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CHAPTER I 

ISOENZYME VARIATION AND GENETIC 

STRUCTURE IN NATURAL POPULATIONS OF 

SHORTLEAF PINE (Pinus echinata Mill.) 

RAJIV RAJA, C. G. TAUER, 

ROBERT WITTWER AND YINGHUA HUANG 
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ABSTRACT 

Seed from 126 trees from populations representing 15 geographic locations 

covering much of the natural range of shortleaf pine (Pinus echinata Mill.) were 

analyzed using 23 enzyme systems covering 39 loci to determine patterns of 

genetic variation and structure. Populations were polymorphic (p) at 87.2% of 

the loci, had 2.18 alleles (A) per locus and 2.35 alleles per polymorphic locus 

(Ap). Mean expected heterozygosity (He) was 0.194 and mean observed 

heterozygosity (Ho) was 0.17 4. Western populations had a higher p, higher A, 

similar Ap and a higher Ho and He than eastern populations, due in part to six 

private alleles (alleles seen only in one population) in the west but only one in 

the east. Genetic structure analysis revealed interpopulation genetic variation at 

9% percent, meaning 91 % of the genetic variation in shortleaf pine resides 

within populations. lnterpopulation gene flow was 2.56, indicating two to three 

allele migrations per generation, which is relatively high and explains the low 

interpopulation genetic variation in the species. There was no apparent 

relationship between geographic distance among populations and their genetic 

distance. Shortleaf pine populations exist in naturally outcrossing random

mating populations and have a relatively large amount of natural variability. 

Western populations are more diverse than their eastern counterparts. 
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INTRODUCTION 

Knowledge of the patterns of genetic variation within and among 

populations of a tree species and understanding its mating system will influence 

strategy for tree selection, breeding and seed production orchard design. 

Electrophoretic techniques, especially isoenzymes, have proven valuable in 

studying the mating systems and genetic structure of conifers. The presence of 

haploid (n) megagametophyte tissue in seeds greatly facilitate isoenzyme 

studies in conifers. , 

Perennial species with long life spans like conifers generally contain very 

high levels of genetic variation (Hamrick and Godt 1990; Mitton 1983). Conifers 

are one of the most genetically variable groups of species with higher mean 

heterozygosity (0.270) than monocots (0.165), dicots (0.113) or mammals 

(0.039) (Mitton 1983). In the past two decades, numerous species of conifers 

have been analyzed for their genetic variation, including Pinus contorta (Yeh et 

al. 1985; Yeh and Layton 1979), Pinus ponderosa (Yow et al. 1992; O'Malley et 

al. 1979), Picea sitchensis (Yeh and EI-Kassaby 1980), Pinus washoensis 

(Niebling and Conkle 1990), Pseudotsuga menziesii (Yeh and O'Malley 1980; EI

Kassaby and Sziklai 1982), Pinus sylvestris (Goncharenko et al. 1994 ), Pinus 

sibirica (Goncharenko et al. 1992) and Pinus pumila (Goncharenko et al. 1993). 

In these studies, interpopulation genetic variation ranged from 1.6 to 7.5 percent 

of the total genetic variation, and the percent of polymorphic loci ranged from 66 

to 90. Pines, like other conifers, are highly variable. 
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Shortleaf pine (Pinus echinata Mill.) has the broadest geographic range of 

the southern pines (Figure 1 ). Considerable genetic variation is found in 

shortleaf pine, probably because it occurs at elevations from near sea level to 

3,300 feet in the southern Appalachian Mountains, and because of its wide 

natural range (Tauer 1980; Dorman 1976). Shortleaf pine is used for 

construction lumber, plywood and paper, and accounts for more than 22 percent 

of the standing volume of the four major southern pines. Shortleaf pine would be 

expected to be highly variable at the isoenzyme level as suggested by studies of 

other pine with wide natural ranges. 

In spite of its importance, to our knowledge there is only one report 

describing the mating system and pattern of genetic variation in natural 

populations of shortleaf pine. This recent study by Edwards and Hamrick 

(1995), based on 14 enzyme systems covering 22 loci in 18 populations, 

reported that the species had 91 percent polymorphic loci, an expected 

heterozygosity (He) of 0.115 and interpopulation genetic variation estimate ( Gsr) 

of 0.026. The objective of our study was to describe isoenzymatic variation in 

shortleaf pine. We recognize the significant value of independent studies of the 

same species using a different sample of populations, individuals and 

isoenzyme loci. This paper presents the results of our isoenzymatic study of 

genetic variation in 15 natural populations of shortleaf pine using 23 enzyme 

systems covering 39 loci. Our considerably larger sample of loci makes the data 

complementary to the earlier report. 
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MATERIALS AND METHODS 

This study is based on seeds collected from 126 shortleaf pine trees from 

15 populations sampled from 11 states in the United States (Figure 1 ). Cones 

were collected during fall 1993 by Dr. Ron Schmidtling of the USDA Forest 

Service, Gulfport, MS from a shortleaf pine southwide seed source study (Wells 

1973). Seeds were extracted, dried to approximately six percent moisture 

content and frozen at -20°C for later use. Since only the megagametophytes 

were used, data represent the genetic structure of the trees' origin populations. 

Seeds were thawed at room temperature for one hour and then immersed 

in water overnight prior to stratification. Water was drained and seeds were 

cold-stratified (4°C) for sixty days, after which they were germinated on moist 

filter papers at room temperature. Ten megagametophytes were sampled from 

six to ten parent trees in each of the 15 populations. This sample size is 

sufficient to estimate maternal genotype and effective outcrossing rate (Yeh and 

Layton 1979). Megagametophytes were isolated, maintained on ice and ground 

in 0.14 ml Wendel and Parks (1982) extraction buffer .. · 

The three electrophoresis gel systems used are described in Table 1. Gel 

preparation and loading followed Conkle et al. ( 1982) with the following 

modifications: 50 sec heating in a microwave oven after the boiling buffer is 

added to the starch suspension to avoid premature solidification and to 
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Figure 1 . Natural range of shortleaf pine and location of the 15 seed source 
collections. 1: C453 - southern New Jersey; 2: C455 - southeastern Virginia; 
3: C457 -western South Carolina; 4: C461 - northern Georgia, Clarke county; 
5: C463 - northern Georgia, Putnam county; 6: C465 - southwestern Georgia; 
7: C467 - east central Alabama; 8: C473 - southeastern Louisiana; 9: C475 -
eastern Texas; 10: C477A- southeastern Oklahoma, Pushmataha county; 
11: C477B - southeastern Oklahoma, McCurtain county; 12: C481 -
southeastern Arkansas; 13: C483 - northern Arkansas; 14: C485 - south central 
Missouri; 15: C487 - northeastern Tennessee. 
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a 

Table 1. Enzymes, their abbreviations (Abbr.), enzyme commission reference 
numbers (E. C. ), buffer systems used for electrophoresis and number 
of loci consistantly scorable in each enzyme system 

E.C. Buffer Scorable 

Enzyme Abbr. Number System0 Loci 

Aconitase Aco 4.2.1.3 H 1 
Acid phosphatase Acp 3.1.3.2 H 2 
Adenylate kinase Adk 2.7.4.3 A 2 
Alcoholdehydrogenase Adh 1.1.1.1 H 2 
Aldo lase Aid 4.1.2.13 H 2 
Diaphorase Dia 1.6.4.3 H 2 
Fructose diphosphatase Fdp 3.1.3.11 A 1 
Fumarase Fum 4.2.1.2 E 1 
Glutamic dehydrogenase Gdh 1.4.1.3 A 1 
Glutamate-oxaloacetate transaminase Got 2.6.1.1 A 2 
Glucose-6-phosphate dehydrogenase G6pd 1.1.1.49 H 2 
Glycerate-2-dehydrogenase G2d 1.1.1.29 A 1 
Isocitric dehydrogenase ldh 1.1.1.42 E 1 
Malic dehydrogenase Mdh 1.1.1.37 E 4 
Malic enzyme Me 1.1.1.40 E 1 
Menadione reductase Mnr 1.6.99.2 A 2 
Peptidase Pep 3.4.13.1 A 3 

Phosphoglucose isomerase Pgi 5.3.1.9 E 1 
Phosphoglucomutase Pgm 2.7.5.1 A 1 
6-Phosphogluconate dehydrogenase 6Pgd 1.1.1.44 E 2 
Sorbitol dehydrogenase Sdh 1.1.1.14 A 1 
Shikimate dehydrogenase Sl«ih 1.1.1.25 H 2 
Uridine diphosphoglucose 

pyrophosphorylase Ugpp 2.7.7.9 E 2 

A: Electrode buffer - 28.6 mM Lithium hydroxide, 192 mM boric acid, pH 8.3; gel buffer - 45 mM Tris, 

6.84 mM citric acid, 2.86 mM Lithium hydroxide, 19.2 mM boric acid, pH 8.3 (Conkle et al.1982). 

E: Electrode buffer - 40 mM Citric acid, pH to 8.1 with N-(3-aminopropyl) morpholine; gel buffer - 20: 1 

dilution of electrode buffer (Strauss and Conkle 1986). H: Electrode buffer - 125mM Tris pH 7.0; 
gel buffer - 12.SmM Histidine-RC!, 0.35 mM EDTA, pH 7.0 (Cheliak and Pitel 1984). 
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strengthen gels; heating the vacuum flask on a hot plate while degassing; and 

using a spatula immediately after pouring to remove air bubbles. Each gel 

accommodated 50 wicks, 20 x 1.5 mm in size. Thirty-nine loci from 23 enzyme 

systems were resolved and consistently scorable in this study (Table 1 ). 

Recipes for staining enzymes are given in Table 2. 

Allele frequencies for each locus were determined for each of the 15 

populations studied. The most common allele at each locus was assigned an 

arbitrary value of 1.00 as described by Prakash et al. (1969). Alternate alleles 

were designated according to their relative migration with respect to the most 

common allele. 

