# EXACT AND ESTIMATED EXACT TESTS 

## By <br> SCOTT JAMES RICHTER

Bachelor of Science
Jacksonville University
Jacksonville, Florida
1986

Master of Arts
University of North Florida
Jacksonville, Florida
1991

Submitted to the Faculty of the
Graduate College of the
Oklahoma State University
in partial fulfillment of the requirements for the Degree of
DOCTOR OF PHILOSOPHY
July, 1997

# EXACT AND ESTIMATED EXACT TESTS USING THE RANK TRANSFORM IN DESIGNED EXPERIMENTS 

Thesis Approved:
Make EPast

Thesis Advisor

thomas C. Collins
Dean of the Graduate College

## ACKNOWLEDGMENTS

Sincere thanks goes to Dr. Mark Payton for his supervision, guidance, encouragement and friendship. My appreciation extends also to my other committee members, Dr. P. Larry Claypool, Dr. Melinda McCann and Dr. Lee Adkins, whose guidance, assistance and support have been invaluable. In addition, I wish to thank the Department of Statistics for providing me with this research opportunity.

Much appreciation goes to my parents and brother Jeff, without whose urging and support this work would not have been possible. Special thanks to Julie Sawyer, whose friendship and support helped me to survive many ordeals throughout my stay at Oklahoma State. Finally, very special thanks go to my fiancee, Carri, for her loving encouragement, understanding and friendship throughout this process.

## TABLE OF CONTENTS

Chapter Page

1. INTRODUCTION ..... 1
2. LITERATURE REVIEW ..... 4
3. FINDING EXACT DISTRIBUTIONS ..... 12
3.1 All Possible Permutations ..... 12
3.2 An Alternative to Finding All Possible Permutations ..... 15
3.3 Estimating Exact Distributions ..... 20
4. APPLICATIONS TO COMPLETELY RANDOMLZED
TWO-FACTOR FACTORIAL EXPERIMENTS ..... 24
4.1 Problems with the Rank Transform in Factorial Experiments ..... 24
4.2 Ranking After Alignment ..... 29
5. SIMULATION STUDY FOR A COMPLETELY RANDOMIZED TWO-FACTOR FACTORIAL EXPERIMENT ..... 32
5.1 Simulation Procedure ..... 32
5.2 Simulation Results ..... 34
5.2.1 Normal errors, equal variances ..... 34
5.2.2 Non-normal errors ..... 42
5.2.3 Normal errors, unequal variances ..... 54
5.3 Conclusion for Analysis of Completely Randomized Factorial Experiments ..... 68
6. SIMULATION STUDY FOR A SPLITT-UNIT EXPERIMENT ..... 70
6.1 Simulation Procedure ..... 70
6.2 Simulation Results ..... 71
6.2.1 Normal errors, equal variances ..... 71
6.2.2 Non-normal errors ..... 75
6.2.3 Normal errors, unequal variances ..... 90
6.3 Conclusion for Analysis of Split-unit Experiments ..... 104
7. EPILOGUE ..... 106
7.1 Approximation of Exact Distributions of Rank Statistics Using the F Distribution ..... 106
7.2 Extending the Aligned Ranks Procedure to Experiments with More than Two Factors ..... 108
7.3 Future Research ..... 109
BIBLIOGRAPHY ..... 111
APPENDIX ..... 117
A. 1 Program to find the exact tail distribution of the F-ratio statistic computed on the ranks, $2 \times 2$ FAT in a CRD, $n=2$ ..... 117
A. 2 Program to estimate the exact tail distribution of the F-ratio statistic computed on the ranks, 2 factor FAT ..... 120
A. 3 Program to estimate the exact tail distribution of the F-ratio statistic computed on the ranks, 3 factor FAT ..... 123
A. 4 Program to simulate randomization tests on the ranks, 3 factor FAT ..... 127
A. 5 Program to simulate randomization tests on the ranks, 2 factor FAT ..... 132
A. 6 Program to perform randomization tests on the ranks, split-unit design ..... 147

## LIST OF TABLES

Table Page
3.1 Exact Permutation Distribution, Two-Way Layout, Test for Main Effect ..... 13
3.2 Exact Permutation Distribution, Two-Way Layout, Test for Interaction ..... 14
3.3 Percentiles of Sampling Distributions of F-ratios Computed Using Ranks, 4×3 Factorial in a CRD ..... 22
3.4 Percentiles of Sampling Distributions of F-ratios Computed Using Ranks, 4x3 Factorial in a Split-unit Deign. ..... 23
5.1 Proportion of Rejections, Normal Errors, Equal Variance, A Main Effect Present ..... 35
5.2 Proportion of Rejections, Normal Errors, Equal Variance, A and B Main Effects Present ..... 36
5.3 Proportion of Rejections, Normal Errors, Equal Variance, A, B and Interaction Effects Present ..... 37
5.4 Proportion of Rejections, Normal Errors, Equal Variance, A Main Effect(large) and Interaction(small) Present ..... 37
5.5 Proportion of Rejections, Normal Errors, Equal Variance, A Main Effect(small) and Interaction(large) Present ..... 39
5.6 Proportion of Rejections, Normal Errors, Equal Variance, A Main Effect(large) and Interaction(large) Present ..... 40
5.7 Proportion of Rejections, Normal Errors, Equal Variance, Interaction Effect Present ..... 41
5.8 Proportion of Rejections, Uniform Errors, Equal Variance, A Main Effect Present ..... 44
5.9 Proportion of Rejections, Uniform Errors, Equal Variance, A and B Main Effects Present ..... 45
5.10 Proportion of Rejections, Uniform Errors, Equal Variance, A, B and Interaction Effects Present ..... 46
5.11 Proportion of Rejections, Uniform Errors, Equal Variance, A Main Effect(large) and Interaction(small) Present ..... 47
5.12 Proportion of Rejections, Uniform Errors, Equal Variance, A Main Effect(small) and Interaction(large) Present ..... 47
5.13 Proportion of Rejections, Uniform Errors, Equal Variance, A Main Effect(large) and Interaction(large) Present ..... 48
5.14 Proportion of Rejections, Uniform Errors, Equal Variance, Interaction Effect Present ..... 48
5.15 Proportion of Rejections, Exponential Errors, A Main Effect Present ..... 49
5.16 Proportion of Rejections, Exponential Errors, A and B Main Effects Present ..... 50
5.17 Proportion of Rejections, Exponential Errors, A, B and Interaction Effects Present ..... 51
5.18 Proportion of Rejections, Exponential Errors, A Main Effect(large) and Interaction(small) Present ..... 52
5.19 Proportion of Rejections, Exponential Errors, A Main Effect(small) and Interaction(large) Present ..... 52
5.20 Proportion of Rejections, Exponential Errors,
A Main Effect(large) and Interaction(large) Present ..... 53
5.21 Proportion of Rejections, Exponential Errors, Interaction Effect Present ..... 53
5.22 Proportion of Rejections, Normal Errors, Unequal Variance, A Main Effect Present ..... 56
5.23 Proportion of Rejections, Normal Errors, Unequal Variance, A and B Main Effects Present ..... 58
5.24 Proportion of Rejections, Normal Errors, Unequal Variance, A, B and Interaction Effects Present ..... 60
5.25 Proportion of Rejections, Normal Errors, Unequal Variance, A Main Effect(large) and Interaction(small) Present ..... 62
5.26 Proportion of Rejections, Normal Errors, Unequal Variance, A Main Effect(small) and Interaction(large) Present ..... 63
5.27 Proportion of Rejections, Normal Errors, Unequal Variance, A Main Effect(large) and Interaction(large) Present ..... 65
5.28 Proportion of Rejections, Normal Errors, Unequal Variance, Interaction Effect Present ..... 66
6.1 Proportion of Rejections, Normal Errors, Equal Variance, Sub-unit Trt. Effect Present ..... 73
6.2 Proportion of Rejections, Normal Errors, Equal Variance, Main-unit Trt. Effect Present ..... 73
6.3 Proportion of Rejections, Normal Errors, Equal Variance, Main and Sub-unit Main Effects Present ..... 74
6.4 Proportion of Rejections, Normal Errors, Equal Variance, Main, Sub-unit and Interaction Effects Present ..... 74
6.5 Proportion of Rejections, Normal Errors, Equal Variance, Interaction Effect Present ..... 75
6.6 Proportion of Rejections, Exponential Block Effect, Sub-unit Trt. Effect Present ..... 78
6.7 Proportion of Rejections, Exponential Block Effect, Main-unit Trt. Effect Present ..... 78
6.8 Proportion of Rejections, Exponential Block Effect, Main and Sub-unit Main Effects Present ..... 79
6.9 Proportion of Rejections, Exponential Block Effect, Main, Sub-unit and Interaction Effects Present ..... 79
6.10 Proportion of Rejections, Exponential Block Effect, Interaction Effect Present ..... 80
6.11 Proportion of Rejections, Exponential Main-unit Errors, Sub-unit Trt. Effect Present ..... 80
6.12 Proportion of Rejections, Exponential Main-unit Errors, Main-unit Trt. Effect Present ..... 81
6.13 Proportion of Rejections, Exponential Main-unit Errors, Main and Sub-unit Main Effects Present ..... 81
6.14 Proportion of Rejections, Exponential Main-unit Errors, Main, Sub-unit and Interaction Effects Present ..... 82
6.15 Proportion of Rejections, Exponential Main-unit Errors, Interaction Effect Present ..... 82
6.16 Proportion of Rejections, Exponential Sub-unit Errors, Sub-unit Trt. Effect Present ..... 83
6.17 Proportion of Rejections, Exponential Sub-unit Errors, Main-unit Trt. Effect Present ..... 83
6.18 Proportion of Rejections, Exponential Sub-unit Errors, Main and Sub-unit Main Effects Present ..... 84
6.19 Proportion of Rejections, Exponential Sub-unit Errors, Main, Sub-unit and Interaction Effects Present ..... 84
6.20 Proportion of Rejections, Exponential Sub-unit Errors, Interaction Effect Present ..... 85
6.21 Proportion of Rejections, Uniform Main-unit Errors, Main and Sub-unit Main Effects Present ..... 85
6.22 Proportion of Rejections, Uniform Main-unit Errors, Main, Sub-unit and Interaction Effects Present ..... 86
6.23 Proportion of Rejections, Uniform Main-unit Errors, Interaction Effect Present ..... 86
6.24 Proportion of Rejections, Uniform Sub-unit Errors, Main and Sub-unit Main Effects Present ..... 87.
6.25 Proportion of Rejections, Uniform Sub-unit Errors, Main, Sub-unit and Interaction Effects Present ..... 87
6.26 Proportion of Rejections, Uniform Sub-unit Errors, Interaction Effect Present ..... 88
6.27 Proportion of Rejections, Uniform Main and Sub-unit Errors, Main and Sub-unit Main Effects Present ..... 88
6.28 Proportion of Rejections, Uniform Main and Sub-unit Errors, Main, Sub-unit and Interaction Effects Present ..... 89
6.29 Proportion of Rejections, Uniform Main and Sub-unit Errors, Interaction Effect Present ..... 89
6.30 Proportion of Rejections, Normal Errors, Unequal Main Unit Errors(10:1 ratio), Main-unit Trt. Effect Present ..... 92
6.31 Proportion of Rejections, Normal Errors, Unequal Main Unit Errors(30:1 ratio), Main-unit Trt. Effect Present ..... 92
6.32 Proportion of Rejections, Normal Errors, Unequal Main Unit Errors(10:1 ratio), Sub-unit Trt. Effect Present ..... 93
6.33 Proportion of Rejections, Normal Errors, Unequal Main Unit Errors(30:1 ratio), Sub-unit Trt. Effect Present ..... 93
6.34 Proportion of Rejections, Normal Errors, Unequal Main-unit Errors(10:1 ratio), Main and Sub-unit Trt. Effects Present ..... 94
6.35 Proportion of Rejections, Normal Errors, Unequal Main-unit Errors(30:1 ratio), Main and Sub-unit Trt. Effects Present ..... 94
6.36 Proportion of Rejections, Normal Errors, Unequal Main-unit Errors(10:1 ratio), Main, Sub-unit, and Interaction Effects Present ..... 95
6.37 Proportion of Rejections, Normal Errors, Unequal Main-unit Errors(30:1 ratio), Main, Sub-unit and Interaction Effects Present ..... 95
6.38 Proportion of Rejections, Normal Errors, Unequal Main-unit Errors( $10: 1$ ratio), Interaction Effect Present ..... 96
6.39 Proportion of Rejections, Normal Errors, Unequal Main-unit Errors(30:1 ratio), Interaction Effect Present ..... 96
6.40 Proportion of Rejections, Normal Errors, Unequal Sub-unit
Errors(10:1 ratio), Main-unit Trt. Effect Present ..... 97
6.41 Proportion of Rejections, Normal Errors, Unequal Sub-unit Errors(30:1 ratio), Main-unit Trt. Effect Present ..... 97
6.42 Proportion of Rejections, Normal Errors, Unequal Sub-unit Errors(10:1 ratio), Sub-unit Trt. Effect Present ..... 98
6.43 Proportion of Rejections, Normal Errors, Unequal Sub-unit Errors(30:1 ratio), Sub-unit Trt. Effect Present ..... 98
6.44 Proportion of Rejections, Normal Errors, Unequal Sub-unit
Errors(10:1 ratio), Main and Sub-unit Trt. Effects Present ..... 99
6.45 Proportion of Rejections, Normal Errors, Unequal Sub-unit Errors(30:1 ratio), Main and Sub-unit Trt. Effects Present ..... 99
6.46 Proportion of Rejections, Normal Errors, Unequal Sub-unit Errors(10:1 ratio), Main, Sub-unit, and Interaction Effects Present ..... 100
6.47 Proportion of Rejections, Normal Errors, Unequal Sub-unit Errors(30:1 ratio), Main, Sub-unit and Interaction Effects Present ..... 100
6.48 Proportion of Rejections, Normal Errors, Unequal Sub-unit Errors(10:1 ratio), Interaction Effect Present ..... 101
6.49 Proportion of Rejections, Normal Errors, Unequal Sub-unit Errors(30:1 ratio), Interaction Effect Present ..... 101
6.50 Nominal Type I Error Rates, Unequal Main-unit Errors ..... 103
6.51 Nominal Type I Error Rates, Unequal Sub-unit Errors ..... 103
6.52 Nominal Type I Error Rates, Exponential Errors ..... 104
7.1 Comparison of Percentiles of Exact and F Sampling Distributions, $4 \times 3$ Factorial in a CRD ..... 107
7.2 Comparison of Percentiles of Exact and F Sampling Distributions, $4 \times 3$ Factorial in a Split-unit Design ..... 108

## LIST OF FIGURES

Figure ..... Page
4.1 Type I error rate comparison: Both main effects present, test for interaction ..... 28
4.2 Power comparison: Both main effects present, test for interaction ..... 28

## CHAPTER ONE

## INTRODUCTION

In experiments to determine if one or more factors have an effect on a response, the researcher typically can choose between one of two classes of analyses: parametric procedures which require that certain assumptions be made about the form of the sampled population; or nonparametric techniques which do not.


#### Abstract

R.A. Fisher (1935) proposed a nonparametric test in which the sampling distribution of the test statistic is found by finding the value of the statistic for all possible permutations of the observed data. He considered this the most logical and efficient way to determine exact significance. Although most agreed with his assessment, the computational complexity of finding all possible permutations made this permutation test too impractical to use for all except the smallest sample sizes. In addition, the test requires a new sampling distribution be derived for each new set of observed data.


Dwass (1957) modified the permutation test by using a random sample of all possible permutations to approximate the sampling distribution, which alleviated the problem of finding all possible permutations. It did not, however, solve the problem of having to derive a new sampling distribution for each set of data, and a large number of permutations were still needed to obtain a close approximation.

Another modification to Fisher's test was to replace the data by their respective ranks. Thus, for a given sample size, only one sampling distribution need be constructed to determine significance, allowing tables of critical values to be constructed. But these tables have only been constructed for small sample sizes, and the methods have generally relied on asymptotic distributions for larger samples. More importantly, neither class has been widely applicable to complex experimental designs involving interactions, such as factorial and split-plot designs. Procedures that have been proposed are generally theoretically rigorous but difficult to use in applied situations. A method proposed by Conover and Iman (1976) using rank transformed data in standard parametric procedures appeared promising early, but has since been determined to not be suitable as a test for interactions in complex designs (as well as in other situations). A modification of the rank method, in which the observations are "aligned" before ranking, was proposed by Hodges and Lehmann (1962). This method is theoretically rigorous, but has not been widely investigated in applied situations, although some studies have suggested that it is an improvement over the traditional rank transform method, especially when testing for interaction.

This research develops an exact testing procedure for testing main effects and interaction in complex designs that is easy to use in applied situations. First, a common parametric test statistic will be computed using the ranks of the data, as well as using the aligned ranks. However, significance is determined using either the permutation distribution of the statistic (for sample sizes as large as computing power will allow), or an
estimate of the permutation distribution based on a random sample of all possible permutations. Tables of critical values are derived for certain designs, and comparisons of these tests are made to the parametric F-ratio tests. These comparisons are made for different distributional assumptions and using different magnitudes of treatment effects to compare power and nominal type I error rates.

## CHAPTER TWO

## LITERATURE REVIEW

Nonparametric tests have long been considered as alternatives to normal theory based tests due to the fact that fewer (or no) assumptions must be made regarding the form of the sampled population in order for the test to be valid. Addressing the almost blind application of normal theory tests by researchers, R.C. Geary wrote in 1947: "Amends might be made in the interest of the new generation of students by printing in leaded type in all new textbooks: Normality is a myth; there never was, and never will be, a normal distribution. This is an overstatement from the practical point of view, but it represents a safer initial mental attitude than in fashion during the past two decades." During this time, R. A. Fisher had been developing tests based on the assumption of normality, which were and still are being widely accepted and used. Ironically, it was also Fisher who is generally credited with promoting interest in nonparametric techniques.

Fisher's idea was to determine significance of a test statistic by referring to a permutation distribution of the observations; i.e., the distribution of test statistic values for all possible permutations of the observed data. When discussing parametric tests in relation to this permutation test, he stated: "conclusions have no justification beyond the fact that they agree with those which could have been arrived at by this elementary method (the permutation test)" (Fisher, 1936).

Kempthorne (1955), on parametric tests, cautioned: "The making of assumptions of normality and applying the statistical tests is not a satisfactory basis for experimental inference, because the extent to which the reliability of an inference depends on the assumptions made in the analysis is usually unknown. Even though the application of the general linear hypotheses theory appears in many cases to lead to inferences which are essentially correct for Fisher's criterion, the validity of such normal theory inferences in the case of some designs . . . is highly questionable." It is generally agreed in statistical literature that to make an externally valid interpretation of the analysis of variance (ANOVA) the observations must be independent. The ANOVA is also very sensitive to the assumption of homogeneity of variance. Thus, it would appear that Fisher's permutation test would be preferred over any parametric test. However, obtaining the sampling distribution of the test statistic is difficult, due to the problem of calculating all possible permutations to obtain critical values, and thus the method is impractical to use, except for very small sample sizes.

Dwass (1957) proposed 'the almost obvious procedure of examining a 'random sample' of permutations of the observations and making the decision to accept or reject $\mathrm{H}_{0}$ on the basis of those permutations only." Dwass applied this method to the two sample case, and asserted that "the power of the modified test will be 'close' to that of the most powerful nonparametric test (Fisher's permutation test)." This "closeness" was quantified by a bound on the ratio of the power of the original procedure to the modified one.

More recently, Edgington (1995) and Manly (1991) have promoted these "randomization tests" applied to randomized block designs and completely randomized factorial experiments, among others, and Manly provides workable programs for obtaining critical values. However, there seems to have been no attempt to apply this technique to more complex designs. One drawback of this method (and also of the permutation test) is that a new sampling distribution must be derived for each new set of data to which the test is applied. This makes the procedure unattractive to many practitioners, since programming expertise is required to implement the tests. In addition, the results of the randomization test may vary depending on which permutations are sampled.

Still and White (1981) proposed a test for interaction in which the main effects are subtracted and a randomization test applied to the residuals. This test suffers from the same drawbacks as the ordinary randomization test and is difficult to apply. Bradley (1979) proposed a test for interactions in which the data are entered into a matrix, then collapsed and reduced over the main effects, similar to Still and White's method. Then a nonparametric test, such as the Kruskal-Wallis test, is performed on the residuals. This procedure is restricted to the balanced case, and the value of the test statistic is dependent upon how the data are entered into the matrix. Bhapkar and Gore (1974) proposed a similar test. None of these methods, however, have been thoroughly investigated to determine how well they perform, and neither have they gained any degree of popularity in applied situations.

The problem of needing to derive a new sampling distribution for each new set of observed data can be eliminated by transforming the data into their respective ranks before doing the analysis. Although the idea of nonparametric tests pre-dates Fisher's proposals (As far back as 1710, John Arbuthnott used the Sign Test in an attempt to prove the wisdom of divine providence (Bradley, 1968)), most of the work in this area began after 1935. Some of the more famous tests for two sample situations were proposed by Fisher (1935), Wilcoxon (1945) and Mann and Whitney (1947). Kruskal and Wallis (1952) developed a test for the multi-sample case, and Pitman (1938), Friedman (1937) and Quade $(1972,1979)$ devised tests for randomized block designs. For many of these tests, tables of exact critical values of the test statistics are available, but only for very small sample sizes. For larger samples, the tests are based on known theoretical distributions, using the asymptotic properties of the test statistics.

However, methods for more complex desigas involving interactions were not as forthcoming. Bradley (1968) noted that distribution-free tests for high-order interaction 'tend to be complicated, awkward, and limited in application. Furthermore, many of them are inexact, their derivations being based upon the limiting case of infinite sample sizes and involving 'asymptotic' formulas for the test statistic. Thus, they lack many of the virtues possessed by distribution-free tests for 'main-effects' or first order interactions." As recently as 1990, Sawilowsky stated that historically, there have been no satisfactory nonparametric tests for interaction in the analysis of variance.

Hodges and Lehmann (1962), Puri and Sen (1969), Koch (1969) and Hettmansperger (1984) (among others) discussed tests for interactions in complex designs based on a ranking after alignment procedure. This procedure involves "aligning" each observation by subtracting from it an estimate of location of each main effect, and then ranking these "aligned" observations. A nonparametric procedure is then performed on the "aligned" ranks. These tests are mathematically rigorous, and the asymptotic properties of the statistics have been investigated. Since the ranking after alignment procedure produces transformed variables which are usually dependent, most of these tests are only conditionally distribution-free, since certain regularity conditions have to be assumed in order for the test statistic to be distribution-free. Puri and Sen (1985) developed a test based on a large sample approximation which does not rely on the "aligned" ranks. None of these techniques seem to have been widely used, and there are no known software packages which have adopted them. Thus, they are generally not easy to implement for practitioners. In addition, little is known about the small sample behavior of these tests. Harwell and Serlin (1989) did investigate the test of Puri and Sen (1985) and found the test to lack power for small sample sizes ( $\mathrm{n}<40$ ). Conover and Iman (1976) compared the common parametric F-test to both the aligned rank procedure and the traditional rank transform procedure for a model with lognormally distributed errors, and found that the rank tests tended to be more powerful than their parametric counterparts for testing both main effects and interaction. Fawcett and Salter (1984) and Groggel (1987) found the aligned rank technique to be a viable competitor to the F-test for testing treatment effects in a randomized block design, especially when the classical assumptions are violated.

Higgins and Tashtoush (1994) investigated the aligned rank technique for testing interaction in a two-way factorial in completely randomized and split-plot designs and found it to be an improvement over the traditional rank transform technique. However, they used the traditional rank transform technique applied to the aligned data, and thus used the F-distribution as the sampling distribution for the test statistics, and not the exact sampling distribution. In addition, they did not examine the aligned rank technique for testing for main effects.

A slight modification to the rank transform was proposed by Fisher and Yates (1949) as well as Bell and Doksum (1965). They suggested a random normal scores transform, where the observed data are replaced by randomly drawn normal random variates. Hoeffding (1952) and Terry (1952) suggested yet another modification: using expected normal scores. Although these tests were shown in some cases to be more robust and more powerful than using the ordinary rank transform, they did not compare favorably to the parametric ANOVA, especially for small samples, and thus were never serious competitors to the ANOVA.

Scheirer, et al. (1976) proposed a modified extension of the Kruskal-Wallis test for analysis of ranked data arising from completely randomized factorial designs. They showed that the well known Kruskal-Wallis H -statistic was equivalent to the ratio of the sum of squares for treatment divided by the "mean square" for the total variability, where
both quantities are computed using the ranks of the data. Their extension to the KW test was based upon this statistic. Toothaker and Chang (1980) studied the Scheirer et al. method, however, and concluded, based on Monte Carlo studies, that "under no circumstances could the tests be recommended for use," due to lack of power and inability to control nominal type I error rates. They suggested that researchers consider aligned rank methods instead.

A twist on the rank transform idea that did gain widespread acceptance was proposed by Conover and Iman (1976). Their idea was to transform the data to their respective ranks, and then run the usual parametric analysis, where the theoretical distribution of the test statistic, based on the parametric assumptions, is used to obtain critical values. This method, which became known simply as the "rank transform method", held much appeal to practitioners since this allowed a nonparametric analysis to be performed for any type of experimental design, and almost all statistical computer packages could run such an analysis. Hora and Conover (1984) showed that the limiting null distribution of the usual F-statistic for main effects in the two-way layout has the same limiting distribution when applied to ranks as when applied to normal data. Iman (1974) showed that the rank transform had greater power than the F-test for certain nonnormal distributions. Other studies also supported the procedure for different situations: Hora and Iman (1988), Iman, et al. (1984), Kepner and Robinson (1988) and Thompson and Ammann (1989). The procedure was hailed as a "bridge between parametric and nonparametric statistics" (Conover and Iman, 1981). Even SAS, in its discussion of nonparametric analysis of
variance procedures, stated: "The NPARIWAY procedure is available to perform a nonparametric one-way analysis of variance. Other nonparametric tests can be performed by taking ranks of the data and using a regular parametric procedure to perform the analysis. " (SAS User's Guide: Statistics, 1985; SAS/STAT User's Guide, 1990). The honeymoon soon came to an end, however, beginning with Fligner (1981) who cautioned that until each new application of the rank transform was investigated it should not be used. Blair and Higgins (1985) found that a loss of power occurred in related samples tests if samples were correlated. Blair et al. (1987) found that nominal type I error rates for testing interaction became seriously inflated for certain models. Thompson and Ammann (1990) found that the test for interaction broke down in the presence of main effects. Subsequent studies have shown that the rank transform is neither a robust nor powerful alternative to the factorial ANOVA, especially as a test for interaction when both main effects are present. Sawilowsky (1990), discussing tests of interaction, stated that the rank transform should not be used, based on poor Monte Carlo results.

## CHAPTER THREE

## FINDING EXACT DISTRIBUTIONS

### 3.1 All Possible Permutations

As was mentioned in Chapter One, the goal of this research is to develop an exact test using ranks that is easy to apply to for testing main effects and interaction in multi-factor experiments. To make the method easy to apply, for any given test, the usual F-ratio calculated in a parametric ANOVA computed on the ranks of the data is used as a test statistic. Then the permutation distribution of the statistic is found, and tables of critical values are constructed to use to determine significance. Much work has been invested in an attempt to use modern computing power to obtain exact critical values by finding the value of the statistic for all possible permutations of the data. Program 1 in the Appendix was used to derive tables of exact critical values for tests for main effects and interaction in a two factor experiment with two observations per treatment combination (See tables 3.1-3.2). This procedure for obtaining the exact distributions became impractical for larger sample sizes, due to a probibitive amount of computer time. For example, the program to derive the exact sampling distribution for a design with twelve observations was eventually terminated after four days of execution without completing its task.

Table 3.1.
Design: two factors, each with two levels, two observations per treatment combination. Exact upper tail permutation distribution for test of main effect: $\mathrm{F}=$ MSTRT/MSE, calculated on the ranks of the data.

| $\mathrm{F}_{\text {calc }}$ | $\mathrm{P}\left(\mathrm{F} \leq \mathrm{F}_{\text {calc }}\right)$ |
| :---: | :---: |
|  |  |
| 3.78947353 | 0.898412645 |
| 4.54545403 | 0.904761851 |
| 4.79999924 | 0.911111057 |
| 5.14285660 | 0.923809469 |
| 5.76470566 | 0.926984072 |
| 6.53333282 | 0.933333278 |
| 6.54545403 | 0.939682484 |
| 7.53846073 | 0.942857087 |
| 8.90909004 | 0.949206293 |
| 10.0000000 | 0.952380896 |
| 10.8888884 | 0.958730102 |
| 12.0000000 | 0.965079308 |
| 12.7999992 | 0.968253911 |
| 14.2222214 | 0.974603117 |
| 16.0000000 | 0.980952322 |
| 19.5999908 | 0.984126925 |
| 21.3333282 | 0.990476131 |
| 25.5999908 | 0.996825337 |
| 64.0000000 | 1.00000000 |

Table 3.2
Design: two factors, each with two levels, two observations per treatment combination. Exact upper tail permutation distribution for test of interaction: $\mathrm{F}=\mathrm{MSAB} / \mathrm{MSE}$, calculated on the ranks of the data.

| $\mathrm{F}_{\text {calc }}$ | $\mathrm{P}\left(\mathrm{F} \leq \mathrm{F}_{\text {calc }}\right)$ |
| :---: | :---: |
|  |  |
| 3.78947353 | 0.898412645 |
| 4.54545403 | 0.904761851 |
| 4.79999924 | 0.911111057 |
| 5.14285660 | 0.923809469 |
| 5.76470566 | 0.926984072 |
| 6.53333282 | 0.933333278 |
| 6.54545403 | 0.939682484 |
| 7.53846073 | 0.942857087 |
| 8.90909004 | 0.949206293 |
| 10.0000000 | 0.952380896 |
| 10.8888884 | 0.958730102 |
| 12.0000000 | 0.965079308 |
| 12.7999992 | 0.968253911 |
| 14.2222214 | 0.974603117 |
| 16.0000000 | 0.980952322 |
| 19.5999908 | 0.984126925 |
| 21.3333282 | 0.990476131 |
| 25.5999908 | 0.996825337 |
| 64.0000000 | 1.00000000 |

### 3.2 An Alternative to Finding All Possible Permutations

Alternatives to having to find all possible permutations in order to obtain the exact distribution of a test statistic have also been sought. One such alternative which appeared promising was proposed by Pagano and Tritchler (1981). They suggested a two-step method of finding the exact distribution of a linear rank statistic by first finding the characteristic function of the statistic, and then inverting it to obtain the distribution. Suppose we have two samples $\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{m}}$ and $\mathrm{y}_{1}, \ldots, \mathrm{y}_{\mathrm{n}}(\mathrm{m} \leq \mathrm{n})$ that, when combined, may be written $\mathbf{z}_{1}, \ldots, \mathbb{Z}_{\mathrm{N}}(\mathrm{N}=\mathrm{m}+\mathrm{n})$, and when ranked, yield the ranks $\mathrm{R}_{1}, \ldots, \mathrm{R}_{\mathrm{m}}$ and $\mathrm{R}_{\mathrm{m}+1}$, . ., $\mathbf{R}_{\mathrm{m}+\mathrm{n}}$. Consider the class of statistics S that may be written

$$
\mathrm{S}=\sum_{\mathrm{j}=1}^{\mathrm{N}} \mathbf{a}\left(\mathrm{R}_{\mathrm{j}}\right) \mathrm{I}_{\mathrm{j}}
$$

for some function $a(\bullet)$, where $I_{j}$ is one for $j \leq m$ and zero otherwise. To find the characteristic function, $\phi$, first define

$$
\psi(\mathrm{m}, \mathrm{~N}, \theta)={ }_{\mathrm{N}} \mathrm{C}_{\mathrm{m}} \phi(\theta),
$$

where ${ }_{N} C_{m}$ is the number of different samples of size $m$ that can be selected from $N$ elements, and then define

$$
\begin{equation*}
\psi(\mathrm{m}, \mathrm{~N}, \theta)=\sum_{\mathrm{j}} \prod_{\mathrm{k}=1}^{\mathrm{m}} \exp \left(\mathrm{i} \theta a\left(\mathrm{R}_{\mathrm{jk}}\right)\right) \tag{1}
\end{equation*}
$$

where the summation is over all ${ }_{N} C_{m}$ samples of size $m,\left(j_{1}, \ldots, j_{m}\right)$, from the first $N$ natural numbers, and $R_{j k}$ denotes the rank of the value in the $\mathrm{k}^{\text {th }}$ position of the $\mathrm{j}^{\text {th }}$ combination. Using the above equations would still require obtaining all ${ }_{N} \mathrm{C}_{\mathrm{m}}$ combinations of the ranks, which would not be worth the added complexity of involving the characteristic function. However, using the following theorem, enumerating all possible combinations of the ranks is not necessary, and the value of the characteristic function can be obtained in approximately 2 mN (complex) multiplications and additions.

Theorem 3.1 (Pagano and Tritchler, 1981). Define $\psi(j, k, \theta)=0$ for $j>k$ and $=1$ for $j=k=0$. Then

$$
\begin{equation*}
\psi(j, k, \theta)=\exp \left(i \theta \mathbf{a}\left(\mathbf{R}_{\mathbf{k}}\right)\right) \psi(j-1, k-1, \theta)+\psi(j, k-1, \theta), \text { for } 1 \leq j \leq k=1,2, \ldots, \tag{2}
\end{equation*}
$$

where $R_{k}$ is the rank of the value in the $k^{\text {th }}$ position.

Proof: Consider all the samples of size $j$ formed from the first $k$ observations. These can be split into two groups, those that contain the $k$ th observation and those that do not. The ones that do contain the $k$ th observation can be obtained by adjoining the $k$ th observation to each sample of size $(j-1)$ from the first $(k-1)$ observations (the first term in (2)). The ones that do not contain the $k$ th observation are the samples of size $j$ obtained from the first $(k-1)$ observations (the second term in (2)).

To see the advantage of the recursive relation, consider the case where $\mathrm{N}=5$ and $\mathrm{m}=2$.
Using (1), with $a(R)=R$,

$$
\begin{aligned}
& \psi(2,5, \theta)= \sum_{\mathrm{j}=1}^{\mathrm{s} \mathbf{C}_{2}} \prod_{\mathrm{k}=1}^{2} \exp \left(\mathrm{i} \theta \mathbf{R}_{\mathrm{ik}}\right) \\
&= \exp \left[\mathrm{i} \theta\left(\mathbf{R}_{11}+\mathbf{R}_{12}\right)\right]+ \\
& \exp \left[\mathrm{i} \theta\left(\mathbf{R}_{21}+\mathbf{R}_{22}\right)\right]+ \\
& \bullet \\
& \bullet \\
& \bullet \\
& \exp \left[\mathrm{i} \theta\left(\mathbf{R}_{10,1}+\mathbf{R}_{10,2}\right)\right]
\end{aligned}
$$

which requires obtaining all 10 combinations of the ranks. However, using (2), it is not necessary to enumerate all possible combinations, and the problem reduces to one of just taking a series of complex exponentials of the ranks 1 through 5:

$$
\begin{aligned}
\psi(2,5, \theta)= & \exp \left[\mathrm{i} \theta\left(\mathbf{R}_{5}+\mathbf{R}_{1}\right)\right]+\exp \left[\mathrm{i} \theta\left(\mathbf{R}_{4}+\mathbf{R}_{1}\right)\right]+\exp \left[\mathrm{i} \theta\left(\mathbf{R}_{3}+\mathbf{R}_{1}\right)\right]+ \\
& \exp \left[\mathrm{i} \theta\left(\mathbf{R}_{2}+\mathbf{R}_{1}\right)\right]
\end{aligned}
$$

In general, using the recursive expression (2), $\psi(\mathrm{m}, \mathrm{N}, \theta)$ will be the sum of ${ }_{\mathrm{N}-1} \mathrm{C}_{\mathrm{m}-\mathrm{I}}$ (the number of samples which contain the $\mathrm{N}^{\text {th }}$ rank) exponential expressions. If $m$ is chosen to be the smaller sample, then the maximum number of exponential expressions needed will be one half of the ${ }_{N} \mathrm{C}_{\mathrm{m}}$ total possible samples, and this will occur when sample sizes are
equal. When sample sizes are different, the number of terms in the expression can be reduced greatly. For example, if $\mathrm{N}=20$, when sample sizes are equal, $\mathrm{m}=10$ and using the recursive formula will result in an expression for $\psi(10,20, \theta)$ with ${ }_{19} \mathrm{C}_{9}=92,378$ exponential terms instead of ${ }_{20} \mathrm{C}_{10}=184,756$ needed for complete enumeration of all combinations. If instead $\mathrm{m}=8$, now only ${ }_{19} \mathrm{C}_{7}=50,388$ exponential terms are required to find the exact distribution, which is only $40 \%$ of the ${ }_{20} \mathrm{C}_{8}=125,970$ total combinations.

Then, let $X$ be a discrete random variable with distribution $P(X=j)=p_{j}, j=0,1, \ldots$, U , where U is the maximum value of X , and characteristic function

$$
\begin{equation*}
\phi(\theta)=\sum_{\mathrm{j}=0}^{\mathrm{U}} \mathrm{p}_{\mathrm{j}} \exp (\mathrm{ij} \theta), \theta \in[0,2 \pi) . \tag{3}
\end{equation*}
$$

Since $\mathbf{X}$ is defined on a finite integer lattice, we may use the following basic theorem found in most sources on Fourier series to find the $p_{j}$ :

Theorem 3.2. For any integer $\mathrm{Q}>\mathrm{U}$ and $\mathrm{j}=0, \ldots, \mathrm{U}$,

$$
\mathrm{p}_{\mathrm{j}}=\frac{1}{\mathrm{Q}} \sum_{\mathrm{k}=0}^{\mathrm{Q}-1} \phi\left(\frac{2 \pi \mathrm{k}}{\mathrm{Q}}\right) \exp \left(-\left(\frac{2 \pi j \mathrm{k}}{\mathrm{Q}}\right)\right)
$$

That is, knowing the characteristic function at these $Q$ equispaced points on $[0,2 \pi)$ is equivalent to knowing it everywhere. And, if it is known at these points, one may use a
fast Fourier transform (FFT) to invert it and obtain the $\mathrm{p}_{\mathrm{j}}$. Thus, equation (2) must be evaluated at Q equispaced points on $[0,2 \pi$ ), and this set of values represents Q values of the Fourier series given by (3). By theorem 2, the probabilities $\mathrm{p}_{\mathrm{j}}$ can be obtained, as well as the exact distribution of S , using the Fourier transform. A FORTRAN program, which used IMSLma subroutines for performing the FFT, was written to test the method for the two sample case, and the method did indeed determine the exact distribution of $S$ easily, using very little computer time.

An extension to the multi-sample problem was also proposed. For the three sample case, the following recursive relation holds:

Lemma 3.1 (Pagano \& Tritchler, 1981): For $j, k=1,2, \ldots$ such that $j+k \leq l=1,2, \ldots$,

$$
\begin{aligned}
\psi\left(j, k, l, \theta_{1}, \theta_{2}\right)= & \exp \left(\mathrm{i}_{1} u_{l}\right) \psi\left(j-1, k, l-1, \theta_{1}, \theta_{2}\right)+ \\
& \exp \left(\mathrm{i}_{2} u_{l}\right) \psi\left(j, k-1, l-1, \theta_{1}, \theta_{2}\right)+ \\
& \psi\left(j, k, l-1, \theta_{1}, \theta_{2}\right)
\end{aligned}
$$

However, the characteristic function now becomes a function of two parameters, and the characteristic function must now be evaluated at $U_{1} \bullet U_{2}$ pairs $\left(\theta_{1}, \theta_{2}\right)$, where $U_{1}$ and $\mathrm{U}_{2}$ are the maximum values taken by $\mathrm{S}_{1}$ and $\mathrm{S}_{2}$, the sums of the ranks of the first two samples, respectively. Thus the computational complexity of calculating and inverting the characteristic function increases exponentially in the number of samples. Even for the three sample case, the additional complexity renders this method impractical to use. In
addition, the method is restricted to test statistics which are linear functions of sums of the ranks, so that common F-ratio test statistics used for analysis of factorial experiments could not be used. It was for these reasons that this method was eventually abandoned as a means of determining exact distributions of test statistics for analyzing factorial designs.

### 3.3 Estimating Exact Distributions

Thus, for more complex desigus, and for situations with larger sample sizes, the exact distribution of the test statistic will be estimated based on a random sample of all possible permutations of the data. This method was first proposed by Dwass (1957), and tests based on this method of determining significance have become known as "Randomization Tests" (Manly, 1991 ; Edgington, 1995). This technique, when used on the actual observations, has the somewhat undesirable property that a possibly unique sampling distribution must be constructed for each set of data. In addition, two researchers performing a randomization test independently on the same set of data would likely obtain slightly different p-values. For a large (at least 10,000 ) random sample of permutations, however, it is unlikely that two independent tests would arrive at different conclusions regarding significance. For example, for estimating the cumulative probability associated with the $95^{\text {th }}$ percentile of a sampling distribution based on a random sample of 10,000
permutations, the expected error of estimation, with $99 \%$ confidence, would be about .0056 , or $.56 \%$.

Applied to rank transformed data, however, a unique sampling distribution would need to be derived only for each possible sample size. Thus, it is possible to create tables of estimated critical values, given a particular sample size. Programs were written to generate such tables, Tables 3.3 and 3.4 present the values which are used in the simulations of Chapters Five and Six.

Table 3.3.

