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CHAPTER I 

INTRODUCTION 

A major concern exists over contamination of groundwater by chlorophenols. 

The United States Environmental Protection Agency (USEP A) included chlorophenols 

on its priority list of the most common hazar~ous substances found in the United State~ 

(52 FR 12866, April 17, 1987; 53 FR 41279, October 20, 1988) and mandated a 

maximum contaminant level (MCL) in drinking water of 0.1 µg/1 for pentachlorophenol 

(40 CFR .141.61). 

Chlorophenols are organic chemicals formed from phenol by substitution on the 

phenol ring with one or more atoms of chlorine, Significant· amounts of chloropheno] 

can be formed and subsequently released into the environment from the chlorine 

bleaching process in pulp and paper-mills (>293,000 kg/yr.), the chlorination of 

wastewater and drinking-water (> 1,000 kg/yr.), and the incineration of municipal waste 

(>272,000 kg/yr.) (Jones, 1984). 

It has been shown that trichlorophenol and pentachlorophenol in sediments, 

where photolysis and apparently biodegradation are minimal, may persist for years 

(Pierce and Victor, 1978; DeLaune et al., 1983 ). Levels of chlorophenols in effluents 

from chemical and wood preservation industries may reach several thousand µg/L, while 

the maximum concentrations in surface waters and groundwaters can reach several µg/L 

(WHO 1989). As a result of spills, isolated levels as high as I 00 mg/L of chloi:-ophenols 

in groundwater, and 18 mg/Lin surface waters have been reported (WHO 1989). 

1 
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The available information on the effects of chlorophenols on the environment 

centers primarily on aquatic organisms. Toxicity generally increases with the degree of 

chlorination of the phenol ring (WHO 1984). In long-term studies, sublethal levels of 

chlorophenol reduced both growth and survival of fathead minnows. In humans, 

symptoms associated with exposure include eye, nose, and airway irritation, and 

dermatitis. Abnormal liver. function tests, changes in brain wave activity, and slowed 

visual reaction time have been reported in association with high-level exposure-(WHO,-· 

1989). A guideline value of 10 µg/L was recommended by WHO (1989) for 2,4,6-

trichlorophenol in drinking water, based on animal carcinogenicity data (WHO, 1989). 

Due to their toxicity, tendency to bioaccumulate, and persistence in the environment, 

chlorophenol contamination of soil and water is of concern, and remediation is 

warranted. 

Conventional aquifer restoration alternatives such as pump and treat or on site 

remediation are not generally effective. These technologies have numerous problems 

associated with them ( Thomson, et al. 1991) which include: 

1. management of large volumes of water, 

2. potential production of undesirable by-products, 

3. undesirable effect on hydraulic characteristics in uncontaminated parts of the 

aquifer (change in direction of water movement), and 

4. labor or energy intensive. 

Treatment of contaminated groundwater can be accomplished using various 

techniques. In situ- biological treatment has various advantages when compared to other 

treatment techniques. Such advantages include low cleanup costs and the possibility of 
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complete transformation of organic contaminants to harmless end products (Thomson et 

al. 1991 ). A number of microorganisms from a variety of habitats can readily degrade 

chlorophenols under aerobic conditions (Ingols et al., 1966). The relative rate of 

degradation of chlorophenols generally decreases as the number of chlorine atoms on the 

phenolic ring increases (Ingols et al., 1966). In most instances, aerobic metabolism 

involves dechlorination and hydroxylation, which are usually followed by cleavage of 

the phenol ring at the ortho position and subsequent complete degradation ( PCP~ 

TeCP~ TCP~ DCP~ MCP~ Phenol) (Jones, 1984). 

Chlorophenols may be degraded in a number of anox1c environments by 

reductive dechloronation and subsequent transformations of the ring to carbon dioxide 

and methane. 

An alternative to conventional groundwater treatment processes is the use of 

barriers which are permeable to water; but prevent the migration of contaminants. They 

are referred to as permeable barriers (Thomson et al., 1991) 

In situ permeable barriers are a relatively new cost-effective technology that can 

be used in groundwater remediation of shallow aquifers (Thompson et al., 1991 ). 

Permeable barriers are installed as permanent, semi-permanent, or replaceable units 

across the flow path of a contaminant plume. Permeable barriers allow water to move 

passively through while precipitating, sorbing, or degrading the contaminants (Rael et 

al., 1995). These mechanically simple barriers may contain metal-based catalysts for 

degrading volatile organics, chelators for immobilizing metals, nutrients and oxygen for 

microorganisms to enhance bioreinediation, or other agents. Degradation reactions may 

break down the contaminants in the plume into harmless byproducts ( EPA 1995). 
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Crushed limestone, peat, and powdered activated carbon are also several effective barrier 

mediums that have been used to adsorb or precipitate contaminants (Rael et al., 1995). 

Permeable barriers are not suitable for contaminants in deep aquifers (>30 m). 

Barrier media design may also be limited by uncertainties of the hydrogeology of the 

region. Advantages of these barriers include the following: 

1) simple installation, 

2) simple recovery and replacement of the material, 

3) low operation maintenance, 

4) less surface disruption, less labor, and less energy are required than other 

remedation technologies and 

5) comparatively quick installation and containment of contaminants (Rael et 

al., 1995). 

A mixture of powdered activated carbon (PAC) and sand has been shown to be a 

successful medium for benzene removal in trench-based permeable barrier (Rael et.al., 

1995). They looked mostly at physical uptake of different mixtures (3% and 10%) of 

PAC/sand and nonadsorbant material such as sawsand and zeolite. Based on their 

investigation, a mixture of PAC/sand was selected as the most successful media. 

A recent in situ remediation technology status report (EPA 1995) mentions a 

number of ongoing pilot tests on permeable barriers. In one pilot study, which was 

completed in 1993, a permeable barrier containing an iron-based catalyst reduced the 

concentration of trichloroethene (TCE) by 95% and the tetrachloroethene (PCE) 

concentration by 91 % (EPA 1995). 
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This study proposes to examine the feasibility of novel permeable barriers that 

would create a "bio-trench' or "bio-curtain" (Figure 1) to biodegrade chlorophenols in 

place. 

CnnM••••w _.ow 

Figure I .A. Bio-trench Concept (Thomson, et al., 1991) 

The 'bio-trench" concept in· this study will examine PY A-immobilized cells and 

3% GAC-immobilized cells/ 97% silica sand as potential biological permeable barriers. 

PV A-immobilization of cells can be defined as an entrapment of microorganisms 

within a porous polymeric matrix which allows the diffusion of substrate to and products 

from the entrapped microorganisms (Wu and Wisecarver, 1992). 

The work of Bettmann and Rehm ( 1984) determined that entrapped 

microorganisms were protected against toxic chemicals compared to free cells. The 

immobilization technique has also been recognized. as a promising method for the 

biological removal of chlorophenols which are known to be recalcitrant (Sofer et al., 

1990). 
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GAC-immobilizition of cells can be defined as an attachment or adsorption of 

microorganisms on the surface of activated carbon. The activated carbon operates like a 

"buffer and depot": it protects the microorganisms and sets low quantities of toxicant for 

biodegradation (Ehrhart and Rehm, 1985). 

Another investigation by Tien ( 1980) showed that in contrast to a nonadsorbent 

material such as sand, activated carbon allows storage of substances that are difficult to 

biodegrade. Such storage provides a longer contact time between the microbial 

population and the substrates and could promote microbial acclimation and subsequent 

biodegradation. 

The work of Weber (1972) also showed that bacterial growth in activated carbon 

adsorption columns can significantly increase the apparent capacity of the carbon. The 

work of Rodman ( 1971) showed · bioregeneration of systems in which spent carbon is 

regenerated by contact with an active bacterial culture. 

For this feasibility study permeable barriers were tested usmg groundwater 

contaminated with TCP. This study focused on the use of immobilized cells on GAC 

(3%) mixed with sand and PV A-immobilized cells as permeable barriers. The use of 

these two media as permeable barriers to treat chlorophenol contaminated groundwater is 

entirely new and novel. 

Objectives of the Project 

This project was undertaken to investigate the potential of usmg PV A

immobilized cells and GAC-immobilized cells as small scale permeable barriers to clean 
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up groundwater contaminated with trichlorophenol (TCP). The objectives of this study 

are as follows: 

1) To evaluate and compare two candidate permeable barrier media, (a) mixture 

of sand and cells immobilized on GAC, and (b) immobilized cells in PY A 

beads, for their ability to remove trichlorophenol (TCP), under aerobic 

conditions from contaminated groundwater. 

2) Investigate the performance of these two permeable barriers under different 

operating conditions such as different concentrations ( 10 mg/L to 40 mg/L), 

and different flow rates (1 mL/min to 4 mL/min). 

3) Evaluate the removal efficiency of these barriers under stressed conditions 

such as low dissolved oxygen and high TCP concentration (shock load of 500 

mg/L). 

4) Evaluate the ease of operation and cost of these two permeable barriers under 

the same operating conditions. 



CHAPTER II 

LITERATURE REVIEW 

Introduction 

This chapter presentss a review of the literature on different approache.s to 

remove chlorophenols from groundwater. Secondly, physical and chemical 

characteristics of chlorophenols are presented to address their persistence, toxicity, 

mobility and biodegradation. Thirdly, different applications of immobilized cells are 

described here to emphasize their ability to be applied to groundwater contaminated with 

chlorophenol(s). Finally, permeable barriers are reviewed as to their applicability for in 

situ remediation along with a comparison of different mediums used. 

Chlorophenols 

Chlorophenols are classified as EPA priority pollutants and pose a serious threat 

to the environment. Nineteen congeners are possible (WHO, 1989). The following are 

some congeners formed from the direct chlorination of phenol and are found polluting 

groundwater: 2-monochlorophenol (2-MCP), 2,4-dichlorophenol (DCP), 2,4,6-

trichlorophenol (TCP), 2,3,4,6-tetrachlorophenol (TeCP) and pentachlorophenol (PCP) 

(WHO, 1989). Common names, abbreviations, molecular formulas, and common 

8 
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synonyms and trade names for MCP, DCP, TCP, TeCP, and PCP are listed in Table A.I, 

Appendix A. 

The compound 2,4,6-trichlorophenol (TCP), the contaminant of interest in this 

study is widely used and has been determined to be carcinogenic to rats and mice (NCI, 

1979). 

Uses 

Chlorophenols, particularly tetra-, and to a lesser extent, trichlorophenols, have 

been used as bactericides, algicides, fungicides, and mold inhibitors, and for less specific 

uses, such as general antiseptics and disinfectants (WHO, 1989). Large quantities of 

chlorophenols are used in wood preservation. They are also used as intermediates in the 

production of hericides, dyes and drugs (WHO, 1989). 

Environmental levels 

The majority (> 70%) of the chlorophenols released into the Canadian 

environment arose from wood-treatment facilities (Jones, 1984). Large spills have been 

responsible for fish kills in waters contaminated with chlorophenols (Jones, 1981 ). The 

remaining third of the environmental releases, which Jones (1984) identifies as primary 

2,4-dichlorophenol, is from agriculture sources. 

Lindstrom and Nordin (1976) found 115 µg/L of 2,4,6-trichlorophenol in spent 

bleach liquors from Kraft mill pulp and noted that dichlorophenols were also present. 

Environment Canada ( 1979) analyzed sediments in British Columbia waters 
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associated with wood-preservation plants. Tetrachlorophenol was present at all 11 sites, 

and ranged from a trace to 1600 mg/kg dry sediment. 

In a water ecosystem, chlorophenols have been found to bioaccumulate in the 

food chain (Lu et al., 1978). Two hundred micrograms of pentachlorophenol (PCP) per 

liter is lethal to fish and ten micrograms per liter of PCP inhibits chlorophyll synthesis in 

algae (Rudling, 1970). 

Transport 

Commercial preparations of pesticides contain chlorophenols as contaminants. 

Runoff from soils treated with pesticides find_s its way into adjacent water bodies and 

groundwater. Environmental transport of chlorophenols, particularly in soils, can be 

affected by adsorption onto particulates. Schellenberg et al. ( 1984) detennined that 

sorption of chlorophenols on natural sediments and aquifer materials was a combined 

function of the organic content. of the potential sorbent and the partition coefficients 

(known also as soil adsorption). They found that acidic soils bind chlorophenols 

strongly, while adsorption is minimal under alkaline conditions. 

No estimate of the rate of volatilization of chlorophenols in the environment has 

been published. Diffusion, a process related to volatilization, does not contribute 

significantly to the long-range transport of substances in either the soil or aquatic habitats 

(WHO, 1989). 
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Degradation/Biodegradation 

Many, if not all, chlorophenol isomers are degraded to some extent by exposure 

to ultraviolet radiation. 2,4-dichlorophenol in an aqueous solution was decomposed in a 

matter of minutes by irradiation from a UV light (Nakagawa and Crosby, 1974). 

The major · biodegradation pathway involves the degradation of 2,4-

dichlorophenol to 4-chlorophenol, which in tum produces 1,2,4-benzenetriol, and finally 

a mixture of polyquinoid humic acids (Crosby and Tutass, 1966). 

Rhodococcus chlorophenolicus degrades PCP through a hydrolytic dechlorination 

and three reductive dechlorinations, thus producing 1,2,4- trihydroxybenzene (Haggblom 

et al 1988). The proposed aerobic degradation pathway for PCP is as follows: 

Cl*ON Cl c,*"" O ),. [c·*~ .. ·~oH :: ~ON . :.N ~ON :_ 
Cl C~Ci Cl NCI Cl Cl ) l l 

HCI · HCI NCI NCI 
Cl ON OH ON DN ON 

Figure l .B. Aerobic Degradation Pathway for PCP (Haggblom et al. 1988). 

In contrast to chlorophenol degradation under aerobic conditions, chlorophenol 

degradation under anaerobic conditions usually requires a sequence of transformations 

involving more than one organism. The PCP initially dechlorinated to 2,3,4,5-

tetrachlorophenol, 2,3,4-trichlorophenol, 2,4- and 3,4-dichlorophenol. The sequential 
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degradation of 2,4-dichlorophenol under (methanogenic) conditions proposed by Gibson 

and Sulfita (1986) is as follows: 

~(/-2.-.. --01-.a-,.-•• ,-a.-•• -,q 
Cl UIAIW:I I : 1[DUC'T1Y£ D[OLQRINATION 

l 3 1pot9fonn111Q ,_ witll lllQltdy -.... ~-·· ... . t:la11r1111""' 1,. (not purol 

DH 
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[~ ]"'~~-~~ 
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Figure l .C. Anaerobic Degradation Pathway for DCP(Gibson and Sulfita 1986). 

Although chlorophenols are quite toxic to microorganisms in general, they are 

nonetheless readily metabolized by a large number that occur in soils, natural waters, 

sediments, and sewage sludges (Tabak et a.I., 1964). 

Using an, acclimated, activated sludge, Ingols et al. (1966) observed complete 

ring degradation of the following compounds at an initial concentration of I 00 mg/L: 2-

monochlorophenol (2-MCP) in 3 days, 3-MCP in 2 days, 4-MCP in 3 days, 2,4-

dichlorophenol in 5 days, and 2,4,6- trichlorophenol in 3 days. In sediment cores, higher 

chlorinated phenols are persistent in anaerobic environments, because of the low 

microbial degradation of chlorophenols under such condition (Gee and Peel, 1974). 

However, under the right conditions, anaerobic metabolism can be substantial: 
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acclimated anaerobic sludge from a municipal sewage plant degraded 25 mg 

monochlorophenols/liter in a few days (Boyd & Shelton, 1984). 

Tabak et al. (1964) studied 206 isolated microorganisms from a petroleum waste 

lagoon and observed that 46% of them were able to degrade chlorophenols as a sole 

source of carbon after acclimation to the particular chlorophenol. In that study up to 

95% of the added 3- monochlorophenol (3-MCP) and 4- MCP (initial concentration at 

250 and 300 mg/L, respectively) was consumed in 3-6 days, while the same amount of 

2,4- dichlorophenol (250 mg/L) and 2,4,6-trichlorophenol (initially 300 mg/L) 

disappeared in 7-10 days. 

Schmidt et al. (1983) observed phenol or a mixture of isomeric chlorophenols in 

synthetic sewage to be completely degraded by a defined mixed culture with 

Pseudomonas sp. strain B 13 as a chlorocatechol-dissimilating member of the 

community. 

Methods to Remove Chlorophenols 

Makinen et al. (1994) studied the bioremediation of simulated groundwater 

containing 41 mg/L of 2,4,6-trichlorophenol (TCP), 33 mg/L 2,3,4,6-tetrachlorophenol 

(TeCP) and 19 mg/L pentachlorophenol (PCP) in a laboratory-scale aerobic fluidized

bed reactor. The authors used a hydraulic retention time of 5.0 hours and chlorophenol 

loading rate of 445 mg L-1 d- 1• They achieved a 99.7% reduction in chlorophenols and a 

corresponding 94% of the theoretical mean inorganic chloride release (ICl). They stated 

that expected oxygen consumption, the increase of ICI and the decrease in pH supported 
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mineralization. They used the Microtox acute toxicity assay, where luminescent bacteria 

were exposed to the effluent, to monitor the degradation of chlorophenols. They 

determined that toxicity increased with the degree of chlorination. To study the effect 

that an upset or disturbance had on the degradation performance, the aeration process 

was interrupted several times by withholding oxygen overnight. It took 30-40 days to 

overcome the upset each time the oxygen was withheld. They monitored the upset by 

changes in the PCP concentration in the effluent. The PCP concentrations were directly 

measured by gas chromatography. They concluded that the Microtox assay responded to 

changes in chlorophenol concentrations as low as 0.1 mg/1 for PCP and that it could be 

used as an easy indicator for system upsets. They observed that treatment of 78-445 mg 

L-1 d-1 of a chlorophenols mixture in an aerobic fluidized-bed reactor removed each 

chlorophenol congener. The removal efficiency of over 99.4% was typical for the 

mixture of these chlorophenols. 

Jarvinen et al. ( 1994) employed aerobic fluidized-bed treatment for chlorophenol 

contaminated groundwater at temperatures as low as 4 °C. The authors spiked the 

groundwater in the flow reactors with chlorophenol concentrations of 7-11 mg/L of 

2,4,6-TCP, 32-36 mg/L of 2,3,4,6-TeCP, and 1.8-2.3 mg/L of PCP. The reactors were in 

a controlled - temperature incubator in the dark and the influent groundwater was at 4 

degree C. They concluded that bioremediation of chlorophenol (CP) contaminated 

groundwater resulted in over 99.9% CP mineralization with effluent concentrations of 

0.003 mg/L or less, even at 4°C. They confirmed CP removal by inorganic chloride 

release with no chlorinated intermediates, suggesting mineralization. They also 

concluded that TCP and TeCP were readily biodegradable, but that the chlorophenol 
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degrading microorganisms needed to be acclimated for at least 1.5 months to get 

efficient PCP degradation. This system can be operated and maintained at low 

groundwater temperatures which would eliminate the expense of having to heat the 

groundwater. 

Litchfield et al. (1994) used a biotreatment-train approach for in situ 

bioremediation of a pentachlorophenol (PCP)-contaminated site. Recovered 

groundwater that had been pumped to the surface was passed through an ultraviolet 

light/ozone system and then enhanced with nutrients. The treated groundwater was 

gravity fed to seepage beds. A 90% reduction of PCP was achieved. After 2 years a 

fluidized bed-activated carbon tower unit replaced the ultraviolet/ozone system. PCP 

reduction averaged 93.1 % .. They concluded that not only was the PCP removed by the 

ultraviolet system and the activated carbon tower, but that additional removal by 

biodegradation resulted from the simulation of indigenous microorganism by the 

nutrients. 

Jarvinen et al. (1994) demonstrated that aerobic fluidized bed treatment was 

effective at low temperatures (4 °C) for the biodegradation of chlorophenols. The 

authors incubated continuous-flow reactors with nonacclimated activated sludge. The 

reactors were filled with nutrient-amended GW. Then they were operated on semi-batch 

mode at different temperatures ( 4-20 °C). They reduced 2,4,6-TCP and 2,3,4,6-TeCP by 

more than 99% and PCP by 83.5% over a period of 22 days. They concluded that an 

enrichment period of a few months was necessary to achieve over 99% PCP 

biodegradation using an aerobic fluidized bed treatment. In their study fluidized bed 
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treatment was effective for on-site bioreclamation of chlorophenol-contaminated 

groundwater at high flow rates and lower temperatures. 

Hendriksen et al. (1992) reported 99.8% pentachlorophenol(PCP) removal, of 

which about 6% was found as less chlorinated - phenols in an anaerobic sludge blanket 

reactor. The PCP removal rate was 2.2 mg L-1 d- 1, at a 2 day HRT. In another study 

(Hendrikson et al., 1991), the authors used an anaerobic fixed-film reactor which 

removed 98% of PCP when the HRT was 2.9 day or more; about 26% of PCP was found 

as TeCPs or TCPs. 

Immobilization of Cells for Biodegradation of Chlorophenols 

Cell immobilization can be defined as any technique that limits the free 

movement of cells (Tyagi and Vembu, 1990). Cell mobility can be restricted by 

aggregating the cells. or by confining them into, or attaching them to, a solid support. 

Historically, immobilized cells have been widely used in the wastewater treatment 

industry, generally through the use of undefined mixed cultures immobilized by natural 

flocculating tendencies. or as films on solid surfaces (Scott, 1987). The use of 

immobilized or entrapped microorganisms to degrade toxic chemicals in industrial 

process streams or in the environment is a rapidly evolving technology that shows great 

promise for the hazardous waste management industry. Following are the state of the art 

in immobilized cells applications to treat contaminated waters. 

Yang et al. ( 1989) investigated different carriers to entrap mixed microbial cells 

for removal of organics from wastewater. The polymeric materials tested included 
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cellulose triacetate (mono-carrier), polyacrylamide, K-carrageenan and a combination of 

cellulose triacetate and calcium alginate (bi-carrier). The mono-carrier was used to 

determine long term operational performance because it had better mechanical strength. 

The bi-carrier was more porous and more elastic than the mono-carrier. It was 

determined that K-carrageenan and calcium alginate were weak in mechanical strength. 

Bettmann and Rehm (1984) used immobilized Pseudomonas sp. in alginate and 

polyacrylamide-hydrazide (PAAH) to degrade phenol at initial concentrations of up to 2 

g/L in less than two days. A sieve-like container within the fermenter held the 

immobilized cells which simulated entrapped microorganisms in a packed column. 

Continuous measurements of pH, optical density (OD), and oxygen concentrations were 

taken. The phenol degradation activity and the cell growth of the entrapped microbial 

cells to those of free microbial cells were compared. They found that immobilization 

acts as a protective cover against phenol toxicity, a conclusion previously stated by 

Rubelt et al. (1982). They showed that free cells degraded phenol up to concentration of 

1.5 g/L and the entrapped cells degraded phenol up to a concentration of 3 g/L. The 

entrapped cells could be exposed to high concentrations of phenol without loss of cell 

viability. 

O'Reilly and Crawford ( 1989) investigated the bi ode gradation of PCP by 

Flavobacterium cells immobilized within polyurethane. They compared PCP 

degradation capacities of free and immobilized cells at various initial PCP 

concentrations. Results showed that immobilized cells were able to degrade PCP up to a 

concentration of 200 mg/L, whereas free cells were unable to mineralize PCP during the 

four-day course of the experiment. The authors conducted experiments in batch, 
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semicontinuous batch, and continous-culture bioreactors. In the batch reactors with cell

free polyurethane foam, less than 0.1 % of the radioactivity was recovered in the CO2 

traps. In the semicontinuous batch reactors with the immobilized cells, a constant 

concentration of 10 mg/L PCP was fed and the reactors were run for 150 days. They 

concluded that immobilization was responsible for the maintenance of PCP degradation 

activity for up to 150 days. An 86% removal of PCP was achieved during the first 15 

day period, but the removal efficiency decreased to 12% by the last 15 day period (days 

136-150). The authors did not give an explanation for this decrease in removal 

efficiency. The activity of the immobilized cells in a continuous-culture reactor was 

tested in a BioFlow chemostat. A 93% removal of PCP was achieved in the continuous

culture bioreactors within 30 days. The PCP influent concentration varied approximately 

from 5 mg/L to 15 mg/L. They concluded that twice amount of PCP was degraded per 

gram of polyurethane in the continuous-culture reactors than in the semi-continuous 

batch reactors. Polyurethane was determined to be an effective immobilization matrix as 

indicated by its protection against toxicity. 

Sofer et al. (1990) studied activated sludge immobilized in calcium alginate gel 

for biodegradation of chlorophenol. The activated sludge was a mixed microbial 

population that was acclimated to phenol over a period of 10 days. They were 

immobilized in sodium alginate and dropped into a calcium chloride solution to form 3 

to 3.5 mm diameter beads. The investigator used an air-sparged reactor and a 

recirculation reactor to measure the physical removal of 2-chlorophenol under identical 

conditions as immobilized cells, but without biomass. The kinetic constants were 

determined by varying the flow, chlorophenol concentration, and biomass loading. The 
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rate constant for the physical removal, by air stripping (K), was evaluated to be 0.085 /hr 

for the air sparged reactor and 0.057 /hr for the recirculation reactor. The temperature 

activity coefficient (8) was 1.16 indicating a high temperature dependence. The rate of 

biodegradation decreased as the spiked concentration of 2-CP increased. The maximum 

substrate utilization rate (Km) decreased from 14.58 to 9.63 mg L-1 h( 1 corresponding to 

concentration increases from 50 to 100 mg/L. In the recirculation reactor, as 2-CP 

concentrations decreased from 110 mg/L to O mg/L, pH values correspondingly 

decreased from 5.5 to 4.2. Both the physical and biological removal data were used for 

determination of 2-chlorophenol removal. The authors were able to obtain a physically 

strong bead structure by optimizing the concentrations of sodium alginate and calcium 

chloride. The immobilized cells in their study showed the ability to degrade 

chlorophenol in various concentrations (up to 100 ppm). They used the Monod 

expression and developed a nonlinear regression model for substrate utilization. The 

model was modified to accommodate the physical removal of substrate by stripping. 

