Cooperative Extension Service - Division of Agriculture - Oklahoma State University

Programmable Calculator DECISION MAKER SERIES

LIVESTOCK DECISION RISK ANALYSIS

John Ikerd and Francis Epplin
 Agricultural Economists

Any decision that can result in a profit also can result in a loss. Profit, in the purest sense, is a return for taking risks. Paid laborers or managers can earn wages or salaries with little risks. Land can earn a cash rent and money in the bank can earn interest with little risk of loss. But, profits represent something more than competitive returns to land, labor, capital, and management. Profit is the reward that goes to the one who takes the risk of putting management and labor into something without a guaranteed return. Profit goes to capital and land committed without assurance of a fixed, positive return. The potential for pure profit exists only if there also exists a risk of loss.

There are two basic types of risks: business risks and financial risks. Business risk may be thought of as the probability of a loss or adverse outcome from a business decision. Financial risk is the addition to total risks that results from the use of borrowed money to finance a business activity. There are two basic types of business risks: production risks and market risks. Production risk is the probability of a loss or adverse outcome resulting from unfavorable production costs. Market risk is the probability of loss or adverse outcome resulting from unfavorable market prices. Total business risk is the sum of production risk and market risk.

Financial risks are related to the impact of debt financing or leverage. Debt repayment commitments represent a critical demand of cash flow from a business activity. Higher leverage means greater production levels from any given amount of owned equity. Higher leverage multiplies profits or losses as a percentage of owned equity. From a risk standpoint, higher leverage increases the probability that total owned equity will be lost as a result of a given business decision. And, higher leverage means greater debt service commitments.

Risk Rated Decisions

There are an infinite number of possible combinations of probabilities and profits or losses from any decision. A producer might be
interested in the chances of making $\$ 10,000$ or more or of losing $\$ 5,000$ or more. He or she might be interested in how much profit one might expect to make one time out of ten in a situation like the present. Or one might be interested in how much he or she might lose with an one in five, or 20 percent probability. The lack of any standard measure of risks tend to make the decision process more complex than is necessary.

A producer may choose any risk level as a basis for comparison among alternative courses of action. But, selection of some basic standards or risk ratings may prove useful. A "pessimistic" rating may be assigned to an unfavorable outcome at the one-sixth probability level. Thus, there would be one-chance-in-six of an outcome as bad or worse than a "pessimistic" rated outcome. An "optimistic" rating may be assigned to a favorable outcome at the one-sixth probability level. There is one-chance-in-six of an outcome as good as or better than an "optimistic" rated outcome. An "expected" rating may be assigned to the single most likely outcome. There is a $50-50$ or one-in-two chance of an outcome either better or worse than the "expected" outcome. And, there are two-chances-out-of-three of an outcome better than a "pessimistic" outcome but not as good as an "optimistic" outcome. A producer who has a good basic understanding of these three risk levels can make logical risk management decisions.

Decision Risk Analysis

Risk rated decisions follow the same basic guidelines as other decision processes. First it is necessary to set specific risk related objectives. What is the minimum cash flow or net revenue needed at the "pessimistic" probability level? What is the maximum equity exposure at the "pessimistic" level? In other words, how much risk can the operation stand? What is the target or objective net return or cash flow level? What is an acceptable probability of achieving that positive return given the current cost and market situation and outlook? All these are important questions in developing risk rated objectives.

Next, alternative courses of action must be analyzed with respect to their potential for
achieving an objective at acceptable levels of risk. At this point, programmable calculators become very useful. Programs are available to combine user estimates of "expected," "optimistic" and "pessimistic" price and cost levels. Thus, total business risks can be expressed as "optimistic", "pessimistic" and "expected" net revenues. The risk ratings of net revenues have the same interpretation as for price and cost risks. There is a one-in-six chance of net revenues higher than "optimistic" levels, one-in-six chance of net revenues less than "pessimistic" levels, and so on.