Estimated percentiles of the sampling distributions of F-ratios computed using the ranks of the data. All ratios are computed as MS (effect)/MS (error), for a two-way layout with four levels of factor $A$ and three levels of factor $B$, in a completely randomized design, where n is the number of observations per treatment combination, and are based on a random sample of 20,000 permutations.

| n | Effect | Percentile point |  |  |
| :--- | :--- | :--- | :--- | :--- |
|  |  | .90 | .95 | .99 |
|  |  |  |  |  |
| 2 | A | 2.669 | 3.560 | 6.000 |
|  | B | 2.820 | 3.914 | 7.098 |
|  | AB | 2.356 | 3.056 | 4.814 |
| 5 |  |  |  |  |
|  | A | 2.175 | 2.816 | 4.320 |
|  | B | 2.396 | 3.207 | 5.296 |
|  | AB | 1.920 | 2.322 | 3.282 |
| 10 |  |  |  |  |
|  | A | 2.118 | 2.680 | 4.003 |
|  | B | 2.345 | 3.125 | 5.088 |
|  | AB | 1.822 | 2.183 | 2.986 |
| 20 |  |  |  |  |
|  | A | 2.136 | 2.644 | 3.902 |
|  | B | 2.325 | 3.038 | 4.785 |
|  | AB | 1.802 | 2.146 | 2.866 |

Table 3.4
Estimated percentiles of the sampling distributions of F-ratios computed using the ranks of the data. All ratios are computed as MS (effect)/MS (error), for a two-way factorial in a split-plot experiment with four levels of the main unit treatment in a randomized block design with three blocks and three levels of the sub-unit treatment, and are based on a random sample of 20,000 permutations.

| Effect | Percentile point |  |  |
| :--- | :--- | :--- | :--- |
|  | .90 | .95 | .99 |
| MU Trt | 3.363 | 4.830 | 10.200 |
|  |  |  |  |
| SU Trt | 2.712 | 3.666 | 6.569 |
| Interaction | 2.218 | 2.792 | 4.352 |

## CHAPTER FOUR

# APPLICATIONS TO COMPLETELY RANDOMIZED TWO-FACTOR 

 FACTORIAL EXPERIMENTS
### 4.1 Problems with the Rank Transform in Factorial Experiments

Conover and $\operatorname{Iman}(1976,1981)$ suggested that most parametric procedures may be performed using rank transformed data instead of the raw data, especially when the parametric assumptions may be violated. Although this technique works well in some situations, it has been widely publicized in recent years that many situations exist where this procedure does not perform well. The most notable of these involves the test for interaction in two factor experiments. Several studies have found that the rank transform test can be affected by nuisance parameters, or effects present which are not being tested. Blair, et al. (1987) suggested that the rank transformation can, in some situations, introduce interaction effects in the ranked data that are not present in the original data. This is due to the fact that the expected value of the rank of any particular cell depends nonlinearly on the means of all other cells. Addressing this, Blair et al. (1987) stated the following:

Theorem 4.1: Let $\mathrm{X}_{\mathrm{i}}$ be an observation from population i and $\mathrm{Y}_{\mathrm{j}}$ an observation from population $j, j=1,2, \ldots, k$. Then the expected rank of $X_{i}$ is given by

$$
\mathrm{E}\left[\mathrm{R}\left(\mathrm{X}_{\mathrm{i}}\right)\right]=\frac{\mathrm{n}+1}{2}+\sum_{\mathrm{j} \neq \mathrm{i}} \mathrm{n} \mathrm{P}\left(\mathrm{Y}_{\mathrm{j}}<\mathrm{X}_{\mathrm{i}}\right)
$$

and thus, if the k populations have normal distributions with means $\mu_{1}, \mu_{2}, \ldots, \mu_{\mathrm{k}}$, respectively, and standard deviation $\sigma$, then

$$
E\left[R\left(X_{i}\right)\right]=\frac{n+1}{2}+\sum_{j \neq i} n \Phi\left(\frac{\mu_{i}-\mu_{j}}{\sqrt{2 \sigma^{2}}}\right)
$$

Since Blair, et al. (1987) did not include a proof of this result, one is provided here.

Proof: First assume that $n$ observations have been selected at random from each of $k$ continuous populations. Then if $X_{i}$ is an observation from population i and $Y_{j}$ is an observation from population $\mathrm{j}, \mathrm{j}=1,2, \ldots, \mathrm{k}$, the rank of $\mathrm{X}_{\mathrm{i}}$ can be expressed as

$$
\begin{aligned}
R\left(X_{i}\right)=1 & + \text { the number of observations in population } i \text { less than } X_{i} \\
& +\sum_{j \neq i} \text { the number of observations in population } j \text { less than } X_{i} .
\end{aligned}
$$

Let $Z$ equal the number of observations in population $i$ less than $X_{i}$. Since the observations within each sample have been randomly selected, each possible permutation of n ranks is equally likely to occur. So, Z is a random variable with $\mathrm{P}(\mathrm{Z}=\mathrm{i})=\frac{1}{\mathrm{n}}$, $\mathrm{i}=0,1, \ldots, \mathrm{n}-1$. Thus,

$$
\mathrm{E}(\mathrm{Z})=\frac{1}{\mathrm{n}} \sum_{\mathrm{i}=1}^{\mathrm{n}-1} \mathrm{i}=\frac{1}{\mathrm{n}}\left[\frac{\mathrm{n}(\mathrm{n}-1)}{2}\right]=\frac{\mathrm{n}-1}{2} .
$$

Next, if $W_{j}$ equals the number of observations in population $j$ less than $X_{i}, i \neq j$, then $W_{j}$ is a binomial random variable with mean $\mathrm{nP}\left(\mathrm{Y}_{\mathrm{j}}<\mathrm{X}_{\mathrm{i}}\right)=\mathrm{E}\left(\mathrm{W}_{\mathrm{j}}\right)$. Therefore,

$$
\begin{aligned}
E\left[R\left(X_{i}\right)\right] & =1+E\left(Z_{i}\right)+\sum_{j \neq i} E\left(W_{j}\right) \\
& =1+\frac{n-1}{2}+\sum_{j \neq i} n P\left(Y_{j}<X_{i}\right) \\
& =\frac{n+1}{2}+\sum_{j \neq i} n P\left(Y_{j}<X_{i}\right) .
\end{aligned}
$$

Further, if populations are normally distributed with means $\mu_{1}, \mu_{2}, \ldots, \mu_{\mathrm{k}}$, respectively, and common variance $\sigma^{2}$, then

$$
\begin{aligned}
P\left(Y_{j}<X_{i}\right) & =P\left(Y_{j}-X_{i}<0\right) \\
& =P\left[\frac{\left(Y_{j}-X_{i}\right)-\left(\mu_{j}-\mu_{i}\right)}{\sqrt{2 \sigma^{2}}}<\frac{0-\left(\mu_{j}-\mu_{i}\right)}{\sqrt{2 \sigma^{2}}}\right] \\
& =P\left[Z<\frac{\mu_{i}-\mu_{j}}{\sqrt{2 \sigma^{2}}}\right] \\
& =\Phi\left[\frac{\mu_{i}-\mu_{j}}{\sqrt{2 \sigma^{2}}}\right]
\end{aligned}
$$

and thus,

$$
\mathrm{E}\left[\mathrm{R}\left(\mathrm{X}_{\mathrm{i}}\right)\right]=\frac{\mathbf{n}+1}{2}+\sum_{\mathrm{j} \neq \mathrm{i}} \mathrm{n} \Phi\left(\frac{\mu_{\mathrm{i}}-\mu_{\mathrm{j}}}{\sqrt{2 \sigma^{2}}}\right) .
$$

Clearly the expected rank of any observation depends (non-linearly) on the means of all other populations. For a two-way layout with "a" fixed levels of factor $A$ and " $b$ " fixed levels of factor $\mathbf{B}$, the population means can be expressed as $\mu_{11}, \mu_{12}, \ldots, \mu_{1 \mathrm{~b},} \mu_{21}, \mu_{22}$, $\ldots, \mu_{2 b}, \ldots, \mu_{a b}$. Then $\mu_{\mathrm{ij}}=\mathrm{A}_{\mathrm{i}}+\mathrm{B}_{\mathrm{j}}+(\mathrm{AB})_{\mathrm{ij}}$. It is not surprising that increasing the magnitude of effects $A$ and/or $B$ would have an effect on the expected rank of an observation. Even when no interaction is modeled, nominal type-I error rates for testing interaction can become quite inflated if the magnitudes of effects are large (or if samples sizes are large). This can result in a test which in certain cases can be expected to detect interaction in rank transformed data where none existed in the original data. Figure 4.1, based on simulation results in Chapter Five, illustrates an example of this behavior It was found that this problem was most serious when both main effects were present in the model.

The rank transform method has also been shown to have a serious power disparity compared to the F-test when testing for interaction in the presence of both main effects and interaction, although the disparity is much less evident whenever the assumptions of normality and equality of variances are violated. Figure 4.2 shows an example, using simulation results from Chapter Five.

Figure 4.1 (Note: Effect magnitude is in standard deviation units).

TYPE I ERROR RATE COMPARISON : BOTH MANN EFFECTS PRESENT


Figure 4.2 (Note: Effect magnitude is in standard deviation units).


### 4.2 Ranking After Alignment

The idea of somehow isolating the effect that is to be tested seems to have been first proposed by Hodges and Lehmann (1962). Observations are aligned by subtracting estimates of the unwanted effects from each observation. The remaining residual is expected to contain (on average) only the effect of interest, and thus no other "nuisance" effects would be expected (on average) to influence the outcome of the test. This can easily be demonstrated for testing the effect of interaction by an argument similar to the previous section. Once again, consider a two-way layout with "a" fixed levels of factor A and ' $b$ " fixed levels of factor $B$, where the mean of each population is given by $\mu_{i j}=A_{i}+$ $\mathrm{B}_{\mathrm{j}}+(\mathrm{AB})_{\mathrm{ij}}, \mathrm{i}=1,2, \ldots, \mathrm{a}, \mathrm{j}=1,2, \ldots, \mathrm{~b}$.

Corollary 4.1: Let $(\mathrm{AX})_{\mathrm{ij}}=\mathrm{X}_{\mathrm{ij}}-\hat{\mathrm{A}}_{\mathrm{i}}-\hat{\mathrm{B}}_{\mathrm{j}},(\mathrm{AY})_{\mathrm{kl}}=\mathrm{Y}_{\mathrm{kl}}-\hat{\mathrm{A}}_{\mathrm{k}}-\hat{\mathrm{B}}_{1}$ be aligned observations, where $\hat{A}$ and $\hat{B}$ are unbiased estimators of $A$ and $B$, respectively. Then if all populations are normally distributed, the expected rank of an aligned observation is independent of effects A and B.

Proof: If we wish to test for the effect of interaction (AB), each observation is "aligned" by subtracting estimates of factors $A$ and $B$. Since $E\left(X_{i j}\right)=\mu_{i j}=A_{i}+B_{j}+(A B)_{i j}$, it follows that

$$
\mathrm{E}\left[(\mathrm{AX})_{\mathrm{ij}}\right]=\mathrm{E}\left(\mathrm{X}_{\mathrm{ij}}\right)-\mathrm{A}_{\mathrm{i}}-\mathrm{B}_{\mathrm{j}}=(\mathrm{AB})_{\mathrm{ij}} \text {, and } \mathrm{E}\left[(\mathrm{AY})_{\mathrm{kl}}\right]=\mathrm{E}\left(\mathrm{Y}_{\mathrm{kl}}\right)-\mathrm{A}_{\mathrm{k}}-\mathrm{B}_{1}=(\mathrm{AB})_{\mathrm{kl}}
$$

Also, if X and Y are normally distributed,

$$
(\mathrm{AX})_{\mathrm{ij}} \sim \mathrm{~N}\left[(\mathrm{AB})_{\mathrm{ij}}, \sigma_{\mathrm{A}}^{2}\right) \text { and }(\mathrm{AY})_{\mathrm{ki}} \sim \mathrm{~N}\left[(\mathrm{AB})_{\mathrm{kl},}, \sigma_{\mathrm{A}}^{2}\right)
$$

where $\sigma_{\mathrm{A}}^{2}=\operatorname{Var}\left(\mathrm{X}_{\mathrm{ij}}-\hat{\mathrm{A}}_{\mathrm{i}}-\hat{\mathrm{B}}_{\mathrm{j}}\right)$ for all $\mathrm{i}, \mathrm{j}$. This implies that

$$
\mathrm{P}\left[(\mathrm{AY})_{\mathrm{k} 1}<(\mathrm{AX})_{\mathrm{ij}}\right]=\Phi\left(\frac{(\mathrm{AB})_{\mathrm{ij}}-(\mathrm{AB})_{\mathrm{k} 1}}{\sqrt{2 \sigma_{\mathrm{A}}^{2}}}\right) .
$$

This shows that the expected rank of an aligned observation depends only on the effect of interaction for each cell. Further, if $(A B)_{i j}=0$ for all $i, j$, then

$$
\mathrm{P}\left[(\mathrm{AY})_{\mathrm{kl}}<(\mathrm{AX})_{\mathrm{ij}}\right]=\Phi(0)=\frac{1}{2} \text { for all } \mathrm{i}, \mathrm{j},
$$

and then

$$
\mathrm{E}\left[\mathrm{R}\left((\mathrm{AX})_{\mathrm{ij}}\right)\right]=\frac{\mathrm{n}+1}{2}+\sum_{\mathrm{j} \neq \mathrm{i}} \frac{1}{2} \mathrm{n}=\frac{1}{2}(1+\mathrm{nab}) .
$$

So, if the original data contains no interaction, neither will the ranks of the aligned observations.

This procedure has been found to perform favorably compared to the F-test in some limited applications, both for testing for interaction and for testing for main effects when interaction is not present. It has been noted by some that a shortcoming of this method is the inability to remove an interaction effect in order to test for main effects, but it is doubtful this scenario would be considered in practice. For example, in analyzing data in a two-way layout, the test for interaction would be performed first. If significant interaction was detected, there would be little use in testing for main effects. On the other hand, if the effect of interaction was determined to be not significant, it is likely that the interaction effect would not interfere with the tests for main effects. In this case, there would be no need to "remove" the interaction effect. However, the fact that the procedure allows main effects to be removed makes it an excellent candidate to be an improvement over the rank transform procedure.

## CHAPTER FIVE

## SIMULATION STUDY FOR A COMPLETELY RANDOMLZED TWO-FACTOR FACTORIAL EXPERIMENT

### 5.1 Simulation Procedure

Simulated data sets were generated to examine the performance of the three methods: the parametric F-test procedure (FT), the estimated exact rank transform test procedure (RT), and the estimated exact aligned rank transform test procedure (ART). For both rank tests, the estimated exact sampling distribution of the test statistics was used to obtain critical values. The following model was used to generate the observations:

$$
Y_{i j k}=\mu+A_{i}+B_{j}+(A B)_{i j}+e_{i j k},
$$

where $A_{i}$ is the effect of the $i^{\text {th }}$ level of treatment $A, B_{j}$ is the effect of the $j^{\text {th }}$ level of treatment $B,(A B)_{i j}$ is the effect of the interaction between the $i^{\text {th }}$ level of factor $A$ and the $j^{\text {th }}$ level of factor $B$, and $e_{i j k}$ is the random error effect, and where $i=1,23,4, j=1,2,3$, and $\mathrm{k}=1,2, \ldots, \mathrm{n}$. Standard normal (both with homogeneous and heterogeneous variances), uniform [-3,3], and exponential $(\mu=3)$ distributions were used to model the error distributions. In addition, different degrees of heterogeneity were considered. It was desired to observe both "moderately large" and "very large" degrees of heterogeneity. To
get some idea of these degrees, Hartley's F-max test was used to determine the approximate ratio between largest and smallest variances that would be considered moderately large and very large. Thus, for all models, ratios between the largest and the smallest variances of 10:1 (moderately large) and 30:1 (very large) were studied (in addition, some models with very, very large degrees of heterogeneity were observed). Effect sizes (denoted by " $c$ " in the tabled results) are in standard deviation units, and range in magnitude from 0.5 (very small) to 3.5 (very large). Effects were chosen so that many different modelings of main effects and interaction could be investigated. The model containing only both main effects and the model containing all effects were the same as those for which Blair, et al. (1987) found that the rank transform procedure performed poorly. The values $a_{i}, b_{j}$, and $a b_{i j}$ referred to in the tables that follow represent the values assigned to $\mathrm{A}_{\mathrm{i}}, \mathrm{B}_{\mathrm{j}}$, and $(\mathrm{AB})_{\mathrm{ij}}$, respectively, for each model. All effects not referred to were set to zero. Critical values for both rank tests were estimated by calculating the value of the test statistic for a random sample of twenty thousand permutations of the ranks of the data. Ten thousand samples were generated, and the proportion of test statistic values greater than or equal to the critical values for the respective sampling distributions was calculated. For the simulations in this chapter, as well as those in chapter six, when estimating a nominal type I error rate of 0.05 , the simulated values can be expected to be within 0.0056 of the true proportion, with $99 \%$ confidence (in the following tables, nominal levels in bold indicate values which are significantly different from 0.05 ). For power estimation, the simulated values have a maximum error of estimation of 0.014 , with $99 \%$ confidence. All simulations were programmed in

FORTRAN using Microsoft ${ }_{\otimes}$ Fortran PowerStation (Professional Edition) $4.0^{7 \pi}$ for Windows $95^{\text {Tx }}$, using IMSL ${ }_{\text {ma }}$ MATH/LIBRARY ${ }^{\circledR}$ and STAT/LIBRARY ${ }^{\circledR}$ subroutines.

### 5.2 Simulation Results

5.2.1 Normal errors, equal variances (see Tables 5.1-5.7). The ART consistently showed power almost equal to that of the F-test. The RT tended to compare favorably in most cases, but showed poor power when both main effects and interaction were present in the model, especially for testing interaction (see Table 5.3). In addition, for all models the RT had nominal type I error rates that inflated as the magnitude of the effects increased. This occurred not only for tests for interaction in the presence of only both main effects, as reported by Blair, et al. (1987), but also for the test for the main effect not modeled when only one main effect was present. As can be seen in Table 5.2, these error rates approached 1.0 for the test for interaction for large sample sizes. The ART often had slightly inflated nominal type I error rates, but the inflation was never severe (usually only .01-. 02 above the nominal level), and did not appear to be affected by the magnitude of the modeled effects.

Table 5.1.

Proportion of rejections at $\alpha=0.05$, normally distributed errors with equal variance, based on 10,000 samples. A main effect present ( $a_{1}=c, a_{3}=-c$ ).

| $\mathbf{n}=2$ | c |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Test for: | Method | 0.5 | 1.5 | 2.5 | 3.5 |
|  | Factor A | FT | . 215 | . 969 | 1.00 | 1.00 |
|  |  | RT | . 206 | . 956 | 1.00 | 1.00 |
|  |  | ART | . 208 | . 959 | 1.00 | 1.00 |
|  | Factor B | FT | . 052 | . 052 | . 052 | . 052 |
|  |  | RT | . 053 | . 055 | . 057 | . 060 |
|  |  | ART | . 055 | . 055 | . 055 | . 055 |
|  | Interaction | FT | . 050 | . 050 | . 050 | . 050 |
|  |  | RT | . 054 | . 053 | . 060 | . 069 |
|  |  | ART | . 056 | . 056 | . 056 | . 056 |
| $\mathrm{n}=10$ |  |  | c |  |  |  |
|  | Test for: | Method | 0.5 | 1.5 | 2.5 | 3.5 |
|  | Factor A | FT | . 901 | 1.00 | 1.00 | 1.00 |
|  |  | RT | . 888 | 1.00 | 1.00 | 1.00 |
|  |  | ART | . 886 | 1.00 | 1.00 | 1.00 |
|  | Factor B | FT | . 052 | . 052 | . 052 | . 052 |
|  |  | RT | . 050 | . 049 | . 049 | . 050 |
|  |  | ART | . 051 | . 051 | . 051 | . 051 |
|  | Interaction | FT | . 049 | . 049 | . 049 | . 049 |
|  |  | RT | . 051 | . 054 | . 060 | . 066 |
|  |  | ART | . 050 | . 050 | . 050 | . 050 |

Table 5.2.

Proportion of rejections at $\alpha=.05$, normally distributed errors with equal variance, based on 10,000 samples. A and $B$ main effects present ( $\left.a_{2}=b_{1}=c, a_{3}=b_{2}=-c\right)$.

| $\mathrm{n}=2$ | c |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Test for: | Method | 0.5 | 1.5 | 2.5 | 3.5 |
|  | Factor A | FT | . 210 | . 968 | 1.00 | 1.00 |
|  |  | RT | . 199 | . 942 | 1.00 | 1.00 |
|  |  | ART | . 199 | . 959 | 1.00 | 1.00 |
|  | Factor B | FT | . 329 | . 999 | 1.00 | 1.00 |
|  |  | RT | . 317 | . 996 | 1.00 | 1.00 |
|  |  | ART | . 319 | . 998 | 1.00 | 1.00 |
|  | Interaction | FT | . 050 | . 050 | . 050 | . 050 |
|  |  | RT | . 054 | . 054 | . 054 | . 068 |
|  |  | ART | . 056 | . 056 | . 056 | . 056 |
| $\mathrm{n}=10$ |  |  | c |  |  |  |
|  | Test for: | Method | 0.5 | 1.5 | 2.5 | 3.5 |
|  | Factor A | FT | . 904 | 1.00 | 1.00 | 1.00 |
|  |  | RT | . 887 | 1.00 | 1.00 | 1.00 |
|  |  | ART | . 889 | 1.00 | 1.00 | 1.00 |
|  | Factor B | FT | . 984 | 1.00 | 1.00 | 1.00 |
|  |  | RT | . 978 | 1.00 | 1.00 | 1.00 |
|  |  | ART | . 979 | 1.00 | 1.00 | 1.00 |
|  | Interaction | FT | . 049 | . 049 | . 049 | . 049 |
|  |  | RT | . 051 | . 134 | . 671 | . 997 |
|  |  | ART | . 050 | . 050 | . 050 | . 050 |

Table 5.3.

Proportion of rejections at $\alpha=.05$, normally distributed errors with equal variance, based on 10,000 samples. A, B and interaction effects present $\left(a b_{11}=c, b_{1}=a b_{41}=-c\right)$.

| $\mathrm{n}=2$ | c |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Test for: | Method | 0.5 | 1.5 | 2.5 | 3.5 |
|  | Factor A | FT | . 066 | . 213 | . 527 | . 830 |
|  |  | RT | . 066 | . 132 | . 193 | . 218 |
|  |  | ART | . 065 | . 153 | . 252 | . 290 |
|  | Factor B | FT | . 139 | . 780 | . 997 | 1.00 |
|  |  | RT | . 134 | . 652 | . 940 | . 994 |
|  |  | ART | . 140 | . 732 | . 989 | 1.00 |
|  | Interaction | FT | . 069 | . 260 | . 655 | . 931 |
|  |  | RT | . 066 | . 153 | . 230 | . 264 |
|  |  | ART | . 075 | . 251 | . 617 | . 909 |
| $\mathrm{n}=10$ |  |  | c |  |  |  |
|  | Test for: | Method | 0.5 | 1.5 | 2.5 | 3.5 |
|  | Factor A | FT | . 156 | . 907 | 1.00 | 1.00 |
|  |  | RT | . 145 | . 691 | . 896 | . 939 |
|  |  | ART | . 151 | . 829 | . 993 | . 999 |
|  | Factor B | FT | . 622 | 1.00 | 1.00 | 1.00 |
|  |  | RT | . 582 | 1.00 | 1.00 | 1.00 |
|  |  | ART | . 589 | 1.00 | 1.00 | 1.00 |
|  | Interaction | FT | . 214 | . 991 | 1.00 | 1.00 |
|  |  | RT | . 195 | . 908 | . 994 | . 999 |
|  |  | ART | . 210 | . 988 | 1.00 | 1.00 |

Table 5.4.

Proportion of rejections at $\alpha=.05$, normally distributed errors with equal variance, based on 10,000 samples. A main effect (large) and interaction (small) effects present $\left(a b_{11}=a b_{12}=c, a b_{31}=a b_{32}=-c, a_{2}=2 c\right)$.

| $\mathrm{n}=2$ |  |  | c |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Test for: | Method | 0.5 | 1.5 | 2.5 | 3.5 |
|  | Factor A | FT | . 383 | 1.00 | 1.00 | 1.00 |
|  |  | RT | . 369 | 1.00 | 1.00 | 1.00 |
|  |  | ART | . 374 | 1.00 | 1.00 | 1.00 |
|  | Factor B | FT | . 052 | . 052 | . 052 | . 052 |
|  |  | RT | . 053 | . 049 | . 042 | . 043 |
|  |  | ART | . 053 | . 053 | . 053 | . 053 |
|  | Interaction | FT | . 069 | . 259 | . 659 | . 940 |
|  |  | RT | . 071 | . 272 | . 591 | . 760 |
|  |  | ART | . 074 | . 250 | . 621 | . 912 |
| $\mathrm{n}=10$ |  |  | c |  |  |  |
|  | Test for: | Method | 0.5 | 1.5 | 2.5 | 3.5 |
|  | Factor A | FT | . 997 | 1.00 | 1.00 | 1.00 |
|  |  | RT | . 996 | 1.00 | 1.00 | 1.00 |
|  |  | ART | . 995 | 1.00 | 1.00 | 1.00 |
|  | Factor B | FT | . 052 | . 052 | . 052 | . 052 |
|  |  | RT | . 050 | . 050 | . 039 | . 035 |
|  |  | ART | . 050 | . 048 | . 048 | . 046 |
|  | Interaction | FT | . 216 | . 991 | 1.00 | 1.00 |
|  |  | RT | . 216 | . 991 | 1.00 | 1.00 |
|  |  | ART | . 207 | . 985 | 1.00 | 1.00 |

Table 5.5.

Proportion of rejections at $\alpha=.05$, normally distributed errors with equal variance, based on 10,000 samples. A main effect (small) and interaction effect (large) present $\left(a b_{11}=a b_{12}=a b_{33}=c, a b_{13}=a b_{31}=a b_{32}=-c\right)$.

| $\mathrm{n}=2$ | c |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Test for: | Method | 0.5 | 1.5 | 2.5 | 3.5 |
|  | Factor A | FT | . 068 | . 215 | . 530 | . 831 |
|  |  | RT | . 064 | . 186 | . 461 | . 680 |
|  |  | ART | . 067 | . 181 | . 445 | . 637 |
|  | Factor B | FT | . 052 | . 052 | . 052 | . 052 |
|  |  | RT | . 054 | . 055 | . 058 | . 062 |
|  |  | ART | . 055 | . 054 | . 058 | . 057 |
|  | Interaction | FT | . 130 | . 834 | 1.00 | 1.00 |
|  |  | RT | . 128 | . 811 | . 999 | 1.00 |
|  |  | ART | . 133 | . 799 | . 998 | 1.00 |
| $\mathrm{n}=10$ |  |  | c |  |  |  |
|  | Test for: | Method | 0.5 | 1.5 | 2.5 | 3.5 |
|  | Factor A | FT | . 162 | . 901 | 1.00 | 1.00 |
|  |  | RT | . 158 | . 934 | 1.00 | 1.00 |
|  |  | ART | . 158 | . 933 | 1.00 | 1.00 |
|  | Factor B | FT | . 050 | . 050 | . 050 | . 050 |
|  |  | RT | . 050 | . 048 | . 046 | . 045 |
|  |  | ART | . 049 | . 046 | . 045 | . 044 |
|  | Interaction | FT | . 760 | 1.00 | 1.00 | 1.00 |
|  |  | RT | . 740 | 1.00 | 1.00 | 1.00 |
|  |  | ART | . 734 | 1.00 | 1.00 | 1.00 |

Table 5.6.
Proportion of rejections at $\alpha=.05$, normally distributed errors with equal variance, based on 10,000 samples. A main effect (large) and interaction effect (large) present $\left(a b_{12}=a b_{23}=a b_{41}=c, a b_{22}=a b_{31}=a b_{33}=-c\right)$.
$\mathrm{n}=2$
c

| Test for: | Method | 0.5 | 1.5 | 2.5 | 3.5 |
| :--- | :--- | :--- | :--- | :--- | :--- |
|  |  |  |  |  |  |
| Factor A | FT | .100 | .568 | .957 | .999 |
|  | RT | .097 | .541 | .942 | .998 |
|  | ART | .097 | .546 | .942 | .998 |


| Factor B | FT | .052 | .052 | .052 | .052 |
| :--- | :--- | :--- | :--- | :--- | :--- |
|  | RT | .049 | .052 | .057 | .062 |
|  | ART | .053 | .051 | .050 | .053 |
|  |  |  |  |  |  |
| Interaction | FT | .111 | .699 | .992 | 1.00 |
|  | RT | .105 | .670 | .987 | 1.00 |
|  | ART | .114 | .699 | .991 | 1.00 |

$\mathbf{n}=10$

|  |  | c |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Test for: | Method | 0.5 | 1.5 | 2.5 | 3.5 |
|  |  |  |  |  |  |
| Factor A | FT | .431 | 1.00 | 1.00 | 1.00 |
|  | RT | .414 | 1.00 | 1.00 | 1.00 |
|  | ART | .415 | 1.00 | 1.00 | 1.00 |
| Factor B | FT | .052 | .052 | .052 | .052 |
|  | RT | .049 | .050 | .052 | .054 |
|  | ART | .052 | .055 | .064 | .074 |
|  |  |  |  |  |  |
| Interaction | FT | .612 | 1.00 | 1.00 | 1.00 |
|  | RT | .589 | 1.00 | 1.00 | 1.00 |
|  | ART | .589 | 1.00 | 1.00 | 1.00 |

Table 5.7.

Proportion of rejections at $\alpha=.05$, normally distributed errors with equal variance, based on 10,000 samples. Interaction effect present ( $\left.a b_{11}=a b_{33}=c, a_{13}=a b_{31}=-c\right)$.

| $\mathrm{n}=2$ | c |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Test for: | Method | 0.5 | 1.5 | 2.5 | 3.5 |
|  | Factor A | FT | . 050 | . 050 | . 050 | . 050 |
|  |  | RT | . 050 | . 049 | . 050 | . 055 |
|  |  | ART | . 051 | . 047 | . 048 | . 048 |
|  | Factor B | FT | . 052 | . 052 | . 052 | . 052 |
|  |  | RT | . 055 | . 055 | . 054 | . 056 |
|  |  | ART | . 054 | . 049 | . 050 | . 048 |
|  | Interaction | FT | . 109 | . 701 | . 995 | 1.00 |
|  |  | RT | . 108 | . 626 | . 975 | 1.00 |
|  |  | ART | . 114 | . 652 | . 983 | 1.00 |
| $\mathbf{n}=10$ |  |  | c |  |  |  |
|  | Test for: | Method | 0.5 | 1.5 | 2.5 | 3.5 |
|  | Factor A | FT | . 050 | . 050 | . 050 | . 050 |
|  |  | RT | . 051 | . 047 | . 044 | . 042 |
|  |  | ART | . 050 | . 046 | . 041 | . 039 |
|  | Factor B | FT | . 052 | . 052 | . 052 | . 052 |
|  |  | RT | . 049 | . 045 | . 039 | . 039 |
|  |  | ART | . 050 | . 044 | . 035 | . 031 |
|  | Interaction | FT | . 061 | 1.00 | 1.00 | 1.00 |
|  |  | RT | . 058 | 1.00 | 1.00 | 1.00 |
|  |  | ART | . 058 | 1.00 | 1.00 | 1.00 |

5.2.2. Non-normal errors (see Tables 5.8-5.21). When the errors were uniformly distributed (Tables 5.8-5.14), all three methods had considerably less power than when errors were normally distributed. Relatively, however, the results were almost identical to the case for normally distributed errors, with the F-test having the most power, followed closely by the ART and then the RT. The ART again often had slightly inflated nominal type I error rates for testing interaction (see Tables 5.8-5.9).

When the errors were exponentially distributed (see Tables 5.15-5.21), both rank tests had superior power to the F-test (although the power of all tests was lower than either the uniform or normal error case). A notable exception was the model which had both main effects and interaction present, where again the RT had less power for testing interaction than in other models (see Table 5.17). Even though for most models the power of the RT was about the same as the FT (except when effect magnitudes became very large, where the FT usually had more power), it was still outperformed by the ART. When only one main effect was present, along with interaction, the RT usually had slightly bigher power for testing interaction than the ART, except when effect sizes were small (see Table 5.15).

Interestingly, for small sample sizes ( $n=2$ and $n=5$ observations per cell), when the error distributions were non-normal, the nominal type I error rates for the RT did not show a tendency to inflate as the magnitudes of the effects increased (see Tables 5.9 and 5.16). The inflation was evident for larger sample sizes ( $n \geq 10$ observations per cell), but was much less severe than in the case of normally distributed errors.

The reader should exercise caution, however, when interpreting power disparities between different error distributions. In these simulations, all methods had less power when the error distributions were non-normal. It should be noted, however, that parameters for the two non-normal distributions could have been chosen so that all methods would have had more power for non-normally distributed errors than for normally distributed errors. However, the parameters in this study were chosen to facilitate the comparison of powers between the different methods. Thus, while the relative performance of the methods for each of the distributions can be generalized, the same is not true for the performance of any given method across the different distributions.

Table 5.8.
Proportion of rejections at $\alpha=0.05$, uniformly distributed errors with equal variance, based on 10,000 samples. A main effect present ( $a_{1}=c, a_{3}=-c$ ).
$\mathrm{n}=2$

|  |  | c |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Test for: | Method | 0.5 | 1.5 | 2.5 | 3.5 |
|  |  |  |  |  |  |
| Factor A | FT | .094 | .541 | .968 | 1.00 |
|  | RT | .091 | .477 | .948 | 1.00 |
|  | ART | .090 | .487 | .952 | 1.00 |
| Factor B | FT | .052 | .052 | .052 | .052 |
|  | RT | .051 | .051 | .054 | .054 |
|  | ART | .055 | .055 | .055 | .055 |
|  |  |  |  |  |  |
| Interaction | FT | .054 | .054 | .054 | .054 |
|  | RT | .052 | .051 | .055 | .057 |
|  | ART | .058 | .058 | .058 | .058 |

$\mathrm{n}=10$
c

| Test for: | Method | 0.5 | 1.5 | 2.5 | 3.5 |
| :--- | :--- | :--- | :--- | :--- | :--- |
|  |  |  |  |  |  |
| Factor A | FT | .422 | 1.00 | 1.00 | 1.00 |
|  | RT | .395 | 1.00 | 1.00 | 1.00 |
|  | ART | .389 | 1.00 | 1.00 | 1.00 |


| Factor B | FT | .051 | .051 | .051 | .051 |
| :--- | :--- | :--- | :--- | :--- | :--- |
|  | RT | .049 | .049 | .048 | .050 |
|  | ART | .048 | .048 | .048 | .048 |
|  |  |  |  |  |  |
| Interaction | FT | .050 | .050 | .050 | .050 |
|  | RT | .051 | .053 | .056 | .058 |
|  | ART | .050 | .050 | .050 | .050 |

Table 5.9.

Proportion of rejections at $\alpha=.05$, uniformly distributed errors with equal variance, based on 10,000 samples. A and $B$ main effects present $\left(a_{2}=b_{1}=c, a_{3}=b_{2}=-c\right)$.

| $\mathrm{n}=2$ | c |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Test for: | Method | 0.5 | 1.5 | 2.5 | 3.5 |
|  | Factor A | FT | . 097 | . 540 | . 965 | 1.00 |
|  |  | RT | . 089 | . 465 | . 926 | . 998 |
|  |  | ART | . 093 | . 489 | . 948 | 1.00 |
|  | Factor B | FT | . 131 | . 776 | . 999 | 1.00 |
|  |  | RT | . 124 | . 716 | . 997 | 1.00 |
|  |  | ART | . 130 | . 745 | . 999 | 1.00 |
|  | Interaction | FT | . 054 | . 054 | . 054 | . 054 |
|  |  | RT | . 051 | . 050 | . 052 | . 049 |
|  |  | ART | . 058 | . 058 | . 058 | . 058 |
| $\mathrm{n}=10$ |  |  | c |  |  |  |
|  | Test for: | Method | 0.5 | 1.5 | 2.5 | 3.5 |
|  | Factor A | FT | . 422 | 1.00 | 1.00 | 1.00 |
|  |  | RT | . 382 | 1.00 | 1.00 | 1.00 |
|  |  | ART | . 392 | 1.00 | 1.00 | 1.00 |
|  | Factor B | FT | . 617 | 1.00 | 1.00 | 1.00 |
|  |  | RT | . 556 | 1.00 | 1.00 | 1.00 |
|  |  | ART | . 562 | 1.00 | 1.00 | 1.00 |
|  | Interaction | FT | . 050 | . 050 | . 050 | . 050 |
|  |  | RT | . 051 | . 058 | . 108 | . 273 |
|  |  | ART | . 050 | . 050 | . 050 | . 050 |

Table 5.10.
Proportion of rejections at $\alpha=.05$, uniformly distributed errors with equal variance, based on 10,000 samples. A, B and interaction effects present ( $\left.a b_{11}=c, b_{1}=a b_{41}=-c\right)$.

| $\mathrm{n}=2$ | c |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Test for: | Method | 0.5 | 1.5 | 2.5 | 3.5 |
|  | Factor A | FT | . 055 | . 094 | . 188 | . 340 |
|  |  | RT | . 054 | . 081 | . 119 | . 161 |
|  |  | ART | . 056 | . 085 | . 139 | . 202 |
|  | Factor B | FT | . 079 | . 325 | . 751 | . 972 |
|  |  | RT | . 077 | . 272 | . 590 | . 831 |
|  |  | ART | . 080 | . 300 | . 678 | . 933 |
|  | Interaction | FT | . 061 | . 110 | . 231 | . 437 |
|  |  | RT | . 057 | . 088 | . 145 | . 195 |
|  |  | ART | . 061 | . 111 | . 223 | . 404 |
| $\mathrm{n}=10$ |  |  | c |  |  |  |
|  | Test for: | Method | 0.5 | 1.5 | 2.5 | 3.5 |
|  | Factor A | FT | . 086 | . 431 | . 884 | 1.00 |
|  |  | RT | . 083 | . 322 | . 656 | . 817 |
|  |  | ART | . 083 | . 358 | . 752 | . 952 |
|  | Factor B | FT | . 234 | . 984 | 1.00 | 1.00 |
|  |  | RT | . 212 | . 952 | 1.00 | 1.00 |
|  |  | ART | . 211 | . 958 | 1.00 | 1.00 |
|  | Interaction | FT | . 094 | . 603 | . 987 | 1.00 |
|  |  | RT | . 090 | . 457 | . 879 | . 975 |
|  |  | ART | . 092 | . 537 | . 969 | 1.00 |

Table 5.11.

Proportion of rejections at $\alpha=.05$, uniformly distributed errors with equal variance, based on 10,000 samples. A main effect (large) and interaction (small) effects present $\left(a b_{11}=a b_{12}=c, a b_{31}=a b_{32}=-c, a_{2}=2 c\right)$.
$\mathrm{n}=2$
c

| Test for: | Method | 0.5 | 1.5 | 2.5 | 3.5 |
| :--- | :--- | :--- | :--- | :--- | :--- |
|  |  |  |  |  |  |
| Factor A | FT | .143 | .861 | 1.00 | 1.00 |
|  | RT | .133 | .811 | 1.00 | 1.00 |
|  | ART | .134 | .828 | 1.00 | 1.00 |
| Factor B | FT | .052 | .052 | .052 | .052 |
|  | RT | .051 | .051 | .052 | .043 |
|  | ART | .055 | .054 | .051 | .050 |
|  |  |  |  |  |  |
| Interaction | FT | .059 | .111 | .233 | .434 |
|  | RT | .054 | .107 | .243 | .412 |
|  | ART | .063 | .108 | .220 | .403 |

Table 5.12.

Proportion of rejections at $\alpha=.05$, uniformly distributed errors with equal variance, based on 10,000 samples. A main effect (small) and interaction effect (large) present $\left(a b_{11}=a b_{12}=a b_{33}=c, a b_{13}=a b_{31}=a b_{32}=-c\right)$.
$\mathrm{n}=2$

| Test for: | Method | 0.5 | 1.5 | 2.5 | 3.5 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Factor A | FT | .057 | .094 | .187 | .337 |
|  | RT | .054 | .086 | .150 | .274 |
|  | ART | .053 | .082 | .150 | .280 |
| Factor B | FT | .052 | .052 | .052 | .052 |
|  | RT | .051 | .051 | .054 | .055 |
|  | ART | .054 | .050 | .052 | .053 |
|  |  |  |  |  |  |
| Interaction | FT | .075 | .327 | .791 | .992 |
|  | RT | .074 | .290 | .734 | .972 |
|  | ART | .079 | .301 | .738 | .975 |

Table 5.13.

Proportion of rejections at $\alpha=.05$, uniformly distributed errors with equal variance, based on 10,000 samples. A main effect (large) and interaction effect (large) present $\left(a b_{12}=a b_{23}=a b_{41}=c, a b_{22}=a b_{31}=a b_{33}=-c\right)$.
$\mathbf{n}=2$
c

| Test for: | Method | 0.5 | 1.5 | 2.5 | 3.5 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Factor A | FT | .066 | .202 | .503 | .836 |
|  | RT | .062 | .182 | .456 | .772 |
|  | ART | .063 | .188 | .465 | .787 |
| Factor B | FT | .052 | .052 | .052 | .052 |
|  | RT | .050 | .050 | .055 | .053 |
|  | ART | .054 | .055 | .051 | .050 |
|  |  |  |  |  |  |
| Interaction | FT | .071 | .245 | .644 | .948 |
|  | RT | .068 | .219 | .577 | .904 |
|  | ART | .074 | .241 | .623 | .934 |

Table 5.14.
Proportion of rejections at $\alpha=.05$, uniformly distributed errors with equal variance, based on 10,000 samples. Interaction effect present ( $\left.a b_{11}=a b_{33}=c, a b_{13}=a b_{31}=-c\right)$.
$\mathrm{n}=2$
c

| Test for: | Method | 0.5 | 1.5 | 2.5 | 3.5 |
| :--- | :--- | :--- | :--- | :--- | :--- |
|  |  |  |  |  |  |
| Factor A | FT | .050 | .050 | .050 | .050 |
|  | RT | .050 | .050 | .050 | .051 |
|  | ART | .049 | .051 | .049 | .046 |
| Factor B | FT | .052 | .052 | .052 | .052 |
|  | RT | .052 | .053 | .054 | .055 |
|  | ART | .055 | .053 | .053 | .052 |
|  |  |  |  |  |  |
| Interaction | FT | .068 | .249 | .643 | .946 |
|  | RT | .068 | .214 | .531 | .856 |
|  | ART | .072 | .235 | .583 | .898 |

Table 5.15.

