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CB.APTER ONE 

INTRODUCTION 

In experiments to determine if one or more factors have an effect on a response, the 

researcher typically can choose between one of two classes of analyses: parametric 

procedures which reqwre that certain assumptions be made about the form of the sampled 

population; or nonparametric techniques which do not. 

RA Fisher (1935) proposed a nonparametric test in which.the sampling distn"bution 

of the test statistic is found by :finding the value of the statistic for all posSI"ble 

permutations of the observed data. He considered this the most logical and efficient way 

to determine exact significance. Although most agreed with his assessment, the 

computational complexity of :finding all possible permutations made this permutation test 

too impractical to use for all except the smallest sample sizes. In addition, the test 

reqwres a new sampling distn"bution be derived for each new set of observed data. 

Dwass ( 1957) modified the permutation test by using a random sample of all posSI"ble 

permutations to approximate the sampling distribution, which alleviated the problem of 

finding all possible permutations. It did not, however, solve the problem of having to 

derive a new sampling distribution for each set of data, and a large number of 

permutations were still needed to obtain a close approximation. 
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Another modification to Fisher's test was to replace the data by their respective ranks. 

Thus, for a given sample size, only one sampling distribution need be constructed to 

determine significance, allowing tables of critical values to be constructed. But these 

tables have only been constructed for small sample sizes, and the methods have generally 

relied on asymptotic distributions for larger samples. More importantly, neither class has 

been widely applicable to complex experimental designs involving interactions, such as 

factorial and split-plot designs. Procedures that have been proposed are generally 

theoretically rigorous but difficult to use in applied situations. A method proposed by 

Conover and Iman (1976) using rank transformed data in standard parametric procedures 

appeared promising early, but has since been determined to not be suitable as a test for 

interactions in complex designs ( as well as in other situations). A modification of the rank 

method, in which the observations are "aligned" before ranking, was proposed by Hodges 

and Lehmann (1962). This method is theoretically rigorous, but has not been widely 

investigated in applied situations, although some studies have suggested that it is an 

improvement over the traditional rank transform method, especially when testing for 

interaction. 

This research develops an exact testing procedure for testing main effects and 

interaction in complex designs that is easy to use in applied situations. First, a common 

parametric test statistic will be computed using the ranks of the data, as well as using the 

aligned ranks. However, significance is determined using either the permutation 

distribution of the statistic (for sample sizes as large as computing power will allow), or an 

2 



estimate of the permutation distribution based on a random sample of all possible 

permutations. Tables of critical values are derived for certain designs, and comparisons of 

these tests are made to the parametric F-ratio tests. These comparisons are made for 

different distributional assumptions and using different magnitudes of treatment effects to 

compare power and nominal type I error rates. 
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CHAPTER TWO 

LITERATURE REVIEW 

Nonparametric tests have long been considered as alternatives to normal theory based 

tests due to the fact that fewer ( or no) assumptions must be made regarding the form of 

the sampled population in order for the test to be valid. Addressing the aJmost blind 

application of normal theory tests by researchers, RC. Geary wrote in 194 7: "Amends 

might be made in the interest of the new generation of students by printing in leaded type 

in all new textbooks: Normality is a myth; there never was, and never will be, a normal 

distnlmtion. This is an overstatement from the practical point of view, but it represents a 

safer initial mental attitude than in fashion during the past two decades." During this time, 

R A. Fisher had been developing tests based on the assumption of normality, which were 

and still are being widely accepted and used. Ironically, it was also Fisher who is generally 

credited with promoting interest in nonparametric techniques. 

Fisher's idea was to determine significance of a test statistic by referring to a 

permutation distribution of the observations; i.e., the distribution oftest statistic values for 

all possible permutations of the observed data. When discussing parametric tests in 

relation to this permutation test, he stated: "conclusions have no justification beyond the 

fact that they agree with those which could have been arrived at by this elementary method 

(the permutation test)" (Fisher, 1936). 
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Kempthome (1955), on parametric tests, cautioned: ''The making of assumptions of 

normality and applying the statistical tests is not a satisfactory basis for experimental 

inference, because the extent to which the reliability of an inference depends on the 

assumptions made in the analysis is usually unknown. Even though the application of the 

general linear hypotheses theory appears in many cases to lead to inferences which are 

essentially correct for Fisher's criterion, the validity of such normal theory inferences in 

the case of some designs ... is highly questionable." It is generally agreed in statistical 

literature that to make an externally valid interpretation of the analysis of variance 

(ANOVA) the observations must be independent. The ANOV A is also very sensitive to 

the assumption of homogeneity of variance. Thus,· it would appear that Fisher's 

permutation test would be preferred over any parametric test. However, obtaining the 

sampling distribution of the test statistic is difficult, due to the problem of calculating all 

possible permutations to obtain critical values, and thus the method is impractical to use, 

except for very small sample sizes. 

Dwass (1957) proposed ''the almost obvious procedure of examining a 'random 

sample' of permutations of the observations and making the decision to accept or reject Ho 

on the basis of those permutations only." Dwass applied this method to the two sample 

case, and asserted that ''the power of the modified test will be 'close' to that of the most 

powerful nonparametric test (Fisher's permutation test)." This "closeness" was quantified 

by a bound on the ratio of the power of the original procedure to the modified one. 
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More recently, Edgington (1995) and Manly (1991) have promoted these 

'l"andomization tests" applied to randomized block designs and completely randomized 

factorial experiments, among others, and Manly provides workable programs for obtaining 

critical values. However, there seems to have been no attempt to apply this technique to 

more complex designs. One drawback of this method ( and also of the permutation test) is 

that a new sampling distribution must be derived for each new set of data to which the test 

is applied. This makes the procedure unattractive to many practitioners, since 

programming expertise is required to implement the tests. In addition, the results ofth:e 

randomization test may vary depending on which permutations are sampled. 

Still and White (1981) proposed a test for interaction in which the main effects are 

subtracted and a randomization test applied to.the residuals. This test suffers from the 

same drawbacks as the ordinary randomization test and is difficult to apply. Bradley 

(1979) proposed a test for interactions in which the data are entered into a matrix, then 

collapsed and reduced over the main effects, similar to Still and White's method. Then a 

nonparametric test, such as the Kruskal-W allis test, is performed on the residuals. This 

procedure is restricted to the balanced case, and the value of the test statistic is dependent 

upon how the data are entered into the matrix. Bhapkar and Gore (1974) proposed a 

similar test. None of these methods, however, have been thoroughly investigated to 

determine how well they perform, and neither have they gained any degree of popularity in 

applied situations. 
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The problem of needing to derive a new sampling distribution for each new set of 

observed data can be eliminated by transforming the data into their respective ranks before 

doing the analysis. Although the idea of nonparametric tests pre-dates Fisher's proposals 

(As far back as 1710, John Arbuthnott used the Sign Test in an attempt to prove the 

wisdom of divine providence (Bradley, 1968)), most of the work in this area began after 

1935. Some of the more famous tests for two sample situations were proposed by Fisher 

(1935), Wilcoxon (1945) and Mann and Whitney (1947). Kruskal and Wallis (1952) 

developed a test for the multi-sample case, and Pitman (1938), Friedman (1937) and 

Quade (1972,1979) devised tests for randomized block designs. For many of these tests, 

tables of exact critical values of the test statistics are available, but only for very small 

sample sizes. For larger samples, the tests are based on known theoretical distn"butions, 

using the asymptotic properties of the test statistics. 

However, methods for more complex designs involving interactions were not as 

forthcoming. Bradley (1968) noted that distn"bution-:free tests for high-order interaction 

''tend to be complicated, awkward, and limited in application. Furthermore, many of them 

are inexact, their derivations being based upon the limiting case of infinite sample sizes and 

involving 'asymptotic' formulas for the test statistic. Thus, they lack many of the virtues 

possessed by distribution-free tests for 'main-effects' or first order interactions." As 

recently as 1990, Sawilowsky stated that historically, there have been no satisfactory 

nonparametric tests for interaction in the analysis of variance. 
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Hodges and Lehmann (1962), Puri and Sen (1969), Koch (1969) and Hettmansperger 

(1984) (among others) discussed tests for interactions in complex designs based on a 

ranking after alignment procedure. This procedure involves "aligning" each observation 

by subtracting from it an estimate oflocation of each main effect, and then ranking these 

"aligned" observations. A nonparametric procedure is then performed on the "aligned" 

ranks. These tests are mathematically rigorous, and the asymptotic properties of the 

statistics have been investigated. Since th~ ranking after alignment procedure produces 

transformed variables which are usually dependent, most of these tests are only 

conditionally distn'bution-free, since certain regularity conditions have to be assumed in 

order for the test statistic to be distribution-free. Puri and Sen (1985) developed a test 

based on a large sample approximation which does not rely on the "aligned" ranks. None 

of these techniques seem to have been widely used, and there are no known software 

packages which have adopted them Thus, they are generally not easy to implement for 

practitioners. In addition, little is known about the small sample behavior of these tests. 

Harwell and Serlin (1989) did investigate the test of Puri and Sen (1985) and found the 

test to lack power for small sample sizes (n < 40). Conover and Iman (1976) compared 

the common parametric F-test to both the aligned rank procedure and the traditional rank 

transform procedure for a model with lognormally distn'buted errors, and found that the 

rank tests tended to be more powerful than their parametric counteiparts for testing both 

main effects and interaction. Fawcett and Salter (1984) and Groggel (1987) found the 

aligned rank technique to be a viable competitor to the F-test for testing treatment effects 

in a randomized block design, especially when the classical assumptions are violated. 
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Higgins and Tashtoush (1994) investigated the aligned rank technique for testing 

interaction in a two-way factorial in completely randomized and split-plot designs and 

found it to be an improvement over the traditional rank transform technique. However, 

they used the traditional rank transform technique applied to the aligned data, and thus 

used the F-distribution as the sampling distribution for the test statistics, and not the exact 

sampling distnoution. In addition, they did not examine the aligned rank technique for 

testing for main effects. 

A slight modification to the rank transform was proposed by Fisher and Yates (1949) 

as well as Bell and Doksum (1965). They suggested a random normal scores transform, 

where the observed data are replaced by randomly drawn normal random variates. 

Hoe:ffding (1952) and Terry (1952) suggested yet another modification: using expected 

normal scores. Although these tests were shown in some cases to be more robust and 

more powerful than using the ordinary rank transform, they did not compare favorably to 

the parametric ANOV A, especially for small samples, and thus were never serious 

competitorsto the ANOVA. 

Scheirer, et al (1976) proposed a modified extension of the Kruskal-Wallis test for 

analysis of ranked data arising from completely randomized factorial designs. They 

showed that the well known Kruskal-Wallis H-statistic was equivalent to the ratio of the 

sum of squares for treatment divided by the "mean square" for the total variability, where 
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both quantities are computed using the ranks of the data. Their extension to the KW test 

was based upon this statistic. Toothaker and Chang (1980) studied the Scheirer et al. 

method, however, and concluded, based on Monte Carlo studies, that "under no 

circumstances could the tests be recommended for use," due to lack of power and inability 

to control nominal type I error rates. They suggested that researchers consider aligned 

rank methods instead. 

A twist on the rank transform idea that did gain widespread acceptance was proposed 

by Conover and Iman (1976). Their idea was to transform the data to their respective 

ranks, and then run the usual parametric analysis, where the theoretical distribution of the 

test statistic, based on the parametric assumptions, is used to obtain critical values. This 

method, which became known simply as the ''rank transform method", held much appeal 

to practitioners since this allowed a nonparametric analysis to be performed for any type 

of experimental design, and almost all statistical computer packages could run such an 

analysis. Hora and Conover (1984) showed that the limiting null distn"bution of the usual 

F-statistic for main effects in the two-way layout has the same limiting distribution when 

applied to ranks as when applied to normal data. Iman (1974) showed that the rank 

transform had greater power than the F-test for certain nonnormal distn"butions. Other 

studies also supported the procedure for different situations: Hora and Iman (1988), Iman, 

et al. (1984), Kepner and Robinson (1988) and Thompson and Ammann (1989). The 

procedure was hailed as a ''bridge between parametric and nonparametric statistics" 

(Conover and Iman, 1981). Even SAS, in its discussion of nonparametric analysis of 
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variance procedures, stated: '"The NP ARI WAY procedure is available to perform a 

nonparametric one-way analysis of variance. Other nonparametric tests can be performed 

by taking ranks of the data and using a regular parametric procedure to perform the 

analysis." (SAS User's Guide: Statistics, 1985; SAS/STAT User's Guide, 1990). The 

honeymoon soon came to an end, however, beginning with Fligner (1981) who cautioned 

that until each new application of the rank transform was investigated it should not be 

used. Blair and Higgins (1985) found that a loss of power occurred in related samples 
. . 

tests if samples were correlated. Blair et al. ( 1987) found that nominal type I error rates 

for testing interaction became seriously inflated for certain models. Thompson and 

Ammann (1990) found that the test for interaction broke down in the presence of main 

effects. Subsequent studies have shown that the rank transform is neither a robust nor 

powerful alternative to the factorial ANOV A, especially as a test for interaction when both 

main effects are present. Sawilowsky ( 1990 ), discussing tests of interaction, stated that 

the rank transform should not be used, based on poor Monte Carlo results. 
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CHAPTER THREE 

FINDING EXACT DISTRIBUTIONS 

3.1 .All Possible Permutations 

As was mentioned in Chapter One, the goal of this research is to develop an exact test 

using ranks that is easy to apply to for testing main effects and interaction in multi-factor 

experiments. To make the method easy to apply, for any given test, the usual F-ratio 

calculated in a parametric ANOVA computed on the ranks of the data is used as a test 

statistic. Then the permutation distnbution of the statistic is found, and tables of critical 

values are constructed to use to determine significance. Much work has been invested in 

an attempt to use modem computing power to obtain exact critical values by finding the 

value of the statistic for all possible permutations of the data. Program 1 in the Appendix 

was used to derive tables of exact critical values for tests for main effects and interaction 

in a two factor experiment with two observations per treatment combination (See tables 

3.1-3.2). This procedure for obtaining the exact distributions became impractical for 

larger sample sizes, due to a prohibitive amount of computer time. For example, the 

program to derive the exact sampling distn'bution for a design with twelve observations 

was eventually terminated after four days of execution without completing its task. 
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Table 3.1. 

Design: two factors, each with two levels, two observations per treatment combination. 
Exact upper tail permutation distribution for test of main effect: F = MSTRT/MSE, 
calculated on the ranks of the data. 

Fcalc P( F~ Fca1c) 

3.78947353 0.898412645 
4.54545403 0.904761851 
4.79999924 0.911111057 
5.14285660 0.923809469 
5.76470566 0.926984072 
6.53333282 0.933333278 
6.54545403 0.939682484 
7.53846073 0.942857087 
8.90909004 0.949206293 
10.0000000 0.952380896 
10.8888884 0.958730102 
12.0000000 0.965079308 
12.7999992 0.968253911 
14.2222214 0.974603117 
16.0000000 0.980952322 
19.5999908 0.984126925 
21.3333282 0.990476131 
25.5999908 0.996825337 
64.0000000 1.00000000 

13 



Table 3.2 

Design: two factors, each with two levels, two observations per treatment combination. 
Exact upper tail permutation distn"bution for test of interaction: F = MSAB/MSE, 
calculated on the ranks of the data. 

Fcalc P( F:$; Fca1c) 

3.78947353 0.898412645 
4.54545403 0.904761851 
4.79999924 0.911111057 
5.14285660 0.923809469 
5.76470566 0.926984072 
6.53333282 0.933333278 
6.54545403 0.939682484 
7.53846073 0.942857087 
8.90909004 0.949206293 
10.0000000 0.952380896 
10.8888884 0.958730102 
12.0000000 0.965079308 
12.7999992 0.968253911 
14.2222214 0. 97 4603117 
16.0000000 0.980952322 
19.5999908 0.984126925 
21.3333282 0.990476131 
25.5999908 0.996825337 
64.0000000 1.00000000 
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3.2 An Alternative to Finding All Possible Permutations 

Alternatives to having to find all possible permutations in order to obtain the exact 

distribution of a test statistic have also been sought. One such alternative which appeared 

promising was proposed by Pagano and Tritchler (1981). They suggested a two-step 

method of finding the exact distribution of a linear rank statistic by first finding the 

characteristic :function of the statistic, and then inverting it to obtain the distnlrution. 

Suppose we have two samples xi, ... , Xm and Y1, ... , Yn (~) that, when combined, may 

be written z1, ... , ZN (N = m+n), and when ranked, yield the ranks R1, ... , Rm and Rrn+1, . 

. . , Rrn+n. Consider the class of statistics S that may be written 

N 

S = La(Rj)li 
j=l . 

for some :function a(•), where ~ is one for j ~ m and zero otherwise. To find the 

characteristic :function, cl>, first define 

\j/(m,N,8) = Nern cl>(8) , 

where NCrn is the number of different samples of size m that can be selected from N 

elements, and then define 
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m 

\Jf(m,N,9) = I: TI exp(i9a(Rii<)) (1) 
j k=l 

where the summation is over all NCm samples of size m, G1, ... , jm), from the first N 

natural numbers, and Rjk denotes the rank of the value in the kth position of the l 

combination. Using the above equations would still require obtaining all NCm 

combinations of the ranks, which would not be worth the added complexity of involving 

the characteristic :function. However, using the following theorem, enumerating all 

possible combinations of the ranks is not necessary, and the value of the characteristic 

function can be obtained in approximately 2mN ( complex) multiplications and additions. 

Theorem 3.1 (Pagano and Tritch/er, 1981). Define \j/(i,k,9) = 0 for)> k and =1 for 

j=k= 0. Then 

\Jf(i,k,9) = exp(i9 a(Ric)) \j/(i-1,k-1,9) + \Jf(i,k-1,9), for 1 5:j 5: k = 1,2, ... , (2) 

where Ric is the rank of the value in the kth position. 

Proof Consider aU the samples of size j formed from the first k obseivations. These can 

be split into two groups, those that contain the kth obseivation and those that do not. The 

ones that do contain the kth observation can be obtained by adjoining the kth obseivation 

to each sample of size (j - 1) from the first (k - 1) observations (the first term in (2)). The 

ones that do not contain the kth obseivation are 1:he samples of size j obtained from the 

first (k- 1) obseivations (the second term.in (2)). D 
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To see the advantage of the recursive relation, consider the case where N=5 and m=2. 

Using (1), with a(R} = R, 

sC2 2 

\11(2,5,8) = L TI exp(iSR.ik) 
j=l k=l 

= exp[i8(R11+R12)] + 

• 

• 

• 

exp[i8(R10,1+R10,2)] 

which requires obtaining all IO combinations of the ranks. However, using (2), it is not 

necessary to enumerate allposSI"ble combinations, and the problem reduces to one of just 

taking a series of complex exponentials of the ranks 1 through 5: 

\11(2,5,8) = exp[i8(Rs+R1}] + exp[i8(~+R1 }] + exp[i8(R3+R1)] + 

In general, using the recursive expression (2), \1/(m,N,8) will be the sum of N-1Cm-1 (the 

number of samples which contain the Nth rank) exponential expressions. If mis chosen to 

be the smaller sample, then the maximum number of exponential expressions needed will 

be one half of the NCm total possible samples, and this will occur when sample sizes are 
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equal. When sample sizes are different, the number of terms in the expression can be 

reduced greatly. For example, ifN = 20, when sample sizes are equal, m = 10 and using 

the recursive formula will result in an expression for \lf(l0,20,8) with 19C 9 = 92,378 

exponential terms instead of 20C10 = 184,756 needed for complete enumeration of all 

combinations. If instead m = 8, now only 19C1 = 50,388 exponential terms are required to 

find the exact distribution, which is only 40% of the 20C8 = 125,970 total combinations. 

Then, let X be a discrete random variable with distnlmtion P(X = j) = pj, j = 0, 1, ... , 

U, where U is the maximum value of X, and characteristic :function 

u 
cl>(S) = LPjexp(ij0), 0 e [O, 21t). (3) 

j=O 

Since X is defined on a finite integer lattice, we may use the following basic theorem 

found in most sources on Fourier series to find the pj: 

Theorem 3.2. For any integer Q > U andj = 0, ... , U, 

. _ l ~1,,_(21tk) ( (21tjk)) PJ- - L..'I' -- exp - --
Qk=o Q Q 

That is, knowing the characteristic :function at these Q equispaced points on [O, 21t) is 

equivalent to knowing it everywhere. And, if it is known at these points, one may use a 
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fast Fourier transform (FFT) to invert it and obtain the P} Thus, equation (2) must be 

evaluated at Q equispaced points on [O, 21t), and this set of values represents Q values of 

the Fourier series given by (3). By theorem 2, the probabilities pj can be obtained, as well 

as the exact distnlmtion of S, using the Fourier transform. A FORTRAN program, which 

used IMSLw subroutines for performing the FFT, was written to test the method for the 

two sample case, and the method did indeed determine the exact distribution of S easily, 

using very little computer time. 

An extension to the multi-sample problem was also proposed. For the three sample 

case, the following recursive relation holds: 

Lemma 3.1 (Pagano & Tritch/er, 1981): For}, k = 1, 2, ... such that}+ k ~I= 1, 2, ... , 

w(J, k, I, 01, 02) = exp(i01u,) \j/(j-1, k, l-1, 01, 02) + 

exp(i02u,) w(J, k-1, /-1, 01, 02) + 

\jl(j, k, /-1, 01, 02) 

However, the characteristic .function now becomes a .function of two parameters, and 

the characteristic .function must now be evaluated at U1 •U2 pairs (01, 02), where U1 and 

U2 are the maximum values taken by S1 and S2, the sums of the ranks of the first two 

samples, respectively. Thus the computational complexity of calculating and inverting the 

characteristic .function increases exponentially in the number of samples. Even for the 

three sample case, the additional complexity renders this method impractical to use. In 
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addition, the method is restricted to test statistics which are linear functions of sums of the 

ranks, so that common F-ratio test statistics used for analysis of factorial experiments 

could not be used. It was for these reasons that this method was eventually abandoned as 

a means of determining exact distnbutions of test statistics for analyzing factorial designs. 

3.3 Estimating Exact Distributions 

Thus, for more complex designs, and for situations with larger sample sizes, the exact 

distnbution of the test statistic will be estimated based on a random sample of all posSible 

permutations of the data. lpis method was first proposed by Dwass (1957), and tests 

based on this method of determining significance have become known as ''Randomization 

Tests" (Manly, 1991 ; Edgington, 1995). This technique, when used on the actual 

observations, has the somewhat undesirable property that a possibly unique sampling 

distribution must be constructed for each set of data. In addition, two researchers 

performing a randomization test independently on the same set of data would likely obtain 

slightly different p-values. For a large (at least 10,000) random sample of permutations, 

however, it is unlikely that two independent tests would arrive at different conclusions 

regarding significance. For example, for estimating the cumulative probability associated 

with the 95th percentile of a sampling distribution based on a random sample of 10,000 
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permutations, the expected error of estimation, with 99% confidence, would be about 

.0056, or .56%. 

Applied to rank transformed data, however, a unique sampling distnlmtion would need 

to be derived only for each possible sample size. Thus, it is possible to create tables of 

estimated critical values, given a particular sample size. Programs were written to 

generate such tables, Tables 3.3 and 3.4 present the values which are used in the 

simulations of Chapters Five and Six. 
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Table 3.3. 

Estimated percentiles of the sampling distributions ofF-ratios computed using the ranks of 
the data. All ratios are computed as MS ( effect )/MS (error), for a two-way layout with 
four levels of factor A and three levels of factor B, in a completely randomized design, 
where n is the number of observations per treatment combination, and are based on a 
random sample of20,000 permutations. 

n Effect Percentile point 
.90 .95 .99 

2 A 2.669 3.560 6.000 
B 2.820 3.914 7.098 
AB 2.356 3.056 4.814 

5 A 2.175 2.816 4.320 
B 2.396 3.207 5.296 
AB 1.920 2.322 3.282 

10 A 2.118 ·2.680 4.003 
B 2.345 3.125 5.088 
AB 1.822 2.183 2.986 

20 A 2.136 2.644 3.902 
B 2.325 3.038 4.785 
AB 1.802 2.146 2.866 
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Table 3.4 

Estimated percentiles of the sampling distributions ofF-ratios computed using the ranks of 
the data. All ratios are computed as MS ( e:ffect)/MS ( error), for a two-way factorial in a 
split-plot experiment with four levels of the main unit treatment in a randomized block 
design with three blocks and three levels of the sub-unit treatment, and are based on a 
random sample of20,000 permutations. 

Effect Percentile point 
.90 .95 .99 

MU Trt 3.363 4.830 10.200 

SU Trt 2.712 3.666 6.569 

Interaction 2.218 2.792 4.352 
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CHAPTER FOUR 

APPUCATIONS TO COMPLETELY RANDOMIZED TWO-FACTOR 

FACTORIALEXPERJMENTS 

4.1 Problems with the Rank Transform in Factorial Experiments 

Conover and Iman (1976, 1981) suggested that most parametric procedures may be 

performed using rank transformed data instead of the raw data, especially when the 

parametric assumptions may be violated. Although this technique works well in some 

situations, it has been widely publicized in recent years that many situations exist where 

this procedure does not perform well The most notable of these involves the test for 

interaction in two factor experiments. Several studies have found that the rank transform 

test can be affected by nuisance parameters, or effects present which are not being tested. 

Blair, et al. (1987) suggested that the rank transformation can, in some situations, 

introduce interaction effects in the ranked data that are not present in the original data. 

This is due to the fact that the expected value of the rank of any particular cell depends 

nonlinearly on the means of all other cells. Addressing this, Blair et al. ( 1987) stated the 

following: 

Theorem 4.1: Let Xi be an observation from population i and Yj an observation from 

populationj, j=l,2, ... , k. Th.en the expected rank of Xi is given by 
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n+l ( ) E[R(Xi)] = -+ I:;nP Yj <Xi, 
2 J .. i 

and thus, if the k populations have normal distributions with means µ1, µ2, ... , µk, 

respectively, and standard deviation cr, then 

Since Blair, et al. (1987) did not include a proof of this result, one is provided here. 

Proof First assume that n obseivations have been selected at random from each of k 

continuous populations. Then if Xi is an obseivation from population i and Yj is an 

obseivation from population j, j = 1, 2, ... , k, the rank of Xi can be expressed as 

R(Xi) = 1 + the number of obseivations in population i less than Xi 

+ I: the number of observations in population j less than Xi
j .. i 

Let Z equal the number of obseivations in population i less than Xi. Since the 

obseivations within each sample have been randomly selected, each possible permutation 

of n ranks is equally likely to oc~ur. So, Z is a random variable with P(Z=i) = _!_ , 
n 

i=O,l, ... ,n-1. Thus, 
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E(Z) = _!_ ~i = _!_[n(n -1)] = n -1. 
n i=1 n 2 2 

Next, if Wj equals the number of observations in populationj less than Xi, i:;t:j, then Wj is a 

. binomial random variable with mean nP(Yj<Xi) = E(Wj). Therefore, 

E[R(Xi)] = 1 + E(~) + L E(Wj) 
j, .. i 

n-1 
= 1 + --+ LnP(Yj < Xi) 

2 j .. i 

n+l 
= -+LnP(Yj<Xi). 

2 j .. i 

Further, if populations are normally distributed with means µ1, µ2, ... , µk, respectively, 

and common variance cr2, then 

and thus, 
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Clear]y the expected rank of any observation depends (non-linearly) on the means of all 

other populations. For a two-way layout with "a" fixed levels of factor A and ''b" fixed 

levels of factor B, the population means can be expressed as µ11, µ12, ... , µ1b, µ21, µ22, 

... , µ2b, ... , µab. Then ~j = ~ + Bj + (AB)ij. It is not surprising that increasing the 

magnitude of effects A and/or B would have an effect on the expected rank of an 

observation. Even when no interaction is modeled, nominal type-I error rates for testing 

interaction can become quite inflated ifthe magnitudes of effects are large ( or if samples 

sizes are large). This can result in a test which in certain cases can be expected to detect 

interaction in rank transformed data where none existed in the original data. Figure 4.1, 

based on simulation results in Chapter Five, illustrates an example of this behavior It was 

found that this problem was most serious when both main effects were present in the 

model. 

The rank transform method has also been shown to have a serious power disparity 

compared to the F-test when testing for interaction in the presence ofboth main effects 

and interaction, although the disparity is much less evident whenever the assumptions of 

normality and equality of variances are violated. Figure 4.2 shows an example, using 

simulation results from Chapter Five. 
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Figure 4.1 (Note: Effect magnitude is in standard deviation units). 
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Figure 4.2 (Note: Effect magnitude is in standard deviation units). 
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4.2 Ranking After Alignment 

The idea of somehow isolating the effect that is to be tested seems to have been first 

proposed by Hodges and Lehmann (1962). Observations are aligned by subtracting 

estimates of the unwanted effects from each observation. The remain:ing residual is 

expected to contain ( on average) only the effect of interest, and thus no other ''nuisance" 

effects would be expected ( on average) to influence the outcome of the test. This can 

easily be demonstrated for testing the effect of interaction by an argument similar to the 

previous section. Once again, consider a two-way layout with "a" fixed levels of factor A 

and ''b" fixed levels of factor B, where the mean of each population is given by ~j =Ai+ 

Bj + (AB)ij , i=l,2, ... , a, j=l,2, ... , b. 

