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CHAPTER I 

INTRODUCTION 

1.1 Scope 

The fundamental goal of image compression is to maintain an acceptable fidelity 

of image quality while bit rate is reduced for data transmission or storage. Since 

Claude Shannon introduced a measure of information, based on probability definition 

in 1948 [Shannon, 1948], many compression technologies and their applications have 

been developed. 

Most applications involving digital images are limited unless data compression is 

used. An example can be seen in multi-media systems such as CD-ROM applications. 

Ifwe consider full motion video at 30 fps and 720x480 pixel resolution, a 20.736 

Mbytes/s data rate is required. As a result, only 31 seconds of video can be stored on 

a 650 Mbyte CD-ROM. Using current compression technologies, a 650 Mbyte CD

ROM can store more than an hour of video [Bhaskaram, 1995 ]. As can be seen from 

the example shown above, compression technology makes many applications more 

feasible. 

The main compression of most transform based compression schemes is 

achieved by the removal of high frequency components and redundancies using 
t 

energy compaction property. However, the removal of high frequency components 

sometimes produces blockiness or lowpass effects at low bit rates. In order to reduce 



this problem, a dual hybrid coder (DHC) which combines the advantage of vector 

quantization (VQ), high compression, and the advantage of DCTbased transform 

coding (TC), high quality, is proposed in this thesis. 

2 

A dual hybrid coder can be considerd as a synthetic compression technique 

which combines somewhat complementary compression schemes, VQ and DCTbased 

TC. Usually, the human eye is less sensitive to the low detail regions such as 

backgrounds while more sensitive to the high detail region such as edges or curves. 

Therefore, each image block needs to be treated separately according to its activity. 

In other words, low detail regions are coded roughly while high detail regions are 

coded finely to represent edges or curves more accurately. This is the main strategy 

of the proposed dual hybrid coder (DHC) for improving the image quality. 

Before compression, an input image is equally divided into 8x8 blocks. The VQ 

part of DHC is implemented by codebook adaptive VQ (A VQ) where each codebook is 

generated from the different homogeneous training vectors. Even though the 

codebooks are not universal, they represent image blocks without annoying distortions 

because only low detail regions are coded by the A VQ. 

Transform coding is fundamentally different from VQ because it is a scalar based 

coding scheme while VQ attempts to code groups of parameters together. Some 

additional bits which are made available by A VQ are allocated to the DCT based TC 

to represent the high detail regions more accurately. The TC ofDHC is implemented 

by a modified JPEG scheme, Mean Removed-Important Coefficient Selection-JPEG 

(MR-JCS-JPEG). The DHC produces about 3 dB improvement in terms of PSNR 

over the standard JPEG at the bit rates higher than about 0.30 bpp. However, the 

performance in terms of PSNR of this scheme is shown to be worse than that of 

hierarchical VQ (HVQ) which is implemented by the proposed optimal quadtree 

decomposition method at bit rates less than about 0.30 bpp. Therefore, the DHC is 



switched to HVQ at the bit rates lower than about 0.30 bpp. Because of this, the 

proposed image compression scheme is called the dual hybrid coder. However, this 

bit rate switching point will be slightly different from image to image. In order to get 

the general description for bit rate switching point, a linear regression equation as a 

function of the average block homogeneity for a given image is developed. 

3 

Since Habibi introduced a transform-DPCM hybrid coder [Habibi, 1974], several 

hybrid schemes have been reported [William, 1984; Ngan, 1991; Wen, 1993; Chen, 

1993]. In general, hybridizations are welcome if they produce better performance at 

comparable complexity than when each compression scheme is used alone [Clarke, 

1985]. Usual hybrid schemes employ classified VQ (CVQ) based on edge 

classifications [ Ngan,1991; Wen,1993]. However, these schemes produce high 

overhead, often more than 5 bits per block, because many edge patterns exist. 

Moreover, it is very hard to design an efficient classifier. For these reasons, the 

performance of these schemes is not outstanding. 

Instead of classifying image blocks according to their edge patterns, image 

blocks are classified into eight classes by their homogeneities in the proposed DHC. 

Next, seven classes of image blocks are coded by the corresponding homogeneous 

codebooks, where each codebook is generated from different homogeneous training 

vectors. The remaining class of image blocks, which produces higher activity than the 

blocks of the other seven classes, is coded by the MR-ICS-JPEG. In other words, the 

overhead bits are restricted to no more than 3 bits for each 8x8 image block in the 

DHC. The adaptivity which allows higher bit allocation to high detail regions, and 

low overhead, are the main solJ1ces of the DHC used to produce high quality 

compressed images. Sections 1.2 and 1.3 below introduce OCT-based transform 

coding and HVQ. 
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1.2 Transform Coding Based on DCT 

The reference quantization table of the Joint Photographic Experts Group 

(JPEG) standard [Pennebaker, 1993] is based on psychovisual thresholding and is 

derived empirically. The visible image quality has been determined for an image with 

a pixel resolution of 720x576 at a viewing distance equal to six times the screen width 

[Pennebaker, 1993; Lohscheller, 1984]. Each DCT coefficient is quantized with the 

corresponding psychovisual thresholding value. These psychovisual thresholding 

values are decreased or increased until differences between the results, which are 

obtained with the quantized and unquantized DCT coefficients, are not detectable 

visually. The final 64 psychovisual thresholding values, which have been adjusted 

perceptually, form the quantization table which is used for the quantization of 

luminance signals in the JPEG scheme. However, this technique may not fully 

exploit the role of each coefficient in the transformed image blocks. 

A new quantization table, referred to here as Important Coefficient Selection -

Quantization table (ICS-QT), is constructed so as to exploit the generalized degree of 

importance of each DCT coefficient in the transform domain using the orthonormal 

property ofDCT. The relative importance of each coefficient is determined by the 

squared magnitude of each coefficient. This importance ranking forms an effective 

technique for constructing a quantization table which is capable of producing 

improved PSNR. As an experiment, we implemented a modified version of JPEG, 

referred to here as Mean Removed-ICS-JPEG (MR-ICS-JPEG) which makes use of 

this new quantization table technique. In addition to the changes noted above, we 

removed the mean of each block before processing so that the DC coefficients in the 

DCT domain are identically zero. Each mean is transmitted separately in spatial 

domain to the decoder and later restored in the reconstructed image. This modified 



scheme, with mean removal and ICS-QT, produces consistently more than 2dB 

improved PSNR at the output when compared to JPEG alone. Further, we observed 

experimentally that the performance of the modified procedure does not fall below 

that of unmodified JPEG; instead, the performances of the two procedures approach 

each other asymptotically at very low bits per pixel. 

5 

Finally, an important issue when comparing competing coding schemes is to 

ensure that systems being compared are truly operating at the same bit rates. This 

aspect may also be important in practical use of image compression systems. The 

user is often interested in knowing prior to compression how much storage space a 

particular compressed image will occupy or how much bandwidth may be required for 

transmission. Setting the compression rate in JPEG and similar compression 

schemes is problematic since compression is data dependent. We present a technique 

for adjusting the final bit rate based on fitting linear regression equations which are 

adjusted with ICS-QT and generated using the Proportional and Integral (Pl) control 

algorithm in conjunction with statistical approximation [Steel, 1980; Nakagawa, 

1992; Sasaki, 1992]. The resulting set of equations guarantees the convergence of bit 

rate in a few iterations, allowing relatively straightforward specification and 

attainment of compressed bit rate. 

1.3 Vector Quantization and its Hierarchical Implementation Using Quadtree 

The purpose of vector quantization is to achieve a low bit rate for storage or 

transmission with tractable computational complexity and tolerable distortion. In the 

encoding process, each input vector is replaced by an index of the closest codeword 

from a set of codebooks. This process requires intensive calculation which increases 

linearly with the codebook size. The bit rate is expressed as follow: 



BR= log2 Nc (bpp) 
k 

(1.1) 

where Nc : size of codebook and 

k : vector dimension 

Equation 1.1 states that if we can increase the vector dimension, k, a low bit rate can 

be achieved. However, increasing k results in an exponentially increasing number of 

calculations. Because of this limitation, input vectors which have a dimension of 

more than 64 are not recommended even though it is known that the higher 

dimensionality produces better performance [Gersho, 1991]. 

In order to reduce encoding complexity, many fast codeword search algorithms 

have been proposed1·1 • These methods require some tradeoffbetween encoding 

speed and performance. Another approach, hierarchical vector quantization (HVQ), 

is based on the statistical inter-dependency of contiguous samples and decomposes 

images with variable resolution. Large blocks and small blocks retain low and high 

levels of detail, respectively. Therefore, large and small blocks are encoded with 

codebooks which have low and high quantization levels, respectively. With this 

strategy, we can reduce the encoding complexity and increase the compression 

performance. 

One of the most commonly used algorithms for implementing HVQ is by the 

quadtree segmentation method.1.2 An intensive and broad survey of the quadtree 

segmentation method is given in Samet's work [Samet, 1984]. The general idea of 

1.1 [Cheng, 1984; Cheng, 1986; Lowry, 1987; Soleymani,1987; Paliwal, 1989; Chen, 1991; Torres, 1994; 
Lee, 1994; Sitaram, 1994]. 

1.2 [Jackins, 1983; Grosky, 1983; Samet, 1984; Shaffer, 1987; Strobach, 1989; Shusterman, 1994]. 

6 



7 

quadtree segmentation is a successive decomposition of a super vector, usually having 

a block size of more than 8x8. The super vector is divided into new small vectors by 

a threshold in order to make each region of blocks more homogeneous. This is a very 

efficient method to reduce the inter-block dependency. However, a problem of the 

quadtree segmentation (QTS) method is that it is very difficult to determine the 

optimal threshold to efficiently decompose an image block. Two approaches to 

overcome this limitation, single-thresholding and multi-thresholding, are proposed. 

In addition, a homogeneity test method based on spatial frequency (SPF) is 

proposed, where Student's t-testing method [Steel, 1980] is applied to this method in 

order to determine whether the homogeneity based on this testing method is classified 

into success or not. This method not only analyzes the amount of high frequency 

components included in blocks or regions but also provides homogeneous training 

vectors for codebook adaptive VQ. 

1.4 Quality Measures 

Several objective quality measures are intensively exploited and applied to the 

compressed images generated in the previous chapters in order to ascertain which 

quality measures are well correlated with the human visual response and which 

compression scheme produces subjectively more meaningful outputs. Five rating 

scales (subjective quality measures) are used in conjunction with the results from the 

objective quality measures. Finally, the Pearson product-moment correlation 

coefficient [Bajpai,1979] method is applied to explore the subjectivity of the objective 

quality measures. The subjective qualities of several compression schemes, DHC, 

MR-ICS-JPEG, Standard-JPEG, and HVQ, are compared and ranked. The highest 

subjective score is achieved by the proposed DHC, and the next ranking is followed 
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by the MR-ICS-JPEG. 

1.5 Contributions of the Thesis 

A main contribution of this thesis is the design of an efficient image compression 

scheme, dual hybrid coder, which produdes about 3 dB improved performance in 

terms of PSNR over the international image compression standard, JPEG. The 

detailed contributions are as follows: 

A new quantization table is developed using the important coefficient selection 

(ICS) method. It produces more than a 2 dB improvement in terms of PSNR when 

this table is substituted to the reference table which is included in JPEG. Mean 

removal (i.e., DC coefficients are zero) before processing also produces a 0.5 dB 

improvement in terms of PSNR. Proportional integral (PI) control algorithm is 

applied to calibrate the bit rate. In addition, five linear regression equations are 

generated by averaging 1,260 scaling factors which provide convergence to PI control 

in a single iteration at given bit rates and data statistics. These linear regression 

equations guarantee to provide initial scaling factors which allow PI control to 

converge within four iterations no matter what the data statistic is. 

Two optimal thresholding methods are proposed to decompose an image using 

. quadtree segmentation method; Single-Thresholding (ST) based on statistical 

approximations and Multi-Thresholding (MT) based on a mathematical modeling. 

These two thresholding methods are applied to the quadtree segmentation method for 

hiererarchical implementation of images. 

A homogeneity test method is proposed. This method explores the amount 

of high frequency components which are included in an image block. The Student's t

test method is applied to test the homogeneity of a region. The transition point of 



homogeneity from 'Fail(F)' to 'Success (S)' is located around the bit rate which 

corresponds to the optimal threshold of the ST method. 

1.6 Applications 

Image compression has played a crucial role to the growth of multimedia 

computing technology. The range of applications of image compression is expanded 

from tele-communication or construction of data bases to the gamut of digital 

technology. This section explores several possible applications of these. 

9 

The areas of application of image compression includes remote sensing to 

transmit weather or other earth-resource information from satellites, televideo 

conferencing, document and medical imaging, hazardous waste control applications, 

facsimile transmission, and the control of remotely piloted vehicles in the military. In 

addition to these, many other applications are possible. 

Image compression can be applied to any multimedia software product to support 

image display, storage, transmission, and printing. It is also used for personal or 

public purposes. Driver's photograph, signature, and finger prints can be stored in a 

digital computer in compressed format to be shared with other jurisdictions including 

police inspection systems. Publishing areas such as magazines and newspapers need 

image compression for publishing or archiving their documents in a limited storage 

space. Image compression also provides economic and creative solutions to complex 

security and information management. In other words, electronic pass and security 

systems· can be designed using an image compression system by installing ID badges 

in the data base. In addition, image compression systems can be used for business 

purposes such as auto or real-estate sales. Images of vehicles or real-estate are stored 

in a digital computer in compressed forms and can be transmitted into a buyer's 
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terminal to decrease travel expenses. 

1. 7 Brief Description of Chapters 

Chapter 2 explores the fundamentals ofVQ, various VQ schemes, and the most 

commonly used codebook generation algorithm, LBG [Linde, 1980]. The basic 

structure of the JPEG baseline system is represented in the first half of this chapter. 

Chapters 3 through 5 are devoted to the proposed work. Chapter 3 proposes a 

modified JPEG baseline system. A new quantization table (QT) is generated by the 

Important Coefficient Selection (ICS) method. Substitution of the JPEG reference 

QT by ICS-QT produces more than 2 dB improved performance. Next, instead of 

subtracting 128 uniformly from pixel intensities of an image before processing, which 

is defined by the JPEG standard, a mean-removed (MR) scheme is applied. This 

scheme is shown to produce slightly better performance than that of the JPEG 

standard. In order to calibrate the bit rate, proportional and integral (PI) control 

algorithm [Auslander, 1990] is applied to the quantizers, and five linear regression 

equations based on the average block standard deviations of images are proposed. 

These equations provide five initial.scaling factors for the quantization table. These 

equations are shown to allow the quantizer to converge to the desired bit rate within 

no more than four iterations. The five bit rates, 0.25, 0.5, 0.75, 1.0, and 2.25, are set 

by the JPEG standard for comparison purposes [Pennebaker, 1993]. 

Chapter 4 describes the hierarchical vector quantizer (HVQ) based on quadtree 

segmentation (QTS) 13 and comparison of its performance to that of normal VQ. 

Two thresholding methods for QTS, single-thresholding (ST) and multi-thresholding 

u [Grosky, 1983; Hanan, 1984; Jackins, 1983; Samet, 1984; Shaffer, 1987; Chiu, 1989; Strobach, 1989; 
Strobach, 1991; Shusterman, 1994; Salli van, 1994] 



(MT) methods, are proposed and simulated. In addition, A homogeneity test method 

is proposed. 

Chapter 5 presents the dual hybrid coder which combines HVQ, A VQ, and 

MR-ICS-JPEG. The DHC can be considered as a synthetic compression scheme 

which reflects the proposed compression scheme of previous chapters. 
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Chapter 6 is devoted to various objective and subjective quality measures. The 

objective quality measures are applied to images compressed by the methods of 

Chapters 3 through 5. Subjective quality is measured by thirty human observers, and 

the Mean Opinion Score (MOS) [Bhaskaram, 1995] is calculated for each image. The 

correlation between the results of the objective quality measures and MOS is 

calculated by the Pearson Product-Moment Correlation Coefficient [Bajpai, 1979]. 

This method provides subjectivity of objective quality measures. 



CHAPTER II 

OVERVIEW OF IMAGE COMPRESSION AND QUANTIZERS 

2.1 Introduction 

This chapter is devoted to express the general description and fundamentals of 

digital lossy image compression techniques which have been successfully used for 

digital picture communication. The basic concepts ofVQ and transform coding, 

which comprise the proposed dual hybrid coder, are provided. 

As one of the commonly used signal compression techniques, transform coding 

has a relatively long history when we compare it to that ofVQ. The basic idea of 

transform coding is to remove the redundancy in signals using orthogonal transforms 

such as Fourier Transform (FT), Discrete Cosine Transform (DCT), and Karhunen

Loeve Transform (KLT) in order to reduce bit rate for storage or transmission. These 

orthogonal transforms decorrelate pixels from each other.· For an image with high 

inter-pixel correlation, the high frequency coefficients can be coded with few bits or 

removed completely within tolerable distortion at the rates between 0.5 and 1.0 

bits/pixel [Clarke, 1985]. 

Because a transform which has the capability of mapping many signals to one 

representative quantity in a perfectly recoverable manner does not exist so far, 

quantization techniques have been used for image compression at the cost of some 

loss of image information. This technique provides relatively good subjective visual 

quality rather than exact matching between original and compressed signals. 

12 



Vector quantization techniques have been developed since the early 1980's 

[Gray, 1984; Gersho, 1983] in order to reduce the bit rate for data transmission or 

storage. The decoding process of vector quantization is a simple look up table 

(LUT), and its performance can be comparable to that of transform coding [Clarke, 
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1985]. These features make vector quantization an attractive signal compression 

technique. The fundamentals of image compression, basic concepts and variations of 

transforms coding, VQ, and hybrid coder are provided in the following sections. 

2.2 Fundamentals of Image Compression 

2.2.1 Redundancy 

In general, data compression is defined as a process of reducing or removing the 

amount of redundancy, which contains irrelevant information, or simple restates what 

is already known. The terms, redundancy and compression ratio, are defined in Eqs. 

2.1 and 2.2. 

(2.1) 

where RD: amount of redundancy and 

C UC1 • • 
R = --: compression ratio. 

CI 
(2.2) 

In Eq. 2.2, UC1 and C1 represent uncompressed and compressed information, 

respectively [Gonzalez, 1992]. For example, the compression ratio 5 means that five 

data units (bits) are represented by one data unit (bit). As a result, the redundancy is 

0.8. In other words, 80 % of the set of data is considered as an amount of redundancy. 

Three kinds of redundancies, coding, inter-:-pixel, and psychovisual redundancies, are 



identified in digital image compression. 

The strategy for removing the coding redundancy is to use variable length 

coding. In other words, the shortest codeword is assigned to a sample which has the 
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most probable occurrence. Average number of bits required to represent each picture 

element (pixel) is defined in Eq. 2.3 [Gonzalez, 1992]. 

L-1 

Bavg = L/(pk)Pr(Pk) (2.3) 
k=O 

where pk: random variables (pixels), 

Pr (pk) : occurring probability of Pk, and 

!(pk) : length of codeword assigned to Pk. 

Using this approach, we can get compression by achieving average bits shorter than 

those of assigning a fixed length codeword to each pixel. 

A pixel value can be predicted by its neighbors because each pixel is correlated 

with each other. As a result, the visual contribution from a pixel is relatively small or 

redundant. This redundant information is called the inter-pixel redundancy and can 

be efficiently removed by a process such as differential pulse code modulation 

(DPCM). 

The human eye does not respond with equal sensitivity for all ranges of pixel 

intensity. Therefore, a certain range brings relatively less importance to the human 

eye. This is called the phycovisual reduandancy and it might be removed by 

quantization which is irreversible. As a result of quantization, some information 

which brings relatively less importance is lost, so this process results in lossy 

compression. Lossy compression based on quantization is explored in this thesis. 
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2.2.2 Taxonomy and Trade Offs of Image Compression 

The performance of a vector quantization is directly related to the size of the 

codebook, the training data, and the overall quality of design of the VQ system. VQ 

systems are usually quite complex to design and implement. A VQ scheme allows one 

to achieve a high compression ratio with tolerable visual distortion. 
-~ 

The trans:from coding technique uses the energy compaction property of 

transforms such as DCT, FT, and KL T. In this coding technique, each block is 

individually transformed into a certain coordinate and considered separately. This is 

usually much simpler than using VQ. Transform coding based on DCT was selected 

as an international compression standard by the Joint Photographic Expert Groups 

(JPEG) [Pennebaker, 1993; Wallace, 1991]. Figure 2.1 represents the taxonomy of 

various lossy compression techniques [Bhakaram, 1995 ]. 