Proportion of rejections at $\alpha=0.05$, identically exponentially distributed errors, based on 10,000 samples. A main effect present ( $\left.a_{1}=c, a_{3}=-c\right)$.

| $\mathrm{n}=2$ |  |  | c |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Test for: | Method | 0.5 | 1.5 | 2.5 | 3.5 |
|  | Factor A | FT | . 066 | . 242 | . 576 | . 831 |
|  |  | RT | . 090 | . 357 | . 687 | . 888 |
|  |  | ART | . 083 | . 329 | . 662 | . 875 |
|  | Factor B | FT | . 047 | . 047 | . 047 | . 047 |
|  |  | RT | . 053 | . 053 | . 054 | . 052 |
|  |  | ART | . 059 | . 059 | . 059 | . 059 |
|  | Interaction | FT | . 055 | . 055 | . 055 | . 055 |
|  |  | RT | . 055 | . 058 | . 059 | . 057 |
|  |  | ART | . 074 | . 074 | . 074 | . 074 |
| $\mathrm{n}=10$ |  |  | c |  |  |  |
|  | Test for: | Method | 0.5 | 1.5 | 2.5 | 3.5 |
|  | Factor A | FT | . 170 | . 902 | 1.00 | 1.00 |
|  |  | RT | . 359 | . 994 | 1.00 | 1.00 |
|  |  | ART | . 334 | . 994 | 1.00 | 1.00 |
|  | Factor B | FT | . 047 | . 047 | . 047 | . 047 |
|  |  | RT | . 048 | . 048 | . 046 | . 048 |
|  |  | ART | . 048 | . 048 | . 048 | . 048 |
|  | Interaction | FT | . 048 | . 048 | . 048 | . 048 |
|  |  | RT | . 052 | . 057 | . 057 | . 057 |
|  |  | ART | . 061 | . 061 | . 061 | . 061 |

Table 5.16.

Proportion of rejections at $\alpha=.05$, identically exponentially distributed errors, based on 10,000 samples. A and $B$ main effects present ( $\left.a_{2}=b_{1}=c, a_{3}=b_{2}=-c\right)$.

| $\mathrm{n}=2$ | c |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Test for: | Method | 0.5 | 1.5 | 2.5 | 3.5 |
|  | Factor A | FT | . 066 | . 246 | . 574 | . 828 |
|  |  | RT | . 083 | . 314 | . 621 | . 834 |
|  |  | ART | . 086 | . 335 | . 665 | . 877 |
|  | Factor B | FT | . 084 | . 386 | . 762 | . 943 |
|  |  | RT | . 119 | . 497 | . 825 | . 956 |
|  |  | ART | . 113 | . 485 | . 839 | . 966 |
|  | Interaction | FT | . 055 | . 055 | . 055 | . 055 |
|  |  | RT | . 058 | . 059 | . 059 | . 057 |
|  |  | ART | . 074 | . 074 | . 074 | . 074 |
| $\mathrm{n}=10$ |  |  | c |  |  |  |
|  | Test for: | Method | 0.5 | 1.5 | 2.5 | 3.5 |
|  | Factor A | FT | . 172 | . 898 | 1.00 | 1.00 |
|  |  | RT | . 329 | . 985 | 1.00 | 1.00 |
|  |  | ART | . 332 | . 993 | 1.00 | 1.00 |
|  | Factor B | FT | . 251 | . 977 | 1.00 | 1.00 |
|  |  | RT | . 477 | . 999 | 1.00 | 1.00 |
|  |  | ART | . 463 | 1.00 | 1.00 | 1.00 |
|  | Interaction | FT | . 048 | . 048 | . 048 | . 048 |
|  |  | RT | . 053 | . 060 | . 078 | . 121 |
|  |  | ART | . 061 | . 061 | . 061 | . 061 |

Table 5.17.

Proportion of rejections at $\alpha=.05$, identically exponentially distributed errors, based on 10,000 samples. A, B and interaction effects present ( $a b_{11}=c, b_{1}=a b_{41}=-c$ ).
$\mathrm{n}=2$

|  |  | c |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Test for: | Method | 0.5 | 1.5 | 2.5 | 3.5 |
|  |  |  |  |  |  |
| Factor A | FT | .049 | .063 | .097 | .154 |
|  | RT | .054 | .073 | .094 | .121 |
|  | ART | .057 | .080 | .113 | .151 |
| Factor B | FT | .057 | .155 | .362 | .610 |
|  | RT | .073 | .224 | .405 | .576 |
|  | ART | .072 | .208 | .420 | .634 |
|  |  |  |  |  |  |
| Interaction | FT | .058 | .075 | .113 | .186 |
|  | RT | .059 | .082 | .109 | .142 |
|  | ART | .076 | .100 | .153 | .234 |

$\mathbf{n}=10$
c

| Test for: | Method | 0.5 | 1.5 | 2.5 | 3.5 |
| :--- | :--- | :--- | :--- | :--- | :--- |
|  |  |  |  |  |  |
| Factor A | FT | .059 | .167 | .412 | .707 |
|  | RT | .077 | .238 | .443 | .616 |
|  | ART | .075 | .268 | .549 | .774 |
| Factor B | FT | .113 | .638 | .961 | 1.00 |
|  | RT | .200 | .832 | .986 | 1.00 |
|  | ART | .185 | .841 | .992 | 1.00 |
|  |  |  |  |  |  |
| Interaction | FT | .065 | .227 | .592 | .891 |
|  | RT | .089 | .335 | .634 | .836 |
|  | ART | .091 | .412 | .846 | .984 |

Table 5.18.
Proportion of rejections at $\alpha=.05$, identically exponentially distributed errors, based on 10,000 samples. A main effect (large) and interaction (small) effects present ( $\mathrm{ab}_{11}=\mathrm{ab}_{12}=\mathrm{c}$, $a b_{31}=a b_{32}=-c, a_{2}=2 c$ ).
$\mathrm{n}=2$
c

| Test for: | Method | 0.5 | 1.5 | 2.5 | 3.5 |
| :--- | :--- | :--- | :--- | :--- | :--- |
|  |  |  |  |  |  |
| Factor A | FT | .082 | .436 | .831 | .968 |
|  | RT | .123 | .569 | .896 | .981 |
|  | ART | .114 | .536 | .885 | .980 |
| Factor B | FT | .047 | .047 | .047 | .047 |
|  | RT | .053 | .054 | .051 | .049 |
|  | ART | .058 | .058 | .056 | .056 |
|  |  |  |  |  |  |
| Interaction | FT | .056 | .074 | .114 | .191 |
|  | RT | .062 | .098 | .163 | .243 |
|  | ART | .077 | .102 | .156 | .239 |

Table 5.19.
Proportion of rejections at $\alpha=.05$, identically exponentially distributed errors, based on 10,000 samples. A main effect (small) and interaction effect (large) present $\left(a b_{11}=a b_{12}=a b_{33}=c, a b_{13}=a b_{31}=a b_{32}=-c\right)$.
$\mathrm{n}=2$

Table 5.20.

Proportion of rejections at $\alpha=.05$, identically exponentially distributed errors, based on 10,000 samples. A main effect (large) and interaction effect (large) present $\left(a b_{12}=a b_{23}=a b_{41}=c, a b_{22}=a b_{31}=a b_{33}=-c\right)$.
$\mathrm{n}=2$

|  |  | c |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Test for: | Method | 0.5 | 1.5 | 2.5 | 3.5 |
|  |  |  |  |  |  |
| Factor A | FT | .054 | .102 | .229 | .418 |
|  | RT | .064 | .153 | .303 | .477 |
|  | ART | .063 | .145 | .293 | .467 |
| Factor B | FT | .047 | .047 | .047 | .047 |
|  | RT | .054 | .053 | .052 | .051 |
|  | ART | .057 | .055 | .053 | .055 |
|  |  |  |  |  |  |
| Interaction | FT | .062 | .121 | .276 | .515 |
|  | RT | .066 | .179 | .375 | .591 |
|  | ART | .083 | .163 | .341 | .572 |

Table 5.21.
Proportion of rejections at $\alpha=.05$, identically exponentially distributed errors, based on 10,000 samples. Interaction effect present ( $\left.a b_{11}=a b_{33}=c, a b_{13}=a b_{31}=-c\right)$.

| $\mathrm{n}=2$ |  |  | c |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  | Test for: | Method | 0.5 | 1.5 | 2.5 | 3.5 |
|  |  |  |  |  |  |  |
|  | Factor A | FT | .049 | .049 | .049 | .049 |
|  |  | RT | .052 | .052 | .048 | .049 |
|  | Factor B | FT | .056 | .055 | .054 | .054 |
|  |  | RT | .047 | .047 | .047 | .047 |
|  | ART | .059 | .054 | .054 | .053 |  |
|  |  |  |  |  | .057 | .056 |
|  | Interaction | FT | .062 | .121 | .280 | .515 |
|  |  | RT | .069 | .180 | .369 | .567 |
|  | ART | .083 | .162 | .329 | .548 |  |

5.2.3. Normal errors, unequal variances (see Tables 5.22-5.28). This situation was a much more serious problem than the lack of normality. As in the case of nonnormally distributed errors, however, the power for all methods was less than in the equal variance case, and this decrease in power became more severe as the degree of heterogeneity between variances increased. In this case, however, since all errors were normally distributed with mean zero, the observed power disparity can be attributed to variance heterogeneity alone. Also as in the non-normal case, however, both rank tests consistently outperformed the FT in the power category, except for the RT in the previously discussed model (see Table 5.24). The FT did, however, often have slightly higher power for very small effect magnitudes. In addition, the ART usually had more power for testing interaction than the RT. These last two observations deserve some comment. Examination of nominal type I error rates for testing interaction when none was modeled revealed that these rates were inflated for all three methods, with more severe inflation occurring when the variances were more variable (see Tables 5.22, 5.23). This indicated that variance heterogeneity actually tends to introduce interaction into the data more often than would be expected. The ART seemed to be the most sensitive to this interaction, which is not surprising since the alignment procedure isolates the effect of interaction, followed by the FT and then the RT. Thus, it is not surprising that the ART showed more power when interaction was actually modeled. In addition, the RT, which was the least sensitive to interaction, usually "caught up" to the other two tests' type I error nominal levels as the magnitude of the effects became very large. This was the same behavior that was observed in the equal variance case.

The problem of nominal type I error rate inflation was not limited only to the test for interaction, however. When only one main effect was modeled along with an interaction effect, the nominal type I error rates for testing the unmodeled main effect were also inflated for all methods. Thus, it is apparent that variance heterogeneity can produce very erratic behavior in the data.

Although the results reported in this paper are all based an a nominal type I error rate of 0.05 , simulations were also conducted using nominal type I error rates of 0.10 and
0.01. The results obtained were similar for all three levels.

Table 5.22.

Proportion of rejections at $\alpha=0.05$, normally distributed errors with unequal variance, based on 10,000 samples. A main effect present ( $a_{1}=c, a_{3}=-c$ ).
$\mathrm{n}=2$
(10:1 ratio) Test for: $\quad$ Method $0.5 \quad 1.5 \quad 2.5 \quad 3.5$

| Factor A | FT | .106 | .394 | .829 | .985 |
| :--- | :--- | :--- | :--- | :--- | :--- |
|  | RT | .105 | .477 | .904 | .995 |
|  | ART | .107 | .465 | .898 | .994 |


| Factor B | FT | .069 | .069 | .069 | .069 |
| :--- | :--- | :--- | :--- | :--- | :--- |
|  | RT | .060 | .066 | .070 | .072 |
|  | ART | .063 | .063 | .063 | .063 |


| Interaction | FT | .090 | .090 | .090 | .090 |
| :--- | :--- | :--- | :--- | :--- | :--- |
|  | RT | .069 | .076 | .085 | .090 |
|  | ART | .097 | .097 | .097 | .097 |

$\mathrm{n}=2$
(30:1 ratio) Test for: $\quad$ Method $0.5 \quad 1.5 \quad 2.5 \quad 3.5$

| Factor A | FT | .108 | .215 | .476 | .758 |
| :--- | :--- | :--- | :--- | :--- | :--- |
|  | RT | .095 | .296 | .661 | .905 |
|  | ART | .098 | .273 | .626 | .892 |


| Factor B | FT | .083 | .083 | .083 | .083 |
| :--- | :--- | :--- | :--- | :--- | :--- |
|  | RT | .065 | .071 | .076 | .083 |
|  | ART | .067 | .067 | .067 | .067 |
|  |  |  |  |  |  |
| Interaction | FT | .113 | .113 | .113 | .113 |
|  | RT | .077 | .085 | .098 | .109 |
|  | ART | .134 | .134 | .134 | .134 |

Table 5.22 continued.

| $\begin{aligned} & n=2 \\ & (60: 1 \text { ratio } \end{aligned}$ | Test for: | Method | $\begin{aligned} & \mathrm{c} \\ & 0.5 \end{aligned}$ | 2.0 | 2.5 | 3.5 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| (60:1 ratio) | Factor A | FT | . 111 | . 167 | . 307 | . 510 |
|  |  | RT | . 095 | . 226 | . 487 | . 763 |
|  |  | ART | . 100 | . 206 | . 441 | . 721 |
|  | Factor B | FT | . 090 | . 090 | . 090 | . 090 |
|  |  | RT | . 069 | . 074 | . 080 | . 087 |
|  |  | ART | . 071 | . 071 | . 071 | . 071 |
|  | Interaction | FT | . 127 | . 127 | . 127 | . 127 |
|  |  | RT | . 082 | . 089 | . 102 | . 117 |
|  |  | ART | . 159 | . 159 | . 159 | . 159 |
| $\begin{aligned} & \mathrm{n}=10 \\ & \text { (30:1 ratio) } \end{aligned}$ |  |  | c |  |  |  |
|  | Test for: | Method | 0.5 | 1.5 | 2.5 | 3.5 |
|  | Factor A | FT | . 141 | . 885 | 1.00 | 1.00 |
|  |  | RT | . 234 | . 991 | 1.00 | 1.00 |
|  |  | ART | . 232 | . 990 | 1.00 | 1.00 |
|  | Factor B | FT | . 057 | . 057 | . 057 | . 057 |
|  |  | RT | . 052 | . 052 | . 053 | . 055 |
|  |  | ART | . 052 | . 052 | . 052 | . 052 |
|  | Interaction | FT | . 091 | . 091 | . 091 | . 091 |
|  |  | RT | . 062 | . 067 | . 076 | . 082 |
|  |  | ART | . 130 | . 130 | . 130 | . 130 |

Table 5.23.

Proportion of rejections at $\alpha=.05$, normally distributed errors with unequal variance, based on 10,000 samples. A and $B$ main effects present ( $a_{2}=b_{1}=c, a_{3}=b_{2}=-c$ ).

| $\begin{aligned} & n=2 \\ & \text { (10:1 ratio) } \end{aligned}$ | Test for: | Method | $\begin{aligned} & \mathrm{c} \\ & 0.5 \end{aligned}$ | 1.5 | 2.5 | 3.5 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Factor A | FT | . 108 | . 394 | . 812 | . 979 |
|  |  | RT | . 101 | . 428 | . 816 | . 976 |
|  |  | ART | . 103 | . 453 | . 870 | . 991 |
|  | Factor B | FT | . 124 | . 573 | . 944 | . 999 |
|  |  | RT | . 125 | . 607 | . 941 | . 998 |
|  |  | ART | . 132 | . 631 | . 963 | 1.00 |
|  | Interaction | FT | . 090 | . 090 | . 090 | . 090 |
|  |  | RT | . 071 | . 084 | . 086 | . 090 |
|  |  | ART | . 097 | . 097 | . 097 | . 097 |
| $\mathrm{n}=2$ |  |  | c |  |  |  |
| (30:1 ratio) | Test for: | Method | 0.5 | 1.5 | 2.5 | 3.5 |
|  | Factor A | FT | . 108 | . 218 | . 475 | . 753 |
|  |  | RT | . 096 | . 280 | . 562 | . 802 |
|  |  | ART | . 097 | . 279 | . 613 | . 874 |
|  | Factor B | FT | . 108 | . 313 | . 651 | . 887 |
|  |  | RT | . 102 | . 380 | . 718 | . 914 |
|  |  | ART | . 105 | . 406 | . 757 | . 945 |
|  | Interaction | FT | . 113 | . 113 | . 113 | . 113 |
|  |  | RT | . 080 | . 099 | . 110 | . 111 |
|  |  | ART | . 134 | . 134 | . 134 | . 134 |

Table 5.23 continued.

| (60:1 ratio) | Test for: | Method | $\begin{aligned} & \mathrm{c} \\ & 0.5 \end{aligned}$ | 1.5 | 2.5 | 3.5 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Factor A | FT | . 112 | . 171 | . 305 | . 510 |
|  |  | RT | . 094 | . 220 | . 418 | . 626 |
|  |  | ART | . 098 | . 211 | . 438 | . 703 |
|  | Factor B | FT | . 105 | . 216 | . 433 | . 674 |
|  |  | RT | . 093 | . 288 | . 550 | . 763 |
|  |  | ART | . 097 | . 302 | . 582 | . 806 |
|  | Interaction | FT | . 127 | . 127 | . 127 | . 127 |
|  |  | RT | . 085 | . 105 | . 121 | . 125 |
|  |  | ART | . 159 | . 159 | . 159 | . 159 |
| $\begin{aligned} & n=10 \\ & (30: 1 \text { ratio }) \end{aligned}$ |  |  | c |  |  |  |
|  | Test for: | Method | 0.5 | 1.5 | 2.5 | 3.5 |
|  | Factor A | FT | . 145 | . 865 | 1.00 | 1.00 |
|  |  | RT | . 228 | . 967 | 1.00 | 1.00 |
|  |  | ART | . 231 | . 977 | 1.00 | 1.00 |
|  | Factor B | FT | . 201 | . 947 | 1.00 | 1.00 |
|  |  | RT | . 306 | . 993 | 1.00 | 1.00 |
|  |  | ART | . 309 | . 995 | 1.00 | 1.00 |
|  | Interaction | FT | . 091 | . 091 | . 091 | . 091 |
|  |  | RT | . 076 | . 129 | . 149 | . 153 |
|  |  | ART | . 130 | . 130 | . 130 | . 130 |

Table 5.24.
Proportion of rejections at $\alpha=.05$, normally distributed errors with unequal variance, based on 10,000 samples. A, B and interaction effects present $\left(a b_{11}=c, b_{1}=a b_{41}=-c\right)$.
$\mathrm{n}=2$
(10:1 ratio) Test for: $\quad$ Method $0.5 \quad 1.5 \quad 2.5 \quad 3.5$

| Factor A | FT | .084 | .111 | .166 | .252 |
| :--- | :--- | :--- | :--- | :--- | :--- |
|  | RT | .069 | .094 | .136 | .176 |
|  | ART | .071 | .098 | .141 | .188 |
|  |  |  |  |  |  |
| Factor B | FT | .088 | .245 | .538 | .810 |
|  | RT | .076 | .217 | .473 | .728 |
|  | ART | .081 | .236 | .528 | .808 |
|  |  |  |  |  |  |
| Interaction | FT | .093 | .128 | .206 | .320 |
|  | RT | .069 | .091 | .129 | .178 |
|  | ART | .102 | .146 | .222 | .334 |


| $\mathrm{n}=2$ <br> (30:1 ratio) | Test for: | Method | 0.5 | 1.5 | 2.5 | 3.5 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  |  |  |  |  |  |  |
|  | Factor A | FT | .097 | .110 | .132 | .167 |
|  |  | RT | .076 | .090 | .115 | .146 |
|  |  | ART | .082 | .093 | .118 | .144 |
|  |  |  |  |  |  |  |
|  | Factor B | FT | .090 | .160 | .291 | .481 |
|  |  | RT | .075 | .144 | .275 | .455 |
|  |  | ART | .075 | .153 | .302 | .506 |
|  |  |  |  |  |  |  |
|  | Interaction | FT | .117 | .132 | .164 | .211 |
|  |  | RT | .078 | .086 | .110 | .140 |
|  |  | ART | .135 | .157 | .193 | .248 |

Table 5.24 continued.

| $\begin{aligned} & n=2 \\ & (60: 1 \text { ratio) } \end{aligned}$ | c |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Test for: | Method | 0.5 | 1.5 | 2.5 | 3.5 |
|  | Factor A | FT | . 106 | .112 | . 125 | . 145 |
|  |  | RT | . 081 | . 090 | . 104 | . 125 |
|  |  | ART | . 088 | . 097 | . 111 | . 130 |
|  | Factor B | FT | . 094 | . 132 | . 209 | . 316 |
|  |  | RT | . 074 | . 116 | . 198 | . 315 |
|  |  | ART | . 075 | . 124 | . 218 | . 350 |
|  | Interaction | FT | . 130 | . 136 | . 154 | . 183 |
|  |  | RT | . 083 | . 091 | . 102 | . 118 |
|  |  | ART | . 160 | . 171 | . 193 | . 225 |
| $\begin{aligned} & \mathrm{n}=10 \\ & \text { (30:1 ratio) } \end{aligned}$ |  |  | c |  |  |  |
|  | Test for: | Method | 0.5 | 1.5 | 2.5 | 3.5 |
|  | Factor A | FT | . 089 | . 147 | . 287 | . 516 |
|  |  | RT | . 079 | . 165 | . 363 | . 598 |
|  |  | ART | . 080 | . 167 | . 351 | . 586 |
|  | Factor B | FT | . 101 | . 517 | . 931 | . 999 |
|  |  | RT | . 094 | . 534 | . 934 | . 999 |
|  |  | ART | . 096 | . 541 | . 942 | . 999 |
|  | Interaction | FT | . 101 | . 197 | . 429 | . 736 |
|  |  | RT | . 068 | . 136 | . 326 | . 620 |
|  |  | ART | . 157 | . 356 | . 718 | . 958 |

Table 5.25.

Proportion of rejections at $\alpha=.05$, normally distributed errors with unequal variance, based on 10,000 samples. A main effect (large) and interaction (small) effects present $\left(a_{11}=a b_{12}=c, a b_{31}=a b_{32}=-c, a_{2}=2 c\right)$.

| $\mathrm{n}=2$ <br> $(10: 1$ ratio) | Test for: | Method | 0.5 | 1.5 | 2.5 | 3.5 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  |  |  |  |  |  |  |
|  | Factor A | FT | .138 | .656 | .977 | 1.00 |
|  |  | RT | .139 | .729 | .991 | 1.00 |
|  |  | ART | .142 | .721 | .990 | 1.00 |
|  |  |  |  |  |  |  |
|  | Factor B | FT | $\mathbf{. 0 6 9}$ |
|  |  | RT | $\mathbf{. 0 6 1}$ | $\mathbf{. 0 6 6}$ | $\mathbf{. 0 7 0}$ | $\mathbf{. 0 6 5}$ |
|  |  | ART | $\mathbf{. 0 6 3}$ | $\mathbf{. 0 6 3}$ | $\mathbf{. 0 6 6}$ | $\mathbf{. 0 6 7}$ |
|  |  |  |  |  |  |  |
|  | Interaction | FT | .093 | .123 | .196 | .326 |
|  |  | RT | .074 | .128 | .210 | .329 |
|  |  | ART | .102 | .143 | .226 | .356 |

$\mathrm{n}=2$
$\begin{array}{lllllll}\text { (30:1 ratio) } & \text { Test for: } & \text { Method } & 0.5 & 1.5 & 2.5 & 3.5\end{array}$

| Factor A | FT | .122 | .353 | .740 | .952 |
| :--- | :--- | :--- | :--- | :--- | :--- |
|  | RT | .115 | .471 | .870 | .988 |
|  | ART | .115 | .449 | .851 | .986 |


| Factor B | FT | .083 | .083 | .083 | .083 |
| :--- | :--- | :--- | :--- | :--- | :--- |
|  | RT | .067 | .073 | .083 | .085 |
|  | ART | .066 | .069 | .071 | .074 |
|  |  |  |  |  |  |
| Interaction | FT | .115 | .127 | .155 | .201 |
|  | RT | .082 | .120 | .167 | .219 |
|  | ART | .134 | .157 | .193 | .252 |

Table 5.25 continued.
$\mathbf{n}=2$
c
(60:1 ratio) Test for: $\quad$ Method $0.5 \quad 1.5 \quad 2.5 \quad 3.5$

| Factor A | FT | .119 | .235 | .496 | .768 |
| :--- | :--- | :--- | :--- | :--- | :--- |
|  | RT | .107 | .345 | .708 | .926 |
|  | ART | .110 | .319 | .671 | .905 |


| Factor B | FT | .090 | .090 | .090 | .090 |
| :--- | :--- | :--- | :--- | :--- | :--- |
|  | RT | .069 | .075 | .087 | .093 |
|  | ART | .070 | .073 | .075 | .077 |


| Interaction | FT | .128 | .135 | .150 | .174 |
| :--- | :--- | :--- | :--- | :--- | :--- |
|  | RT | .086 | .116 | .156 | .188 |
|  | ART | .160 | .173 | .194 | .232 |

Table 5.26.
Proportion of rejections at $\alpha=.05$, normally distributed errors with unequal variance, based on 10,000 samples. A main effect (small) and interaction effect (large) present $\left(a b_{11}=a b_{12}=a b_{33}=c, a b_{13}=a b_{31}=a b_{32}=-c\right)$.
$\mathrm{n}=2$

|  |  | c |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Test for: | Method | 0.5 | 1.5 | 2.5 | 3.5 |
| Factor A | FT | .082 | .106 | .159 | .258 |
|  | RT | .070 | .105 | .161 | .245 |
|  | ART | .075 | .108 | .157 | .232 |
|  |  |  |  |  |  |
| Factor B | FT | .069 | .069 | .069 | .069 |
|  | RT | .061 | .066 | .071 | .076 |
|  | ART | .063 | .067 | .071 | .077 |
|  |  |  |  |  |  |
| Interaction | FT | .104 | .252 | .589 | .880 |
|  | RT | .090 | .291 | .646 | .904 |
|  | ART | .115 | .286 | .613 | .883 |

Table 5.26 continued.

| $\begin{aligned} & \mathrm{n}=2 \\ & (30: 1 \text { ratio }) \end{aligned}$ | Test for: | Method | $\begin{aligned} & \mathrm{c} \\ & 0.5 \end{aligned}$ | 1.5 | 2.5 | 3.5 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Factor A | FT | . 098 | . 108 | . 129 | . 162 |
|  |  | RT | . 078 | . 102 | . 139 | . 177 |
|  |  | ART | . 082 | . 103 | . 133 | . 169 |
|  | Factor B | FT | . 083 | . 083 | . 083 | . 083 |
|  |  | RT | . 065 | . 072 | . 081 | . 085 |
|  |  | ART | . 066 | . 072 | . 078 | . 085 |
|  | Interaction | FT | . 121 | . 177 | . 316 | . 529 |
|  |  | RT | . 093 | . 198 | . 407 | . 641 |
|  |  | ART | . 143 | . 221 | . 384 | . 600 |
| $\mathrm{n}=2$ |  |  | c |  |  |  |
| (60:1 ratio) | Test for: | Method | 0.5 | 1.5 | 2.5 | 3.5 |
|  | Factor A | FT | . 106 | . 111 | . 122 | . 143 |
|  |  | RT | . 081 | . 102 | . 126 | . 160 |
|  |  | ART | . 090 | . 107 | . 126 | . 151 |
|  | Factor B | FT | . 090 | . 090 | . 090 | . 090 |
|  |  | RT | . 069 | . 075 | . 084 | . 089 |
|  |  | ART | . 070 | . 077 | . 082 | . 088 |
|  | Interaction | FT | . 130 | . 161 | . 227 | . 349 |
|  |  | RT | . 093 | . 165 | . 300 | . 478 |
|  |  | ART | . 166 | . 211 | . 302 | . 441 |

Table 5.27.

Proportion of rejections at $\alpha=.05$, normally distributed errors with unequal variance, based on 10,000 samples. A main effect (large) and interaction effect (large) present $\left(a b_{12}=a b_{23}=a b_{41}=c, a b_{22}=a b_{31}=a b_{33}=-c\right)$.
$\mathrm{n}=2$
c
(10:1 ratio) Test for: $\quad$ Method $0.5 \quad 1.5 \quad 2.5 \quad 3.5$

| Factor A | FT | .088 | .171 | .360 | .608 |
| :--- | :--- | :--- | :--- | :--- | :--- |
|  | RT | .077 | .178 | .382 | .614 |
|  | ART | .081 | .177 | .371 | .608 |


| Factor B | FT | .069 | .069 | .069 | .069 |
| :--- | :--- | :--- | :--- | :--- | :--- |
|  | RT | .063 | .065 | .067 | .072 |
|  | ART | .063 | .065 | .065 | .066 |


| Interaction | FT | .102 | .211 | .463 | .752 |
| :--- | :--- | :--- | :--- | :--- | :--- |
|  | RT | .085 | .226 | .509 | .782 |
|  | ART | .111 | .244 | .508 | .783 |

$\mathrm{n}=2$
(30:1 ratio) Test for: $\quad$ Method $0.5 \quad 1.5 \quad 2.5 \quad 3.5$

| Factor A | FT | .100 | .132 | .208 | .333 |
| :--- | :--- | :--- | :--- | :--- | :--- |
|  | RT | .079 | .133 | .239 | .378 |
|  | ART | .084 | .134 | .228 | .359 |


| Factor B | FT | .083 | .083 | .083 | .083 |
| :--- | :--- | :--- | :--- | :--- | :--- |
|  | RT | .067 | .073 | .076 | .081 |
|  | ART | .067 | .069 | .075 | .076 |
|  |  |  |  |  |  |
| Interaction | FT | .119 | .161 | .260 | .420 |
|  | RT | .086 | .165 | .315 | .505 |
|  | ART | .141 | .204 | .325 | .500 |

Table 5.27 continued.
$\mathrm{n}=2$
c
(60:1 ratio) Test for: $\quad$ Method $0.5 \quad 1.5 \quad 2.5 \quad 3.5$

| Factor A | FT | .107 | .128 | .164 | .228 |
| :--- | :--- | :--- | :--- | :--- | :--- |
|  | RT | .083 | .122 | .189 | .277 |
|  | ART | .088 | .123 | .177 | .258 |
| Factor B | FT | .090 | .090 | .090 | .090 |
|  | RT | .068 | .075 | .082 | .084 |
|  | ART | .068 | .074 | .080 | .083 |
|  |  |  |  |  |  |
| Interaction | FT | .130 | .153 | .201 | .286 |
|  | RT | .088 | .144 | .244 | .370 |
|  | ART | .162 | .200 | .269 | .371 |

Table 5.28.

Proportion of rejections at $\alpha=.05$, normally distributed errors with unequal variance, based on 10,000 samples. Interaction effect present $\left(a b_{11}=a b_{33}=c, a b_{13}=a b_{31}=-c\right)$.
$\mathrm{n}=2$
(10:1 ratio) Test for: $\quad$ Method $0.5 \quad 1.5 \quad 2.5 \quad 3.5$

| Factor A | FT | .080 | .080 | .080 | .080 |
| :--- | :--- | :--- | :--- | :--- | :--- |
|  | RT | .068 | .071 | .074 | .076 |
|  | ART | .070 | .075 | .075 | .073 |
|  |  |  |  |  |  |
| Factor B | FT | .069 | .069 | .069 | .069 |
|  | RT | .061 | .067 | .069 | .069 |
|  | ART | .061 | .065 | .067 | .065 |
|  |  |  |  |  |  |
| Interaction | FT | .100 | .209 | .464 | .767 |
|  | RT | .085 | .225 | .499 | .773 |
|  | ART | .113 | .236 | .488 | .760 |

Table 5.28 continued.
$\mathrm{n}=2$
c
(30:1 ratio) Test for: $\quad$ Method $0.5 \quad 1.5 \quad 2.5 \quad 3.5$

| Factor A | FT | .095 | .095 | .095 | .095 |
| :--- | :--- | :--- | :--- | :--- | :--- |
|  | RT | .075 | .082 | .087 | .088 |
|  | ART | .081 | .086 | .090 | .089 |
| Factor B | FT |  |  |  |  |
|  | RT | .083 | .083 | .083 | $\mathbf{. 0 8 3}$ |
|  | ART | .066 | .071 | .076 | $\mathbf{. 0 7 8}$ |
|  |  |  |  |  |  |
| Interaction | FT | .119 | .162 | .259 | .424 |
|  | RT | .088 | .167 | .320 | .510 |
|  | ART | .140 | .201 | .319 | .483 |

$\mathrm{n}=2$
(60:1 ratio) Test for: $\quad$ Method $0.5 \quad 1.5 \quad 2.5 \quad 3.5$

| Factor A | FT | .106 | .106 | .106 | .106 |
| :--- | :--- | :--- | :--- | :--- | :--- |
|  | RT | .081 | .086 | .091 | .094 |
|  | ART | .089 | .092 | .098 | .099 |

Factor B FT . 090 . 090 . 090 . 090

| RT | .068 | .074 | .080 | .083 |
| :--- | :--- | :--- | :--- | :--- |
| ART | .070 | .074 | .080 | .084 |


| Interaction | FT | .130 | .152 | .201 | .285 |
| :--- | :--- | :--- | :--- | :--- | :--- |
|  | RT | .091 | .144 | .247 | .380 |
|  | ART | .163 | .198 | .269 | .372 |

Table 5.28 continued.

| $\begin{aligned} & n=10 \\ & \text { (30:1 ratio) } \end{aligned}$ | Test for: | Method | $\begin{aligned} & \mathrm{c} \\ & 0.5 \end{aligned}$ | 1.5 | 2.5 | 3.5 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Factor A | FT | . 084 | . 084 | . 084 | . 084 |
|  |  | RT | . 071 | . 073 | . 076 | . 078 |
|  |  | ART | . 070 | . 073 | . 077 | . 080 |
|  | Factor B | FT | . 057 | . 057 | . 057 | . 057 |
|  |  | RT | . 059 | . 075 | . 079 | . 073 |
|  |  | ART | . 058 | . 073 | . 077 | . 072 |
|  | Interaction | FT | . 115 | . 493 | . 979 | 1.00 |
|  |  | RT | . 140 | . 888 | 1.00 | 1.00 |
|  |  | ART | . 221 | . 890 | 1.00 | 1.00 |

### 5.3 Conclusion for Analysis of Completely Randomized Factorial Experiments

The exact aligned rank procedure appears to be the overall best choice for performing tests in a general factorial experiment. When the error distribution was symmetric and error variances were homogeneous (situations in which the F-test is generally assumed to work well), the ART was nearly as powerful as the F-test, with an almost negligible difference in power between the two methods. For a skewed error distribution, the ART was clearly more powerful than the F-test. When the error variances were heterogeneous, both methods had problems maintaining nominal type I error levels for testing interaction, but the ART showed superior power for detecting main effects and interaction. Thus as a
general purpose method, the ART appears to be superior to the F-test. It is possible that the ART procedure could benefit from an additional adjustment to stabilize variances. If, in addition to aligning the observations with regard to location, the observations could also be scaled to correct for possible problems with unequal variance, then the tendency for the ART to have inflated nominal type I error rates could be eliminated.

The problems with the rank transform method in two-factor experiments are not alleviated by using the exact permutation distribution of the test statistic computed on the ranks. Based upon the results of this and other studies, the rank transform procedure should not be used to analyze data in a factorial arrangement, due to the serious type I error rate inflations caused by the transformation of data to ranks, and also to the poor power exhibited for some models. This implies that the rank transform procedure should be avoided in any design that allows for interaction between factors.

## CHAPTER SIX

## SIMULATION STUDY FOR A SPLIT-UNIT EXPERIMENT

### 6.1 Simulation Procedure

Simulated data sets were generated to examine the performance of the three methods: the parametric F-test procedure ( FT ), the exact rank transform test procedure ( RT ), and the exact aligned rank transform test procedure (ART). A split-unit experiment with main units in a randomized complete block design was considered. The following model was used to generate the observations:

$$
Y_{i \mathrm{ijk}}=\mathrm{B}_{\mathrm{i}}+\mathrm{M}_{\mathrm{j}}+(\mathrm{BM})_{\mathrm{ij}}+\mathrm{S}_{\mathrm{k}}+(\mathbf{M S})_{\mathrm{jk}}+\mathrm{E}_{\mathrm{ijk}},
$$

where $B_{i}$ is the random effect of the $i^{\text {th }}$ block, $\mathbf{M}_{j}$ is the fixed effect of the $j^{\text {th }}$ level of the main unit treatment, $(B M)_{i j}$ is the random effect of the interaction between the $\mathrm{i}^{\text {th }}$ block and the $j^{\text {th }}$ level of the main unit treatment, $S_{k}$ is the fixed effect of the $k^{\text {th }}$ level of the subunit treatment, (MS $)_{j k}$ is the fixed effect of the interaction between the $j^{\text {th }}$ level of the subunit treatment with the $\mathrm{k}^{\text {th }}$ level of the main unit treatment, and $\mathrm{E}_{\mathrm{ijk}}$ is the random sub-unit error effect. The random effect $(\mathrm{BM})_{\mathrm{ij}}$ was used as error to test for the effect of the main unit treatment, while the random effect $\mathrm{E}_{\mathrm{ijk}}$ was used as error to test both the sub-unit treatment effect, $\mathrm{S}_{\mathrm{k}}$, and the interaction effect, $(\mathrm{MS})_{\mathrm{jk}}$. Standard normal (both with
homogeneous and heterogeneous variances), exponential $(\mu=3)$ and uniform $[-3,3]$ distributions were used to model the error distributions. Using notation analogous to Chapter Five, The values $\mathrm{m}_{\mathrm{i}}, \mathrm{s}_{\mathrm{j}}$, and $\mathrm{ms}_{\mathrm{ij}}$ referred to in the tables that follow represent the values assigned to $\mathrm{M}_{\mathrm{i}}, \mathrm{S}_{\mathrm{j}}$, and $(\mathrm{MS})_{\mathrm{ij}}$, respectively, for each model. Ten thousand samples were generated, and the proportion of test statistic values greater than or equal to the critical values for the respective sampling distributions was calculated.

For the aligned rank procedure, three different methods of aligning were used, depending upon the effect being tested. For testing main unit treatment effect, the observations were aligned by subtracting estimates of both block and sub-unit treatment effects. For testing sub-unit treatment effect, estimates of both block and main unit treatment effects were subtracted from each observation. Finally, for testing interaction, the observations were aligned by subtracting block, main unit and sub-unit effect estimates.

### 6.2 Simulation Results

6.2.1. Normal errors, equal variances (see Tables 6.1-6.5). In this situation, all random effects were modeled as identically distributed standard normal distributions. The three methods performed almost identically to the previous study of the two-way layout in a completely randomized design. Both rank tests consistently had power almost equal to
that of the F-test. As in the completely randomized case, the RT again showed poor power for testing interaction when both main and sub-unit main effects and interaction were present in the model (see Table 6.4). Also, Table 6.3 shows that when only main and sub-unit effects were in the model, the RT again had type I error rates that inflated as the magnitude of the effects increased. This behavior was not as evident for other models, however.

Table 6.1.
Proportion of rejections at $\alpha=0.05$, normally distributed errors with equal variance, based on 10,000 samples. Sub-unit main effect present ( $s_{1}=-c, s_{3}=c$ ).

|  |  | c |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Test for: | Method | 0.5 | 1.5 | 2.5 | 3.5 |
|  |  |  |  |  |  |
| MU Trt | FT | .048 | .048 | .048 | .048 |
|  | RT | .054 | .049 | .050 | .047 |
|  | ART | .053 | .053 | .053 | .053 |
| SU Trt |  |  |  |  |  |
|  | FT | .050 | 1.00 | 1.00 | 1.00 |
|  | RT | .046 | 1.00 | 1.00 | 1.00 |
|  | ART | .048 | 1.00 | 1.00 | 1.00 |
|  |  |  |  |  |  |
| Interaction | FT | .055 | .055 | .055 | .055 |
|  | RT | .044 | .049 | .048 | .047 |
|  | ART | .049 | .051 | .051 | .049 |

Table 6.2.
Proportion of rejections at $\alpha=0.05$, normally distributed errors with equal variance, based on 10,000 samples. Main unit main effect present ( $m_{1}=c, m_{3}=-c$ ).

|  |  | c |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Test for: | Method | 0.5 | 1.5 | 2.5 | 3.5 |
| MU Trt | FT | .087 | .476 | .900 | .994 |
|  | RT | .092 | .480 | .894 | .994 |
|  | ART | .096 | .484 | .898 | .995 |
| SU Trt | FT | .049 | .049 | .049 | .049 |
|  | RT | .047 | .046 | .048 | .050 |
|  | ART | .050 | .050 | .050 | .050 |
|  |  |  |  |  |  |
| Interaction | FT | .049 | .049 | .049 | .049 |
|  | RT | .044 | .044 | .047 | .053 |
|  | ART | .049 | .049 | .049 | .049 |

Table 6.3.

Proportion of rejections at $\alpha=.05$, normally distributed errors with equal variance, based on 10,000 samples. MU and SU main effects present ( $\mathrm{m}_{2}=\mathrm{s}_{1}=\mathrm{c}, \mathrm{m}_{3}=\mathrm{s}_{2}=-\mathrm{c}$ ).

|  |  | c |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Test for: | Method | 0.5 | 1.5 | 2.5 | 3.5 |
|  |  |  |  |  |  |
| MU Trt | FT | .088 | .474 | .900 | .994 |
|  | RT | .091 | .467 | .889 | .993 |
|  | ART | .096 | .481 | .897 | .993 |
| SU Trt | FT | .500 | 1.00 | 1.00 | 1.00 |
|  | RT | .449 | 1.00 | 1.00 | 1.00 |
|  | ART | .473 | 1.00 | 1.00 | 1.00 |
|  |  |  |  |  |  |
| Interaction | FT | .049 | .049 | .049 | .049 |
|  | RT | .046 | .047 | .077 | .148 |
|  | ART | .049 | .049 | .049 | .049 |

Table 6.4.

Proportion of rejections at $\alpha=.05$, normally distributed errors with equal variance, based on 10,000 samples. MU , SU main effects and interaction effect present ( $\mathrm{ms}_{11}=-\mathrm{c}$, $\mathrm{s}_{1}=\mathrm{ms}_{41}=\mathrm{c}$ ).

|  |  | c |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Test for: | Method | 0.5 | 1.5 | 2.5 | 3.5 |
|  |  |  |  |  |  |
| MU Trt | FT | .052 | .087 | .168 | .298 |
|  | RT | .057 | .078 | .114 | .146 |
|  | ART | .058 | .087 | .123 | .155 |
| SU Trt | FT | .187 | .942 | 1.00 | 1.00 |
|  | RT | .168 | .875 | .998 | 1.00 |
|  | ART | .179 | .911 | 1.00 | 1.00 |
|  |  |  |  |  |  |
| Interaction | FT | .079 | .416 | .894 | .997 |
|  | RT | .070 | .269 | .497 | .642 |
|  | ART | .075 | .383 | .850 | .991 |

Table 6.5.

