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PREFACE 

This research was conducted to provide new knowledge regarding the utilization of 

fuzzy mathematical methods to simulate groundwater flow and transport. Sensitivity 

analysis of traditional groundwater modeling platforms involves considering different 

levels of parametric uncertainty; however, the true uncertainty associated with any 

hydrogeologic parameter should be recognized to be a combination of two distinct 

types of uncertainty, the vagueness of a parameter, and the statistical randomness of 

the parameter. Most groundwater simulation platforms erroneously assume that the 

uncertainty associated with any parameter can be completely accounted for with 

statistical methods. In reality, the dominate type of uncertainty existing in the 

hydrogeological modeling environment results from the inherent vagueness of 

parametric values, not the randomness of the values. Fuzzy mathematical methods 

allow the vagueness of parameter values to be incorporated into simulation. 
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I. INTRODUCTION 

Groundwater represents the single largest source of freshwater readily available to the 

human race, and by one estimate accounts for 98% of the world's drinking water 

supply [Fetter, 1988]. Unfortunately, a large percentage of the groundwater available 

as a public water supply has been found to be contaminated with organic chemicals, 

[Westrick et al., 1984] while the contamination in industrialized areas has been found 

on a regional scale. [Fusillo et al., 1985] 

In order to successfully manage this critical resource we need the ability to accurately 

predict certain behavioral aspects of the subterranean fluid flow system. To do this 

various mathematical computer models have been developed to replicate and simulate 

the varied conditions of in situ groundwater flow. In most instances, it is not possible 

to quantify the. initial mass of contaminant which entered the groundwater, nor is it 

possible to locate the emission source precisely in space and time. Additionally, 

financial and confidentiality considerations usually dictate only sparse amounts of 

monitoring data become publicly available. This makes it very difficult to determine 

an accurate delineation of a contaminant plume's concentration distribution as a 

function of time. 
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When performing any mathematical modeling simulation it is important for a user to 

recognize the distinction between an accurate realization and a precise realization. 

Unfortunately, a computer model's precise output is often incorrectly assumed to be 

an accurate realization. The seminal question that must be asked of any simulation 

model's realization is "How accurate is the model's output?" not, "How precise is the 

model's output?" Notwithstanding the number of significant digits generated in a 

model's realization, the overall accuracy of any mathematical model is a direct 

function of the model's applicability, validity, and the quality and quantity of the 

input data. 

The success of any groundwater modeling program depends largely on an accurate 

understanding of the subsurface environment's physical parameters. Modelers of 

underground flow systems are often confronted with the problem of accurately 

quantifying the uncertainties recognized as inherent in almost every hydrogeologic 

parameter's estimate. This problem becomes especially acute when a modeler must 

estimate parametric variables such as aquifer thickness or porosity, which usually vary 

both spatially and gradually. After the significant problem of accurately estimating 

input parameters is overcome, the modeler must then address the problem of 

accurately reflecting the intrinsic uncertainty in the model's output realization. 

The reality of the situation is our simulation modeling abilities and resources often fall 

short of what is necessary to accurately characterize and mathematically recreate a 
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real subsurface flow system. Traditionally, the gap between our mathematical 

methods and the requirements for an accurate simulation has been bridged via one of 

two major modeling platform types, 1) deterministic modeling platforms, or 2) 

stochastic modeling platforms. 

Each of these platforms can perform well when properly utilized, but each has its own 

innate limitations. Deterministic platforms are usually applied when sufficient data is 

available to allow the calculation of a single precise answer. Stochastic based 

platforms are used when input data is scarce or the modeler is attempting to account 

for some uncertainty in the parametric value estimates. Most groundwater simulation 

platforms assume all the uncertainty associated with any parameter can be completely 

and accurately accounted for with statistical techniques. Unfortunately, this is often 

an unrealistic or erroneous assumption [Dverstorp et al., 1992] 

The true overall uncertainty inherent in hydrogeological modeling should be 

recognized as originating from two different sources; 1) the randomness of parametric 

values and, 2) the vagueness of parametric values. Traditionally, the two major 

groundwater modeling platforms treat both the randomness and the vagueness of 

parametric values as a single type of uncertainty [Beckie et al., 1994; Berkowitz and 

Balberg, 1993; Neuman, 1993]. 
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Fuzzy mathematics, or possibility theory [Dubois and Prade, 1988] allows the 

recognition of the difference between these two types of uncertainty, and can be used 

to develop an alternative modeling platform which can bridge the oftentimes large gap 

laying between modeling resources constraints and accurate simulations. 

The fuzzy modeling approach has been applied very successfully in other fields, and 

only very recently been applied to the area of groundwater modeling. This approach 

has been applied on a very limited basis in the areas of geomechanics [Valliappan and 

Pham, 1993; Johnson and Ayyub, 1996] and groundwater infiltration [Bardossy and 

Disse, 1993]. 

A fuzzy modeling approach will be applied to saturated groundwater flow and 

transport in this research, with the unique aspect of this research being the application 

of a fuzzy modeling platform to one-dimensional contaminant transport. Basic 

computer software utilized in this research include Lotus 123(4.1) spreadsheets, the 

@Risk(2. l) spreadsheet addin, and FuziCalc(l.5). Specialized software which was 

also used is identified in the text. 
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II. TRADITIONAL MODELING PLATFORMS 

Deterministic Platform 

A deterministic modeling platform assumes a system can be so uniquely defined that 

the governing differential flow equations can be solved for a single precise realization. 

Major simplifying assumptions must be made regarding certain input parameters in 

order to do this; more importantly, these assumptions must be accepted as the reality 

of the flow system. Recent laboratory and field experiments; however, have shown 

some of these key assumptions are suspect in certain situations. [Persoff and Pruess, 

1995; McKay et al., 1993; Fourar et al., 1993; Unger and Mase, 1993; Ewing and 

Jaynes, 1995] 

An example of two of the more common and significant assumptions required by 

many deterministic models would be the suppositions that an aquifer's media is 

homogenous and isotropic. There are not many homogenous and isotropic aquifers in 

the real world, and the mandatory simplifying assumptions such as these are 

commonly accepted, then quickly forgotten. Real world hydrogeologic flow systems 

usually exist with highly variable hydrogeological characteristics, and many of these 

parameter values can have a dramatic impact on localized or regional groundwater 

flow. Consequently, the reduced accuracy in a model's realization resulting from the 
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erroneous simplifying assumptions often goes unrecognized or unacknowledged by the 

modeler. This holds true for both of the two dominant types of deterministic solution 

constructs; analytical a)ld numerical solution forms. 

Analytical Solution Fonn 

The differential flow equations which serve as the foundations for all groundwater 

modeling platforms can be solved via either a numerical or analytical solution fonn. 

Analytical solution forms can provide accurate realizations when the initial and 

boundary conditions of a groundwater system are relatively simple, and the 

hydrogeologic parameters can be correctly assumed to be constant. These solutions 

produce an exact closed-form solution which is continuous in both time and space. 

While the analytical solution form provides an exact answer to a well defined 

problem, the constraining and simplifying assumptions required to produce an 

analytical solution make it imperative the initial assumptions be verified. [Javendel et 

al., 1984] 

Numerical Solution Fonn 

When complex reservoir and boundary conditions exist, a numerical solution form can 

provide much greater modeling flexibility than the analytical solution form. 

However, the increased flexibility of a numerical solution form requires much more 

data and computational effort than the analytical form, and produces only an 

approximate solution to the governing differential flow equations.· When numerical 
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solution forms are utilized it is very important the modeler make well reasoned and 

appropriate choices regarding model input grid spacing and time step increments. 

The improper selection of either of these two input parameters can cause simulation 

errors such as: mass imbalances, numerical oscillations, or incorrect velocity 

distributions.[Remson et al., 1971; Javendal et al., 1984] In an attempt to address 

these potential problems alternative numerical mathematical techniques, such as 

simulated annealing [Maudon et al., 1993] and the method of decomposition [Serrano, 

1995a/1996b] have recently been proposed. To address the fundamental limitations 

of the deterministic platforms, stochastic modeling platforms were developed. 

Stochastic Platforms 

Stochastic, or probability-based, modeling platforms attempt to characterize the 

inherent variability found in physical system parameter estimates with statistical 

methods. [Hoeksma and Kitandis, 1985; Warrick et al., 1986] This type of modeling 

platform attempts to represent all the uncertainty of modeling as either a function of 

the mathematical randomness of a parameter's value, or as the uncertainty created 

when limited sample data is used to represent and characterize an entire flow system. 

These platform models typically use some form of the normal distribution function 

shown below to represent the various input parametric distributions. 

F r )- 1 f (l;-µ)/a. -u2/2 d ,x --- e a u 
. a/Iii- -oo (1) 
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One of the more basic and popular solution forms used with the stochastic modeling 

platform is Monte Carlo simulation.[White and Gehman, 1979] The term "Monte 

Carlo" came about during World War II as the code name for modeling simulations 

used in the development of the atomic bomb. Today, the words "Monte Carlo 

simulation" are considered synonymous with any number of techniques used to 

repeatedly sample probability distributions by any sort of random or pseudo-random 

method. Most of these types of solution forms use each individual sampling iteration 

to produce a single simulation realization, and present the final output result as a 

compilation of all of the individual realizations. The output realization is usually 

presented in the form of a probability distribution or a cumulative frequency 

distribution. 

Theoretically, Monte Carlo sampling is based on an entirely random process, and 

proves statistically that with enough sampling iterations one can accurately create an 

output realization distribution which is representative of the entire range of possible 

realization outputs. While this may be true from a mechanical sense, the key to 

obtaining accurate output realizations with a Monte Carlo solution form, or any other 

statistics based solution form, is the modeler's ability to accurately describe each 

modeling parameters' input distribution. This, unfortunately, is extremely difficult to 

achieve when working with real world hydrogeological parameters. 
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One of the functional disadvantages of the Monte Carlo solution form is the 

computational aspect. Complex Monte Carlo models require a great deal of 

computational effort and can require hours of computer processing time. 

Consequently, other solution forms were developed on the stochastic modeling 

platform to address this short fall. 

Latin Hypercube solution forms are similar to Monte Carlo solution forms in that they 

rely upon repeated random sampling of input parameter probability distributions. The 

key difference is that the Latin Hypercube sampling technique requires fewer 

iterations than Monte Carlo methods to accurately reproduce parameter input 

distributions. This is achieved by segmenting the cumulative probability distribution 

curve of each input variable into equally sized intervals. Each interval is then 

randomly sampled only once during processing, and this sample is used to produce an 

output realization. This sampling technique forces samples to be taken from every 

area of a parameter's cumulative distribution, and consequently, insures both high and 

low probability events are represented in the simulation realization. While Latin 

Hypercube sampling provides for faster computations and shorter computer processing 

time, the limitations of this sampling technique are the same as those which must be 

associated with all stochastic modeling platforms. Namely, accurate output 

realizations can only be obtained if accurate statistical descriptions of the input 

parameters are used in the model. 
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The greatest strength of the stochastic modeling platform is also its greatest weakness. 

Specifically, a certain level of statistical uncertainty must always be associated with 

any model's output. By its very nature, this type of modeling platform output cannot 

produce a precise realization, and may not produce an accurate one, as experience 

teaches us that many real world groundwater modeling situations do not lend 

themselves well to either gross simplifying assumptions or stochastic based modeling. 

A similar, but fundamentally different, platform based on the fuzzy mathematical 

modeling concept has been used in this research to address the above problems. 

Fuzzy mathematical modeling platforms are based upon the fundamental concepts of 

fuzzy sets; however, before fuzzy sets are discussed, a brief review of classical set 

theory is in order. 
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III. FUZZY MODELING PLATFORM 

While the term fuzzy logic is very much in vogue, these days one rarely hears the 

term fuzzy modeling. The reality of the situation is fuzzy modeling is one of the 

most critical, if not the pivotal, issue in the broader concept of fuzzy theory. 

The foundation of fuzzy modeling was laid by Zadeh [Zadeh, 1965] more than 20 

years ago in his early works regarding fuzzy mathematics and fuzzy theory. 

Historically, one of the issues in the recognition and acceptance of fuzzy modeling 

lies with the definition and interpretation of the concept of what really is fuzzy 

modeling. One practice considers a fuzzy set to be a fuzzy model of a human 

concept, while another considers fuzzy modeling to be a qualitative modeling 

technique whereby system behavior is described with natural language concepts. This 

latter consideration of fuzzy modeling is a narrower view of the fuzzy concept 

whereby systems are described with fuzzy quantities. Fuzzy quantities are described 

by fuzzy numbers associated with linguistic labels or characterizations. 

This work suggests a qualitative model should be regarded as a generalized fuzzy 

model wherein linguistic terms are used to describe system behavior. This approach 

requires accepting the precept that natural language terms approximate fuzzy sets 

under the fuzzy modeling platform, and that linguistic terms can be used to describe 
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relationships of state variables in system definition and behavior. Accepting this 

precept allows the use of linguistic terms to describe system behavior in qualitative 

and quantitative terms. The qualitative concept is an extremely important one to 

grasp and was promoted through the concept of the fuzzy algorithm [Zadeh, 1965]. 

A specific example of a fuzzy algorithm is: 

Set "Y" approximately equal to 10 if "X" is approximately equal to 5. 

If "X" is large, increase "Y" by several units. 

This algorithm can be viewed in its most basic sense as a qualitative description of the 

human decision making process. Mundane activities such as hitting a golf ball, 

parking a car, treating medical conditions, or cooking beef stew can be described via 

fuzzy algorithms. The necessity of fuzzy algorithms became apparent to Zadeh after 

he observed: 

"Most realistic problems tend to be complex, and many complex problems are 
either logarithmically unsolvable, or if solvable in principle, are 

computationally infeasible." 