Hashimoto and Furukawa ( 1987) developed a new method for immobilization of 

activated sludge known as the polyvinyl alcohol (PV A)-boric acid method. . The 

preparation of this method involved mixing one portion of concentrated activated sludge 

(mixed microbial cell population) with one portion of an aqueous PV A solution. This 

mixture was dropped into a gently stirred saturated boric acid solution to form spherical 

beads. The beads were cured in the solution for 15-24 hours and then washed with tap 

water. The beads produced were used to determine removal rates oftotal organic carbon 

(TOC) and total nitrogen (T-N) from a synthetic wastewater. Weight changes of the 

PV A beads were recorded and used as the indicator of microorganism growth inside the 
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beads. The beads increased in weight as the loading increased, indicating growth of the 

microorganisms in the beads. The eventual TOC removal was 93% and T-N removal 

was 30-40%. The N03-N was denitrified in the anaerobic portion of the immobilized 

activated sludge beads (aerated denitrification). In conclusion they determined that the 

PV A-boric acid method was inexpensive compared to other methods and that it was 

possible to operate an immobilized cell system at 2-3 times the loading rate of 

conventional systems. They mentioned that since activated sludge cells become 

surrounded by extracellular polymer, microbial activity was not reduced during the 

immobilization process where the pH was 4.0 for 24 hours. 

Wu and Wisecarver (1992) prepared PV A beads using a modification of the 

PV A-boric acid method developed by Hashimoto and Furukawa ( 1987), but added a 

small amount of sodium alginate to prevent or minimize the tendency for the beads to 

agglomerate. They demonstrated the viability of Pseudomonas immobilized cells by 

utilizing them in a fluidized bed bioreactor for a period of two weeks. The bioreactor 

achieved 100% removal when influent phenol concentrations ranging from 250 to 1300 

mg/L were continuously fed through the bioreactor. They concluded that the removal of 

phenol was due almost entirely to biodegradation and physical processes accounted for 

less than 0.1 % of the total phenol removed. The beads were able to withstand high 

shears with no sign of breakage when an 8-L fluidized bed column was sparged at an air 

flow rate of 1.4 Umin. The authors suggested that this technique might be applicable to 

a wide variety of other microorganisms. 

Hanaki et al. (1994) investigated the application of acetate-utilizing methanogens 

immobilized by the PV A-boric acid method in an anaerobic treatment process. Acetate-
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utilizing methanogens are known to be sensitive to influent quality, wastewater 

constituents, toxic materials, and pH. In order to determine the effect of toxic substances 

to PV A immobilized cells, various concentrations of toxic substances were added to 

immobilized cells under anaerobic condition. The toxic substances were phenol, sodium 

oleate, nickel, sulfide, propionate, and ammonia. In this study, the beads were prepared 

at different pH's by adjusting the pH with Na2C03. They concluded that the beads made 

at pH 4.0 were superior to the beads made at pH 6.0 in terms of strength and durability. 

At pH of 4, the initial lag phase prior to the active methane production was prolonged. 

The lag phase shortened as pH increased;· The toxic effects of phenol, oleic acid and 

nickel, as compared to free cells, were reduced and the authors concluded it was due to 

the adsorption of these substances by the bead material. The authors speculated that a 

pH gradient occurs within the beads, protecting .the bacteria from acidic substances such 

as sulfide and propionic acid. The inhibitory effect of ammonia, as compared to free 

cells, was not reduced by either adsorption or formation of a pH gradient. 

Kindzierski et al. (1992) investigated the use of activated carbon and two other 

synthetic ion-exchange resins as support materials for an anaerobic phenol-degrading 

consortia. The initial attachment of microorganisms on different media was studied in 

terms of availability of accessible pore volume and associated surface area for the 

colonization. The initial phenol concentration was 525 mg/L. The rapid adsorption of 

phenol on activated carbon without bacteria occured over the first 33 minutes; aqueous 

phenol concentrations decreased to 73 mg/L during this time. The adsorption of phenol 

on activated carbon with bacteria was 3.9 times smaller than on activated carbon without 

bacteria. The biological uptake of phenol over the 2 hour period was not substantial 
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(estimated at 5 mg L-1 h- 1 from experience with similar cultures). They demonstrated 

that activated carbon exhibited favorable qualities as a biological support for the rapid 

development of attached biomass. They observed a substantial decrease in the rate of 

phenol adsorption by activated carbon due to the colonization of the bacteria. 

Ehrhardt and Rehm. (1985) studied the adsorption of phenol as well as 

Pseudomonas sp. and Candida sp. on activated carbon, and the phenol degradation by 

these immobilized microorganisms was compared to that of free microorganisms. They 

observed that one gram of activated carbon adsorbed 4x 10E9 Pseudomonas cells and 

3x 1 OE8 Candida cells in about 10 hours. Results of the degradation studies showed that 

free cells did not tolerate more than 1.5 g/L phenol, while the immobilized 

microorganisms survived at temporary 2.0 hour of high phenol concentrations up to 15 

g/L, and they ultimately degraded about 90% of the adsorbed phenol. 

Ehrhardt and Rehm 1989 studied phenol degradation in a semi-continuous and 

continuous reactor by Pseudomonas putida P8 adsorbed on activated carbon. They 

stated that phenol introduced into the reactor was initially removed from the media by a 

combination of degradation and adsorption. As the biomass in the reactor increased, 

adsorption decreased and the degradation rate increased. They were able to show that 

immobilized cells on activated carbon can tolerate high concentration of phenol up to 15 

g/L. They concluded that protection in the activated carbon system was afforded by 

adsorption of phenol onto the immobilization substrate, which reduced the aqueous 

concentration to which the organisms were exposed. As the phenol in solution was 

degraded, desorption occurred, allowing the organisms to metabolize the substrate 

released from the carbon. 
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Permeable Barriers 

Rael et al. (1995) evaluated candidate permeable barrier media designed to 

remove benzene in-situ from ground water. Effectiveness of several common material 

including coal, powdered-activated carbon (PAC), peat, and zeolite were evaluated in a 

series of batch and column studies with an initial benzene concentration of 50 mg/L. 

Silica sand was used as an inert matrix and was mixed with PAC to produce either 3 % 

(by weight) or 10 % PAC/sand mixtures. Based on their results, a mixture of PAC and 

sand was considered the most successful candidate. At a flow rate of 54 mUmin , 

breakthrough time occurred at 37 days in a column ( 1.52 m by 0.16 m interior diameter) 

with a 0.91 m reaction bed of 3 % PAC/sand mixture. The authors stated when the 

barrier reached its treatment capacity it can be replaced with fresh media. The barrier 

medium allowed the flow of contaminated water but adsorbed the contaminant 

preventing further migration. This technology is limited to the depth accessible by 

trenching equipment and therefore would be applicable in shallow aquifer systems of 

less than 30 m. 

EPA (1995) prepared a document to describe recent field demonstrations, 

applications, and research on technologies that treat soil and ground water in place. In 

this report treatment walls were considered a cost-effective in situ water treatment 

alternative. Among all the field demonstrations only two had been completed by 1995 

and they seem to hold the potential for great successes. In one study described in EPA 

(1995) document researchers tested a proprietary solid peroxide formulation (an oxygen

releasing compound) to determine whether it could provide dissolved oxygen in a 
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controlled steady manner to enhance biodegradation of BTEX-contaminated water. The 

results indicated that the oxygen releasing compound can provide oxygen to enhance 

biodegradation of BTEX-compounds (O'Hannesin 1994). 

In another study O'Hannesin (1993) completed pilot tests usmg a permeable 

reaction wall containing an iron-based catalyst to treat contaminated groundwater with a 

maximum concentration of 250 mg/L TCE and 43 mg/L of PCE. In this study a 

-rectangular cell was constructed on the surface and driven to depth of 32 feet using 

sealable joint sheet piling. The cell was sealed and dewatered and the native sand was 

replaced by the reactive material consisting of 22% by weight granular iron (zero valance 

iron) and 78% by weight course sand. Using coarser sand ensured that the wall would be 

more permeable the then surrounding sand. The sheet piling was completely removed 

after installing the reactive material. The wall dimensions were 18 feet long, 5.2 feet 

thick, and 7 .2 feet deep and it was positioned 3.3 feet below the water table. The 

reaction wall reduced the TCE concentration by 95% and the PCE concentration by 91 %. 

Increased chloride concentrations downstream· of the wall were consistent with the 

quantity of TCE and PCE that had been degraded. No vinyl chloride production was 

detected in the samples. Concentration distributions through the wall were determined 

on 13 occasions over 474 days, during which there was no decline in the effectiveness of 

the barrier. 

O'Hannesin (1995) also field tested an in situ semipassive permeable wall into 

which nutrient solutions that enhance biodegradation of organics are introduced. The 

wall was installed across the path of a plume contaminated with trichloroethylene (TCE)

and carbon tetrachloride in which nutrients were introduced to enhance biodegradation. 
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A stable anaerobic microbial population was produced some distance downgradient from 

the wall. There was no transformation of TCE. The carbon tetrachloride was removed 

completely from groundwater by anaerobic microorganisms. 

Morrison and Spangler (1993) explored the concept of chemical barriers as a 

passive in situ water-treatment system. The authors studied precipitation barriers 

(hydrated lime) and sorption barriers (ferric oxyhydroxide) for removing uranium from 

ground water. Chemicals used in the barrier were placed in the subsurface either by 

lining a disposal site, by trench and fill, or by injection. Dissolved contaminants became 

part of the immobile solids of the aquifer, by either precipitation or adsorption, as the 

contaminated groundwater passed through the chemical barrier. In a series of column 

studies using ferric oxyhydroxide at different pHs (5,6,7), they concluded that pH of 7 

was the most effective pH in removing uranium. One major problem in precipitation 

barriers was reduction of hydraulic conductivity which is a dominated consideration for 

this type of system. They concluded that accurate groundwater characterization is more 

critical to determining the performance of sorption barriers than precipitation barriers, 

because each contaminant has its own pH for optimal adsorption. 

Morrison ( 1995) later conducted laboratory batch and column studies on 

chemical reactive barriers for the purpose of evaluating the applicability for in situ 

remediation of uranium tailing. He examined sorption capacities of various contaminants 

under aquifer flow conditions on barriers containing low cost materials. It was 

determined that ferric oxyhydroxide can remove uranium and molybdenum up to 99% 

and 96%, respectively. Ferric oxyhydroxide can immobilize metals and uranium and 

that it is (1) inexpensive, (2) injectable, and (3) did not reduce the aquifer's permeability. 
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This study was described as an abiotic system and there was no investigation of the 

possibility of biological removal. 

Thomson et al. (1991) examined the concept of designing permeable barriers to 

remove groundwater contaminants in situ. Permeable barriers constructed by trenching 

had two advantages: 1) accessibility of the medium placement and 2) ease of recovery of 

medium by re-excavation. Permeable barriers were classified as either passive or active. 

An active barrier required continuous operation and maintenance while a passive barrier . 

required no operation or maintenance once the medium is in place. An example of 

active barrier, in situ air stripper was investigated and compared with conventional 

packed tower air stripping. The authors determined that 1) the trench-based stripping 

needed high pressure air compressors, but no water pumping equipment was needed 

which made the operating cost less and 2) biostimulation did occur from the oxygen, 

resulting in a combined air stripping and biodegradation of volatile organic 

contaminants. The authors described a geochemical barrier which consisted of limestone 

and peat for immobilizing metals from uranium milling tailings as an example of passive 

permeable barrier. In passive barrier, upon exhaustion the barrier was re-excavated and 

disposed of as a hazardous waste. It was concluded that the permeable barrier had 

several advantages which include reduced capital, operations and maintenance costs, 

improved reliability, and less volume of treatment by-products. The barrier treatment 

can also be operated at much lower process loading rates than conventional surface 

processes due to low groundwater velocities. 
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Thompson (1996) investigated the feasibility of using PV A-immobilized cells as 

a permeable barrier media for in situ biodremediation of TCP contaminated 

groundwater. 

The author prepared plain PV A beads in accordance with the PV A -boric acid method 

(Hashimoto and Furkawa,1987; Wu and Wisecarver, 1992) using various molecular 

weights(MW) of PV A to obtain a porous, rubber-like, elastic bead for the purpose of 

immobilizing cells and using it as a permeable barrier medium. A bed of beads was 

characterized with its density, porosity, permeability, and compressibility or 

deformation. Batch studies were conducted to obtain necessary data to determine the 

rate of TCP diffusion into the PVA beads, adsorption properties of the beads, and the 

substrate-use of the mixed bjoculture as free cells and as immobilized cells. The author 

conducted initial column study with a · bed of PV A beads located between layers of 

aquifer sand to simulate a "bio-trench" and monitor the biodegradation of TCP. The 

author also conducted another column study with a constant concentration of 10.0 mg/L 

of TCP at a constant flowrate into two columns. The two columns varied in size to 

provide different hydraulic retention times (HRT) to show the effect on biodegradation 

of TCP. 

The author demonstrated that PV A-immobilized cells would be a successful 

permeable barrier media to remove TCP at I 0.0 mg/L concentration from groundwater 

during 15 and 45 days of column studies. The major findings of this study were : 

1. The concept of a bio-trench using PV A-immobilized cells as a permeable 

media to remove TCP from groundwater appeared to be feasible. During 45 days of 

column operation, the column of PV A-immobilized cells situated between layers of sand 
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reached 100% removal efficiency of TCP within 14 days of operation. The column 

continued with the same efficiency for the remainder of the 45 day experiment. After 45 

days of operation, the beads appeared to be resilient, firm, and structurally sound. 

2. Dehalogenation of TCP by PV A-immobilized cells in the batch and column 

studies was suggested by the evidence of chloride increases and pH decreases. 

Dehalogenation of TCP was further supported by GC-MS analysis. 

3. The compressibility study showed the bed of PV A beads had a 48% 

deformation from the overburden pressure at a depth of 40 feet. 

4. A bed of PVA beads was characterized as to its porosity, permeability, and 

compressibility. The PVA beads as a permeable barrier would not impede the flow of 

groundwater. 

The summary of the experiments and the results (Thompson 1996) are presented 

in Tables I and 2, respectively. 

TABLE I S ummary o f expenments · 
EXPERIMENTS EXPECTED INFORMATION 
Porosity' test density, soecific !!ravitv, porosity percent. 
Falling heads permeameter test oermeablility coefficient. 
Compression test compressibility index , deformation percent. 
Diffusion study diffusion coefficient. 
Adsorption study adsorption capacity, adsorption intensity. 
Kinetic study substrate utilization rate, f,!rowth rate. 
Tracer study reactor disoersion number, actual flow rate. 
Column study biodegradation of TCP by the continuous flow 

reactor, effect different hydraulic retention times 
on biode!!radation of TCP. 

* Thompson ( 1996). 
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TABLE 2. Summary of results obtained on PV A-immobilized cells* 

EXPERIMENTS RESULTS 
Porosity test specific gravity =1.008 ,density= 0.9869 g/cm3 , porosity= 25% 
Permeability test permeability coefficient= 0.1425 cm/s 
Compression test deformation% of beads= 48 %, compressibility index= 4.08 X 10"' 

m2/kN 

Diffusion test diffusion coefficient= 3.1 X I 0-0 cm2/s 
Adsorption study adsorption caoacitY = 5.01 X 10· 15 L/g, adsorption intensitv = 11.1 
Kinetic study I) free cells substrate use rate= 1.11 mg L- 1 hr"1, growth rate= 3.9 mg 

VSS L- 1 hr" 1, ICl released= 8.0 mg/L. 

2) immobilized cells substrate use rate= 0.14, 0.47, and 2.0 mg L" 1hr"1, 
ICI released = 7 .0 mg/L 

Column studies I) initial column study (IO cm of beads), I 00% removal, IC! increase 
7.0 mg/L, pH decreased (8.3 to 7.8), DO decreased (8.6 mg/L to 2.5 
mg/L). 

2) final column study: column #1 (10.0 cm of beads) TCP removal 
100% within 10.0 days, IC! increased 6 mgfL, pH decreased (8.3 to 
7 .5), DO decreased (8.6 mg/L to 6.6 mg/L) 

3) final column study: column #2 (20.0 cm of beads) TCP removal 
100% within 8 days, IC! increased 6 mg/L, pH decreased (8.3 to 7.5). 
DO decreased (8.6 mg/L to 7.5 mg/L). 

*Thompson (1996). 

Several investigations have been done on the biodegradation of chlorophenols or 

phenol using immobilized cells. The application of immobilized cells as potential 

biological permeable-barrier media to remove chlorophenols from in-situ groundwater 

has been investigated by Thompson (1996). The work done by Thompson (1996) 

focused on PV A-immobilized cells as a permeable barrier for removal of TCP from 

groundwater during 45 days and 15 days continuous operations. The following are the 

issues, which need to be addressed: 
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1) For the chlorophenols compound, most research has been conducted using 

aerobic fluidized-bed, fixed-film reactor, and an anaerobic sludge blanket reactor. The 

use of 3%GAC immobilized cells mixed with silica sand as a permeable barrier media 

for biodegradation of TCP contaminated groundwater has never been investigated. 

2) For the chlorophenols compound, most research has been conducted for on

site bioremediation of chlorophenol-contaminated groundwater. In order to investigate 

biological permeable barrier as an in-situ remediation technology, it is necessary to 

design biological permeable barrier media m the laboratory scale to assess their 

performance. 

3) There has been some research on permeable barrier concerning the use of 

metal-based catalysts for degrading volatile organics, chelators for immobilizing metals, 

nutrients and oxygen for microorganisms to enhance bioremediation. The use of PY A

immobilized cells beads as a biological permeable barrier media has never been tested 

under variety of flow rates and concentrations. The 3%GAC-immobilized cells mixed 

with sand as another candidate biological permeable barrier media has never been 

investigated. 

4) Although most barriers are designed to operate for years with minimal 

maintenance, the stability of aging barriers has not been established. It is necessary to 

investigate the stability and the removal efficiency of any permeable barrier under 

different operating conditions for extended period of time. 

The above existing issues need to be addressed for development of biological 

permeable barrier as a cost-effective technology to treat chlorophenols in groundwater. 
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The aims of this study were to evaluate permeable barrier technology as an in situ 

groundwater remediation tool using PV A-immobilized cells and 3%GAC-immobilized 

cells mixed with silica sand as permeable barrier media by: 

1) studying the physical characteristics of 3% GAC-immobilized cells/sand mixture, 

2) studying the ability of 3% GAC-immobilized/sand mixture to biodegrade TCP .under 

aerobic condition, 

3) providing the data of· the removal efficiencies of PY A-immobilized cells and . 

3%GAC-immobilized cells /sand mixture under different operating conditions (i.e. flow 

rate, TCP concentration), 

4) studying the stability and the performance of PV A-immobilized cells and 3% GAC

immobilized cells /sand mixture over extended period of time, 

5) studying the tolerance and removal efficiencies of PV A-immobilized cells and 

3%GAC immobilized cells/sand mixture under toxic shock load and deficiency of 

dissolved oxygen, and 

6) comparing PV A-immobilized cells with 3%GAC-immobilized cells /sand mixture on 

the bases of the ease of operation, the abilities to biodegrade TCP, the stability and the 

tolerance under the same operating conditions. 



CHAPTER III 

MATERIALS AND METHODS 

The main objectives of this study are to demonstrate biodegradation of 2,4,6 

trichlorophenol (TCP) using polyvinyl alcohol (PV A)-immobilized cells and granular 

activated carbon (GAC)-immobilized cells functioning as two new permeable barrier 

media. This study also focused on evaluating these barriers under a variety of conditions 

such as different flow rates and differ~nt contaminant influent concentrations. These 

barriers were compared on the basis of removal efficiency, relative ease of operation . 

and capital cost. 

Experimental Approach . 

This study focused on evaluating PV A-immobilized cells and GAC-immobilized 

cells as two new permeable barrier media for in situ biodegradation of TCP 

contaminated groundwater under aerobic conditions. Beads were prepared in accordance 

with the PV A-boric acid method (Hashimoto and Furukawa, 1987: Wu and Wisecarver, 

1992) using various molecular weights (MW) of PV A to obtain porous, rubber-like, 

elastic beads for the purpose of immobilizing cells and using then as a permeable barrier 

medium. A bed of beads was characterized with its density, porosity, permeability, and 

compressibility or deformation. 

32 
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Batch studies were conducted to obtain necessary data to determine the rate of 

TCP diffusion into the PV A beads, adsorption properties of the beads, and substrate-use 

rate of the mixed bioculture as free cells and immobilized cells. The initial column 

studies on PV A-immobilized cells were conducted to evaluate aerobic biodegradation of 

TCP ( 1 O mg/L) and flow rate of 1 mUmin. The above experiments were conducted by 

Thompson (1996) in conjuction with the following experiments on 3% GAC

immobilized cells /sand mixture and PV A-immobilized cells. 

A bed of 3% GAC and silica sand was also characterized utilizing density, 

porosity, and permeability. GAC-immobilized cells were prepared in accordance with 

the method used by Ehrhardt and Rehm (1985). Batch studies were conducted to obtain 

equilibrium time, adsorption capacity of GAC, impact of immobilization time on cell 

retention, and kinetics of TCP adsorption on GAC with and without immobilized cells. 

Column studies were conducted to evaluate aerobic biodegradation of TCP 

(theoretical value of 0.89 mg of 02 uptake/mg TCP) under various operating conditions 

such as different flow rates (i.e. 1 to 4 ml/min.) and different TCP concentrations (i.e. 10 

and 40 mg/L). The barriers also were compared under shock load conditions, oxygen 

deficient conditions and changes in C:N :P ratio. 

Chemicals 

Polyvinyl alcohol was obtained from Scientific Polymer Products, Inc., Ontario, 

NY. Granular Activated Carbon (GAC) of 20-40 US. Standard Sieve Size was obtained 

from Atochem Inc., Tulsa, OK. 2,4,6-trichlorophenol (TCP) was obtained from Fluka 
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Chemical Corp., Ronkonkoma, NY. Ethyl acetate and methanol were obtained from 

Fisher Scientific, Fair Lawn, NJ,. Potassium bromide was obtained from J.T Baker 

Chemical Co., Phillipsburg, NJ. All chemicals used in this study were reagent grade. 

Groundwater Analysis 

Groundwater used in this was obtained from a water well located in the NE/4 

NE/4 NE/4 Section of 9-T16N-R2E, Lincoln County, Oklahoma. The groundwater was 

initially analyzed by the State of Oklahoma, Department of Environmental Quality, 

Water Laboratory, and the total organic carbon was analyzed by The Stover Group. 

Analyticalff oxicology Laboratories, Stillwater, Oklahoma. Standard EPA analytical 

methods were used in accordance with federal regulations ( 40 CFR 136 ). The 

groundwater analysis is given in Table A.2, Appendix A. 

Silica Sand 

Silica sand of 20-40 mesh size was obtained from U.S.Silica, Ottawa.IL. The 

sand was washed and dried completely before use. 

Microorganisms 

Activated sludge was obtained from the Georgia-Pacific Leaf River Pulp Mill, 

New Augusta, Mississippi. The activated sludge was obtained from the recirculation 
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line where there is a high cell concentration. The mill operation included a bleaching 

process which would unintentionally produce some chlorophenols. The microorganisms 

from this mill were assumed to have had some exposure to chlorophenols which should 

allow quicker acclimation for the purpose of this project. The microorganisms were 

further acclimated by feeding them TCP ( 10 mg/L) as their sole carbon source with 

continuous aeration and additional nutrients (phosphate buffer solution, magnesium 

sulfate solution, calcium chloride solution, ferric chloride solution.). One mL of each of

the following nutrient solutions was added to each liter of (13 liter volume) activated 

sludge every day which provided the microorganisms the weight ratio of C:N :P of 

100:18:188 (Standard Methods, 1975: Method 507): 

• Phosphate buffer solution. 8.5 g KH2P04, 21.75 g K2HP04, 33.4 g 

Na2HP04.7H20, and 1.7 g NH4Cl were dissolved in distilled water and then 

diluted to 1 liter. 

• Magnesium sulfate solution. 22.5 g MgS04.7H20 were dissolved m distilled 

water and then diluted to 1 liter. 

• Calcium chloride solution. 27 .5 g CaCl2 were dissolved in distilled 

and then diluted to 1 liter. 

water 

• Ferric chloride solution. 0.25 g FeCl3. 6H20 were dissolved in distilled water 

and then diluted to l liter. 

The weight ratio of C:N :P of 100: 18: 188 was kept unchanged for free cells and 

column studies 1-3. Since a standard ratio of the weights of carbon (C), nitrogen (N), 

and phosphorous (P) for C:N:P was 100:10:3 (Beltrame et al., 1984). The amounts of 

carbon, nitrogen and phosphorous provided to the microorganisms was changed from 
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C:N :P 100: 18: 188 to 100: 10:3 from column study No.4 - 9 to avoid unnecessary addition 

of nutrient. 

Preparation of PV A blank and PV A immobilized Cells Beads 

The polyvinyl alcohol (PV A) boric acid method developed by Hashimoto and 

Furukawa ( 1-987) and modified by Wu and Wisecarver ( 1992) was llsed to prepare . 

"blank'' beads. These beads were used in the adsorption and diffusion studies. The 

details of PV A- blank and immobilized. cells preparation are described by Thomson 

(1996). 

Characterization of a Packed Bed of PV A Beads 

A bed of beads was characterized with respect to its density, porosity, 

permeability, and compressibility or deformation by Thompson ( 1996). 

