Livestock Decision Risk Analysis

(Includes VisiCalc Template)

John E. Ikerd
Agricultural Economist

Any decision that can result in a profit also can result in a loss. Profit, in the purest sense, is a return for taking risks. Paid laborers or managers can earn interest with little risk of loss. But, profits represent something more than competitive returns to land, labor, capital, and managment. Profit is the reward that goes to the one who takes the risk of putting management and labor into something without a guaranteed return. Profit goes to capital and Iand committed without assurance of fixed, positive returns. The potential for profits exist only if there also exists a risk of loss.

Risk may be defined as the chance or probability of a loss or otherwise unfavorable outcome. There are two basic types of risks: business risks and financial risks. Business risk may be thought of as the probability of a loss or adverse outcome from a business decision. Financial risk is the addition to total risks that results from the use of borrowed money to finance a business activity. There are two basic types of business risks: production risks and market risks. Production risk is the probability of loss or adverse outcome resulting from unfavorable production costs. Market risk is the probability of loss or adverse outcome resulting from unfavorable market prices. Total business risk is the sum of production risk and market risk.

Financial risk may be defined as equity risk exposure. Greater use of borrowed capital, ie. higher leverage, increases profits or losses in relation to owned equity. That is, a given level of profit or loss represents a greater percentage of owner equity for a more highly leveraged business activity. From a risk standpoint, higher leverage increases the probability that total owned equity will be lost as a result of any given business decision. Thus, higher leverage implies greater risk.

[^0]A producer may choose any risk level as a basis for comparison among alternative courses of action. But, consistent set of standardmeasures or "risk ratings" may prove useful. A "pessimistic" rating may be assigned to unfavorable outcomes at the one-sixth probability level. Thus, there would be one-chance-in-six of an outcome as bad or worse than the "pessimistic" rated level. An "optimistic" rating may be assigned to favorable outcomes at the one-sixth probability level. There would be one-chance-in-six of an outcome as good or better than the "optimistic" level. An "expected" rating may be assigned to the single most likely outcome. There would be a 50-50 or one-in-two chance of outcomes better or worse than the "expected" level. A producer with a good basic understanding of these three risk levels couldmake logical risk management decisions.

Decision Risk Analysis
Risk rated decisions follow the same basic guidelines as other decision processes. First, specific risk related objectives should be set by the decision maker. What is the minimum cash flow or net revenue needed at the "pessimistic" probability level? What is the maximum equity exposure at the "pessimistic" level? In other words, how much risk can the operation stand? What is the target or objective net return or cash flow level? What is an acceptable probability of achieving that positive return given the current cost and market situation and outlook? All these are important questions in developing risk rated objectives.

Next, alternative courses of action must be analyzed with respect to their potential for achieving objective returns at acceptable levels of risk. At this point, electronic calculator or computer assistance becomes very useful. Programs are available to combine user estimates of "expected", "optimistic", and "pessimistic" prices and costs to derive risk rated net revenues. Thus, total businesss risks can be expressed as "optimistic", "pessimistic", and "expected" net revenues. The risk ratings of net revenues have the same interpretations as for price and cost risks. There is a one-in-six chance of net revenues higher than "optimistic" levels, one-six-chance of net revenues less than "pessimistic" levels, and so on.

Various financial risk levels are evaluated by calculating total net returns as a percentage of total owner equity. This gives risk rated equity exposure levels. Thus, each alternative can be evaluated in terms of its total business and financial risk dimensions. This process of evaluation facilitates better overall decision making.

The following program was designed using a VisiCale spread sheet program on a micro computer. A similar program is available for use on a TI-59 Texas Instrument programable calculator with printer. VisiCale templates are available for Apple IIe and TRS-80 Models II, XII and XVI with Enhanced Visicalc. A copy of the template can be obtained by contacting the author.

Risk Rated Analysis

The decision maker may input three estimates each for selling price and production costs to reflect optimistic, expected, and pessimistic situations. This information along with any price-cost correlation, expected production per head, and number of head is used to compute risk rated outcomes.