Proportion of rejections at $\alpha=.05$, normally distributed errors with equal variance, based on 10,000 samples. Interaction effect present $\left(\mathrm{ms}_{11}=\mathrm{ms}_{33}=\mathrm{c}, \mathrm{ms}_{13}=\mathrm{ms}_{31}=\right.$-c).

|  |  | c |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Test for: | Method | 0.5 | 1.5 | 2.5 | 3.5 |
|  |  |  |  |  |  |
| MU Trt | FT | .048 | .048 | .048 | .048 |
|  | RT | .053 | .052 | .048 | .047 |
|  | ART | .053 | .052 | .049 | .052 |
| SU Trt | FT | .049 | .049 | .049 | .049 |
|  | RT | .048 | .045 | .045 | .044 |
|  | ART | .049 | .048 | .040 | .033 |
|  |  |  |  |  |  |
| Interaction | FT | .149 | .919 | 1.00 | 1.00 |
|  | RT | .128 | .852 | .999 | 1.00 |
|  | ART | .140 | .878 | 1.00 | 1.00 |

6.2.2. Non-normal errors (see Tables 6.6-6.29). Four different cases were considered. In the first three cases, one random effect was modeled as either exponentially or uniformly distributed, while the other two random effects were modeled as normally distributed. In addition, one case was investigated with both random error effects uniformly distributed.

When the block effect was exponentially distributed, the behavior of the tests did not deviate significantly from the case of all normally distributed random effects. When the main unit error was exponentially distributed, although all tests had less power than when
all random effects were normally distributed, both rank tests usually had superior power to the F-test (see Tables 6.11-6.15). One exception was the model which had both main effects and interaction present, where again the RT had much less power for testing interaction than the other two methods, as can be seen in Table 6.14. Another exception was the model where only interaction was present (see Table 6.15). Here, the F-test was not outperformed, but had slightly more power than either of the two rank tests. Table 6.13 indicates that the RT also had inflated type I error rates in tests for interaction when the model included only both main and sub-unit main effects. When the sub-unit error effect was exponentially distributed, both rank tests had more power than the F-test for all models (see Tables 6.16-6.20). When all fixed effects were in the model, Table 6.19 shows that the power of the ART was clearly superior to the other two, although the drop-off in power for the RT was not as severe as had been observed in previous situations.

Uniformly distributed errors were examined for the models with both main effects present (both alone, and with interaction present), and with only interaction present (see Tables 6.21-6.29). When only one of the error distributions was uniform, the power for all tests was much less than in the normally distributed case, but the relative performance was essentially the same, with very similar power for all tests, except for the rank transform which had much less power when all effects were present. When both errors were uniformly distributed, the power of all methods for testing main and sub-unit treatment effects was diminished even more (compare Tables 6.21, 6.24 and 6.27). When
only the main and sub-unit effects were present, the rank transform method again had nominal type I error rates for testing interaction that became inflated as the magnitude of the effects became larger.

Table 6.6.

Proportion of rejections at $\alpha=0.05$, exponentially distributed block effect, normally distributed main and sub-unit errors, based on 10,000 samples. Sub-unit main effect present ( $\mathrm{s}_{1}=-\mathrm{c}, \mathrm{s}_{3}=\mathrm{c}$ ).

|  |  | c |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Test for: | Method | 0.5 | 1.5 | 2.5 | 3.5 |
|  |  |  |  |  |  |
| MU Trt | FT | .049 | .049 | .049 | .049 |
|  | RT | .046 | .047 | .045 | .048 |
|  | ART | .051 | .051 | .051 | .051 |
| SU Trt | FT | .050 | 1.00 | 1.00 | 1.00 |
|  | RT | .044 | 1.00 | 1.00 | 1.00 |
|  | ART | .048 | 1.00 | 1.00 | 1.00 |
|  |  |  |  |  |  |
| Interaction | FT | .049 | .049 | .049 | .049 |
|  | RT | .044 | .039 | .034 | .030 |
|  | ART | .049 | .049 | .049 | .049 |

Table 6.7.
Proportion of rejections at $\alpha=0.05$, exponentially distributed block effect, normally distributed main and sub-unit errors, based on 10,000 samples. Main unit main effect present ( $m_{1}=c, m_{3}=-c$ ).

|  |  | c |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Test for: | Method | 0.5 | 1.5 | 2.5 | 3.5 |
|  |  |  |  |  |  |
| MU Trt | FT | .088 | .471 | .896 | .996 |
|  | RT | .088 | .451 | .874 | .992 |
|  | ART | .094 | .477 | .893 | .995 |
| SU Trt | FT | .052 | .052 | .052 | .052 |
|  | RT | .049 | .048 | .047 | .051 |
|  | ART | .051 | .051 | .051 | .051 |
|  |  |  |  |  |  |
| Interaction | FT | .049 | .049 | .049 | .049 |
|  | RT | .045 | .046 | .047 | .051 |
|  | ART | .049 | .049 | .049 | .049 |

Table 6.8.

Proportion of rejections at $\alpha=.05$, exponentially distributed block effect, normally distributed main and sub-unit errors, based on 10,000 samples. MU and SU main effects present ( $\mathrm{m}_{2}=\mathrm{s}_{1}=\mathrm{c}, \mathrm{m}_{3}=\mathrm{s}_{2}=-\mathrm{c}$ ).

|  |  | c |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Test for: | Method | 0.5 | 1.5 | 2.5 | 3.5 |
|  |  |  |  |  |  |
| MU Trt | FT | .085 | .471 | .899 | .995 |
|  | RT | .083 | .445 | .878 | .992 |
|  | ART | .093 | .480 | .896 | .994 |
| SU Trt | FT | .500 | 1.00 | 1.00 | 1.00 |
|  | RT | .446 | 1.00 | 1.00 | 1.00 |
|  | ART | .480 | 1.00 | 1.00 | 1.00 |
|  |  |  |  |  |  |
| Interaction | FT | .049 | .049 | .049 | .049 |
|  | RT | .043 | .036 | .044 | .087 |
|  | ART | .049 | .049 | .049 | .049 |

Table 6.9.

Proportion of rejections at $\alpha=.05$, exponentially distributed block effect, normally distributed main and sub-unit errors, based on 10,000 samples. MU, SU main effects and interaction effect present ( $\mathrm{ms}_{11}=\mathrm{c}, \mathrm{s}_{1}=\mathrm{ms}_{41}=\mathrm{c}$ ).

|  |  | c |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Test for: | Method | 0.5 | 1.5 | 2.5 | 3.5 |
|  |  |  |  |  |  |
| MU Trt | FT | .052 | .088 | .168 | .302 |
|  | RT | .051 | .079 | .119 | .159 |
|  | ART | .055 | .087 | .125 | .157 |
| SU Trt |  |  |  |  |  |
|  | FT | .195 | .945 | 1.00 | 1.00 |
|  | RT | .171 | .867 | .998 | 1.00 |
|  | ART | .188 | .913 | 1.00 | 1.00 |
| Interaction | FT | .079 | .417 | .894 | .996 |
|  | RT | .067 | .258 | .516 | .675 |
|  | ART | .077 | .382 | .852 | .990 |

Table 6.10.

Proportion of rejections at $\alpha=.05$, exponentially distributed block effect, normally distributed main and sub-unit errors, based on 10,000 samples. Interaction effect present $\left(\mathrm{ms}_{11}=\mathrm{ms}_{33}=\mathrm{c}, \mathrm{ms}_{13}=\mathrm{ms}_{31}=-\mathrm{c}\right.$ ).

|  |  | c |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Test for: | Method | 0.5 | 1.5 | 2.5 | 3.5 |
|  |  |  |  |  |  |
| MU Trt | FT | .049 | .049 | .049 | .049 |
|  | RT | .046 | .048 | .045 | .044 |
|  | ART | .051 | .049 | .047 | .049 |
| SU Trt |  |  |  |  |  |
|  | FT | .052 | .052 | .052 | .052 |
|  | RT | .048 | .043 | .040 | .037 |
|  | ART | .052 | .046 | .039 | .032 |
|  |  |  |  |  |  |
| Interaction | FT | .152 | .923 | 1.00 | 1.00 |
|  | RT | .124 | .831 | .999 | 1.00 |
|  | ART | .140 | .883 | .999 | 1.00 |

Table 6.11.

Proportion of rejections at $\alpha=0.05$, exponentially distributed main unit errors, normally distributed block effect and sub-unit errors, based on 10,000 samples. Sub-unit main effect present ( $s_{1}=-c, s_{3}=c$ ).

|  |  | c |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Test for: | Method | 0.5 | 1.5 | 2.5 | 3.5 |
|  |  |  |  |  |  |
| MU Trt | FT | $\mathbf{. 0 4 1}$ |
|  | RT | $\mathbf{. 0 5 7}$ | .056 | .053 | .050 |
|  | ART | .052 | .052 | .052 | .052 |
| SU Trt |  | FT | .050 | 1.00 | 1.00 |
|  | RT | .042 | 1.00 | 1.00 | 1.00 |
|  | ART | .044 | 1.00 | 1.00 | 1.00 |
|  |  |  |  |  |  |
| Interaction | FT | .049 | .049 | .049 | .049 |
|  | RT | $\mathbf{. 0 4 2}$ | .045 | .048 | .047 |
|  | ART | .050 | .050 | .050 | .050 |

Table 6.12.
Proportion of rejections at $\alpha=0.05$, exponentially distributed main unit errors, normally distributed block effect and sub-unit errors, based on 10,000 samples. Main unit main effect present ( $\mathrm{m}_{1}=\mathrm{c}, \mathrm{m}_{3}=-\mathrm{c}$ ).

|  |  | c |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Test for: | Method | 0.5 | 1.5 | 2.5 | 3.5 |
|  |  |  |  |  |  |
| MU Trt | FT | .048 | .116 | .264 | .458 |
|  | RT | .068 | .159 | .329 | .520 |
|  | ART | .063 | .145 | .307 | .490 |
| SU Trt | FT | .049 | .049 | .049 | .049 |
|  | RT | .049 | .046 | .048 | .050 |
|  | ART | .050 | .050 | .050 | .050 |
|  |  |  |  |  |  |
| Interaction | FT | .049 | .049 | .049 | .049 |
|  | RT | .041 | .044 | .046 | .046 |
|  | ART | .050 | .050 | .050 | .050 |

Table 6.13.

Proportion of rejections at $\alpha=.05$, exponentially distributed main unit errors, normally distributed block effect and sub-unit errors, based on 10,000 samples. MU and SU main effects present ( $\mathrm{m}_{2}=\mathrm{s}_{1}=\mathrm{c}, \mathrm{m}_{3}=\mathrm{s}_{2}=-\mathrm{c}$ ).

|  |  | c |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Test for: | Method | 0.5 | 1.5 | 2.5 | 3.5 |
|  |  |  |  |  |  |
| MU Trt | FT | .050 | .113 | .267 | .458 |
|  | RT | .067 | .149 | .316 | .502 |
|  | ART | .062 | .148 | .308 | .492 |
| SU Trt |  |  |  |  |  |
|  | FT | .050 | 1.00 | 1.00 | 1.00 |
|  | RT | .042 | 1.00 | 1.00 | 1.00 |
|  | ART | .044 | 1.00 | 1.00 | 1.00 |
|  |  |  |  |  |  |
| Interaction | FT | .049 | .049 | .050 | .049 |
|  | RT | .042 | .050 | .070 | .103 |
|  | ART | .050 | .050 | .050 | .050 |

Table 6.14.
Proportion of rejections at $\alpha=.05$, exponentially distributed main unit errors, normally distributed block effect and sub-unit errors, based on 10,000 samples. MU, SU main effects and interaction effect present ( $\mathrm{ms}_{11}=-\mathrm{c}, \mathrm{s}_{1}=\mathrm{ms}_{41}=\mathrm{c}$ ).

|  |  | c |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Test for: | Method | 0.5 | 1.5 | 2.5 | 3.5 |
|  |  |  |  |  |  |
| MU Trt | FT | .042 | .088 | .168 | .232 |
|  | RT | .060 | .079 | .119 | .140 |
|  | ART | .053 | .087 | .125 | .145 |
| SU Trt | FT | .195 | .945 | 1.00 | 1.00 |
|  | RT | .167 | .867 | .998 | 1.00 |
|  | ART | .169 | .913 | 1.00 | 1.00 |
|  |  |  |  |  |  |
| Interaction | FT | .078 | .417 | .894 | .976 |
|  | RT | .064 | .258 | .516 | .610 |
|  | ART | .075 | .382 | .852 | .957 |

Table 6.15.
Proportion of rejections at $\alpha=.05$, exponentially distributed main unit errors, normally distributed block effect and sub-unit errors, based on 10,000 samples. Interaction effect present ( $\mathrm{ms}_{11}=\mathrm{ms}_{33}=\mathrm{c}, \mathrm{ms}_{13}=\mathrm{ms}_{31}=-\mathrm{c}$ ).

|  |  | c |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Test for: | Method | 0.5 | 1.5 | 2.5 | 3.5 |
|  |  |  |  |  |  |
| MU Trt | FT | $\mathbf{. 0 4 1}$ | .041 | $\mathbf{. 0 4 1}$ | $\mathbf{. 0 4 1}$ |
|  | RT | .058 | .056 | .054 | .052 |
|  | ART | .054 | .052 | .048 | .047 |
| SU Trt | FT | .049 | .049 | .049 | .049 |
|  | RT | .048 | .046 | .047 | .046 |
|  | ART | .049 | .054 | .049 | .042 |
|  |  |  |  |  |  |
| Interaction | FT | .146 | .914 | 1.00 | 1.00 |
|  | RT | .116 | .775 | .990 | 1.00 |
|  | ART | .130 | .815 | .994 | 1.00 |

Table 6.16.

Proportion of rejections at $\alpha=0.05$, exponentially distributed sub-unit errors, normally distributed block effect and main unit errors, based on 10,000 samples. Sub-unit main effect present ( $s_{1}=-c, s_{3}=c$ ).

|  |  | c |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Test for: | Method | 0.5 | 1.5 | 2.5 | 3.5 |
|  |  |  |  |  |  |
| MU Trt | FT | .051 | .051 | .051 | .051 |
|  | RT | .052 | .053 | .053 | .053 |
|  | ART | .054 | .054 | .054 | .054 |
| SU Trt | FT | .095 | .547 | .905 | .990 |
|  | RT | .133 | .689 | .963 | .998 |
|  | ART | .127 | .653 | .950 | .997 |
|  |  |  |  |  |  |
| Interaction | FT | .044 | .044 | .044 | .044 |
|  | RT | .048 | .049 | .049 | .049 |
|  | ART | $\mathbf{. 0 5 8}$ |

Table 6.17.

Proportion of rejections at $\alpha=0.05$, exponentially distributed sub-unit errors, normally distributed block effect and main unit errors, based on 10,000 samples. Main unit main effect present ( $\mathrm{m}_{1}=\mathrm{c}, \mathrm{m}_{3}=-\mathrm{c}$ ).

|  |  | c |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Test for: | Method | 0.5 | 1.5 | 2.5 | 3.5 |
|  |  |  |  |  |  |
| MU Trt | FT | .067 | .199 | .466 | .755 |
|  | RT | .076 | .250 | .549 | .816 |
|  | ART | .076 | .241 | .534 | .803 |
| SU Trt | FT | .041 | .041 | .041 | .041 |
|  | RT | .049 | .048 | .048 | .050 |
|  | ART | .051 | .051 | .051 | .051 |
|  |  |  |  |  |  |
| Interaction | FT | .044 | .044 | .044 | .044 |
|  | RT | .048 | .049 | .051 | .051 |
|  | ART | $\mathbf{. 0 5 8}$ | $\mathbf{. 0 5 8}$ | .058 | .058 |

Table 6.18.
Proportion of rejections at $\alpha=.05$, exponentially distributed sub-unit errors, normally distributed block effect and main unit errors, based on 10,000 samples. MU and SU main effects present ( $\mathrm{m}_{2}=\mathrm{s}_{1}=\mathrm{c}, \mathrm{m}_{3}=\mathrm{S}_{2}=-\mathrm{c}$ ).

|  |  | c |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Test for: | Method | 0.5 | 1.5 | 2.5 | 3.5 |
|  |  |  |  |  |  |
| MU Trt | FT | .066 | .198 | .470 | .748 |
|  | RT | .074 | .234 | .513 | .770 |
|  | ART | .074 | .240 | .542 | .801 |
| SU Trt | FT | .095 | .543 | .909 | .989 |
|  | RT | .126 | .657 | .948 | .996 |
|  | ART | .125 | .655 | .952 | .997 |
|  |  |  |  |  |  |
| Interaction | FT | .044 | .044 | .044 | .044 |
|  | RT | .049 | .049 | .049 | .055 |
|  | ART | $\mathbf{. 0 5 8}$ | .058 | .058 | .058 |

Table 6.19.
Proportion of rejections at $\alpha=.05$, exponentially distributed sub-unit errors, normally distributed block effect and main unit errors, based on 10,000 samples. MU, SU main effects and interaction effect present ( $\mathrm{ms}_{11}=-\mathrm{c}, \mathrm{s}_{1}=\mathrm{ms}_{41}=\mathrm{c}$ ).

|  |  | c |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Test for: | Method | 0.5 | 1.5 | 2.5 | 3.0 |
|  |  |  |  |  |  |
| MU Trt | FT | .054 | .068 | .096 | .138 |
|  | RT | .055 | .070 | .094 | .120 |
|  | ART | .056 | .074 | .098 | .132 |
| SU Trt | FT | .061 | .220 | .518 | .778 |
|  | RT | .076 | .282 | .574 | .778 |
|  | ART | .076 | .274 | .582 | .805 |
| Interaction | FT | .050 | .080 | .160 | .288 |
|  | RT | .055 | .094 | .155 | .227 |
|  | ART | .064 | .105 | .198 | .345 |

Table 6.20.

Proportion of rejections at $\alpha=.05$, exponentially distributed sub-unit errors, normally distributed block effect and main unit errors, based on 10,000 samples. Interaction effect present ( $\mathrm{ms}_{11}=\mathrm{ms}_{33}=\mathrm{c}, \mathrm{ms}_{13}=\mathrm{ms}_{31}=\mathrm{c}$ ).

|  |  | c |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Test for: | Method | 0.5 | 1.5 | 2.5 | 3.5 |
|  |  |  |  |  |  |
| MU Trt | FT | .044 | .044 | .044 | .044 |
|  | RT | .054 | .052 | .051 | .051 |
|  | ART | .052 | .051 | .050 | .049 |
| SU Trt | FT | .045 | .045 | .045 | .045 |
|  | RT | .047 | .047 | .049 | .048 |
|  | ART | .054 | .054 | .054 | .054 |
|  |  |  |  |  |  |
| Interaction | FT | .056 | .164 | .443 | .730 |
|  | RT | .061 | .194 | .470 | .793 |
|  | ART | .063 | .189 | .466 | .766 |

Table 6.21.

Proportion of rejections at $\alpha=.05$, uniformly distributed main unit errors, normally distributed block effect and sub-unit errors, based on 10,000 samples. MU and SU main effects present ( $\left.m_{2}=s_{1}=c, m_{3}=s_{2}=-c\right)$.

|  |  | c |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Test for: | Method | 0.5 | 1.5 | 2.5 | 3.5 |
|  |  |  |  |  |  |
| MU Trt | FT | .074 | .201 | .488 | .816 |
|  | RT | .077 | .201 | .482 | .816 |
|  | ART | .077 | .203 | .481 | .800 |
| SU Trt |  | FT | .487 | 1.00 | 1.00 |
|  | RT | .433 | 1.00 | 1.00 | 1.00 |
|  | ART | .444 | 1.00 | 1.00 | 1.00 |
|  |  |  |  |  |  |
| Interaction | FT | .055 | .055 | .055 | .055 |
|  | RT | .052 | .050 | .074 | .136 |
|  | ART | .051 | .051 | .051 | .051 |

Table 6.22.

Proportion of rejections at $\alpha=.05$, uniformly distributed main unit errors, normally distributed block effect and sub-unit errors, based on 10,000 samples. MU, SU main effects and interaction effect present ( $\mathrm{ms}_{11}=\mathrm{c}, \mathrm{s}_{1}=\mathrm{ms}_{41}=\mathrm{c}$ ).

|  |  | c |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Test for: | Method | 0.5 | 1.5 | 2.5 | 3.5 |
|  |  |  |  |  |  |
| MU Trt | FT | .059 | .071 | .098 | .144 |
|  | RT | .063 | .072 | .087 | .106 |
|  | ART | .062 | .074 | .092 | .112 |
| SU Trt | FT | .187 | .939 | 1.00 | 1.00 |
|  | RT | .163 | .871 | .998 | 1.00 |
|  | ART | .172 | .895 | 1.00 | 1.00 |
| Interaction | FT | .088 | .425 | .895 | .997 |
|  | RT | .076 | .291 | .567 | .731 |
|  | ART | .078 | .372 | .828 | .984 |

Table 6.23.

Proportion of rejections at $\alpha=.05$, uniformly distributed main unit errors, normally distributed block effect and sub-unit errors, based on 10,000 samples. Interaction effect present ( $\mathrm{ms}_{11}=\mathrm{ms}_{33}=\mathrm{c}, \mathrm{ms}_{13}=\mathrm{ms}_{31}=-\mathrm{c}$ ).

|  |  | c |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Test for: | Method | 0.5 | 1.5 | 2.5 | 3.5 |
|  |  |  |  |  |  |
| MU Trt | FT | $\mathbf{. 0 5 7}$ | $\mathbf{. 0 5 7}$ | .057 | .057 |
|  | RT | $\mathbf{. 0 6 0}$ | $\mathbf{. 0 5 9}$ | .056 | .055 |
|  | ART | $\mathbf{. 0 6 1}$ | $\mathbf{. 0 6 0}$ | .055 | .053 |
| SU Trt | FT | .055 | .055 | .055 | .055 |
|  | RT | .053 | .053 | .052 | .053 |
|  | ART | .055 | .055 | .044 | .032 |
|  |  |  |  |  |  |
| Interaction | FT | .160 | .916 | 1.00 | 1.00 |
|  | RT | .134 | .827 | .997 | 1.00 |
|  | ART | .139 | .857 | .999 | 1.00 |

Table 6.24.

Proportion of rejections at $\alpha=.05$, uniformly distributed sub-unit errors, normally distributed block effect and sub-unit errors, based on 10,000 samples. MU and SU main effects present ( $\mathrm{m}_{2}=\mathrm{s}_{1}=\mathrm{c}, \mathrm{m}_{3}=\mathrm{s}_{2}=-\mathrm{c}$ ).

|  |  | c |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Test for: | Method | 0.5 | 1.5 | 2.5 | 3.5 |
|  |  |  |  |  |  |
| MU Trt | FT | .077 | .331 | .748 | .961 |
|  | RT | .076 | .315 | .714 | .948 |
|  | ART | .079 | .325 | .741 | .957 |
| SU Trt | FT | .185 | .945 | 1.00 | 1.00 |
|  | RT | .164 | .900 | 1.00 | 1.00 |
|  | ART | .169 | .918 | 1.00 | 1.00 |
|  |  |  |  |  |  |
| Interaction | FT | .051 | .051 | .051 | .051 |
|  | RT | .047 | .048 | .053 | .061 |
|  | ART | .050 | .050 | .050 | .050 |

Table 6.25.

Proportion of rejections at $\alpha=.05$, uniformly distributed sub-unit errors, normally distributed block effect and sub-unit errors, based on 10,000 samples. MU, SU main effects and interaction effect present ( $\mathrm{ms}_{11}=-\mathrm{c}, \mathrm{s}_{1}=\mathrm{ms}_{41}=\mathrm{c}$ ).

|  |  | c |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Test for: | Method | 0.5 | 1.5 | 2.5 | 3.5 |
|  |  |  |  |  |  |
| MU Trt | FT | .050 | .074 | .126 | .214 |
|  | RT | .051 | .070 | .101 | .132 |
|  | ART | .052 | .072 | .111 | .155 |
| SU Trt |  |  |  |  |  |
|  | FT | .096 | .485 | .926 | .999 |
|  | RT | .087 | .403 | .829 | .979 |
|  | ART | .091 | .431 | .881 | .995 |
| Interaction | FT | .060 | .144 | .382 | .698 |
|  | RT | .053 | .116 | .230 | .350 |
|  | ART | .059 | .135 | .333 | .629 |

Table 6.26.

Proportion of rejections at $\alpha=.05$, uniformly distributed sub-unit errors, normally distributed block effect and sub-unit errors, based on 10,000 samples. Interaction effect present ( $\mathrm{ms}_{11}=\mathrm{ms}_{33}=\mathrm{c}, \mathrm{ms}_{13}=\mathrm{ms}_{31}=\mathrm{c}$ ).

|  |  | c |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Test for: | Method | 0.5 | 1.5 | 2.5 | 3.5 |
| MU Trt | FT | .049 | .049 | .049 | .049 |
|  | RT | .047 | .047 | .047 | .047 |
|  | ART | .050 | .047 | .047 | .045 |
| SU Trt |  | FT | .052 | .052 | .052 |
|  | RT | .050 | .051 | .049 | .051 |
|  | ART | .052 | .052 | .049 | .043 |
|  |  |  |  |  |  |
| Interaction | FT | .084 | .412 | .897 | .999 |
|  | RT | .074 | .342 | .819 | .992 |
|  | ART | .078 | .361 | .847 | .996 |

Table 6.27.
Proportion of rejections at $\alpha=.05$, uniformly distributed main and sub-unit errors, normally distributed block effect, based on 10,000 samples. MU and SU main effects present ( $\mathrm{m}_{2}=\mathrm{s}_{1}=\mathrm{c}, \mathrm{m}_{3}=\mathrm{s}_{2}=-\mathrm{c}$ ).

|  |  | c |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Test for: | Method | 0.5 | 1.5 | 2.5 | 3.5 |
|  |  |  |  |  |  |
| MU Trt | FT | .066 | .178 | .424 | .730 |
|  | RT | .067 | .176 | .410 | .715 |
|  | ART | .069 | .185 | .424 | .729 |
| SU Trt |  |  |  |  |  |
|  | FT | .185 | .948 | 1.00 | 1.00 |
|  | RT | .166 | .902 | 1.00 | 1.00 |
|  | ART | .169 | .915 | 1.00 | 1.00 |
| Interaction | FT | .053 | .053 | .053 | .053 |
|  | RT | .048 | .049 | .054 | .062 |
|  | ART | .053 | .053 | .053 | .053 |

Table 6.28 .

Proportion of rejections at $\alpha=.05$, uniformly distributed main and sub-unit errors, normally distributed block effect, based on 10,000 samples. MU, SU main effects and interaction effect present ( $\mathrm{ms}_{11}=-\mathrm{c}, \mathrm{s}_{1}=\mathrm{ms}_{41}=\mathrm{c}$ ).

|  |  |  | c |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Test for: | Method | 0.5 | 1.5 | 2.5 | 3.5 |
|  |  |  |  |  |  |
| MU Trt | FT | .056 | .067 | .087 | .123 |
|  | RT | .056 | .066 | .080 | .098 |
|  | ART | .059 | .069 | .086 | .108 |
|  |  |  |  |  |  |
| SU Trt | FT | .091 | .488 | .927 | 1.00 |
|  | RT | .085 | .406 | .838 | .981 |
|  | ART | .086 | .434 | .878 | .994 |
|  |  |  |  |  |  |
|  | Interaction | FT | .064 | .149 | .376 |
|  | RT | .057 | .118 | .244 | .388 |
|  | ART | .060 | .134 | .327 | .623 |

Table 6.29.

Proportion of rejections at $\alpha=.05$, uniformly distributed main and sub-unit errors, normally distributed block effect, based on 10,000 samples. Interaction effect present $\left(\mathrm{ms}_{11}=\mathrm{ms}_{33}=\mathrm{c}, \mathrm{ms}_{13}=\mathrm{ms}_{31}=-\mathrm{c}\right.$ ).

|  |  | c |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Test for: | Method | 0.5 | 1.5 | 2.5 | 3.5 |
|  |  |  |  |  |  |
| MU Trt | FT | .054 | .054 | .054 | .054 |
|  | RT | .055 | .055 | .054 | .049 |
|  | ART | .057 | .057 | .052 | .049 |
| SU Trt | FT | .051 | .051 | .051 | .051 |
|  | RT | .050 | .050 | .049 | .049 |
|  | ART | .050 | .051 | .049 | .045 |
|  |  |  |  |  |  |
| Interaction | FT | .084 | .406 | .890 | .999 |
|  | RT | .073 | .325 | .803 | .986 |
|  | ART | .078 | .355 | .835 | .992 |

6.2.3. Normal errors, unequal variances (see Tables 6.30-6.52). Two cases were considered. One of the errors was modeled as normally distributed with heterogeneous variances, while the other was modeled as normally distributed with homogeneous variances. In each case, the block effect was modeled as having a standard normal distribution. As in the completely randomized case, different degrees of heterogeneity were considered. For all models, ratios between the largest and the smallest variances of 10:1 (moderately large) and 30:1 (very large) were studied (in addition, some models with very, very large degrees of heterogeneity were observed). As in the completely randomized case, unequal error variances turned out to be a more serious problem than the lack of normality. However, while in the completely randomized case, the performance of the rank tests was generally better than that of the F-test, in the splitunit case the results were mixed.

The power of all tests was lower when the main units had heterogeneous variances, and the power became worse as the degree of the heterogeneity increased, as evidenced in Tables 6.30-6.39. The rank tests had more power for detecting the main unit treatment effect when it was the only effect present. When only the sub-unit effect was present, as in Tables 6.32 and 6.33, the FT actually had slightly more power than either rank test, while all methods had inflated nominal type I error rates for testing main unit treatment effect. When only main unit and sub-unit treatment effects were present (see Tables 6.34 and 6.35), the rank tests had better power for testing for main unit treatment effect, but slightly less power for testing for sub-unit treatment effect. In addition, the RT had
nominal type I error rates that increased steadily with increasing effect magnitudes. Tables 6.36 and 6.37 indicate that when all effects were present, the FT had the best power, with the ART close bebind and the RT a distant third. When only the interaction effect was present (see Tables 6.38 and 6.39), the results were similar to the equal variance case, where the FT had slightly higher power, except that nominal type I error rates were inflated for all tests when testing for the effect of the main unit treatment (this inflation became more severe as the degree of heterogeneity increased).

The rank tests performed consistently better than the FT when then sub-unit error effect had unequal variances (see Tables 6.40-6.49). When only the effect of the main unit treatment was present, as in Tables 6.40-6.41, the power of the rank tests was higher than that of the FT, although all tests showed a tendency to have inflated nominal type I error rates for testing for sub-unit treatment and interaction effects. When only the sub-unit effect was present, there was essentially no difference in power for the three tests when the maximum to minimum variance ratio was $10: 1$ (see Table 6.42). When the ratio increased to 30:1 (see Table 6.43), however, the rank tests had more power. For all methods, there was also a slight nominal type I error rate inflation for testing the interaction effect, which became more severe as the variance ratio increased. Surprisingly, the RT showed less inflation than the either the FT or the ART. When only both main and sub-unit effects were modeled, the rank tests were much more powerful, with some nominal type I error rate inflation for testing interaction evident for all methods (see Tables 6.44 and 6.45). However, while the FT and the ART nominal rates remained

Table 6.30.
Proportion of rejections at $\alpha=0.05$, normally distributed errors, unequal main unit error variances, based on 10,000 samples. Ratio largest:smallest variance $10: 1$. Main unit main effect present ( $\mathrm{m}_{1}=\mathrm{c}, \mathrm{m}_{3}=-\mathrm{c}$ ).

|  |  | c |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Test for: | Method | 0.5 | 1.5 | 2.5 | 3.5 |
| MU Trt | FT | .075 | .180 | .407 | .677 |
|  | RT | .086 | .203 | .435 | .695 |
|  | ART | .084 | .199 | .420 | .681 |
| SU Trt | FT | .050 | .050 | .050 | .050 |
|  | RT | .049 | .049 | .049 | .050 |
|  | ART | .047 | .047 | .047 | .047 |
|  |  |  |  |  |  |
| Interaction | FT | .052 | .052 | .052 | .052 |
|  | RT | .051 | .048 | .048 | .050 |
|  | ART | .053 | .053 | .053 | .053 |

Table 6.31.
Proportion of rejections at $\alpha=0.05$, normally distributed errors, unequal main unit error variances, based on 10,000 samples. Ratio largest:smallest variance $30: 1$. Main unit main effect present ( $\mathrm{m}_{1}=\mathrm{c}, \mathrm{m}_{3}=-\mathrm{c}$ ).

|  |  | c |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Test for: | Method | 0.5 | 1.5 | 2.5 | 3.5 |
|  |  |  |  |  |  |
| MU Trt | FT | .087 | .126 | .225 | .370 |
|  | RT | .096 | .154 | .271 | .431 |
|  | ART | .091 | .146 | .257 | .400 |
| SU Trt | FT | .050 | .050 | .050 | .050 |
|  | RT | .056 | .049 | .051 | .052 |
|  | ART | .050 | .050 | .050 | .050 |
| Interaction | FT | .052 | .052 | .052 | .052 |
|  | RT | .054 | .051 | .049 | .048 |
|  | ART | .050 | .050 | .050 | .050 |

Table 6.32.

Proportion of rejections at $\alpha=0.05$, normally distributed errors, unequal main unit error variances, based on 10,000 samples. Ratio largest to smallest variance $10: 1$. Sub-unit main effect present ( $s_{1}=-c, s_{3}=c$ ).

|  |  | c |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Test for: | Method | 0.5 | 1.5 | 2.5 | 3.5 |
|  |  |  |  |  |  |
| MU Trt | FT | $\mathbf{. 0 6 5}$ |
|  | RT | $\mathbf{. 0 7 2}$ | $\mathbf{. 0 7 1}$ | $\mathbf{. 0 6 8}$ | $\mathbf{. 0 6 7}$ |
|  | ART | $\mathbf{. 0 7 1}$ |
|  |  |  |  |  |  |
| SU Trt | FT | .498 | 1.00 | 1.00 | 1.00 |
|  | RT | .429 | 1.00 | 1.00 | 1.00 |
|  | ART | .447 | 1.00 | 1.00 | 1.00 |
|  |  |  |  |  |  |
| Interaction | FT | .052 | .052 | .052 | .052 |
|  | RT | .049 | $\mathbf{. 0 6 2}$ | .068 | .065 |
|  | ART | .053 | .053 | .053 | .053 |

Table 6.33.

Proportion of rejections at $\alpha=0.05$, normally distributed errors, unequal main unit error variances, based on 10,000 samples. Ratio largest to smallest variance $30: 1$. Sub-unit main effect present ( $\mathrm{s}_{1}=\mathrm{c}, \mathrm{s}_{3}=\mathrm{c}$ ).

|  |  | c |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Test for: | Method | 0.5 | 1.5 | 2.5 | 3.5 |
|  |  |  |  |  |  |
| MU Trt | FT | $\mathbf{. 0 8 3}$ |
|  | RT | $\mathbf{. 0 9 0}$ | $\mathbf{. 0 9 2}$ | $\mathbf{. 0 9 2}$ | $\mathbf{. 0 9 3}$ |
|  | ART | $\mathbf{. 0 8 4}$ |
| SU Trt |  | FT | .500 | 1.00 | 1.00 |
|  | RT | .416 | 1.00 | 1.00 | 1.00 |
|  | ART | .434 | 1.00 | 1.00 | 1.00 |
|  |  |  |  |  |  |
| Interaction | FT | .052 | .052 | .052 | .052 |
|  | RT | .054 | $\mathbf{. 0 9 2}$ | $\mathbf{. 1 2 8}$ | $\mathbf{. 1 2 8}$ |
|  | ART | .050 | .050 | .050 | .050 |

Table 6.34.

Proportion of rejections at $\alpha=0.05$, normally distributed errors, unequal main unit error variances, based on 10,000 samples. Ratio largest to smallest variance $10: 1$. MU and SU main effects present ( $\mathrm{m}_{2}=\mathrm{s}_{1}=\mathrm{c}, \mathrm{m}_{3}=\mathrm{s}_{2}=-\mathrm{c}$ ).

|  |  | c |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Test for: | Method | 0.5 | 1.5 | 2.5 | 3.5 |
| MU Trt | FT | .076 | .180 | .398 | .667 |
|  | RT | .083 | .195 | .415 | .677 |
|  | ART | .084 | .198 | .420 | .678 |
| SU Trt |  | FT | .509 | 1.00 | 1.00 |
|  | RT | .435 | 1.00 | 1.00 | 1.00 |
|  | ART | .463 | 1.00 | 1.00 | 1.00 |
|  |  |  |  |  |  |
| Interaction | FT | .052 | .052 | .052 | .052 |
|  | RT | .052 | .059 | .076 | .123 |
|  | ART | .053 | .053 | .053 | .053 |

Table 6.35.

Proportion of rejections at $\alpha=0.05$, normally distributed errors, unequal main unit error variances, based on 10,000 samples. Ratio largest to smallest variance $30: 1$. MU and SU main effects present ( $\mathrm{m}_{2}=\mathrm{s}_{1}=\mathrm{c}, \mathrm{m}_{3}=\mathrm{s}_{2}=-\mathrm{c}$ ).

|  |  | c |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Test for: | Method | 0.5 | 1.5 | 2.5 | 3.5 |
|  |  |  |  |  |  |
| MU Trt | FT | .088 | .130 | .223 | .366 |
|  | RT | .095 | .151 | .257 | .405 |
|  | ART | .090 | .142 | .258 | .407 |
| SU Trt |  |  |  |  |  |
|  | FT | .509 | 1.00 | 1.00 | 1.00 |
|  | RT | .422 | 1.00 | 1.00 | 1.00 |
|  | ART | .440 | 1.00 | 1.00 | 1.00 |
|  |  |  |  |  |  |
|  | Interaction | FT | .052 | .052 | .052 |
|  | RT | .057 | .080 | .107 | .120 |
|  | ART | .050 | .050 | .050 | .050 |

Table 6.36.
Proportion of rejections at $\alpha=0.05$, normally distributed errors, unequal main unit error variances, based on 10,000 samples. Ratio largest to smallest variance $10: 1$. MU, SU main effects and interaction effect present ( $\mathrm{ms}_{11}=-\mathrm{c}, \mathrm{s}_{1}=\mathrm{ms}_{41}=\mathrm{c}$ ).

|  |  | c |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Test for: | Method | 0.5 | 1.5 | 2.5 | 3.5 |
|  |  |  |  |  |  |
| MU Trt | FT | .067 | .077 | .098 | .131 |
|  | RT | .073 | .079 | .088 | .104 |
|  | ART | .071 | .082 | .096 | .111 |
| SU Trt | FT | .194 | .936 | 1.00 | 1.00 |
|  | RT | .144 | .773 | .990 | 1.00 |
|  | ART | .159 | .838 | .997 | 1.00 |
|  |  |  |  |  |  |
| Interaction | FT | .082 | .421 | .890 | .996 |
|  | RT | .065 | .192 | .405 | .580 |
|  | ART | .076 | .340 | .797 | .974 |

Table 6.37.
Proportion of rejections at $\alpha=0.05$, normally distributed errors, unequal main unit error variances, based on 10,000 samples. Ratio largest to smallest variance $30: 1$. MU, SU main effects and interaction effect present ( $\mathrm{ms}_{1_{1}}=-\mathrm{c}, \mathrm{s}_{1}=\mathrm{ms}_{41}=\mathrm{c}$ ).

|  |  | c |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Test for: | Method | 0.5 | 1.5 | 2.5 | 3.5 |
|  |  |  |  |  |  |
| MU Trt | FT | .084 | .088 | .097 | .109 |
|  | RT | .091 | .092 | .094 | .101 |
|  | ART | .085 | .087 | .094 | .103 |
| SU Trt | FT | .194 | .936 | 1.00 | 1.00 |
|  | RT | .133 | .691 | .969 | 1.00 |
|  | ART | .144 | .777 | .991 | 1.00 |
|  |  |  |  |  |  |
| Interaction | FT | .082 | .421 | .890 | .996 |
|  | RT | .067 | .152 | .302 | .458 |
|  | ART | .070 | .307 | .735 | .947 |

Table 6.38.

Proportion of rejections at $\alpha=0.05$, normally distributed errors, unequal main unit error variances, based on 10,000 samples. Ratio largest to smallest variance 10:1. Interaction effect present ( $\mathrm{ms}_{11}=\mathrm{ms}_{33}=\mathrm{c}, \mathrm{ms}_{13}=\mathrm{ms}_{31}=-\mathrm{c}$ ).

|  |  | c |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Test for: | Method | 0.5 | 1.5 | 2.5 | 3.5 |
|  |  |  |  |  |  |
| MU Trt | FT | $\mathbf{. 0 6 5}$ |
|  | RT | $\mathbf{. 0 7 1}$ | $\mathbf{. 0 7 3}$ | $\mathbf{. 0 7 1}$ | $\mathbf{. 0 7 1}$ |
|  | ART | $\mathbf{. 0 7 1}$ | $\mathbf{. 0 7 5}$ | $\mathbf{. 0 7 4}$ | $\mathbf{. 0 7 1}$ |
| SU Trt | FT | .050 | .050 | .050 | .050 |
|  | RT | .049 | .053 | .052 | .052 |
|  | ART | .053 | .051 | .048 | .035 |
|  |  |  |  |  |  |
| Interaction | FT | .155 | .921 | 1.00 | 1.00 |
|  | RT | .140 | .853 | .999 | $\mathbf{1 . 0 0}$ |
|  | ART | .146 | .879 | .999 | 1.00 |

Table 6.39.