Corollary 4.1: Let (AX)ij = Xij - Ai - Bj, (AY)ki = Y kl - k- B1 be aligned observations, 

where A and B are unbiased estimators of A and B, respectively. Then if all populations 

are normally distributed, the expected rank of an aligned observation is independent of 

effects A and B. 

Proof Ifwe wish to test for the effect of interaction (AB), each observation is "aligned" 

by subtracting estimates of factors A and B. Since E(Xij) = µij =Ai+ Bj + (AB)ij, it 

follows that 

E[(AX)ij] = E(Xij)-A -Bj = (AB)ij, and E[(AY)ki] = E(Ykl)-Atc-B1 = (AB)ki 
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Also, if X and Y are normally distributed, 

(AX)ij-N[(AB)ij, er!) and (AY)ki-N[(AB)kl, er!), 

where er!= Var(Xij - Ai-Bj) for all i,j. This implies that 

P[(AY)ki<(AX)ij] = ct>((AB)ij -(AB)k1J . 
~2er! 

This shows that the expected rank of an aligned observation depends only on the effect of 

interaction for each cell Further, if(AB)ij = 0 for all i, j, then 

and then 

P[(AY)ki<(AX)ij] = ct>(O) =_!_for alli,j, 
2 

·n+l 1 1 
E[R((AX)ij)] = -+ L-n =-(l+nab) . 

2 j .. i2 2 

So, if the original data contains no interaction, neither will the ranks of the aligned 

observations. D 
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This procedure has been found to perform favorably compared to the F-test in some 

limited applications, both for testing for interaction and for testing for main effects when 

interaction is not present. It has been noted by some that a sli.ortcoming of this method is 

the inability to remove an interaction effect in order to test for main effects, but it is 

doubtful this scenario would be considered in practice. For example, in analyzing data in a 

two-way layout, the test for interaction would be performed first. If significant interaction 

was detected, there would be little use in testing for main effects. On the other hand, if 

the effect of interaction was determined to be not significant, it is likely that the interaction 

effect would not interfere with the tests for main effects. In this case, there would be no 

need to ''remove" the interaction effect. However, the fact that the procedure allows main 

effects to be removed makes it an excellent candidate to be an improvement over the rank 

transform procedure. 
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CHAPTER FIVE 

SIMULATION STUDY FOR A COMPLETELY RANDOMIZED TWO-FACTOR 

FACTORIAL EXPERIMENT 

5.1 Simulation Procedure 

Simulated data sets were generated to examine the performance of the three methods: 

the parametric F-test procedure (FT}, the estimated exact rank transform test procedure 

(RT}, and the estimated exact aligned rank transform test procedure (ART). For both 

rank tests, the estimated exact sampling distn"bution of the test statistics was used to 

obtain critical values. The following model was used to generate the observations: 

Yijk= µ+A + Bj + (AB}ij + ~jk, 

where A is the effect of the l 1 level of treatment A, Bj is the effect of the Jh level of 

treatment B, (AB),j is the effect of the interaction between the ith level of factor A and the 

Jh level of factor B, and eijk is the random error effect, and where i=l,2 3,4, j=l,2,3, and 

k=l,2, ... ,n. Standard normal (both with homogeneous and heterogeneous variances), 

uniform [-3,3], and exponential (µ=3) distributions were used to model the error 

distributions. In addition, different degrees of heterogeneity were considered. It was 

desired to observe both ''moderately large" and ''very large" degrees of heterogeneity. To 
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get some idea of these degrees, Hartley's F-max test was used to determine the 

approximate ratio between largest and smallest variances that would be considered 

moderately large and very large. Thus, for all models, ratios between the largest and the 

smallest variances of 10: 1 (moderately large) and 30: 1 (very large) were studied (in 

addition, some models with very, very large degrees ofheterogeneity were observed). 

Effect sizes ( denoted by "c" in the tabled results) are in standard deviation units, and range 

in magnitude from 0.5 (very small) to-3.5 (very large). Effects were chosen so that many 

different modelings of main effects and interaction could be investigated. The model 

containing only both main effects and the model containing all effects were the same as 

those for which Blair, et al. (1987) found that the rank transform procedure performed 

poorly. The values ai, bj, and abij referred to in the tables that follow represent the values 

assigned to A, Bj, and (AB)ij, respectively, for each model. All effects not referred to 

were set to zero. Critical values for both rank tests were estimated by calculating the 

value of the test statistic for a random sample of twenty thousand permutations of the 

ranks of the data. Ten thousand samples were generated, and the proportion oftest 

statistic values greater than or equal to the critical values for the respective sampling 

distn"butions was calculated. For the simulations in this chapter, as well as those in 

chapter six, when estimating a nominal type I error rate of0.05, the simulated values can 

be expected to be within 0.0056 of the true proportion, with 99% confidence (in the 

following tables, nominal levels in bold indicate values which are significantly different 

from 0.05). For power estimation, the simulated values have a maximum error of 

estimation of0.014, with 99% confidence. All simulations were programmed in 
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FORTRAN using Microsoft® Fortran PowerStation (Professional Edition) 4.0™ for 

Windows 95™, using IMSL™ MATH/LIBRARv® and STAT/LIBRARY® subroutines. 

5.2 Simulation Results 

5.2.1 Normal errors, equal variances (see Tables 5.1-5.7). The ART 

consistently showed power almost equal to that of the F-test. The RT tended to compare 

favorably in most cases, but showed poor power when both main effects and interaction 

were present in the model, especially for testing interaction (see Table 5.3). In addition, 

for all models the RT had nominal type I error rates that inflated as the magnitude of the 

effects increased. This occurred not only for tests for interaction in the presence of only 

both main effects, as reported by Blair, et al. (1987), but also for the test for the main 

effect not modeled when only one main effect was present. As can be seen in Table 5.2, 

these error rates approached 1.0 for the test for interaction for large sample sizes. The 

ART often had slightly inflated nominal type I error rates, but the inflation was never 

severe (usually only .01-.02 above the nominal level), and did not appear to be affected by 

the magnitude of the modeled effects. 
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Table 5.1. 

Proportion of rejections at a.=0.05, normally distnlmted errors with equal variance, 
based on 10,000 samples. A main effect present (a1=c, a3=-c). 

n=2 C 

Test for: Method 0.5 1.5 2.5 3.5 

Factor A FT .215 .969 1.00 1.00 
RT .206 .956 1.00 1.00 
ART .208 .959 1.00 1.00 

FactorB FT .052 .052 .052 .052 
RT .053 .055 .057 .060 
ART .055 .055 .055 .055 

Interaction FT .050 .050 .050 .050 
RT .054 .053 .060 .069 
ART .056 .056 .056 .056 

n= 10 C 

Test for: Method 0.5 1.5 2.5 3.5 

Factor A FT .901 1.00 1.00 1.00 
RT .888 1.00 1.00 1.00 
ART .886 1.00 1.00 1.00 

FactorB FT .052 .052 .052 .052 
RT .050 .049 .049 .050 
ART .051 .051 .051 .051 

Interaction FT .049 .049 .049 .049 
RT .051 .054 .060 .066 
ART .050 .050 .050 .050 
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Table 5.2. 

Proportion of rejections at a= .05, normallydistn"buted errors with equal variance, based 
on 10,000 samples. A and B main effects present (a2=b1=c, a3=b2= -c). 

n=2 C 

Test for: Method 0.5 1.5 2.5 3.5 

Factor A FT .210 .968 1.00 1.00 
RT .199 .942 1.00 1.00 
ART .199 .959 1.00 1.00 

FactorB FT .329 .999 1.00 1.00 
RT .317 .996 1.00 1.00 
ART .319 .998 1.00 1.00 

Interaction FT .050 .050 .050 .050 
RT .054 .054 .054 .068 
ART .056 .056 .056 .056 

n= 10 C 

Test for: Method 0.5 1.5 2.5 3.5 

Factor A FT .904 1.00 1.00 1.00 
RT .887 1.00 1.00 1.00 
ART .889 1.00 1.00 1.00 

FactorB FT .984 1.00 1.00 1.00 
RT .978 1.00 1.00 1.00 
ART .979 1.00 1.00 1.00 

Interaction FT .049 .049 .049 .049 
RT .051 .134 .671 .997 
ART .050 .050 .050 .050 
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Table 5.3. 

Proportion of rejections at a= .05, normally distributed errors with equal variance, based 
on 10,000 samples. A, Band interaction effects present (abn=c, b1=ab41= -c). 

n=2 C 

Test for: Method 0.5 1.5 2.5 3.5 

Factor A FT .066 .213 .527 .830 
RT .066 .132 .193 .218 
ART .065 .153 .252 .290 

FactorB FT .139 .780 .997 1.00 
RT ·.134 .652 .. 940 .994 
ART .140 .732 .989 1.00 

Interaction FT .069 .260 .655 .931 
RT .066 .153 .230 .264 
ART .075 .251 .617 .909 

n= 10 C 

Test for: Method 0.5 1.5 2.5 3.5 

Factor A FT .156 .907 1.00 1.00 
RT .145 .691 .896 .939 
ART .151 .829 .993 .999 

FactorB FT .622 1.00 1.00 1.00 
RT .582 1.00 1.00 1.00 
ART .589 1.00 1.00 1.00 

Interaction FT .214 .991 1.00 1.00 
RT .195 .908 .994 .999 
ART .210 .988 1.00 1.00 
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Table 5.4. 

Proportion of rejections at a= .05, normally distributed errors with equal variance, based 
on 10,000 samples. A main effect (large) and interaction (small) effects present 
(ab11=ab12=c, ab31=ab32=-c, a2=2c). 

n=2 C 

Test for: Method 0.5 1.5 2.5 3.5 

Factor A FT .383 1.00 1.00 1.00 
RT .369 1.00 1.00 1.00 
ART .374 1.00 1.00 1.00 

FactorB FT .052 .052 .052 .052 
RT .053 .049 .042 .043 
ART .053 .053 .053 .053 

Interaction FT .069 .259 .659 .940 
RT. .071 .272 .591 .760 
ART .074 .250 .621 .912 

n= 10 C 

Test for: Method 0.5 1.5 2.5 3.5 

Factor A FT .997 1.00 1.00 1.00 
RT .996 1.00 1.00 1.00 
ART .995 1.00 1.00 1.00 

FactorB FT .052 .052 .052 .052 
RT .050 .050 .039 .035 
ART .050 .048 .048 .046 

Interaction FT .216 .991 1.00 1.00 
RT .216 .991 1.00 1.00 
ART .207 .985 1.00 1.00 
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Table 5.5. 

Proportion of rejections at a= .05, normally distributed errors with equal variance, based 
on 10,000 samples. A main effect (small) and interaction effect (large) present 
(ab11=ab12=ab33=c, ab13=ab31=ab32= -c). 

n=2 C 

Test for: Method 0.5 1.5 2.5 3.5 

Factor A FT .068 .215 .530 .831 
RT .064 .186 .461 .680 
ART .067 .181 .445 .637 

FactorB FT .052 .052 .052 .052 
RT .054 .055 .058 .062 
ART .055 .054 .058 .057 

Interaction FT .130 .834 1.00 1.00 
RT .128 .811 .999 1.00 
ART .133 .799 .998 1.00 

n= 10 C 

Test for: Method 0.5 1.5 2.5 3.5 

Factor A FT .162 .901 1.00 1.00 
RT .158 .934 1.00 1.00 
ART .158 .933 1.00 1.00 

FactorB FT .050 .050 .050 .050 
RT .050 .048 .046 .045 
ART .049 .046 .045 .044 

Interaction FT .760 1.00 1.00 1.00 
RT .740 1.00 1.00 1.00 
ART .734 1.00 1.00 1.00 
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Table 5.6. 

Proportion of rejections at a= .05, normally distributed errors with equal variance, based 
on 10,000 samples. A main effect (large) and interaction effect (large) present 
(ab12=ab23=ab41=c, ab22=ab31=ab33= -c). 

n=2 C 

Test for: Method 0.5 1.5 2.5 3.5 

Factor A FT .100 .568 .957 .999 
RT .097 .541 .942 .998 
ART .097 .546 .942 .998 

FactorB FT .052 .052 .052 .052 
RT .049 .052 .057 .062 
ART .053 .051 .050 .053 

Interaction FT .111 .699 .992 1.00 
RT .105 .670 .987 1.00 
ART .114 .699 .991 1.00 

n= 10 C 

Test for: Method 0.5 1.5 2.5 3.5 

Factor A FT .431 1.00 1.00 1.00 
RT .414 1.00 1.00 1.00 
ART .415 1.00 1.00 1.00 

FactorB FT .052 .052 .052 .052 
RT .049 .050 .052 .054 
ART .052 .055 .064 .074 

Interaction FT .612 1.00 1.00 1.00 
RT .589 1.00 1.00 1.00 
ART .589 1.00 1.00 1.00 
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Table 5.7. 

Proportion of rejections at a= .05, normally distributed errors with equal variance, based 
on 10,000 samples. Interaction effect present (ab11=ab33=c, ab13=ab31=-c). 

n=2 C 

Test for: Method 0.5 1.5 2.5 3.5 

Factor A FT .050 .050 .050 .050 
RT .050 .049 .050 .055 
ART .051 .047 .048 .048 

FactorB FT .052 .052 .052 .052 
RT .055 .055 .054 .056 
ART .054 .049 .050 .048 

Interaction FT .109 .701 .995 1.00 
RT .108 .626 .975 1.00 
ART .114 .652 .983 1.00 

n= 10 C 

Test for: Method 0.5 1.5 2.5 3.5 

Factor A FT .050 .050 .050 .050 
RT .051 .047 .044 .042 
ART .050 .046 .041 .039 

FactorB FT .052 .052 .052 .052 
RT .049 .045 .039 .039 
ART .050 .044 .035 .031 

Interaction FT .061 1.00 1.00 1.00 
RT .058 1.00 1.00 1.00 
ART .058 1.00 1.00 1.00 
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5.2.2. Non-normal errors (see Tables 5.8-5.21). When the errors were uniformly 

distnlmted (Tables 5.8-5.14), all three methods had considerably less power than when 

errors were normally distn"buted. Relatively, however, the results were almost identical to 

the case for normally distributed errors, with the F-test having the most power, followed 

closely by the ART and then the RT. The ART again often had slightly inflated nominal 

type I error rates for testing interaction (see Tables 5.8-5.9). 

When the errors were exponentially distributed (see Tables 5.15-5.21), both rank tests 

had superior power to the F-test ( although the power of all tests was lower than either the 

uniform or normal error case). A notable exception was the model which had both main 

effects and interaction present, where again the RT had less power for testing interaction 

than in other models (see Table 5.17). Even though for most models the power of the RT 

was about the same as the FT ( except when effect magnitudes became very large, where 

the FT usually had more power), it was still outperformed by the ART. When only one 

main effect was present, along with interaction, the RT usually had slightly higher power 

for testing interaction than the ART, except when effect sizes were small ( see Table 5 .15). 

Interestingly, for small sample sizes (n=2 and n=5 observations per cell), when the 

error distributions were non-normal, the nominal type I error rates for the RT did not 

show a tendency to inflate as the magnitudes of the effects increased (see Tables 5.9 and 

5.16). The inflation was evident for larger sample sizes (~10 observations per cell), but 

was much less severe than in the case of normally distn"buted errors. 
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The reader should exercise caution, however, when interpreting power disparities 

between different error distributions. In these simulations, all methods had less power 

when the error distributions were non-normal. It should be noted, however, that 

parameters for the two non-normal distributions could have been chosen so that all 

methods would have had more power for non-normally distributed errors than for 

normally distributed errors. However, the parameters in this study were chosen to 

facilitate the comparison of powers between the different methods. Thus, while. the 

relative performance of the methods for each of the distn"butions can be generalized, the 

same is not true for the performance of any given method across the different 

distributions. 
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Table 5.8. 

Proportion of rejections at a=0.05, uniformly distn'buted errors with equal variance, 
based on 10,000 samples. Amain effect present (a1=c, a3=-c). 

n=2 C 

Test for: Method 0.5 1.5 2.5 3.5 

Factor A FT .094 .541 .968 1.00 
RT .091 .477 .948 1.00 
ART .090 .487 .952 1.00 

FactorB FT .052 .052 .052 .052 
RT .051 .051 .054 .054 
ART .055 .055 .055 .055 

Interaction FT .054 .054 .054 .054 
RT .052 .051 .055 .057 
ART .058 .058 .058 .058 

n= 10 C 

Test for: Method 0.5 1.5 2.5 3.5 

Factor A FT .422 1.00 1.00 1.00 
RT .395 1.00 1.00 1.00 
ART .389 1.00 1.00 1.00 

FactorB FT .051 .051 .051 .051 
RT .049 .049 .048 .050 
ART .048 .048 .048 .048 

Interaction FT .050 .050 .050 .050 
RT .051 .053 .056 .058 
ART .050 .050 .050 .050 
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Table 5.9. 

Proportion of rejections at a= .05, uniformly distn'buted errors with equal variance, 
based on 10,000 samples. A and B main effects present (a2=b1=c, a3=b2=-c). 

n=2 C 

Test for: Method 0.5 1.5 2.5 3.5 

Factor A FT .097 .540 .965 1.00 
RT .089 .465 .926 .998 
ART .093 .489 .948 1.00 

FactorB FT .131 .776 .999 1.00 
RT .124 .716 .997 1.00 
ART .130 .745 .999 1.00 

Interaction FT .054 .054 .054 .054 
RT .051 .050 .052 .049 
ART .058 .058 .058 .058 

n= 10 C 

Test for: Method 0.5 1.5 2.5 3.5 

Factor A FT .422 1.00 1.00 1.00 
RT .382 1.00 1.00 1.00 
ART .392 1.00 1.00 1.00 

FactorB FT .617 1.00 1.00 1.00 
RT .556 1.00 1.00 1.00 
ART .562 1.00 1.00 1.00 

Interaction FT .050 .050 .050 .050 
RT .051 .058 .108 .273 
ART .050 .050 .050 .050 

45 



Table 5.10. 

Proportion of rejections at a= .05, uniformly distributed errors with equal variance, based 
on 10,000 samples. A, Band interaction effects present (ab11=c, b1=ab41=-c). 

n=2 C 

Test for: Method 0.5 1.5 2.5 3.5 

Factor A. FT .055 .094 .188 .340 
RT .054 .081 .119 .161 
ART .056 .085 .139 .202 

FactorB FT .079 .325 .751 .972 
RT .077 .272 .590 .831 
ART .080 .300 .678 .933 

Interaction FT .061 .110 .231 .437 
RT .057 .088 .145 .195 
ART .061 .111 .223 .404 

n= 10 C 

Test for: Method 0.5 1.5 2.5 3.5 

Factor A FT .086 .431 .884 1.00 
RT .083 .322 .656 .817 
ART .083 .358 .752 .952 

FactorB FT .234 .984 1.00 1.00 
RT .212 .952 1.00 1.00 
ART .211 .958 1.00 1.00 

Interaction FT .094 .603 .987 1.00 
RT .090 .457 .879 .975 
ART .092 .537 .969 1.00 
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Table 5.11. 

Proportion of rejections at a= .05, uniformly distributed errors with equal variance, 
based on 10,000 samples. A main effect (large) and interaction (small) effects present 
( abu=ab12=c, ab31=ab32=-c, a2=2c ). 

n=2 C 

Test for: Method 0.5 1.5 2.5 3.5 

Factor A FT .143 .861 1.00 1.00 
RT .133 .811 1.00 1.00 
ART .134 .828 1.00 1.00 

FactorB FT .052 .052 .052 .052 
RT .051 .051 .052 .043 
ART .055 .054 .051 .050 

Interaction FT .059 .111 .233 .434 
RT .054 .107 .243 .412 
ART .063 .108 .220 .403 

Table 5.12. 

Proportion of rejections at a= .05, uniformly distributed errors with equal variance, 
based on 10,000 samples. A main effect (small) and interaction effect (large) present 
(abu=ab12=ab33=c, ab13=ab31=ab32= -c). 

n=2 C 

Test for: Method 0.5 1.5 2.5 3.5 

Factor A FT .057 .094 .187 .337 
RT .054 .086 .150 .274 
ART .053 .082 .150 .280 

FactorB FT .052 .052 .052 .052 
RT .051 .051 .054 .055 
ART .054 .050 .052 .053 

Interaction FT .075 .327 .791 .992 
RT .074 .290 .734 .972 
ART .079 .301 .738 .975 
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Table 5.13. 

Proportion of rejections at a= .05, uniformly distnlmted errors with equal variance, 
based on 10,000 samples. A main effect (large) and interaction effect (laige) present 
(ab12=ab23=ab41=c, ab22=ab31=ab33= -c). 

n=2 C 

Test for: Method 0.5 1.5 2.5 3.5 

Factor A FT .066 .202 .503 .836 
RT .062 .182 .456 .772 
ART .063 .188 .465 .787 

FactorB FT .052 .052 .052 .052 
RT .050 .050 .055 .053 
ART .054 .055 .051 .050 

Interaction FT .071 .245 .644 .948 
RT .068 .219 .577 .904 
ART .074 .241 .623 .934 

Table 5.14. 

Proportion of rejections at a= .05, uniformly distributed errors with equal variance, based 
on 10,000 samples. Interaction effect present (abu=ab33=c, ab13=ab31=-c). 

n=2 C 

Test for: Method 0.5 1.5 2.5 3.5 

Factor A FT .050 .050 .050 .050 
RT .050 .050 .050 .051 
ART .049 .051 .049 .046 

FactorB FT .052 .052 .052 .052 
RT .052 .053 .054 .055 
ART .055 .053 .053 .052 

Interaction FT .068 .249 .643 .946 
RT .068 .214 .531 .856 
ART .072 .235 .583 .898 
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Table 5.15. 

Proportion of rejections at a=0.05, identically exponentially distributed errors, 
based on 10,000 samples. A main effect present (a1=c, a3=-c). 

n=2 C 

Test for: Method 0.5 1.5 2.5 3.5 

Factor A FT .066 .242 .576 .831 
RT .090 .357 .687 .888 
ART .083 .329 .662 .875 

FactorB FT .047 .047 .047 .047 
RT .053 .053 .054 .052 
ART .059 .059 .059 .059 

Interaction FT .055 .055 .055 .055 
RT .055 .058 .059 .057 
ART .074 .074 .074 .074 

n= 10 C 

Test for: Method 0.5 1.5 2.5 3.5 

Factor A FT .170 .902 1.00 1.00 
RT .359 .994 1.00 1.00 
ART .334 .994 1.00 1.00 

FactorB FT .047 .047 .047 .047 
RT .048 .048 .046 .048 
ART .048 .048 .048 .048 

Interaction FT .048 .048 .048 .048 
RT .052 .057 .057 .057 
ART .061 .061 .061 .061 
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Table 5.16. 

Proportion of rejections at a.= .05, identically exponentially distnlmted errors, 
based on 10,000 samples. A and B main effects present (a2=b1=c, a3=b2=-c). 

n=2 C 

Test for: Method 0.5 1.5 2.5 3.5 

Factor A FT .066 .246 .574 .828 
RT .083 .314 .621 .834 
ART .086 .335 .665 .877 

FactorB FT .084 .386 .762 .943 
RT .119 .497 .825. .956 
ART .113 .485 .839 .966 

Interaction FT .055 .055 .055 .055 
RT .058 .059 .059 .057 
ART .074 .074 .074 .074 

n= 10 C 

Test for: Method 0.5 1.5 2.5 3.5 

Factor A FT .172 .898 1.00 1.00 
RT .329 .985 1.00 1.00 
ART .332 .993 1.00 1.00 

FactorB FT .251 .977 1.00 1.00 
RT .477 .999 1.00 1.00 
ART .463 1.00 1.00 1.00 

Interaction FT .048 .048 .048 .048 
RT .053 .060 .078 .121 
ART .061 .061 .061 .061 
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Table 5.17. 

Proportion of rejections at a= .05, identically exponentially distributed errors, based on 
10,000 samples. A, B and interaction effects present (abu=c, b1=ab41=-c). 

n=2 C 

Test for: Method 0.5 1.5 2.5 3.5 

Factor A FT .049 .063 .097 .154 
RT .054 .073 .094 .121 
ART .057 .080 .113 .151 

FactorB FT .057 .155 .362 .610 
RT .073 .224 .405 .576 
ART .072 .208 .420 .634 

Interaction FT .058 .075 .113 .186 
RT .059 .082 .109 .142 
ART .076 .100 .153 .234 

n= 10 C 

Test for: Method 0.5 1.5 2.5 3.5 

Factor A FT .059 .167 .412 .707 
RT .077 .238 .443 .616 
ART .075 .268 .549 .774 

FactorB FT .113 .638 .961 1.00 
RT .200 .832 .986 1.00 
ART .185 .841 .992 1.00 

Interaction FT .065 .227 .592 .891 
RT .089 .335 .634 .836 
ART .091 .412 .846 .984 
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Table 5.18. 

Proportion of rejections at a= .05, identically exponentially distributed errors, based on 
10,000 samples. A main effect (large) and interaction (small) effects present (abn=ab12=c, 
ab31=ab32=-c, a2=2c ). 

n=2 C 

Test for: Method 0.5 1.5 2.5 3.5 

Factor A FT .082 .436 .831 .968 
RT .123 .569 .896 .981 
ART .114 .536 .885 .980 

FactorB FT .047 .047 .047 .047 
RT .053 .054 .051 .049 
ART .058 .058 .056 .056 

Interaction FT .056 .074 .114 .191 
RT .062 .098 .163 .243 
ART .077 .102 .156 .239 

Table 5.19. 

Proportion of rejections at a= .05, identically exponentially distributed errors, based on 
10,000 samples. A main effect (small) and interaction effect (large) present 
(abn=ab12=ab33=c, abn=ab31=ab32= -c). 

n=2 C 

Test for: Method 0.5 1.5 2.5 3.5 

Factor A FT .049 .067 .099 .157 
RT .054 .079 .112 .168 
ART .057 .078 .115 .166 

Factor B FT .047 .047 .047 .047 
RT .052 .052 .052 .053 
ART .058 .057 .055 .055 

Interaction FT .064 .146 .366 .634 
RT .074 .230 .489 .712 
ART .086 .196 .415 .665 
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Table 5.20. 

Proportion of rejections at a.= .05, identically exponentially distnbuted errors, based on 
10,000 samples. A main effect (large) and interaction effect (large) present 
(ab12=ab23=ab41=c, ab22=ab31=ab33= -c). 

n=2 C 

Test for: Method 0.5 1.5 2.5 3.5 

Factor A FT .054 .102 .229 .418 
RT .064 .153 .303 .477 
ART .063 .145 .293 .467 

FactorB FT .047 .047 .047 .047 
RT .054 .053 .052 .051 
ART .057 .055 .053 .055 

Interaction FT .062 .121 .276 .515 
RT .066 .179 .375 .591 
ART .083 .163 .341 .572 

Table 5.21. 

Proportion of rejections at a.= .05, identically exponentially distributed errors, based on 
10,000 samples. Interaction effect present (ab11=ab33=c, ab13=ab31=-c). 

n=2 C 

Test for: Method 0.5 1.5 2.5 3.5 

Factor A FT .049 .049 .049 .049 
RT .052 .052 .048 .049 
ART .056 .055 .054 .054 

FactorB FT .047 .047 .047 .047 
RT .053 .054 .054 .053 
ART .059 .058 .057 .056 

Interaction FT .062 .121 .280 .515 
RT .069 .180 .369 .567 
ART .083 .162 .329 .548 
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5.2.3. Normal errors, unequal variances (see Tables 5.22-5.28). This situation 

was a much more serious problem than the lack of normality. As in the case of non

normally distributed errors, however, the power for all methods was less than in the equal 

variance case, and this decrease in power became more severe as the degree of 

heterogeneity between variances increased. In this case, however, since all errors were 

normally distributed with mean zero, the observed power disparity can be attnl>uted to 

variance heterogeneity alone. Also as in the non-normal case, however, both rank tests 

consistently outperformed the FT in the power category, except for the RT in the 

previously discussed model (see Table 5.24). The FT did, however, often have slightly 

higher power for very small effect magnitudes. In addition, the ART usually had more 

power for testing interaction than the RT. These last two observations deserve some 

comment. Examination of nominal type I error rates for testing interaction when none 

was modeled revealed that these rates were inflated for all three methods, with more 

severe inflation occurring when the variances were more variable (see Tables 5.22, 5.23). 

This indicated that variance heterogeneity actually tends to introduce interaction into the 

data more often than would be expected. The ART seemed to be the most sensitive to 

this interaction, which is not surprising since the alignment procedure isolates the effect of 

interaction, followed by the FT and then the RT. Thus, it is not surprising that the ART 

showed more power when interaction was actually modeled. In addition, the RT, which 

was the least sensitive to interaction, usually "caught up" to the other two tests' type I 

error nominal levels as the magnitude of the effects became very large. This was the same 

behavior that was observed in the equal variance case. 
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The problem of nominal type I error rate :inflation was not limited only to the test for 

interaction, however. When only one main effect was modeled along with an interaction 

effect, the nominal type I error rates for testing the unmodeled main effect were also 

:inflated for all methods. Thus, it is apparent that variance heterogeneity can produce very 

erratic behavior in the data. 

Although the results reported in this paper are all based an a nominal type I error rate 

of0.05, simulations were also conducted using nominal type I error rates of0.10 and 

0.01. The results obtained were similar for all three levels. 
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Table 5.22. 