Two decent compression algorithms, VQ and Transform coding based on DCT, 

are explored and modified in this thesis in order to achieve better performance in the 

senses of low bit rate and high image quality. These two techniques are also applied 

for implementing the dual hybrid coder in this thesis. Because these techniques are 

basically lossy compression which is irreversible, they will produce some 

distortions. Therefore, these lossy compression techniques involve tradeoffs along 

three dimensions shown in Figure 2.2. Because none of these three factors can be 

ignored, we may want to achieve moderate compression ratio and medium image 

quality with tractable computation complexity. The weight of importance of these 

three factors is application dependent. These three factors have been main goals of 

image compression. 



COMPRESSION 

I 
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SPATIAL DOMAIN 
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LOEVE (KL) 
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HADAMARD 
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OTHER 

Figure 2.1 A Taxonomy of Compression [Clarke, 1995] 

Image Quality 

Computation Cost 

Compression 
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Figure 2.2 Trade Offs in Lossy Compression [Dasarathy, 1995] 
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2.3 Transform Coding 

In transform coding, image blocks are individually transformed into certain 

coordinates which can be considered independently. Therefore, the purpose of 

applying a transform before processing is to convert statistically dependent pixels into 

uncorrelated coefficients. If pixels of an image are highly correlated, the high 

frequency components will be small so they can be coded with few bits or disregarded 

completely by a proper quantization scheme. These quantized coefficients are 

transmitted to the receiver. At the receiver, each quantized coefficient is dequantized 

and the inverse transform is applied to get a recognizable spatial domain picture. The 

parameters to decide the performance of transform coding are as follows: selection of 

coefficients to be transmitted, shapes and sizes of blocks, and types of transforms used 

[Netravali, 1980]. The basic structure of transform coding is shown in the block 

diagram of Figure 2.3. 

ORIGINAL 
IMAGE 
BLOCK 

FORWARD 
QUANTIZER 

SYMBOL 
TRANSFORM ENCODER 

CHANNEL 
RECONSTRUCTED 

IMAGE 
BLOCK 

INVERSE SYMBOL 
TRANSFORM 

DEQUANTIZER 
DECODER 

Figure 2.3 Basic Block Diagram of Transform Coding 

2.3.1 Comparison of Transforms 

The decorrelation efficiency and the energy compaction property have been used 



as measures for the performance analysis of transforms. The energy compaction 

property and the decorrelation efficiency are defined in Eq. 2.4 and Eq. 2.5 [Clarke, 

1985], respectively. The energy compaction property ( 17 Ec) is defined as a ratio 

between the sum of M out of N diagonal covariance elements and the sum of N 

diagonal covariance elements of a NxN block in the transform domain. The unity 

value of 17 Ec represents the maximum energy compaction. The decorrelation 

efficiency ( 17 Dc) describes the ratio of the sum of non diagonal covariance elements 

between the spatial and transform domains. A value of unity indicates complete 

decorrelation. 

M 

L~ 
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i=l,j=i 

1JEC = N (2.4) 

L~ 
i=l,j=i 

(2.5) 

where T : Transform domain covariance matrix and 

S : Spatial domain covariance matrix. 

Many transforms such as Kathunen-Loeve transform (KL T), discrete cosine 

transform (DCT), discrete Fourier transform(DFT), Walsh-Hadamard transform 

(WHT), Haar transform (HT), and discrete sine transform (DST) [Clarke, 1985] have 

been applied to transform coding . The KL T has been considered as an optimal 

transform because of its maximum energy compaction and high decorrelation 
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properties of data. However, its implementation complexity and dependency on input 

data make it very difficult to apply to data compression schemes. Figures 2.4 and 2.5 

show the comparison of transforms in terms of their energy compaction and 

decorrelation properties, respectively. 

From Figure 2.4, the performance in the sense of energy compaction ofDCT is 

comparable with that of KL T even though the DCT is not an optimal transform. 

Figure 2.5 describes the decorrelation efficiency of several transforms when the block 

size varies from 4 to 16. The decorrrelation efficiency decreases when the block size 

increases [Clarke, 1985]. The decorrelation efficiency of DCT is relatively higher 

than others. Therefore, DCT has been the most commonly used transform in the data 

compression area after Jain documented it [Jain, 1976] because of its high efficiency 

and easy implementation for fast transform. 
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Figure 2.4 Energy Packing Efficiency ( 17 Ee) as a Function of Block Size 

[Clarke, 1985]. 
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Figure 2.5 Decorrelation Efficiency 1foc as a Function of Block Size [Clarke, 1985] 

2.3 .1.1 Discrete Cosine Transform (OCT) 

In general, the OCT is used in block-based image compression algorithms to 

alleviate the discrete nature of the Discrete Fourier Transform (OFT). The OFT is 

performed with N point periodic samples where the beginning and end part of the 

repeated segment are next to one another. 

In order to eliminate the discontinuity of OFT, input data is folded about the 

vertical and horizontal axies in the 2-dimensional spatial domain to make the data be 

symmetric. After a 2N point transform is performed, N point coefficients are selcted 



because of real and even symmetry of the transform resulting in the DCT. The 

mathematical definition of the DCT is as follows [Lim, 1990]: 

Two-D sequence, d(x,y), of N 1xN2 points is defined in Eq. 2.6. 
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{ d(x,y) for O $; x $; N1 -1, 

0 otherwise 
(2.6) 

The 2-D DCT is calculated by the procedure ofEq. 2.7. 

folding DFT 

d(x,y) ~~ f(x,y) ~~ F(u, v) ~~ C(u, v) 

where d(x,y) : N1 xN2 point 2-D sequence, 

f(x,y) : 2N1 x2N2 point 2-D sequence, 

F(u, v) : 2N{x.2N2 point DFT, and 

C(u,v): N 1xN2 point DCT of d(x,y). 

(2.7) 

Because of the symmetric property, the computational burden of a 2N1x2N2 point 

DFT can be reduced to just a N1xN2 point DFT. This symmetric property reduces the 

discontinuity of the DFT. As a result, the decorrelation efficiency is improved as 

shown in Figure 2.5. With these advantages, the DCT has become a basic transform 

of the international image compression standard (JPEG) which will be discussed in 

the following section. Finally, the 2-D DCT pair is defined in Eqs. 2.8 and 2.9 

[Gonzalez, 1992]. 



C(u,v) = 

d(x,y) = 

N-IN-I [(2x + l)un] [(2y + l)vn] 
a(u)a(v)LLd(x,y)cos cos--.--

x=o y=O 2N 2N 

for Os us NI -1, 0 s v s N 2 -1 

0 otherwise 

N-I N-I [(2x + l)un] [(2y + l)vn] 
~~a(u)a(v)C(u,v)cos 2N cos 2N 

for Os x s NI -1, 0 sys N 2 -1 

0 otherwise 

for u,v = 0 
where a(u) and a(v) = 

(2.8) 

(2.9) 

for u, v = 1,2,3, .... ,N -1 

2.3.2 Joint Photographic Experts Group (JPEG) 

There are many different kinds of compression methods to transport and store 

image signals. Although many kinds of compression techniques exist today, they 

cannot communicate with one another if they employ different coding algorithms. 

Consequently, a standardization of compression is necessary. 

A joint ISO/CCITTcommittee known as JPEG [Wallace, 1991; Wallace, 1992; 
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Wu, 1992] established the international compression standard of continuous tone still 

images. JPEG is classified into two basic compression methods: a lossy compression 



and a predictive lossless compression. A simple lossy compression method is called 

the baseline method. This section places emphasis on describing the baseline 

algorithm in order to study the basic idea of the JPEG coding method which will be 

used in Chapter 3. The following sub-sections describe each part of the baseline 

algorithm: quantization, zig-zag run encoder, and entropy coding. Figure 2.6 shows 

the block diagram of the baseline algorithm included by the JPEG. 

OUTPUT 
IMAGE 

IDCT DE, 
QUANTIZE 

Q-TABLE 

ZIG-ZAG RUN 
DECODER 

DIFFERENCE 
DECODER 

OCT-BASED DECODER 

INVERSE 
VLC 

HUFFMAN 
TABLE 

Figure 2.6 Baseline Algorithm Included by JPEG (VLC: Variable Length Coding) 

[Pennebaker, 1993] 
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2.3 .2.1 Quantization and Dequantization 

Quantization is the principle source of lossiness in OCT-based encoders. Eq. 

2.10 and 2.11 define the quantization and dequantization step, respectively. 

FQ (u, v) = Integer Round(F(u, v)) 
Q(u,v) 

pDQ (u, v) = FQ (u, v)Q(u, v) 

where F(u, v) : output of DCT and 

Q(u, v) : qunatization table. 

(2.10) 

(2.11) 

The standard block size selected by JPEG is 8x8 because smaller and larger blocks 

require more bits to indicate the end of block (EOB) and the number of zeros run, 

respectively. An example of the quantization table included by JPEG is shown in 

A.Il.2.1. 

2.3.2.2 Data Ordering 

After quantization, DC coefficients are treated separately from AC coefficients 

because they are not only a measure of the average pixel intensities of each block, 
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but they also contain a significant fraction of total image energy. DC coefficients are 

encoded as differences between current and previous blocks because the DC 

coefficients of adjacent 8x8 blocks are highly correlated with each other. Finally, AC 

coefficeients are ordered in zig-zag sequences for next entropy coding. This 

procedure is shown in Figure 2.7. 



DC AC 01 AC 01 

DC;.1 DC; 

Block ~1 Block ; 

Diff = DC ; -DC ;.1 

AC 10 AC 11 

Differential DC Encoding Zig-zag Sequence 

Figure 2.7 Preparation of Quantized Coefficients for Entropy Coding 
[Pennebaker, 1993] 

2 .3 .2 .3 Entropy coding 

This is the final step of the encoding process of baseline JPEG. Additional 

compression is achieved in this step by encoding quantized DCT coefficients more 

compactly based on their statistical characteristics. Two entropy coding methods, 
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Huffman coding and arithmetic coding, are proposed by JPEG members [Pennebaker, 

1993]. However, the Huffman table is predefined as a default because it is much 

simpler than arithmetic coding. The Huffman table indicates the number of bits 

required to represent DCT coefficients and it also represents the number of zero-runs 

of AC coefficients. Table A.II.3.1 summarizes the number of bits required to represent 

the actual sign, magnitude, and catagories for Huffman coding of DC coefficients. 

Usually, DC coefficients are coded by DPCM difference. Actual Huffman codes 

corresponding to the categories are given in Table A.II.3.2 [Pennebaker, 1993]. 

Table A.II.3.3 shows the number of bits required to encode sign and magnitude 

of AC coefficients for baseline algorithm. Table A.II.3.4 represents the indicators of 

Huffman table correspondng to number of zero-runs and addititional bits of Table 
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A.II .. 3.3. Tables A.II.3.3 and A.II.3.4 are applied to encode AC coefficients. 

Actual Huffman codes corresponding to indicators of Table A.II.3.4 are listed in 

Table A.II.3.5 [Pennebaker, 1993]. 

2.4 Vector Quantization 

Usually, scalar quantization follows two steps: first, partitioning the range of 

possible input values into finite subsets or subranges; and second, choosing a 

representative value for each subset when an input value is in that subrange. With 

vector quantization (VQ), the same two operations take place not in one-dimensional 

scalar space but in a N-dimensional vector space [Gersho, 1982]. In other words, VQ 

can be considered as a form of pattern recognition where a predetermined set of 

standard patterns is replaced for approximating an input pattern. 

2.4.1 Principles of Vector Quantization 

A vector quantizer is defined as a mapping Q of k-dimensional Euclidean space 

Ek into a finite subset Z of Ek . Thus, 

where Z = ( X;: i = 1,2, ....... N) is a set of reproduction vectors and 

N is the number of vectors in Z. 

Ek consists of n partitions of N point quantization, i.e., 

With this definition, we can write as follows: 

N 

LJE; = Ek and E; n E1 = 0, for i * j. 
i=I 

(2.12) 

(2.13) 

(2.14) 
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The quantizer Q is a combination of two functions: an encoder, which generates 

the address of the reproduction vector specified by Q(X), and a decoder, which uses 

this address to generate the reproduction vector X . The encoder EC and the decoder 

DC are defined as a mapping of Ek into the index set I and into the output Z, 

respectively. Thus, 

EC:Ek ~ I and DC:!~ Z (2.15) 

where I= {1,2,3, ...... NJ. 

The basic structure of the vector quantizer is illustrated in Figure 2.8. 

In the encoding process, each input vector is matched to the closest template or 

codeword from a set of codebooks. The number of input vectors of Figure 2.8, M, 

must always be larger than the number of codevectors, N, in order to get compression. 

These encoded indexes of the input vectors are transmitted to the decoder. The 

decoder reproduces the quantized output vectors, which correspond to their indexes of 

codewords using a simple look up table (LUT) procedure. 

X1 

,... 
X X2 X 

XM 

Figure 2.8 Basic Structure of Vector Quantizer 



2.4.2 Codebook Generation 

The most important part of vector quantization is the design of the codebook. 

After the Linde-Buzo-Gray (LBG) algorithm was published in 1980 [Linde, 1980], 

several modified schemes and different approaches for generating codebooks have 

been reported. Although the LBG algorithm has drawbacks such as empty cell 

problem and the requirement of intensive calculation, it is the most commonly used 

codebook generation algorithm because of its implementation simplicity and 

applicability for most kinds of images with resulting relatively good performance. 

This section describes several codebook generation algorithms with emphasis on 

LBG, which is used in every VQ simulation in this thesis. 

2.4.2.1 Linde-Buzo-Gray (LBG) Algorithm 

An intuitive and iterative codebook generation algorithm, LBG, is a 

generalization of Lloyd's Method I [Lloyd, 1957] for designing scalar quantizers. 

Because of this, this algorithm is sometimes called the Generalized Lloyd Algorithm 

(GLA) or k-means algorithm after it was studied as a statistical clustering procedure 

by MacQueen [MacQueen, 1967]. 
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The LBG algorithm starts from an initial guess for the codebook, and the training 

vectors are partitioned by the nearest neighbor rule. Next, the centroids of each 

partitioned cell are calculated and the codebook is updated. This procedure is shown 

in Table 2.1. 

In order to calculate the centroids of the clusters, a centroid condition is 

introduced as in Eq. 2.16. 

c* =cent(P) if E[d(X,c')IX EP;]:=;;E[d(X,c)IX EP;]; all c=1:-c* (2.16) 



Stepl) Given 
An initial codebook, Cm = {Z;}, 
A set of training vectors, T, and 
Cluster set I';, which are partitioned by the nearest 
neighbor rule (locally optimal partition): 

I'; ={XE T:d(X,Z;) 5. d(X,Z1); all j ·:Id 

where, X : input vectors and d : distortion. 

Step 2) Find centroids from the just found cluster set in order to 
update the codebook, Cm+i = {cent(P;)}. 

Table 2.1 The Nearest Neighbor Rule for Updating the Codebook [Gersho, 1992] 

However, the centroid is not always uniquely defined. Therefore, the empirical 

observation and iterative approach of a sample distribution is used to calculate the 
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centroid. At each iteration, the centroid is calculated using the arithmetic mean. The 

more iterations we perform, the more accurate centroids can be found. 

One of drawbacks of the LBG algorithm is the empty cell problem; the empty 

cell is defined as a codevector that does not have any training vectors or has few 

training vectors, usually less than three, which satisfy the nearest neighbor rule. Two 

solutions have been suggested [Gersho, 1992]. The first method is that a cluster 

which has the highest number of training vectors is split by its centroid, and the empty 

cell is substituted by one of the centroids of two clusters. The other method also 

involves splitting a cluster which has the highest partial distortion, and the empty cell 

is replaced by one of the two centroids of the binary split clusters. The detailed 

procedure of the LBG codebook generation algorithm is summarized as follows 

[Linde, 1980]: 



Step 1) Initial codebook by binary splitting 

1) Initialization: Set M= 1 and define C0 (1) = X ( T) , where C0 is the 

initial codebook, and X(T) is a centroid of a set of training sequence. 

2) Given the codebook C0 (M), containingMvectors {Z;:i = 1,2, ..... M}. 

Split each vector Zi into two close vectors Zi + & and Zi - & , where & 

is a small fixed perturbation vector. The collection, C, of 

{Zi + &, Zi -&, i = 1, .. M} has 2Mvectors. Replace Mby 2M 

3) If M=N ~ C0 = C(M) and stop. 

C0 = initial codebook for N-level quantization algorithm. 

If M * N ~ run the algorithm for an M-level quantizer on C(M) to 

produce a good codebook C0 ( M) and then return to 2). 

Step 2) Codebook Generation 

1) Initialization: Given N: number of quantization levels, 

TH: distortion threshold, TH~ 0 , 

C0 : an initial codebook, and 

{~:j = O, ... n-1}: training sequence. 

Set m=O and n-1 = oo . 

2) Given Cm= {Zi:i = 1,2, ... N}. 

Find the minimum distortion partition of the training sequence: 

P(C,,,) = {Si:i = 1,2, .... N}. 

~ ESi if d(~.,Z;):::; d(~,Z1) for all/* i. 
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Compute the average distortion 

(2.17) 

D -D 
3) If m-t "' ::;; TH stop and then Cm= final codebook. 

Dm 

Otherwise, continue. 

4) Find the optimal codebook X(P(Cm)) = {.X(S;):i = 1,2, ... N} for 

P(Cm). Set Cm+i = X(P(Cm)). Replace m by m+ 1 and go to 2). 
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An example of this algorithm and a flow chart are given in Appendix II. I and Figure 

2.9, respectively. 

NO 

TRAINING VECTORS 

CENTROID 
INITIAL CODEBOOK 

M=1 

BINARY SPLITTING 
M=2M 

FIND THE CLOSEST 
CODEWORD FOR 

EACH TRAINING VECTOR 

Yes 

Yes 

* C FINAL CODEBOOK ) 

NO 

Figure 2.9 Flow Chart of LBG Algorithm 



32 

The LBG algorithm is the most commonly used algorithm for generating VQ 

tables (codebooks). The iteration procedure of the LBG can be combined with other 

codebook generation algorithms to improve their performances. Because of this, other 

design algorithms are usually considered as a way to generate an initial codebook. 

The LBG algorithm is a decent algorithm because each iteration always reduces the 

average distortion even though its cost cannot be ignored. 

2.4.2.2 Other Codebook Generation Algorithms 

The LBG algorithm, which was described in the previous section produces a 

locally optimal codebook [Linde, 1980; Llyod, 1957]. Because only a finite number 

of iterations can be used when we generate a codebook using the LBG algorithm, a 

locally optimal codebook is produced. Recently, several alternative algorithms have 

been developed such as the pairwise nearest neighbor (PNN) algorithm [Equitz, 1984; 

Equitz, 1989] and the simulated annealing algorithm [Flanagan, 1989; Kirkpatrick, 

1983; Vaisey, 1989]. However the PNN algorithm like the LBG still generates a 

locally optimal codebook. In order to remove or reduce this problem, the simulated 

annealing algorithm was developed. Originally this idea came from the Metropolis 

Algorithm [Metropolis, 1953] for atomic simulation. In physical chemistry, the 

equilibrium state is achieved at the lowest energy state. Using this idea, the simulated 

annealing algorithm generates a candidate perturbation of partitions at each iteration, 

and the distortion is calculated at each iteration. Each candidate perturbation of 

partitions is either accepted or rejected to find the optimal partition. After finding the 

optimal perturbation of partition, an almost optimal equilibrium state is achieved. 

However, the complexity of this algorithm is too high and it takes too long to generate 

a codebook. 
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In early 1994, Chok-Ki Chan proposed a maximum decent (MD) method [Chan, 

1994] as an alternative to the LBG algorithm. This algorithm starts by considering 

whole training vectors as a global cluster, and the global cluster is partitioned into two 

clusters by an optimal hyperplane. These two clusters are then further subdivided by 

approaching the desired number of codebook levels. The hyperplane, defined as 

Hi = pt X + k, partitions a cluster (Ai) into two clusters ( Aia, Aib) as follows: 

Aia = {X EAi:P1X +k < O} 

Aib = {X E Ai: pt X + k ~ O} 

where Ai : an ancestor cluster and 

Aia and Aib : two partitioned descendent clusters. 

The maximum distortion reduction function ( Ri) is defined as follow: 

whereR, : always positive if Aiaand A,b are not empty, 

D( A;) : distortion of the ancestor cluster, 

(2.18) 

(2.19) 

D( Aia) and D( Aib) : distortions of two descendent clusters, and 

H; : hyperplane which produces maximum value of R,. 

Various search algorithms to find the optimal hyperplane have been proposed 

[Chan, 1994]. These algorithms use a trial and error approach; i.e., the distortion 

reduction values which correspond to a huge number of possible hyperplanes are 

calculated, and one hyperplane which produces the maximum distortion reduction is 

selected. In order to generate a N-level (N-cluster) codebook, N-1 optimal 

partitioning is necessary because each partition produces one cluster. 