Existing literature suggests east-west genetic differences in shortleaf pine 

populations due to a drier western environment and isolation caused by the 

Mississippi river valley (Wells et al. 1977; Edwards and Hamrick 1995). Hence, 

the 15 populations sampled in this study were grouped into east (nine 

populations with 71 trees) and west (six populations with 55 trees) of the 

Mississippi river geographic regions. These groups were examined for within 

and between differences in genetic structure and compared to results of 

Edwards and Hamrick (1995). Allele frequency data were used to compute 

observed (Ho) and expected (He) heterozygosities (unbiased estimate, Levene 

1949; Nei 1978). Genetic diversity for populations and regions was estimated 

by: percent polymorphic loci 'p'; mean number of alleles per locus 'A'; mean 

number of alleles per polymorphic locus 'Ap'; and Ho and He, A tree was 
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Table 2. Enzymes, references and modifications to stain recipes used in this 
shortleafpine genetic variation study. 

Enzymes Recipe 

used a 

Aco 1 
Acp 1 

Adk 1 
Adh 2 
Aid 1 

Dia 1 
Fdp 1 
Fum 1 
Gdh 1 
Got 2 
G6pd 2 
G2d 1 
Jdh 1 
Mdh 1 
Me I 
Mnr 2 
Pep I 
Pgi 2 
Pgm 1 

Additions and modifications to stain recipes b 

cis-Aconitic acid -10 mL; NBT replaces MTT. 
Acetate buffer, pH 5.0 - 25 mL; alpha-naphthyl acid phosphate - 25 mg; 
fast garnet GBC salt - 40 mg. 

Tris-Hcl buffer - 25 mL; NADP I MTT I PMS I MgCl2 - 2 mL; NAD not used. 
0.2M tris-Hcl buffer - 25 mL; PMS - 1 mL. 
Tris-Hcl buffer- 25 mL; fructose-1,6-diphosphate - 150 mg; 
arsenic acid - 40 mg; glyceraldehyde-3-phosphate dehydrogenase - 150 Units. 
Tris-Hcl buffer - 25 mL; 2,6-dichlorophenol indophenol - 0.3 mg; NADH - 15 mg. 
Tris-Hcl buffer - 20 mL; G6PDH - 150 Units; NAD I MTT I PMS - 2 mL. 
NAD I MTT I PMS - 4 mL. 
Tris-Hcl buffer - 25 mL; L-Glutamic acid - I g. 
Phosphate buffer - 30 mL. 
0.2M tris-Hcl buffer - 25mL; D-glucose-6-phosphate - 100 mg; MTT replaces NBT. 
Tris-Hcl buffer - 25mL; NAD I MTT I PMS - 3 mL. 
Tris-Hcl buffer - 25mL; NADP I Mgcl2 / NBT I PMS - 2. mL. 
Tris-Hcl buffer I DL-malic acid - 25mL; NBT used. 
A electrophoresis buffer I DL-malic acid - 12 mL; NBT replaces MTT. 
Menadione - 25 mg. 
L-Ieu-L-tyr I L-val-L-leu I L-Ieu-L-ala - 10 mg; dimethyl formamide - 5 mL. 
0.2M tris-Hcl buffer - 25 mL; D-fructose-6-phosphate - 15 mg; G6PDH - 30 Units. 
Tris-Hcl buffer - 25 mL; glucose-I-phosphate - 70 mg; G6PDH- 30 Units; 

· glucose-1,6-diphosphate - 0.3 mg; NADP I NBT replaces NAD I MTT. 
6pgd 

Sdh 

SJ«Jh 

Ugpp 

2 
1 
2 
3 

0.2M tris-Hcl buffer - 25 mL; 6-phosphogluconic acid - 10mg; Mgcl2 / PMS - lmL. 
Tris-Hcl buffer - 25 mL; sorbitol - lg. 
0.2M Tris-Hcl buffer - 25 mL; Shikimic acid - 40 mg; Mgcl2 / PMS - I mL. 
No modification. 

a 1: O' Malley et al., 1980; 2: Conkle et al., 1982; 3: Strauss and Conkle, 1986. 
b: Some of these modifications are based on Ernst (unpublished), Dept. For., Univ. Neb., Lincoln, NE; 

If quantity of a chemical is given, it indicates quantity used different from the original recipe. 
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considered polymorphic at a locus if more than one allele was present at that 

locus irrespective of frequencies. 1 
• 

Wright's F statistics (Wright 1965; 1969; 1978; Nei 1977) were used to 

describe genetic structure in shortleaf pine. F statistics measure differentiation 

among populations by examining deviations of heterozygote and homozygote 

frequencies from expected under Hardy-Weinberg equilibrium. F1r quantifies the 

deviation in genotypic frequencies from a hypothetical population that mates at 

random with no genetic structure, Fsr measures differentiation among 

populations, and F,s represents the level of deviation of heterozygote 

frequencies within populations from expected under Hardy-Weinberg 

equilibrium. 

Contingency x2 tests for heterogeneity of allele frequencies among 

populations (Workman and Niswander 1970) were performed using the formula: 

[1] 

where N denotes the number of individuals sampled in all populations, PAi and 

cr\i denote the weighted mean and variance of frequencies of the .fth allele 

across all populations, and k is the number of alleles at a locus. 

Nei's (1972) genetic distance coefficients (Dn) among all possible pairs of 

populations were estimated. Nei's genetic distance is based on the identity of 

genes between populations, Dn = -loge I, where I is the normalized identity of 

genes between two populations. Dn measures the cumulative allele differences 
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per locus. A phenogram was constructed to visualize the results. The Dn values 

were clustered using the unweighted-pair-group-method algorithm (UPGMA) 

(Sneath and Sokal 1973). Fir, F,s, Fsr, Dn and UPGMA cluster analysis were 

calculated using the BIOSYS-1 computer program (Swofford and Selander 

1981). 

An estimate of the level of gene flow was obtained from Fsr by solving 

[2] Nem = (1/Fsr -1) + 4 

where Nem is gene flow (Wright 1931 ), Ne is effective population size and m is 

the proportion of migrants exchanged per generation. Since Ne and mare 

usually not known, gene flow is often reported as Nem, which estimates the 

number of migrants per generation. 

11 
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RESULTS AND DISCUSSION 

Genetic diversity 

Twenty-three enzyme systems assayed in shortleaf pine identified 85 

electrophoretic variants in 39 loci (Figure 2). Thirty four of the 39 loci assayed 

exhibited polymorphism (87.2 %), which is in close agreement with the 91 

percent reported by Edwards and Hamrick (1995). These data show 

considerable natural variation in shortleaf pine, higher than observed in Pinus 

contorta Dougl. (65.8%, Yang and Yeh 1993), Pinus pumila (Pall.) Regel. 

(77.7%, Goncharenko et al. 1993), Pinus ponderosa Dougl. ex. Laws. (81%, Yow 

et al. 1992), Robinia pseudoacacia (70.8%, Surles et al. 1989), all plant species 

(51 %, Edwards and Hamrick 1995), all woody plants (65%, Hamrick et al. 1992), 

and all conifers (67. 7%, Hamrick 1989), but slightly lower than Pin us sylvestris L. 

(90.5 %, Goncharenko et al. 1994) and Pinus taeda L. (90.0%, Edwards and 

Hamrick 1995). Seven of the 85 electrophoretic variants found were seen in 

only one population and are considered private alleles (Slatkin 1985). Six of the 

seven private alleles (Mnr-2, Fdp, Sdh, Adk-1, G6pd-1 and 6pgd-2) were in the 

western region and the other (Ald-1) in the eastern. It is of note that three (Mnr-

2, Adk-1 and Sdh) of the six private alleles in the western populations occurred 

in the northern Arkansas population (C483). The Mdh-4 allele was present only 

in one eastern and one western population, and the Ald-2 allele only in three 

eastern populations. The occurrence of private alleles in the populations 

studied may be an artifact of sampling. 
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Figure 2. Relative mobility and designation of all electrophoretic variants at the 
39 loci studied in shortleaf pine. 
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Genetic diversity measures for the 15 populations of shortleaf pine sampled 

show a mean percent of polymorphic loci within populations much lower (53.9 %) 
' 

than for the species as a whole (Table 3). The same trend was noted for mean 

number of alleles per locus and mean number of alleles per polymorphic locus. 

Similar trends were reported by Edwards and Hamrick (1995), although our 

values are slightly lower due to differences in enzymes scored and populations 

sampled. Lower values for genetic diversity measures within populations 

compared to the whole species may be attributed in part to the seven private 

alleles, and the Mdh-4 and Ald-2 loci discussed above. However, the 

differences seen between this study and that of Edwards and Hamrick (1995) 

may be due to sampling. 

H0 for the species was 0.17 4, which was lower than the expected value of 

0.194 (Table 3). The same trend was seen for eastern (Ho= 0.164, He = 0.186) 

and western (H0= 0.189, He = 0.205) populations. When considered over all 

populations or as two regions, the species shows some deviation from Hardy-

Weinberg expectations. Some deviation is expected in a species whose natural 

range extends over thousands of miles, and is probably due to violations of the 

assumptions under which Hardy-Weinberg expectations are made, such as 

random mating and the absence of selection and migration. The assumption of 

random mating cannot be completely fulfilled due to the wide range of shortleaf 

pine. Studies in almost all pine species report a significant level of migration. 

Lower H0 values can also be caused by inbreeding. In spite of these obvious 
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Table 3. Summary of genetic diversity of shortleaf pine for all populations and by region. The data is based on 39 different loci. 

Polymorphic Mean iiimiber of -- - -Mean number of 

Region loci alleles per alleles per polymorphic H0 {se) He {se)1 

'p' locus 'A' {se2 locus 'A'i_ 
East 

Southern New Jersey 58.97 1.59 (0.08) 2.00 0.217 (0.034) 0.226 (0.034) 

Southeastern Virginia 48.72 1.54 (0.10) 2.11 0.126 (0.027) 0.170 (0.032) 

Western South Carolina 56.41 1.67 (0.11) 2.18 0.153 (0.030) 0.183 (0.033) 

Northern Georgia { Clarke County) 53.85 1.54 (0.08) 2.00 0.185 (0.039) 0.219 (0.037) 

Northern Georgia ( Putnam County) 48.72 1.54 (0.10) 2.11 0.179 (0.041) 0.174 (0.034) 

Southwestern Georgia 53.85 1.62 (0.10) 2.14 0.185 (0.039) 0.197 (0.035) 

East-central Alabama 38.46 1.41 (0.09) 2.07 0.150 (0.041) 0.174 (0.037) . 

