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CHAPTER I 

INTRODUCTION 

Well over one billion conifer seedlings are produced in the U.S. each year to 

support reforestation. Most seedlings are graded manually to improve viability after 

transplanting. Graders assess morphological characteristics which include stem diameter, 

shoot height, and root mass. Manual grading is labor intensive, subjective, prone to error, 

and increasingly costly. The large seasonal workforce has become difficult to recruit and 

retain in some regions of the U.S. These, and other concerns have sparked interest in 

automated seedling inspection systems. In addition to objective assessment of 

morphological features, automated inspection systems offer several advantages which are 

not feasible under current practice. These include multi-class grading and sorting, 

complete production statistics, and increased yield and value. 

A PC-based line-scan machine vision system providing rapid measurement of 

bare-root seedling morphological features and multi-class grading has been developed by 

the author (Rigney and Kranzler, 1995). The system has demonstrated stem diameter 

measurement precision superior to that of nursery quality control personnel, and 

comparable precision for shoot height measurement, which has high variability. Precise 

morphological measurements require reliable identification of the seedling root collar, 

defined as the location at which the seedling stem intersects the soil surface. The large 
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variability of seedling morphology makes automated root collar recognition a significant 

challenge. Root collar recognition is currently performed using a heuristic algorithm in 

the above automated inspection system. Location errors occur, and occasionally, the 

heuristic algorithm fails to find the seedling root collar. 

Artificial intelligence techniques, and neural networks in particular, have yielded 

performance superior to traditional techniques in loosely constrained and noisy pattern 

recognition applications. Human pattern recognition often relies on qualitative and 

highly subjective criteria which are difficult to emulate with fundamentally quantitative 

computer-based systems. Neural networks are a class of computational algorithms 

modeled after the architecture and computing method of the brain. They are trained to 

provide the desired functionality through the presentation of input/output examples. The 

challenge of subjectivity and interacting factors inherent in image understanding and 

pattern recognition applications can be addressed more successfully with "intelligent" 

computational approaches such as artificial neural networks. Neural networks were 

therefore investigated as an alternative to the seedling inspection system's heuristic 

algorithm for recognition of the conifer seedling root collar. 

2 

The objectives of this research are presented in the next chapter. Manual and 

automated seedling inspection, the root collar recognition problem, and the heuristic 

algorithm are described in Chapter 3. Performance of human experts and the heuristic 

algorithm are analyzed, suggesting that an improved automated root collar recognition 

method is needed. An introduction to neural networks is provided in Chapter 4, followed 

by a discussion of feedforward multi-layer networks and the backpropagation training 
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algorithm. Related neural network applications are reviewed. In Chapter 5, image 

processing and feature extraction techniques are described from the context of generating 

useful inputs to a neural network recognition system. This is followed by a discussion in 

Chapter 6 of the neural networks developed in this study. Network performance is 

discussed in Chapter 7. Conclusions are presented in Chapter 8. 

Neural networks characterized by three different architectures were developed and 

tested. Among these networks, alternative input features, processing element 

configurations, and outputs were investigated. A total of 243 different networks and 57 

input features were investigated. Individual networks used from 2 to 60 inputs and 

generated 1 or 4 outputs. Statistical analysis of network performance was conducted to 

identify the best configurations. Network performance is also compared with that of the 

heuristic algorithm. 



CHAPTER II 

OBJECTIVES 

The primary objective of this research is to investigate neural networks for 

recognition of the root collar feature in digital images of conifer seedlings. The root 

collar is a critical reference point for seedling quality evaluation. Since network 

performance may be significantly affected by the input features extracted from digital 

images and by network architectural variations, a broad exploration of these variables is 

pursued. 

It is desirable that neural network root collar recognition benefit the operational 

seedling inspection system. Therefore, a secondary objective is to explore network 

performance compared to that of the current heuristic algorithm technique. For superior 

performance, the neural network technique should provide a lower root collar location 

error rate than the heuristic algorithm. 

Finally, consistent with support ofreal.;.time seedling inspection, a neural network 

recognition system with reasonably constrained input and architectural complexity is 

desired to limit the computational burden. 

4 



CHAPTER III 

SEEDLING INSPECTION 

Seedling Production and Quality Control for Reforestation 

Well over one billion conifer seedlings are produced in the U.S. each year to 

support reforestation (Mangold et al., 1992). Most seedlings are graded manually to 

improve viability after transplanting. Grading is typically performed at grading tables 

and conveyor belts by inspectors who visually examine individual seedlings for 

dimension and appearance. 

Morphological characteristics are used for grading nursery stock. These 

characteristics include stem diameter at tp.e root collar (Fig. 1 ), shoot height and dry 

weight, root dry weight and volume, root fibrosity, foliage color, presence of terminal 

buds, shoot/root volume ratio, and ratio of top height to stem diameter (sturdiness ratio) 

(Forward, 1982; Ritchie, 1984; May, 1985). Stem diameter, shoot height, shoot/root 

ratio, and sturdiness ratio are generally given priority. Stem diameter is typically 

considered most important. Most of these characteristics are dependent on the location of 

the seedling root collar. Seedling dry weights and shoot and root volumes are time­

consuming measurements; not generally assessed, except for research purposes. These 

characteristics are highly correlated with seedling projected areas measured by machine 

5 
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vision, thus allowing rapid assessment (Suh and Miles, 1988; Rigney and Kranzler, 

1993). 

Image Height 

;+:"----------
Stem Region 
_'t_ _________ _ 

Figure 1. Seedling root collar, stem region, and image height. 

Quality control assessments are used to ensure that graded seedlings meet specific 

grading criteria. Quality control at one USDA Forest Service nursery is performed by 

sampling at least 1 % of seedlings from the grading tables and determining compliance 

with grading criteria (Scholtes, 1994). Culls are sampled to estimate loss of shippable 



product. The number of specific quality criterion failures per sample is the full extent of 

the quality record. Production demands do not allow measurement of sample 

morphology, which would better characterize quality. 

Need for Automated Seedling Inspection 
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Interest in automated seedling inspection has been growing as a result of several 

factors. Manual grading is labor intensive and increasingly costly. Average annual 

production at 142 federal, state, and forest industry nurseries is 10 million seedlings 

(Okholm and Abriel, 1994). Seedling harvest is seasonal. Lifting and grading are 

typically performed within a two-to-three month (winter) window. Nursery production 

may be targeted at 100,000 to 250,000 seedlings per day. 

Nursery production schedules necessitate a large temporary labor force. Hiring 

and retaining this labor force is becoming increasingly difficult. Minimum wage is often 

paid, however, higher wages are commonly needed to.obtain enough workers. West 

coast and Canadian nurseries may pay graders in excess of $7.00 and $10.00 per hour, 

respectively. Grading is the largest component of seedling production costs. Lifting and 

grading account for two-thirds of the direct cost of seedling production at a typical 

nursery (Davis and Scholtes, 1995). Grading costs range from $1.30 to $6.70 per 1000 

seedlings (Kranzler and Rigney, 1989). Other seedling production activities (bed 

preparation, sowing, fertilization, pest control, and lifting) have been automated. 

Manual inspection requires sustained concentration. Classification is subjective 

and susceptible to human error. A low-temperature and high-humidity environment is 



used to reduce seedling stress, but is not conducive to human comfort. Repetitive, rapid 

hand motions make upper limb injuries a growing concern (Wallersteiner, 1988; Mowry, 

1995). The grading task is complicated by the fact that grading criteria change for 

different species, age classes, seed lots, and customer preferences. Nurseries may grow 

over 650 different seed lots (Davis and Scholtes, 1995) and sell over 160 different stock 

types (Rose and Haase, 1995). 

Benefits of Automated Inspection 

8 

In addition to supporting production needs at commercial nurseries, automated 

inspection offers several benefits which are impractical to obtain with manual grading. 

An automated system could sort seedlings into multiple classes defined for optimal 

performance at various planting sites, thus reducing mortality. For example, tall 

seedlings perform better on grassy sites and short seedlings perform better on droughty 

sites (Duddles and Owston, 1990). Cost and physical implementation difficulties prohibit 

manual multi-class sorting. 

Customer specifications may easily be entered into the system and seedlings 

sorted accordingly. Increased yields may be realized by sorting and marketing alternate 

grades, using seedlings normally culled under current practice. These capabilities can 

increase both nursery yields and seedling value. 

Customers can be provided with a statistical description of the seedlings 

purchased, and packages labeled accordingly. This information could be used for final 

decisions in assigning specific seedlings to planting sites (Scholtes, 1994). Accurate 



seedling package counts are .an important benefit. Package count could easily be set to 

customer specification. 
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Comprehensive production statistics are often cited as the most valuable benefit of 

machine vision inspection systems. Applied to nursery and forest management, 

morphology statistics can be correlated with seed source, cultural practices, weather, and 

ultimately, field performance. 

Automated Seedling Inspection 

The feasibility of using machine vision for conifer seedling quality inspection has 

been demonstrated through a series of prototype systems. Rigney and Kranzler (1988, 

1989) developed the first system, which used two video cameras, strobe lighting, and a 

dedicated high-performance machine vision computer to automatically locate the seedling 

root collar and measure stem diameter, shoot height, shoot area, and root area at a rate of 

two seedlings per second. The use of matrix CCD cameras and front-lighting limited 

spatial resolution and measurement precision. 

Performance ofa second prototype was enhanced through the use ofbacklighting 

and a single line-scan camera (Rigney and Kranzler, 1993). Using a high-performance 

VME-bus based computer and image processing hardware, this prototype achieved 

increased measurement precision and inspection ·rates of up to 10 seedlings per second. 

System cost, however, was high. 

Wilhoit et al. (1994) describe two-camera and three-camera machine vision 

systems developed for seedling quality control and research measurement applications. 
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The two- and three-camera systems provided inspection rates of 5.8 and 15.8 s per 

seedling, respectively. Both systems had 0.1-mm resolution for diameter measurement. 

Root collar location was determined by the operator, and the root collar was positioned 

over a fixed reference when placing each seedling in front of the cameras. Seedling top 

location was indicated by a movable reference. These systems made no attempt to 

automatically identify the root collar or seedling top. Test results showed accurate 

diameter measurement. Low correlation between machine and manual height 

measurements was observed, however, low correlation was also observed among repeated 

manual measurements. 

In recent work,. a PC-based line-scan machine vision system was developed for 

nursery quality control and morphological data acquisition (Rigney and Kranzler, 1995). 

A prototype is currently in use at a coinmercial nursery. The system shows strong 

promise for automating production-line grading. The machine provides a user-friendly, 

menu-driven graphical interface. Individual seedlings. are manually placed on a conveyor 

belt and inspected in less than 0.25 seconds. The machine automatically locates the root 

collar and measures stem diameter, shoot height, sturdiness ratio, root mass length, 

projected shoot and root area, shoot-root area ratio, and percent fine roots. Sample 

statistics are computed for each measured feature. Measurements for each seedling may 

be stored for later analysis. Feature measurements may be compared with multi-class 

quality criteria to determine sample quality or to perform multi-class sorting. Statistical 

summary and classification reports may be printed to facilitate the communication of 

quality concerns with grading personnel. 
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Several related aspects of defect detection and seedling handling have been 

investigated, targeting the development of a comprehensive automated system. Research 

projects have addressed color defect detection, seedling sorting, and seedling 

accumulation/handling for presentation to a root pruner. A high-speed, reciprocating­

brush seedling sorter was successfully developed and demonstrated (Kranzler and 

Rigney, 1994). Post-sorting seedling handling was investigated and prototype systems 

were constructed and tested. A pinch-twist conveyor, which accepts horizontally 

positioned seedlings from the sorter and rotates them to a vertical orientation, was 

developed to support on-line root pruning. Further software and equipment development 

efforts addressed color defect detection (foliage chlorosis, stripped root laterals), and root 

pruner integration (Kranzler and Rigney, 1996). After pruning, a software controlled 

accumulation conveyor groups seedlings for packaging. 

Locating the Seedling Root Collar 

Precise morphological measurements and accurate grade assignment require 

reliable identification of the seedling root collar location (Fig. 1 ). The root collar is a 

critical reference for the measurement of several seedling features (diameter, shoot 

height, root length, shoot/root ratio, and sturdiness ratio). Root collar recognition is the 

most challenging aspect of machine vision seedling inspection. This function is currently 

achieved using a heuristic algorithm which relies on many operator-controlled parameters 

to extract root collar location cues based on seedling shape. Although it is functional, the 



current root collar location technique is not optimal. Root collar location errors occur, 

and occasionally the heuristic algorithm fails to detect the seedling root collar. 

12 

Many definitions for the root collar location can be found in the literature (Menes 

and Mohammed, 1995). The root collar is commonly defined as the point (region) along 

the tree seedling stem at which the seedling intersects the soil surface. This location is 

difficult to determine after lifting (removal from the soil). In practice, nurseries specify 

an alternate position (which varies among nurseries) to be used as the root collar. The 

root collar is often defined to be located at the cotyledon scar or one cm above the 

uppermost root lateral (Mexal and Landis, 1990). From the author's observation at 

several nurseries, the root collar has been defined as a position up to 10 mm above or 

below the cotyledon scar. 

Visibility of the cotyledon scar varies greatly among seedlings, from practically 

non-existent to an obvious girdled bulge on the stem. The cotyledon scar is located at or 

below the lowest needles and/or branches, and above the uppermost root laterals. The 

length of the "stem region" void of needles, branches, and root laterals, can vary from 1 

to 10 cm or more. Due to morphological variation, the cotyledon scar may be located 

anywhere within the stem region, but is usually near the top. Stem diameter often tapers 

slightly, below the cotyledon scar. 

The large variability of seedling morphology makes automatic root collar 

recognition a significant challenge. Within a sample, stem diameters can range from 2 to 

13 mm, shoot heights from 10 to 40 cm, and root mass lengths from 15 to 40 cm. 



Attached soil aggregates, complex branching, and root entanglement may obscure the 

root collar. 

Current Approach - Heuristic Algorithm 

The current seedling inspection system uses a heuristic algorithm to locate the 

root collar with a success rate of 70 to 90%, depending on seedling morphology. 

Seedling images are observed to have low complexity at the root collar and relatively 

greater complexity in the foliage and root zones. In the ideal case, image lines near the 

root collar contain only the seedling stem. Image lines above and below the root collar 

contain many needles and branches or many roots. 
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On the basis of these observations, a heuristic function which should have a local 

minimum near the root collar is defined. Features are extracted from each line in the 

image, multiplied by weighting factors, and summed, generating a value for each line in 

the image. The line features used in the heuristic function include: number of runs, area, 

and span. These features are described in the section on seedling image processing. 

After smoothing, this set of values may be interpreted as a function (signal) with many 

peaks and valleys. Through appropriate selection of weighting factors, the root collar 

will be located at a local minimum (valley) of the curve. Further processing is used to 

search for and select the root collar valley. Once selected, the seedling stem is located 

(horizontally), and the stem region is delineated (vertical limits). The root collar is taken 

as a location defined as a percentage along the stem region. 
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The large number of operator-defined parameters used for root collar location and 

the complexity of the heuristic algorithm give the system flexibility, but also make it 

difficult to configure. The weighting factors applied to the various features are difficult 

to optimize, and other useful features (with associated weights) could be defined, making 

weight optimization more challenging. Further, different conifer species and age classes 

have unique morphology which should be exploited through different optimal weights. 

As previously mentioned, the heuristic algorithm occasionally fails to detect the 

seedling root collar. Usually, a segment of bare stem above or below the root collar is 

located. Needles, a small branch or root lateral, or debris may lie between the selected 

stem segment and the root collar. The stem region is generally visible in the seedling 

image under these circumstances. Needles, branches, or roots often parallel the stem 

region when there is a collar location failure. However, the heuristic algorithm often 

correctly locates the stem region in similar situations. 

The performance of the heuristic algorithm described above is noteworthy, and 

the system is considered successful and useful for quality control and interactive 

morphological research. When used interactively, an operator may discard an erroneous 

measurement and re-scan the seedling. Improved root collar recognition performance is 

necessary, however, for unsupervised, 100% production-line inspection. 

Previously Measured Performance 

Results of previous studies illustrate the difficulty of precisely locating the 

seedling root collar and the need for an improved method. Although neither investigation 
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directly compared machine and manual root collar identification, collar location 

differences and variance are closely related to the measured parameters; stem diameter 

and shoot height. Stem diameter is measured at the root collar. Seedling height is 

defined as the distance from the root collar to the end of the terminal bud. Some 

inspection system height measurement error may be associated with difficulty in locating 

the terminal bud. 

A seedling inspection system (Rigney and Kranzler, 1993) was tested to compare 

manual measurements with those obtained by machine vision. Manual measurements 

were obtained by experienced nursery personnel. Stem diameter measurements were 

acquired directly above the cotyledon scar with a digital caliper and recorded to the 

nearest 0.1 mm. Shoot height was measured manually from the top of the terminal bud or 

leading shoot tip to the cotyledon scar with a meter stick and recorded to the nearest 

millimeter. 

Machine vision measurement of each seedling was repeated either five or ten 

times. Seedlings were rotated about their longitudinal axis between repetitions so that a 

variety of projected views was acquired. Although this procedure increases variance, it 

provides a more realistic estimate of measurement precision .. 

Diameter and height of 80 two-year old Douglas fir seedlings were measured by 

three individuals. Ten repeated measurements were acquired by the vision system. 

Diameter and height of an additional 80 seedlings were each measured by four 

individuals. Five repeated measurements were acquired by the vision system. 



Summary statistics are presented in Table 1. Means are those of the sample 

populations. Standard deviations are for repeated measurements, not the sample 

populations. The machine vision system occasionally failed to find the root collar or 

identified an incorrect location. Those observations were omitted from the analysis 

(anticipating improvements!) 

Table 1. Summary statistics for seedling measurements. 

Machine a 

Feature Unit Mean Stdev CV% 

Diameter mm 5.1 0.1 1.9 

Height mm 349 7 2.1 

a - 1140 observations from 160 seedlings 

b - 560 observations from 160 seedlings 

Mean 

5.0 

338 

c - machine mean- manual mean, 160 observations 

Manualb 

Stdev CV% 

0.3 6.5 

18 5.3 

Difference c 

Mean Stdev 

0.1 0.5 

13 21 

16 

Machine diameter measurement standard deviation (0.1 mm, Table 1) is one-third 

that of manual measurement and compares favorably with the lateral spatial resolution of 

0.25 mm. Machine height measurement standard deviation was 7 mm, much greater than 

the longitudinal resolution of 1 mm per line, but compares favorably with manual 

measurement standard deviation of 18 mm. 

Machine and manual measurements were compared for each seedling. Machine 

diameter measurements were larger than manual measurements by an average of 0.1 mm, 

with a standard deviation of0.5 mm. The standard deviation of the measurement 

differences is 10% of the average seedling diameter. Machine measured height was 

larger than manually measured height by an average of 13 mm, with a standard deviation 

of 21 mm. This standard deviation is 6% of the average seedling height. 
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A later test was conducted using the PC-based inspection system (Rigney and 

Kranzler, 1995) to compare machine and manual seedling measurements. One hundred 

seedlings each of two-year old Ponderosa pine and Douglas fir were measured four times 

each by the vision system and once each by four different quality control personnel. 

Manual diameter measurements were obtained with a digital caliper and recorded to the 

nearest 0.1 mm. Manual height and root mass length measurements were obtained with a 

meter stick and recorded to the nearest millimeter. Seedlings were rotated about their 

longitudinal axis between consecutive machine vision measurements. 

Table 2 provides a comparison between machine and manual measurement 

precision. Machine diameter measurement standard deviation was 0.09 mm, less than 

one-fourth that of manual measurements. Machine and manual measurements had similar 

variation for height. 

Table 2. Machine vs. manual measurement performance. 

Stdev Machine - Manual 

Feature Unit Machine Manual Mean Stdev 

Diameter mm 0.09 0.41 0.34 0.53 

Height mm 8 7 37 22 

Rt. Mass Len. mm 14 11 -19 20 
200 seedlings, 4 reps. 

The difference between manual and machine measurements is also presented in 

Table 2. Machine diameter measurements were, on average, 0.34 mm larger than manual 

measurements. The standard deviation of measurement differences indicates that the two 

methods could easily differ by one millimeter. Most of this "error," however, may be 
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attributed to the manual measurements, which had much lower precision. Machine height 

measurements were significantly larger than manual measurements. This result is 

partially due to difficulty in locating the terminal bud on many seedlings. The vision 

system also tended to locate the root collar lower on the stem than did the quality control 

personnel. The difference between manual and machine root collar location was partially 

responsible for shorter machine measurements of root mass length. 

These tests show superior diameter measurement precision for the machine vision 

system. Mean diameter measurement differences may result from the different root collar 

locations selected by the machine and manual graders. Disagreement on root collar 

location is more apparent in the height measurement statistics. Improved root collar 

location should increase the accuracy of all machine vision measurements. 

Root collar location was manually identified in seedling images used in this study. 

Thus, a direct evaluation of heuristic algorithm performance was obtained. Heuristic 

algorithm performance results are presented later with neural network results. Measured 

performance was consistent with height measurement precision discussed above. 



CHAPTER IV 

NEURAL NETWORKS 

Neural networks are most frequently applied to classification, pattern recognition, 

and prediction. These application categories are broad, however, and overlap. Pattern 

recognition often relies on qualitative and highly subjective criteria which are difficult to 

emulate with fundamentally quantitative computer-based systems. The large variation 

and interacting factors inherent in pattern recognition of agricultural products may be 

addressed more successfully with "intelligent" computational approaches such as 

artificial neural networks. 

In this chapter, a brief overview of neural networks is initially presented. Next, 

the computation used in multi-layer, feedforward networks and the backpropagation 

training algorithm, which were used in this study, are reviewed. Finally, several image 

pattern recognition applications are surveyed and their relationship to the problem of root 

collar recognition is discussed. 

Introduction to Neural Networks 

Artificial neural networks are a class of computational algorithms based on the 

architecture and computing method of the brain (Anderson, 1988). Unlike conventional 

19 
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algorithms and other artificial intelligence techniques, neural networks do not store data. 

They encode knowledge through the connectivity and weights between processing 

elements (PE). A neural network is trained (weights adjusted) to produce the desired 

behavior through presentation of examples. Network specifics are application-dependent. 

Neural networks vary in number of PE's, connection architecture, computation algorithm, 

and training algorithm. 

Neural models have the following general characteristics (Rumelhart et al., 

1986a): 1) a set of processing units, 2) a state of activation of the units, 3) a rule for 

combining unit inputs, 4) a transfer function computing an output for each unit, 5) a 

pattern of connectivity .among the units, 6) a propagation rule for relaying unit outputs 

through the network, 7) a learning rule for modifying unit connectivity and/or connecting 

weights, and 8) an environment in which the system operates (input/output). Many 

different types of neural networks have been defined within this model. These types 

include the perceptron and multilayer perceptron, Hopfield, Kohonen, adaptive resonance 

theory, and the dynamic link architecture, all of which have been used for pattern 

recognition (Wang, 1993) among other applications. 

The multilayer perceptron is one of the most frequently used and well studied 

neural network models (Carpenter, 1989). It is a multilayer feedforward network, also 

. called the backpropagation network, due to its training algorithm (Rumelhart et al., 

1986b). These networks consist of an input layer, one or more hidden layers, and an 

output layer. Each layer is composed of simple PE's which model neurons. A PE has 

one or more inputs and a single output. PE output is computed by multiplying each input 
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with an associated weight, summing the products, and adding a bias value. The result is 

scaled between O and 1 ( or -1 and 1) by a transfer function to produce the PE output. The 

output may be used as input to any number of PE's in the next layer. In operation, a 

pattern is presented to the input layer of the network. The process described above is 

used to feedforward a pattern of activation from layer to layer until the output layer is 

reached. The activation (values) of the output PE's is the result of the network 

computation. 

Many advances have been made in basic and applied neural network research over 

the last ten years. Much emphasis has been placed on the development and enhancement 

of training algorithms to improve performance and reduce training times (Weymaere and 

Martens, 1991; Romaniuk and Hall, 1993; NeuralWare, 1995a). Hardware 

implementations have also been pursued to obtain faster network evaluation and training. 

The effect of training sample size on recognition performance has received some 

attention (Baum and Haussler, 1989; Raudys and Jain, 1991). Much application-specific 

research has investigated the effects of varying network architecture and feature 

representation on network performance. 

The Backpropagation Algorithm 

The backpropagation algorithm is presented here, beginning with the feedforward 

computation performed to produce outputs from network inputs (Fig. 2). Each PE is 

generally connected to every PE in the next layer. Layers are denoted by the superscript, 



s, and numbered starting at the input layer (s = 0), through hidden layers to the output 

layer (s = a). 

Layer 
s-1 

• • • 

PE~ 
J 

Xj= /(netJ x~ 
J 

Figure 2. Feed-forward computation of processing element activation for PEj in neural 
network hidden or output layer s. 

The net input to a PE is expressed in Equation 1 : 

where 

nee 
J 

= net input to the jth PE in layer s, for O < s ~ a 

output of the ith PE in layer s-1 X~I 
I 

s 
wji weight multiplier between the jth and ith PE's 
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A single bias PE is connected to all PE's in the hidden and output layers. The 

bias input is denoted as the 0th PE (i = 0) in Equation 1, and has a constant value of 1. 

PE bias is adjusted through the bias connecting weight, Wjo· The remaining n inputs to a 

PE are the outputs of PE's in the previous layer. 

Output of a PE is computed using a transfer function as in Equation 2: 

xj = /(netj) (2) 

A commonly used transfer function is the sigmoid, which produces an output 

asymptotically approaching O and 1 for large negative and positive net inputs, 

respectively: 

J (net)= (to+ e-neti r' (3) 

Use of the hyperbolic tangent transfer function is also common. It was selected 

for networks developed in this study. The hyperbolic tangent produces an output 

approaching -1 and 1 for large negative and positive net inputs, respectively: 

enetj - e -netj 

x~ =/(net.)= tanh(net.) = ---
J J J enetj + e -netj 

(4) 

Thus, equations 1 and 4 are used to compute PE outputs, starting at the first 

hidden layer and progressing toward the output layer. To train a network, we adjust the 

weights, wji, to reduce the error between the network output (vector), x8 , for a given input, 

i, and the desired or target output, t, for that input. The error at the network output is 

computed as: 

(5) 

where k denotes the components of the output and target vectors. 
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Weights are adjusted using the generalized delta rule, which performs a gradient 

descent in the weight space. The change to a given weight is proportional to the change 

in the error with respect to the change in the weight (gradient): 

Aw~. = -1'/ 8E 
JI OW~. 