Proportion of rejections at a=0.05, nonnally distributed errors with unequal variance, 
based on 10,000 samples. A main effect present (a1=c, a3=-c). 

n=2 C 

(10: 1 ratio) Test for: Method 0.5 1.5 2.5 3.5 

Factor A FT .106 .394 .829 .985 
RT .105 .477 .904 .995 
ART .107 .465 .898 .994 

FactorB FT .069 .069 .069 .069 
RT .060 .066 .070 .072 
ART .063 .063 .063 .063 

Interaction FT .090 .090 .090 .090 
RT .069 .076 .085 .090 
ART .097 .097 .097 .097 

n=2 C 

(30:1 ratio) Test for: Method 0.5 1.5 2.5 3.5 

Factor A FT .108 .215 .476 .758 
RT .095 .296 .661 .905 
ART .098 .273 .626 .892 

Factor B FT .083 .083 .083 .083 
RT .065 .071 ·.076 .083 
ART .067 .067 .067 .067 

Interaction FT .113 .113 .113 .113 
RT .077 .085 .098 .109 
ART .134 .134 .134 .134 

56 



Table 5.22 continued. 

n=2 C 

( 60: 1 ratio) Test for: Method 0.5 2.0 2.5 3.5 

Factor A FT .111 .167 .307 .510 
RT .095 .226 .487 .763 
ART .100 .206 .441 .721 

FactorB FT .090 .090 .090 .090 
RT .069 .074 .080 .087 
ART .071 .071 .071 .071 

Interaction FT .127 .127 .127 .127 
RT .082 .089 .102 .117 
ART .159 .159 .159 .159 

n=lO C 

(30:1 ratio) Test for: Method 0.5 1.5 2.5 3.5 

Factor A FT .141 .885 1.00 1.00 
RT .234 .991 1.00 1.00 
ART .232 .990 1.00 1.00 

FactorB FT .057 .057 .057 .057 
RT .052 .052 .053 .055 
ART .052 .052 .052 .052 

Interaction FT .091 .091 .091 .091 
RT .062 .067 .076 .082 
ART .130 .130 .130 .130 
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Table 5.23. 

Proportion of rejections at a.= .05, normally distributed errors with unequal variance, 
based on 10,000 samples. A and B main effects present (a2=b1=c, a3=b2= -c). 

n=2 C 

( 10: 1 ratio) Test for: Method 0.5 1.5 2.5 3.5 

Factor A FT .108 .394 .812 .979 
RT .101 .428 .816 .976 
ART .103 .453 .870 .991 

FactorB FT .124 .573 .944 .999 
RT .125 .607 .941 .998 
ART .132 .631 .963 1.00 

Interaction FT .090 .090 .090 .090 
RT .071 .084 .086 .090 
ART .097 .097 .097 .097 

n=2 C 

(30: 1 ratio) Test for: Method 0.5 1.5 2.5 3.5 

Factor A FT .108 .218 .475 .753 
RT .096 .280 .562 .802 
ART .097 .279 .613 .874 

FactorB FT .108 .313 .651 .887 
RT .102 .380 .718 .914 
ART .105 .406 .757 .945 

Interaction FT .113 .113 .113 .113 
RT .080 .099 .110 .111 
ART .134 .134 .134 .134 
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Table 5.23 continued. 

n=2 C 

( 60: 1 ratio) Test for: Method 0.5 1.5 2.5 3.5 

Factor A FT .112 .171 .305 .510 
RT .094 .220 .418 .626 
ART .098 .211 .438 .703 

FactorB FT .105 .216 .433 .674 
RT .093 .288 .550 .763 
ART .097 .302 .582 .806 

Interaction FT ..• 127 .127 .127 .127 
RT .085 .105 .121 .125 
ART .159 .159 .159 .159 

n= 10 C 

(30: 1 ratio) Test for: Method 0.5 1.5 2.5 3.5 

Factor A FT .145 .865 1.00 1.00 
RT .228 .967 1.00 1.00 
ART .231 .977 1.00 1.00 

FactorB FT .201 .947 1.00 1.00 
RT .306 .993 1.00 1.00 
ART .309 .995 1.00 1.00 

Interaction FT .091 .091 .091 .091 
RT .076 .129 .149 .153 
ART .130 .130 .130 .130 
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Table 5.24. 

Proportion of rejections at a.= .05, normally distributed errors with unequal variance, 
based on 10,000 samples. ~Band interaction effects present (ab11=c, b1=ab41= -c). 

n=2 C 

(10:1 ratio) Test for: Method 0.5 1.5 2.5 3.5 

Factor A FT .084 .111 .166 .252 
RT .069 .094 .136 .176 
ART .071 .098 .141 .188 

FactorB FT .088 .245 .538 .810 
RT .076 .217 .473 .728 
ART .081 .236 .528 .808 

Interaction FT .093 .128 .206 .320 
RT .069 .091 .129 .178 
ART .102 .146 .222 .334 

n=2 C 

(30: 1 ratio) Test for: Method 0.5 1.5 2.5 3.5 

Factor A FT .097 .110 .132 .167 
RT .076 .090 .115 .146 
ART .082 .093 .118 .144 

FactorB FT .090 .160 .291 .481 
.RT .075 .144 .275 .455 
ART .075 .153 .302 .506 

Interaction FT .117 .132 .164 .211 
RT .078 .086 .110 .140 
ART .135 .157 .193 .248 
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Table 5.24 continued. 

n=2 C 

(60:1 ratio) Test for: Method 0.5 1.5 2.5 3.5 

Factor A FT .106 .112' .125 .145 
RT .081 .090 .104 .125 
ART .088 .097 .111 .130 

FactorB FT .094 .132 .209 .316 
RT .074 .116 .198 .315 
ART .075 .124 .218 .350 

Interaction FT .130 .136 .154 .183 
RT .083 .091 .102 .118 
ART .160 .171 .193 .225 

n= 10 C 

(30: 1 ratio) Test for: Method 0.5 1.5 2.5 3.5 

Factor A FT .089 .147 .287 .516 
RT .079 .165 .363 .598 
ART .080 .167 .351 .586 

FactorB FT .101 .517 .931 .999 
RT .094 .534 .934 .999 
ART .096 .541 .942 .999 

Interaction FT .101 .197 .429 .736 
RT .068 .136 .326 .620 
ART .157 .356 .718 .958 
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Table 5.25. 

Proportion of rejections at a= .05, normally distributed errors with unequal variance, 
based on 10,000 samples. A main effect (large) and interaction (small) effects present 
(abu=ab12=c, ab31=ab32=-c, a2=2c). 

n=2 C 

( 10: 1 ratio) Test for: Method 0.5 1.5 2.5 3.5 

Factor A FT .138 .656 .977 1.00 
RT .139 .729 .991 1.00 
ART .142 .721 .990 1.00 

FactorB FT .069 .069 .069 .069 
RT .061 .066 .070 .065 
ART .063 .063 .066 .067 

Interaction FT .093 .123 .196 .326 
RT .074 .128 .210 .329 
ART .102 .143 .226 .356 

n=2 C 

(30: 1 ratio) Test for: Method 0.5 1.5 2.5 3.5 

Factor A FT .122 .353 .740 .952 
RT .115 .471 .870 .988 
ART .115 .449 .851 .986 

Factor B · FT .083 .083 .083 .083 
RT .067 .073 .083 .085 
ART .066 .069 .071 .074 

Interaction FT .115 .127 - .155 .201 
RT .082 .120 .167 .219 
ART .134 .157 .193 .252 
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Table 5.25 continued. 

n=2 C 

(60:1 ratio) Test for: Method 0.5 1.5 2.5 3.5 

Factor A FT .119 .235 .496 .768 
RT .107 .345 .708 .926 
ART .110 .319 .671 .905 

FactorB FT .090 .090 .090 .090 
RT .069 .075 .087 .093 
ART .070 .073 .075 .077 

Interaction FT .128 .135 .150 .174 
RT .086 .116 .156 .188 
ART .160 .173 .194 .232 

Table 5.26. 

Proportion of rejections at a.= .05, normally distributed errors with unequal variance, 
based on 10,000 samples. A main effect (small) and interaction effect (large) present 
(ab11=ab12=ab33=c, abn=ab31=ab32= -c). 

n=2 C 

(10:1 ratio) Test for: Method 0.5 1.5 2.5 3.5 

Factor A FT .082 .106 .159 .258 
RT .070 .105 .161 .245 
ART .075 .108 .157 .232 

FactorB FT .069 .069 .069 .069 
RT .061 .066 .071 ·.076 
ART .063 .067 .071 .077 

Interaction FT .104 .252 .589 .880 
RT .090 .291 .646 .904 
ART .115 .286 .613 .883 
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Table 5.26 continued. 

n=2 ~ C 

(30:1 ratio) Test for: Method 0.5 1.5 2.5 3.5 

Factor A FT .098 .108 .129 .162 
RT .078 .102 .139 .177 
ART .082 .103 .133 .169 

FactorB FT .083 .083 .083 .083 
RT .065 .072 .081 .085 
ART .066 .072 .078 .085 

Interaction FT .121 .177 .316 .529 
RT .093 .198 .407 .641 
ART .143 .221 .384 .600 

n=2 C 

(60:1 ratio) Test for: Method 0.5 1.5 2.5 3.5 

Factor A FT .106 .111 .122 .143 
RT .081 .102 .126 .160 
ART .090 .107 .126 .151 

FactorB FT .090 .090 .090 .090 
RT .069 .075 .084 .089 
ART .070 .077 .082 .088 

Interaction FT .130 .161 .227 .349 
RT .093 .165 .300 .478 
ART .166 .211 .302 .441 
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Table 5.27. 

Proportion of rejections at a.= .05, normally distributed errors with unequal variance, 
based on 10,000 samples. A main effect (large) and interaction effect (large) present 
(ab12=ab23=ab41=c, ab2i=ab31=ab33= -c). 

n=2 C 

(10:1 ratio) Test for: Method 0.5 1.5 2.5 3.5 

Factor A FT .088 .171 .360 .608 
RT .077 .178 .382 .614 
ART .081 .177 .371 .608 

FactorB FT .069 .069 .069 .• 069 
RT .063 .065 .067 .072 
ART .063 .065 .065 .066 

Interaction FT .102 .211 .463 .752 
RT .085 .226 .509 .782 
ART .111 .244 .508 .783 

n=2 C 

(30: 1 ratio) Test for: Method 0.5 1.5 2.5 3.5 

Factor A FT .100 .132 .208 .333 
RT .079 .133 .239 .378 
ART .084 .134 .228 .359 

FactorB FT .083 .083 .083 .083 
RT .067 .073. .076 .081 
ART .067 .069 .075 .076 

Interaction FT .119 .161 .260 .420 
RT .086 .165 .315 .505 
ART .141 .204 .325 .500 
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Table 5.27 continued. 

n=2 C 

( 60: 1 ratio) Test for: Method 0.5 1.5 2.5 3.5 

Factor A FT .107 .128 .164 .228 
RT .083 .122 .189 .277 
ART .088 .123 .177 .258 

FactorB FT .090 .090 .090 .090 
RT .068 .075 .082 .084 
ART .068 .074 .080 .083 

Interaction FT .130 .153 .201 .286 
RT .088 .144 .244 .370 
ART .162 .200 .269 .371 

Table 5.28. 

Proportion of rejections at a= .05, normally distnlmted errors with unequal variance, 
based on 10,000 samples. Interaction effect present (ab11=ab33=c, ab13=ab31=-c). 

n=2 C 

(10: 1 ratio) Test for: Method 0.5 1.5 2.5 3.5 

Factor A FT .080 .080 .080 .080 
RT .068 .071 .074 .076 
ART .070 .075 .075 .073 

FactorB FT .069 .069 .069 .069 
RT .061 .067 .069 .069 
ART .061 .065 .067 .065 

Interaction FT .100 .209 .464 .767 
RT .085 .225 .499 .773 
ART .113 .236 .488 .760 
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Table 5.28 continued. 

n=2 C 

(30: 1 ratio) Test for: Method 0.5 1.5 2.5 3.5 

Factor A FT .095 .095 .095 .095 
RT .075 .082 .087 .088 
ART .081 .086 .090 .089 

FactorB FT .083 .083 .083 .083 
RT .066 .071 .076 .078 
ART .068 .070 .075 .079 

Interaction FT .119 .162 .259 .424 
RT .088 .167 .320 .510 
ART .140 .201 .319 .483 

n=2 C 

( 60: 1 ratio) Test for: Method 0.5 1.5 2.5 3.5 

Factor A FT .106 .106 .106 .106 
RT .081 .086 .091 .094 
ART .089 .092 .098 .099 

FactorB FT .090 .090 .090 .090 
RT .068 .074 .080 .083 
ART .070 .074 .080 .084 

Interaction FT .130 .152 .201 .285 
RT .091 .144 .247 .380 
ART .163 .198 .269 .372 

67 



Table 5.28 continued. 

n= 10 C 

(30: 1 ratio) Test for: Method 0.5 1.5 2.5 3.5 

Factor A FT .084 .084 .084 .084 
RT .071 .073 .076 .078 
ART .070 .073 .077 .080 

FactorB FT .057 .057 .057 .057 
RT .059 .075 .079 .073 
ART .058 .073 .077 .072 

Interaction FT .115 .493 .979 1.00 
RT .140 .888 1.00 1.00 
ART .221 .890 1.00 1.00 

5.3 Conclusion for Analysis of Completely Randomized Factorial Experiments 

The exact aligned rank procedure appears to be the overall best choice for performing 

tests in a general factorial experiment. When the error distribution was symmetric and 

error variances were homogeneous (situations in which the F-test is generally assumed to 

work well), the ART was nearly as powerful as the F-test, with an almost negligible 

difference in power between the two methods. For a skewed error distribution, the ART 

was clearly more powerful than the F-test. When the error variances were heterogeneous, 

both methods had problems maintaining nominal type I error levels for testing interaction, 

but the ART showed superior power for detecting main effects and interaction. Thus as a 
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general purpose method, the ART appears to be superior to the F-test. It is possible that 

the ART procedure could benefit from an additional adjustment to stabilize variances. ~ 

in addition to aligning the observations with regard to location, the observations could 

also be scaled to correct for possiole problems with unequal variance, then the tendency 

for the ART to have inflated nominal type I error rates could be eliminated. 

The problems with the rank transform method in two-factor experiments are not 

alleviated by using the exact permutation distribution of the test statistic computed on the 

ranks. Based upon the results of this and other studies, the rank transform procedure 

should not be used to analyze data in a factorial arrangement, due to the serious type I 

error rate inflations caused by the transformation of data to ranks, and also to the poor 

power exln"bited for some models. This implies that the rank transform procedure should 

be avoided in any design that allows for interaction between factors. 
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CHAPTER SIX 

SIMULATION STUDY FOR A SPLIT-UNIT EXPERIMENT 

6.1 Simulation Procedure 

Simulated data sets were generated to examine the performance of the three methods: 

the parametric F-test procedure (FT), the exact rank transform test procedure (RT), and 

the exact aligned rank transform test procedure (ART). A split-unit experiment with main 

units in a randomized complete block design was considered. The following model was 

used to generate the observations: 

where Bi is the random effect of the ith block, Mj is the fixed effect of the l11 level of the 

main unit treatment, (BM)ij is the random effect of the interaction between the ith block 

and the Jh level of the main unit treatment, Sk is the fixed effect of the kth level of the sub

unit treatment, (MS)jk is the fixed effect of the interaction between the l11 level of the sub

unit treatment with the kth level of the main unit treatment, and Eijk is the random sub-unit 

error effect. The random effect (BM)ij was used as error to test for the effect of the main 

unit treatment, while the random effect Eijk was used as error to test both the sub-unit 

treatment effect, Sk, and the interaction effect, (MS )jk· Standard normal (both with 
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homogeneous and heterogeneous variances), exponential (µ=3) and uniform [-3,3] 

distributions were used to model the error distributions. Using notation analogous to 

Chapter Five, The values Jlli, Sj, and msij referred to in the tables that follow represent the 

values assigned to Mi, Sj, and (MS)ij, respectively, for each model. Ten thousand samples 

were generated, and the proportion oftest statistic values greater than or equal to the 

critical values for the respective sampling distributions was calculated. 

For the aligned rank procedure, three different methods of aligning were used, 

depending upon the effect being tested. For testing main unit treatment effect, the 

observations were aligned by subtracting estimates ofboth block and sub-unit treatment 

effects. For testing sub-unit treatment effect, estimates ofboth block and main unit 

treatment effects were subtracted from each observation. Finally, for testing interaction, 

the observations were aligned by subtracting block, main unit and sub-unit effect 

estimates. 

6.2 Simulation Results 

6.2.1. Normal errors, equal variances (see Tables 6.1-6.5). In this situation, all 

random effects were modeled as identically distributed standard normal distributions. The 

three methods performed almost identically to the previous study of the two-way layout in 

a completely randomized design. Both rank tests consistently had power almost equal to 
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that of the F-test. As in the completely randomized case, the RT again showed poor 

power for testing interaction when both main and sub-unit main effects and interaction 

were present in the model (see Table 6.4). Also, Table 6.3 shows that when only main 

and sub-unit effects were in the model, the RT again had type I error rates that inflated as 

the magnitude of the effects increased. This behavior was not as evident for other models, 

however. 
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Table 6.1. 

Proportion of rejections at a.=0.05, normally clistn"buted errors with equal variance, 
based on 10,000 samples. Sub-unit main effect present (s1=-c, SJ=c). 

C 

Test for: Method 0.5 1.5 2.5 3.5 

MUTrt FT .048 .048 .048 .048 
RT .054 .049 .050 .047 
ART .053 .053 .053 .053 

SUTrt FT .050 1.00 1.00 1.00 
RT .046 1.00 1.00 1.00 
ART .048 1.00 1.00 1.00 

Interaction FT .055 .055 .055 .055 
RT .044 .049 .048 .047 
ART .049 .051 .051 .049 

Table 6.2. 

Proportion of rejections at a.=0.05, normally distn"buted errors with equal variance, 
based on 10,000 samples. Main unit main effect present (m1=c, m3=-c). 

C 

Test for: Method 0.5 1.5 2.5 3.5 

MUTrt FT .087 .476 .900 .994 
RT .092 .480 .894 .994 
ART .096 .484 .898 .995 

SUTrt FT .049 .049 .049 .049 
RT .047 .046 .048 .050 
ART .050 .050 .050 .050 

Interaction FT .049 .049 .049 .049 
RT .044 .044 .047 .053 
ART .049 .049 .049 .049 
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Table 6.3. 

Proportion of rejections at a= .05, normally distn'buted errors with equal variance, based 
on 10,000 samples. MU and SU main effects present (m2=s1=c, m3=Si= -c). 

C 

Test for: Method 0.5 1.5 2.5 3.5 

MUTrt FT .088 .474 .900 .994 
RT .091 .467 .889 .993 
ART .096 .481 .897 .993 

SUTrt FT .500 1.00 1.00 1.00 
RT .449 1.00 1.00 1.00 
ART .473 1.00 1.00 1.00 

Interaction FT .049 .049 .049 .049 
RT .046 .047 .077 .148 
ART .049 .049 .049 .049 

Table 6.4. 

Proportion of rejections at a= .05, normally distn'buted errors with equal variance, based 
on 10,000 samples. MU, SU main effects and interaction effect present (ms11=-c, 
S1=ms41=c). 

c· 
Test for: Method 0.5 1.5 2.5 3.5 

MUTrt FT .052 .087 .168 .298 
RT .057 .078 .114 .146 
ART .058 .087 .123 .155 

SUTrt FT .187 .942 1.00 1.00 
RT .168 .875 .998 1.00 
ART. .179 .911 1.00 1.00 

Interaction FT .079 .416 .894 .997 
RT .070 .269 .497 .642 
ART .075 .383 .850 .991 
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Table 6.5. 

Proportion of rejections at a= .05, normally distributed errors with equal variance, based 
on 10,000 samples. Interaction effect present (ms11=ms33=c, ms13=ms31=-c). 

C 

Test for: Method 0.5 1.5 2.5 3.5 

MUTrt FT .048 .048 .048 .048 
RT .053 .052 .048 .047 
ART .053 .052 .049 .052 

SUTrt FT .049 .049 .049 .049 
RT .048 .045 .045 .044 
ART .049 .048 .040 .033 

Interaction FT .149 .919 1.00 1.00 
RT .128 .852 .999 1.00 
ART .140 .878 1.00 1.00 

6.2.2. Non-normal errors (see Tables 6.6-6.29). Four different cases were 

considered. In the first three cases, one random effect was modeled as either 

exponentially or uniformly distributed, while the other two random effects were modeled 

as normally distributed. In addition, one case was investigated with both random error 

effects uniformly distributed. 

When the block effect was exponentially distn"buted, the behavior of the tests did not 

deviate significantly from the case of all normally distributed random effects. When the 

main unit error was exponentially distributed, although all tests had less power than when 
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all random effects were normaDy distributed, both rank tests usually had superior power to 

the F-test ( see Tables 6.11-6.15). One exception was the model which had both main 

effects and interaction present, where again the RT had much less power for testing 

interaction than the other two methods, as can be seen in Table 6.14. Another exception 

was the model where only interaction was present (see Table 6.15). Here, the F-test was 

not outperformed, but had slightly more power than either of the two rank tests. Table 

6.13 indicates that the RT also had inflated type I error rates in tests for interaction when 

the model included only both main and sub-unit main effects. When the sub-unit error 

effect was exponentially distn"buted, both rank tests had more power than the F-test for all 

models ( see Tables 6.16-6.20). When all fixed effects were in the model, Table 6.19 

shows that the power of the ART was clearly superior to the other two, although the 

drop-off in power for the RT was not as severe as had been observed in previous 

situations. 

Uniformly distributed errors were examined for the models with both main effects 

present (both alone, and with interaction present), and with only interaction present ( see 

Tables 6.21-6.29). When only one of the error distributions was uniform, the power for 

all tests was much less than in the normally distributed case, but the relative performance 

was essentially the same, with very similar power for all tests, except for the rank 

transform which had much less power when all effects were present. When both errors 

were uniformly distributed, the power of all methods for testing main and sub-unit 

treatment effects was diminished even more ( compare Tables 6.21, 6.24 and 6.27). When 
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only the main and sub-unit effects were present, the rank transform method again had 

nominal type I error rates for testing interaction that became inflated as the magnitude of 

the effects became larger. 
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Table 6.6. 

Proportion of rejections at a.=0.05, exponentially distn"buted block effect, normally 
distributed main and sub-unit errors, based on 10,000 samples. Sub-unit main effect 
present (s1=-c, s3=c). 

C 

Test for: Method 0.5 1.5 2.5 3.5 

MUTrt FT .049 .049 .049 .049 
RT .046 .047 .045 .048 
ART .051 .051 .051 .051 

SUTrt FT .050 1.00 1.00 1.00 
RT .044 1.00 1.00 1.00 
ART .048 1.00 1.00 1.00 

Interaction FT .049 .049 .049 .049 
RT .044 .039 .034 .030 
ART .049 .049 .049 .049 

Table 6.7. 

Proportion of rejections at a.=0.05, exponentially distn"buted block effect, normally 
distributed main and sub-unit errors, based on 10,000 samples. Main unit main effect 
present (m1=c, 1113=-c). 

C 

Test for: Method 0.5 1.5 2.5 3.5 

MUTrt FT .088 .471 .896 .996 
RT .088 .451 .874 .992 
ART .094 .477 .893 .995 

SUTrt FT .052 .052 .052 .052 
RT .049 .048 .047 .051 
ART .051 .051 .051 .051 

Interaction FT .049 .049 .049 .049 
RT .045 .046 .047 .051 
ART .049 .049 .049 .049 
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Table 6.8. 

Proportion of rejections at a= .05, exponentially distributed block effect, normally 
distributed main and sub-unit errors, based on 10,000 samples. MU and SU main effects 
present (m2=s1=c, m3=82= -c). 

C 

Test for: Method 0.5 1.5 2.5 3.5 

MUTrt FT .085 .471 .899 .995 
RT .083 .445 .878 .992 
ART .093 .480 .896 .994 

SUTrt FT .500 1.00 1.00 1.00 
RT .446 1.00 1.00 1.00 
ART .480 1.00 1.00 1.00 

Interaction FT .049 .049 .049 .049 
RT .043 .036 .044 .087 
ART .049 .049 .049 .049 

Table 6.9. 

Proportion of rejections at a= .05, exponentially distnbuted block effect, normally 
distributed main and sub-unit errors, based on 10,000 samples. MU, SU main effects and 
interaction effect present (ms11=-c, s1=ms41=c). 

C 

Test for: Method 0.5 1.5 . 2.5 3.5 

MUTrt FT .052 .088 .168 .302 
RT .051 .079 .119 .159 
ART .055 .087 .125 .157 

SUTrt FT .195 .945 1.00 1.00 
RT .171 .867 .998 1.00 
ART .188 .913 1.00 1.00 

Interaction FT .079 .417 .894 .996 
RT .067 .258 .516 .675 
ART .077 .382 .852 .990 
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Table 6.10. 

Proportion of rejections at a= .05, exponentially distnlmted block effect, normally 
distributed main and sub-unit errors, based on 10,000 samples. Interaction effect present 
(ms11=mB33=c, ms13=mB31=-c ). 

C 

Test for: Method 0.5 1.5 2.5 3.5 

MUTrt FT .049 .049 .049 .049 
RT .046 .048 .045 .044 
ART .051 .049 .047 .049 

SUTrt FT .052 .052 .052 .052 
RT .048 .043 .040 .037 
ART .052 .046 .039 .032 

Interaction FT .152 .923 1.00 1.00 
RT .124 .831 .999 1.00 
ART .140 .883 .999 1.00 

Table 6.11. 

Proportion of rejections at a=0.05, exponentially distributed main unit errors, normaily 
distributed block effect and sub-unit errors, based on 10,000 samples. Sub-unit main 
effect present (s1=-c, SJ=c). 

C 

Test for: Method 0.5 1.5 2.5 3.5 

MUTrt FT .041 .041 .041 .041 
RT .057 .056 .053 .050 
ART .052 .052 .052 .052 

SUTrt FT .050 1.00 1.00 1.00 
RT .042 1.00 1.00 1.00 
ART .044 1.00 1.00 1.00 

Interaction FT .049 .049 .049 .049 
RT .042 .045 .048 .047 
ART .050 .050 .050 .050 
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Table 6.12. 

Proportion of rejections at a.=0.05, exponentially distributed main unit errors, normally 
distributed block effect and sub-unit errors, based on 10,000 samples. Main unit main 
effect present (m1=c, m3=-c). 

C 

Test for: Method 0.5 1.5 2.5 3.5 

MUTrt FT .048 .116 .264 .458 
RT .068 .159 .329 .520 
ART .063 .145 .307 .490 

SUTrt FT .049 .049 .049 .049 
RT .049 .046 .048 .050 
ART .050 .050 .050 .050 

Interaction FT .049 .049 .049 .049 
RT .041 .044 .046 .046 
ART .050 .050 .050 .050 

Table 6.13. 

Proportion of rejections at a.= .05, exponentially distributed main unit errors, normally 
distributed block effect and sub-unit errors, based on 10,000 samples. MU and SU main 
effects present (m2=s1=c, m3=Si= -c). 

C 

Test for: Method 0.5 1.5 2.5 3.5 

MUTrt FT .050 .113 .267 .458 
RT .067 .149 .316 .502 
ART .062 .148 .308 .492 

SUTrt FT .050 1.00 1.00 1.00 
RT .042 1.00 1.00 1.00 
ART .044 1.00 1.00 1.00 

Interaction FT .049 .049 .050 .049 
RT .042 .050 .070 .103 
ART .050 .050 .050 .050 
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Table 6.14. 

Proportion of rejections at a= .05, exponentially distributed main unit errors, normally 
distributed block effect and sub-unit errors, based on 10,000 samples. MU, SU main 
effects and interaction effect present (msu=-c, s1=ms.u=c ). 

C 

Test for: Method 0.5 1.5 2.5 3.5 

MUTrt FT .042 .088 .168 .232 
RT .060 .079 .119 .140 
ART .053 .087 .125 .145 

SUTrt FT .195 .945 1.00 1.00 
RT .167' .867 .998 1.00 
ART .169 .913 1.00 1.00 

Interaction FT .078 .417 .894 .976 
RT .064 .258 .516 .610 
ART .075 .382 .852 .957 

Table 6.15. 

Proportion of rejections at a= .05, exponentially distn"buted main unit errors, normally 
distn"buted block effect and sub-unit errors, based on 10,000 samples. Interaction effect 
present (ms11=m833=c, ms13=m831=-c). 

C 

Test for: Method 0.5 1.5 . 2.5 3.5 

MUTrt FT .041 .041 .041 .041 
RT .058 .056 .054 .052 
ART .054 .052 .048 .047 

SUTrt FT .049 .049 .049 .049 
RT .048 .046 .047 .046 
ART .049 .054 .049 .042 

Interaction FT .146 .914 1.00 1.00 
RT .116 .775 .990 1.00 
ART .130 .815 .994 1.00 
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Table 6.16. 

Proportion of rejections at a=0.05, exponentially distn"buted sub-unit errors, normally 
distributed block effect and main unit errors, based on 10,000 samples. Sub-unit main 
effect present (s1=-c, s3=c). 

C 

Test for: Method 0.5 1.5 2.5 3.5 

MUTrt FT .051 .051 .051 .051 
RT .052 .053 .053 .053 
ART .054 .054 .054 .054 

SUTrt FT .095 .547 .905 .990 
RT .133 .689 .963 .998 
ART .127 .653 .950 .997 

Interaction FT .044 .044 .044 .044 
RT .048 .049 .049 .049 
ART .058 .058 .058 .058 

Table 6.17. 