In addition to the algorithms above, many other algorithms using tree structure 

[Ting, 1994; Kiang, 1992; Riskin, 1991] or triangu,/ar inequality elimination 

pproach [Chen, 1991] have been proposed. Although some investigators have 

reported that the results of some of these algorithms are better than that of the LBG, 

the LBG still remains as the most commonly used algorithm for generating VQ 

codebooks because it is very simple to implement, reliable, and produces relatively 

high quality results. 

2.4.3 Variations of VO 

Because the normal VQ technique causes complexity and unsatisfactory 

performance, its direct use for practical applications is somewhat limited. Several 

modified designs of codebook structure or encoding schemes provide very efficient 

and favorable trade-offs between complexity and performance. Since the smarter 

design of the constraint VQ produces the more efficient outputs; i.e., produces low 

complexity and high performance, the designing of constraint VQ can be considered 

as a realm of art rather than direct use of mathematical theory, which gives solutions 

for various engineering or science problems. This section describes the most 

commonly used constraint VQ techniques briefly. 

Ramamurthi and Gersho designed a classified vector quantizer (CVQ) 

[Ramamurth, 1986] to address the edge degradation and high computational 

complexity. In this method, each block of a given size is classified by a distinct 

perceptual feature such as edge, and is coded by vector quantizer codebooks, 
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which are designed especially for that class. This scheme produces a good visual 

quality for small size 4x4 blocks at the range of 0.6 - 1.0 bpp. However, good visual 

quality cannot be produced for blocks larger than 4x4. Moreover, designing the 
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classifier to classify an input vector with its feature is very difficult. 

In transform VQ (TVQ), each pixel of a block is mapped into a transform domain 

by a linear orthogonal transform such as DCT,DFT, or KLT. An advantage of 

designing VQ in conjunction with a linear transform is that we can use the energy 

compaction property; i.e., image information is compacted in a subset of that image. 

In other words, some of the high frequency components can be ignored or coarsely 

coded with tolerable distortion in order to reduce bit rate because most information of 

that image is compacted in low frequency components~ Several TVQ algorithms in 

conjunction with CVQ have been published [Lee, 1994; Kim, 1991; Kim,1992]. 

If a vector dimension of an input image is quite large, a set of large size 

codebooks is necessaryto code input vectors with acceptable performance. However, 

the large codebook causes encoding complexity and necessitates a large storage 

requirement. In order to reduce these problems, residual VQ [Frost, 1991; Barnes, 

1990], or so called multi-stage VQ [Juang, 1982], was developed. In ~e first stage, 

input vectors are coded with a considerably reduced size of codebook, and the error 

vectors between input and coded vectors are transferred to the second stage. These 

error vectors are coded again with a set of error codebooks in the second stage. This 

procedure is continued until the desired number of stages is reached. Finally, the 

coded error vectors for each stage are added to the coded vectors from the first stage. 

Using this scheme, the total codebook search complexity is considerably reduced. In 

general, quantization error vectors have more random distribution or less statistical 

dependence than that of input vectors. As a result, more than two stages do not 

considerably improve the performance. At this time, more than four stages have not 

been reported [Gersho, 1992]. 

Another approach, hierarchical vector quantization (HVQ), was proposed by 

Nasrabadi [Nasrabadi, 1989]. In this scheme, an image is subdivided into blocks of 
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different sizes by the quadtree segmentation method [Hanan, 1984; Shusterman, 1994; 

Sullivan, 1994]. As a result, each block is almost homogeneous and has little 

variation. Next, small blocks such as 2x2 and 4x4 are finely quantized, and super 

blocks are coarsely quantized with low level codebooks or block means. The HVQ 

examines the correlation between blocks and reduces the inter block correlation 

automatically. This advantage is a favorable point in the field ofHVQ. A detailed 

exploration of the HVQ is given in Chapter 4. 

Table 2.2 summarizes the advantages and disadvantages of several VQ 

algorithms described above. As can be seen from Table 2.2, the main issues of 

designing VQ schemes are reducing computational complexity and lowering bit rate. 

Methods Advantages Disadvantages 

CVQ - Can reduce edge degradation - Cannot give good subjective 
and computational complexity quality when block size is 

more than 4x4 
- Design complexity for 
classifier. 

- Can use energy compaction property. 
TVQ - Can use large block size. 

- Can increase size of codebook without 
additional complexity for computation. 

MSVQ - Reduce encoding complexity and storage - Stage limitations: more than 
requirement for codebook. two stages are not effective. 

- Eliminate inter-block correlation 
HVQ automatically. 

- Reduce the computational complexity. 

Table 2.2 Comparison of Several VQ Schemes 
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Usually, HVQ is implemented by quadtree segmentation. There are several 

quadtree segmentation methods. These methods have tried to make segmented blocks 

or regions become homogeneous. Nasrabadi used variance as a threshold to 

decompose images, however, no optimality for thresholding is included in this scheme 

[Nasrabadi, 1989]. One method capable of finding optimal structures was recently 

dscribed by Chou et al. using a generalized version of the Brieman, Friedman, Olshen, 

and Stone (BFOS) algorithm [Chiu, 1989]. Sullivan applied the Lagrange multiplier 

concept to find the optimal multiplication factor for each quad tree level [Sullivan, 

1994]. Another approach using plane parameters (PP's}including mean and gradient 

parameters to get a threshold is studied by Strobach [Strobach, 1989, 1991]. 

However, none have incorporated a method to find a truly optimal quadtree structure 

and have not quantified the homogeneities of segmented blocks or regions. 

2.5 Hybrid Coding 

The purpose of hybridization of data compression schemes is to enhance 

performance by combining two or more simpler compression methods. In 1974, 

Habibi introduced a transfom-DPCM hybrid coder which combined the advantages of 

the energy compaction property of transform coding and the hardware simplicity of 

DPCM [Habibi, 1974]. This scheme operates efficiently when input data is highly 

correlated. Hybridizations are generally welcome if they produce better performance 

at comparable complexity than when each compression scheme is used alone [Clarke, 

1985]. William proposed a DFT-DPCM hybrid coder [William, 1984], and a DCT

DST hybrid coder was developed by Chen [Chen, 1993]. 

After VQ techniques were introduced in the early 1980's, these techniques have 

been used for hybridization. Ngan introduced a hybrid image coder which combined 
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the DCT and classified vector quantization (CVQ) in 1991 [Ngan, 1991]. In this 

scheme, vectors of low (shade) and high (edge) activity classes are coded by CVQ and 

DCT, respectively. In order to design the classifier, the block mean parameter is used. 

In other words, each image block is classified into 64 mean classes where each class 

employs 64 representative code vectors. As a result, a total of 4,096 code vectors are 

used for CVQ. 

Another hybrid scheme which combines DCT domain VQ and spatial domain 

VQ was proposed by Wen [Wen, 1993]. In this scheme, input 8x8 image blocks are 

classified into edge and smooth areas. Then, smooth blocks are coded by a reduced 

size DCT domain CVQ where a total of nineteen bits are necessary to code a block of 

smooth area. Next, edge areas are furthur subdivided into 4x4 blocks. These 4x4 

blocks are classified again into active and inactive regions. Inactive blocks are coded 

by block means while active ones are classified into 32 edge patterns and coded by 

CVQ in the spatial domain. This scheme produces too many overhead bits for 

consecutive classifications and results in 29.52 ( dB) in terms of PSNR for Lenna 

image at the bit rate of 0.3979 bpp. In addition to the schemes listed above, other 

notable hybrids which include wavelet-DCT and normal VQ - lattice VQ hybrid 

coders were designed by Ohta [1993] and Bage [1986], respectively. 



CHAPTER III 

TRANSFORM CODING BASED ON DCT 

Two conflicting goals are encountered in the design of any image compression 

system: attainment of the highest possible compression while maintaining acceptable 

image fidelity. In any realistic compression system, we cannot arbitrarily maximize 

one without, at some point, beginning to·sacrifice the other. This chapter describes a 

method for generating a new quantization table which, when implemented within the 

framework of the ISO/CCITT compression standard for continuous tone still images 

(JPEG - Joint Photographic Experts Group) [Wallace, 1992; Wu, 1992; Leger, 1991], 

is capable of providing several dB higher peak signal to noise ratio (PSNR) at a 

comparable bit rate than the quantization table in the· JPEG standard. Although the 

application example and results presented in this chapter are directed toward JPEG, 

this method should be applicable to other scalar compression schemes as well. 

3.1 Quantization Table and Quantization 

One of the most important factors affecting the performance of an image 

compression scheme is how well the quantization table matches the data being 

compressed [Wallace, 1992; Pennebaker, 1993]. This section describes a new 

method, Important Coefficient Selection (JCS), for constructing a quantization table 

which is shown by example to give better performance based on maximizing the 
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PSNR. PSNR is defined as follows: 

2552 

PSNR = 10log10(--) 
MSE 

(3.1) 

The construction technique makes use of the orthonormal property of DCT 

for maximizing the PSNR. In the following paragraphs we present this technique, 

along with several variations, followed by results obtained experimenatlly with JPEG. 

3 .1.1 Important Coefficient Selection(ICS) Method 

Analysis by Synthesis Technique: The Important Coefficient Selection (ICS) 

method exploits the fundamental role of each coefficient in an 8x8 standard size block 

for maximizing the PSNR. In the DCT domain, the values of the AC coefficients 

represent the interpixel activities, and the values of DC coefficients represent the 

block size times the corresponding block means. The basic idea of the ICS method 

using analysis by synthesis technique is very simple. After a block DCT is computed, 

each DCT coefficient is removed, one by one, and the given block is reconstructed by 

applying the IDCT. The mean square errors (MSEs), computed between the original 

and each of the reconstructed blocks, are calculated for all the AC coefficients in an 

8x8 block (63 MSEs per block). 

The MSE value corresponding to a particular 8x8 block is used to form one 

element of a corresponding MSE matrix of size 8x8. The entire 8x8 MSE matrix is 

constructed using the set of MS Es just computed above. The highest MSE in the 

matrix corresponds to the DCT coefficient that is the most important in a given block, 

while the lowest MSE corresponds to the DCT coefficient which is the least important 

in terms of preserving PSNR. In other words, the largest value in the MSE matrix 

corresponds to the block DCT coefficient that, if removed, would impact the PSNR 
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most significantly. 

We can develop, based on the MSE matrix, a new matrix which represents the 

ranking of importance of each coefficient in a block. The ranking procedure is 

performed by sorting the elements of a MSE matrix in descending order. The highest 

MSE in a MSE matrix is assigned to the ranking '1' while the lowest MSE 

corresponds to ranking '63 '. The DCT coefficients corresponding to high ranking 

(high MSE) should be retained accurately after qunatization while those having low 

ranking become candidates to be quantized coarsely or removed. The ranking matrix 

results in a quantization table constructed so as to maximize block PSNR. Figure 3.1 

below shows a block diagram which illustrates the JCS-QT method. 

REMOVE 
ONE BY ONE 

,. 
8x8 AC12 8x8 8x8 

IMAGE ~ DCT ____. 
~ IDCT ____. MSE ____. RANKING f----+ 

8x8 
BLOCK MATRIX MATRIX 

QT 

ACss 

Figure 3.1 Block Diagram for Generating ICS-QT 

Orthogonal Property of DCT : Orthogonality is a fundamental property for 

representing a data vector in terms of a transform basis function [Clarke, 1985]. 

Suppose we have a set of eight different cosine waveforms of uniform amplitude as 

shown in Figure 3 .2, each sampled at eight points. 
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0~ ! ! ~ ! ! ! ! 0~ i i ! ! i i r -051 2 3 4 5 6 7 8 -0.51 2 3 4 5 6 7 8 

o~! 0.~1 ! ! ! ~ ; ~ 1 i i ~ ~ 1 ~ ! -051 2 3 4 5 6 -051 2 3 4 5 6 7 8 

0~ J o~f ! ! ~ ; 1 i ; ~ i i ; i ! -0 51 2 3 4 5 6 7 8 -0.51 2 3 4 5 6 8 

O.~ ! O.~ ! i ! i ! ~ i ; ! ~ 1 ; l -051 2 3 4 5 6 7 8 -0.51 2 3 4 5 6 7 8 . 

Figure 3.2 DCT Basis Vectors; N=8 [Clarke, 1985] 

lfwe select any two waveforms in Figure 3.2 and take the product of 

corresponding sampling points, the sum of these products over all sampling points 

results in zero. On the other hand, if any waveform is multiplied by itself, the 

resulting sum is constant. These are defined as orthogonal properties of a waveform, 

here cosine waveform. In addition, the orthonormal property results in the same total 

energy in both data and coefficient domains. This property is expressed as in Eq. 3.2 

with mathematical notations. 

(3.2) 

where xiJ : picture elements in data domain 

Xuv : coefficients in DCT domain 

Using the property ofEq. 3.2, the analysis by synthesis technique for generating ICS-
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QT can be greately simplified. When we remove one of the Xuv, the resulting error is 

exactly IXuvf. Therefore, we do not need to take IDCT to calculate the resulting 

MSE when a coefficient is removed. As confirmation, an example is shown in Figure 

3.3. As can be seen from Figure 3.3, both the analysis by synthesis technique and the 

method using the orthonormal property produce the same MSE ranking matrix. 

Example Block 

56 62 48 40 45 63 57 45 
45 51 41 55 56 57 41 39 
45 41 45 69 53 39 23 22 
45 45 65 70 40 23 16 12 
53 64 74 57 33 24 23 12 
50 72 69 46 31 26 28 15 
41 69 60 41 36 26 26 21 
35 61 50 43 46 40 30 23 

Ranking Matrix Constructed by 
Analysis by Synthesis Technique 

Ranking Matrix Constructed by 
Orthonormal Property of DCT 

1 2 4 16 13 35 22 23 1 2 4 16 13 35 22 23 
8 5 4 10 15 20 27 21 8 5 4 10 15 20 27 21 
14 3 11 9 18 12 29 39 14 3 11 9 18 12 29 39 
17 19 6 34 7 49 63 25 17 19 6 34 7 49 63 25 
38 36 47 42 30 28 33 41 38 36 47 42 30 28 33 41 
24 31 46 26 50 37 57 45 24 31 46 26 50 37 57 45 
52 59 60 32 58 40 63 51 52 59 60 32 58 40 63 51 
53 44 43 48 55 56 61 62 53 44 43 48 55 56 61 62 

Figure 3.3 An Example of Ranking Matrix Constructed by Two Different Approaches 

In order to generate the quantization table for our tests, we used a set of seven 

576x720 gray scale images (a total of 45,360 8x8 blocks) for training. Four different 

central tendency measures, arithmetic mean, geometric mean, median, and mode 



[Steel, 1980] were tested to evaluate which measure gave the best result. In this 

simulation two 256x256 gray scale images, Lenna and four different texture images 

(fourtex), were used. Table 3.1 presents a set of simple simulation results which 

illustrate that for this test data the arithmetic mean produces the best quantization 

result. As a result of these tests, the algorithm which is discussed in this chapter 

employs the arithmetic mean to merge the 45,360 8x8 ranking matrixes for 

constructing the quantization table. 
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Figures 3.4 and 3.5 show generated ICS-QT and graphically the flow of the ICS 

algorithm, respectively. The first element ofICS-QT is 'NIA'. This element does not 

affect to total bit rate count because all of the DC coefficients will be zero as a result 

of the mean removal strategy described in the following section. 

(Set point:0.75 bpp) 

PSNR (dB) 
Centroids 

Lenna Fourtex 

Arithmetic Mean 36.916 31.527 
Geometric Mean 36.412 31.127 

Median 36.195 30.977 
Mode 35.068 30.151 

Table 3.1 Comparison of Averaging Methods for QT 

NIA 10 
11 17 
18 21 
23 27 
29 32 
34 37 
38 41 
41 44 

16 20 23 24 
21 24 26 27 
24 27 28 29 
30 31 32 32 
34 36 35 35 
39 40 39 37 
42 41 39 37 
44 44 42 40 

Figure 3.4 ICS-QT 
(NI A : Not Applicable) 

25 30 
28 32 
29 33 
31 35 
34 37 
35 38 
39 39 
38 39 



Training 
Vectors 

BxB sub-division 

A BxB block 

OCT 

Ranking Matrix 

Yes 

Centroids 

Quantization Table 

No 

Figure 3.5 Flow Chart ofICS Method Using Orthonormal Property ofDCT 
(IX/: Square of AC coefficients) 

3 .1.2 Mean Removed Quantization 

In the DCT transformed domain, a given DC coefficient has the value of block 
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size times the corresponding block mean. Therefore, the possible magnitude range of 

the DC coefficient ranges from O to 2,048 for an 8-bit image when the block size is 

8x8. As a result, even though DPCM [Jain, 1989] may be used to code the DC 

coefficients, sometimes 8 bits or even 9 bits may not be enough to represent 
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accurately the DC values. 

If the mean of each block is removed, the statistical expected value of each block 

is zero and the maximum block mean in the spatial domain is less than or equal to 

255 for 8-bit images, which is much smaller than the magnitude of the average DC 

coefficient in the transform domain. Therefore we can achieve more compression by 

removing block means; the values of the DC coefficients will all be zero while the 

activities among adjacent AC coefficients in the DCT domain will remain the same. 

The scalar random variable, mean, and the mean removed residual (R), are 

defined as follows [Gersho, 1991]: 

(3.3) 

where m1m corresponds to the mean of the (l,m)th block. 

(3.4) 

(3.5) 

where M,N: block size, xlm : (l,m)th image block, Rim : (l,m)th residual 

block, and Xii: each pixel of (l,m)th block. 

Therefore, we can decompose the original vector into two separate features, the scalar 

mean and residual vector, as follow: 

(3.6) 

The DCT transformed residual vectors are quantized using the quantization table 

which was generated using the ICS method described in the previous section. The 

block means are transmitted to the decoder using DPCM in the spatial domain. 

Finally, the appropriate mean values are added to the corresponding reconstructed 



residual vectors. Figure 3.6 below illustrates by means of a block diagram the Mean 

Removed- Important Coefficient Selection - JPEG (MR-ICS-JPEG) procedure. 

ICS-QT HUFFMAN 
TABLE 
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AC 
COMPRESSED 

Block 
Mean 

Block 
Mean 

FDCT 

IDCT 

QUANTIZE 
ZIG-ZAG RUN 

ENCODER 

DIFFERENCE 
ENCODER 

OCT-BASED ENCODER 

ICS-QT 

DE- ZIG-ZAG RUN 
QUANTIZE ---t DECODER 

DIFFERENCE 
DECODER 

OCT-BASED DECODER 

Mea 

VLC 

HUFFMAN 
TABLE 

INVERSE 
VLC 

Figure 3.6 Block Diagram of MR-ICS-JPEG 

DATA 

Transmit 

Figure 3. 7 illustrates by example the quantization method described above. 