Compressibility Study on PV A -Plain and PV A -Immobilized Cells Beads: 

An oedometer ( or consolidation test apparatus) was used to determine the 

compression behavior of a packed bed of PV A beads. The compressibility test was done 

on plain PV A beads by Thompson at the beginning of this project. The details of this 

test were reported by Thompson ( 1996). 
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PV A Beads Batch and Column Studies 

Batch studies were also conducted to obtain necessary data to determine the rate 

of TCP diffusion into the plain PV A beads, adsorption properties of the beads, and the 

substrate-use rate of the mixed bioculture as free cells and as immobilized cells. Column 

studies were conducted using two columns of different depths of PV A immobilized cells 

to test the effect of different hydraulic retention times (HRT) on biodegradation rates. 

The column study was conducted as aerobic, continuous flow packed-bed 

reactors. The feed solution containing TCP ( 10 mg/L) and nutrients was pumped upflow 

into the columns ( 10.0 cm and 20.0 cm) at 1.0 mL/min. Samples of the influent and 

effluent were taken for . dissolved oxygen (DO), TCP, chloride (ICl), and pH 

determinations. The detail of the experiments on PV A beads can be found in the work 

by Thompson ( 1996). 

Characterization of Packed Bed of 3% GAC/Sand 

Specific Gravity 

The density (mass/unit volume) of a bed of (3% )GAC/silica sand and water were 

determined at 22° C by weighing 100 mL of (3%) GAC/sand and IOOmL of water. The 

expression to determine the specific gravity of the (3%) GAC/sand was given as (Smith, 

1979): 

S "f" . Density of Substance 
pec1 1c gravity = ---"------

Density of Water en 
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Porosity 

Both silica sand and GAC were sieved to 40 U.S Standard Sieve Size particles. 

The porosity of a bed of 3% GAC/silica sand was determined by packing 160 g of 3o/c 

GAC/sand mixture into a 100 rnL volume in a graduated cylinder. A volume of 100 mLs 

of water was added to the graduated cylinder. The water and GAC/sand were displaced 

to 170 mLs. The expression to determined the percent porosity of the bed of GAC/sand 

was given as (Smith, 1979): 

01 p . · (V1 + V,, )- V3 (lOO) Total Void Volume (lOO) 
-10 oros1ty = - = -------

V1 Total Volume 
(2) 

Where 

V 1 = volume of GAC/sand 

V 2 = volume of water 

V 3 = volume of displacement 

Permeability Study 

A falling head permeameter test was used to determine the permeability 

coefficient (K) of a packed bed of GAC/sand (Smith, 1979). GAC/sand was packed into 

the bottom portion of a column at a density of 1.6 g/cm3 to simulate actual densities 

found in aauvial aquifers (Mandel and Shiftan, 1981) for the length of sample (L). Two 

(2) copper screens were placed above and below the layer of GAC/sand. A shallow layer 

of washed gravel was placed on top of the GAC/sand to hold the grains in place. A 

graduated cylinder was placed below the column to catch the flow of water. Water was 
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added to the column to a certain height (h 1) and after a measured time (t), the height to 

which the water had fallen (h2) was determined. The permeability coefficient (K) was 

determined by the expression (Smith, 1979): 

(3) 

Where 

K= permeability coefficient 

L= length of sample 

t= time 

h 1 = height of water 

h 2 = height to which water level has fallen 

Batch Studies 

Batch studies were conducted to obtain necessary data to determine equilibrium 

time for carbon adsorption, the adsorption capacity of GAC and silica sand, the kinetics 

of substrate use rate by the mixed bioculture as free cells, impact of immobilization time 

on cell retention, and kinetics of TCP adsorption on GAC with or without immobilized 

cells. 
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Equilibrium Study 

This study was conducted by using 2.5 grams of GAC and 500 mL of a 20 mg/L 

TCP solution. The solution was covered to prevent photolytic degradation and shaken 

on the shaker table for period of 24 hours. Samples were taken at different time intervals 

(0.0, 3.0, 5.0, 8.0, 10.0, 20.0, 24.0 hours) and analyzed by gas chromatograph (GC) to 

determine the liquid phase TCP concentration. 

Isotherm Study 

Granular activated carbon (GAC) was washed with distilled water and dried at 

103 °C before use. The adsorption study was conducted by adding different masses of 

GAC to five Erlenmeyer flasks of 250 mL volume. Two hundered (200) mL of solution, 

with a TCP concentration of 20.0 mg/L, was poured into each flask. Flasks were 

covered to prevent photolytic degradation and were shaken on the shaker table for 24 

hours. Twenty five (25) mL samples were taken from each flask at 0.0 hours and at 24 

hours to measure the TCP concentration. The data from this experiment were used to 

estimate adsorption potential using an isotherm model. 

An adsorption study was conducted on the silica sand used in the GAC columns. 

A Erlenmeyer flask (300 mL volume) containing 100 g sand and 200 mLs of a 20.0 mg/L 

TCP solution was shaken on the shaker table for 24 hours. Two (2.0) mL samples were 

taken at 0.0, 3.0, 7.0, 12.0, and 24.0 hours to measure the TCP concentration. 

An adsorption study was also conducted on the 200-sieve mesh copper screen 

used in column studies. The copper screen served to retain the media and was placed at 

the top and bottom of each column. A 5.0 cm diameter circle of copper screen was 
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placed in a Erlenmeyer flask (500 mL volume) of 200 mLs of a 10.0 mg/L TCP solution 

and was shaken on the shaker table for 24 hours. Samples volume of I mL wen~ taken at 

0.0, 3.0, 7.0, 12.0, and 24.0 hours to measure TCP concentrations. 

Immobilization Time 

In order to quantify the extent of cell attachment to the carbon , 10 grams of GAC 

and 1 O grams of centrifuged biomass were placed with 500 mLs distilled water in 800 

mLs Erlenmeyer flask. An International Equipment Co. Clinical Centrifuge was used to 

centrifuge the sludge at 4000 rpm for I 0.0 minutes. The flask were shaken vigorously on 

the shaker table for 24.0 hours. Samples were taken at different time intervals and 

processed (diluted) for membrane plate count. The number of cells attached on carbon 

were calculated by the difference of initial cell concentration and concentration of cells 

in the solution over time. This experiment defined the number of cells attached on the 

GAC and the required time to reach certain cell concentrations. 

Kinetic Study 

A batch of culture of activated sludge obtained from Georgia-Pacific had been 

acclimated for 60 days by feeding it IO mg/L of TCP and nutrients each day. The solids 

in this batch were controlled by wasting 1.0 L every day and adding I liter with tap 

water. The culture was continuously aerated. Prior to begining the kinetic study on the 

free cells an initial volatile suspended solids (VSS) analysis was conducted according to 

Method 208E, Standard Methods ( 1975). As a result of a VSS analysis of 4376 mg/L 

VSS, it was determined that the activated sludge needed to be diluted for the kinetic 
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study. A 1.0 L volume of activated sludge was poured into an 8.0 L bottle and diluted by 

adding 2.0 L of tap water. Three (3.0)L of the diluted batch culture was aerated 

continuously and fed 10.0 mg/L TCP and nutrients. A 100.0 mL sample volume was 

taken at 0.0 hour, 1.0, 3.5, 5.0, 12.0, and 24.0 hours. Each 100 mL sample was filtered 

under vacuum using a Whatman glass fiber (GF/A) filter. A 25.0 mL volume of the 

filtered sample was used for TCP concentration for GC analysis. A 50.0 mL volume of 

the filtered sample was used for ICl analysis. The remaing filtered sample of 25 mL was 

used for VSS analysis. The analytical methods used for TCP concentration, IC!, and 

VSS are further described later in this chapter under "Analytical Methods". 

Kinetics of TCP Adsorption on GAC 

In this study TCP adsorption on activated carbon with or without microorganisn-is 

was evaluated. A portion of activated sludge from the continuously maintained batch 

culture was centrifuged to obtain 10.0 g (wet weight) of biomass. The wet centrifuged 

biomass was placed along with 10.0 g of GAC in 200 mL of distilled water and shaken 

on the shaker table for 24.0 hours. This allowed cell to be immobilized on the GAC. 

Settled GAC ( 10 gm), which contained immobilized bacteria, was placed in a flask 

containing 500 mL of a 500 mg/L solution TCP. Another I 0.0 g of GAC (plain), 

without cells, was placed in another flask which also contained a 500 mg/L TCP 

solution. The flasked were stirred gently over 120 minutes. Samples were taken at 

different times and analyzed using the GC for TCP concentration during 120 minutes 

(Ehrhardt 1985). 
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Preparation of GAC-Immobilized Cells for Column Studies 

Granular activated carbon (GAC) were washed with distilled water several times 

and dried completely in 103°C oven before use. A portion of activated sludge, from the 

continuously maintained batch culture, was centrifuged at 4000 rpm for I 0.0 minutes to 

obtain the desired amount of biomass (wet weight). The amount of biomass used for 

immobilization on both permeable barriers (GAC and PVA beads) was 43.7 grams for 

short columns and 86.0 grams for the long columns. The amount of GAC for short and 

long column were 21.0 and 10.5 grams, respectively, for the 3% mixture of GAC/sand. 

The biomass and GAC were then agitated vigorously in 100 mLs distilled water for 24 

hours. The GAC that settled by gravity was mixed with sand and used in column 

studies (3% GAC /sand mixture). 

Column Studies on PVA and GAC Immobilized Cells 

The experiments are carried out in total of four acrylic columns, and were set up 

as aerobic, continuous flow packed-bed reactors. Columns #1 and #2 consisted of l O 

and 20 cm beds of PV A beads (3-5 mm), respectively prepared by Thompson ( 1996). 

Columns #3 and #4 consisted of 10 and 20 cm beds of 3% GAC immobilized cells and 

97% clean silica sand. These columns have an inside diameter of 5.0 cm. A 5.0 cm 

diameter 200-sieve mesh copper screen was placed at the top and bottom of each of the 

columns. The TCP-spiked groundwater was prepared in 25.0 liter bottles and covered to 

prevent photolytic degradation (Figure 2.). 
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Figure 2. Schematic Diagram of Column Study 

The following nutrient solutions were added to the TCP- spiked groundwater: 

phosphate buffer solution; magnesium sulfate solution; calcium chloride solution; and 

ferric chloride solution .. A peristaltic pump (Cole-Parmer 7553-30) with four heads 

(Model 7013) and tygon tubing was used to pump the groundwater into the base of the 

columns (upflow mode). The experimental conditions conducted during column studies 

are presented in Table 3. 



Column Experiment 

Experiments No. 1 

Influent 
Concentration 10.0 

(mg/L) 

Influent Flow 
Rate 1.0 

(mL/min.) 

Columns 
Residence #1=49 
Time(min) #2=98 

#3=59 
#4=118 

C:N:P 100: 18: 188 
Ratio 

Dissolved 
Oxygen 8.0-9.0 
(mg/L) 

Loading Columns 
Rate g L· 1.d· 1 #l,#3=.074 

#2, #4=.037 

Table 3. Experimental Conditions for Column Studies ( 1-8) 

Experiment Experiment Experiment · Experiment Experiment 
No. 2 No. 3 No. 4 No. 5 No. 6 

20.0 20.0 20.0 30.0 20.0 

1.0 1.0 1.0 1.0 2.0 

.. 

Columns Columns Columns Columns Columns 
· #1=49 #1=49 #1=49 #1=49 #1=24.5 

#2=98 #2=98 #2=98 #2=98 #2=49 
#3=59 #3=59 #3=59 #3=59 #3=29.5 

#4=118 #4=118 #4=118 · #4=118 #4=58.9 

100: 18: 188 100:18:188 100:10:3 100:10:3 100:10:3 

8.0-9.0 above 20.0 above 20.0 above 27.0 above 20.0 

Columns Columns Columns Columns Columns 
#1,#3=0.15 #1,#3=.15 #1, #3=0.15 #1,#3=0.22 #1,#3=0.3 
#2, #4=.074 #2,#4=.074 #2,#4=.074 #2,#4=.l 1 #2,#4=0. I 48 

Experiment 
No. 7 

20.0 

4.0 

Columns 
#1=12.3 
#2=24.5 
#3=14.8 
#4=29.5 

100: 10:3 

above 20.0 

Columns 
#1,#3=0.6 
#2,#4=0.3 

Experiment 
No. 8 

40.0 

4.0 

Columns 
#1=12.3 
#2=24.5 
#3=14.8 
#4=29.5 

100: 10:3 

above 30.0 

Columns 
#1,#3=1.2 
#2,#4=0.6 

.J:a. 
V1 
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Final Column Study No. 9 

In this study, the columns were no longer studied.in parallel sets. The effects of 

external disturbances such as a high shock load and low DO were evaluated on PV A and 

GAC immobilized cells systems. Columns #2 and #4 were subjected to a high influent 

TCP concentration (500 mg/L), C:P:N ratio of 100: 10:3, flow rate of 2.0 mUmin, and 

dissolved oxygen above 30.0 mg/L for 50.0 hours. The experimental condition of 

columns #1 and #3 were adjusted to a very low dissolved oxygen (DO) around 2-3 

mg/L, TCP concentration of 40.0 mg/L, and flow rate of 2mUmin. for 50.0 hours. 

During these 50.0 hours influent and effluent samples were taken to determine TCP 

concentration, DO, pH, and er concentrations. After 48.0 hours experimental condition 

were adjusted back to TCP= 40.0 mg/L, DO= above 25.0 mg/L, flow rate=2 mUmin, 

and C:P:N ratio of 100:10:3. The columns were monitored in terms of TCP 

concentration, DO, pH, and Cl concentration until all the columns reached steady state 

(where there is no change in effluents concentration). Once the columns reached steady 

state, the stress conditions (shock load and low DO) on specified column were repeated 

one more time for another 50.0 hours. After 50.0 hours of the shock load on columns 

(2,4) and low DO on columns (1,3), once again all the columns were subjected to 

TCP=40.0 mg/L, DO - 30.0 mg/L, and flow rate of 2.0 mUmin. In this study, the 

effects of external disturbances such as high shock load and low DO were evaluated on 

PV A and GAC immobilized cells systems. 
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Tracer Studies 

A pulse tracer study for non-ideal flow (Levenspiel, 1962) was conducted on the 

PV A-immobilized cells by Thomson ( 1996). A pulse tracer study was also conducted to 

two GAC-immobilized cells columns. This study was used to predict the flow behavior 

of each column as a reactor. The actual flow rates and dispersion coefficients were 

determined for all four columns. 

The tracer used in this study was potassium bromide (KBr). Groundwater was 

added to 297.9 mg of KBr to make 1.0 liter of 200 mg/L bromide tracer solution. Two 

(2.0) mL of this solution was injected to GAC columns (#2 and #4) while the feed of 

groundwater was interrupted to allow the tracer to be injected into the columns. After 

2.0 mL of tracer was gone, the influent tubing was then placed back into the feed bottle. 

Samples were taken every 10.0 minutes for at least three HRTs to ensure that all of the 

bromide tracer solution was recovered. Samples were collected over a period of 360.0 

minutes and analyzed for Br concentrations using a Dionex Series 2000i/SP ion 

chromatography. 

Analytical Techniques 

Contaminant Concentration 

Multiple extraction methods and gas chromatograph (GC) analytical techniques 

were used in analyzing the chlorophenol concentrations. 
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ENVI-Chrom P SPE tubes (6 rnLJ250 mg) were used for solid phase extraction of 

chlorophenols. The ENVI-Chrom PSPE tubes were obtained from Supelco, Inc., 

Bellefonte, PA. The resin in the tubes was composed of nonionic, highly crosslinked 

styrene-divinylbenzene copolymer, with a particle size range of 8-160 µm, a surface area 

of 800-950 m2/g, and a mean pore size of 110-175 A0 A 25 mL sample was added to 

ENVI-Chrom P each time after SPE columns had been previously conditioned 

sequentially by washing with 6.0 mLs of each ethyl acetate, methanol, and <lionized 

water with vacuum suction. The tubes were dried for 5 minutes with the vacuum on. 

The vacuum was turned on and the tube was washed with an additional 2 mL and 1 mL 

of ethyl acetate until 5 mLs of eluent was collected in volumetric flask. A series (0.1 

mg/L; 5.0 mg/L; 10.0 mg/L; 20.0 mg/L)of standard were prepared by a series of dilution 

of 10.0 g/L stock solution of TCP. A four-point standard curve (with correlation 

coefficient of above 0.98) was developed using a Hewlett-Packard 5890 Series II Gas 

Chromatography (GC) equipped with a column containing GP 10% SP-2100 on 100/120 

mesh SUPELCOPORTcolumn for chlorophenols analysis. Since the GC response 

differs slightly with every usage, a series of standards were analyzed and a standard 

curve was developed before any samples were injected. The oven temperature was 

programmed (isothermal) for 200°C. The injection and detector temperatures were both 

275° C and helium gas at a flow rate of 20 mUmin served as the carrier gas. Two µL 

extracted sample in ethyl acetate was injected into the GC 
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Breakdown Products 

To identify any breakdown products analyses were performed using a GC-mass 

spectrometry (MS); Hewlett-Packard 5890-5970 MSD. The GC-MS was equipped with 

a DB-1 capillary column (30 m long, 0.25 mm i.d., 0.25 µm film thickness). Helium was 

the carrier gas with a linear velocity of approximately 40 emfs. The injection volume 

was 1 µ L. The injector was at 250 cc, and the detector was at 250cc. The oven 

temperature was set at 65 cc for 3.0 minutes, then ramped at IO cc/minute up to 230 cc, 

for a total run time of 20 minutes. The samples were analyzed by Dr. Dilip Sensharma. 

Mass Spectrometry Laboratory, Department of Chemistry, Oklahoma State University, 

Stillwater, Oklahoma. 

Bromide Concentration 

Bromide concentrations were determined with a Dionex Series 2000i/SP ion 

chromatography (IC) with an Ionpak AS4A-SC 4 mm analytical column and an Ionpak 

AG4A-SC 4 mm guard column. Effluent sample volumes of 0.4 mLs were injected into 

the IC. The IC eluent consisted of 1.8 mM Na2C03 and 1.7 mM NaHC03 while the 

regenerant was 25 mM H2S04. A series of standards were analyzed ( 1.0 mg/L; 2.0 

mg/L 3.0 mg/L; and, 4.0 mg/L) and a four-point calibration curve (with a correlation 

coefficient of 0.98) was developed. 

Inorganic Chloride 

Inorganic chloride ion concentration were determined by a chloride electrode 

(Type 15 213 3000, Fisher) and an Ingold Ag/ AgCl reference electrode (Type 373-90-
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WTE-ICE-S7) using an Orion pH/mV meter (Orion Research Inc.Model SA 720). To 

each 50 mL of sample, lmL of 5 M NaN03 was added as an ionic strength adjuster. 

Measurements were carried out at 20 °C. 

Dissolved Oxygen 

Dissolved oxygen (DO) for effluent samples (collected under nitrogen blanket) 

was measured with an ORION Research Analog pH meter/model 301 and an ORION 

model 97-08-00 0 2 electrode. For influent samples, where a high concentration of DO 

(above 14 mg/L) potentially existed, the Winkler Method was used according to 

Standard Method ( APHA, 1975). 

pH Measurement 

The pH was measured with a Fisher Scientific Accumet 900 pH meter and probe, 

model No. 13-620-108. 

Volatile Suspended Solids 

The procedure described in section 208F. of Standard Methods (APHA, 1975) 

was used to determine the volatile suspended solids (VSS) of bioculture. Total Volatile 

and Fixed Residue at 550 °C were determined in accordance with methods in section 

and of Standard Methods,(APHA, 1975). 
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Bacterial Population Counts 

The standard plate count method presented by Benson ( 1967) was followed to 

perform the bacterial population counts of the cell titer in the suspension before and after 

the adsorption on activated carbon. One mL of sample was taken at different time 

intervals during immobilization of cells on GAC and processed (diluted) and filtered for 

the standard plate count. In addition, 7-mL of nutrient agar was poured into each 100 X 

15 sterilized-disposable plastic Petri dish (Fisher Scientific, Fair Lawn, NJ), which were 

incubated at a room temperature(-25 °C) for 48 hours. The bacteria were counted at the 

end of 48.0 hours. 

Electron Micrographs 

The structure and growth of microorganisms on GAC and PV A beads were 

examined by scanning electron microscopy (SEM). SEM samples of GAC's for scanning 

electron microscopy were fixed with 0.1 M phosphate buffer (pH 7 .2) containing 1.6 % 

glutaraldehyde at room temperature for 2 hour, washed with 0.1 M phosphate buffer, (pH 

7.2) for 3 x 20 min. each. Adhered carbon to poly-I-lysine coverslips, then dehydrated 

through a graded series of ethanol solutions (25, 50, 75, and 100% ethanol). The 

samples then critical point dried and coated with gold. A JEOL JSM 35 U scanning 

electron microscope operating at 25 kV was used for examination of the samples. PV A

boric acid samples were prefixed with 1.6% (v/v) glutaraldehyde in 0.1 M phosphate 

buffer (pH 7 .2) for 2.0 hours at room temperature and washed 3 times in 1.6 % 

glutraldehyde in phosphate buffer (pH= 7.2). The samples were postfixed for 2.0 hours 
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m a buffered 1 % (w/v) osmium tetroxide (Os04) solution and dehydrated in graded 

series of ethanol. The speciments were mounted on aluminum specimen stubs and 

coated with gold and palladium. The samples were prepared and examined by Ginger 

Baker, Electron Microscopy Lab Manager, College of Veterinary Medicine, Oklahoma 

State University, Stillwater, Oklahoma. 

Summary 

Tables 4 and 5 summarize the studies and experiments conducted, specific 

objectives for each study, information expected from each study. and how that 

information relates to evaluation of permeable barrier technology using PV A and GAC 

immobilized cells. 



Experiment/ 
Study 

Porosity 

Falling head 
permeameter test 

Equilibrium study 

Adsorption study 

Table 4. SUMMARY OF EXPERIMENTS/STUDIES 

Specific Expected How expected results relate to 
Objectives Information· evaluation of permeable barrier 

technolo11:v 

Measure the capacity of * specific gravity The porosity percent is needed to 
the bed to allow water * density determine whether or not the flow of the 
pass through its pore *porosity percent water would be impeded. 

Measure the ability of the packed * permeable Permeability is needed to determine if 
bed to transmit coefficient the water will 

water flow through the bed and the bed would 
not act as a 

dam. 

Measure the equilibrium * equilibrium time It is important to know how long will 
time take for GAC 

to adsorb TCP and reach equilibrium. 

Measure the capacity of * adsorption capacity It is important to know how adsorbable 
GAC , Sand, and (K) TCP is. 

copper screen to adsorb. TCP * adsorption intensity 
(1/n) 

VI 
w 



Table 4. Continued. 

Immobilization Measure the time for maximum * immobilization 
Time adsorption of Time(hr) 

cells on GAC 

Kinetic study of Measure the amount of TCP * substrate utilization 
free cells degraded, DO rates 

consumed and Cl release of the free cells 
by the free cells. * growth rate of the 

free cells 

Kinetics of TCP Measure the capacity of GAC * effect of 
adsorption w/wo immobilized cells immobilization 

on GAC w/wo on adsorb. capacity 
cells ofGAC. 

Tracer study Measure the flow rate and residence * flowrate (Q) 
time in the columns * reactor dispersion 

number 
(D/µL) 

To quantify cells attached on GAC, 
this information needed to determine 

the quantity 
of cells immobilized on GAC. 

The batch study shows the free cells 
are active, growing 

and utilizing the TCP as carbon source 
prior to 

immobilizing them. The ICI increased, 
DO consumed indicates aerobic 

dehalogenation. 

This study shows that once cells are 
immobilized on 

GAC, fewer adsorption sites are 
available for TCP 

This study shows the flow behavior and 
amount of 

time that the feed solution is in contact 
with the 

immobilized cells for degradation of 
TCP. 

VI 
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Table 5. SUMMARY OF COLUMN STUDIES 

Experiment/ Specific Specifi~ 
Study Objectives Objectives 

Column Studies Simulate "bio-trenth" *the extend of biodegradation 
Experiment using PV A and GAC of TCP by continuous flow 

No.I Immobilized cells under reactor. 
I variety of conditions.: 
I * effect of different operating 
I conditions described in Table 
I 3. on removal efficiency of 
I these columns. 

No.8 

No.9 Subject the columns to shock Effect of shock load and low 
load and low DO. DO on TCP degradation 

How expected results relate to 
evaluation 

of permeable barrier technology 

These column studies will show 
the applicability of PV A and GAC 
immobilized cells as two novel 
permeable barriers and their 
capability to biodegrade TCP 
under under variety of conditions 
such as different flow rates( 1-4 
mL/min), different TCP 
concentration( I 0-40 mg/L), 
different C:N:P ratio, and 
availability of DO (8.0-30.0 
mg/L). 

This study evaluate the removal 
efficiency of the columns under 
low DO and high TCP cone. 

VI 
Vt 



CHAPTER IV 

RESULTS AND DISCUSSION 

The main objective of this study was to evaluate the use of PVA-immobilized 

cells and 3%GAC-immobilized cells/sand mixture as two novel candidate technologies 

to biodegrade TCP contaminated groundwater. The batch and initial column 

experiments on PV A-immobilized cell beads were conducted to determine physical 

characteristics of the PV A beads and the capabilities of these beads to serve as a 

permeable barrier. The details of these experiments and their results were reported by 

Thompson (1996). As a reference, results of these experiments were summarized and 

presented at the end of Chapter II in Table 2. 

Based on the experimental design described in Chapter ill, experiments were 

conducted to determine the capabilities of these· beads to serve as a permeable barrier 

medium under a variety of different operating conditions. 