Various financial risk levels are evaluated by converting net returns to owner equity and expressing net returns as a percentage of equity. Thus, each alternative can be evaluated in terms of its total business and financial risk dimensions. This process of evaluation facilitates better overall decision making.

The following program is designed for use on a Texas Instruments TI-59 calculator with printer. The manager may input three estimates of selling prices and production costs to reflect optimistic, most likely (expected), and pessimistic situations. This information along with the price-cost correlation, expected number of units of production per item (eg. cwt./head) and the number of items (eg, head) is used to compute the output.

The program will generate estimates of most likely (expected) as well as optimistic and pessimistic net returns. Thus, it provides an estimate of the returns associated with "good," "expected," and "bad" price-cost outcomes. The program will also compute the probability of a return greater than (or less than) any specified critical level. The program will also compute the percentage of the estimated returns relative to the total equity invested in the strategy.

Input required

		Storage Register	Labels
1.	Optimistic selling price (\$/unit)	11	OP
2.	Expected selling price (\$/unit)	12	EP
3.	Pessimistic selling price (\$/unit)	13	PP
4.	Optimistic production cost (\$/unit)	14	OC
5.	Expected production cost (\$/unit)	15	EC
6.	Pessimistic production cost (\$/unit)	t 16	PC
7.	Correlation between selling price and production cost (\%/100)	8 17	CP-C
8.	Expected number of production items (numbers)	18	ITMS
9.	Expected production per unit (units)	19	PROD
10.	Total equity in strategy (\$)	20	EQTY
11.	Interest rate (\%/100)	21	INT
12.	Months required to complete strategy (months)	e 22	MTHS

The units on inputs one through six (registers $11-16$) could be $\$ / \mathrm{cwt}$. In which case the units for input nine (register 19) would be the expected selling weight of the animals in cwt. Input 8 (register 18) would be the number of animals involved with the decision.

Output A

If a printer is attached, the program will print the inputs with labels. It will also compute and print labels for the following: (Alternatively, the outputs may be recalled from the denoted storage registers.)

Recall from
Register

1. Returns if the optimistic price and optimistic cost materialize
(\$/item) 23 ONR
2. Returns if the expected price and the expected cost materialize (\$/item)

24 ENR

- Returns if the pessimistic price and pessimistic cost materialize (\$/item) 25 PNR

4. Optimistic total net
returns (\$)
5. OTNR percent of total equity in strategy (\%)

27 \%EQY
6. Expected total net returns
(\$)
28 ETNR
7. ETNR percent of total
equity in strategy (\%)
29
\%EQY
8. Pessimistic total net
returns (\$)
30
PTNR
9. PTNR percent of total
equity in strategy (\%) 31 \%EQY

Output B

Output B enables a manager to compute the probability of achieving or exceeding a specified total net returns or critical level (CRL). For example, to compute the probability of achieving or exceeding a critical level (PCR), enter the desired level and press B. (The calculator will display the PCR, thus a printer is not necessary.)

Output B uses information computed by output A. Therefore, A must be executed prior to B. If any of the inputs in registers 11-22 are changed, output A should be recomputed prior to output B.

Example

The program can be used to analyze many types of "risk management" decisions. Our example considers a cattle feeding situation.

Production Costs

A producer may use a number of sources to assist with estimates of production costs. Records from previous lots of cattle would be very helpful. In addition, OSU enterprise budgets or the OSU TI-59 livestock costs and returns program may be used. For our example, we estimate that our most likely or expected cost will be $\$ 65 / \mathrm{cwt}$. However, if weather and feed prices are favorable, cost may be $\$ 60 / c w t$. (optimistic cost). On the
other hand if feed conversion is less than anticipated and death losses higher than normal, costs could be $\$ 70 /$ cwt. (pessimistic cost).

Selling price

The producer may use OSU projections of expected, pessimistic, and optimistic fed cattle prices. Perhaps the OSU estimates could be used in conjunction with estimates from other experts to generate an individualized projection.