Proportion of rejections at a=0.05, exponentially distributed sub-unit errors, normally 
distributed block effect and main unit errors, based on 10,000 samples. Main unit main 
effect present (m1=c, m3=-c ). 

C 

Test for: Method 0.5 1.5 2.5 3.5 

MUTrt FT .067 .199 .466 .755 
RT .076 .250 .549 .816 
ART .076 .241 .534 .803 

SUTrt FT .041 .041 .041 .041 
RT .049 .048 .048 .050 
ART .051 .051 .051 .051 

Interaction FT .044 .044 .044 .044 
RT .048 .049 .051 .051 
ART .058 .058 .058 .058 
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Table 6.18. 

Proportion of rejections at a= .05, exponentially distributed sub-unit errors, normally 
distributed block effect and main unit errors, based on 10,000 samples. MU and SU main 
effects present (m2=s1 =c, m3=8i= -c ). 

C 

Test for: Method 0.5 1.5 2.5 3.5 

MUTrt FT .066 .198 .470 .748 
RT .074 .234 .513 .770 
ART .074 .240 .542 .801 

SUTrt FT .095 .543 .909 .989 
RT .126 .657 .948 .996 
ART .125 .655 .952 .997 

Interaction FT .044 .044 .044 .044 
RT .049 .049 .049 .055 
ART .058 .058 .058 .058 

Table 6.19. 

Proportion of rejections at a= .05, exponentially distn"buted sub-unit errors, normally 
distributed block effect and main unit errors, based on 10,000 samples. MU, SU main 
effects and interaction effect present (msu=-c, s1=ms41=c). 

C 

Test for: Method 0.5 1.5 2.5 3.0 

MUTrt FT .054 .068 .096 .138 
RT .055 .070 .094 .120 
ART .056 .074 .098 .132 

SUTrt FT .061 .220 .518 .778 
RT .076 .282 .574 .778 
ART .076 .274 .582 .805 

Interaction FT .050 .080 .160 .288 
RT .055 .094 .155 .227 
ART .064 .105 .198 .345 
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Table 6.20. 

Proportion of rejections at a= .05, exponentially distributed sub-unit errors, normally 
distnouted block effect and main unit errors, based on 10,000 samples. Interaction effect 
present (ms11=m833=c, IDS13==filS31=-c). 

C 

Test for: Method 0.5 1.5 2.5 3.5 

MUTrt FT .044 .044 .044 .044 
RT .054 .052 .051 .051 
ART .052 .051 .050 .049 

SUTrt FT .045 .045 .045 .045 
RT .047 .047 .049 .048 
ART .054 .054 .054 .054 

Interaction FT .056 .164 .443 .730 
RT .061 .194 .470 .793 
ART .063 .189 .466 .766 

Table 6.21. 

Proportion of rejections at a= .05, uniformly distnouted main unit errors, normally 
distnouted block effect and sub-unit errors, based on 10,000 samples. MU and SU main 
effects present (m2=s1=c, m3=Si= -c). 

C 

Test for: Method 0.5 1.5 2.5 3.5 

MUTrt FT .074 .201 .488 .816 
RT .077 .201 .482 .816 
ART .077 .203 .481 .800 

SUTrt FT .487 1.00 1.00 1.00 
RT .433 1.00 1.00 1.00 
ART .444 1.00 1.00 1.00 

Interaction FT .055 .055 .055 .055 
RT .052 .050 .074 .136 
ART .051 .051 .051 .051 
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Table 6.22. 

Proportion of rejections at a.= .05, uniformly distributed main unit errors, normally 
distributed block effect and sub-unit errors, based on 10,000 samples. MU, SU main 
effects and interaction effect present (msu=-c, s1=m&u=c). 

C 

Test for: Method 0.5 1.5 2.5 3.5 

MUTrt FT .059 .071 .098 .144 
RT .063 .072 .087 .106 
ART .062 .074 .092 .112 

SUTrt FT .187 .939 1.00 1.00 
RT .163 .871 .998 1.00 
ART .172 .895 1.00 1.00 

Interaction FT .088 .425 .895 .997 
RT .076 .291 .567 .731 
ART .078 .372 .828 .984 

Table 6.23. · 

Proportion of rejections at a.= .05, uniformly distributed main unit errors, normally 
distributed block effect and sub-unit errors, based on 10,000 samples. Interaction effect 
present (ms11==m833=c, IDS13==m831=-c). 

C 

Test for: Method 0.5 1.5 2.5 3.5 

MUTrt FT .057 .057 .057 .057 
RT .060 .059 .056 .055 
ART .061 .060 .055 .053 

SUTrt FT .055 .055 .055 .055 
RT .053 .053 .052 .053 
ART .055 .055 .044 .032 

Interaction FT .160 .916 1.00 1.00 
RT .134 .827 .997 1.00 
ART .139 .857 .999 1.00 
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Table 6.24. 

Proportion of rejections at a= .05, uniformly distributed sub-unit errors, normally 
distributed block effect and sub-unit errors, based on 10,000 samples. MU and SU main 
effects present (m2=s1=c, m3=s2= -c ). 

C 

Test for: Method 0.5 1.5 2.5 3.5 

MUTrt FT .077 .331 .748 .961 
RT .076 .315 .714 .948 
ART .079 .325 .741 .957 

SUTrt FT .185 .945 1.00 1.00 
RT .164 .900 1.00 1.00 
ART .169 .918 1.00 1.00 

Interaction FT .051 .051 .051 .051 
RT .047 .048 .053 .061 
ART .050 .050 .050 .050 

Table 6.25. 

Proportion of rejections at a= .05, uniformly distributed sub-unit errors, normally 
distributed block effect and sub-unit errors, based on 10,000 samples. MU, SU main 
effects and interaction effect present (msu=-c, s1=ms41=c ). 

C 

Test for: Method 0.5 1.5 2.5 3.5 

MUTrt FT .050 .074 .126 .214 
RT .051 .070 .101 .132 
ART .052 .072 .111 .155 

SUTrt FT .096 .485 .926 .999 
RT .087 .403 .829 .979 
ART .091 .431 .881 .995 

Interaction FT .060 .144 .382 .698 
RT .053 .116 .230 .350 
ART .059 .135 .333 .629 
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Table 6.26. 

Proportion of rejections at a= .05, uniformly distributed sub-unit errors, normally 
distributed block effect and sub-unit errors, based on 10,000 samples. Interaction effect 
present (msn=ms33=c, msn=ms31=-c ). 

C 

Test for: Method 0.5 1.5 2.5 3.5 

MUTrt FT .049 .049 .049 .049 
RT .047 .047 .047 .047 
ART .050 .047 .047 .045 

SUTrt FT .052 .052 .052 .052 
RT .050 .051 .049 .051 
ART .052 .052 .049 .043 

Interaction FT .084 .412 .897 .999 
RT .074 .342 .819 .992 
ART .078 .361 .847 .996 

Table 627. 

Proportion of rejections at a= .05, uniformly distributed main and sub-unit errors, 
normally distributed block effect, based on 10,000 samples. MU and SU main effects 
present (m2=s1=c, m3=s2= -c ). 

C 

Test for: · Method 0.5 1.5 2.5 3.5 

MUTrt FT .066 .178 .424 .730 
RT .067 .176 .410 .715 
ART .069 .185 .424 .729 

SUTrt FT .185 .948 1.00 1.00 
RT .166 .902 1.00 1.00 
ART .169 .915 1.00 1.00 

Interaction FT .053 .053 .053 .053 
RT .048 .049 .054 .062 
ART .053 .053 .053 .053 
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Table 6.28. 

Proportion of rejections at a.= .05, uniformly distributed main and sub-unit errors, 
normally distn"buted block effect, based on 10,000 samples. MU, SU main effects and 
interaction effect present (ms11=-c, s1=ms41=c). 

C 

Test for: Method 0.5 1.5 2.5 3.5 

MUTrt FT .056 .067 .087 .123 
RT .056 .066 .080 .098 
ART .059 .069 .086 .108 

SUTrt FT .091 .488 .927 1.00 
RT .085 .406 .838 .981 
ART .086 .434 .878 .994 

Interaction FT .064 .149 .376 .697 
RT .057 .118 .244 .388 
ART .060 .134 .327 .623 

Table 6.29. 

Proportion of rejections at a.= .05, uniformly distn"buted main and sub-unit errors, 
normally distributed block effect, based on 10,000 samples. Interaction effect present 
(ms11=ms33=c, ms13=ms31=-c ). 

C 

Test for: Method 0.5 1.5 2.5 3.5. 

MUTrt FT .054 .054 .054 .054 
RT .055 .055 .054 .049 
ART .057 .057 .052 .049 

SUTrt FT .051 .051 .051 .051 
RT .050 .050 .049 .049 
ART .050 .051 .049 .045 

Interaction FT .084 .406 .890 .999 
RT .073 .325 .803 .986 
ART .078 .355 .835 .992 
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6.2.3. Normal errors, unequal variances (see Tables 6.30-6.52). Two cases 

were considered. One of the errors.was modeled as normally distributed with 

heterogeneous variances, while the other was modeled as normally distributed with 

homogeneous variances. In each case, the block effect was modeled as having a standard 

normal distribution. As in the completely randomized case, different degrees of 

heterogeneity were considered. For all models, ratios between the largest and the smallest 

variances of 10: 1 (moderately large) and 30: 1 (very large) were studied (in addition, some 

models with very, very large degrees ofheterogeneity were observed). As in the 

completely randomized case, unequal error variances turned out to be a more serious 

problem than the lack of normality. However, while in the completely randomized case, 

the performance of the rank tests was generally better than that of the F-test, in the split

unit case the results were mixed. 

The power of all tests was lower when the main units had heterogeneous variances, 

and the power became worse as the degree of the heterogeneity increased, as evidenced in 

Tables 6.30-6.39. The rank tests had more power for detecting the main unit treatment 

effect when it was the only effect present. When only the sub-unit effect was present, as 

in Tables 6.32 and 6.33, the FT actually had slightly more power than either rank test, 

while all methods had inflated nominal type I error rates for testing main unit treatment 

effect. When only main unit and sub-unit treatment effects were present (see Tables 6.34 

and 6.35}, the rank tests had better power for testing for main unit treatment effect, but 

slightly less power for testing for sub-unit treatment effect. In addition, the RT had 
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nominal type I error rates that increased steadily with increasing effect magnitudes. Tables 

6.36 and 6.37 indicate that when all effects were present, the FT had the best power, with 

the ART close behind and the RT a distant third. When only the interaction effect was 

present (see Tables 6.38 and 6.39), the results were similar to the equal variance case, 

where the FT had slightly higher power, except that nominal type I error rates were 

inflated for all tests when testing for the effect of the main unit treatment ( this inflation 

became more severe as the degree of heterogeneity increased). 

The rank tests performed consistently better than the FT when then sub-unit error 

effect had unequal variances (see Tables 6.40-6.49). When only the effect of the main unit 

treatment was present, as in Tables 6.40-6.41, the power of the rank tests was higher than 

that of the FT, although all tests showed a tendency to have inflated nominal type I error 

rates for testing for sub-unit treatment and interaction effects. When only the sub-unit 

effect was present, there was essentially no difference in power for the three tests when 

the maximum to minimum variance ratio was 10:1 (see Table 6.42). When the ratio 

increased to 30: 1 (see Table 6.43), however, the rank tests had more power. For all 

methods, there was also a slight nominal type I error rate inflation for testing the 

interaction effect, which became more severe as the variance ratio increased. Surprisingly, 

the RT showed less inflation than the either the FT or the ART. When only both main and 

sub-unit effects were modeled, the rank tests were much more powerful, with some 

nominal type I error rate inflation for testing interaction evident for all methods ( see 

Tables 6.44 and 6.45). However, while the FT and the ART nominal rates remained 
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Table 6.30. 

Proportion of rejections at a=0.05, normally distributed errors, unequal main unit error 
variances, based on 10,000 samples. Ratio largest:smallest variance 10: 1. Main unit main 
effect present (m1=c, m3=-c ). 

C 

Test for: Method 0.5 1.5 2.5 3.5 

MUTrt FT .075 .180 .407 .677 
RT .086 .203 .435 .695 
ART .084 .199 .420 .681 

SUTrt FT .050 .050 .050 .050 
RT .049 .049 .049 .050 
ART .047 .047 .047 .047 

Interaction FT .052 .052 .052 .052 
RT .051 .048 .048 .050 
ART .053 .053 .053 .053 

Table 6.31. 

Proportion of rejections at a=0.05, normally distributed errors, unequal main unit error 
variances, based on 10,000 samples. Ratio largest:smallest variance 30: 1. Main unit main 
effect present (m1=c, m3=-c ). 

C 

Test for: Method 0.5 1.5 2.5 3.5 

MUTrt FT .087 .126 .225 .370 
RT .096 .154 .271 .431 
ART .091 .146 .257 .400 

SUTrt FT .050 .050 .050 .050 
RT .056 .049 .051 .052 
ART .050 .050 .050 .050 

Interaction FT .052 .052 .052 .052 
RT .054 .051 .049 .048 
ART .050 .050 .050 .050 
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Table 6.32. 

Proportion of rejections at a=0.05, normally distributed errors, unequal main unit error 
variances, based on 10,000 samples. Ratio largest to smallest variance 10: 1. Sub-unit 
main effect present (s1=-c, s3=c). 

C 

Test for: Method 0.5 1.5 2.5 3.5 

MUTrt FT .065 .065 .065 .065 
RT .072 .071 .068 .067 
ART .071 .071 .071 .071 

SUTrt FT .498 1.00 1.00 1.00 
RT .429 1.00 1.00 1.00 
ART .447 1.00 1.00 1.00 

Interaction FT .052 .052 .052 .052 
RT .049 .062 .068 .065 
ART .053 .053 .053 .053 

Table 6.33. 

Proportion of rejections at a=0.05, normally distributed errors, unequal main unit error 
variances, based on 10,000 samples. Ratio largest to smallest variance 30:1. Sub-unit 
main effect present (s1=-c, s3=c). 

C 

Test for: Method 0.5 1.5 2.5 3.5 

MUTrt FT .083 .083 .083 .083 
RT .090 .092 .092 .093 
ART .084 .084 .084 .084 

SUTrt FT .500 1.00 1.00 1.00 
RT .416 1.00 1.00 1.00 
ART .434 1.00 1.00 1.00 

Interaction FT .052 .052 .052 .052 
RT .054 .092 .128 .128 
ART .050 .050 .050 .050 
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Table 6.34. 

Proportion of rejections at a=0.05, normally distributed errors, unequal main unit error 
variances, based on 10,000 samples. Ratio largest to smallest variance 10:1. MU and SU 
main effects present (m2=s1=c, m3=s2= -c ). 

C 

Test for: Method 0.5 1.5 2.5 3.5 

MUTrt FT .076 .180 .398 .667 
RT .083 .195 .415 .677 
ART .084 .198 .420 .678 

SUTrt FT .509 1.00 1.00 1.00 
RT .435 1.00 1.00 1.00 
ART .463 LOO 1.00 1.00 

Interaction FT .052 .052 .052 .052 
RT .052 .059 .076 .123 
ART .053 .053 .053 .053 

Table 6,35. 

Proportion of rejections at a=0.05, normally distributed errors, unequal main unit error 
variances, based on 10,000 samples. Ratio largest to smallest variance 30:1. MU and SU 
main effects present (m2=s1=c, m3=s2= -c ). 

C 

Test for: Method 0.5 1.5 2.5 3.5 

MUTrt FT .088 .130 .223 .366 
RT .095 .151 .257 .405 
ART .090 .142 .258 .407 

SUTrt FT .509 1.00 1.00 1.00 
RT .422 1.00 1.00 1.00 
ART .440 1.00 1.00 1.00 

Interaction FT .052 .052 .052 .052 
RT .057 .080 .107 .120 
ART .050 .050 .050 .050 
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Table 6.36. 

Proportion of rejections at a=0.05, normally distributed errors, unequal main unit error 
variances, based on 10,000 samples. Ratio largest to smallest variance 10: 1. MU, SU 
main effects and interaction effect present (msu=-c, s1=ms41=c). 

C 

Test for: Method 0.5 1.5 2.5 3.5 

MUTrt FT .067 .077 .098 .131 
RT .073 .079 .088 .104 
ART .071 .082 .096 .111 

SUTrt FT .194 .936 1.00 1.00 
RT .144 .773 .990 1.00 
ART .159 .838 .997 1.00 

Interaction FT .082 .421 .890 .996 
RT .065 .192 .405 .580 
ART .076 .340 .797 .974 

Table 6.37. 

Proportion of rejections at a=0.05, normally distributed errors, unequal main unit error 
variances, based on 10,000 samples. Ratio largest to smallest variance 30: 1. MU, SU 
main effects and interaction effect present ( ms11 =-c, s1 =ms41 =c ). 

C 

Test for: Method 0.5 1.5 2.5 3.5 

MUTrt FT .084 .088 .097 .109 
RT .091 .092 .094 .101 
ART .085 .087 .094 .103 

SUTrt FT .194 .936 1.00 1.00 
RT .133 .691 .969 1.00 
ART .144 .777 .991 1.00 

Interaction FT .082 .421 .890 .996 
RT .067 .152 .302 .458 
ART .070 .307 .735 .947 
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Table 6.38. 

Proportion of rejections at a=0.05, normally distributed errors, unequal main unit error 
variances, based on 10,000 samples. Ratio largest to smallest variance 10: 1. Interaction 
effect present (ms11=ms33=c, msn=filS31=-c). 

C 

Test for: Method 0.5 1.5 2.5 3.5 

MUTrt FT .065 .065 .065 .065 
RT .071 .073 .071 .071 
ART .071 .075 .074 .071 

SUTrt FT .050 .050 .050 .050 
RT .049 .053 .052 .052 
ART .053 .051 .048 .035 

Interaction FT .155 .921 1.00 1.00 
RT .140 .853 .999 1.00 
ART .146 .879 .999 1.00 

Table 6.39. 

Proportion of rejections at a=0.05, normally distributed errors, unequal main unit error 
variances, based on 10,000 samples. Ratio largest to smallest variance 30: 1. Interaction 
effect present (msu=ms33=c, msn=ms31=-c ). 

C 

Test for: Method 0.5 1.5 2.5 3.5 

MUTrt FT .083 .083 .083 .083 
RT .090 .094 .096 .099 
ART .086 .092 .099 .099 

SUTrt FT .050 .050 .050 .050 
RT .055 .063 .066 .066 
ART .049 .055 .053 .049 

Interaction FT .155 .921 1.00 1.00 
RT .144 .843 .998 1.00 
ART .147 .869 .999 1.00 
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Table 6.40. 

Proportion of rejections at a=0.05, normally distributed errors, unequal sub-unit error 
variances, based on 10,000 samples. Ratio largest:smallest variance 10:1. Main unit main 
effect present (m1=c, m3=-c ). 

C 

Test for: Method 0.5 1.5 2.5 3.5 

MUTrt FT .071 .262 .626 .901 
RT .077 .285 .649 .910 
ART .078 .286 .652 .912 

SUTrt FT .064 .064 .064 .064 
RT .062 .065 .067 .065 
ART .060 .060 .060 .060 

Interaction FT .071 .071 .071 .071 
RT .060 .063 .068 .069 
ART .076 .076 .076 .076 

Table 6.41. 

Proportion of rejections at a=0.05, normally distributed errors, unequal sub-unit error 
variances, based on 10,000 samples. Ratio largest:smallest variance 30: 1. Main unit main 
effect present (m1=c, m3=-c ). 

C 

Test for: Method 0.5 1.5 2.5 3.5 

MUTrt FT .062 .150 .352 .620 
RT .069 .193 .438 .706 
ART .066 .190 .438 .699 

SUTrt FT .074 .074 .074 .074 
RT .074 .076 .079 .078 
ART .068 .068 .068 .068 

Interaction FT .083 .083 .083 .083 
RT .063 .073 .078 .084 
ART .105 .105 .105 .105 
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Table 6.42. 

Proportion of rejections at a=0.05, normally distributed errors, unequal sub-unit error 
variances, based on 10,000 samples. Ratio largest to smallest variance 10: 1. Sub-unit 
main effect present (s1=-c, s3=c). 

C 

Test for: Method 0.5 1.5 2.5 3.5 

MUTrt FT .052 .052 .052 .052 
RT .051 .054 .051 .051 
ART .054 .054 .054 .054 

SUTrt FT .150 .775 .996 1.00 
RT .149 .777 .997 1.00 
ART .148 .788 .997 1.00 

Interaction FT .071 .071 .071 .071 
RT .058 .055 .052 .050 
ART .076 .076 .076 .076 

Table 6.43. 

Proportion of rejections at a=0.05, normally distributed errors, unequal sub-unit error 
variances, based on 10,000 samples. Ratio largest to smallest variance 30: 1. Sub-unit 
main effect present ( s1=-c, s3=c ). 

C 

Test for: Method 0.5 1.5 2.5 3.5 

MUTrt FT .052 .052 .052 .052 
RT .053 .053 .052 .046 
ART .052 .052 .052 .052 

SUTrt FT .107 .364 .789 .974 
RT .109 .413 .854 .990 
ART .102 .396 .839 .987 

Interaction FT .083 .083 .083 .083 
RT. .064 .061 .059 .054 
ART .105 .105 .105 .105 
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Table 6.44. 

Proportion of rejections at a=0.05, normally distributed errors, unequal sub-unit error 
variances, based on 10,000 samples. Ratio largest to smallest variance 10:1. MU and SU 
main effects present (m2=s1=c, m3=Si= -c). 

C 

Test for: Method 0.5 1.5 2.5 3.5 

MUTrt FT .711 .257 .625 .899 
RT .767 .268 .609 .874 
ART .761 .288 .657 .914 

SUTrt FT .139 .866 1.00 1.00 
RT .173 .913 1.00 1.00 
ART .169 .929 1.00 1.00 

Interaction FT .071 .071 .071 .071 
RT .060 .065 .068 .069 
ART .076 .076 .076 .076 

Table 6.45. 

Proportion of rejections at a=0.05, normally distributed errors, unequal sub-unit error 
variances, based on 10,000 samples. Ratio largest to smallest variance 30:1. MU and SU 
main effects present (m2=s1=c, m3=Si= -c ). 

C 

Test for: Method 0.5 1.5 2.5 3.5 

MUTrt FT .063 .155 .350 .619 
RT .070 .184 .389 .625 
ART .067 .191 .437 .701 

SUTrt FT .095 .411 .911 .999 
RT .131 .666 .985 1.00 
ART .114 .636 .984 1.00 

Interaction FT .083 .083 .083 .083 
RT .065 .074 .081 .083 
ART .105 .105 .105 .105 
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Table 6.46. 

Proportion of rejections at a=0.05, normally distributed errors, unequal sub-unit error 
variances, based on 10,000 samples. Ratio largest to smallest variance 10: 1. MU, SU 
main effects and interaction effect present (ms11=-c, s1=ms41=c ). 

C 

Test for: Method 0.5 1.5 2.5 3.5 

MUTrt FT .054 .072 .109 .173 
RT .057 .078 .108 .138 
ART .058 .082 .119 .158 

SUTrt FT .087 .351 .812 .988 
RT .093 .402 .829 .980 
ART :093 .412 .856 .990 

Interaction FT .075 .124 .264 .509 
RT .066 .130 .241 .347 
ART .085 .144 .304 .560 

Table 6.47. 

Proportion of rejections at a=0.05, normally distributed errors, unequal sub-unit error 
variances, based on 10,000 samples. Ratio largest to smallest variance 30: 1. MU, SU 
main effects and interaction effect present (ms11=-c, s1=ms41=c). 

C 

Test for: Method 0.5 1.5 2.5 3.5 

MUTrt FT .053 .059 .079 .111 
RT .057 .075 .095 .122 
ART .054 .073 .101 .135 

SUTrt FT .081 .159 .370 .682 
RT .090 .240 .537 .816 
ART .078 .210 .510 .814 

Interaction FT .085 .102 .143 .219 
RT .070 .107 .170 .242 
ART .108 .135 .193 .294 
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Table 6.48. 

Proportion of rejections at a=0.05, normally distributed errors, unequal sub-unit error 
variances, based on 10,000 samples. Ratio largest to smallest variance 10:1. Interaction 
effect present (ms11=ms33=c, ms13=:ms:,1=-c). 

C 

Test for: Method 0.5 1.5 2.5 3.5 

MUTrt FT .052 .052 .052 .052 
RT .054 .056 .058 .055 
ART .055 .057 .056 .053 

SUTrt FT .064 .064 .064 .064 
RT .065 .064 .063 .061 
ART .059 .061 .060 .056 

Interaction FT .088 .287 .687 .938 
RT .078 .280 .683 .924 
ART .098 .310 .696 .932 

Table 6.49. 

Proportion of rejections at a=0.05, normally distributed errors, unequal sub-unit error 
variances, based on 10,000 samples. Ratio largest to smallest variance 30: 1. Interaction 
effect present (ms11=tnS33=c, ms13=ms31=-c). 

C 

Test for: Method 0.5 1.5 2.5 3.5 

MUTrt FT .052 .052 .052 .052 
RT .057 .057 .061 .061 
ART .052 .054 .058 .056 

SUTrt FT .074 .074 .074 .074 
RT .073 .076 .076 .074 
ART .066 .068 .069 .068 

Interaction FT .092 .159 .315 .547 
RT .075 .166 .366 .612 
ART .113 .197 .369 .600 
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constant as the magnitude of the effects increased, the RT showed its familiar inflation as 

an increasing :function of effect magnitude. When all fixed effects were in the mode~ the 

ART had much more power than the other two methods for testing interaction. As can be 

seen in Tables 6.46 and 6.47, the power of the FT was slightly better than the RT when 

the variance ratio was 10: 1, but fell behind when the ratio increased to 30: 1. Finally, with 

only interaction present in the model (see Tables 6.48 and 6.49), the rank tests had better 

power for detecting interaction than the FT. 

Investigation of the nominal type I error rates when the main or sub-unit variances 

were unequal revealed a problem of inflated nominal type I error rates similar to that of 

the completely randomized experiment (see Tables 6.50-6.51). When the main unit 

variances were heterogeneous, nominal type I error rates for testing the main unit 

treatment effect were often larger than expected. When the sub-unit variances were 

heterogeneous, nominal type I error rates for tests for sub-unit treatment and interaction 

effects were always inflated. However, heterogeneous main unit variances did not 

adversely affect the nominal levels of the sub-unit tests, and vice-versa. Once again, the 

inflation of the nominal rates for the RT was often a :function of the magnitude of the 

modeled effects, while the inflation of the nominal rates for the FT and the ART seemed to 

be independent of the effect magnitude. Once more this indicates that when error 

variances are heterogeneous, test results may be misleading, especially when testing for 

interaction. Table 6.52 indicates that this was not a problem when one of the underlying 

populations was skewed ( exponentially distributed). 
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Table 6.50. 

Nominal type I error rate at a=0.05, normally distributed errors, based on 10,000 samples. 
Unequal main unit variances. 

Var max : V armin 
Test for: Method 1:1 10:1 30:1 50:1 

MUTrt FT .053 .065 .083 .090 
RT .056 .072 .090 .097 
ART .060 .071 .084 .085 

SUTrt FT .050 .050 .050 .050 
RT .048 .051 .056 .054 
ART .052 .047 .050 .050 

Interaction FT .052 .052 .052 .052 
RT .047 .051 .051 .053 
ART .053 .053 .050 .050 

Table 6.51. 

Nominal type I error rate at a=0.05, normally distributed errors, based on 10,000 samples. 
Unequal sub-unit variances. 

Varmax :Varmin 
Test for: Method 1:1 10:1 30:1 50:1 

MUTrt FT .053 .052 .052 .052 
RT .056 .052 .055 .055 
ART .060 .054 .052 .052 

SUTrt FT .050 .064 .074 .078 
RT .048 .064 .073 .075 
ART .052 .060 .068 .069 

Interaction FT .052 .071 .083 .089 
RT .047 .060 .065 .065 
ART .053 .076 .105 .118 
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Table 6.52. 

Nominal type I error rate at a=0.05, one random exponentially distributed, the other two 
random effects normally distn"buted, based on 10,000 samples. 