JI· 

(6) 

where the constant of proportionality, 1'/, is called the learning rate, and the negative sign 

provides gradient descent. Learning rate could be written, 1'/s, since it can vary for 

different layers. Derivation of the error gradient, 0 ~ , is described in detail by 
8wji 

Rumelhart (1986b) and Pao (1989). The result is that the weight change is proportional 

s 
to the product of an error component, 8 , at PEj, which receives input through the weight, 

and the output of the PEj1 sending activation through the weight (Fig. 3). Thus, 

Equation 6 is rewritten: 

(7) 

s 
The error component, 8, is computed differently for PE's in the output and 

hidden layers. Output layer PE error is readily computed, given the target output vector, 

t. For each output PEj: 

oj = (tj - xj)/'(netj) (8) 

where /'(netj) is the derivative of the transfer function evaluated at the value of the net 

input to the PE. The derivative of the hyperbolic tangent transfer function is: 

(9) 



which can also be expressed as a function of the transfer function itself: 

f'(netj) = (1 +/(net))· (1- /(net)) 

or as equivalent, substituting Equation 2: 

Layer 
s-1 

Bias 

XO-----

f'(netj) = (1 + xj) · (1- xj) 

PE~ 
J 

n 

8j = f '(netj)L6kwkj' ____ _ 
k=l 

f' = (l+x;) ·(1-x;)+ Jl 

Aw- (t +I)= 118.Xs-l +a.Aw- ·(t) 
~ 'I J n ~ 

Layer 
s+l 

Figure 3. Backpropagation algorithm for computation of weight adjustment in PEj of 
neural network hidden layer s .. 
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(10) 

(11) 

Error components for hidden PE's are computed from the error components of the 

PE's in the next layer; they are back-propagated from the output layer toward the input 

layer: 

oj = f '(netj) ~ ot1w~1 (12) 
k 
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Net PE activation can become large when weights become large during training 

(Eq. 1). PE output (Eq. 2) will then become saturated (-1 or+ 1). Thus, the transfer 

function derivative approaches zero (Eq. 11), as do the error components (Eq. 8 and 12), 

so no learning takes place. A small positive offset, p, is often added to the transfer 

function derivative to increase learning speed (NeuralWare, 1995a). Equation 11 may be 

rewritten: 

/'(net)= (1 + xD ·(1-xj) + P (13) 

A small learning rate is needed to achieve true gradient descent. This rate, 

however, results in slow learning, and weights may converge to a local minimum of the 

error function (surface). Large learning rates may produce oscillation in the weight 

space. A momentum term is commonly added to Equation 7 to overcome these 

difficulties: 

(14) 

where a is referred to as the momentum coefficient, or simply momentum. Thus, the 

weight change at a given iteration is proportional to the weight change at the previous 

iteration. 

Error components and associated weight changes discussed above are computed 

on the basis of individual input-output training examples (Eq. 5). Weight changes based 

on the global error, among all training examples, can be approximated by accumulating 

weight changes for a number of training examples (epoch), before implementing the 

weight change: 
epoch 

i\wji (n + 1) = L ( 178jx~1) + aAwji (n) (15) 
k=I 
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When this approach is taken, learning rate should be adjusted according to epoch size in 

order to control the magnitude of the accumulated weight change. 

To summarize, the backpropagation algorithm is implemented by recursively 

computing feedforward activation (Eq. 1 and 4), then backpropagating error components 

and computing weight updates. Backpropagation is implemented by four equations. The 

transfer function derivative is computed at each PE using Equation 13. Error components 

for output PE's are computed using Equation 8. Error components for hidden layer PE's 

are computed layer by layer, from output toward input, using Equation 12. Weight 

changes are accumulated for epoch training examples, and then updated using Equation 

15. 

Image Pattern Recognition Applications 

Neural networks are commonly used for classification, pattern recognition, and 

prediction. Network inputs represent measured features of an object obtained through 

conventional sensing techniques. These measurements are composed into a feature 

vector. For classification, the network assigns the feature vector (object) to one of a 

number of classes. 

Pattern recognition differs from classification, in that input data may be more 

abstract and/or partially missing. Recognition of printed or handwritten characters, and 

faces are two examples. In prediction applications, network input is a series of previous 

values of a variable(s), and the output is the current or future value. Financial market 

forecasting and process modeling/control are two examples. 
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Digital image processing and analysis operations generate large quantities of data. 

A single pine seedling image, for example, can occupy two megabytes of memory. 

Image enhancement operations (filtering, edge detection) may generate new images equal 

to the original in size.· Many operations ate performed to extract features from an image. 

Such data reduction operations are crucial to conventional image analysis and 

interpretation algorithms. Extracted features, however, are often difficult to interpret, and 

object recognition or classification may depend on interacting relationships among 

features. Traditional statistical analysis and classification techniques are usually applied 

in these cases, often with less than optimal results. 

Ghazanfari and.Irudayaraj (1994) used four independent neural networks to 

recognize four classes of pistachio nuts (3 varieties, 1 un-split class). Five features were 

extracted from silhouette images ( area, roundness, perimeter, minimum, and maximum 

radius). Each neural network (NN) had 5 inputs, 5 and 3 PE's in the first and second 

hidden layers, respectively, and a single output. Nut classification was associated with 

the network producing the maximum output. Networks were trained using 100 nuts and 

tested on an additional 100 nuts from each class. Overall classification accuracy was 

89%. 

Park et al. (1994) used a backpropagation network to process spectral features 

extracted from beef steak ultrasound images. The Fourier transform was applied, and 

seven spectral features were extracted: lower, central, and upper frequency, peak 

frequency, bandwidth, skewness, and number of local maxima. These features were used 

as inputs to networks which predicted the human sensory attributes: juiciness, fiber and 



overall tenderness, flavor intensity, and connective tissue amount. NN prediction error 

(rms) averaged 0.12 for all sensory attributes which were rated on a scale of 1-8. 

Application of network outputs to two-class quality grading yielded 83% to 75% 

accuracy for the various quality attributes. 
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Burks et al. (1994) used a backpropagation network to recognize seven plant 

species from canopy images. RGB color images were transformed to the HSI color 

space. Spatial Gray-level Dependence Matrices (SGDM, co-occurrence matrix) were 

computed from the HSI bands to quantify image texture. Eleven texture features were 

then extracted from the SDGM of each band. These included mean, variance, correlation, 

moments (3), and entropy (3). Subsets of the 33 features were used as inputs to various 

neural networks. Recognition accuracy ranged from 76% for all species, to 96% for four 

dissimilar species. 

Vincent (1995) described a Hierarchical Perceptron Feature Locator (HPFL) 

applied to finding faces in digital images. Analysis was constrained to head-and­

shoulders images with limited variation of facial orientation. The hybrid system was 

composed of a large number of Multi-Layer Perceptron (MLP) feature detectors. Initial 

256x256-pixelgray level images were compressed to 16x16 pixels. MLP feature 

detectors (5x5 inputs; right eye, left eye, mouth, and face center) were scanned over the 

image. Results accumulated in feature maps were post-processed geometrically and 

thresholded to reduce false-positive feature locations. Tiles from the initial image (16x16 

pixels) corresponding to potential feature locations were assembled into a frame. 
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High-resolution detectors composed of several MLP's (1 lx9 pixel inputs) were 

then scanned across the frame. Four MLP's for the mouth, for example, detected the 

right and left edges of the mouth, the top of the upper lip, and the bottom of the lower lip. 

These detector outputs were post processed to yield the feature location. The system was 

trained on sixteen images. On a test set of 44 images, facial features were located with an 

average error of 0. 73 pixels and a maximum error of 2 pixels. 

Golomb and Sejnowski (1995) describe a system to recognize (classify) the 

gender of a person given a facial image. Ninety gray level images ( 512x512 pixels) of 

young adult faces ( 45 male, 45 female) with no facial hair, jewelry, or makeup were used 

in the study. Preprocessing normalized eye and mouth locations. Background, clothing 

and most hair were masked. Images were then compressed to 30x30 pixels. A hetero­

associative network with 900 inputs (30x30 pixels) and 40 hidden layer PE's, was used to 

obtain a further compressed (hidden layer) representation. 

The compressed representation was input to two gender classification networks, 

having O and 40 hidden layer PE's, respectively. A single binary output classified faces 

as male or female. Networks were trained using backpropagation on sets of 80 images 

and tested on the remaining 10; The networks had similar performance, correctly 

classifying 89% of the images. Five humans, viewing the original 512x512 pixel images, 

correctly classified 88% of the images. A 900 input network (30x30 image) also 

provided good performance. Compression to 40 inputs, however, greatly reduced 

training time. 
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Casasent and Sipe, (1997) used a piecewise quadratic neural network to process 

features extracted from x-ray images of pistachio nuts for detection of worm damage. 

The network itself was a modification of the multilayer perceptron which used complex­

valued weights between the input and hidden layer PE's, and a magnitude-squared 

nonlinearity in the hidden layer PE's (Casasent and Natarajan, 1995). A special 

algorithm was used for error backpropagation training. Initial image processing was 

performed to segment the nutmeat image from edge and shell image components. 

Histograms of the gray-scale and edge-enhanced nutmeat images were then computed. 

The histogram is naturally rotation invariant. Histogram normalization was used to 

obtain scale invariant features. Histograms were compressed (8 to 20 bins) and statistical 

features (mean, variance, skew, kurtosis) of the histogram were computed. Histogram 

data and statistical features were used as network inputs. Networks with various input 

features and hidden layer PE's were investigated. The best network yielded 89% correct 

classification, corresponding to 14% rejection of good product . A confidence level 

computation applied to the network outputs allowed performance to be adjusted such that 

98.7% of the good product was retained, while the final mix contained only 1.3% 

damaged nuts. 

Interesting and dissertation project-related properties of these applications are 

summarized here. The original images processed contain large amounts of information. 

Image compression, transformation, and feature extraction were used to reduce amount of 

data processed by the neural networks. Some of these techniques were also used to 



obtain translation and rotation invariant recognition. Data compression reduced NN 

training and evaluation time. 
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The face recognition system determined the positions of localized features ( eyes, 

etc.) which were part of a larger object. The input (image) is first processed on a coarse 

scale to reduce computation. Scanning localized feature detectors over an image 

provided translation invariance. Post-processing of feature detector output was used to 

handle false detection and provided some rotation invariance. In the gender recognition 

application, the NN performance was comparable to that of humans viewing higher 

resolution images. Humans and the NN tended to misclassify (male/female) the same 

(ambiguous) images. 



CHAPTERV 

SEEDLING IMAGE PROCESSING AND FEATURE EXTRACTION 

Many NN applications benefit from redu,ced dimensionality of their inputs. These 

benefits are realized through reduced computation time, training time, and storage 

requirements. Although additional computation is incurred in generating the lower 

dimensional inputs, the net result should be reduced total computation. An argument 

against such preprocessing is that a complete understanding of the problem is required in 

order to know what features to extract from the original data. There is a danger that 

important features will not be extracted and presented to the network. On the other hand, 

successful networks are often developed using "obvious" features extracted from the 

original data, while poorer performance would be achieved using only the original data. 

This result occurs because, in training, the network may not effectively extract the 

obvious features. 

Image processing operations providing dimensional reduction and feature 

extraction in support of root collar (RC) recognition are presented in this chapter. Image 

acquisition and characteristics of the seedling images used in this work are first discussed. 

Features extracted from seedling images for use by the heuristic algorithm and as inputs 

to neural networks are then described. Feature names, definitions, and computational 

formulas are summarized in Appendix A, Tables Al and A2. Values of selected features, 
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illustrating their relationship to the seedling stem region and root collar location, are 

plotted for five seedlings (Fig. 4) in Appendix B, Figures Bl through Bl 9. 

Seedling Image Acquisition 

34 

A silhouette, gray-level image is acquired by transporting a seedling between a 

camera and backlight. A 2048-pixel line-scan camera is used, fixing the spatial 

resolution along image lines. The camera typically has a 200-mm (8-in) field-of-view, 

corresponding to a 0.1-mm pixel resolution. Image lines are acquired synchronously with 

seedling displacement, typically at 1-mm intervals. 

The large difference between horizontal and vertical resolution is intentional. 

High transverse resolution is desirable for precise measurement of stem diameter. High 

resolution is also required to image small diameter roots. Lower longitudinal resolution 

reduces the amount of image data, and thus, the computational burden, allowing greater 

seedling inspection rates. The measurement precision which can be obtained for 

longitudinal features such as shoot height and root length using 1-mm resolution is 

considered acceptable. 

Thresholding 

The backlit seedling image exhibits high contrast between seedling and 

background. Each pixel is digitized to an 8-bit gray scale in which O is black and 255 is 

white. Thresholding is used to segment the seedling from the background. The result is a 



,:.. _,, ..... 
"7\-~:-:~'-

/ •' '-.. ·-· 
.·: : 

., 

35 

...... 
0 
0 
µ.. 
Cl 



36 

binary image in which seedling pixels have an intensity of 1 and background pixels have 

an intensity of 0. 

Seedling gray scale intensities are generally close to zero, but may be as high as 

48. Brighter seedling pixels occur at the seedling boundaries where the "image" falling 

on an individual pixel is partially seedling and partially backlight. Similarly, the image 

of fine roots ( <0.1 mm) will not completely "cover" a pixel, even if centered on the pixel, 

so these pixels have higher intensities. Additional factors which increase seedling pixel 

intensity are transmission of backlight through the seedling and reflection of ambient 

light from the seedling surface. 

Background (backlight) gray scale intensities are generally not saturated (255) due 

to competing requirements. Short integration (exposure) time decreases background 

brightness, but is desirable to freeze seedling motion and image small roots (with longer 

exposure time, a small moving root contributes less to the integrated pixel exposure). 

Smaller lens apertures decrease background brightness, but are desirable for increased 

depth-of-field, which yields sharp image focus over a greater range of distances from the 

camera. Depth-of-field is important in this application, because seedlings resting on the 

conveyor surface may occupy a depth of 76 mm (3 in) or more. 

The combined attributes and constraints described above yield an intensity 

distribution in which seedling pixels range from O to approximately 48, while the 

maximum background intensity is approximately 100. A threshold intensity value of 48 

has been used to convert the gray-level image to a binary image, which, qualitatively 

provides a good representation of the seedling (Fig. 4). Selection of a higher or lower 
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threshold would increase or decrease, respectively, the number of "seedling" pixels in the 

binary image. 

Thresholding is performed in real time (as pixels are digitized) by circuits on the 

line-scan digitizer card (DT2856; Data Translation, 1990). Hardware implementation 

reduces computational demands on the CPU, enabling faster processing rates. 

Run-Length Encoding 

Seedling image data is transferred from the digitizer card to host computer RAM 

for image processing. The digitizer supports the transfer of several different data formats: 

original gray-level pixels, binary pixels, and run-length code. The gray-level format 

consists of 2048 bytes per line, transferred as 1024 16-bit words. Binary data is 

compressed such that 16 pixels occupy a 16-bit word. Each binary image line is 

transferred as 128 16-bit words. Run-length encoding offers further compression, 

depending on image complexity. 

A binary image is composed of strings (runs) of O's and 1 's corresponding to 

background and seedling pixels, respectively. The transitions between these runs are 

extracted to generate the run-length code. The color of the run (0 or 1) and its beginning 

position (0 - 2047) are encoded in a 16-bit word. The first run on a line always begins at 

pixel 0, but may be of either color. A binary image may be completely reconstructed 

from its run-length code. For seedling images, the number of runs on a line is generally 

less than 64, but may be as high as 128 (8:1 compression). Lines which contain only the 



seedling stem ( or a single root crossing) are composed of three runs: background, 

seedling, and background. 
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Run-length encoding thus provides significant data compression while completely 

preserving the binary image. The encoding process is implemented in real time on the 

line-scan digitizer board. Hardware implementation reduces the computational demands 

on the CPU. Compression results in reduced transfer time of image data from the 

digitizer to RAM. Further, and significantly, feature extraction can be achieved more 

efficiently (less computation) using run-length code rather than the original binary data. 

Timing analysis indicates that run-length code transfer (through the ISA bus) is 

the rate limiting operation for seedling inspection. Thus, this data compression technique 

significantly increases the seedling inspection rate. Alternative image representations 

would require greater transfer and processing time. 

Features Used by the Heuristic Algorithm 

The heuristic algorithm uses several features which are extracted from the run­

length code. These are computed for each line after the run-length code for each line has 

been transferred from the digitizer to RAM: 

Runs - number of "seedling" runs (Fig. B 1 ). 

Area - sum of seedling run lengths (Fig. BS). 

Span - distance from the beginning of the first seedling run to the end of the last 

seedling run (Fig. B9). 
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Filtered area - This feature attempts to recognize a single run on each line which 

could be the seedling stem near the root collar. The number of runs 

having a length within limits corresponding to the minimum and 

maximum expected seedling diameter is determined. If the number of 

such runs is not 1, filtered area is assigned a value of 0. Otherwise, the 

value of filtered area is computed as the average expected diameter, minus 

the absolute value of the difference between actual run width and average 

expected diameter. 

As previously described, these features are extracted from each line in the image, 

multiplied by weighting factors, and summed, generating a value for each line in the 

image. After smoothing, this set of values may be interpreted as a function (signal) with 

many peaks and valleys. Through appropriate selection of weighting factors, the root 

collar will be located at a local minimum (valley) of the curve. 

Features Used by Neural Networks 

The feature, "Runs," was used as a neural network input. "Area" and "Span" 

were used only after transformation. "Filtered area," as described above, was not used. 

Several transformations of the features Runs, Area, and Span were generated and used in 

various networks. The simplest transformation used was inversion (I/Runs (Fig. B4), 

1/ Area (Fig. B6), 1/Span). This transformation effectively compressed the range of each 

feature (0-1 ), while expanding the percentage of the variable range associated with the 

root collar. For example; lines with 1, 2, and 3 runs yield I/Runs feature values of 1, 0.5, 
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and 0.33, respectively. Increasing numbers of runs yield smaller incremental changes in 

the feature value. Small numbers of runs (1-3) are of more interest (associated with the 

root collar) than large numbers of runs and are represented by a larger portion of the 

variable range using the inverse transformation. 

The features described were extracted from each image line and thus had only 

local scope. Feature values can vary significantly between adjacent lines. Therefore, 

smoothed features were computed (SmRuns (Fig. B2), SmArea, SmSpan) by averaging 

the original feature values over a local neighborhood (11 lines). This widened the scope 

of the feature and reduced its local variation (noise). The trend of a feature value was 

also recognized as a potentially useful feature. Area, for example tends to decrease above 

the root collar and increase below the root collar. Therefore, derivatives of the smoothed 

features (DelSmRuns (Fig. B3), DelSmArea, DelSmSpan) were computed and used as 

additional features. The remainder of this section describes additional image processing 

and feature extraction techniques used to generate features for neural network root collar 

recognition. 

Run-Length Histogram 

Statistics of the set of runs on each line, such as mean and variance of run lengths 

might be computed. More descriptive, however, would be a histogram of run lengths. 

This histogram encodes the frequency distribution of run lengths. 

Lines in the foliage region tend to have a large number of small runs due to 

needles, and a few long runs due to dense foliage. Lines near the root collar contain a 
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single run with a length within the expected range of stem diameters, in addition to a few 

needle or root runs. Lines in the root zone have a large number of runs, but typically not 

the long runs associated with the foliage mass. 

Since the camera has 2048 pixels, a large number of bins (2048) would be 

required for a full-resolution histogram. The run-length histogram need not have full 

resolution, nor uniform bin sizes. A couple of bins for short runs corresponding to 

needles and roots ( <2.0 mm) should be adequate. A bin width of 1-2 mm over the 

expected range of seedling diameters (2-12 mm) would detect potential stem runs. A few 

more bins. can be used to record runs longer than the maximum expected stem diameter 

(> 12 mm). An 8-bin histogram (Histl - Hist8) was defined and used in this study. Two 

bins were used to encode short runs (0-1.0 mm, 1.0-2.0 mm). Four bins were used for run 

lengths corresponding to the expected range of seedling diameters (2.0-4.5 mm, 4.5-7 .0 

mm, 7.0-9.5 mm, 9.5-12.0 mm). These should detect potential stem or RC runs. Two 

bins were used to record long runs (12-24 mm, >24 mm). Five of the eight histogram 

bins are plotted for one seedling in Figure Bl2.· 

Moments and Moment Invariants 

Moments comprise a large set of features which may be used for object 

classification or recognition. Moment invariants are functions of moments which are 

insensitive to object translation, scaling, and rotation. They can be used to identify 

unique shapes regardless of location, size, or orientation (Jain, 1989). 
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The 0th order moment is the area of the object and is invariant. Area is easily 

computed by summing the length of individual runs. Higher order moments, due to their 

non-linearity, may provide features which are more sensitive to the root collar location. 

The 2nd and 3rd order central moments were computed from the runs on each image line. 

The 2nd and 3rd order central moments had relatively small values near the root 

collar and very large values in the foliage region. The natural logarithm of the absolute 

value of the 2nd and 3rd central moments (Figs. BIO and Bl 1, respectively) was 

computed and used as a neural network input. The logarithm compressed the range of the 

feature values while giving small values (associated with the root collar) a larger 

percentage of the variable range. 

Connectivity Analysis 

Connectivity analysis is a powerful technique for segmenting objects in an image 

from each other and the background. Many useful features can be extracted from the 

resulting connected regions. Connectivity analysis typically begins by determining for 

each pixel which of its four or eight neighbors have the same value ( 4-connectivity or 8-

connectivity )(Gonzalez and Woods, 1992). 

Within-line connectivity analysis of seedling images is performed in the process 

of run-length encoding. Each run is a connected sequence of pixels. By definition, runs 

on the same line cannot be connected. Runs on two adjacent lines are connected if they 

share a mutual column index. 
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Connectivity analysis was used to segment the seedling stem from other seedling 

components (needles, branches, roots, and debris) on the same image line. A sequence of 

runs (one per line) which yields a connected path from the top (foliage) to the bottom 

(roots) of the image is desired. For most seedling images, the "stem region" containing 

the root collar is guaranteed to be contained within the connected run sequence (path). 

Exceptions occur when long roots or branches parallel the stem region and form a 

secondary connected path between the foliage and roots. Therefore, multiple connected 

run paths were tracked. These would often join and split from line to line. Tracking 

multiple paths generally precluded the algorithm from stopping at a "dead end" created 

by a downward-oriented branch. The number of paths was limited to reduce computation 

and storage requirements. 

A simple algorithm was implemented to perform seedling connectivity analysis. 

Starting at the top of the image, "connected" runs were identified on a line-by-line basis. 

The analysis was initialized by selecting the longest run on the first image line as the 

initial connected run. All runs on the next line which overlapped the connected run(s) on 

current line were determined. The longest three runs (if more than 3) were recorded as 

connected. If no connected runs are identified on a given line, the algorithm is re­

initialized with the single longest run on that line. 

Many features were extracted from the connectivity analysis result for each line. 

These included the number (ConRuns, Fig. Bl3) and sum area (ConArea) of the 

connected runs. Within the stem region, seedling runs close to the stem (but not 

connected) may provide additional support for root collar identification. These runs 
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correspond to needles, branches, roots, and loosely attached debris. Therefore, these runs 

were identified and labeled as "close connected runs." A run is defined as "close" if it is 

within 50 pixels (approximately 5 mm) ofa connected run on the same line. The sum 

area of close connected runs (CloseArea, Fig. B 17) on each line was used as feature for 

root collar recognition. 

Further transformations were applied to the connectivity analysis result to produce 

alternate features. These included computing the average value (CloseAl 1) over a small 

window (11 lines) and clipping (CloseA11C50, Fig. B18) at some maximum value. One 

transformation was used extensively with various window sizes. In it, the minimum 

connected area within a large window (160 lines) was subtracted from the average (or 

minimum) connected area from a small window (5 to 20 lines; ConA11C50, Fig. B16). 

The minimum within a large window was also subtracted from the minimum within a 

small window (ConMnl 1C50). These transformations offset the connected area value 

such that the minimum (near the root collar) is always zero, rather than the stem diameter 

of each particular seedling (ConMn41, Fig. B 15). From CloseArea, the clipped 

maximum value within a window was computed (CloseMxl 1C50, Fig. B19). 

Composite Feature Sets 

The large number of features used in this study were grouped into composite 

feature sets to reduce the total number of experimental treatments. Composite feature 

sets are defined in Appendix D, Tables Dl and D4. 
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Composite features sets were formed by grouping several related features. The 

eight histogram bins were grouped into the composite feature set, "h," for example, and 

the two moment-based features were grouped into the feature set, "e" (Table Dl). 

Feature sets "a," "c," and "d" were composed of the inverse, smoothed, and derivative 

transformations, respectively, of the features, Runs, Area, and Span. For some 

experimental treatments, the effect of an individual feature was of interest, so that feature 

was given a composite feature identifier, to be consistent. This procedure was followed 

for the features, Runs ("r") and ConRuns ("f"), for example (Table D 1 ). 

One or more composite feature sets were used as network inputs in a given 

experimental treatment. All feature sets were not tested with all network architectural 

variations. Composite features used by specific neural networks are listed in Tables D2, 

D3, and DS along with network architecture and root collar recognition performance. 



CHAPTER VI 

NEURAL NETWORK APPROACH FOR ROOT COLLAR RECOGNITION 

The difficulty of locating the seedling root collar, both manually and with a 

machine vision system, has been discussed. The machine vision approach relies on the 

extraction and processing of features which are sensitive to seedling and root collar 

morphology. In the previous section, a large number of features were described, 

however, these are difficult to integrate into a root collar recognition algorithm. Yet, the 

good performance of the heuristic algorithm indicates that a solution may exist. 

These concerns can be addressed through the use of a neural network. As 

previously described, processing elements (PE' s) in a neural network apply weights to 

their inputs, sum these, and apply a non-linear transfer function to produce an output. 

The PE computation and architecture of a neural network allow the implementation of 

complex non-linear functions. Most importantly, training algorithms allow neural 

networks to learn a functional relationship between inputs and desired outputs through 

the presentation of training data. 

Neural networks offer several advantages over the current heuristic algorithm. 

They naturally handle complex and abstract sets of input features (Wang, 1993). They 

implement a complex and non-linear functional relationship between these inputs and 

desired output (root collar location). Neural networks learn the functional relationship 
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between input and output through presentation of training data, relieving an operator from 

the task of heuristic algorithm parameter adjustment and optimization. 

The networks investigated are characterized by three different architectures; NNI, 

NN2, NN3. Among these networks, alternative input features, processing element 

configurations, and outputs were investigated. A total of 243 different networks and 57 

input features were investigated. Individual networks used from 2 to 60 inputs and 

generated 1 or 4 outputs. 

Network Inputs 

There are many alternative input representations for this pattern recognition 

application. The whole seedling image could be input to a neural network. This 

approach would require a very large network and result in slow execution speed and long 

training times. Run-length code could be used as network input. This technique provides 

significant data compression, but the network may still be too large for real-time 

execution. 

Further data compression may be achieved by extracting features from the run­

length code. This is the approach used in this investigation. Initially, features used by 

the heuristic algorithm were investigated as network inputs. Subsets of these, and 

additional features were used to test and compare the performance of networks using 

different feature sets. 