For our example, we project an expected price of $\$ 67 / \mathrm{cwt}$., a pessimistic price of $\$ 63 / \mathrm{cwt}$., and an optimistic price of $\$ 72 / \mathrm{cwt}$.

Cost-Price Correlation

Pessimistic production costs (high costs) are more likely to result in optimistic selling prices. (high prices) than expected prices. Conversely, optimistic production costs (low costs) are more likely to be associated with pessimistic (lower) prices. The degree of this relationship depends upon the nature of the commodity's production cycle and the concentration of production. And, in the short run, such as one growing season, the relationship is not always pronounced. For example, bumper world crops (low or optimistic production costs per bushel) are expected to be associated with low or pessimistic crop prices. If your level of output (feed conversion and rate of gain) generally rises and falls with national output, enter a positive decimal. In our example we enter 0.2 . On the other hand, if you have a low feed cost and good feed conversion when everyone else has poor feed conversion, high death losses and poor rates of gain, enter a zero.

Additional Factors

For our example, we expect to feed 100 head to 11 cwt ($1,100 \mathrm{lbs}$). We have $\$ 30,000$ of equity capital (EQTY) that has an opportunity cost of 17 percent (INT) and will be "tied up" for 6 months (MTHS).

	Keys Pressed	
Optimistic selling price (\$/unit)	OP	72 STO 11
Expected selling price (\$/unit)	EP	67 STO 12
Pessimistic selling price (\$/unit)	PP	63 STO 13
Optimistic production cost (\$/unit)	OC	60 STO 14
Expected production $\cos t$ (\$/unit)	EC	65 STO 15
Pessimistic production cost (\$/unit)	PC	70 STO 16
Correlation between selling price and production cost (\%/100)	CP-C	. 2 STO 17
Expected number of production items (number)	ITMS	100 STO 18

Expected production per unit (units)

PROD
11 STO 19
Total equity in strategy (\$)

EQTY 30000 STO 20
Interest rate (\%/100)
INT
.17 STO 21
Months required to complete the strategy (months)

MTHS
6 STO 22

Output A

Press A

RISK?

RISK?	
72.00	DP
67.00	EF
63.00	PP
60.00	पC:
65.00	EC:
70. 00	FC
0. 20	CP-C
100.00	ITMS
11.00	FROI
30000. 00	E日TY
0.17	IHT
6.00	MTHS
117.07	पNR
47.50	ENR
-15.69	FHR
707.01	
39.02	FEQY
4750.00	ETHE:
15.83	\%EQY
-1569.02	FTHR
-5. 23	\%EQY

The first section

 (OP - MTHS) lists our inputs. We can easily detect data entry errors.Section 2 (ONR PNR) provides estimates on a per item (per head) basis. If optimistic prices and costs prevail (ONR) we expect returns of $\$ 117.07$ per head. If both prices and costs are as expected (ENR) we expect returns of $\$ 47.50$ per head. However, if costs are high and prices are low (PNR) we may lose $\$ 15.69$ per head.

Section 3 (OTNR \%EQY) provides estimates for the entire number of items (ITMS). In our example, we plan to feed 100 steers. We expect to make $\$ 4750$ which is 15.83 percent of the equity invested in the strategy.

Output B
Enter critical level (CRL) and press B.