Figure 3.7.2 shows the mean removed block. Figure 3.7.5 represents the quantized 

block, where the scaling factor of 1 is chosen arbitrarily for use in this example. The 

choice of scaling factor is discussed in more detail in a later section. The algorithm 

can be summarized as follows: 



Original Block(mean = 43.4219) Mean-Removed Block 

56 62 48 40 45 63 
45 51 41 55 56 57 
45 41 45 69 53 39 
45 45 65 70 40 23 
53 64 74 57 33 24 
50 72 69 46 31 26 
41 69 60 41 36 26 
35 61 50 43 46 40 

Quantization Table 

N/A 10 16 20 23 24 
11 17 21 24 26 27 
18 21 24 27 28 29 
23 27 30 31 32 32 
29 32 34 36 35 35 
34 37 39 40 39 37 
38 41 42 41 39 37 
41 44 44 44 42 40 

Quantized Block( scale: 1) 

0 8 -2 -1 -1 0 
2 -2 0 1 1 0 
1 -2 1 1 0 -1 
1 0 1 0 -1 0 
0 0 0 0 0 0 
0 0 0 0 0 0 
0 0 0 0 0 0 
0 0 0 0 0 0 

Reonstructed Block 

56 61 42 34 56 66 
49 48 44 50 58 50 
44 38 52 66 53 30 
44 45 66 69 40 22 
48 63 78 58 25 25 
49 73 78 46 22 33 
43 67 66 41 32 36 
37 57 51 53 41 44 

1 0 1 1 0 0 
0 1 0 1 1 0 
0 0 0 0 1 0 

57 45 12.58 18.58 4.58 
41 39 1.58 7.58 -2.42 
23 22 1.58 -2.42 1.58 
16 12 1.58 1.58 21.58 
23 12 9.58 20.58 30.58 
28 15 6.58 28.58 25.58 
26 21 -2.42 25.58 16.58 
30 23 -8.42 17.58 6.58 

MR-DCT Block 

25 30 0 81.79 -35.77 
28 32 23.99 -32.11 -0.60 
29 33 16.47 -39.19 20.46 
31 35 13.05 11.86 26.93 
34 37 2.63 3.28 1.46 
35 38 -6.15 5.07 1.48 
39 39 0.89 0.37 0.36 
38 39 0.81 1.94 2.18 

Dequantized Block 

0 0 0 80 -32 
0 0 22 -34 0 
0 0 18 -42 24 
0 0 23 0 30 
0 0 0 0 0 
0 0 0 0 0 
0 0 0 0 0 
0 0 0 0 0 

Difference Block 

57 57 0 1 6 
39 40 4 3 3 
20 19 1 3 7 
18 8 1 0 1 
29 9 5 1 4 
37 16 1 1 9 
31 22 2 2 6 
35 24 2 4 3 

Bit Stream (AC Coefficients) 
0011000101 
1 o o 1 1 1 1 o ·o 1 
0111111110 

-3.42 
11.58 
25.58 
26.58 
13.58 

2.58 
-2.42 
-0.42 

0 
0 
0 

-15.68 
21.42 
23.63 
-3.68 
-2.33 
-5.88 
4.23 
1.26 

-20 
24 
27 

0 
0 
0 
0 
0 

6 
5 
3 
1 
1 
0 
0 
2 

1 
0 
1 

1.58 
12.58 

9.58 
-3.42 

-10.42 
-12.42 

-7.42 
2.58 

-17.38 
16.06 

-12.47 
-24.11 

0 
1 
0 

-5.13 
1.16 

-0.38 
0.53 

-23 
26 

0 
-32 

0 
0 
0 
0 

11 
2 
0 
0 
8 
9 
4 
2 

1 
0 
0 

(From left to right and from top to bottom : Figure 3. 7. I - Figure 3. 7 .9) 

19.58 
13.58 
-4.42 

-20.42 
-19.42 
-17.42 
-17.42 

-3.42 

-3.33 
8.81 

-18.70 
-1.20 
5.14 
2.98 
2.39 

-0.52 

0 
0 

-29 

0 
0 
0 

0 
0 
0 
0 
0 

3 
7 
9 
1 
1 
7 

10 
5 

Figure 3.7 An Example of Quantization Using the Proposed Technique 
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13.58 
-2.42 

-20.42 
-27.42 
-20.42 
-15.42 
-17.42 
-13.42 

-6.97 
5.87 

-5.14 
-0.25 
3.86 
0.50 

-0.22 
-0.34 

0 
0 
0 
0 
0 
0 
0 
0 

0 
2 
3 
2 
6 
9 
5 
8 

1 0 
0 1 
0 

1.58 
-4.42 

-21.42 
-31.42 
-31.42 
-28.42 
-22.42 
-20.42 

0 
1 

-6.88 
-8.39 
-2.57 
5.88 
2.37 
1.79 

-0.92 
0.31 

0 
0 
0 
0 
0 
0 
0 
0 

12 
1 
3 
4 
3 
1 
1 
1 



step 1) Mean removal and DCT computation; remove the mean 

from every block and compute the 8x8 DCT. 

step 2) Quantization, and transmission of block means and 

quantized AC coefficients; quantized blocks = round 

(mean removed DCT blocks I ( quantization table* 1) ) 

step 3) Dequantization; dequantized blocks = quantized 

blocks*( quantization table* 1) 

step 4) Reconstruction; reconstructed blocks = IDCT( dequantized 

blocks) + corresponding quantized block means 
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The single-block example shown above produces a PSNR of 34.68 ( dB). Figure 

3.7.9 shows the Huffman coded bit stream of the quantized AC coefficients. Seventy 

three bits are needed to encode the AC coefficients. IfDPCM difference of the DC 

coefficient is three, the DC coefficient is coded by O 1111. As a result, the total bits 

required is seventy eight bits, compression ratio is 6.56, and bit rate is 1.21 (bpp). 

3 .2 Calibration of Bit Rate 

One of the problems associated with testing and applying compression schemes 

such as JPEG is that it is difficult to produce a constant desired output bit for 

comparison with other image compression schemes [Gray, 1984] because the variance 

of AC coefficient in each block and the number of bits required to represent the block 

are data dependent. However, the calibration of bit rate is highly desirable because it 

allows one to compare one compression scheme to another and to predict with higher 

accuracy how much storage space or transmission bandwidth is going to be required 

to store or transmit a compressed image. 



Several papers have been published which have covered this topic [Wu, 1994; 

Supangkat, 1995]. These algorithms have used an iterative procedure in order to let 

them converge to a fixed bit rate. However these algorithms depend highly on the 

initial scaling factor for the quantization table. If one selects a "bad" initial scaling 

factor, many iterations may be required for the algorithm to converge to the desired 

bit rate. In the following sections we demonstrate a procedure using regression 

equations based on the Proportional and Integral (PI) control algorithm to properly 

choose scaling factors so as to achieve a desired bit rate within a reletively small 

number ofiterations [Auslander, 1990; Steel, 1980; Nakagawa, 1992; Sasaki, 1992]. 

3.2.1 Proportional and Integral (PI) Control 

This classical control algorithm produces a compensating value for the scaling 

factors using bit error [Auslander, 1990]. The following equations define the PI 

control algorithm. 
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!iS = KPE +Kif Edt (3.7) 

where /j.S: adjusting value of the scaling factor, 

KP : Proportional gain, and 

K; : Integral gain. 

For computer simulation, the above integral term is converted into discrete form as 

follow: 

/j.S = KPE + Ki'IE (3.8) 

where IE : accumulation of errors. 

A sufficiently small integral gain must be chosen so as to prevent unstable behavior 
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such as oscillation (failure to converge to minimum error). If it is too small, however, 

the convergence may be slow. In this experiment, 0.0001 is determined empirically 

as an integral gain. Figure 3.8 is the block diagram of the PI control algorithm 

IMAGE 
BLOCK 

CALCULATED 
BPP 

SCALING QT QUANT I KPE FACTOR ZATION 

DELTAS 

REFERENCE K1· 
BPP EACCUM 

Figure 3.8 Block Diagram of the PI control 

3.2.2 Initial Scaling factor 

The optimal selection of initial scaling factor reduces the number of iterations 

required to establish a desired bit rate. In this experiment, the relationship between 

standard deviations and scaling factors of 1,260 48x48 gray scale images is exploited. 

In order to perform this experiment, each image is quantized using the quantization 

table which was generated in Section 3 .1.1, and the bit rate is controlled by the PI 

control algorithm. 

Although the overall trend of the scaling factor is increasing when the standard 

deviation is increasing, the actual variations of the scaling factors are roughly random. 

In order to reduce their randomness and to find the general representative scaling 
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factors for given bit rates, the similar scaling factors and the similar corresponding 

standard deviations of 1,260 48x48 images are merged together using the arithmetic 

mean when they converge to fixed bit rates. 

In this experiment, five different set points ( data rate, given as bits per pixel -

bpp) are considered (0.25, 0.5, 0.75, 1 and 2.25 bpp) to calculate the linear regression 

equations. In order to calculate these equations , the least square regression method, 

which minimizes the average distance between fitted lines and actual data, is applied 

[Steel, 1980]. After developing the five linear regression equations to approximate 

the initial scaling factors, the optimal proportional gains, Kp, are determined by 

further simulations with the five linear regression equations. That is, scaling factors 

for a to determine Kp are varied from 0.001 to 10 and the optimal scaling factors for 

a, which gives the smallest number of iterations for convergence are determined for 

1,260 48x48 gray scale images. Finally these scaling factors for each set point (bpp) 

are merged together using the arithmetic mean. Table 3 .2 represents the optimal 

regression equations, based on a 95% confidence interval [Steel,1980], and their 

corresponding proportional gains. Using this technique, no more than about four 

iterations are required to converge to a specified constant bit rate. Figure 3.9 shows 

an example of linear regression line in the case of bit rate 0.5 bpp. 

Set Linear Regression Equations Kp Ki 
Point(BPP) 

0.25 S=0.261844*cr - 0.380124 0.64308*cr 0.0001 
0.5 S=0.067992*cr + 0.054204 0.13846*cr 0.0001 
0.75 S=0.036687*cr + 0.015799 0.05733*cr 0.0001 
1.00 S=0.020517*cr + 0.053998 0.02963*cr 0.0001 
2.25 S=0.004259*cr + 0.227768 0.00552*cr 0.0001 

( cr : Average Block Standard Deviation of Image in Spatial Domain, S: Initial Scaling Factors, 
and Kp, Ki: Proportional and Integral Gain for PI control) 

Table 3.2 Linear Regression Equations and Their Corresponding Optimal Gains 
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Figure 3.9 Linear Regression Equation (0.5 bpp) 

3.3 Simulation Results and Discussion 

To test the performance of the new quantization table presented earlier, several 

simulations have been performed and compared to the performance of a reference 

coder (chosen to be JPEG for this study). The mean removed scheme is combined 

with both ICS-QT and the reference quantization table technique of JPEG. In these 

simulations two standard gray scale images, Lenna and Boat, are used for the 

comparison of performance. Performance is measured in terms of PSNR. 

Figures 3.10 illustrates the performance of the three different methods, Standard-

JPEG, MR-JPEG, and MR-ICS JPEG at a variety of bit rates. The MR-ICS-JPEG 

and the MR-JPEG give more than 2dB and 0.5 dB improved performance when 
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referenced to standard JPEG, respectively. When the MR scheme is combined with 

the reference quantization table of standard JPEG, the performance improvement is 

just 0.5 dB. When it is combined with ICS-QT, the performance improvement is in 

excess of 2d.B. So we can conclude that an improved quantization table (ICS-QT) 

plays a more important role than the MR-scheme for elevating performance. 
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Figure 3.10 Performances of the Three Different Schemes (Lenna) 
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In the range of lower compression, the performance improvement is more than 

3dB because the quantized DC coefficients in standard JPEG scheme are much larger 

than the maximum mean value of the spatial domain. On the other hand, in the range 

of high compression, standard JPEG produces almost the same performance as that of 

the MR schemes because the multiplication of large scaling factors to the quantization 

table in standard JPEG scheme makes the magnitudes of DC coefficients close to or 

smaller than the corresponding block means of the spatial domain. In addition, an 

additional 4 bits is neceaasry to indicate end of blocks (EOB), so just remaining few 

bits are allocated to code actual quantized coefficients. Therefore, the performance 

will not be improved no matter what kinds of quantization tables we are using at low 

bit rates. Figures 3.11 and 3.12 show examples of the actual compressed images 

(Lenna and Boat) for the proposed MR-ICS-JPEG at fixed bit rates. 

In order to validate the performance of the five linear regression equations, 

additional simulations are perfromed for fifty 256x256 gray scale images for five bit 

rates. In this simulation, this procedure has never been observed to require more than 

four iterations for convergence to a specified bit rate. The average number of 

iterations for each bit rate is 2.82, 1.92, 1.86, 1.82, and 2 for the bit rates of 0.25, 0.5, 

0. 75, 1.0, and 2.25, respectively. The total number of iterations required for the fifty 

images, each has five set points, is 521. Therefore, the global average number of 

iterations to converge to a fixed bit rate is 2.084. Figures 3.13 through 3.17 shows the 

number of iterations for convergence to fixed bit rates for the fifty test images. 
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Lenna( on gi nal) 

025 bpp, PSNR: 28182(dB) 
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0 5 bpp, PSNR: 33375(dB) 

0.75 bpp, PSNR: 37181(dB) 

Figure 3.11 Original and Compressed Images (Lenna) 
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Boat (original) 

0.25 bpp, PSNR29448(d8) 
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0.5 bpp, PSNR34242(dB) 

0.75 bpp, PSNR37451(dB) 

Figure 3 .12 Original and Compressed Images (Boat) 



0.25 bpp 

5 

4 

~ 
0 

~ 3 

~ 
LL 
0 
ffi 2 
ID 
2 
::::, 
z 

0 10 20 30 40 50 

IMAGES 

Figure 3.13 Number oflterations 
Max: 4, Min: 1, Average :2.82 

0.75bpp 

4 

0---fill".WW.U.WW,U.WW.U.WW.U-<yUU'.illillll"-""/'~~il/'"-"-~wui 

0 10 20 30 40 50 

IMAGES 

Figure 3.15 Number oflterations 
Max: 3, Min: 1, Average: 1.86 

0.5 bpp 

5 

4 

(J) z 
0 

~ 3 

~ 
LL 
0 
ffi 2 
ID 
2 
::::, 
z 

0 10 20 30 40 50 

IMAGES 

Figure 3.14 Number oflterations 
Max: 3, Min: 1, Average :1.92 

1.0bpp 

4-

~ 
F 3-

1 
~ 
0:: 2 - nnnmmnnnnll nrn,nnmmnnc,nnnnnn 

! 

0 10 20 30 40 50 

IMAGES 

Figure 3 .16 Number of Iterations 
Max: 3, Min: 1, Average: 1.82 

60 



(f) 
z 
0 

4 

~ 3 
w 
t: 
IJ.. 
0 

ffi 2 
O'.l 
:;; 
:::, 
z 

0 10 

2.25 bpp 

20 30 40 

IMAGES 

Figure 3 .17 Number oflterations 
Max: 4, Min: 1, Average: 2 

3 .4 Conclusion 

61 

50 

The new quantization table using ICS method is introduced and the MR scheme 

is applied to both the ICS-QT and standard JPEG. The MR-ICS-JPEG and the MR-

JPEG produce more than 2dB and 0.5 dB improved performances when compared to 

that of standard JPEG, respectively. The five different linear regression equations 

which are adjusted with ICS-QT are presented. These equations will not fit well when 

we employ other quantization tables; however, there is value in combining ICS-QT 

and its corresponding linear regression equations because ICS-QT gives enhanced 

performance, in terms of PSNR, when compared to standard JPEG. Using the PI 

control with the linear regression equations, the desired constant bit rates were 

produced no more than about four iterations. 



CHAPTER IV 

VECTOR QUANTIZATION AND ITS HIERARCHICAL 

IMPLEMENTATION USING QUADTREE 

Hierarchical data structures are important representations in data compression 

problems because of their ability to focus on the interesting subsets of data. They are 

based on the principle of recursive decomposition. The decomposition practically 

results in an image segmentation, which is a very useful technique for a variety of 

image processing problems such as pattern recognition [Chien, 1984]. 

One of the most commonly used methods to implement a hierarchical data 

structure is quadtree segmentation (QTS) 4.1. This chapter is devoted to develop 

optimal thresholding methods for efficient quadtree segmentation. The choice of 

threshold to decompose an image affects the total compression performance. In 

other words, low compression ratio and low image quality are resulted if the selected 

threshold is too low and too high, respectively, in the case of top down construction of 

quadtree. The second half of this chapter describes homogeneity testing methods of 
' 

quadtree segmented blocks. 

4.1 Quadtree Segmentation for Hierarchical Implementation 

The basic idea of QTS is consecutive subdivision of an image into its 

4·1 [Grosky,1983; Jackin, 1983; Samet, 1984; Shaffer, 1987; Strobach, 1989; Shusterman, 1994] 
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homogeneous quadrants whose sides are all a power of two long if the image is 

square. This strategy is continued recursively until the activity of every block is less 

than or equal to predefined thresholds. When we describe a block, if its intensity is 

relatively constant, it is coded with a set of large dimensional codebooks which have 

low quantization levels. If a block is relatively active, its standard deviation is large, 

it is segmented into four smaller blocks, and these small blocks are coded with a set of 

small dimensional codebooks which has high quantization levels. 

In the quadtree representation of an image, a nonleaf node has four children 

nodes which correspond to subblocks of the image. A leaf node is defined as a block 

which has no necessary further subdivision. The root node represents an entire image, 

and the first level involves four disjointed subblocks. This segmentation procedure is 

called the top-down construction of a quadtree. 

Figure 4.1 describes an example of the top-down QTS, its quadtree structure, and 

corresponding binary map. In the quadtree representation of Figure 4.1 (b), white and 

shaded nodes represent nonleaf and leaf nodes, respectively. The white circles are 

coded by a binary value of '1' while the shaded circles are represented by a binary 

value of 'O' in the order of top to bottom and left to right. With this strategy, the 

binary bitmap of Figure 4.1 (c) is produced. An attractive point of the quadtree 

representation is its low overhead in number of bits, where overhead means the 

number of bits required to describe the structure of the quadtree. Each node requires 

just one binary digit to specify whether a given node needs to be split or will be a 

terminal node which does not require further subdivision. For example, a 16x 16 

block of Figure 4.1 (a) needs only (17/256 = 0.0664 bpp). 

In order to represent overhead bits in a general form of the top-down quadtree, 

an empirical probability [Shusterman, 1994] of finding leaf nodes at level k is defined 

as follows: 
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Figure 4.1 Typical Quadtree Representation of a block (16xl6) 

( a) a segmented image block, (b) quadtree representation, and ( c )bitmap 



where N k : number of nodes that do not have children at level k and 

k : number of level. 

Cumulative probability of finding leaf nodes at level k is defined as 

{
qk+I - Pk+I 

qk = 
1 

k = o, ... ,n-l 

k=n 
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(4.1) 

(4.2) 

The number of leaves included in a quadtree and the number of bits to represent a 

quadtree are defined as Eq. 4.3 and Eq. 4.4, respectively. 

n 

NL(qt) = L 4k Pk 
k=O 

where N L(qt): number of leaves, 

N B(qt): number of bits, and 

n : number of levels in a quadtree. 

Finally, the bit rate of overhead is calculated by the following equation. 

N BR = B(qt) 
qt 4n+I 

(4.3) 

(4.4) 

(4.5) 

As an example, the overhead in number of bits of Figure 4.1 is calculated as in 

Table 4.1. The calculation of the example below shows overhead of a particular block. 

Figure 4.3 represents the overhead of a 256x256 image when the level of quadtree 

varies from 1 to 7, and the minimum allowed block size is 2x2. As can be seen from 

this graph, the more levels we have, the more overhead necessary. In addition, if we 

choose more than 16x 16 as the largest block, it requires a large amount of storage 

space for the codebook, and large block areas will suffer from blockiness even though 



their intensities are relatively constant. Because of this, the 8x8 block (level 2) is 

selected as the largest block in the hierarchical implementation of this thesis. Figure 

4.2 shows the block diagram ofHVQ. 
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0 1 l 25 3 l 
N L(qt) = 4 X O + 4 X 4 + 4 X 8 + 4 X 8 = 1 + 10 + 8 = 19 

. 63 (4 2 1) N B(qt) = 3- x O + 4 x 4 = 21- 4 = 17 

17 
BRq1 = ~ = 0.0664 = 0.07bpp 

Table 4.1 An Example of Overhead Calculation in Bits 
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Figure 4.2 Block Diagram of HVQ 
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Figure 4.3 The Overhead in Bits of a 256x256 Image. 

4.2 Optimal Thresholding 

In general, the efficiency of the quadtree decomposition is measured by MSE, 

bpp, and number of leaves achieved. These parameters depend on the statistics of 

given images and the decomposition threshold of each quadtree level. Optimal 

thresholding has been considered by many researchers4·2 ; however, a true optimal 

solution has not been found. This section proposes methods for finding the optimal 

threshold and testing the resulting homogeneity of segmented image blocks. 

4·2 [Vaisey, 1987; Chiu, 1989; Strobach, 1990; Strobach, 1991; Vaisey, 1992]. 

67 



68 

4.2.1 Single - Thresholding 

Because most images do not have a Gaussian distribution, their statistical 

behavior is unpredictable. Usually the bit rate and the MSE are inversely increasing. 

Thus, these two quantities need to be traded off. This section discusses a method for 

finding an optimal decomposition point for trading off these two quantities. 

Standard deviation has often been used as a good measure of image property or 

statistics. In this research, the standard deviation of image blocks is used as a 

threshold. A single threshold is used for each level of the quadtree to achieve 

implementation simplicity. Figure 4.4 shows an example which represents the 

relationship between MSE and bit rate of a common image when the thresholds are 

varied from O to 5 0. The inverses of MSE and bpp are normalized by their maximum 

values to constrain their values from O to 1 for comparison purposes. These two 

quantities and their product are shown on the y-axis. In the case of an image having a 

Gaussian distribution, the cross point of (1/MSE) and (1/bpp) gives a maximum 

product value, and its corresponding point to the x-axis becomes the optimal threshold 

which produces minimum bpp and MSE. Equation 4.6 shows this relationship. 

Optimal point = Max( 1 x - 1-) i=O, ....... ,50 
MSEi hpA 

(4.6) 

However, most images do not have a Gaussian distribution. As a result, the cross 

point does not give an optimal solution for the threshold. For example, the 

optimal threshold of Figure 4.4 is six, which does not correspond to the cross point 

which is four. 

The optimal threshold depends highly on the standard deviation of a given 

image. In order to derive a general relationship between the standard deviations of 

input images and the optimal thresholds, 1,260 48x48 image blocks are used, and the 



corresponding 1,260 optimal thresholds are estimated from the graphs. These 1,260 

optimal thresholds are merged using the arithmetic mean and plotted with their 

corresponding standard deviations. A polynomial fit to the given data is calculated 

69 

and displayed in Figure 4.5. When the standard deviation of a given image is less 

than 40, the threshold decreases according to the increasing of the standard deviation 

and results in increasing bit rates. However, the bit rate increase does not greatly 

influence the reduction ofMSE when the standard deviation is larger than 40. 