Given features extracted from each image line, a significant architectural issue is 

how to handle the variable number of lines ( 400-900) in a seedling image. A network 
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could be defined to accommodate some maximum number oflines. For images with 

fewer than the maximum number of lines, the unused inputs must be set to appropriate 

values. Larger images might safely be cropped, since the root collar generally occurs in 

the central portion of the image. 

The approach taken in this work is to develop networks which detect a localized 

feature (root collar) by using inputs sampled from a variable-sized window, or field-of­

view (FOV) within the seedling image. This network may be evaluated at all ( or a subset 

of) image lines and post processing of the network outputs performed to determine the 

RC location. 

Network Output(s) 

The networks investigated use inputs consisting of multiple features obtained 

from one or more image lines. Obviously, the network must generate one output 

indicating whether or not these inputs correspond with the root collar. The foliage, stem, 

and root regions of a seedling have qualitatively different morphology and a consistent 

spatial .relationship. The root collar is located within the stem zone, below the foliage and 

above the roots. Networks trained to identify each of these regions, in addition to the root 

collar, might exploit the morphological differences and spatial relationship between them 

to achieve superior root collar recognition performance. Therefore, one-output (RC) and 

four-output (RC, Foliage, Stem, Roots) networks were investigated. 
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Network Architecture 

Given input features and network outputs, many architectural alternatives are 

possible in the definition of a specific network. Based on the previous discussion, the 

number of inputs per line, the number of input lines, and the spatial relationship of those 

lines are obvious variables. These further define network input. 

There are many configuration alternatives for the hidden layers of a network. 

These include the number of hidden layers, the number of PE's in each hidden layer, and 

the connectivity between PE's. Networks with too many hidden layer PE's may "over­

leam" the training data and perform poorly with previously unseen inputs. Too few 

hidden layer PE's may inhibit the networks ability to learn a complex relationship. Fewer 

PE's are desirable for reduced computational burden. Therefore, for a given set of inputs 

and outputs, several networks with different hidden layer configurations were trained and 

tested. 

Variations in PE connectivity were investigated to a lesser extent. The default 

connectivity is "fully connected." In a fully connected network, every PE in a given layer 

is connected to each PE in the following layer. Full connectivity was used for all NNl 

and most NN2 type networks. Full connectivity was always used between the first and 

second hidden layers for networks which had two hidden layers. Full connectivity was 

always used between the last hidden layer and the output layer. 

Two variations of partial connectivity were used for NN3 and several NN2 type 

networks. Line-connectivity brought all features from a limited set of lines together as 

inputs to a set of hidden layer PE's. Feature-connectivity brought a single feature from a 
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larger set oflines together as inputs to a set of hidden layer PE's. These are illustrated in 

Figure 5. NN2 and NN3 networks had inputs from multiple image lines and thus a 

potentially large total number of inputs and associated connections. Multi-line inputs 

were spatially ordered from the top to the bottom of the seedling image. Partial 

connectivity was used to exploit the spatial relationship of these inputs. Partial 

connectivity reduced the total number of connections, and thus, the computational burden 

of network evaluation. 
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Figure 5. Line and feature connectivity example for 4 input lines with 2 features per line 
and 2 hidden layer PE's per connected group. 

NNl networks 

These networks accepted 2 to 9 inputs from a set of 27 features. Inputs were 

generally extracted from a single image line, and thus, have narrow scope (Fig. 6). As an 
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exception, some features were averaged over a small set of lines (11) centered about the 

evaluated line. Derivative features were computed from feature values before and after 

the evaluated line. NNl networks generate 1 or 4 outputs per line. One output classifies 

the line as RC(+ 1) or Not RC (-1). Additional outputs classify the line as Foliage, Stem, 

and Roots, or Not. 

NNl networks are the simplest of the networks investigated. They require the 

least amount of computation, and therefore allow fast evaluation. Their local scope 

allows evaluation line-by-line as image data become available. 

NN2 networks 

These networks operate as the second level in a hierarchical neural network. The 

first level is NNl, previously described. NN2 accepts 1 to 4 outputs from NNl as inputs 

(Fig. 7). NN2 has a broad scope, because inputs are accepted from a FOV of 140 image 

lines (140 mm). Fifteen lines sampled 10 lines (10 mm) apart were used to cover the 

FOV, while limiting the number of inputs. Using 1 to 4 outputs from each image line of 

NNl, NN2 had 15, 30, 45, or 60 inputs. NN2 produced a single output which classified 

the line at the center of the input FOV as RC, or Not RC. 

These networks have intermediate complexity among the three architectures 

investigated. They rely on output from NNl which should be quickly computed for each 

image line. NN2 attempts to provide more robust root collar recognition by integrating 

information from a broader scope than NNl. 
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to a network with ten PE's in a single hidden layer and one output. Line-connectivity 
used between groups of three input lines and two hidden layer PE's. Bias PE not shown. 
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NN3 networks 

These networks accepted image feature inputs (like NNl) over multiple image 

lines (like NN2). NN3 produces a single output classifying the line at the center of the 

evaluation POV as RC or not RC (Fig. 7). Two groups of NN3 networks, characterized 

by wide (70-280 mm) and narrow (14-42 mm) POV's were investigated. Input POV size 

(14, 28, 42, 70, 80, 100, 140,210,280 mm), number of input lines (9, 15, 21), and 

number of inputs per line (2, 4) were varied along with different input features and 

network architectures. Different feature sets and architectures were used, in general, for 

the wide and narrow POV groups. 

These networks were the most complex investigated. While NNl performed the 

same computation on each line in the image, NN3 (like NN2) is capable of performing 

different computation on the features from each line in the input POV. 

Data Acquisition 

The seedling inspection system was used to acquire seedling images and store 

them in run:-length code format. Software enhancements supporting interactive root 

collar identification were added to the seedling inspection system. These refinements 

allow the operator to use the mouse cursor to select an individual run in a seedling image 

viewed on the inspection system monitor. The selected run is highlighted in the seedling 

image. Through a menu selection, the selected run is defined as the "true" location of the 

root collar. Similarly, the top and bottom of the stem region are identified. The actual 
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seedling was manually inspected to aid in the identification of the corresponding features 

in the seedling image. 

Several image and seedling attributes are stored in the header of the run-length 

code file. These attributes include spatial calibrations and the heuristic algorithm root 

collar location. The manually identified feature locations were added to the run-length 

code file header. 

An independent program was written to read the run-length code files and extract 

features for use by the neural networks. Results were written to a feature data file. 

Feature data files were further processed to compute alternative features (smooth, 

derivative, etc.) and to .scale and format feature values for use in network training and 

testing. A commercial data transformation program, DataSculptor (NeuralWare, 1995b), 

was used for this purpose. Network training and test files were composed of records, 

each of which consisted of a single set of network inputs and desired output(s). Network 

training files were generated for each unique set of network input features. 

Training and Test Data 

Neural networks were trained from images of 50 Douglas fir seedlings. Network 

performance was evaluated using an independent set of 50 Douglas fir images. 

Performance of selected networks was investigated further using 100 additional Douglas 

fir and 150 ponderosa pine seedling images. 

Statistics associated with training and test group images and manually identified 

seedling features are presented in Table 3. Images for the training group "DFI-50" and 
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test group "DF51-100" were acquired at the same time. These seedlings had been root 

pruned at a commercial nursery. DF51-100 seedlings were shorter (image height, Table 

3) but similar to the training seedlings with respect to other morphological features. 

DFlOl-200 seedlings came from a different seedlot and had not been root pruned. 

Average normalized RC location is much closer to the top of the image, and the stem 

region is shorter for these seedlings than for the other Douglas fir seedlings. Ponderosa 

pine seedlings (PPl-150) differed from Douglas fir by having longer needles, a higher 

normalized RC location, and an RC location closer to the top of the stem region. 

Table 3. Image and morphological statistics for training and test seedlings 

Morphological Train Test 

Feature DFl-50 DF51-100 DFlOl-200 PPl-150 

Image height, mm Avg 711 619 667 628 
Stdev 146 139 91 116 

Normalized RC Avg 60 59 50 45 
location in image, % Stdev 5 7 5 5 

Height of stem Avg 51 45 37 48 
region, mm Stdev 18 16 10 15 

Normalized RC loc. Avg 33 29 29 11 
within stem region, % Stdev 19 17 12 11 

Network training utilized only a fraction of the data from the training seedling 

images. Recall that network outputs are associated with a single image line. Inputs are 

obtained from the same image line or multiple lines (up to 21) sampled from a variably 

sized FOV (14 to 280 mm). Only one line of700 (average image height) is defined as the 

root collar location, a very small percentage. Thus, relatively few RC examples were 

available for network training, compared with the abundance of Not RC examples. 
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The root collar location was therefore "fuzzified" to increase the number of root 

collar training examples. Lines near the root collar were assumed to be similar to the root 

collar. A trapezoidal fuzzy membership function was used to define additional root collar 

lines. The top and base of the trapezoid were nominally 3 and 11 lines wide, 

respectively. The base of the trapezoid was clipped when it extended beyond the stem 

region. The fuzzy membership function classified the two lines adjacent to the root collar 

as RC and further lines as RC with decreasing confidence. Thus, the number of root 

collar examples was increased to 9 of 700 lines, still a small percentage. Equal numbers 

of RC and Not RC examples were desired for network training. Therefore, all of the 

fuzzified root collar lines were used, and an approximately equal number of the 

remaining image lines were sampled uniformly for use in network training. Thus, 

approximately 1,000 of 35,000 lines (3%) from 50 images were used for training. All 

lines were used for network testing, including tests performed during training to assess 

network performance and convergence. A limited test was performed to compare 

networks trained using rectangular and trapezoidal fuzzy membership functions. 

Neural Network Development and Training 

A commercial neural network development package, NeuralWorks Professional II 

Plus (NeuralWare, 1995a), was used for network definition, training, and testing. Multi­

layer feedforward networks trained with the backpropagation algorithm were used, as 

described in Chapter IV. Equations 1 and 4 were used for feedforward computation. 



Equations 8, 12, 13, and 15 were used for training. Learning rate, 17, was set to 0.075, 

0.0625, and 0.0375 for PE's in the first hidden layer, second hidden layer, and output 

layer, respectively. The momentum coefficient, a, was 0.4 for the hidden and output 

layers. Transfer function offset, p, was 0.1. Weight changes were accumulated for 16 

training examples before weight updates ( epoch size). Epoch size was approximately 

equal to the average number of training examples per seedling. Training examples 

(input/output data record) were presented in random order. 
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Training proceeded until network convergence, or 100,000 epochs, whichever 

came first. During training, network performance was evaluated every 1,000 epochs to 

determine network convergence status. Performance was measured by an objective 

function evaluated using all lines from the training images. Convergence was declared 

when performance improvement was not observed after 20 test evaluations (20,000 

epochs). Networks weights were saved when performance exceeded the previously 

measured best performance. For each network configuration, four different networks 

were trained by initializing each with different random initial weights. Trained networks 

were tested using all lines from the test images. 

Objective function 

An objective function was used to evaluate network performance periodically 

during training. Classification rate was selected as the objective function after evaluating 

several alternatives. Classification rate is the average correct classification percentage for 

all outputs. Network outputs range from -1 to + 1 (hyperbolic tangent activation 
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function). An RC PE output greater than O was classified as RC while an output less than 

0 was classified as Not RC. The same procedure was followed for other outputs (Foliage, 

Stem, Roots) and desired outputs. Output classification was compared with that of the 

desired output to compute classification rate. 



CHAPTER VII 

PERFORMANCE EVALUATION 

An independent program was written to post-process the NN output from all lines 

in a seedling image and select a single line as the root collar location. Response 

examples for selected best performing networks are presented in Appendix C, Figures Cl 

through C8. Some NNl networks (not shown) exhibited large variation between adjacent 

lines. For some seedlings, multiple regions within the image generated significant RC 

responses. The RC output was smoothed (11-line average) to reduce local variation. For 

each seedling, the maximum and minimum RC response was determined and a threshold 

set at 75 % of that range. The midpoint of the widest response peak exceeding the 

threshold was defined as the network's RC location. 

Root collar location performance was primarily quantified and assessed by the 

mean and standard deviation of the root collar location error. Root collar location error is 

the difference between the manually identified and the neural network identified RC 

locations. Minimum mean error and error standard deviation are desired. 

Two supplemental measures were developed to further assess NN performance. 

Percent "on stem" is the frequency with which the NN RC location was found within the 

bounds of the manually identified stem region. Diameter and other morphological 

measurements should be more accurate if the RC is located within the stem region. 
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Percent "found stem" is the frequency with which the NN RC response overlapped the 

stem region. This statistic indicates how often relatively large errors occurred. Data were 

not available to compute the "found stem" statistic for the heuristic algorithm. 

For each configuration of input features and NN architecture, four different 

networks were trained by initializing each with different random initial weights. 

Performance measures (RC location error mean and standard deviation, percent "on 

stem," and percent "found stem") were averaged for the four networks. These results are 

reported in Appendix D, Tables D2, D3, and D5. Test seedling RC location error for the 

four repeated networks was statistically analyzed using the F-test and paired-sample t­

test. Mean RC location error and error variance among the four networks were frequently 

statistically different at the 10% significance level. Therefore, the network yielding the 

best performance was identified (Tables D2, D3, and D5) and used for statistical 

comparison of networks having different configurations. The best network was defined 

as that network with minimum mean error and/or error standard deviation. When little 

difference between error statistics occurred, the "on stem" and "found stem" performance 

measures were evaluated for selection of the best network. 

Statistical Performance Analysis 

RC location error of the "best" networks was compared using the F-test and the 

paired sample t-test. Differences for all comparisons were considered to be significant at 

the 10% confidence level. Tests which exceeded this confidence level are printed in bold 

type. Statistical analysis was performed to compare input features and network 
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architecture (number of PE's, hidden layers, connectivity, FOV). These results are 

presented in Appendix E, Tables El through E16 and discussed below. In each table, 

networks are generally ordered from left-to-rightby average error. Since average error 

could be negative, the left-most entry is nbt always the best performing network. 

Therefore, the minimum mean error and minimum error standard deviation are printed in 

bold type. For two networks having similar performance, the one with lower 

computational demands is considered superior. 

Statistical Comparison ofNNl Networks 

One or four outputs 

Networks with one output (RC) and four outputs (RC, Foliage, Stem, Roots) are 

compared in Table El. Neither mean error nor error standard deviation differed 

significantly for the two network types, in general. Although not statistically significant 

( due to large variance) the four-output networks yielded the lowest mean error and error 

vanance. For the one significant comparison, the four-output network had lower error 

vanance. The bulk ofNNl networks were developed as four-output nets, which support 

the investigation ofNN2 networks. 

Objective function comparison 

Several alternative objective functions were evaluated to determine which yielded 

networks with the best performance. In addition, the alternatives of a trapezoidal or 
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rectangular fuzzy membership function (which defined the known root collar location for 

training) were investigated. 

The default objective function (for Neural Works) is therms error between the 

desired and actual network outputs. The classification rate objective function was 

previously discussed. 

The confusion matrix integrates the desired and actual output for a given output 

PE. In contrast with the other objective functions, use of the confusion matrix allowed a 

single output (RC, for example) to be used to guide network training. The correlation 

coefficient of the confusion matrix was used as the objective function. The RC output 

confusion matrix was µsed to train networks in which the desired RC location was 

defined by trapezoidal and rectangular fuzzy membership functions. The "stem region" 

looks much like the RC, but is a much larger region, thus providing more training 

examples per seedling. A network which reliably identifies the stem region could be 

quite useful (more so than one which un-reliably identifies the RC). Therefore, RC 

location performance of a network trained using the confusion matrix for the stem output 

was investigated. 

Results for five different neural networks ( each the best of four repetitions) are 

compared in Table E2. Classification rate yielded the lowest mean error (though only 

significantly lower than therms objective function) of the objective functions tested. 

Classification rate provided significantly lower error variation than most of the other 

objective functions. The rms error objective function ( default) yielded the worst 

performance. Classification rate was used as the objective function for all subsequent 

network training. 
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Input features 

Many different features were used as inputs to NNl networks with several 

different architectures. Features were grouped into composite feature sets to reduce the 

total number of experimental treatments. Composite features used with NNl networks 

are summarized in Table Dl. Individual features are defined in Appendix A. All feature 

sets were not tested with all architectures. Performance of various feature sets is 

compared among NNl networks with similar architecture in Tables E3a through E3e. 

Among 14 networks with a single hidden layer containing 2 PE's (Table E3a), the 

one using feature set, "nae," provided the best performance. This feature set was 

comprised of six features; Nline, InvRuns, Inv Area, InvSpan, M2, and M3. Performance 

of this network was superior to all but the next best network, using feature set, "nh." 

Eight networks incorporating the global feature, ''Nline," generally yielded performance 

superior to that of the 6 networks not using the feature. The feature set, "nr," composed 

of only two features, ''Nline" and "InvRuns," had the third best performance. Error 

variance among the six best networks did not differ significantly, but this group was 

generally superior to the remaining networks·. 

Among 18 networks with 3 PE's in a single hidden layer (Tables E3b and E3c), 

the one using feature set, "nru," composed ofNline, InvRuns, and NCArea (the only 

other global feature) provided the best performance. The best two feature sets (nru, nae) 

yielded significantly lower error than all but the third best feature set (na). Again, 

networks using the feature Nline were generally superior to those that did not. Error 
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variance among the seven best networks did not differ significantly, but, in general, these 

had significantly lower variation than the remaining networks. 

Among 11 networks with 4 PE's in a single hidden layer (Table E3d), the best 

four networks were generally superior to the remaining networks. The feature set, "nae," 

yielded poor performance with this architecture, but very good performance with all other 

architectures. Significant performance differences also occurred among 8 networks with 

3 PE's in each of two hidden layers, and 5 networks with 4 PE's in each of two hidden 

layers (Table E3e ). 

Several observations can be made about the features investigated. Feature sets 

including "Nline" con~istently yielded better performance than those that did not. 

Feature sets including "e" (moments M2, M3) performed better than similar feature sets 

that did not. Feature sets includinglnvRuns ("a") performed better than similar feature 

sets including Runs ("b"). Feature sets including "a" (lnvRuns, InvArea, InvSpan) 

performed better than similar feature sets using the smoothed features, "c," (SmRuns, 

SmArea, SmSpan). Evidence more weakly suggests that feature sets incorporating 

derivative features "d" yielded better performance than similar feature sets that did not. 

Among the five architectures, the feature set, "nae," was best or second best, with one 

exception. Surprisingly good performance was obtained from the feature sets, "nr" and 

"nru," composed of2 and 3 features, respectively. It was not expected that networks with 

so few input features would yield performance superior to others with the same and 

additional inputs. Thus, these feature sets were investigated in only one architecture 

each. 



NNl architecture 

Several architectural variations were investigated by varying the number of 

hidden layers (1 or 2) and the number of PE's in each hidden layer. Statistical 

comparisons were performed among treatments with common input features. All 

architectures were not investigated with every feature set. Results are summarized in 

Tables E4a through E4d. Within these tables, features sets are ranked in order of best 

performance by the best architecture, while architectures are ordered by increasing 

number of PE's. 

Statistically significant performance differences between architectures were 

observed within 7 of the 17 feature sets. For 5 of 10 feature sets tested with 3 or more 

architectures, significant performance differences were observed. Each of the five 

different architectures, however, yielded performance superior to some other 

architectures, among the various feature sets. 
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All architectures were tested with the best feature set, "nae." The two best 

architectures were those with the fewest PE's, a single hidden layer with three and two 

PE's, respectively. Performance of these two networks was not significantly different, 

but both were significantly better than the remaining three architectures. Error variation 

was comparable among 4 of the 5 architectures, but significantly larger in the architecture 

with 4 PE's in a single hidden layer. 

Two- and three-PE architectures provided the lowest error for 11 of the 17 feature 

sets. Excluding cases where the 2- and 3-PE architectures were the only ones tested, they 

provided the lowest error for 7 of 13 feature sets. Considering only statistically 
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significant comparisons, 2- and 3-PE architectures most frequently provided the lowest 

error. The 4-PE architecture was frequently superior to others when feature sets tested 

with only 2- and 3-PE architectures were not considered. Single hidden-layer 

architectures more often yielded performance superior to two hidden-layer architectures. 

Considering only statistically significant comparisons, single hidden-layer networks 

yielded superior performance in 9 of 12 cases. 

Statistical Comparison of NN2 Networks 

Input features 

NN2 input features consisted of one or more outputs from a four-output NNl 

network. The NNl outputs corresponded to the root collar "C," foliage "F," stem region 

"S," and roots "R." Four feature sets were defined for input to NN2 networks; C, CF, 

CFR, and CFSR. These feature sets are compared among NN2 networks with common 

architecture and which were trained/tested with outputs from a common NNl network in 

Tables E5a and E5b. The feature set, CF, yielded the lowest mean error in 4 of 6 cases. 

Considering only significant comparisons, CFR provided the lower mean error than 

another feature set in 4 of 8 cases. Error variation did not differ significantly among the 

feature sets. 

NNl network features are compared for treatments with common NN2 features 

and architecture in Table E6. The NNl feature set, "na," yielded the lowest mean error in 

3 of 4 cases, and significantly lower error than "nae" in 2 of 3 cases where they were 
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compared. The feature set, "nae," yielded the lowest error variation in 3 of 4 cases, but 

this variation was not significantly less than that of "na." Thus, the best NN2 

performance was achieved using inputs from an NNI network that was not identified as 

the best NN 1 network. 

Network architecture 

Network architectures are compared for treatments with common NNI and NN2 

feature sets in Tables E7a and E7b. Few significant differences between network 

architectures were observed. For the two comparisons which included a 15-PE 

architecture, lower mean error was provided by some treatments with fewer PE's. Five­

PE architectures provided lower mean error in 5 of7 comparisons. Five-PE architectures 

yielded lower mean error than another treatment in 2 of 4 statistically significant 

comparisons. The three reduced-connectivity treatments tended to provide lower mean 

error than the full-connectivity treatments. Therefore, networks with fewer PE's and 

reduced connectivity are considered superior due to lower computational burden. 

Another architectural consideration is whether the hierarchical NN2 networks 

provided better performance than the NNI networks alone. Performance of NN2 

networks is compared with that of the corresponding NNI network in Table E8. In the 

majority of cases, NN2 networks were superior to the NNI network providing their input. 

In 14 of 23 cases, the NN2 networks had significantly lower mean error and error 

variation. In only one comparison did the NN2 network yield statistically inferior 

performance. 
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Statistical Comparison ofNN3 Networks 

Two groups of NN3 networks, characterized by wide (70-280 mm) and narrow 

(14-42 mm) FOV's were investigated. Different feature sets and architectures were used, 

in general, for these two groups. The two groups are therefore discussed separately and 

comparisons performed among different treatments within the separate groups. 

Subsequently, the wide and narrow FOV groups are compared using treatments which are 

most similar between them. 

Performance ofNN3 networks, in general, was very good, and therefore few 

statistically significant differences were observed between treatments. 

NN3 wide FOY features 

The 140-mm FOV was the most extensively tested of the wide FOV networks. 

Feature sets are compared among networks with similar architecture and a 140-mm FOV 

in Tables E9a and E9b. The few statistically significant differences observed occurred 

between the lowest performance treatment(s) and the best. Feature set "a2d0" and 

"m2d0" most frequently had the best performance for one and two hidden-layer networks, 

respectively. It appears that the feature derivatives (dO) were beneficial. The features, 

"aO," used only in single hidden-layer networks, had (statistically significant) greater 

error variation than the other features. This result indicates that clipped feature values ( all 

other features) yielded superior performance. Feature "m5" yielded the largest mean 

error in 5 of 6 cases. In addition, feature "a5" tended to have a larger error variation than 



the average ( excluding "aO"). Therefore, features which were clipped at the lowest 

magnitude ("a2" and "m2") appear to be superior to the alternatives. 

NN3 wide FOV architecture 

70 

Network architecture is compared for treatments with common FOV and feature 

sets in Tables EIOa through EIOe. Architectures are labeled "A" through "F" in order of 

increasing complexity. Architectures A - C have a single hidden layer, while D - F have 

two hidden layers. Significant differences generally occurred only between the best and 

worst cases in a test. Architecture. D most often yielded the minimum average error, 

while A most often had the minimum error variation. Considering only cases where the 

best network was significantly better than other networks, architecture D had the lowest 

mean error in 5 of 10 cases and the lowest error variance in 7 of 12 cases. 

NN3 wide FOY lines input 

Most NN3 networks had 15 lines of input features with 2 features per line. 

Several networks were trained and tested with 9 or 21 lines of input. These are compared 

with 15-line networks having the same input features, and the most similar FOV in Table 

El 1. Comparing 21 and 15 input-line networks, 15-line networks had lower error (none 

significant) in 6 of 8 cases. Fifteen- and 21-line networks had minimum error variance an 

equal number of times, but the 15-line network had significantly lower variation in one 

case. Differences were more dramatic comparing 15- and 9-line networks. The 9-line 
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networks had lower mean error in 6 of 8 cases; significantly lower in 2 of 3 cases. Nine­

line networks had lower error variance in 7 of 8 cases, and 5 of these were significant. 

This result is strong evidence that the networks with fewer input lines ( among those 

tested) provided superior performance. 

NN3 wide FOY comparison 

The majority of wide FOV networks had a 140-mm field of view. These are 

compared with alternate FOV's of 70,210, and 280 mm in Tables E12a and El2b for 

treatments with the same input features and architecture. The 210".mm FOV networks 

most frequently yielded the lowest mean error, and significantly lower error than other 

networks in 4 of 5 cases. The 280-mm FOV networks most often yielded the lowest error 

variance, and in 3 of 6 cases had significantly lower variance than other networks. 

Therefore, the larger FOV' s appear to yield superior performance among the wide FOV 

networks. 

NN3 narrow FOY features 

Features are compared among narrow FOV NN3 networks having the same FOV 

and similar architecture in Tables E13a through E13c. No single feature set appeared to 

be superior across all FOV's. Differences between networks were generally not 

significant. Feature sets "cd," "be," and "abc" most frequently yielded the lowest mean 

error for the 15-, 29-, and 43-mm FOV's, respectively. Feature set, "abc," most 



frequently yielded the lowest error variance. Feature set, "ce," yielded significantly 

larger error variance than the other feature sets. It differed from feature set, "cd," in 

having a clipped magnitude for one of its component features. 

NN3 narrow FOV architecture 

72 

Network architectures are compared among treatments having the same input 

features and FOV in Tables E14a through E14c. Architectures are designated by the 

characters c, d, e, i, j, k (single hidden layer) and f, g, h, 1, m, n (two hidden layers) in the 

tables. Not all architectures were tested with all features. The lowest error networks 

were again significantly different from only the highest error networks. Architecture, "f," 

the simplest two hidden-layer network most frequently provided the best performance. In 

11 of 20 cases it yielded significantly lower error than other networks. Significant 

differences between error variance occurred with less frequency. Architecture, "i," with a 

single hidden layer, had significantly lower error variance than other networks in 7 of 9 

cases. 