Fuzzy algorithms could not exist without fuzzy sets, and fuzzy sets form the basis and 

foundation of fuzzy theory and fuzzy modeling. The relationship of fuzzy sets to 

classical set theory is discussed below. 

Classical Set Theory 

Classical set theory defines a set as a collection of objects in which each object shares 

a common and specific membership property. Subset "S" of the universal set "U" 
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could be defined with traditional mathematics as sets of ordered pairs. A singular 

pair of two numerical elements exists for each element in U, and by definition 

consists of only two real values. The first element of any ordered pair is the 

individual item in set U, while the second portion of any pair is an element of the set 

{ 0, 1}. The second part of the ordered pair, either O or 1, is used to indicate if the 

item exists in subset S. A zero as the second element in the pair indicates the pair 

does not exist or belong within subset S, while a 1 indicates the item does belong in 

subset S. 

For example, let's assume we obtain 5 different core samples from a single well 

drilled into a non-fractured, limestone aquifer. Each core sample is analyzed for 

permeability, and the following values are obtained; 

TABLE I 

CRISP CORE SAMPLE PERMEABILITIES 

Core Sample 

Permeability "k" (md) 

#1 

18 

#2 

23 

#3 #4 

26 29 

#5 

37 

Set "T" is then designated to contain "tight" core samples, and tight core samples are 

defined as those samples which exhibit a permeability lying somewhere between 20 

and 30 millidarcies ("md"). 
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The ordered pair membership mapping function for T can thus be written as: 

20..::;. k ..::;_ 30, 1 

Otherwise, 0 

and yields the membership pairings as shown in Table II. 

TABLE II 

FUZZY CORE SAMPLE PERMEABILITIES 

Sample #1 

(18, 0) 

Sample #2 

(23, 1) 

Sample #3 

(26, 1) 

Sample #4 

(29, 1) 

Sample #5 

(37, 0) 

These pairings indicate the core samples with permeability less than 20 md or more 

than 30 md exist with a membership grade of 0, and therefore must lie outside the 

"tight" set T. Samples exhibiting permeability between 20 md and 30 md are 

included in set T as dictated by the membership grade of 1. Thus, set T contains 

only three members, core samples #2, #3, and #4, as samples #1 and #5 do not 

belong in set T. These pairings simply state set T has been defined so that the 

individual elements of the sarpple universe have been dichotomized as either members 

or nonmembers. 

The validity of the statement, "Sample #2 is tight" can be evaluated by simply 

examining sample #2's ordered pair. Table II shows the first element of the pair is 

23 md, and the second element is the real value 1. The statement can be considered 
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to be valid as the second element of the pair requires the sample to belong within Set 

T. Fuzzy set theory is based on a similar evaluation process, and all of the operations 

traditionally performed with classical set theory can be utilized and applied to fuzzy 

set theory. 

Fuzzy Set Theory 

Fuzzy sets and fuzzy mathematics were originally developed in an attempt to 

mathematically represent the vagueness of the human language [Zadeh, 1965] . Zadeh 

noticed human beings use many words as if the words are mathematical concepts. 

Words such as "few" and "many" are often used to represent numbers, while words 

such as "frequently" and "rarely" are commonly employed to represent probabilities. 

Traditional mathematical operations cannot be performed using words as variables 

because identical words have different, but fundamentally similar meanings to 

different people. Simply put, exacting definitions of words are "fuzzy," because there 

is no universal agreement as to a single common and precise definition for every 

word. For example, what specifically characterizes a fracture as being "long" or an 

aquifer as "thick." The vague nature of c_ommon agreement of descriptive words lies 

at the heart of fuzzy theory. Both fuzzy theory and traditional mathematics can trace 

their roots back to the logical nature of set theory. 

Fuzzy set theory, like classical set theory, can also describe the elements in a universe 

with sets of ordered pairs. The first element of any pair is interpreted identically as 
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in classical set theory; the difference in the interpretation of the second element of the 

pair is what makes fuzzy set theory fundamentally different. 

The unique aspect of fuzzy set theory is that the infinite number of values lying 

within the interval O and 1 can be used to represent various degrees of membership in 

the set [Zimmermann, 1985]. It is true fuzzy sets also use a O value as the ordered 

pair's second element to indicate complete non-membership in a set, and a numerical 

value 1 to indicate complete membership in a set; however, the second element of the 

ordered pair does not always limit an item to being exclusively a member or a non-

member of the set, but rather indicates the degree to which an item belongs to the set. 

Fuzzy sets do not have clear limits or boundaries and, in effect, are collections of 

objects which vary continuously and discretely. In the final analysis the fuzzy 

mathematical concept of degrees of membership is simply a numerical conception used 

to indicate how much an element belongs to a particular set. Mathematically 

speaking, the formal definition [Kaufmann and Gupta, 1985] of a fuzzy set is: 

If T is the set universe, F is a fuzzy subset of J' if F exists as sets of 

ordered pairs such that µp(t) is the membership grade of t in fuzzy set 

F, when the value µp(t) takes its values in the closed interval of [O, 1]. 

F = {(t, µp(t)); t e Tµp(t) e [0,1]} (3) 

The· closer µp(t) is to 1, the more t belongs to F and conversely, the closer µp(t) is to 

zero, the less t belongs to F. The fuzzy subset F can be viewed as a conventional 
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subset of T if the closed interval [O, 1] is replaced by the two element set of {O, 1}. 

The remainder of this paper will consider fuzzy subsets as if they are fuzzy sets for 

the sake of simplifying the discussion. 

Fuzzy sets can be used to answer the types of questions classical set theory cannot 

address, such as; "If you remove the rocks from a pile of rocks one rock at a time, 

when does a pile of rocks cease to be a pile of rocks?" The fuzzy answer is, "The 

pile of rocks leave the set of piles of rocks as smoothly as each individual rock is 

taken away. " Classical set theory demands an abrupt transition from being either in 

or out of the pile of rocks set. The difference between the fuzzy set answer and 

classical set answer to this rocky question helps illustrate why fuzzy mathematics can 

be useful to model variables which can vary continuously and spatially, such as 

hydraulic conductivity or aquifer thickness. 

One example of a fuzzy set could be the set of "deep" groundwater aquifers located in 

the United States. Some U.S. aquifers would certainly belong in this set, while others 

clearly wou~d not. If the word "deep" is not crisply defined, i.e. !1eep L 45 feet 

below the earth's surface, many U.S. aquifers would exist in the somewhat fuzzy 

transition zone of "somewhat deep." 

A fuzzy Set "F" of the previously discussed five core samples shown in Table I could 

be defined as the set of samples whose permeability is approximately 25md. The 
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definition of the word "approximately" is fuzzy, and being fuzzy cannot be interpreted 

universally with a commonly agreed upon unique membership function. 

Common sense dictates some of the five core samples will have a greater degree of 

"belonging" in set F than some of the other samples. As the membership grade of 

each sample approaches 1.0, the permeability value of each sample must move closer 

to 25 md. Set "F" would clearly include the value 25 md as a member of the set, and 

most people would agree the value 24 md is close to the value 25md. Most people 

would also agree the numerical value 20 is closer to the numerical value 25 than is 

the numerical value 17. The overall agreement regarding of what is close to 25 

allows a fuzzy Set "F" to be represented by a wide variety of membership functions. 

This example will use the isosceles triangle defined below as equation 4, and 

represented as Figure 1 for the fuzzy membership function. Fuzzy membership 

functions are also commonly referred to as fuzzy belief graphs. 

Mr(t) = 
i k~ 10, 
10~k~25 
25 ~k~40 
P..?.. 40, 

0 
(k-10)/15 
(40-k)/15 

0 

(4) 

By definition, an infinite number of membership functions could be developed to 

describe fuzzy Set "F." The fact is that although the uniqueness of Set "F" is 

sacrificed when Set "F" is defined as a fuzzy set, the same fuzziness provides for 

much greater mathematical modeling flexibility than can traditional mathematics. 
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Figure 1. Fuzzy Membership Function of 25 md. 

The membership function for the "approximately" 25md fuzzy set F yields the 

ordered membership pairings of: 

Sample #1 

(18, 0.53) 

TABLE III 

FUZZY SET ORDERED PAIRINGS 

Sample #2 Sample #3 Sample #4 Sample #5 

(23, 0.87) (26, 0.93) (29, 0.73) (37, 0.20) 

Each sample's second element indicates the degree of membership the sample has, or 

can claim, in the fuzzy set. For example, in Sample #1 the second element is 0.53; 

. . 
this number indicates the· degree of membership which sample #1 has in fuzzy set F, 
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and can also be thought of as the degree of truth of the statement "Sample #1 (18 md) 

lies in set F. " This statement is represented graphically as the membership function 

or belief graph shown as Figure 2. 
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Figure 2. Core Sample Number One's Degree of Membership in 
Fuzzy Set F 

Figure 3, shown on the following page, shows the fuzzy set of "good" permeability, 

and the fuzzy set of "pretty good" permeability. . The set of good permeability is 

defined as the set permeability exhibiting values close to 40 md, and is represented in 

the membership graph by the larger triangle with endpoints of 15 md and 65 md. 

The smaller triangle, having endpoints at 10 md and 40 md represent the fuzzy set 

pretty good permeability. 

l 
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Samples #4 and #5 can be seen to have greater degrees of membership in the fuzzy 

good permeability set than do core samples #1, #2, or #3 as µp(g)'s 0.49 and 0.72 are 

larger than µF(g)'s 0.10, 0.25, or 0.36. However, all five samples are members of 

both the pretty good and good permeability set as the respective membership grades 

fall within the 25 md to 65 md support of the good permeability membership graph, 

as well as the 10 md to 40 md support of the pretty good permeability membership 

graph. 

The ability of multiple fuzzy sets to overlap and contain element items having 

concurrent membership in multiple fuzzy sets is one of the major strengths of fuzzy 

modeling. 
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Figure 3. Overlapping Membership Functions, Fuzzy Sets Good and Pretty 
Good Permeability. 
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Fuzzy Numbers 

Fuzzy numbers are a special case of fuzzy sets [Zimmermann, 1985] and because 

fuzzy numbers are numbers, it is possible to perform standard mathematical 

calculations with them. Mathematically speaking, fuzzy numbers are defined as 

follows: 

A fuzzy subset F of a set of real numbers can be considered a fuzzy number if 

there is at least one z such that µF(z) = 1, and such that for every real number 

a, b, c, with a < c < b. 

µiz) ~ min ( µF(a), µF(b)) (5) 

The membership function of a fuzzy number, like that of a fuzzy set, usually consists 

of an increasing and a decreasing part, and one of the simplest types of fuzzy 

numbers is a triangular fuzzy number. Any fuzzy number can be used as a "crisp" 

number when it is necessary to represent the fuzzy number as a single real value. 

In fuzzy mathematics a "crisp" number may be thought of as a fuzzy number existing 

with a single point base line support. Figure 4 shows the support for the.crisp, real 

number five. 
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Figure 4. Crisp Membership Function for Real Number Five 

The base line support of a fuzzy set contains all the elements which have non-zero 

membership grades. Mathematically speaking, the support of the fuzzy set Fis 

defined as: 

supp(F) = { t; µp(t) > 0} (6) 

The support for the fuzzy "approximately" 25md set represented by the triangular 

membership graph shown in Figure 3 ranges from 10 to 40. 

The "defuzzifying" of a fuzzy number into a representative single real value can be 

accomplished in a multitude ways, and [Mizumoto, 1982] has documented over thirty 
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such methods. One of the most common defuzzifying methodology is the "fuzzy 

mean" technique. 

The fuzzy mean of a fuzzy subset F is the number M (F) for which: 

M(F) 

J (M(F) - t) µp(t) dt = 
-00 

+oo 

J (t - M(F)) µp(t) dt 

M(F) 

(7) 

One of the major advantages of the fuzzy mean defuzzifying methodology is that the 

calculation is extremely fast and simple and is quite suitable for computer simulation 

modeling. 
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IV. DETERMINISTIC, PROBABILISTIC, AND FUZZY OPERATIONS 

Accurate deterministic modeling solutions are predicated on utilizing accurate and 

precise variable parameters in the appropriate underlying modeling algorithm. The 

fundamental structural errors which can be introduced into the modeling solutions by 

the improper choice of parameter values often goes unexamined. Fuzzy modeling; on 

the other hand, is predicated upon using vaguely defined parameters. On of the 

primary tenants of fuzzy modeling is that the uncertainty introduced into a modeling 

platform's solution by the use of fuzzy parameters is relatively small when compared 

to the uncertainty introduced by traditional parameter estimation techniques and the 

requisite models' assumptions. The recognition and acknowledgment of some of the 

limitations and effects of parameter estimation in simulation modeling lead to the 

development of stochastic based modeling platforms. When the traditional modeling 

platforms approach their limitations, fuzzy methods can be used. 

While cursory inspection of fuzzy mathematical theory could give one the incorrect 

impression fuzzy mathematics is simply another statistical technique, probability and 

fuzzy theory are not only conceptually different, they are also mathematically distinct. 

Fuzzy mathematics, like classical probability theory, does deal with uncertainty, and 

does operate with the numerical values 1 and 0. However, fuzziness portrays 
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uncertainties in a less tightly defined nature than probability theory, and therefore is 

more amenable to addressing a broader degree of uncertainty. This allows fuzzy 

mathematics to deal with the subjective uncertainty or the vagueness of parameters; 

whereas probability theory is limited to dealing with the frequency or the randomness 

of parameters. Vagueness results from the difficulty in making clear or sharp 

distinctions, whereas randomness is associated with the degree of frequency of 

occurrence. Vagueness is usually the dominate type of uncertainty in a geophysical 

environment as insufficient information usually exists to estimate the frequency 

distributions required for probability based models. 