> 18664.02 .0227500752
11707.01
.1586552892
4750. .4999999995
-1569.02
.158552179
CRL
FCR

-7888.04	CRL
.0227500434	PCR

x	$=($ INT \times MTHS $\div 12) \times($ EQTY $\div($ ITMS \times PROD $)$)
EC'	$=E C-X$
PC'	$=P C-X$
OC'	$=O C-X$
OSE	$\begin{aligned} = & \left((O P-E P)^{2}-2 \times C P-C \times(O P-E P) \times\left(E C^{\prime}\right.\right. \\ & \left.\left.-O C^{\prime}\right)\right)^{\cdot 5} \times{ }^{\prime} R^{\prime} O D \end{aligned}$
PSE	$\begin{aligned} = & \left((E P-P P)^{2}+P C^{\prime}-E E^{\prime}\right)^{2}-2 \times C P-C \times \\ & \left.(E P-P P) \times\left(P C^{\prime}-E C^{\prime}\right)\right)^{5} \times P R O D \end{aligned}$
ENR	$=(E P-E C) \times$ PROD
ONR	= ENR + OSE
PNR	= ENR - PSE

```
ENTR = EPEC : ITMS
%EQY = ENTR % EQTY x 100
OTNR = ETNR + (OSE x ITMS)
*EQY = OTNR % EQTY x 100
PTNR = ETNR - (PSE x ITMS)
%EQY = PTNR % EQTY x 100
PCR = Probability of }x\geq
    where:
        Z (CRL - ETNR) : (OSE x ITMS) for CRL \geq
        ETNR
        z=(ETNR - CRL) % (PSE x ITMS) for CRL <
        ENTR
```


Worksheet

The master library module should be "loaded" into the calculator. Enter program from sides 1 (BANK 1) and 2 (BANK 2) of card 1. Enter labels from side 1 (BANK 3) of card 2. Data may be stored on, and entered from, side 2 (BANK 4) of card 2 .

Item		Units	Keys Pressed	Display	Your Values	
OPTIMISTIC PRICE	OP	\$/unit	72 STO 11	72.		
EXPECTED PRICE	EP	S/unit	67 STO 12	67.		
PESSIMISTIC PRICE	PP	S/unit	63 STO 13	63.		
OPTIMISTIC COST	OC	\$/unit	60 STO 14	60.		
EXPECTED COST	EC	\$/unit	65 STO 15	65.		
PESSIMISTIC COST	PC	\$/unit	70 STO 16	70.		
COST PRICE CORRELATION	CP-C	\%/100	.2 STO 16	0.2		
NUMBER OF PROCUTION						
ITEMS	ITMS	no.	100 STO 18	100.		
EXPECTED PRODUCTION						
PER UNIT	PROD	units	11 STO 19	11.		
STRATEGY EQUITY	EQTY	\$	30000 STO 20	30000.		
INTEREST RATE	INT	\%/100	.17 STO 21	0.17		
MONTHS REQUIRED	MTHS	months	6 STO 22	6.		
COMPUTE ESTIMATES						
OUTPUT A			A	1.		
OUTPUT B						
$\begin{aligned} & \text { ENTER CRITICAL } \\ & \text { LEVEL } \end{aligned}$	CRL	\$	0 B			
$\begin{aligned} & \text { COMPUTED } \\ & \text { PROBABILITY } \end{aligned}$	PCR	$\% / 100$		0.2261		

The worksheet illustrates only one risk situation. Programmable calculators provide the decision maker with the power to analyze numerous alternatives. Thus worksheet space is provided suggesting alternative sets of prices, costs, production levels, financial arrangements, etc. This allows producers to quickly evaluate alternatives such as hedging in futures markets, higher or lower financial leveraging, alternative kinds of cattle, and alternative production practices. It is necessary to have reasonable estimates of levels and variability of prices and costs associated with each alternaitve considered and other basic information such as equity capital
and interest rates. But, the calculator does all the "pencil pushing" once the appropriate numbers have been entered.

There are no guarantees for profitable decisions. The risk program is designed to deal specifically with the always present possibility of prices and/or costs less favorable than expected. The best of decisions can result in losses even when risks are taken into consideration. But, the odds of a profitable decision may be improved greatly by evaluation of potential profits and risks among all logical alternativees. Programmable calculators provide the analytical power to make such complex analyses not only possible but practical.

Program Listing

Store in BANK 1, on card 1, side 1 and BANK 2, on card 1 , side 2.