Two connectivity variations may also be compared. In architectures c,d,e, two 

input features from a given line were connected to separate hidden-layer PE's (feature 

connectivity, Fig. 5), while in architectures i,j,k, the two features were connected to the 

same hidden-layer PE's (line connectivity, Fig. 5). Architectures c,d,e tended to have 

lower mean error, while architectures i,j,k tended to have lower error variation. 
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NN3 narrow FOY comparison 

Narrow field-of-view networks were tested with 15-, 29-, and 43-mm FOV's. 

These are compared for treatments with common input features and architecture in Tables 

E15a and E15b. The 29-mm FOV most frequently yielded the lowest mean error, and 

this was significant in 12 of21 cases. The 15-mm FOV had the lowest mean error in the 

remaining significant cases. The 43-mm FOV most frequently had the lowest error 

variation, but there were no significant differences. 

Comparison of wide and narrow FOV NN3 networks 

Narrow FOV networks are compared with a wide FOV network in Table El 6. 

Although features and architectures do not match exactly, networks with the greatest 

similarity are compared. Multiple narrow FOV networks are included in some 

comparisons due to their similarity in features and architecture. A narrow FOV network 

provided lower mean error in 5 of 6 cases. None of these differences was significant. A 

narrow FOV network yielded lower error variance in 5 of 6 cases, and four of these were 

significant. 

Summary of Network Performance 

Among NNl networks, a few feature sets provided significantly better 

performance than the rest of the feature sets investigated. All NNl networks had 

relatively small numbers of inputs. The global feature, "Nline," significantly improved 



74 

the performance of these networks which otherwise used features providing local 

information. The best feature set was "nae," composed of 6 features. Good performance 

was achieved by two feature sets composed of just 2 and 3 features (nr and nru). 

Networks with two or three PE's in a single hidden layer yielded performance superior to 

networks with more PE's and hidden layers. 

NN2 networks used the outputs from NNl networks as input features. The feature 

set CFR (RC, Foliage, Roots; total of 45 inputs) yielded the best performance of the 

alternatives investigated. Networks with relatively few PE's (3 or 5) and reduced 

connectivity provided good performance. NN2 networks were, in general, significantly 

better than the corresp~mding NNl networks. 

NN3 networks, as a group, provided the best performance of the networks 

investigated. Error rates among these networks were low enough that fewer significant 

differences were observed. Input features were based on connectivity analysis. Clipped 

feature magnitudes and feature derivatives appeared to be beneficial. The two hidden­

layer architecture with the fewest PE's provided the best performance. Fewer input lines 

(9 rather than 15 or 21) provided the best performance. Among both wide and narrow 

FOV groups, narrower FOV's yielded lower mean error, while wider FOV's yielded 

lower error variation. Comparing the two groups, narrow FOV's (15- to 43-mm, rather 

than 150-mm or greater) provided superior performance. Among the narrow FOV 

networks, the 29-mm FOV provided the best performance. 
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Extended Testing of Best Networks 

Network training and testing was performed using two groups of 50 Douglas fir 

seedlings (DFl-50 and DF51-100, respectively) which had been root-pruned at the 

nursery prior to use in this investigation. Several networks which yielded superior 

performance with respect to others of their type (five NNl 's, one NN2, and four NN3's) 

were tested on two additional groups of seedlings. The first group consisted of 100 

Douglas fir seedlings (DFlOl-200) which had not been root-pruned. The second group 

consisted of 150 Ponderosa pine seedlings (PPl-150) which had been root pruned. 

Morphological differences between these seedling groups were previously discussed and 

are summarized in Table 3. 

Performance of the heuristic algorithm and the 10 selected networks is 

summarized in Table 4 and Figures 8 - 11. Average RC location error for 10 networks is 

presented in Figure 8. Results for the training seedlings and three groups of test seedlings 

are shown by adjacent bars. All NN' s generally had lower mean RC location error than 

the heuristic algorithm for the training seedlings and DF51-100 test seedlings. The 

heuristic algorithm RC was above and the NN RC was below the manual RC location, on 

average. NN3 networks had lower mean error than NNl 'sand NN2 for these two 

seedling groups. 



Table 4. Neural network* and heuristic algorithm RC location performance 

Network Train DF1-50 Test DF51-100 

Type Name RC Error RC on Found RC Error RC on Found RC 
error stdev stem stem error stdev stem stem ·error 

mm mm % % mm mm % % mm 

Heuristic algor. -17 26 68 - -7 21 70 - -6 

NN1 L4a -2 18 84 97 6 20 75 96 31 
NN1 L4h 0 13 90 97 4 17 84 97 19 
NN1 L5e2 -1 13 89 97 5 16 92 96 29 
NN1 L5f2 -1 15 89 98 5 16 90 98 39 
NN1 L7e 3 16 89 99 7 21 79 93 23 

NN2 H5c 4 16 90 98 5 16 80 98 29 

NN3 M4i -1 11 90 100 2 12 93 99 3 
NN3 M8i 0 14 97 97 -1 12 95 96 4 
NN3 W15 1 10 97 100 1 10 92 97 0 
NN3 W7 2 11 97 99 2 13 92 97 -2 

* average performance of 4 networks trained with differenent initial random weights 
RC error= NN RC location - manual RC location 
RC on stem = percent NN RC location within manually defined stem region 
Found stem = percent NN RC response touches manually defined stem region 

Test DF101-200 

Error RC on Found RC 
stdev stem stem error 

mm % % mm 

12 73 - 3 

72 80 84 69 
43 86 89 56 
51 78 81 62 
59 71 74 68 
43 84 89 72 

62 78 88 70 

11 92 97 22 
11 96 96 20 
11 93 97 20 
12 86 95 19 

Test PP1-150 

Error RC on 
stdev stem 

mm % 

20 91 

80 54 
71 75 
75 73 
73 67 
71 54 

87 63 

11 95 
12 95 
15 93 
16 · 89 

Found 
stem 

% 

67 
77 
75 
70 
67 

77 

98 
96 
94 
94 

-..J 
O'I 
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NNl 'sand NN2 had significantly greater mean error for test seedlings DFlOl-200 

and PPl-150. These networks did not perform well on seedlings with morphology 

different from that of the training set; they generalized poorly. NN3's performed well on 

seedlings DFlOl-200, and had lower mean error than the heuristic algorithm. For 

seedlings PPl-150, however, which differed most from the training seedlings, NN3's had 

a larger mean error than the heuristic algorithm. One morphological parameter which 

may be a factor here is the normalized RC location within the stem region (Table 3). This 

parameter averaged 33% for the Douglas fir training seedlings and 11 % for the Ponderosa 

pine seedlings, a 66% difference. 

RC error standard deviation is presented in Figure 9. All NN's generally had 

lower error standard deviation than the heuristic algorithm for training and DF51-100 

seedlings. NNl 'sand NN2 had significantly greater error standard deviation for DFlOO 

and PP150 groups, which again indicates poor generalization. NN3's, however, had 

performance superior or comparable to the heuristic algorithm for these seedlings. The 

NN3 networks maintained good performance on seedlings with significantly different 

morphology than that of seedlings used for training. 
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Figure 8. Neural Network Performance - RC Location Error 
Average RC Location Error of 10 Networks and Heuristic Algorithm 
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Figure 9. Network Performance - RC Error Standard Deviation 
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Neural network performance is further illustrated by the statistics "on stem" and 

"found stem," shown in Figures 10 and 11, respectively. Percent "on stem" is the 

frequency at which the RC was located within the bounds of the manually identified stem 

region. NNl 'sand NN2 were superior to the heuristic algorithm on this basis for the 

training, DFSl-100, and DFlOl-200 seedlings. As previously indicated, however, NNl 

and NN2 performance was exceeded by that of the heuristic algorithm for the Ponderosa 

pine seedlings. NN3 's yielded the highest "on stem" performance. This performance 

level was maintained, for the most part, for all seedling groups tested. NN3 performance 

exceeded that of the heuristic algorithm for Douglas fir seedlings, and was comparable 

for Ponderosa pine seedlings. 

Percent "found stem" (Fig. 11) is the frequency at which the NN RC response 

overlapped the stem region. This statistic was not available for the heuristic algorithm. 

When the RC location was not within the stem region, NNl, NN2, and NN3 found the 

manually identified stem region on an additional 7%, 13%, and 4% of the seedlings, on 

average, respectively. High performance levels for neural network stem region 

recognition represent a significant improvement over that of the heuristic algorithm. 

Once the stem is identified, current algorithms can be used to delineate it's extent and 

measure stem diameter. 
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Figure 10. Neural Network Performance - RC On Stem 
RC Located within Manually Identified Stem Limits 
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Figure 11. Neural Network Performance - Found Stem 
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CHAPTER VIII 

SUMMARY AND CONCLUSIONS 

Neural networks which identified the root collar location in digital images of 

conifer seedlings were developed and found to provide performance superior to that of a 

heuristic algorithm. Performance was quantified by the mean root collar location error 

and the error standard deviation, with respect to manually identified root collar locations. 

Additional performance measures, "on stem" and "found stem," assessed the frequency 

with which the network identified the root collar location within the manually defined 

stem region and the frequency with which the network response overlapped the stem 

region, respectively. 

The networks investigated were characterized by three different architectures; 

NNI, NN2, and NN3. Among these networks, alternative input features and network 

architectures were investigated. The networks accepted multiple input features extracted 

from a run-length encoded representation of a conifer seedling image.· 

NNI networks were the simplest of the three groups. They used 2 to 9 inputs 

from a set of27 features. Inputs came from a single image line (local inputs). Four 

outputs were produced, corresponding to root collar, foliage, stem, and root recognition. 

Significant performance differences between different feature sets and network 

architectures were observed. Invariant moment-based features, inverted features, and to a 
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lesser extent, derivative features provided superior performance. Smoothed features were 

not helpful. A global feature, normalized line number, had a significant positive effect on 

NNl performance. The best NNl network used 6 input features. Good performance was 

provided by two networks which had only 2 and 3 inputs. Best performance was 

provided by the simplest networks, with 2 or 3 processing elements (PE's) in a single 

hidden layer. Performance of the best NNl networks exceeded that of the heuristic 

algorithm for seedlings with morphology similar to that of the training seedlings. 

Network performance was poor, however, for seedlings with significantly different 

morphology. 

NN2 networks functioned as the second level of a hierarchical network. NN2 

inputs consisted of 1 to 4 NNl outputs from each of 15 image lines, sampled over a 140-

mm field-of-view (FOV). Fewer statistically significant differences between NN2 

treatments were observed. Best performance was achieved using NNl Root Collar, 

Foliage, and Root outputs as NN2 inputs (45 total inputs). Best performance was 

achieved using inputs from an NNl network that was not identified as the best NNl 

network. Best performance was generally provided by networks with relMively few 

hidden layer PE's (5), and reduced PE connectivity which exploited the spatial 

relationship of the input lines. NN2 networks yielded significantly lower error and error 

variation than the NNl networks that provided their inputs. Like NNl networks, NN2 

networks provided performance superior to that of the heuristic algorithm only for 

seedlings with morphology similar to that of the training seedlings. 
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NN3 networks accepted multiple feature inputs (like NNl) from multiple image 

lines (like NN2). Excellent performance was achieved by many NN3 networks. Thus, 

fewer statistically significant differences between treatments were observed. Input 

features were mostly based on connectivity analysis of the seedling image. Clipped 

feature magnitudes and feature derivatives appeared to be beneficial. The simplest two 

hidden-layer architecture, with 5 and 3 PE's in the first and second hidden layers, 

respectively, provided the best performance. Fewer input lines (9 rather than 15 or 21) 

provided the best performance. A smaller input FOV (15- to43-mm, rather than 150-mm 

or greater) provided superior performance. Among the narrow FOV networks, the 29-

mm FOV provided th~ best performance. All NN3 networks used reduced PE 

connectivity, which exploited the spatial relationship of input lines and reduced 

computation. NN3 networks yielded performance superior to that of the heuristic 

algorithm for all Douglas fir seedlings, including those with morphology different from 

that of the training seedlings. NN3 mean error for Ponderosa pine seedlings was 20 mm, 

probably due to their significantly different morphology. NN3 error variation, however, 

was less than that of the heuristic algorithm for these seedlings, as well as the Douglas fir 

seedlings. NN3 networks more frequently located the root collar within the manually 

identified stem region than did the heuristic algorithm. 

Several NN3 networks yielded comparable high performance. Network w15 

performance is reviewed here and compared with that of the heuristic algorithm. This 

neural network yielded zero mean error and 11-mm error standard deviation for 100 

Douglas fir seedlings which had morphology significantly different from that of seedlings 
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used for network training. The network had comparable performance for 50 Douglas fir 

seedlings similar to those used for training. Heuristic algorithm mean error was -7 mm, 

and error standard deviation was 12 and 21 mm for the two seedling groups, respectively. 

The heuristic algorithm located the root collar within the manually identified stem region 

only 72% of the time, while neural network's "on stem" performance was 93%. The 

neural network detected the stem region an additional 4% of the time ("found stem"= 

97%). 

For 150 Ponderosa pine seedlings which had significantly different morphology 

than that of the Douglas fir training seedlings, the neural network root collar location had 

a large offset; 20-mm mean error vs. the heuristic algorithm's 3-mm mean error. 

However, neural network measurement precision was superior to that of the heuristic 

algorithm; 15-mm vs. 20-mm standard deviation, respectively. Neural network and 

heuristic algorithm "on stem" performance was 93% and 91 %, respectively, for these 

seedlings. Better results for Ponderosa pine seedlings would be expected if Ponderosa 

pine seedlings were used as training examples. 

Neural networks spanning a range of complexity provided performance superior 

to that of the heuristic algorithm. Among the architectural variations investigated, 

configurations with relatively few inputs, easily computed input features, and simpler 

network architectures generally provided the best performance. These results indicate 

that a neural network root collar recognition system with a relatively low computational 

burden can be achieved, consistent with support of real-time seedling inspection. 

Although the computational burden of the developed networks and feature extraction 
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routines were not quantitatively assessed, it is the author's belief, based on knowledge of 

processing currently performed by the seedling inspection system, that the methods 

developed will not add a computational burden prohibitive to real-time assessment. 

Further, currently available PC's have at least four times more the processing power than 

the PC used in the existing seedling inspection system. 

The research discussed in this dissertation has made several contributions to the 

body of engineering knowledge. Achievement of the primary objective is the first 

contribution. Examples of unique neural network applications, given that this is a 

relatively new computing paradigm, have a synergistic effect as other researchers seek 

solutions to seemingly un-related problems. 

The method used for network training may have broad application. A relatively 

small percentage of network input data (features) corresponded with the seedling root 

collar which was to be identified. Many target and object recognition applications 

similarly seek to identify a signal buried in a complex background. 

Reduced PE connectivity architectures used in this work attempted to exploit 

spatial relationships within seedling images and provided superior performance in terms 

of both improved root collar location accuracy and reduced computational burden. This 

approach may be of value in any application where spatial or time-series data are 

processed. These applications include voice recognition, speech processing, and financial 

forecasting, to name a few. 



Suggested Further Research 

Best performance was provided by NN3 type networks. These networks were 

investigated with only a single output corresponding to the root collar. Since NNl 

network results indicate that four-output networks may yield superior performance, 

investigation of four-output NN3 networks may be worthwhile. 

NNl networks also benefited from two global features; normalized line number, 

and normalized cumulative area. These and similar features may further improve NN3 

performance. 
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The tendency of wide FOV's to yield lower error variance and narrow FOV's to 

yield lower mean error might be exploited. Coarse, wide-FOV processing might initially 

be used to locate the stem region. Narrow-FOV processing of every image line within the 

stem region could then be used to locate the root collar. 

A simple post-processing algorithm was used to integrate the network output from 

each image line and identify the root collar location. Post-processing variations should 

be investigated. Should maximum network response be used as the root collar location? 

Several of the developed networks provided performance superior to that of a 

heuristic algorithm used in the seedling inspection system. Integration of NN3 type 

networks into the seedling inspection system should therefore be of value. 
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APPENDIX A--FEATURE COMPUTATION FORMULAS 

Feature names, definitions, and computational formulas are presented in this 

appendix and summarized in Tables Al and A2. Values of selected features, illustrating 

their relationship to the seedling stem region and root collar location, are plotted for five 

seedlings (Fig. 4) in Appendix B, Figures Bl through B19. 

General Functions Applied to Feature Computation. 

Many features were extracted from a local window (w) encompassing 5 to 21 

image lines. A few features were extracted from a similar window with broader scope, 

161 image lines. Window size (w) is an odd number. Results are associated with the line 

at the window center ( evaluation line). 

Average: average value of a line feature over a set of adjacent lines, {-( w-

1)/2, ... ,0, ... ,+(w-1)/2} centered about the evaluation line, l. This feature was 

computed to reduce "noise" and to broaden the scope of a local feature by 

integrating feature data within the neighborhood of the evaluation line. 

i=i/w-1) 
2 

'I.feature; 
i=l_(w-1) 

avg( feature, w) = -~2 ---

w 
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Minimum: minimum value of a line feature over a set of adjacent lines, w, centered about 

the evaluation line, l. 

min(feature, w) = min(feature (w-t), ... , feature (w-tJ) 
/--. l+-

2 2 

Maximum: maximum value of a line feature over a set of adjacent lines, w, centered 

about the evaluation line, l. 

max(feature, w) = max(feature (w-t;•···,feature (w-i;) 
/-- /+-

2 2 

Delta: difference operator computing the slope of a line feature based on the feature 

values at the limits of a window, w, centered about the evaluation line, l. The 

derivative of many features was observed to be close to zero near the root collar 

(RC). Further, the derivative value is often negative immediately above the RC 

and positive below the RC. 

· delta( feature, w) = feature (w-t) - feature (w-t) 
I+- /--

2 2 

Difference: difference operator applied to two features extracted from or evaluated at the 

same line. 

di.ff ( feature1,feature2) = feature1 - feature2 

Clip: limit the magnitude of a feature value by replacing large values with a specified 

threshold. 

clip(threshold,feature) = if(feature < threshold) feature; else threshold 



General Description of Features Computed for Neural Network Input. 

Normalized Line Number (Nline): line number divided by the total number oflines for 

each seedling. 

Runs: the number of runs on a line (Fig B 1 ). 

Area: the sum of run lengths on a line (Fig. B5). 
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Normalized Cumulative Area (NCArea): cumulative area from the top of the seedling to 

the current line divided by the total seedling area (Fig. B7). 

Delta Normalized Cumulative Area (DelNCArea): slope of the normalized cumulative 

area curve (Fig. B8). 

Span: distance from beginning of the first run to end of the last run on a line (Fig. B9). 

Inverted Runs (InvRuns), Inverted Area OnvArea), Inverted Span (InvSpan): one divided 

by Runs (Fig. B4), Area (Fig. B6), and Span, respectively. 

Smooth Runs (SmRuns), Smooth Area (SmArea), Smooth Span (SmSpan): average of 

Runs (Fig. B2), Area, and Span, respectively, within an 11-line window. 

Delta Smooth Runs (DelSmRuns), Delta Smooth Area (DelSmArea), Delta Smooth Span 

(DelSmSpan): slope of SmRuns (Fig. B3), SmArea, and SmSpan, respectively. 

Connected Run: a run which is "connected" to the previous line, /-1, as determined by 

connectivity analysis. A connected run shares a column index with a connected 

run on the previous line. Only the three longest connected runs are retained. 

Connectivity analysis is initialized with the longest run from the first image line. 

Connected Runs (ConRun): number of connected runs on a line (Fig. B13). 

Connected Area (ConArea): sum of run lengths of connected runs on a line. 
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Delta Connected Area (DelConC 100): slope of ConArea clipped to a magnitude of 100. 

Un-Connected Area (UnCon): difference between Area and ConArea on a line (Fig. 

Bl4). 

Offset Connected Area (ConMn41, ConMn61, ConMn41C50): difference between 

ConArea on a line and the minimum ConArea within a window ( 41 or 61 lines), 

(Fig. Bl5). 

Offset Smooth Connected Area (ConAl 1): difference between average ConArea within a 

local window (11 lines) and the minimum ConArea within a broad window (161 

lines). 

Clipped Offset Smooth Connected Area (ConAl 1C50, .... ConA21C25): difference 

between average ConArea within a local window (5-21 lines) and the minimum 

ConArea within a broad window (161 lines), clipped to a magnitude of 25 or 50 

(Fig. Bl6). 

Clipped Minimum Connected Area (ConMnl 1C50, .... ConMn21C25): difference 

between the minimum ConArea within a local window (5-21 lines) and the 

minimum ConArea within a broad window (161 lines), clipped to a magnitude of 

25 or 50. 

Close Run: a run which is not "connected" but has an endpoint within 5 mm (50 pixels) 

of a connected run on the same line. 

Close Area (CloseArea): sum of run lengths of close runs (Fig. B 17). 

Delta Close Area (DelCloseC 100): slope of CloseArea clipped to a magnitude of 100. 

Smooth Close Area (CloseAl 1): the average CloseArea within an 11 line window. 
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Clipped Smooth Close Area (CloseAl lC50, ... , CloseA21C25): the average CloseArea 

within a window (5-21 lines) clipped to a magnitude of25 or 50 (Fig. B18). 

Clipped Maximum Close Area (CloseMxl 1C50, ... , CloseMx21C25): the maximum 

CloseArea within a window (5-21 lines) clipped to a magnitude of 25 or 50 (Fig. 

B19). 

Log Second Central Moment (M2): the natural logarithm of the second order central 

moment computed from all runs on a line (Fig. BlO). 

Log Third Central Moment (M3): the natural logarithm of the absolute value of the third 

central moment computed from all runs on a line (Fig. B 11 ). 

Run-Length Histogram (Histl, ... , Hist8): the number of runs on a line having a length 

within the limits specified for the histogram bin (Fig. B12). 
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Table Al. Feature summary 
Feature Figure Networks Definition or Formula 
Nline L4,L5,L6,L7 line I lastline 
NCArea B7 L4,L5 sum( Area, 1, line) I sum( Area, 1, lastline) 
DelNCArea BS L5 delta( NCArea, 11) 
Runs Bl Ll,L2,L4,L5 number of seedling runs 
Area B5 sum of seedling run lengths 
Span B9 lastrun.end - firstrun.start 
Inv Runs B4 L 1,L2,L4,L5 I/Runs 
Inv Area B6 L 1,L2,L4,L5 1/Area 
InvSpan Ll,L2,L4,L5 1/Span 
SmRuns B2 Ll,L4,L5,L7 avg( Runs, 11) 
SmArea L 1,L4-5,L 7,Ml-6 avg( Area, 11) 
SmSpan Ll,L4,L5,L7 avg( Span, 11) 
De1SmRuns B3 Ll,L4,L5 delta( SmRuns, 11) 
DelSmArea Ll,L4,L5 delta( SmArea, 11) 
DelSmSpan . Ll,L4,L5 delta( SmSpan, 11) 
M2 BIO L2,L5 ln( 2nd central moment) 
M3 Bll L2,L5 ln( abs( 3rd central moment)) 
Histl B12 L3,L6 number of runs with length less than 1 mm 
Hist2 B12 L3,L6 number of runs, 1-2 mm in length 
Hist3 B12 L3,L6 number of runs, 2-4.5 mm in length 
Hist4 L3,L6 number of runs, 4.5-7 mm in length 
Hist5 L3,L6 number of runs, 7-9.5 mm in length 
Hist6 B12 L3,L6 number of runs, 9 .5-12 mm in length 
Hist7 B12 L3,L6 number of runs, 12-50 mm in length 
Hists L3,L6 number of runs, greater than 50 mm in length 
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Table A2. Summary of connectivity analysis features 
Feature 
ConRuns 
ConArea 
DelConClOO 
Un Con 
ConMn41 
ConMn61 
ConMn41C50 
ConAll 
ConA11C50 
ConAllC25 
ConA5C25 
ConA15C25 
ConA21C25 
ConMnllC50 
ConMnllC25 
ConMn5C25 
ConMn15C25 
ConMn21C25 
Close Area 
DelCloseClOO 
CloseAreaC50 
CloseAll 
CloseA 11 C50 
CloseA 11 C25 
CloseA5C25 
CloseA l 5C25 
CloseA21 C25 
CloseMx 11 C50 
CloseMxl 1C25 
CloseMx5C25 
CloseMx 15C25 
CloseMx21 C25 

Figure Networks Definition or Fonnula 
B 13 L 7 number of connected runs, max=3 

Bl4 
B15 

Bl6 

Bl7 

Bl8 

B19 

L 7 ,Ml ,M2,M3 sum of connected run lengths 
Wl6,W17 clip( 100, delta(ConArea,11)) 
L 7 diff( Area, ConArea ) 
M4,M5 diff( ConArea, min(ConArea,41)) 
M6 diff( ConArea, min(ConArea,61)) 
M7,M8 clip( 50, ConMn41) 
Wl diff( avg(ConArea,11), min(ConArea,161)) 
W2 clip( 50, diff( avg(ConArea, 11), min(ConArea,161))) 
W5,W14,Wl6 clip( 25, diff( avg(ConArea,11), min(ConArea,161))) 
W7,Wl2 clip( 25, diff( avg(ConArea,5), min(ConArea,161))) 
W8 clip( 25, diff( avg(ConArea,15), min(ConArea,161))) 
WlO clip( 25, diff( avg(ConArea,21), min(ConArea,161))) 
W3 clip( 50, diff( min(ConArea,11), min(ConArea,161))) 
W4,W15,W17 clip( 25, diff( min(ConArea,11), min(ConArea,161))) 
W6 clip( 25, diff( min(ConArea,5), min(ConArea,161))) 
W9 clip( 25, diff( min(ConArea,15), min(ConArea,161))) 
Wl 1 clip( 25, diff( min(ConArea,21), min(ConArea,161))) 
L7,Ml-M7 sum close connected runs 
W16,W17 clip( 100, delta(CloseArea,11)) 
M8 clip( 50, CloseArea) 
Wl avg( CloseArea, 11) 
W2 clip( 50, avg(CloseArea,11)) 
W5,W14,W16 clip( 25, avg(CloseArea,11)) 
W7,Wl2 clip( 25, avg(CloseArea,5)) 
W8 clip( 25, avg(CloseArea,15)) 
WlO clip( 25, avg(CloseArea,21)) 
W3 clip( 50, max(CloseArea, 11 )) 
W4,W15,W17 clip(25, max(CloseArea,11)) 
W6 clip( 25, max(CloseArea,5)) 
W9 clip( 25, max(CloseArea,15)) 
Wl 1 clip( 25, max(CloseArea,21)) 
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Figure 81. Feature "runs" for 5 seedlings. 
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Figure 82. Feature "smooth runs" for 5 seedlings. 
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Figure B3. Feature "delta smooth runs" for 5 seedlings. 