Proportion of rejections at $\alpha=0.05$, normally distributed errors, unequal main unit error variances, based on 10,000 samples. Ratio largest to smallest variance $30: 1$. Interaction effect present ( $\mathrm{ms}_{11}=\mathrm{ms}_{33}=\mathrm{c}, \mathrm{ms}_{13}=\mathrm{ms}_{31}=-\mathrm{c}$ ).

|  |  | c |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Test for: | Method | 0.5 | $\mathbf{1 . 5}$ | 2.5 | 3.5 |
|  |  |  |  |  |  |
| MU Trt | FT | $\mathbf{. 0 8 3}$ |
|  | RT | $\mathbf{. 0 9 0}$ | $\mathbf{. 0 9 4}$ | $\mathbf{. 0 9 6}$ | $\mathbf{. 0 9 9}$ |
|  | ART | $\mathbf{. 0 8 6}$ | $\mathbf{. 0 9 2}$ | $\mathbf{. 0 9 9}$ | $\mathbf{. 0 9 9}$ |
| SU Trt | FT | .050 | .050 | .050 | .050 |
|  | RT | .055 | $\mathbf{. 0 6 3}$ | $\mathbf{. 0 6 6}$ | $\mathbf{. 0 6 6}$ |
|  | ART | .049 | .055 | .053 | .049 |
|  |  |  |  |  |  |
| Interaction | FT | .155 | .921 | 1.00 | 1.00 |
|  | RT | .144 | .843 | .998 | 1.00 |
|  | ART | .147 | .869 | .999 | 1.00 |

Table 6.40.

Proportion of rejections at $\alpha=0.05$, normally distributed errors, unequal sub-unit error variances, based on 10,000 samples. Ratio largest:smallest variance $10: 1$. Main unit main effect present ( $m_{1}=c, m_{3}=-c$ ).

|  |  | c |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Test for: | Method | 0.5 | 1.5 | 2.5 | 3.5 |
|  |  |  |  |  |  |
| MU Trt | FT | .071 | .262 | .626 | .901 |
|  | RT | .077 | .285 | .649 | .910 |
|  | ART | .078 | .286 | .652 | .912 |
| SU Trt | FT |  |  |  |  |
|  | RT | $\mathbf{. 0 6 4}$ |
|  | ART | $\mathbf{. 0 6 0}$ | $\mathbf{. 0 6 5}$ | $\mathbf{. 0 6 7}$ | $\mathbf{. 0 6 5}$ |
|  |  |  |  |  |  |
| Interaction | FT | $\mathbf{. 0 6 0}$ | $\mathbf{. 0 6 0}$ | $\mathbf{. 0 6 0}$ |  |
|  | RT | $\mathbf{. 0 6 0}$ | $\mathbf{. 0 7 1}$ | $\mathbf{. 0 7 1}$ | $\mathbf{. 0 7 1}$ |
|  | ART | $\mathbf{. 0 7 6}$ | $\mathbf{. 0 7 6}$ | $\mathbf{. 0 6 8}$ | $\mathbf{. 0 6 9}$ |
|  |  |  |  |  | $\mathbf{. 0 7 6}$ |

Table 6.41.

Proportion of rejections at $\alpha=0.05$, normally distributed errors, unequal sub-unit error variances, based on 10,000 samples. Ratio largest:smallest variance $30: 1$. Main unit main effect present ( $m_{1}=c, m_{3}=-c$ ).

|  |  | c |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Test for: | Method | 0.5 | 1.5 | 2.5 | 3.5 |
|  |  |  |  |  |  |
| MU Trt | FT | .062 | .150 | .352 | .620 |
|  | RT | .069 | .193 | .438 | .706 |
|  | ART | .066 | .190 | .438 | .699 |
| SU Trt | FT |  |  |  |  |
|  | RT | $\mathbf{. 0 7 4}$ |
|  | ART | $\mathbf{. 0 6 8}$ | $\mathbf{. 0 7 6}$ | $\mathbf{. 0 7 9}$ | $\mathbf{. 0 7 8}$ |
|  |  |  |  |  |  |
| Interaction | FT | $\mathbf{. 0 6 3}$ | $\mathbf{. 0 8 3}$ | $\mathbf{. 0 8 3}$ | $\mathbf{. 0 8 3}$ |
|  | RT | $\mathbf{. 0 6 3}$ | $\mathbf{. 0 7 3}$ | $\mathbf{. 0 7 8}$ | $\mathbf{. 0 8 4}$ |
|  | ART | $\mathbf{. 0 5 5}$ | $\mathbf{. 1 0 5}$ | $\mathbf{. 1 0 5}$ | $\mathbf{. 1 0 5}$ |

Table 6.42.
Proportion of rejections at $\alpha=0.05$, normally distributed errors, unequal sub-unit error variances, based on 10,000 samples. Ratio largest to smallest variance 10:1. Sub-unit main effect present ( $s_{1}=-c, s_{3}=c$ ).

|  |  | c |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Test for: | Method | 0.5 | $\mathbf{1 . 5}$ | 2.5 | 3.5 |
| MU Trt | FT | .052 | .052 | .052 | .052 |
|  | RT | .051 | .054 | .051 | .051 |
|  | ART | .054 | .054 | .054 | .054 |
| SU Trt | FT | .150 | .775 | .996 | 1.00 |
|  | RT | .149 | .777 | .997 | 1.00 |
|  | ART | .148 | .788 | .997 | 1.00 |
|  |  |  |  |  |  |
| Interaction | FT | $\mathbf{. 0 7 1}$ |
|  | RT | $\mathbf{. 0 5 8}$ | .055 | .052 | .050 |
|  | ART | $\mathbf{. 0 7 6}$ |

Table 6.43.
Proportion of rejections at $\alpha=0.05$, normally distributed errors, unequal sub-unit error variances, based on 10,000 samples. Ratio largest to smallest variance $30: 1$. Sub-unit main effect present ( $s_{1}=-c, s_{3}=c$ ).

|  |  | c |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Test for: | Method | 0.5 | $\mathbf{1 . 5}$ | 2.5 | 3.5 |
|  |  |  |  |  |  |
| MU Trt | FT | .052 | .052 | .052 | .052 |
|  | RT | .053 | .053 | .052 | .046 |
|  | ART | .052 | .052 | .052 | .052 |
| SU Trt | FT | .107 | .364 | .789 | .974 |
|  | RT | .109 | .413 | .854 | .990 |
|  | ART | .102 | .396 | .839 | .987 |
|  |  |  |  |  |  |
| Interaction | FT | $\mathbf{. 0 8 3}$ |
|  | RT | $\mathbf{. 0 6 4}$ | $\mathbf{. 0 6 1}$ | $\mathbf{. 0 5 9}$ | $\mathbf{. 0 5 4}$ |
|  | ART | $\mathbf{. 1 0 5}$ |

Table 6.44.
Proportion of rejections at $\alpha=0.05$, normally distributed errors, unequal sub-unit error variances, based on 10,000 samples. Ratio largest to smallest variance $10: 1$. MU and SU main effects present ( $\left.m_{2}=s_{1}=c, m_{3}=s_{2}=-c\right)$.

|  |  | c |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Test for: | Method | 0.5 | 1.5 | 2.5 | 3.5 |
| MU Trt | FT | .711 | .257 | .625 | .899 |
|  | RT | .767 | .268 | .609 | .874 |
|  | ART | .761 | .288 | .657 | .914 |
|  |  |  |  |  |  |
| SU Trt | FT | .139 | .866 | 1.00 | 1.00 |
|  | RT | .173 | .913 | 1.00 | 1.00 |
|  | ART | .169 | .929 | 1.00 | 1.00 |
|  |  |  |  |  |  |
| Interaction | FT | $\mathbf{. 0 7 1}$ |
|  | RT | $\mathbf{. 0 6 0}$ | $\mathbf{. 0 6 5}$ | $\mathbf{. 0 6 8}$ | $\mathbf{. 0 6 9}$ |
|  | ART | $\mathbf{. 0 7 6}$ |

Table 6.45.
Proportion of rejections at $\alpha=0.05$, normally distributed errors, unequal sub-unit error variances, based on 10,000 samples. Ratio largest to smallest variance $30: 1$. MU and SU main effects present ( $\mathrm{m}_{2}=\mathrm{s}_{1}=\mathrm{c}, \mathrm{m}_{3}=\mathrm{s}_{2}=-\mathrm{c}$ ).

|  |  | c |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Test for: | Method | 0.5 | 1.5 | 2.5 | 3.5 |
|  |  |  |  |  |  |
| MU Trt | FT | .063 | .155 | .350 | .619 |
|  | RT | .070 | .184 | .389 | .625 |
|  | ART | .067 | .191 | .437 | .701 |
| SU Trt | FT | .095 | .411 | .911 | .999 |
|  | RT | .131 | .666 | .985 | 1.00 |
|  | ART | .114 | .636 | .984 | 1.00 |
|  |  |  |  |  |  |
| Interaction | FT | $\mathbf{. 0 8 3}$ |
|  | RT | $\mathbf{. 0 6 5}$ | $\mathbf{. 0 7 4}$ | $\mathbf{. 0 8 1}$ | $\mathbf{. 0 8 3}$ |
|  | ART | $\mathbf{. 1 0 5}$ |

Table 6.46.

Proportion of rejections at $\alpha=0.05$, normally distributed errors, unequal sub-unit error variances, based on 10,000 samples. Ratio largest to smallest variance $10: 1$. $\mathrm{MU}, \mathrm{SU}$ main effects and interaction effect present ( $\mathrm{ms}_{11}=-\mathrm{c}, \mathrm{s}_{1}=\mathrm{ms}_{41}=\mathrm{c}$ ).

|  |  | c |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Test for: | Method | 0.5 | 1.5 | 2.5 | 3.5 |
|  |  |  |  |  |  |
| MU Trt | FT | .054 | .072 | .109 | .173 |
|  | RT | .057 | .078 | .108 | .138 |
|  | ART | .058 | .082 | .119 | .158 |
| SU Trt |  |  |  |  |  |
|  | FT | .087 | .351 | .812 | .988 |
|  | RT | .093 | .402 | .829 | .980 |
|  | ART | .093 | .412 | .856 | .990 |
|  |  |  |  |  |  |
|  | Interaction | FT | .075 | .124 | .264 |
|  | RT | .066 | .130 | .241 | .347 |
|  | ART | .085 | .144 | .304 | .560 |

Table 6.47.

Proportion of rejections at $\alpha=0.05$, normally distributed errors, unequal sub-unit error variances, based on 10,000 samples. Ratio largest to smallest variance $30: 1$. MU, SU main effects and interaction effect present ( $\mathrm{ms}_{11}=-\mathrm{c}, \mathrm{s}_{1}=\mathrm{ms}_{41}=\mathrm{c}$ ).

|  |  | c |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Test for: | Method | 0.5 | 1.5 | 2.5 | 3.5 |
|  |  |  |  |  |  |
| MU Trt | FT | .053 | .059 | .079 | .111 |
|  | RT | .057 | .075 | .095 | .122 |
|  | ART | .054 | .073 | .101 | .135 |
| SU Trt | FT | .081 | .159 | .370 | .682 |
|  | RT | .090 | .240 | .537 | .816 |
|  | ART | .078 | .210 | .510 | .814 |
|  |  |  |  |  |  |
| Interaction | FT | .085 | .102 | .143 | .219 |
|  | RT | .070 | .107 | .170 | .242 |
|  | ART | .108 | .135 | .193 | .294 |

Table 6.48.

Proportion of rejections at $\alpha=0.05$, normally distributed errors, unequal sub-unit error variances, based on 10,000 samples. Ratio largest to smallest variance 10:1. Interaction effect present ( $\mathrm{ms}_{11}=\mathrm{ms}_{33}=\mathrm{c}, \mathrm{ms}_{13}=\mathrm{ms}_{31}=-\mathrm{c}$ ).

|  |  | c |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Test for: | Method | 0.5 | 1.5 | 2.5 | 3.5 |
|  |  |  |  |  |  |
| MU Trt | FT | .052 | .052 | .052 | .052 |
|  | RT | .054 | .056 | .058 | .055 |
|  | ART | .055 | .057 | .056 | .053 |
| SU Trt |  | FT | .064 | .064 | .064 |
|  | RT | $\mathbf{. 0 6 5}$ | $\mathbf{. 0 6 4}$ | .063 | .061 |
|  | ART | $\mathbf{. 0 5 9}$ | $\mathbf{. 0 6 1}$ | $\mathbf{. 0 6 0}$ | .056 |
|  |  |  |  |  |  |
| Interaction | FT | .088 | .287 | .687 | .938 |
|  | RT | .078 | .280 | .683 | .924 |
|  | ART | .098 | .310 | .696 | .932 |

Table 6.49.
Proportion of rejections at $\alpha=0.05$, normally distributed errors, unequal sub-unit error variances, based on 10,000 samples. Ratio largest to smallest variance 30:1. Interaction effect present ( $\mathrm{ms}_{11}=\mathrm{ms}_{33}=\mathrm{c}, \mathrm{ms}_{13}=\mathrm{ms}_{31}=-\mathrm{c}$ ).

|  |  | c |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Test for: | Method | 0.5 | 1.5 | 2.5 | 3.5 |
|  |  |  |  |  |  |
| MU Trt | FT | .052 | .052 | .052 | .052 |
|  | RT | .057 | .057 | .061 | .061 |
|  | ART | .052 | .054 | .058 | .056 |
| SU Trt |  | FT | .074 | .074 | .074 |
|  | RT | .073 | .076 | .076 | .074 |
|  | ART | .066 | .068 | .069 | .068 |
|  |  |  |  |  |  |
| Interaction | FT | .092 | .159 | .315 | .547 |
|  | RT | .075 | .166 | .366 | .612 |
|  | ART | .113 | .197 | .369 | .600 |

constant as the magnitude of the effects increased, the RT showed its familiar inflation as an increasing function of effect magnitude. When all fixed effects were in the model, the ART had much more power than the other two methods for testing interaction. As can be seen in Tables 6.46 and 6.47 , the power of the FT was slightly better than the RT when the variance ratio was $10: 1$, but fell behind when the ratio increased to $30: 1$. Finally, with only interaction present in the model (see Tables 6.48 and 6.49), the rank tests had better power for detecting interaction than the FT.

Investigation of the nominal type I error rates when the main or sub-unit variances were unequal revealed a problem of inflated nominal type I error rates similar to that of the completely randomized experiment (see Tables 6.50-6.51). When the main unit variances were heterogeneous, nominal type I error rates for testing the main unit treatment effect were often larger than expected. When the sub-unit variances were heterogeneous, nominal type I error rates for tests for sub-unit treatment and interaction effects were always inflated. However, heterogeneous main unit variances did not adversely affect the nominal levels of the sub-unit tests, and vice-versa. Once again, the inflation of the nominal rates for the RT was often a function of the magnitude of the modeled effects, while the inflation of the nominal rates for the FT and the ART seemed to be independent of the effect magnitude. Once more this indicates that when error variances are heterogeneous, test results may be misleading, especially when testing for interaction. Table 6.52 indicates that this was not a problem when one of the underlying populations was skewed (exponentially distributed).

Table 6.50.

Nominal type I error rate at $\alpha=0.05$, normally distributed errors, based on 10,000 samples. Unequal main unit variances.

|  |  | $\mathrm{Var}_{\text {max }}: \mathrm{Var}_{\text {min }}$ |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :---: | :---: | :---: |
| Test for: | Method | $1: 1$ | $10: 1$ | $30: 1$ | $50: 1$ |  |  |  |
| MU Trt | FT | .053 | .065 | $\mathbf{. 0 8 3}$ | $\mathbf{. 0 9 0}$ |  |  |  |
|  | RT | .056 | .072 | $\mathbf{. 0 9 0}$ | $\mathbf{. 0 9 7}$ |  |  |  |
|  | ART | .060 | .071 | .084 | .085 |  |  |  |
| SU Trt | FT | .050 | .050 | .050 | .050 |  |  |  |
|  | RT | .048 | .051 | .056 | .054 |  |  |  |
|  | ART | .052 | .047 | .050 | .050 |  |  |  |
|  |  |  |  |  |  |  |  |  |
| Interaction | FT | .052 | .052 | .052 | .052 |  |  |  |
|  | RT | .047 | .051 | .051 | .053 |  |  |  |
|  | ART | .053 | .053 | .050 | .050 |  |  |  |

Table 6.51.
Nominal type I error rate at $\alpha=0.05$, normally distributed errors, based on 10,000 samples. Unequal sub-unit variances.

|  | Var $_{\text {max }}:$ Var $_{\text {min }}$ |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Test for: | Method | $1: 1$ | $10: 1$ | $30: 1$ | $50: 1$ |
| MU Trt | FT | .053 | .052 | .052 | .052 |
|  | RT | .056 | .052 | .055 | .055 |
|  | ART | .060 | .054 | .052 | .052 |
| SU Trt | FT | .050 |  |  |  |
|  | RT | .048 | .064 | .074 | .078 |
|  | ART | .052 | $\mathbf{. 0 6 0}$ | .073 | .075 |
|  |  |  |  |  |  |
| Interaction | FT | .052 | $\mathbf{. 0 7 1}$ | $\mathbf{. 0 8 3}$ | $\mathbf{. 0 8 9}$ |
|  | RT | .047 | $\mathbf{. 0 6 0}$ | $\mathbf{. 0 6 5}$ | $\mathbf{. 0 6 5}$ |
|  | ART | .053 | $\mathbf{. 0 7 6}$ | $\mathbf{. 1 0 5}$ | $\mathbf{. 1 1 8}$ |

Table 6.52.

Nominal type I error rate at $\alpha=0.05$, one random exponentially distributed, the other two random effects normally distributed, based on 10,000 samples.

| Test for: | Method | Exponentially distributed: <br> Block <br> effect | Main unit <br> errors | Sub-unit <br> errors |
| :--- | :--- | :--- | :--- | :--- |
| MU Trt | FT | .049 | .041 | .051 |
|  | RT | .049 | .059 | .052 |
|  | ART | .051 | .052 | .054 |
| SU Trt | FT | .052 | .049 | .041 |
|  | RT | .050 | .049 | .049 |
|  | ART | .051 | .050 | .051 |
| Interaction | FT | .049 | .049 | .044 |
|  | RT | .046 | .040 | .048 |
|  | ART | .049 | .050 | .058 |

### 6.3 Conclusion for Analysis of Split-unit Experiments

Although the results were not as consistent as for the completely randomized case, the aligned rank procedure appears to be viable alternative to the normal theory F-test for performing tests in a split-unit factorial design, and is certainly a better choice than the rank transform method. Once more, when the error distributions were normal and error variances were homogeneous (situations in which the F-test is known to work well), the ART was always nearly as powerful, with usually an almost negligible difference in power between the two methods. For exponential error distributions, the ART was clearly more
powerful than the F-test. When the error variances were heterogeneous, both methods tended to have problems maintaining nominal type I error levels for interaction, although this problem was less severe in the split-unit case, while the ART usually had superior power for detecting main effects. Although the FT outperformed the ART in some cases, even when parametric assumptions were violated, the ART still appears in general to be superior to the F-test, especially when the assumptions of normality and homogeneity of variance are suspected to be violated. Even though the simulation results indicate that a nonexistent interaction effect can be introduced when error variances are unequal, this phenomenon occurs for both the FT and the ART. Since typically the analysis is performed without the benefit of definite knowledge of the nature of the error variances, and since the ART generally has more power than the FT when variances are unequal, the ART seems a logical choice over the FT. The results once again suggest that the ART procedure could possibly benefit from an additional adjustment to stabilize variances, perhaps by scaling to correct for unequal error variances. The unpredictable performance of the RT for the split-unit experiment adds to the growing body of evidence that the RT is not a good choice for multi-factor experiments.

## CHAPTER SEVEN

## EPILOGUE

### 7.1. Approximation of Exact Distributions of Rank Statistics Using the F-

## Distribution

The goal of this research was to develop an exact rank test applicable to a wide variety of factorial designs. Thus, for certain designs, the exact sampling distributions of certain F-ratio statistics computed on the ranks of the data were estimated, and these were used in the simulations in this paper. One somewhat surprising result was that the upper tails of these estimated exact sampling distributions were approximated well by the F-distribution (although the approximation becomes poorer beyond the $95^{\text {th }}$ percentile). See table 7.1 as an example for the two-way layout. Similar results were obtained for the split-unit design, although the F-distribution consistently underestimated the exact values, which would result in a more liberal test if the F-approximation was used (see table 7.2). Although Hora and Conover (1984) showed that the F-distribution is the limiting distribution of the F-ratio statistic computed using the ranks for the two-way layout, it was suspected that for small sample sizes this would not necessarily be true. It appears, however, that the Fdistribution gives a reasonable approximation for the sampling distributions of F-ratio statistics computed using the ranks of the data, even for small sample sizes.

Table 7.1.

Comparison of the percentiles of the sampling distributions of F-ratios computed using the ranks of the data. All ratios are computed as MS (effect)/MS (error), for a two-way layout with four levels of factor $A$ and three levels of factor $B$, in a completely randomized design, where n is the number of observations per treatment combination. "Exact" values are actually estimates, based on a sample of 20,000 permutations of the ranks.

| n | Effect | Percentile point |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | . 90 |  | . 95 |  | . 99 |  |
|  |  | Exact | F | Exact | F | Exact | F |
| 2 | A | 2.669 | 2.660 | 3.560 | 3.587 | 6.000 | 6.217 |
|  | B | 2.820 | 2.860 | 3.914 | 3.982 | 7.098 | 7.206 |
|  | AB | 2.356 | 2.389 | 3.056 | 3.095 | 4.814 | 5.069 |
| 5 | A | 2.175 | 2.202 | 2.816 | 2.798 | 4.320 | 4.218 |
|  | B | 2.396 | 2.417 | 3.207 | 3.191 | 5.296 | 5.077 |
|  | AB | 1.920 | 1.901 | 2.322 | 2.295 | 3.282 | 3.204 |
| 10 | A | 2.118 | 2.135 | 2.680 | 2.689 | 4.003 | 3.968 |
|  | B | 2.345 | 2.352 | 3.125 | 3.080 | 5.088 | 4.807 |
|  | AB | 1.822 | 1.829 | 2.183 | 2.184 | 2.986 | 2.973 |
| 20 | A | 2.136 | 2.108 | 2.644 | 2.644 | 3.902 | 3.869 |
|  | B | 2.325 | 2.326 | 3.038 | 3.035 | 4.785 | 4.699 |
|  | AB | 1.802 | 1.800 | 2.146 | 2.138 | 2.866 | 2.882 |

Table 7.2.

Comparison of the percentiles of the sampling distributions of F-ratios computed using the ranks of the data. All ratios are computed as MS (effect)/MS (error), for a two-way factorial in a split-plot design with four levels of the main unit treatment in a completely randomized block design with three blocks and three levels of the sub-unit treatment. "Exact" values are actually estimates, based on a sample of 20,000 permutations of the ranks.

| Effect | Percentile point <br> .90 |  |  | .95 |  | .99 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  | Exact | F | Exact | F | Exact | F |
|  |  |  |  |  |  |  |
| MU Trt | 3.363 | 3.289 | 4.830 | 4.757 | 10.200 | 9.780 |
| SU Trt | 2.712 | 2.668 | 3.666 | 3.634 | 6.569 | 6.226 |
| Interaction | 2.218 | 2.178 | 2.792 | 2.741 | 4.352 | 4.202 |

### 7.2. Extending the Aligned Rank Technique to Experiments with More than Two

## Factors.

The aligned rank procedure discussed previously can be adapted to analyze
experiments with more than two factors. Higgins and Tashtoush (1994) suggest a pattern for aligning observations in completely randomized designs for testing higher order
interactions. For example, to test for three-way interaction in a three factor experiment, the alignment suggested is:

$$
\begin{aligned}
(\mathrm{AY})_{\mathrm{ijk}}= & \mathrm{Y}_{\mathrm{ijkl}}-(\text { sum of 2-way means involving } \mathrm{i}, \mathrm{j} \text {, and } \mathrm{k}) \\
& +(\text { sum of one-way means involving } \mathrm{i}, \mathrm{j}, \text { and } \mathrm{k}) \\
& - \text { overall mean }
\end{aligned}
$$

The pattern for more than three factors is apparent. After aligning the data, the data are ranked, and tests are carried out by applying the usual analysis of variance to the ranked data, ignoring all tests so obtained except for the test of interaction of interest (Higgins and Tashtoush, 1994).

### 7.3. Future Research

Since the ART generally has better power than the FT when variances are unequal, there is interest in trying to alleviate the problem of inflated nominal type I error rates for the ART. A possible improvement would be to scale the observations in some way to remove the "effect" of unequal variance. Another area to investigate is the application of the ART to situations where sample sizes are unequal, since this is also a situation where
the FT often suffers a loss of power. In addition, since no known statistical software packages perform the aligned rank procedure, future work may include developing SAS programs for use in analyzing data in factorial arrangements using the ART.

## BIBLIOGRAPHY

Akritas, M.G. (1990). The rank transform method in some two-factor designs. Journal of the American Statistical Association, 85(409), 73-78.

Baker, R.D. \& Tilbury, J.B. (1993). Algorithm AS 283. Rapid computation of the permutation paired and grouped $t$-tests. Applied Statistics, 42, 432-441.

Basu, D. (1980). Randomization analysis of experimental data: the Fisher randomization test. Journal of the American Statistical Association, 75(371), 575-584.

Bell, C. B., \& Doksum, K. A. (1965). Some new distribution-free statistics. Annals of Mathematical Statistics, 36(1), 203-214.

Berry, K.J. \& Mielke, P.W. (1983). Moment approximations as an altemative to the $F$ test in analysis of variance. British Journal of Mathematical and Statistical Psychology, 36, 202-206.

Bhakpar, J.V., \& Gore, A.P. (1974). A nonparametric test for interaction in two-way layouts. Sankhya (series A), 36, 261-272.

Blair, R.C., \& Higgins, J.J. (1985). Some comments on the statistical treatment of rank data. Paper presented at the annual meeting of the American Educational Research Association and the National Council on Measurement in Education, Chicago.

Blair, R.C., Sawilowsky, S.S., \& Higgins, J.J. (1987). Limitations of the rank transform statistic in tests of interaction. Communications in Statistics: Computation and Simulation, B16, 1133-1145.

Box, G.E.P. \& Anderson, S.L. (1955). Permutation theory in the derivation of robust criteria and the study of departures from assumption. Journal of the Royal Statistical Society, B(17), 1, 1-26.

Bradley, J.V. (1968). Distribution-free Statistical Tests. Prentice-Hall, Englewood Cliffs, New Jersey.

Bradley, J.V. (1979). A nonparametric test for interactions of any order. Journal of Quality Technology 11(4), 177-184.

Conover, W.J. (1980). Practical Nonparametric Statistics (2nd edition). New York: Wiley.

Conover, W.J., \& Iman, RL. (1976). On some alternative procedures using ranks for the analysis of experimental designs. Communications in Statistics, A5, 1349-1368.

Conover, W.J., \& Iman, RL. (1981). Rank transformations as a bridge between parametric and nonparametric statistics. The American Statistician, 35, 124-129.

Deshparde, J.V., Gore, A.P., \& Shanubhogue, A. (1995). Statistical analysis of nonnormal data. John Wiley, New York.

Dwass, M. (1957). Modified randomization tests for nonparametric hypotheses. Annals of Mathematical Statistics, 28, 181-187.

Edgington, E.S. (1995). Randomization Tests, 3rd ed. Marcel Dekker, New York.
Fawcett, R.F. \& Salter, K.C. (1984). A Monte Carlo study of the F-test and three tests based on ranks of treatment effects in randomized block designs. Communications in Statistics, B13, 213-225.

Fisher, R.A. (1935). The Design of Experiments. Oliver and Boyd, London.

Fisher, R.A. (1936). The coefficient of racial likeness and the future craniometry. Journal of Royal Anthropological Institute, 66, 57-63.

Fisher, R.A., \& Yates, F. (1949). Statistical Tables for Biological, Agricultural, and Medical Research, 3rd ed. Hafner, New York.

Fligner, M.A. (1981). Comment. The American Statistician, 35(3), 131-132.
Friedman, M. (1937). The use of ranks to avoid the assumption of normality implicit in the analysis of variance. Journal of the American Statistical Association, 32, 675-701.

Geary, R.C. (1947). Testing for normality. Biometrika, 34, 209-242.
Green, B.F. (1977). A practical interactive program for randomization tests of location. The American Statistician, 31(1), 37-39.

Groggel, D.J. (1987). A Monte Carlo study of rank tests for block designs. Communications in Statistics, 16(3), 601-620.

Groggel, D.J. \& Skillings, J.H. (1986). Distribution-free tests for main effects in multifactor designs. The American Statistician, 40(2), 99-102.

Hajek, J, \& Sidak, Z. (1967). Theory of Rank Tests. Academic Press, New York.

Harwell, M.R. (1991). Completely randomized factorial analysis of variance using ranks. British Journal of Mathematical and Statistical Psychology, 44, 383-401.

Harwell, M.R, \& Serlin, R.C. (1989). A nonparametric test statistic for the general linear model. Journal of Educational Statistics, 14(4), 351-371.

Hegemann, G. \& Johnson, D.E. (1976). On analyzing two-way AOV with interaction. Technometrics, 18(3), 273-281.

Hettmansperger, T.P. (1984). Statistical Inference Based on Ranks. John Wiley, New York.

Higgins, J.J., Blair, R.C. \& Tashtoush, S. (1990). The aligned rank transform procedure. Proceedings of the 1990 Kansas State University Conference on Applied Statistics in Agriculture, 185-195.

Higgins, J.J. \& Tashtoush, S. (1994). An aligned rank transform test for interaction. Nonlinear World, 1, 201-211.

Hill, I.D. \& Peto, R. (1971). Algorithm AS 35. Probabilities derived from finite populations. Applied Statistics, 20, 99-105.

Hodges, J.L., \& Lehmann, E.L. (1962). Rank methods for combination of independent experiments in analysis of variance. Annals of Mathematical Statistics, 27, 324-335.

Hoeffding, W. (1952). The large sample power of tests based on permutations of observations. Annals of Mathematical Statistics, 23, 169-192.

Hora, S.C., \& Conover, W.J. (1984). The F-statistic in the two-way layout with rank-score transformed data. Journal of the American Statistical Association, 79, 668-673.

Hora, S.C. \& Iman, R.C. (1988). Asymptotic relative efficiencies of the rank transformation procedures in randomized complete block designs. Journal of the American Statistical Association, 83, 462-470.

Iman, R.L. (1974). A power study of a rank-transform for the two-way classification model when interaction may be present. Canadian Journal of Statistics, 2, 227-239.

Iman, RL., Hora, H.C., \& Conover, W.J. (1984). Comparison of asymptotically distribution-free procedures for the analysis of complete blocks. Journal of the American Statistical Association, 79(387), 674-685.

IMSL, Inc. (1991). IMSL MATH/LIBRARY: User's Manual, version 2.0. Houston, TX.

IMSL, Inc. (1991). IMSL STAT/LIBRARY: User's Manual, version 2.0. Houston, TX.
Kempthorne, O. (1952). The Design and Analysis of Experiments. John Wiley, New York.

Kempthorne, O. (1955). The randomization theory of experimental inference. Journal of the American Statistical Association, 50, 946-967.

Kempthorne, O. (1969). The behaviour of some significance tests under experimental randomization. Biometrika, 56(2), 231-248.

Kepner, J.L., \& Robinson, D.H. (1988). Nonparametric methods for detecting treatment effects in repeated measures designs. Journal of the American Statistical Association, 83, 456-461.

Koch, G.G. (1969). Some aspects of the statistical analysis of split-plot experiments in completely randomized layouts. Journal of the American Statistical Association, 64, 485-506.

Koch, G.G. (1970). The use of nonparametric methods in the statistical analysis of a complex split-plot experiment. Biometrics, 26, 105-128.

Koch, G.G. \& Sen, P.K. (1968). Some aspects of the statistical analysis of the mixed model. Biometrics, 24, 27-48.

Kruskal, W.H., \& Wallis, W.A. (1952). Use of ranks in one-criterion variance analysis. Journal of the American Statistical Association, 47, 583-621.

Lehmann, E.L. \& Stein, C. (1949). On the theory of some non-parametric hypotheses. Annals of Mathematical Statistics, 20, 28-45.

Manly, B.F.J. (1991). Randomization and Monte Carlo Methods in Biology. Chapman \& Hall, New York.

Mann, H.B., \& Whitney, D.R. (1947). On a test of whether one or two random variables is stochastically larger than the other. American Mathematical Society, 18, 50-60.

Marden, J.I. \& Muyot, M.E.T. (1995). Rank tests for main and interaction effects in analysis of variance. Journal of the American Statistical Association 90(432), 1388 -1398.

McKean, J.W. \& Vidmar, T.J. (1994). A comparison of two rank-based methods for the analysis of linear models. The American Statistician, 48(3), 220-229.

Noether, G.E. (1981). Comment. The American Statistician, 35(3), 129-130.
Pagano, M., \& Tritchler, D. (1981). On obtaining permutation distributions in polynomial time. Journal of the American Statistical Association, 78(382), 435-440.

Patel, K.M. \& Hoel, D.G. (1973). A nonparametric test for interaction in factorial experiments. Journal of the American Statistical Association, 68(343), 615-620.

Pitman, E.J.G. (1937/1938). Significance tests which may be applied to samples from any populations: I. Supplement to the Journal of the Royal Statistical Society, 4, (1937) 119-130. III. The analysis of variance test. Biometrika, 29, (1938), 322-335.

Potvin, C. \& Roff, D.A. (1993). Distribution-free and robust statistical methods: viable alternatives to parametric statistics? Ecology, 74(6), 1617-1628.

Puri, M.L. \& Sen, P.K. (1969). A class of rank order tests for a general linear model. Annals of Mathematical Statistics, 40, 1325-1343.

Puri, M.L. \& Sen, P.K. (1971). Nonparametric Methods in Multivariate Analysis. John Wiley, New York.

Puri, M.L., \& Sen, P.K. (1985). Nonparametric Methods in General Linear Models. John Wiley, New York.

Quade, D. (1972). Analyzing randomized blocks by weighted rankings. Report SW 18/72 of the Mathematical Center, Amsterdam.

Quade, D. (1979). Using weighted rankings in the analysis of complete blocks with additive block effects. Journal of the American Statistical Association, 74(367), 680683.

Rinaman, W.C. Jr. (1983). On distribution-free rank tests for two-way layouts. Journal of the American Statistical Association, 78(383), 655-659.

SAS Institute Inc. (1985). SAS User's Guide: Statistics, 5th edition. Cary, NC: SAS Institute Inc.

SAS Institute Inc. (1990). SAS/STAT ${ }^{\circledR}$ User's Guide, Version 6, 4th Edition, Volume 1. Cary, NC: SAS Institute Inc.

Sawilowsky, S.S. (1990). Nonparametric tests of interaction in experimental design. Review of Educational Research, 60(1), 91-126.

Sawilowsky, S.S., Blair, R.C. \& Higgins, J.J. (1989). An investigation of the type I error and power properties of the rank transform procedure in factorial ANOVA. Journal
of Educational Statistics, 14(3), 255-267.
Scheirer, C.J., Ray, W.S. \& Hare, N. (1976). The analysis of ranked data derived from completely randomized factorial designs. Biometrics, 32, 429-434.

Shoemaker, L.H. (1986). A nonparametric method for analysis of variance. Communications in Statistics, 15(3), 609-632.

Still, A.W., \& White, A.P. (1981). The approximate randomization test as an alternative to the F-test in analysis of variance. British Journal of Mathematical and Statistical Psychology, 34, 243-252.

Terry, M.E. (1952). Some rank-order tests which are most powerful against specific parametric alternatives. Annals of Mathematical Statistics, 23, 346-366.

Thompson, G.L. (1991). A note on the rank transform for interactions. Biometrika, 78(3), 697-701.

Thompson, G.L. (1991). A unified approach to rank tests for multivariate and repeated measures designs. Journal of the American Statistical Association, 86(414), 410-419.

Thompson, G.L., \& Ammann, L.P. (1989). Efficiencies of the rank-transform in twoway models with no interaction. Journal of the American Statistical Association, 84(405), 325-330.

Thompson, G.L., \& Ammann, L.P. (1990). Efficiencies of interblock rank statistics for repeated measures designs. Journal of the American Statistical Association, 85(410), 519-528.

Toothaker, L.E. \& Chang, H. (1980). On "the analysis of ranked data derived from completely randomized factorial designs". Journal of Educational Statistics, 5(2), 169-176.

Welch, W.J. (1990). Construction of permutation tests. Journal of the American Statistical Association, 85(411), 693-698.

Wilcoxon, F. (1945). Individual comparisons by ranking methods. Biometrics, I, 8082.

## APPENDIX

## Program 1.

PROGRAM TO FIND THE EXACT (TALL) DISTRIBUTION OF THE F-RATIO STATISTIC COMPUTED USING THE RANKS OF THE DATA. TWO FACTORS WITH TWO LEVELS EACH AND TWO OBSERVATIONS PER TREATMENT IN A COMPLETELY RANDOMIZED DESIGN.

INTEGER IG(100,3),IDF(8),ICl(20),IC2(8,8),NL(20),M,N,P,Q,OMIT
REAL R(8),MS(8),SS(8),SUM1(20),SS1(20),SUM2(2,2),SS2(20,20),F
DATA CM/0.0/, NL/20*0/, IC1/20*0/, NREP/0/
DATA $\operatorname{IG}(1,1), \operatorname{IG}(1,2), \mathrm{IG}(2,1), \mathrm{IG}(2,2), \mathrm{IG}(3,1), \operatorname{IG}(3,2), \mathrm{IG}(4,1)$,
1 IG(4,2),IG(5,1),IG(5,2),IG(6,1),IG(6,2),IG(7,1),IG(7,2),IG(8,1),
$2 \operatorname{IG}(8,2) / 1,1,1,1,2,1,2,1,1,2,1,2,2,2,2,2 /$, IC2/64*0/
$\mathrm{NC}=8$
NREP=2
NPERMS $=0$
$\mathrm{NF}=2$
$\mathrm{NP}=0$
OMIT=0
OPEN (UNIT=1,FILE='TWDATA',ACCESS='SEQUENTIAL',FORM='FORMATTED',
1 STATUS $=$ NEW ${ }^{\prime}$ )

```
DO 300 I=1,NC
DO 295 J=1,NC
IF (J.NE.I) THEN
DO 290 K=1,NC
IF (K.NE.I .AND. K.NE.J) THEN
DO 285 L=1,NC
IF (L.NE.I .AND. L.NE.J .AND. L.NE.K) THEN
DO 280 M=1,NC
IF (M.NE.L .AND. M.NE.K .AND. M.NE.J .AND. M.NE.I) THEN
DO 275 N=1,NC
IF (N.NE.M .AND. N.NE.L .AND. N.NE.K .AND. N.NE.J .AND. N.NE.I) THEN
DO 270 P=1,NC
IF (P.NE.N .AND. P.NE.M .AND. P.NE.L .AND. P.NE.K .AND. P.NE.J .AND. P.NE.I) THEN
DO 265 Q =1,NC
IF (Q.NE.P .AND. Q.NE.N .AND. Q.NE.M .AND. Q.NE.L.AND. Q.NE.K .AND. Q.NE.J .AND.
    Q.NE.I) THEN
R(1)=I
R(2)=J
R(3)=K
R(4)=L
R(5)=M
R(6)=N
R(7)=P
```

```
    R(8)=Q
    NPERMS=NPERMS +1
C TWO FACTOR ANALYSIS
C CALCULATE SS FOR MAIN EFFECTS
    SUMX=0.0
    SST=0
    DO 166 I1=1,NC
    SUMX=SUMXX+R(I1)
    SST=SST+(R(I1))**2
    IC1(IG(I1,1))=IC1(IG(I1,1))+1
    DO 30 K11=1,NF
    IF (IG(I1,K11).GT.NL(K11)) THEN
    NL(K11)=IG(I1,K11)
    END IF
30 CONTINUE
    IC2(IG(I1,1),IG(I1,2))=IC2(IG(I1,1),IG(I1,2))+1
    166 CONTINUE
    CM=SUMXX**2/NC
    SST=SST-CM
    IDF(1)=NL(1)-1
    IDF(2)=NL(2)-1
    IDF(3)=IDF(1)*IDF(2)
    IDF(4)=NL(1)*NL(2)*(NREP-1)
    NP=3
    IF (NREP.EQ.1) THEN
    NP=NP-1
    ENDIF
    DO 160 J1=1,2
    DO 160 K1=1,NL(J1)
    160 SUM2(K1,J1)=0.0
    DO 170 I11=1,NC
    DO 170 J2=1,2
170 SUM2(IG(I11,J2),J2)=SUM2(IG(I11,J2),J2)+R(I11)
    DO 180 J3=1,2
    SS(J3)=0.0
    DO 190 K2 = 1,NL(J3)
190 SS(J3)=SS(J3)+(SUM2(K2,J3))**2
    MM=NC/NL(J3)
180 SS(J3)=SS(J3)/MM-CM
C CALCULATE INTERACTION SS
DO \(200 \mathrm{I} 2=1, \mathrm{NL}(1)\)
DO \(200 \mathrm{~J} 4=1\),NL(2)
SUM2(I2,J4)=0.0
SS2(I2,J4) \(=0.0\)
200 CONTINUE
DO \(210 \mathrm{I} 3=1, \mathrm{NC}\)
SUM2(IG(I3,1),IG(I3,2))=SUM2(IG(I3,1),IG(I3,2))+R(I3)
\(210 \operatorname{SS} 2(\mathrm{IG}(\mathrm{I} 3,1), \mathrm{IG}(\mathrm{I} 3,2))=\mathrm{SS} 2(\mathrm{IG}(\mathrm{I} 3,1), \mathrm{IG}(\mathrm{T} 3,2))+(\mathrm{R}(\mathrm{I} 3))^{* *}\)
\(S S(3)=0.0\)
```

DO $220 \mathrm{I} 4=1, \mathrm{NL}(1)$
DO $220 \mathrm{~J} 5=1$, NL.(2)
$220 \mathrm{SS}(3)=\mathrm{SS}(3)+(\mathrm{SUM} 2(\mathrm{I} 4, \mathrm{~J} 5))^{* *} 2$
$\mathrm{SS}(3)=\mathrm{SS}(3) / \mathrm{NREP}-\mathrm{CM}-\mathrm{SS}(1)-\mathrm{SS}(2)$
C FIND ERROR SUM OF SQUARES AND MEAN SQUARES
SS(4)=SST-SS(1)-SS(2)-SS(3)
IF (NP.EQ.3) THEN
$\operatorname{MS}(4)=\operatorname{SS}(4) / \mathrm{IDF}(4)$
END IF
DO $230 \mathrm{I} 5=1,3$
$230 \mathrm{MS}(\mathrm{I} 5)=\mathrm{SS}(\mathrm{I} 5) / \mathrm{IDF}(\mathrm{I} 5)$
IF (MS(4).EQ.0.0) THEN
F $=9999.0$
ELSE
$\mathrm{F}=\mathrm{MS}(3) / \mathrm{MS}(4)$
END IF
IF (F.GT.1.31) THEN
WRITE (1,*) F
ELSE
OMIT $=$ OMIT +1
END IF
END IF
265 CONTINUE
END IF
270 CONTINUE
END IF
275 CONTINUE
END IF
280 CONTINUE
END IF
285 CONTINUE
END IF
290 CONTINUE
END IF
295 CONTINUE
300 CONTINUE
CLOSE (UNIT=1)
END

## Program 2.

PROGRAM TO FIND THE ESTIMATED EXACT SAMPLING DISTRIBUTION OF F-RATIO STATISTIC COMPUTED ON THE RANKS OF THE DATA, FOR A 4 BY 3 FAT IN A COMPLETELY RANDOMIZED DESIGN.

