 ± 17 163 ± 7 

5 X I 05 splenocytes were incubated with respective antigen/mitogen or without 
stimulation ( cells alone) in triplicate for 102 hrs and then pulsed with one µCi of 3H-
thymidine per well. Data is presented as mean CPM ± S.E obtained after harvesting the 
cells 18 hrs later and counting in liquid scintillation counter. 

Splenocytes from mice infested with pathogen free ticks or injected with PBS served as 
matched controls for tick transmitted and needle inoculated infection, respectively. 
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Table E. In vitro proliferative responses of splenocytes from BALB/c mice infected 
with B. burgdo,feri, either by tick transmission or by needle inoculation, to 
Concanavalin A (Con A), Lipopolysaccharide (LPS), whole spirochete extract from 
type strain B31 (WSE B31), whole spirochete extract from OspA and B negative 
mutant (WSE AB def.), fraction pools from preparative SOS-PAGE of WSE (AB 
def., Pool 1 through 7), and recombinant OspA (Rec. OspA). Four weeks post 
infection, three and five day assay 

Three dal'. assal'. Five dar assal'. 
Treatment Tick trans. inf. Needle inoc. inf. Tick trans. inf. Needle inoc. inf. 

Con A 5,689± 141 14,043 ± 186 5,468 ± 362 18,012 ± 144 

LPS 1,044 ± 65 1,415 ± 48 482± 12 1,226 ± 36 

Cells Alone 183 ± 11 252 ± 9 168 ± 9 300 ± 13 

WSE (B31) 1,244± 30 2,840 ± 81 339 ± 27 1,229 ± 103 

WSE (AB def.) 1,097 ± 96 2,656 ± 154 347 ± 47 1,534± 116 

Pool 1 454 ± 52 1,029 ± 60 351 ± 36 801 ± 63 

Pool2 224 ± 14 447 ± 49 219 ± 18 561 ± 60 

Pool3 553 ± 14 1,097 ± 80 247 ± 3 925 ± 100 

Pool 4 278± 16 612 ± 49 242 ± 42 1,023 ± 73 

Pool 5 235 ± 12 380 ± 13 190 ± 7 388 ± 33 

Pool 6 217 ± 26 507 ± 43 273 ± 16 548 ± 41 

Pool 7 2,065 ± 132 4,926 ± 167 1,290 ± 53 3,173 ± 197 

Rec. OspA 602 ± 200 649 ± 5 216 ± 27 326 ± 41 

5 X 105 splenocytes were incubated with respective antigen/mitogen or without 
stimulation ( cells alone) in triplicate for 54 and 102 hrs and then pulsed with one µCi of 
3H-thymidine per well. Data is presented as mean CPM ± S.E obtained after harvesting 
the cells 18 hrs later and counting in liquid scintillation counter. 
Splenocytes from mice infested with pathogen free ticks or injected with PBS which 
served as matched controls for tick transmitted and needle inoculated infection, 
respectively, were not employed. 
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Table F. In vitro proliferative responses of splenocytes from BALB/c mice infected 
with B. burgdorferi, either by tick transmission or by needle inoculation, to 
Concanavalin A (Con A), Lipopolysaccharide (LPS), whole spirochete extract from 
type strain B31 (WSE B31), whole spirochete extract from OspA and B negative 
mutant (WSE AB def.), fraction pool from preparative SDS-PAGE ofWSE (AB 
def., Pool 7), and recombinant OspA (Rec. OspA). Eight weeks post infection, Three 
day assay 

Treatment Tick trans. inf. Needle inoc. inf. Uninfected ticks PBS inject. 

Con A 97,757 ± 1,621 72,935 ± 1,826 92,318 ± 402 77,982 ± 3,064 

LPS 36,208 ± 766 38,721 ± 674 38,823 ± 980 38,063 ± 1,166 

Cells Alone 1,152 ± 21 516±38 1,057 ± 112 832 ± 17 

WSE (B31) 28,902 ± 1195 34,160 ± 1,363 30,757 ± 1,460 26,244 ± 287 

WSE (AB def.) 17,627 ± 346 15,702 ± 1,171 20,440 ± 1,149 12,890 ± 8 

Pool 7 28,289 ± 249 23,240 ± 654 22,122 ± 593 20,598 ± 551 

Rec. OspA 17,635 ± 61 17,692 ± 1,447 11,516±769 9,517±240 

5 X 105 splenocytes were incubated with respective antigen/mi to gen or without 
stimulation (cells alone) in triplicate for 54 hrs and then pulsed with one µCi of 3H-
thymidine per well. Data is presented as mean CPM ± S.E obtained after harvesting the 
cells 18 hrs later and counting in liquid scintillation counter. 