Exponentially distributed: 
Test for: Method· Block Main unit Sub-unit 

effect errors errors 

MUTrt FT .049 .041 .051 
RT .049 .059 .052 
ART .051 .052 .054 

SUTrt FT .052 :049 .041 
RT .050 .049 .049 
ART .051 .050 .051 

Interaction FT .049 .049 .044 
RT .046 .040 .048 
ART .049 .050 .058 

6.3 Conclusion for Analysis of Split-unit Experiments 

Although the results were not as consistent as for the completely randomized case, the 

aligned rank procedure appears to be viable alternative to the normal theory F-test for 

performing tests in a split-unit factorial design, and is certainly a better choice than the 

rank transform method. Once more, when the error distn"butions were normal and error 

variances were homogeneous (situations in which the F-test is known to work well), the 

ART was always nearly as powerful, with usually an almost negligible difference in power 

between the two methods. For exponential error distributions, the ART was clearly more 
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powerful than the F-test. When the error variances were heterogeneous, both methods 

tended to have problems maintaining nominal type I error levels for interaction, although 

this problem was less severe in the split-unit case, while the ART usually had superior 

power for detecting main effects. Although the FT outperformed the ART in some cases, 

even when parametric assumptions were violated, the ART still appears in general to be 

superior to the F-test, especially when the assumptions of normality and homogeneity of 

variance are suspected to be violated. Even though the simulation results indicate that a 

nonexistent interaction effect can be introduced when error variances are unequal, this 

phenomenon occurs for both the FT and the ART. Since typically the analysis is 

performed without the benefit of definite knowledge of the nature of the error variances, 

and since the ART generally has more power than the FT when variances are unequal, the 

ART seems a logical choice over the FT. The results once again suggest that the ART 

procedure could possibly benefit from an additional adjustment to stabilize variances, 

perhaps by scaling to correct for unequal error variances. The unpredictable performance 

of the RT for the split-unit experiment adds to the growing body of evidence that the RT 

is not a good choice for multi-factor experiments. 
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CHAPTER SEVEN 

EPILOGUE 

7.1. Approximation of Exact Distributions of Rank Statistics Using the F

Distribution 

The goal of this research was to develop an exact rank test applicable to a wide variety 

of factorial designs. Thus, for certain designs, the exact sampling distributions of certain 

F-ratio statistics computed on the ranks of the data were estimated, and these were used in 

the simulations in this paper. One somewhat surprising result was that the upper tails of 

these estimated exact sampling distributions were approximated well by the F-distribution 

( although the approximation becomes poorer beyond the 95th percentile). See table 7 .1 as 

an example for the two-way layout. Similar results were obtained for the split-unit design, 

although the F-distribution consistently underestimated the exact values, which would 

result in a more liberal test if the F-approximation was used (see table 7.2). Although 

Hora and Conover (1984) showed that the F-distribution is the limiting distribution of the 

F-ratio statistic computed using the ranks for the two-way layout, it was suspected that 

for small sample sizes this would not necessarily be true. It appears, however, that the F

distribution gives a reasonable approximation for the sampling distnbutions of F-ratio 

statistics computed using the ranks of the data, even for small sample s:izes. 
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Table 7.1. 

Comparison of the percentiles of the sampling distributions ofF-ratios computed using the 
ranks of the data. All ratios are computed as MS ( effect )/MS (error), for a two-way layout 
with four levels of factor A and three levels of factor B, in a completely randomized 
design, where n is the number of observations per treatment combination. ''Exact" values 
are actually estimates, based on a sample of20,000 permutations of the ranks. 

n Effect Percentile point 
.90 .95 .99 

Exact F Exact F Exact F 

2 A 2.669 2.660 3.560 3.587 6.000 6.217 
B 2.820 2.860 3.914 3.982 7.098 7.206 
AB 2.356 2.389 3.056 3.095 4.814 5.069 

5 A 2.175 2.202 2.816 2.798 4.320 4.218 
B 2.396 2.417 3.207 3.191 5.296 5.077 
AB 1.920 1.901 2.322 2.295 3.282 3.204 

10 A 2.118 2.135 2.680 2.689 4.003 3.968 
B 2.345 2.352 3.125 3.080 5.088 4.807 
AB 1.822 1.829 2.183 2.184 2.986 2.973 

20 A 2.136 2.108 2.644 2.644 3.902 3.869 
B 2.325 2.326 3.038 3.035 4.785 4.699 
AB 1.802 1.800 2.146 2.138 2.866 2.882 
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Table 7.2. 

Comparison of the percentiles of the sampling distributions ofF-ratios computed using the 
ranks of the data. All ratios are computed as MS (effect)/MS (error), for a two-way 
factorial in a split-plot design with four levels of the main unit treatment in a completely 
randomized block design with three blocks and three levels of the sub-unit treatment. 
''Exact" values are actually estimates, based on a sample of 20,000 permutations of the 
ranks. 

Effect Percentile point 
.90 .95 .99 

Exact F Exact F Exact F 

MUTrt 3.363 3.289 4.830 4.757 10.200 9.780 

SUTrt 2.712 2.668 3.666 3.634 6.569 6.226 

Interaction 2.218 2.178 2.792 2.741 4.352 4.202 

7.2. Extending the Aligned Rank Technique to Experiments with More than Two 

Factors. 

The aligned rank procedure discussed previously can be adapted to analyze 

experiments with more than two factors. Higgins and Tashtoush (1994) suggest a pattern 

for aligning observations in completely randomized designs for testing higher order 
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interactions. For example, to test for three-way interaction in a three factor experiment, 

the alignment suggested is: 

(AY)ijk = Yijkl -(sum of2-way means involving i,j, and k) 

+ (sum of one-way means involving i, j, and k) 

- overall mean 

The pattern for more than three factors is apparent. After aligning the data, the data are 

ranked, and tests are carried out by applying the usual analysis of variance to the ranked 

data, ignoring all tests so obtained except for the test of interaction of interest (Higgins 

and Tashtoush, 1994). 

7.3. Future Research 

Since the ART generally has better power than the FT when variances are unequal, 

there is interest in trying to alleviate the problem of inflated nominal type I error rates for 

the ART. A possible improvement would be to scale the observations in some way to 

remove the "effect" of unequal variance. Another area to investigate is the application of 

the ART to situations where sample sizes are unequal, since this is also a situation where 
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the FT often suffers a loss of power. In addition, since no known statistical software 

packages perform the aligned rank procedure, future work may include developing SAS 

programs for use in analyzing data in factorial arrangements using the ART. 
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APPENDIX 

Program 1. 

PROGRAM TO FIND THE EXACT (TAIL) DISTRIBUTION OF THE F-RATIO STATISTIC 
COMPUTED USING THE RANKS OF THE DAT A. TWO FACTORS WITH TWO LEVELS 
EACH AND TWO OBSERVATIONS PER TREATMENT IN A COMPLETELY RANDOMIZED 
DESIGN. 

INTEGER IG(100,3),IDF(8),IC1(20),IC2(8,8),NL(20),M,N,P,Q,O:rv1IT 
REAL R(8),MS(8),SS(8),SUM1(20),SS1(20),SUM2(2,2),SS2(20,20),F 
DATA CM/0.0/, NL/20*0/, ICl/20*0/, NREP/0/ 
DAT A IG(l,1),IG(l,2),IG(2, 1),IG(2,2),IG(3,1),IG(3,2),IG( 4, 1), 

1 IG( 4,2),IG(5, 1 ),IG( 5,2),IG( 6, 1 ),IG( 6,2),IG(7, 1 ),IG(7 ,2),IG(8, 1 ), 
2 IG(8,2)/1,1,1,1,2,1,2,1,1,2,1,2,2,2,2,2/, IC2/64*0/ 

NC=8 
NREP=2 
NPERMS=O 
NF=2 
NP=O 
O:rv1IT=O 
OPEN(UNIT=l,FILE='TWDATA',ACCESS='SEQUENTIAL',FORM='FORMATTED', 

1 STATUS='NEW) 

DO 300 I=l,NC 
DO 295 J=l,NC 
IF (J.NE.I) THEN 
DO 290 K=l,NC 
IF (K.NE.I .AND. K.NE.J) THEN 
DO 285 L=l,NC 
IF (L.NE.I .AND. L.NE.J .AND. L.NE.K) THEN 
DO 280 M=l,NC 
IF (M.NE.L .AND. M.NE.K .AND. M.NE.J .AND. M.NE.I) THEN 
DO 275 N=l,NC 
IF (N.NE.M .AND. N.NE.L .AND. N.NE.K .AND. N.NE.J .AND. N.NE.I) THEN 
DO 270 P=l,NC 
IF (P.NE.N .AND. P.NE.M .AND. P.NE.L .AND. P.NE.K .AND. P.NE.J .AND. P.NE.I) THEN 
DO 265 Q=l,NC 
IF (Q.NE.P .AND. Q.NE.N .AND. Q.NE.M .AND. Q.NE.L.AND. Q.NE.K .AND. Q.NE.J .AND. 

Q.NE.I) THEN 
R(l)=I 
R(2)=J 
R(3)=K 
R(4)=L 
R(5)=M 
R(6)=N 
R(7)=P 
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R(8)=Q 
NPERlvIS=NPERM:S+l 

C TWO FACTOR ANALYSIS 

C CALCULATE SS FOR MAIN EFFECTS 

SUMX=O.O 
SST=O 
DO 166 Il=l,NC 
SUMX=SUMX+R(Il) 
SST=SST+(R(Il))**2 
ICl(IG(Il,l))=ICl(IG(Il,l))+ 1 
DO 30 Kll=l,NF 
IF (IG(Il,Kll).GT.NL(Kll)) THEN 
NL(Kl 1 )=IG(Il,Kl 1) 
END IF 

30 CONTINUE 
IC2(IG(Il,l),IG(Il,2))=IC2(IG(Il,l),IG(Il,2))+ 1 

166 CONTINUE 
C1Vl=SUMX**2/NC 
SST=SST-C1V1 
IDF(l)=NL(l)-1 
IDF(2)=NL(2)- l 
IDF(3)=IDF(l)*IDF(2) 
IDF( 4 )=NL( 1 )*NL(2)*(NREP- l) 
NP=3 
IF (NREP.EQ.l) THEN 
NP=NP-1 
END IF 
DO 160 Jl=l,2 
DO 160 Kl=l,NL(Jl) 

160 SU1V12(Kl,Jl)=O.O 
DO 170 I11 =1,NC 
DO 170 J2=1,2 

170 SU1V12(IG(I1 l ,J2),J2)=SU1V12(I G(Il l ,J2),J2)+ R(Il 1) 
DO 180 J3=1,2 
SS(J3)=0.0 
DO 190 K2=1,NL(J3) 

190 SS(J3)=SS(J3)+(SU1V12(K2,J3))**2 
1V11Vl=NC/NL(J3) 

180 SS(J3)=SS(J3)/MM-C1V1 

C CALCULATE INTERACTION SS 

DO 200 12=1,NL(l) 
DO 200 J4=1,NL(2) 
SU1V12(I2,J4 )=O. 0 
SS2(I2,J4)=0.0 

200 CONTINUE 
DO 210 B=l,NC 
SU1V12(IG(I3,l),IG(I3,2))=SU1V12(IG(I3,l),IG(I3,2))+R(I3) 

210 SS2(IG(I3,l),IG(I3,2))=SS2(IG(I3,l),IG(I3,2))+(R(I3))**2 
SS(3)=0.0 
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DO 220 I4=1,NL(l) 
DO 220 J5=1,NL(2) 

220 SS(3)=SS(3)+(SUM2(I4,J5))**2 
SS(3)=SS(3)/NREP-CM-SS(l)-SS(2) 

C FIND ERROR SUM OF SQUARES AND MEAN SQUARES 

SS( 4 )=SST-SS(l )-SS(2)-SS(3) 
IF (NP.EQ.3) THEN 
MS( 4)=SS( 4)/IDF( 4) 
END IF 
DO 230 I5=1,3 

230 MS(I5)=SS(I5)/IDF(I5) 

IF (MS(4).EQ.O.o) THEN 
F=9999.0 
ELSE 
F=MS(3)/MS(4) 
END IF 
IF (F.GT.1.31) THEN 
WRITE (1,*) F 
ELSE 
OMIT=OMIT+l 
END IF 
END IF 

265 CONTINUE 
END IF 

270 CONTINUE 
END IF 

275 CONTINUE 
END IF 

280 CONTINUE 
END IF 

285 CONTINUE 
END IF 

290 CONTINUE 
END IF 

295 CONTINUE 
300 CONTINUE 

CLOSE (UNIT=l) 

END 
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Program 2. 

PROGRAM TO FIND THE ESTIMATED EXACT SAMPLING DISTRIBUTION OF F-RATIO 
STATISTIC COMPUTED ON THE RANKS OF THE DAT A, FOR A 4 BY 3 FAT IN A 
COMPLETELY RANDOMIZED DESIGN. 

USEMSIMSL 
INTEGER IG(24,3),IDF(8),IC1(20),IC2(24,24),NL(20) 
INTEGER IPER(24), ISEED,SUMX,SST,NOUT ,IPERM(20000),Z,A 
INTEGER J,FRQ(20000),C,HOLD(500) 
REAL MS(8),SS(8),SUM2(20,20),SS2(20,20),F 
REAL LIST(20000),TEMP(20000),CUM,PV AL 
DATA CM/0.0/, NL/20*0/, ICl/20*0/, NREP/O/,FRQ/20000*1/ 
DAT A IC2/576*-1.0/,LIST/20000*9999.0/ 

NR=O 
NC=24 
NL(1)=4 
NL(2)=3 
NREP=2 
NPERMS=20000 
NF=2 
NP=O 
Z=l 
INCX=l 

C ROUTINE TO FILL IG VECTOR 

C=l 
DO 2 I=l,NL(l) 
DO 4 J=l,NL(2) 
DO 6 K=l,NREP 
HOLD(C)=J 
HOLD(C+l)=I 
C=C+2 

6 CONTINUE 
4 CONTINUE 
2 CONTINUE 

C=l 
DO 121=1,NC 
DO 14 J=NF,1,-1 
IG(I,J)=HOLD(C) 
C=C+l 

14 CONTINUE 
12 CONTINUE 

OPEN (UNIT=4,FILE='C:\MSDEV\DAT A\TW432AR.TXT') 
CALL UMACH(2,NOUT) 
ISEED=62064 
CALL RNSET(ISEED) 
DO 1 A=l,NPERMS 
CALL RNPER(NC,IPER) 
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C TWO FACTOR ANALYSIS 

C CALCULATE SS FOR MAIN EFFECTS 
SUMX=O 
SST=O 
DO 101=1,NC 
SUMX=SUMX+IPER(I) 
SST=SST+(IPER(I))**2 
ICl(IG(I,l))=ICl(IG(I,1))+ 1 
IC2(IG(I,1),IG(I,2))=IC2(IG(I,1),IG(I,2))+ 1 

10 CONTINUE 
CM=SUMX**2/NC 
SST=SST-CM 
IDF(l)=NL(l)-1 
IDF(2)=NL(2)-1 
IDF(3)=IDF( 1 )*IDF(2) 
IDF( 4)=NL( 1 )*NL(2)*(NREP-1) 
NP=3 
IF (NREP.EQ.1) THEN 
NP=NP-1 
END IF 
DO 210 J=l,2 
DO 210 K=l,NL(J) 
SUM2(K,J)=O. 0 

210 CONTINUE 
DO 220 I=l,NC 
D0220 J=l,2 
SUM2(IG(I,J),J)=SUM2(IG(I,J),J)+IPER(I) 

220 CONTINUE 
DO 230 J=l,2 
SS(J)=O.O 
DO 240 K=l,NL(J) 
SS(J)=SS(J)+(SUM2(K,J))**2 

240 CONTINUE 
MM=NC/NL(J) 
SS(J)=SS(J)/MM-CM 

230 CONTINUE 

C CALCULATE INTERACTION SS 

DO 250 I=l,NL(l) 
DO 250 J=l,NL(2) 
SUM2(I,J)=O.O 
SS2(I,J)=O.O 

250 CONTINUE 
DO 260 I=l,NC 
SUM2(IG(I,l),IG(I,2))=SUM2(IG(I,l),IG(I,2))+IPER(I) 
SS2(IG(I,1),IG(I,2))=SS2(IG(I,1),IG(I,2))+(IPER(I))**2 

260 CONTINUE 
SS(3)=0.0 
DO 270 I=l,NL(l) 
DO 270 J=l,NL(2) 
SS(3)=SS(3)+(SUM2(I,J))**2 
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270 CONTINUE 
SS(3)=SS(3)/NREP-CM-SS( 1 )-SS(2) 

C FIND ERROR SUM OF SQUARES AND MEAN SQUARES 

SS( 4)=SST-SS(l)-SS(2)-SS(3) 
IF (NP.EQ.3) THEN 
MS( 4)=SS( 4)/IDF( 4) 
END IF 
D0280 I=l,3 

280 MS(I)=SS(I)/IDF(I) 
IF (NP.EQ.3) THEN 
IF (MS(4).EQ.O.O) THEN 
F=999.0 
ELSE 
F=MS( 1 )/MS(3) 
END IF 
END IF 
DO 300 I=l,NPERMS 
IPERM(I)=I 

300 CONTINUE 

C ROUTINE TO CREATE TABLE OF CRITICAL VALVES AND PROPORTIONS 

CALL SRCH(NPERMS,F ,LIST ,INCX,INDEX) 
IF (INDEX .LT. 0) THEN 
LIST(Z)=F 
Z=Z+l 
ELSE 
FRQ(INDEX)=FRQ(INDEX)+ 1 
NR=NR+l 
END IF 
CALL SVRGP(NPERMS,LIST,LIST,IPERM) 
DO 310 I=l,NPERMS 
TEMP(I)=FRQ(IPERM(I)) 

310 CONTINUE 
DO 320 I=l,NPERMS 
FRQ(I)=TEMP(I) 

320 CONTINUE 

1 CONTINUE 

C END OF MAIN LOOP 

C ROUTINE TO WRITE CRITCAL VALVES AND PROPORTIONS 

CUM=O.O 
DO 330 I=l,NPERMS 
IF (LIST(I) .LT. 9999.0) THEN 
CUM=CUM+FRQ(I) 
PV AL=l-(CUM-1)/REAL(NPERMS) 
IF (PV AL .LE. 0.101) THEN 
WRITE ( 4, *) LIST(I),PV AL 
END IF 
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END IF 
330 CONTINUE 

END 
D 

Program 3. 

PROGRAM TO FIND ESTIMATED EXACT SAfv1PLING DISTRIBUTION FOR F-RATIO 
STATISTICS COMPUTED ON THE RANKS OF THE DATA IN A THREE FACTOR 
COMPLETELY RANDOMIZED DESIGN 

INTEGER IG( 48,3)JDF(8),IC1(20),NL(20),NN 
INTEGER IPER(l 6), ISEED,K,SUMX,SST ,NOUT ,IC3(20,20,20),NPERMS 
INTEGER INCX,INDEX,FRQ(20000),TEMP(20000),IPERM(20000),Z,COUNT 
INTEGER LENGTH 
REAL MS(8),SS(8),SUM2(20,20),F, CUM 
REAL SUM3(20,20,20),SS3(20,20,20),M,LIST(20000) 
DATA CM/0.0/, NL/20*0/, ICl/20*0/, NREP/0/ 
DAT A IG(l,1),IG(l,2),IG(l,3),IG(2,1),IG(2,2),IG(2,3),IG(3,1), 

1 IG(3,2),IG(3,3),IG( 4, 1),IG( 4,2),IG( 4,3),IG(5,1),IG(5,2),IG(5,3), 
2 IG( 6, 1 ),IG( 6,2),IG(6,3),IG(7, 1 ),IG(7,2),IG(7 ,3),IG(8, 1 ),IG(8,2), 
3 IG(8,3),IG(9, 1 ),IG(9 ,2),IG(9,3),IG( 10, 1 ),IG(l 0,2),IG(l 0,3), 
4 IG(l 1,1 ),IG(l l,2),IG(l l ,3),IG(l2,1 ),IG(12,2),IG(12,3),IG(l3, 1), 
5 IG(13,2),IG(13,3),IG(14,1),IG(l4,2),IG(l4,3),IG(l5,l), 
6 IG(15,2),IG(15,3),IG(l6,1),IG(l6,2),IG(l6,3)/1,1,1,1, 
7 1, 1, 1, 1,2, 1, 1,2, 1;2, 1, 1,2, 1, 1;2,2,1,2,2,2,1, 1,2, 1, 1,2, 1,2,2, 1,2, 
8 2,2, 1,2,2, 1,2,2,2,2,2,2/,IC3/8000*-1. 0/, 
9 FRQ/20000* 1/ ,LIST /20000*-999. 0/ 

NN=16 
NC=16 
NREP=2 
NPERMS=lOOOO 
NF=3 
NP=O 
INCX=l 
Z=l 
NL(1)=2 
NL(2)=2 
NL(3)=2 
COUNT=O 
LENGTH=20000 
OPEN (UNIT=4,FILE='C:\MSDEV\DATA\OUT3W.TXT') 
CALL UMACH(2,NOUT) 
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ISEED=40396 
CALL RNSET(ISEED) 
DO 1 A=l,NPERMS 
CALL RNPER(NN,IPER) 

C CALCULATE SS FOR MAIN EFFECTS 

SUMX=O 
SST=O 
DO 101=1,NC 
SUMX=SUMX +IPER(I) 
SST=SST+(IPER(I))**2 
ICl(IG(I,l))=ICl(IG(I,1))+ 1 
D020K=l,NF 
IF (IG(I,K) .GT. NL(K)) THEN 
NL(K)=IG(I,K) 
END IF 

20 CONTINUE 
I C3(IG(I, 1 ),IG(I,2),I G(I,3) )=IC3(I G(I, 1 ),I G(I,2),IG(I,3) )+ 1 

10 CONTINUE 
Cl\1=SUMX**2/NC 
SST=SST-Cl\1 

C THREE FACTOR ANALYSIS 

300 IDF(l)=NL(l)-1 
IDF(2)=NL(2)-1 
IDF(3)=NL(3)-1 
IDF( 4)=IDF(l)*IDF(2) 
IDF( 5)=IDF( 1 )*IDF(3) 
IDF( 6)=IDF(2)*IDF(3) 
IDF(7)=IDF( 4)*IDF(3) 
IDF(8)=NL(l)*NL(2)*NL(3)*(NREP-1) 
NP=7 
IF (NREP .EQ. 1) NP=NP-1 
DO 305 I=l,3 
DO 305 J=l,NL(I) 
SU1\12(J,I)=O.O 

305 CONTINUE 

C FIND SS FOR MAIN EFFECTS 

DO 310 I=l,NC 
DO 310 J=l,3 
SUl\12(1 G(I,J),J)=SU1\12(IG(I,J),J)+ IPER(I) 

310 CONTINUE 
DO 315 J=l,3 
SS(J)=O.O 
DO 320 K=l,NL(J) 
SS(J)=SS(J)+SU1\12(K,J)**2 

320 CONTINUE 
l\1=REAL(NC)/REAL(NL(J)) 
SS(J)=SS(J)/M:-Cl\1 

315 CONTINUE 
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C FIND SS FOR TWO FACTOR INTERACTIONS 

NLMAX=MAX(NL(l),NL(2),NL(3)) 
DO 325 I=l,NLMAX 
DO 325 J=l,NLMAX 
D0325 K=l,3 
SUM3(I,J,K)=O.O 

325 CONTINUE 
DO 330 I=l,NC 
SUM3(IG(I,l),IG(I,2),l)=SUM3(IG(I,1),IG(I,2),l)+IPER(I) 
SUM3(IG(I,1),IG(I,3),2)=SUM3(IG(I,1),IG(I,3),2)+IPER(I) 
SUM3(IG(I,2),IG(I,3),3)=SUM3(IG(I,2),IG(I,3),3)+IPER(I) 

330 CONTINUE 
SS(4)=0.0 
DO 335 I=l,NL(l) 
DO 335 J=l,NL(2)' 
SS( 4)=SS( 4)+SUM3(I,J,1)**2 

335 CONTINUE 
SS( 4)=SS( 4)/(NL(3)*NREP)-SS(l )-SS(2)-CM 
SS(5)=0.0 
DO 340 I=l,NL(l) 
DO 340 K=l,NL(3) 
SS(5)=SS(5)+SUM3(I,K,2)**2 

340 CONTINUE 
SS(5)=SS(5)/(NL(2)*NREP)-SS(l)-S8(3)-CM 
SS(6)=0.0 
DO 345 J=l,NL(2) 
DO 345 K=l,NL(3) 
SS(6)=SS(6)+SUM3(J,K,3)**2 

345 CONTINUE 
SS(6)=SS(6)/(NL(l)*NREP)-SS(2)-SS(3)-CM 

C FIND SS FOR THREE FACTOR INTERACTION AND ERROR 

IF (NREP .GT. 1) GOTO 350 
SS(7)=SST-SS(1 )-SS(2)-SS(3)-SS( 4)-SS(5)-SS(6) 
SS(8)=0.0 
GOT0355 

350 DO 360 I=l,NL(l) 
DO 360 J=l,NL(2) 
DO 360 K=l,NL(3) 
SUM3(I,J,K)=O. 0 
SS3(I,J,K)=O. 0 

360 CONTINUE 
DO 365 I=l,NC 
SUM3(IG(I,1),IG(I,2),IG(I,3))=SUM3(IG(I,l),IG(I,2),IG(I,3)) 

1 +IPER(I) 
SS3(IG(I,l),IG(I,2),IG(I,3))=SS3(IG(I,l),IG(I,2),IG(I,3)) 

1 +IPER(I)**2 
365 CONTINUE 

SS(7)=0.0 
DO 370 I=l,NL(l) 
DO 370 J=l,NL(2) 
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DO 370 K=l,NL(3) 
SS(7)=SS(7)+SUM3(I,J,K)**2 

370 CONTINUE 
SS(7)=SS(7)/NREP-SS( 1 )-SS(2)-SS(3)-SS( 4 )-SS( 5)-SS( 6)-CM 
SS(8)=SST-SS( 1 )-SS(2)-SS(3)-SS( 4)-SS( 5)-SS( 6)-SS(7) 

C FIND MEAN SQUARES AND F-V ALUES 

IF (NP .EQ. 7) MS(S)=SS(8)/IDF(8) 
355 DO 375 I=l,7 

MS(I)=SS(I)IIDF(I) 
375 CONTINUE 

IF (MS(8) .EQ. 0.0) THEN 
F=999.0 
ELSE 
F=MS(l)/MS(8) 
END IF 
DO 380 IS=l,LENGTH 
IPERM(IS)=IS 

380 CONTINUE 

C FILL DAT A FILE WITH UNIQUE F-V ALUES AND FREQUENCIES 

CALL SRCH(LENGTH,F ,LIST,INCX,INDEX) 
IF (INDEX .LT. 0) THEN 
LIST(Z)=F 
Z=Z+l 
ELSE 
FRQ(INDEX)=FRQ(INDEX)+ 1 
COUNT=COUNT+l 
END IF 
CALL SVRGP(LENGTH,LIST ,LIST ,!PERM) 
DO 385 IP=l,LENGTH 
TEMP(IP)=FRQ(IPERM(IP)) 

385 CONTINUE 
DO 390 IC=l,LENGTH 
FRQ(IC)=TEMP(IC) 

390 CONTINUE 

1 CONTINUE 

C WRITE DISTRIBUTION OFF TO FILE 

CUM=O.O 
DO 395 I=l,LENGTH 
IF (LIST(I) .GE. 0.0) THEN 
CUM=CUM+FRQ(I) 
WRITE ( 4, *) LIST(I),FRQ(I),CUM/REAL(NPERMS) 
END IF 

395 CONTINUE 

CLOSE (UNIT=4) 

END 
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Program 4. 