One of the base mathematical requirements of probability theory is the axiom of 

additivity. All the probabilities of a given event must sum to 100 % , or stated another 

way, the integral of a cumulative density curve must always equal one. Fuzziness 

does not carry this restriction because membership distributions are not probability 

distributions, nor are they frequency values determined from repeated trials. Despite 

the fact that probabilities and possibilities appear to take on similar values, it is vitally 

important to_ realize membership grades are not probability density_ functions. Belief 

graphs, unlike probability distribution, decrease in width as uncertainty is removed 

from a fuzzy number. Fuzzy membership functions simply represent the similarities 

of objects having imprecisely defined properties, whereas probabilities convey 

information regarding the chance of a specific event, or the occurrence of a relative 

frequency. 
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From the purely mathematical perspective, some authors have contended both fuzzy 

sets and probability theory exist as parts of a greater Generalized Information Theory. 

[Klir, 1991] This theory postulates that while fuzzy sets are not probability sets, the 

converse is true, that is; all probability distributions are fuzzy sets. Broadly inclusive 

theories regarding fuzzy mathematics such as Klir's upset many people and some raise 

seemingly valid objections. [Haack, 1979] However, the undisputable fact is that 

fuzzy based methods have recently found their way into real world products such as: 

cement kilns, dishwashers, and automobiles. The successes fuzzy methods have 

achieved in the real world marketplace validates the fuzzy modeling platform concept 

as one of practical value and worth expanded investigation. 

One significant advantage fuzzy based mathematical platform has over other modeling 

platforms is the ability to be initialized without well defined input variables. This 

attribute has been found to allow fuzzy based platforms to work well with both 

limited and non-linear input data,[Bardossy and Disse, 1993] and data exhibiting large 

degrees of non-statistical uncertainty. [Johnson and Ayyub, 1996] 

When modeling subsurface flow systems important hydrogeologic parameters often 

end up being described as either a stochastic distribution or a simple range of crisp 

values. An alternative method can be used when the lack of high quality real data 

becomes a major problem, namely describing the input parameters with fuzzy 

numbers. The following example demonstrates that the fuzzy modeling platform is 
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quite flexible in that the information from a few crisp data points can easily be 

combined with assumed relationships based on experience and judgement. The 

following one-dimensional groundwater Darcy flow modeling problem contrasts a 

fuzzy based modeling platform realization with the realizations derived from the more 

traditional deterministic and stochastic modeling platforms. 
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V. ANALYTICAL GROUNDWATER FLOW APPLICATION 

Assume a fresh water aquifer has been contaminated with a highly miscible and toxic 

substance, and a drinking water supply well is located down gradient from the last 

known location of the contaminant plume. If we assume away dispersion, 

degradation, and retardation effects, the time of arrival of the plume at the drinking 

water supply well can be expressed by coupling a simplified one-dimensional darcy 

saturated flow model (eq. 8), with a linear rate-time relationship (equ. 9). 

Combining equations 8 and 9 yields: 

and 

D T = -
V 

where: V = Ground water velocity (ft/sec) 
H = Hydraulic gradient (ft/mile) 
K= Hydraulic conductivity (ft/day) 
P = Effective porosity ( % ) · 
T= Travel time (days) 
D = Distance between well and leading edge of plume (ft) 
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Hydrogeologic parameter values obtained from the drinking water supply well located 

2,000 feet down gradient from the contamination indicate the aquifer porosity to be 

20%, the hydraulic conductivity of the aquifer to be 5 ft3/ft2/day, and the groundwater 

gradient to be a uniform 300 ft/mile. 

Of the three model input parameters necessary to calculate the darcy groundwater 

velocity, two of the variables, porosity and hydraulic conductivity, are highly spatially 

variable. 

Comparison of Deterministic and Stochastic Realizations 

Table IV shows the input parameters and the resulting realizations for an analytical 

deterministic platform solution, as well as four different stochastic platform solutions. 

Two of the stochastic platform solutions assumed normally distributed parameters, 

while the other two assumed lognormally distributed parameters. 
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TABLE IV 

DETERMINISTIC AND STOCHASTIC MODELING PLATFORM COMPARISON 

DETERMINISTIC PLATFORM MODEL 

Porosity { % ) 
20 (crisp) 

STOCHASTIC PLATFORM MODEL 

INPUT 
Hydraulic Conductivity (ft/day) 

5 (crisp) 

Normal Distribution Input 

Monte Carlo 
Latin Hypercube 

Monte Carlo 
Latin Hypercube 

Porosity_____(__%_}_ 
min. 
16.5 
16.1 

mean max. 
20.0 23.4 
20.0 23.6 

Hydraulic Conductivity (ft/day) 
mm. 
1.5 
1.3 

mean max. 
5.0 9.0 
5.0 8.8 

Lognormal Distribution Input 

Porosity ( % ) 
mm. mean max. 
16.6 20.0 24.2 
16.7 20.0 23.8 

Hydraulic Conductivity (ft/day) 
min. mean max. 
2.3 5.0 12.8 
2.6 5.0 10.6 
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OUTPUT 
Travel Time (days) 

1,407 

OUTPUT 

Travel Time (days) 
min. 
741 
803 

mean max. 
1,474 4,957 
1,472 5,232 

OUTPUT 

Travel Time (days) 
min. mean max. 
522 1,466 3,092 
627 1,454 3,392 



Detenninistic Platfonn Solution 

Each realization discussed in this paper was obtained from simulations run on the 

identical 486 microprocessor computer. The analytical solution realization for the 

crisp saturated darcy flow model indicates the required travel time for the contaminant 

plume to reach the water well to be 1,407 days. A numerical solution was not 

required, nor used, in this example due to the simplicity of the problem's initial 

structure. While the realization obtained from the deterministic platform model is 

simple and computational appealing, its practical limitations are obvious. No 

reasonably intelligent person would consider waiting 1,407 days before finding 

another drinking water supply. 

Stochastic Platfonn Solution 

Two different stochastic modeling platform scenarios were evaluated using both of the 

two sampling techniques discussed in Section II. One scenario assumed a normal 

distribution for both porosity and hydraulic conductivity input values, while the other 

scenario assumed a lognormal distribution for the same parameters. Both the Monte 

Carlo and Latin Hypercube sampling simulations were run using 5,000 iterations with 

a three percent auto-stop convergence mode [Palisades Corp, 1995]. Table IV shows 

the input parametric values derived from both the Monte Carlo and the Latin 

Hypercube sampling of normally distributed variables having a standard deviation of 

one. Table IV also shows similar sampling realizations obtained from sampling 

lognormally distributed variables with each variable's distribution also exhibiting one 
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standard deviation. The table also shows the resulting travel time realizations 

obtained by utilizing the input parameters acquired from each sampling technique 

under the respective scenarios as an output distribution of travel time. While porosity 

and hydraulic conductivity usually exhibit some statistical dependency in the real 

world, any functional dependency between the two parameters has been ignored for 

the purposes of this example. 

Inspection of Table IV will indicate the minimum and mean travel time realizations 

obtained from the normally distributed variables are very close to the same 

realizations obtained from the lognormally distributed parameters. The differences 

existing between the maximum travel time realizations are consistent with calculations 

based on parametric values obtained from the tailing end of a lognormal distribution. 

Table IV also indicates that while the mean travel time realization values for both 

normal and lognormally distributed parameters are similar, larger percentage 

differences exist between the output extremes. The variability in the endpoint travel 

time realizations helps to illustrate the importance of obtaining accurate description 

statistics for each input variable, something which is rarely possible or practical. 

Table V illustrates the percentage difference in travel time between the two sampling 

techniques using the different input variable distribution assumptions. Examination of 

the table shows the mean realization obtained from the Latin Hypercube sampling 

mode is extremely close to the mean realization obtained from Monte Carlo sampling 
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of both normal and lognormally distributed inputs. Since these results are very 

similar, and the fact the Latin Hypercube sampling mode results were obtained twice 

as quickly, three minutes versus over six minutes for each simulation, Latin 

Hypercube sampling was used to obtain the stochastic platform realizations discussed 

in the following section. 

TABLE V 

Percentage Difference: Monte Carlo vs. Latin Hypercube Travel Time 

"Normal" Parametric Input Distributions 
Minimum Mean Maximum 

8.4 0.1 5.5 

"Lognormal" Parametric Input Distributions 
Minimum Mean Maximum 

20.1 -0.8 9.8 

Fuzzy Platfonn Solution 

It is well documented that many real world hydrogeological parameters are distributed 

in a lognormal fashion in the subsurface environment, and much effort and time has 

been spent with logarithmic transformed data [ Cushman, 1983; Unlu et al. , 1989]. 

Two questions which should be addressed before utilizing a fuzzy modeling platform 

are: 

1. How does a lognormal distribution translate into a fuzzy number?, 
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2. What effects on fuzzy model output will be realized by using fuzzy 
numbers to represent lognormally distributed variables? 

The answer to the first question is straightforward. In the simplest case a lognormal 

distribution can be represented via a skewed triangular membership graph just like a 

normal distribution can be well represented with an isosceles triangle. The 

defuzzification process of a fuzzy "lognormal" value is identical to the defuzzification 

of any other shaped membership function. For the purposes of this discussion the 

centroid of a fuzzy distribution will be used to represent the fuzzy number in a crisp 

fashion. 

In a normal statistical distribution the distance between the minimum value and the 

most likely value is equal to the distance from the most likely valve to the maximum 

value. In a lognormal distribution the log of each of these two distances is equal. 

Consequently, a very good approximation of a lognormal relationship can be achieved 

via forcing a triangular distribution to fit the following relationship [MeGill, 1977]: 

Mimimum Value 
Most Likely Value 

Most Likely Value · 
Maximum Value (11) 

This relationship indicates that the square of the Most Likely Value must equal the 

Minimum Value multiplied by the Maximum Value. This relationship was used to 

develop the fuzzy lognormal triangular membership functions used in Table VI. 
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Table VI shows the fuzzy travel time realizations obtained by using both isosceles and 

skewed triangular membership functions to represent model input values of porosity 

and hydraulic conductivity. The isosceles triangular distribution represented a 

normally distributed parameter, while the skewed triangular distribution represented 

lognormally distributed variables. 

Four different cases or scenarios were run, whereby each case represented a different 

level of support of the fuzzy parameter. Each case adjusted the absolute maximum 

and minimum value of the fuzzy number by a fixed percentage of the original centroid 

value; i.e. Case 1, 10%; Case 2, 20%; Case 3, 30%; and Case 4, 40%. The ten 

percent support case defines the minimum fuzzy endpoint as ninety percent of the 

centroid, and its maximum endpoint as one hundred and ten percent of its centroid. 

For example, the hydraulic conductivity in Case One has support values ranging from 

18 md to 22 md because 18 md is 90% of the assumed centroid value 20 md, and 22 

md is 110% of 20 md. Case Four on the other hand has hydraulic conductivity 

support ranging from 12 md to 28 md. These support ranges demonstrate that as the 

certainty of a fuzzy number becomes greater, the support becomes smaller, and . 

conversely, as the uncertainty is greater, the support range becomes larger. This 

aspect of fuzzy modeling allows the incorporation of specialized knowledge into 

parameter selection. The fuzzy membership functions of both the input and output 

parameters shown in Table VI can be found in Appendices B and C. 
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Case 1 
Case 2 
Case 3. 
Case 4 

Case 1 
Case:: 2 
Case 3 
Case 4 

TABLE VI 

FUZZY MODELING PLATFORM PARAMETRIC DISTRIBUTIONS 

Triangular Distribution Input · 

Porosity ( % ) Hydraulic Conductivity (ft/day) 

Min. Max. Min. Max. 
gp(t}=O µp{t)=l µp(t}=O .J!p(t}=O µp(t}=l µp(t}=O 

18 20 22 4.5 5.0 5.5 
16 20 24 4.0 5.0 6.0 
14 20 26 3.5 5.0 6.5 
12 20 28 3.0 5.0 7.0 

Skewed Triamrular Distribution Input 
Porosity (%) Hydraulic Conductivity (ft/day) 
Min. Max. 
gp{t)=O µp(t)=l µp(t}=O 

18 
16 
14 
12 

20 
20 
20 
20 

22.2 
25.0 
28.6 
33.3 

Min. Max. 
gp(t) =0 µp(t) = 1 µp{t) =0 

4.5 
4.0 
3.5 
3.0 

5.0 
5.0 
5.0 
5.0 
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5.6 
6.3 
7.1 
8.3 

OUTPUT 

Travel Time (days) 

Min. Max. 
.J!F(t}=O µp(t} = 1 µp(t} =O 

1,152 1,425 1,721 
939 1,477 2,112 
758 1,573 2,618 
604 1,725 3,289 

OUTPUT 
Travel Time .lililYfil 
Min. Max. 
gp(t}=O µp(t)= 1 µp{t)=O 

1,140 
901 
690 
509 

1,422 
1,488 
1,641 
1,866 

1,736 
2,197 
2,920 
3,872 



Table VI shows the fuzzy numbers' endpoints and unity values along with the fuzzy 

travel time realization obtained by using fuzzy triangular membership functions to 

approximate lognormal distributions of the input parameters for the each case. In 

these cases only the maximum values of each parameter's fuzzy membership function 

was adjusted to force fit the membership function to maintain the value relationship 

shown in Equation 11. 

Table VII indicates the travel time error created by utilizing a fuzzy number to 

represent a normal distribution through the use of an isosceles membership function 

instead of the more hydrogeologically correct lognormal triangular membership 

function is minimal. 

TABLE VII 

PERCENTAGE DIFFERENCE IN FUZZY PLATFORM 
TRAVEL TIME REALIZATIONS 

Triangular Input Distribution vs. Skewed Triangular Distribution 

=-Su=p..,.p;...::o=rt=-------=µF(t) =0 
Case 1 (10%) 1.0 
Case 2 (20%) 4.0 
Case 3 (30%) 8.9 
Case 4 (40%) 15.6 

µp(t)= 1 
0.0 
1.0 
4.5 
8.4 

µp(t)=O 
0.8 
4.2 

11.7 
17.9 

The differences are notably small in cases with supports of 10, 20, and 30 percent. 