In order to evaluate the (3%) GAC-immobilized cells mixed with silica sand as a 

permeable barrier medium, batch experiments were conducted to determine physical 

characteristics of the (3%) GAC/sand mixture; and its ability as a biological carrier 

system. These experiments were: 

• characterization of a packed bed - to evaluate the applicability of (3%) GAC/sand 

mixture packed bed as a medium in a permeable barrier by measuring its porosity 

and permeability, 

56 
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• equilibrium study - to measure the time required for GAC to adsorb the 

maximum amount of TCP in water, 

• adsorption study - to measure the adsorption capacity of GAC, silica sand, and 

copper screen used in the column studies, 

• kinetics study - to determine the ability of free cells to degrade TCP by the 

determination of the substrate utilization rate and growth rate, 

• immobilization time - to measure the time required for GAC to reach its 

maximum capacity of adsorb cells, 

• equilibrium of TCP adsorption - to measure and compare the adsorption capacity 

of plain GAC and GAC-immobilized cells for TCP, 

• tracer study - to determine a dispersion coefficient, and residence time for each 

GAC column ( 10 cm and 20 cm), 

• column studies - to simulate a "bio-trench" using PV A immobilized cells and 

3%GAC-immobilized cells/sand mixture to biodegrade TCP at four TCP 

concentrations (10, 20, 30, 40 mg/L), three flow rates (1, 2, 4 mL/min), and two 

C:N:P ratios (100:18:188, 100:10:3), 

• final column studies - to evaluate the effects of organic shock loadings and the 

deficiency of dissolved oxygen (DO) on PV A -immobilized cells, and 3%GAC

immobilized cells /sand mixture columns, and 

• finally, compare GAC-immobilized cells and PV A-immobilized cells on the basis 

of the removal efficiency, ease of preparation and operation, durability, survival 

under stress conditions (low DO, shock load of TCP), and capital cost. 
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Characterization of 3 % GAC/Sand 

Silica sand and GAC were washed with distilled water and oven dried at 103°C 

separately. The two materials were then blended to achieved the desired weight ratio. 

The (3%) GAC/sand mixture was packed into the column with a density of 1.6 g/cm3 to 

simulate actual densities found in alluvial aquifers (Mandel and Shiftan, 1981 ). The 

results of the characterization of a packed bed of (3%) GAC/sand mixture along with 

characterization of the PV A beads are presented in Table B.1, Appendix B. The porosity 

of the bed, at 22° C, was 30% which was comparable to an average porosity of aquifer 

sand (Linsely, et al., 1982). The permeability coefficient obtained for the 3%GAC/sand 

mixture was 0.0162 cm/s which was comparable to a medium grained sand (Smith, 

1979). The compressibility index (Cc) for medium grained sand is reported to be 2.87 X 

10-5m2fk.N (Smith, 1979). The GAC/sand mixture (40.0 mesh size) is compareable to a 

medium grained sand, and was assumed to have similar value of compressibility. 

Batch Studies 

Equilibrium Study 

An equilibrium study was conducted on 2.5 g of GAC in a continuously stirred 

(magnetic stirring bar) 500 mL volume of a 20.0 mg/L TCP solution. Samples of the 

solution were taken at various times during a 24 hour period to analyze TCP 

concentrations. The result of this study is illustrated in Figure 3. It can be seen that the 

aqueous TCP concentration reached a value of 0.5 mg/L within 8.0 hours after the start 
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of the experiment. For the samples taken at 20.0 hours and 24.0 hours, the value of TCP 

concentration in solution was 0.0. Therefore, the time required for GAC to adsorb TCP 

and reach equilibrium was around 20.0 hours. The raw data are shown in Table C-1., 

Appendix C. 

Adsorption studies 

GAC: As a results of the equilibrium study, the adsorption study for GAC was 

conducted for 24.0 hours. This study consisted of adding varying masses of GAC ( 0.01. 

0.1, 0.5, 1.0, 5.0 g) to 5 glass flasks of 250 mL volume. Two hundred (200) mL of 

solution with a TCP concentration of 20.0 mg/L, was added to each flask. The samples 

were taken and analyzed by GC for TCP remaining in solution. The data were plotted 

and the resulting Freundlich isotherm is shown in Figure 4. A regression analysis of the 

data resulted in a linear fit with the slope (1/n) of 3.868 and an intercept (k) of 0.0894. 

The raw data and calculation of the physical adsorption capacity of the GAC are listed in 

Table C-2., Appendix C. 
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Figure 3. Equilibrium Study for GAC and TCP. 
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Figure 4. Freundilich Isotherm for Adsorption.of TCP onto GAC. 
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Silica Sand: The TCP concentration in solution in contact with the silica sand 

was 20.0 mg/L. Samples of the TCP solution were taken at 0.0, 3.0, 7.0, 12.0, and 24.0 

hrs. The effect of sorption of TCP onto the silica sand is shown in Figure 5. It can be 

seen that about 0.8 mg/L of TCP was adsorb in an elapsed time of 3.0 hours. For the 

samples taken after 3.0 hours, the TCP concentration in solution increased back to 20.0 

mg/L by the 24.0 hour sample, indicating that the silica sand did not physically remove 

any TCP. The raw data are shown in Table C-3., Appendix C 

Copper Screen: The TCP concentration in the solution in contact with a piece 

of copper screen was 10.0 mg/L. The copper screen had a dimeter of 1.0 inch and 

weighted 0.77 mg. Samples taken over 24.0 hours showed no reduction in TCP 

concentration, indicating that the copper screen did not adsorb any TCP over 24.0 hours. 

The result is shown in Figure 6. The raw data are presented in Table C-4., Appendix C. 

Immobilization Time 

The quantity of immobilized cells attached to the GAC was calculated by 

difference between the initial cell concentration in suspension and cell concentration at 

times 0.0, 1.0, 3.0, 7.0, 10.0, 13.0, 16.0, 20.0, and 24.0 ho·urs. The result of this study is 

shown in Figure 7. Initial cell concentration in the solution was 6.4X 106. As seen in 

Figure 7 the quantity of immobilized cells attached to GAC is dependent on 

immobilization time. After about 13.0 hours an adsorption balance was reached between 

free and immobilized cells. The raw data are presented in Table C-5., Appendix C. 
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Kinetic Study of Free Cells 

The kinetic study was conducted over a period of 24.0 hours. Samples taken over 

the 24.0 hour period were analyzed for TCP concentration, VSS, and chloride release. 

The raw data and detailed calculations of substrate utilization rate (rsu) and growth rate 

(rg) are presented in Table C-6.,Appendix C. The TCP concentrations over 24 hours are 

plotted in Figure 8. As seen in Figure 8 the free cells removed 71 % of TCP within 3.5 

hours and 100% removal within 5.0 hours, giving a substrate utilization rate of 2.0 mg L-

1 hf 1. The results of the VSS analysis (Table C-6) showed that the VSS increased from 

1035 mg VSS/L to 1075 mg VSS/L within 5.0 hours. This gave a growth rate (rg) of 8.0 

mg L-1 h{1• 

The theoretical increase of chlorides was predicted to be 5.39 mg/L for complete 

dehalogenation of 10.0 mg/L of TCP. Measured chloride releases resulted in an increase 

of 7.0 mg/Lover 5.0 hours in which 10.0 mg/L of TCP was removed. The measured 

chloride releases and theoretical inorganic chloride releases are plotted in Figure 9. The 

theoretical and the measured inorganic chloride increases were close in value, but with 

the measured values being slightly higher. 

The kinetic study was conducted multiple times. The initial kinetic study by 

Thompson (1996) showed that free cells consumed 10.0 mg/L of TCP within the first 9.0 

hours resulting in chloride production of 8.0 mg/L. 
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Kinetics of TCP Adsorption on GAC 

The adsorption of TCP to GAC in the absence and presence of free cells is shown 

in Figure 10. The initial TCP concentration in both the GAC-immobilized cells and 

plain GAC flasks was 500 mg/L. Figure 10 shows that rapid adsorption of TCP occurred 

over the first 30.0 minutes for plain GAC; the aqueous TCP concentration decreased to 

about 50.0 mg/L during this time. For GAC-immobilized cells, aqueous TCP 

concentrations decreased from 500 mg/L to 300 mg/L during the first 20.0 minutes of 

experiment. TCP levels were further reduced to 250 mg/L over the next 40.0 minutes. 

Comparison of TCP adsorption on GAC-immobilized cells and plain GAC, indicated 

that a small.er amount of TCP was adsorbed on the GAC immobilized cells system 

versus the plain GAC. This difference could be attributed to fewer adsorption sites are 

available in GAC-immobilized cells for TCP. This results is consistent with an earlier 

observation by Kindzierski et al. (1992). The authors reported the capacity of activated 

carbon for phenol adsorption decreased from 1.4 Ug for fresh activated carbon to 0.16 

Ug for activated carbon with bacteria attached. The authors suggested the rate constant 

for adsorption with bacteria was 3.9 times smaller than on fresh activated carbon, which 

suggested an effective diffusivity over 35 times smaller for activated carbon with 

bacteria as compared to fresh activated carbon. The raw data are presented in Table C-7, 

Appendix C. 
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Tracer Study 

A pulse tracer study for non-ideal flow was conducted on the PV A-immobilized 

cells columns #1, #2 (Thompson, 1996) and GAC columns #3, #4. The specifications 

for columns #1-# 4 were as followed (Table 6.): 

T bl 6 Th a e f h PVA dGAC e spec1 1cat1on o t e an co umns. 
-

Column · Height(cm) Diameter( cm) l Volume( cm·) Porosity HRY(min) 

(PVA) # 1 10.0 5.0 196 25 % 49.0 

(PVA) # 2 20.0 5.0 392.7 25 % 98.0 

(GAC )# 3 10.0 5.0 196 30% 58.9 

(GAC) #4 20.0 5.0 392.7 30% 117.8 

• at flow rate of 1 mL/min. 

The bromide concentrations analyzed from the pulse tracer study for GAC 

columns (#3 and #4) are presented in Table D-1 and D-2, Appendix D. Column #3 had a 

volume of 196 cm3 and column #4 had a volume of 392 cm3. The volumetric flow rates 

for GAC columns (#3 and #4) were determined by taking the volumes of the effluent 

collected during the tracer study and dividing by the number of minutes. Column #3 and 

#4 had average flowrates of 0.99 and 1.01 mL/min, respectively. 

The following expression gives the total amount of bromide tracer in the pulse input 

(Levenspiel, 1962): 

(4) 

where 
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C = bromide concentration (mg/L) 

t = time (min) 

The mean residence time was determined from the expression (Levenspiel. 

1962): 

I:tC 
't=--

I:C 

where 

-r = mean residence time (min) 

and 

and 

e = i = reduced time 
't 

E=~ 
I:C~t 

(5) 

(6) 

(7) 

E, I:C ~t, 't, and 8 were calculated and the values are listed in Table D-1 and D-2, 

Appendix D. The vessel dispersion number D/µ L was calculated from the following 

expression (Levenspiel, 1962): 

(8) 

and 

cr2=2(D/µ L) - 2(D/µ L)2 ( I - e -µuo) (9) 
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The second term on the right of the equation 9 was ignored because its value was very 

small and an approximation was made: 

? 
D/µL= cr-; 2 ( 10) 

Correcting for the term ignored, the value of D/µ L was found by trial and 

errorThe dispersion number D/µL for each column was determined by using the plot of E 

vs. 8 for columns #3 and #4 in Figures 11 and 12. The dispersion number D/µ L for 

column #3 and #4 were 0.043 and 0.036, respectively. Column #3 and #4 had small 

amount of dispersion as shown in Figure 11 and 12 (Levenspiel, 1962). The walling 

effect was evidenced in both column by the low slope fluctuating about 0.6 and 0.8 E 

value for column #3 and #4, respectively. The steep symmetry about the point where 8 

equals 1.0 is similar to that of a plug-flow reactor. 

To determine the recovery efficiencies of the tracer (bromide), effluent bromide 

concentrations vs. effluent volumes for each GAC column were plotted and are shown in 

Figure 13 and 14. The areas under the curve represents the amount of Br recovered 

during the tracer study. The resulting area equalled 0.31 mg and 0.3 mg, for column #3 

and column #4, respectively. Column #3 had a 75% Br recovery and column #4 had a 

77.5 % Br recovery. The % recoveries in this tracer study means that bromide is a inert 

tracer. 
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Column Studies 

Column studies were set up to evaluate and compare aerobic biodegradation of 

TCP by PVA-immobilized cells columns (#1,#2) and GAC-immobilized cells columns 

(#3,#4) under varying operational conditions. 

PV A columns #1 and #2 contained 10.0 cm and 20.0 cm beds of 3-5 mm PY A

immobilized cells beads, respectively. The GAC columns #3 and #4 contained 10.0 cm 

and 20.0 cm bed of (3%) GAC-immobilized cells/silica sand (97%) mixture, respectiyely 

A minimum two week experiment period was considered adequate to collect the 

required data. During the experiments, between 100:-300 mL of influent and effluent 

samples were collected every other day and tested for TCP concentration, DO, chloride 

release, and pH. The data were collected during the transition and steady state periods. 

Aerobic dehalogenation of TCP was expected to reduce the pH value in the 

effluent due to the production of HCl (Makinen et al.1993). The production of HCI has 

the potential to be used to cross-checking, the chlorine release data collected. To allow 

for this cross checking a titration curve (pH curve) was prepared by titrating a 1.0 L 

sample of 10.0 mg/L TCP influent feed solution with 0.1 N HCl solution. The pH 

measurements of the feed solution were plotted against the milliliters of 0.1 N HCI used 

in the titration and are shown in Figure 15. Each mL of titrant contained 3.55 mg crtmL 

(0.1 N HCl = 0.1 mole/L (35.5 g Cr/mole HCl ) = 3.55 mg crtmL of titrant). A drop in 

the pH value can be correlated to the corresponding amount of titrant used to obtain the 

same reduction in pH and end up at the column effluent pH. The amount of titrant used 

reflects the concentration of er in the effluent. It should be mentioned that other acids 

can be produced as the result for bacteria metabolism which could also impact the 
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effluent pH to some extent. The raw data for pH curve are presented in Table E-1, 

Appendix E. The experimental conditions for column studies l-8 were as follows (Table 

7): 

Table 7. Experimental conditions for column studies 1-8. 

Column Influent Flow Influent Cone. C:N:P 

Study No. Rate ( mL/min) (mg/L) 

1 1 10 100: 18: 188 

2 I 20 100: 18: 188 

3 1 20 100: 18: 188 

4 1 20 100:10:3 

5 1 30 100:10:3 

6 2 20 100:10:3 

7 4 20 100:10:3 

8 4 40 100:10:3 
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Column Study No. 1 

The purpose of this experiment was to establish the removal mechanism of TCP 

from groundwater by PVA-immobilized cells (columns #1, #2) and 3%GAC

immobilized cells /sand mixture (#3,#4). 

During this study the average influent TCP concentration was 10.50 ± 0.83 mg/L. The 

C:N :P ratio was kept at 100: 18: 188 by adding nutrients to the influent feed solution. The 

influent solution was aerated with laboratory compressed- air 24.0 hours a day to 

maintain the DO above 8.4 mg/L. The flow rate for all four columns was 1.0 mUmin. 

Applied loading in this experiment for columns #1, and #3 and for columns #2, and #4 

were 0.074 and 0.037 g L -I d-1, respectively. The raw data are presented in Appendix F. 

TCP Concentrations: TCP influent and effluent concentrations for the PV A and 

GAC columns are shown in Figures 16 and 17. PV A columns # 1 and #2 reduced the 

influent TCP concentration to zero on day 17 and 13, respectively. PV A column #2 with 

a 20.0 cm bed height provide longer contact time between cells and TCP than PV A 

column #1 with a 10.0 cm bed height. As seen in Figure 16, both columns maintained 

100% TCP removal for remaining time of this experiment. As Figure 17 shows, no TCP 

was ever detected in the effluents of GAC columns over entire course of this experiment. 

The explanation might be that during this period, TCP was removed initially by 

adsorption on GAC that is no leakage was seen, and later by biodegradation (supported by 

change in DO and Cl release data). 

Dissolved Oxygen (DO): For aerobic mineralization of each mg of TCP, 0.89 mg 

of oxygen is expected to be consumed by bacteria. Figures 18 and 19 show that all four 

columns consumed oxygen to about the same extent (2.5 mg/L), except PVA #1 which 
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had a slightly higher consumption (3.3 mg/L). The reduction in DO in the effluent is an 

indication of the biodegradation process that is going on in these columns. During the 

5.0 hour required to collect the effluent sample (300 rnLs), the samples were exposed to 

the air, which probably yield a residual oxygen concentration different than that expected 

based on stiochiometry. 

Inorganic Chloride Released: The chloride ion (ICI) concentrations were 

measured and are shown in Figures 20 and 21. The er concentrations in the effluents of 

all four columns showed an increase of about 6.0 - 8.0 mg/L. The increase in chloride 

concentration support aerobic dehalogenation of TCP. For the idea of aerobic 

dehalogenation of each mg of TCP, 0.54 mg of chloride is expected to be release based 

on stiochiometry. 

pH Change: Aerobic dehalogenation of TCP produced HCI which would cause 

the drop in effluent pH. The influent feed solution had a pH range from 8.1- 8.3. 

Figures 22 and 23 show the approximate average pH in the effluents from columns #1, 

#2, #3, #4 are 7.7, 7.7, 7.9, 7.6, respectively. The estimated amounts of crconcentration 

in the effluents of columns #1, #2, #3, and #4 needed to cause the observed drops in pH 

are 10.6, 10.6, 7 .1, and 12.4 mg/L, respectively. The er concentrations obtained from 

the pH curve are (15-35 % ) higher than er concentrations measured which ranged from 

6.0 -8.0 mg/L chloride. The possible explanation could be the formation of acids other 

than HCI. The drop in pH tends to support the dehalogenation of TCP. 
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Column Study No.2 

The purpose of this experiment was to evaluate the performance of all four 

columns where the average TCP influent concentration changed from 10.5±0.83 mg/L to 

20.34±0.45 mg/L. The flow rates for all columns remained at 1.0 ml/min. The applied 

loading for columns (#1, #3) and (#2, #4) were 0.15 and 0.074 g L- 1 d- 1, respectively. 

The addition of nutrients to the influent feed solution kept the C:N :P ratio at 100: 18: 188. 

The influent solution was aerated with compressed laboratory air 24.0 hours a day to 

maintain DO levels above 8.4 mg/L. The amount of DO provided for this experiment 

was less than the DO needed for complete degradation of 20.0 mg/L of TCP. This 

experiment lasted 25 days. 

The 100 mLs effluent samples were collected under nitrogen blanket. The samples were 

analyzed for TCP concentration, DO, chloride release, and pH measurement. The 300 

mLs influent sample was pumped out and collected in BOD bottle for DO analysis. 

Another 100 mLs influent sample was also collected and analyzed for TCP 

concentration, chloride release, and pH. The raw data for this experiment are presented 

in Appendix G. 

TCP Concentrations: The TCP influent and effluent concentrations for PV A and 

GAC columns are shown in Figures 24 and 25. Both PVA columns were able to remove 

TCP from the influent for up to a week. On day 40 TCP was detected in the effluent of 

both PV A columns. As seen in Figure 26 the effluent TCP concentration in column #1 

was 1.2 mg/Lon day 40. The TCP effluent concentration in column #1 continued to rise 

and reached 6.5 mg/L on day 58. The TCP effluent concentration in column #2 also 

starts to rise on day 40 and reached its maximum concentration of 4.9 mg/Lon day 58. 
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The removal efficiencies of column #1 and #2 reduced from 100% to 68.0 % and 76.0 

%, respectively. The explanation for this occurrence during this period is that the DO 

was insufficient for complete biodegradation of 20.0 mg/L of TCP. For aerobic 

mineralization, each mg of TCP would require 0.89 mg of oxygen to be consumed by the 

bacteria. For aerobic mineralization of 20.0 mg/L of TCP, 17.2 mg/L of DO was needed. 

The average DO provided during this experiment was 8.7 mg/L. 

As Figure 27 shows no TCP was ever detected in the effluents of GAC columns #3 

and #4 over the entire period of this experiment. An explanation for this might be that 

TCP removal was occurring by both adsorption and biodegradation. 

Dissolved Oxygen (DO): As seen in Figure 26 the effluents of PVA columns #1 

and #2 have an average DO of 2.9 ± 0.5 mg/L and 3.1 ± 0.4 mg/L, respectively. This 

was a clear indication of biological activity occurring in both PV A columns. The cells in 

PV A columns #1 and #2 were able to consume about 66% and 64% of the average 8.6 

mg/L DO in the influent, respectively. The average DO provided for this experiment is 

about 50% less than the DO needed for aerobic mineralization of 20.0 mg/L TCP. 

Figure 27 shows that the effluents of GAC columns #3 and #4 have an average DO 

of 3.0 mg/Land 3. I mg/L, respectively. The cells in GAC columns #3 and #4 were also 

able to consume about 66% and 64%, respectively, of the average 8.6 mg/L DO in the 

influent. 

Inorganic Chloride Released: The IC! concentrations of influent and effluents 

were measured and are shown in Figures 28 and 29. All four columns show an increase 

in the chloride concentrations in their effluent which supports the idea that 

dechlorination of the TCP is occurring. Average chloride releases were 10.8 mg/L, 9.2 
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mg/L, 8.8 mg/L, 10.1 mg/L for PVA(#l), PVA(#2), GAC(#3), GAC(#4), respectively. 

For complete dehalogenation of 20.35±1.2 mg/L TCP, an average of 10.99 mg/L 

inorganic chloride release was expected. During the first 11 days of this experiment the 

average chloride releases for columns #1, #2, #3, and #4 were 12.4, 10.1, 9.7. and 11.5 

mg/L, respectively. From day 44 to day 58, the average chloride releases were reduced 

to 7.9, 8.1, 7.8, and 8.7 mg/L for columns #1, #2, #3, and #4, respectively. The 

reduction in chloride releases in all four columns tends to support the reduction in 

biodegradation of TCP because of insufficient DO for complete mineralization of TCP. 

pH Changes: As seen in Figures 30 and 31, the drop in pH for the first 11 days 

were greater than for the last 14 days for all four columns. An approximate average 

effluent pHs for the first 11 days of the experiment for columns #1, #2, #3, and #4 were 

7.6, 7.4, 7.7, and 7.6, respectively. For the last 14 days of the experiment, the effluent 

pHs for all four columns were 8.1. The drop in pH tends to support the concept of 

dehalogenation of TCP and formation of HCl in the effluents. The smaller drop in pHs 

of all four columns from day 11 to day 58 correlates well with the smaller chloride 

release measured possibly due to insufficient DO for complete mineralization of 20.0 

mg/L TCP. 
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Figure 25. Removal of TCP by GAC columns #3 ( l 0.0 cm) and #4 (20.0 cm) 
during column study No. 2. 
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Figure 27. Comparison of DO-- GAC columns #3 ( I 0.0 cm) and #4 (20.0 cm) 
during column study No.2. 
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Figure 28. Comparison of er --PVA columns #1 (10.0 cm) and #2 (20.0 cm) 
during column study No.2. 
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Figure 31. pH Comparison--GAC columns #3 ( I 0.0 cm) and #4 (20.0 cm) 
during column study No.2. 
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Column Study No. 3 

The purpose of this experiment was to improve the performance of all four 

columns observed during the later stages of column study No. 2 by providing additional 

oxygen. For aerobic bi ode gradation of 20.0 mg/L of TCP, at least 17 .8 mg/L of DO are 

needed. In order to provide sufficient DO for the bacteria, the influent feed solution was 

oxygenate with pure oxygen for at least I 0.0 minutes every day ( begining day 63 ) 

during the course of this experiment. The influent bottle was almost completely capped 

to reduce loss of oxygen. 

The C:P:N ratio was maintained at 100: 18: 188 by addition of appropriate nutrients to the 

influent feed solution. The influent flow rates for all four columns were 1.0 mUmin. 

The raw data are presented in Appendix H. 

TCP Concentrations: Figures· 32 and 33 reflect the TCP influent and effluent 

concentrations for all four columns. As can be seen the PV A and GAC columns reduced 

the average influent TCP concentration of 20.0 mg/L to zero during the entire period of 

the experiment. The removal efficiencies of all four columns were 100% which can be 

due to the sufficient DO provided for the bacteria. 

Dissolved Oxygen (DO): As can be seen in Figures 34 and 35, an average 

influent DO of 23.5 ± 3.5 mg/L was reduced to an average effluent value of 2.9 ± 1.4, 

3.2 ± 1.7, 3.0 ± 1.1, and 2.9 ± 1.2 mg/L by columns #1, #2, #3, and #4, respectively. 

This was a clear indication of microbial activity present in both the PVA (#1,#2) and 

GAC (#3,#4) columns. 

Inorganic Chloride Released: Inorganic chloride concentration in the influent 

and effluent of PVA columns (#1,#2) and GAC columns (#3,#4) are presented in Figures 
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36 and 37. Average chloride releases in the PVA columns #1, #2 and GAC columns #3, 

#4 are 9.19 ± 2.11, 10.25 ± 1.97 and 10.73 ± 2.5, 11.1 ± 1.8 mg/L, respectively. The 

measured chloride concentration in both PV A and GAC columns effluents are very close 

in value to the theoretical chloride release expected for dehalogenation of 20.0 mg/L of 

TCP. 

pH Change: The pH values were measured in the influent and effluent of all 

four columns, and are shown in Figures 38 and 39. The influent feed solution had an 

average pH of 8.0. Columns #1, #2, #3, and #4 had an approximate average effluent pH 

values of 7.5, 7.5, 7.6., and 7.5, respectively. From the pH curve, Figure 15, the drop in 

pH from an influent of 8.0 to 7.5 in the effluents shows that a 2.8 mL volume of 0.1 N 

HCl would be required. This is a 10.3 mg/L chloride concentration (2.9 mL/L X 3.55 

mg/mL) which is similar in value to the chloride concentration of I 0.8 mg/L expected 

based on the stoichiometric dehalogenation of 20.0 mg/L TCP. This tends to support the 

dehalogenation of TCP. 
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Figure 33. Removal of TCP by GAC columns #3 ( 10.0 cm) and #4 (20.0 cm) 
during column study No.3. 
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Figure 39. pH Comparison--GAC columns #3 ( 10.0 cm) and #4 (20.0 cm) 
during column study No. 3. 
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Column Study No. 4 

The C:N :P nutrient ratio used in the first three column studies was 100: 18: 188. 