USE MSIMSL
INTEGER IG(24,3), IDF (8), IC1(20),IC2(24,24),NL(20)
INTEGER IPER(24), ISEED,SUMX,SST,NOUT,IPERM(20000),Z,A
INTEGER J,FRQ(20000), C,HOLD(500)
REAL MS(8),SS(8),SUM2(20,20),SS2(20,20),F
REAL LIST(20000),TEMP(20000),CUM,PVAL
DATA CM/0.0/, NL/20*0/, IC1/20*0/, NREP/0/,FRQ/20000*1/
DATA IC2/576*-1.0/,LIST/20000*9999.0/

NR=0
$\mathrm{NC}=24$
NL(1) $=4$
NL(2) $=3$
NREP=2
NPERMS $=20000$
$\mathrm{NF}=2$
$\mathrm{NP}=0$
$Z=1$
$\mathrm{INCX}=1$

C ROUTINE TO FILL IG VECTOR
$C=1$
DO $2 \mathrm{I}=1$, NL(1)
DO $4 \mathrm{~J}=1$,NL(2)
DO $6 \mathrm{~K}=1$, NREP
$\operatorname{HOLD}(\mathrm{C})=\mathrm{J}$
$\mathrm{HOLD}(\mathrm{C}+1)=\mathrm{I}$
$\mathrm{C}=\mathrm{C}+2$
6 CONTINUE
4 CONTINUE
2 CONTINUE
$\mathrm{C}=1$
DO $12 \mathrm{I}=1, \mathrm{NC}$
DO $14 \mathrm{~J}=\mathrm{NF}, 1,-1$
$\mathrm{IG}(\mathrm{I}, \mathrm{J})=\mathrm{HOLD}(\mathrm{C})$
$\mathrm{C}=\mathrm{C}+1$
14 CONTINUE
12 CONTINUE

OPEN (UNIT $=4, \mathrm{FILE}=$ ' $\mathrm{C}: / \mathrm{MSDEVIDATAITW432AR.TXT')}$
CALL UMACH(2,NOUT)
ISEED=62064
CALL RNSET(ISEED)
DO 1 A=1,NPERMS
CALL RNPER(NC,IPER)

C TWO FACTOR ANALYSIS
C CALCULATE SS FOR MAIN EFFECTS
SUMX=0
SST $=0$
DO $10 \mathrm{I}=1, \mathrm{NC}$
SUMX=SUMX+IPER(1)
SST=SST+(IPER(I)**2
$\operatorname{IC1}(\operatorname{IG}(\mathrm{I}, 1))=\operatorname{IC} 1(\mathrm{IG}(\mathrm{I}, 1))+1$
$\operatorname{IC} 2(\operatorname{IG}(\mathrm{I}, 1), \operatorname{IG}(\mathrm{I}, 2))=\operatorname{IC} 2(\operatorname{IG}(\mathrm{I}, 1), \mathrm{IG}(\mathrm{I}, 2))+1$
10 CONTINUE
$\mathrm{CM}=\mathrm{SUMX}^{*} * 2 / \mathrm{NC}$
SST=SST-CM
$\operatorname{IDF}(1)=\mathrm{NL}(1)-1$
$\operatorname{IDF}(2)=\mathrm{NL}(2)-1$
$\operatorname{IDF}(3)=\operatorname{IDF}(1) * \operatorname{IDF}(2)$
$\operatorname{IDF}(4)=\mathrm{NL}(1) * \mathrm{NL}(2) *(\mathrm{NREP}-1)$
$\mathrm{NP}=3$
IF (NREP.EQ.1) THEN
NP=NP-1
ENDIF
DO $210 \mathrm{~J}=1,2$
DO $210 \mathrm{~K}=1, \mathrm{NL}(\mathrm{J})$
SUM2 $(\mathrm{K}, \mathrm{J})=0.0$
210 CONTINUE
DO $220 \mathrm{I}=1, \mathrm{NC}$
DO $220 \mathrm{~J}=1,2$
$\operatorname{SUM} 2(\mathrm{IG}(\mathrm{I}, \mathrm{J}), \mathrm{J})=\operatorname{SUM} 2(\mathrm{IG}(\mathrm{I}, \mathrm{J}), \mathrm{J})+\operatorname{IPER}(\mathrm{I})$
220 CONTINUE
DO $230 \mathrm{~J}=1,2$
$\mathrm{SS}(\mathrm{J})=0.0$
DO $240 \mathrm{~K}=1$,NL(J)
$\mathrm{SS}(\mathrm{J})=\mathrm{SS}(\mathrm{J})+(\mathrm{SUM} 2(\mathrm{~K}, \mathrm{~J}))^{* *} 2$
240 CONTINUE
$\mathrm{MM}=\mathrm{NC} / \mathrm{NL}(\mathrm{J})$
$\mathrm{SS}(\mathrm{J})=\mathrm{SS}(\mathrm{J} / \mathrm{MM}-\mathrm{CM}$
230 CONTINUE
C CALCULATE INTERACTION SS
DO $250 \mathrm{I}=1, \mathrm{NL}(1)$
DO $250 \mathrm{~J}=1$, NL $(2)$
SUM2(I, J) $=0.0$
SS2 $(\mathrm{I}, \mathrm{J}=0.0$
250 CONTINUE
DO 260 I=1,NC
SUM2(IG(I,1),IG(I,2))=SUM2(IG(I,1),IG(I,2))+IPER(I)
$\operatorname{SS} 2(\mathrm{IG}(\mathrm{I}, 1), \mathrm{IG}(\mathrm{I}, 2))=\mathrm{SS} 2(\mathrm{IG}(\mathrm{I}, 1), \mathrm{IG}(\mathrm{I}, 2))+(\mathrm{IPER}(\mathrm{I}))^{* *}$
260 CONTINUE
$\mathrm{SS}(3)=0.0$
DO $270 \mathrm{I}=1$,NL(1)
DO $270 \mathrm{~J}=1, \mathrm{NL}(2)$
$\mathrm{SS}(3)=\mathrm{SS}(3)+(\mathrm{SUM} 2(\mathrm{I}, \mathrm{J}))^{*} 2$

270 CONTINUE
SS(3)=SS(3)/NREP-CM-SS(1)-SS(2)
C FIND ERROR SUM OF SQUARES AND MEAN SQUARES
$S S(4)=S S T-S S(1)-S S(2)-S S(3)$
IF (NP.EQ.3) THEN
$\mathrm{MS}(4)=\mathrm{SS}(4) / \mathrm{IDF}(4)$
END IF
DO $280 \mathrm{I}=1,3$
$280 \mathrm{MS}(\mathrm{I})=\mathrm{SS}(\mathrm{I}) / \operatorname{IDF}(\mathrm{I})$
IF (NP.EQ.3) THEN
IF (MS(4).EQ.0.0) THEN
$\mathrm{F}=999.0$
ELSE
$\mathrm{F}=\mathrm{MS}(1) / \mathrm{MS}(3)$
END IF
END IF
DO 300 I=1,NPERMS
IPERM(T) $=\mathrm{I}$
300 CONTINUE

C ROUTINE TO CREATE TABLE OF CRITICAL VALUES AND PROPORTIONS
CALL SRCH(NPERMS,F,LIST,INCX,INDEX)
IF (INDEX .LT. 0) THEN
LIST( $Z$ ) $=\mathrm{F}$
$Z=Z+1$
ELSE
FRQ(INDEX) $=\mathrm{FRQ}($ INDEX $)+1$
$\mathrm{NR}=\mathrm{NR}+1$
END IF
CALL SVRGP(NPERMS,LIST,LIST,IPERM)
DO 310 I=1,NPERMS
TEMP(T)=FRQ(IPERM(I))
310 CONTINUE
DO $320 \mathrm{I}=1$,NPERMS
FRQ(T) $=$ TEMP(I)
320 CONTINUE
1 CONTINUE
C END OF MAIN LOOP
C ROUTINE TO WRITE CRITCAL VALUES AND PROPORTIONS

CUM=0.0
DO 330 I=1,NPERMS
IF (LIST(I) .LT. 9999.0) THEN
CUM $=C U M+F R Q(I)$
PVAL=1-(CUM-1)/REAL(NPERMS)
IF (PVAL .LE. 0.101) THEN
WRITE $\left(4,{ }^{*}\right)$ LIST(I),PVAL
END IF

END IF
330 CONTINUE
END

## Program 3.

PROGRAM TO FIND ESTIMATED EXACT SAMPLING DISTRIBUTION FOR F-RATIO STATISTICS COMPUTED ON THE RANKS OF THE DATA IN A THREE FACTOR COMPLETELY RANDOMIZED DESIGN

INTEGER IG(48,3), IDF (8),IC1(20),NL(20),NN
INTEGER IPER(16), ISEED,K,SUMX,SST,NOUT,IC3(20,20,20),NPERMS
INTEGER INCX,INDEX,FRQ(20000),TEMP(20000),IPERM(20000),Z,COUNT INTEGER LENGTH
REAL MS(8),SS(8),SUM2(20,20),F,CUM
REAL SUM3(20,20,20),SS3(20,20,20),M,LIST(20000)
DATA CM/0.0/, NL/20*0/, IC1/20*0/, NREP/0/
DATA IG(1,1),IG(1,2),IG(1,3),IG(2,1),IG(2,2),IG(2,3),IG(3,1),
$1 \operatorname{IG}(3,2), \mathrm{IG}(3,3), \operatorname{IG}(4,1), \mathrm{IG}(4,2), \mathrm{IG}(4,3), \mathrm{IG}(5,1), \mathrm{IG}(5,2), \mathrm{IG}(5,3)$,
$2 \operatorname{IG}(6,1), \mathrm{IG}(6,2), \mathrm{IG}(6,3), \mathrm{IG}(7,1), \mathrm{IG}(7,2), \mathrm{IG}(7,3), \mathrm{IG}(8,1), \mathrm{IG}(8,2)$,
$3 \mathrm{IG}(8,3), \mathrm{IG}(9,1), \mathrm{IG}(9,2), \mathrm{IG}(9,3), \mathrm{IG}(10,1), \mathrm{IG}(10,2), \mathrm{IG}(10,3)$,
4 IG(11,1),IG(11,2),IG(11,3),IG(12,1),IG(12,2),IG(12,3),IG(13,1),
5 IG(13,2),IG(13,3),IG(14,1),IG(14,2),IG(14,3),IG(15,1),
$6 \mathrm{IG}(15,2), \mathrm{IG}(15,3), \mathrm{IG}(16,1), \mathrm{IG}(16,2), \mathrm{IG}(16,3) / 1,1,1,1$,
$71,1,1,1,2,1,1,2,1,2,1,1,2,1,1,2,2,1,2,2,2,1,1,2,1,1,2,1,2,2,1,2$,
8 2,2,1,2,2,1,2,2,2,2,2,2/,IC3/8000*-1.0/,
9 FRQ/20000*1/,LIST/20000*-999.0/
$\mathrm{NN}=16$
$\mathrm{NC}=16$
NREP=2
NPERMS $=10000$
$\mathrm{NF}=3$
$\mathrm{NP}=0$
INCX=1
$\mathrm{Z}=1$
$\mathrm{NL}(1)=2$
$\mathrm{NL}(2)=2$
$\mathrm{NL}(3)=2$
COUNT=0
LENGTH $=20000$
OPEN (UNIT=4,FILE='C:MSDEVDATAIOUT3W.TXT')
CALL UMACH ( 2, NOUT)

ISEED=40396
CALL RNSET(ISEED)
DO 1 A=1,NPERMS
CALL RNPER(NN,IPER)
C CALCULATE SS FOR MAIN EFFECTS

SUMX $=0$
SST=0
DO $10 \mathrm{I}=1, \mathrm{NC}$
SUMX $=$ SUMX + IPER(I)
$\mathrm{SST}=\mathrm{SST}+(\mathrm{IPER}(\mathrm{I}))^{* *} 2$
$\operatorname{IC1}(\operatorname{IG}(\mathrm{I}, 1))=\mathrm{IC} 1(\mathrm{IG}(\mathrm{I}, 1))+1$
DO $20 \mathrm{~K}=1, \mathrm{NF}$
IF (IG(I,K) .GT. NL(K)) THEN
$\mathrm{NL}(\mathrm{K})=\mathrm{IG}(\mathrm{I}, \mathrm{K})$
END IF
20 CONTINUE
$\operatorname{IC} 3(\operatorname{IG}(\mathrm{I}, 1), \mathrm{IG}(\mathrm{I}, 2), \mathrm{IG}(\mathrm{I}, 3))=\mathrm{IC}(\mathrm{IG}(\mathrm{I}, 1), \mathrm{IG}(\mathrm{I}, 2), \mathrm{IG}(\mathrm{I}, 3))+1$
10 CONTINUE
CM=SUMX ${ }^{*} * 2 / \mathrm{NC}$
SST=SST-CM
C THREE FACTOR ANALYSIS
$300 \operatorname{IDF}(1)=\mathrm{NL}(1)-1$
$\operatorname{IDF}(2)=\mathrm{NL}(2)-1$
$\operatorname{IDF}(3)=\mathrm{NL}(3)-1$
$\operatorname{IDF}(4)=\operatorname{IDF}(1) * \operatorname{IDF}(2)$
$\operatorname{IDF}(5)=\operatorname{IDF}(1)^{*} \operatorname{IDF}(3)$
$\operatorname{IDF}(6)=\operatorname{IDF}(2) * \operatorname{IDF}(3)$
$\operatorname{IDF}(7)=\operatorname{IDF}(4) * \operatorname{IDF}(3)$
$\operatorname{IDF}(8)=\mathrm{NL}(1)^{*} \mathrm{NL}(2)^{*} \mathrm{NL}(3)^{*}(\mathrm{NREP}-1)$
$\mathrm{NP}=7$
IF (NREP .EQ. 1) NP=NP-1
DO $305 \mathrm{I}=1,3$
DO $305 \mathrm{~J}=1$, NL(I)
SUM2 (J,I) $=0.0$
305 CONTINUE

C FIND SS FOR MAIN EFFECTS

DO $310 \mathrm{I}=1, \mathrm{NC}$
DO $310 \mathrm{~J}=1,3$
SUM2 $(\mathrm{IG}(\mathrm{I}, \mathrm{J}), \mathrm{J})=$ SUM2 $(\mathrm{IG}(\mathrm{I}, \mathrm{J}), \mathrm{J})+\mathrm{IPER}(\mathrm{I})$
310 CONTINUE
DO $315 \mathrm{~J}=1,3$
$\mathrm{SS}(\mathrm{J})=0.0$
DO $320 \mathrm{~K}=1$,NL(J)
$\mathrm{SS}(\mathrm{J})=\mathrm{SS}(\mathrm{J})+\mathrm{SUM} 2(\mathrm{~K}, \mathrm{~J})^{* *} 2$
320 CONTINUE
$\mathrm{M}=\mathrm{REAL}(\mathrm{NC}) / \mathrm{REAL}(\mathrm{NL}(\mathrm{J}))$
$\mathrm{SS}(\mathrm{J})=\mathrm{SS}(\mathrm{J}) / \mathrm{M}-\mathrm{CM}$
315 CONTINUE

C FIND SS FOR TWO FACTOR INTERACTIONS
NLMAX=MAX(NL(1),NL(2),NL(3))
DO 325 I=1,NLMAX
DO $325 \mathrm{~J}=1$,NLMAX
DO $325 \mathrm{~K}=1,3$
SUM3(I,J,K)=0.0
325 CONTINUE
DO $330 \mathrm{I}=1, \mathrm{NC}$
SUM3(IG(I,1),IG(I,2),1)=SUM3(IG(I,1),IG(I,2),1)+IPER(I)
SUM3(IGG(I,1),IG(I,3),2)=SUM3(IG(I,1),IG(I,3),2)+IPER(I)
$\operatorname{SUM} 3(\operatorname{IG}(\mathrm{I}, 2), \mathrm{IG}(\mathrm{I}, 3), 3)=\operatorname{SUM} 3(\mathrm{IG}(\mathrm{I}, 2), \mathrm{IG}(\mathrm{I}, 3), 3)+\operatorname{IPER}(1)$
330 CONTINUE
$\mathrm{SS}(4)=0.0$
DO $335 \mathrm{I}=1$, NL(1)
DO $335 \mathrm{~J}=1, \mathrm{NL}(2)$
SS(4)=SS(4)+SUM3(I,J,1)**2
335 CONTINUE
$\mathrm{SS}(4)=\mathrm{SS}(4) /$ (NL(3)*NREP)-SS(1)-SS(2)-CM
SS(5)=0.0
DO $340 \mathrm{I}=1, \mathrm{NL}(1)$
DO $340 \mathrm{~K}=1$,NL(3)
SS(5)=SS(5)+SUM3(I,K,2)**2
340 CONTINUE
$\mathrm{SS}(5)=\mathrm{SS}(5) /(\mathrm{NL}(2) * \mathrm{NREP})-\mathrm{SS}(1)-\mathrm{SS}(3)-\mathrm{CM}$
$\mathrm{SS}(6)=0.0$
DO $345 \mathrm{~J}=1$, NL (2)
DO $345 \mathrm{~K}=1$,NL(3)
SS(6)=SS(6)+SUM3(J,K,3)**2
345 CONTINUE
$\mathrm{SS}(6)=\mathrm{SS}(6) /(\mathrm{NL}(1) * \mathrm{NREP})-\mathrm{SS}(2)-\mathrm{SS}(3)-\mathrm{CM}$
C FIND SS FOR THREE FACTOR INTERACTION AND ERROR
IF (NREP .GT. 1) GOTO 350
$\mathrm{SS}(7)=\mathrm{SST}-\mathrm{SS}(1)-\mathrm{SS}(2)-\mathrm{SS}(3)-\mathrm{SS}(4)-\mathrm{SS}(5)-\mathrm{SS}(6)$
$\mathrm{SS}(8)=0.0$
GOTO 355
350 DO $360 \mathrm{I}=1, \mathrm{NL}(1)$
DO $360 \mathrm{~J}=1, \mathrm{NL}(2)$
DO $360 \mathrm{~K}=1$,NL(3)
SUM3(I,J,K) $=0.0$
SS3(I, J,K) $=0.0$
360 CONTINUE
DO 365 I=1,NC
SUM3(IG(I,1),IG(I,2),IG(I,3))=SUM3(IG(I,1),IG(I,2),IG(I,3))
$1+\operatorname{IPER}(\mathrm{I})$
SS3(IG(I,1),IG(I,2),IG(I, 3))=SS3(IG(I,1),IG(I,2),IG(I, 3))
$1+\operatorname{PER}(\mathrm{I}) * * 2$
365 CONTINUE
$\mathrm{SS}(7)=0.0$
DO $370 \mathrm{I}=1, \mathrm{NL}(1)$
DO $370 \mathrm{~J}=1, \mathrm{NL}(2)$

```
    DO 370 K=1,NL(3)
    SS(7)=SS(7)+SUM3(I,J,K)**2
370 CONTINUE
    SS(7)=SS(7)/NREP-SS(1)-SS(2)-SS(3)-SS(4)-SS(5)-SS(6)-CM
    SS(8)=SST-SS(1)-SS(2)-SS(3)-SS(4)-SS(5)-SS(6)-SS(7)
C FIND MEAN SQUARES AND F-VALUES
    IF (NP .EQ. 7) MS(8)=SS(8)/IDF(8)
355 DO 375 I=1,7
    MS(I)=SS(I)/IDF(I)
375 CONTINUE
    IF (MS(8) .EQ. 0.0) THEN
    F=999.0
    ELSE
    F=MS(1)/MS(8)
    END IF
    DO 380 IS=1,LENGTH
    IPERM(IS)=IS
    380 CONTINUE
C FLLL DATA FLLE WITH UNIQUE F-VALUES AND FREQUENCIES
    CALL SRCH(LENGTH,F,LIST,INCX,INDEX)
    IF (INDEX .LT. 0) THEN
    LIST(Z)=F
    Z=Z+1
    ELSE
    FRQ(INDEX)=FRQ(INDEX)}+
    COUNT=COUNT+1
    END IF
    CALL SVRGP(LENGTH,LIST,LIST,IPERM)
    DO 385 IP=1,LENGTH
    TEMP(IP)=FRQ(IPERM(IP))
385 CONTINUE
    DO 390 IC=1,LENGTH
    FRQ(IC)=TEMP(IC)
390 CONTINUE
    1 CONTINUE
C WRITE DISTRIBUTION OF F TO FILE
    CUM=0.0
    DO 395 I=1,LENGTH
    IF (LIST(I) .GE. 0.0) THEN
    CUM=CUM+FRQ(I)
    WRITE (4,*) LIST(I),FRQ(I),CUM/REAL(NPERMS)
    END IF
395 CONTINUE
    CLOSE (UNIT=4)
    END
```


## Program 4.

PROGRAM "3WAY " TO PERFORM RANDOMIZATION TEST FOR THREE FACTOR ANALYSIS OF VARIANCE

```
INTEGER IG(36,3),IDF(8),IC1(20),NL(20),NN,NRM,NRS,NRI
INTEGER IPER(36), ISEED,K,SUMX,SST,NOUT,IC3(20,20,20),NPERMS
INTEGER INCX,INDEX,FRQM(20000),TEMP(20000),IPERM(20000),COUNT
INTEGER ZM,ZS,ZI,FRQS(20000),FRQI(20000)
REAL LISTI(20000)
REAL MS(8),SS(8),SUM2(20,20),FMAIN,FSUB,FINT,CUM,PVALM,PVALS,PVALI
REAL SUM3(20,20,20),SS3(20,20,20),M,LISTM(20000),LISTS(20000)
DATA CM/0.0/, NL/20*0/, IC 1/20*0/, NREP/0/
DATA IG(1,1),IG(1,2),IG(1,3),IG(2,1),IG(2,2),IG(2,3)/1,1,1,1,1,2/
DATA IG(3,1),IG(3,2),IG(3,3),IG(4,1),IG(4,2),IG(4,3)/1,1,3,1,2,1/
DATA IG(5,1),IG(5,2),IG(5,3),IG(6,1),IG(6,2),IG(6,3)/1,2,2,1,2,3/
DATA IG(7,1),IG(7,2),IG(7,3),IG(8,1),IG(8,2),IG(8,3)/1,3,1,1,3,2/
DATA IG(9,1),IG(9,2),IG(9,3),IG(10,1),IG(10,2)/1,3,3,1,4/
DATA IG(10,3),IG(11,1),IG(11,2),IG(11,3),IG(12,1)/1,1,4,2,1/
DATA IG(12,2),IG(12,3),IG(13,1),IG(13,2),IG(13,3)/4,3,2,1,1/
DATA IG(14,1),IG(14,2),IG(14,3),IG(15,1),IG(15,2)/2,1,2,2,1/
DATA IG(15,3),IG(16,1),IG(16,2),IG(16,3),IG(17,1)/3,2,2,1,2/
DATA IG(17,2),IG(17,3),IG(18,1),IG(18,2),IG(18,3)/2,2,2,2,3/
DATA IG(19,1),IG(19,2),IG(19,3),IG(20,1),IG(20,2)/2,3,1,2,3/
DATA IG(20,3),IG(21,1),IG(21,2),IG(21,3),IG(22,1)/2,2,3,3,2/
DATA IG(22,2),IG(22,3),IG(23,1),IG(23,2),IG(23,3)/4,1,2,4,2/
DATA IG(24,1),IG(24,2),IG(24,3),IG(25,1),IG(25,2)/2,4,3,3,1/
DATA IG(25,3),IG(26,1),IG(26,2),IG(26,3),IG(27,1)/1,3,1,2,3/
DATA IG(27,2),IG(27,3),IG(28,1),IG(28,2),IG(28,3)/1,3,3,2,1/
DATA IG(29,1),IG(29,2),IG(29,3),IG(30,1),IG(30,2)/3,2,2,3,2/
DATA IG(30,3),IG(31,1),IG(31,2),IG(31,3),IG(32,1)/3,3,3,1,3/
DATA IG(32,2),IG(32,3),IG(33,1),IG(33,2),IG(33,3)/3,2,3,3,3/
DATA IG(34,1),IG(34,2),IG(34,3),IG(35,1),IG(35,2)/3,4,1,3,4/
DATA IG(35,3),IG(36,1),IG(36,2),IG(36,3)/2,3,4,3/
DATA IC3/8000*-1.0/, FRQM/20000*1/,LISTM/20000*-999.0/
DATA FRQS/20000*1/,LISTS/20000*-999.0/
DATA FRQI/20000*1/,LISTI/20000*-999.0/
NN=36
NC=36
NREP=1
NPERMS=20000
NF=3
NP=0
INCX=1
ZM=1
ZS=1
ZI=1
NL(1)=3
NL(2)=4
NL(3)=3
```

```
    COUNT=0
    OPEN (UNIT=4,FILE='C:\WINDOWS\SCOTT\3WAYDAT2.TXT')
    CALL UMACH(2,NOUT)
    ISEED=40396
    CALL RNSET(ISEED)
    DO 1 A=1,NPERMS
    CALL RNPER(NN,IPER)
C CALCULATE SS FOR MAIN EFFECTS
    SUMX=0
    SST=0
    DO 10I=1,NC
    SUMX=SUMX+IPER(I)
    SST=SST+(IPER(I))**2
    IC1(IG(I,1))=IC1(IG(I,1))+1
    DO 20 K=1,NF
    IF (IG(I,K) .GT. NL(K)) THEN
    NL(K)=IG(I,K)
    END IF
    20 CONTINUE
    IC3(IG(I,1),IG(I,2),IG(I,3))=IC3(IG(I,1),IG(I,2),IG(I,3))+1
    10 CONTINUE
    CM=SUMX**2/NC
    SST=SST-CM
C THREE FACTOR ANALYSIS
    300 IDF(1)=NL(1)-1
    IDF(2)=NL(2)-1
    IDF(3)=NL(3)-1
    IDF(4)=IDF(1)*IDF(2)
    IDF(5)=IDF(1)*IDF(3)
    IDF(6)=IDF(2)*IDF(3)
    IDF(7)=IDF(4)*IDF(3)
    IDF(8)=NL(1)*NL(2)*NL(3)*(NREP-1)
    NP=7
    IF (NREP .EQ. 1) NP=NP-1
    DO 305 I=1,3
    DO 305 J=1,NL(I)
    SUM2(J,I)=0.0
    305 CONTINUE
C FIND SS FOR MAIN EFFECTS
    DO 310 I=1,NC
    DO 310 J=1,3
    SUM2(IG(I,J),J)=SUM2(IG(I,J),J)+IPER(I)
310 CONTINUE
    DO 315 J=1,3
    SS(J)=0.0
    DO 320 K=1,NL(J)
    SS(J)=SS(J)+SUM2(K,J)**2
320 CONTINUE
```

```
    M=REAL(NC)/REAL(NL(J))
    SS(J)=SS(J)/M-CM
315 CONTINUE
```

C FIND SS FOR TWO FACTOR INTERACTIONS

NLMAX=MAX(NL(1),NL(2),NL(3))
DO $325 \mathrm{I}=1$, NLMAX
DO $325 \mathrm{~J}=1, \mathrm{NLMAX}$
DO $325 \mathrm{~K}=1,3$
SUM3(I,J,K)=0.0
325 CONTINUE
DO $330 \mathrm{I}=1, \mathrm{NC}$
SUM3(IG(I,1),IG(I,2),1)=SUM3(IG(I,1),IG(I,2),1)+IPER(I)
SUM3(IG(I,1),IG(I,3),2)=SUM3(IG(I,1),IG(I,3),2)+IPER(I)
SUM3(IG(I,2),IG(I, 3),3)=SUM3(IG(I,2),IG(I,3),3)+IPER(I)
330 CONTINUE
$\mathrm{SS}(4)=0.0$
DO $335 \mathrm{I}=1, \mathrm{NL}(1)$
DO $335 \mathrm{~J}=1, \mathrm{NL}(2)$
SS(4)=SS(4)+SUM3(I,J,1)**2
335 CONTINUE
$\mathrm{SS}(4)=\mathrm{SS}(4) /(\mathrm{NL}(3) * \mathrm{NREP})-\mathrm{SS}(1)-\mathrm{SS}(2)-\mathrm{CM}$
$S S(5)=0.0$
DO $340 \mathrm{I}=1, \mathrm{NL}(1)$
DO $340 \mathrm{~K}=1$,NL(3)
SS(5) $=\mathrm{SS}(5)+\mathrm{SUM} 3(\mathrm{I}, \mathrm{K}, 2)^{* *} 2$
340 CONTINUE
$\mathrm{SS}(5)=\mathrm{SS}(5) /(\mathrm{NL}(2) * \mathrm{NREP})-\mathrm{SS}(1)-\mathrm{SS}(3)-\mathrm{CM}$
$S S(6)=0.0$
DO $345 \mathrm{~J}=1, \mathrm{NL}(2)$
DO $345 \mathrm{~K}=1$,NL(3)
SS(6)=SS(6)+SUM3(J,K,3)**2
345 CONTINUE
$S S(6)=S S(6) /(N L(1) * N R E P)-S S(2)-S S(3)-C M$

C FIND SS FOR THREE FACTOR INTERACTION AND ERROR

IF (NREP .GT. 1) GOTO 350
SS(7)=SST-SS(1)-SS(2)-SS(3)-SS(4)-SS(5)-SS(6)
$\mathrm{SS}(8)=0.0$
GOTO 355
350 DO 360 I=1,NL(1)
DO $360 \mathrm{~J}=1$,NL(2)
DO $360 \mathrm{~K}=1$,NL(3)
SUM3(I,J,K)=0.0
SS3(I,J,K) $=0.0$
360 CONTINUE
DO $365 \mathrm{I}=1$,NC
SUM3(IG(I,1),IG(I,2),IG(I,3))=SUM3(IG(I,1),IG(I,2),IG(I,3))+IPER(I)
SS3(IG(I,1),IG(I,2),IG(I,3))=SS3(IG(I,1),IG(I,2),IG(I,3))+IPER(I)**2
365 CONTINUE
$\mathrm{SS}(7)=0.0$
DO $370 \mathrm{I}=1, \mathrm{NL}(1)$

DO $370 \mathrm{~J}=1$, NL(2)
DO $370 \mathrm{~K}=1$,NL(3)
$\mathrm{SS}(7)=\mathrm{SS}(7)+\mathrm{SUM} 3(\mathrm{I}, \mathrm{J}, \mathrm{K})^{* *} 2$
370 CONTINUE
$S S(7)=S S(7) / N R E P-S S(1)-S S(2)-S S(3)-S S(4)-S S(5)-S S(6)-C M$
$S S(8)=S S T-S S(1)-S S(2)-S S(3)-S S(4)-S S(5)-S S(6)-S S(7)$
C FIND MEAN SQUARES AND F VALUES
IF (NP .EQ. 7) MS(8) $=\mathrm{SS}(8) / \mathrm{IDF}(8)$
355 DO $375 \mathrm{I}=1,7$
$\mathrm{MS}(\mathrm{I})=\mathrm{SS}(\mathrm{I}) / \mathrm{IDF}(\mathrm{I})$
375 CONTINUE
FMAIN $=\mathrm{MS}(2) / \mathrm{MS}(4)$
FSUB $=\mathrm{MS}(3) /(\mathrm{MS}(5)+\mathrm{MS}(7))$
FINT $=\mathrm{MS}(6) /(\mathrm{MS}(5)+\mathrm{MS}(7))$
DO 380 I=1,NPERMS
IPERM(I)=I
380 CONTINUE
CALL SRCH(NPERMS,FMAIN,LISTM,INCX,INDEX)
IF (INDEX .LT. 0) THEN
LISTM (ZM) $=$ FMAIN
$\mathrm{ZM}=\mathrm{ZM}+1$
ELSE
FRQM(INDEX) $=$ FRQM(INDEX) +1
NRM $=$ NRM +1
END IF
CALL SVRGP(NPERMS,LISTM,LISTM,IPERM)
DO 410 I=1,NPERMS
TEMP $(\mathrm{I})=$ FRQM(IPERM(I))
410 CONTINUE
DO 420 I=1,NPERMS
FRQM(T)=TEMP(I)
420 CONTINUE
CALL SRCH(NPERMS,FSUB,LISTS,INCX,INDEX)
IF (INDEX .LT. 0) THEN
$\operatorname{LISTS}(Z S)=F S U B$
ZS $=$ ZS +1
ELSE
FRQS(INDEX) $=$ FRQS(INDEX) +1
NRS $=$ NRS +1
END IF
CALL SVRGP(NPERMS,LISTS,LISTS,IPERM)
DO 510 I=1,NPERMS
TEMP( I = $=$ RRQS(IPERM(I))
510 CONTINUE
DO $520 \mathrm{I}=1$,NPERMS
FRQS(T)=TEMP(I)
520 CONTINUE
CALL SRCH(NPERMS,FINT,LISTI,INCX,INDEX)
IF (INDEX .LT. 0) THEN
$\operatorname{LISTI}(Z I)=F I N T$

```
    ZI=ZI+1
    ELSE
    FRQI(INDEX)=FRQI(INDEX)+1
    NRI=NRI+1
    END IF
    CALL SVRGP(NPERMS,LISTI,LISTI,IPERM)
    DO 610 I=1,NPERMS
    TEMP(I)=FRQI(IPERM(I))
6 1 0 \text { CONTINUE}
    DO 620 I=1,NPERMS
    FRQI(I)=TEMP(I)
6 2 0 ~ C O N T I N U E ~
    1 CONTINUE
C ROUTINE TO WRITE CRITCAL VALUES AND P-VALUES
C
    CUM=0.0
    DO 630 [=1,NPERMS
    IF (LISTM(I) .LT. 9999.0) THEN
    CUM=CUM+FRQM(I)
    PVALM=1-CUM/REAL(NPERMS)
    IF (PVALM .LE. 0.101) THEN
    WRITE (4,*) 'FMAIN=',LISTM(I),PVALM
    END IF
    END IF
6 3 0 ~ C O N T I N U E ~
    CUM=0
    DO }640\mathrm{ I=1,NPERMS
    IF (LISTS(I) .LT. 9999.0) THEN
    CUM=CUM+FRQS(I)
    PVALS=1-CUM/REAL(NPERMS)
    IF (PVALS .LE. 0.101) THEN
    WRITE (4,*) 'FSUB=',LISTS(I),PVALS
    END IF
    END IF
6 4 0 ~ C O N T I N U E
    CUM=0
    DO }650\textrm{I}=1,NPERM
    IF (LISTI(I) .LT. 9999.0) THEN
    CUM=CUM+FRQI(I)
    PVALI=1-CUM/REAL(NPERMS)
    IF (PVALI .LE. 0.101) THEN
    WRITE (4,*) 'FINT=',LISTI(I),PVALI
    END IF
    END IF
6 5 0 ~ C O N T I N U E ~
CLOSE (UNIT=4)
END
```


## Program 5.

PROGRAM "SM4B3AR" TO COMPUTE SIGNIFICANCE LEVELS FOR F-RATIO, EXACT RANK TRANSFORM AND EXACT ALIGNED RANK TRANSFORM TESTS FOR A 2 FACTOR CRD WITH N LEVELS PER TRT AND NREP OBS PER TRT COMB

```
USE MSIMSL
PARAMETER (NC=120,NLA=4,NLB=3,NREP=10)
INTEGER IG(NC,3),IDF(8),IC1(20),IC2(NC,NC),NL(20),N,Z
INTEGER FYAREJ10,FYBREJ10,FYABREJ10,FRAREJ10,FRBREJ10,FRABREJ10
INTEGER FARAREJ10,FARBREJ10,FARABREJ10
INTEGER HOLD(250),W,P,Q
INTEGER FYAREJ05,FYBREJ05,FYABREJ05,FRAREJ05,FRBREJ05,FRABREJ05
INTEGER FARAREJ05,FARBREJ05,FARABREJ05
INTEGER FYAREJ01,FYBREJ01,FYABREJ01,FRAREJ01,FRBREJ01,FRABREJ01
INTEGER FARAREJ01,FARBREJ01,FARABREJ01
REAL R(NC),Y(NC),MS(8),SS(8),SUM2(20,20),SS2(20,20)
REAL RA(NC),RB(NC),RAB(NC),CONS,SIG
REAL FYA,FRA,FYA10PV,FRA10PV,FARA10PV
REAL FYB,FRB,FYB10PV,FRB10PV,FARB10PV
REAL FYAB,FRAB,FYAB10PV,FRAB10PV,FARAB10PV
REAL FYA05PV,FRA0SPV,FARA0SPV
REAL FYB05PV,FRB05PV,FARB05PV
REAL FYAB05PV,FRAB05PV,FARAB05PV
REAL FYA01PV,FRA01PV,FARA01PV
REAL FYB01PV,FRB01PV,FARB01PV
REAL FYAB01PV,FRAB01PV,FARAB01PV
REAL A(NLA),B(NLB),AB(NLA,NLB),E(NC),ER(NC),YFLX(NC),P01,P05,P10
REAL DFNA,DFNB,DFNAB,DFD
REAL M(NLA,NLB,NREP),AMAB(NLA,NLB,NREP),AYAB(NC),AYB(NC),UE(1)
REAL MA(NLA),MB(NLB),SUM,RY(NC),AMA(NLA,NLB,NREP)
REAL AMB(NLA,NLB,NREP)
REAL AYA(NC)
REAL CRITFA10,CRITFB10,CRITFAB10,CRITRA10,CRITRB10,CRITRAB10
REAL CRITFA05,CRITFB05,CRITFAB05,CRITRA05,CRITRB05,CRITRAB05
REAL CRITFA01,CRITFB01,CRITFAB01,CRITRA01,CRITRB01,CRITRAB01
REAL SUMFYA,SUMFYB,SUMFYAB,SUMFRA,SUMFRB,SUMFRAB
DATA CM/0.0/, NL/20*0/, IC1/20*0/,IC2/14400*0/
DATA A(1),A(2),A(3),A(4)/.0,0,.0,.0/
DATA B(1),B(2),B(3)/.0,.0,-.0/
DATA AB(1,1),AB(1,2),AB(1,3)/.0,3.50,.0/
DATA AB(2,1),AB(2,2),AB(2,3)/0,-3.50,3.50/
DATA AB(3,1),AB(3,2),AB(3,3)/-3.50,-.0,-3.50/
DATA AB(4,1),AB(4,2),AB(4,3)/3.50,0,0/
OPEN (UNIT=4,FILE='C:\MSDEVIDATAISIM4310.TXT')
N=10000
NL(1)=NLA
NL(2)=NLB
CONS=1.0
```

```
NPERMS=0
NF=2
FYREJ=0
FRREJ=0
FRTREJ=0
```

C CRITICAL VALUES
$\mathrm{P} 10=.90$
$\mathrm{P} 05=.95$
$\mathrm{P} 01=.99$
DFNA=3
DFNB=2
DFNAB=6
$\mathrm{DFD}=108$
CRITFA10 $=\mathrm{FIN}(\mathrm{P} 10, \mathrm{DFNA}, \mathrm{DFD})$
CRITFB10=FIN(P10,DFNB,DFD)
CRITFAB10=FIN(P10,DFNAB,DFD)
CRITRA10=2.11847
CRITRB10 $=2.344881$
CRITRAB10 $=1.821623$
CRITFA05=FIN(P05,DFNA,DFD)
CRITFB05=FIN(P05,DFNB,DFD)
CRITFAB05=FIN(P05,DFNAB,DFD)
CRITRA $05=2.680210$
CRITRB05=3.124526
CRITRAB05 $=2.182787$
CRITFA01=FIN(P01,DFNA,DFD)
CRITFB01=FIN(P01,DFNB,DFD)
CRITFAB01=FIN(P01,DFNAB,DFD)
CRITRA01 $=4.003309$
CRITRB01 $=5.087671$
CRITRAB01 $=2.985842$
$\mathrm{NP}=0$
$Z=1$
C FLLL IG VECTOR
$\mathrm{C}=1$
DO $2 \mathrm{I}=1, \mathrm{NL}(1)$
DO $4 \mathrm{~J}=1$, NL(2)
DO $6 \mathrm{~K}=1$,NREP
HOLD $(\mathrm{C})=\mathrm{J}$
$\operatorname{HOLD}(\mathrm{C}+1)=\mathrm{I}$
$\mathrm{C}=\mathrm{C}+2$
6 CONTINUE
4 CONTINUE
2 CONTINUE
$\mathrm{C}=1$
DO $12 \mathrm{I}=1, \mathrm{NC}$
DO $14 \mathrm{~J}=\mathrm{NF}, 1,-1$
$\mathrm{IG}(\mathrm{I}, \mathrm{J})=\mathrm{HOLD}(\mathrm{C})$
$\mathrm{C}=\mathrm{C}+1$

```
    14 CONTINUE
    12 CONTINUE
        CALL RNSET(62064)
        DO 10 S=1,N
    C GENERATE OBSERVATIONS
        W=1
        SIG=1
        DO 1I=1,NL(1)
        DO 3 J=1,NL(2)
        DO 5 K=1,NREP
        CALL RNNOA(1,UE)
        CALL SSCAL(1,SIG,UE,1)
    C CALL RNEXP(1,UE)
    C CALL SSCAL(1,3.0,UE,1)
    C CALL RNUN(1,UE)
    C CALL SSCAL(1,6.0,UE,1)
    C CALL SADD(1,-3.0,UE,1)
        Y(W)=A(I)+B(J)+AB(I,J)+UE(1)
        W=W+1
    5 ~ C O N T I N U E
C SIG=CONS*SIG
    3 CONTINUE
        SIG=CONS*SIG
    C SIG=1
        1 CONTINUE
    C ALIGN OBSERVATIONS
    C FILL MATRIX WITH OBSERVATIONS
        P}=
        DO 51 I=1,NL(1)
        DO 52 J=1,NL(2)
        DO }53\textrm{K}=1,NRE
        M(I,J,K)=Y(P)
        P}=\textrm{P}+
    5 3 \text { CONTINUE}
    5 2 ~ C O N T I N U E ~
    51 CONTINUE
C COMPUTE FACTOR A MEANS
        SUM=0
        DO 61 I=1,NL(1)
        DO }62\textrm{J}=1,\textrm{NL}(2
        DO }63\textrm{K}=1,NRE
        SUM=SUM +M(I,J,K)
    6 3 \text { CONTINUE}
    6 2 ~ C O N T I N U E ~
        MA(I)=SUM/(NL(2)*NREP)
```

```
        SUM=0
    6 1 ~ C O N T I N U E ~
```