While the differences in the minimum and maximum values in Case Four appear 

significant, the percentage difference in the µp(t) = 1 travel time is very reasonable 
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considering the magnitude of the difference between the underlying support values. 

Figure 5a plots the fuzzy based platform travel time realization obtained from utilizing 

"normal" triangular distributions with the realization obtained from a stochastic 

platform solution utilizing identical triangular parametric distributions. This figure 

plainly shows the differences between the realizations obtained from a stochastic and a 

fuzzy modeling platform solution are quite small. The differences between the two 

methods are particularly diminutive in comparison to the great overall uncertainty 

inherent in accurately defining groundwater modeling parameters. The graph shows 

that the fuzzy solution expands its solution range faster than the stochastic model as 

doubt about the input is increased. Conversely, the range of a fuzzy realization 

contracts much faster than the stochastic solution as doubts regarding parametric input 

is reduced. 
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Figure 5a. "Normal" Fuzzy Distribution Travel Time vs Normal 
Stochastic Realization. 
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Note that the mean fuzzy travel times compare very well to the stochastic mean travel 

times, and both the fuzzy and stochastic means compare very well to the deterministic 

solution. 
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Figure 5b. "Normal" Fuzzy Distribution Travel Time vs Lognormal 
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Figure 5b shows the same fuzzy solution data as Figure 5a with a stochastic solution 

utilizing lognormal input distributions. This graph has the same characteristics as 

Figure 5a, although the the fuzzy and stochastic solutions are somewhat tighter than 

before. This would indicate the fuzzy modeling platform incorporates some_ of the 

benefical attributes of stochastic lognormal input distributions without the need for 

laborous calculations. 
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VI. GROUNDWATER VELOCITY APPLICATION 

Connecticut Tobacco Field Crisp Parameters 

Addressing a real world flow problem with the fuzzy modeling approach yields 

similarly encouraging results. Table VIII shows the hydrogeological parameters 

derived from eight samples of bedrock and six samples of overburden taken under a 

tobacco field in Connecticut [Pignatello, et. al., 1990] The hydraulic conductivity of 

the overburden was obtained via the Hvorselev piezometer field method, while the 

bedrock's hydraulic conductivity was measured via packer testing. 

TABLE VIII 

CONNECTICUT TOBACCO FIELD: MEASURED 
HYDROGEOLOGICAL PARAMETERS 

Overburden 
Bedrock 

Overburden 
Bedrock 

Overburden 
Bedrock 

Porosity 
0.30 

. 0.10 

Hydraulic Conductivity 
Mean 

1,200 
246 

(m/yr) 
Range 

79.9 - 5,290 
24.5 327 

Hydraulic Gradient 
Mean 

(m/m) 

0.025 
0.0134 
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Range 
0.018 - 0.030 
0.0082 - ·0.0148 



Overburden 
Bedrock 

Groundwater Velocity (m/yr) 
100 
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The groundwater velocity shown in the table is the calculated velocity based on the 

mean hydrogeologic parameters and using the reported fixed porosity parametric 

values of O. 3 and O .1 for the overburden and the bedrock respectively. The table 

shows that the ranges of measured hydraulic conductivity parameters vary by orders 

of magnitude for both sets of samples. This disparity is consistent with, and is often 

representative of, a very heterogenous spatial subsurface environment. 

Variables exhibiting elemental distributions, such as those seen in Table VIII, indicate 

a very high degree of uncertainty, and the associated vagueness, exists in correctly 

describing the actual in situ environment. The nature of a media's heterogeneity has 

a direct impact on the type of modeling platform which should be utilized, as well as 

the application of the platform. 

Recently, Paleologos et. al., showed that with respect to hydraulic conductivity, 

larger representative elementary volumes ("REV") should be used in groundwater 

modeling as media heterogeneity increases. Their work also suggests that how a 

modeling element should be treated in a modeling platform is largely dependent upon 

the size of the elemental block relative to the REV scale. 
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If we accept the reasonable supposition that the degree of precision in the 

characterization of any parameter decreases as the scale and heterogeneity of the 

parameter increases, we have variables which are ideal candidates for description and 

manipulation by a fuzzy modeling platform. 

Connecticut Tobacco Field Fuzzy Parameters 

Table IX shows fuzzified versions of the mean values found in Table VIII. These 

fuzzy values, as well as every fuzzy value used in this research, were obtained by 

using Fuzicalc vl .50 computer software. The endpoints of the normal triangular 

membership graph's support values were chosen to be plus or minus ten percent of 

the mean values shown in Table VIII. 

TABLE IX 

CONNECTICUT TOBACCO FIELD: 
FUZZY VALUES 

Hydraulic Conductivity 

µK(t) =0 - m/yr 

Hydraulic Gradient 

Overburden 1078.1 to 1320 

Bedrock 221.4 to 271. 7 

µK(t)=l 

1200 

246 

µI(t)=O - mlm 

0.0225 to 0.0275 

0.01206 to 0.0147 

µI(t)= 1 

0.0249 

0.0134 

The hydraulic conductivity and the gradient values shown above were applied as fuzzy 

numbers with Darcy velocity Equation 8 to develop a fuzzy groundwater velocity. 

Figures 6, 7, and 8 shown on the following pages are graphical representations of the 

data shown in Table IX regarding bedrock. 
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Figure 6 shows the hydraulic gradient of the bedrock expressed as a fuzzy parameter. 

The support of the fuzzy hydraulic gradient can be seen to exist between 0.012 and 

0.014 7 4. The centroid of the fuzzy number is O.0134. 
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~ 0.012 0.013 0.014 0.015 

Hydraulic Gradient (m/m) 

Figure 6. Fuzzy Hydraulic Gradient of Connecticut Bedrock 

Figure 7 shows the hydraulic conductivity of the bedrock expressed as .a fuzzy 

variable. The support of the fuzzy hydraulic conductivity can be seen to exist 

between 221.4 and 271.7 The centroid of the fuzzy hydraulic conductivity is 246. 
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Figure 7. Fuzzy Hydraulic Conductivity of Connecticut Bedrock 

Utilizing the fuzzy parameters represented in Figures 6 and Figure 7 with Equation 8 

yields the fuzzy groundwater velocity represented below as Figure 8. 
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Figure 8. Fuzzy Groundwater Velocity in Connecticut Bedrock. 
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The figure could be interpreted as indicating the groundwater velocity in the bedrock 

definitely lies between the values 26.7 and 39.9 m/yr, and is believed to be 32.9 

m/yr. 

Overburden 

Bedrock 

TABLE X 

CONNECTICUT TOBACCO FIELD: 
FUZZY REALIZATION 

Groundwater Velocity (m/yr) 

µV(t)=O 

81.0 and 121.0 

26.7 and 39.9 

µV(t)= 1 

100 

32.9 

Connecticut Tobacco Field: Realization Comparison 

A comparison of Tables VIII and X indicates the centroid of the calculated 

groundwater velocity to be within 1 percent of the mean groundwater velocity 

obtained from field measurements. The differences in two modeling platform 

approaches is small enough to suggest the fuzzy mathematical modeling platform 

captures the essence, if not the totality of accurate simulation in this real world 

example. 

The two previous examples have demonstrated how a fuzzy modeling platform can be 

used to simulate groundwater flow and velocity. The following section will illustrate 

the use of a fuzzy groundwater modeling platform to simulate the transport of a 

unretarded contaminant in a homogenous groundwater flow media. 
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VII. ONE-DIMENSIONAL TRANSPORT APPLICATION 

A soluble contaminant's rate of travel through an aquifer will be the same as the 

average linear velocity of the aquifer's groundwater if the contaminant is not retarded 

or reacted in some manner in the flow media matrix. Without retardation or reaction 

effects the rate of advective transport in an aquifer is usually estimated from some 

form of Darcy's law. In order for Darcy's Law to be applicable, the existence of 

steady state flow conditions, along with a saturated, homogenous, and isotropic 

porous flow media must be assumed. 

Governing Equations 

Equation 12 represents a one-dimensional flow state, and indicates that the average 

linear velocity of groundwater is proportional to the hydraulic gradient and the open 

pore volume in the flow matrix. 

Where: dh/dl = hydraulic gradient 
vx = average linear velocity 
K = hydraulic conductivity 
ne = effective porosity 
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As we know, physical flow and transport processes in the real world are rarely 

completely described by linear relationships like the one shown above. Even if an 

idealized aquifer could be found, an accurate description of the movement of any 

groundwater contamination would need to consider the mass transfer, or diffusion 

process, of the contamination into uncontaminated groundwater as an additional 

transport process. 

The diffusion process itself involves the physical laws of the conservation of mass, 

and describes the molecular process of dissolved contaminant ions moving from areas 

of higher concentration into areas of lower concentration. Fick's First and Second 

Laws are generally applied to describe the diffusion of a solute into, and throughout, 

water. Inspection of Fick' s First Law, shown below for a one-dimensional flow state 

as Equation 13, indicates the mass flux is proportional to both an empirically derived 

diffusion coefficient, and the solutes' concentration gradient. 

Where: 

F = -D dC 
dx 

F = mass flux of solute per unit area per unit time 
D = diffusion coefficient (area/time) 
C = solute concentration (mass/volume) 
dC/dx = concentration gradient (mass/volume/distance) 
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This law describes the mass flux of a non-retarded solute passing through a given 

cross sectional area per unit of time under steady state conditions. Fick's Second 

Law, shown for one dimensional flow as Equation 14, expands the First Law 

Equation to incorporate time into the diffusion phenomenon. 

dC = D d 2C 
dt dx2 

Where: dC!dt = the change in solute concentration with time 

(14) 

The molecular diffusion process is a slow one, and a solute's diffusion in porns media 

cannot progress as rapidly as it can in open water due to blockage by the media itself. 

Both soluble and non-soluble aquifer contamination, like groundwater, can only flow 

through the open pathways in the media. In order to consider the actual flow 

pathways, an effective diffusion coefficient is commonly employed to modify the 

theoretical diffusion process in order to match reality. Diffusion coefficients have 

been derived empirically, and are documented to range from 0.01 to 0.5 The 

diffusion coefficient cannot be derived in the field and must be determined from 

laboratory data. One additional real world complication for describing the diffusion 

process is the fact the solute ions must maintain electrical neutrality as they diffuse. 

The above factors combine to make the diffusion coefficient one of the most ill-

defined and least understood parameters in groundwater modeling. As such, it is a 
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prime candidate for fuzzy estimation. 

The reality of the flow environment is such that the effects of ionic diffusion and 

mechanical mixing combine to blend a contaminant with uncontaminated groundwater 

during transport in the flow media. Mechanical mixing, or dispersion, occurs even 

during the typically laminar flow conditions of groundwater transport. This 

phenomenon is mainly caused by the tortuous flow pathways the fluid must take. 

Groundwater modeling usually does not consider either molecular dispersion or 

mechanical mixing as stand alone parameters, rather, the two different and distinct 

individual phenomenons are combined into a single mathematical restriction referred 

to the dispersion coefficient. The dispersion coefficient attempts to describe both 

mechanical dispersion and molecular diffusion by a single expression. Equation 15 

represents the coefficient of hydrodynamic dispersion for a one-dimensional flow 

system. This expression represents the mixing which occurs along the stream path of 

fluid flow and only accounts for longitudinal dispersion. Mixing which occurs in 

directions other than that of the x axis is accounted for with a lateral dispersion term 

which is usually taken as some percentage of the estimated longitudinal coefficient of 

diffusion. 

The first term of the equation, aLvx represents mechanical mixing, while the last term 

D* represents the molecular diffusion process. Neither of these two parameters·can 
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be measured directly in a field environment. 

(15) 

Where: 

DL = longitudinal coefficient of hydrodynamic dispersion 
aL = dispersivity 
Vx = average linear groundwater velocity 

D* = effective diffusion coefficient 

The parameter D* is required to account for the effects of actual in situ flow 

pathways, the conservation of mass, and electrical neutrality. As this coefficient 

cannot be derived in the field, it must be determined solely from laboratory data. 

The coefficient has been documented to range from 0.01 to 0.5. [Bemer, 1971] 

Combining the laws of the conservation of mass with the coefficient of dispersion 

yields the one-dimensional advective-dispersion transport equation for hydrodynamic 

dispersion for the C(O,t) = Co and C(x,O) = 0 boundary conditions shown as 

Equation 16. The first boundary condition requires a continuous source of 

contamination influx as the concentration of the contaminant at X=O is equal to Co 

for all time. The second boundary condition requires that at all points of time equal 

to zero the initial contaminant concentration be zero. The first term of Equation 16 

addresses dispersion effects while the second term addresses transport by simple 

advection. 
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ac 
at (16) 

where: DL = longitudinal dispersion coefficient 
C = solute concentration 
vx = average groundwater velocity in the x direction 
t = time since start of solute invasion 

Analytical Solution Form 

Equation 17 is one common form of an analytical solution to Equation 16 [Ogata, 

1970], where the initial boundary conditions require an initial concentration of zero 

contamination in the flow media and a continuous injection source of the contaminant. 

When molecular diffusion can be safely assumed to be small relative to mechanical 

dispersion, such as in high velocity, high permeability aquifers, the dispersion 

coefficient can be reduced to simply axv and yields Equation 17. 