The program will generate estimates of expected, optimistic and pessimistic net returns. Thus, it provides estimates typically shown in "single outcome" planning budgets as well as estimates of outcomes better and worse than those deemed most likely. Probabilities of a profit or loss are calculated also. Profit is defined as a positive return to risk over all costs including opportunity cost of owned equity.

Financial risks are measured in terms of risk rated returns to owner equity. Opportunity costs of owner equity are subtracted from total costs in these calcualtions. The program is capable also of computing probabilities associated with equity outcomes of any level desired by the program user. For example, the user might be interested in outcomes much greater than or less than the optimistic and pessimistic levels generated automatically by the program. However, calculated probabilities are likely to be less accurate for extreme outcomes or for outcomes very near expected values.

Program Input

Risk rated prices and costs make up the first six input entries of each VisiCalc program option. Program users must estimate prices and costs that most accurately represent the predefined probability levels associated with optimistic, expected and pessimistic levels.

Some users may find other ways of expressing the one-in-six levels more helpful. For example, optimistic and pessimistic prices and costs may be thought of as half-way points between most likely outcomes and extreme outcomes that might be expected only one-time-out-of-a-hundred. This definition is consistent with the one-in-six probability level assuming "normally" distributed prices and costs, as used in this program.

Another consistent approach is to divide all possible outcomes into three equal categories: high, average, low. Optimistic then represents the average-high outcome, expected the average-average and pessimistic the average-low outcome. This leaves two-thirds of all outcomes between the average-high and average-low as with the risk rating approach. Regardless of the method, prices and costs entered must be those which seem reasonable to the program user.

Variability in production due to death loss, rates of gain, etc. must be reflected in estimates of cost variability. All revenue calculations are based on expected production. This is equivelent to assuming that livestock will be sold a given target weight and all production risk are reflected in costs of achieving that weight. Any variation in death loss, rates of gain, etc. must be reflected in variability of breakeven costs.

Cost-price correlation entries allow program users to adjust for any expected interrelationship between prices and costs. For example severe winter weather may cause cost of gain to rise toward pessimistic levels. But, poor gains might reduce supplies of market ready cattle and move prices more toward optimistic levels.

The degree of price-cost correlation will depend on the degree to which program users expect their individual production situation to be correlated with overall market supplies and on sensivity of prices to supply variability. A price-correlation of 0.5 would
imply than roughly 25% (0.5×0.5) of price variability would be associated with variability in the program users production costs. That would probably be a practical maximum for most producers. A price-cost corr. value of 0.2 might be more reasonable for most situations. And, in many cases a value of 0.0 will be more accurate meaning no measurable correlation between prices and costs for the individual producer.

Risk Rated Analysis--Example

An example risk rated analysis is shown in table 1. Probabilistic estimates of price outcomes indicate a one-in-six chance of an optimistic price as high or higher than $\$ 72$ for cattle at the end of an expected feeding period. A most likely or expected price is $\$ 67$. But, there is a one-in-six chance of the pessimistic price of $\$ 61$. Optimistically, there is a one-in-six chance that costs per cwt. of expected production will average as low or lower than $\$ 61.50$. Expected costs are estimated at $\$ 64.00$ and pessimistically, costs might run as high or higher than $\$ 66.50$ per cwt. of expected production one-out-of-six times.

A price-cost correlation of -.10 assumes only about 1% of price variation is related to cost variation. Expected production is 100 head of cattle to be sold at an expected average weight of 1100 lb per head. Variability in production and sale weights have been accounted for in the probability range used for costs.

Financial entries indicate 15,000 or $\$ 150$ per head of owner equity in this operation with the rest assumed to be borrowed capital. An opportunity interest rate of 14% represents an alternative return on owned equity. Cost of borrowed capital has been included in cost estimates. A six month feeding period is used to calculate interest on equity capital.

Intermediate results are shown directly below input values. A $\$ 10.50$ per head interest on owner equity figure is subtracted from costs in calculating total returns to equity in the financial analysis section of results. Optimistic and pessimistic standard error figures of 58.98 and 68.91 reflect standard measures of variability in net returns per head above and below expected net return values.