C COMPUTE FACTOR B MEANS
SUM=0
DO $71 \mathrm{~J}=1, \mathrm{NL}(2)$
DO $72 \mathrm{I}=1, \mathrm{NL}(1)$
DO $73 \mathrm{~K}=1$,NREP
$\mathrm{SUM}=\mathrm{SUM}+\mathrm{M}(\mathrm{I}, \mathrm{J}, \mathrm{K})$
73 CONTINUE
72 CONTINUE
$\mathrm{MB}(\mathrm{J})=\mathrm{SUM} /(\mathrm{NL}(1) * \mathrm{NREP})$
SUM=0
71 CONTINUE
C COMPUTE OVERALL MEAN
SUM=0
DO $76 \mathrm{I}=1, \mathrm{NL}(2)$
SUM $=$ SUM $+\mathrm{MB}(\mathrm{I})$
76 CONTINUE
MAB $=$ SUM/NL (2)
C COMPUTE ALIGNED OBSERVATIONS
DO $81 \mathrm{I}=1, \mathrm{NL}(1)$
DO $82 \mathrm{~J}=1$, NL ( 2 )
DO $83 \mathrm{~K}=1$, NREP
$\mathrm{AMAB}(\mathrm{I}, \mathrm{J}, \mathrm{K})=\mathrm{M}(\mathrm{I}, \mathrm{J}, \mathrm{K})-(\mathrm{MA}(\mathrm{I})+\mathrm{MB}(\mathrm{J}))$
AMA $(1, \mathrm{~J}, \mathrm{~K})=\mathrm{M}(\mathrm{I}, \mathrm{J}, \mathrm{K})-\mathrm{MB}(\mathrm{J})$
$\mathrm{AMB}(\mathrm{I}, \mathrm{J}, \mathrm{K})=\mathrm{M}(\mathrm{I}, \mathrm{J}, \mathrm{K})-\mathrm{MA}(\mathrm{I})$
83 CONTINUE
82 CONTINUE
81 CONTINUE
C RETURN ALIGNED MATRIX ELEMENTS TO SINGLE ARRAY
$\mathrm{Q}=1$
DO $91 \mathrm{I}=1$, NL(1)
DO $92 \mathrm{~J}=1$, NL (2)
DO $93 \mathrm{~K}=1$,NREP
$\operatorname{AYAB}(\mathrm{Q})=\mathrm{AMAB}(\mathrm{I}, \mathrm{J}, \mathrm{K})$
AYA $(\mathrm{Q})=\mathrm{AMA}(\mathrm{T}, \mathrm{J}, \mathrm{K})$
$\mathrm{AYB}(\mathrm{Q})=\mathrm{AMB}(\mathrm{I}, \mathrm{J}, \mathrm{K})$
$\mathrm{Q}=\mathrm{Q}+1$
93 CONTINUE
92 CONTINUE
91 CONTINUE
C FIND THE RANKS OF THE ALIGNED DATA
CALL RANKS(NC,AYAB,. $000000001,0,0, \mathrm{RAB}$ )
CALL RANKS(NC,AYA, $000000001,0,0, R A)$

CALL RANKS(NC,AYB,. $000000001,0,0, R B$ )
CALL RANKS(NC,Y,.000000001,0,0,R)
C TWO FACTOR ANALYSIS : F-TEST ON RAW DATA
C CALCULATE SS FOR MAIN EFFECTS
SUMX $=0.0$
SST $=0$
DO 166 I=1,NC
SUMX=SUMX+Y(I)
$\mathrm{SST}=\mathrm{SST}+\left(\mathrm{Y}(\mathrm{I}){ }^{* *}{ }^{*}\right.$
$\operatorname{IC1}(\mathrm{IG}(\mathrm{I}, 1))=\mathrm{ICl}(\mathrm{IG}(\mathrm{I}, 1))+1$
DO $30 \mathrm{~K}=1, \mathrm{NF}$
IF (IG(I,K).GT.NL(K)) THEN
$\mathrm{NL}(\mathrm{K})=\mathrm{IG}(\mathrm{I}, \mathrm{K})$
END IF
30 CONTINUE
IC2(IG(I,1),IG(I,2))=IC2(IG(I,1),IG(I,2))+1
166 CONTINUE
CM=SUMX**2/NC
SST=SST-CM
$\operatorname{IDF}(1)=\mathrm{NL}(1)-1$
$\mathrm{DFF}(2)=\mathrm{NL}(2)-1$
$\operatorname{IDF}(3)=\operatorname{IDF}(1) * \operatorname{IDF}(2)$
$\mathrm{DFF}(4)=\mathrm{NL}(1) * \mathrm{NL}(2) *(\mathrm{NREP}-1)$
$\mathrm{NP}=3$
IF (NREP.EQ.1) THEN
$\mathrm{NP}=\mathrm{NP}-1$
ENDIF
DO $160 \mathrm{~J}=1,2$
DO $160 \mathrm{~K}=1$,NL( J$)$
SUM2(K,J) $=0.0$
160 CONTINUE
DO $170 \mathrm{I}=1, \mathrm{NC}$
DO $170 \mathrm{~J}=1,2$
$\operatorname{SUM} 2(I G(I, J), J)=\operatorname{SUM} 2(I G(I, J), J)+Y(I)$
170 CONTINUE
DO $180 \mathrm{~J}=1,2$
$\mathrm{SS}(\mathrm{J})=0.0$
DO $190 \mathrm{~K}=1$, NL( J$)$
$190 \mathrm{SS}(\mathrm{J})=\mathrm{SS}(\mathrm{J})+(\mathrm{SUM} 2(\mathrm{~K}, \mathrm{~J}))^{*} 2$
$\mathrm{MM}=\mathrm{NC} / \mathrm{NL}(\mathrm{J})$
$180 \mathrm{SS}(\mathrm{J})=\mathrm{SS}(\mathrm{J}) / \mathrm{MM}-\mathrm{CM}$
C CALCULATE INTERACTION SS
DO $200 \mathrm{I}=1$,NL(1)
DO $200 \mathrm{~J}=1, \mathrm{NL}(2)$
SUM2(I,J) $=0.0$
SS2 $(1, \mathrm{~J})=0.0$
200 CONTINUE
DO $210 \mathrm{I}=1, \mathrm{NC}$
$\operatorname{SUM} 2(\operatorname{IG}(\mathrm{I}, 1), \mathrm{IG}(\mathrm{I}, 2))=\operatorname{SUM} 2(\mathrm{IG}(\mathrm{I}, 1), \mathrm{IG}(\mathrm{I}, 2))+\mathrm{Y}(\mathrm{I})$

```
210 SS2(IG(I,1),IG(I,2))=SS2(IG(I,1),IG(I,2))+(Y(I))**2
    SS(3)=0.0
    DO 220 I=1,NL(1)
    DO 220 J=1,NL(2)
    SS(3)=SS(3)+(SUM2(I,J))**2
220 CONTINUE
    SS(3)=SS(3)/NREP-CM-SS(1)-SS(2)
C FNND ERROR SUM OF SQUARES AND MEAN SQUARES
    SS(4)=SST-SS(1)-SS(2)-SS(3)
    IF (NP.EQ.3) THEN
    MS(4)=SS(4)/IDF(4)
    END IF
    DO 230 I=1,3
230 MS(I)=SS(I)/IDF(I)
    IF (NP.EQ.3) THEN
    IF (MS(4).EQ.0.0) THEN
    FY=9999.0
    ELSE
    FYA=MS(1)/MS(4)
    FYB=MS(2)/MS(4)
    FYAB=MS(3)/MS(4)
    SUMFYA=SUMFYA+FYA
    SUMFYB=SUMFYB+FYB
    SUMFYAB=SUMFYAB+FYAB
    END IF
    ELSE
    IF (MS(3).EQ.0.0) THEN
    FY=9999.0
    ELSE
    FY=MS(1)/MS(3)
    END IF
    END IF
    IF (FYA .GE. CRITFA10) THEN
    FYAREJ10=FYAREJ10+1
    END IF
    IF (FYB .GE. CRITFB10) THEN
    FYBREJ10=FYBREJ10+1
    END IF
    IF (FYAB .GE. CRITFAB10) THEN
    FYABREJ10=FYABREJ10+1
    END IF
    IF (FYA .GE. CRITFA05) THEN
    FYAREJ05=FYAREJ05+1
    END IF
    IF (FYB .GE. CRITFB05) THEN
    FYBREJ05=FYBREJ05+1
    END IF
    IF (FYAB .GE. CRITFAB05) THEN
    FYABREJ05=FYABREJ05+1
    END IF
    IF (FYA .GE. CRITFA01) THEN
    FYAREJ01=FYAREJ01+1
```

END IF
IF (FYB .GE. CRITFB01) THEN
FYBREJ01=FYBREJ01+1
END IF
IF (FYAB .GE. CRITFAB01) THEN
FYABREJ01=FYABREJ01+1
END IF

C TWO FACTOR ANALYSIS : F-TEST ON RAW RANKS

C CALCULATE SS FOR MAIN EFFECTS

SUMX $=0.0$
$\mathrm{SST}=0$
DO $4166 \mathrm{I}=1, \mathrm{NC}$
SUMX $=$ SUMX + R $(\mathrm{I})$
$\mathrm{SST}=\mathrm{SST}+(\mathrm{R}(\mathrm{I}))^{* *} 2$
$\operatorname{IC1}(\mathrm{IG}(\mathrm{I}, 1))=\mathrm{IC} 1(\mathrm{IG}(\mathrm{I}, 1))+1$
DO $430 \mathrm{~K}=1, \mathrm{NF}$
IF (IG(I,K).GT.NL(K)) THEN
$\mathrm{NL}(\mathrm{K})=\mathrm{IG}(\mathrm{I}, \mathrm{K})$
END IF
430 CONTINUE
$\mathrm{IC} 2(\mathrm{IG}(\mathrm{I}, 1), \mathrm{IG}(\mathrm{I}, 2))=\mathrm{IC} 2(\mathrm{IG}(\mathrm{I}, 1), \mathrm{IG}(\mathrm{I}, 2))+1$
4166 CONTINUE
$\mathrm{CM}=\mathrm{SUMX}^{*}{ }^{2} 2 / \mathrm{NC}$
SST=SST-CM
$\operatorname{IDF}(1)=\mathrm{NL}(1)-1$
$\operatorname{IDF}(2)=\mathrm{NL}(2)-1$
$\operatorname{IDF}(3)=\operatorname{DF}(1) * \operatorname{IDF}(2)$
$\operatorname{IDF}(4)=\mathrm{NL}(1) * \mathrm{NL}(2) *(\mathrm{NREP}-1)$
$\mathrm{NP}=3$
IF (NREP.EQ.1) THEN
NP=NP-1
ENDIF
DO $4160 \mathrm{~J}=1,2$
DO $4160 \mathrm{~K}=1, \mathrm{NL}(\mathrm{J})$
SUM2 $2(K, J)=0.0$
4160 CONTINUE
DO $4170 \mathrm{I}=1$, NC
DO $4170 \mathrm{~J}=1,2$
SUM2(IG(I,J),J)=SUM2(IG(I,J),J)+R(I)
4170 CONTINUE
DO $4180 \mathrm{~J}=1,2$
$\mathrm{SS}(\mathrm{J})=0.0$
DO $4190 \mathrm{~K}=1$,NL(J)
$4190 \mathrm{SS}(\mathrm{J})=\mathrm{SS}(\mathrm{J})+(\mathrm{SUM} 2(\mathrm{~K}, \mathrm{~J}))^{* *} 2$
$\mathrm{MM}=\mathrm{NC} / \mathrm{NL}(\mathrm{J})$
$4180 \mathrm{SS}(\mathrm{J})=\mathrm{SS}(\mathrm{J}) / \mathrm{MM}-\mathrm{CM}$
C CALCULATE INTERACTION SS
DO $4200 \mathrm{I}=1$, NL(1)
DO $4200 \mathrm{~J}=1$, NL(2)
SUM2 $(1, J)=0.0$
SS2 $(1, J)=0.0$
4200 CONTINUE
DO $4210 \mathrm{I}=1, \mathrm{NC}$
SUM2(IG(I,1),IG(I,2))=SUM2(IG(I,1),IG(I,2))+R(I)
$4210 \operatorname{SS} 2(\operatorname{IG}(\mathrm{I}, 1), \mathrm{IG}(\mathrm{I}, 2))=\operatorname{SS} 2(\mathrm{IG}(\mathrm{I}, 1), \mathrm{IG}(\mathrm{I}, 2))+(\mathrm{R}(\mathrm{D}))^{* *} 2$
SS(3) $=0.0$
DO $4220 \mathrm{I}=1, \mathrm{NL}(1)$
DO $4220 \mathrm{~J}=1$,NL(2)
$\mathrm{SS}(3)=\mathrm{SS}(3)+(\mathrm{SUM} 2(\mathrm{I}, \mathrm{J}))^{* *} 2$
4220 CONTINUE
$S S(3)=S S(3) /$ NREP-CM-SS(1)-SS(2)
C FIND ERROR SUM OF SQUARES AND MEAN SQUARES
SS(4)=SST-SS(1)-SS(2)-SS(3)
IF (NP.EQ.3) THEN
$\mathrm{MS}(4)=\mathrm{SS}(4) / \mathrm{IDF}(4)$
END IF
DO $4230 \mathrm{I}=1,3$
$4230 \mathrm{MS}(\mathrm{I})=\mathrm{SS}(\mathrm{I}) / \mathrm{IDF}(\mathrm{I})$
IF (NP.EQ.3) THEN
IF (MS(4).EQ.0.0) THEN
$\mathrm{FY}=9999.0$
ELSE
$\mathrm{FRA}=\mathrm{MS}(1) / \mathrm{MS}(4)$
$\mathrm{FRB}=\mathrm{MS}(2) / \mathrm{MS}(4)$
$\mathrm{FRAB}=\mathrm{MS}(3) / \mathrm{MS}(4)$
SUMFRA=SUMFRA+FRA
SUMFRB=SUMFRB+FRB
SUMFRAB=SUMFRAB+FRAB
END IF
ELSE
IF (MS(3).EQ.0.0) THEN
FY=9999.0
ELSE
$\mathrm{FY}=\mathrm{MS}(1) / \mathrm{MS}(3)$
END IF
END IF
IF (FRA .GE. CRITRA10) THEN
FRAREJ10=FRAREJ10+1
END IF
IF (FRB .GE. CRITRB10) THEN
FRBREJ10=FRBREJ10+1
END IF
IF (FRAB .GE. CRITRAB10) THEN
FRABREJ10=FRABREJ10+1
END IF
IF (FRA .GE. CRITRA05) THEN
FRAREJ05=FRAREJ05+1
END IF
IF (FRB .GE. CRITRB05) THEN
FRBREJ05=FRBREJ05+1
END IF

```
    IF (FRAB .GE. CRITRAB05) THEN
    FRABREJ05=FRABREJ05+1
    END IF
    IF (FRA .GE. CRITRA01) THEN
    FRAREJ01=FRAREJ01+1
    END IF
    IF (FRB GE. CRITRB01) THEN
    FRBREJ01=FRBREJ01+1
    END IF
    IF (FRAB .GE. CRITRAB01) THEN
    FRABREJ01=FRABREJ01+1
    END IF
    C TWO FACTOR ANALYSIS : F-TEST ON ALIGNED RANKS ,TEST FOR INTERACTION
    C CALCULATE SS FOR MAIN EFFECTS
    SUMX=0.0
    SST=0
    DO 1166 I=1,NC
    SUMX=SUMX+RAB(I)
    SST=SST+(RAB(I)**2
    IC1(IG(I,1))=ICl(IG(I,1))+1
    DO 130 K=1,NF
    IF (IG(I,K).GT.NL(K)) THEN
    NL(K)=IG(I,K)
    END IF
    130 CONTINUE
    IC2(IG(I,1),IG(I,2))=IC2(IG(I,1),IG(I,2))+1
1166 CONTINUE
    CM=SUMX**2/NC
    SST=SST-CM
    IDF(1)=NL(1)-1
    IDF(2)=NL(2)-1
    IDF(3)=\operatorname{DF}(1)*\operatorname{IDF}(2)
    IDF(4)=NL(1)*NL(2)*(NREP-1)
    NP=3
    IF (NREP.EQ.1) THEN
    NP=NP-1
    ENDIF
    DO 1160 J=1,2
    DO 1161 K=1,NL(J)
    SUM2(K,J)=0.0
1161 CONTINUE
1160 CONTINUE
    DO 1170 I=1,NC
    DO 1171 J=1,2
    SUM2(IG(I,J),J)=SUM2(IG(I,J),J)+RAB(I)
117. CONTINUE
1170 CONTINUE
    DO 1180 J=1,2
    SS(J)=0.0
    DO 1190 K=1,NL(J)
1190 SS(J)=SS(J)+(SUM2(K,J)**2
```

$\mathrm{MM}=\mathrm{NC} / \mathrm{NL}(\mathrm{J})$
$1180 \mathrm{SS}(\mathrm{J})=\mathrm{SS}(\mathrm{J}) / \mathrm{MM}-\mathrm{CM}$

## C CALCULATE INTERACTION SS

DO $1200 \mathrm{I}=1, \mathrm{NL}(1)$
DO $1201 \mathrm{~J}=1, \mathrm{NL}(2)$
SUM2 $(1, J)=0.0$
SS2 $(I, J)=0.0$
1201 CONTINUE
1200 CONTINUE
DO $1210 \mathrm{I}=1, \mathrm{NC}$
$\operatorname{SUM} 2(\mathrm{IG}(\mathrm{I}, 1), \mathrm{IG}(\mathrm{I}, 2))=\mathrm{SUM} 2(\mathrm{IG}(\mathrm{I}, 1), \mathrm{IG}(\mathrm{I}, 2))+\mathrm{RAB}(\mathrm{I})$
$1210 \mathrm{SS} 2(\mathrm{IG}(\mathrm{I}, 1), \mathrm{IG}(\mathrm{I}, 2))=\mathrm{SS} 2(\mathrm{IG}(\mathrm{I}, 1), \mathrm{IG}(\mathrm{I}, 2))+(\mathrm{RAB}(\mathrm{I}))^{* *} 2$
SS(3)=0.0
DO $1220 \mathrm{I}=1$,NL(1)
DO $1221 \mathrm{~J}=1$,NL(2)
$\mathrm{SS}(3)=\mathrm{SS}(3)+(\mathrm{SUM} 2(\mathrm{I}, \mathrm{J}))^{* *} 2$
1221 CONTINUE
1220 CONTINUE
$\mathrm{SS}(3)=\mathrm{SS}(3) / \mathrm{NREP}-\mathrm{CM}-\mathrm{SS}(1)-\mathrm{SS}(2)$
C FIND ERROR SUM OF SQUARES AND MEAN SQUARES

SS(4)=SST-SS(1)-SS(2)-SS(3)
IF (NP.EQ.3) THEN
$\mathrm{MS}(4)=\mathrm{SS}(4) /[\mathrm{DF}(4)$
END IF
DO $1230 \mathrm{I}=1,3$
$1230 \mathrm{MS}(\mathrm{I})=\mathrm{SS}(\mathrm{I}) /[\mathrm{DF}(\mathrm{I})$
IF (NP.EQ.3) THEN
IF (MS(4).EQ.0.0) THEN
FR=9999.0
ELSE
FARAB=MS(3)/MS(4)
SUMFARAB=SUMFARAB+FARAB
END IF
ELSE
IF (MS(3).EQ.0.0) THEN
FARAB=9999.0
ELSE
FARAB=9999.0
END IF
END IF
IF (FARAB .GE. CRITRAB10) THEN
FARABREJ $10=$ FARABREJ $10+1$
END IF
IF (FARAB .GE. CRITRAB05) THEN
FARABREJ05=FARABREJ05+1
END IF
IF (FARAB .GE. CRITRAB01) THEN
FARABREJ01=FARABREJ01+1
END IF

## C CALCULATE SS FOR MAIN EFFECTS

SUMX $=0.0$
$\mathrm{SST}=0$
DO $2266 \mathrm{I}=1, \mathrm{NC}$
SUMX $=$ SUMX + RA (I)
$\mathrm{SST}=\mathrm{SST}+(\mathrm{RA}(\mathrm{I}))^{* * 2}$
$\operatorname{IC1}(\operatorname{IG}(\mathrm{I}, 1))=\operatorname{IC1}(\operatorname{IG}(\mathrm{I}, 1))+1$
DO $2130 \mathrm{~K}=1$, NF
IF (IG(I,K).GT.NL(K)) THEN
$\mathrm{NL}(\mathrm{K})=\mathrm{IG}(\mathrm{I}, \mathrm{K})$
END IF
2130 CONTINUE
$\operatorname{IC2(IG(I,1),IG(I,2))=}=\mathrm{IC} 2(\mathrm{IG}(\mathrm{I}, 1), \mathrm{IG}(\mathrm{I}, 2))+1$
2266 CONTINUE
CM=SUMX**2/NC
SST=SST-CM
$\operatorname{IDF}(1)=\mathrm{NL}(1)-1$
$\operatorname{IDF}(2)=\mathrm{NL}(2)-1$
$\operatorname{IDF}(3)=\operatorname{IDF}(1) * \operatorname{IDF}(2)$
$\operatorname{IDF}(4)=\mathrm{NL}(1) * \mathrm{NL}(2) *(\mathrm{NREP}-1)$
$\mathrm{NP}=3$
IF (NREP.EQ.1) THEN
NP=NP-1
ENDIF
DO $2160 \mathrm{~J}=1,2$
DO $2161 \mathrm{~K}=1, \mathrm{NL}(\mathrm{J})$
SUM2(K,J) $=0.0$
2161 CONTINUE
2160 CONTINUE
DO $2170 \mathrm{I}=1, \mathrm{NC}$
DO $2171 \mathrm{~J}=1,2$
SUM2 (IG(I,J),J) $=$ SUM2 $2(\mathrm{IG}(\mathrm{I}, \mathrm{J}), \mathrm{J})+\mathrm{RA}(\mathrm{I})$
2171 CONTINUE
2170 CONTINUE
DO $2180 \mathrm{~J}=1,2$
$\mathrm{SS}(\mathrm{J})=0.0$
DO $2190 \mathrm{~K}=1, \mathrm{NL}(\mathrm{J})$
$2190 \mathrm{SS}(\mathrm{J})=\mathrm{SS}(\mathrm{J})+(\mathrm{SUM} 2(\mathrm{~K}, \mathrm{~J}))^{* *} 2$
$\mathrm{MM}=\mathrm{NC} / \mathrm{NL}(\mathrm{J})$
$2180 \mathrm{SS}(\mathrm{J})=\mathrm{SS}(\mathrm{J}) / \mathrm{MM}-\mathrm{CM}$
C CALCULATE INTERACTION SS
DO $2200 \mathrm{I}=1, \mathrm{NL}(1)$
DO $2201 \mathrm{~J}=1, \mathrm{NL}(2)$
SUM2 $(\mathrm{I}, \mathrm{J})=0.0$
SS2 $(I, J)=0.0$
2201 CONTINUE
2200 CONTINUE
DO $2210 \mathrm{I}=1, \mathrm{NC}$

SUM2(IG(I,1),IG(I,2))=SUM2(IG(I,1),IG(I,2))+RA(I)
$2210 \operatorname{SS} 2(\mathrm{IG}(\mathrm{I}, 1), \mathrm{IG}(\mathrm{I}, 2))=\mathrm{SS} 2(\mathrm{IG}(\mathrm{I}, 1), \mathrm{IG}(\mathrm{I}, 2))+(\mathrm{RA}(\mathrm{I}))^{* * 2}$
$\mathrm{SS}(3)=0.0$
DO $2220 \mathrm{I}=1$, NL(1)
DO $2221 \mathrm{~J}=1$, NL(2)
$\mathrm{SS}(3)=\mathrm{SS}(3)+(\mathrm{SUM} 2(\mathrm{I}, \mathrm{J}))^{* *} 2$
2221 CONTINUE
2220 CONTINUE
$\mathrm{SS}(3)=\mathrm{SS}(3) / \mathrm{NREP}-\mathrm{CM}-\mathrm{SS}(1)-\mathrm{SS}(2)$
C FIND ERROR SUM OF SQUARES AND MEAN SQUARES
$\mathrm{SS}(4)=\mathrm{SST}-\mathrm{SS}(1)-\mathrm{SS}(2)-\mathrm{SS}(3)$
IF (NP.EQ.3) THEN
$\mathrm{MS}(4)=\mathrm{SS}(4) / \mathrm{IDF}(4)$
END IF
DO 2230 I=1,3
$2230 \mathrm{MS}(\mathrm{I})=\mathrm{SS}(\mathrm{I}) / \mathrm{IDF}(\mathrm{I})$
IF (NP.EQ.3) THEN
IF (MS(4).EQ.0.0) THEN
$\mathrm{FR}=9999.0$
ELSE
FARA=MS(1)/MS(4)
SUMFARA=SUMFARA+FARA
END IF
ELSE
IF (MS(3).EQ.0.0) THEN
$\mathrm{FR}=9999.0$
ELSE
$\mathrm{FR}=\mathrm{MS}(1) / \mathrm{MS}(3)$
END IF
END IF
IF (FARA .GE. CRITRA10) THEN
FARAREJ10=FARAREJ10+1
END IF
IF (FARA .GE. CRITRA05) THEN
FARAREJ05=FARAREJ05+1
END IF
IF (FARA .GE. CRITRA01) THEN
FARAREJ01=FARAREJ01+1
END IF
C TWO FACTOR ANALYSIS : F-TEST ON ALIGNED RANKS, TEST FOR FACTOR B

C CALCULATE SS FOR MAIN EFFECTS

SUMX $=0.0$
SST=0
DO 3266 I=1,NC
SUMX $=$ SUMX + RB(I)
$\mathrm{SST}=\mathrm{SST}+(\mathrm{RB}(\mathrm{I}))^{* *} 2$
$\operatorname{ICl}(\mathrm{IG}(\mathrm{I}, 1))=\mathrm{IC} 1(\mathrm{IG}(\mathrm{I}, 1))+1$
DO $3230 \mathrm{~K}=1$, NF
IF (IG(I,K).GT.NL(K)) THEN

```
    NL(K)=IG(I,K)
    END IF
3230 CONTINUE
    IC2(IG(I,1),IG(I,2))=IC2(IG(I,1),IG(I,2))+1
3266 CONTINUE
    CM=SUMX**2/NC
    SST=SST-CM
    IDF(1)=NL(1)-1
    IDF(2)=NL(2)-1
    IDF(3)=[DFF(1)*IDF(2)
    IDF(4)=NL(1)*NL(2)*(NREP-1)
    NP=3
    IF (NREP.EQ.1) THEN
    NP=NP-1
    ENDIF
    DO 3260 J=1,2
    DO 3261 K=1,NL(J)
    SUM2(K,J)=0.0
3261 CONTINUE
3260 CONTINUE
    DO 3270 I=1,NC
    DO 3271 J=1,2
    SUM2(IG(I,J),J)=SUM2(IG(I,J),J)+RB(I)
3271 CONTINUE
3270 CONTINUE
    DO 3280 J=1,2
    SS(J)=0.0
    DO 3290 K=1,NL(J)
3290 SS(J)=SS(J)+(SUM2(K,J))**2
    MM=NC/NL(J)
3280 SS(J)=SS(J)/MM-CM
C CALCULATE INTERACTION SS
DO \(3300 \mathrm{I}=1, \mathrm{NL}(1)\)
DO \(3301 \mathrm{~J}=1, \mathrm{NL}(2)\)
SUM2 (I,J) \(=0.0\)
SS2 \((\mathrm{I}, \mathrm{J})=0.0\)
3301 CONTINUE
3300 CONTINUE
DO \(3310 \mathrm{I}=1, \mathrm{NC}\)
SUM2(IG(I,1),IG(I,2))=SUM2(IG(I,1),IG(I,2))+RB(I)
3310 SS2(IG(I,1),IG(I,2))=SS2(IG(I,1),IG(I,2))+(RB(I))**2
SS(3) \(=0.0\)
DO \(3320 \mathrm{I}=1\),NL(1)
DO \(3321 \mathrm{~J}=1\),NL(2)
\(\mathrm{SS}(3)=\mathrm{SS}(3)+(\mathrm{SUM} 2(\mathrm{I}, \mathrm{J}))^{* *} 2\)
3321 CONTINUE
3320 CONTINUE
SS(3)=SS(3)/NREP-CM-SS(1)-SS(2)
```

C FIND ERROR SUM OF SQUARES AND MEAN SQUARES
$S S(4)=S S T-S S(1)-S S(2)-S S(3)$

IF (NP.EQ.3) THEN
$\mathrm{MS}(4)=\mathrm{SS}(4) / \operatorname{IDF}(4)$
END IF
DO $3330 \mathrm{I}=1,3$
$3330 \mathrm{MS}(\mathrm{I})=\mathrm{SS}(\mathrm{I}) / \mathrm{IDF}(\mathrm{I})$
IF (NP.EQ.3) THEN
IF (MS(4).EQ.0.0) THEN
$\mathrm{FR}=9999.0$
ELSE
FARB $=\mathrm{MS}(2) / \mathrm{MS}(4)$
SUMFARB=SUMFARB+FARB
END IF
ELSE
IF (MS(3).EQ.0.0) THEN
FR=9999.0
ELSE
FARB $=\mathrm{MS}(2) / \mathrm{MS}(3)$
END IF
END IF
IF (FARB .GE. CRITRB10) THEN
FARBREJ10=FARBREJ10+1
END IF
IF (FARB .GE. CRITRB05) THEN
FARBREJ05=FARBREJ05+1
END IF
IF (FARB .GE. CRITRB01) THEN
FARBREJ01=FARBREJ01+1
END IF

10 CONTINUE

FYA10PV=REAL(FYAREJ10)/REAL(N)
FRA10PV=REAL(FRAREJ10)/REAL(N) FARA10PV=REAL(FARAREJ10)/REAL(N) FRTA10PV=REAL(FRTAREJ10)/REAL(N) FYB10PV=REAL(FYBREJ10)/REAL(N)
FRB10PV=REAL(FRBREJ10)/REAL(N)
FARB10PV=REAL(FARBREJ10)/REAL(N)
FYAB10PV $=$ REAL(FYABREJ10)/REAL(N)
FRAB10PV=REAL(FRABREJ10)/REAL(N)
FARAB10PV=REAL(FARABREJ10)/REAL(N)
FYA05PV=REAL(FYAREJ05)/REAL(N)
FRA05PV=REAL(FRAREJ05)/REAL(N)
FARA05PV=REAL(FARAREJ05)/REAL(N)
FYB05PV $=$ REAL(FYBREJ05)/REAL(N)
FRB05PV $=$ REAL(FRBREJ05)/REAL(N)
FARB05PV=REAL(FARBREJ05)/REAL(N)
FYAB05PV=REAL(FYABREJ05)/REAL(N)
FRAB05PV=REAL(FRABREJ05)/REAL(N)
FARAB05PV $=$ REAL(FARABREJ05)/REAL(N)
FYA01PV=REAL(FYAREJ01)/REAL(N)
FRA01PV $=$ REAL(FRAREJ01)/REAL(N)
FARA01PV=REAL(FARAREJ01)/REAL(N)

```
FYB01PV=REAL(FYBREJ01)/REAL(N)
FRB01PV=REAL(FRBREJ01)/REAL(N)
FARB01PV=REAL(FARBREJ01)/REAL(N)
FYAB01PV=REAL(FYABREJ01)/REAL(N)
FRAB01PV=REAL(FRABREJ01)/REAL(N)
FARAB01PV=REAL(FARABREJ01)/REAL(N)
```

WRITE (4,*) 'ALPHA $=0.10$ '
WRITE $(4, *)$ 'FYAPVAL $=$ ',FYA10PV
WRITE (4,*) 'FRAPVAL= ',FRA10PV
WRITE $(4, *)$ 'FARAPVAL = ',FARA10PV
WRITE $(4, *)$ 'FYBPVAL = ',FYB10PV
WRITE (4,*) 'FRBPVAL= ',FRB10PV
WRITE (4,*) 'FARBPVAL=',FARB10PV
WRITE $(4, *)$ ' $\mathrm{FYABPVAL}=$ ',FYAB10PV
WRITE $(4, *)$ 'FRABPVAL = ',FRAB10PV
WRITE (4,*) 'FARABPVAL=',FARAB10PV
WRITE $(4, *)^{\prime}$ ALPHA $=0.05$ '
WRITE $(4, *)$ 'FYAPVAL $=$ ',FYA05PV
WRITE $(4, *)$ 'FRAPVAL= ',FRA05PV
WRITE (4,*) 'FARAPVAL=',FARA05PV
WRITE (4,*) 'FYBPVAL $=$ ',FYB05PV
WRITE $\left(4,{ }^{*}\right)$ 'FRBPVAL $=$ ',FRB05PV
WRITE (4,*) 'FARBPVAL= ',FARB05PV
WRITE $(4, *)$ 'FYABPVAL $=$ ',FYAB05PV
WRITE $(4, *)$ 'FRABPVAL $=$ ',FRAB05PV
WRITE (4,*) 'FARABPVAL=',FARAB05PV
WRITE (4,*) 'ALPHA = 0.01'
WRITE (4,*) 'FYAPVAL= ',FYA01PV
WRITE (4,*) 'FRAPVAL= ',FRA01PV
WRITE (4,*) 'FARAPVAL=',FARA01PV
WRITE (4,*) 'FYBPVAL= ',FYB01PV
WRITE (4,*) 'FRBPVAL = ',FRB01PV
WRITE (4,*) 'FARBPVAL=',FARB01PV
WRITE $(4, *)$ 'FYABPVAL $=$ ',FYAB01PV
WRITE (4,*) 'FRABPVAL=',FRAB01PV
WRITE $(4, *)$ 'FARABPVAL=',FARAB01PV
CLOSE (UNIT=4)

END

## Program 6.

PROGRAM TO SIMULATE SPLIT PLOT EXPERIMENT

PARAMETER $(\mathrm{NC}=36, \mathrm{NOBSA}=6, \mathrm{NOBSB}=8, \mathrm{NLA}=3, \mathrm{NLB}=4, \mathrm{NLC}=3, \mathrm{NREP}=1$ )
INTEGER IG(NC,3),IDF(8),IC1(20),NL(20),N,Z
INTEGER HOLD(75),W,P,Q,NOBSA,NOBSB,NMISS
INTEGER FYMREJ,FYSREJ,FYIREJ,FRMREJ,FRSREJ,FRIREJ
INTEGER FARMREJ,FARSREJ,FARIREJ
INTEGER FRTMREJ,FRTSREJ,FRTIREJ
INTEGER ISEED,K,NOUT,IC3(20,20,20),NPERMS
INTEGER INCX,INDEX,COUNT,NN
REAL R(NC), Y(NC),MS(8),SS(8),SUM2(20,20),SS2(20,20)
REAL RC(NC),RB(NC),RBC(NC),CONS,SIG,QPROP(1),MDA(1),MDB(1)
REAL FYM,FRM,MEDA(NLA),MEDB(NLB)
REAL FARM,FARS,FARI,SUMX,SST
REAL FYS,FRS,FYI,FRI,M,SSE,MSE
REAL FYMPV,FRMPV,FARMPV,FRTMPV,ARRAYA(NOBSA)
REAL FYSPV,FRSPV,FARSPV,FRTSPV,ARRAYB(NOBSB)
REAL FYIPV,FRIPV,FARIPV,FRTIPV
REAL A(NLA),MT(NLB),MST(NLB,NLC),P05,AMC(NLA,NLB,NLC)
REAL DFNA,DFNB,DFNAB,DFD,MC(NLC),AMBC(NLA,NLB,NLC)
REAL MX(NLA,NLB,NLC),AYB(NC),AYC(NC),UE(1),ST(NLC)
REAL MA(NLA),MB(NLB),SUM,AMB(NLA,NLB,NLC),AYBC(NC)
REAL CRITFM,CRITFS,CRITFI,CRITRM,CRITRS,CRITRI
REAL SUM3 ( $20,20,20$ ),SS3 $(20,20,20)$
REAL BEV(1),MEV(1),SEV(1)
REAL BE(NLA),ME(NLA*NLB),SE(NLA*NLB*NLC)
REAL SIGB,SIGM,SIGS,SUMARM(NC),SUMARS(NC),SUMARI(NC)
DATA CM/0.0/, NL/20*0/, IC1/20*0/
DATA IG( 1,1 ),IG( 1,2 ),IG( 1,3 ),IG(2,1),IG(2,2),IG(2,3)/1,1,1,1,1,2/
DATA IG(3,1),IG(3,2),IG(3,3),IG(4,1),IG(4,2),IG(4,3)/1,1,3,1,2,1/
DATA IG(5,1),IG(5,2),IG(5,3),IG(6,1),IG(6,2),IG(6,3)/1,2,2,1,2,3/
DATA $\operatorname{IG}(7,1), \mathrm{IG}(7,2), \mathrm{IG}(7,3), \mathrm{IG}(8,1), \mathrm{IG}(8,2), \mathrm{IG}(8,3) / 1,3,1,1,3,2 /$
DATA $\operatorname{IG}(9,1), \operatorname{IG}(9,2), \operatorname{IG}(9,3), \operatorname{IG}(10,1), \operatorname{IG}(10,2) / 1,3,3,1,4 /$
DATA $\operatorname{IG}(10,3), \operatorname{IG}(11,1), \operatorname{IG}(11,2), \operatorname{IG}(11,3), \operatorname{IG}(12,1) / 1,1,4,2,1 /$
DATA IG(12,2),IG(12,3),IG(13,1),IG(13,2),IG(13,3)/4,3,2,1,1/
DATA $\operatorname{IG}(14,1), \operatorname{IG}(14,2), \operatorname{IG}(14,3), \operatorname{IG}(15,1), \operatorname{IG}(15,2) / 2,1,2,2,1 /$
DATA IG(15,3),IG(16,1),IG(16,2),IG(16,3),IG(17,1)/3,2,2,1,2/
DATA IG(17,2),IG(17,3),IG(18,1),IG(18,2),IG(18,3)/2,2,2,2,3/
DATA IG(19,1),IG(19,2),IG(19,3),IG(20,1),IG(20,2)/2,3,1,2,3/
DATA IG(20,3),IG(21,1),IG(21,2),IG(21,3),IG(22,1)/2,2,3,3,2/
DATA IG( 22,2 ), $\operatorname{IG}(22,3), \operatorname{IG}(23,1), \operatorname{IG}(23,2), \operatorname{IG}(23,3) / 4,1,2,4,2 /$
DATA $\operatorname{IG}(24,1), \operatorname{IG}(24,2), \operatorname{IG}(24,3), \operatorname{IG}(25,1), \operatorname{IG}(25,2) / 2,4,3,3,1 /$
DATA $\operatorname{IG}(25,3), \operatorname{IG}(26,1), \operatorname{IG}(26,2), \operatorname{IG}(26,3), \operatorname{IG}(27,1) / 1,3,1,2,3 /$
DATA IG(27,2),IG(27,3),IG(28,1),IG(28,2),IG(28,3)/1,3,3,2,1/
DATA IG( 29,1 ), $\operatorname{IG}(29,2), \operatorname{IG}(29,3), \operatorname{IG}(30,1), \operatorname{IG}(30,2) / 3,2,2,3,2 /$
DATA IG(30,3),IG(31,1), $\operatorname{IG}(31,2), \operatorname{IG}(31,3), \operatorname{IG}(32,1) / 3,3,3,1,3 /$
DATA $\operatorname{IG}(32,2), \operatorname{IG}(32,3), \operatorname{IG}(33,1), \operatorname{IG}(33,2), \operatorname{IG}(33,3) / 3,2,3,3,3 /$
DATA IG(34,1),IG(34,2),IG(34,3),IG(35,1),IG(35,2)/3,4,1,3,4/
DATA $\operatorname{IG}(35,3), \operatorname{IG}(36,1), \operatorname{IG}(36,2), \operatorname{IG}(36,3) / 2,3,4,3 /$

```
    DATA IC3/8000*-1.0/
    DATA MT(1),MT(2),MT(3),MT(4)/.0,.0,-.0,.0/
    DATA ST(1),ST(2),ST(3)/3.50,-.0,.0/
    DATA MST(1,1),MST(1,2),MST(1,3)/-3.50,.0,-.0/
    DATA MST(2,1),MST(2,2),MST(2,3)/0,-.0,.0/
    DATA MST(3,1),MST(3,2),MST(3,3)/-.0,.0,.0/
    DATA MST(4,1),MST(4,2),MST(4,3)/3.50,0,0/
    OPEN (UNIT=4,FILE='C:\MSDEVIDATAISIMSPLIT.TXT')
    WRITE (4,*)
    WRITE (4,*)
    WRITE (4,*)'3*4*3 SPLIT PLOT, ALL TESTS USING'
    WRITE (4,*) 'USING POOLED ERROR; NORMAL ERRORS EQUAL VARIANCE'
    C WRITE (4,*) 'ST1=-3.5;ST3=3.5'
    C WRITE (4,*) 'MT2=ST1=3.50, MT3=ST2=3.50'
            WRITE (4,*) 'ST1=MST41=3.5, MST11=-3.5'
    C WRITE (4,*) 'MST11=MST33=3.5;MST13=MST31=3.5'
C WRITE (4,*) 'SUB UNIT EFFECT PRESENT'
    WRITE (4,*) 'ALL EFFECTS PRESENT'
C WRITE (4,*) 'MAIN AND SUB UNIT EFFECTS PRESENT'
C WRITE (4,*) 'INTERACTION EFFECT PRESENT'
C CONS=1.77
    NN=36
    NPERMS=10000
    N=10000
    NF=3
    NP=0
    INCX=1
    ZM=1
    ZS}=
    ZI=1
    NL(1)=3
    NL(2)=4
    NL(3)=3
    COUNT=0
    QPROP=.5
C CRITICAL VALUES
\(\mathrm{P} 05=.95\)
DFNM=3
DFDM=6
DFNS=2
DFDS \(=16\)
DFNI=6
DFDI=16
CRITFM \(=\) FIN(P05,DFNM,DFDM)
CRITFS \(=F I N(P 05, D F N S, D F D S)\)
CRITFI \(=\mathrm{FIN}(\mathrm{P} 05, \mathrm{DFNI}, \mathrm{DFDI})\)
CRITRM=4.829662
CRITRS \(=3.666049\)
CRITRI \(=2.792083\)
```

```
    Z=1
    CALL RNSET(62064)
    DO 10 S=1,N
C GENERATE OBSERVATIONS
        W=1
        W1=1
        W2=1
        SIGB=1.0
        SIGM=1.0
        SIGS=1.0
    CALL RNNOA(NC,BE)
    C CALL SSCAL(NC,SIGB,BE,1)
    C CALL RNEXP(NC,BE)
    C CALL SSCAL(NC,3.0,BE,1)
    CALL RNNOA(NC,ME)
    C CALL SSCAL(NC,SIGM,ME,1)
    C CALL RNEXP(NC,ME)
    C CALL SSCAL(NC,3.0,ME,1)
        CALL RNNOA(NC,SE)
    C CALL SSCAL(NC,SIGS,SE,1)
    C CALL RNEXP(NC,SE)
    C CALL SSCAL(NC,3.0,SE,1)
        DO 1 I=1,NL(1)
    C CALL RNNOA(1,BEV)
    C CALL SSCAL(1,SIGB,BEV,1)
        DO 3 J=1,NL(2)
    C CALL RNNOA(1,MEV)
    C CALL SSCAL(1,SIGM,MEV,1)
    C CALL RNUN(1,MEV)
    C CALL SSCAL(1,6.0,MEV,1)
    C CALL SADD(1,-3.0,MEV,1)
        DO 5 K=1,NL(3)
    C CALL RNNOA(1,SEV)
    C CALL SSCAL(1,SIGS,SEV,1)
    C CALL RNEXP(1,SEV)
    C CALL SSCAL(1,3.0,SEV,1)
    C CALL RNUN(1,SEV)
    C CALL SSCAL(1,6.0,SEV,1)
    C CALL SADD(1,-3.0,SEV,1)
        Y(W)=MT(J)+ST(K)+MST(J,K)+BE(I)+ME(W1)+SE(W)
    C Y(W)=MT(J)+ST(K)+MST(J,K)+BEV(1)+MEV(1)+SEV(1)
```

```
        W=W+1
    5 CONTINUE
        Wl=Wl+1
    C SIGM=CONS*SIGM
    3 CONTINUE
        W2=W2+1
    C SIGB=CONS*SIGB
    C SIGM=1
    l CONTINUE
    C ALIGN OBSERVATIONS
    C FILL MATRIX WITH OBSERVATIONS
        P}=
        DO 51 I=1,NL(1)
        DO 52 J=1,NL(2)
        DO 53 K=1,NL(3)
        MX(I,J,K)=Y(P)
        P}=\textrm{P}+
    53 CONTINUE
    52 CONTINUE
    51 CONTINUE
    C COMPUTE FACTOR A MEANS AND MEDIANS
        SUM=0
        DO 61 I=1,NL(1)
    C Q=1
        DO }62\textrm{J}=1,\textrm{NL}(2
        DO }63\textrm{K}=1,\textrm{NL}(3
        SUM=SUM+MX(I,J,K)
    C ARRAYA(Q)=M(I,J,K)
    C Q = Q+1
        6 3 \text { CONTINUE}
        6 2 \text { CONTINUE}
    C CALL EQTIL(NOBSA,ARRAYA,1,QPROP,MDA,XLO,XHI,NMISS)
    C MEDA(I)=MDA(1)
        MA(I)=SUM/(NL(2)*NL(3))
        SUM=0
    61 CONTINUE
    C COMPUTE FACTOR B MEANS AND MEDIANS
        SUM=0
        DO }71\textrm{J}=1,\textrm{NL}(2
            Q}=
        DO }72\textrm{I}=1,\textrm{NL}(1
        DO 73 K=1,NL(3)
        SUM=SUM+MX(I,J,K)
    C ARRAYB(Q)=M(I,J,K)
    C Q}=Q+
    7 3 \text { CONTINUE}
    72 CONTINUE
C CALL EQTIL(NOBSB,ARRAYB,1,QPROP,MDB,XLO,XHI,NMISS)
```

```
C MEDB(J)=MDB(1)
        MB(J)=SUM/(NL(1)*NL(3))
        SUM=0
    71 CONTINUE
C COMPUTE FACTOR C MEANS AND MEDIANS
    SUM=0
    DO 710 K=1,NL(3)
C
        Q}=
        DO }720\textrm{I}=1,\textrm{NL}(1
        DO 730 J=1,NL(2)
        SUM=SUM+MX(I,J,K)
C ARRAYB(Q)=M(I,J,K)
C}\quad\textrm{Q}=\textrm{Q}+
    7 3 0 \text { CONTINUE}
    720 CONTINUE
C CALL EQTIL(NOBSB,ARRAYB,1,QPROP,MDB,XLO,XHI,NMISS)
C MEDB(J)=MDB(1)
    MC(K)=SUM/(NL(1)*NL(2))
    SUM=0
    710 CONTINUE
C COMPUTE OVERALL MEAN
            SUM=0
            DO 760 I=1,NL(2)
            SUM=SUM+MB(I)
    7 6 0 \text { CONTINUE}
            MAB=SUM/NL(2)
C COMPUTE ALIGNED OBSERVATIONS
    DO }81\textrm{I}=1,\textrm{NL}(1
    DO }82\textrm{J}=1,\textrm{NL}(2
    DO }83\textrm{K}=1,\textrm{NL}(3
    AMBC(I,J,K)=MX(I,J,K)-MA(I)-MB(J)-MC(K)
    AMB(I,J,K)=MX(I,J,K)-MA(I)-MC(K)
    AMC(I,J,K)=MX(I,J,K)-MA(I)-MB(J)
    83 CONTINUE
    82 CONTINUE
    81 CONTINUE
C RETURN ALIGNED MATRIX ELEMENTS TO SINGLE ARRAY
    Q=1
    DO }91\textrm{I}=1,NL(1
    DO }92\textrm{J}=1,\textrm{NL}(2
    DO }93\textrm{K}=1,\textrm{NL}(3
    AYBC(Q)=AMBC(I,J,K)
    AYB(Q)=AMB(I,J,K)
    AYC(Q)=AMC(I,J,K)
    Q=Q+1
93 CONTINUE
9 2 \text { CONTINUE}
91 CONTINUE
```

```
C FIND THE RANKS OF THE ALIGNED AND RAW DATA
```