C = - 0 erfc x + C [ (X - v tl 
2 2JDLt 

exp (vx X) erfc [X + vx tl 
DL 2JDL t 

(17) 

Where: C = Solute Concentration 
C0 = Initial Solute Concentration 
X = Spatial Distance Along Flowpath 
t = Time 
DL = Hydrodynamic Dispersion Coefficient 
V x = Average Linear Groundwater Velocity 
erfc = Complementary error function 
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The analytical solution for Equation 17 requires the complementary error function to 

be considered in the solution. This function is well documented with tables and 

charts such as those found in the appendix of Freeze and Cherry's Groundwater. 

The chart values are derived from Equations 18 and 19. 

e,f c x = 1 - e,f x 
(18) 

where: 

X 

e,f x = __1__ f e -t 2 dt 
fir 0 

(19) 

Values of the error function x can also be approximated by using the Maclaurin series 

represented in a truncated form as Equation 20 shown below. For all practical 

purposes C = Co at small negative values of {3 and C = 0 at positive values of {3 

greater than 2. 

e,f X =. ~7T(x -~ + X
5 

v·" 1! 3 2! 5 
x1 ) - -- + -3! 7 ... 

(20) 

Brine Lagoon R'Cample 

As an illustration, consider an idealized one-dimensional example of a lagoon used to 

store brine water for the pressure maintenance of a propane storage well is leaking 

into a fresh water aquifer. We know the main constituent of brine, sodium chloride, 
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is highly miscible in fresh water, and is not retarded by most, if not all, aquifer 

matrix media. We wish to estimate what the concentration of a sodium chloride 

plume will be 18.75 meters down-gradient from a leak one year from now. 

Analytical Platform Solution 

If the leachate concentration is 906.25 mg/1; the average linear groundwater velocity 

in the freshwater aquifer is 3.3x1Q·7 m/sec, and the longitudinal dispersion coefficient 

is estimated to be 4.9x10·7m2/sec, crisp calculations using the above equations indicate 

the future concentration of sodium chloride plume in the freshwater aquifer will be 

56. 7 mg/I one year from now. This information is summarized in Table XI. 

Fuzzy Platform Solution 

In this simulation we will assume both the initial chloride concentration of the brine 

and the longitudinal dispersion coefficient to be fuzzy values which can be represented 

by the triangular membership function. These two variables were chosen to "fuzzify" 

because the initial concentration of a contaminant rarely is known, and dispersion has 

been shown to be a highly variable and non-linear parameter [Freyberg, 1986; Sudicky 

eta!., l983;Anderson, 1979]. 

The endpoint extremes for the fuzzy input values were chosen to be plus or minus 

five percent of the corresponding crisp values. The fuzzy dispersion coefficient was 

estimated to be a fuzzy number with the membership function having a centroid value 
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of 4.8x10-7 with endpoint values of 4.6x10-7 and 5. lxl0-7 • The fuzzy initial 

concentration of the leachate was estimated to have a centroid value of 906.25 mg/1, 

with endpoint values of 861 and 951. The resulting fuzzy realization output yields a 

fuzzy number with a centroid value of 57 .2 mg/I. This information is also 

summarized in Table XI. 

Figures 9 and 10 show the realization membership functions for the crisp analytical 

simulation and the fuzzy analytical simulation, while Figures 11, and 12 show the 

membership functions for the two fuzzy input parameters initial chloride concentration 

and the longitudinal dispersion coefficient. 

TABLE XI 

SUMMARY: ONE-DIMENSIONAL TRANSPORT EXAMPLE (mg/L) 

Co(mgll) Vx(m/sec) D1 (m2/sec) C1(mgll) 

Crisp Calculations 906.25 3.3E-7 4.9E-7 56.7 

Fuzzy Centroid 906.25 3.3E-7 4.8E-7 57.2 

Fuzzy Endpoints 861 - 951 3.3E-7 4.6E-7 to 5.lE-7 11.3 to 105 

Table XI shows both the crisp and fuzzy input parameters as well as the crisp and 

fuzzy out realization values (Cl). The two endpoint extremes for the fuzzy 

parameters are also shown. 

55 



Q) 

::1 1 .0 
~ 
Q. 

~ 0.5 
I.... 
Q) 

.Q 

E a> 0.0 
~ 52 57 

Concentration (mg/I) 

62 

Figure 9. Membership Function of Crisp Analytical Solution 
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Comparison and Contrast of Results 

The precise realization of predicted contaminant concentration of 56. 7 mg/liter is 

derived by accepting the requisite assumptions and utilizing Equations 2.5, 2.6, 2.7, 

and 2. 8 with crisp numbers. One significant weakness of this approach is the 

necessity of actually estimating the unknown longitudinal dispersion coefficient. 

While this parameter may be back-calculated based on historical transport 

performance history, estimating a truly accurate site specific value based on a priori 

information is highly unlikely. 

It makes much more sense to estimate the initial chloride plume concentration and the 

longitudinal dispersion coefficient with a fuzzy value and derive a fuzzy solution using 

fuzzy arithmetic. The difference between the predicted concentrations of 56. 7 and 

57 .2 mg/I is meaningless when the overall basis for the two different platform 

calculations is considered. 
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VIII. BORDEN SITE EXPERIMENT 

Much of the following discussion was gleaned from an extensive series of articles 

published at the conclusion of the experiment [MacKay et. al., 1986; Freyberg, 1986; 

Roberts et. al., 1986; Domenico and Schwartz, 1990; Curtis et al., 1986; Sudickly, 

1986]. The results of related investigations have also been published [ Criddle et al., 

1986]. The research efforts contained in this paper focused upon developing a fuzzy 

analytical model of the site using data published in the above citations. 

A long-term field experiment was designed and conducted in an unconfined sand 

aquifer underling an abandoned sand quarry located in Borden, Ontario. The 

experiment was designed primarily to generate a data base of information which could 

be used to advance the study of solute transportation in unconfined, saturated aquifers. 

Advection was the term used to describe the average motion of the solute plume 

during the experiment, while the term dispersion was used to describe the volume­

averaged concentration deviations from concentrations predicted by the plume's 

average linear velocity. 

Scope of the Borden Experiment 

The Borden Experiment was designed to generate well documented initial conditions, 

as well as accurate and precise observational data regarding solute transport during a 
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three year period. The two major goals of this experimental effort could be described 

as: 1.) identify the fundamental processes controlling groundwater flow and transport 

at the Borden site, and, 2.) assemble a data base suitable for developing and testing 

various mathematical groundwater flow and transport models. The precise 

mathematical definitions used by the investigators MacKay et al. were: 1.) advection 

was defined to be the vector velocity of the center of mass of the solute plume, and 

2.) dispersion was defined to be one half the time rate of change of the spatial 

variance of concentration about the center of mass [MacKay et. al. 1986]. Both 

definitions are consistent with the current theory of groundwater transport 

A well defined initial slug of tracer solute was injected into an uncontaminated section 

of an easily accessible and relatively homogenous unconfined sand aquifer. An 

extensive monitoring well network with a 5,000 point sampling network was used to 

gather ground-water samples following the injection of the solute. The primary goal 

of the sampling and monitoring program was to accumulate detailed information 

regarding the tracer concentrations at specific points in space and time, and to 

minimize the disturbance of natural groundwater flow _field. Although seven tracer 

compounds were injected into the aquifer, this work will only consider the efforts 

reported for two of the tracer elements: chloride and bromide. Chloride was the 

primary tracer element studied, while bromide was used mostly as a marker indicator. 

An existing contaminant plume was-known to lie in the basal section of the aquifer. 
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This plume contained a high concentration of chloride ions, but contained no 

concentration of bromide ions. This allowed bromide to be used as a marker tracer in 

the uncontaminated section of the aquifer to confirm which solute plume was being 

sampled. Both chloride and bromide are inorganic and are typically not reactive with 

aquifer matrix media. As these compounds have fundamentally identical transport 

characteristics, the chloride-bromide concentration ratio of a sample was used to 

determine which solute plume was being sampled. 

The sampling data was used to monitor changes in the location and concentration of 

the chloride plume over time, as well as to estimate the location of center of mass of 

the solute plume. The results of the field sampling effort were supplemented with 

measurements of water levels, as well as laboratory studies of the physical, and 

chemical characteristics of the aquifer. 

The resultant data base provides an unique opportunity to examine the in-situ 

movement of a tracer plume in great detail. While the aquifer at the experimental site 

had some unexpected spatial variability in its hydrogeologic properties, the variability 

was small enough so that the fundamental groundwater models remain valid 

descriptors of the physical behavior. 

Site Description 

A relatively homogenous sand aquifer extends 9 meters beneath the horizontal floor of 
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a sand quarry and lies on a deposit of thick silty clay. The pre-existing chloride 

contaminant plume originated from a nearby landfill and was confirmed to be 

confined to the bottom 2-3 meters of the sand aquifer at the time of study. As can be 

seen in Figure 13 the Borden experiment was carried out totally in the 

uncontaminated upper section of the saturated aquifer. 

The average depth to the water table at the experimental site was about 1.0 m below 

the quarry floor. The physiography, climate, and general hydrogeology of the area 

has been well described elsewhere [MacFarlane et al., 1983]. 
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Figure 13. Borden Site Geological Cross Section 

The mineralogy of aquifer material is summarized in Table XII [MacKay, 

1986][Dance, 1981][0'Hannesin, 1981]. 
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TABLE XII 

BORDEN AQUIFER MINERALOGY 

Component % 
Quartz 58 
Feldspars 19 
Carbonates 14 
Amp hi boles 7 
Chlorite 2 

The subject aquifer material can be described generally as non-fractured, relatively 

homogeneous, clean, well-sorted medium-to-fine grained sand, with grain roundness 

ranging from sub-angular to well-rounded. Table XII shows quartz and feldspars 

dominate the flow media along with a substantial mixture of carbonates and 

amphiboles. 

The only clay mineral detected was chlorite although the clay content in the aquifer 

could almost be considered as zero as the detectible clay size fractions were extremely 

low. Seven hundred and thirty-nine of the 846 aquifer media samples (87 % ) had no 

measurable clay fractions at all. Of the 107 samples exhibiting clay content, only 8 

samples showed clay fractions greater than 15% by weight .. 

While the aquifer could be considered relatively homogeneous, core sampling did 

reveal several distinct bedding features. The bedding features were predominately 

horizontal, although some cross-bedding sections were found. Spatial heterogeneity 

observed at the site consisted mostly of thin lenses (0.02 - 0.1 meters) with limited 
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lateral extent (2 - 5 meters). The lens were composed of the same materials shown in 

Table XII, but exhibited a greater contrast in particle size distributions and hydraulic 

conductivity [Sudicky, 1986]. Both finer-grained and coarser-grained lenses were 

observed, with the median grain sizes of the 846 samples (taken from 11 undisturbed 

cores samples) ranging from 0.070 to 0.69 mm [O'Hannesin, 1981]. 

Table XIII summarizes the chemical composition of the uncontaminated groundwater 

in the vicinity of the landfill [Nicholson et al., 1983] 

TABLE XIII 

BORDEN BACKGROUND GROUNDWATER PARAMETERS 

Parameter Range 
Ca2+ 50 - 110 mg/1 
Mg2+ 2.4 - 6.1 mg/1 
Na+ 0.9 - 2.0 mg/1 
K+ 0.1 - 1.2 mg/1 
c1- 1 - 3 mg/1 
TDS 380 - 500 mg/1 
DO 0 - 8.5 mg/1 
pH 7.3 - 7.9 

The table indicates the groundwater's total dissolved solids content is low, although 

the water could be considered to be moderately hard based on the calcium and 

magnesium content. The initial dissolved oxygen measurements indicated that the 

aquifer was aerobic in the experimental zone, although subsequent measurements 

showed that dissolved oxygen varied somewhat over the field of study. 
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Table XIV summarizes estimates of the key aquifer properties derived from field data 

obtained in the vicinity of the experimental site. 

TABLE XIV 

ESTIMATED BORDEN AQUIFER PROPERTIES 

Horizontal Hydraulic Gradient 0.0043 mlm 

Hydraulic Conductivity Geometric Mean 7.2 x 10-5 mis 

Porosity Mean Value 33 % 

Longitudinal Dispersivity 0.08 m 

Horizontal Dispersivity 0.03 m 

The hydraulic conductivity distribution in the aquifer at the experimental site was 

studied using several techniques. A total of 26 slug tests were interpreted using the 

Hvorslev method [Hvorslev, 1951], with the resulting estimates varying from 5x10-5 to 

lx10-4 mis, with an approximate mean value of 7x10-5 mis. 

Throughout the experiment, porosity was treated as a spatially uniform parameter 

having a value of 33 percent. Relatively little data was obtained to evaluate the 

spatial variability of media porosity because of the difficulty in obtaining undisturbed 

core samples from the aquifer. Data taken from two cores at 0.15 meter increments 

yielded an estimated coefficient of variation for porosity of O. 05. Based on this small 

value the field porosity was judged to be uniform within the upper section of the 

aquifer for the purposes of this experiment, although the porosity value of 33 percent 
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was considered in subsequent works as a mean value. 

Experimental Methodology 

The Borden experiment's transport study began with the injection of a known mass 

and volume of a chloride and bromide mixture. Both compounds were chosen due to 

their nonreactive tendencies with each other and typical aquifer media, as well as the 

reasons discussed previously. 

A nine well injection system was installed and designed to create an instantaneous 

slug of tracer material in the upper section of the aquifer. The injection header 

system was designed to provide each of nine injection wells an equal amount and 

concentration of tracer material, as well as to cause minimal disturbance in the natural 

flow field. The amount of injected tracer volume was chosen to be large relative to 

the scales of heterogeneity believed to exist in the aquifer, as well as to ensure the 

plume could be reliably monitored over several years. The composition of the slug of 

the chloride and bromide tracer solution used in the experiment is shown in Table 

xv. 