The standard ratio for C:N:P for microorganisms to grow is 100: 10:3 (Beltrame et al. 

1984). In order to avoid unnecessary addition of nutrients, the C:N:P ratio was adjusted 

from 100: 18: 188 to 100: 10:3. The effect of varying the C:N :P ratio on biodegradation of 

20.0 mg/L TCP was evaluated in this experiment. The flow rates for all columns 

remained at 1 rnUmin. The applied loading for all the columns remained the same as 

column study No. 2. and 3. The influent feed solution was aerated with pure oxygen for 

10.0 minutes every day to maintain a DO above 20.0 mg/L. The raw data for this 

experiment are presented in Appendix I. 

TCP Concentration: The TCP influent and effluent concentrations for the PV A 

and GAC columns are shown in Figures 40 and 41. No TCP was detected during the 

entire period· of this experiment. It is clear that the change in C:N :P ratio did not 

negatively effect the removal of 20.0 mg/L TCP by both PVA and GAC columns. The 

results of this experiment can be directly compare to column study No. 3. 

Dissolved Oxygen (DO): The dissolved oxygen for the influent and effluents of 

PVA columns (#1,#2) and GAC columns (#3,#4) were measured and presented in 

Figures 42 and 43. All four columns (#1,#2,#3,#4) continued to reduced the DO of 22.8 

± 3.3 mg/Lin feed solution to effluent value of 4.0 ± 0.7, 4.0 ± 0.51, 4.0 ± 0.6, and 3.9 ± 

0.7 mg/L, respectively. The consumption of DO is a clear indication of biological 

activity in the columns. The cells in all four columns were able to use DO efficiently 

and remove 20.0 mg/L of TCP during the entire course of this experiment. 
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Inorganic Chloride Release: Figures 44 and 45 represent the measured chloride 

concentrations in the influent and effluents of PV A and GAC columns. The average 

chloride increase in the effluents for columns #1,#2,#3, and #4 are 11.1± 1.9, 11.6± 1.8. 

11.3 ± 3.5, and 11.2 ± 2.2 mg/L, respectively. Aerobic dehalogenation of 20.0 mg/L 

TCP should theoretically release 10.8 mg/L inorganic chloride, which is very close to 

measured inorganic chloride of both PV A and GAC columns. 

pH Change: Figures 46 and 47 show pH measurements of influent and effluent 

the PV A and GAC columns, respectively. The influent feed solution had an approximate 

average pH of 7.9. The approximate average of the effluent pH for both PVA columns 

#1 and #2 was 7.5. The approximate average of the effluent pH for both GAC columns 

#3 and #4 was 7.6. According to the pH curve, the drop in pH from 7.9 to 7.5 shows that 

a 2.9 mL volume of 0.1 N HCl would be required. This is a 10.3 mg/L chloride 

concentration (2.9 mL/L X 3.55 mg/mL) which is similar in value to the theoretical 

chloride concentration of 10.8 mg/L expected from the complete dehalogenation of 20.0 

mg/L TCP. This tends to support the theory of complete dehalogenation of TCP. 
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Figure 41. Removal of TCP by GAC columns #3 (10.0 cm) and #4 (20.0 cm) 
during column study No.4 . 
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during column study No.4. 
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during column study No.4. 
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during column study No.4. 
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Column Study No. 5 

The purpose of this experiment was to evaluate the removal efficiency of all four 

columns when TCP concentration increases to 30.0 mg/L. The flow rate for all columns 

remained at 1 mUmin. The applied loading for the columns (#1,#3) and (#2, #4) were 

0.22 g L-1 d- 1 and 0.11 g L- 1 d- 1 , respectively. The influent feed solution was aerated 

with pure oxygen for 10.0 -15.0 minutes every day to maintain DO of above 27.0 mg/L. 

The influent bottle was almost completely capped to reduce loss of oxygen. The raw 

data for this experiment are presented in Appendix J. 

TCP Concentration: The TCP influent and effluent concentrations for PV A and 

GAC columns are shown in Figures 48 and 49. The TCP removal efficiency for PV A 

columns #1 and #2 was 98-100%. The removal efficiency of both GAC columns was 

100% during the entire period of the experiment. It is clear that the increase in TCP 

concentration did not effect the removal efficiencies of both the PV A and GAC columns. 

Dissolved Oxygen (DO): The dissolved oxygen for the influent and effluents of 

the PVA columns(#l,#2) and GAC columns(#3,#4) were measured and presented in 

Figures 50 and 51. All four columns (#1,#2,#3,#4) continued to reduce the influent DO 

of 30.3 ± 1.6 mg/Lin feed solution to 3.0 ± 0.6, 2.9 ± 0.7, 2.9 ± 0.5, and 2.4 ± 0.5 mg/L, 

respectively, was an indication of biological activity in the columns. The cells in all four 

columns were able to use DO efficiently and removed 30.0 mg/L of TCP during the 

entire course of this experiment. 

Inorganic Chloride Release: Figures 52 and 53 represent the measured chloride 

concentrations in the influent and effluent of the PV A and GAC columns. Average 

chloride concentrations in the effluent for columns #1,#2,#3, and #4 were 15.7± 4.5, 17. l 
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± 4.9, 18.1 ± 3.3, and 18.9 ± 3.2 mg/L, respectively. Aerobic dehalogenation of 30.0 

mg/L of TCP should release 16.2 mg/L chloride. The measured values for all four 

columns are close to theoretical chloride release for 30.0 mg/L TCP. 

pH Change: Figures 54 and 55 show pH measurements of influent and effluents 

of the PV A and GAC columns, respectively. The influent feed solution had approximate 

average pH of 8.0. The approximate average effluent pH for both PV A column #1, #2 

was 7.2. An approximate average effluent pH for both GAC columns #3 and #4 was 7.3. 

According to the pH curve, the drop in pH from 8.0 to 7.2, and 7.3 show that 5.0 mL and 

4.0 mL volume of 0.1 N HCl would be required. This is . a 17 .8 mg/L chloride 

concentration (5.0 mL/L X 3.55 mg/mL) for the PV A columns which is close to the 

chloride concentration of 16.2 mg/L expected from the dehalogenation of 30.0 mg/L 

TCP. According to the pH curve, both GAC columns #3 and #4 were expected to 

release 14.2 mg/L chloride (4.0 mL/L X3.55 mg/mL). 

The drop in pH supports inorganic chloride release which resulted from 

dehalogenation of TCP and formation of HCI. 
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Figure 48. Removal of TCP by PVA columns #1 (I 0.0 cm) and #2 (20.0 cm) 
during column study No.5. 
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Figure 49. Removal of TCP by GAC columns #3 (10.0 cm) and #4 (20.0 cm) 
during column study No.5. 
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Figure 51. Comparison of DO-- GAC columns #3 ( 10.0 cm) and #4 (20.0 cm) 
during column study No.5. 
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Figure 52. Comparison of er --PV A columns #1 ( 10.0 cm) and #2 (20.0 cm) 
during column study No.5. 
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Figure 53. Comparison of Cr-- GAC columns #3( I 0.0 cm) and #4 (20.0 cm) 
during column study No.5. 
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during column study No.5. 
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Figure 55. pH Comparison--GAC columns #3 (10.0 cm) and #4 (20.0 cm) 
during column study No.5. 
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Column Study No. 6 

The purpose of this experiment was to evaluate the effect of increased flow rate 

on biodegradation of TCP in both PV A and GAC columns. The average influent feed 

concentration was 22.0 mg/L. The flow rate was increased to 2 mL/min. The applied 

loading for the columns (#1, #3) and columns (#2,#4) were 0.3 and 0.148 g L- 1 d- 1, 

respectively. 

In this experiment tlTe flow rate increase to 2 mL/min which reduced the HRTs 

for columns #1-#4 to 24.5, 49.0, 29.5, and 58.9 minutes, respectively. The effect of 

contact time for the cells with TCP was evaluated in this experiment. The raw data are 

presented in Appendix K. 

TCP Concentration: TCP influent and effluent concentrations for the PV A and 

GAC columns are shown in Figures 56 and 57. As seen both PV A columns (#1, #2) 

reacted to the change in HRT. It took at least 8-10 days for PVA column #L with an 

HRT of 24.5 minutes to reach steady state and reduce the TCP concentration to zero. 

PVA column #2, with an HRT of 49.0 minutes, took 6.0 days to reduce the TCP 

concentration to zero. There was no TCP detected in both PV A columns throughout out 

the end of the experiment (after day 123). In the effluent of the GAC columns, no TCP 

was ever detected during the entire period of this experiment. It is clear that the change 

in flow rate affected both PV A columns. The increase in TCP concentration in the 

effluent of PV A column #1 shows the impact of short residence time on this column. 

Dissolved Oxygen (DO): The dissolved oxygen for the influent and effluents of 

PVA columns (#1,#2) and GAC columns (#3,#4) were measured and are presented in 

Figures 58 and 59. The high DO readings during the transition state (days 113-119) for 
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PVA column #1 is due to incomplete TCP removal, which is the result of a possible 

upset caused by the flow increase. All four columns (#1,#2,#3,#4) continued to reduced 

the DO of 25.6± 2.9 mg/Lin feed solution to 4.7 ± 1.8, 4.9 ± 1.4, 4.1± 1.4, and 4.3 ± 1.7 

mg/L, respectively. 

Inorganic Chloride Release: Figures 60 and 61 represent the measured 

inorganic chloride concentrations in the influent and effluents of the PV A and GAC 

columns. During the transition period ( days 113-119), the average effluent chloride 

concentration for PVA column #1 was 5.2 mg/L only. This is also consistent with the 

incomplete TCP removal and high DO reading in the PV A column #1. During steady 

state conditions ( days 119-127), the average effluent inorganic chloride concentration for 

columns #1,#2,#3, and #4 were 10.3 ± 4.2, 10.6 ± 2.8, 10.6 ± 1.6, and 12.3 ± 1.6, 

respectively. Aerobic dehalogenation of 20.0 mg/L should release 10.8 mg/L of 

inorganic chloride which is close to measured inorganic chloride in the effluent of all 

four columns. 

pH Change: Figures 62 and 63 show pH of the influent and effluent values for 

the PV A and GAC columns, respectively. The influent feed solution had an average pH 

of 7.9. The approximate average effluent pH for PVA column #1 during the transition 

period ( days 113-119) was 7 .5. According to pH curve, a drop in pH from 7. 9 to 7 .5 

shows that 2.0 mL volume of 0.1 N HCl would be required. This is a 7.1 mg/L chloride 

concentration (2.0 mL/L X 3.55 mg/mL). This was expected due to partial TCP removal 

and high DO reading during the transition period. An approximate average pH value for 

columns #2, #3, and #4 was 7.3. According to the pH curve, the drop in pH from 7.9 to 

7.3 shows that a 3.0 mL volume of 0.1 N HCl would be required. This equals 10.7 mg/L 
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of chloride (3.0 mL/L X 3.55 mg/mL) which is similar to the theoretical chloride 

concentration of 10.8 mg/L expected from the dehalogenation of 20.0 mg/L TCP. The 

drop in pHs tends to support the concept of dehalogenation of TCP and release of 

chloride (HCl). 
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Figure 56. Removal of TCP by PVA columns #l (10.0 cm) and #2 (20.0 cm) 
during column study No.6. 
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Figure 57. Removal of TCP by GAC columns #3 ( l 0.0 cm) and #4 (20.0 cm) 
during column study No.6. 
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Figure 58. Comparison of DO-- PVA column #1 (10.0 cm) and #2 (20.0 cm) 
during column study No.6. 
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Figure 59. Comparison of DO-- GAC columns #3 (10.0 cm) and #4 (20.0 cm) 
during column study No.6 .. 
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during column study No.6. 
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Figure 61. Comparison of Cr-- GAC columns #3(10.0 cm) and #4 (20.0 cm) 
during column study No.6. 
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Figure 63. pH Comparison-- GAC Columns #3( 10.0 cm) and #4(20.0 cm) 
during column study No.6. 
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Column Study No. 7 

The purpose of this experiment was to evaluate another change in influent flow 

rate on the biodegradation of TCP (20.0 mg/L) in both the PV A and GAC columns. The 

average influent feed concentration was 21.0 ± 0.9 mg/L. The applied loading for 

columns (#1, #3) and columns (#2, #4) are 0.6 and 0.3 g L-1 d- 1, respectively. The 

influent bottle was aerated with pure oxygen for 10.0 minutes every day to maintain DO 

of around 27 .0 mg/L. The influent bottle was completely capped to prevent the loss of 

oxygen. In this experiment the flow rate increased to 4 mL/min which reduced HRTs for 

column #1-#4 to 12.3, 24.5, 14.7, and 29.5 minutes, respectively. The effect of contact 

time was evaluated in this experiment. The raw data are presented in Appendix L. 

TCP Concentration: The TCP influent and effluent concentrations for the PV A 

and GAC columns are shown in Figures 64 and 65. Figure 64 shows both PV A columns 

(#1, #2) reacted to the change in HRT starting on the first day of the experiment. It took 

almost 8 days for PV A column #1 with HRT of 12.3 minutes to reduce the TCP 

concentration to 2.3 mg/L. Average removal efficiency during the transition period 

(days 128-134) for this column was about 78%. The removal efficiency of PV A column 

#1 increased to 91 % once the column reached steady state (day 8 of the experiment). 

The PV A column #2 with an HRT of 24.5 minutes had a TCP removal efficiency of 93% 

during the first four days of this experiment. The TCP removal efficiency of PV A 

column #2 increased to 100% once the column reached steady state (day 6 of the 

experiment). In the effluent of GAC columns, no TCP was ever detected during the 

entire period of this experiment. It is clear that the change in flow rate affected both 
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PVA columns removal efficiency. The change in flow rate had greater impact (in terms 

of removal efficiency ) on PV A column #1 than PV A column #2. 

Dissolved Oxygen (DO): The dissolved oxygen for the influent and the 

effluents of the PV A columns (#1,#2) and GAC columns (#3,#4) were monitored and the 

results are presented in Figures 66 and 67. All four columns (#1,#2,#3,#4) continued to 

reduced DO of 27.9 ± 1.5 in the feed solution to 8.1 ± 0.8, 7.5 ± 0.9, 6.8 ± 0.6, and 6.4 ± 

1.1 mg/L, respectively. The results indicate that the effluent DO of all four columns 

were higher than compared to previous experiments. The DO provided in this 

experiment was around 27.9 mg/L, which is higher than the theoretical DO (around 18.9 

mg/L) needed for complete biodegradation of 20.0 mg/L of TCP in influent. The 

consumption of DO is a clear indication of biological activity in the column(s). 

Inorganic Chloride· Release: Figures 68 and 69 represent the measured 

inorganic chloride concentrations in the influent and effluents of the PV A and GAC 

columns. The average inorganic chloride release for columns #1,#2,#3, and #4 were 8.3 

± 4.2, 10.6 ± 2.8, 10.6 ± 1.6, and 12.3 ± 1.6, respectively. Aerobic dehalogenation of 

20.0 mg/L releases 10.8 mg/L inorganic chloride which is close to the measured 

inorganic chloride in the effluent of all four columns. 

pH Change: Figures 70 and 71 show pH measurements of the influent and 

effluents of the PVA and GAC columns, respectively. The influent feed solution had an 

approximate average pH of 7.9. An effluent pH for the PVA columns #1 and #2 was 7.2 

and 7 .1. The approximate average of effluent pH for GAC columns #3 and #4 was 7 .1 

and 6.9 . According to the pH curve, Figure 15, the effluent pH drop from 7.9 to 7.2, 

7.1, and 6.9 showed that 4.0, 5.0, and 8.0 mL volume of 0.1 N HCl would be required, 
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respectively. These equal 14.2, 17.8,17.8, and 28.4 mg/L chloride concentration m 

columns #1-#4 effluent respectively. The effluent chloride concentration measured in all 

four columns was higher than expected especially in PV A column # 2 and GAC column 

#3 and #4. This increase over theoretical was 40%, 40%, and 65%, for PVA column #1, 

GAC column #3, and GAC column #4, respectively. The change in flow rate might 

washed out some inorganic chloride that had retained in the columns. It is also possible 

that the columns had some anoxic zones which might dehalogenate TCP and release 

chloride. 
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Figure 65. Removal of TCP by GAC columns #3 (10.0 cm) and #4 (20.0 cm) 
during column study No.7. 
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Figure 67. Comparison of DO-- GAC columns #3 ( 10.0 cm) and #4 (20.0 cm) 
during column study No.7 
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Figure 69. Comparison of Cr-- GAC columns #3(10.0 cm) and #4 (20.0 cm) 
during column study No.7. 
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Column Study No. 8 

The purpose of this experiment was to evaluate the removal efficiency of all four 

columns where the TCP concentration was increased to 40.0 mg/L. The flow rate for all 

columns remained at 4 mL/min. The applied loading for columns (#1, #3) and columns 

(#2, #4) was 1.2 and 0.6 g L-1d- 1, respectively. The influent feed bottle was aerated with 

pure oxygen for 10.0 -15.0 minutes every day to maintain DO of around 27.0 mg/L. The 

influent bottle was completely capped to prevent the loss of oxygen. The raw data for 

this experiment are presented in Appendix M. 

TCP Concentration: The TCP influent and effluent concentrations for PV A and 

GAC columns are shown in Figures 72 and 73. The average influent feed TCP 

concentration was 40.6± 0.71 mg/L. An average effluent TCP concentration for PVA 

columns #1 and #2 was 15.5 ± 3.6 and 8.9 ± 1.2 mg/L, respectively. As seen the change 

of influent TCP concentration had an great impact on both PV A columns TCP removal 

efficiency. For the first time during the column studies, the overall removal efficiency of 

PVA columns# 1 and# 2 was decreased to 61 % and 80%, respectively. TCP removal 

by PVA column #1 improved over the course of this experiment. TCP removal 

efficiency for PVAcolumn #1 over the first week was 54% and increased to 67% during 

the last 10 days of the experiment. PV A column #2 had a removal efficiency of 76% in 

the first week which was increased to 81 % during the last 10 days of the experiment. 

The removal efficiency of both GAC columns was 100% during the entire period of this 

experiment. It is clear that the increase in TCP concentration affected the removal 

efficiency of the PV A columns to a much greater extent than the GAC columns. 
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Dissolved Oxygen (DO): The dissolved oxygen for the influent and effluents of 

PVA columns (#1,#2) and GAC columns (#3,#4) were measured and are presented in 

Figures 74 and 75. All four columns (#1,#2,#3,#4) continued to reduced the DO of the 

feed solution 27.8±1.2 mg/L to 9.9 ± 1.2, 6.0 ± 1.7, 4.6± 1.1, and 4.1± 1.4 mg/L, 

respectively. The consumption of DO by microorganisms is a clear indication of 

biological activity in the columns. The effluent DO in both PV A columns was higher 

than in both GAC columns. All four column consumed DO available to them, but the 

PVA columns consumption of DO was lower than GAC columns consumption. It 

should be noted that for aerobic dehalogenation of 40.0 mg/L of TCP, the cells need at 

least 35.6 mg/L. Dissolved oxygen provided was around 27.8 mg/L which is about 22 9'c 

less than DO needed. This may have had an impact on the PV A columns removal 

efficiency of 40.0 mg/L TCP. 

Inorganic Chloride Release: Figures 76 and 77 represent the measured 

inorganic chloride concentrations in the influent and effluents of the PV A and GAC 

columns. The average inorganic chloride release for columns #1,#2,#3, and #4 was 

12.5± 1.9, 18.6± 2.9, 21.3 ± 2.6, and 20.7± 4.8 mg/L, respectively. Aerobic 

dehalogenation of 40.0 mg/L of TCP should theoretically releases 21.6 mg/L inorganic 

chloride. The average measured values for inorganic chloride release in the GAC 

columns effluent are close to theoretical chloride release. The average measured values 

for inorganic chloride release in the PVA columns #1 and #2 effluent are 42% and 14% 

less than the theoretical chloride release. The PV A column #1 also had lowest DO 

usage. This supports the observed TCP removal efficiencies of these columns. 
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pH Change: Figures 78 and 79 show pH measurements of influent and effluents 

of PVA and GAC columns respectively. The influent feed solution had an approximate 

average pH 8.2. An approximate average pH for PVA columns #1 and #2 was 7.0 and 

6.9, respectively. An approximate average pH for the GAC columns #3 and #4 was 6.7 

and 6.9, respectively. According to the pH curve, the drop in pH from 8.2 to 7.0, 6.9, 6.7 

shows that an 8.0, 8.0, and 11.0 mL volume of 0.1 N HCl would be required, 

respectively. According to the pH curve the chloride concentration in columns #1, #2, 

#3, and #4 should be 28.4, 28.4, 28.4, and 42.6 mg/L, respectively, which is about 24 -

50 % higher than the theoretical chloride release. The anaerobic activity might be 

present as locolized pockets ( since DO 'in the effluent was between 4 and 9 mg/L) in the 

columns which would also cause the release of acids. The release of acids should show 

up in effluent pH value. 

The drop in pH support inorganic chloride release resulting from dehalogenation 

of TCP and the formation of HCl. 
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Figure 72. Removal of TCP by PVA columns #1 ( 10.0 cm) and #2 (20.0 cm) 
during column study No.8. 
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Figure 73. Removal of TCP by GAC columns #3 ( 10.0 cm) and #4 (20.0 cm) 
during column study No.8. 
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Figure 74. Comparison of DO-- PVA column #1 (10.0 cm) and #2 (20.0 cm) 
during column study No.8. 
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Figure 75. Comparison of DO-- GAC columns #3 (10.0 cm) and #4 (20.0 cm) 
during column study No.8. 
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Figure 76. Comparison of er --PVA columns #1 (10.0 cm} and #2 (20.0 cm) 
during column study No.8. 
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Figure 77. Comparison of er-- GAC columns #3( 10.0 cm) and #4 (20.0 cm) 
during column study No.8. 
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Figure 78. pH Comparison--PVA columns #1 (10.0 cm) and #2 (20.0 cm) 
during column study No.8. 
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Figure 79. pH Comparison-- GAC Columns #3(10.0 cm) and #4(20.0 cm) 
during column study No.8. 
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Columns Performance During 166 Days of Continuous Operation: 

The column experiments were designed to account for any significant changes in 

removal efficiency due to hydraulic retention time (HRT), applied loading, availability of 

dissolved oxygen, and nutrient C:N :P ratio added to groundwater. 

Effluent and influent TCP concentrations were monitored during 166 days of 

continuous operation, and the results are presented in Figures 80-83. The effect of short 

HRTs can clearly be seen in Figure 80. The TCP concentration in the effluent of PY A 

column #1 was higher than PVA column# 2 which had a longer HRT compared to PVA 

column #1. The increase in influent flow rate on days 113 and 128 had the greater 

impact on PV A column #1 effluent quality than any other column. Based on the results 

presented in Figures 80-83, both PVA columns were affected by changes in the influent 

flow rate. The effect of TCP loading rate on effluent quality of the PV A columns (#1, 

#2) and GAC columns (#3, #4) are show on days (97, 113, 128, 150)that the loading 

changed. The TCP loading increase on day 97 had no effect on any of the columns. On 

day 113, a partial breakthrough of TCP was observed in PV A column #1 after increasing 

the flow rate from 1 to 2 ml/min, with a corresponding increase of TCP loading rate from 

0.22 to 0.3 g C 1 d- 1 • PVA column #2 showed an increase in TCP concentration in the 

effluent on day 113, after increasing the TCP loading rate from 0.11 to 0.15 g L- 1 d- 1• 

The increase in the flow rate on day 113, had greater impact on PVA column #1 than 

PV A column #2. Both PV A columns (#1, #2) showed an increase in TCP concentration 

in their effluents after increasing the flow rate from 2 to 4 mUmin, with the 

corresponding increase in TCP loading rate from 0.3 to 0.6 g L -I d -I and from 0.15 to 

0.3 g L -Id -I , respectively. On day 150, both PVA columns #1 and #2 experienced the 
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highest loading rate, 1.2 g L- 1d- 1 and 0.6 g L- 1d -1, respectively during the entire 166 days 

of operation. The removal efficiency of the PV A columns #1 and #2 reduced to 67% and 

81 %, respectively, during days 150-166. The GAC columns #3 and #4 remained 

unaffected by any increase in loading rate during entire 166 days of continuous 

operation. The effect of loading rate on the elimination rate of TCP are presented in 

Figures 84 - 87. During period 2 (column study 2), all of the columns experienced the 

shortage of dissolved oxygen. The PV A columns #1 and #2, reacted to insufficient DO, 

which resulted to higher TCP concentration in their effluents. The elimination for PV A 

columns #1 and #2 reduced from 100% to 68% and 76%, respectively. 

The dissolved oxygen in the influent(s) and effluent(s) was monitored and the 

results are presented in Figures 88-91. Based on Figures 88 and 89, the dissolved 

oxygen consumption of the PV A columns decreased on day 113 due to flow rate increase 

and partial TCP removal. The oxygen consumption of both PVA columns and GAC 

columns decreased by increasing applied loading during periods 6-8 (column study 6-8). 

The impact of high loading on the PVA column #1 oxygen consumption was greater than 

the PVA column #2. The decrease in oxygen consumption of both GAC columns (#3 

and #4) during periods 6-8 (column study 6-8) had no impact on their elimination 

capacities. The consumption of dissolved oxygen by the columns is clear indication of 

biological activity under aerobic conditions. 