Therefore, the threshold increases at the standard deviations higher than 40 because 

this polynomial is constructed by trading off between MSE and bit rate. We can 

now calculate approximations of the optimal thresholds very easily using this 

polynomial for the standard deviations of given images. 
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Figure 4.4 An Example of the Relationship Among MSE, BPP, and Threshold 
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Figure 4.5 An Optimal Polynomial for Finding Optimal Single Thresholds. 

4.2.2 Multi - Thresholding 

After a super block (8x8) is segmented by a given threshold, the standard 

deviations of sub blocks can be larger, equal to, or smaller than that of their parent 

block. Therefore, using different thresholds at each quadtree level is sometimes 

necessary. This section proposes a mathematical model for approximating optimal 

thresholds of each quadtree level. 

Equations ( 4.1) through ( 4.5) represent the overhead calculation in the case of 

the top-down quadtree segmentation method. In order to avoid the complexity for 

mathematical modeling, we consider bottom-up quadtree construction, where the 

minimum allowed block size used is 2x2. The bottom-up quadtree construction is 

started by merging 4 leaves if their standard deviations are less than or equal to a 

predefined threshold, and this process is continued recursively until it meets the root 
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node. As we mentioned before, a standard deviation after merging four leaves can be 

larger, equal to, or smaller than that of its parent blocks. However, we can construct a 

hypothesis that the standard deviation of a current level is less than or equal to some 

relationships of the thresholds of previous levels, because our intention is to reduce 

the total number of blocks in order to reduce the bit rate without sacrificing the image 

quality. With this hypothesis, the standard deviation of the first level can be bounded 

as shown in Eq. 4.7 

1 
STD1 ~ -'I'o[r oO) + r o(2) + r o(3) + r o(4)] 

4 

STD0 (k) _ 
where r 0 (k) = ~ 1, k- 1, 2, 3, and 4. 

Ta 

(4.7) 

The worst case merge results in r O ( k) and STD1 equal to 1 and Ta , respectively. 

Similarly, the relationship of the second level is derived by the hypothesis as in Eq. 

4.8. 

1 ' 
+-'I'o[r o(l,l) + y o(l,2) + y o(l,3) + y o(l,4) 

16 . 

+ y o(2,1) + y o(2,2) + y o(2;3) + y o(2,4) 

+r 0(3,l) + r o(3,2) + r o(3,3) + r o(3,4) 

+r o(4,l) + y o(4,2) + y o(4,3) + y o(4,4)] 

(4.8) 

If we consider the worst case again, STD2 equals to Ti + Ta , and the standard 

deviation of the second level is upper bounded as in Eq. 4.9. 

STD2 ~ Ti + 'fo 

k-1 

STDk ~ ~-1 + Tk-2 + Tk-3 · · · 'fo = L Tm 
m;O 

where STDk : standard deviation of the root node. 

(4.9) 

(4.10) 



In the bottom-up construction, Equations ( 4.1 ), ( 4.2), and ( 4.3) are modified to 

Equations (4.11), (4.12), and (4.13), respectively. 

P, = Nk 
k 4n-k 

11 

N L(qt) = L 4n-k Pk 
k=O 

k=O 
k = 1, ... ,n 

recall Pk : Empirical probability of finding leaf nodes at level k, 

(4.11) 

(4.12) 

(4.13) 

q k : Cumulative probability of finding leaf nodes at level k, and 

N L(qtJ : Number of leaves. 

A general expression ofEq. 4.10 is as follow: 

n n k-1 

LPk X [STDk] :S; LPk X [LT,,,]. (4.14) 
k=I m=O 

From Eq. 4.12, Eq. 4.14 becomes Eq.4.15. 

n 11 k-1 

L(qk -qk+l) X [STDk] :S; L(qk -qk+I) X [LT,,,]. (4.15) 
k=l k=l m=O 

The right side ofEq. 4.15 can be rewritten as follows: 

n k-1 

L(qk -qk+l) X [LT,,,] 
k=l m=O 
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n n 

= Lqk~-1 -qn+ILTm-1 · (4.16) 
k=I m=I 

Because the level n+ 1 does not exist, the second term ofEq. 4.16 becomes zero. 

Combining Eq. 4.15 and Eq. 4.16, we can get Eq. 4.17. 

n 

STDk ~ LqkTk-1 (4.17) 
k=I 

For the bottom-up case, Eq. 4.13 can be rewritten as follows: 

n n 

N "4n-k 4n "4n-k 
L(qt) = ~ Pk = Po + ~ Pk 

k=O k=I 

n 

=4"(l-q1)+ L4n-\qk -qk+I) 
k=I 

Recall, level n+ 1 does not exist. 

=4n[1-Icq +~+-···+!b_)l 4 I 4 4n-l 

(4.18) 

From Eq. 4.18, we can get q1 • 

(4.19) 

Eq. 4.17 can be rewritten as Eq. 4.20. 

11 

STDk ~ q/I'a + LqkTk-1 (4.20) 
k=2 

Substituting Eq. 4.19 for q1 in Eq. 4.20, we can get Eq. 4.21. 
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(4.21) 

In Eq. 4.21, the first term of the right side, l -4-n NL(qt), is always positive. In 

order to minimize the standard deviation of the root node, the second term ofEq. 4.21 

should be less than or equal to zero. Thus, we can get the following relationship 

among thresholds as shown in Eq. 4.22. 

T. < 41-k 7' 
· · k-1 - 1 0 (4.22) 

Eq. 4.22 represents the relationship among thresholds of each level in the case of the 

bottom-up quadtree construction. Ifwe consider the case of the top-down quadtree 

construction, then Eq. 4.22 should be modified to Eq. 4.23. 

T. < 4k-l"' 
k-1 - 1 o (4.23) 

As can be seen from the Eq. 4.23, a threshold of each level is upper bounded as a 

function of the first threshold. The second threshold is upper bounded by the first 

threshold with a factor of four. Because the infinite number of solutions for Eq. 4.23 

may exist, a computer simulation is performed to estimate an optimal multiplication 

factor. Even though the bound of the optimal threshold ofEq. 4.23 starts from the 

hypothesis ofEq. 4.7, it works well for any image no matter what the image statistic 

is. Simulation results are given in section 4.4. 

4.3 Homogeneity Test 

This section is devoted to testing homogeneities of image blocks, which are 

decomposed by quadtree, and constructing relationships between bit rate and number 

ofleaves in terms of homogeneity. Usually, HVQ uses different codebooks for each 

block size and each codebook is generated from different training vectors. If a set of 
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training vectors is homogeneous, the resulting codebook produces good performance 

when it is used to code the homogeneous blocks. Therefore, the homogeneity test is 

necessary. 

In general, homogeneity means that each block or region includes only a small 

amount of high frequency components. If we examine the variation of spatial 

.frequency (SPF) after a fixed amount of high frequency components is removed, the 

homogeneity of a given block can be measured. In other words, if a low SPF is 

achieved after removing a fixed amount of high frequency components, we can 

conclude that the given area is homogeneous. 

The Spatial frequency (SPF) of a block is defined as in Eq. 4.26. 

1 N-,2N-I 

row frequency= - 2 LLlxi,J -xi+i). 
N i=O J=O 

. f N-IN-2 

column.frequency= - 2 LLlxi,J -xi,J+il
N i=O J=O 

spatial.frequency= ~(row freq) 2 + (col freq) 2 • 

where xi,J: each pixel in spatial domain. 

(4.24) 

(4.25) 

(4.26) 

In order to remove high frequency components from a block, the energy 

compaction property.of the DCT is used. After taking the DCT of a block, 25 % of 

the number of coefficients in a high frequency area are removed as shown in Figure 

4.6. The shaded areas of Figure 4.6 represent the removal of high frequency 

components. The SPF of the high frequency removed block is calculated by Eq. 4.26. 

To calculate the SPF of a high frequency removed block, IDCT is necessary. Finally, 

the homogeneities based on SPF is defined in Eq. 4.27. 



8x8 

EHE 
tEi8 

4x4 2x2 

Figure 4.6 Removal of High Frequency Components 

HSP = SPFO- SPFR x 100 (%) (when SPFO :;c SPFR) 
SPFO 

where HSP: homogeneity based on spatial frequency, 

SPFO: spatial frequency of original block, and 

(4.27) 

SPFR: spatial frequency of high frequency removed block. 

HSP explores the activity of each block. The value of SPFR is always less than 
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or equal to SPFO. In Eq. 4.27, the value of SPFR must be low if a block has few high 

frequency components. As a result, the homogeneity, HSP, should be high. If the 25 

% of the number of coefficients in the high frequency area is originally zero before 

removal, SPF does not change after the removal. In this case, the homogeneity 

becomes 100 % with the constraint of 25 % removal. If the percentage of removing 

high frequency components is too high or too low, the differences of homogeneities at 

different bit rates are too small to compare with each other. Because of this, 25 % of 

the removal is empirically chosen in this experiment. 

Another homogeneity testing method, which is based on statistical hypothesis, is 
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applied to determine whether a distribution of SPF is homogeneous or not. This test 

explores global homogeneity of regions of different block sizes. In other words, the 

similarity of original and high frequency removed block is considered in terms of SPF 

using Student's t-test criteria [Steel, 1980]. Table 4.2 describes an example of pair of 

SPF. 

Because the magnitude of SPFR is upper bounded by that of SPFO, the 

magnitude of SPFR is always less than or equal to that ofSPFO. If two magnitudes, 

SPFO and SPFR, are close enough to each other, we can conclude that each block has 

many high frequency components, and therefore homogeneity fails. Similarly, when 

the differences of two magnitudes are large (i.e., the magnitude of SPFR is small), we 

may conclude that each block has few high frequency components, and the 

homogeneity is successful. With these strategies, the hypothesis test is performed. 

SP FO ( original) SPFOI SPF02 SPF03 ...... SPFON 

SP FR (high freq removed) SPFR SPFR SPFR ...... SPFR I 2 3 N 

Table 4.2 An Example of Pairs for Homogeneity Test (N: number of blocks) 

With a hypothesis that two sample means are not different from each other (i.e., a 

pair is not homogeneous), Eq. 4.28 and Eq. 4.29 [Steel, 1980] are used as criterion to 

determine whether a pair of samples is homogeneous or not. 

t = (0 - R)- µo 
s 2 s 2 
_1_+_2_ 

n1 n2 

(4.28) 



where O: sample mean of original quantities ( SPFO), 

R : sample mean of high frequency removed quantities (SPFR), 

µ 0 : mean difference of hypothesis (mean difference is zero), 

ni, n2 : number of samples of two quantities of a pair, and 

S1 ,S2 : standard deviations of two quantities of a pair. 

{ 
I ti '?. ta : Reject hypothesis (homogeneous) 

2,df 

otherwise : Accept hypothesis (not homogeneous) 
(4.29) 

( 4.30) 

a : % of error (0.05 in this experiment). 

The value of the right side ofEq. 4.29 is obtained from the Table fort-test [Steel, 

1980] (Appendix IV .1 ). After estimating the success of each block region, Success 

(S) and Fail (F) are mapped into' 1' and 'O', respectively. The overall decision is 

made by the following simple relationship. 

Total homogeneity (TH) = B2 x Per2 + B4 x Per4 + B8 x Per8 ( 4.31) 

where B2 ,B4 , and B8 : Binary value of' l' or 'O', and 

Per2 , Per4 , and Per8 : percentages of each size of blocks occupy. 

{
TH'?. 95 :Success (S) 

if Otherwise: Fail ( F) 
(4.32) 

This test method is effective for a sample which has a normal distribution. 
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Even though the SPF distribution of common images is not exactly normal, it is close 

to normal as can be seen from the example in Figure 4.7. This test method, therefore, 

is applicable. Section 4.4 represents the simulation results and discussion. 
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Figure 4. 7 Distribution of Spatial Frequency 

4.4 Simulation Results and Discussion 

In order to compare the performance of the single-thresholding (ST) method to 

that of the multi-thresholding (MT) method, a HVQ scheme is implemented and 

simulated for six test images shown in Figure 4.8. Two different homogeneity test 

methods are also applied to six compressed images to explore how they are 

homogeneous and if their homogeneities are satisfactory. 
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lmage1(Lenna) lmage2(Circuit) 

lmage3(Barbara) lmage4(Car) 

lmage5(T oy) lmage6(Boat) 

Figure 4.8 Test Images 



4.4.1 Single-Thresholding and Multi-Thresholding 

As mentioned in section 4.2.2, an infinite number of solutions, which satisfy 

Eq. 4.23, may exist. Figure 4.9 shows the relationship between MSE and nineteen 

point multiplication factors which are less than or equal to four. As seen from the 

graph, the minimum MSE ( optimal MSE) is achieved at the point 2.6. The optimal 

point may be different from image to image because every image has various 

distributions of pixel values. However, the most probable occurring point for 

optimality is near 2.6 for common images. This point is estimated by empirical 

simulations. 
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Figure 4.10 represents the performances in terms ofMSE of two thresholding 

methods (ST and MT) which are applied to six test images. For fair comparison, their 

own optimal multiplication factors instead of using 2.6 of six test images, decided by 

simulation, are used in the case of MT. As can be seen from the graph, the optimal 

ST method produces better performance than that of the MT in terms ofMSE at their 

optimal bit rates. However, the ST method produces more leaves as shown in Figure 

4.11. If we consider the number of leaves produced as a measure of efficiency, the 

MT method is more efficient at the cost of some more MSE. 

Because the homogeneitiy is derived from SPFs of high frequency removed 

blocks, this value depends highly on the amount of high frequency components which 

is affected by thresholds. Actual homogeneities of the ST method for each image are 

slightly higher than those of the MT method as shown in Figure 4.12. Because the 

second threshold of the MT method is multiples of the first threshold, the dynamic 

range of SPFR of2x2 blocks are relatively higher than that of the ST method. Actual 

values used for thresholding in both methods are summarized in Table. 4.4. 
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4.4.2 Relationship Between Homogeneity and Bit Rate 

The relationship between homogeneity and bit rate in the HVQ scheme is 

explored in this section. For this simulation, Image 1 ( Lenna) is used as a test image. 

Figure 4.13 shows the homogeneities of the ST and the MT based on SPF when 

the bit rate varies from 0.25 bpp to 1.5 bpp. As can be seen from Figure 4.13, the 

homogeneity increases monotonically when the bit rate increases. An interesting 

point of this observation is that the MT method produces slightly higher 

homogeneities outside of the range around 1.0 bpp. The optimal threshold based on 

the ST method for the image I (Lenna) is 7.563026, which produces 1.074341 bpp. 

This optimal threshold is estimated from the polynomial which is displayed in Figure 

4.5. Because of this, the homogeneities near the bit rate 1.0 of the ST method are 

higher than those of the MT method. However, the advantage of optimality cannot 

be obtained outside of this range when we employ the ST method. On the other 

hand, the MT method provides optimality for the overall range of bit rates even 

though its performance is slightly worse than that of the ST method at some ranges. 

In addition, attention cannot be fixed on a finite optimal range to get flexible 

compressed bit rates. Therefore, the conclusion can be drawn that the MT method is a 

better choice to obtain a global optimality. 

In order to support the above conclusion, attention must be turned to the 

objective qualities of compressed images. Figure 4.14 and Figure 4.15 represent 

performances in terms of PSNR for the image I (Lenna) and the image VI (Boat), 

respectively. In both cases, the MT method produces better performance in terms of 

PSNR outside of the optimal range of the ST method; near 1.07 bpp for Lenna and 

1.12 bpp for the Boat. 
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Another approach uses the statistical Student's t-test method to test homogeneity 

of each block region or entire image. This method provides two opposite sides, 

Success (S) or Fail (F), rather than producing the percentage of homogeneity. The 

Student's t-test is applied to SPF of six test images at their optimal bit rates. 

Especially, the test images I and VI undergo the testing at different bit rates. 
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Figure 4.13 Total Homogeneity of the ST and MT Based on SPF (Lenna) 
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Table 4.3 summarizes the testing results of the test images I and VI at different 

bit rates. As expected from the fact that the homogeneity increases when the bit rate 
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increases, the homogeneity is successful at high bit rates. An interesting observation 

of this table is that the border of transition from 'F' to 'S' is located around their 

optimal bit rates which correspond to their optimal ST points (Lenna: 1.074 bpp and 

Boat : 1.117 bpp ). Table 4.4 describes the information of the test images and the 

testing results of homogeneity at optimal bit rates. Because the optimal thresholding 

points are determined from the 'trading off between bit rate and MSE in the case of 

the ST method, the homogeneities oftest images should be increased if bit rates are 

increased to higher than the optimal points. 
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MT ST 
Images BPP 

SPF SPF 

Lenna 0.25 F F 
optimal 0.5 F F 
bit rate: 0.75 F F 

(1.074 bpp) 1.0 s F 
1.5 s s 

Boat 0.25 F F 
optimal 0.5 F F 
bitr ate: 0.75 F F 

(1.117 bpp) 1.0 F F 
1.5 s s 

Table 4.3 Homogeneities of Lenna and Boat 

Lenna (1) Circuit (2) Barbara (3) Car( 4) Toy (5) Boat (6) 

ST MT ST MT ST MT ST MT ST MT ST MT 

Std_Div 52.26 52.26 42.74 42.74 48 48 36.74 36.74 49.68 49.68 54.17 54.17 

bpp (opt) 1.074 1.074 1.831 1.831 1.675 1.675 0.896 0.896 1.067 1.067 1.117 1.117 

MSE 29.54 30.92 36.46 39.31 36.15 39.18 7.005 7.567 18.75 20.95 26.13 27.31 

PSNR 33.43 33.23 32.51 32.19 32.55 32.2 39.68 39.34 35.4 34.92 33.96 33.77 

TH 1st 7.563 4.049 3.26 1.07 5.06 3.748 2.934 1.947 5.936 2.389 8.983 4.327 

2nd 7.563 10.53 3.26 4.28 5.06 5.997 2.934 4.674 5.936 9.076 8.983 11.25 

2x2 % 42.02 34.77 84.64 80.74 75.78 72.02 33.86 25.51 41.73 34.91 44.58 37.84 

num 6884 5696 13868 · 13228 12416 11800 5548 4180 6836 5720 7304 6200 

4x4 % 22.24 46.68 10.77 17.7 13.67 20.36 15.55 47.53 21.85 45.26 20.85 42.33 

num 911 1912 441 725 560 834 637 1947 895 1854 854 1734 

8x8 % 35.74 18.55 4.59 1.563 10.55 7.617 50.59 26.95 36.43 19.82 34.57 19.82 

num 366 190 47 16 108 78 518 276 373 203 354 203 

HO SPF s s s s s s s s s s s s 

Table 4.4 Image Information (TH:Threshold, HO: Homogeneity) 

Table 4.5 shows the comparison of performance ofHVQ in this experiment to 

several compression schemes from recently published paper. The HVQ based on 
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the MT method produces 1 dB enhanced performance when compared to that of 

quadtree which uses MSE as a basis for quadtree segmentation. 

PSNR (dB) 

Rate (bpp) HVQ QT AWPVQ PVQ 

0.5 30.61 28.91 28.41 27.62 

1.0 33.31 32.55 32.20 31.67 

Table 4.5 Comparison of Several Compression Schemes (Lenna) [Shusterman, 1994] 
(HVQ : Hierarchical VQ in this thesis, QT: Quadtree coder based on MSE, 
PVQ: Pyramid Vector Quantizer, and AWPVQ: Adaptive weighted PVQ) 

4.5 Conclusion 

In order to solve the optimal thresholding problem of the quadtree segmentation 

method for implementing HVQ, two thresholding methods, ST and MT, are proposed 

and simulated. The ST method produces just one optimal thresholding point for a 

given input image by the polynomial. On the other hand, the MT method keeps its 

optimality overall ranges of bit rates. When we compare the ST and the MT methods 

with their homogeneities and MSE achieved, the MT method produces better results 

than those of the ST method outside of the range near the optimal bit rate. Although 

the ST method produces better performances in the sense of MSE and homogeneity at 

an optimal bit rate, attention cannot be fixed on a particular bit rate. Therefore, it can 

be concluded that the MT method is a better choice to keep optimality for the overall 

range of bit rates. 

Because the optimal polynomial is estimated by trading off between bpp and 
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MSE, the optimality will decrease in the sense of trading off if the bit rates are 

higher than optimal bit rates. On the other hand, the homogeneity increases 

monotonically when bit rate increases. Thus, the optimal thresholding point of the ST 

method can be a transition point of homogeneity from 'Fail' to 'Success'. In other 

words, if the bit rate employed is higher than the bit rate which corresponds to the 

optimal thresholding point of the ST method, homogeneity turns to 'Success' as can 

be seen from the simulation results shown in Table 4.3. So, the optimality in the 

sense of 'trade off between bpp and MSE of the optimal single threshold is verified in 

terms of homogeneity. 