TABLE XV 

INJECTED NON-REACTIVE TRACER COMPOSITION 

Average Total Mass 

Tracer Material Concentration (mg/1) Injected (kg) 

Chloride (Ci-) 892 10.7 

Bromide (Br-) 324 3:87 
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Movement of the tracer plume was governed solely by the natural processes occurring 

at the site, and the plume's position was monitored via a dense network of 3-D 

sampling points. More than 19,900 samples were collected during the course of the 

experiment, and all the evidence indicates neither the chloride or bromide reacted 

with each other or within the aquifer. The plumes were monitored for 1,038 days, 

and the maximum distance traveled exceeded 110 meters. 

Observed Chloride Plume Development 

As expected, the chloride plume's internal stmcture and shape changed as the plume 

traveled throughout the aquifer. As the plume moved down gradient, it spread 

significantly in the longitudinal direction, somewhat in the horizontal direction, and a 

small amount in the vertical direction. The most interesting and unexpected aspect of 

the plume's structural development began occurring during the first 85 days of the 

experiment, and the effects were still observable 1,038 days later. Specifically, the 

chloride plume developed a bimodal structure in the vertically averaged concentration 

profile even though the plume cloud never lost is structural continuity. This bimodal 

structure was apparently caused _by the divergence of the plume into two separate 

areas of distinctly higher concentration chloride ions. Somewhat unexpectedly, the 

plume was able to maintain its integrity as a single coherent body of chloride ions; 

however, it should be noted the plume did not obtain a Gaussian distribution of 

chloride ions in any direction or orientation. 
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The separation, or bifurcation, of the plume was inferred to have been caused by a 

reduced horizontal permeability section located in the aquifer. The reduced hydraulic 

conductivity of the lower section of the aquifer allowed certain sampling wells to see 

both the upper and lower portion of the plume at the same time and thereby create a 

bimodal concentration distribution. Figure 14 is a plot of equal concentration 

contours of the vertically averaged chloride ion concentrations 462 days after 

injection. 
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Figure 14. Chloride Concentration Contours: 462 Days. (MacKay et al. 1986) 

Figure 14 was produced by hand contouring sampling data projected onto the plume's 

horizontal cross-section, and is reproduced ~ere from another publication [MacKay et. 

al. 1986]. The plot indicates the structural integrity of the plume held cohesively 

through 462 days of transport, and that the vertical spreading is very small relative to 

the horizontal elongation (note the different scales of the X and Y axis). The bimodal 

nature of the distribution is somewhat attenuated by the contouring, but can be seen in 

the qualitative sense as the kidney bean shape of the 300 mg/L center contour. · 
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Observed Chloride Plume Trajectory 

The spatial coordinates for the chloride plume's center of mass at the various 

sampling times were determined based on an established field coordinate system. 

Figure 15 graphically presents the horizontal (X-Y) trajectory of the center of mass of 

the chloride plume, and indicates the plume followed a nearly linear horizontal 

trajectory in the aquifer throughout the course of the experiment. 

-E 30 ........ 
(/'J 
(/'J 
ct! 
~ 
- 25 0 
i.... 
Q) ...... 
C 
Q) 20 
() 
Q) 

E 
:::, 

0.. 15 

C 
0 

t5 
~ 10 
Cl 
>-
C 

C 
0 

~ 
(.) 
0 
-' 

5 

/ 
/ 

/ 
/ 

V 
V 

/ I vv 
I 

10 . 20 . 30 40 5Q 
Location in X D1rect1on, Plume Center of Mass (mJ 

Figure 15. Chloride Plume Horizontal Trajectory 

69 

! 

I 
I 

60 



It should be noted that while the X-Y trajectory of the plume's center of mass shown 

in Figure 15 is nearly linear, the actual horizontal trajectory was approximately 25 

degrees different than the forecasted trajectory, which was predicted based on local 

water table observations. All the spatially related data used in this work regarding the 

Borden site have been corrected to a common coordinate system. The corrected data 

are shown in the Appendix and was used as the basis for the development of Figures 

15, 16, and 17. 

Interpretation of the plume trajectory shown in Figure 15 is straightforward, and 

indicates the mean horizontal hydraulic conductivity in the aquifer was remarkably 

consistent along the direction of travel. This observation confirms a similar 

conclusion drawn from the analysis of 1,279 core samples taken from an area adjacent 

to the Borden Experiment site.[Sudicky, 1986] These facts indicate any horizontal 

anisotropy existing in the hydraulic conductivity field would have to be very small or 

negligible relative to the overall size of the plume. 

The small irregularity in the horizontal (X-Y) trajectory which occurred at 

approximately X = 36 and Y = 17 corresponded with an observed seasonal change in 

the hydraulic gradient at the site around day 470 of the experiment. Figure 15 

indicates the impacts of the variation in hydraulic gradient upon the chloride plume 

were minimal and temporary. 
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Observed Chloride Vertical Displacement 

Figure 16 indicates that in contrast to the horizontal (X-Y) trajectory of the center of 

mass of the chloride plume, the vertical (X-Z) trajectory of the plume's center of 

mass was not uniform over time and space. The vast majority (79%) of the total 

vertical displacement occurred within the first 30 meters of horizontal displacement, 

and required approximately one year of transport time. 
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Figure 16. Chloride Plume Vertical Trajectory 
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The total vertical displacement of 2.85 meters over 1,038 days represents only 2.5 

percent of the 110 meters of horizontal displacement. This value is small enough to 

indicate the vertical displacement can safely be considered a negligible component of 

the total displacement of the plume. 

While the reasons for the nature and magnitude of the observed vertical movement 

shown in Figure 16 are not fully understood at present, it is likely that a number of 

mechanisms were jointly responsible. One researcher [Sudicky et al. 1986] attributed 

the vertical plume movement to hydraulic head differences and the specific gravity 

differences between the plume and the native groundwater. While not quantified in 

any way, local infiltration and recharge probably also played a role in the early 

vertical displacement of the plume. 

Observed Chloride Plume Velocity 

Assuming that the chloride ions were not affected by either retardation or ion 

exchange within the aquifer, the velocity of the center of mass of the tracer plume 

must equal the actual linear groundwater velocity. Figure 17 shows the velocity of 

the center of mass of the chloride plume was uniform throughout the course of the 

experiment. 
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Figure 17. Chloride Plume Horizontal Displacement vs. Time 

Figure 17 plots the horizontal displacement of the plume's center of mass as shown in 

Figure 15, against the travel time of the center of mass of the plume. The figure 

clearly indicates the horizontal velocity is linear, and has a magnitude of 0.091 

meters/day. The velocity of 0.091 meters/day can easily be read directly from the 

graph at time t=lOO days. 

The figure shows the transport velocity during the first 650 days of the experiment is 

a linear function with time. The overall size of the plume appears to have been large 
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enough such that the local variation in the velocity field observed in Figure 15 at 

X=36 and Y=17 did not effect the average transport rate of the plume. 

Estimates of groundwater velocity are usually derived indirectly from measurements 

of hydraulic gradient, hydraulic conductivity, and the porosity of the aquifer. Table 

XVI shows the results of field work conducted at the Borden site. 

TABLE XVI 

RESULTS OF METHODS OF ESTIMATING AVERAGE LINEAR 
GROUNDWATER VELOCITY 

Method Range Mean Calculated Value (mid) 

Slug Test 5 - 10 7.0 0.078 

Grain Size Analysis 
(11 cores) 0.03 - 76 7.1 0.079 

Permeameter Analysis 
2 Core plugs 0.10-15 6.7 0.076 

32 Cores plugs 0.04 - 15 7.2 0.081 

The estimates of the site's groundwater velocity shown in Table XVI agree pretty well 
. . 

with the observed velocity of 0.091 meters/day. The estimated velocities range from 

0.076 meters/day to 0.081 meters/day, or approximately 10-15% lower than the 

observed velocity of 0.091 meters/day. The differences among the indirect estimates 

of velocity are less than 3 % , except for the one derived from permeameter analysis of 

the core data. · All the differences in the estimates could be explained by possible 

errors made in either the sampling techniques or the methodology used to estimate the 
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hydrogeologic parameters. A fuzzy informational approach to determining velocity 

estimates may not be handicapped to the same extent as other techniques by parameter 

estimation errors. 

Summary: Borden Experiment 

The horizontal trajectory of the chloride plume was linear and aligned well with the 

naturally occurring hydraulic gradient. The total vertical displacement of the plume 

was relatively small and indicated the vertical component of the mean groundwater 

velocity vector was negligible. The observed mean plume velocity was 0.091 

meters/day, and remained spatially and temporally uniform during the first 647 days 

of the experiment. 

A heterogeneity in the aquifer led to the bifurcation of the plume's chloride 

concentration, and demonstrates some of the difficulties inherent in predictive 

groundwater modeling. The observed behavior of the chloride plume indicated an 

unexpected heterogeneity existed in the aquifer which was believed to be 

homogenous. Fuzzy information based modeling platforms may provide a more 

satisfactory quantitative and qualitative predictive methodology through their abilities 

to successfully deal with vaguely defined modeling parameters. 

Transport Modeling Platfonn Comparison, Analytical vs. Fuzzy at the Borden Site 

The following groundwater transport modeling application contrasts an analytical 
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platform solution with a fuzzy based transport realization based on the Borden site 

data. In the fuzzy transport model hydrodynamic dispersivity is considered to be a 

fuzzy number. While any, or all, of the groundwater modeling parameters could be 

considered as fuzzy variables under a fuzzy modeling platform, only dispersivity was 

chosen. This choice was made for two reasons: One involved the wish to isolate the 

differences between the two contrasting platforms' realizations to the impact of the 

effects of a single fuzzy parameter. Reason number two had to do with the history 

and nature of the dispersivity parameter itself. 

Dispersivity is one of the most difficult parameters with which accurate groundwater 

modeling must manage. The classic model of hydrodynamic dispersion is developed 

at the scale of Representative Elementary Volume ("REV") and requires the diffusive, 

or Frickian model of transport be accepted. Unfortunately, a significant body of field 

work indicates dispersive spreading in an aquifer is non-Frickian in nature [Anderson, 

1979; Gelhar and Axness, 1981]. 

Laboratory and theoretical studies have been used to develop both deterministic and 

stochastic modeling platforms which perform well under the right circumstances 

[Matheron and DeMarsily, 1980; Guven, et. al., 1984]. The right circumstances 

almost always include having an accurate characterization of the variability of all the 

aquifer parameters. When forced to generate predictive modeling realizations without 

an accurate and complete characterization of the aquifer, most modelers strongly . 
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suggest the stochastic type modeling platform be invoked. The use of fuzzy 

informational modeling techniques in situations where the variability of any of the 

groundwater modeling parameters is high may be an equally valid, and possibly more 

robust, methodology as the prerequisite assumptions are less restrictive. 

The true nature of the dispersivity phenomena is an area needing more real world 

observation and study. In an extensive review of literature regarding field-scale 

studies, [Gelhar et. al., 1985] fifty-five different sites were identified where modeling 

dispersivity values were documented and reported. Only five of the fifty-five studies 

yielded dispersivity values which could be considered to be reliable, and only one of 

the five reliable studies involved solute transport under natural gradient conditions 

[Sudicky et. al., 1983]. The dispersivity values generated by the Borden site 

experiment can be considered to be reliable; unfortunately, they must also be 

considered to be non-linear and scale dependent [Freyberg, 1986]. 

Borden Analytical Groundwater Model 

Equation 17 can describe the concentration of a non-retarded slug of miscible tracer 

fluid anywhere along a single flowpath axis. 

ac = D a2c 
at a,;, 2 
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The analytical solution to Equation 17, shown as Equation 18 [Bear, 1972], was used 

to evaluate the plume concentration data generated from the Borden Site experiment. 

M/n ---x 2 
C(x,t)= --;..,..,-_--= -~ exp [4Dt] 

J(4TrDt) (18) 

Data Preparation 

In order to use a one-dimensional transport model with the Borden site data the field 

data had to be represented in a one-dimensional format. Figure 14, the two-

dimensional, hand contoured, X-Z plane concentration profile of the chloride plume 

was transformed into reduced one-dimensional point concentration data profile shown 

in Table XVII. The reduced 1-D data was generated by digitizing the hand contoured 

cross-section [MacKay, 1986] into a Sun Microsystem Workstation with a 

Summagraphics Microgrid III Digitizing Tablet and the corresponding Summagraphics 

software. The summation of each isopleth's average concentration value weighted by 

the component plume thicknesses at that spatial location determined the one-

dimensional concentration value. Development details of the reduced 1-D data shown 

in Table XVII may be found in Appendix D. 

Increments of 5 meters along the plume's idealized center line were chosen as 

locations to represent the compression points of concentration values. These data 

points effectively represent the compression of the two-dimensional plume chloride 

concentration onto a single directional axis after 462 days of transport. 
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Table XVII 

PLUME CONCENTRATION DATA AND REALIZATIONS 

Spatial X Plume Reduced 1-D Analytical 
Coordinate (m} Thickness (m} Concentration (mg/L} Realization (mg/L} 

30 1.2 31 27 
35 2.1 147 170 
40 2.3 395 430 
45 2.5 450 434 
50 2.2 231 174 
55 1.6 72 28 
60 0.8 22 2 

An analytical solution to the transport model described by Equation 18 was applied 

with site specific hydrogeological parameters [McKay 1986; Freyberg 1986] and the 

reduced 1-D data by aligning the X axis parallel with, and superimposed upon the 

site's mean groundwater vector. Table XVII also shows the plume's thickness and 

the analytical solution of Equation 18 at identical spatial values of X. 

The reduced 1-D concentration data and the analytical realization data shown in Table 

XVII are depicted graphically as Figures 18 and 19. Both figures illustrate the 

spreading of the injected chloride slug in both the leading and trailing directions of 

transport after 462 days of travel time in the aquifer. 
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Figure 18. Profile of Reduced 1-D Concentration Data 
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The observed peak concentration in Figure 18 occurs at X=45, and compares very 

favorably with the theoretical peak concentration location of X=42. The theoretical 

peak concentration location of X=42 is the expected distance traveled after 462 days 

of transport if the contaminant was moving at the mean groundwater velocity. 