Dehalogenation of TCP was monitored m terms of chloride release in the 

columns effluent. The chloride concentration in the influent(s) and effluents during the 

166 days of operation are presented in Figures 92-95. During period 1(0-29 days), the 

chloride released by the GAC columns was less than the PV A columns, which indicate 
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TCP removal by adsorption rather than biodegradation. During periods 2 - 6 (33-113 

days), the chloride release increased in proportion to increasing TCP concentration. This 

gave further evidence of TCP biodegradation in both PV A and GAC columns. During 

periods 6-8 (113-166 days), the chloride release by both PVA columns decreased with 

increasing TCP loading, which support the partial removal of TCP by the PV A columns. 

The chloride released by the. GAC columns (Figures 94, 95) increased as the applied 

loading increased during periods 6 and 7 (113-150 days), regardless of HRT, and applied 

loading. The chloride release increase with the corresponding increase in TCP 

concentration during period 8 (days 150-166), despite insufficient DO in the influent 

indicates the possibility of anaerobic dehalogenation of TCP by both GAC columns. 

To obtain mass balances, measured ICl releases were compared to those 

calculated from GC measurements (of TCP) for all four columns. The results are 

presented in Figures 96-99. Measured chloride releases by all four columns agreed well 

with those calculated from GC measurements. 

Theoretically, aerobic mineralization of 1.0 mg/L TCP releases 0.54 mg/L of 

chloride and uses 0.89 mg/L oxygen. In order to account for any significant removal due 

to anaerobic degradation during the 166 days, mass · balances of chloride releases 

(measured, calculated ) along with expected oxygen consumption by mineralization of 

TCP are presented in Table 8. 



Table 8. Comparison of measured values of TCP, DO, and Cl - to their 

calculated values from GC results. 

Column Influent Effluent TCP I Cr I Cr DO DO. 
No, TCP TCP removal measured calculated uptake needed 

(mg/L) (mg/L) % (mg/L) (mg/L) (mg/L) (mg/L) 

PVA 22.7 3.6±5.8 86±22.4 9.8±4.1 10.3±3.7 16.0 17.0 
#1 

PVA 22.7 1.83±3.2 93±14.9 11.4±1.5 11.3± 1.1 17.0 18.0 
#2 

GAC 22.7 0.0 100 12.3±4.5 11.6±5.6 14.5 20.2 
#3 

GAC 22.7 0.0 100 12.3±5.3 12.3±4.5 14.7 20.2 
#4 
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According to Table 6 the average measured chloride releases by all four columns 

agreed with those calculated (average) from GC. The average DO uptake by both PY A 

columns are close to the average theoretical DO needed for complete aerobic 

mineralization of the average TCP (influent). Both GAC columns needed more DO to 

mineralize influent TCP under aerobic condition and release corresponding chloride 

measured or calculated. Therefore, some of the TCP in the influent must biodegrade 

under deficiency of oxygen by anaerobic degradation present in both GAC columns, and 

release chloride. It should be noted that all TCP removal in this study was confirmed by 

inorganic chloride release and no chlorinated intermediates or phenol compound were 

found by GC/MS (Figures 120-124). 

Evolution of Ir by HCI production in the effluents of ~11 four columns gave 

further evidence of TCP dehalogenation. The influent(s) and effluents pH were 

monitored during the 166 days of the operation, and the results are presented in Figures 

100-103. The influent(s) pHs dropped for all four columns. During days 150-166, GAC 
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columns continued to decrease the effluent pH, regardless loading. Unlike the GAC 

columns, the PV A columns were affected by high loading and partial TCP removal 

resulted in a smaller pH drop in the effluents. 
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Column Study No. 9 

To study the effects of a external disturbance such as a TCP shock load on the 

PVA and GAC columns removal performance and recovery, the PVA (long) column #2 

and GAC (long) column #4 were subjected twice (at two different times) to a high 

concentration (> 500 mg/L) of TCP for 50.0 hr. During this 50.0 hr period, the PV A 

(short) column #1 and GAC (short) column #3 were subjected to low DO (- 2.0 mg/L) 

conditions. This external disturbance study lasted 70 days. The TCP concentration, DO. 

chloride release, and pH of the influents and effluents were monitored and are presented 

in Appendix N. 

The effects of high shock load(s) on the PV A column #2 and GAC column #4 

are presented in Figures I 04 - 111. During the steady state process monitoring periods 

(days 168-179), (days 182 - 223), and (days 228 - 240), the TCP influent feed 

concentration was around 40.0 mg/L. With a flow rate of 2 mUmin, this resulted in the 

TCP loading of 0.3 g L -Id -I for both columns. The feed bottle was oxygenated by 

bottled pure oxygen everyday (during 70 days) for at least 15 minutes. The influent 

bottle was capped to prevent oxygen loss. 

Figures 104 and 105 show both columns responded to high concentration of TCP 

in the influent. During the 50.0 hr shock loading, the degradation of TCP by the 

immobilized cells in the PV A column #2 was susceptible to the high shock load. The 

removal efficiency of the PV A column #2 reduced from 90% before shock load to 0% 

during shock load. The applied loading during the first 50 hours high shock load was 

4.12 g L-1d ·1• The PVA column #2 -recovered within 16 days as seen by the decreasing 

TCP concentration in the effluent. When the next shock load (50 hr) was applied on day 
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224, TCP concentration in the effluent of PV A column #2 increased and decreased in the 

same pattern as in the first shock load. This time, the recovery time was much shorter. 

The recovery time of the PV A column #2 from the second shock load was about 5 days. 

These results demonstrated that the cells entrapped inside PV A column #2 

tolerated high shock load and were protected to a certain extent by immobilization. The 

minimum concentration of TCP, which completely inhibited the growth of free cells (0.0 

TCP removal) was found earlier to be 20.0 mg/L. Based on the TCP mass balance 

(influent -effluent) the cells entrapped inside PV A column #2, were not able to consume 

any TCP during the first shock load. This is in conformity with our observations on DO. 

chloride release, .and pH of the PV A column #2 effluent shown in Figures 106, 108, and 

110. As seen in Figure 106, there was a rise in the effluent DO during the first shock 

load along with no change of the effluent chloride concentration or pH (Figures I 08, 

109). 

The mass balance on TCP (influent-effluent) during the second shock load 

indicate that the cells were active and biodegrade 169 mg of TCP which is about 15% of 

total 1154 mg of influent TCP (Figure 104). As seen in Figures 106, 108, and 110, the 

cells in the PVA column remained active indicated by DO uptake, chloride release, and 

pH drop in the effluent during the second shock load. The results also indicate that the 

process recovered within 5 days as seen by l 00% removal of TCP in the effluent. 

Simultaneous oxygen uptake, chloride releases, and pH drop of the effluent gave further 

support to the occurrence of TCP biodegradation by PV A column #2. 

The effects of shock loads on GAC column #4 are presented in Figures 105, 107, 

l 09 and 111. Based on the TCP mass balance(influent - effluent), the GAC column was 
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able to take 33% (368.4 mg) and 96% (1143 mg) of influent TCP ( 1132 mg, 1154.3 mg) 

during the first and second shock load, respectively. During the first shock load, limited 

removal of TCP took place. This indicates that the GAC adsorption capacity was 

virtually exhausted (influent TCP = effluent TCP), and the biological activity was low as 

shown (Figures 107, 109, 111) by the rise of effluent DO, low chloride release, and small 

drop of pH in the effluent. On day 183, the effluent from the GAC column contained a 

higher TCP concentration than incoming influent. This indicates that desorption was 

taking place in the GAC column. The increased oxygen uptake, chloride release, and pH 

drop in the GAC column effluent between day 194 and day 213 seemed to be caused 

mostly by biodegradation of desorbed TCP. Dehalogenation of 40.0 mg/L TCP should 

release about 21.6 mg/L of chloride. During this period the average chloride release was 

about 57 mg/Lin the effluent. The 60% extra chloride release is believed to be mostly as -

the result of biodegradation of desorbed TCP (bioregeneration). Between day 26 and day 

45, the average daily influent TCP loading rate was 116 mg TCP Id ( 40.0 mg/L TCP at 2 

rnUmin), whereas the effluent TCP was zero. The average daily chloride release rate 

expected to be 62.6 mg er Id for complete dehalogenation of 116 mg TCPld. The 

average daily chloride production rate was 160 mg er Id. Therefore, approximately 97.4 

mg er Id extra chloride release was obtained that was not accounted for by the influent 

TCP. This extra chloride release must come from dehalogenation of TCP already 

adsorbed by carbon. Approximately 3427 .0 mg TCP was removed from GAC 

(bioregenerated) between two shock loads (days 194-213). The effect of this extra 

chloride release and production of HCI can be seen -in Figure 111. The average GAC 

column effluent pH between day 26 and day 45 was 6.6. According to pH curve (Figure 
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15), the effluent average pH drop from 8.1 to 6.6 show that 23 mL volume of 0.1 N HC! 

would be required to have the same pH drop. This is 60.4 mg/L er concentration which 

was close to the chloride measured (57 mg/L) during this period. The pH drop in the 

effluent along with chloride release (measured) supports complete dehalogenation of 

TCP. Aerobic mineralization of 40.0 mg/L TCP requires at least 35.6 mg/L of DO to 

release 21.6 mg/L chloride subsequently. It is clear that the DO provided was 

insufficient to biodegrade TCP already adsorbed by the carbon and released an average 

35.5 mg/L extra chloride during days 194-213. Therefore, the dehalogenation of TCP 

already adsorbed was believed to be mostly the result of anaerobic biodegradation. 

As shown in the Figures 109 and 111, the immobilized cells in GAC column #4 

continued to biodegrade already adsorbed TCP until day 213. The samples taken on day 

217 indicated that there was no extra chloride release in the effluent which was 

consistent with rise of the effluent pH. Therefore, the cells remained active and survived 

the shock load and continued bioregenerate the carbon completely during I 9 days under 

DO deficiency (anaerobic condition). 

During the second shock load (day 224 and 225), the GAC column #4 adsorbed a 

total of 3120 mg TCP out of 3237 mg TCP applied in the influent. The immobilized 

cells remained very active during the second shock load and continued to dehalogenate 

TCP as seen in Figures 107, 109, and 111. The cells were able to biodegrade(aerobic 

condition) approximately 32.0 mg/L of TCP with the corresponding DO usage (Figure 

107) , chloride release (Figure 109), and effluent pH drop (Figure 111 ). Within the first 

week after the second shock load, the immobilized cells started to biodegrade TCP 

already adsorbed on GAC column during the second shock load, evident from Figure 
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109 and 111. The extra chloride released by GAC column and the effluent pH drop 

during 233-240, followed the same pattern as seen during days 194-213. The 

immobilized cells in GAC column #4, remained active during the second shock load and 

continued to biodegrade TCP under both aerobic and anaerobic conditions. 

The presence of CO2 and methane gas determined by GC/MS gave further 

evidence of the existence of both aerobic and anaerobic activity present in GAC column 

#4. The results of GCIMS are presented at the end of this chapter. 
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To study the effects of low DO on TCP degradation performances and recovery, 

the oxygen supply to the PV A column #1 and GAC column #3 was discontinued twice 

during 70 days for 50 hours each time. Figures 112-119 show the columns responses to 

these upset. During the steady state operation, TCP concentration in the influent was 

40.0 mg/L and the flow rate was 2 ml/min. The DO during the steady state operation 

(days 167-179, 182-224, and 228-240) was maintained above 27.0 mg/L. PVA column# 

1 reacted quickly to the . low DO during both interruptions of DO. In both cases, 

increases and recoveries of effluent TCP concentrations followed the same pattern. The 

recovery time was shorter after the second interruption of DO. After the first 

interruption of DO, PV A column #1 took about 21 days to reduce the influent TCP 

concentration down to 4.0 mg/Las seen in Figure 112. This is 90% removal of the 40.0 

mg/L influent TCP. The percent removal increased from 90% to 95% between day 203-

217. The results shown in Figures 114, 116, and 118 are consistent with the effluent 

TCP concentration removal by PVA column #1. During the first interruption, effluent 

shown zero TCP removal supported with corresponding results of pH drop, DO change 

or chloride release. 

After the second interruption, immobilized cells in PVA column #I recovered 

within 11 days and reduced TCP concentration by 90% (Figure I 12), with corresponding 

DO consumption (Figure 114}, chloride release (Figure 116) and pH drop (Figure 118) in 

the effluent. These results demonstrated the sensitivity of immobilized cells in PV A 

column and, at same time, the tolerance of these cells toward the low DO influent. 

The GAC column also reacted to the interruption of DO. The influent TCP 

continued to be biodegraded despite the deficiency of dissolved oxygen as indicated by 
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chloride release, effluent pH drop, and 100% TCP removed (Figures 113, 117, 119). 

Both anaerobic activity and adsorption were responsible for the removal of influent TCP 

during the deficiency of DO as indicated by chloride release and pH drop of the effluent. 

Results shown in Figures 117 and 119 support the partial removal of TCP by anaerobic 

bacteria. The amount of chloride release and pH drop in the effluent correspond with 

only 40% of influent TCP dehalogenated by anaerobic bacteria (insufficient DO). Once 

the oxygen was restarted after each interruption of DO, the aerobic bacteria began to 

recover and start to consume influent TCP. The activity of aerobic bacteria was evident 

from oxygen uptake by the GAC immobilized cells. Theoretically, dehalogenation of 

40.0 mg/LTCP releases about 21.6 mg/L er. During day 189-217, the average chloride 

release was 33.0 mg/L chloride. A possible explanation for extra 45% chloride release is 

the result of biodegradation of TCP already adsorbed on GAC by anaerobic bacteria. 

The average GAC colurrm effluent pH was 6.8. According to the pH curve (Figure 15), 

the effluent pH drop from 8.1 to 6.8 show that 10.5 mL volume of 0.1 N HCl would be 

required for this drop. This is 37.3 mg/L er concentration which was close to the 

chloride release (measured). The pH drop in the effluent along with chloride release 

support dehalogenation of TCP. It is clear that the DO provided was insufficient for 

aerobic bacteria to biodegrade TCP already adsorbed by carbon and release an extra 45 

% chloride. Therefore, the dehalogenation of TCP already adsorbed is believed to be the 

result of anaerobic biodegradation. During the second interruption of DO (day 224, 

225), the aerobic immobilized cells in the GAC column #3 unlike anaerobic bacteria 

were inactive. Adsorption and anaerobic dehalogenation were responsible for 100% 

removal of TCP on days 224 and 225. It is theorized that anaerobic dehalogenation of 
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some TCP resulted in the effluent chloride release and pH drop during the second DO 

interruption as shown in Figures 117 and 119, 

These results demonstrated the sensitivity of aerobic immobilized cells and , at 

the same time, the tolerance of these cells toward low DO. The PV A-immobilized cells 

were unable to degrade TCP during oxygen upset. In both cases of DO interruption, 

increases and recoveries of effluent TCP concentrations followed the same pattern. The 

second time recovery times were shorter. The GAC column #3 offered both adsorption 

and anaerobic biodegradation during the interruptions of DO. The adsorption capacity of 

GAC offered 100% removal of TCP. The TCP adsorbed onto carbon subsequently was 

released and consumed by bacteria (bioregeneration) (Kim et al., 1989). Insufficient DO 

promoted the activity of anaerobic bacteria which resulted to biodegradation of TCP, 

release of chloride, and drop of pH. Since anaerobic bacteria are slower growers they 

could not grow to a significant enough number in 50 hrs to do any good for TCP removal 

so then either they are present in the column all the time or some of the degraders may be 

facultative. Once the oxygen supply restarted, the GAC immobilized cells resumed their 

activity and continued to biodegrade TCP. 
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Figure 113. GAC column #3 TCP concentrations response to the low DO. 
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GC/MS 

Intermediates Formation 

Samples taken on day 122 from all four columns effluent were analyzed by 

GCIMS. The results are presented in Figures 120-124. The results presented here 

demonstrate the degradation of TCP by both PV A and GAC columns with no phenol or 

intermediate (ring compound) production. 

Gas Production 

Both GAC columns were shown to release more chloride than expected from 

dehalogenation of 40.0 mg/L TCP (column study No.9) during steady state operation 

(days 168-179, 183-217, 228-240). The production of extra chloride was believed to 

come from dehalogenation of TCP already adsorbed on the GAC columns by anaerobic 

bacteria. Dehalogenation of TCP by an anaerobic bacteria should release methane gas 

and chloride (Haggblom et al., 1988). An attempt was made to detect the production of 

any gases in GAC column #3 and #4 after the 70 day column experiment No. 9. 

Therefore, effluent samples Were collected very carefully in a closed system on day 241 

from both GAC columns and analyzed by GC/MS. The results are shown in Figures 126 

and 127. These samples were compared to an ambient air sample analyzed by GC/MS 

(Figure 125). The depletion of oxygen (indicating aerobic activity), production of 

methane (anaerobic activity), and production of CO2 are demonstrated in both GAC 

column effluent. The CO2 and methane production in the column effluents were not 
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quantified. Both CO2 and methane were present in amounts greater than in the ambient 

air. 

Another attempt was made to collect gas samples from the headspace of all four 

columns. The influent feed pump was stopped on day 248. The gas samples were 

collected from the head space about 12.0 hours later that day. The gas samples were 

analyzed by GC/MS. The GC/MS results of gas samples from the columns headspace 

were compared to a GC/MS result of air sample. The results are presented in Figures 

128-132. The depletion of oxygen in all four columns gas samples indicates aerobic 

activity. The methane gas and CO2 were present in both the GAC and PV A columns. 

Methane gas with MW of 16 was present in all four columns gas sample. The methane 

gas was not present in the ambient air sample. The CO2 gas detected in all four columns 

showed (in quantitative terms) more CO2 was present in the columns than air. The 

quantities of oxygen, methane, and carbon dioxide were not determined. 
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Scanning Electron Micrographs 

Activated Sludge 

Figure 133 shows the mixed culture of microorganisms that were immobilized in 

both PV A and GAC. The organisms are approximately 1-2 µ long and about 0.5 - I µ 

wide. Figure 134 shows the presence of protozoa in the mixed culture. Figures 133 and 

134 were magnified 6000 X and 400 X, respectively. 

PVA Beads 

Figure 135 shows the surface of a freshly made · PV A bead without 

microorganisms. The bead in Figure 135 has a smooth outer surface and has been 

magnified 72 X. Figure 136 shows the surface of a freshly made PV A bead with 

immobilized microorganisms. The bead in Figure 136 shows the outer surface is smooth 

and was magnified 72 X. Figure 137 shows the outer surface of a PV A bead with 

microorganisms, which was 9 months old, magnified 66X, from the column study. 

Figure 138, is an enlargement of the outer surface of the 9 months old PV A bead from 

the column study (300 X). Figure 138, shows the network of pores on the outer surface. 

Figure 139, shows the deterioration of the outer surface in a bead from the column study 

after 9 months which was magnified 30X. Figure 140 show the severely deteriorated 

bead after 9 months of column study and was magnified 24 X. Figures 141-143 show 

the inside of a PV A bead with microorganisms which were magnified 11000 X, 3600 X, 

and 780 X, respectively. The beads in Figures 141-143 are 2 days, 45 days, and 9 

months old, respectively. The star-shape feature in Figure 133, was speculated to be the 
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bacteria that aggregated together. Figures 142 and 143 show the spherical shaped cells 

inside the PV A beads. These cells are approximately 1.4 X l 0-3 mm to 4.0 X I 0-3 mm in 

diameter. The inner surface of the 9 month old PV A bead appears to be more porous 

than the 45 days old bead. Figures 144-146, show the microcolonies of the beads 

fromPV A column #2 after the shock load of TCP concentration. The beads in Figures 

144-146 were magnified 1800 X, 1500 X, and 11000 X, respectively. 

GAC 

Figures 147 and 148 show the outer surface of GAC before and after 

immobilization. The GAC was magnified 72 X in both Figures 147 and 148. The outer 

surface of the GAC · in Figure 148 appears to be smooth. The presence of the 

immobilized cells on the GAC after immobilization was verified in Figure 149 where the 

cells were magnified 20000 X. The immobilized cells on the GAC of columns #3 and 

#4 after 9 months of column studies are still present and shown inFigures 150 and 151. 

The immobilized cells were magnified in Figures 150 and 151 16000 X. Figure 152 

show the immobilized cells on GAC from column #4 after the high shock load. The 

bacteria colonizing the surface seem to be producing sliine, as seen in Figures 150-152. 

The slime matrix allows attachment to the substrate as well as other cells (Weber et al., 

1978). The appearance of protozoa shown in Figure 153 after 9 months of continuous 

column operation indicates a more advanced microbial colonization of the surface 

(Weber et al., 1978). The establishment of an ecosystem including bacteria and 

bacteriovorous protozoans is evidence of improved mineralization of organics, as well as 

nutrient regeneration. (Weber et al., 1978). 



Figure 133. Centrifuged biomass prior to immobilizing 

into PVA beads or GAC (6000X) 

Figure 134. The presence of protozoa in the centrifuged 

biomass prior to immobilization (400 X) 
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Figure 135. The outer surface of 2 days old PV A 

bead without microorganisms (72 X). 

Figure 136. The outer surface of the PV A bead with 

immobilized bacteria 2 days old (72 X). 
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Figure 137. The outer surface of PV A bead with 

microorganisms, 9 months old (66 X). 

Figure 138. An enlargement of the outer surface of 9 months 

old PV A bead from column study (300 X). 
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Figure 139. The deterioration of the outer surface 

of a 9 months old PV A bead (930X). 

Figure 140. A severely deteriorated 9 months PVA bead (24 X). 
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Figure 141. Inside of PVA bead with microorganisms, 2 days old (11000 X). 

Figure 142. Population of the cells inside the PVA 45 days old (3600 X). 



Figure 143. The PV A bead inside, 9 months old (780 X). 

Figure 144. Population of cells inside the PVA beads 

after second shock load (1800 X). 
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Figure 145. The microcolonies inside PV A beads, 9 months old (1500 X). 

Figure 146. Biofilm formation inside PVA beads, 9 months old (11000 X). 



197 

Figure 147. The outer surface of GAC before immobilization, (72 X). 

Figure 148. The outer surface of GAC after immobilization (42 X). 



Figure 149. The immobilized cells on GAC, 14 days old (20,000 X). 

Figure 150. The bacteria colonization shown by 

slime production, GAC column #3 (16000 X). 
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Figure 151. The bacteria colonization shown by slime 

production, GAC column #4 (16000 X). 

Figure 152. The population of the GAC immobilized cells shown in 

GAC column #4 after shock load (16,000 X). 
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Figure 153. The appearance of protozoa in both PV A and 

GAC (not shown), after 9 months (240 X). 
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Summary of Discussion 

The main objectives of this study were to demonstrate the capabilities of PVA

immobilized cells and 3% GAC-immobilized cells/sand as two novel permeable barrier 

media to biodegrade TCP in groundwater under a variety of operating conditions. In this 

study, the effects of loading rate, HRT, shock load, and low DO on the removal 

efficiency of PV A-immobilized cells and 3% GAC-immobilized cells were investigated. 

Few studies have been done. on the biodegradation of chlorophenols by 

immobilized bacteria. Immobilized cells in alginate were able to biodegrade phenol and 

tolerate the toxicity of high loads (Bettmann and Rehm 1984 ). The immobilized 

microorganisms on GAC could utilize most of the adsorbed phenol (Ehrhardt and Rehm 

1985). The GAC in this case operated like a "buffer and depot"; it protected the 

immobilized microorganisms by adsorbing toxic phenol concentrations and set low 

quantities of the adsorbed phenol free for biodegradation. Polyurethane-immobilized 

Flavobacterium cells degraded pentachlorophenol (PCP) at initial concentrations as high 

as 300 mg/L (O'Reilly and Crawford 1989). The use of immobilized cells on PVA and 

GAC as biological permeable barrier media has never been investigated. 

In order to investigate GAC-immobilized cells and PV A-immobilized cells as 

biological permeable barrier media, it is necessary to design and test these barriers under 

different operating conditions such as different loading rates, HRT's, deficiency of DO, 

and high shock loading for extended period of time. PV A-immobilized cells and 3% 

GAC-immobilized cells/sand were characterized and tested during 166 days of 

continuous operation under different loading rates, HRT's, and nutrient (C:N:P) ratios. 
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Both PV A and GAC immobilized cells were subsequently tested under high shock load 

and low DO conditions. The discussion of the various experimental results conducted 

during the study are presented as follows. 