Splenocytes from mice infested with pathogen free ticks or injected with PBS served as 
matched controls for tick transmitted and needle inoculated infection, respectively. 
Fraction pools one through six were not tested. 
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Table G. In vitro proliferative responses of splenocytes from BALB/c mice infected 
with B. burgdorferi, either by tick transmission or by needle inoculation, to 
Concanavalin A (Con A), Lipopolysaccharide (LPS), whole spirochete extract from 
type strain B31 (WSE B31), whole spirochete extract from OspA and B negative 
mutant (WSE AB def.), fraction pools from preparative SDS-PAGE ofWSE (AB 
def., Pool 1 through 7), and recombinant OspA (Rec. OspA). Eight weeks post 
infection, five day assay 

Treatment Tick trans. inf. Needle inoc. inf. Uninfected ticks PBS inject. 

Con A 180,448 ± 5,746 88,088 ± 6,900 142,951 ± 6,666 113,061 ± 4,548 

LPS 16,394 ± 1,177 17,138 ± 303 15,673 ± 179 20,732 ± 1,076 

Cells Alone 3,865 ± 160 1,746 ± 104 2,598 ± 229 2,074± 211 

WSE (B31) 11,224 ± 323 24,096 ± 1,451 11,212 ± 279 6,618 ± 561 

WSE (AB def.) 7,582 ± 181 8,539 ± 713 6,657 ± 51 3,520 ± 162 

Pool 7 10,806 ± 884 9,279 ± 663 7,200± 195 3,857 ± 140 

Rec. OspA 4,948 ± 117 3,763 ± 241 1,341 ± 92 1,239 ± 33 

5 X 1 splenocytes were incubated with respective antigen/mitogen or without 
stimulation (cells alone) in triplicate for 102 hrs and then pulsed with one µCi of 3H
thymidine per well. Data is presented as mean CPM ± S.E obtained after harvesting the 
cells 18 hrs later and counting in liquid scintillation counter. 

Splenocytes from mice infested with pathogen free ticks or injected with PBS served as 
matched controls for tick transmitted and needle inoculated infection, respectively. 
Fraction pools one through six were not tested. 
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Table H. In vitro proliferative responses of splenocytes from BALB/c mice infected 
with B. burgdorferi, either by tick transmission or by needle inoculation, to 
Concanavalin A (Con A), Lipopolysaccharide (LPS), whole spirochete extract from 
type strain B31 (WSE B31), whole spirochete extract from OspA and B negative 
mutant (WSE AB def.), fraction pools from preparative SDS-PAGE of WSE (AB 
def., Pool 1 through 7), and recombinant OspA (Rec. OspA). 12 weeks post 
infection, Three day assay 

Treatment Tick trans. inf. Needle inoc. inf. Uninfected ticks PBS inject. 

Con A 10,494 ± 141 13,467± 597 26,745 ± 801 12,076 ± 658 

LPS 1,175±48 1,328 ± 18 1,760 ± 38 1,042 ± 46 

Cells Alone 236 ± 12 220 ± 8 274 ± 36 181 ± 7 

WSE (B31) 2,505 ± 137 3,576 ± 65 3,833 ± 309 2,912 ± 253 

WSE (AB def.) 1,727 ± 47 3,091 ± 173 1,739 ± 0.4 1,570 ± 171 

Pool 1 244 ± 15 213 ± 13 339 ± 30 251 ± 11 

Pool2 213 ± 13 235 ± 39 268 ± 11 230 ± 24 

Pool3 265 ± 12 340 ± 16 381 ± 20 316±16 

Pool4 152 ± 9 210 ± 12 233 ± 20 181 ± 5 

Pool5 193 ± 8 205± 8 294 ± 54 238 ± 32 

Pool 6 145± 11 225 ± 33 232 ± 10 1,144 ± 7 

Pool 7 801 ± 28 1,434 ± 29 1,806 ± 144 219 ± 12 

Rec. OspA 611 ± 43 1,049 ± 35 1,147 ± 26 847 ± 39 

5 X 10 splenocytes were incubated with respective antigen/mitogen or without 
stimulation (cells alone) in triplicate for 54 hrs and then pulsed with one µCi of 3H-
thymidine per well. Data is presented as mean CPM ± S.E obtained after harvesting the 
cells 18 hrs later and counting in liquid scintillation counter. 