PROGRAM "3WAY "TO PERFORM RANDOMIZATION TEST FOR THREE FACTOR 
ANALYSIS OF VARIANCE 

INTEGER IG(36,3),IDF(8),IC1(20),NL(20),NN,NRM,NRS,NRI 
INTEGER IPER(36), ISEED,K,SUMX,SST ,NOUT ,IC3(20,20,20),NPERMS 
INTEGER INC:X,INDE:X,FRQM(20000),TEMP(20000),IPERM(20000),COUNT 
INTEGER ZM,ZS,ZI,FRQS(20000),FRQI(20000) 
REAL LISTI(20000) 
REAL MS(8),SS(8),SUM2(20,20),FMAIN,FSUB,FINT,CUM,PV ALM,PV ALS,PV ALI 
REAL SUM3(20,20,20),SS3(20,20,20),M,LISTM(20000),LISTS(20000) 
DATA CM/0.0/, NL/20*0/, ICl/20*0/, NREP/0/ 
DAT A IG( 1, 1 ),IG(l,2),IG(l,3),IG(2, 1 ),IG(2,2),IG(2,3)/1, 1, 1, 1, 1,2/ 
DAT A IG(3, 1 ),IG(3,2),IG(3,3),IG( 4, 1 ),IG( 4,2),IG( 4,3)/1, 1,3, 1,2, 1/ 
DAT A IG(5,1),IG(5,2),IG(5,3),IG(6,1),IG(6,2),IG(6,3)/1,2,2,1,2,3/ 
DAT A IG(7 ,1),IG(7 ,2),IG(7 ,3),IG(8,1),IG(8,2),IG(8,3)/1,3,1,l,3,2/ 
DAT A IG(9, 1),IG(9,2),IG(9,3),IG(l 0, 1),IG(l 0,2)/1,3,3,1,4/ 
DAT A IG(l 0,3),IG(l l,1),IG(l l,2),IG(l l,3),IG(l2,1)/1,1,4,2,1/ 
DAT A IG(12,2),IG( 12,3),IG(13, 1 ),IG(13,2),IG(13,3)/4,3,2,1,1/ 
DAT A IG(14,1),IG(14,2),IG(l4,3),IG(l5,1),IG(l5,2)/2,1,2,2,1/ 
DAT A IG(15,3),IG(16,1),IG(l6,2),IG(l6,3),IG(l 7 ,1)/3,2,2,1,2/ 
DATA IG(17,2),IG(l 7,3),IG(l8,l),IG(l8,2),IG(l8,3)/2,2,2,2,3/ 
DATA IG(19,1),IG(19,2),IG(l9,3),IG(20,1),IG(20,2)/2,3,1,2,3/ 
DAT A IG(20,3),IG(21, 1 ),IG(21,2),IG(21,3),IG(22, 1 )/2,2,3,3,2/ 
DAT A IG(22,2),IG(22,3),IG(23, 1 ),IG(23,2),IG(23,3)/4, 1,2,4,2/ 
DAT A IG(24,1),IG(24,2),IG(24,3),IG(25,1),IG(25,2)/2,4,3,3,1/ 
DAT A IG(25,3),IG(26,1 ),IG(26,2),IG(26,3),IG(27, 1 )/1,3, 1,2,3/ 
DAT A IG(27 ,2),IG(27 ,3),IG(28, 1 ),IG(28,2),IG(28,3)/1,3,3,2,1/ 
DATA IG(29,1),IG(29,2),IG(29,3),IG(30,1),IG(30,2)/3,2,2,3,2/ 
DAT A IG(30,3),IG(31,1),IG(31,2),IG(31,3),IG(32,1)/3,3,3, 1,3/ 
DAT A IG(32,2),IG(32,3),IG(33,1),IG(33,2),IG(33,3)/3,2,3,3,3/ 
DAT A IG(34,1),IG(34,2),IG(34,3),IG(35,1),IG(35,2)/3,4,1,3,4/ 
DAT A IG(35,3),IG(36,1),IG(36,2),IG(36,3)/2,3,4,3/ 
DAT A IC3/8000*- l.O/, FRQM/20000* 1/,LISTM/20000*-999.0/ 
DAT A FRQS/20000* 1/,LISTS/20000*-999. 0/ 
DAT A FRQI/20000* 1/,LISTI/20000*-999.0/ 

NN=36 
NC=36 
NREP=l 
NPERMS=20000 
NF=3 
NP=O 
INCX=l 
ZM=l 
ZS=l 
ZI=l 
NL(1)=3 
NL(2)=4 
NL(3)=3 
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COUNT=O 
OPEN (UNIT=4,FILE='C:\ WINDOWS\SCOTT\3W A YDAT2.TXT') 
CALL UMACH(2,NOUT) 
ISEED=40396 
CALL RNSET(ISEED) 
DO 1 A=l,NPERMS 
CALL RNPER(NN,IPER) 

C CALCULATE SS FOR MAIN EFFECTS 

SUMX=O 
SST=O 
DO 101=1,NC 
SUMX=SUMX+IPER(I) 
SST=SST+(IPER(n)**2 
ICl(IG(I,l))=ICl(IG(I,l))t 1 
D020K=l,NF 
IF (IG(I,K) .GT. NL(K)) THEN 
NL(K)=IG(I,K) 
END IF 

20 CONTINUE 
IC3(IG(I, 1 ),IG(I,2),IG(I,3) )=IC3(IG(I, 1 ),IG(I,2),IG(I,3) )t 1 

10 CONTINUE 
Cl\,1=SUMX**2/NC 
SST=SST-Cl\,1 

C THREE FACTOR ANALYSIS 

300 IDF(l)=NL(l)-1 
IDF(2)=NL(2)-1 
IDF(3)=NL(3)-1 
IDF( 4)=IDF( l)*IDF(2) 
IDF(5)=IDF(l)*IDF(3) 
IDF( 6)=IDF(2)*IDF(3) 
IDF(7)=IDF(4)*IDF(3) 
IDF(8)=NL(l )*NL(2)*NL(3)*(NREP-1) 
NP=7 
IF (NREP .EQ. 1) NP=NP-1 
DO 305 I=l,3 
DO 305 J=l,NL(I) 
Sillv12(J,I)=O.O 

305 CONTINUE 

C FIND SS FOR l\,1AlN EFFECTS 

DO 310 I=l,NC 
DO 310 J=l,3 
Sillv12(IG(I,J),J)=Sillv12(IG(I,J),J)+IPER(I) 

310 CONTINUE 
DO 315 J=l,3 
SS(J)=O.O 
DO 320 K=l,NL(J) 
SS(J)=SS(J)+Sillv12(K,J)**2 

320 CONTINUE 
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M=REAL(NC)/REAL(NL(J)) 
SS(J)=SS(J)/M-CM 

315 CONTINUE 

C FIND SS FOR TWO FACTOR INTERACTIONS 

NLMAX=MAX(NL(l),NL(2),NL(3)) 
DO 325 I=l,NLMAX 
DO 325 J=l,NLMAX 
D0325K=l,3 
SUM3(1,J,K)=O. 0 

325 CONTINUE 
DO 330 I=l,NC 
SUM3(1G(l,1),IG(I,2),l)=SUM3(IG(l,l),IG(I,2),l)+IPER(I) 
SUM3(1G(I, 1 ),IG(I,3),2)=SUM3(1G(I, 1 ),IG(I,3),2)+IPER(I) 
SUM3(1G(l,2),IG(l,3),3)=SUM3(1G(I,2),1G(l,3),3)+IPER(I) 

330 CONTINUE 
SS(4)=0.0 
DO 335 I=l,NL(l) 
DO 335 J=l,NL(2) 
SS( 4)=SS( 4)+SUM3(1,J,1)**2 

335 CONTINUE 
SS(4)=SS(4)/(NL(3)*NREP)-SS(l)-SS(2)-CM 
SS(5)=0.0 
DO 340 I=l,NL(l) 
DO 340 K=l,NL(3) 
SS(5)=SS(5)+SUM3(l,K,2)**2 

340 CONTINUE 
SS(5)=SS(5)/(NL(2)*NREP)-SS(l)-SS(3)-CM 
SS(6)=0.0 
DO 345 J=l,NL(2) 
DO 345 K=l,NL(3) 
SS( 6)=SS( 6)+SUM3(J,K,3)**2 

345 CONTINUE 
SS(6)=SS(6)/(NL(l)*NREP)-SS(2)-SS(3)-CM 

C FIND SS FOR THREE FACTOR INTERACTION AND ERROR 

IF (NREP .GT. 1) GOTO 350 
SS(7)=SST-SS(l)-SS(2)-SS(3)-SS( 4)-SS(5)-SS(6) 
SS(8)=0.0 
GOT0355 

350 DO 360 I=l,NL(l) 
DO 360 J=l,NL(2) 
DO 360 K=l,NL(3) 
SUM3(I,J,K)=O. 0 
SS3(1,J,K)=O. 0 

360 CONTINUE 
DO 365 I=l,NC 
SUM3(1G(l,1),IG(I,2),IG(l,3))=SUM3(IG(l,1),IG(I,2),IG(l,3))+IPER(I) 
SS3(1G(I, 1 ),IG(l,2),IG(I,3) )=SS3(IG(I, 1 ),IG(I,2),IG(l,3) )+ IPER(I)**2 

365 CONTINUE 
SS(7)=0.0 
DO 370 I=l,NL(l) 
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DO 370 J=l,NL(2) 
DO 370 K=l,NL(3) 
SS(7)=SS(7)+SUM3(I,J,K)**2 

370 CONTINUE 
SS(7)=SS(7)/NREP-SS(l)-SS(2)-SS(3)-SS(4)-SS(5)-SS(6)-CM 
SS(8)=SST-SS( 1 )-SS(2)-SS(3)-SS( 4)-SS( 5)-SS( 6)-SS(7) 

C FIND MEAN SQUARES AND F VALUES 

IF (NP .EQ. 7) MS(8)=SS(8)/IDF(8) 
355 DO 375 1=1,7 

MS(I)=SS(l)/IDF(I) 
375 CONTINUE 

FMAJ1,.T=MS(2)/MS(4) 
FSUB=MS(3)/(MS(5)+MS(7)) 
FINT=MS(6)/(MS(5)+MS(7)) 

DO 380 I=l,NPERMS 
IPERM(I)=I 

380 CONTINUE 
CALL SRCH(NPERMS,FMAIN,LISTM,INCX,INDEX) 
IF (INDEX .LT. 0) THEN 
LISTM(ZM)=FMAJ1,.T 
ZM=ZM+l 
ELSE 
FRQM(INDEX)=FRQM(INDEX)+ 1 
NRM=NRM+l 
END IF 
CALL SVRGP(NPERMS,LISTM,LISTM,IPERM) 
DO 410 I=l,NPERMS 
TEMP(I)=FRQM(IPERM(I)) 

410 CONTINUE 
DO 420 I=l,NPERMS 
FRQM(I)=TEMP(I) 

420 CONTINUE . 
CALL SRCH(NPERMS,FSUB,LISTS,INCX,INDEX) 
IF (INDEX .LT. 0) THEN 
LISTS(ZS)=FSUB 
ZS=ZS+l 
ELSE 
FRQS(INDEX)=FRQS(INDEX)+ 1 
NRS=NRS+l 
END IF 
CALL SVRGP(NPERMS,LISTS,LISTS,IPERM) 
DO 510 I=l,NPERMS 
TEMP(l)=FRQS(IPERM(I)) 

510 CONTINUE 
DO 520 l=l,NPERMS 
FRQS(l)=TEMP(I) 

520 CONTINUE 
CALL SRCH(NPERMS,FINT ,LISTI,INCX,INDEX) 
IF (INDEX .LT. 0) THEN 
LISTI(ZI)=FINT 
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ZI=ZI+l 
ELSE 
FRQI(INDEX)=FRQI(INDEX)+ 1 
NRI=NRI+l 
END IF 
CALL SVRGP(NPERMS,LISTI,LISTI,IPERM) 
DO 610 I=l,NPERMS 
TEMP(I)=FRQI(IPERM(I)) 

610 CONTINUE 
DO 620 I=l,NPERMS 
FRQI(I)=TEMP(I) 

620 CONTINUE 

1 CONTINUE 

C ROUTINE TO WRITE CRITCAL VALUES AND P-V ALUES 
C 

CUM=O.O 

DO 630 I=l,NPERMS 
IF (LISTM(I) .LT. 9999.0) THEN 
CUM=CUM+FRQM(I) 
PV ALM=l-CUM/REAL(NPERMS) 
IF (PV ALM .LE. 0.101) THEN 
WRITE ( 4, *) 'FMAIN=',LISTM(I),PV ALM 
END IF 
END IF 

630 CONTINUE 

CUM=O 
DO 640 I=l,NPERMS 
IF (LISTS(!) .LT. 9999.0) THEN 
CUM=CUM+FRQS(I) 
PV ALS=l-CUM/REAL(NPERMS) 
IF (PVALS .LE. 0.101) THEN 
WRITE ( 4, *) 'FSUB=' ,LISTS(I),PV ALS 
END IF 
END IF 

640 CONTINUE 

CUM=O 
DO 650 I=l,NPERMS 
IF (LISTI(I) .LT. 9999.0) THEN 
CUM=CUM+FRQI(I) 
PV ALI=l-CUM/REAL(NPERMS) 
IF (PVALI.LE. 0.101) THEN 
WRITE ( 4, *) 'FINT=' ,LISTI(I),PV ALI 
END IF 
END IF 

650 CONTINUE 

CLOSE (UNIT=4) 

END 
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Program 5. 

PROGRAM "SM4B3AR" TO COMPUTE SIGNIFICANCE LEVELS FOR F-RATIO, EXACT 
RANK TRANSFORM AND EXACT ALIGNED RANK TRANSFORM TESTS FOR A 2 FACTOR 
CRD WITH N LEVELS PER TRT AND NREP OBS PER TRT COMB 

USEMSIMSL 
PARAMETER (NC=120,NLA=4,NLB=3,NREP=10) 
INTEGER IG(NC,3),IDF(8),IC1(20),IC2(NC,NC),NL(20),N,Z 
INTEGER FY AREJlO,FYBREJlO,FY ABREJ10,FRAREJ10,FRBREJ10,FRABREJ10 
INTEGER F ARAREJlO,F ARBREJlO,F ARABREJlO 
INTEGER HOLD(250),W,P,Q 
INTEGER FY AREJ05,FYBREJ05,FY ABREJ05,FRAREJ05,FRBREJ05,FRABREJ05 
INTEGER F ARAREJ05,F ARBREJ05,F ARABREJ05 
INTEGER FY AREJOl,FYBREJOl,FY ABREJOl,FRAREJOl,FRBREJOl,FRABREJOl 
INTEGER F ARAREJOl,F ARBREJOl,F ARABREJOl 
REAL R(NC),Y(NC),MS(8),SS(8),SUM2(20,20),SS2(20,20) 
REAL RA(NC),RB(NC),RAB(NC),CONS,SIG 
REAL FY A,FRA,FYAlOPV,FRAlOPV,F ARAlOPV 
REAL FYB,FRB,FYB lOPV,FRB lOPV,F ARB lOPV 
REAL FY AB,FRAB,FY AB lOPV,FRABlOPV,F ARAB lOPV 
REAL FYA05PV,FRA05PV,F ARA05PV 
REAL FYB05PV,FRB05PV,F ARB05PV 
REAL FY AB05PV,FRAB05PV,F ARAB05PV 
REAL FY AOlPV,FRAOlPV,F ARAOlPV 
REAL FYBOlPV,FRBOlPV,F ARBOlPV 
REAL FY ABOlPV,FRABOlPV,F ARABOlPV 
REAL A(NLA),B(NLB),AB(NLA,NLB),E(NC),ER(NC), YFIX(NC),PO 1,P05,Pl 0 
REAL DFNA,DFNB,DFNAB,DFD 
REAL M(NLA,NLB,NREP),AMAB(NLA,NLB,NREP),A Y AB(NC),A YB(NC),UE(l) 
REAL MA(NLA),MB(NLB),SUM,RY(NC),AMA(NLA,NLB,NREP) 
REAL AMB(NLA,NLB,NREP) 
REAL AYA(NC) 
REAL CRITF Al 0, CRITFB 10, CRITF AB 10, CRITRAl O,CRITRB 1O,CRITRAB10 
REAL CRITFA05,CRITFB05,CRITF AB05,CRITRA05,CRITRB05,CRITRAB05 
REAL CRITF AO 1, CRITFBO 1, CRITF ABO 1,CRITRAO 1, CRITRBO 1, CRITRABO 1 
REAL SUMFY A,SUMFYB,SUMFY AB,SUMFRA,SUMFRB,SUMFRAB 

DAT A CM/0.0/, NL/20*0/, IC1/20*0/,IC2/14400*0/ 
DATA A(l),A(2),A(3),A(4)/.0,.0,.0,.0/ 
DAT A B(l),B(2),B(3)/.0,-.0,-.0/ 
DATA AB(l,1),AB(l,2),AB(l,3)/.0,3.50,-.0/ 
DAT A AB(2,l),AB(2,2),AB(2,3)/0,-3.50,3.50/ 
DATA AB(3,1),AB(3,2),AB(3,3)/-3.50,-.0,-3.50/ 
DAT A AB( 4,1),AB( 4,2),AB(4,3)/3.50,0,0/ 
OPEN (UNIT=4,FILE='C:\MSDEV\DAT A\SIM4310.TXT') 

N=lOOOO 
NL(l)=NLA 
NL(2)=NLB 
CONS=l.O 
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NPERMS=O 
NF=2 
FYREJ=O 
FRREJ=O 
FRTREJ=O 

C CRITICAL VALUES 

Pl0=.90 
P05=.95 
POl=.99 
DFNA=3 
DFNB=2 
DFNAB=6 
DFD=l08 
CRITF Al O=FIN(Pl O,DFNA.DFD) 
CRITFB 1 O=FIN(Pl O,DFNB,DFD) 
CRITF AB lO=FIN(PlO,DFNAB,DFD) 
CRITRA10=2.11847 
CRITRB10=2.344881 
CRITRAB 10=1. 821623 
CRITF A05=FIN(P05,DFN_A.DFD) 
CRITFB05=FIN(P05,DFNB,DFD) 
CRITF AB05=FIN(P05,DFNAB,DFD) 
CRITRA05=2. 680210 
CRITRB05=3.124526 
CRITRAB05=2.182787 
CRITF AOl =FIN(POl,DFNA.DFD) 
CRITFBOl =FIN(PO 1,DFNB,DFD) 
CRITF ABOl =FIN(POl,DFNAB,DFD) 
CRITRA01=4.003309 
CRITRBO 1 =5. 087 671 
CRITRAB01=2.985842 

NP=O 
Z=l 

C FILL IG VECTOR 

C=l 
DO 2 I=l,NL(l) 
DO 4 J=l,NL(2) 
DO 6 K=l,NREP 
HOLD(C)=J 
HOLD(C+ l)=I 
C=C+2 

6 CONTINUE 
4 CONTINUE 
2 CONTINUE 

C=l 
DO 121=1,NC 
DO 14 J=NF,1,-1 
IG(I,J)=HOLD(C) 
C=C+l 
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14 CONTINUE 
12 CONTINUE 

CALL RNSET(62064) 
DO 10 S=l,N 

C GENERATE OBSERVATIONS 

W=l. 
SIG=l 
DO 1 I=l,NL(l) 
DO 3 J=l,NL(2) 
DO 5 K=l,NREP 
CALL RNNOA(l,UE) 
CALL SSCAL(l,SIG,UE,l) 

C CALL RNEXP(l,UE) 
C CALL SSCAL(l,3.0,UE,l) 
C CALL RNUN(l,UE) 
C CALL SSCAL(l,6.0,UE,l) 
C CALL SADD(l,-3.0,UE,l) 

Y(W)=A(I)+B(J)+ AB(I,J)+UE(l) 
W=W+l 

5 CONTINUE 
C SIG=CONS*SIG 

3 CONTINUE 
SIG=CONS*SIG 

C SIG=l 
1 CONTINUE 

C ALIGN OBSERVATIONS 

C FILL MATRIX WITH OBSERVATIONS 

P=l 
DO 51 I=l,NL(l) 
DO 52 J=l,NL(2) 
DO 53 K=l,NREP 
M(I,J,K)=Y(P) 
P=Ptl 

53 CONTINUE 
52 CONTINUE 
51 CONTINUE 

C COMPUTE FACTOR A MEANS 

SUM=O 
DO 61 I=l,NL(l) 
DO 62 J=l,NL(2) 
DO 63 K=l,NREP 
SUM=SUM+M(I,J,K) 

63 CONTINUE 
62 CONTINUE 

MA(I)=SUM/(NL(2)*NREP) 
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SUM=O 
61 CONTINUE 

C COMPUTE FACTOR B MEANS 

SUM=O 
DO 71 J=l,NL(2) 
DO 72 I=l,NL(l) 
DO 73 K=l,NREP 
SUM=SUM+M(I,J,K) 

73 CONTINUE 
72 CONTINUE 

MB(J)=SUM/(NL(l)*NREP) 
SUM=O 

71 CONTINUE 

C COMPUTE OVERALL MEAN 

SUM=O 
DO 76 I=l,NL(2) 
SUM=SUM+MB(I) 

76 CONTINUE 
MAB=SUM/NL(2) 

C COMPUTE ALIGNED OBSERVATIONS 

DO 81 I=l,NL(l) 
DO 82 J=l,NL(2) 
DO 83 K=l,NREP 
AMAB(I,J,K)=M(I,J,K)-(MA(I)+MB(J)) 
AMA(I,J,K)=M(I,J,K)-MB(J) 
AMB(I,J,K)=M(I,J,K)-MA(I) 

83 CONTINUE 
82 CONTINUE 
81 CONTINUE 

C RETURN ALIGNED MATRIX ELEMENTS TO SINGLE ARRAY 

Q=l 
DO 91 I=l,NL(l) 
DO 92 J=l,NL(2) 
DO 93 K=l,NREP 
AY AB(Q)=AMAB(I,J,K) 
A YA(Q)=AMA(I,J,K) -
A YB(Q)=AMB(I,J,K) 
Q=Qtl 

93 CONTINUE 
92 CONTINUE 
91 CONTINUE 

C FIND THE RANKS OF THE ALIGNED DATA 

CALL RANKS(NC,AY AB,.000000001, 0, O,RAB) 
CALL RANKS(NC,AY A,.000000001,0,0,RA) 
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CALL RANKS(NC,AYB,.000000001,0,0,RB) 
CALL RANKS(NC,Y,.000000001,0,0,R) 

C TWO FACTOR ANALYSIS: F-TEST ONRAWDATA 

C CALCULATE SS FOR MAIN EFFECTS 

SUMX=O.O 
SST=O 
DO 166 I=l,NC 
SUMX=SUMX+Y(I) 
SST=SST+(Y(I))**2 
ICl(IG(I,l))=ICl(IG(I,l))+ 1 
D030K=l,NF 
IF (IG(I,K).GT.NL(K)) THEN 
NL(K)=IG(I,K) 
END IF 

30 CONTINUE 
IC2(IG(I, 1 ),IG(I,2))=IC2(IG(I,l ),IG(I,2))+ 1 

166 CONTINUE 
CM=SUMX**2/NC 
SST=SST-CM 
IDF(l)=NL(l)-1 
IDF(2)=NL(2)-l 
IDF(3)=IDF( 1 )*IDF(2) 
IDF( 4)=NL(l )*NL(2)*(NREP-l) 
NP=3 
IF (NREP.EQ.l) THEN 
NP=NP-1 
END IF 
DO 160 J=l,2 
DO 160 K=l,NL(J) 
SUM2(K,J)=O. 0 

160 CONTINUE 
DO 170 I=l,NC 

· DO 170 J=l,2 
SUM2(I G(I,J),J)=SUM2(IG(I,J),J)+ Y (I) 

170 CONTINUE 
DO 180 J=l,2 
SS(J)=O.O 
DO 190 K=l,NL(J) 

190 SS(J)=SS(J)+(SUM2(K,J))**2 
l\1M=NC/NL(J) 

180 SS(J)=SS(J)/MM-CM 

C CALCULATE INTERACTION SS 

DO 200 I=l,NL(l) 
DO 200 J=l,NL(2) 
SUM2(I,J)=O. 0 
SS2(I,J)=O.O 

200 CONTINUE 
DO 210 I=l,NC 
SUM2(IG(I,l),IG(I,2))=SUM2(IG(I,l),IG(I,2))+Y(I) 
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210 SS2(IG(I,1),IG(I,2))=SS2(IG(I,1),IG(I,2))+(Y(I))**2 
SS(3)=0.0 
DO 220 I=l,NL(l) 
DO 220 J=l,NL(2) 
SS(3)=SS(3)+(SUM2(I,J))**2 

220 CONTINUE 
SS(3)=SS(3)/NREP-CM-SS(l)-SS(2) 

C FIND ERROR SUM OF SQUARES AND MEAN SQUARES 

SS( 4)=SST-SS(l)-SS(2)-SS(3) 
IF (NP.EQ.3) THEN 
MS(4)=SS(4)/IDF(4) 
END IF 
D0230 I=l,3 

230 MS(I)=SS(I)/IDF(I) 
IF (NP.EQ.3) THEN 
IF (MS(4).EQ.0.0) THEN 
FY=9999.0 
ELSE 
FY A=MS( 1 )/MS( 4) 
FYB=MS(2)/MS(4) 
FY AB=MS(3)/MS( 4) 
SUMFYA=SUMFYA+FYA 
SUMFYB=SUMFYB+FYB 
SUMFYAB=SUMFYAB+FYAB 
END IF 
ELSE 
IF (MS(3).EQ.O.O) THEN 
FY=9999.0 
ELSE 
FY=MS(l)/MS(3) 
END IF 
END IF 
IF (FYA .GE. CRITFAlO) THEN 
FY AREJlO=FY AREJl o+ 1 
END IF 
IF (FYB .GE. CRITFBlO) THEN 
FYBREJlO=FYBREJlo+ 1 
END IF 
IF (FY AB . GE. CRITF ABlO) THEN 
FY ABREJlO=FY ABREJlo+ 1 
END IF 
IF (FY A . GE. CRITF A05) THEN 
FY AREJ05=FY AREJ05+ 1 
END IF 
IF (FYB .GE. CRITFB05) THEN 
FYBREJ05=FYBREJ05+ 1 
END IF 
IF (FY AB . GE. CRITF ABOS) THEN 
FY ABREJ05=FY ABREJ05+ 1 
END IF 
IF (FYA .GE. CRITFAOl) THEN 
FY AREJOl =FY AREJOl + 1 
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END IF 
IF (FYE .GE. CRITFBOl) THEN 
FYBREJOl =FYBREJOl + 1 
END IF 
IF (FYAB .GE. CRITFABOl) THEN 
FY ABREJOl=FY ABREJOl + 1 
END IF 

C TWO FACTOR ANALYSIS : F-TEST ON RAW RANKS 

C CALCULATE SS FOR MAIN EFFECTS 

SUMX=O.O 
SST=O 
DO 4166 I=l,NC 
SUMX=SUMX +R(I) 
SST=SST+(R(I))**2 
ICl(IG(I,l))=ICl(IG(I,1))+ 1 
DO 430 K=l,NF 
IF (IG(I,K).GT.NL(K)) THEN 
NL(K)=IG(I,K) 
END IF 

430 CONTINUE 
IC2(IG(I,1),IG(I,2))=IC2(IG(I,1),IG(I,2))+ 1 

4166 CONTINUE 
CM=SUMX**2/NC 
SST=SST-CM 
IDF(l)=NL(l)-1 
IDF(2)=NL(2)-1 
IDF(3)=IDF( 1 )*IDF(2) 
IDF(4)=NL(l)*NL(2)*(NREP-1) 
NP=3 
IF (NREP.EQ.1) THEN 
NP=NP-1 
END IF 
DO 4160 J=l,2 
D04160 K=l,NL(J) 
SUM2(K,J)=O.O 

4160 CONTINUE 
DO 4170 I=l,NC 
DO 4170 J=l,2 
SUM2(IG(I,J),J)=SUM2(IG(I,J),J)+R(I) 

4170 CONTINUE 
DO 4180 J=l,2 
SS(J)=O.O 
DO 4190 K=l,NL(J) 

4190 SS(J)=SS(J)+(SUM2(K,J))**2 
MM=NC/NL(J) 

4180 SS(J)=SS(J)/MM-CM 

C CALCULATE INTERACTION SS 

DO 4200 I=l,NL(l) 
DO 4200 J=l,NL(2) 

138 



SUM2(I,J)=O. 0 
SS2(l,J)=O.O 

4200 CONTINUE 
DO 4210 I=l,NC 
SUM2(IG(I,1),IG(I,2))=SUM2(IG(I, l),IG(I,2))+R(I) 

4210 SS2(IG(I,1),IG(I,2))=SS2(IG(I,1),IG(I,2))+(R(I))**2 
SS(3)=0.0 
DO 4220 I=l,NL(l) 
DO 4220 J=l,NL(2) 
SS(3)=SS(3)+(SUM2(I,J))**2 

4220 CONTINUE 
SS(3)=SS(3)/NREP-CM-SS(l)-SS(2) 

C FIND ERROR SUM OF SQUARES AND MEAN SQUARES 

SS( 4)=SST-SS(l)-SS(2)-SS(3) 
IF (NP.EQ.3) THEN 
MS(4)=SS(4)/IDF(4) 
END IF 
DO 4230 I=l,3 

4230 MS(I)=SS(I)/IDF(I) 
IF (NP.EQ.3) THEN 
IF (MS(4).EQ.O.O)THEN 
FY=9999.0 
ELSE 
~=MS(l)/MS(4) 
FRB=MS(2)/MS( 4) 
FR)J3=MS(3)/MS(4) 
SUMFRA=SUMFRA+~ 
SUMFRB=SUMFRB+FRB 
SUMFRAB=SUMFRAB+FRAB 
END IF 
ELSE 
IF (MS(3).EQ.O.O) THEN 
FY=9999.0 

·ELSE 
FY=MS(l )/MS(3) 
END IF 
END IF 
IF (FRA . GE. CRITRAlO) THEN 
FRAREJlO=FRAREJlo+ 1 
END IF 
IF (FRB .GE. CRITRBlO) THEN 
FRBREJlO=FRBREJlo+ 1 
END IF 
IF (FRAB .GE. CRITRABlO) THEN 
FRABREJlO=FRABREJlo+ 1 
END IF 
IF (FRA .GE. CRITRA05) THEN 
FRAREJ05=FRAREJ05+ 1 
END IF 
IF (FRB .GE. CRITRB05)THEN 
FRBREJ05=FRBREJ05+ 1 
END IF 
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IF (FRAB . GE. CRITRAB05) THEN 
FRABREJ05=FRABREJ05+1 
END IF 
IF (FRA .GE. CRITRAOl) THEN 
FRAREJOl=FRAREJOl+l 
END IF 
IF (FRB .GE. CRITRBOl) THEN 
FRBREJOl =FRBREJOl + 1 
END IF 
IF (FRAB .GE. CRITRABOl) THEN 
FRABREJOl=FRABREJOl+l 
END IF 

C TWO FACTOR ANALYSIS : F-TEST ON ALIGNED RANKS , TEST FOR INTERACTION 

C CALCULATE SS FOR MAIN EFFECTS 

SUMX=O.O 
SST=O 
DO 1166 I=l,NC 
SUMX=SUMX+RAB(I) 
SST=SST+(RAB(I))**2 
ICl(IG(I,l))=ICl(IG(I,l))+ 1 
DO 130 K=l,NF 
IF (IG(I,K).GT.NL(K)) THEN 
NL(K)=IG(I,K) 
END IF 

130 CONTINUE 
IC2(IG(I, 1 ),IG(I,2))=IC2(IG(I, 1 ),IG(I,2))+ 1 

1166 CONTINUE 
CJ\.1=SUMX**2/NC 
SST=SST-CJ\.1 
IDF(l)=NL(l)-1 
IDF(2)=NL(2)- l 
IDF(3)=IDF(l )*IDF(2) 
IDF(4)=NL(l)*NL(2)*(NREP-l) 
NP=3 
IF (NREP.EQ. l) THEN 
NP=NP-1 
END IF 
DO 1160 J=l,2 
DO 1161 K=l,NL(J) 
SUM2(K,J)=O. 0 