--DelSmRuns --RC loc - - - - - -Stem zone Seedling DF001 
15.----------=-----------~,---.--------------, 

-15+--.---,.--,--,----,--,--,---,--,---,-1-L...i-'--,---,--.---,---,--,----1-0 

Seedling DF002 
15.--------------~-r-~-------------, 

~5 0 

Seedling DF003 
15.---------------..-.-.---------------, 

.~ 
-15 --------------.__._,_::-...---,----..--.-------_,_ 0 

Seedling DF004 
15-.-----------...-+,------------~ 

' 

0 
-~~,-------, 

-15 +---.----.--,---,------,--,---,---- .........,_,__-,----,------,,---,-----,--,----,-----,-----'- 0 

Seedling DF005 
15--.---------------------------...-.-----------~ 

-15+---.---,.--,---,-----,--,---.----.-....--_,..,_....___._,__-.--.---------o 
51 101 151 201 251 301 351 401 451 501 551 601 651 701 751 801 851 

Image line number 

102 



Figure B4. Feature "inverted runs" for 5 seedlings. 
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Figure 85. Feature "area" for 5 seedlings. 
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Figure 86. Feature "inverted area" for 5 seedlings. 
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Figure 87. Feature "normalized cumulative area" for 5 seedlings. 

--NCArea --RC loc - - - - - ·Stem zone 

0.5 

0.5 

0.5 

Seedling DF004 
1 -,--~~~~~~~~~~~------,r~-.-~~~~~~~==~~~~-. 

0.5 

1 Seedling DF005 

0.5 

0 0 
1 51 101 151 201 251 301 351 401 451 501 551 601 651 701 751 801 851 

Image line number 

106 



Figure B8. Feature "delta normalized cumulative area" for 5 seedlings. 
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Figure 89. Feature "span" for 5 seedlings. 
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Figure 810. Feature "log 2nd central moment" for 5 seedlings. 
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Figure 811. Feature "log absolute 3rd central moment" for 5 seedlings. 
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Figure B 12. Histogram features for Seedling DF001. 
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Figure B13. Feature "connected runs" for 5 seedlings. 
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Figure 814. Feature "un-connected area" for 5 seedlings. 
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Figure 815. Feature "offset connected area" for 5 seedlings. 
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Figure 816. Feature "clipped offset smooth ConArea" for 5 seedlings. 
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Figure 817. Feature "close connected area" for 5 seedlings. 
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Figure 818. Feature "clipped smooth close area" for 5 seedlings. 
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Figure 819. Feature "clipped maximum close area" for 5 seedlings. 
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Figure C1. Response of network 14a for five seedlings. 
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Figure C2. Response of network 15e2 for five seedlings. 
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Figure C3. Response of network 17e for five seedlings. 
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Figure C4. Response of network h5c for five seedlings. 
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Figure C5. Response of network m4i for five seedlings. 
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Figure C6. Response of network w15 for five seedlings. 
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Figure C7. Response of network w7 for five seedlings. 
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Table D1. Composite feature summary for NN1 networks. 
NN1 feature Com_E>_onent features 
n Nline 
a lnvRuns, lnvArea, lnvSpan 
b Runs, lnvArea, lnvSpan 
c SmRuns, SmArea, SmSpan 
d DelSmRuns, DelSmArea, DelSmSpan 
e M2,M3 
f Con Runs 
g ConArea, CloseArea, UnCon 
h Hist1, Hist2, Hist3, Hist4, Hists, Hist6, Hist7, Hists 
r 
s 
u 
V 

Runs 
Sm Runs 
NCArea 
DelNCArea 

...... 
N 
00 



Table D2a. Summary of NN1 features, architecture, and performance. 

Features Architecture Train, 4 Net Average Test, 4 Net Average Best Net 

~ 
~ N Treatment RC Err %on found RC Err %on found Net RC Err %on found 
C: C: J!! stdev stem stem stdev stem stem err stdev stem stem 0 

~ ~ ~ 5. name err err 
~ 
Q) n a b c d r u 

0.. :g :g =i 
z c::c:co 
11 y 3 2 1 a201 -20 75 0.79 0.89 57 118 0.70 0.73 1 51 117 0.72 0.74 
11a y 3 2 1 b201 -4 101 0.76 0.82 61 117 0.70 0.74 3 60 112 0.70 0.76 
11b y 3 0 1 b001 -11 93 0.76 0.88 46 110 0.67 0.71 2 40 107 0.68 0.72 
11c y 3 2 4 a204 -5 55 0.79 0.90 53 118 0.69 0.72 4 51 117 0.72 0.74 
11d y 3 3 4 a304 -10 55 0.80 0.89 56 117 0.69 0.71 4 51 117 0.72 0.74 
11e y 3 2 4 c204 -3 104 0.75 0.82 65 119 0.69 0.72 2 56 108 0.74 0.78 
11f y 3 3 4 c304 -5 100 0.77 0.84 64 118 0.70 0.73 4 61 112 0.72 0.76 
11f2 y 3 3 3 4 c334 -1 96 0.74 0.85 67 124 0.63 0.68 1 52 120 0.68 0.70 
11g y y 6 3 4 cd304 -14 89 0.81 0.88 31 98 0.73 0.77 2 28 94 0.74 0.80 
11g2 y y 6 3 3 4 cd334 -9 87 0.78 0.86 43 108 0.70 0.74 3 30 97 0.74 0.78 
11h y y 6 4 4 cd404 -10 95 0.80 0.87 38 105 0.73 0.77 1 35 100 0.74 0.78 
11h2 y y 6 4 4 4 cd444 -4 96 0.79 0.86 46 113 0.72 0.76 1 42 108 0.74 0.78 

14 y y 4 2 4 na204 0 13 0.90 0.98 12 48 0.79 0.95 3 4 17 0.82 0.98 
14a y y 4 2 4 nb204 -2 18 0.84 0.97 6 20 0.75 0.96 1 5 18 0.80 0.98 
14b y y 4 3 4 na304 0 12 0.90 0.99 9 35 0.84 0.95 2 3 16 0.86 0.94 
14c y y 4 2 4 nc204 2 22 0.79 0.97 9 32 0.51 0.90 1 11 28 0.56 0.92 
14d y y 4 3 4 nc304 2 20 0.86 0.97 11 27 0.71 0.92 4 9 25 0.82 0.92 
14da1 y y 4 3 4 t1nc304 0 23 0.81 0.96 8 28 0.64 0.91 4 6 21 0.76 0.92 
14da2 y y 4 3 4 t2nc304 6 22 0.84 0.96 14 30 0.70 0.90 4 18 30 0.74 0.92 
14da3 y y 4 3 4 t3nc304 -3 24 0.78 0.96 5 29 0.59 0.90 3 11 30 0.78 0.90 
14da4 y y 4 3 4 t4nc304 -5 24 0.75 0.96 1 24 0.63 0.96 4 5 19 0.74 0.96 
14d2 y y 4 3 3 4 nc334 -1 20 0.83 0.97 7 25 0.68 0.92 2 ·5 19 0.78 0.96 
14e y y y 7 2 4 ncd204 -1 21 0.78 0.97 7 26 0.53 0.94 4 7 23 0.64 0.94 
14f y y y 7 3 4 ncd304 0 20 0.81 0.97 8 24 0.64 0.94 3 8 23 0.72 0.94 
14f2 y y y 7 3 3 4 ncd334 1 19 0.80 0.99 9 25 0.61 0.94 2 10 22 0.66 0.96 
14g y y y 7 4 4 ncd404 1 21 0.84 0.98 8 22 0.72 0.93 1 8 19 0.76 0.94 
14g2 y y y 7 4 4 4 ncd444 4 19 0.85 0.99 11 23 0.72 0.93 3 8 19 0.68 0.96 
14h y y 2 2 4 nr204 0 13 0.90 0.97 4 17 0.84 0.97 2 3 16 0.84 0.98 
14i 3 3 4 nru304 -9 35 0.82 0.95 1 17 0.86 0.95 4 1 17 0.86 0.96 -y y y N 

\0 



Table D2b. Summary of NN1 features, architecture, and performance. 
Features Architecture Train, 4 Net Average Test, 4 Net Average Best Net - RC Err %on found RC Err %on found Net RC Err % on found 

~ 
..- N Treatment err stdev stem stem err stdev stem stem err stdev stem stem 
C: C: J!! 

0 "5~~5. .! name 
G) n a b c d e u v 0.~:2"5 
z c::c:co 
12 y y 5 2 1 ae201 -12 48 0.81 0.91 55 112 0.70 0.74 3 47 105 0.70 0.76 
12a y y 5 2 1 be201 -2 105 0.75 0.83 62 116 0.68 0.72 4 59 109 0.70 0.76 
12b y y 5 2 4 be204 -2 104 0.77 0.82 63 119 0.68 0.71 1 61 112 0.72 0.74 
12c y y 5 2 4 ae204 -15 66 0.80 0.88 42 109 0.74 0.78 1 41 101 0.76 0.80 
12d y y 5 3. 4 ae304 -8 45 0.82 0.93 45 112 0.72 0.76 1 46 107 0.76 0.78 

15a y y y 6 2 4 nbe204 -1 21 0.87 0.97 5 19 0.77 0.98 4 4 19 0.80 0.98 
15b y y y 6 3 4 nbe304 1 21 0.88 0.96 9 24 0.78 0.92 2 5 19 0.82 0.96 
15c y y y 6 4 4 nbe404 -1 20 0.87 0.96 5 18 0.83 0.97 3 5 17 0.86 0.98 
15d y y y 6 2 4 nae204 -2 15 0.89 0.99 7 30 0.80 0.96 4 2 17 0.80 0.98 
15e y y y 6 3 4 nae304 0 12 0.89 0.99 6 30 0.82 0.94 1 2 17 0.80 0.96 
15e2 y y y 6 3 3 4 nae334 -1 13 0.89 0.97 5 16 0.92 0.96 4 5 15 0.94 0.98 
15f y y y 6 4 4 nae404 0 12 0.90 0.98 11 48 0.85 0.94 4 12 42 0.90 0.96 
15f2 y y y 6 4 4 4 nae444 -1 15 0.89 0.98 5 16 0.90 0.98 3 6 15 0.94 0.98 
15g y y y 6 3 4 nce304 1 22 0.89 0.95 10 23 0.76 0.94 4 5 18 0.86 0.98 
15g2 y y y 6 3 3 4 nce334 3 20 0.89 0.95 10 24 0.71 0.94 1 5 19 0.82 0.98 
15h y y y 6 4 4 nce404 1 22 0.89 0.94 8 21 0.77 0.96 3 4 18 0.80 0.98 
15h2 y y y 6 4 4 4 nce444 2 18 0.91 0.95 8 18 0.79 0.97 3 9 15 0.88 0.98 
15i y y y y 9 3 4 ncde304 1 21 0.86 0.95 8 18 0.78 0.96 2 6 14 0.84 1.00 
15i2 y y y y 9 3 3 4 ncde334 3 16 0.88 0.97 10 21 0.73 0.95 1 8 18 0.80 0.94 
15j y y y y 9 4 4 ncde404 0 18 0.85 0.96 7 20 0.74 0.96 2 2 16 0.76 0.98 
15j2 y y y y 9 4 4 4 ncde444 2 19 0.87 0.97 9 20 0.71 0.97 4 2 18 0.76 0.96 
151<2 y y y y y 8 3 3 4 naeuv33 0 14 0.88 1.00 4 16 0.85 0.98 1 6 15 0.94 0.98 

...... 
w 
0 



Table D2c. Summary of NN1 features, architecture, and performance. 

Features Architecture Train, 4 Net Average 

..- N RC Err %on found RC 
~ C c: .!!? Treatment err stdev stem stem err 0 

~ ~ ~ g_ .! 
"C "C -

name 
Q) n h S C f g g. :i: :i: 6 z 
13 y 8 2 1 h201 -6 51 0.86 0.86 12 
13a y 8 2 1 h'201 -17 78 0.86 0.87 11 
13b y 8 2 4 h204 -4 54 0.85 0.87 4 
13c y 8 3 4 h304 -4 56 0.87 0.87 16 
13d y 8 4 4 h404 -4 54 0.86 0.87 12 

16 y y 9 2 4 nh204 0 42 0.85 0.93 6 
16a y y 9 3 4 nh304 0 21 0.88 0.92 7 
16b y y 9 4 4 nh404 1 14 0.88 0.96 5 

17 y y y y 8 3 4 ncfg304 2 20 0.85 0.96 10 
17a y y y y 8 4 4 ncfg404 2 20 0.87 0.94 11 
17b y y y 7 3 4 cfg304 -9 92 0.79 0.85 42 
17c y y y 7 4 4 cfg404 -7 98 0.78 0.84 49 
17d y y y 5 3 4 nsg304 2 19 0.85 0.98 8 
17e y y y 5 4 4 nsg404 3 16 0.89 0.99 7 
17f y y 4 3 4 sg304 -10 92 0.82 0.86 55 
17g y y 4 2 4 sg204 -9 94 0.80 0.86 54 

Test, 4 Net Average 
Err % on found Net RC 

stdev stem stem err 

60 0.81 0.87 3 12 
59 0.82 0.87 1 12 
45 0.76 0.82 2 7 
66 0.81 0.86 2 7 
54 0.88 0.90 3 12 

38 0.63 0.80 3 3 
25 0.74 0.88 2 7 
22 0.79 0.90 4 4 

29 0.71 0.90 4 14 
29 0.75 0.90 1 15 

101 0.73 0.77 4 39 
104 0.73 0.76 3 35 
26 0.70 0.90 2 7 
21 0.79 0.93 3 7 

110 0.70 0.74 1 49 
109 0.71 0.76 2 49 

Best Net 
Err %on 

stdev stem 

54 0.86 
54 0.86 
38 0.90 
38 0.90 
54 0.88 

19 0.82 
23 0.74 
16 0.86 

27 0.76 
28 0.76 
93 0.78 
91 0.78 
20 0.78 
20 0.82 

105 0.72 
105 0.72 

found 
stem 

0.90 
0.90 
0.94 
0.94 
0.90 

0.90 
0.90 
0.92 

0.92 
0.92 
0.80 
0.80 
0.92 
0.94 
0.76 
0.76 

-w -



Table D3. Summary of NN2 features, architecture, and performance. 
NN1 Architecture Train, 4 Net Average Test, 4 Net Average Best Net 

Net Features RC Err % on found RC Err % on found Net RC Err % on found 
err stdev stem stem err stdev stem stem err stdev stem stem 

~ ~ 

0 0 c Treatment 

~ ·- E '5 i :3 > ~ :g name 
~ l=!g"* e C :5 f2 0:: j: 
h1 11a y 15 15 140 10 3 bC3 -4 37 0.88 0.96 8 32 0.87 0.94 1 6 16 0.90 0.96 
h1a 11a y 15 15 140 10 5 bC5 -4 47 0.83 0.93 4 28 0.81 0.90 1 3 15 0.86 0.92 
h1b 11a y 15 15 100 10,5 5 bC5' -6 45 0.87 0.95 21 54 0.85 0.90 3 20 53 0.86 0.90 

h4 14 y y y 45 15 140 10 15 naCFR15 -2 18 0.85 0.94 2 20 0.69 0.94 2 1 18 0.68 0.96 
h4a 14 y y y 45 15 140 10 5 naCFR5 1 18 0.86 0.96 4 17 0.71 0.97 1 2 16 0.72 0.98 
h4b 14 y y 30 15 140 10 15 naCF15 1 15 0.88 0.97 3 18 0.72 0.96 4 O 18 0.68 0.94 
h4c 14 y y 30 15 140 10 5 naCF5 O 16 0.87 0.97 2 18 0.69 0.94 2 O 18 0.66 0.92 
h4d 14 y y y 45 15 140 10 3 naCFR3 1 16 0.87 0.96 2 17 0.72 0.97 1 1 18 0.72 0.92 
h4e 14 y y 30 15 140 10 3 naCF3 -2 16 0.85 0.97 0 18 0.69 0.96 4 O 17 0.68 0.96 
h4f 14 y y y y 60 15 140 10 5 naCFSR5 -1 15 0.87 0.97 2 18 0.73 0.95 4 0 19 0.70 0.94 
h4g 14 y y y y 60 15 140 10 3 naCFSR3 -1 12 0.87 0.97 1 18 0.70 0.97 4 0 18 0.70 0.96 
h4h 14 y 15 15 140 10 5 naC5 -1 13 0.89 0.98 1 18 0.71 0.97 3 O 18 0.68 0.98 
h4i 14 y y y 45 15 140 10 5 naCFR55 2 15 0.90 0.98 3 17 0.71 0.94 1 0 18 0.72 0.90 
h4j 14 y y y 45 15 140 10 5 naCFR54 0 13 0.88 0.97 1 18 0.68 0.94 4 1 18 0.68 0.94 
h4k 14 y y y 45 15 140 10 5 naCFR53 0 13 0.85 0.96 3 18 0.71 0.97 3 0 19 0.68 0.98 

h5 15b y y y 45 15 140 10 5 nbeCFR5 -1 12 0.87 1.00 11 32 0.65 0.91 2 9 31 0.64 0.92 
h5a 15f y y 30 15 140 10 5 naeCF5 0 18 0.87 0.96 4 17 0.77 0.97 4 3 17 0.82 0.96 
h5b 15f y y y 45 15 140 10 3 naeCFR3 -2 12 0.83 1.00 -1 17 0.66 0.98 3 0 18 0.68 0.98 
h5c 15f y y 30 15 140 10 3 naeCF3 4 16 0.90 0.98 5 16 0.80 0.98 2 4 16 0.86 0.96 

h6 16a y y y 45 15 140 10 5 nhCFR5 2 18 0.89 0.95 9 27 0.62 0.90 2 6 26 0.54 0.94 
h6a 16a y y 30 15 140 10 5 nhCF5 0 20 0.86 0.92 7 26 0.58 0.92 1 5 25 0.56 0.92 
h6b 16a y 15 15 140 10 5 nhC5 5 16 0.88 0.96 11 26 0.71 0.91 3 7 25 0.60 0.94 
h6c 16a y y y 45 15 140 10 3 nhCFR3 1 20 0.86 0.94 9 27 0.56 0.90 2 3 25 0.54 0.94 
h6d 16a y y 30 15 140 10 3 nhCF3 2 18 0.91 0.94 9 27 0.64 0.91 2 5 28 0.54 0.92 
h6e 16a y 15 15 140 10 3 nhC3 6 15 0.91 0.97 11 27 0.67 0.90 2 10 26 0.62 0.90 t:; 

N 



Table D4. Composite feature summary for NN3 networks. 
NN3 feature ComQ_onent featutres 
a SmArea 
b ConArea 
c CloseArea 
d ConMn41,orConMn61 
e ConMn41C50 
f CloseAreaCSO 
aO ConA 11, CloseA 11 
a2 ConA *C25, CloseA *C25 * = 5, 11, 15, or 21 depending on pitch 
as ConA 11 CSO, CloseA 11 CSO 
m2 ConMn*C25, CloseMx*C25 * = 5, 11, 15, or 21 depending on pitch 
m5 ConMn11 CSO, CloseMx11 C50 
dO DelConC100, DelCloseC100 

_. 
vJ 
vJ 



Table D5a. Summary of wide FOV NN3 features, architecture, and performance. 
Features Architecture Train, 4 Net Average Test, 4 Net Average Best Net 

i: 
·.- N RC Err %on found RC Err %on found Net RC Err %on found 
C C Treatment err stdev stem stem err stdev stem stem err stdev stem stem 0 .!) U) .c G) G) 

.! :::, G) u ~ "C "C name 
G) ao a5 a2 m5 m2 g. :5 a: 3:! 3:! z LL ::c: ::c: 
w1 y 30 15 10 140 5 a01510A -1 20 0.76 0.90 0 28 0.52 0.75 1 -1 28 0.58 0.74 
w1a y 30 15 10 140 10 a01510B -4 21 0.70 0.87 -4 29 0.55 0.70 3 3 26 0.68 0.82 
w1b y 30 15 10 140 15 a01510C 2 28 0.60 0.78. 1 36 0.45 0.61 2 -2 34 0.54 0.66 

w2 y 30 15 10 140 5 a51510A 1 11 0.96 1.00 3 14 0.84 0.97 1 2 12 0.88 0.98 
w2a y 30 15 10 140 10 a51510B 3 10 0.99 1.00 2 15 0.80 0.93 1 2 17 0.78 0.94 
w2b y 30 15 10 140 15 a51510C 2 11 0.99 1.00 3 15 0.85 0.93 1 3 15 0.86 0.92 
w21 y 30 15 10 140 5 3 a51510D 1 9 0.96 1.00 0 16 0.76 0.92 2 0 17 0.74 0.92 
w2m y 30 15 10 140 10 5 a51510E 0 8 0.95 1.00 0 16 0.75 0.92 1 0 16 0.78 0.92 
w2n y 30 15 10 140 15 7 a51510F 0 9 0.93 0.99 -1 16 0.71 0.90 1 -1 15 0.72 0.90 

w5 y 30 15 10 140 5 a21510A 1 10 0.98 1.00 2 14 0.88 0.96 2 2 14 0.88 0.96 
w5a y 30 15 10 140 10 a21510B 1 10 0.99 1.00 2 14 0.87 0.96 1 2 12 0.84 0.96 
w5b y 30 15 10 140 15 a21510C 1 10 0.98 1.00 2 13 0.86 0.96 4 2 11 0.88 0.98 
w51 y 30 15 10 140 5 3 a21510D 1 11 0.98 1.00 2 12 0.85 0.96 3 1 9 0.86 0.98 
w5m y 30 15 10 140 10 5 a21510E 2 11 0.97 0.98 4 14 0.87 0.96 3 3 13 0.84 0.94 
w5n y 30 15 1 0 140 15 7 a21510F 1 7 0.99 1.00 2 16 0.78 0.90 3 1 13 0.80 0.94 

w3 y 30 15 10 140 5 m51510A 1 9 0.95 1.00 3 12 0.86 0.98 2 3 12 0.88 0.98 
w3a y 30 15 10 140 10 m51510B 2 9 0.98 1.00 3 13 0.89 0.98 3 3 13 0.88 0.98 
w3b y 30 15 10 140 15 m51510C 3 9 0.98 1.00 3 13 0.86 0.97 3 2 12 0.86 0.96 
w31 y 30 15 10 140 5 3 m51510D 2 8 0.97 1.00 2 14 0.79 0.96 2 2 14 0.80 0.94 
w3m y 30 15 10 140 10 5 m51510E 2 8 0.97 1.00 4 13 0.89 0.96 3 3 13 0.86 0.94 
w3n y 30 15 10 140 15 7 m51510F 2 8 0.97 1.00 6 15 0.85 0.93 2 5 15 0.86 0.96 

w4 y 30 15 10 140 5 m21510A 2 9 0.98 1.00 2 12 0.90 0.95 1 2 13 0.90 0.94 
w4a y 30 15 10 140 10 m21510B 1 7 0.98 1.00 4 14 0.85 0.89 4 3 13 0.86 0.90 
w41 y 30 15 10 140 5 3 m21510D 1 8 0.99 1.00 2 12 0.86 0.93 1 1 14 0.86 0.96 
w4m y 30 15 10 140 10 5 m21510E 2 8 0.98 1.00 4 15 0.83 0.88 3 3 14 0.84 0.88 -l.;.J 

+:>, 



Table D5b. Summary of wide FOV NN3 features, architecture, and performance. 
Features Architecture Train, 4 Net Average Test, 4 Net Average Best Net 

~ 
,.... N RC Err %on found RC Err % on found Net RC Err %on found 
C: C: Treatment stdev stem stem err stdev stem stem err stdev stem stem 0 J!! u, .c a, a, err 

~ ::, a, 0 > "C "C name a, a2 m2 g- :§ 8: 0 "C "C 
z u. :i: :i: 
w7 y 30 15 5 70 5 a21505A 2 11 0.97 0.99 2 13 0.92 0.97 2 1 15 0.90 0.94 
w7a y 30 15 5 70 10 a21505B 0 13 0.92 0.97 1 16 0.85 0.94 2 1 14 0.88 0.96 
w7b y 30 15 5 70 15 a21505C -2 13 0.90 0.96 1 18 0.83 0.89 2 0 18 0.84 0.90 
w71 y 30 15 5 70 5 3 a21505D 0 12 0.96 1.00 2 14 0.85 0.95 1 3 12 0.86 0.96 
w7m y 30 15 5 70 10 5 a21505E -1 11 0.92 0.97 0 19 0.78 0.88 1 0 20 0.76 0.86 
w7n y 30 15 5 70 15 7 a21505F 0 13 0.92 0.96 2 20 0.77 0.85 1 1 20 0.74 0.88 

w6 y 30 15 5 70 5 m21505A 2 11 0.99 1.00 2 14 0.89 0.96 1 1 13 0.88 0.96 
w6a y 30 15 5 70 10 m21505B 0 10 0.99 0.99 2 14 0.89 0.96 3 1 14 0.84 0.96 
w61 y 30 15 5 70 5 3 m21505D 1 11 0.99 1.00 2 15 0.88 0.93 2 1 15 0.88 0.92 
w6m y 30 15 5 70 10 5 m21505E 1 9 0.97 0.99 0 19 0.78 0.85 2 0 17 0.80 0.90 

w8 y 301515210 5 a21515A 0 13 0.92 0.98 -1 13 0.83 0.96 4 0 14 0.82 0.94 
w8a y 30 15 15 210 10 a21515B 1 12 0.98 1.00 1 14 0.80 0.96 1 0 13 0.82 0.98 
w81 y 30 15 15 210 5 3 a21515D 2 11 0.94 1.00 1 14 0.87 0.96 2 1 13 0.88 0.96 
warn y 30 15 15 210 10 5 a21515E 1 9 0.98 0.99 1 14 0.80 0.91 3 0 14 0.80 0.90 

w9 y 30 15 15 210 5 m21515A -1 10 0.95 1.00 0 14 0.86 0.95 4 -1 14 0.84 0.94 
w9a y 30 15 15 210 10 m21515B 1 10 0.98 1.00 2 13 0.86 0.96 3 0 14 0.82 0.94 
w91 y 30 15 15 210 5 3 m21515D -1 10 0.95 0.99 0 16 0.80 0.95 1 -1 14 0.80 0.96 
w9m y 30 15 15 210 10 5 m21515E 0 9 0.96 0.99 0 15 0.79 0.90 1 0 16 0.80 0.90 

w10 y 30 15 20 280 5 a21520A 2 12 0.96 1.00 2 13 0.77 0.95 1 2 13 0.78 0.96 
w10a y 30 15 20 280 10 a21520B 1 11 0.97 1.00 2 14 0.77 0.96 1 1 13 0.74 0.96 
w101 y 30 15 20 280 5 3 a21520D 1 13 0.90 0.99 1 13 0.75 0.92 4 0 13 0.74 0.92 
w10 y 30 15 20 280 10 5 a21520E 0 9 0.96 1.00 4 13 0.79 0.98 1 2 13 0.70 0.98 

w11 y 30 15 20 280 5 m21520A 2 11 0.97 0.99 4 13 0.86 0.94 3 4 11 0.88 0.94 
w11a y 30 15 20 280 10 m21520B 1 9 0.99 1.00 3 13 0.87 0.95 4 2 13 0.88 0.96 
w111 y 30 15 20 280 5 3 m21520D 1 10 0.99 1.00 4 13 0.86 0.94 4 3 12 0.86 0.94 
w11m y 30 15 20 280 10 5 m21520E 1 9 0.99 1.00 5 13 0.88 0.93 3 4 13 0.86 0.96 ..... 