CALL RANKS(NC,AYBC,.000000001,0,0,RBC)
CALL RANKS(NC,AYB,.000000001,0,0,RB)
CALL RANKS(NC,AYC,. $000000001,0,0, R C$ )
CALL RANKS(NC,Y,.000000001,0,0,R)
DO $1000 \mathrm{I}=1, \mathrm{NC}$
SUMARM $(\mathrm{I})=$ SUMARM $(\mathrm{I})+\mathrm{RB}(\mathrm{I})$
SUMARS $(\mathrm{I})=\operatorname{SUMARS}(\mathrm{I})+\mathrm{RC}(\mathrm{I})$
SUMARI(I)=SUMARI(I)+RBC(I)
1000 CONTINUE
C PERFORM ANALYSIS ON RAW DATA
C CALCULATE SS FOR MAIN EFFECTS
SUMX $=0$
SST=0
DO 101 I=1,NC
SUMX $=$ SUMX $+\mathrm{Y}(\mathrm{I})$
SST=SST+(Y(I))**2
$\operatorname{IC1}(\operatorname{IG}(\mathrm{I}, 1))=\mathrm{ICl}(\mathrm{IG}(\mathrm{I}, 1))+1$
DO $101 \mathrm{~K}=1, \mathrm{NF}$
IF (IG(I,K) .GT. NL(K)) THEN
$\mathrm{NL}(\mathrm{K})=\mathrm{IG}(\mathrm{I}, \mathrm{K})$
END IF
102 CONTINUE
$\operatorname{IC}(\operatorname{IG}(\mathrm{I}, 1), \mathrm{IG}(\mathrm{I}, 2), \mathrm{IG}(\mathrm{I}, 3))=\mathrm{IC} 3(\mathrm{IG}(\mathrm{I}, 1), \mathrm{IG}(\mathrm{I}, 2), \mathrm{IG}(\mathrm{I}, 3))+1$
101 CONTINUE
CM=SUMX**2/NC
SST=SST-CM
$\operatorname{IDF}(1)=\mathrm{NL}(1)-1$
$\mathrm{DFF}(2)=\mathrm{NL}(2)-1$
$\operatorname{DFF}(3)=\mathrm{NL}(3)-1$
$\operatorname{IDF}(4)=\operatorname{IDF}(1) * \operatorname{IDF}(2)$
$\operatorname{DF}(5)=\operatorname{DF}(1)^{*} \operatorname{DFF}(3)$
$\operatorname{IDF}(6)=\operatorname{DF}(2) * \operatorname{IDF}(3)$
$\operatorname{DFF}(7)=\operatorname{DF}(4) * \operatorname{DF}(3)$
$\mathrm{IDF}(8)=\mathrm{NL}(1)^{*} \mathrm{NL}(2)^{*} \mathrm{NL}(3)^{*}(\mathrm{NREP}-1)$
$\mathrm{NP}=7$
IF (NREP .EQ. 1) NP=NP-1
DO $105 \mathrm{I}=1,3$
DO $105 \mathrm{~J}=1, \mathrm{NL}(\mathrm{I})$
SUM2 (J, I) $=0.0$
105 CONTINUE
C FIND SS FOR MAIN EFFECTS
DO 110 I=1,NC
DO $110 \mathrm{~J}=1,3$
SUM2(IG(I,J),J)=SUM2(IG(I,J),J)+Y(I)
110 CONTINUE
DO $115 \mathrm{~J}=1,3$

```
    SS(J)=0.0
    DO 120 K=1,NL(J)
    SS(J)=SS(J)+SUM2(K,J)**2
120 CONTINUE
    M=REAL(NC)/REAL(NL(J))
    SS(J)=SS(J)/M-CM
115 CONTINUE
C FIND SS FOR TWO FACTOR INTERACTIONS
NLMAX=MAX(NL(1),NL(2),NL(3))
DO \(125 \mathrm{I}=1, \mathrm{NLMAX}\)
DO \(125 \mathrm{~J}=1\),NLMAX
DO \(125 \mathrm{~K}=1,3\)
SUM3(I,J,K) \(=0.0\)
125 CONTINUE
DO \(130 \mathrm{I}=1, \mathrm{NC}\)
SUM3(IG(I,1),IG(I,2),1)=SUM3(IG(I,1),IG(I,2),1)+Y(I)
SUM3(IG(I,1),IG(I,3),2)=SUM3(IG(I,1),IG(I,3),2)+Y(I)
SUM3(IG(I,2),IG(I,3),3)=SUM3(IG(I,2),IG(I,3),3)+Y(I)
130 CONTINUE
\(\mathrm{SS}(4)=0.0\)
DO \(135 \mathrm{I}=1, \mathrm{NL}(1)\)
DO \(135 \mathrm{~J}=1\),NL(2)
SS(4)=SS(4)+SUM3(I,J,1)**2
135 CONTINUE
\(S S(4)=S S(4) /(\mathrm{NL}(3) * \mathrm{NREP})-\mathrm{SS}(1)-\mathrm{SS}(2)-\mathrm{CM}\)
\(\mathrm{SS}(5)=0.0\)
DO \(140 \mathrm{I}=1, \mathrm{NL}(1)\)
DO \(140 \mathrm{~K}=1\), NL(3)
\(S S(5)=S S(5)+S U M 3(I, K, 2) * * 2\)
140 CONTINUE
\(\mathrm{SS}(5)=\mathrm{SS}(5) /(\mathrm{NL}(2) * \mathrm{NREP})-\mathrm{SS}(1)-\mathrm{SS}(3)-\mathrm{CM}\)
\(\mathrm{SS}(6)=0.0\)
DO \(145 \mathrm{~J}=1\),NL(2)
DO \(145 \mathrm{~K}=1\),NL(3)
\(S S(6)=S S(6)+S U M 3(J, K, 3) * * 2\)
145 CONTINUE
\(\mathrm{SS}(6)=\mathrm{SS}(6) /(\mathrm{NL}(1) * \mathrm{NREP})-\mathrm{SS}(2)-\mathrm{SS}(3)-\mathrm{CM}\)
C FIND SS FOR THREE FACTOR INTERACTION AND ERROR
IF (NREP .GT. 1) GOTO 150
SS(7)=SST-SS(1)-SS(2)-SS(3)-SS(4)-SS(5)-SS(6)
\(\mathrm{SS}(8)=0.0\)
GOTO 155
150 DO \(160 \mathrm{I}=1, \mathrm{NL}(1)\)
DO \(160 \mathrm{~J}=1, \mathrm{NL}(2)\)
DO \(160 \mathrm{~K}=1, \mathrm{NL}(3)\)
SUM3(I,J,K)=0.0
SS3(I,J,K) \(=0.0\)
160 CONTINUE
DO \(165 \mathrm{I}=1, \mathrm{NC}\)
SUM3(IG(I,1),IG(I,2),IG(I,3))=SUM3(IG(I,1),IG(I,2),IG(I,3))+Y(I)
```

```
        SS3(IG(I,1),IG(I,2),IG(I,3))=SS3(IG(I,1),IG(I,2),IG(I,3))+Y(I)**2
    165 CONTINUE
        SS(7)=0.0
        DO }170\textrm{I}=1,\textrm{NL}(1
        DO 170 J=1,NL(2)
        DO 170 K=1,NL(3)
        SS(7)=SS(7)+SUM3(I,J,K)**2
    170 CONTINUE
    SS(7)=SS(7)/NREP-SS(1)-SS(2)-SS(3)-SS(4)-SS(5)-SS(6)-CM
    SS(8)=SST-SS(1)-SS(2)-SS(3)-SS(4)-SS(5)-SS(6)-SS(7)
C FIND MEAN SQUARES AND F-VALUES
    IF (NP .EQ. 7) MS(8)=SS(8)/TDF(8)
155 DO 175 I=1,7
    MS(I)=SS(I)/IDF(I)
175 CONTINUE
    SSE=SS(5)+SS(7)
    MSE=SSE/(IDF(5)+IDF(7))
    IF (MS(4) .EQ. 0.0) THEN
    FYM=999.0
    ELSE
    FYM=MS(2)/MS(4)
    END IF
    IF (MSE .EQ. 0.0) THEN
    FYS=999.0
    FYI=999.0
    ELSE
    FYS=MS(3)/MSE
    FYI=MS(6)/MSE
    END IF
    IF (FYM .GE. CRITFM) THEN
    FYMREJ=FYMREJ+1
    END IF
    IF (FYS .GE. CRITFS) THEN
    FYSREJ=FYSREJ+1
    END IF
    IF (FYI .GE. CRITFI) THEN
    FYIREJ=FYIREJ+1
    END IF
C PERFORM ANALYSIS ON RANKS
C CALCULATE SS FOR MAIN EFFECTS
    SUMX=0
    SST=0
    DO 201 I=1,NC
    SUMX=SUMX+R(I)
    SST=SST+(R(I)**2
    IC1(IG(I,1))=IC1(IG(I,1))+1
    DO 202 K=1,NF
    IF (IG(I,K) .GT NL(K)) THEN
    NL(K)=IG(I,K)
```

```
    END IF
202 CONTINUE
    IC3(IG(I,1),IG(I,2),IG(I,3))=IC3(IG(I,1),IG(I,2),IG(I,3))+1
201 CONTINUE
    CM=SUMX**2/NC
    SST=SST-CM
    IDF(1)=NL(1)-1
    IDF(2)=NL(2)-1
    IDF(3)=NL(3)-1
    IDF(4)=\operatorname{IDF}(1)*\operatorname{IDF}(2)
    IDF(5)=IDF(1)*IDF(3)
    IDF(6)=IDF(2)*IDF(3)
    IDF(7)=IDF(4)*IDF(3)
    IDF(8)=NL(1)*NL(2)*NL(3)*(NREP-1)
    NP=7
    IF (NREP .EQ. 1) NP=NP-1
    DO 205 I=1,3
    DO 205 J=1,NL(I)
    SUM2(J,I)=0.0
205 CONTINUE
C FIND SS FOR MAIN EFFECTS
    DO 210 I=1,NC
    DO 210 J=1,3
    SUM2(IG(I,J),J)=SUM2(IG(I,J),J)+R(I)
210 CONTINUE
    DO 215 J=1,3
    SS(J)=0.0
    DO 220 K=1,NL(J)
    SS(J)=SS(J)+SUM2(K,J)**2
220 CONTINUE
    M=REAL(NC)/REAL(NL(J))
    SS(J)=SS(J)/M-CM
215 CONTINUE
C FIND SS FOR TWO FACTOR INTERACTIONS
    NLMAX=MAX(NL(1),NL(2),NL(3))
    DO 225 I=1,NLMAX
    DO 225 J=1,NLMAX
    DO 225 K=1,3
    SUM3(I,J,K)=0.0
225 CONTINUE
    DO 230 I=1,NC
    SUM3(IG(I,1),IG(I,2),1)=SUM3(IG(I,1),IG(I,2),1)+R(I)
    SUM3(IG(I,1),IG(I,3),2)=SUM3(IG(I,1),IG(I,3),2)+R(I)
    SUM3(IG(I,2),IG(I,3),3)=SUM3(IG(I,2),IG(I,3),3)+R(I)
230 CONTINUE
    SS(4)=0.0
    DO 235 I=1,NL(1)
    DO 235 J=1,NL(2)
    SS(4)=SS(4)+SUM3(I,J,1)**2
235 CONTINUE
```

```
    SS(4)=SS(4)/(NL(3)*NREP)-SS(1)-SS(2)-CM
    SS(5)=0.0
    DO 240 I=1,NL(1)
    DO 240 K=1,NL(3)
    SS(5)=SS(5)+SUM3(I,K,2)**2
240 CONTINUE
    SS(5)=SS(5)/(NL(2)*NREP)-SS(1)-SS(3)-CM
    SS(6)=0.0
    DO 245 J=1,NL(2)
    DO 245 K=1,NL(3)
    SS(6)=SS(6)+SUM3(J,K,3)**2
245 CONTINUE
    SS(6)=SS(6)/(NL(1)*NREP)-SS(2)-SS(3)-CM
C FIND SS FOR THREE FACTOR INTERACTION AND ERROR
    IF (NREP .GT. 1) GOTO 250
    SS(7)=SST-SS(1)-SS(2)-SS(3)-SS(4)-SS(5)-SS(6)
    SS(8)=0.0
    GOTO 255
250 DO 260 I=1,NL(1)
    DO 260 J=1,NL(2)
    DO 260 K=1,NL(3)
    SUM3(I,J,K)=0.0
    SS3(I,J,K)=0.0
    260 CONTINUE
    DO 265 I=1,NC
    SUM3(IG(I,1),IG(I,2),IG(I,3))=SUM3(IG(I,1),IG(I,2),IG(I,3))+R(I)
    SS3(IG(I,1),IG(I,2),IG(I,3))=SS3(IG(I,1),IG(I,2),IG(I,3))+R(I)**2
265 CONTINUE
    SS(7)=0.0
    DO 270 I=1,NL(1)
    DO 270 J=1,NL(2)
    DO 270 K=1,NL(3)
    SS(7)=SS(7)+SUM3(I,J,K)**2
270 CONTINUE
    SS(7)=SS(7)/NREP-SS(1)-SS(2)-SS(3)-SS(4)-SS(5)-SS(6)-CM
    SS(8)=SST-SS(1)-SS(2)-SS(3)-SS(4)-SS(5)-SS(6)-SS(7)
C FIND MEAN SQUARES AND F-VALUES
    IF (NP .EQ. 7) MS(8)=SS(8)/IDF(8)
255 DO 275 I=1,7
    MS(I)=SS(I)/IDF(I)
275 CONTINUE
    SSE=SS(5)+SS(7)
    MSE=SSE/(IDF(5)+IDF(7))
    IF (MS(4) .EQ. 0.0) THEN
    FRM=999.0
    ELSE
    FRM=MS(2)/MS(4)
    END IF
    IF (MSE .EQ. 0.0) THEN
    FRS=999.0
```

```
        FRI=999.0
        ELSE
        FRS=MS(3)/MSE
        FRI=MS(6)/MSE
    C FRTS=MS(3)/MSE
    C FRTI=MS(6)/MSE
    END IF
    IF (FRM .GE. CRITRM) THEN
    FRMREJ=FRMREJ+1
    END IF
    IF (FRS .GE. CRITRS) THEN
    FRSREJ=FRSREJ+1
    END IF
    IF (FRI .GE. CRITRD) THEN
    FRIREJ=FRIREJ+1
    END IF
    IF (FRM .GE. CRITFM) THEN
    FRTMREJ=FRTMREJ+1
    END IF
    IF (FRS .GE. CRITFS) THEN
    FRTSREJ=FRTSREJ+1
    END IF
    IF (FRI .GE. CRITFI) THEN
    FRTIREJ=FRTIREJ+1
    END IF
C PERFORM ANALYSIS ON ALIGNED RANKS: TEST FOR MAIN UNIT TRT
C CALCULATE SS FOR MAIN EFFECTS
    SUMX=0
    SST=0
    DO 401 I=1,NC
    SUMX=SUMX+RB(I)
    SST=SST+(RB(I))**2
    IC1(IG(I,1))=IC1(IG(I,1))+1
    DO 402 K=1,NF
    IF (IG(I,K) .GT. NL(K)) THEN
    NL(K)=IG(I,K)
    END IF
402 CONTINUE
    IC3(IG(I,1),IG(I,2),IG(I,3))=IC3(IG(I,1),IG(I,2),IG(I,3))+1
401 CONTINUE
    CM=SUMX***/NC
    SST=SST-CM
    IDF(1)=NL(1)-1
    IDF(2)=NL(2)-1
    IDF(3)=NL(3)-1
    IDF(4)=IDF(1)*IDF(2)
    IDF(5)=IDF(1)*IDF(3)
    IDF(6)=[DF(2)*\operatorname{DF}(3)
    IDF(7)=IDF(4)*IDF(3)
    IDF(8)=NL(1)*NL(2)*NL(3)*(NREP-1)
    NP=7
```

```
    IF (NREP .EQ. 1) NP=NP-1
    DO 405 I=1,3
    DO 405 J=1,NL(I)
    SUM2(J,I)=0.0
405 CONTINUE
C FIND SS FOR MAIN EFFECTS
    DO 410I=1,NC
    DO 410 J=1,3
    SUM2(IG(I,J),J)=SUM2(IG(I,J),J)+RB(I)
410 CONTINUE
    DO 415 J=1,3
    SS(J)=0.0
    DO 420 K=1,NL(J)
    SS(J)=SS(J)+SUM2(K,J)**2
420 CONTINUE
    M=REAL(NC)/REAL(NL(J)
    SS(J)=SS(J)/M-CM
415 CONTINUE
C FIND SS FOR TWO FACTOR INTERACTIONS
    NLMAX=MAX(NL(1),NL(2),NL(3))
    DO }425\textrm{I}=1,NLMA
    DO }425\textrm{J}=1,\textrm{NLMAX
    DO 425 K=1,3
    SUM3(I,J,K)=0.0
425 CONTINUE
    DO 430 I=1,NC
    SUM3(IG(I,1),IG(I,2),1)=SUM3(IG(I,1),IG(I,2),1)+RB(I)
    SUM3(IG(I,1),IG(I,3),2)=SUM3(IG(I,1),IG(I,3),2)+RB(I)
    SUM3(IG(I,2),IG(I,3),3)=SUM3(IG(I,2),IG(I,3),3)+RB(I)
430 CONTINUE
    SS(4)=0.0
    DO 435I=1,NL(1)
    DO 435 J=1,NL(2)
    SS(4)=SS(4)+SUM3(I,J,1)**2
435 CONTINUE
    SS(4)=SS(4)/(NL(3)*NREP)-SS(1)-SS(2)-CM
    SS(5)=0.0
    DO 440 I=1,NL(1)
    DO 440 K=1,NL(3)
    SS(5)=SS(5)+SUM3(I,K,2)**2
440 CONTINUE
    SS(5)=SS(5)/(NL(2)*NREP)-SS(1)-SS(3)-CM
    SS(6)=0.0
    DO 445 J=1,NL(2)
    DO 445 K=1,NL(3)
    SS(6)=SS(6)+SUM3(J,K,3)**2
445 CONTINUE
    SS(6)=SS(6)/(NL(1)*NREP)-SS(2)-SS(3)-CM
C FIND SS FOR THREE FACTOR INTERACTION AND ERROR
```

```
    IF (NREP .GT. 1) GOTO 450
    SS(7)=SST-SS(1)-SS(2)-SS(3)-SS(4)-SS(5)-SS(6)
    SS(8)=0.0
    GOTO 455
    450 DO 460 I=1,NL(1)
    DO 460 J=1,NL(2)
    DO 460 K=1,NL(3)
    SUM3(I,J,K)=0.0
    SS3(I,J,K)=0.0
460 CONTINUE
    DO 465 I=1,NC
    SUM3(IG(I,1),IG(I,2),IG(I,3))=SUM3(IG(I,1),IG(I,2),IG(I,3))+RB(I)
    SS3(IG(I,1),IG(I,2),IG(I,3))=SS3(IG(I,1),IG(I,2),IG(I,3))+RB(I)**2
465 CONTINUE
    SS(7)=0.0
    DO 470 I=1,NL(1)
    DO 470 J=1,NL(2)
    DO 470 K=1,NL(3)
    SS(7)=SS(7)+SUM3(I,J,K)**2
470 CONTINUE
    SS(7)=SS(7)/NREP-SS(1)-SS(2)-SS(3)-SS(4)-SS(5)-SS(6)-CM
    SS(8)=SST-SS(1)-SS(2)-SS(3)-SS(4)-SS(5)-SS(6)-SS(7)
C FIND MEAN SQUARES AND F-VALUES
    IF (NP .EQ. 7) MS(8)=SS(8)/IDF(8)
455 DO 475 I=1,7
    MS(I)=SS(I)/IDF(I)
475 CONTINUE
    IF (MS(4) .EQ. 0.0) THEN
    FARM=999.0
    ELSE
    FARM=MS(2)/MS(4)
    END IF
    IF (FARM .GE. CRITRM) THEN
    FARMREJ=FARMREJ+1
    END IF
C PERFORM ANALYSIS ON ALIGNED RANKS: TEST FOR SUB UNIT TRT
C CALCULATE SS FOR MAIN EFFECTS
    SUMX=0
    SST=0
    DO 501 I=1,NC
    SUMX=SUMX+RC(I)
    SST=SST+(RC(I))**2
    IC1(IG(I,1))=IC1(IG(I,1))+1
    DO 502 K=1,NF
    IF (IG(I,K) .GT. NL(K)) THEN
    NL(K)=IG(I,K)
    END IF
502 CONTINUE
```

```
    IC3(IG(I,1),IG(I,2),IG(I,3))=IC3(IG(I,1),IG(I,2),IG(I,3))+1
    501 CONTINUE
    CM=SUMX**2/NC
    SST=SST-CM
    500 IDF(1)=NL(1)-1
    IDF(2)=NL(2)-1
    IDF(3)=NL(3)-1
    IDF(4)=\operatorname{IDF}(1)*}\operatorname{IDF}(2
    IDF(5)=[DF(1)*IDF(3)
    IDF(6)=\operatorname{DFF}(2)*\operatorname{IDF}(3)
    IDF(7)=IDF(4)*IDF(3)
    IDF(8)=NL(1)*NL(2)*NL(3)*(NREP-1)
    NP=7
    IF (NREP .EQ. 1) NP=NP-1
    DO }505\textrm{I}=1,
    DO 505 J=1,NL(1)
    SUM2(J,R)=0.0
5 0 5 \text { CONTINUE}
C FIND SS FOR MAIN EFFECTS
    DO }510\textrm{I}=1,N
    DO 510 J=1,3
    SUM2(IG(I,J),J)=SUM2(IG(I,J),J)+RC(I)
5 1 0 \text { CONTINUE}
    DO 515 J=1,3
    SS(J)=0.0
    DO 520 K=1,NL(J)
    SS(J)=SS(J)+SUM2(K,J)**2
520 CONTINUE
    M=REAL(NC)/REAL(NL(J))
    SS(J)=SS(J/M-CM
515 CONTINUE
C FIND SS FOR TWO FACTOR INTERACTIONS
    NLMAX=MAX(NL(1),NL(2),NL(3))
    DO 525 I=1,NLMAX
    DO }525\textrm{J}=1,NLMAX
    DO }525\textrm{K}=1,
    SUM3(I,J,K)=0.0
525 CONTINUE
    DO }530\textrm{I}=1,\textrm{NC
    SUM3(IG(I,1),IG(I,2),1)=SUM3(IG(I,1),IG(I,2),1)+RC(I)
    SUM3(IG(I,1),IG(I,3),2)=SUM3(IG(I,1),IG(I,3),2)+RC(I)
    SUM3(IG(I,2),IG(I,3),3)=SUM3(IG(I,2),IG(I,3),3)+RC(I)
5 3 0 ~ C O N T I N U E ~
    SS(4)=0.0
    DO }535\textrm{I}=1,\textrm{NL}(1
    DO 535 J=1,NL(2)
    SS(4)=SS(4)+SUM3(I,J,1)**2
535 CONTINUE
    SS(4)=SS(4)/(NL(3)*NREP)-SS(1)-SS(2)-CM
    SS(5)=0.0
```

```
    DO 540 I=1,NL(1)
    DO 540 K=1,NL(3)
    SS(5)=SS(5)+SUM3(I,K,2)**2
540 CONTINUE
    SS(5)=SS(5)/(NL(2)*NREP)-SS(1)-SS(3)-CM
    SS(6)=0.0
    DO 545 J=1,NL(2)
    DO }545\textrm{K}=1,NL(3
    SS(6)=SS(6)+SUM3(J,K,3)**2
545 CONTINUE
    SS(6)=SS(6)/(NL(1)*NREP)-SS(2)-SS(3)-CM
C FIND SS FOR THREE FACTOR INTERACTION AND ERROR
    IF (NREP .GT. 1) GOTO 550
    SS(7)=SST-SS(1)-SS(2)-SS(3)-SS(4)-SS(5)-SS(6)
    SS(8)=0.0
    GOTO 555
    550 DO 560 I=1,NL(1)
    DO 560 J=1,NL(2)
    DO 560 K=1,NL(3)
    SUM3(I,J,K)=0.0
    SS3(I,J,K)=0.0
5 6 0 \text { CONTINUE}
    DO 565 I=1,NC
    SUM3(IG(I,1),IG(I,2),IG(I,3))=SUM3(IG(I,1),IG(I,2),IG(I,3))+RC(I)
    SS3(IG(I,1),IG(I,2),IG(I,3))=SS3(IG(I,1),IG(I,2),IG(I,3))+RC(I)**2
5 6 5 \text { CONTINUE}
    SS(7)=0.0
    DO 570 I=1,NL(1)
    DO 570 J=1,NL(2)
    DO 570 K=1,NL(3)
    SS(7)=SS(7)+SUM3(I,J,K)**2
570 CONTINUE
    SS(7)=SS(7)/NREP-SS(1)-SS(2)-SS(3)-SS(4)-SS(5)-SS(6)-CM
    SS(8)=SST-SS(1)-SS(2)-SS(3)-SS(4)-SS(5)-SS(6)-SS(7)
C FIND MEAN SQUARES AND F-VALUES
    IF (NP.EQ. 7) MS(8)=SS(8)/IDF(8)
555 DO 575 ==1,7
    MS(I)=SS(D)/IDF(I)
575 CONTINUE
    SSE=SS(5)+SS(7)
    MSE=SSE/(IDF(5)+IDF(7))
    IF (MSE .EQ. 0.0) THEN
    FARS=999.0
    ELSE
    FARS=MS(3)/MSE
    END IF
    IF (FARS .GE. CRITRS) THEN
    FARSREJ=FARSREJ+1
    END IF
```


## C PERFORM ANALYSIS ON ALIGNED RANKS: TEST FOR INTERACTION

C CALCULATE SS FOR MAIN EFFECTS
SUMX=0
SST=0
DO $601 \mathrm{I}=1$,NC
SUMX $=$ SUMX + RBC(I)
SST=SST+(RBC(I)**2
$\operatorname{IC} 1(\operatorname{IG}(\mathrm{I}, 1))=\mathrm{IC}(1(\mathrm{IG}(\mathrm{I}, 1))+1$
DO $602 \mathrm{~K}=1, \mathrm{NF}$
IF (IG(I,K) .GT. NL(K)) THEN
$\mathrm{NL}(\mathrm{K})=\mathrm{IG}(\mathrm{I}, \mathrm{K})$
END IF
602 CONTINUE
$\operatorname{IC} 3(\operatorname{IG}(\mathrm{I}, 1), \mathrm{IG}(\mathrm{I}, 2), \mathrm{IG}(\mathrm{I}, 3))=\mathrm{IC} 3(\mathrm{IG}(\mathrm{I}, 1), \mathrm{IG}(\mathrm{I}, 2) \mathrm{IG}(\mathrm{I}, 3))+1$
601 CONTINUE
CM=SUMX**2/NC
SST $=$ SST $-C M$
IDF(1) $=\mathrm{NL}(1)-1$
IDF $(2)=\mathrm{NL}(2)-1$
$\operatorname{DFF}(3)=\mathrm{NL}(3)-1$
$\operatorname{IDF}(4)=\operatorname{DF}(1) * \operatorname{DFF}(2)$
$\operatorname{IDF}(5)=\operatorname{IDF}(1) * \operatorname{IDF}(3)$
$\operatorname{DF}(6)=\operatorname{DF}(2) * \operatorname{DF}(3)$
$\operatorname{IDF}(7)=\operatorname{DF}(4) * \operatorname{DFF}(3)$
$\mathrm{IDF}(8)=\mathrm{NL}(1) * \mathrm{NL}(2) * \mathrm{NL}(3) *(\mathrm{NREP}-1)$
$\mathrm{NP}=7$
IF (NREP .EQ. 1) NP=NP-1
DO $605 \mathrm{I}=1,3$
DO $605 \mathrm{~J}=1, \mathrm{NL}(\mathrm{I})$
SUM2 (J, I) $=0.0$
605 CONTINUE

## C FIND SS FOR MAIN EFFECTS

DO $610 \mathrm{I}=1, \mathrm{NC}$
DO $610 \mathrm{~J}=1,3$
SUM2(IG(I,J),J)=SUM2(IG(I, J), J) + RBC(I)
610 CONTINUE
DO $615 \mathrm{~J}=1,3$
$\mathrm{SS}(\mathrm{J})=0.0$
DO $620 \mathrm{~K}=1, \mathrm{NL}(\mathrm{J})$
$\mathrm{SS}(\mathrm{J})=\mathrm{SS}(\mathrm{J})+\mathrm{SUM} 2(\mathrm{~K}, \mathrm{~J}) *{ }^{*} 2$
620 CONTINUE
M=REAL(NC)/REAL(NL(J))
$\mathrm{SS}(\mathrm{J})=\mathrm{SS}(\mathrm{J} / \mathrm{M}-\mathrm{CM}$
615 CONTINUE
C FIND SS FOR TWO FACTOR INTERACTIONS

NLMAX=MAX(NL(1),NL(2),NL(3))
DO $625 \mathrm{I}=1, \mathrm{NLMAX}$
DO $625 \mathrm{~J}=1, \mathrm{NLMAX}$

```
    DO }625\textrm{K}=1,
    SUM3(I,J,K)=0.0
6 2 5 \text { CONTINUE}
    DO }630\textrm{I}=1,\textrm{NC
    SUM3(IG(I,1),IG(I,2),1)=SUM3(IG(I,1),IG(I,2),1)+RBC(I)
    SUM3(IG(I,1),IG(I,3),2)=SUM3(IG(I,1),IG(I,3),2)+RBC(I)
    SUM3(IG(I,2),IG(I,3),3)=SUM3(IG(I,2),IG(I,3),3)+RBC(I)
6 3 0 \text { CONTINUE}
    SS(4)=0.0
    DO }635\textrm{I}=1,\textrm{NL}(1
    DO }635\textrm{J}=1,\textrm{NL}(2
    SS(4)=SS(4)+SUM3(I,J,1)**2
6 3 5 \text { CONTINUE}
    SS(4)=SS(4)/(NL(3)*NREP)-SS(1)-SS(2)-CM
    SS(5)=0.0
    DO 640 I=1,NL(1)
    DO 640 K=1,NL(3)
    SS(5)=SS(5)+SUM3(I,K,2)**2
6 4 0 \text { CONTINUE}
    SS(5)=SS(5)/(NL(2)*NREP)-SS(1)-SS(3)-CM
    SS(6)=0.0
    DO 645 J=1,NL(2)
    DO }645\textrm{K}=1,\textrm{NL}(3
    SS(6)=SS(6)+SUM3(J,K,3)**2
6 4 5 \text { CONTINUE}
    SS(6)=SS(6)/(NL(1)*NREP)-SS(2)-SS(3)-CM
C FIND SS FOR THREE FACTOR INTERACTION AND ERROR
    IF (NREP .GT. 1) GOTO }65
    SS(7)=SST-SS(1)-SS(2)-SS(3)-SS(4)-SS(5)-SS(6)
    SS(8)=0.0
    GOTO }65
650 DO 660 I=1,NL(1)
    DO }660\textrm{J}=1,NL(2
    DO }660\textrm{K}=1,\textrm{NL}(3
    SUM3(I,J,K)=0.0
    SS3(I,J,K)=0.0
6 6 0 \text { CONTINUE}
    DO }665\textrm{I}=1,\textrm{NC
    SUM3(IG(I,1),IG(I,2),IG(I,3))=SUM3(IG(I,1),IG(I,2),IG(I,3))+RBC(I)
    SS3(IG(I,1),IG(I,2),IG(I,3))=SS3(IG(I,1),IG(I,2),IG(I,3))+RBC(I)**2
6 6 5 \text { CONTINUE}
    SS(7)=0.0
    DO }670\textrm{I}=1,\textrm{NL}(1
    DO }670\textrm{J}=1,\textrm{NL}(2
    DO 670 K=1,NL(3)
    SS(7)=SS(7)+SUM3(I,J,K)**2
6 7 0 \text { CONTINUE}
    SS(7)=SS(7)/NREP-SS(1)-SS(2)-SS(3)-SS(4)-SS(5)-SS(6)-CM
    SS(8)=SST-SS(1)-SS(2)-SS(3)-SS(4)-SS(5)-SS(6)-SS(7)
C FIND MEAN SQUARES AND F-VALUES
```

```
    IF (NP .EQ. 7) MS(8)=SS(8)/IDF(8)
655 DO 675 I=1,7
    MS(I)=SS(I)/IDF(I)
6 7 5 \text { CONTINUE}
    SSE=SS(5)+SS(7)
    MSE=SSE/(IDF(5)+IDF(7))
    IF (MSE .EQ. 0.0) THEN
    FARI=999.0
    ELSE
    FARI=MS(6)/MSE
    END IF
    IF (FARI .GE. CRITRI) FARIREJ=FARIREJ+1
    CONTINUE
    FYMPV=REAL(FYMREJ)/REAL(N)
    FRMPV=REAL(FRMREJ)/REAL(N)
    FRTMPV=REAL(FRTMREJ/REAL(N)
    FARMPV=REAL(FARMREJ)/REAL(N)
    FYSPV=REAL(FYSREJ)/REAL(N)
    FRSPV=REAL(FRSREJ)/REAL(N)
    FRTSPV=REAL(FRTSREJ)/REAL(N)
    FARSPV=REAL(FARSREJ)/REAL(N)
    FYIPV=REAL(FYIREJ)/REAL(N)
    FRIPV=REAL(FRIREJ/REAL(N)
    FRTIPV=REAL(FRTIREJ)/REAL(N)
    FARIPV=REAL(FARIREJ/REAL(N)
    WRITE (4,*) 'ALPHA = 0.05'
    WRITE (4,*)
    WRITE (4,*) 'FYMPVAL= ',FYMPV
    WRITE (4,*) 'FRMPVAL= ',FRMPV
    WRITE (4,*) 'FRTMPVAL=',FRTMPV
    WRITE (4,*) 'FARMPVAL=',FARMPV
    WRITE (4,*)
    WRITE (4,*)'FYSPVAL= ',FYSPV
    WRITE (4,*) 'FRSPVAL= ',FRSPV
    WRITE (4,*) 'FRTSPVAL=',FRTSPV
    WRITE (4,*)'FARSPVAL=',FARSPV
    WRITE (4,*)
    WRITE (4,*) 'FYIPVAL=',FYIPV
    WRITE (4,*) 'FRIPVAL=',FRIPV
    WRITE (4,*) 'FRTIPVAL=',FRTIPV
    WRITE (4,*) 'FARIPVAL =',FARIPV
    CLOSE (UNIT=4)
    END
```


## $\infty$ <br> VITA

Scott James Richter
Candidate for the Degree of
Doctor of Philosophy

## Thesis: EXACT AND ESTIMATED EXACT TESTS USING THE RANK TRANSFORM IN DESIGNED EXPERIMENTS

Major Field: Statistics

## Biographical:

Education: Graduated from Terry Parker High School, Jacksonville, Florida in June 1982; received a Bachelor of Science degree in Mathematics from Jacksonville University, Jacksonville, Florida in December 1986; received a Master of Arts degree in Mathematical Science from the University of North Florida in May 1991. Completed the requirements for the Doctor of Philosophy degree with a major in Statistics at Oklahoma State University in July 1997.

Experience: Employed as a mathematics teacher at Paxon Senior High School, Jacksonville, Florida from 1987 to 1989. Employed as a graduate teaching assistant in the Department of Mathematics and Statistics, University of North Florida, from 1989 to 1991. Employed as a Professor of Mathematics at Florida Community College at Jacksonville from 1991 to 1993. Employed as a graduate teaching associate in the Department of Statistics at Oklahoma State University from 1993 to present.

Professional Memberships: American Statistical Association