[Distance (meters) =Rate (meters/day) * Time (days); 42 meters = 0.091 meters/day 

* 462 days] 

Inspection of Figure 19 and the data shown in Table XV shows the one-dimensional 

analytical platform solution generates a plume profile having the same general shape 

and characteristics as the reduced 1-D data concentration point profile shown in 

Figure 18. As expected for a miscible contaminant, the peak concentration values 

are again located in the area where the spatial distance X equals the product of the 

travel time and mean groundwater velocity. 

Solving Equation 18 with the spatial distance X incremented in 1.25 meter segments 

instead of the 5 meter segments used to generate Figure 19, yields the normal 

distribution realization presented as Figure 20. 
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Figure 20. Analytical Solution at 1.25 meter Increments 

Inspection of both Figure 20 indicates a point of inflection and the peak concentration 

value occurs at X=42 when the smaller spatial incrementalization is used. This graph 

validates the reduced 1-D data compression technique and highlights the fact care 

should be exercised near the center of mass so as to not underestimate the total 

concentration values. 

In the case of the Borden Experiment, the cause of the bifurcation of the plume which 

occurred during transport also caused the analytical modeling platform to "miss the 
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mark" in terms of precise agreement with field data. There was; however, good 

overall agreement in the predicted plume concentration profile and the magnitude of 

the predicted concentration values. 

Figures 21 shows the difference between the observed concentration data and the 

analytical realization, and clearly indicates the differences increase rapidly the further 

one moves away from the contaminate's centroid. 
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Figure 21 indicates the differences between the observed data and the theoretical 

analytical solution along on the leading edge of the plume are almost twice those of 

the trailing section at corresponding values of X. 

Mass Balance 

An idealized slug of contaminant injected into a non-fractured, homogenous aquifer 

will spread in three dimensions with the predominate spreading occurring along the 

axis of groundwater flow. Consequently, the maximum total concentration of the 

contaminant will be seen in the spatial planes intersecting the centroid of the plume 

cloud. The centroid of the plume cloud can be determined from Equation 19 and will 

occur at the spatial location where Z=O; Y=Z; and X=v(t) [Domenico and Schwartz, 

1990] 

z2 
-] 
4D_t 

(19) 

The general shape of chloride plume cloud in the Borden experiment can be described 

as a general ellipsoid shape, such as the one shown in Figure 22. The volume of an 

ellipsoid can be defined with Equation 21, using the three principle axes described by 

Equations 20 a, band c. 
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Figure 22. Ellipsoid Profile 

Where: D = 2(302 ) 

a. 

b1 = 2(3ox)/D 

b2 = 2(3oy )/D 

and 

3<\=3(2Dy t)°-5 

b. 

(20) 

C. 

At the Borden site the dispersivities after 462 days were determined [Freyberg, 1986] 

to be 0.323 for the longitudinal dispersivity clx, and 0.028 for the transverse 

dispersivity dy. Assuming dz is an order of magnitude less than dy, as is consistently 

found in both laboratory and field experiments, and using the site specific parameters 

with Equations 20 a, b, and c, an ellipsoid having the dimensions of X= 10.4, Y =6.1 

and Z=l.9 will, by definition, contain 3o, or 99.7 percent of the chloride mass. 
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Equation 21 describes the volume of an ellipse. 

V = 1r b b D 3 
e 6 1 2 

(21) 

Applying Equation 21 with the X, Y and Z axes calculated with Equations 20 a, b, 

and c, indicates that after 462 days the plume will occupy a 227 cubic meter volume 

in the aquifer. 

If this is indeed the case, the initial 12 cubic meter volume of injected solution with 

an average chloride ion concentration of 892 mg/I, will have become a diluted volume 

of 227 cubic meters with an average chloride concentration of 47 mg/I. Equation 19 

indicates the chloride concentration centroid of this diluted volume is 183 mg/I. 

Multiplying 183 mg/I by the plume thickness of 2.5 meters at x=45 meters (the 

location of the peak reduced 1-D concentration) yields a composite plume 

concentration value of 457 mg/I. This point concentration value approximates the 

peak concentration value of the reduced data (450 mg/I) and the analytical solution's 

peak concentration value ( 434 mg/I). The similarity between these values helps to 

validate the legitimacy of the both concepts. 

In an attempt to further validate the one-dimensional analytical solution and the 

concept of compressed reduced 1-D data, the data obtained from digitizing Figure 14 

was combined with the known limits of the chloride plume to generate Figure 23. 
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Figure 23 represents a top view of the chloride plume presented in the horizontal (X­

Y) plane. The color shading indicates relative chloride concentration values with blue 

representing zero concentration and red representing the highest concentration. The 

scale of Figures 23, 24, 25, and 26 must be read from the body of the figure, with 

the dot pattern being on a 5 meter square. The color shading was developed by the 

software discussed below, and should only be considered in the relative, or 

qualitative, sense. 

Figure 23, as well as Figures 24, 25, and 26, were developed with Landmark's Z­

Map and SeisWorks/3D software running on a Sun Microsystem Workstation. These 

software packages are designed for the oil and gas exploration industry and are 

traditionally used to process raw seismic data. The software is extremely 

computationally powerful, and was deemed flexible enough to process the limited data 

set developed at Borden. 

The SeisWorks/3D software was used to prepare the Borden data as input for the Z­

Map software package. The SeisWorks/3D software has multiple splining_ and 

triangulation algorithms, and these algorithms allow the construction of three­

dimensional objects with limited spatial input data. 
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Figure 24 shows the color filled chloride plume of Figure 23 overlaid with 

concentration isopleth contours. These contours were generated by the software 

previously discussed and should only be considered in the qualitative sense. 

Figure 24 was then used to provide the input data necessary to generate Figure 25. 

Figure 25 shows a rear view of a rough three-dimensional model of the chloride 

plume viewed from a 33 degree angle to the direction of transport. 
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Like before, Figure 25 was used as input to generate Figure 26. Figure 26 was 

generated by a biharmonic flexing sub-routine whereby the surface planer structures 

seen in Figure 25 are bent as smoothly as possible from one inflection point to the 

other. The perspective shown in Figure 26 is identical to that of Figure 25. Close 

inspection of the two figures will show the plume in Figure 26 contains a greater 

number of planer surfaces than the plume in Figure 25. 
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Figure 26. Smoothed Three-Dimensional Chloride Plume Structure 
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After the plume shown in Figure 26 was fully developed, the same software was 

utilized to calculate the plume's volume. The volume of the plume shown in Figure 

26 was determined to be 256 cubic meters. Using this spatial volume with the total 

irtjected chloride mass yields a plume cloud having an average concentration of 42 

mg/I. This average concentration value compares very favorably with the theoretical 

average plume concentration value of 47 mg/I calculated previously, and thereby 

validates both the analytical solution and the concept of the reduced 1-D data as 

legitimate. 
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Summary: Analytical Realization 

Figure 27 overlays the field observed concentration profile with the analytical solution 

profile, and shows the difference between the two along the zero axis. As expected 

this figure indicates the analytical solution matches the observed plume concentration 

profile quite well. 
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While the profiles of the two data sets have the same general shape, there are 

significant differences. The differences between the observed reduced data and the 

analytical realization indicates the analytical model overestimates the observed 

concentration in the tailing portion of the plume, and underestimates the observed 

concentration in the leading portion of the plume along the axis of flow. The 

modeling realization and the observed data match exactly at the l.ocation where travel 

Distance = Rate * Time. As there is a high level of confidence in the consistency of 

the groundwater velocity, media homogeneity, and hydraulic conductivity, Figure 27 

suggests either the dispersivity values along the line of advection used in the model do 

not completely describe the dispersion phenomenon, or the aquifer's heterogeneity 

effectively retarded the advance of the entire plume body. These observations come 

as no major surprises, as variations in aquifer and parameter heterogeneity are often 

unaccounted for in groundwater models. As Figure 17 indicates the velocity of the 

plume was not retarded during this time frame, it is likely the reported dispersivity 

value does not completely describe the dispersion events. 

The effects of the two components of hydrodynamic dispersivity i molecular diffusion 

and mechanical dispersion, are reflected in both the observed field data and the 

reduced data at Borden. Some of these effects can easily be seen in Figure 27 in that 

the chloride/native groundwater interface is not an abrupt transition, but a gradual 

gradation from zero chloride concentration to the maximum chloride concentration . 

. The variations in the solute concentration from zero values to a peak value can be 
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well represented by a fuzzy number. In fact the gradational change in chloride 

concentration values is very similar to the changes represented by fuzzy number 

triangular membership functions. The facts that dispersivity is one of the most 

studied, most important, and most variable parameters used in groundwater modeling 

make it a prime candidate for parametric description via fuzzy modeling techniques. 
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IX. BORDEN SITE FUZZY MODELING 

Equation 18, the analytical solution to the partial differential transport equation shown 

as Equation 17, was used as the basis for the development of the following fuzzy 

modeling platform. The resultant fuzzy model was then used to calculate the 

expected chloride concentrations along a one-dimensional flowpath at the Borden site. 

J The sole fuzzy input parameter was chosen to be dispersivity, and was generated by 

fuzzifying the crisp dispersivity value into an isosceles triangle membership function 

having endpoints defined as+ 10% of the crisp dispersivity parameter's value. 

Crisp and Fuzzy Realizations 

Figure 28 shows both endpoints of the fuzzy model's concentration realization 

membership function at five meter increments along the flowpath axis, along with the 

crisp analytical realization's predictions. Figure 28 plainly shows that the crisp 
• 

solution is bound by the upper and lower endpoints of the fuzzy realization's 

membership function. At the trailing edge of the chloride plume, the lower limits of 

the fuzzy realization are closer to the analytical realization profile than the upper 

values of the fuzzy realization's membership function. Conversely, at the leading 

edge of the chloride plume the upper values of the fuzzy realization better 

approximate the analytical realization's profile values. 
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Figure 28. Crisp Analytical Realization and Fuzzy Endpoints 
( +/- 10% dispersivity) 

60.0 65.0 

Figure 29 shows the differences between the analytical realization and the fuzzy 

endpoints at common spatial values. Both fuzzy endpoints were subtracted from the 

corresponding crisp analytical realization in order to easily visualize the behavior of 

the two endpoints. Note that the differences due to the fuzzy minimum endpoints will 

appear as a positive number in this scenario, while the maximum fuzzy endpoints will 

generate negative differences as the crisp realization is completely bound by the fuzzy 

realization. The general characteristics and shape of Figure 29 is revealing, and 

should be kept in mind when reviewing Figures 30, 31, 32, 33 and 34. 
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Figures 27 and 28 show this fuzzy realization yielded, in a general sense, 

65.0 

concentration values which tended to overestimate the chloride concentration in the 

trailing section of the plume, and underestimate the chloride concentration in the 

leading portion of the plume. However, closer approximation to the crisp realization 

is achieved if one uses the lower membership endpoints at the trailing edge of the 

plume, and the upper membership endpoints at the plume's leading edge. Near the 

center of mass of the plume both the upper and lower membership endpoints 

approximate the crisp realization with a similar degree of accuracy. 
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Figure 30 shows the same information presented in Figure 28, with the addition of the 

observed reduced 1-D data being superimposed on the graph. This graph indicates 

the fuzzy realization generated with dispersivity endpoints defined as plus or minus 

10 % of the crisp dispersivity value did not completely bound the reduced data as they 

did the crisp analytical realization. 
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Figure 30 .. Reduced 1-D Data with Analytical and Fuzzy Realizations 
( +/- 10% of crisp dispersivity) 

The observed reduced 1-D data can be seen to exceed the crisp realization projections 

in the leading section of the plume, as well as the upper endpoint of the fuzzy 

realization's membership graph. The extent the fuzzy realization's over and under 

estimation of the reduced data can be seen in Figure 31. Figure 31 was generated in 
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the same fashion as Figure 29, and graphically represents the difference between the 

observed reduced data and the fuzzy realization's membership function endpoints. 
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Figure 31. Reduced 1-D Data Less Fuzzy Realization Endpoints 
( +/-10% crisp dispersivity) 

The figure plainly indicates bo~ the fuzzy endpoints overestimate the expected 

concentration of chloride ions in the trailing section of the plume and underestimate 

the concentration in the leading section. This suggests a dispersivity value with a 

support larger than the + I- 10 % used above is necessary to match the observed 

behavior of the chloride plume. 
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Figure 32. Reduced 1-D Data with Analytical and Fuzzy Realizations 
(+I- 20 % crisp dispersivity) 

Figure 32 was generated by fuzzifying the same crisp dispersivity value into an 

isosceles triangle membership function with defined endpoints of + 20 % of the crisp 

dispersivity parameter's value. The resultant output is shown along with the 

observed data as well as the analytical solution. This figure, like Figure 30 shows the 

crisp solution to be bound by the upper and lower endpoints of the fuzzy realization's 

membership function. Also like Figure 30, the observed data concentration profile 

exceeds the maximum fuzzy endpoints at the leading portion of the plume. 
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Figure 33 shows the differences between the crisp analytical realization and the fuzzy 

realization obtained from using a dispersivity membership function derived as + /-

20% of the crisp parameter. Figure 33 shows the fuzzy realization obtained with the 

larger dispersivity value bounded the crisp realization very well; although the 

tendency to overestimate concentration in the tail and underestimate in leading section 

of the plume is still apparent. 
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Figure 33. Crisp Analytical Realization Less Fuzzy Realization Endpoints 
( +I- 20% crisp dispersivity) 

Figure 34 replicates Figure 31 except the fuzzy dispersivity · value had its membership 

function endpoints increased to +20% of the centroid's value. 
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Figure 34. Reduced 1-D Data Less Fuzzy Realization Endpoints 
( +/- 20% crisp dispersivity) 

The graph indicates some movement towards bounding the reduced data; however, the 

fuzzy solution, like the analytical realization, still overestimates concentration in the 

trailing plume section, and underestimates concentration in the leading section. 