w 
V, 



Table D5c. Summary of wide FOV NN3 features, architecture, and performance. 
Features Architecture Train, 4 Net Average Test, 4 Net Average Best Net 

~ 
..- N RC Err %on found RC Err %on found Net RC Err %on found 
C: C: Treatment stdev stem stem stdev stem stem err stdev stem stem 0 .!! en .c Q) Q) err err 

~ :::, Q) 0 > "O "O name 
Q) a2 m2 d a. C: - 0 "O "O 
z C: ::J a: u. J: J: 
w12 y 42 21 5 100 5 a22105A 2 11 0.95 0.99 2 14 0.90 0.95 3 1 12 0.90 0.98 
w12a y 42 21 5 100 10 a221058 1 11 0.93 0.98 3 15 0.83 0.93 4 2 14 0.80 0.94 
w121 y 42 21 5 100 5 3 a22105D 0 13 0.93 0.98 2 15 0.85 0.95 4 1 14 0.92 0.96 
w12m y 42 21 5 100 10 5 a22105E 1 10 0.97 1.00 3 14 0.80 0.94 1 3 12 0.88 0.94 

w13 y 42 21 5 100 5 m22105A 2 11 0.98 1.00 3 12 0.92 0.98 2 3 12 0.92 0.98 
w13a y 42 21 5 100 10 m22105B 3 10 1.00 1.00 4 13 0.88 0.96 1 3 11 0.90 0.96 
w131 y 42 21 5 100 5 3 m22105D 1 11 0.96 0.99 4 14 0.89 0.95 3 4 15 0.86 0.92 
w13m y 42 21 5 100 10 5 m22105E 2 9 0.98 1.00 2 15 0.84 0.90 4 0 16 0.80 0.86 

w14 y 18 9 10 80 3 a20910A 1 13 0.97 1.00 -1 12 0.80 0.91 1 -1 12 0.82 0.92 
w14a y 18 9 10 80 6 a20910B 1 11 1.00 1.00 -1 14 0.80 0.88 4 0 13 0.84 0.92 
w141 y 18 9 10 80 3 2 a20910D 0 11 0.99 0.99 0 13 0.87 0.91 1 0 13 0.90 0.92 
w14m y 18 9 10 80 6 3 a20910E 2 10 0.98 0.99 1 15 0.83 0.89 3 1 13 0.84 0.88 

w15 y 18 9 10 80 3 m20910A 1 10 0.97 1.00 1 10 0.92 0.97 1 1 10 0.92 0.98 
w15a y 18 '9 10 80 6 m20910B 2 11 0.98 1.00 3 11 0.93 0.96 1 0 12 0.90 0.96 
w151 y 18 9 10 80 3 2 m20910D 0 12 0.95 1.00 3 12 0.90 0.96 3 0 12 0.88 0.94 
w15m y 18 9 10 80 6 3 m20910E 2 10 0.97 0.99 6 15 0.94 0.94 3 5 12 0.96 0.98 

w16 y y 60 15 10 140 5 a2d1510A 2 10 0.97 1.00 1 13 0.80 0.95 4 1 12 0.78 0.96 
w16a y y 60 15 10 140 10 a2d1510B 2 9 0.97 1.00 2 13 0.87 0.96 4 1 13 0.82 0.94 
w161 y y 60 15 10 140 5 3 a2d1510D 1 10 0.96 1.00 2 13 0.84 0.95 4 1 14 0.84 0.94 
w16m y y 60 15 10 140 10 5 a2d1510E 1 8 0.99 1.00 1 14 0.79 0.92 1 1 12 0.78 0.92 

w17 y y 60 15 10 140 5 m2d1510 2 8 0.98 1.00 3 12 0.90 0.96 3 2 12 0.88 0.96 
w17a y y 60 15 10 140 10 m2d1510 0 7 0.99 1.00 2 13 0.87 0.93 2 1 13 0.84 0.94 
w171 y y 60 15 10 140 5 3 2d1510 1 9 0.95 1.00 0 13 0.83 0.92 1 0 12 0.84 0.94 
w17m y y 60 15 10 140 10 5 m2d1510 1 7 0.97 1.00 1 14 0.80 0.93 3 0 13 0.78 0.92 -l>J 
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Table D5d. Summary of narrow FOV NN3 features, architecture, and performance. 
Features Architecture Train, 4 Net Average 

i!: 

I 
~ a b C 

m1 y y y 
m1a y y y 
m1b y y Y 
m1c 
m1d 
m1e 
m1f 
m1g 
m1h 
m1i 

y y 
y y 
y y 
y y 
y y 
y y 
y y 

m2 y y y 
m2a yyy 
m2b y y y 
m2c y y 
m2d y y 
m2e y y 
m2f y y 
m2g y Y 
m2h y Y 

m3 y y y 
m3a yyy 
m3b y y y 
m3c y Y 
m3d y y 
m3e y y 
m3f y y 
m3g y y 
m3h y Y 

"' RC Err % on found 

J!l rn 
~ ~ 

C 
G) 5i Treatment err stdev stem stem 

:::, G) 

g- ;3 
36 15 
36 15 
36 15 
30 15 
30 15 
30 15 
30 15 
30 15 
30 15 
30 15 

0.. 
1 
1 

1 
1 
1 
1 
1 
1 

~ 
!.!. ;;i:; 

14 7 
14 14 
14 21 
14 6 
14 12 
14 18 
14 6 
14 12 
14 18 
14 10 

"'C 
32 
;;i:; 

3 
4 
6 

name 

abc107 
abc114 
abc121 
bc106 
bc112 
bc118 
bc1063 
bc1124 
bc1186 
bc1B 

36 15 2 28 7 abc207 
36 15 2 28 14 abc214 
36 15 2 28 21 abc221 
30 15 2 28 6 bc206 
30 15 2 28 12 bc212 
30 15 2 28 18 bc218 
30 15 2 28 . 6 3 bc2063 
30 15 2 28 12 4 bc2124 
30 15 2 28 18 6 bc2186 

36 15 3 43 7 abc307 
36 15 3 43 14 abc314 
36 15 3 43 21 abc321 
30 15 3 43 6 bc306 
30 15 3 43 12 bc312 
30 15 3 43 18 bc318 
30 15 3 43 6 3 bc3063 
30 15 3 43 12 4 bc3124 
30 15 3 43 18 6 bc3186 

-5 
-3 
,-4 

-1 
0 

-1 
1 
0 
0 
0 

16 
16 
16 
11 
11 
11 
11 
11 
11 
11 

0.85 
0.87 
0.86 
0.92 
0.89 
0.90 
0.91 
0.92 
0.92 
0.90 

0.95 
0.94 
0.94 
1.00 
1.00 
1.00 
0.99 
0.99 
1.00 
1.00 

-5 17 0.84 0.94 
-4 16 0.86 0.95 
-4 16 0.87 0.95 
-6 11 0.81 0.99 
-5 11 0.83 1.00 
-5 12 0.83 1.00 
-3 11 0.87 0.99 
-4 11 0.87 0.98 
-4 11 0.86 0.99 

-5 17 0.84 0.94 
-3 15 0.87 0.96 
-3 16 0.85 0.95 

-11 11 0.68 1.00 
-7 11 0.77 1.00 
-8 11 0.76 1.00 
-6 11 0.83 0.99 
-7 11 0.81 0.98 
-7 11 0.79 1.00 

Test, 4 Net Average 
RC Err % on found 
err stdev stem stem 

-4 15 0.78 0.95 
-2 13 0.83 0.96 
-2 13 0.83 0.96 
2 13 0.92 0.96 
2 14 0.91 0.97 

14 0.90 0.97 
4 14 0.92 0.96 
3 13 0.92 0.97 
3 14 0.91 0.96 

14 0.90 0.96 

-3 14 0.81 0.96 
-2 12 0.83 0.97 
-2 12 0.83 0.97 
-3 12 0.84 0.98 
-2 13 0.85 0.98 
-1 13 0.83 0.98 
0 13 0.88 0.97 

-1 13 0.87 0.98 
-1 13 0.87 0.98 

-3 13 0.79 0.95 
-2 12 0.82 0.97 
-2 12 0.83 0.97 
-7 11 0.65 1.00 
-4 13 0.72 0.98 
-5 12 0.70 0.98 
-3 14 0.80 0.97 
-4 13 0.77 0.97 
-4 13 0.78 0.98 

Best Net 
Net RC Err % on found 

err stdev stem stem 

3 -2 13 0.84 0.96 
1 -2 13 0.84 0.96 
3 -1 13 0.84 0.96 
2 1 13 0.92 0.96 
3 0 13 0.90 0.98 
3 0 14 0.92 0.96 
1 2 13 0.92 0.96 
2 4 12 0.94 0.98 
4 3 14 0.90 0.96 
1 2 14 0.92 0.96 

2 -3 13 0.82 0.96 
4 -1 11 0.86 0.98 
2 -1 10 0.84 0.98 
4 -1 13 0.84 0.98 
1 0 13 0.88 0.98 
4 -1 13 0.84 0.98 
1 0 13 0.88 0.98 
1 0 12 0.88 0.98 
2 0 13 0.88 0.98 

2 -2 12 0.82 0.96 
4 -1 11 0.86 0.98 
3 -1 11 0.84 0.98 
4 -3 13 0.70 0.98 
1 -2 14 0.80 0.96 
2 -3 13 0.74 0.96 
4 -1 13 0.86 0.98 
4 -2 14 0.84 0.96 
3 -3 13 0.84 0.98 -u.> 
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Table D5e. Summary of narrow FOV NN3 features, architecture, and performance. 
Features Architecture Train, 4 Net Average 

~ 

1 
Q) 
z_ 
m4 
m4a 

m4b 
m4c 
m4d 
m4e 
m4f 
m4g 
m4h 
m4i 
m4j 
m4k 

m5 

m5a 

m5b 
m5c 

m5d 

m5e 
m5f 

m5g 
m5h 

a C d 

y y y 
y y y 
y y y 

y y 

y y 

y y 

y y 
y y 
y y 

y y 
y y 
y y 

y y y 
y y y 

y y y 
y y 
y y 

y y 
y y 
y y 
y y 

m6 Y Y Y 
m6a yyy 
m6b Y Y Y 
m6c Y Y 

m6d Y Y 
m6e Y Y 
m6f Y Y 
m6g Y Y 

m6h Y Y 

N RC Err % on found 

.fl :3 .c 
C: 
Q) 

"'O :g 

~ Treatment err stdev stem stem 
:::, 
a. 
C: 

36 
36 
36 
30 
30 

C: 
;:i_ 

15 
15 
15 
15 
15 

.B 
~ 

~ u. 
14 
14 
14 
14 
14 

_;t_ 

7 
14 
21 
6 
12 

14 18 

"'O 
"'O 
!i; 

30 15 
30 15 
30 15 
30 15 
30 15 
30 15 
30 15 

14 6 3 
14 12 4 
14 18 6 

36 15 2 

36 15 2 

36 15 2 

30 15 2 

30 15 2 

30 15 2 
30 15 2 
30 15 2 

30 15 2 

14 5 
14 10 
14 15 

28 7 
28 14 
28 21 
28 6 
28 12 
28 18 
28 6 
28 12 
28 18 

36 15 3 42 7 
36 15 3 42 14 
36 15 3 42 21 
30 15 3 42 6 
30 15 3 42 12 
30 15 3 42 18 

3 
4 
6 

30 15 3 42 6 3 
30 15 3 42 12 4 
30 15 3 42 18 6 

name 

acd107 
acd114 
acd121 
cd106 
cd112 
cd118 

cd1063 
cd1124 
cd1186 
cd1A 
cd1B 
cd1C 

acd207 
acd214 
acd221 
cd206 
cd212 
cd218 

cd2063 
cd2124 
cd2186 

acd307 
acd314 
acd321 
cd306 
cd312 
cd318 

cd3063 
cd3124 
cd3186 

-5 
-3 
-4 

-2 
-1 

-2 
0 

-1 
-2 
-1 
-2 

-1 

-5 
-5 
-5 

-7 

-6 

-6 
-5 
-5 

-3 

-4 

-3 

-3 
-10 

-9 

-9 
-5 
-8 
-6 

17 
16 
16 
11 
11 

0.83 
0.86 
0.85 
0.92 
0.92 

0.95 
0.94 
0.94 
1.00 
1.00 

11 0.91 1.00 
12 0.90 0.99 
11 0.88 1.00 
12 0.88 1.00 
11 0.90 1.00 
12 0.88 1.00 
11 0.88 1.00 

17 
11 

12 
10 
11 
11 
12 
11 
11 

0.84 
0.84 
0.84 
0.81 
0.83 
0.84 
0.83 
0.86 
0.90 

0.95 
1.00 
1.00 
1.00 
1.00 
1.00 
1.00 
0.99 
1.00 

16 0.86 0.95 
15 0.86 0.95 
16 0.86 0.94 
11 0.70 1.00 
11 0.74 1.00 
11 0.74 1.00 
12 0.87 0.99 
13 0.79 0.99 
12 0.85 0.99 

Test, 4 Net Average 
RC Err % on found 
err stdev stem stem 

-3 
-2 
-3 

2 

4 
2 

3 
2 

2 

-4 

-1 

-2 

-4 

-3 

-3 
-1 

-1 

-1 

-3 

-2 
-3 

-6 

-5 
-5 

-3 
-5 

-3 

14 
13 
14 
13 
13 
13 
13 
13 
12 
12 
12 
13 

14 
12 
12 
12 
12 
12 
14 
13 
13 

13 
12 
12 
12 
11 

11 
13 
13 
13 

0.81 
0.84 
0.83 
0.93 
0.92 
0.92 
0.93 
0.87 
0.89 
0.93 
0.92 
0.89 

0.79 
0.85 
0.87 
0.85 
0.87 
0.86 
0.80 
0.85 
0.89 

0.83 
0.83 
0.82 
0.68 
0.70 
0.71 
0.85 
0.76 
0.84 

0.96 
0.96 
0.96 
0.96 
0.96 
0.96 
0.97 
0.98 
0.99 
0.99 
0.99 
0.97 

0.96 
0.99 
0.98 
0.98 
0.98 
0.98 
0.99 
0.99 
0.97 

0.98 
0.97 
0.97 
1.00 
1.00 
1.00 
0.98 
0.98 
0.98 

Best Net 
Net RC Err % on found 

err stdev stem stem 

3 -2 13 0.84 0.96 
4 -1 13 0.86 0.96 
1 -2 13 0.84 0.96 
2 1 13 0.94 0.96 
3 0 13 0.92 0.96 
3 0 13 0.92 0.96 

3 12 0.94 0.98 
2 1 13 0.74 1.00 
4 2 13 0.92 0.96 
3 1 12 0.92 0.98 
2 1 11 0.90 1.00 
3 1 13 0.82 1.00 

4 
2 

2 

4 
4 
2 
2 

2 

2 
3 

4 
4 
1 

2 

2 

-2 

0 
-3 
-2 

-3 
0 
0 
0 

-2 

-1 

-2 
-5 

-4 

-4 

-1 

-3 
-2 

12 
13 
13 
12 
13 
12 
13 
13 
13 

0.80 
0.94 
0.88 
0.86 
0.90 
0.86 
0.92 
0.92 
0.90 

0.96 
0.98 
0.98 
0.98 
0.98 
0.98 
0.98 
0.98 
0.98 

11 0.88 1.00 
11 0.84 0.98 
11 0.84 0.98 
11 0.68 1.00 
11 0.70 1.00 
11 0.74 1.00 
13 0.88 0.98 
13 0.86 0.98 
13 0.86 0.98 -w 

00 



Table D5f. Summary of narrow FOV NN3 features, architecture, and performance. 

Features Architecture Train, 4 Net Average - RC Err %on found 
i!: 

~ N Treatment err stdev stem stem C- C 0 s Ill Cl) Cl) 

~ s:. e, name ::::, Cl) i 
"C "C 

Cl) C e f a. C 32 32 z C ::i a. u.. J: J: 

m7c y y 30 15 1 14 6 ce106 -4 20 0.87 0.89 
m7d y y 30 15 1 14 12 ce112 -4 19 0.87 0.89 
m7e y y 30 15 1 14 18 ce118 -1 18 0.91 0.91 
m7i y y 30 15 1 14 5 ce1A -3 17 0.95 0.95 
m7j y y 30 15 1 14 10 ce1B 0 17 0.93 0.94 
m7k y y 30 15 1 14 15 ce1C -3 15 0.96 0.96 
m71 y y 30 15 1 14 5 3 ce1D 0 19 0.88 0.90 
m7m y y 30 15 1 14 10 5 ce1E 0 17 0.93 0.93 
m7n y y 30 15 1 14 15 7 ce1F 2 16 0.95 0.95 

m8c y y 30 15 1 14 6 ef106 -1 14 0.95 0.96 
m8d y y 30 15 1 14 12 ef112 -1 13 0.96 0.96 
m8e y y 30 15 1 14 18 ef118 -1 13 0.96 0.96 
m8i y y 30 15 1 14 5 ef1A 0 14 0.97 0.97 
m8j y y 30 15 1 14 10 ef1B 0 13 0.98 0.98 
m8k y y 30 15 1 14 15 ef1C 0 14 0.96 0.97 
m81 y y 30 15 1 14 5 3 ef1D 2 13 0.97 0.99 
m8m y y 30 15 1 14 10 5 ef1E 2 14 0.94 0.96 · 
m8n y y 30 15 1 14 15 7 ef1F 2 14 0.95 0.96 

Test, 4 Net Average 
RC Err %on found Net 
err stdev stem stem 

0 20 0.87 0.88 1 
1 20 0.86 0.88 3 
0 20 0.87 0.88 4 

-1 14 0.90 0.92 2 
1 13 0.93 0.94 2 
2 12 0.94 0.96 4 
1 17 0.91 0.92 3 
0 17 0.89 0.90 2 
0 17 0.89 0.90 3 

0 14 0.92 0.95 3 
1 14 0.94 0.96 2 
1 14 0.94 0.96 2 

-1 12 0.95 0.96 3 
1 12 0.94 0.97 2 

-1 12 0.92 0.96 1 
0 14 0.91 0.94 3 
0 13 0.91 0.95 3 
1 13 0.94 0.96 3 

RC 
err 

-1 
0 
0 
0 

-1 
3 
0 
0 

-1 

0 
1 
1 
0 
0 
0 
1 
0 
0 

Best Net 
Err %on 

stdev stem 

20 0.86 
20 0.86 
20 0.88 
12 0.92 
15 0.92 
12 0.94 
17 0.90 
16 0.92 
20 0.86 

13 0.92 
13 0.96 
13 0.96 
13 0.94 
12 0.94 
12 0.94 
13 0.92 
13 0.90 
13 0.92 

found 
stem 

0.88 
0.88 
0.88 
0.92 
0.92 
0.96 
0.92 
0.94 
0.86 

0.96 
0.96 
0.96 
0.96 
0.96 
0.96 
0.94 
0.96 
0.96 

-I.,.) 
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Table E1. Statistical comparison of NN1 networks with 1 and 4 outputs. 

Features a ae be h 
Outputs 1 4 1 4 1 4 1 4 
Network 11 11c 12 12c 12a 12b 13 13b 
Mean error, mm 50.6 50.9 47.1 40.9 58.9 61.2 11.8 7.1 
Stdev error, mm 117.2 117.4 105.1 100.6 108.7 112.0 53.7 38.5 

a ae be h 
Mean difference -0.2 6.2 -2.3 4.7 
t-test 0.288 0.624 0.719 0.390 
F-test 0.991 0.759 0.835 0.021 

..... 
+a-..... 



Table E2. Comparison of objective functions used for NN training. 

Features nc 
Network 14d 14da1 14da2 14da4 14da3 
Mean error, mm 0.1 0.8 1.1 -1.0 -4.5 
Stdev error, mm 17.9 22.5 22.8 25.0 24.5 

t-test 14da1 14da2 14da4 14da3 
14d 0.714 0.624 0.641 0.032 

14da1 0.689 0.050 0.000 
14da2 0.058 0.000 
14da4 0.001 

F-test 14da1 14da2 14da4 14da3 
14d 0.113 0.094 0.021 0.029 

14da1 0.927 0.460 0.540 
14da2 0.518 0.602 
14da4 0.899 

Objective function 
14d Classification rate 

14da1 RC confusion matrix, trapezoidal fuzzy mbr. func. 
14da2 Stem confusion matrix 
14da4 RC confusion matrix, rectangular fuzzy mbr. func. 
14da3 rms error 

....... 
~ 
N 



Table E3a. Statistical comparison of input features for NN1 networks with similar architecture 

Architecture 2 hidden layer nodes, 4 outputs 
Features nae nh nr na nbe nb ncd nc h ae sg a C be 
Network 15d 16 14h 14 15a 14a 14e 14c 13b 12c 17g 11c 11e 12b 
Mean error, mm 2.3 2.8 3.4 3.5 4.5 4.9 7.4 10.7 7.1 40.9 49.0 50.9 55.7 61.2 
Stdev error, mm 16.6 19.3 16.2 16.7 19.4 18.1 22.9 28.3 38.5 100.6 105.0 117.4 108.1 112.0 

t-test nh nr na nbe nb nccl nc h ae sg a C be 
nae 0.754 0.100 0.020 0.068 0.003 0.005 0.006 0.355 0.007 0.003 0.004 0.001 0.000 
nh 0.688 0.629 0.442 0.275 0.078 0.028 0.405 0.012 0.004 0.007 0.002 0.001 
nr 0.774 0.425 0.159 0.044 0.022 0.481 0.010 0.003 0.005 0.001 0.001 
na 0.425 0.158 0.030 0.018 0.500 0.010 0.003 0.005 0.001 0.001 
nbe 0.617 0.027 0.029 0.631 0.011 0.004 0.006 0.001 0.001 
nb 0.079 0.048 0.675 0.013 0.004 0.007 0.002 0.001 
ncd 0.136 0.959 0.019 0.007 0.009 0.003 0.001 
nc 0.580 0.031 0.011 0.015 0.004 0.002 
h 0.013 0.004 0.007 0.002 0.001 
ae 0.157 0.343 0.063 0.032 
sg 0.857 0.373 0.183 
a 0.492 0.238 
C 0.297 

F-test nh nr na nbe nb nccl nc h ae sg a C be 
nae 0.292 0.867 0.984 0.291 0.558 0.026 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
nh 0.223 0.302 0.998 0.639 0.237 0.009 0.000 0.000 0.000 0.000 0.000 0.000 
nr 0.852 0.222 0.452 0.017 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
na 0.300 0.572 0.028 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
nbe 0.637 0.238 0.009 0.000 0.000 0.000 0.000 0.000 0.000 
nb 0.100 0.002 0.000 0.000 0.000 0.000 0.000 0.000 
ncd 0.145 0.000 0.000 0.000 0.000 0.000 0.000 
nc 0.033 0.000 0.000 0.000 0.000 0.000 
h 0.000 0.000 0.000 0.000 0.000 

ae 0.765 0.284 0.616 0.455 
sg 0.439 0.839 0.654 
a 0.568 0.744 
C 0.806 -~ 
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Table E3b. Statistical comparison of input features for NN1 networks with similar architecture 

Architecture 3 hidden layer nodes, 4 outputs 
Features nru nae na nee nbe nccle nsg nh ned ne ncfg h ed cfg ae sg a e 

Network 14i 15e 14b 15g 15b 15i 17d 16a 14f 14d 17 13e 11g 17b 12d 17f 11d 11f 

Mean error, mm 1.3 2.2 3.2 4.7 5.4 6.1 6.7 6.7 7.7 9.0 13.5 7.2 28.1 38.9 46.2 48.9 50.7 61.3 

Stdev error, mm 17.3 16.8 16.5 18.0 19.1 13.7 20.0 23.2 22.5 24.8 27.3 38.4 94.2 93.3 106.9 105.1 117.3 112.0 

t-test nae na nee nbe nede nsg nh ned ne nefg h ed cfg ae sg a e 

nru · 0.546 0.196 0.092 0.021 0.046 0.007 0.089 0.009 0.007 0.000 0.238 0.045 0.005 0.004 0.002 0.004 0.000 

nae 0.331 0.099 0.032 0.029 0.001 0.098 0.002 0.005 0.000 0.346 0.053 0.007 0.005 0.003 0.005 0.001 

na 0.339 0.175 0.160 0.035 0.229 0.042 0.030 0.001 0.439 0.065 0.008 0.006 0.004 0.006 0.001 

nee 0.652 0.445 0.188 0.450 0.117 0.101 0.005 0.645 0.082 0.012 0.007 0.004 0.006 0.001 

nbe 0.725 0.170 0.639 0.132 0,076 0.003 0.740 0.092 0.013 0.008 0.005 0.007 0.001 

nede 0.749 0.806 0.433 0.307 0.024 0.850 0.107 0.018 0.010 0.006 0.009 0.001 

nsg 1.000 0.377 0.180 0.007 0.929 0.113 0.019 0.010 0.007 0.010 0.001 

nh 0.627 0.446 0.018 0.934 0.122 0.022 0.011 0.007 0.010 0.001 

ned 0.446 0.006 0.928 0.126 0.022 0.011 0.008 0.010 0.001 

ne 0.048 0.762 0.159 0.030 0.016 0.011 0.015 0.002 

ncfg 0.292 0.261 0.053 0.027 0.018 0.024 0.003 

h 0.093 0.012 0.007 0.004 0.008 0.001 

ed 0.138 0.096 0.059 0.059 0.012 

efg 0.447 0.241 0.341 0.047 

ae 0.681 0.569 0.132 

sg 0.864 0.172 

a 0.224 
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..i:,.. 