Risk rated returns are expressed in per head returns of risk. Expected risk returns , $\$ 33$ per head, are equal to expected price minus expected cost times expected sale weight. Optimistic net returns equal expected net returns plus the optimistic standard error. There is an estimated one-in-six chance of net returns equal to or greater than $\$ 91.98$ per head, based on probabilistic prices and costs entered into the input section of this program. There likewise is an estimated one-in-six chance of net returns equal to or less than a $\$ 35.91$ loss in this same situation.

Probability estimates of profit and loss are based on assumptions of normally distributed prices, costs and net revenues. There is an estimated 71% chance on a profit, ie. net revenue equal or greater than zero, in this price-cost situation. This leaves a 29% probability of loss. Thus 71 times out of a hundred a producer facing this price, cost situation would expect to show some profit but the other 29 times the outcome would be expected to show a loss.

Financial risks are analyzed in the final section of results. Expected returns to owner equity reflect total costs minus interest on owned equity. Thus, equity returns include returns to both capital and risk. The expected return of $\$ 4350$ represents a 29% return on the owner's $\$ 15000$ equity commitment for the six month period. The annual percentage would be nearly 60%. There is an optimistic, one-in-six chance of a $\$ 10,248$ or 68% return on equity for the six month production period. But pessimistically, there is a one-in-six chance of a $\$ 2541$ or 17% equity loss within the same time period.

The last section of the program allows users to enter and critical equity return value such as the $\$ 10000$ and $-\$ 5000$ shown. Probabilities of such returns are calculated by the program. Example results show a 17% chance of $\$ 10,000$. This result is very similar to the optimistic return as 17% is equivelent to one-sixth. There is an estimated 9% chance of a loss of
$\$ 5000$ or more from this particular operation. Minimum probabilities shown will be 1% indicating some probability of any reasonable outcome.

Summary
The previous example illustrates only one risk situation. But, the analytical program provides decision makers with the power to analyze numerous alternatives. Some of these alternatives include hedging in the futures market, higher or lower financial leverage, alternative kinds of livestock and alternative production practices. Reasonable estimates of expected prices and costs as well as variability or risks associated with price and cost estimates are necessary parts of each analysis. Other basic information includes equity capital, interest rates and any cost price correlation. But, the computer or calculator does all the "pencil pushing" once the appropriate numbers are entered

There are no guarantees of profitabile decisions. This risk program is designed to deal with the always present possibilities of prices and/or costs less favorable than expected. The best of decisions can result in losses even when risks are taken into consideration. But, the odds of a profitable decision may be improved greatly by evaluation of potential profits and risks among logical alternatives. Programmable calculators and micro computers provide analytical power to make such complex analyses not only possible but practical.
Visicalc Equations
Key equations used in risk rated calculations are provided for those using other computational systems. Spread sheet locations are listed for input and output in column E with the first price data entry in row 34. Calculations for a second column of input, provided in the visicalc program, are identical to those shown for column E.

Equation 1 calculates interest on owner equity on a per head basis for the appropriate number of months. Equation 2 calculates the standard deviation of net revenue for optimistic outcomes. Differences between optimistic and pessimistic outcomes are used to represent standard deviations of price and cost distributions. Equation 3 repeats the process using differences between pessimistic and expected values to estimate pessimistic net revenue standard deviations. These calculations assume normally distributed prices and costs. Standard deviation of price minus cost equals the square root of the variance of price plus the variance of cost plus 2 times the covariance of price and cost. Standard deviation of net revenue per cwt. is multiplied by expected weight per head, a constant, to calculate standard deviations of net revenue per head.

Equations 4,5 and 6 calculate optimistic, expected and pessimistic net revenues per head respectively. Expected net revenue, equation 5 , is expected price minus expected cost times expected weight. Optimistic net revenue equals expected net revenue plus the optimistic standard deviation. Pessimistic net revenues is expected net revenue minus the pessimistic standard deviation.