HVQ is a very efficient digital compression technique because codebooks, which 

have more quantization levels, can be used at the same bit rate for the representation 

of high detail regions. This strategy results in more than 5 dB improvement in 

terms of PSNR when compared to that of normal VQ as shown in Figures 4.14 and 

4.15. 



CHAPTER V 

HYBRID CODER 

Vector quantization attempts to code groups of parameters together. As a result, 

a large dimensionality produces a high compression ratio while resulting in an 

exponentially increasing number of calculations. Because of this encoding 

complexity, there are some limitations for employing high dimensional codebooks 

having a large number of codewords. If a codebook does not include enough 

codewords to adequately represent edges or curves, a VQ system cannot avoid 

producing edge degradation. This limitation restricts VQ for widespread use when it 

is compared to a DCT based transform coder such as JPEG. 

A DCT based transform coder uses a fundamentally different coding scheme than 

VQ in the sense that it is based not on a vector space but a scalar space. Because each 

DCT coefficient is coded and transmitted separately, it produces a high quality 

compressed image while being somewhat limited in achieving high compression. 

Moreover, attempting to get a high compression ratio results in edge blurring or a 

lowpass effect because most of the high frequency components are removed by the 

quantization procedure. 

In order to alleviate the inherent problems ofVQ and DCT based transform 

coders which are listed above, two coding schemes are combined into a hybrid 

coder. Low detail regions are coded roughly by VQ to get the advantage of high 

compression while some bits which are saved by VQ are allocated to the DCT based 
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transform coder to represent the high detail regions more accurately. 

The hybridization of OCT and VQ are found in the literature [Ngan, 1991; Wen, 

1993]. Wen designed a hybrid coder which combines the OCT domain VQ and 

spatial domain VQ. Smooth regions are coded by OCT domain classified VQ (CVQ) 

using the energy compaction property of the OCT, and edge regions are classified 

again into high and low detail regions. Low detail edge blocks are coded by the block 

mean while high detail edge blocks are coded by spatial domain CVQ. This scheme 

produces 29.52 (dB) in terms of PSNR for the Lenna image at a bit rate of 0.3979 

bpp. The performance produced by this scheme is not outstanding because it 

produces too many overhead bits for consecutive classifications. In this scheme, the 

resulting total bits required to code a 8x8 smooth block is nineteen. 

A modified-JPEG (MR-ICS-JPEG) scheme and a hierarchical VQ (HVQ), 

which uses an optimal thresholding method for quadtree segmentation, were studied 

in Chapters III and IV, respectively. This chapter describes a new hybrid coder, the 

dual hybrid coder, which combines HVQ, MR-ICS-JPEG and adaptive VQ (AVQ) 

schemes. Codebooks which are used to code low detail 8x8 blocks are generated 

from homogeneous training vectors. In order to reduce the overhead bits, the 

maximum number of classes of codebooks are restricted to seven. One class is 

reserved to the MR-ICS-JPEG. Therefore, eight total classes (3 bits) are necessary for 

overhead. In this scheme, low detail 8x8 blocks are coded by homogeneous 

codebooks (10 bits for each codebook index) to get high compression. Next some 

bits, made available by the VQ scheme, are allocated to MR-ICS-JPEG to code high 

detail 8x8 blocks more accurately. 
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5.1 Adaptive Vector Quantization 

Instead of classifying image blocks into their edge classes, each block is 

classified by its homogeneity and coded by a specific codebook which is based on its 

homogeneity. A set of homogeneous codebooks was generated by one hundred 256 x 

256 images (102,400 training blocks) of different characteristics using the classical 

LBG algorithm [Linde, 1980]. In other words, training vectors were classified into 

seven classes according to their homogeneities. Table 5 .1 shows the classification of 

training vectors and their corresponding homogeneities. Average homogeneity 

increases when block standard deviation decreases. Figure 5.1 shows the histogram of 

the homogeneity distribution of the training blocks. 

Training Homogeneity Average 
Set Interval (HI) Homo1Ieneitv (%) 

Set 1 10::;;HI::;;15 12.9107 
Set 2 15<HI::;;20 17.9660 
Set 3 20 <HI::;; 25 22.8752 
Set 4 25 <HI::;; 30 27.8299 
Set 5 30< HI::;; 35 32.7365 
Set 6 35 < HI ::;;40 37.7343 
Set 7 HI>40 43.2458 

Table 5 .1 Classification of Training Vectors 

For each set of training vectors, the LBG algorithm is applied to generate a set 

of homogeneous codebooks. Figure 5.2 represents the PSNR when the training 

vectors are coded by their corresponding codebooks. As can be seen from the 

graph, the performance is good for highly homogeneous training vectors. We can 

expect from this graph that the percentages which are occupied by VQ should be 



large and small at high and low compression, respectively, to get better 

performance in terms of PSNR. Figure 5.3 presents the block diagram of the 

adaptive VQ scheme. Adaptive VQ is applied to only low detail ( highly 

homogeneous ) blocks in this coder. 
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Figure 5.2 Performance of Homogeneous Codebooks (8x8 Block (Training Vectors)) 
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5.2 Structure of a new hybrid coder 
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VQ INDEX 

Table 5.2 represents the possible candidates for hybridization. Because the best 

performance of DCT based transform coding is achieved at block size 8x8 

[Pennebaker, 1991], methods II and IV are not good choices. Moreover, method IV 

requires too many overhead bits which are produced by quadtree segmentation and 

adaptive VQ. Therefore, the combination of quadtree and adaptive schemes is not a 

good choice. Method III produces reasonable overhead; however, AVQ requires too 

many bits to code blocks as small as2x2. In method V, the error vectors are usually 

more random than the original ones. As a result, it is hard to achieve energy 

compaction from the DCT coding step. Therefore, the objective qualities from the 

methods II to Vin terms of PSNR are lower than that ofMR-ICS-JPEG alone. 

On the other hand, method I produces no more than 3 bits of overhead, and 

more bits can be allocated to MR-ICS-JPEG because low detail 8x8 blocks are 
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coded by A VQ. As a result, method I produces better performance than when 

MR-I CS-JPEG is used alone. Figure 5.4 shows the simulation result of method I. 

As can be seen from Figure 5.4, method I produces about a 3.5 dB improved 

performance compared to that of standard JPEG when the bit rate is larger than 

0.30. However, in the high compression areas, the performance is below than that of 

HVQ. Performance in the high compressed bit ranges is shown in Figure 5.5. This 

reduction in performance is caused by an inherent property of the DCT based coder 

(MR-ICS-JPEG). In other words, an additional 4 bits is necessary to represent the 

end of block (EOB) in the DCT based coder. Because of this overhead, it is very hard 

to achieve a high compression ratio with the DCT based scheme. 

I II III IV V 
e 

Low AVQ Multi-stage 
detail coding: 

8x8 AVQ MR-ICS- AVQ 
High MR-ICS- JPEG 1st stage: 
Detail JPEG HVQ 

4x4 X MR-ICS- X MR-ICS- 2nd stage: 
JPEG JPEG MR-ICS-

JPEG 
2x2 X X AVQ AVQ 

Table 5 .2 Possible Candidates for Hybridization 
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Because of reasons listed above, a new hybrid coder is the combined version of 

HVQ and method I. In other words, the coding scheme is switched to HVQ 

when the bit rate set point we want to get is equal to or lower than about 0.30 bpp. 

Otherwise, it is switched to method I. Therefore, the new hybrid coder is referred to 

as a dual hybrid coder. However, this bit rate switching point will be slightly 

different from image to image. 
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In order to get the general description of this switching point, the switching 

points of one hundred 256 x 256 gray scale images were examined in terms of 

corresponding average block homogeneities. Even though the distribution of the 

switching points, distributed from about 0.25 to 0.3 bpp, is not tightly clustered, it is 

clearly evident that the switching point decreases when the average block 

homogeneity increases. When the value of average block homogeneity for a given 

image is small, most blocks are coded by the DCT based coder, MR-ICS-JPEG. As a 

result, there is some difficulty in obtaining high compression. Because of this, the 

switching point from Method I to HVQ increases. Moreover, at low bit rates, about 

from 0.3 to 0.25 bpp, the overhead ofHVQ is reduced to 1 bit for each 8 x 8 image 

block because the block size of 2 x 2 is removed at high compression. As a result, 

HVQ produces better performance than the hybrid coder (Method I) at low bit rates. 

Figure 5.6 shows the linear regression equation as a function of average block 

homogeneity for a given image. Using this linear regression equation, we can 

estimate the bit rate switching point as a function of average block homogeneity 

(ABH) between Method I and HVQ. As an example, Table 5.3 shows the bit rate 

switching points for six test images which were used in the previous chapter. Finally, 

the flow chart of the proposed new hybrid coder is shown in Figure 5.7. 
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SBPP = -0.0065409 x ABH + 0.2345406 
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Figure 5.6 The Switching Point ofbpp as a Function of Average Block Homogeneity 
(SPBP: Switching Point of Bits Per Pixel) 

Images ABH(%) Switching Point ( SPBP) 

Lenna 2.169 0.309260 
Circuit 1.141 0.315986 
Barbara 4.186 0.296069 

Car 10.356 0.255712 
Toy 10.255 0.256373 
Boat 7.302 0.275688 

Table 5.3 Bit Rate Switiching Points Based on the Linear Regression Equation 
for Six Test Images 
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Figure 5.7 Flow Chart of the Dual Hybrid Coder 
(ABH: Average Block Homogeneity; IBH: Individual Block Homogeneity) 
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5.3 Discussion of Simulation Results 

Simulation is performed for two test images, Lenna and Barbara. Lenna is 

included in the training vectors while Barbara is outside the training vectors. 

When the A VQ scheme is compared to the MR-ICS-JPEG, the A VQ and the MR

ICS-JPEG produce better performances in the range of high and low compression, 

respectively. Therefore, at a bit rate of 1.5 bpp, the highest performance is 
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achieved at 2 bits of overhead which corresponds to 28.16 (%) VQ coded area for 

the Lenna image (homogeneity> 35 ). On the other hand, when the bit rate is 

lowered, the highest performance is obtained when the percentage of the VQ coded 

area is increased. In other words, the peak values of PSNR for Lenna are achieved at 

55.56 (%), 61.33 (%), and 65.92 (%) of the VQ coded area for the bit rates of 1.0, 

0.75, and 0.5 bpp, respectively. Figure 5.8 summarizes this phenomenon. 

When the percentage of the VQ coded area increases, some additional bits can 

be allocated to high detail regions. However, VQ coded areas produce some 

blockiness at the shoulder area of the Lenna image when the less homogeneous areas, 

which are less than 30 percents in terms of homogeneity, are coded by VQ. 

Therefore, the best subjective qualities at bit rates larger than 0.75 bpp are achieved 

when VQ coded areas are restricted to 28.61 (%) for the Lenna image. 

One of the advantages of the DHC is its adaptivity. In other words, low detail 

regions are coded roughly by A VQ while high detail regions are coded finely to 

represent the edges or curves more accurately. By this strategy, the DHC produces 

not only objectively, but also subjectively enhanced quality of compressed images. 

The details of the subjective judgment of image quality are given in Chapter VI. 

Figure 5.9 represents how many additional bits can be allocated to high detail regions 

using the method I of DHC scheme compared to MR-I CS-JPEG used alone. The x-
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axis represents the sequence of blocks which are coded by MR-ICS-JPEG and sorted 

in terms of block standard deviation. As can be seen in Figure 5.9, bit rates of 

approximately 1.5, 1.0, 0.5, and 0.25 bpp can additionally be allocated to MR-ICS

JPEG at the bit rates of 1.5, 1.0, 0.75, and 0.5 bpp, respectively. This is the main 

source for enhancement of the objective and subjective qualities. 
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Figure 5.8 Performances when the percentages ofVQ coded area are varied (Lenna) 
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Figure 5.9 Additional bit allocation to MR-ICS-JPEG. 
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When an input image is outside the training vectors, the performance in terms 

of PSNR of the DHC is lower than when an input image is inside the training 

vectors. Figure 5 .10 shows the performances in terms of PSNR of Barbara image 
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which is outside the training vectors. The performance of the DHC is about 2.5 dB 

higher than that of JPEG. Even though the objective quality improvement of the DHC 

is not significant, it produces better subjective quality because some additional bits 

which are reduced by AVQ are allocated to high detail active areas. 
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Figure 5 .10 Performances of Different Compression Schemes (Barbara) 
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Figure 5.11 represents the performances when the bit rates are less than 0.5 bpp. 

As can be seen from the graph, HVQ produces better performances than those of 

others at the bit rates lower than about 0.30 bpp, 0.296069 from the linear regression 

equation, similar to Figure 5.5. Therefore, the DHC of Figure 5.7 is effective in both 

cases of images which are inside and outside of training vectors. 
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Figure 5 .11 Performances of Different Compression Schemes 
(Low Bit Range, Barbara) 

Figure 5.12 represents the error images of Barbara generated by different 

schemes. In Figure 5.12, pixels which produce zero error, less than or equal to 

'30', and larger than '30' are displayed by pure black, gray, and white, respectively. 

In this comparison, the DHC produces the fewest white spots which represent pixel 

error larger than '30'. 



DHC 

Black : 5,050 
Gray: 60,360 
White : 126 

MR-K:S-JPEG 

Black: 4,723 
Gray : 60,645 
White : 168 

Figure 5.12 Error Images of Barbara ( 0.5 bpp) 

STD-JPEG 

Black: 4,676 
Gray: 60,261 
White : 599 
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(zero error ('black' ), less than or equals to 30 ('gray' ), and larger than 30 ('white')) 

Another representation of image quality, the histogram of error images for 

Barbara which are generated by different compression schemes at diferent bit rates, is 

presented in Figure 5.13 . The stronger spike at zero error means the better image 

quality. The strongest spikes at zero error can be observed in the DHC. Because 

some additional bits which are reduced by AVQ are allocated to the MR-ICS-JPEG 

for representing high detail regions more accurately in this scheme, the number of 

occurrences of zero error are increased. When the bit rates increase, the magnitude 

of the spike, which represents the number of occurrences of zero error, increases. On 

the other hand, the width of the main lobe and the number of pixels which produces 

large errors decrease when the bit rates increase because the increasing bit rate 

reduces the magnitudes of pixel errors. 



12000-----~-----~ 
~ Hybrid (11/ethod I) 

11000 -- 11/R-IC&JPEG , ___ , ___________________________ , _______ ···-------------, 

--- SID-JPEG 
10000 ---- 1-11/Q 

9000 

; ::+--------------------,--------------------,--------------------,---------- I 

~ 600() ·+---- ----- -----,----- - ------- ·---+------ ---- -------->--------- --------- I 

0 

I 

~ 
~ 
~ 
0 

~ :, 
z 

2000 -+ -- - - -- ---- - -----,- -- - __ ,,_____ --- ,- -------- ,, -----, · ---

1000 

O-l=----'-----'----+-------=l 

-20 -10 0 10 20 

Pixel Errors 

Figure 5.13.1 0.5 (BPP) 

12000 

11000 

10000 

9000 

8000 

7000 

6000 

5000 

4000 

3000 

2000 

1000 

0 

-20 -10 0 10 20 

Pixel Errors 

Figure 5.13.3 1.0 (BPP) 

- Hybrid (Method I) 
11000 -- MR-ICS-JPEG , _____ ,__________ ------- '----------------- ____ , 

--- STD-JPEG 
10000 ---- 1-11/Q 

9000 --l--------------------------,---------------------------'-------------------------1----------------------------l 

~ 8000 

~ 7000 +- ----- ----------- ----1-- ---- ------·------------------ -------------- 1--- - --·---- ------- I 

~ 6000 

0 5000 

~ 4000 

~ 3000 

2000 --1 -------- -------- -, __ .. ,_ ------

1000 

-10 0 10 

Pixel Errors 

Figure 5.13.2 0.75 (BPP) 

12000 
- Hybrid (Method I) 

11000 -- MR-ICS-JPEG 
--- STD-JPEG 

10000 --- 1-11/Q 

9000 

~ 8000 
C 

~ 7000 

~ 6000 

0 5000 
.... 

~ 4000 

:, 3000 z 
2000 

1000 

0 

-20 -10 0 10 

Pixel Errors 

Figure 5.13.4 1.5 (BPP) 

20 

20 

Figure 5 .13 Histograms of Error Images (Barbara ( outside the training vectors)) 

106 



107 

The other advantage of the proposed DHC is the low overhead in bits. 

Maximum overhead in an 8x8 block is restricted to 3 bits in this scheme, and this 

overhead can be reduced to 2 bits in the range of low compression (refer to Figure 

5.8) without sacrificing image quality. 

In order to verify the superiority of the proposed schemes, DHC and MR-ICS-

JPEG, direct comparisons in terms of PSNR with other published results are given in 

Figure 5.14. 
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Figure 5.14 Comparison of Several Decent Compression Schemes (Lenna)5·1 

In high compression areas, the performance of transform based coders such as 

s.1 HASVQ (Hierarchical Adaptive Search VQ), MASVQ (Multi-Stage Adaptive Search VQ), and ATSVQ 
(Adaptive Tree Search VQ) [Ghafourian, 1995]. CVQ (Classified VQ) [Ramamurthi, 1986]. PVQ 
(Pyramid VQ) [Kim, 1992]. 



MR-ICS-JPEG and DHC is not outstanding because an additional 4 bits is 

necessary to represent the end of block (EOB) for each block. However, this 

additional 4 bits is just a small portion of the total allowed bit rates at the ranges of 

low compression. As a result, the proposed dual hybrid coder produces better 

performance in terms of PSNR than HASVQ, MASVQ, and ATSVQ. 

5 .4 Conclusions 
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A dual hybrid coder (DHC) which combines HVQ, MR-ICS-JPEG, and AVQ 

was described and simulated. This coder was shown experimentally to produce about 

3.5 dB and 2.5 dB improved performance when an input image is inside and outside 

of the training vectors, respectively, compared to JPEG. Because the HVQ produces 

better performance than Method I at low bit rates, the DHC is switched to HVQ when 

bit rates are less than or equal to about 030 (bpp ). However, at bit rates which are 

larger than about 0.30 (bpp ), the DHC is switched to Method I. However, this bit rate 

switching point will be slightly different from image to image. The linear regression 

equation, given in Figure 5.6, estimates the bit rate switching point for a given image 

as a function of the average block homogeneity. 

The advantages of the proposed DHC are its adaptivity and low overhead in bits. 

In other words, low detail regions are coded roughly by A VQ, and some additional 

bits, which are made available by A VQ, are allocated to MR-ICS-JPEG to represent 

high detail regions more accurately. This strategy and low overhead produce the 

subjectively and objectively enhanced image quality. 



CHAPTER VI 

QUALITY MEASURES AND THEIR PERFORMANCES 

In general, an image quality measure should have three main factors: First, it 

should be subjectively meaningful in the sense that large and small distortions 

correspond to subjectively bad and good quality, respectively. Second, it should be 

tractable for mathematical modeling. Third, the computational cost should not be too 

expensive. 

The subjective quality measures require a deeper analysis of the human visual 

system (HVS). However, the HVS is so complex that we can not fully understand it 

with present psychophysical methods [Eskicioglu, 1995]. In addition, the HVS has 

inherent complexities that make it very hard to develop a mathematical model, and 

intensive computation is necessary. Because of inherent complexities and drawbacks 

of the subjective quality measures, objective quality measures have been used either in 

graphical or numerical forms. 

A graphical objective quality measure, histogram, has been reported [Eskiciglu, 

1992,1995]. The histogram constructed by plotting the number of occurrences of 

the same intensities of error images represents the amount of degradation: A strong 

and weak spike at the point of zero error correspond to good and bad image quality, 

respectively. 

Even though numerical objective quality measures are used for measuring image 
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qualities, these numerical qualities, sometimes, are not exactly matched with the 

human visual response. In this chapter, several objective quality measures are 

described and applied to the compressed images from the previous chapters in order to 

ascertain which quality measures are well correlated with the human visual response. 

Several subjective quality rating scales are reported in the literature [Eskicioglu, 

1993]. This chapter attempts to find the correlations between objective and subjective 

qualities. The subjective judgments are performed by thirty human observers. 

Finally, the Pearson product-moment correlation coefficient [Bajpai, 1979] is applied 

to determine the subjectivity of the objective quality measures. Using this method, the 

best subjectively meaningful objective quality measure as well as the best 

compression method in the sense of subjectivity are decided. 

6.1 Objective Quality Measures 

6.1.1 Quality Measures Based on Mean Square Error 

The objective quality measures discussed below are based on mean square error 

(MSE) criteria. MSE is the most commonly used difference measure because it is not 

only correlated resonably with subjective visual quality test but is also mathematically 

tractable [Pratt, 1991]. 