Splenocytes from mice infested with pathogen free ticks or injected with PBS served as 
matched controls for tick transmitted and needle inoculated infection, respectively. 
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Table I. In vitro proliferative responses of splenocytes from BALB/c mice infected 
with B. hurgdorferi, either by tick transmission or by needle inoculation, to 
Concanavalin A (Con A), Lipopolysaccharide (LPS), whole spirochete extract from 
type strain B31 (WSE B31), whole spirochete extract from OspA and B negative 
mutant (WSE AB def.), fraction pools from preparative SDS-PAGE ofWSE (AB 
def., Pool 1 through 7), and recombinant OspA (Rec. OspA). 12 weeks post 
infection, Five day assay 

Treatment Tick trans. inf. Needle inoc. inf. Uninfected ticks PBS inject. 

Con A 12,995 ± 384 15,866± 985 18,105 ± 926 20,016 ± 1,133 

LPS 1,494 ± 84 1,704 ± 163 1,903 ± 68 1,180 ± 117 

Cells Alone 195 ± 19 204 ± 13 211 ± 11 186 ± 9 

WSE (B31) 1,515 ± 219 2,402 ± 167 3,272 ± 99 1,530 ± 187 

WSE (AB def.) 1,184 ± 8 1,838 ± 177 2,310 ± 169 1,609 ± 88 

Pool 1 127 ± 5 164 ± 11 296 ± 15 174 ± 23 

Pool2 115 ± 17 206 ± 39 167 ± 20 202 ± 25 

Pool3 148 ± 15 238 ± 27 361 ± 56 182 ± 21 

Pool 4 153 ± 28 173 ± 29 219 ± 34 147 ± 11 

Pool5 124 ± 5 132 ± 12 162 ± 8 117 ± 8 

Pool6 143 ± 19 133 ± 13 174 ± 14 248 ± 102 

Pool 7 603 ± 47 1,046 ±. 66 758 ± 33 830 ± 57 

Rec. OspA 355 ± 13 579 ± 64 1;030 ± 101 620 ± 13 

5 X 105 splenocytes were incubated with respective antigen/mitogen or without 
stimulation (cells alone) in triplicate for 102 hrs and then pulsed with one µCi of 3H-
thymidine per well. Data is presented as mean CPM ± S.E obtained after harvesting the 
cells 18 hrs later and counting in liquid scintillation counter. 

Splenocytes from mice infested with pathogen free ticks or injected with PBS served as 
matched controls for tick transmitted and needle inoculated infection, respectively. 

141 



VITA 

Swarnjit Singh · 

Candidate for the Degree of 

Doctor of Philosophy 

. . 

Thesis: COMPARATIVE STUDIES ON IMMUNE RESPONSES TO TICK 
TRANSMITTED AND NEEDLE INOCULATED INFECTION OF 
BORRELIA BURGDORFER.JIN BALBIC MICE 

Major Field: · Entomology 

Education: Received Bachelor of Veterinary Science and Animal Husbandry degree 
from Punjab Agricultural University, Ludhiana, Punjab, India in March, 1988. 
Received Master of Veterinary Science (Major: Immunology) from Punjab 
Agricultural University, Ludhiana, Punjab, India in July, 1991. Completed 
requirements for the Doctor of Philosophy degree at Oklahoma State University 
in November, 1996. 

Experience: Assistant Professor oflmmunology in the Dept. oflmmunology, College 
of Veterinary Science, Punjab Agricultural University, Ludhiana, Punjab, India, 
November, 1991 to December, 1993. Graduate Research Associate, Dept. of 
Entomology, Oklahoma State University, January, 1994 to August, 1997. 

Professional Memberships: ·· Entomological Society of America. 