000	76	LBL	041	01	1	082	01	1	123	53	(16.4	65	\times
001	98	AIV	042	01	1	083	02	2	124	43	RCL	165	43	FCL
002	98	FDV	043	42	STI	084	54	,	125	14	14	166	10	10
003	07	7	044	04	04	085	65	\times	126	75	-	167	65	x
004	32	X:T	045	76	LEL	086	53	(127	43	FCL	168	43	RCLL
005	97	IIS2	046	19	I'	087	43	RCL	128	36	36	169	33	33
006	00	0	047	73	$\mathrm{RC} \cdot \times$ Ind	088	20	20	129	54	$)$	170	54)
007	19	II°	048	0.5	0.5	089	55	\div	130	95	$=$	171	95	=
008	76	LBL	049	69	DP	090	43	RCL	131	42	STD	172	34	F\%
009	11	A	050	04	04	091	18	18	132	33	33	173	65	\times
010	01	1	051	73	$\mathrm{RC} . \times$ Ind	092	55	\div	133	53	,	174	43	RCL
011	00	0	052	04	04	093	43	RCL	134	43	RCL	175	19	19
012	32	X:T	053	58	FIX	094	19	19	135	16	16	176	95	$=$
013	98	AIV	054	02	2	095	54	$)$	136	75	-	177	42	STD
014	69	पF	055	69	DP	096	95		137	43	RCL	178	06	06
015	00	010	056	06	06	097	42	STD	138	36	36	179	43	FEL
016	03	3	057	22	INV	098	36	36	139	54)	180	32	32
017	05	5	058	58	FIX	099	43	RCL	140	75	-	181	33	$x 2$
018	02	2	059	01.	1	100	11	11	141	53	<	182	85	+
019	04	4	060	44	sum	101	75	-	142	43	RCL	183	43	FCL
020	03	3	061	05	05	102	43	RCL	143	15	15	184	07	07
021	06	6	062	44	sum	103	12	12	144	75	-	185	33	\cdots
022	02	2	063	04	04	104	95	=	145	43	RCL	186	75	-
023	06	E	064	43	RCL	105	42	STu	146	36	36	187	53	(
024	07	7	065	00	0 O	106	10	10	147	54	$)$	188	02	2
025	01	1	066	67	E0	107	43	RCL	148	95	$=$	189	65	\times
026	69	-	067	98	FDV	108	12	12	149	42	STu	190	43	RCL
027	02	02	068	97	ISS2	109	75	-	150	07	07	191	17	17
028	69	पF.	069	00	0	110	43	RCL	151	43	RCL	192	65	x
029	05	0.5	070	19	II'	111	13	13	152	10	10	193	43	RCL
030	13	c	071	98	H3v	112	95		153	33	χ^{2}	194	32	32
031	69	- ${ }^{\text {P }}$	072	91	FS	113	42	STD	154	85	+	195	65	x
032	00	00	073	76	LBL	114	32	32	155	43	RCL	196	43	RCL
033	02	2	074	13	C.	115	53		156	33	33	197	07	07
034	01	1	075	53		116	43	RCL	157	33	x^{2}	198	54	
035	42	ST0	076	43	RCL	117	15	15	158	75	-	199	95	$=$
036	00	00	077	21	21	118	75		159	53		200	34	FX
037	03	3	078	65	\therefore	119	43	RCL	160	02	2	201	65	x
038	09	9	079	43	FCL	120	36	36	161	65	\times	202	43	RCL
039	42	STD	080	22	22	121	54	$)$	162	43	RCL	203	19	19
040	05	05	081	55	\div	122	75	-	163	17	17	204	95	