1) Mean Square Error (MSE) 

For any value ofx andy in the range 0,1, ... ,N-1, the error between an 

input pixel and the corresponding output pixel is 

e(x,y) = f(x,y) - ](x,y). 

The squared error averaged over the image array is 

(6.1) 



} N-1 N-1 } N-1 N-1 

MSE =-2 L~)e(x,y)]2 =-2 LL[f(x,y)-](x,y)]2. 
N x=O y=O N x=O y=O 

Eq. 6.2 defines the normal definition for MSE of images. All the following error 

criteria are variations of Eq. 6.2. 

2) Normalized Mean Square Error (NMSE) 

N-IN-1 

LL[f(x,y)- ](x,y)]2 
NMSE = _x=_O.;....y=_O ______ _ 

N-IN-1 

II12cx,y) 
x=O y=O . 
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(6.2) 

(6.3) 

This measure represents the division of the sum of the squared error with the 

unweighted summation of squared pixel values. The possible values of NMSE 

range from 'O' to' l '. The values of 'O' and' 1' correspond to lossless and the 

worst case reconstruction, respectively. This measure gives an intitutive 

quantification of image quality. In other words, the value ofNMSE details how close 

a compressed image relates to the original one. The variations of this measure with 

different weighting functions are given in Eq. 6.4 through Eq. 6.8. 

3) Perceptual MSE (PMSE) 

N-IN-1 

LL e2 (x,y)[f (x,y)- ](x,y)]2 
PMSE = _x=_O_y=_o _________ _ 

N-IN-1 

L Ie2 (x,y)/2 (x,y) 
x=O y=O 

This equation is a weighted version of NMSE by the squared error image. 

(6.4) 
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Usually, normal MSE is not exactly related to the subjective quality of image. PMSE 

attempts to make MSE more subjectively meaningful by weighting more heavily in 

the large error pixels. The possible values of PMSE, like those ofNMSE, 

range from 'O' to '1 '. No other empirical data has been reported to verify its 

performance [Tannas, 1985]. 

4) Laplacian Mean Square Error (LMSE) 

N-2N-2 

L ~)O{j(x,y) }- O{](x,y) } ]2 

LMSE = _x=_l_y_=i ________ _ 

N-2N-2 (6.5) 
L L[O{/(x,y) } ]2 
x=I y=I 

where O{f(x,y)} is an estimation of the Laplacian Operator defined as 

O{f(x,y)} = f(x+ 1,y) + f(x-1,y) + f(x,y+ 1) + f(x,y-1) - 4f(x,y). 

Usually, local feature detection operators are used to extract the local features 

such as edges and curves that are defined by local patterns of gray levels [Ekstrom, 

1984]. Combining MSE with Laplacian, as one of local feature detection operators, 

LMSE explores the amount of distortion, especially of edges and curves between 

original and compressed images. This measure emphasizes perceptual features because 

errors at edges or curves are more visible than most other types. 

5) Image Fidelity (IF) 

N-IN-1 

LL[f(x,y)-!(x,y)]2 
IF= 1- _x=_O_y-_-o ______ _ 

N-IN-1 (6.6) 
I I[J(x,y)J2 
x=O y=O 
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In 1960, Linfoot defined the image fidelity (IF) as unity minus the fidelity deficit 

which is defined earlier as NMSE in Eq. 6.3. The IF represents the overall quality of 

the compressed image rather than the variations of individual pixel intensities. In 

other words, IF is a measure which shows the degree of closeness between the 

original and compressed images. Fidelity value '1' corresponds to lossless 

reconstruction. 

6) Peak Signal to Noise Ratio (PSNR) 

2552 
PSNR = 10log10(--) for 8-bit image 

MSE 
(6.7) 

PSNR is defined as 10 times the log to the base 10 of the ratio of peak input 

signal strength of255 squared to the MSE. This measure is the most commonly 

used for ordinary still images. This measure attempts to quantify image quality; 

however, high PSNR values do not always correspond to signals with perceptually 

high quality. 

6.1.2 Others 

1) Average Difference (AD) 

1 N-1 N-1 

AD= N 2 ~ ~[lf(x,y)- f(x,y)I] (6.8) 

This error measure is based on the absolute value of error. It only explores the 



average difference of each pixel value while the squared error measure emphasizes 

large differences. 

2) Maximum Difference (MD) 

A 
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MD= Max{lf(x,y)- f(x,y)I} (6.9) 

Maximum difference, often called the worst case pixel difference, represents the 

maximum distortion taken over all possible input pixels. Because this measure is 

unbounded, the possible value can be extended to the maximum pixel intensity in 

certain cases. 

3) Normalized Cross-Correlation (NK) 

N-IN-1 

LLf(x,y)](x,y) 
NK = _x=_O_y=_O ____ _ 

N-IN-1 (6.10) 

IIt 2 Cx,y) 
x=O y=O 

The value of cross correlation (numerator) is always less than the energy 

(denominator) of the original image except for lossless reconstruction. The possible 

values ofNK range from 'O' to '1 '. Closeness to 'l' and 'O' correspond to good and 

bad image quality, respectively. This measure also can be applied to the area of 

template matching as an indicator of similarity. 

4)Lp-Norm 
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1 N-IN-1 ~ _!_ 

Lp = {-2 LL lf(x,y)- f(x,y)IP} P , p= 1,2,3 
N x=O y=O 

(6.11) 

whenp=l : average difference (AD) and 

p=2 : root mean square error (RMSE). 

The factor p determines the relative importance of small and large errors. The 

larger the p value, the greater relative emphasis is given to large errors in an image. 

The L2 - norm is the most commonly used. The statistics of the deviations determines 

which is the correct norm to be taken. The L2 - norm corresponds to the normal 

distribution [Menke, 1984]. 

The quality measures above are based upon the quantification of the visual 

system or some theoretical approach for modelling of image quality. However, at the 

present time there is no quality measure that can be singled out as the best quality 

measure [Tannas, 1985]. 

6.2 Subjective Quality Measures 

In the previous section, several objective quality measures are listed. Because 

the final users of compressed images are human observers, the exploration of the 

correlation between objective and subjective quality measures is important. One of 

the subjective quality measures, Rating Scale Method (RSM), is a commonly used 

method to judge picture qualities by human observers. In this research, five different 

rating scales are used as shown in Table 6.1. The degraded images compressed by 

different compression schemes (DHC ,MR-ICS-JPEG, Std-JPEG, and HVQ) are 

judged by thirty human observers using RSM as defined in Table 6.1. 



A B C 

5: Excellent 5: Imperceptible 10, 9: Very good 
4: Good 4: Perceptible but annoying 8, 7: Good 
3: Fair 3: Slightly annoying 6,5,4: Fair 
2: Poor 2: Annoying 3, 2: Bad 
1: Unsatisfactory (bad) 1: Very annoying 1, 0: Very bad 

D E 

7: Not noticeable (perceptible) 7: Best 
6: Just noticeable (perceptible) 6: Well above average 
5: Definitely noticeable (perceptible) 5: Slightly above average 

but only slight impairment 4: Average 
4: Impairment not objectionable 3: Slightly below average 
3: Somewhat objectionable 2: Well below average 
2: Definitely objectionable 1: Worst 
1: Extremely objectionable 

Table 6.1 Quality and Impairment Rating commonly used [ Eskicioglu, 1993] 
( each number represents the score for the corresponding judgement) 

6.2.1 Rating Scale Methods 
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The results of the rating scale experiment are usually represented by computing a 

Mean Opinion Score (MOS) [Bajpai, 1979]. 

(6.12) 

where S k = the score corresponding to the kth rating, 

Nk = the number of observers with this rating, and 

N = the number of grades in the scale. 
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The rating-scale methods are commonly used in the broadcast television area because 

they are very useful for setting up and maintaining an appropriate grade of service 

[Netravaii, 1995]. 

6.3 Pearson Product-Moment Correlation Coefficient 

This section introduces a correlation measure, Pearson Product-Moment 

Correlation coefficient, which is used to exploit the correlation between objective and 

subjective qualities of compressed images. Suppose that the results from the objective 

quality measures are 01c, and the results from the rating scale methods (subjective 

quality measures) are Sk. For a sample pair of observations of Ok and Sk, the value 

COC (Correlation Coefficient) of this correlation is given by the following formula 

[Bajpai, 1979]. 

N 

L(Ok -O)(Sk -S) 
CQC = ----;:==k===I ======= 

N N 

I:cok -o/I:csk -s)2 
k=I k=I 

where N : the number of pairs of sampling , 

0 : Average value of Ok , and 

S: Average value of Sk. 

(6.13) 

The possible values ofCOC range between +1 and-I. Ifthe value ofCOC is 

close to+ 1 or -1, two quality measures (subjective and objective) are strongly 

correlated with each other. On the other hand, if it is close to zero, we can decide that 

they are weakly or not correlated with each other. In other words, if the value of COC 



is close to + 1 or -1, the corresponding objective quality measure is subjectively 

meaningful. 

6.4 Experimental Results and Discussions 
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Figure 6.1 represents the several objective performances for the test image 

Barbara which is outside of the training vectors. Because all graphs except for 

Figures 6.1.5 and 6.1.6 are based on MSE, they show similar shapes. At the bit rate 

0.25 bpp, MR-ICS-JPEG produces smaller MSE than that of the DHC scheme 

because it does not include any overhead bits. However, the DHC produces smaller 

MSE than that ofMR-ICS-JPEG at bit rates larger than 0.30 bpp. Figure 6.1.2 shows 

the NMSE. Even though its theoretically possible values range from 'O' to '1 ', its 

actual values are close to 'O'. Therefore, we cannot get the intuitive NMSE difference 

among different bit rates. In Figure 6.1.3, attempting to get more perceptually 

meaningful results by emphasizing large errors makes STD-JPEG produce higher 

PMSE. Therefore, the PMSE difference between MR-ICS-JPEG and STD-JPEG is 

larger than the MSE difference of Figure 6.1.1. The DHC scheme produces smaller 

MD and L1(AD) than others as can be seen from Figures 6.1.5 and 6.1.6. LMSE of 

Figure 6.1.8 shows the errors of edges or curves. LMSE measures the intuitive image 

qualities because the values of LMSE are well distributed from 'O' to '1' unlike 

NMSE. 

Table 6.2 summarizes the correlation coefficients between objective and 

subjective qualities. Subjective qualities of the compressed image of Barbara were 

judged by 30 human observers using the 5 subjective rating scales of Table 6.1, and 

MOS is calculated. The correlations between each of 5 MOS based on 5 rating scales 
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and each of 10 objective qualities are calculated by the pearson product moment 

correlation coefficient method. The average correlations of 5 rating scales are 

calculated to each of 10 objective quality measures and written at the bottom lines of 

Table 6.2. Horizontal averages, average correlations of 10 objective qualities to each 

of 5 rating scales, are calculated and written at the very right sides of Table 6.2 . 
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Figure 6.1 Several Objective Performances for the Test Image Barbara 
(Top to bottom and left to right: Figures 6.1.1, 6.1.2, 6.1.3, and 6.1.4; 

* :DHC, +: MR-ICS-JPEG, and o :STD-JPEG) 
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Figure 6.1 Several Objective Performances for the Test Image Barbara 
(Top to bottom and left to right: Figures 6.1.5, 6.1.6, 6.1.7, and 6.1.8; 

* :DHC, +: MR-ICS-JPEG, and o :STD-JPEG) 
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As can be seen from Table 6.2, the highest subjective opinion score is achieved 

by the DHC. Next rankings are followed by MR-ICS-JPEG, and STD-JPEG, and 

HVQ in the order of their listing. Usually, the human eye is less sensitive to the 

defects in backgrounds while it is more sensitive to the distortions in the highly active 

areas such as edges. or curves. The strategy of DHC is the additional bit allocation to 

high detail regions while low detail regions are coded roughly by AVQ. This is the 

main source to improve the subjective qualities of images which are compressed by 

theDHC. 
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Dual Hybrid Coder (Total subjective score: 3,725, Rank: 1st) 

I~ MSE NMSE PMSE IF PSNR MD 

'B 
A -0.9261 -0.9261 -0.9119 0.9261 0.9932 -0.9501 
B -0.9286 -0.9287 -0.9041 0.9287 0.9933 -0.9521 
C -0.8967 -0.8967 -0.9081 0.8967 0.9944 -0.9314 
D -0.9150 -0.9150 -0.9015 0.9150 0.9892 -0.9393 
E -0.9270 -0.9270 -0.9129 0.9270 0.9979 -0.9566 

MEAN 
o/OB -0.9187 -0.9187 -0.9077 0.9187 0.9936 -0.9459 

~ NK Li L2 LMSE Absolute MEAN 
of SB 'B 

A 0.9295 -0.9744 -0.9770 -0.9901 0.9505 

B 0.9319 -0.9759 -0.9783 -0.9905 0.9512 

C 0.8994 -0.9573 -0.9611 -0.9810 0.9323 

D 0.9195 -0.9665 -0.9696 -0.9857 0.9416 

E 0.9285 -0.9764 -0.9792 -0.9921 0.9525 

MEAN 
o/OB 0.9218 -0.9701 -0.9731 -0.9879 

MR-ICS-JPEG (Total subjective score: 3,535,Rank: 2nd) 

~ MSE NMSE PMSE IF PSNR MD 

A -0.9146 -0.9146 -0.9057 0.9146 0.9989 -0.9485 
B -0.9339 -0.9339 -0.9222 0.9339 0.9891 -0.9402 
C -0.9119 -0.9119 -0.8997 0.9119 0.9991 -0.9285 
D -0.8955 -0.8955 -0.8833 0.8955 0.9986 -0.9235 
E -0.9167 -0.9167 -0.9058 0.9167. 0.9994 -0.9394 

MEAN 
of OB -0.9145 -0.9145 -0.9033 0.9145 0.9970 -0.9360 

I~ NK Li L2 LMSE Absolute MEAN 
qf SB S.R 

A 0.8881 -0.9592 -0.9645 -0.9470 0.9356 

B 0.9112 -0.9716 -0.9739 -0.9624 0.9472 

C 0.8835 -0.9594 -0.9647 -0.9487 0.9319 

D 0.8653 -0.9475 -0.9535 -0.9349 0.9193 

E 0.8898 -0.9621 -0.9669 -0.9508 0.9364 

MEAN 
of OB 0.8876 -0.9591 -0.9647 -0.9488 
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STANDARD-JPEG (Total subjective score: 3,509, Rank: 3rd) 

~ MSE NMSE PMSE IF PSNR MD 

13 
A -0.8691 -0.8691 -0.8589 0.8691 0.9940 -0.9203 
B -0.8738 -0.8738 -0.8631 0.8738 0.9930 -0.9235 
C -0.8338 -0.8338 -0.8176 0.8338 0.9840 -0.8707 
D -0.8440 -0.8440 -0.8305 0.8440 0.9883 -0.8897 
E -0.8411 -0.8411 -0.8274 0.8411 0.9876 -0.8892 

MEAN 
of OB -0.8524 -0.8524 -0.8395 0.8524 0.9894 -0.8987 

~ NK LI L2 LMSE Absolute MEAN 
of SB 

A 0.8369 -0.9262 -0.9339 -0.9180 0.8988 

B 0.8429 -0.9294 -0.9359 -0.9138 0.9023 

C 0.7963 -0.9015 -0.9096 -0.8858 0.8667 

D 0.8080 -0.9085 -0.9169 -0.8926 0.8766 

E 0.8051 -0.9063 -0.9145 -0.8899 0.8743 

MEAN 
of OB 0.8178 -0.9144 -0.9222 -0.8986 

HVQ (Total subjective score : 2,229, Rank : 4th) 

~ MSE NMSE PMSE IF PSNR MD 

13 
A -0.8848 -0.8848 -0.7781 0.8848 0.9703 -0.7613 
B -0.8830 -0.8830 -0.7767 0.8830 0.9676 0.7582 
C -0.8596 -0.8596 -0.7450 0.8596 0.9560 -0.7269 
D -0.8365 -0.8365 -0.7156 0.8365 0.9424 -0.6977 
E -0.8511 -0.8511 -0.7338 0.8511 0.9516 -0.7167 

MEAN 
of OB -0.8630 -0.8630 -0.7498 0.8680 0.9576 -0. 7321 

OB NK Li L2 LMSE Absolute MEAN 

SB of SB 

A 0.8500 -0.9624 -0.9268 -0.9346 0.8838 

B 0.8460 -0.9612 -0.9256 -0.9385 0.8823 

C 0.8197 -0.9477 -0.9068 -0.9219 0.8603 

D 0.7986 -0.9310 -0.8861 -0.8930 0.8374 

E 0.8104 -0.9425 -0.8998 -0.9153 0.8523 

MEAN 

Table 6.2 Correlations Between Objective and Subjective Quality Measures 
(SB : Subjective Quality Measures and OB: Objective Quality Measures) 
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From the correlations of Table 6.2, we know that PSNR, AD (L1), L2, and LMSE 

are relatively subjectively meaningful objective quality measures because they 

produce relatively higher correlation coefficients. Especially, the most commonly 

used objective quality measure, PSNR, produces the highest correlation coefficients. 

Therefore, PSNR is still the best objective quality measure even though it is not 

always the best at representing image qualities in every application. Attempting to 

produce more perceptually meaningful results with PMSE by emphasizing large error 

is not successful for all compression schemes of this simulation. It produces lower 

correlation coefficients than MSE. The correlation coefficients of NMSE and IF are 

same as MSE because they are just another expressions of MSE. 

~ 1 2 3 4 
ty 

Objective Dua/Hybrid 
Quality Coder MR-JCS-JPEG STD-JPEG HVQ 

Dua/Hybrid 
Subjective Coder MR-JCS-JPEG STD-JPEG HVQ 

Quality (3,725) (3,535) (3,509) (2,229) 

Table 6.3 Objective and Subjective Ranking of Different Compression Schemes 
(numbers in parentheses are total subjective opinion scores obtained from 5 rating scales) 

The correlation of LMSE is relatively high in most compression schemes 

because the detection of edge errors by the Laplacian operator makes this objective 

quality measure more subjectively meaningful. Table 6.3 describes the performance 

rankings, objective rankings in terms of PSNR and subjective rankings in terms of the 

total subjective scores obtained, of different image compression schemes. As we 
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expected, the performances of objective quality measures are not exactly related to the 

visual subjective quality. For example, the average difference of performance in 

terms of PSNR between DHC and MR-I CS-JPEG is about 0.5 dB in the overall range 

of bit rates. The difference of total subjective score achieved by two compression 

schemes is 190. However the difference of total subjective score achieved by MR

ICS-JPEG and STD-JPEG is only 26 even though the average difference of objective 

qualities in terms of PSNR between two schemes is more than 2 dB. 



CHAPTER VII 

SUMMARY AND CONCLUSION 

Several state of the art compression techniques which result in high quality 

images are proposed. Two independent experiments are performed in Chapters 3 and 

4. The new quantization table using the ICS method is introduced and the MR 

scheme is applied to both ICS-QT and standard JPEG. The MR-ICS-JPEG and the 

MR-JPEG methods produce more than 2dB and 0.5 dB improved performances when 

compared to that of standard JPEG, respectively. The five different regression 

equations which are adjusted with the ICS-QT are presented. These equations will 

not fit well when we employ other quantization tables; however, there is value in 

combining ICS-QT and its corresponding linear regression equations because ICS-QT 

gives enhanced performance, in terms of PSNR, when compared to standard JPEG. 

Using PI control with the linear regression equations, the desired constant bit rates 

were produced within no more than about four iterations. 

In Chapter 4, two optimal thresholding methods, single-thresholding (ST) and 

multi-thresholding (MT), are proposed to efficiently decompose an image using the 

quadtree.segmentation method. These optimal thresholding methods for the quadtree 

decomposition are a basis for implementing hierarchical vector quantization. The ST 

method, based on the optimal polynomial, produces a slightly better performance than 

that of the MT method in terms of PSNR over a narrow optimal range; however, it 
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loses its optimal property outside of that range. On the other hand, the MT method, 

based on a mathematical model, keeps its optimal property at most ranges of bit rates. 

As a result, it produces better performance (more than 0.5 dB) in terms of PSNR at 

most ranges of bit rates outside of the narrow optimal range of the ST method. 

Therefore, we can conclude that the MT method is a better choice for optimal 

thresholding. 

A homogeneity test based on spatial frequency (SPF) is performed for the blocks 

decomposed by the proposed optimal quadtree segmentation method. The 

performance of this test method is measured by the Student's t-te,st in order to classify 

it into 'Success (S)'or 'Fail (F)'. The homogeneity increases monotonically when the 

bit rate increases. The transition point from 'F' to 'S' of the homogeneity based on 

the Student's t-test is located near the bit rate which corresponds to the optimal 

threshold of the ST method. Therefore, the optimality, in the sense of 'trading off 

between bit rate and MSE, of the optimal single threshold is verified in terms of the 

homogeneity. 