The results from the 166 days of continuous column experiments on PV A

immobilized cells (Table 9) proved that an elimination capacity of I 00% TCP is feasible 

for loads up to 0.3 g L" 1 ct· 1 (HRT= 245 minutes). At the loading rate of 0.6 g L" 1 ct·' 

(HRT=12.3 minute), the TCP removal efficiency of PVA-immobilized cells was reduced 

to 91 %. At the highest loading rate of 1.2 g L-1 d- 1 (HRT= 12.3 minutes), the total TCP 

removal was 67%. Valo et al. (1990) used a semi batch biofilter with immobilized 

Rhodococcus to ~emove TCP, TeCP, and PCP from synthetic groundwater in pilot scale 

plant. Partial (30-60%) degradation of chlorophenols was achieved at the average 

loading rate of 0.01...:0.07 g L" 1 d- 1 (HRT= 80 h) .. Makinen et al. (1993) achieved 99.7% 

chlorophenols (TCP, TeCP PCP) removal in an aerobic fluidized-bed reactor at a 

maximum loading rate of 0.45 g L- 1 ct· 1 and a hydraulic retention time of 5 h. As 

compared to earlier studies, PV A-immobilized cells in this project operated at higher 

TCP loading rates and lower HRTs and produced a better quality effluent. The PVA

immobilized cells survived high shock loads of 4.12 and 4.7 g L" 1 d- 1 of TCP and 

recovered within 16 and 5 days, respectively. Betmann and Rehm (1984) concluded that 

immobilized Pseudomonas in alginate were protected by immobilization and were able 

to degrade phenol up to 2 g/L in less than 2 days. The immobilization of cells into PV A 

in this research was n to protect the microorganisms against the toxicity of TCP. An 

adequate oxygen supply was crucial,as shown in column experiments No.2 and No.9. 
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PVA-immobilized cells removal efficiency of TCP was affected by low DO in the 

influent. PV A-immobilized cells recovered within 21 and 11 days from first and second 

interruption of DO, respectively, and continued to biodegrade TCP. Increases and 

recoveries of effluent TCP concentrations followed the same pattern as reported by 

Makinen et al. (1993). A significantly lower elimination capacity of PV A-immobilized 

cells columns could generally be to traced to an insufficient oxygen supply, and high 

loading rates with a corresponding decrease in HRT 

The elimination capacity of GAC-immobilized cells of 100% TCP is feasible 

regardless of the organic load (up to 1.2 g L- 1 d- 1). The results confirm that GAC, even 

with a substantial development of bacterial activity shown by biodegradation of TCP 

during 166 days of operation, maintains a substantial adsorption capacity. This confirms 

the earlier results by Kindzierski etal. ( 1992). They noted that GAC maintained about 

one quarter of its virgin adsorption rate for phenol even with a substantial development 

of bacterial growth within its micropores. In this research immobilized cells on GAC 

were surveyed high shock loads (50.0 hr each) and DO interruptions (twice 50.0 hr 

each). GAC protected immobilized cells from shock . loading through rapid initial 

adsorption into pores and slow subsequent release by desorption. This desorption 

accompanied by biodegradation of the desorbed TCP (bioregeneration) was shown 

during column study No. 9 after the first and second shock load. The evidence of 

activated carbon bioregeneration has been seen by many researchers. Suidan ( 1980) 

noted that the carbon equivalent of the gaseous products exceeded the organic carbon 

removed by the process and indicated that the extra gaseous products were the result of 
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the bi ore generation. Andrews and Trapasso ( 1984) showed that several compounds 

normally thought of as non-biodegradable were adsorbed on activated carbon and 

subsequently metabolized by attached microorganisms. During the interruption of DO, 

the microorganisms were unable to biodegrade TCP influent TCP was removed by 

adsorption on GAC (as shown with no chloride released, or pH dropped in the effluent). 

During steady state operations extra chloride was released in the effluent as the result of 

dehalogenation of TCP already adsorbed on GAC by attached microorganisms 

(bioregeneration). 

Biological degradation of chlorophenols under aerobic conditions is known to 

release chloride, decrease DO and pH in the effluent (Makinen et al 1993). The results 

obtained from running PV A-immobilized cells and GAC-immobilized cells systems for 

approximately 240 days, indicated that the contribution of chloride release, DO 

consumption, and pH drop in the effluent were all important in the evaluation of removal 

efficiency of TCP in this study. During this study, the measured chloride release from 

dehalogenation of TCP under aerobic conditions agreed well with those calculated from 

GC results. 

Jarvinen et al. (1994) concluded that aerobic chlorophenol biodegradation does 

not result in partially dechlorinated metabolites. They claim mineralization of 

chlorophenols (CP) since all CP removals were confirmed by chloride release and no 

chlorinated intermediates were found. Makin in et al. ( 1993) concluded that the chloride 

release and H+ generation (pH decrease) is an indication of chlorophenol mineralization. 

The results of this research can be directly compared to the above studies. The results of 

GC/MS confirm that no chlorinated intermediates or phenol was found in the PY A and 
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GAC columns effluent. Amounts of CO2 and methane gas greater than found in ambient 

air were detected in the GAC columns as the results of anaerobic biodegradation of TCP 

already adsorbed on GAC. This provides a possible explanation for the extra chloride 

release with the corresponding pH drop in the GAC columns effluent. The presence of 

aerobic and anaerobic activities in both GAC and PV A columns were confirmed by 

GC/MS after at the end of this research. 

Comparison of GAC-Immobilized Cells with PVA-Immobilized Cells 

One of the main objectives of this project was to compare the performance of 

GAC-immobilized cells to PV A-immobilized cells as two novel permeable barrier 

matrices on the basis of elimination capacity, ease of operation, stability over extended 

period of time, tolerance under toxic shock loads and low DO, and capital cost. 

The results from this comparison (Table 10) demonstrate that 3% GAC -

immobilized cells/ sand is superior to PV A-immobilized cells for its adsorption 

capabilities. The 3% GAC-immobilized cells/sand recovered from the high shock loads 

faster than PV A-immobilized cells. GAC-immobilized cells were able biodegrade TCP 

already adsorbed on GAC which can extend the life of GAC (bioregeneration). Unlike 

1 % of PV A-immobilized cells beads, 3% GAC-immobilized cells shown no signs of 

deterioration. 

Both PV A-immobilized cells and 3% GAC-immobilized cells as permeable 

barriers compare to conventional surface treatment process offer low cost and efficient 

process to remove TCP from groundwater in-situ. 
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Table 9. Elimination Capacity During 166 days of PV A Column Studies No. 1-8 

COLUMN PY A COLUMN #1 PY A COLUMN #2 
STUDY· (10.0 cm bed) (20.0 cm bed) 

No. 1 Reached 100% Reached 100 % after 13.0 
TCP=lO mg/L after I 7 .0 days days 
flow=lml/min 

No. 2 Reduced from Reduced from 
TCP=20 mg/L 100% to 68% 100 % to 76% 
flow=lml/min 

No. 3 Reached 100% since day I Reached I 00 % 

TCP=20mg/L since day I 
flow=lml/min 

No.4 Reached 100% Reached I 00 9c 
TCP=20mg/L since day 1 since day I 
flow=lml/min 

No.5 Reached 98% Reached 100 % 
TCP=30mg/L 
flow=lml/min 

No. 6 Reached 100% Reached 100 % after 6 days 
TCP=20mg/L after 8-10 days 
flow=2ml/min 

No. 7 Reached 78%(trans ') Reached 94%(trans) 
TCP=20mg/L Reached to 91 %(ss .. ) Reached 100% (ss) 
flow=4ml/min 

No. 8 Reached 54%(trans) Reached 76%(trans) 
TCP=40mg/L Reached 67%(ss) Reached 81 %( ss) 
flow=4ml/min 

*tran=transition periods. 

** ss= steady state periods. 

T bl IO C a e ompanson o fPVA. -1mmo bT d II 1 1ze ce s an d 3o/c GAC . 0 -1mmo bT d II I d 1 1ze ce s san 
Basis of PY A-immobilized cells 3% GAC immobilized cells 
Comparison 

Removal 100 % for load up to 300 mg L- 1.d ·1 100% 
efficiency 
Ease of operation easy to handle easy to handle 
Stability most of the beads remained firm and no physical damage was observed. 

elastic. a few of the beads severely 
damaged during 240 days of continuous 
operation. 

Tolerance survived high shock load and deficiency survived high shock load and low 
of DO, recovered from high shock load DO, biodegradation of TCP was 
and low DO within I l-2Idays. affected by low DO and high 

shock. maintained I 00% efficient 
by adsorption and biodegradation 
during high shock load and low 
DO. 

Capital Cost chemicals needed (boric acid, PY A) = $ 8.0/fri (3% GAC/ Silica sand) 
$55.0/fr'. 
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Significance of Research 

This research demonstrated that PV A-immobilized cells and 3% GAC

immobilized cells were able to biodegrade TCP from groundwater under various 

operational conditions. The immobilized cells were protected against toxic shock loads 

by the PV A and GAC. This research demonstrated that PV A-immobilized cells would 

be a successful media for use in a trench-based permeable barrier to remove TCP up to 

0.3 g L-1 d- 1• PVA-immobilized cells tolerated low DO and recovered (100% efficiency) 

within 11-21 days. After 240 days of operation, some of the PVA beads showed signs of 

deterioration as shown by SEM. The 3% GAC-immobilized cells columns were 

remained 100% efficient throughout this research (except during 50 hr shock load). This 

research demonstrated that bioregeneration occurred as adsorbed TCP was desorbed. 

The adsorption capacity and biodegradation activity of GAC provided a better permeable 

barrier matrix than the PV A-immobilized cells. The bioregeneration of GAC by 

immobilized cells extent the life of GAC and eliminate the need to excavate and replace 

the media. 



CHAPTERV 

CONCLUSIONS 

For the first time, PV A-immobilized cells and 3% GAC immobilized cells/sand 

were evaluated as two novel permeable barrier media in a side by side study under 

various operational conditions during 240 days of operation. This laboratory 

investigation were designed to remove TCP in-situ from groundwater. The results of 

this research corroborated previous investigations as well as provided new basis for 

operation of biological permeable barrier using PV A-immobilized cells and 3% GAC

immobilized cells/sand. The conclusions that can be drawn from this research are: 

1) PV A-immobilized cells and 3% GAC-immobilized cells would be two 

successful media for use in a trench-based permeable barrier to remove TCP in.csitu from 

groundwater. 

2) PV A-immobilized cells can provide 100-91 % removal efficiency at an applied 

loadings of 0.3-0.6 g L· 1d· 1• GAC-immobilized cells can provide 100% removal 

efficiency at applied loadings of 1.2 g L· 1d· 1• 

3) A comparison of removal efficiencies between two columns of varied sizes 

containing . PV A-immobilized cells demonstrated the effect of HRTs. The TCP 

concentration in the effluent of PVA column #1 (10.0 cm bed) was higher than PVA 

column #2 (20.0 cm bed). The removal efficiency of the PV A columns #1 and #2 

reduced to 67% and 81 % at applied loadings of 1.2 g L·1.ct· 1 and 0.6 g L·' .ct·', 
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respectively. The HRTs for column #1 and #2 were 12.3 and 24.5 minutes, respectively, 

at those loading conditions. 

4) Cells were protected against high shock loads by immobilization on PV A 

beads and recovered to steady state conversion within 11-21 days. PV A-immobilized 

cells tolerated deficiency of dissolved oxygen and regained their activity once they 

received adequate DO. GAC maintained substantial adsorption capacity even with 

development of bacterial growth. The survival of the immobilized cells in spite of the 

addition of a shock load was the result of rapid adsorption of TCP by GAC. 

Bioregeneration occurred as adsorbed TCP was desorbed and metabolized by 

immobilized cells. This was shown by the extra chloride release, with corresponding pH 

drop in the effluent, after adsorption capacity of GAC was exhausted by a high shock 

load of TCP. PV A-immobilized cells were unable to offer any of the TCP adsorption 

advantages provided by GAC-immobilized cells. Bioregeneration may eliminate the 

need to excavate and replace the media. 

5) After 240 days of continuous operation, over 99% of PV A-immobilized cells 

appeared to be resilient, firm, and structurally sound. The micrographs of the beads 

showed them to be more porous than initial beads. The channels and pockets within the 

beads appeared larger than initial beads. The micrographs of the beads after 240 days 

showed mirocolonies formation inside the PV A beads. The micrographs of GAC

immobilized cells showed microcolonies of the cells on inner surfaces of GAC. 

6) PV A-immobilized cells will remain permeable and structurally sound over 

time (240 days). PY A-immobilized cells can tolerated high shock loads, low DO and 

resumed its biological activity to a steady state in a matter of a few days. PV A-
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immobilized cells remained 100-9 l % efficient at applied loadings of 300 mg L ·1.d-1 and 

600 mgL"1d" 1, respectively. PV A-immobilized cells completely dehalogenated TCP 

without formation of chlorinated intermediates or phenol. 

7) GAC-immobilized cells offered I 00% removal of TCP by a combination of 

biological degradation and physical adsorption. The cells functioned as biological 

processors and the GAC functioned as a support and adsorbent barrier. The GAC may 

be biologically regenerated, eliminating the need to excavate and replace the media. 

GAC-immobilization protected cells from high shock loads by rapid TCP adsorption. 

Biodegradation , of TCP by GAC-immobilized cells dehalogenated TCP without 

formation of chlorinated intermediates or phenol. 



CHAPTER VI 

RECOMMENDATIONS 

The potential for the use of PV A-immobilized cells and 3% GAC-immobilized 

cells/sand as two novel permeable barrier media to remove TCP in-situ from 

groundwater has been demonstrated. Important operational factors likely to influence the 

removal efficiencies of these barrier were also investigated. Based on the findings of this 

research, the following recommendations for future studies are proposed: 

1). Investigate the removal efficiency of these barriers to remove multiple 

substrates such as mixtures of PCP, TeCP and TCP. 

2). Investigate the use of immobilization of anaerobic pure cultures on PV A and 

GAC to remove chlorophenol(s) in-situ from groundwater. 

3). Investigate the use of other sources of oxygen such as hydrogen peroxide for 

aerobic biodegradation of chlorophenol(s) using PV A-immobilized cells and 3% GAC

immobilized cells/sand. 

4). Investigate the effect of other factors, such as low temperature, low pH and 

interruption of nutrient addition to the influent groundwater. This would assist in design 

and operation of permeable barriers using PV A and GAC immobilized cells. 

5). Investigate the capital cost and operating costs of these barriers and compare 

to other technologies. 

6). Evaluate different methods to measure growth rate of bacteria within the 

PV A-immobilized beads. 
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7). Evaluate 3% ion-exchange resins immobilized cells/sand as a permeable 

barrier to remove TCP in-situ from groundwater. 

8). Evaluate the removal efficiencies of 3% ion-exchange immobilized cells/sand, 

PV A-immobilized cells, and 3% GAC-immobilized cells to remove TCP from 

groundwater under variety of operating conditions. 
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APPENDIX A 

h Table A.1. P ysica an d Ch . IP em1ca ropert1es o f Chi h orop eno s 

Physical/ chemical MCP 2,4DCP 2, 4, 6 - 2,.3,4,6- PCP 
Properties TCP TeCP 

Molecular Mass 128.56 163.0 197.5 231.98 266.35 

Density 1.26 1.28 1.49 1.6 1.978 

Boilimg Point 174.9 210 246 246.0 310 
(° C at 760 mm) 

Melting Point 9.0 45 69.5 70 190 
( °C at 760 mm) 
Flash point (°C) 63.9 62.0 113.9 

Vapor pressure 1(12.1 1(76.5 1(100° 0.12( 100 
oc) oc) C) oc) 

Log n- 2.15 3.06 4.10 5.01 
octanol/water 

partition 
coefficient 

Source: WHO, 1989. 

a e ·-· T bl A 'J G d roun water na 'SIS A I . 

Parameter Concentration EPA Method 

40 CFR Part 136 

Specific Conductance 1045.7 µmhos/cm 120.1 

pH 7.9 std unit 150. l 

Alkalinity (total) 237.3 mg/L 310.2 

Solids (total dissolved) 515.1 mg/L 160.1 

Nitrite-Nitrate as N 0.5 mg/L 353.2 

Hardness (total) 106.9 mg/L 130.1 

Chloride 143.9 mg/L 325.2 

Sulfate 32.9 mg/L 375.2 

TOC 1.5 mg/L ------



APPENDIX B 

Table B.1. Characteristics of PV A Beads 
and Mixture of (3%) GAC/Silica Sand 

Parameter Packed Bed of 
PNA Beads 

pH 8.1 
Specific Gravity 1.008 

Density (p) (g/cm3) 0.987 

Porosity (%) 25 
Permeability Coefficient (K) 0.1425 

(emfs) 
Compressibility Index (Cc) 4.08x 10-_; 

(m2/kN) 
Particle Size (mm) 3.8 
Soil Classification uniform rounded 

fine gravel 

* Density of water at 22° C was 0.9793 g/cm3. 
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Packed Bed of 
(3%) GAC/Sand 

8.1 
1.63 

1.62 

30 
0.0162 

2.87xl0-5 

0.4 
uniform rounded 

medium sand 
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APPENDIX C 

Table C. l. Raw Data of Equilibrium Study 

Time (hours) TCP concentration (mg/L) 

0.0 19.5 
--

3.0 4.8 
5.0 2.0 

-

8.0 0.5 
10.0 0.2 
20.0 0.1 
24.0 0.0 

Table C.2 Isotherm Study (Freundlich Isotherm)· 

m C Log(q) q = xlm Log(C) 
(g GAC/L) (mgTCP/L) 

0;0 19.54 2.199 158.11 1.2909 
-

0.001 10.7692 2.098 125.38 1.0322 
0.01 5.1852 1.970 -- 94.24 0.7148 
0.05 4.1176 1.940 86.16 0.6146 
0.1 3.0882 1.890 - 77.02 0.4897 
0.5 3.0 1.882 76.13 0.4771 

* Log q = Log K + 1/n Log C 

Table C.3 Raw Data for Adsorption Study on Silica Sand 

sand time (hr) TCP (mg/L) 
0 20.0 
3 19.2 

--

7 19.6 
12 19.8 
24 19.9 
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Table C.4 Raw Data For Adsorption Study on Copper Screen 

TCP(mg/L) screen time (hr) 

10 0 

10 3 

10 7 

10 12 

10 24 

Table C.5 Raw Data for Immobilization Time Study 

immob. time (hr) adsorbed cell/g ( 106 ) 

0 0.0 
1 1.0 
3 2.1 
7 3.7 
10 4.2 
13 4.3 
16 4.4 
20 4.4 
24 4.4 

Table C.6. Kinetic* Study of Free Cells 

Time TCP er CL- vss 
(hrs) (mg/L) Theoretical Measured (mg/L) 

(mg/L) (mg/L) 

0.0 10.0 658.0 659.0 1035 
1.0 4.0 661.24 663.2 1035 
3.5 2.9 661.9 664.6 1075 
5.0 0.0 662.9 666.0 1110 
12.0 0.0 663.35 666.5 I 136 
24.0 0.0 663.35 666.0 I 147 
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*The rate of growth of bacterial cells for a batch culture can be defined by the following 
expression (Tchobanoglous and Burton, 1991 ): 

r"= dX/dt 
" 

Where 
rg = rate of bacterial growth, mg L- 1h( 1 

X = concentration of microorganisms, mg/1 
= time, hr 

Table C.7. Kinetics of TCP Adsorption on GAC and GAC(cell) 

Time (hr) TCP concentration TCP concentration 
(mg/L) (mg/L) 

GAC/celJ GAC 
0 500 500 
5 300 450 
10 190 350 
20 110 300 
30 60 250 
40 50 249 
50 50 250 
60 50 250 
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APPENDIX D 

Table D .1 Data of Tracer Study Column #3 

Time C (mg/L) Ci e E 02 E02 V (L) 

(min) 

12 0.00 0.00 0.0817 0.0000 0.00667 0.0000 0.0015 

24 0.40 9.60 0.1634 0.0529 0.0267 0.(l014 0.0035 

36 0.40 14.40 0.2451 0.0529 0.0601 0.0032 0.0045 

48 I.SO 86.40 0.3268 0.2380 0.1068 0.0254 0.0075 

60 1.60 96.00 0.4084 0.2115 0.1668 0.0353 0.0090 

72 2.60 187.20 0.4901 0.3437 0.2402 0.0826 '0.0100 

84 2.60 218.40 0.5718 0.3437 0.3270 0.1124 0.0110 

96 2.10 201.60 0.6535 0.2776 0.4271 0.1186 0.0130 

108 3.10 334.80 0.7352 0.4098 0.5405 0.2215 0.0150 

120 -~-33 999.60 0.8169 1.1012 0.6673 0.7348 0.0170 

132 12.20 1610.40 0.8986 1.6128 0.8074 1.3023 0.0180 

144 13.75 1980.00 0.9803 1.8178 0.9609 1.7467 0.0190 

156 14.00 2184.00 1.0619 1.8508 1.1277 2.0872 0.0222 

168 8.63 1449.84 1.1436 1.1409 1.3079 1.4922 0.0252 

180 6.53 1175.40 1.2253 0.8633 1.5014 1.2961 0.0277 

192 4.75 912.00 1.3070 0.6280 1.7083 1.0727 0.D3 I 7 

204 2.90 591.60 1.3887 0.3834 1.9285 0.7393 0.0357 

216 2.60 561.60 1.4704 0.3437 2.1620 0.7431 0.0387 

228 1.90 433.20 1.5521 0.2512 2.4089 0.6051 0.0427 

240 1.70 408.00 1.6338 0.2247 2.6692 0.5999 0.0457 

252 0.70 176.40 1.7155 0.0925 2.9428 0.2723 0.0487 

264 0.00 0.00 1.7971 . 0.0000 3.2297 0.0000 0.0511 

276 0.00 0.00 1.8788 0.0000 3.5300 0.0000 0.0526 

288 0.00 0.00 1.9605 0.0000 3.8436 0.0000 0.0551 

300 0.00 0.00 2.0422 0.0000 4.1706 0.0000 0.0570 

312 0.00 0.00 2~1239 0.0000 4.5109 0.0000 0.0600 

324 0.00 0.00 2.2056 0.0000 4.8646 0.0000 0.0630 

336 · 0.00 0.00 2.2873 0.0000 5.2316 0.0000 0.0690 

348 0.00 0.00 2.3690 0.0000 5.6120 0.0000 0.0730 

360 0.00 0.00 2.4506 0.0000 6.0057 0.0000 0.0770 

Total 92.59 13600 13.2921 
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Table D.2. Data of Tracer Study for Column #4 

Time· C (mg/L) Ci e E e: E02 V (L) 

(min) 

12 0.0 0.0 0.0653 0.0000 .0043 0.0000 .0020 

24 0.4 9.6 0.1306 0.0944 .0171 0.0016 .0040 

36 0.5 18.0 0.1960 0.1180 0.0384 0.0045 .0065 

48 1.9 91.2 0.2613 0.4482 0.0683 0.0306 .0090 

60 0.5 30.0 0.3266 0.1180 0.1067 0.0126 .0115 

72 0.3 21.6 0.3919 0.0708 0.1536 0.0109 0.0133 

84 0.4 33.6 0.4573 0.0944 0.2091 0.0197 0.0158 

96 0.5 48.0 0.5226 0.1180 0.2731 0.0322 0.0183 

108 0.6 64.8 0.5879 0.1415 0.3456 0.0489 0.0208 

120 L2 144.0 0.6532 0.2831 0.4267 0.1208 0.0233 

132 I. I 145.2 0.7186 0.2595 0.5163 0.1340 0.0258 

144 3.6 518.4 0.7839 0.8492 0.6145 0.5218 0.0283 

156 4.4 686.4 0.8492 J.0380 0.7212 0.7485 0.0308 

168 4.8 806.4 0.9145 1.1323 0.8364 . 0.9470 0.0330 

180 9.7 1746.0 0.9799 2.2882 0.9601 2.1970 0.0358 

192 11.0 2112.0 1.0452 2.5949 1.0924 2.8347 0.0388 

204 7.9 1611.6 1.1105 f.8636 1.2332 2.2982 0.(l413 

216 5.3 1144.8 1.1758 1.2503 J.3826 1.7286 0.0433 

228 3.2 729.6 1.2412 0.7549 1.5405 l.1629 0.0463 

240 2.6 624.0 1.3065 0.6133 1.7069 1.0469 0.0488 

252 1.5 378.0 1.3718 0.3539 1.88 I 8 0.6659 0.051> 

264 1.8 475.2 1.4371 0.4246 2.0653 0.8770 0.0535 

276 0.9 248.4 1.5024 0.2123 2.2574 0.4793 0.0563 

288 0.4 r 15.2 1.5678 0.0944 2.4579 0.2319 0.0588 

300 0.4 120.0 1.6331 0.0944 2.6670 0.2517 0.0613 

312 0.0 0.0 1.6984 0.0000 2.8846 0.0000 0.0641 

324 0.0 0.0 1.7637 0.0000 3.1108 0.0000 0.0669 

336 0.0 0.0 1.8291 0.0000 3.3455 0.0000 0.0699 

348 0.0 0.0 1.8944 0.0000 3.5887 0.0000 0.0727 

360 0.0 0.0 1.9597 0.0000 3.8405 0.0000 0.0752 

Total 64.9 I 1920.0 15.3099 16.4072 
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APPENDIX E 

Table E.1. pH curve 
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APPENDIX F 

Table F.1 pH Raw Data for Column Study No. I 

Day INF (1,2) Col. #1 Col.#2 Col. #3 Col. #4 INF (3.4) 
1 8.1 7.8 7.8 7.9 7.4 8.3 
4 8.1 7.8 7.8 8.1 8.1 8.3 
7 8.1 7.9 8.0 7.9 7.9 8.3 
13 8.1 7.6 7.7 7.8 7.5 8.3 
17 8.2 7.7 7.8 7.9 7.5 8.3 
19 8.1 7.5 7.6 7.9 7.5 8.1 
21 8.3 7.5 7.5 8.0 7.5 8.1 
23 ·. 8.3 7.5 . 7.5 7.8 7.6 8.1 
26 :8.3 7.6 7.6 8.0 7.5 8.3 
29 8.2 7.6 7.6 7.9 7.5 8.2 

Table F.2 DO Raw Data for Column Study No. I 

Day INF (1,2) Col. #1 Col. #2 Col.#3 Col. #4 INF (3,4) 
I 8.6 7.7 7.8 8.2 7.6 8.5 
4 8.6 7.5 7.8 8.2 7.4 8.5 
7 8.4 7.3 7.7 8.4 7.4 8.5 
13 8.4 7.0 7.5 7.8 7.6 8.5 
17 8.6 7.2 7.7 7.9 7.7 8.4 
19 · 8.6 7.1 7.7 7.9 7.3 8.6 
21 8.4 6.9 7.6 7.8 7.4 8.5 
23 8.4 6.6 7.5 7.7 7.4 8.3 
26 8.4 6.6 7.4 7.6 7.1 8.4 
29 8.4 6.5 7.5 7.6 7.2 8.4 
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Table F.3 er Raw Data for Column Study No.I 

Day INF (1,2) Col. #1 Col. #2 Col. #3 Col. #4 INF (3,4) 

1 161 162 162 154 159 152 
4 158 159 160 154 159 152 
7 151 154 156 150 154 150 
13 155 157 160 160 162 153 
17 156 161 162 164 164 160 
19 155 162 161 168 170 164 
21 155 162 164 168 169 164 
23 158 162 163 164 164 159 
26 158 164 164 167 164 159 
29 158 164 162 167 164 159 