Northeastern Tennessee 51.28 1.54 (0.09) 2.05 0.137 (0.027) 0.161 (0.031) 

Southeastern Lousiana 46.15 1.51 (0.10) 2.11 0.143 !0.034) 0.169 (0.0352 - Mea~ 50.71 1.55 2.09 0.164 0.186 
VI 

Within East Region 76.92 2.03 2.33 0.186 

West 
Eastern Texas 41.03 1.49 (0.10) 2.19 0.170 (0.039) 0.163 (0.036) 

Southeastern Oklahoma 66.67 1.77 (0.10) 2.15 0.205 (0.034) 0.226 (0.035) 

(Pushmataha county) 
Southeastern Oklahoma 53.85 1.56 (0.09) 2.05 0.144 (0.033) 0.153 (0.029) 

(McCurtain county) 

Southeastern Arkansas 61.54 1.80 (0.12) 2.29 0.220 (0.038) 0.221 (0.034) 

Northern Arkansas 69.23 1.77 (0.09) 2.11 0.201 (0.034) 0.205 (0.032) 

South-central Misssouri 58.97 1.74 (0.1 l} 2.26 0.191 (0.0382 0.207 !0,035) 

Mean 58.55 1.69 2.18 0.189 0.196 

Within West Region 84.62 2.13 2.33 0.205 

Overall mean 53.85 1.61 2.12 0.174 0.190 

Within Species 87.18 2.18 2.35 0.194 

1 Unbiased estimate based on conditional expectations (Levene, 1949; Nei, 1978). 



violations, the deviation from expected is only ten percent, which indicates that 

the populations mate nearly at random over vast areas, and thus no reason for 

concern over skewed allele frequency distributions. Western populations 

showed a higher percentage of polymorphic loci, higher mean number of alleles 

per locus, same mean number of alleles per polymorphic locus and a higher H0 

and He than their eastern counterparts (Table 3). These differences may be due 

to the six private alleles and one rare allele showing polymorphism in the west, 

while only one private and one rare allele are present in the east, as discussed 

above. The source of and selective advantage/disadvantage, if any, of these 

private alleles is of interest. Why are they more numerous in western 

populations? If the occurrence of these private and rare alleles is not an artifact 

of sampling, their source may be a lower frequency of disturbance in western 

populations over their evolutionary history, and/or a higher frequency of 

interspecific hybridization. Whatever the reason, these data show a relatively

large amount of natural variability in shortleaf pine, and the western populations 

are more diverse than their eastern counterparts. 

A considerably higher level of heterozygosity was found at the ldh locus in 

the western populations ( Ho= 0.167 or 16. 7%) than in eastern populations ( Ho= 

0.044 or 4.4%) due to a higher-than-average frequency of the faster allele in the 

western populations. This observation is in agreement with Edwards and 

Hamrick (1995), although their values were lower (Ho= 0.0458 and 0.0109 

respectively). Contingency x2 test for heterogeneity of allele frequencies among 

populations at the /dh locus was not significant (a= 0.05, p = 0.1199) when 
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tested for all populations, but was significant (a= 0.05, p = 0.0223) when tested 

as two regions, which confirms a significant difference in ldh allele frequencies 

between the two regions. According to Huneycutt and Askew (1989), 

polymorphism at the ldh locus is due to hybridization with loblolly pine, 

suggesting 16. 7 percent of the trees in the western populations we sampled are 

of hybrid descent. These data raise questions regarding the adequacy of the ldh 

locus in identifying hybrids. If the ldh locus is a true indicator of hybrids between 

loblolly and shortleaf pine, these results suggest that 16 percent of the trees in 

these stands are hybrids or their descendants, which seems improbable. The 

value of ldh as an indicator of hybrids is also in doubt because four of the eight 

populations in our study, and some of the western populations of Edwards and 

Hamrick (1995) with polymorphic ldh loci are outside the present natural range 

of loblolly pine. 

17 



Genetic structure 

Wright's fixation index estimate (Fsr) for shortleaf pine was 0.089 (Table 4). 

In other words, 91 percent of the genetic variation in shortleaf pine resides within 

populations and 9 percent among populations, indicating that these populations 

are genetically quite similar. As two regions, the Fsr value was much lower 

(0.006), suggesting that more than 99 percent of the total variation is found 

within regions. The higher Fsr estimate of this study compared to 0.026 by 

Edwards and Hamrick (1995) is in part due to the six private alleles, only three of 

which were studied by Edwards and Hamrick. Gsr or Fsr values obtained for 

other pine species average about 0.08 (Guries and Ledig 1982; Fumier and 

Adams 1986; Moran et al. 1988), except for Pinus pumila (Fsr = 0.037) and 

Pinus sibirica (Fsr = 0.020) (Goncharenko et al. 1992). Hence, we conclude that 

the mating pattern and genetic structure in shortleaf pine is quite similar to that 

found in other pines. 

The Fis values for the 15 populations averaged 0.018 (Table 4). The 

positive average value suggests a 1.8 percent deficiency in heterozygotes within 

shortleaf pine populations, a very small deficiency. Fir values averaged 0.105 

over all populations, which indicates a 10.5 percent heterozygote deficiency. 

These data agree with the deviation between Ho and He values. When analyzed 

as two regions, a ten percent heterozygote deficiency was seen both within 

regions and for the entire species. A ten-fold increase in the Fis value when Fir 
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Table 4. Wright's fixation indices for shortleaf pine for all populations and 
by region with probability of chi-square distribution for heterogeneity of 
allele frequencies among populations. 

As 15 Populations As two regions Contingency 
Locus F JS FIT F ST F JS F JT F ST Chi-square 

Mnr-1 -0.065 -0.001 0.060 0.000 0.002 0.002 ns 
Mnr-2 -0.167 -0.010 0.135 -0.036 -0.018 0.018 *** 
Gdh -0.169 -0.067 0.088 -0.075 -0.067 0.007 * 
Pgm 0.116 0.190 0.084 0.208 0.209 0.001 * 
Got-1 0.074 0.142 0.073 0.134 0.135 0.001 * 
Got-2 0.117 0.248 0.148 0.234 0.242 0.010 *** 
Fdp -0.077 -0.005 0.067 -0.012 -0.006 0.006 ns 
Adk-1 -0.200 -0.011 0.157 -0.014 -0.007 0.007 *** 
Adk-2 -0.169 -0.049 0.103 -0.061 -0.054 0.007 *** 
G2d -0.052 0.048 0.095 0.015 0.016 0.000 ** 
Sdh -0.111 -0.007 0.094 -0.019 -0.009 0.009 ** 
Mdh-1 -0.091 -0.015 0.070 -0.024 -0.018 0.006 ns 
Mdh-2 -0.099 -0.037 0.056 -0.042 -0.039 0.003 ns 
Mdh-3 -0.169 -0.044 0.107 -0.055 -0.050 0.005 ** 
Mdh-4 -0.062 -0.018 0.041 -0.020 -0.019 0.000 ns 
Me 0.169 0.247 0.094 0.157 0.174 0.020 *** 
Pgi -0.148 -0.041 0.093 -0.034 -0.024 0.009 * 
Ugpp-1 0.122 0.178 0.064 0.146 0.151 0.006 ns 
Ugpp-2 -0.266 -0.097 0.133 -0.114 -0.114 0.000 *** 
6pgd-J -0.295 -0.206 0.068 -0.224 -0.213 0.009 ns 
6pgd-2 -0.128 -0.011 0.104 0.021 0.029 0.008 *** 
Jdh -0.145 -0.049 0.084 -0.076 -0.055 0.020 ns 
Skdh-1 0.338 0.432 0.141 0.395 0.396 0.001 *** 
Skdh-2 -0.136 -0.044 0.081 -0.065 -0.050 0.014 ns 
G6pd-1 0.496 0.561 0.130 0.545 0.555 0.024 ** 
G6pd-2 0.419 0.470 0.089 0.349 0.349 0.000 * 
Aco 0.243 0.293 0.066 0.279 0.280 0.002 ns 
Dia-1 0.160 0.223 0.075 0.253 0.257 0.005 ns 
Dia-2 -0.070 -0.013 0.053 -0.018 -0.015 0.003 ns 
Ald-1 -0.111 -0.007 0.094 -0.008 -0.004 0.004 ** 
Ald-2 -0.152 -0.045 0.093 -0.052 -0.039 0.013 ** 
Adh-1 -0.053 0.004 0.055 0.046 0.055 0.010 ns 
Acp-1 0.328 0.363 0.051 0.328 0.328 0.000 ns 
Acp-2 0.041 0.114 0.076 0.109 0.112 0.004 * 

Mean 0.018 0.105 0.089 0.091 0.097 0.006 

NOTE: ***, significant at P < 0.0 I; **, significant at P < 0.05; *, significant at P < 0.1 O; ns, not significant. 
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remained unchanged supports the earlier inference that the heterozygote 

deficiency for the entire species is due to the violation of some Hardy-Weinberg 

assumptions. Higher Fis values for the two regions can also be due to 

differences in the level of disturbance and/or the level of inter-specific 

hybridization. Hardy-Weinberg assumptions are met when populations are 

studied in smaller units, and in such a case the genotypic proportions fulfill the 

expectations. Hence, by comparing the Fis and F1r estimates with the Ho and He 

values, we conclude that in spite of shortleaf pine's wide geographic distribution, 

its among population genetic structure is quite similar. 

One-tailed probability of contingency ·l tests for heterogeneity of allele 

frequencies among populations (Table 4) were significant for 14 of the 34 

polymorphic loci (a = 0.05). Thus, the allele frequencies of these 14 loci are 

significantly different in at least one of the populations, and they are largely 

responsible for the 9 percent genetic variation seen among populations. All 

private alleles except Fdp (which had a very low frequency of the alternate 

allele) showed significant allele frequency differences among populations using 

the x2 test. 

lnterpopulation gene flow, Nern was estimated to be 2.56, meaning 

approximately two to three allele migrations occur per generation. This 

relatively-high migration rate suggests that populations of shortleaf pine are 

genetically linked by constant gene flow through a network of connecting stands. 