Equation 7 checks for an expected profit or loss. If the expected return is positive, zero or breakeven will be on the pessimistic side of the distribution and vice versa. Equation 8 calculates a " 2 " value of a normal distribution: expected net revenue minus zero divided by the appropriate standard deviation. Maximum " 2 " values of 2.5 are used to insure some probability of all reasonable outcomes. The "if" statement in equation 8 selects the appropriate standard deviation. Equations 9 through 11 integrate the area under a normal curve between its mean and the " 2 " value calculated in equation 8. Equation 12 checks for a profit or loss and shows the appropriate probability for a profit. The probability of loss is one minus the probability of a profit.

Equations 13 and 14 illustrate the basic methodology used in calculating total returns in the financial risk section. Interest on owner equity is added to net revenue per head, which is equivilent to reducing costs
by that amount. Thus, total returns are returns of owner equity and risk. This adjusted net revenue is multiplied by the number of head produced to generate an expected total net return. The optimistic standard deviation likewise is multiplied by expected number of head to calculate the standard deviation of total net revenue.

The optimistic standard deviation is added to expected net revenue to estimate an optimistic total net return to equity, as shown in equation 13. Optimistic total net revenue is divided by owner equity and converted to percentage terms to generate an optimistic equity return, as shown in equation 14 . Expected total net revenue is calculated as indicated in the optimistic equation. The pessimistic total net revenue equation is identical to equation 13 except it uses the pessimistic standard deviation.

Probabilities of the last two critical return levels use methodology identical to that used in calculating probabilities of profits. Critical returns are compared with expected total net returns to determine whether optimistic or pessimistic standard deviations are appropriate. Normal " Z " values are calculated using the appropriate total net revenue standard deviation. Equations identical to those in equations 9-11 are used to calculate probabilities of returns above critical level \#1 and below critical level $\$$. 2 . These basic equations are not shown as a matter of practicality. The whole probability calculation process is a straight forward use of statistical formula associated with normally distributed random variables.

$6>$ E62:/(E35-E39)*E44-E55
$7>$ N63:/F\$(E61<0)
$8>063: @ \operatorname{MIN}(2.5, @ \operatorname{ABS}((\mathrm{E} 5 \mathrm{l}-0) /$ ©IF$(\mathrm{N} 63, \mathrm{E} 54, \mathrm{E} 55)))$
$9>P 63: 1 /(1+(.2316419 * 063))$
$10>$ Q63:. $398942281 *\left((2.71828)\left(\left(-\left(063^{\wedge} 2\right) / 2\right)\right)\right)$
$11>{ }^{2} 63:+Q 63 *\left((.31938153 * P 63)-\left(.356563782 *\left(P 63^{\wedge} 2\right)\right)+(1.781477937 *(P 63\right.$ ^3))$\left.\left(1.821255978 *\left(P 63^{\wedge} 4\right)\right)+\left(1.330274429 *\left(P 63^{\wedge} 5\right)\right)\right)$ >E66: §@IF(N63,R63,(1-R63)) >E71: ((E61+E53)*E43) $+($ E54*E43) >E72: (E71/E46)*100

The information given herein is for educational purposes only. Reference to commercial products or trade names is made with the understanding that no discrimination is intended and no endorsement by the Cooperative Extension Service is implied.

Oklahoma State Cooperative Extension Service does not discriminate because of race, sex, color or national origin in its programs and activities, and is an equal opportunity employer. Issued in furtherance of Cooperative Extension work, Acts of May 8 and June 30, 1914, in cooperation with the U.S. Department of Agriculture, Charles B . Browning, Director of Cooperative Extension Service, Oklahoma State University, Stillwater, Oklahoma. This publication is printed and issued by Oklahoma State University as authorized by the Dean of the Division of Agriculture and has been prepared and distributed at a cost of $\$ 236.00$ for 4,150 copies. 0684 TS

[^0]: Risk Rated Decisions
 There are an infinite number of possible combinations of probabilities and profits or losses that might result from any decision. A producer might be interested in the chances of making $\$ 10,000$ or more or of losing $\$ 5,000$ or more as a result of a decision. One might be interested in how much profit might be expected one-time-out-of-ten in a situation such as the present. Or, risks of loss at the one-out-of-five or 20 percent probability level may be of greater concern. Lack of standard measures of risks tends to make decision making more complex than is necessary.