Table F.4 TCP- Raw Data for Column Study No. I 

Day INF (1,2) Col. #1 Col. #2 Col. #3 Col. #4 INF (3,4) 
1 11.0 10.2 10.0 0 0 9.5 
4 11.0 9.25 7.6 0 0 11.5 
7 11.0 4.5 2.5 0 0 11.3 
13 10.75 1.75 0.1 0 0 9.5 
17 10.0 ·. 0.5 0 0 0 1 L.5 
19 10.0 0 0 0 0 9.5 
21 10.0 0 0 0 0 9.4 
23 10.2 0 0 0 0 9.4 
26 12.0 0 0 0 0 12.0 
29 9.5 0 0 0 0 9.5 
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APPENDIX G 

Table G. l pH Raw Data for Column Study No.2 

Day INF Col. #1 Col. #2 Col. #3 Col. #4 
33 8.3 7.5 7.7 8.0 7.8 
35 8.4 7.4 7.4 7.8 7.8 
38 8.3 7.2 7.3 7.4 7.4 
40 8.4 7.4 7.4 7.6 7.6 
42 8.3 7.4 7.4 7.4 7.7 
44 8.1 7.4 7.4 7.9 7.7 
47 8.2 7.9 7.9 8.0 8.0 
49 8.3 8.1 8.1 8.1 8.1 
50 8.4 8.2 8.2 8.2 8.1 

. ·. 54 8.3 7.8 8.0 8.1 8.1 
55 8.3 8.1 . 8.2 8.2 8.2 

. 58 8.0 7.9 7.8 7.9 7.9 

Table G.2. DO Raw Data for Column Study No.2 

Day INF Col. #I Col. #2 Col. #3 Col. #4 
33 9.2 2.2 3.2 3.2 3.8 
35 9.0 2.8 3.0 3.0 3.8 
38 9.0 3.2 3.6 2.4 3.8 
40 8.6 2.9 3.4 3.2 2.0 
42 9.0 3.4 3.6 2'.9 3.5 
44 8.8 3.2 3.0 2.4 3.0 
47 9.0 2.2 3.2 3.0 2.5 
49 8.4 3.6 3.2 4.0 3.2 
50 8.6 3.6 3.0 3.8 3.4 
54 8.2 2.6 2.8 2.3 3.0 
55 8.4 2.6 2.6 2.3 2.8 
58 8.6 2.4 2.2 2.4 2.2 
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Table G.3. Cl Raw Data for Column Study No.2 

Day INF Col. #1 Col. #2 Col. #3 Col. #4 

33 158.5 170.5 163.3 163.3 170.5 
35 163.3 177.9 170.5 170.5 170.5 
38 158.5 170.5 172.4 170.5 172.4 
40 158.5 170.5 163.3 163.3 170.5 
42 158.5 170.5 173.5 173.5 170.5 
44 158.5 170.5 · 173.5 173.5 170.5 
47 160.8 167.7 167.7 170.5 170.5 
49 161.0 168.0 171.8 168.0 168.0 
.50 161.0 171.8 168.0 168.0 168.0 
54 159.8 167.7 167.7 167.7 170.5 
55 159.8 · 168.0 167.7 167.7 169.0 
58 161.8 168.7 170.4 168.7 170.4 

Table G.4. TCP Raw Data for Column Study No.2 

Day INF Col. #1 Col. #2 Col. #3 Col. #4 
33 19.9 0.0 0.0 0 0 
35 19.8 0.0 0.0 0 0 
38 20.0 0.0 0.0 0 0 
40 22.0 1.2 0.8 0 0 
42 20.2 1.6 1.2 0 0 
44 20.0 1.0 1.0 0 0 
47 19.7 2.2 2.4 0 0 
49 20.5 2.8 3.0 0 0 
50 23.0 3.2 2.5 0 0 
54 19.0 4.2 3.0 0 0 
55 19.0 5.9 4.6 0 0 
58 21.0 6.5 4.9 0 0 
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APPENDIX H 

Table H. l. pH Raw Data for Column Study No.3 

Dav INF Col. #1 Col. #2 Col. #3 Col. #4 

64 8.4 8.2 8.3 8.3 8.2 
66 8.1 7.6 7.6 7.8 7.8 -

69 8.0 7.3 7.3 7.4 7.4 
71 8.0 7.3 7.4 7.4 7.4 
74 8.0 7.3 7.4 7.4 7.3 
75 8.1 7.3 7.4 7.3 7.2 
78 7.8 7.3 7.4 7.6 7.6 
79 7.8 7.3 7.3 7.5 7.4 
81 7.9 7.4 7.3 7.4 7.4 
82 8.1 7.6 7.5 7.6 7.5 

Table H.2. DO Raw Data for Column Study No.3 

Dav INF Col. #1 Col. #2 Col. #3 Col. #4 
64 22.0 2.0 2.0 3.0 2.8 
66 29.0 5.2 4.8 5.2 4.6 
69 21.0 3.2 2.1 2.8 2.2 
71 20.0 1.8 2.1 2.0 2.0 
74 29.0 4.6 4.4 4.2 4.8 
75 26.0 4.2 4.0 4.2 4.0 
78 21.0 2.0 2.0 2.0 ') ') 

"""·-
79 22.0 2.2 2.0 2.0 1.8 
81 20.0 1.0 1.8 2.2 1.8 
82 25.0 3.2 3.2 2.4 3.2 
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Table H.3. Cl Raw Data for Column Study No.3 

Day INF Col. #1 Col. #2 Col. #3 Col. #4 

64 156.0 162.9 162.9 166.4 166.4 
66 161.8 172.2 174.0 172.2 174.0 
69 162.9 172.4 172.4 170.0 170.0 
71 158.5 168.7 168.7 170.4 170.4 
74 158.5 165.2 168.7 168.7 168.7 
75 158.5 170.4 170.4 172.2 172.2 
78 161.0 171.7 171.7 171.7 171.7 
79 161.0 168.0 168.0 172.0 172.0 
81 160.0 171.7 171.7 175.0 171.7 
82 161.8 168.7 174.0 168.7 174.0 

Table H.4. TCP Raw Data for Column Study No.3 

Day INF Col. #1 Col. #2 Col. #3 Col. #4 
64 21.0 0 0 0 0 
66 20.0 0 0 0 0 
69 19.8 0 0 0 0 
71 17.9 0 0 0 0 
74 · 19.2 0 0 0 0 
75 20.0 0 0 0 0 
78 19.8 0 0 0 0 
79 · 21.5 0 0 0 0 
81 20.0 0 0 0 0 
82 20.0 0 0 0 0 
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APPENDIX I 

Table I. I. pH Raw Data for Column Study No.4 

Day INF Col. #1 Col. #2 Col. #3 Col. #4 
83 7.8 7.6 7.7 7.6 7.6 
84 7.8 7.4 7.4 7.4 7.4 
86 7.8 7.3 7.4 7.5 7.5 
88 8.0 7.5 7.5 7.5 7.5 
89 8.1 7.7 7.7 7.7 7.7 
90 8.0 7.6 7.6 7.6 7.6 
91 7.8 7.6 7.6 7.6 7.6 
92 7.9 7.3 7.4 7.6 7.7 
94 8.0 7.5 7.3 7.5 7.5 
96 8.0 7.5 7.5 7.6 7.5 

Table I.2. DO Raw Data for Column Study No.4 

Day INF Col. #1 Col. #2 Col. #3 Col. #4 
83 30.0 4.8 4.4 4.2 4.8 
84 27.0 3.8 4.2 5.2 5.2 
86 23.0 4.0 4.6 3.8 4.0 
88 23.0 2.8 3.0 3.8 2.8 
89 22.0 4.8 3.8 4.6 3.8 
90 29;0 4.4 4.0 3.2 4.0 
91 26.0 3.8 3.8 3.6 3.4 
92 30.0 3.6 3.6 3.4 3.6 
94 32.0 4.8 4.6 4.2 4.0 
96 26.0 3.6 3.6 4.0 3.8 
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Table 1.3 Cl Raw Data for Column Study No.4 

Day INF Col. #1 Col. #2 Col. #3 Col. #4 

83 158.5 168.7 170.4 170.4 168.7 
84 165.2 175.8 175.8 172.2 175.8 

86 165.2 175.8 177.6 172.2 177.6 

88 166.9 177.6 175.8 175.8 177.6 

89 168.7 181.3 183.2 181.3 183.3 

90 165.2 177.5 175.8 175.8 175.8 
91 163.3 170.5 174.2 174.2 170.5 
92 162.9 177.4 . 177.4 177.4 177.4 
94 163.3 174.2 174.2 174.2 174.2 
96 

Table 1.4 TCP Raw Data for Column Study No.4 

Day INF Col. #1 Col. #2 Col. #3 Col. #4 

83 21.5 0 0 0 0 
84 19.8 0 0 0 0 
86 20.0 0 0 0 0 
88 19.0 0 0 0 0 
89 19.4 0 0 0 0 
90 19.4 0 0 0 0 
91 19.8 0 0 0 0 
92 · 22.0 0 0 0 0 
94 21.0 0 0 0 0 
96 20.0 0 0 0 0 
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APPENDIX J 

Table J.1 pH Raw Data for Column Study No.5 

Day INF Col. #1 Col. #2 Col. #3 Col. #4 

97 7.9 7.3 7.3 7.4 7.3 

99 8.1 7.4 7.6 7.5 7.5 
101 8.0 7.5 7.4 7.5 7.6 
103 7.9 7.2 7J 7.3 7.3 
105 8.1 7.2 7.2 7.4 7.4 
107 7.9 7.1 7.0 7.1 7.2 
109 7.9 7.0 6.9 7.1 7.2 
111 7.9 6.9 7.0 7.3 7.3 

Table J.2 DO. Raw Data for Column Study No.5 

Day ·. INF Col. #1 Col. #2 Col. #3 Col. #4 
97 28.0 3.0 3.0 2.8 3.0 
99 33.0 4.4 4.1 3.0 3.0 
101 29.0 2.4 1.8 2.2 1.8 
103 31.0 2.8 2.9 3.4 2.9 

.,105 29.0 2.8 3.0 2.9 1.8 
107 31.0 3.2 2.8 3.3 1.8 
109 30.0 2.9 2.4 3.0 2.2 
111 31.0 2.8 2.9 3.3 2.4 
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Table 1.3. Cl Raw Data for Column Study No.5 

Day INF Col. #1 Col. #2 Col. #3 Col. #4 

97 164.5 175.4 175.4 183.1 175.4 
99 168.0 183.1 183.1 183.1 191.1 
101 168.0 191.1 191.1 191.1 191.1 
103 163.3 177.9 185.7 177.9 185.7 
105 163.3 181.8 181.8 181.8 181.8 
107 163.3 ·.· 177.9 185.7 185.7 185.7 
109 170.0 193.3 193.3 193.3 193.3 
111 163.3 170.5 170.5 185.7 177.9 

Table 1.4. TCP Raw Data for Column Study No.5 

Day· INF.· CoL#l Col. #2 Col. #3 · Col. #4 
97 30.36 0 0 0 0 
99 . 29.54 0 0 0 0 
101 31.0 0 0 0 0 
103 29.3 0 0 0 0 
105 31.57 0.56 0.73 0 0 
107 31.0 0 0 0 0 
109 30.5 O· 0 0 0 
111 29.5 0 0 0 0 
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APPENDIX K 

Table K. l. pH Raw Data for Column Study No.6 

Day INF Col. #1 Col. #2 Col. #3 Col. #4 
113 7.9 7.4 7.3 7.4 7.2 
115 7.8 7.6 7.2 7.3 7.2 
117 7.9 7.5 7.1 7.3 7.2 
119 8.0 7.3 7.3 7.3 7.1 
121 8.0 7.3 7.4 7.4 7.4 
123 8.0 7.2 7.2 7.3 7.2 
124 8.2 7.4 7.4 7.4 7.3 
126 8.0 7.3 7.1 7.3 7.1 
127 8.0 6.9 6.9 7.0 6.9 

Table K.2. DO. Raw Data for Column Study No.6 

Day INF Col. #1 Col. #2 Col. #3 Col. #4 
113 24.0 5.8 5.8 3.8 3.4 
115 24.0 7.8 5.2 3.6 3.2 
117 22.0 7.9 4.8 3.0 3.2 
119 30.0 6.2 6.8 3.8 4.4 
121 26.0 3.4 3.2 3.0 3.0 
123 30.0 6.0 6.0 4.8 6.0 
124 25.5 4.2 4.2 3.2 4.1 
126 23.0 2.6 2.8 2.8 2.8 
127 28.0 4.8 5.4 5.0 4.2 
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Table K.3. Cl Raw Data for Column Study No.6 

Day INF Col. #1 Col. #2 Col. #3 Col. #4 

113 158.5 168.7 168.7 170.4 172.2 

115 160.1 160.1 170.4 172.2 173.9 
117 160.1 165.2 170.4 172.2 172.2 
119 161.8 172.2 173.9 172.2 173.9 
121 163.5 173.9 175.8 173.9 175.8 
123 158.5 168.7 170.4 168.7 170.4 
124 160.1 172.2 172.1 170.4 172.1 
126 163.5 175.8 177.6 175.8 177.6 
127 163.5 175.8 175.8 175.8 177.6 

Table K.4. TCP Raw Data for Column Study No.6 

Day INF Col. #1 Col. #2 Col. #3 Col. #4 
113 22.8 8.20 4.2 0 0 
115 22.6 18.23 1.82 0 0 
117 21.8 18.38 4.79 0 0 
119 23.6 2.15 N.D 0 0 
121 21.2 1.2 0 0 0 
123 20.5 0 0 0 0 
124 21.0 0 0 0 0 
126 23.4 0 0 0 0 
127 22.2 0 0 0 0 
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APPENDIX L 

Table L.1. pH Raw Data for Column Study No. 7 

Day INF Col. #1 Col. #2 Col. #3 Col. #4 
128 8.0 7.3 7.1 7.1 7.1 
130 8.0 7.3 7.1 7.1 7.1 
132 8.0 7.3 7.1 7.1 7.1 
134 8.0 7.3 7.1 7.1 7.1 
136 7.9 7.4 7.0 7:0 7.0 
138 8.0 7.2 7.1 7.1 7.1 
140 7.8 7.1 7.1 6.9 6.9 
142 7.9 7.2 7.2 7.0 7.0 

Table L.2. DO. Raw Data for Column Study No.7 

Day INF Col. #1 Col. #2 Col. #3 Col. #4 
128 26 7.4 6.8 7.6 8.2 
130 26 7.8 6.8 6.6 5.8 
132 27 7.4 7.8 7.6 8.2 
134 28 8.0 6.8 6.6 5.8 
136 29 9.6 9.0 6.6 5.8 
138 30 7.6 7.2 6.0 5.8 
140 29 9.2 8.8 7.0 5.8 
142 28 7.8 7.0 6.6 5.8 
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Table L.3. Cl Raw Data for Column Study No.7 

Day INF Col. #1 Col. #2 Col. #3 Col. #4 

128 159.0 163.5 165.2 168.7 170.4 
130 160.1 165.2 170.4 170.4 172.2 
132 161.8 168.7 172.2 170.4 172.2 
134 159.0 166.9 172.2 168.7 170.4 
136 163.5 . 170.4 175.8 172.2 175.8 
138 160.1 170.4 170.4 170.4 172.2 
140 160.1 168.7 168.7 168.7 170.4 
142 156.9 166.9 168.7 166.9 168.7 

Table L.4. TCP Raw Data for Column Study No.7 

Day INF Col. #1 Col. #2 Col. #3 Col. #4 
128 21.12 8.92 1.20 0 0 
130 22.60 4.77 1.84 0 0 
132 20.40 4.30 1.00 0 0 
134 21.90 4.40 0 0 0 
136 21.80 2.80 0 0 0 
138 19.80 2.30 0 0 0 
140 21.30 2.10 0 0 0 
142 20.50 0 0 0 0 
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APPENDIX M 

Table M. l. pH Raw Data for Column Study No.8 

Day INF Col. #1 Col. #2 Col. #3 Col. #4 
150 8.1 6.9 6.9 6.5 6.7 
152 8.0 7.0 7.0 6.5 6.6 
154 8.1 7.0 6.8 6.7 6.7 
156 8.1 7.0 6.7 6.6 6.7 
158 8.1 6.7 6.7 6.7 6.6 
160 8.4 6.8 6.8 6.7 6.6 
162 8.5 6.9 7.0 6.8 6.7 
164 8.4 6.9 6.9 6.7 6.6 

Table M.2. DO. Raw Data for Column Study No.8 

Day INF Col. #1 Col. #2 Col. #3 Col. #4 
150 27.5 12.0 7.6 3.2 3.6 
152 27.0 12.2 7.4 2.4 3.6 
154 26.5 11.8 8.6 5.0 3.2 
156 26.5 8.8 4.8 7.6 4.0 
158 27.5 8.8 6.2 4.2 3.2 
160 30.0 11.2 6.2 6'.8 4.0 
162 28.6 7.2 3.0 4.0 7.8 
164 27.2 8.6 5.8 4.2 3.8 
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Table M.3. Cl Raw Data for Column Study No.8 

Day INF Col. #1 Col. #2 Col. #3 Col. #4 

150 162.1 172.9 176.6 180.4 182.4 
152 158.6 170.6 180.5 182.4 184.4 
154 158.6 169.2. 172.9 182.4 176.6 
156 162. l 176.6 180.5 182.4 182.4 
158 158.6 172.9 180.5 184.4 184.4 
160 155.2 165.6 172.9 176.6 180.5 
162 158.6 169.2 180.5 176.6 169.2 
164 162.1 176.6 180.5 182.4 182.4 

Table M.4. TCP Raw Data for Column Study No.8 

Day INF Col. #1 Col. #2 Col. #3 Col. #4 
150 41.0 19.49 10.80 0 0 
152 40.2 18.30 10.20 0 0 
154 41.74 19.15 9.50 0 0 
156 39.4 16.94 7.72 0 0 
158 40.0 13.60 8.00 0 0 
160 40.5 18. JO 7.90 0 0 
162 40.3 JO.JO 9.60 0 0 
164 41.2 12.30 7.60 0 0 
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APPENDIX N 

Table N. l. pH Raw Data f C 1 or oumn S d N 9 tu IV 0. (co . 1 T & 3) 

day inf. (1.3) col. 1 col. 3 
168 8.2 7.3 7.3 

171 8.1 7.4 7.3 
173 8.2 7.6 7.4 

176 8.1 7.2 7.6 

179 8.5 7.5 7.0 

180 8.5 8.0 8.0 

181 8.5 8.5 8.0 
183 8.5 8.3 7.9 
186 8.5 8.1 7.8 
189 8.4 6.9 7.1 
191 8.1 7.1 6.9 
194 8.2 7.1 6.8 
198 8.2 7.0 6.8 
203 8.1 7.1 6.8 
208 8.0 6.9 6.8 
213 8.1 7.1 6.6 
217 8.1 7.2 7.0 
224 8.1 7.7 7.5 
225 8.0 7.8 7.5 
226 8.2 6.8 6.8 
233 8.4 7.0 7.0 
240 8.2 6.9 6,9 

T bl N 2 H R D f C I a e .p aw ata or oumn S d N 9 tu ly 0. (co. 2 & 4 
day inf. (2.4) col. 2 col. 4 

168 8.2 7.1 7.8 
171 8.1 7.2 7.4 
173 8.2 7.2 7.4 
176 8.l 7.6 7.4 
179 8.5 7.l 7.l 
180 8.5 8.2 8.2 
18 l 8.5 ' 8.5 .8.2 
183 8.5 8.5 8.3 
186 8.5 8.5 8.0 
189 8.4 7.2 7.4 
191 8.1 7.4 6.6 
194 8.2 7.2 6.6 
198 8.2 7.0 6.6 
203 8.1 6.9 6.6 
208 8.0 7.3 6.6 
213 8.1 6.8 6.4 
217 8.1 7.3 6.6 
224 8.1 7.7 7.1 
225 8.0 7.8 7.0 
226 8.2 7.8 6.6 
233 8.4 7.0 6.6 
240 8.2 6.9 6.4 
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Table N.3. DO Raw Data for Column Study No.9 (col. 1 & 3) 

day inf. (1,3) col. 1 col. 3 
168 2.7.5 4.8 2.0 
171 23.5 3.2 3.8 
173 26.5 4.6 3.6 
176 29.0 3.8 2.8 
179 30.0 4.0 2.8 
180 1.2 3.0 3.0 
181 1.2 2.8 2.8 
183 30.7 14.2 3.2 
186 29.0 13.8 3.0 
189 31.0 9.2 3.2 
191 28.0 7.0 3.6 
194 28.0 9.2 3.2 
198 28.0 6.2 3.0 
203 26.0 3.2 4.0 
208 27.0 1.4 2.2 
213 29.0 1.8 2.2 
217 28.5 5.4 L2 
224 2.0 1.6 2.2 
225 2.2 0.8 2.0 
226 .31.0 8.0 1.2 
233 29.0 6.6 1.4 
240 32.5 2.6 1.2 

T bl N 4 DO R D t f'. C I a e .. aw a a or oumn St d N 9 ( I 2 & 4) U IY 0. co. 
day inf. (2,4) col. 2 col. 4 
168 27.5 4.4 3.8 
171 23.5 2.8 3.0 
173 26.5 4.0 3.2 
176 29.0 2.0 2.8 
179 30.0 6.8 3.2 
180 28.0 · 18.5 3.6 
181 32.0 15.0 15.0 
183 30,7 14.4 17.0 
186 29.0 7.2 13.8 
189 31.0 7.2 3.2 
191 28.0 7.2 3.4 
194 28.0 6.0 2.0 
198 28.0 4.8 1.2 
203 26.0 5.6 1.0 
208 27.0 3.0 0 
213 29.0 3.0 0 
217 28.5 2.0 0 
224 30.0 10.2 2.0 
225 29.4 14.0 2.0 
226 31.0 12.0 1.4 
233 29.0 3.8 1.0 
240 32.5 2.0 0 
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Table N.5. Cl Raw D f Cl ata or oumn S d N 9 ( l 1 & 3) tu 1y o. co. 
day inf. (1,3) col. 1 col. 3 
168 162.1 178.0 186.1 
171 162.1 178.0 182.1 
173 158.6 174.5 183.3 
176 162.1 182.7 178.0 
179 163.5 187.5 180.2 
180 160.1 160.1 176.0 
181 160.1 160.1 179.0 
183 158.9 158.9 174.1 
186 160.1 160.1 173.8 
189 162.1 162.1 190.6 
191 155.2 162.4 182.9 
194 156.9 165.2 195.6 
198 163.5 178.6 197.5 
203 161.8 181.2 193.8 
.208 161.8 185.5 198.8 
213 158.6 178.8 194.4 
217 158.5 179.5 188.0 
224 163.5 177.6 185.1 
225 160.1 160.1 174.0 
226 165.2 175.8 178.2 
233 160.l 178.2 204.8 
240 160.l 18L3 209.3 

T bl .N 6 Cl R D f C l S d N 9 ( l 2 & 4) a e aw ata or oumn tu 1y 0. co. r .. 
day inf. (2,4) col. 2 col. 4 
168 162.1 186.1 181.4 
171 162.1 178.0 180.3 
173 158.6 175.l 174.5 
176 162.l 186.1 186.8 
179 163.5 186.1 187.5 
180 160.1 160.1 180.7 
181 160.1 160.1 170.8 
183 158.9 158.9 167.2 
186 160.1 160.1 - 166.7 
189 162.1 177.5 169.I 
191 155.2 169.7 183.7 
194 156.9 173.7 . 197.8 
198 163.5 197.5 208.5 
203 161.8 194.I 211.4 
208 161.8 194.1 214.6 
213 158.6 191.6 214.3 
217 158.5 179.5 195.0 
224 163.5 165.2 193.0 
225 160.1 166.9 189.0 
226 165.2 165.2 195.0 
233 160.1 196.5 212.0 
240 160.1 194.2 216.7 
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T 1 N 7 TCP R D f C 1 ab e .. aw ata or oumn S d N 9 ( 1 1 & 3) tu ty 0. co. 
day inf. (1,3) col. 1 col. 3 
168 41.0 6.95 0 
171 39.3 5.25 0 
173 40.7 4.40 0 
176 39.6 4.20 0 
179 40.0 4.00 0 
180 41.75 38.06 0 
181 43.6 43.60 0 
183 42.7 33.80 0 
186 40.7 20.70 0 
189 42.3 20.02 0 
191 41.6 27.90 0 
194 40.0 13.00 0 
198 41.6 10.60 0 
203 42.0 4.20 0 
208 41.0 3.10 0 
213 41.0 2.19 0 
217 41.0 1.92 0 
224 42;14 33.90 0 
225 40.5 29.13 0 
226 42.6 21.04 0 
233 41.4 12.80 0 
240 41.0 4.69 0 

T bl N 8 TCP R D f C l a e .. aw ata or oumn S d N 9 ( l 2 & 4) tu ty 0. co. 
day inf. (2,4) col. 2 col. 4 
168 41.0 6.1 0 
171 39.3 5.0 0 
173 40.7 4.9 0 
176 39.6 4.7 0 
179 40.0 4.0 0 
180 566.0 432.2 182.3 
181 566.0 710.4 565.0 
183 42.7 57.6 59.0 
186 40.7 21.4 0 
189 42.3 13.7 0 
191 41.6 7.8 0 
194 40.0 7.2 () 

198 41.6 5.3 0 
203 42.0 3.2 0 
208 41.0 3.4 0 
213 41.0 0 0 
217 41.0 0 0 
224 563.0 450.4 0 
225 591.0 487.0 48.l 
226 42.6 90.9 5.8 
233 41.5 0 0 
240 40.0 0 0 
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