1161 CONTINUE 
1160 CONTINUE 

DO 1170 I=l,NC 
DO 1171 J=l,2 
SUM2(IG(I,J),J)=SUM2(IG(I,J),J)+RAB(I) 

1171 CONTINUE 
1170 CONTINUE 

DO 1180 J=l,2 
SS(J)=O.O 
DO 1190 K=l,NL(J) 

1190 SS(J)=SS(J)+(SUM2(K,J))**2 
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MM=NC/NL(J) 
1180 SS(J)=SS(J)/MM-CM 

C CALCULATE INTERACTION SS 

DO 1200 I=l,NL(l) 
DO 1201 J=l,NL(2) 
SUM2(I,J)=O.O 
SS2(I,J)=O.O 

1201 CONTINUE 
1200 CONTINUE 

DO 1210 I=l,NC 
SUM2(IG(I,1),IG(I,2))=SUM2(IG(I,1),IG(I,2))+RAB(I) 

1210 SS2(IG(I,1),IG(I,2))=SS2(IG(I,1),IG(I,2))+(RAB(I))**2 
SS(3)=0.0 
DO 1220 I=l,NL(l) 
DO 1221 J=l,NL(2) 
SS(3)=SS(3)+(SUM2(I,J))**2 

1221 CONTINUE 
1220 CONTINUE 

SS(3)=SS(3)/NREP-CM-SS(l)-SS(2) 

C FIND ERROR SUM OF SQUARES AND MEAN SQUARES 

SS( 4)=SST-SS(l)-SS(2)-SS(3) 
IF (NP.EQ.3) THEN 
MS( 4)=SS( 4)/IDF( 4) 
END IF 
DO 1230 I=l,3 

1230 MS(I)=SS(I)/IDF(I) 

IF (NP.EQ.3) THEN 
IF (MS(4).EQ.O.O) THEN 
FR=9999.0 
ELSE 
F ARAB=MS(3)/MS( 4) 
SUMFARAB=SUMFARAB+FARAB 
END IF 
ELSE 
IF (MS(3).EQ.O.O) THEN 
FARAB=9999.0 
ELSE 
F ARAB=9999.0 
END IF 
END IF 
IF (FARAB .GE. CRITRABlO)THEN 
F ARABREJlO=F ARABREJlo+ 1 
END IF 
IF (F ARAB .GE. CRITRAB05) THEN 
F ARABREJ05=F ARABREJ05+ 1 
END IF 
IF (F ARAB . GE. CRITRABOl) THEN 
F ARABREJOl=F ARABREJOl + 1 
END IF 

141 



C TWO FACTOR ANALYSIS : F-TEST ON ALIGNED RANKS, TEST FOR FACTOR A 

C CALCULATE SS FOR MAIN EFFECTS 

SUMX=O.O 
SST=O 
DO 2266 I=l,NC 
SUMX=SUMX+RA(I) 
SST=SST+(RA(l))**2 
ICl(IG(l,l))=ICl(IG(I,l))+ 1 
DO 2130 K=l,NF 
IF (IG(I,K).GT.NL(K)) THEN 
NL(K)=IG(I,K) 
END IF 

2130 CONTINUE 
IC2(1G(l,1),IG(I,2))=1C2(1G(I,1),IG(I,2))+ 1 

2266 CONTINUE 
CM=SUMX**2/NC 
SST=SST-CM 
IDF(l)=NL(l)-1 
IDF(2)=NL(2)-1 
IDF(3)=IDF(l)*IDF(2) 
IDF(4)=NL(l)*NL(2)*(NREP-1) 
NP=3 
IF (NREP.EQ.1) THEN 
NP=NP-1 
END IF 
DO 2160 J=l,2 
DO 2161 K=l,NL(J) 
SUM2(K,J)=O.O 

2161 CONTINUE 
2160 CONTINUE 

DO 2170 I=l,NC 
DO 2171 J=l,2 
SUM2(IG(I,J),J)=SUM2(IG(I,J),J)+RA(I) 

2171 CONTINUE 
2170 CONTINUE 

DO 2180 J=l,2 
SS(J)=O.O 
DO 2190 K=l,NL(J) 

2190 SS(J)=SS(J)+(SUM2(K,J))**2 
MM=NC/NL(J) 

2180 SS(J)=SS(J)/MM-CM 

C CALCULATE INTERACTION SS 

DO 2200 I=l,NL(l) 
DO 2201 J=l,NL(2) 
SUM2(1,J)=O.O 
SS2(1,J)=O.O 

2201 CONTINUE 
2200 CONTINUE 

DO 2210 I=l,NC 
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SUM2(IG(I,1),IG(I,2))=SUM2(IG(I,l),IG(I,2))+RA(I) 
2210 SS2(IG(I,1),IG(I,2))=SS2(IG(I,1),IG(I,2))+(RA(I))**2 

SS(3)=0.0 
DO 2220 I=l,NL(l) 
DO 2221 J=l,NL(2) 
SS(3)=SS(3)+(SUM2(I,J))**2 

2221 CONTINUE 
2220 CONTINUE 

SS(3)=SS(3)/NREP-CM-SS(l)-SS(2) 

C FIND ERROR SUM OF SQUARES AND :MEAN SQUARES 

SS( 4)=SST-SS(l)-SS(2)-SS(3) 
IF (NP.EQ.3) THEN 
MS( 4)=SS( 4)/IDF( 4) 
END IF 
DO 2230 I=l,3 

2230 MS(I)=SS(I)/IDF(I) 
IF (NP.EQ.3) THEN 
IF (MS(4).EQ.O.O) THEN 
FR=9999.0 
ELSE 
FARA=MS(l)/MS(4) 
SUMFARA=SUMFARA+FARA 
END IF 
ELSE 
IF (MS(3).EQ.O.O) THEN 
FR=9999.0 
ELSE 
FR=MS(l)/MS(3) 
END IF 
END IF 
IF (FARA .GE. CRITRAlO) THEN 
FARAREJlO=FARAREJlo+l 
END IF 
IF (FARA .GE. CRITRA05)THEN 
FARAREJ05=FARAREJ05+1 
END IF 
IF (FARA . GE. CRITRAOl) THEN 
FARAREJOl=FARAREJOl+l 
END IF 

C TWO FACTOR ANALYSIS : F-TEST ON ALIGNED RANKS, TEST FOR FACTOR B 

C CALCULATE SS FOR MAIN EFFECTS 

SUMX=O.O 
SST=O 
DO 3266 I=l,NC 
SUMX=SUMX+RB(I) 
SST=SST+(RB(I))**2 
ICl(IG(I,l))=ICl(IG(I,l))+ 1 
DO 3230 K=l,NF 
IF (IG(I,K).GT.NL(K)) THEN 
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NL(K)=IG(I,K) 
END IF 

3230 CONTINUE 
IC2(IG(I,1),IG(I,2))=IC2(IG(I,1),IG(I,2))+ 1 

3266 CONTINUE 
C:rvt:=SUNIX:**2/N"C 
SST=SST-C:rvt: 
IDF(l)=NL(l)-1 
IDF(2)=NL(2)- l 
IDF(3)=IDF(l)*IDF(2) 
IDF( 4)=NL( 1 )*NL(2)*(NREP-1) 
NP=3 
IF (NREP.EQ.1) THEN 
NP=NP-1 
END IF 
DO 3260 J=l,2 
DO 3261 K=l,NL(J) 
SUM2(K,J)=O.O 

3261 CONTINUE 
3260 CONTINUE 

DO 3270 I=l,NC 
DO 3271 J=l,2 
SUM2(IG(I,J),J)=SUM2(IG(I,J),J)+RB(I) 

3271 CONTINUE 
3270 CONTINUE 

DO 3280 J=l,2 
SS(J)=O.O 
DO 3290 K=l,NL(J) 

3290 SS(J)=SS(J)+(SUM2(K,J))**2 
:rvt::rvt:=NC/NL(J) 

3280 SS(J)=SS(J)/MM:-C:rvt: 

C CALCULATE INTERACTION SS 

DO 3300 I=l,NL(l) 
DO 3301 J=l,NL(2) 
SUM2(I,J)=O. 0 
SS2(I,J)=O. 0 

3301 CONTINUE 
3300 CONTINUE 

DO 3310 I=l,NC 
SUM2(IG(I,1),IG(I,2))=SUM2(IG(I,l),IG(I,2))+RB(I) 

3310 SS2(IG(I,1),IG(I,2))=SS2(IG(I,1),IG(I,2))+(RB(I))**2 
SS(3)=0.0 
DO 3320 I=l,NL(l) 
DO 3321 J=l,NL(2) 
SS(3)=SS(3)+(SUM2(I,J))**2 

3321 CONTINUE 
3320 CONTINUE 

SS(3)=SS(3)/NREP-C:rvt:-SS(l)-SS(2) 

C FIND ERROR SU:rvt: OF SQUARES AND :rvt:EAN SQUARES 

SS( 4)=SST-SS(l)-SS(2)-SS(3) 

144 



IF (NP.EQ.3) THEN 
MS( 4)=SS( 4)/IDF( 4) 
END IF 
DO 3330 I=l,3 

3330MS(I)=SS(I)/IDF(I) 

IF (NP.EQ.3) THEN 
IF (MS(4).EQ.0.0) THEN 
FR=9999.0 
ELSE 
F ARB=MS(2)/MS( 4) 
SUMFARB=SUMFARB+FARB 
END IF 
ELSE 
IF (MS(3).EQ.O.O) THEN 
FR=9999.0 
ELSE 
F ARB=MS(2)/MS(3) 
END IF 
END IF 
IF (FARB .GE. CRITRBlO) THEN 
F ARBREJlO=F ARBREJlo+ 1 
END IF 
IF (FARB .GE. CRITRB05) THEN 
F ARBREJ05=F ARBREJ05+ 1 
END IF 
IF (FARB .GE. CRITRBOl) THEN 
F ARBREJOl=F ARBREJOl + 1 
END IF 

10 CONTINUE 

FYAlOPV=REAL(FY AR.EJlO)/REAL(N) 
FRAlOPV=REAL(FRAREJlO)/REAL(N) 
F ARAlOPV=REAL(F ARAR.EJlO)/REAL(N) 
FRT AlOPV=REAL(FRT AR.EJlO)/REAL(N) 
FYBlOPV=REAL(FYBREJlO)/REAL(N) 
FRBlOPV=REAL(FRBREJlO)/REAL(N) 
F ARBlOPV=REAL(F ARBREJlO)/REAL(N) 
FY ABlOPV=REAL(FY ABREJlO)/REAL(N) 
FRABlOPV=REAL(FRABREJlO)/REAL(N) 
F ARABlOPV=REAL(F ARABREJ10)/REAL(N) 
FYA05PV=REAL(FY AR.EJ05)/REAL(N) 
FRA05PV=REAL(FRAREJ05)/REAL(N) 
F ARA05PV=REAL(F ARAREJ05)/REAL(N) 
FYB05PV=REAL(FYBREJ05)/REAL(N) 
FRB05PV=REAL(FRBREJ05)/REAL(N) 
F ARB05PV=REAL(F ARBREJ05)/REAL(N) 
FY AB05PV=REAL(FY ABREJ05)/REAL(N) 
FRAB05PV=REAL(FRABREJ05)/REAL(N) 
F ARAB05PV=REAL(F ARABREJ05)/REAL(N) 
FYAOlPV=REAL(FY AR.EJOl)/REAL(N) 
FRAOlPV=REAL(FRAREJOl)/REAL(N) 
F ARAOlPV=REAL(F ARAREJOl)/REAL(N) 
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FYBOlPV=REAL(FYBREJOl)/REAL(N) 
FRBOlPV=REAL(FRBREJOl)/REAL(N) 
F ARBOlPV=REAL(F ARBREJOl)/REAL(N) 
FY ABOlPV=REAL(FY ABREJOl)/REAL(N) 
FRABOlPV=REAL(FRABREJOl)/REAL(N) 
F ARABOlPV=REAL(F ARABREJOl)/REAL(N) 

WRITE (4,*) 'ALPHA= 0.10' 
WRITE ( 4, *) 'FY APV AL= ',FYAlOPV 
WRITE (4,*) 'FRAPVAL= ',FRAlOPV 
WRITE ( 4, *) 'F ARAPV AL=' ,F ARAlOPV 
WRITE (4,*) 'FYBPVAL= ',FYBlOPV 
WRITE (4,*) 'FRBPVAL= ',FRBlOPV 
WRITE (4,*) 'FARBPVAL= ',FARBlOPV 
WRITE ( 4, *) 'FY ABPV AL= ',FY AB 1 OPV 
WRITE ( 4, *) 'FRABPV AL=' ,FRABlOPV 
WRITE ( 4, *) 'F ARABPV AL=' ,F ARAB lOPV 

WRITE (4,*) 'ALPHA= 0.05' 
WRITE (4,*) 'FYAPVAL= ',FYA05PV 
WRITE (4,*) 'FRAPVAL= ',FRA05PV 
WRITE ( 4, *) 'F ARAPV AL=' ,F ARA05PV 
WRITE ( 4, *) 'FYBPV AL= ',FYB05PV 
WRITE (4,*) 'FRBPVAL= ',FRB05PV 
WRITE ( 4, *) 'F ARBPV AL=' ,F ARB05PV 
WRITE ( 4, *) 'FY ABPV AL=' ,FY AB05PV 
WRITE ( 4, *) 'FRABPV AL=' ,FRAB05PV 
WRITE ( 4, *) 'F ARABPV AL=' ,F ARAB05PV 

WRITE (4,*) 'ALPHA= 0.01' 
WRITE (4,*) 'FYAPVAL= ',FYAOlPV 
WRITE (4,*) 'FRAPVAL= ',FRAOlPV 
WRITE ( 4, *) 'F ARAPV AL=' ,F ARAOlPV 
WRITE (4,*) 'FYBPVAL= ',FYBOlPV 
WRITE (4,*) 'FRBPVAL= ',FRBOlPV 
WRITE ( 4, *) 'F ARBPV AL=' ,F ARBOlPV 
WRITE ( 4, *) 'FY ABPV AL= ',FY ABOlPV 
WRITE ( 4, *) 'FRABPV AL=' ,FRABOlPV 
WRITE ( 4, *) 'F.A.RABPV AL=',F ARABOlPV 

CLOSE (UNIT=4) 

END 
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Program 6. 

PROGRAM TO SIMULATE SPLIT PLOT EXPERIMENT 

PARAMETER (NC=36,NOBSA=6,NOBSB=8,NLA=3,NLB=4,NLC=3,NREP=l) 

INTEGER IG(NC,3),IDF(8),IC1(20),NL(20),N,Z 
INTEGER HOLD(75), W,P,Q,NOBSA,NOBSB,NMISS 
INTEGER FYMREJ,FYSREJ,FYIREJ,FRMREJ,FRSREJ,FRIREJ 
INTEGER F ARMREJ,F ARSREJ,F ARIREJ 
INTEGER FRTMREJ,FRTSREJ,FRTIREJ 
INTEGER ISEED,K,NOUT ,IC3(20,20,20),NPERMS 
INTEGER INCX,INDEX,COUNT ,NN 
REAL R(NC), Y(NC),MS(8),SS(8),SUM2(20,20),SS2(20,20) 
REAL RC(NC),RB(NC),RBC(NC),CONS,SIG,QPROP(l),MDA(l),MDB(l) 
REAL FYM,FRM,MEDA(NLA),MEDB(NLB) 
REAL F ARM,F ARS,F ARI,SUMX,SST 
REAL FYS,FRS,FYI,FRI,M,SSE,MSE 
REAL FYMPV,FRMPV,F ARMPV,FRTMPV,ARRA YA(NOBSA) 
REAL FYSPV,FRSPV,F ARSPV,FRTSPV,ARRA YB(NOBSB) 
REAL FYIPV,FRIPV,F ARIPV,FRTIPV 
REAL A(NLA),MT(NLB),MST(NLB,NLC),P05,AMC(NLA,NLB,NLC) 
REAL DFNA,DFNB,DFNAB,DFD,MC(NLC),AMBC(NLA,NLB,NLC) 
REAL MX(NLA,NLB,NLC),A YB(NC),AYC(NC),UE(l),ST(NLC) 
REAL MA(NLA),MB(NLB),SUM,AMB(NLA,NLB,NLC),A YBC(NC) 
REAL CRITFM,CRITFS,CRITFI,CRITRM,CRITRS,CRITRI 
REAL SUM3(20,20,20),SS3(20,20,20) 
REAL BEV(l),MEV(l),SEV(l) 
REAL BE(NLA),ME(NLA *NLB),SE(NLA *NLB*NLC) 
REAL SIGB,SIGM,SIGS,SUMARM(NC),SUMARS(NC),SUMARI(NC) 
DAT A CM/0.0/, NL/20*0/, ICl/20*0/ 
DAT A IG(l, 1 ),IG(l,2),IG( 1,3),IG(2, 1 ),IG(2,2),IG(2,3)/1, 1, 1, 1, 1,2/ 
DAT A IG(3,l),IG(3,2),IG(3,3),IG(4,1),IG( 4,2),IG( 4,3)/1,l,3,1,2,l/ 
DATA IG(5,1),IG(5,2),IG(5,3),IG(6,1),IG(6,2),IG(6,3)/1,2,2,1,2,3/ 
DAT A IG(7 ,l),IG(7,2),IG(7 ,3),IG(8,1),IG(8,2),IG(8,3)/1,3,1,1,3,2/ 
DAT A IG(9, 1 ),IG(9,2),IG(9 ,3),IG(l 0,1 ),IG(l 0,2)/1,3,3,1,4/ 
DAT A IG(l 0,3),IG(H,1),IG(l l,2),IG(l l,3),IG(l2,1)/1,1,4,2,l/ 
DAT A IG( 12,2),IG(12,3),IG( 13, 1 ),IG(13,2),IG( 13,3)/4,3,2, 1, 1/ 
DAT A IG( 14, 1 ),IG(l 4,2),IG(14,3),IG(l5, 1),IG(15,2)/2, 1,2,2,1/ 
DAT A IG(15 ,3),IG(l 6, 1 ),IG(l 6,2),IG(l 6,3),IG(l 7, 1 )/3,2,2, 1,2/ 
DAT A IG(l 7,2),IG(l 7,3),IG(l8,1),IG(l8,2),IG(l8,3)/2,2,2,2,3/ 
DAT A IG(19, 1 ),IG(l 9 ,2),IG(19,3),IG(20, 1 ),IG(20,2)/2,3, 1,2,3/ 
DAT A IG(20,3),IG(21,1),IG(21,2),IG(21,3),IG(22,1)/2,2,3,3,2/ 
DAT A IG(22,2),IG(22,3),IG(23,1),IG(23,2),IG(23,3)/4,1,2,4,2/ 
DAT A IG(24,l),IG(24,2),IG(24,3),IG(25,1),IG(25,2)/2,4,3,3,l/ 
DAT A IG(25 ,3),IG(26, 1 ),IG(26,2),IG(26,3),IG(27 ,1 )/1,3,1,2,3/ 
DAT A IG(27 ,2),IG(27 ,3),IG(28, 1 ),IG(28,2),IG(28,3)/1,3,3,2,1/ 
DAT A IG(29, 1 ),IG(29 ,2),IG(29,3),IG(30, 1 ),IG(30,2)/3,2,2,3,2/ 
DATA IG(30,3),IG(31,1),IG(31,2),IG(31,3),IG(32,1)/3,3,3,1,3/ 
DAT A IG(32,2),IG(32,3),IG(33,1),IG(33,2),IG(33,3)/3,2,3,3,3/ 
DAT A IG(34, 1 ),IG(34,2),IG(34,3),IG(35, 1 ),IG(35 ,2)/3,4, 1,3, 4/ 
DATA IG(35,3),IG(36,1),IG(36,2),IG(36,3)/2,3,4,3/ 
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DATA IC3/8000*-1.0/ 
DAT A MT(l ),MT(2),MT(3),MT( 4)/. 0,. 0, -. 0,. Of 
DATA ST(l),ST(2),ST(3)/3.50,-.0,.0/ 
DAT A MST(l,1),MST(l,2),MST(l,3)/-3.50,.0,-.0/ 
DAT A MST(2, 1 ),MST(2,2),MST(2,3)/0, -. 0,. 0/ 
DATAMST(3,1),MST(3,2),MST(3,3)/-.0,.0,.0/ 
DATA MST( 4,1),MST( 4,2),MST(4,3)/3.50,0,0/ 

OPEN (UNIT=4,FILE='C:\MSDEV\DATA\SIMSPLIT.TXT') 

WRITE (4,*) 
WRITE (4,*) 
WRITE (4,*) '3*4*3 SPLIT PLOT, ALL TESTS USING' 
WRITE ( 4, *) 'USING POOLED ERROR; NORMAL ERRORS EQUAL VARIAN CE' 

C WRITE (4,*) 'ST1=-3.5;ST3=3.5' 
C WRITE (4,*) ':tv1T2=ST1=3.50, MT3=ST2=-3.50' 

WRITE (4,*) 'ST1=MST41=3.5, MSTll=-3.5' 
C WRITE (4,*) 'MST1l=MST33=3.5;MST13=MST31=-3.5' 
C WRITE (4,*) 'SUB UNIT EFFECT PRESENT' 

WRITE (4,*) 'ALL EFFECTS PRESENT' 
C WRITE ( 4, *) 'MAIN AND SUB UNIT EFFECTS PRESENT' 
C WRITE ( 4, *) 'INTERACTION EFFECT PRESENT' 

C CONS=l.77 
NN=36 
NPERMS=lOOOO 
N=lOOOO 
NF=3 
NP=O 
INCX=l 
ZM=l 
ZS=l 
ZI=l 
NL(1)=3 
NL(2)=4 
NL(3)=3 
COUNT=O 
QPROP=.5 

C CRITICAL VALVES 

P05=.95 
DFNM=3 
DFDM=6 
DFNS=2 
DFDS=16 
DFNI=6 
DFDI=16 
CRITFM=FIN(P05,DFNM,DFDM) 
CRITFS=FIN(P05,DFNS,DFDS) 
CRITFI=FIN(P05,DFNI,DFDI) 
CRITRM=4. 829662 
CRITRS=3. 666049 
CRITRI=2. 792083 
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Z=l 

CALL RNSET(62064) 
DO 10 S=l,N 

C GENERATE OBSERVATIONS 

W=l 
Wl=l 
W2=1 
SIGB=l.O 
SIGM=l.O 
SIGS=l.O 

CALL RNNOA(NC,BE) 
C CALL SSCAL(NC,SIGB,BE,1) 
C CALL RNEXP(NC,BE) 
C CALL SSCAL(NC,3.0,BE,1) 

CALL RNNOA(NC,ME) 
C CALL SSCAL(NC,SIGM,ME,1) 
C CALL RNEXP(NC,ME) 
C CALL SSCAL(NC,3.0,ME,1) 

CALL RNNOA(NC,SE) 
C CALL SSCAL(NC,SIGS,SE,l) 
C CALL RNEXP(NC,SE) 
C CALL SSCAL(NC,3.0,SE,1) 

DO 1 I=l,NL(l) 
C CALL RNNOA(l,BEV) 
C CALL SSCAL(l,SIGB,BEV,1) 

DO 3 J=l,NL(2) 

C CALL RNNOA(l,MEV) 
C CALL SSCAL(l,SIGM,MEV,1) 
C CALL RNUN(l,MEV) 
C CALL SSCAL(l,6.0,MEV,1) 
C CALL SADD(l,-3.0,MEV,1) 

DO 5 K=l,NL(3) 

C CALL RNNOA(l,SEV) 
C CALL SSCAL(l,SIGS,SEV,1) 

C CALL RNEXP(l,SEV) 
C CALL SSCAL(l,3.0,SEV,1) 
C CALL RNUN(l,SEV) 
C CALL SSCAL(l,6.0,SEV,1) 
C CALL SADD(l,-3.0,SEV,1) 

Y(W)=MT(J)+ST(K)+MST(J,K)+BE(I)+ME(Wl)+SE(W) 
C Y(W)=MT(J)+ST(K)+MST(J,K)+BEV(l)+MEV(l)+SEV(l) 
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W=W+l 
5 CONTINUE 

Wl=Wl+l 
C SIGM=CONS*SIGM 

3 CONTINUE 
W2=W2+1 

C SIGB=CONS*SIGB 
C SIGM=l 

1 CONTINUE 

C ALIGN OBSERVATIONS 

C FILL MATRIX WITH OBSERVATIONS 

P=l 
DO 51 I=l,NL(l) 
DO 52 J=l,NL(2) 
DO 53 K=l,NL(3) 
MX(I,J,K)=Y(P) 
P=P+-1 

53 CONTINUE 
52 CONTINUE 
51 CONTINUE 

C COMPUTE FACTOR A MEANS AND MEDIANS 
SUM=O 
DO 61 I=l,NL(l) 

C Q=l 
DO 62 J=l,NL(2) 
DO 63 K=l,NL(3) 
SUM=SUM+MX(I,J,K) 

C ARRAY A(Q)=M(I,J,K) 
C Q=Qtl 

63 CONTINUE 
62 CONTINUE 

C CALL EQTIL(NOBSA,ARRAYA,l,QPROP,MDA,XLO,XHI,NMISS) 
C MEDA(I)=MDA(l) 

MA(I)=SUM/(NL(2)*NL(3)) 
SUM=O 

61 CONTINUE 

C COMPUTE FACTOR B MEANS AND MEDIANS 
SUM=O 
DO 71 J=l,NL(2) 

C Q=l 
DO 72 I=l,NL(l) 
DO 73 K=l,NL(3) 
SUM=SUM+MX(I,J,K) 

C ARRA YB(Q)=M(I,J,K) 
C Q=Q+l 

73 CONTINUE 
72 CONTINUE 

C CALL EQTIL(NOBSB,ARRA YB,l,QPROP,MDB,XLO,XHI,NMISS) 

150 



C MEDB(J)=MDB(l) 
MB(J)=SUM/(NL(l)*NL(3)) 
SUM=O 

71 CONTINUE 

C COMPUTE FACTOR C MEANS AND MEDIANS 

SUM=O 
DO 710 K=l,NL(3) 

C Q=l 
DO 720 I=l,NL(l) 
DO 730 J=l,NL(2) 
SUM=SUM+MX(I,J,K) 

C ARRA YB(Q)=M(I,J,K) 
C Q=Q+l 
730 CONTINUE 
720 CONTINUE 

C CALL EQTIL(NOBSB,ARRA YB,1,QPROP,MDB,XLO,XHI,NMISS) 
C MEDB(J)=MDB(l) 

MC(K)=SUM/(NL( 1 )*NL(2)) 
SUM=O 

710 CONTINUE 

C COMPUTE OVERALL MEAN 
SUM=O 
DO 760 I=l,NL(2) 
SUM=SUM+MB(I) 

760 CONTINUE 
MAB=SUM/NL(2) 

C COMPUTE ALIGNED OBSERVATIONS 
DO 81 I=l,NL(l) 
DO 82 J=l,NL(2) 
DO 83 K=l,NL(3) 
AMBC(I,J,K)=MX(I,J,K)-MA(I)-MB(J)-MC(K) 
AMB(I,J,K)=MX(I,J,K)-MA(I)-MC(K) 
AMC(I,J,K)=MX(I,J,K)-MA(I)-MB(J) 

83 CONTINUE 
82 CONTINUE 
81 CONTINUE 

C RETURN ALIGNED MATRIX ELEMENTS TO SINGLE ARRAY 
Q=l 
DO 91 I=l,NL(l) 
DO 92 J=l,NL(2) 
DO 93 K=l,NL(3) 
A YBC(Q)=AMBC(I,J,K) 
A YB(Q)=AMB(I,J,K) 
AYC(Q)=AMC(I,J,K) 
Q=Q+l 

93 CONTINUE 
92 CONTINUE 
91 CONTINUE 
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C FIND THE RANKS OF THE ALIGNED AND RAW DATA 

CALL RANKS(NC,A YBC,.000000001,0,0,RBC) 
CALL RANKS(NC,A YB,.000000001,0,0,RB) 
CALL RANKS(NC,AYC,.000000001,0,0,RC) 
CALL RANKS(NC,Y,.000000001,0,0,R) 

DO 1000 I=l,NC 
SUMARM(I)=SUMARM(I)+RB(I) 
SUMARS(I)=SUMARS(I)+RC(I) 
SUMARI(I)=SUMARI(I)+RBC(I) 

1000 CONTINUE 

C PERFORM ANALYSIS ON RAW DATA 

C CALCULATE SS FOR MAIN EFFECTS 

SUMX=O 
SST=O 
DO 101 I=l,NC 
SUMX=SUMX+Y(I) 
SST=SST+(Y(I))**2 
ICl(IG(I,l))=ICl(IG(I,1))+ 1 
DO 101 K=l,NF 
IF (IG(I,K) .GT. NL(K)) THEN 
NL(K)=IG(I,K) 
END IF 

102 CONTINUE 
IC3(IG(I,1),IG(I,2),IG(I,3))=IC3(IG(I,1),IG(I,2),IG(I,3))+ 1 

101 CONTINUE 
CM=SUMX**2/NC 
SST=SST-CM 
IDF(l)=NL(l)-1 
IDF(2)=NL(2)-1 
IDF(3)=NL(3)-1 
IDF( 4)=IDF(l)*IDF(2) 
IDF(5)=IDF(l)*IDF(3) 
IDF( 6)=IDF(2)*IDF(3) 
IDF(7)=IDF( 4)*IDF(3) 
IDF(8)=NL(l )*NL(2)*NL(3)*(NREP-1) 
NP=7 
IF (NREP .EQ. 1) NP=NP-1 
DO 105 I=l,3 
DO 105 J=l,NL(I) 
SUM2(J,I)=O.O 