It is impossible to estimate the absolute amount of gene flow among populations, 

because migration is dependent on the effective number of migrants, not just 
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migration rate (Wright 1931 ), and because effective population size in natural 

populations is difficult to obtain (Allendorf and Phelps 1981 ). However, one 

migration every two generations (Nam= 0.5) is generally enough to annul any 

genetic difference resulting from drift (Wright 1931 ). Hence, N0m values greater 

than one may be considered a sufficient level of migration among populations to 

prevent differentiation. In this study, there is a relatively high rate of migrants 

between populations per generation, consequently the among-population 

genetic differences are small. However, differentiation among populations can 

still occur due to directional, adaptive selection. 

Cluster analysis using UPGMA with arithmetic averages gave a cophenetic 

correlation coefficient of (Sneath and Sokal 1973) res = 0. 71 on the matrix of 

Nei's genetic distances. The cophenetic correlation coefficient is a measure of 

the agreement between the values in the phenogram, obtained by UPGMA 

clustering, to the original genetic distance coefficients (On) of Nei (1972). A 

phenogram of the 15 shortleaf pine populations with Nei's genetic distance 

coefficients for every possible pair is presented in Figure 3. The mean genetic 

distance was very low (0.022), indicating that an average difference of about two 

percent in structural genes exists between any two of the populations. The Dn 

value was lowest between southeastern Virginia and western South Carolina 

and between Northern Georgia-Putnam county and southwestern Georgia 

(0.009). The 0.009 value means that less than one allelic substitution per 100 
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Figure 3. Phenogram of shortleaf pine populations based on Nei's genetic 
distance coefficient (On) showing genetic differentiation levels. 



loci occurred between the genomes of these populations. The eastern Texas 

source showed the highest genetic difference from the rest of the populations. 

The southeastern Virginia source is more genetically similar to the western 

South Carolina source than to south New Jersey; north Georgia-Putnam and 

southwestern Georgia to southeastern Virginia than to northern Georgia-Clarke; 

and southeastern Oklahoma-Pushmataha county to southeastern Louisiana than 

to southeastern Oklahoma-McCurtain county. Also, the eastern Texas source 

maintains the same level of genetic difference with the Oklahoma sources as it 

does to south New Jersey. These results show the absence of a meaningful 

correlation between geographic distance among populations and their genetic 

distance. 
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CONCLUSION 

Our study is in close agreement with Edwards and Hamrick (1995) in the 

following aspects: shortleaf pine is polymorphic at about 87 percent of its loci, 

genetic diversity measures were lower within populations than for the species as 

a whole, and western populations had higher genetic diversity measures than 

eastern populations, perhaps due to the higher number of private alleles seen in 

the western populations. However, the studies differ in that we found H0 to be 

10% lower than He compared to the 7% difference of Edwards and Hamrick 

(1995), probably due to differences in enzyme scored and populations sampled. 

We found a higher level of heterozygosity at the ldh locus in western 

populations than eastern populations, higher than Edwards and Hamrick (1995). 

Such high values have compelled us to question the adequacy of the ldh locus 

as a way of identifying hybrids, as was suggested by Huneycutt and Askew 

(1989). Further, the higher frequency of private alleles in our study may be the 

reason for our higher F57 estimate of 0.089, and consequently a lower Nem value 

of 2.56 than Edwards and Hamrick (0.026 and 9.95 respectively). However, 

studies conducted in other pines show that a FsT value of 0.08 is characteristic 

of pines and a Nem value above 0.5 is sufficient to prevent genetic drift. 
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ABSTRACT 

Segregation and linkage relationships were analyzed between 28 

isoenzyme loci in 10 natural stands representing much of the natural range of 

Pinus echinata Mill. (shortleaf pine). A total of 203 possible two-locus 

combinations were tested. Three linkage groups were revealed in this study at a 

linkLOD of 4.0. The first linkage group (A) consisted of Pgi and Adh-1; Gdh, ldh, 

Skdh-2, G6pd-2 and Aco were mapped to the second linkage group (B); the third 

group (C) had two loci: Mdh-2 and Mdh-3. A moderate linkage between Mnr-2 

and Dia-2 and weak linkages between Mnr-1 and Dia-1, and Got-2 and 6pgd-2 

were also detected. The significance of these results in shortleaf pine is 

discussed and compared to linkage maps previously reported in other conifers 

including pines. 
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INTRODUCTION 

Since their introduction into population genetics by Hunter and Markert in 

1957, the use of isoenzymes as genetic markers in forest trees has led to the 

accumulation of information on levels of genetic variation in a wide variety of 

species, including conifers. In conifers, isozymes have been used extensively 

for estimating mating system parameters (Burczyk et al. 1996; Prat and 

Caquelard 1995; Innes and Ringius 1990; Neale and Adams 1985; Cheliak et al. 

1985; Yazdani et al. 1985), phylogenetic studies (Goncharenko et al. 1995a; 

Conkle et al. 1988; Millar et al. 1988), pollen migration studies (Burczyk et al. 

1996; Harju and Nikkanen 1996; Smith and Adams 1983), hybrid zone studies 

(Copes and Beckwith 1977), provenance research (Bergmann and Ruetz 1991; 

Falkenhagen 1985), biosystematics (Millar et al. 1988; Strauss et al. 1992), 

investigating genetic diversity among and within populations (EI-Kassaby and 

Ritland 1996; Bergmann and Hattemer 1995; Goncharenko et al. 1995b, 1994, 

1993; Roberds and Conkle 1984; Raja et al. 1997; Surles et al. 1989; O'Malley 

et al. 1979) and more recently to examine whether evolutionary processes 

formed the basis for quantitative genetic variation seen in morphological traits 

(Yang et al. 1996). Unlike morphological traits in conifers, isozymes exhibit 

simple Mendelian inheritance and codominant expression. 

Rarely found in other diploid organisms, the haploid nature of the 

megagametophyte tissue in conifer seeds offers a great advantage in genetic 

segregation studies. Each megagametophyte represents a single meiotic event 
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in the parent plant, which enables the detection of heterozygous and 

homozygous parents at any given locus by analyzing a number of seeds from 

each parent. An observed variation is said to be genetic if the 

megagametophytes from a heterozygous tree show 1: 1 segregation for the locus 

of interest. Similarly, the segregation of markers in megagametophytes from a 

heterozygous tree with a 1: 1: 1: 1 ratio at two loci forms evidence for joint 

independent segregation, or an absence of linkage (Bartels 1971 ). 

When genes on the same chromosome fail to segregate independently they 

are said to be linked, which is a well-known genetic phenomenon (Boyle and 

Morgenstern 1985). Therefore, the establishment of inheritance of isozymes 

and linkage relationship among isozyme loci is crucial to the utilization of 

enzyme systems (Rudin 1976). Information derived from linkages of marker loci 

with quantitative characters can be a powerful tool in tree breeding (Tauer et at. 

1992; Newton et al. 1991; King et al. 1990; Beckmann and Soller 1983). 

Interpretation of multi-locus population data also requires information about 

linkage (Epperson and Allard 1987). 

Shortleaf pine (Pinus echinata Mill.), an important tree species of the 

southeast United States, has the broadest geographic range of the southern 

pines, ranging from New York to Texas and from southern Ohio to northern 

Florida. One of the four major southern pines, shortleaf pine makes up more 

than 22 percent of the standing volume of all southern pines and is widely used 

for construction lumber, plywood, pulp and paper. Several studies have been 

reported on linkage analysis of isozymes in pines ( Strauss and Conkle 1986; 
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Guries et al. 1978; Szmidt and Muona 1989; Adams and Joly 1980; Conkle 

1981; Eckert et al. 1981 ), but none so far in shortleaf pine. In this paper, we 

report on segregation and linkage of 28 isoenzyme loci in 10 natural stands 

representing a broad sample across the natural range of shortleaf pine in the 

United States. 
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MATERIALS AND METHODS 

Plant material, electrophoresis and enzyme detection procedures 

As part of a population genetics study of shortleaf pine (Raja et al. 1997) 

wind-pollinated seeds from 126 trees belonging to fifteen populations were 

collected in the Fall of 1993 by Dr. Ron Schmidtling of the USDA Forest Service 

Southern Research Station, Gulfport, Ml from their shortleaf pine southwide 

seed source study plantations (Wells 1973). From the large number of single

tree collections of shortleaf pine, 13 trees which were found to be heterozygous 

at six or more isozyme loci were selected for the linkage analysis. Ten of the 

above mentioned populations were represented. Selection of the most 

heterozygous individuals from a much larger population helps in maximizing the 

number of pairwise comparisons possible, and enables adequate 

interconnectedness or 'bridges' between the selected trees for heterozygous 

loci, which is necessary for building an elaborate and reliable linkage analysis 

incorporating comparisons between pairs of loci heterozygous among trees 

(Stam 1993). Seed source codes, their geographic locations, seed extraction 

and storage procedures, sample preparation, starch gel electrophoresis and 

isoenzyme detection procedures followed protocols described by Raja et al. 

(1997). The 1 O populations represented in this study were western South 

Carolina (C457), northern Georgia, Putnam county (C463), southwestern 

Georgia (C465), east central Alabama (C467), eastern Texas (C475), 

southeastern Oklahoma, Pushmataha county (C477 A), southeastern Oklahoma, 

McCurtain county (C477B), southeastern Arkansas (C481 ), northern Arkansas 
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(C483) and south central Missouri (C485). Thirty-four loci belonging to 20 

enzyme systems were resolved and consistently scorable in this study. The 

enzyme systems were aconitase (Aco, EC 4.2.1.3, 1 locus), acid phosphatase 

(Acp, EC 3.1.3.2, 2 loci), adenylate kinase (Adk, EC 2.7.4.3, 2 loci), alcohol 

dehydrogenase (Adh, EC 1.1.1.1, 2 loci), aldolase (Aid, EC 4.1.2.13, 2 loci), 

diaphorase (Dia, EC 1.6.4.3, 2 loci), glutamic dehydrogenase ( Gdh, EC 1.4.1.3, 

1 locus), glutamate-oxaloacetate transaminase (Got, EC 2.6.1.1, 2 loci), 

glucose-6-phosphate dehydrogenase ( G6pd, EC 1.1.1.49, 2 loci}, glycerate-2-

dehydrogenase ( G2d, EC 1.1.1.29, 1 locus), isocitric dehydrogenase (ldh, EC 

1.1.1.42, 1 locus), malic dehydrogenase (Mdh, EC 1.1.1.37, 4 loci}, malic 

enzyme (Me, EC 1.1.1.40, 1 locus}, menadione reductase (Mnr, EC 1.6.99.2, 2 

loci), phosphoglucose isomerase (Pgi, EC 5.3.1.9, 1 locus), 

phosphoglucomutase (Pgm, EC 2.7.5.1, 1 locus), 6-phosphogluconate 

dehydrogenase ( 6Pgd, EC 1.1.1.44, 2 loci), sorbitol dehydrogenase ( Sdh, EC 

1.1.1.14, 1 locus), shikimate dehydrogenase ( Skdh, EC 1.1.1.25, 2 loci) and 

uridine diphosphoglucose pyrophosphorylase (Ugpp, EC 2.7.7.9, 2 loci). Sixty 

megagametophytes were analyzed per parent to ensure reliable results, since it 

has been reported that satisfactory estimates of inheritance and linkage can be 

made from twelve or more megagametophytes (Chaisurisri and EI-Kassaby 

1993; O'Malley et al. 1979; Boyle and Morgenstern 1985). Data shown in this 

study represent the parent trees, since only the megagametophytes were used. 
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Linkage Analysis 