Table E3c. Statistical comparison of input features for NN1 networks with similar architecture 

Architecture 3 hidden layer nodes, 4 outputs 
Features nru nae na nee nbe nede nsg nh ned ne ncfg h 

Network 14i 15e 14b 15g 15b 15i 17d 16a 14f 14d 17 13e 

Mean error, mm 1.3 2.2 3.2 4.7 5.4 6.1 6.7 6.7 7.7 9.0 13.5 7.2 

Stdev error, mm 17.3 16.8 16.5 18.0 19.1 13.7 20.0 23.2 22.5 24.8 27.3 38.4 

F-test nae na nee nbe nede nsg nh ned ne nefg h 
nru 0.853 0.736 0.769 0.484 0.112 0.315 0.042 0.067 0.013 0.002 0.000 

nae 0.880 0.632 0.376 0.160 0.234 0.027 0.044 0.007 0.001 0.000 

na 0.528 0.300 0.209 0.180 0.018 0.031 0.005 0.001 0.000 

nee 0.684 0.060 0.476 0.081 0.123 0.027 0.004 0.000 

nbe 0.023 0.759 0.179 0.254 0.070 0.014 0.000 

nede 0.010 0.000 0.001 0.000 0.000 0.000 

nsg 0.299 0.404 0.131 0.031 0.000 

nh 0.839 0.635 0.260 0.001 

ned 0.498 0.184 0.000 

ne 0.514 0.003 

ncfg 0.018 

h 
ed 
efg 
ae 
sg 
a 

ed 

11g 

28.1 

94.2 

ed 
0.000 

0.000 

0.000 

0.000 

0.000 

0.000 

0.000 

0.000 

0.000 

0.000 

0.000 

0.000 

efg ae sg a e 

17b 12d 17f 11d 11f 

38.9 46.2 48.9 50.7 61.3 

93.3 106.9 105.1 117.3 112.0 

efg ae sg a e 
0.000 0.000 0.000 0.000 0.000 

0.000 0.000 0.000 0.000 0.000 

0.000 0.000 0.000 0.000 0.000 

0.000 0.000 0.000 0.000 0.000 

0.000 0.000 0.000 0.000 0.000 

0.000 0.000 0.000 0.000 0.000 

0.000 0.000 0.000 0.000 0.000 

0.000 0.000 0.000 0.000 0.000 

0.000 0.000 0.000 0.000 0.000 

0.000 0.000 0.000 0.000 0.000 

0.000 0.000 0.000 0.000 0.000 

0.000 0.000 0.000 0.000 0.000 

0.949 0.378 0.446 0.127 0.228 

0.345 0.409 0.112 0.204 

0.905 0.516 0.743 

0.442 0.655 

0.747 
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Table E3d. Statistical comparison of input features for NN1 networks with similar architecture 

Architecture 4 hidden layer nodes, 4 outputs 
Features ncde nee nh nbe nsg ncd ncfg nae h cfg cd 
Network 15j 15h 16b 15c 17e 14g 17a 15f 13d 17c 11h 
Mean error, mm 2.4 3.6 4.1 4.5 6.8 7.5 14.5 12.4 11.9 34.8 35.2 
Stdev error, mm 15.9 18.1 16.4 16.6 19.8 19.4 28.1 41.8 53.6 90.9 99.5 

t-test nee nh nbe nsg ncd ncfg nae h cfg cd 
ncde 0.554 0.344 0.244 0.024 0.003 0.000 0.091 0.218 0.013 0.025 
nee 0.783 0.406 0.039 0.083 0.001 0.092 0.258 0.015 0.028 
nh 0.814 0.181 0.096 0.002 0.156 0.300 0.019 0.033 

nbe 0.069 0.079 0.000 0.159 0.330 0.020 0.033 
nsg 0.654 0.006 0.321 0.501 0.034 0.049 
ncd 0.007 0.416 0.586 0.042 0.055 
ncfg 0.738 0.745 0.104 0.135 
nae 0.921 0.057 0.084 

h 0.028 0.055 
cfg 0.975 

F-test nee nh nbe nsg ncd ncfg nae h cfg cd 
ncde 0.381 0.837 0.792 0.137 0.178 0.000 0.000 0.000 0.000 0.000 
nee 0.502 0.540 0.537 0.636 0.003 0.000 0.000 0.000 0.000 
nh 0.954 0.199 0.254 0.000 0.000 0.000 0.000 0.000 

nbe 0.220 0.278 0.000 0.000 0.000 0.000 0.000 
nsg 0.885 0.016 0.000 0.000 0.000 0.000 
ncd 0.011 0.000 0.000 0.000 0.000 
ncfg 0.006 0.000 0.000 0.000 
nae 0.087 0.000 0.000 

h 0.000 0.000 
cfg 0.527 
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Table E3e. Statistical comparison of input features for NN1 networks with similar architecture 

Architecture 2 hidden layers with 3 PE's each, 4 outputs 2 hidden layers, 4 PE's each, 4 outputs 
Features nae nee nc naevu ncde · ncd cd C ncde nae nee ncd cd 
Network 15e2 15g2 14d2 15k2 15i2 14f2 11g2 11f2 15j2 15f2 15h2 14g2 11h2 
Mean error, mm 5.4 5.5 5.4 6.3 7.9 10.3 29.8 52.5 2.1 5.9 8.6 8.4 42.0 
Stdev error, mm 15.1 18.5 19.2 14.6 18.4 21.9 97.1 119.9 18.3 14.7 15.3 19.1 108.5 

t-test nee nc naevu ncde ncd cd C nae nee ncd cd 
nae 0.922 0.989 0.073 0.080 0.058 0.080 0.007 ncde 0.020 0.006 0.011 0.012 
nee 0.953 0.556 0.050 0.079 0.079 0.006 nae 0.259 0.227 0.024 
nc 0.486 0.131 0.005 0.079 0.006 nee 0.939 0.028 

naevu 0.247 0.105 0.092 0.008 ncd 0.026 
ncde 0.358 0.113 0.009 
ncd 0.156 0.013 
cd 0.063 

F-test nee nc naevu ncde ncd cd C nae nee ncd cd 
nae 0.157 0.095 0.824 0.171 0.011 0.000 0.000 ncde 0.129 0.213 0.757 0.000 
nee 0.797 0.102 0.962 0.253 0.000 0.000 nae 0.784 0.068 0.000 
nc 0.059 0.761 0.375 0.000 0.000 nee 0.121 0.000 

naevu 0.112 0.006 0.000 0.000 ncd 0.000 
ncde 0.234 0.000 0.000 
ncd 0.000 0.000 
cd 0.143 
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Table E4a. Statistical comparison of NN1 network architectures for treatments with common input features. 

Features nae nh ncde na 
Architecture 2 3 4 33 44 2 3 4 3 4 33 44 2 3 
Network L5d L5e L5f L5e2 L5f2 16 16a 16b 15i 15j 15i2 15j2 14 14b 
Mean error, mm 2.3 2.2 12.4 5.4 5.9 2.8 6.7 4.1 6.1 2.4 7.9 2.1 3.5 3.2 
Stdev error, mm 16.6 16.8 41.8 15.1 14.7 19.3 23.2 16.4 13.7 15.9 18.4 18.3 16.7 16.5 

t-test 3 4 33 44 3 4 4 33 44 
2 0.891 0.071 0.001 0.000 2 0.192 0.570 3 0.003 0.336 0.065 I 0.185 
3 0.069 0.004 0.001 3 0.152 4 0.014 0.880 
4 0.205 0.243 33 0.001 
33 0.192 

F-test 3 4 · 33 44 3 4 4 33 44 
2 0.932 0.000 0.508 0.391 2 0.208 0.255 3 0.302 0.043 0.048 I o.932 
3 0.000 0.455 0.345 3 0.017 4 0.318 0.340 
4 0.000 0.000 33 0.963 
33 0.844 

Architecture: 2) 2 H 1 PE's 3) 3 H1 PE's 4) 4 H1 PE's 33) 3 H1, 3 H2 PE's 44) 4 H1, 4 H2 PE's 
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Table E4b. Statistical comparison of NN1 network architectures for treatments with common input features. 

Features nee nbe nsg ncd 
Architecture 3 4 33 44 2 3 4 3 4 2 3 4 33 44 
Network 15g 15h 15g2 15h2 15a 15b 15c 17d 17e 14e 14f 14g 14f2 14g2 
Mean error, mm 4.7 3.6 5.5 8.6 4.5 5.4 4.5 6.7 6.8 7.4 7.7 7.5 10.3 8.4 
Stdev error, mm 18.0 18.1 18.5 15.3 19.4 19.1 16.6 20.0 19.8 22.9 22.5 19.4 21.9 19.1 

t-test 4 33 44 3 4 3 4 33 44 
3 0.004 0.291 0.125 2 0.383 0.961 I o.920 2 0.660 0.935 0.040 0.509 
4 0.017 0.049 3 0.435 3 0.901 0.101 0.638 
33 0.224 4 0.069 0.540 

33 0.044 

F-test 4 33 44 3 4 3 4 33 44 
3 0.983 0.847 0.251 2 0.932 0.279 I o.94o 2 0.900 0.239 0.737 0.207 
4 0.864 0.243 3 0.319 3 0.292 0.833 0.255 
33 0.181 4 0.399 0.931 

33 0.353 

Architecture: 2) 2 H1 PE's 3) 3 H1 PE's 4) 4 H1 PE's 33) 3 H1, 3 H2 PE's 44) 4 H1, 4 H2 PE's 
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Table E4c. Statistical comparison of NN1 network architectures for treatments with common input features. 

Features 
Architecture 
Network 
Mean error, mm 
Stdev error, mm 

t-test 

F-test 

2 
14c 

10.7 
28.3 

2 
3 

2 
3 

nc 
3 33 

14d 14d2 
9.0 5.4 

24.8 19.2 

3 33 
0.509 0.055 

0.038 

3 33 
0.262 0.002 

. 0~011 

2 
13b 
7.1 

38.5 

2 
3 

2 
3 

h 
3 4 

13c 13d 
7.2 11.9 

38.4 53.6 

3 4 
0.775 0.382 

0.388 

3 4 
0.986 0.023 

0.022 

ncfg cd 
3 4 3 4 33 44 

17 17a 11g 11h 11g2 11h2 
13.5 14.5 28.1 35.2 29.8 42.0 
27.3 28.1 94.2 99.5 97.1 108.5 

4 33 44 
I 0.000 3 0.230 0.649 0.133 

4 0.308 0.539 
33 0.241 

4 33 44 
1 o.844 3 0. 700 0.832 0.325 

4 0.863 0.548 
33 0.440 

Architecture: 2) 2 H1 PE's 3) 3 H1 PE's 4) 4 H1 PE's 33) 3 H1, 3 H2 PE's 44) 4 H1, 4 H2 PE's 

cfg 
3 4 

17b 17c 
38.9 34.8 
93.3 90.9 

I 0.125 

I o.853 
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Table E4d. Statistical comparison of NN1 network architectures for treatments with common input features. 

Features ae sg a 
Architecture 2 3 2 3 2 3 
Network 12c 12d 17f 17g 11c 11d 
Mean error, mm 40.9 46.2 48.9 49.0 50.9 50.7 
Stdev error, mm 100.6 106.9 105.1 105.0 117.4 117.3 

t-test 
I 0.452 I 0.032 I o.301 

F-test 
1 o.674 I o.998 1 o.998 

Architecture: 2) 2 H1 PE's 3) 3 H1 PE's 33) 3 H1, 3 H2 PE's 

C 

2 3 33 
11e 11f 11f2 

55.7 61.3 52.5 
108.1 112.0 119.9 

3 33 
2 I 0.287 o. 739 
3 0.420 

3 33 

2 I o.805 0.472 
3 0.636 
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Table E5a. Comparison of NN2 features for treatments with common architecture and NN1 features. 

N N 1 features na na na 
NN2 architecture 5 hidden layer PE's 3 hidden layer PE's 15 hidden PE's 
Network h4h h4c h4f h4a h4g h4e h4d h4b h4 
NN2 features C CF CFSR CFR CFSR CF CFR CF CFR 
Mean error, mm -0.2 0.2 0.2 2.4 -0.3 0.1 1.0 0.4 0.6 
Stdev error, mm 18.0 18.0 18.6 15.8 17.6 17.3 18.1 18.0 17.9 

t-test CF CFSR CFR CF CFR 
C 0.785 0.601 0.025 CFSR 0.271 0.151 I o.842 

CF 0.939 0.109 CF 0.258 
CFSR 0.030 

F-test CF CFSR CFR CF CFR 
C 0.996 0.808 0.370 CFSR 0.921 0.844 I o.955 

CF 0.812 0.368 CF 0.767 
CFSR 0.255 

-V, 
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Table E5b. Comparison of NN2 features for treatments with common architecture and NN1 features. 

NN1 features nh nh nae 
NN2 architecture 5 hidden layer PE's 3 hidden layer PE's 3 hidden PE's 
Network h6a h6 h6b h6c h6d h6e h5b h5c 
NN2 features CF CFR C CFR CF C CFR CF 
Mean error, mm 4.7 5.6 7.2 3.3 5.1 10.0 0.0 4.0 
Stdev error, mm 24.9 25.8 24.9 25.4 27.6 26.4 17.7 16.4 

t-test CFR C CF C 

CF I 0.231 0.000 CFR 0.047 0.000 I 0.004 
CFR 0.004 CF 0.000 

CFR C CF C 
F-test CF I 0.801 0.998 CFR I 0.562 0.798 I 0.601 

CFR 0.803 CF 0.746 

-V, 
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Table E6. Statistical comparison of NN2 networks with inputs from different NN1 networks. 

NN2 features CFR 
NN2 architecture 5 hidden layer PE's 3 hidden layer PE's 5 hidden layer PE's 
Net h4a h6 h5 h5b h4d h6c h4c h5a h6a 
NN1 features na nh nbe nae na nh na nae nh 
Mean error, mm 2.4 5.6 9.2 0.0 1.0 3.3 0.2 3.0 4.7 
Stdev error, mm 15.8 25.8 31.0 17.7 18.1 25.4 18.0 16.8 24.9 

t-test nh nbe na nh nae nh 
na I 0.193 0.061 nae 0.353 0.225 na 0.016 0.109 
nh 0.201 na 0.401 nae 0.481 

F-test nh nbe na nh nae nh 
na I 0.001 0.000 nae I 0.875 0.012 

nna: I 0.644 0.025 
nh 0.203 0.019 0.007 na 

CF 
3 hidden layer PE's 
h4e h5c h6d 

na nae nh 
0.1 4.0 5.1 

17.3 16.4 27.6 

nae nh 

na I 0.000 0.099 
0.719 nae 

nae nh 

na I 0.707 0.001 
0.000 nae 
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Table E7a. Statistical comparison of NN2 network architecture for common NN1 and NN2 input features. 

N N 1 features na 
NN2 features CFR CF 
Network h4i h4k h4 h4j h4d h4a h4e h4c h4b 
Connectivity line line full line full full full full full 
Hidden PE's 5 5 15 5 3 5 3 5 15 
In/hid connections 105 45 675 60 135 225 90 150 450 
Mean error, mm 0.1 0.1 0.6 0.9 1.0 2.4 0.1 0.2 0.4 
Stdev error, mm 18.1 18.5 17.9 18.0 18.1 15.8 17.3 18.0 18.0 

t-test 45 675 60 135 225 150 450 
105 0.948 0.600 0.321 0.306 0.106 90 0.817 0.609 
45 0.554 0.418 0.365 0.022 150 0.738 

675 0.745 0.504 0.072 
60 0.958 0.233 
135 0.248 

F-test 45 675 60 135 225 150 450 
105 0.884 0.918 0.954 0.988 0.338 90 0.800 0.792 
45 0.804 0.839 0.873 0.270 150 0.991 

675 0.964 0.930 0.392 
60 0.966 0.367 
135 0.345 

CFSR 
h4f h4g 
full full 

5 3 
300 180 
0.2 -0.3 

18.6 17.6 

I o.575 

I o.695 
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Table E7b. Statistical comparison of NN2 network architecture for common NN1 and NN2 input features. 

NN1 features nae nh 
NN2 features CF CFR CF C 
Network h5a h5c h6 h6c h6a h6d h6b h6e 
Connectivity full full full full full full full full 
Hidden PE's 5 3 5 3 5 3 5 3 
In/hid connections 150 90 225 135 150 90 75 45 
Mean error, mm 3.0 4.0 5.6 3.3 4.7 5.1 7.2 10.0 
Stdev error, mm 16.8 16.4 25.8 25.4 24.9 27.6 24.9 26.4 

t-test I o.338 1 0.053 I 0.754 I 0.013 

F-test I 0.868 I o.916 I0.468 I 0.689 
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Table EB. Statistical comparison of NN2 networks with NN1 network providing input to NN2. 

NN1/NN2 NN1 NN2 
Network 14 h4g h4h h4e h4i h4k h4c h4f h4b 
Mean error, mm 17.9 -0.3 -0.2 0.1 0.1 0.1 0.2 0.2 0.4 
Stdev error, mm 66.1 17.6 18.0 17.3 18.1 18.5 18.0 18.6 18.0 
t-test 0.055 0.041 0.057 0.062 0.043 0.062 0.044 0.061 
F-test 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

Network 11a h1a h1 
Mean error, mm 61.7 3.1 5.7 
Stdev error, mm 121.5 15.4 15.5 
t-test 0.002 0.003 
F-test 0.000 0.000 

Network 15f h5b h5a h5c 
Mean error, mm 9.0 0.0 3.0 4.0 
Stdev error, mm 42.6 17.7 16.8 16.4 
t-test 0.112 0.293 0.368 
F-test 0.000 0.000 0.000 

Network 16a h6c h6a h6d h6 h6b h6e 
Mean error, mm 6.3 3.3 4.7 5.1 5.6 7.2 10.0 
Stdev error, mm 22.8 25.4 24.9 27.6 25.8 24.9 26.4 
t-test 0.072 0.231 0.554 0.601 0.450 0.028 
F-test 0.457 0.550 0.187 0.396 0.549 0.318 

h4 h4j 
0.6 0.9 

17.9 18.0 
0.052 0.074 
0.000 0.000 

h4d 
1.0 

18.1 
0.058 
0.000 

h4a 
2.4 

15.8 
0.082 
0.000 
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Table E9a. Statistical comparison of wide FOV NN3 features for treatments with common architecture. 

FOV, mm 140 
Architecture 5 hidden layer PE's 1 O hidden layer PE's 
Network w1 w16 w4 w5 w17 w2 w3 w16a w5a w17a w2a w4a w1a w3a 
Features ao a2dO m2 a2 m2d0 as m5 a2d0 a2 m2d0 as m2 ao ms 
Mean error, mm -2.7 1.7 2.3 2.9 3.6 3.9 4.2 2.4 2.8 2.8 3.0 3.6 3.9 4.6 
Stdev error, mm 28.6 13.1 14.6 15.3 13.3 12.8 12.5 14.2 12.9 13.5 18.2 13.8 28.2 13.9 

t-test a2d0 m2 a2 m2d0 as ms a2 m2d0 a5 m2 aO m5 
ao 0.224 0.271 0.111 0.121 0.076 0.093 a2d0 0.629 0.684 0.864 0.509 0.725 0.168 

a2d0 0.801 0.329 0.221 0.005 0.109 a2 1.000 0.956 0.647 0.789 0.249 
m2 0.784 0.486 0.455 0.278 m2d0 0.956 0.696 0.801 0.193 
a2 0.668 0.463 0.397 a5 0.837 0.832 0.630 

m2d0 0.800 0.435 m2 0.947 0.643 
as 0.874 aO 0.872 

F-test a2d0 m2 a2 m2d0 a5 m5 a2 m2d0 a5 m2 aO ms 
ao 0.000 0.000 0.000 0.000 0.000 0.000 a2d0 0.549 0.733 0.127 0.866 0.000 0.880 

a2d0 0.499 0.328 0.907 0.889 0.786 a2 0.795 0.035 0.666 0.000 0.653 
m2 0.761 0.576 0.415 0.344 m2d0 0.063 0.864 0.000 0.849 
a2 0.389 0.264 0.212 as 0.091 0.008 0.094 

m2d0 0.798 0.697 m2 0.000 0.985 
as 0.894 aO 0.000 

15 hidden layer PE's 
w1b w5b w3b w2b 

aO a2 m5 as 
-3.0 2.6 3.5 3.8 
36.0 12.3 13.2 16.6 

a2 m5 a5 
ao 0.297 0.244 0.233 
a2 0.428 0.511 
ms 0.856 

a2 m5 as 
aO 0.000 0.000 0.000 
a2 0.644 0.065 
m5 0.164 
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Table E9b. Statistical comparison of wide FOV NN3 features for treatments with common architecture. 

FOV, mm 140 
Architecture 5 hidden layer 1 PE's 1 O hidden layer 1 PE's 

3 hidden layer 2 PE's 5 hidden layer 2 PE's 
Network w171 w51 w21 w41 w161 w31 w17m w2m w16m w5m w4m w3m 
Features m2d0 a2 a5 m2 a2d0 m5 m2d0 a5 a2d0 a2 m2 m5 
Mean error, mm 0.6 1.0 1.1 1.2 1.7 2.9 0.8 1.1 1.7 3.1 3.6 6.2 
Stdev error, mm 13.1 9.8 18.2 15.3 15.9 15.3 14.4 17.3 13.5 14.5 14.9 12.8 

t-test a2 a5 m2 a2d0 m5 a5 a2d0 a2 m2 m5 
m2d0 0.838 0.862 0.699 0.449 0.247 m2d0 0.915 0.692 0.317 0.277 0.004 

a2 0.963 0.925 0.739 0.369 a5 0.793 0.465 0.361 0.029 
a5 0.976 0.814 0.536 a2d0 0.357 0.405 0.013 
m2 0.796 0.177 a2 0.863 0.123 

a2d0 0.592 m2 0.178 

a2 a5 m2 a2d0 m5 a5 a2d0 a2 m2 m5 
F-test m2d0 0.078 0.044 0.329 0.236 0.326 m2d0 0.250 0.673 0.971 0.846 0.479 

a2 0.000 0.007 0.004 0.007 a5 0.117 0.265 0.338 0.064 
a5 0.294 0.401 0.296 a2d0 0.647 0.538 0.775 
m2 0.833 0.996 a2 0.874 0.457 

a2d0 0.837 m2 0.368 

15 H1 PE's 
7 H2 PE's 

w2n w5n w3n 
a5 a2 m5 
0.5 2.1 7.2 

16.1 14.1 16.0 

a2 m5 
a5 I o.535 0.001 
a2 0.025 

a2 m5 
a5 I 0.407 o.972 
a2 0.427 

-V, 
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Table E1 Oa. Statistical comparison of wide FOV NN3 network architecture for treatments with common inputs. 

FOV, mm 140 
Features a5 m5 aO 
Network w2n w2m w21 w2a w2b w2 w31 w3b w3 w3a w3m w3n w1b w1 w1a 
Architecture F E D B C A D C A B E F C A B 
Mean error, mm 0.5 1.1 1.1 3.0 3.8 3.9 2.9 3.5 4.2 4.6 6.2 7.2 -3.0 -2.7 3.9 
Stdev error, mm 16.1 17.3 18.2 18.2 16.6 12.8 15.3 13.2 12.5 13.9 12.8 16.0 36.0 28.6 28.2 

t-test E D B C A C A B E F A B 
F 0.640 0. 736 0.346 0.185 0.043 D 0.741 0.468 0.419 0.079 0.078 C 0.962 0.267 
E 0.989 0.512 0.277 0.111 C 0.336 0.325 0.009 0.031 A 0.095 
D 0.517 0.347 0.237 A 0.695 0.036 0.095 
B 0.813 0.734 B 0.309 0.053 
C 0.952 E 0.596 

F-test E D B C A C A B E F A B 
F 0.652 0.460 0.451 0.864 0.154 D 0.360 0.211 0.536 0.271 0.785 C 0.154 0.128 
E 0.773 0.762 0.780 0.062 C 0.734 0.767 0.851 0.236 A 0.923 
D 0.988 0.571 0.032 A 0.525 0.879 0.128 
B 0.560 0.030 B 0.628 0.373 
C 0.111 E 0.170 

Architecture: A) 5 H1 PE's B) 10 H1 PE's C) 15 H1 PE's D) 5 H1, 3 H2 PE's E) 10 H1, 5 H2 PE's F) 15 H1, 7 H2 PE's 

-0\ 
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Table E1 Ob. Statistical comparison of wide FOV NN3 network architecture for treatments with common inputs. 

Features a2 
FOV, mm 140 70 210 
Network w51 w5n w5b w5a w5 w5m w7b w7m w7 w7n w7a w71 w8 w8a w81 warn 
Architecture D F C B A E C E A F B D A B D E 
Mean error, mm 1.0 2.1 2.6 2.8 2.9 3.1 -0.4 0.2 0.8 0.8 1.1 3.5 -0.7 -0.2 1.0 1.3 
Stdev error, mm 9.8 14.1 12.3 12.9 15.3 14.5 19.4 21.7 16.9 21.5 15.1 13.3 14.3 13.9 14.3 15.0 

t-test F C B A E E A F B D B D E 
D 0.590 0.336 0.292 0.377 0.168 C 0.873 0.416 0.652 0.346 0.091 A 0.828 0.516 0.412 
F 0.572 0.379 0.652 0.607 E 0.875 0.889 0.774 0.281 B 0.082 0.426 
C 0.706 0.850 0.782 A 0.993 0. 769 0.158 D 0.864 
B 0.947 0.850 F 0.913 0.436 
A 0.894 B 0.184 B D E 

A 0.859 0,984 0. 757 
F-test F C B A E E A F B D B 0.843 0.626 

D 0.027 0.170 0.094 0.007 0.018 C 0.482 0.404 0.528 0.126 0.021 D 0.772 
F 0.392 0.584 0.604 0.871 E 0.126 0.943 0.027 0.003 
C 0. 757 0.171 0.309 A 0.144 0.484 0.137 
B 0.287 0.478 F 0.032 0.004 
A 0.722 B 0.428 

Architecture: A) 5 H1 PE's B) 10 H1 PE's C) 15 H1 PE's D) 5 H1, 3 H2 PE's E) 10 H1, 5 H2 PE's F) 15 H1, 7 H2 PE's 
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Table E10c. Statistical comparison of wide FOV NN3 network architecture for treatments with common inputs. 

Features a2 · 
FOV, mm 280 100 80 
Network w101 w10a w10m w10 w12 w121 w12a w12m w14 w14a w141 w14m 
Architecture D B E A A D B E A B D E 
Mean error, mm 1.8 2.4 3.3 3.5 2.2 2.3 3.3 3.9 -0.3 -0.2 0.2 1.6 
Stdev error; mm 14.3 14.4 14.1 13.5 12.8 15.4 15.2 12.9 12.6 14.5 13.9 14.2 

t-test B E A D B E B D E 
D 0.348 0.149 0.005 A 0.947 0.421 0.014 A 0.951 0.750 0.297 
B 0.348 0.026 D 0.550 0.269 B 0.600 0.402 
E 0.791 B 0.558 D 0.486 

F-test B E A D B E B D E 
D 0.949 0.924 0.716 A 0.254 0.291 0.973 A 0.364 0.537 0.452 
B 0.874 0.669 D 0.932 0.269 B 0.770 0.876 
E 0.788 B 0.307 D 0.892 

Architecture: A} 5 H1 PE's B} 10 H1 PE's D} 5 H1, 3 H2 PE's E} 10 H1, 5 H2 PE's 
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Table E1 Od. Statistical comparison of wide FOV NN3 network architecture for treatments with common inputs. 