105 CONTINUE 

C FIND SS FOR MAIN EFFECTS 

DO 110 I=l,NC 
DO llOJ=l,3 
SUM2(IG(I,J),J)=SUM2(IG(I,J),J)+ Y(I) 

110 CONTINUE 
DO 115 J=l,3 
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SS(J)=O.O 
DO 120 K=l,NL(J) 
SS(J)=SS(J}+-SUM2(K,J)**2 

. 120 CONTINUE 
M=REAL(NC)/REAL(NL(J)) 
SS(J)=SS(J)/M-CM 

115 CONTINUE 

C FIND SS FOR TWO FACTOR INTERACTIONS 

NLMAX=MAX(NL(l),NL(2),NL(3)) 
DO 125 I=l,NLMAX 
DO 125 J=l,NLMAX 
DO 125 K=l,3 
SUM3(I,J,K)=O.O 

125 CONTINUE 
DO 130 I=l,NC 
SUM3(IG(I, 1 ),IG(I,2), 1 )=SUM3(IG(I, 1 ),IG(I,2), 1 )+ Y (I) 
SUM3(IG(I,1),IG(I,3),2)=SUM3(IG(I,l),IG(I,3),2)+Y(I) 
SUM3(IG(I,2),IG(I,3),3)=SUM3(IG(I,2),IG(I,3),3)+Y(I) 

130 CONTINUE 
SS(4)=0.0 
DO 135 I=l,NL(l) 
DO 135 J=l,NL(2) 
SS( 4)=SS( 4)+SUM3(I,J,l)**2 

135 CONTINUE 
SS( 4)=SS( 4)/(NL(3)*NREP)-SS(l)-SS(2)-CM 
SS(5)=0.0 
DO 140 I=l,NL(l) 
DO 140 K=l,NL(3) 
SS(5)=SS(5)+SUM3(I,K,2)**2 

140 CONTINUE 
SS(5)=SS(5)/(NL(2)*NREP)-SS(1)-SS(3)-CM 
SS(6)=0.0 
DO 145 J=l,NL(2) 
DO 145 K=l,NL(3) 
SS( 6)=SS( 6)+SUM3(J,K,3)**2 

145 CONTINUE 
SS(6)=SS(6)/(NL(1)*NREP)-SS(2)-SS(3)-CM 

C FIND SS FOR THREE FACTOR INTERACTION AND ERROR 

IF (NREP .GT. 1) GOTO 150 
SS(7)=SST-SS(l)-SS(2)-SS(3)-SS( 4)-SS(5)-SS(6) 
SS(8)=0.0 
GOTO 155 

150 DO 160 I=l,NL(l) 
DO 160 J=l,NL(2) 
DO 160 K=l,NL(3) 
SUM3(I,J,K)=O. 0 
SS3(I,J,K)=O. 0 

160 CONTINUE 
DO 165 I=l,NC 
SUM3(IG(I,1),IG(I,2),IG(I,3))=SUM3(IG(I,1),IG(I,2),IG(I,3))+Y(I) 
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SS3(IG(I,1),IG(I,2),IG(I,3))=SS3(IG(I,1),IG(I,2),IG(I,3))+ Y(I)**2 
165 CONTINUE 

SS(7)=0.0 
DO 170 I=l,NL(l) 
DO 170 J=l,NL(2) 
DO 170 K=l,NL(3) 
SS(7)=SS(7)+SUM3(I,J,K)**2 

170 CONTINUE 
SS(7)=SS(7)/NREP-SS( 1 )-SS(2)-SS(3)-SS( 4)-S S( 5)-SS( 6)-CM 
SS(8)=SST-SS(l )-SS(2)-SS(3)-SS( 4)-SS(5)-SS(6)-SS(7) 

C FIND MEAN SQUARES AND F-V ALUES 

IF (NP .EQ. 7) MS(8)=SS(8)/IDF(8) 
155 DO 175 I=l,7 

MS(I)=SS(I)/IDF(I) 
175 CONTINUE 

SSE=SS(5)+SS(7) 
MSE=SSE/(IDF(5)+IDF(7)) 
IF (MS(4) .EQ. 0.0) THEN 
FYM=999.0 
ELSE 
FYM=MS(2)/MS( 4) 
END IF 
IF (MSE .EQ. 0. 0 ) THEN 
FYS=999.0 
FYI=999.0 
ELSE 
FYS=MS(3)/MSE 
FYI=MS(6)/MSE 
END IF 
IF (FYM .GE. CRITFM) THEN 
FYMREJ=FYMREJ+ 1 
END IF 
IF (FYS .GE. CRITFS) THEN 
FYSREJ=FYSREJ+ 1 
END IF 
IF (FYI .GE. CRITFI) THEN 
FYIREJ=FYIREJ+ 1 
END IF 

C PERFORM ANALYSIS ON RANKS 

C CALCULATE SS FOR MAIN EFFECTS 

SUMX=O 
SST=O 
DO 201 I=l,NC 
SUMX=SUMX+R(I) 
SST=SST+(R(I))**2 
ICl(IG(I,l))=ICl(IG(I,l))+ 1 
DO 202 K=l,NF 
IF (IG(I,K) .GT. NL(K)) THEN 
NL(K)=IG(I,K) 
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END IF 
202 CONTINUE 

IC3(IG(I,1),IG(I,2),IG(I,3))=IC3(IG(I,1),IG(I,2),lG(I,3))+ 1 
201 CONTINUE 

CM=SUMX**2/NC 
SST=SST-CM 
IDF(l)=NL(l)-1 
IDF(2)=NL(2)-1 
IDF(3)=NL(3)-1 
IDF( 4)=IDF( l)*IDF(2) 
IDF(5)=IDF(l)*IDF(3) 
IDF(6)=IDF(2)*IDF(3) 
IDF(7)=IDF( 4)*IDF(3) 
IDF(S)=NL(l)*NL(2)*NL(3)*(NREP-1) 
NP=7 
IF (NREP .EQ. 1) NP=NP-1 
D0205 I=l,3 
DO 205 J=l,NL(I) 
SUM2(J,I)=O.O 

205 CONTINUE 

C FIND SS FOR MAIN EFFECTS 

DO 210 I=l,NC 
D0210 J=l,3 
SUM2(IG(I,J),J)=SUM2(IG(I,J),J)+R(I) 

210 CONTINUE 
D0215 J=l,3 
SS(J)=O.O 
DO 220 K=l,NL(J) 
SS(J)=SS(J)+SUM2(K,J)**2 

220 CONTINUE 
M=REAL(NC)/REAL(NL(J)) 
SS(J)=SS(J)/M-CM 

215 CONTINUE 

C FIND SS FOR TWO FACTOR INTERACTIONS 

. NLMAX=MAX(NL(l),NL(2),NL(3)) 
DO 225 I=l,NLMAX 
DO 225 J=l,NLMAX 
D0225 K=l,3 
SUM3(I,J,K)=O. 0 

225 CONTINUE 
DO 230 I=l,NC 
SUM3(IG(I,l),IG(I,2),l)=SUM3(IG(I,l),IG(I,2),l)+R(I) 
SUM3(IG(I, 1 ),IG(I,3),2)=SUM3(IG(I, 1 ),IG(I,3),2)-+R(I) 
SUM3(IG(I,2),IG(I,3),3)=SUM3(IG(I,2),IG(I,3),3)+R(I) 

230 CONTINUE 
SS(4)=0.0 
DO 235 I=l,NL(l) 
DO 235 J=l,NL(2) 
SS( 4)=SS( 4)+SUM3(I,J,1)**2 

235 CONTINUE 
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SS( 4)=SS( 4)/(NL(3)*NREP)-SS(l)-SS(2)-CM 
SS(5)=0.0 
DO 240 I=l,NL(l) 
DO 240 K=l,NL(3) 
SS( 5)=SS( 5)+SUM3(I,K,2)**2 

240 CONTINUE 
SS(5)=SS( 5)/(NL(2)*NREP)-SS( 1 )-SS(3)-CM 
SS(6)=0.0 
DO 245 J=l,NL(2) 
DO 245 K=l,NL(3) 
SS( 6)=SS( 6)+SUM3(J,K,3)**2 

245 CONTINUE 
SS( 6)=SS( 6)/(NL(l )*NREP)-SS(2)-SS(3)-CM 

C FIND SS FOR THREE FACTOR INTERACTION AND ERROR 

IF (NREP .GT. 1) GOTO 250 
SS(7)=SST-SS(1)-SS(2)-SS(3)-SS(4)-SS(5)-SS(6) 
SS(8)=0.0 
GOT0255 

250 DO 260 I=l,NL(l) 
DO 260 J=l,NL(2) 
DO 260 K=l,NL(3) 
SUM3(I,J,K)=O. 0 
SS3(I,J,K)=O.O 

260 CONTINUE 
DO 265 I=l,NC 
SUM3(IG(I,1),IG(I,2),IG(I,3))=SUM3(IG(I,1),IG(I,2),IG(I,3))+R(I) 
SS3(IG(I,1),IG(I,2),IG(I,3))=SS3(IG(I,1),IG(I,2),IG(I,3))+R(I)**2 

265 CONTINUE 
SS(7)=0.0 
DO 270 I=l,NL(l) 
DO 270 J=l,NL(2) 
DO 270 K=l,NL(3) 
SS(7)=SS(7)+SUM3(I,J,K)**2 

270 CONTINUE 
SS(7)=SS(7)/NREP-S S(l )-SS(2)-SS(3)-SS( 4 )-S S( 5)-SS( 6)-CM 
SS(S)=SST-SS(l )-SS(2)-SS(3)-SS( 4)-SS(5)-SS( 6)-SS(7) 

C FIND MEAN SQUARES AND F-VALUES 

IF (NP .EQ. 7) MS(8)=SS(8)/IDF(8) 
255 DO 275 I=l,7 

MS(I)=SS(I)/IDF(I) 
275 CONTINUE 

SSE=SS(5)+SS(7) 
MSE=SSE/(IDF(5)+IDF(7)) 
IF (MS(4) .EQ. 0.0) THEN 
FRM=999.0 
ELSE 
FRM=MS(2)/MS(4) 
END IF 
IF (MSE .EQ. 0.0) THEN 
FRS=999.0 
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FRI=999.0 
ELSE 
FRS=MS(3)/MSE 
FRI=MS(6)/MSE 

C FRTS=MS(3)/MSE 
C FRTI=MS(6)/MSE 

END IF 
IF (FRM .GE. CRITRM) THEN 
FRMREJ=FRMREJ+l 
END IF 
IF (FRS .GE. CRITRS) THEN 
FRSREJ=FRSREJ+ 1 
END IF 
IF (FRI .GE. CRITRI) THEN 
FRIREJ=FRIREJ+l 
END IF 
IF (FRM .GE. CRITFM) THEN 
FRTMREJ=FRTMREJ+ 1 
END IF 
IF (FRS .GE. CRITFS) THEN 
FRTSREJ=FRTSREJ+ 1 
END IF 
IF (FRI .GE. CRITFI) THEN 
FRTIREJ=FRTIREJ+ 1 
END IF 

C PERFORM AN.AL YSIS ON ALIGNED RANKS: TEST FOR MAIN UNIT TRT 

C CALCULATE SS FOR MAIN EFFECTS 

SUMX=O 
SST=O 
DO 401 I=l,NC 
SUMX=SUMX+RB(I) 
SST=SST+(RB(I))**2 
ICl(IG(I,l))=ICl(IG(I,l))+ 1 
DO 402 K=l,NF 
IF (IG(I,K) .GT. NL(K)) THEN 
NL(K)=IG(I,K) 
END IF 

402 CONTINUE 
IC3(IG(I, 1 ),IG(I,2),IG(I,3) )=IC3(IG(I, 1 ),IG(I,2),IG(I,3) )+ 1 

401 CONTINUE 
CM=SUMX**2/NC 
SST=SST-CM 
IDF(l)=NL(l)-1 
IDF(2)=NL(2)-1 
IDF(3)=NL(3)-1 
IDF( 4)=IDF(l)*IDF(2) 
IDF(5)=IDF(l)*IDF(3) 
IDF( 6)=IDF(2)*IDF(3) 
IDF(7)=IDF( 4)*IDF(3) 
IDF(8)=NL(l)*NL(2)*NL(3)*~P-1) 
NP=7 
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IF (NREP .EQ. 1) NP=NP-1 
D0405 I=l,3 
DO 405 J=l,NL(I) 
SUM2(J,I)=O. 0 

405 CONTINUE 

C FIND SS FOR MAIN EFFECTS 

DO 410 I=l,NC 
DO 410 J=l,3 
SUM2(IG(I,J),J)=SUM2(IG(I,J),J)+RB(I) 

410 CONTINUE 
D0415 J=l,3 
SS(J)=O.O 
DO 420 K=l,NL(J) 

. SS(J)=SS(J)+SUM2(K,J)**2 
420 CONTINUE 

M=REAL(NC)/REAL(NL(J)) 
SS(J)=SS(J)/M-CM 

415 CONTINUE 

C FIND SS FOR TWO FACTOR INTERACTIONS 

NLMAX=MAX(NL(l),NL(2),NL(3)) 
DO 425 I=l,NLMAX 
DO 425 J=l,NLMAX 
D0425K=l,3 
SUM3(I,J,K)=O.O 

425 CONTINUE 
DO 430 I=l,NC 
SUM3(IG(I,1),IG(I,2),l)=SUM3(IG(I,1),IG(I,2),l)+RB(I) 
SUM3(IG(I,1),IG(I,3),2)=SUM3(IG(I,1),IG(I,3),2)+RB(I) 
SUM3(IG(I,2),IG(I,3),3)=SUM3(IG(I,2),IG(I,3),3)+RB(I) 

430 CONTINUE 
SS(4)=0.0 
DO 435 I=l,NL(l) 
DO 435 J=l,NL(2) 
SS( 4)=SS( 4)+SUM3(I,J, 1 )**2 

435 CONTINUE 
SS( 4)=SS( 4)/(NL(3)*NREP)-SS(1)-SS(2)-CM 
SS(5)=0.0 
DO 440 I=l,NL(l) 
DO 440 K=l,NL(3) 
S8(5)=SS(5)+SUM3(I,K,2)**2 

440 CONTINUE 
SS(5)=SS(5)/(NL(2)*NREP)-S8(1)-SS(3)-CM 
SS(6)=0.0 
DO 445 J=l,NL(2) 
DO 445 K=l,NL(3) 
SS(6)=S8(6)+SUM3(J,K,3)**2 

445 CONTINUE 
SS(6)=SS(6)/(NL(l )*NREP)-SS(2)-SS(3)-CM 

C FIND SS FOR THREE FACTOR INTERACTION AND ERROR 
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IF (NREP .GT. 1) GOTO 450 
SS(7)=SST-SS( 1 )-SS(2)-SS(3)-SS( 4)-SS( 5)-SS( 6) 
SS(8)=0.0 
GOT0455 

450 DO 460 I=l,NL(l) 
DO 460 J=l,NL(2) 
DO 460 K=l,NL(3) 
SUM3(I,J,K)=O. 0 
SS3(I,J,K)=O. 0 

460 CONTINUE 
DO 465 I=l,NC 
SUM3(IG(I,1),IG(I,2),IG(I,3))=SUM3(IG(I,1),IG(I,2),IG(I,3))+RB(I) 
SS3(IG(I,l),IG(I,2),IG(I,3))=SS3(IG(I,1),IG(I,2),IG(I,3))+RB(I)**2 

465 CONTINUE 
SS(7)=0.0 
DO 470 I=l,NL(l) 
DO 470 J=l,NL(2) 
DO 470 K=l,NL(3) 
SS(7)=SS(7)+SUM3(I,J,K)**2 

470 CONTINUE 
SS(7)=SS(7)/NREP-SS(l)-SS(2)-SS(3)-SS(4)-SS(5)-SS(6)-CM 
SS(8)=SST-SS( 1 )-SS(2)-SS(3)-SS( 4)-SS( 5)-SS( 6)-SS(7) 

C FIND l\JEAN SQUARES AND F-V ALUES 

IF (NP .EQ. 7) MS(8)=SS(8)/IDF(8) 
455 DO 475 1=1,7 

MS(I)=SS(I)/IDF(I) 
475 CONTINUE 

IF (MS(4) .EQ. 0.0) THEN 
FARM=999.0 
ELSE 
F ARM=MS(2)/MS( 4) 
END IF 
IF (FARM .GE. CRITRM) THEN 
F ARMREJ=F ARMREJ+ 1 
END IF 

C PERFORM ANALYSIS ON ALIGNED RANKS: TEST FOR SUB UNIT TRT 

C CALCULATE SS FOR MAIN EFFECTS 

SUMX=O 
SST=O 
DO 501 I=l,NC 
SUMX=SUMX +RC(I) 
SST=SST+(RC([))**2 
ICl(IG(l,l))=ICl(IG(I,1))+ 1 
DO 502 K=l,NF 
IF (IG(I,K) .GT. NL(K)) THEN 
NL(K)=IG(I,K) 
END IF 

502 CONTINUE 
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IC3(IG(I,1),IG(I,2),IG(I,3))=IC3(IG(I,1),IG(I,2),IG(I,3))+ 1 
501 CONTINUE 

CM=SUMX**2/NC 
SST=SST-CM 

500 IDF(l)=NL(l)-1 
IDF(2)=NL(2)-1 
IDF(3)=NL(3)- l 
IDF( 4)=IDF(l)*IDF(2) 
IDF(5)=1DF(l)*IDF(3) 
IDF( 6)=IDF(2)*IDF(3) 
IDF(7)=1DF( 4)*1DF(3) 
IDF(S)=NL(l )*NL(2)*NL(3)*(NREP-l) 
NP=7 
IF (NREP .EQ. 1) NP=NP-1 
DO 505 I=l,3 
DO 505 J=l,NL(I) 
SUM2(J,I)=O. 0 

505 CONTINUE 

C FIND SS FOR MAIN EFFECTS 

DO 510 I=l,NC 
D0510J=l,3 
SUM2(IG(I,J),J)=SUM2(IG(I,J),J)+RC(I) 

510 CONTINUE 
D0515 J=l,3 
SS(J)=O.O 
DO 520 K=l,NL(J) 
SS(J)=SS(J)+SUM2(K,J)**2 

520 CONTINUE 
M=REAL(NC)/REAL(NL(J)) 
SS(J)=SS(J)/M-CM 

515 CONTINUE 

C FIND SS FOR TWO FACTOR INTERACTIONS 

NLMAX=MAX(NL(l),NL(2),NL(3)) 
DO 525 I=l,NLMAX 
DO 525 J=l,NLMAX 
D0525 K=l,3 
SUM3(I,J,K)=O. 0 

525 CONTINUE 
DO 530 I=l,NC 
SUM3(IG(I,1),IG(I,2),l)=SUM3(IG(I,1),IG(I,2),l)+RC(I) 
SUM3(IG(I,1),IG(I,3),2)=SUM3(IG(I,1),IG(I,3),2)+RC(I) 
SUM3(IG(I,2),IG(I,3),3)=SUM3(IG(I,2),IG(I,3),3)+RC(I) 

530 CONTINUE 
SS(4)=0.0 
DO 535 I=l,NL(l) 
DO 535 J=l,NL(2) 
SS(4)=SS(4)+SUM3(I,J,1)**2 

535 CONTINUE 
SS( 4)=SS( 4)/(NL(3)*NREP)-SS(l)-SS(2)-CM 
SS(5)=0.0 
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DO 540 I=l,NL(l) 
DO 540 K=l,NL(3) 
SS(5)=SS(5)+SUM3(I,K,2)**2 

540 CONTINUE 
SS(5)=SS(5)/(NL(2)*NREP)-SS(l)-SS(3)-CM 
SS(6)=0.0 
DO 545 J=l,NL(2) 
DO 545 K=l,NL(3) 
SS(6)=SS(6)+SUM3(J,K,3)**2 

545 CONTINUE 
SS(6)=SS(6)/(NL(l)*NREP)-SS(2)-SS(3)-CM 

C FIND SS FOR THREE FACTOR INTERACTION AND ERROR 

IF (NREP .GT. 1) GOTO 550 
SS(7)=SST-SS(l)-SS(2)-SS(3)-SS( 4)-SS(5)-SS( 6) 
SS(8)=0.0 
GOT0555 

550 DO 560 I=l,NL(l) 
DO 560 J=l,NL(2) 
DO 560 K=l,NL(3) 
SUM3(I,J,K)=O.O 
SS3(I,J,K)=O.O 

560 CONTINUE 
DO 565 I=l,NC 
SUM3(IG(l,l),IG(I,2),IG(l,3))=SUM3(IG(I,l),IG(l,2),IG(I,3))+RC(I) 
SS3(1G(l,1),IG(l,2),IG(l,3))=SS3(1G(I,1),IG(l,2),IG(I,3))+RC(I)**2 

565 CONTINUE 
SS(7)=0.0 
DO 570 I=l,NL(l) 
DO 570 J=l,NL(2) 
DO 570 K=l,NL(3) 
SS(7)=SS(7)+SUM3(1,J,K)**2 

570 CONTINUE 
SS(7)=SS(7)/NREP-SS(l)-SS(2)-SS(3)-SS(4)-SS(5)-SS(6)-CM 
SS(8)=SST-SS(l )-SS(2).:SS(3)-SS( 4)-SS(5)-SS( 6)-SS(7) 

C FIND MEAN SQUARES AND F-V ALUES 

IF (NP .EQ. 7) MS(8)=SS(8)/IDF(8) 
555 DO 575 I=l, 7 

MS(l)=SS(I)/IDF(I) 
575 CONTINUE 

SSE=SS(5)+SS(7) 
MSE=SSE/(IDF(5)+IDF(7)) 
IF (MSE .EQ. 0.0) THEN 
FARS=999.0 
ELSE 
F ARS=MS(3)/MSE 
END IF 
IF (FARS .GE. CRITRS) THEN 
F ARSREJ=F ARSREJ+ 1 
END IF 

161 



C PERFORM ANALYSIS ON ALIGNED RANKS: TEST FOR INTERACTION 

C CALCULATE SS FOR MAIN EFFECTS 

SUMX=O 
SST=O 
DO 601 I=l,NC 
SUMX=SUMX +RBC(I) 
SST=SST+(RBC(I))**2 
ICl(IG(I,l))=ICl(IG(I,1))+ 1 
DO 602 K=l,NF 
IF (IG(I,K) .GT. NL(K)) THEN 
NL(K)=IG(I,K) 
END IF 

602 CONTINUE 
IC3(IG(I,l),IG(I,2),IG(I,3))=IC3(IG(I,1),IG(I,2),IG(I,3))+ 1 

601 CONTINUE 
CM=SUMX**2/NC 
SST=SST-CM 
IDF(l)=NL(l)-1 
IDF(2)=NL(2)-1 
IDF(3)=NL(3)-1 
IDF( 4)=IDF(l)*IDF(2) 
IDF(5)=IDF(l)*IDF(3) 
IDF( 6)=IDF(2)*IDF(3) 
IDF(7)=IDF( 4)*IDF(3) 
IDF(8)=NL(l )*NL(2)*NL(3)*(NREP-1) 
NP=7 
IF (NREP .EQ. 1) NP=NP-1 
DO 605 I=l,3 
DO 605 J=l,NL(I) 
SUM2(J,I)=O.O 

605 CONTINUE 

C FIND SS FOR MAIN EFFECTS 

DO 610 I=l,NC 
DO 610 J=l,3 
SUM2(IG(I,J),J)=SUM2(IG(I,J),J)+RBC(I) 

610 CONTINUE 
DO 615 J=l,3 
SS(J)=O.O 
DO 620 K=l,NL(J) 
SS(J)=SS(J)+SUM2(K,J)**2 

620 CONTINUE 
M=REAL(NC)/REAL(NL(J)) 
SS(J)=SS(J)/M-CM 

615 CONTINUE 

C FIND SS FOR TWO FACTOR INTERACTIONS 

NLMAX=MAX(NL(l),NL(2),NL(3)) 
DO 625 I=l,NLMAX 
DO 625 J=l,NLMAX 
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DO 625 K=l,3 
SUM3(I,J,K)=O. 0 

625 CONTINUE 
DO 630 I=l,NC 
SUM3(IG(I,1),IG(I,2),l)=SUM3(IG(I,1),IG(I,2),l)+RBC(I) 
SUM3(IG(I,1),IG(I,3),2)=SUM3(IG(I,1),IG(I,3),2)+RBC(I) 
SUM3(IG(I,2),IG(I,3),3)=SUM3(IG(I,2),IG(I,3),3)+RBC(I) 

630 CONTINUE 
SS(4)=0.0 
DO 635 I=l,NL(l) 
DO 635 J=l,NL(2) 
SS( 4)=SS( 4)+SUM3(I,J,1)**2 

635 CONTINUE 
SS( 4)=SS( 4)/(NL(3)*NREP)-SS(l )-SS(2)-CM 
SS(5)=0.0 
DO 640 I=l,NL(l) 
DO 640 K=l,NL(3) 
SS(5)=SS(5)+SUM3(I,K,2)**2 

640 CONTINUE 
SS(5)=SS(5)/(NL(2)*NREP)-SS(l)-SS(3)-CM 
SS(6)=0.0 
DO 645 J=l,NL(2) 
DO 645 K=l,NL(3) 
SS( 6)=SS( 6)+SUM3(J,K,3)**2 

645 CONTINUE 
SS( 6)=SS( 6)/(NL(l )*NREP)-SS(2)-SS(3)-CM 

C FIND SS FOR THREE FACTOR INTERACTION AND ERROR 

IF (NREP .GT. 1) GOTO 650 
SS(7)=SST-SS(l )-SS(2)-SS(3)-SS( 4 )-SS( 5)-SS( 6) 
SS(8)=0.0 
GOT0655 

650 DO 660 I=l,NL(l) 
DO 660 J=l,NL(2) 

. DO 660 K=l,NL(3) 
SUM3(I,J,K)=O.O 
SS3(I,J,K)=0.0 

660 CONTINUE 
DO 665 I=l,NC 
SUM3(IG(I,1),IG(I,2),IG(I,3))=SUM3(IG(I,1),IG(I,2),IG(I,3))+RBC(I) 
SS3(IG(I,1),IG(I,2),IG(I,3))=SS3(IG(I,1),IG(I,2),IG(I,3))+RBC(I)**2 

665 CONTINUE 
SS(7)=0.0 
DO 670 I=l,NL(l) 
DO 670 J=l,NL(2) 
DO 670 K=l,NL(3) 
SS(7)=SS(7)+SUM3(I,J,K)**2 

670 CONTINUE 
S S(7)=SS(7)/NREP-SS( 1 )-S S(2)-SS(3)-S S( 4 )-SS( 5)-SS( 6)-CM 
SS(8)=SST-SS( 1 )-SS(2)-SS(3)-SS( 4)-SS( 5)-SS( 6)-SS(7) 

C FIND MEAN SQUARES AND F-V ALUES 
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IF (NP .EQ. 7) MS(8)=SS(8)/IDF(8) 
655 DO 675 I=l,7 

MS(I)=SS(I)/IDF(I) 
675 CONTINUE 

SSE=SS(5)+SS(7) 
MSE=SSE/(IDF(5)+IDF(7)) 
IF (MSE .EQ. 0.0) THEN 
FARI=999.0 
ELSE 
F ARI=MS(6)/MSE 
END IF 
IF (F ARI .GE. CRITRI) F ARIREJ=F ARIREJ+ 1 

10 CONTINUE 

D 

FYMPV=REAL(FYMREJ)/REAL(N) 
FRMPV=REAL(FRMREJ)/REAL(N) 
FRTMPV=REAL(FRTMREJ)/REAL(N) 
F ARMPV=REAL(F ARMREJ)/REAL(N) 
FYSPV=REAL(FYSREJ)/REAL(N) 
FRSPV=REAL(FRSREJ)/REAL(N) 
FRTSPV=REAL(FRTSREJ)/REAL(N) 
F ARSPV=REAL(F ARSREJ)/REAL(N) 
FYIPV=REAL(FYIREJ)/REAL(N) 
FRIPV=REAL(FRIREJ)/REAL(N) 
FRTIPV=REAL(FRTIREJ)/REAL(N) 
F ARIPV=REAL(F ARIREJ)/REAL(N) 

WRITE (4,*) 'ALPHA= 0.05' 
WRITE (4,*) 
WRITE ( 4, *) 'FYMPV AL= ',FYMPV 
WRITE ( 4, *) 'FRMPV AL= ',FRMPV 
WRITE ( 4, *) 'FRTMPV AL= ',FRTMPV 
WRITE ( 4, *) 'FARMPV AL=' ,F ARMPV 
WRITE ( 4, *) · 
WRITE ( 4, *) 'FYSPV AL= ',FYSPV 
WRITE (4,*) 'FRSPVAL= ',FRSPV 
WRITE (4,*) 'FRTSPVAL=',FRTSPV 
WRITE ( 4, *) 'F ARSPV AL=' ,F ARSPV 
WRITE(4,*) 
WRITE ( 4, *) 'FYIPV AL= ',FYIPV 

· WRITE (4,*) 'FRIPVAL= ',FRIPV 
WRITE (4,*) 'FRTIPVAL=',FRTIPV 
WRITE (4,*) 'FARIPVAL=',FARIPV 

CLOSE (UNIT=4) 

END 
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