Segregation of all the loci scored was tested for goodness-of-fit to the 

expected 1: 1 Mendelian segregation ratio using a Chi Square (x2) goodness-of

fit test. Analysis of linkage between loci that passed the x2 test was performed 

using JoinMap version 1.4 (Stam 1993). This program analyzes segregation 

data from multiple parents of unknown pedigree and combines them into one 

map. Segregation data of the sixty megagametophytes analyzed, at each 

heterozygous locus for each parent, was entered into the computer as backcross 

data (H x A). A minimum LOO ( logarithm of the odds ) score for linkage 

(linkLOO) of 4.0 was used to identify linkage groups using two-point linkage 

analysis. The most likely order of loci within groups was determined using multi

point analysis with a minimum linkLOO of 4.0 and a minimum LOO for mapping 

(mapLOO) score of 0.5. Internal consistency in the data set was tested by 

constructing another map with a linkLOO of 4.0 and mapLOO of 1.0 and 

comparing it with the earlier map for significant differences in the ordering of 

markers. The Kosambi (1944) mapping function was used to determine the 

centiMorgan ( cM) distance between markers. 
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RESULTS 

Segregation analysis 

The 23 enzyme systems tested revealed 34 isozyme loci of which 28 

segregated in at least one of the 13 shortleaf pine trees studied. Mnr-2, Got-1, 

Mdh-1, Mdh-2, Mdh-3, Skdh-1, Dia-1 and Dia-2 segregated in one parent; Pgm 

and Mdh-4 segregated in two parents and the remaining 18 in three or more 

parents (Table 1 ). All the loci with the exception of Ugpp-1 exhibited a 1 :1 

Mendelian segregation ratio at a= 0.05 ( P = 0.0068) using ·x2 analysis (Table 

1 ). The distribution of heterozygous loci across the 13 parent trees is also 

presented in Table 1 to demonstrate the interconnectedness for heterozygous 

loci among the trees analyzed. All the trees analyzed were adequately 

interconnected to enable a reliable linkage analysis. 

Linkage analysis 

Two-point linkage analysis of all testable two-locus combinations (203 

combinations) revealed three linkage groups involving nine loci and 18 unlinked 

loci at a linkLOD of 4.0. Ugpp-1 was excluded from analysis since it failed the x2 

test for 1 :1 segregation. The eighteen unlinked loci were Mnr-1, Mnr-2, Got-1, 

Got-2, Ald-2, G2d, Mdh-1, Mdh-4, Me, Ugpp-2, 6pgd-1, 6pgd-2, Acp-1, Acp-2, 

Skdh-1, Pgm, Dia-1 and Dia-2. Recombination fractions ( R = recombination 

percentage+ 100 ), the associated standard errors (SR) and actual LOO scores 
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Table 1. Distribution of heterozygous isozyme loci (x) in the 13 shortleaf pine trees studied with 
segregation chi-square test for 1: 1 ratio. 

lsozyme Parent Trees No. of trees Allele Allele Segregation Chi-square p 

Locus 1 2 3 4 5 6 7 8 9 10 11 12 13 segregating A B for 1 :1 ratio 

6pgd-1 X X X X X X X X 8 194 205 0.3033 0.5819 
6pgd-2 X X X X X X X 7 218 185 2.7022 0.1002 
Aco X X X X 4 79 82 0.0559 0.8131 
Acp-1 X X X X 4 111 109 0.0182 0.8927 
Acp-2 X X X X 4 113 110 0.0404 0.8408 
Adh-1 X X X X X 5 138 132 0.1333 0.7150 
Ald-2 X X X 3 74 89 1.3804 0.2400 
Dia-1 X 1 25 35 1.6667 0.1967 
Dia-2 X 1 27 20 1.0426 0.3072 
G2d X X X X X X X 7 190 202 0.3673 0.5445 
G6pd-2 X X X 3 64 66 0.0308 0.8608 
Gdh X X X 3 76 91 1.3473 0.2458 

w Got-1 X 1 22 36 3.3793 0.0660 
'° Got-2 X X X X X X X X X X X 11 302 335 1.7096 0.1910 

ldh X X X X 4 108 115 0.2197 0.6392 
Mdh-1 X 1 31 29 0.0667 · 0.7962 
Mdh-2 X 1 23 35 2.4828 0.1151 
Mdh-3 X 1 24 34 1.7241 0.1892 
Mdh-4 X X 2 58 62 0.1333 0.7150 
Me X X X 3 79 87 0.3855 0.5347 
Mnr-1 X X X X X X X X 8 238 234 0.0339 0.8539 
Mnr-2 X 1 19 15 0.4706 0.4927 
Pgi X X X X X X X 7 189 211 1.2100 0.2710 
Pgm X X 2 49 54 0.2427 0.6222 
Skdh-1 X 1 24 36 2.4000 0.1213 
Skdh-2 X X X X 4 103 114 0.5576 0.4552 
Ugpp-1 X X X 3 62 96 7.3165 0.0068* 
Ugpp-2 X X X X X X X X X 9 261 257 0.0309 0.8605 

No. of loc 6 7 9 11 8 9 12 8 7 8 10 8 6 

* - significant at alpha= 0.05. 



of loci combinations which cosegregated at a LOD score above 1.0 are 

presented in Table 2, because linkages above a LOD score above 1.0 may be of 

interest to anyone attempting to study the linkage of isozyme loci in conifers. 

Three linkage groups were revealed in this study at a linkLOD of 4.0 {Figure 1 ). 

Comparing maps constructed at mapLODs of 0.5 and 1.0 revealed no 

differences in linkage groups or the ordering of markers. 

Linkage Group A 

The linkage group A includes Pgi and Adh-1 (Figure 1 ). A linkage between 

Pgi and Adh was also reported in ponderosa pine (Pinus ponderosa) by O'Malley 

et al. {1979) and Scots pine (Pinus sylvestris) by Szmidt and Muona (1989). 

Linkage Group B 

This study mapped Gdh, ldh, Skdh-2, G6pd-2 and Aco to linkage ,group B 

(Figure 1 ). All possible two-point analyses between these loci showed strong 

evidence of linkage (Table 2). Strong linkage between G6pd-2 and Aco was 

reported in Scots pine by Szmidt and Muona (1989). A linkage group with Gdh, 

ldh, G6pd and 6pgd was reported by Altukhov et al. (1986) in Norway spruce 

(Picea abies (L.) Karst.). A moderate linkage between Gdh and G6pd was 

reported in Polish larch (Larix decidua subsp. polonica (Racib.) Domin.) by 

Lewandowski and Mejnartowicz (1991 ). A strong linkage between Gdh and ldh 

loci was reported in black spruce (Picea mariana) by Boyle and 
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Figure 1. Map of linked loci in shortleaf pine. Kosambi map distances in 
centiMorgans are shown between loci. 
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Table 2. The recombination fraction (R), its standard error (SR) and LOO 
scores for combinations of isoenzyme loci that exhibit a significant cosegregation 
at a LOO score> 1.0, in 13 shortleaf pine trees studied. 

Combination LOO Combination LOO 
Recombination Recombination 

Locus 1 - Locus 2 R SR Value Locus 1 - Locus 2 R SR Value 

Mnr-1 - Ald-2 0.381 0.046 1.3472 G2d - Skdh-2 0.379 0.052 1.1117 
Mnr-1 - Ugpp-2 0.434 0.028 1.1078 G2d - Aco 0.351 0.050 1.7660 
Mnr-1 - Dia-1 0.266 0.057 2.9506 G2d - Mnr-2 0.312 0.081 1.0015 
Got-2 - Pgi 0.435 0.024 1.4721 Mdh-4 - Me 0.300 0.059 2.1441 
Got-2 - Ugpp-2 0.429 0.024 1.7167 Acp-2 - Pgm 0.279 0.068 1.8875 
Got-2 - 6pgd-2 0.395 0.029 2.6907 Gdh - Idh 0.024 0.012 40.9117* 

""" Got-2 - Acp-1 0.400 0.037 1.4866 Gdh - Skdh-2 0.018 0.010 41.9860* N 

Pgi - Adh-1 0.312 0.037 4.9348* Gdh - G6pd-2 0.053 0.019 27.2953* 
Pgi - Mdh-2 0.333 0.062 1.4019 Gdh - Aco 0.029 0.016 24.5391 * 
Pgi - Mdh-3 0.350 0.063 1.1179 Mdh-2 - Mdh-3 0.017 0.017 15.2658* 
Ald-2 - Mdh-4 0.350 0.061 1.1908 /dh - Skdh-2 0.004 0.004 61.9557* 
Adh-1 - Acp-1 0.370 0.048 1.4849 /dh - G6pd-2 0.046 0.018 28.0138* 
Adh-1 - Acp-2 0.345 0.064 1.1599 Idh - Aco 0.025 0.012 40.0413* 
G2d - Ugpp-2 0.405 0.029 2.0966 Skdh-2 - G6pd-2 0.038 0.016 29.9299* 
G2d - 6pgd-2 0.436 0.029 1.0315 Skdh-2 - Aco 0.019 0.010 40.8150* 
G2d - Acp-1 0.394 0.046 1.0618 G6pd-2 - Aco 0.042 0.024 15.6936* 
G2d - Idh 0.372 0.049 1.3455 Mnr-2 - Dia-2 0.176 0.065 3.3541 

* - Pairs ofloci with significant cosegregation at a LOO score of 4.0 



Morgenstern ( 1985) and in Chinese fir ( Cunninghamia Janceolata Hook.) by 

Geburek and Wang (1990). A moderate linkage between G6pd and /dh was 

reported in pitch pine (Pinus rigida Mill.) by O'Malley et al. (1986). 