Features m2 
FOV, mm 140 70 210 280 
Network w41 w4 w4a w4m w6m w61 w6a w6 w9 w91 w9m w9a w11a w11 w11m w111 
Architecture D A B E E D B A A D E B B A E D 
Mean error, mm 1.2 2.3 3.6 3.6 0.2 1.2 1.5 1.8 0.1 0.5 1.1 1.6 3.5 4.2 4.4 4.6 
Stdev error, mm 15.3 14.6 13.8 14.9 18.8 16.9 15.5 14.8 14.9 15.8 17.1 15.1 13.4 11.6 12.2 12.5 

t-test A B E D B A D E B A E D 
D 0.311 0.213 0.270 · E 0.623 0.386 0.358 A 0.816 0.610 0.496 B 0.464 0.373 0.311 
A 0.412 0.512 D 0.822 0.648 D 0. 787. 0.660 A 0.890 0.658 
B 0.981 B 0.744 E 0.766 E 0.743 

F-test A B E D B A D E B A E D 
D 0. 763 0.527 0.844 E . 0.513 0.235 0.138 A 0.726 0.401 0.933 B 0.362 0.568 0.677 
A 0.741 0.916 D 0.592 0.405 D 0.623 0.790 A 0.732 0.619 
B 0.662 B 0.766 E 0.449 E 0.877 

Architecture: A) 5 H 1 PE's B) 10 H1 PE's D) 5 H1, 3 H2 PE's E) 10 H1, 5 H2 PE's 
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Table E1 Oe. Statistical comparison of wide FOV NN3 network architecture for treatments with common inputs. 

Features m2 a2d0 m2d0 
FOV, mm 100 80 140 140 
Network w13m w131 w13a w13 w151 w15a w15 w15m w16 w16m w161 w16a w171 w17m w17a w17 
Architecture E D B A D B A E A E D B D E B A 
Mean error, mm 1.5 3.9 4.5 4.6 0.3 0.7 0.8 6.4 1.7 1.7 1.7 2.4 0.6 0.8 2.8 3.6 
Stdev error, mm 16.7 16.8 11.9 12.3 12.8 12.7 10.4 12.7 13.1 13.5 15.9 14.2 13.1 14.4 13.5 13.3 

t-test D B A B A E E D B E B A 
E 0.062 0.084 0.084 D 0.801 0.722 0.008 A 0.985 1.000 0.687 D 0.883 0.229 0.065 
D 0.741 0.708 B 0.889 0.005 E 0.989 0.713 E 0.333 0.204 
B 0.830 A 0.014 D 0.693 B 0.533 

F-test D B A B A E E D B E B A 
E 0.958 0.040 0.059 D 0.965 0.190 0.964 A 0.868 0.236 0.607 D 0.556 0.862 0.907 
D 0.036 0.052 B 0.205 0.999 E 0.307 0.728 E 0.678 0.637 
B 0.868 A 0.205 D 0.500 B 0.955 

Architecture: A) 5 H 1 PE's B) 10 H1 PE's D) 5 H1, 3 H2 PE's E) 10 H1, 5 H2 PE's 
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Table E11. Statistical comparison of wide FOV NN3 network lines input. 

Features a2 
Architecture A B C D 
Network w12 w5 w12a w5a w121 w51 w12m w5m 
Lines 21 15 21 15 21 15 21 15 
FOV, mm 100 140 100 140 100 140 100 140 
Mean error, mm 2.2 2.9 3.3 2.8 2.3 1.0 3.9 3.1 
Stdev error, mm 12.8 15.3 15.2 12.9 15.4 9.8 12.9 14.5 
t-test 0.605 0.690 0.578 0.698 
F-test 0.262 0.318 0.006 0.464 

Features m2 
Architecture A B C D 
Network w13 w4 w13a w4a w131 w41 w13m w4m 
Lines 21 15 21 15 21 15 21 15 
FOV, mm 100 140 100 140 100 140 100 140 
Mean error, mm 4.6 2.3 4.5 3.6 3.9 1.2 1.5 3.6 
Stdev error, mm 12.3 14.6 11.9 13.8 16.8 15.3 16.7 14.9 
t-test 0.160 0.539 0.278 0.405 
F-test 0.280 0.359 0.569 0.476 

Features a2 
Architecture A B C D 
Network w7 w14 w7a w14a w71 w141 w7m w14m 
Lines 15 9 15 9 15 9 15 9 
FOV, mm 70 80 70 80 70 80 70 80 
Mean error, mm 0.8 -0.3 1.1 -0.2 3.5 0.2 0.2 1.6 
Stdev error, mm 16.9 12.6 15.1 14.5 13.3 13.9 21.7 ·14.2 
t-test 0.522 0.061 0.068 0.636 
F-test 0.065 0.805 0.800 0.009 

Features m2 
Architecture A B C D 
Network w6 w15 w6a w15a w61 w151 w6m w15m 
Lines 15 9 15 9 15 9 15 9 
FOV, mm 70 80 70 80 70 80 70 80 
Mean error, mm 1.8 0.8 1.5 0.7 1.2 0.3 0.2 6.4 
Stdev error, mm 14.8 10.4 15.5 12.7 16.9 12.8 18.8 12.7 
t-test 0.630 0.683 0.686 0.011 
F-test 0.028 0.216 0.085 0.016 

Architecture: A) 5 H1 PE's B) 10 H1 PE's 
D) 5 H1, 3 H2 PE's E) 10 H1, 5 H2 PE's 



Table E12a. Statisitcal comparison of wide FOV NN3 network field of view. 

Features 
Architecture 5 hidden PE's 1 O hidden PE's 
Network w8 w7 w5 w10 w8a w7a w10a w5a 
FOV, mm 210 70 140 280 210 70 280 140 
Mean error, mm -0.7 0.8 2.9 3.5 -0.2 1.1 2.4 2.8 
Stdev error, mm 14.3 16.9 15.3 13.5 13.9 15.1 14.4 12.9 

t-test 70 140 280 70 280 140 
210 0.531 0.144 0.047 210 0.507 0.210 0.084 
70 0.288 0.199 70 0.571 0.359 
140 0.665 280 0.753 

F-test 70 140 280 70 280 140 
210 0.297 0.665 0. 708 210 0.601 0.817 0.650 
70 0.540 0.157 70 0.770 0.329 
140 0.419 280 0.494 

a2 
5 H1, 3 H2 PE's 

w51 w81 w101 w71 
140 210 280 70 
1.0 1.0 1.8 3.5 
9.8 14.3 14.3 13.3 

210 280 70 
140 0.989 0.676 0.247 
210 0.708 0.257 
280 0.287 

210 280 70 
140 0.021 0.022 0.063 
210 0.976 0.640 
280 0.662 

10 H1, 5 H2 PE's 
w7m w8m w5m w10m 

70 210 140 280 
0.2 1.3 3.1 3.3 

21.7 15.0 14.5 14.1 

210 140 280 
70 0.712 0.414 0.374 

210 0.349 0.313 
140 0.929 

210 140 280 
70 0.024 0.013 0.008 

210 0.817 0.678 
140 0.854 

...... 
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Table E12b. Statisitcal comparison of wide FOV NN3 network field of view. 

Features 
Architecture 5 hidden PE's 1 O hidden PE's 
Network w9 w6 w4 w11 w6a w9a w11a w4a 
FOV, mm 210 70 140 280 70 210 280 140 
Mean error, mm 0.1 1.8 2.3 4.2 1.5 1.6 3.5 3.6 
Stdev error, mm 14.9 14.8 14.6 11.6 15.5 15.1 13.4 13.8 

t-test 70 140 280 210 280 140 
210 0.259 0.188 0.035 70 0.969 0.233 0.312 
70 0.811 0.151 210 0.164 0.285 
140 0.286 280 0.925 

F-test 70 140 280 210 280 140 
210 0.962 0.896 0.118 70 0.868 0.364 0.477 
70 0.933 0.129 210 0.457 0.586 
140 0.151 280 0.843 

m2 
5 H1, 3 H2 PE's 

w91 w41 w61 w111 
210 140 70 280 
0.5 1.2 1.2 4.6 

15.8 15.3 16.9 12.5 

140 70 280 
210 0.823 0.623 0.051 
140 0.983 0.074 
70 0.109 

140 70 280 
210 0.858 0.662 0.156 
140 0.538 0.214 
70 0.064 

10 H1, 5 H2 PE's 
w6m w9m w4m w11m 

70 210 140 280 
0.2 1.1 3.6 4.4 

18.8 17.1 14.9 12.2 

210 140 280 
70 0.630 0.224 0.085 

210 0.348 0.111 
140 0.674 

210 140 280 
70 0.549 0.144 0.008 

210 0.387 0.040 
140 0.229 

..... 
0\ 
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Table E13a. Statistical comparison of narrow FOV NN3 network features. 

FOV, mm 15 
Hidden layer PE's 6 6 6 6 7 7 12 12 12 12 14 14 18 18 18 18 21 21 
Network m1c m4c m8c m7c m4 m1 m8d m1d m4d ri17d m4a m1a m8e m1e m4e m7e m1b m4b 
Features be cd ef ce acd abc ef be cd ce acd abc ef be cd ce abc acd 
Mean error, mm 0.6 0.5 -0.1 -0.7 -1.6 -2.2 0.7 0.4 -0.2 -0.4 -1.0 -2.0 0.7 0.3 0.2 -0.4 -1.3 -2.2 
Stdev error, mm 13.4 13.4 12.6 19.8 12.7 13.2 12.9 12.6 13.4 19.9 13.1 12.5 13.1 13.6 13.4 20.2 12.9 13.4 

t-test cd ef ce acd abc be cd ce acd abc be cd ce abc acd 
be 0.687 0.621 0.692 0.089 0.034 ef 0.801 0.566 0.729 0.238 0.066 ef 0.810 0.752 0.737 0.161 0.050 

cd 0.691 0.727 0.128 0.051 be 0.555 0. 792 0.164 0.015 be 0.528 0.824 0.210 0.057 
ef 0.860 0.264 0.125 cd 0.942 0.561 0.185 cd 0.851 0.257 0.075 

ce 0.775 0.626 ce 0.861 0.626 ce 0.778 0.562 
acd 0.146 acd 0.052 abc 0.101 

F-test cd ef ce acd abc be cd ce acd abc be cd ce abc acd 
be 0.985 0.651 0.007 0.688 0.924 ef 0.862 0. 795 0.003 0.934 0.842 ef 0.832 0.895 0.003 0.916 0.910 
cd 0.638 0.008 0.675 0.909 be 0.664 0.002 0.798 0.980 be 0.936 0.006 0.751 0.921 
ef 0.002 0.959 0.721 cd 0.007 0.859 0.646 cd 0.005 0.812 0.985 

ce 0.002 0.006 ce 0.004 0.002 ce 0.002 0.004 
acd 0.760 acd 0.778 abc 0.827 

-O"I 
00 



Table E13b. Statistical comparison of narrow FOV NN3 network features. 

FOV, mm 29 
Hidden layer PE's 6 7 7 6 14 12 
Network m2c m5 m2 m5c m5a m2d 
Features be acd abc cd acd be 
Mean error, mm -1.3 -2.0 -2.7 -3.1 1.2 0.3 
Stdev error, mm 13.0 11.7 13.1 12..2 12.8 12.8 

t-test acd abc cd be 
be 0.627 0.123 0.009 acd 0.154 

acd 0.628 0.492 be 
abc 0.745 abc 

F-test acd abc cd be 
be 0.465 0.944 0.689 acd 0.991 

acd 0.423 0.741 be 
abc 0.638 abc 

14 12 21 
m2a m5d m5b 
abc cd acd 
-0.7 -1.9 -0.2 
10.8 12.6 12.6 

abc cd 
0.209 0.000 acd 
0.473 0.000 be 

0.387 abc 

abc cd 
0.242 0.930 acd 
0.247 0.940 be 

0.279 abc 

18 21 
m2e m2b 

be abc 
-0.6 -1.1 
12.8 10.3 

be abc 
0.802 0.495 

0.669 

be abc 
0.883 0.160 

0.121 

18 
m5e 

cd 
-2.5 
12.2 

cd 
0.142 
0.001 
0.289 

cd 
0.852 
0.739 
0.222 

-°' \0 



Table E13c. Statistical comparison of narrow FOV NN3 network features. 

FOV, mm 43 
Hidden layer PE's 7 7 6 6 14 14 12 12 21 21 18 18 
Network m6 m3 m3c m6e m3a m6a m3d m6d m3b m6b m3e m6e 
Features acd abe be ed abe acd be ed abe acd be cd 
Mean error, mm -2.0 -2.3 -3.4 -5.1 -0.6 -0.7 -2.1 -3.6 -1.4 -1.6 -3.0 -3.6 
Stdev error, mm 10.7 12.5 12.7 10.8 10.7 10.7 13.7 10.9 10.5 10.6 13.4 10.6 

t-test abc be ed acd be cd acd be ed 
acd 0.885 0.438 0.031 abe 0.498 0.306 0.003 abe 0.255 0.274 0.027 
abc 0.257 0.060 aed 0.347 0.005 aed 0.350 0.055 
be 0.153 be 0.321 be 0.697 

F-test abc be cd acd be cd acd be cd 
acd 0.288 0.231 0.934 abc 0.996 0.085 0.916 abc 0.968 0.094 0.941 
abc 0.891 0.327 acd 0.085 0.913 aed 0.102 0.974 
be 0.264 be 0.106 be 0.109 

----l 
0 



Table E14a. Statistical comparison of narrow FOV NN3 network architectures. 

Features be 
FOV, mm 15 29 43 
Network m1e m1d m1c m1i m1f m1h m1g m2c m2e m2g m2h m2f m2d m3f m3d m3g m3h m3e m3c 
Architecture e d C i f h g C e g h f d f d g h e C 

Mean error 0.3 0.4 0.6 1.5 1.7 2.7 3.9 -1.3 -0.6 -0.1 0.0 0.3 0.3 -1.0 -2.1 -2.2 -2.7 -3.0 -3.4 
Stdev error 13.6 12.6 13.4 13.6 13.4 13.6 12.3 13.0 12.8 12.5 12.7 12.6 12.8 12.7 13.7 14.2 12.5 13.4 12.7 

t-test d C i f h g e g h f d d g h e C 

e 0.935 0.179 0.001 0.000 0.000 0.000 C 0.000 0.084 0.018 0.014 0.000 f 0.192 0.206 0.000 0.018 0.000 
d 0.814 0.300 0.212 0.027 0.000 e 0.460 0.250 0.146 0.000 d 0.942 0.482 0.000 0.031 
C 0.041 0.007 0.000 0.000 g 0.612 0.000 0.451 g 0.574 0.148 0.173 
i 0.503 0.017 0.006 h 0.129 0.517 h 0.688 0.158 
f 0.008 0.009 f 1.000 e 0.476 
h 0.170 

F-test d C i f h g e g h f d d g h e C 

e 0.607 0.937 0.979 0.922 0.982 0.487 C 0.956 0.800 0.886 0.831 0.925 f 0.581 0.440 0.939 0.698 0.979 
d 0.664 0.589 0.678 0.592 0.856 e 0.843 0.930 0.874 0.969 d 0.826 0.530 0.870 0.599 

C 0.916 0.984 0.919 0.537 g 0.912 0.968 0.873 g 0.397 0.701 0.456 
i 0.901 0.998 0.471 h 0.944 0.961 h 0.642 0.918 
f 0.903 0.550 f 0.905 e 0.718 
h 0.473 

Architecture: c) 6 H1 PE's d) 12 H1 PE's e) 18 H1 PE's f) 6 H1, 3 H2 PE's g) 12 H1, 4 H2 PE's h) 18 H1, 6 H2 PE's i) 10 H1 PE's 

....... 
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Table E14b. Statistical comparison of narrow FOV NN3 network architectures. 

Features cd 
FOV, mm 15 29 43 
Network m4d m4e m4c m4g m4k m4i m4j m4h m4f m5f m5h m5g m5d m5e m5c m6f m6h m6g m6e m6d m6c 
Architecture d e C g k i j h f f h g d e C f h g e d C 

Mean error -0.2 0.2 0.5 0.6 0.7 1.2 1.3 2.1 2.9 0.1 -0.1 -0.4 -1.9 -2.5 -3.1 -1.2 -2.3 -2. 7 -3.6 -3.6 -5.1 
Stdev error 13.4 13.4 13.4 12.9 12.6 11.8 11.4 13.4 12.4 13.0 12.9 12.7 12.6 12.2 12.2 13.1 12.8 12.6 10.6 10.9 10.8 

t-test , e C g k i j h f h g d e C h g e d C 

d 0.000 0.014 0.669 0.626 0.318 0.401 0.000 0.001 f 0.207 0.167 0.000 0.000 0.000 f 0.000 0.000 0.067 0.078 0.004 

e 0.309 0.844 0.786 0.481 0.540 0.000 0.004 h 0.398 0.000 0.000 0.000 h 0.555 0.305 0.321 0.037 

C 0.972 0.904 0.610 0.642 0.000 0.008 g 0.000 0.000 0.000 g 0.374 0.389 0.066 

g 0.865 0.656 0.501 0.360 0.166 d 0.012 0.005 e 0.536 0.072 

k 0.676 0.423 0.444 0.250 e 0.047 d 0.000 

0.890 0.468 0.277 

j 

I 
0.635 0.331 

h 0.340 

F-test e C g k i j h f h g d e C h g e d C 

d 1.000 0.985 0. 786 0.651 0.391 0.266 0.983 0.583 f 0.952 0.860 0.846 0.679 0.671 f 0.966 0.986 0.224 0.285 0.276 

e 0.984 0. 786 0.651 0.391 0.266 0.983 0.583 h 0.908 0.893 0.723 0.715 h 0.569 0.078 0.106 0.102 

C 0.771 0.637 0.381 0.258 0.999 0.569 g 0.985 0.812 0.803 g · 0.048 0.067 0.064 

g 0.856 0.558 0.400 0.770 0.781 d 0.826 0.817 e 0.321 0.310 

k 0.685 0.509 0.636 0.923 e 0.991 d 0.140 

0.798 0.380 0.757 

~ I 0.257 0.573 

0.569 

Architecture: c) 6 H1 PE's d) 12 H1 PE's e) 18 H1 PE's f) 6 H1, 3 H2 PE's g) 12 H1, 4 H2 PE's h) 18 H1, 6 H2 PE's 
i) 5 H1 PE's j) 10 H1 PE's k) 15 H1 PE's --....l 
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Table E14c. Statistical comparison of narrow FOV NN3 network architectures. 

FOV, mm 15 
Features ce ef 
Network m7n m7j m7c m7d m7e m7i m71 m7m m7k m8c m8i m8k m8m m8j m8n m81 m8d m8e 
Architecture n j C d e i I m k C i k m j n I d e 
Mean error -1.0 -0.8 -0.7 -0.4 -0.4 0.0 0.1 0.3 2.8 -0.1 -0.1 -0.1 0.0 0.1 0.3 0.5 0.7 0.7 
Stdev error 19.8 15.1 19.8 19.9 20.2 11.6 17.5 16.2 12.0 12.6 12.6 12.3 12.7 12.5 12.5 13.5 12.9 13.1 

t-test j C d e i I m k i k m j n I d e 
n I 0.882 0.115 o.642 o.654 o.692 o.413 o.452 0.141 C 0.940 0.926 0.803 0.539 0.228 0.449 0.210 0.218 

0.958 0.857 0.847 0.709 0.619 0.390 0.042 i 1.000 0.858 0.370 0.286 0.439 0.267 0.286 
C 0.013 0.651 0.801 0.562 0.593 0.187 k 0. 787 0.495 0.070 0.439 0.235 0.253 
d 0.973 0.873 0.691 0.691 0.220 m 0.823 0.042 0.529 0.327 0.343 
e 0.880 0.674 0.685 0.214 j 0.385 0.561 0.377 0.397 

0.952 0.895 0.019 n 0.805 0.598 0.622 
0.922 0.266 I 0.855 0.871 

ml 0.189 d 0.936 

F-test j C d e i I m k i k m j n I d e 
n I 0.061 0.994 0.977 0.874 0.000 0.391 0.168 0.001 C 0.992 0.891 0.954 0.959 0.987 0.620 0.848 0.749 

0.060 0.057 0.043 0.072 0.306 0.617 0.110 i 0.883 0.961 0.952 0.980 0.627 0.856 0.756 
C 0.983 0.880 0.000 0.387 0.166 0.001 k 0.845 0.931 0.903 0.527 0.742 0.648 
d 0.897 0.000 0.375 0.159 0.001 m 0.913 0.941 0.662 0.894 0. 793 
e 0.000 0.310 0.125 0.000 j 0.972 0.585 0.808 0.711 

0.005 0.022 0.840 n 0.609 0.836 0. 737 
0.599 0.009 I 0.761 0.861 

mi 0.037 d 0.898 

Architecture: c) 6 H1 PE's d) 12 H1 PE's e) 18 H1 PE's 
i) 5 H1 PE's j) 10 H1 PE's k) 15 H1 PE's I) 5 H1, 3 H2 PE's m) 10 H1, 5H2 PE's n) 15 H1, 7 H2 PE's --....J w 
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Table E15a. Statistical comparison of narrow FOV NN3 network field of view. 

Features abc 
Architecture 7 hidden PE's 14 hidden PE's 21 hidden PE's 
Network m1 m2 m3 m1a m2a m3a m1b m2b m3b 
FOV, mm 15 29 43 15 29 43 15 29 43 
Mean error -2.2 -2.7 -2.3 -2.0 -0.7 -0.6 -1.3 -1.1 -1.4 
Stdev error 13.2 13.1 12.5 12.5 10.8 10.7 12.9 10.3 10.5 

t-test 29 43 29 43 29 43 
15 0.242 0.899 15 0.221 0.201 15 0.887 0.888 
29 0.481 29 0.290 29 0.056 

F-test 29 43 29 43 29 43 
15 0.943 0.687 15 0.303 0.270 15 0.109 0.150 
29 0.740 29 0.942 29 0.866 

Features be 
Architecture 6 hidden PE's 12 hidden PE's 18 hidden PE's 
Network m1c m2c m3c m1d m2d m3d m1e m2e m3e 
FOV, mm 15 29 43 15 29 43 15 29 43 
Mean error 0.6 -1.3 -3.4 0.4 0.3 -2.1 0.3 -0.6 -3.0 
Stdev error 13.4 13.0 12.7 12.6 12.8 13.7 13.6 12.8 13.4 

t-test 29 43 29 43 29 43 
15 0.092 0.000 15 0.820 0.005 15 0.421 0.000 
29 0.000 29 0.003 29 0.002 

F-test 29 43 29 43 29 43 
15 0.812 0.718 15 0.917 0.549 15 0.710 0.937 
29 0.901 29 0.620 29 0.770 

Features be 
Architecture 6 H1, 3 H2 PE's 12 H1, 4 H2 PE's 18 H1, 6 H2 PE's 
Network m1f m2f m3f m1g m2g m3g m1h m2h m3h 
FOV, mm 15 29 43 15 29 43 15 29 43 
Mean error 1.7 0.3 -1.0 3.9 -0.1 -2.2 2.7 0.0 -2.7 
Stdev error 13.4 12.6 12.7 12.3 12.5 14.2 13.6 12.7 12.5 

t-test 29 43 29 43 29 43 
15 0.121 0.013 15 0.000 0.000 15 0.003 0.000 
29 0.009 29 0.046 29 0.000 

F-test 29 43 29 43 29 43 
15 0.666 0.712 15 0.900 0.318 15 0.630 0.571 
29 0.950 29 0.382 29 0.933 
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Table E15b. Statistical comparison of narrow FOV NN3 network field of view. 

Features acd 
Connectivity 7 hidden PE's 14 hidden PE's 21 hidden PE's 
Network m4 m5 m6 m4a m5a m6a m4b m5b m6b 
FOV, mm 15 29 43 15 29 43 15 29 43 
Mean error -1.6 -2.0 -2.0 -1.0 1.2 -0.7 -2.2 -0.2 -1.6 
Stdev error 12.7 11.7 10.7 13.1 12.8 10.7 13.4 12.6 10.6 

t-test 29 43 29 43 29 43 
15 0.691 0.803 15 0.043 0.782 15 0.250 0.587 
29 1.000 29 0.211 29 0.340 

F-test 29 43 29 43 29 43 
15 0.571 0.246 15 0.888 0.166 15 0.674 0.106 
29 0.552 29 0.213 29 0.231 

Features cd 
Connectivity 6 hidden PE's 12 hidden PE's 18 hidden PE's 
Network m4c m5c m6c m4d m5d m6d m4e m5e m6e 
FOV, mm 15 29 43 15 29 43 15 29 43 
Mean error 0.5 -3.1 -5.1 -0.2 -1.9 -3.6 0.2 -2.5 -3.6 
Stdev error 13.4 12.2 10.8 13.4 12.6 10.9 13.4 12.2 10.6 

t-test 29 43 29 43 29 43 
15 0.000 0.001 15 0.096 0.056 15 0.004 0.028 
29 0.139 29 0.241 29 0.448 

F-test 29 43 29 43 29 43 
15 0.512 0.135 15 0.685 0.146 15 0.532 0.110 
29 0.400 29 0.293 29 0.327 

Features cd 
Connectivity 6 H1, 3 H2 PE's 12 H1, 4 H2 PE's 18 H1, 6 H2 PE's 
Network m4f m5f m6f m4g m5g m6g m4h m5h m6h 
FOV, mm 15 29 43 15 29 43 15 29 43 
Mean error 2.9 0.1 -1.2 0.6 -0.4 -2.7 2.1 -0.1 -2.3 
Stdev error 12.4 13.0 13.1 12.9 12.7 12.6 13.4 12.9 12.8 

t-test 29 43 29 43 29 43 
15 0.000 0.000 15 0.552 0.026 15 0.016 0.000 
29 0.009 29 0.000 29 0.000 

F-test 29 43 29 43 29 43 
15 0.735 0.702 15 0.908 0.894 15 0.770 0.714 
29 0.965 29 0.986 29 0.941 



Table E16. Statistical comparison of wide and small FOV NN3 networks having similar architectures and input features. 

Features aO cd ao cd aO cd 
FOV, mm 140 14 28 42 140 14 28 42 140 14 28 42 
Network w1 m4c m5c m6c w1a m4d m5d m6d w1b m4e m5e m6e 
Mean error, mm -0.3 0.5 -3.1 -5.1 4.0 -0.2 -1.9 -3.6 -1.2 0.2 -2.5 -3.6 
Stdev error, mm 27.8 13.4 12.2 10.8 25.7 13.4 12.6 10.9 34.2 13.4 12.2 10.6 

t-test I o.84o 0.503 0.254 1 o.3oo 0.148 0.063 1 0.151 0.792 0.636 

F-test I 0.000 0.000 0.000 I 0.000 0.000 0.000 I 0.000 0.000 0.000 

Features a5 ef a5 ef a5 ef 
FOV, mm 140 14 140 14 140 14 
Network w2 m8c w2a m8d w2b m8e 
Mean error, mm 2.9 -0.1 1.9 0.7 2.8 0.7 
Stdev error, mm 11.9 12.6 16.5 12.9 15.1 13.1 

t-test I 0.205 I 0.123 1 0.452 

F-test I 0.118 I 0.088 I o.330 

--...l 
0\ 
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