205	42	STu	261	95	$=$	317	77	CE		
206	34	34	262	42	STD	318	15	E		
207	53	¢	263	29	29	319	53	(
208	43	FCL	264	43	FCL	320	43	RCL		
209	12	12	265	28	28	321	10	00		
210	75	-	266	85	$+$	322	75	-		
211	53	(267	53	6	323	43	RCL		
212	43	RCL	268	43	RCL	324	28	28		
213	15	15	269	06	06	325	54)		
214	75	-	270	65	\times	326	55	\div		
215	43	RCL	271	43	RCL	327	53	(
216	36	36	272	18	18	329	43	RCL		
217	54)	273	95	=	329	06	06		
218	54	y	274	42	STD	330	6.5	\times		
219	65	x	275	26	26	331	43	FCL		
220	43	FCLL	276	55	\div	332	18	18		
221	19	19	277	43	RCL	333	54)		
222	95	=	278	09	09	334	95	$=$		
223	42	STD	279	95	$=$	335		GTD	Labe1 Codes	
224	24	24	280	42	STO	336	10	$E^{\text {: }}$	Store i	3, on
225	43	REL	281	27	27	337	76	LEL	card 2, side	
226	24	24	282	43	RC:L	338	15	E		
227	85	+	283	28	28	339	53	¢		
228	43	RCL	284	75		340	43	FCL	Code	Register
229	106	D6	285	53	6	341	010	D10	Code	
230	95	$=$	286	43	RCL	342	94	$+7$	11153570	37
231	42	STD	287	34	34	343	85	$+$	113315500	38
232	23	23	288	65	\times	344	43	FCL	$1132900 \square$	39
233	43	FCLL	289	43	RCL	345	28	28	1117330000	40
234	24	24	290	18	18	346	54)	113330000	41
235	75	-	291	54	$)$	347	5	\div	1132150000	42
236	43	RCLL	292	95	=	348	53	<	1117150000	43
237	34	34	293	42	STD	349	43	FCLL	1133150000	44
238	95	$=$	294	30	30	350	34	34	1115332015	45
239	42	STD	295	55	\div	351	65	\times	1124373036	46
240	25	25	296	43	FCL	352	43	ECL	113335316	47
241	43	RCL	297	09	09	353	18	18	1117343745	48
242	20	20	298	95	$=$	354	54)	1124313701	49
243	5.5	\div	299	42	STD	355	95	$=$	113037236	511
244	01	1	300	31	31	356	76	LEL	1132313500	51
245	00	17	301	92	INV SBR	357	10	E:	1117313500	52
246	00	0	302	76	LBL	358	36	FCM	1133313500	53
247	95	=	303	12	B	359	14	14	113237335	54
248	42	STD	304	42	STD	360	11	H	1161173445	55
249	09	19	305	00	00	361	36	FGM	1117373135	56
250	43	RCL	306	32	X:T	362	14	14	1161173445	57
251	24	24	307	43	RCL	363	12	E	$1133373135 .$	58
252	65	X	308	37	37	364	32	\because	1161173445	59
253	43	FCL	309	69	DP	365	43	FCL		
254	18	18	310	04	04	366	38	38		
25	95	=	311	43	FCL	367	69	DP		
256	42	STD	312	00	$0 \square$	368	04	04		
257	28	28	313	69	- $\mathrm{P}^{\text {P }}$	369	32	$\because+T$		
258	55	\div	314	06	06	370	69	口F		
259	43	ECL	315	43	RCL	371	06	06		
260	09	09	316	28	28	372	98	HDY		
						373	91	$\mathrm{F} / 5$		

[^0]
[^0]: Oklahoma State Cooperative Extension Service does not discriminate because of race, color, or national origin in its programs and activities, and is an equal opportunity employer. Issued in furtherance of Cooperative Extension work, Acts of May 8 and June 30, 1914, in cooperation with the U.S. Department of Agriculture, Charles B. Browning, Director of Cooperative Extension Service, Oklahoma State University, Stillwater, Oklahoma. This publication is printed and issued by Oklahoma State University as authorized by the Dean of the Division of Agriculture and has been prepared and distributed at a cost of $\$ 535.00$ for 5.500 copies. 0283TS