Linkage Group C 

The third linkage group (C) included 2 loci: Mdh-2 and Mdh-3 (Figure 1 ). 

To the best of our knowledge this linkage has been previously reported only 

once, in Norway spruce {Poulsen et al. 1983). As evident from Table 1, only 

individual 4 provided the information for testing linkage between these two loci. 

The analysis suggested a tight linkage between Mdh-2 and Mdh-3. 

Other linkages 

A moderate linkage was detected between Mnr-2 and Dia-2 {R=0.176, 

LOD=3.35) and a weak linkage between Mnr-1 and Dia-1 (R=0.266, LOD=2.95) 

and Got-2 and 6pgd-2 (R=0.395, LOD=2.69). A linkage between Got-2 and 

6pgd was reported in balsam fir (Abies balsamea) by Neale and Adams (1981) ) 

and in Chinese fir by Geburek and Wang (1990). 
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DISCUSSION 

From Table 1 it is evident that there is a strong relationship between the 

thirteen trees studied, allowing reliable estimates of linkage between loci that 

were found to be heterozygous in different individuals. All loci showed 1: 1 

Mendelian segregation with the exception of Ugpp-1. Segregation distortion of 

alleles in Ugpp-1 may be due to several reasons, as discussed by previous 

linkage studies. Differential viability of gametes carrying different isozymes 

(Adams and Joly 1980; Rudin and Ekberg 1978), linkage to.lethals (Sorensen 

1967) or simply sampling or scoring errors could result in non-random 

segregation of alleles. 

We found three different linkage groups among the 28 loci studied. Maps 

constructed at mapLODs of 0.5 and 1.0 agreed completely with each other 

regarding linked markers and their ordering, which suggested internal 

consistency in the data. In general, our results agree with studies reported in 

other conifers like ponderosa pine (O'Malley et al. 1979), balsam fir (Neale and 

Adams 1981 ), Polish iarch (Lewandowski and Mejnartowicz 1991 ), black spruce 

(Boyle and Morgenstern 1985), Norway spruce (Poulsen et al. 1983; Altukhov et 

al. 1986), pitch pine (O'Malley et al. 1986) and Scots pine (Szmidt and Muona 

1989). Linkage between Pgi and Adh loci was reported in ponderosa pine 

(O'Malley et al. 1979) and Scots pine (Szmidt and Muona 1989) and we confirm 

it as a strong linkage in shortleaf pine. 
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Even though the linkage group involving Gdh, ldh, G6pd and Aco loci is 

well known in pines and has been reported in various combinations and with 

varying degrees of linkage in Scots pine (Szmidt and Muona 1989), Norway 

spruce (Altukhov et al. 1986), Polish larch (Lewandowski and Mejnartowicz 

1991 ), black spruce (Boyle and Morgenstern 1985), Chinese fir (Geburek and 

Wang 1990) and pitch pine (O'Malley et al. 1986), we believe that the strong 

linkage we detected between the Gdh, ldh, Skdh-2, G6pd-2 and Aco loci in 

shortleaf pine is of special significance in studying the mechanism of 

hybridization and introgression between shortleaf pine and loblolly pine. 

Huneycutt and Askew (1989) reported that the ldh locus was monomorphic for 

shortleaf pine (average mobility 17mm from origin) and loblolly pine (average 

mobility 22mm from origin), and segregates in a 1: 1 ratio (polymorphic) for their 

F1 hybrids. They concluded that the electrophoretic separation of ldh 

isoenzymes is a highly accurate technique for identifying F1 hybrids. However, 

they also recognized the fact that identification of hybrid generations beyond F1 

using ldh may not be reliable, because Mendelian segregation would allow only 

one half of the progeny to be heterozygous at the ldh locus when a natural 

backcross or a cross between two F1 's takes place. Also, a recent study of 

genetic variation in shortleaf pine (Raja et al. 1997) showed a very high 

percentage (16.7%) of trees sampled across the United States were polymorphic 

at the ldh locus, leading us to rethink the adequacy of using the ldh locus alone, 

in identifying hybrids. The tight linkage of the Jdh locus with Gdh, Skdh-2, G6pd-

2 and Aco loci in shortleaf pine that we identified through this study would 
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enable the potential use of these loci as additional markers in identifying hybrids 

more reliably, as well as possibly allowing us to trace them beyond the F1 

generation. The presence of Skdh-2 in linkage group 8 has not been previously 

reported in any other conifer. 

Our study suggests a tight linkage between Mdh-2 and Mdh-3. However, 

since the linkage has been reported only once before (Poulsen et al. 1983) and 

our result is based on the data from one shortleaf pine individual, we advise 

caution. Additional results to support our findings may be helpful in confirming 

this linkage in shortleaf pine. The moderate linkage detected between Mnr-2 

and Dia-2 and the weak linkage between Mnr-1 and Dia-1 and between Got-2 

and 6pgd-2 are positive indications but also require additional investigation and 

confirmation. Since Got-2 and 6pgd linkage was previously reported in other 

conifers (Neale and Adams 1981; Geburek and Wang 1990), it may be a 

credible linkage. 

Our study finds linkages between isoenzyme loci, many of which were 

previously reported in other conifers even though their combinations and 

degrees of linkage varied. This may be an indication that not only are important 

genes with vital functions conserved across species, but that their linkages are 

conserved as well. Exploring the significance of chromosomal conservatism in 

conifers, i.e. the significance of why several "house-keeping" genes are on one 

chromosome, may provide valuable insights into the mechanisms of natural 

selection, evolution and speciation. 
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ABSTRACT 

The effects of regeneration methods on genetic diversity and structure in 

shortleaf pine (Pinus echinata Mill.) were examined by quantifying the changes 

in genetic composition of shortleaf pine stands following harvest by monitoring 

changes in allele number and frequency at heterozygous loci over time. The 

results were also compared to the genetic composition of seed used for artificial 

regeneration following clear-cutting. Both natural regeneration treatments 

resulted in higher genetic variation in post-treatment seed, indicating a richer 

pollen cloud after management. Artificial regeneration showed fewer alleles per 

locus and fewer polymorphic loci compared to both natural regeneration 

treatments. Frequency of alternate alleles increased at 13 loci in the seed-tree 

stand after treatment, which is an indication of less inbreeding or 

consanguineous mating. Single tree selection resulted in an increase in 

alternate allele frequencies at 1 O loci and at 4 loci alternate allele frequencies 

decreased, indicating that the treatment may result in more inbreeding than seed 

tree. Artificial regeneration showed a considerable increase in alternate allele 

frequencies at 17 loci and hence can be considered outbred. The above 

mentioned observations were confirmed by comparing Ho, He and F values for 

the two stands before and after treatment. The seed tree method resulted in a 

decrease in inbreeding, whereas the first selection cut for single tree selection 

did not alter it. Artificial regeneration showed a negative F value indicative of 

high levels of heterozygosity and outbreeding. The natural regeneration 
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treatments did not result in genetic drift whereas the artificial regeneration 

showed considerable change in the genetic composition of the potential 

regeneration. 
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INTRODUCTION 

Increased public desire to maintain genetic diversity in forests has resulted 

in a growing concern over the influence of forest management practices on 

genetic variation in forests. Continuing demand for forest products, the 

increasing demand for use of forested areas for non-traditional purposes, and 

the general public desire to maintain landscape diversity, biodiversity, conserve 

wildlife, protect old growth forests, control ecodegradation and global climate 

change has put a complex array of often conflicting demands, priorities and 

conditions on forest managers. The choice of suitable management strategies 

applicable to the climatic, political and public situation of the forests under their 

care has become exceedingly difficult. Therefore, an evaluation of within

species genetic diversity of existing stands compared to that of stands 

regenerated by various management schemes would help in understanding 

man's effect on these stands, and may suggest suitable management strategies. 

The trend on federal lands has been to move from artificial regeneration 

methods like clear-cutting to natural regeneration systems such as seed-tree 

and single tree selection methods. The genetic consequences of various natural 

and artificial regeneration methods have been hypothesized (Daniel et al. 1979) 

but there have been very few efforts to quantify changes in genetic variation at a 

molecular level. 

Neale and Adams (1985) studied the mating system of an uncut and a 

shelterwood stand of Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) in 
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Oregon. Their results suggested related matings other than selfs probably are 

occurring in uncut stands but not in shelterwoods. However, since they were not 

able to detect significant differences, they proposed an expanded study of this 

nature with lower residual stand densities. 

Two studies in Europe evaluating genetic changes during different life 

stages in Scots pine ( Pinus sylvestris L.) found that inbreeding was reduced 

from 12% in embryos to less than 1 % in 3-year old natural regeneration 

established from those seeds (Muona et al. 1987) and that excess homozygosity 

found in embryos disappeared from the surviving regeneration by age 10-20 

(Yazdani et al. 1985), both indicating that elimination of inbred individuals occurs 

during stand establishment and early competition. 

A study of change in population structure in a parent and adjacent progeny 

stand of loblolly pine (Pinus taeda L.) (Roberds and Conkle 1984) found that 

although allele frequencies did not differ between the parent and progeny 

stands, genetic population structure was not the same, demonstrating that local 

genetic structure can differ between successive generations in a stand. Such a 

change may occur due to various regeneration methods and is the kind of 

knowledge required to address the question of management effects on genetic 

diversity. 

A study comparing genetic variation and heterozygosity in seed orchards 

and natural stands of Norway spruce (Picea abies (L.) Karst.) reported no 

change in gene frequency distributions, percent polymorphic loci (p) and mean 

number of alleles per locus (A), but found higher levels of heterozygosity in 
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seed orchard trees compared to natural stands (Bergmann and Ruetz 1991 ). 

However, a similar study examining the progenies from seed orchard and natural 

stands in Sitka spruce (Picea sitchensis (Bong.) Carr.) reported significantly 

higher values for p and A for seeds from seed orchards, but the mean 

heterozygosities were not significantly different (Chaisurisri and EI-Kassaby 

1994). 