HVQ based on the proposed optimal quadtree decomposition method is a very 

efficient digital compression technique because codebooks which have more 

quantization levels can be used at the same bit rate for representing high detail 

regions. This strategy based on the optimal thresholding methods produced more than 

5 dB improved performances in terms of PSNR when compared to that of fixed block 

size normal VQ. 

Chapter 5 is the primary focus of this thesis. Vector quantization and transform 

coding are fundamentally different coding schemes. Vector quantization attempts to 

code groups of parameters together. Therefore, we can get high compression with this 

method. On the other hand, DCT based transform coding is a scalar based coding 

method and results in high image quality. However, it is hard to get high compression 



with this method. The advantage ofVQ, high compression, and the advantage of 

DCT based transform coder, high quality, are combined and result in a new hybrid 

coder, which is referred to as the dual hybrid coder (DHC). 
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Each part of transform coding and VQ of the DHC is implemented by MR-ICS

JPEG and A VQ where codebooks are generated by homogeneous training vectors, 

respectively. Low detail 8x8 blocks are classified by their homogeneities and coded 

by A VQ. In this procedure, we can get high compression. Some additional bits 

which are reduced by AVQ are allocated to the MR-ICS-JPEG to represent high detail 

regions more accurately. This strategy allows the DHC to produce high quality 

images subjectively and objectively. The DHC produces about 3.5 dB and 2.5 dB 

improved objective performances in terms of PSNR over the standard JPEG for the 

images inside and outside of the training vectors, respectively, when the bit rates are 

larger than about 0.30 bpp. On the other hand, the performance of the proposed DHC 

is worse than that of the proposed HVQ when the bit rate is less than about 0.30 bpp. 

This problem is a result of the additional 4 bits which are necessary to represent the 

EOB as is common with transform based coder such as JPEG.· Because of this, the 

proposed DHC is switched to HVQ at bit rates less than about 0.30 bpp. Therefore, 

the proposed hybrid scheme is called the dual hybrid coder. However, this bit rate 

switching point will be slightly different from image to image. The linear regression 

equation, given in Figure 5 .6, estimates the bit rate switching point for a given image 

as a function of the average block homogeneity. 

The DHC obtained the highest subjective score which was judged by 30 human 

observers using 5 subjective rating scales. The main source to enhance the subjective 

quality of the DHC is some additional bit allocation to the high detail regions, because 

the human eye is less sensitive to the low detail regions such as backgrounds while 

more sensitive to high detail regions such as edges or curves. 
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The first advantage of the proposed DHC is its adaptivity. In other words, low 

detail regions are coded by codebook adaptive VQ according to their homogeneities, 

and high detail regions are coded by MR-ICS-JPEG with some additional bit 

allocations. The other advantage of this scheme is its low overhead in bits. Usually, 

hybrid coders [Ngan, 1991; Wen,1993] employ classified VQ based on edge 

classification. Because so many edge pattens exist, more than 5 bits are necessary as 

overhead. On the other hand, the proposed hybrid scheme restricts its overhead to no 

more than 3 bits. Even though a maximum 3 bits of overhead for classifying image 

blocks is employ~d, the adaptive homogeneous codebooks adequately represent input 

image blocks because only low detail (highly homogeneous) regions are coded by 

VQ. 

The correlation coefficients between objective and subjective qualities represent 

the subjectivity of objective quality measures. The highest correlation is achieved by 

PSNR. Therefore, PSNR is still the best objective quality measure even though it is 

not a panacea for every image processing application. Another possible candidate as a 

reasonable objective quality measure is LMSE because its value is well distributed 

from 'O' to '1' and gives us intuitive image quality. In addition, it produces a 

relatively high correlation coefficient as well as representing the errors of edges or 

curves to which the human eye is more sensitive. 

Future Work 

There are three areas of suggested future work: estimate more accurate initial 

scaling factors for calibrating bit rate, develop an efficient codebook design algorithm, 

and find the optimal threshold to decide the optimal percentage ofVQ coded area of 

theDHC. 
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The linear regression equations generated in chapter III approximate the initial 

scaling factor for the quantization table to produce disired bit rates within about four 

iterations. In order to calculate these equations, the least square regression method, 

which minimizes the average distance between fitted lines and actual data, is used. In 

this procedure, some of the outliers are weighted more heavily than desired. If we can 

generate a higher order polynomial which is a better fit to the actual data instead of 

using the first order method, the number of iterations which is required to converge to 

a fixed bit rate will be reduced. Therefore, more accurate initializers are necessary. 

The LBG algorithm has been a conerstone to generate vector codebooks. 

However, this algorithm uses the training approach for constructing a codebook which 

requires a long codebook generation time. Although current computer technology 

allows one to calculate huge amounts of data, the long codebook generation time has 

been an obstacle ofVQ. Ifwe develop an analytical method which is not using the 

training approach to generate a codebook, the VQ technique will be more feasible for 

practical applications. 

An optimal threshold to decide the optimal percentage ofVQ coded area in DHC 

affects the overall compression performance. The optimal threshold is different from 

image to image because data distributions are unpredictable. Therefore, this threshold 

needs to be adjusted according to the data distribution of a given image. This area 

still has room for further deveopment. 
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APPENDIX II 

APPENDIX II.I 

An Example ofLBG Algorithm (1-D) 

(0) Initialization: N=4, k=2, Th=0.001, and n=12. 

Training Sequence (Table A.II.1.1) 

X1 = (-0.37449, 0.98719) 
X2 = ( 0.63917, -0.11875) 
X3 = (-0.83293, 0.60654) 
X4 = (-0.70534, -1.12186) 
Xs = (-0.28952, -0.94821) 
x6 = c 1.09924, o.51600) 

X7 = (-0.59161, 0.17968) 
Xs = ( 0.14093, 1.76413) 
X9 = ( 0.70898, -0.35017) 
X10= ( 0.30038, 0.79836) 
X11 = ( 0.30165, 1.06552) 
X12= ( 0.37801, -0.32708) 

Co= [(2,2), (2, -2), (-2, 2), (-2,-2)] = [Y1, Y2, y3, y4} 

(1/D)=9.99E+62 (oo on a micro computer), Set m=O. 

~ E S; if d<XJ, yJ ~ d(~,Ym), for all m 

S1 = [X6, Xs, X10, X1 I] 

S2 = [X2, Xg} 

S3 = [X1, X3, X7] 

S4 = {X4, Xs, X12] 

Compute Do 

1 12 • 

D0 =-Immd(XJ,y) = 2.0172 
12 J~l 
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(2) ((1/D)-D0)/D0 > 0. 001, continue 

(3) Find the optimal reproduction alphabet: 

C\ = X(P(C0 )) = [X(S;),i = 1, ... ,4] 

.X(S2 ) = (X2 + X 9 ) 12 = (0.674085,-0.2346) 

.X(S3) = (XI + X3 + X7) / 3 = (-0.5997,0.59111) 

.X(S4 ) = (X4 + X 5 + X 12 ) / 3 = (-0.45762,-0.83128) 

Set m=l, Go to (1) 

(1) Find P(C1) 

Evaluating distortion: 

1 12 

D1 = -Imind(x1 ,y) = 0.0997308 
12 )=I 

(2) (Do - D1)/D1 = 19 > 0.001 

(3) C2 = X(P(C1)) = Ci, and 

Thus, C1 is a fixed point, set m=2. Go to (1) 

Halt with final quantizer described by [ C1, P( C1) ] • 

APPENDIX II.2.1 

16 11 10 16 24 40 . 51 61 
12 12 14 19 26 58 60 55 
14 13 16 24 40 57 69 56 
14 17 22 29 51 87 80 62 
18 22 37 · 56 68 109 103 77 
24 35 55 64 81 104 113 92 
49 64 78 87 103 121 120 101 
72 92 95 98 112 100 103 99 

Table A.II.2.1 Q- Table for Luminance Included by JPEG [Pennebaker, 1993] 

139 



CAT 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
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APPENDIX 11.3 

DPCM Difference ANB Additional Bits 

0 0 -
-1,1 1 0,1 

-3,-2,2,3 2 00,01,10,11 
-7, ... ,-4,4, ... ,7 3 000, ... ,011, 100, ... , 111 

-15, ..... ,-8,8, ..... , 15 4 0000, ... ,0111, 1000, ... , 1111 
-31, ...... ,-16, 16, ...... ,31 5 00000, ... ,01111, 10000, ... , 11111 
-63, ...... ,-32,32, ...... ,63 6 000000, ... , , ... , 111111 

-127, ...... ,-64,64, ...... , 127 7 0000000, ... , , ... , 1111111 
-255, ...... ,-128, 128, ...... ,255 8 00000000, ... , , ... , 11111111 
-511, ...... ,-256,256, ...... ,511 9 000000000, ... , , ... , 111111111 

-1023, ...... ,-512,512, ...... , 1023 10 0000000000, ... , , ... , 1111111111 
-2047, ...... ,-1024, 1024, ...... ,2047 11 00000000000, ... , , ... , 11111111111 

Table A.11.3 .1 Additional Bits for Sign and Magnitude for DC Differences 
(CAT: Categories, ANB: Additional Number of Bits) [Pennebaker, 1993]. 

Categories Cod~ Length Code Word 

0 2 00 
1 3 010 
2 3 011 
3 3 100 
4 3 101 
5 3 110 
6 4 1110 
7 5 11110 
8 6 111110 
9 7 1111110 
10 8 11111110 
11 9 111111110 

Table A.11.3.2 Huffman Table for Luminance DC Differences [Pennebaker, 1993] 



ANB 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

NZR 

AC COEFFICIENTS 

-1,1 
-3,-2,2,3 

-7, ... ,-4,4, ... ,7 
-15, ... ,-8,8, ... 15 

-31, ... ,-16, 16, ... ,31 
-63, ... ,-32,32, ... ,63 

-127, ... ,-64,64, ... 127 
-255, ... ,-128, 128, ... ,255 
-511, .. ,-256,256, ... ,511 

-1023 .. -512 512 ... 1023 

ADDITIONAL BITS 

0, 1 
00,01, 10, 11 

000, ... ,011, 100, ... , 111 
0000, ... ,0111, 1000, ... , 1111 

00000, ... ,01111, 10000, ... , 11111 
000000, ... , , ... , 111111 

0000000, ... , , ... , 1111111 
00000000, ... , , ... , 11111111 

000000000, ... , , ... , 111111111 
0000000000 ... . .. 1111111111 

Table A.Il.3.3 Additional Bits for Sign and Magnitude of AC Coefficient 
( ANB: Additional Number of Bits Required) [Pennebaker, 1993]. 

ANB 
0 1 2 3 4 5 6 7 8 9 

0 EOB 01 02 03 04 05 06 07 08 09 
1 N/A 11 12 13 14 15 16 17 18 19 
2 N/A 21 22 23 24 25 26 27 28 29 
3 N/A 31 32 33 34 35 36 37 38 39 
4 N/A 41 42 43 44 45 46 47 48 49 
5 N/A 51 52 53 54 55 56 57 58 59 
6 N/A 61 62 63 64 65 66 67 68 69 
7 N/A 71 72 73 74 75 76 77 78 79 
8 N/A 81 82 83 84 85 86 87 88 89 
9 N/A 91 92 93 94 95 96 97 98 99 
10 N/A A1 A2 A3 A4 A5 A6 A7 AB A9 
11 N/A B1 B2 B3 B4 B5 B6 B7 B8 B9 
12 N/A C1 C2 C3 C4 C5 C6 C7 ca C9 
13 NIA D1 D2 D3 D4 D5 D6 D7 D8 D9 
14 N/A E1 E2 E3 E4 E5 E6 E7 EB E9 
15 ZRL F1 F2 F3 F4 F5 F6 F7 F8 F9 
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10 

QA 
1A 
2A 
3A 
4A 
5A 
6A 
7A 
BA 
9A 
AA 
BA 
CA 
DA 
EA 
FA 

Table A.11.3.4 Huffman AC Statistical Model for Run-Length I Sign I Magnitude 
Combination [Penebaker, 1993] (NZR:Number of Zero Run, NI A: Not Applicable for Baseline 

Algorithm, and ZRL: Zero Run Length). 
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APPENDIX Il.3 

Table A.Il.3.5 Huffman Table for Luminance AC Coefficients [Pennebaker, 1993] 

Run Code Code Run Code Code 
Size Length Word Size Length Word 

0/0(EO 4 1010 
B) 
0/1 2 00 4/1 6 111011 
0/2 2 01 4/2 10 1111111000 
0/3 3 100 4/3 16 1111111110010110 
0/4 4 1011 4/4 16 1111111110010111 
0/5 5 11010 4/5 16 1111111110011000 
0/6 7 1111000 4/6 16 1111111110011001 
017 8 11111000 4/7 16 1111111110011010 
0/8 10 1111110110 4/8 16 1111111110011011 
0/9 16 1111111110000010 4/9 16 1111111110011100 
OJA 16 1111111110000011 4/A 16 1111111110011101 

1/1 4 1100 5/1 7 1111010 
1/2 5 11011 5/2 11 11111110111 
1/3 7 1111001 5/3 16 1111111110011110 
1/4 9 111110110 5/4 16 1111111110011111 
1/5 11 11111110110 5/5 16 1111111110100000 
1/6 16 1111111110000100 5/6 16 1111111110100001 
1/7 16 1111111110000101 5/7 16 1111111110100010 
1/8 16 1111111110000110 5/8 16 1111111110100011 
1/9 16 1111111110000111 5/9 16 1111111110100100 
1/A 16 1111111110001000 5/A 16 1111111110100101 

2/1 5 11100 6/1 7 1111011 
2/2 8 11111001 6/2 12 111111110110 
2/3 10 1111110111 6/3 16 1111111110100110 
2/4 12 111111110100 6/4 16 1111111110100111 
2/5 16 1111111110001001 6/5 16 1111111110101000 
2/6 16 1111111110001010 6/6 16 1111111110101001 
2/7 16 1111111110001011 6/7 16 1111111110101010 
2/8 16 1111111110001100 6/8 16 1111111110101011 
2/9 16 1111111110001101 6/9 16 1111111110101100 
2/A 16 1111111110001110 6/A 16 1111111110101101 

3/1 6 111010 7/1 8 11111010 
3/2 9 111110111 7/2 12 111111110111 
3/3 12 111111110101 7/3 16 1111111110101110 
3/4 16 1111111110001111 7/4 16 1111111110101111 
3/5 16 1111111110010000 7/5 16 1111111110110000 
3/6 16 1111111110010001 7/6 16 1111111110110001 
3/7 16 1111111110010010 717 16 1111111110110010 
3/8 16 1111111110010011 7/8 16 1111111110110011 
3/9 16 1111111110010100 7/9 16 1111111110110100 
3/A 16 1111111110010101 7/A 16 1111111110110101 
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Run Code Code Run Code Code 
Size Length Word Size Length Word 

811 9 111111000 Cl1 10 11111111010 
812 15 111111111000000 Cl2 16 1111111111011001 
813 16 1111111110110110 Cl3 16 1111111111011010 
814 16 1111111110110111 Cl4 16 1111111111011011 
815 16 1111111110111000 Cl5 16 1111111111011100 
816 16 1111111110111001 Cl6 16 1111111111011101 
817 16 1111111110111010 Cl7 16 1111111111011110 
818 16 1111111110111011 Cl8 16 1111111111011111 
819 16 1111111110111100 Cl9 16 1111111111100000 
81A 16 1111111110111101 CIA 16 1111111111100001 

911 9 111111001 D11 11 11111111000 
912 16 1111111110111110 D12 16 1111111111100010 
913 16 1111111110111111 D13 16 1111111111100011 
914 16 1111111111000000 D14 16 1111111111100100 
915 16 1111111111000001 D15 16 1111111111100101 
916 16 1111111111000010 D16 16 1111111111100110 
917 16 1111111111000011 D17 16 1111111111100111 
918 16 1111111111000100 D18 16 1111111111101000 
919 16 1111111111000101 D19 16 1111111111101001 
91A 16 1111111111000110 DIA 16 1111111111101010 

A/1 9 111111010 El1 16 1111111111101011 
A/2 16 1111111111000111 El2 16 1111111111101100 
A/3 16 1111111111001000 El3 16 1111111111101101 
A/4 16 1111111111001001 El4 16 1111111111101110 
A/5 16 1111111111001010 El5 16 1111111111101111 
A/6 16 1111111111001011 El6 16 1111111111110000 
A/7 16 1111111111001100 El7 16 1111111111110001 
A/8 16 1111111111001101 El8 16 1111111111110010 
A/9 16 1111111111001110 El9 16 1111111111110011 
A/A 16 1111111111001111 EIA 16 1111111111110100 

811 10 1111111001 FIO(ZRL) 11 111111111001 
812 16 1111111111010000 Fl1 16 1111111111110101 
813 16 1111111111010001 Fl2 16 1111111111110110 
814 16 1111111111010010 Fl3 16 1111111111110111 
815 16 1111111111010011 Fl4 16 1111111111111000 
816 16 1111111111010100 Fl5 16 1111111111111001 
817 16 1111111111010101 Fl6 16 1111111111111010 
818 16 1111111111010110 Fl7 16 1111111111111011 
819 16 1111111111010111 Fl8 16 1111111111111100 
BIA 16 1111111111011000 Fl9 16 1111111111111101 

FIA 16 1111111111111110 
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APPENDIX IV 

APPENDIX IV. I 

Values oft (Student's t-test) [Steel, 1980] 

Probability of a numerically larger value oft 
df 

0.5 0.4 0.3 0.2 0.1 0.05 0.02 0.01 0.001 
1 1 1.376 1.963 3.078 6.314 12.706 31.821 63.657 636.619 
2 0.816 1.061 1.386 1.886 2.92 4.303 6.965 9.925 31.598 
3 0.765 0.978 1.25 1.638 2.353 3.182 4.541 5.841 12.941 
4 0.741 0.941 1.19 1.533 2.132 2.776 3.747 4.604 8.61 
5 0.727 0.92 1.156 1.476 2.015 2.571 3.365 4.032 6.859 
6 0.718 0.906 1.134 1.44 1.943 2.447 3.143 3.707 5.959 
7 0.711 0.896 1.119 1.415 1.895 2.365 2.998 3.499 5.405 
8 0.706 0.889 1.108 1.397 1.86 2.306 2.896 3.355 5.041 
9 0.703 0.883 1.1 1.383 1.833 2.262 2.821 3.25 4.781 

10 0.7 0.879 1.093 1.372 1.812 2.228 2.764 3.169 4.587 
11 0.697 0.876 1.088 1.363 1.796 2.201 2.718 3.106 4.437 
12 0.695 0.873 1.088 1.356 1.782 2.179 2.681 3.055 4.813 
13 0.694 0.87 1.079 1.35 1.771 2.16 2.65 3.012 4.221 
14 0.692 0.868 1.076 1.345 1.761 2.145 2.624 2.977 4.14 
15 0.691 0.866 1.074 1.341 1.753 2.131 2.602 2.947 4.073 
16 0.69 0.865 1.071 1.337 1.746 2.12 2.583 2.921 4.015 
17 0.689 0.863 1.069 1.333 1.74 2.11 2.567 2.898 3.965 
18 0.688 0.862 1.067 1.33 1.734 2.101 2.552 2.878 3.922 
19 0.688 0.861 1.066 1.328 1.729 2.093 2.539 2.861 3.883 
20 0.687 0.86 1.064 1.325 1.725 2.086 2.528 2.845 3.85 
21 0.686 0.859 1.063 1.323 1.721 2.08 2.518 2.831 3.819 
22 0.686 0.858 1.061 1.321 1.717 2.074 2.508 2.819 3.792 
23 0.685 0.858 1.06 1.319 1.714 2.069 2.5 2.807 3.767 
24 0.685 0.857 1.059 1.318 1.711 2.064 2.492 2.797 3.745 
25 0.684 0.856 1.058 1.316 1.708 2.06 2.485 2.787 3.725 
26 0.684 0.856 1.058 1.315 1.706 2.056 2.479 2.779 3.707 
27 0.684 0.855 1.057 1.314 1.703 2.052 2.473 2.771 3.69 
28 0.683 0.855 1.056 1.313 1.701 2.048 2.467 2.763 3.674 
29 0.683 0.854 1.055 1.311 1.699 2.045 2.462 2.756 3.659 
30 0.683 0.854 1.055 1.31 1.697 2.042 2.457 2.75 3.646 
40 0.681 0.851 1.05 1.303 1.684 2.021 2.423 2.704 3.551 
60 0.679 0.848 1.046 1.296 1.671 2 2.39 2.66 3.46 

120 0.677 0.845 1.041 1.289 1.658 1.98 2.358 2.617 3.373 
inf n R7"1 n QA'J 1 n'li::: 1 ?A? 1 RM'i 1 QR ? 'l'Ji::: ? "i7R ~ ?Q1 

0.25 0.2 0.15 0.1 0.05 0.025 0.01 0.005 0.0005 
df 

Probability of a larger positive value oft 
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