These studies suggest certain trends regarding the genetic consequences 

of management but do not give a clear picture since methods and results were 

variable. In this study, we report the changes in genetic variation and structure 

at 31 isoenzyme loci in two shortleaf pine stands managed by the seed-tree and 

single tree selection systems. The results are also compared to the potential 

genetic variation that would be found in these stands had they been artificially 

regenerated using bulked seed from two different seed orchards. We chose the 

seed-tree and single tree selection systems for our study since they are in use 

and represent the two extremes of selection pressure, seed-tree being most 

intense with residual pine basal area of 3.7m2 per hectare, and single tree 

selection being the least with residual pine basal area of 14.2m2 per hectare 

(Wittwer et al. 1997). 
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MATERIALS AND METHODS 

Plant material, electrophoresis and enzyme detection procedures 

Seeds from 48 trees in each of two 15-hectare shortleaf pine stands in the 

Ouachita Mountains of Montgomery County, Arkansas were collected in the fall 

of 1993. Approximately 70% ofthe basal area in these stands was shortleaf 

pine and 30% deciduous species, predominantly Quercus and Carya species 

(Wittwer et al. 1997). The average age of dominant shortleaf pine trees in both 

stands was 64 years. Each stand was subdivided into quarters of approximately 

equal area arranged perpendicular to the elevation gradient and each quarter 

further subdivided into thirds along the elevation gradient, as part of a large 

ecosystem management research study on the Ouachita and Ozark National 

Forests in west-central Arkansas and eastern Oklahoma (Guldin et al. 1993). A 

plot center was marked in each of the 12 subdivisions and 4 healthy trees of at 

least 20 cm diameter at breast height with abundant cones were selected in 

each subdivision for this study. Seed-tree and single tree selection harvest I 

regeneration systems were applied to the two stands, respectively, about three 

months before the first seed collection. Two years later the seed crop 

representing genetic variation after management was imposed, was collected. 

The seed samples were assayed to detect changes in genetic variation due 

to management. Twenty-five seeds from each of the 48 trees from each stand 

for both pre- and post-treatment were assayed for 34 isoenzyme loci that were 

found polymorphic through an earlier study (Raja et al. 1997). Fifty seeds each 
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from the bulked seeds of the Ouachita and Ozark seed orchards were also 

analyzed to represent artificial regeneration for these stands, had they been 

clear-cut and planted with seedlings from those seed orchard seeds. Seed 

extraction and storage procedures, sample preparation, starch gel 

electrophoresis, enzymes staining and isoenzyme detection procedures followed 

protocols described by Raja et al. (1997). Thirty-four loci belonging to 20 

enzyme systems were assayed, from which 31 loci were resolved and 

consistently scorable in this study. The enzyme systems were aconitase (Aco, 

EC 4.2.1.3, 1 locus), acid phosphatase (Acp, EC 3.1.3.2, 2 loci), adenylate 

kinase (Adk, EC 2. 7.4.3, 2 loci), alcohol dehydrogenase (Adh, EC 1.1.1.1, 1 

locus), aldolase (Aid, EC 4.1.2.13, 2 loci), diaphorase (Dia, EC 1.6.4.3, 1 locus), 

glutamic dehydrogenase ( Gdh, EC 1.4.1.3, 1 locus), glutamate-oxaloacetate 

transaminase ( Got, EC 2.6.1.1, 2 loci), glucose-6-phosphate dehydrogenase 

( G6pd, EC 1.1.1.49, 2 loci), glycerate-2-dehydrogenase ( G2d,. EC 1.1.1.29, 1 

locus), isocitric dehydrogenase (ldh, EC 1.1.1.42, 1 locus), malic dehydrogenase 

(Mdh, EC 1.1.1.37, 4 loci), malic enzyme (Me, EC 1.1.1.40, 1 locus), menadione 

reductase (Mnr, EC 1.6.99.2, 2 loci}, phosphoglucose isomerase (Pgi, EC 

5.3.1.9, 1 locus), phosphoglucomutase (Pgm, EC 2.7.5.1, 1 locus), 6-

phosphogluconate dehydrogenase ( 6Pgd, EC 1.1.1.44, 2 loci), sorb.itol 

dehydrogenase (Sdh, EC 1.1.1.14, 1 locus), shikimate dehydrogenase (Skdh, 

EC 1.1.1.25, 2 loci) and uridine diphosphoglucose pyrophosphorylase ( Ugpp, 

EC 2.7.7.9, 1 locus). 
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Data Analysis 

Megagametophytes and embryos from each seed were scored for each 

locus. Identification of pollen genotype was accomplished by comparing 

megagametophyte and embryo data. Haploid pollen allele frequencies and 

diploid embryo genotypic frequencies were then calculated. Pollen allele 

frequencies for pre-treatment and post-treatment, and pre-treatment and artificial 

regeneration were compared with x2 tests (Snedecor and Cochran 1967, p. 250). 

When expected values were too small for x2 tests, Fisher's exact test was used 

(Sokal and Rohlf 1981, p. 7 40). Genetic diversity was estimated by percent 

polymorphic loci 'p', mean number of alleles per locus 'A' and mean number of 

alleles per polymorphic locus 'Ap'. Diploid embryo data from each stand were 

pooled for pre-treatment, post-treatment, and artificial regeneration to calculate 

the observed (Ho) and expected (He) heterozygosities, and the fixation index 

using the formula : 

[1] F = 1 - Ho I He 

Levels of genetic differentiation between stands were estimated using 

Wright's F statistics, Fsr (Wright 1965; 1969; 1978; Nei 1977). Haploid pollen 

allele frequencies, diploid embryo genotypic frequencies, p, A and Ap were 

calculated using the FREQ procedure of SAS computer program, and Ho, He and 
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Fsr were calculated using the BIOSYS-1 computer program (Swofford and 

Selander 1981 ). 
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RESULTS AND DISCUSSION 

Genetic Diversity 

The 20 enzyme systems assayed identified 75 electrophoretic variants at 

31 loci. Twenty nine of the 31 loci assayed exhibited polymorphism in at least 

one stand. Seven of the 75 electrophoretic variants found were seen only in one 

stand, 4 in the seed-tree stand ( at loci Adh, Adk-2, Ald-2 and G6pd-1) and 3 in 

the single tree selection stand ( at loci Acp-1, Mdh-3 and Sdh ). 

Table 1 presents the haploid pollen allele frequencies by locus with x.2 and 

probability values for testing allele frequency differences between pre- and post

treatment for both the seed-tree and single tree selection method, as well as for 

the two pre-treatment stands with artificial regeneration. The seed-tree method 

resulted in a gain of 8 alleles at 7 loci (Adh, Adk-2, G6pd-1, G6pd-2, Got-1, 

6Pgd-2 and Pg1) and a loss at one (Mdh-4) following treatment. The single-tree 

selection method resulted in a gain of 9 alleles at 7 loci (Acp-1, Adh, Got-1, Got-

2, Mdh-1, Mdh-4 and Me-1) and a loss at one (Sdh). Artificial regeneration 

resulted in a gain of 6 alleles at 6 loci (Acp-1, Adh, Got-1, Got-2, Mdh-1 and Me-

1) and a loss of 12 alleles at 11 loci (Acp-2, Ald-2, G6pd-1, G6pd-2, Mdh-1, 

Mdh-3, Mdh-4, Me-1, Pgd-2, Pgi and Sdh). It is important to note that all results 

reported here are based on the seed available for regeneration of these stands, 

and may not necessarily represent the genetics of advanced regeneration. 

The seed-tree and the single tree selection system resulted a similar 

increase in P (about 8%), A (about 12%) and Ap (about 8%) following treatment 
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Table 1. Pollen allele frequencies (F) by locus for seed-tree, single tree selection, and artificial 

regeneration. Chi-square (Chi2) values and significance levels (P) for testing Pre- (PR), post-
treatment (PS) and artificial regeneration allele frequency differences are also presented. 

Locus Allele Treatment 

Seed-tree Single Tree Selection Artificial Regeneration 

F(PR) F(PS) Chi2 p F(PR) F(PS) Chi2 p F Chi2 P(l>8 Chi2 P(2)b 

Aco A 0.073 0.110 8.29 <0.01 0.099 0.093 0.21 0.65 0.130 4.15 0.04 0.92 0.34 

B 0.927 0.890 0.901 0.907 0.870 

A 0.005 0.016 0.006 0.060 

Acp-1 B 0.995 0.984 6.59 <0.01 1.000 0.980 16.08 <0.01 0.940 28.9 <0.01 50.0 <0.01 

C 0.014 

A 0.003 0.013 0.024 0.048 

Acp-2 B 0.994 0.964 21.27 <0.01 0.948 0.944 16.07 <0.01 0.810 159.9 <0.01 56.12 <0.01 

C 0.003 0.023 0.028 0.008 0.190 

A 0.012 0.001 0.010 

Adh B 1.000 0.987 13.92 <0.01 1.000 0.999 0.98 0.32 0.990 10.36 <0.01 8.62 <0.01 

C 0.001 

Adk-1 B 1.000 1.000 1.000 1.000 1.000 

Adk-2 A 0.003 2.19 0.14 

B 1.000 0.997 1.000 1.000 1.000 

Aid-I B 1.000 1.000 1.000 1.000 1.000 

Ald-2 A 0.001 0.002 0.33 0.57 0.10 0.76 

B 0.999 0.998 1.000 1.000 1.000 

Dia A 0.044 0.138 50.30 <0.01 0.021 0.107 49.43 <0.01 0.200 39.97 <0.01 72.37 <0.01 

B 0.956 0.862 0.979 0.893 0.800 

G2d A 0.489 0.488 0.002 0.96 0.440 0.440 0.00 1.00 0.510 0.16 0.69 1.77 0.18 

B 0.511 0.512 0.560 0.560 0.490 

A 0.007 0.004 0.015 

G6pd-1 B 0.993 0.986 7.01 0.03 0.996 0.985 5.95 0.02 1.000 0.70 0.40 0.36 0.54 

C 0.007 0.007 

G6pd-2 A 0.006 6.15 0.01 0.006 0.002 1.41 0.24 0.61 0.44 

B 1.000 0.994 0.994 0.998 1.000 

Gdh A 0.072 0.071 0.02 0.90 0.086 0.082 0.11 0.74 0.080 0.09 0.77 0.04 0.84 

B 0.928 0.929 0.914 0.918 0.920 

A 0.019 0.008 0.060 

Got-I B 0.998 0.871 133.1 <0.01 0.986 0.910 51.71 <0.01 0.840 143.8 <0.01 82.62 <0.01 

C 0.002 0.110 0.014 0.082 0.100 

A 0.002 0.043 0.042 0.220 

Got-2 B 0.794 0.665 62.35 <0.01 0.775 0.627 60.76 <0.01 0.540 196.3 <0.01 177.8 <0.01 

C 0.204 0.292 0.225 0.331 0.240 
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ldh A 0.056 0.058 0.064 0.80 0.041 0.058 2.92 0.09 0.040 0.44 0.51 0.001 0.98 

B 0.944 0.942 0.959 0.942 0.960 

A 0.994 0.995 1.000 0.997 0.960 
Mdh-1 B· 0.001 0.003 2.28 0.32 0.002 2.85 0.24 0.040 32.92 <0.01 34.58 <0.01 

C 0.005 0.002 0.001 

A 0.009 0.027 0.022 0.012 0.010 
Mdh-2 B 0.987 0.956 16.32 <0.01 0.974 0.974 7.67 0.02 0.960 9.22 0.01 10.00 <0.01 

C 0.004 0.017 0.004 0.014 0.030 

A 0.995 0.971 0.963 0.983 0.980 
Mdh-3 B 0.003 0.024 16.38 <0.01 0.034 0.012 9.54 <0.01 0.020 5.54 0.06 0.83 0.66 

C 0.002 0.005 0.003 0.005 

A 0.004 0.001 

Mdh-4 B 0.999 1.000 0.99 0.32 0.996 0.998 2.06 0.36 1.000 0.10 0.76 0.35 0.55 
C 0.001 0.001 

A 0.002 0.006 0.042 0.036 

Me-1 B 0.996 0.986 5.92 0.05 0.958 0.945 15.61 <0.01 0.960 25.31 <0.01 36.63 <0.01 

C 0.002 0.008 0.019 0.040 

A 0.030 0.048 0.032 0.059 0.173 

Mnr-1 B 0.952 0.856 65.84 <0.01 0.930 0.853 25.58 <0.01 0.707 70.29 <0.01 45.05 <0.01 

C 0.018 0.096 0.038 0.088 0.120 

Mnr-2 A 0.009 0.024 8.17 <0.01 0.004 0.040 26.95 <0.01 0.107 45.51 <0.01 63.24 <0.01 

B 0.991 0.976 0.996 0.960 0.893 

A 0.125 0.177 0.101 0.128 0.150 

6pgd-J B 0.857 0.740 62.48 <0.01 0.867 0.792 23.28 <0.01 0.780 12.17 <0.01 6.33 0.04 

C 0.018 0.083 0.032 0.080 0.070 

A 0.001 0.049 0.044 

6pgd-2 B 0.926 0.875 15.52 <0.01 0.883 0.840 11.74 <0.01 0.810 15.74 <0.01 21.73 <0.01 

C 0.074 0.124 0.068 0.116 0.190 

A 0.005 0.011 O.Ql8 

Pgi B 0.909 0.869 11.72 <0.01 0.908 0.894 1.93 0.38 0.790 14.04 <0.01 18.12 <0.01 

C 0.091 0.126 0.081 0.088 0.210 

Pgm A 0.989 0.985 0.57 0.45 0.945 0.929 1.69 0.19 0.950 9.80 <0.01 0.05 0.82 

B 0.011 O.Ql5 0.055 0.071 0.050 

Sdh A 1.000 1.000 0.997 1.000 2.18 0.14 1.000 0.25 0.62 

B 0.003 

Skdh-1 A 0.059 0.065 0.30 0.58 0.095 0.094 0.002 0.96 0.110 3.96 0.05 0.22 0.64 

B 0.941 0.935 0.905 0.906 0.890 

Skdh-2 A 0.003 0.021 14.07 <0.01 0.026 0.003 15.72 <0.01 0.010 1.27 0.26 0.93 0.34 

B 0.997 0.979 0.974 0.997 0.990 

Ugpp-2 A 0.893 0.797 35.40 <0.01 0.854 0.739 32.14 <0.01 0.530 99.55 <0.01 62.21 <0.01 

B 0.107 0.203 0.146 0.261 0.470 

a: Chi value and P for testing differences between seed-tree (PR) and artificial regeneration. 
b: Chi2 value and P for testing differences between single tree selection (PR) and artificial regeneration. 
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(Table 2). However, the absolute values of P and A were consistently lower for 

the single-tree selection system compared with the seed-tree system. It is to be 

noted that the lowest values for P, A and Ap were observed for the seeds 

representing artificial regeneration (Table 2). 

By comparing the change in number of alleles, and the genetic diversity 

estimates P, A and Ap, it can be inferred that seed from the seed-tree and single 

tree selection systems resulted in a richer pollen cloud after treatment whereas 

seed orchard seed for artificial regeneration had a less diverse pollen cloud. 

Genetic Structure 

A significant increase in the frequency of alternate alleles following 

treatment was observed at 13 loci in the seed-tree stand, at 10 loci in the single 

tree selection stand, and at 17 loci in the seed representing artificial 

regeneration (Table 1 ). It is interesting to note that while the frequency of 

alternate alleles was not reduced at any loci in the seed-tree stand and the 

artificial regeneration, a significant reduction was observed at 4 loci in the single 

tree selection stand. 

Observed (H0 ) and expected (He) heterozygosities calculated from pooled 

diploid genotypic frequency data and the fixation index F for each stand are 

presented in Table 3. Observed heterozygosities were lower than the expected 

for seed-tree and single tree selection stands prior to treatment. Following 

treatment the seed-tree method resulted in a shift in the observed heterozygosity 
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Table 2: Percentage of polymorphic loci (P ), Mean number of alleles per locus (A) 
and mean number of alleles per polymorphic locus (Ap) for all treatments 

Treatment 

Seed-tree Single tree selection Artificial Regeneration 

Pre Post Pre Post 

p 80.6 87.1 77.4 83.9 74.2 

A 2.06 2.29 2.00 2.26 1.90 

Ap 2.32 2.48 2.29 2.50 2.22 

Table 3: Observed (H O ) and expected (He ) heterozygosities, and inbreeding 

values (F) for each treatment. 

Seed-tree 

Pre 

0.124 

0.136 

0.088 

Post 

0.101 

0.104 

0.029 

Treatment 

Single tree selection 

Pre 

0.099 

0.110 

0.100 
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Post 

0.117 

0.130 

0.100 

Artificial Regeneration 

0.197 

0.177 

-0.133 



closer to the expected, whereas the single tree selection method did not result 

in a change. Consequently, a 3-fold reduction in F value was seen due to seed

tree method, while no change was detected in the single tree selection method. 

Artificial regeneration had considerably higher observed heterozygosity than 

expected, and consequently a negative F value. 

A diagrammatic representation of genetic differentiation (Fsr) between 

stands is shown in Figure 1. The two stands prior to treatment had the same 

amount genetic differentiation as the two stands after treatment (Fsr = 0.007). 

When each stand was analyzed across time, the seed-tree stand had an Fsr of 

0.005 and the single tree selection stand, 0.004, again no change or difference. 

Compared to the two pre-treatment stands, artificial regeneration had 4 to 7 fold 

higher Fsr values (0.025 with seed-tree and 0.036 with single tree selection). 

Artificial regeneration of these stands with seed orchard seed would result in a 

significant change in the genetic structure of the stands. 

When comparing the change in frequency of alternate alleles, it is seen that 

the increase in frequency of alternate alleles was greatest for artificial 

regeneration and least for the single-tree selection. H0 , He and F values 

together with allele frequency comparisons confirm that artificial regeneration 

results in highly heterozygous, outbred regeneration. Regeneration from the 

seed-tree method showed a reduction in F value, indicative of less inbreeding or 

consanguineous mating. While the seed-tree method seems to reduce 

inbreeding, the single tree selection method seems to maintain the existing level 
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Figure 1. Diagrammatic representation of genetic differentiation (F sT) 
between stands of shortleaf pine. 



of inbreeding. This, of course, may change following additional selection cuts in 

the single tree selection stand. When the genetic difference between the two 

stands prior to treatment is considered as base line genetic difference (0.7%}, it 

can be inferred that the two treatments do not introduce any genetic drift 

between stands or within stands across time. However, artificial regeneration 

introduces 2.5 to 3.6% genetic differentiation compared to the previously existing 

stand. This is a significant change when considering the fact that the total 

genetic differentiation in shortleaf pine across its natural range is only 9% or 

lower (Raja at al. 1997; Edwards and Hamrick, 1995). 
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CONCLUSION 

lsoenzyme markers were powerful enough to detect changes in genetic 

diversity and structure in shortleaf pine due to management. The pollen cloud 

was enriched when the seed-tree and single tree selection regeneration 

methods were applied to the stands. The pollen diversity in the seed orchard 

was less than that achieved by the two natural regeneration treatments and less 

than that of the stands prior to treatment. The seed-tree method increased the 

frequency of heterozygotes, thereby reducing inbreeding, while the single tree 

method did not alter the level of heterozygotes or inbreeding, and artificial 

regeneration would result in a highly heterozygous, outbred population. The two 

natural regeneration systems do not introduce genetic drift, but artificial 

regeneration seems to introduce a high genetic change compared to the 

previously existing stands. These results confirm the trend noted by Neale and 

Adams (1985). 

However, we advise some caution in interpreting these results. While the 

seed-tree stand and artificial regeneration seed sampled reflects genetic 

changes after the final cut had been applied to the stands, the single tree 

selection stand sampled the genetic changes after just the first cutting had been 

applied. In the single tree selection system, the regeneration that restocks the 

stand comes from periodic harvest cuts and hence the genetic composition of 

the stand's seed after several harvests could possibly be somewhat different 

from that after the first harvest cut. The results are also limited by the fact that 
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we sampled seed and not the actual regeneration. We recommend an extended 

study evaluating established regeneration at later stages of all three 

regeneration systems. The genetic differences we detected were in the seeds, 

many of which may disappear during seedling establishment owing to natural 

selection as suggested by Muona et al. (1987) and Yazdani et al. (1985). 
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