Discussion of Fuuy Realizations 

Figure 35 represents the percentage difference between the two different fuzzy 

realizations. The graph indicates a total increase of about 10% in the realizations 

bounds between X=40 and X=45 occurs if one uses the +/- 20% dispersivity end 

point values. The percentage difference increases dramatically as one moves away 
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from the center of the plume and toward plume edges. A total difference of about 50 

percent can be observed at the plume extremes X=25 and X=60. 
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Figure 35. Percentage Difference Between the Two Fuzzy Realizations 

The figure indicates an increase in the support of a fuzzy dispersivity value will have 

a more pronounced impact on the predicted concentration values at the extremes of 

the plume than near the center of mass. 
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Conclusion: Borden Experiment 

In the example of chloride ion transport in the Borden Experiment using a fuzzy 

dispersivity parameter, the upper values of the resultant membership function better 

approximated observed plume behavior at the leading edge of the plume. Conversely, 

at the trailing edge of the chloride plume, lower values of the resultant membership 

function better replicate observed behavior. These same tendencies were also 

observed regarding the comparison of analytically derived data to the fuzzy 

realizations. Increasing the base of the fuzzified variable from 10% to 20% of the 

centroid's mean value increased the interval of the fuzzy realization; however, it did 

not change the tendencies of over and under-estimation at the leading and trailing 

edges of the plume. The fact a doubling of the fuzzy dispersivity membership 

endpoints on a percentage basis did not change the basic relationship of the fuzzy 

realizations to the observed data and analytical solution indicate the robustness of the 

fuzzy platform. 
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X. FRACTURED MEDIA TRANSPORT APPLICATION 

The last decade has seen a resurgence in interest in modeling fluid transport in 

fractured aquifers. Much of this interest has been inspired by concerns relating to the 

underground storage of nuclear waste material, while another, and somewhat ironic 

factor, is the revived exploration economics of the oil and gas industry. It is 

intriguing to note that while the oil and gas industry is seeking underground 

formations which allow the rapid release of fluids entrained in rock reservoirs, the 

waste disposal industry is interested in rock formations which will readily accept, then 

retain, waste fluids injected in the formation material. 

The study and exploitation of fractured media by both of these industries has 

increased the knowledge and understanding regarding fluid behavior in fractured 

formations. As with any naturally occurring phenomenon, accepted modeling 

practices evolve over time as research and understanding of the field is increased. 

Early models are traditionally qualitative in nature, and often rapidly fall out of favor 

as quantitative models are developed. Unfortunately, the seductive nature of 

quantitative models can overwhelm an industry, and pull participants away from the 

fundamental understandings and basic workings of the field of study. (One example 

would be the over dependence of "Wall Street" on computer hedging programs during 
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1986 and 1987 .) The best aspects of both qualitative and quantitative modeling can 

be achieved with the utilization of a fuzzy modeling platform. 

Characteristics of Fractured Media 

Fracturing is usually defined by geologists as "the rupture and separation into discrete 

parts along a planar surface not parallel to bedding planes" [Stearns and Friedman, 

1972] The fracturing of a rock media causes several morphological changes in the 

matrix of the rock, which in tum, impact the ability of fluid to move through the 

media. These morphological changes effect the more common modeling parameters 

used in the mathematical simulation of groundwater flow and transport. In particular 

the orientation, density, aperture size, and connectivity of the fractures, as well as the 

roughness along the open fracture walls, and the amount of fill material in "healed" 

fractures have dramatic effects on fluid movement. Unfortunately, these properties 

are high variable, and like most heterogenous parameters, very difficult to measure or 

predict with any degree of accuracy. 

While not all fractures are created ~qually, some fractures are created more equally 

than others. Fractures generated from tectonic movements such as local folding or 

fault straining are more uniform in nature than stratigraphically controlled fracturing. 

Stratigraphically controlled fractures are developed from processes such as thermal 

contraction, digenetic shrinkage, or surface weathering [Nelson, 1979], and are more 

isotropic in their-properties than tectonic induced fractures. In particular, fractures 
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resulting from these types of processes are usually very heterogenous in the vertical 

direction, and have lesser connectivity than tectonic related fractures. 

Many studies of groundwater flow and transport in fractured media emphasize the 

influence of fractures on the permeability of the matrix media. This is logical as the 

permeability of the fracture network is often substantially greater than that of the 

matrix media, and thereby offers the least hydraulic resistance to flow. For good or 

bad, fractures have been shown to have great potential to be very effective flow 

pathways [Gale, 1979; Nelson and Handin, 1977; Wilson and Witherspoon, 1970]. 

When these pathways. exist in a rock matrix, the transport of contaminant through the 

media matrix by advection is usually negligible in comparison to the transport 

occurring in the fracture. This is mainly due to the relatively low hydraulic 

conductivity of the rock compared to the hydraulic conductivity of the fracture 

[ Sudicky and Frind, 1982]. Yet, matrix porosity existing between fractures can 

provide significant storage space and time for contaminant solutes [Sudicky and Frind, 

1982]. 

Most groundwater modeling platforms combine the processes of diffusion and 

dispersion into the single modeling parameter known as hydrodynamic dispersion. 

This can often pose somewhat of a unique challenge for groundwater modeling in 

fractured media. The longitudinal dispersion component of transport in a fracture is 

usually assumed to be negligible, or have a linear relationship with the average fluid 
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velocity in the fracture. However, it has been shown [Dronfield and Sillman, 1993; 

Tang et al. 1981] these assumptions are often not always completely valid. 

Porosity in the matrix media connected to the major fractures is commonly referred to 

as the matrix porosity [Grisak and Pickens, 1980] and can play a significant role in 

determining the amount of solute which can make its way into the rock matrix. The 

effects of matrix diffusion in the aquifer are well known, and have been shown to 

provide significant retardation of contaminant transport in fractures [Davison et al., 

1980]. The molecular diffusion of a solute from the fracture into the porous matrix 

retards the advance of the solute by removing, then returning, contaminant mass to 

and from the fracture flow channel. Acting thusly, matrix diffusion can be considered 

to be a dynamic and reversible storage mechanism for solute contaminates within the 

matrix media. 

Conceptual Modeling in Fractured Media 

Modeling of solute flow in fractured media has been the focus of an impressive 

amount of work in the recent years. While novel approaches to the problem, such as 

fractal network analysis [Acuna and Yortos, 1995], are being explored, two basic 

concepts remain as the foundation for most models. 

One approach views the entire flow system as a single continuum and treats both the 
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fracture and the rock matrix as a single equivalent porus medium [ Huyakom et al., 

1983; Warren and Root, 1963; Barenblatt et al., 1960] The other approach views the 

fractures and the matrix media discretely, and requires explicit knowledge of all the 

fractures in the rock [Shaprio and Andersson, 1983]. The requirement of exact and 

detailed knowledge regarding the fractures effectively restricts the applications of the 

discrete methodology to arenas primarily devoted to basic research regarding flow and 

transport behavior. 

Both of the two basic approaches have their own limitations, not the least of which is 

defining the mass transfer function which occurs at the fracture wall/interface [ Chen 

and Douglas, 1990; Douglas and Arbogast, 1990; Maloszewski and Zuber, 1990; 

Arbogast, 1989; Quintard and Whitaker, 1988; Gilman, 1986; Kazemi and Gilman, 

1983; Carbonell and Whitaker, 1983]. 

The shear magnitude of this field of study requires this research to limit itself to a 

single aspect of modeling solute transport in fractured media. This aspect will be to 

incorporate uncertainty, in the functional form of fuzzy numbers, into an analytical 

solution for the transport of a single solute in a single fracture. The fuzzy analytical 

solution will then be compared to three non-fuzzy solutions: one analytical, and two 

numerical solutions of the same problem. The conceptual physical system which will 

be investigated is shown as Figure 36. The figure will also help to illustrate the 

conditions under which equations 22 and 23, described below, are valid. 
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Assume groundwater is moving at a constant velocity in the X direction along a 

planer fracture having a half aperture width of "b". A contaminant solute is 

introduced into the fracture at X =0, and is transported in the fracture solely by 

advection. Solute movement into the matrix occurs by diffusion normal to the 

flowpath of the fracture, and the contaminant is assumed to be in equilibrium at the 

fracture/media wall interface. 
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Figure 36. Physical Basis of Analytical Solution for Solute Transport in 
Fractured l\fedia. 
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Governing Equations 

The basic problem to be addressed via the fuzzy modeling platform is the 

incorporation of uncertainty into an analytical solution platform. In this instance we 

will investigate the situation where a non-reactive solute is transported in a fracture, 

and diffuses from the fracture into the adjacent matrix. The governing conditions 

include one-dimensional advective transport in the fracture and one-dimension 

diffusive transport into the matrix normal to the fracture. The flux of solute from a 

fracture into the media matrix is controlled primarily by the porosity of the matrix, 

the molecular diffusion coefficient, and the concentration gradient of the solute in the 

matrix. The differential equations governing solute transport in the fracture and the 

matrix, are respectively [Grisak and Pickens, 1981]: 

In the fracture: 

In the matrix media: 

acm = D a2cm 
at ay2 

Given the boundary conditions of: 

Cf(x,y) = Cm(x,y) =0, 
Cf(O,O) = Cm(0,0) =Co, 
Cf(x,0). = Cm(x,O) 
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t=O 
t>O 

x>O; t>O 

(22) 

(23) 



Where: 

V Groundwater velocity (L/t) 
b Aperture width (L) 
Om Porosity (%) 
D Diffusion coefficient (L2/t) 
x Distance along fracture (L) 
y Distance in matrix normal to fracture (L) 

The boundary conditions indicate the initial concentration of a solute in the fracture 

and matrix is zero. Water and solute enter the fracture at X=O, and the matrix is 

assumed to extend to infinity normal to the fracture. The following solution assumes 

non-reactive transport in both the fracture and the matrix, and concentrations of the 

contaminant in the fracture and at the fracture/media interface are equal. Equations 

24 and 25 are analytical solutions to equations 22 and 23, and were developed for 

determining solute concentrations in the fracture and in the matrix media [ Grisak and 

Pickens, 1981]. 

For the matrix media: 

9,fl 
C --x+y 
~ = erfc ( Vb ) 
Co 2[D(t-~ ]05 

V 

(24) 

where: t > x/V; and O where t< x/V 
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For the fracture: 

OJ) 
C --X 
_l = e1fc ( Vb ) 
C0 2[D(t-~]°.s 

V 

(25) 

where: t > x/V; and O where t< x/V 

and: 

V Groundwater velocity (L/t) 
b Aperture width (L) 
8 m Porosity ( % ) 
D Diffusion coefficient (L2/t) 
x Distance along fracture (L) 
y Distance in matrix normal to fracture (L) 

Due to the basic and fundamental similarity between equations 24 and 25, and the 

author's personal interest, only equation 25 will be analyzed for suitability with fuzzy 

modeling. If equation 25 is proved to be viable for modeling with fuzzy parameters, 

there is no reason to believe equation 24 would not be suitable for the same. 

Laboratory Trial 

Before a fuzzy model is developed from equation 25, it is worth testing the basic 

viability of the equation with some real world data. A laboratory experiment was 

carried out [Grisak and Pickens, 1981] to test equation 25 against physically observed 

data and a numerical platform solution to fractured flow. The experiment utilized a 

chloride tracer fluid and a large column of fractured till. Two sets of vertical 
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fractures were reported to exist in the till approximately 4 centimeters apart in the test 

media. The experiment forced the tracer fluid through the till, and the fluid 

breakthrough time and volume data was recorded. A relative concentration curve for 

the experiment was subsequently developed. 

The actual numerical breakthrough data for the chloride tracer shown in Figure 37 

was obtained by digitizing a graphical representation of the results of the experiment. 

The same Sun Microsystem Workstation and digitizing tablet used to develop Figures 

23, 24, 25, and 26 were used to develop the data shown in Figure 37 and Appendix 

G. 

Figure 37 shows the numerical results of the experiment along with an analytical 

modeling platform solution for the data. The digitized infonnation is shown as point 

data in the figure, while the solution to the analytical equation 25 is shown as a line. 
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Figure 37. Experimental Chloride Breakthrough Data and an Analytical 
Solution. 

I 

The analytical solution shown in Figure 37 was prepared by using equation 25, along 

with an approximation of the complementary error function. The complementary error 

function was approximated with an el~borate equation based on a Chebyshev fitting of 

a functional form of the error function. The equation estimates the complementary 

error to within 1.2x10-1 , and can be found in Appendix F. The figure shows a 

relatively good fit between the analytical solution and the observed data, and thereby 

helps to validate the usefulness of equation 25. 
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Fuzzy Analytical Model 

This research developed a fuzzy analytical model based on Equation 25, and 

compared the fuzzy solution to published solutions ( one analytical and two numerical) 

for the same well known problem. The problem [Tang et al., 1981] and the 

numerical solutions were obtained from the finite element code "Transport in 

Fractured Porous Media with Water Table Boundary Conditions" commonly referred 

to as "TRAFRAP." This code was developed by HydroGeoLogic, Inc., and the 

International Ground Water Modeling Center of Holcomb Research Institute. 

TRAFRAP approaches groundwater modeling in fractured media via either a dual 

porosity approach or the discrete fracture approach. In the situations discussed below 

both methodologies yielded similar results. 

Table XVIII shows the results obtained from TRAFRAP for the discrete and dual 

porosity finite element numerical solutions. The table also shows the results obtained 

from an analytical solution based upon Equation 25 which was applied to the same 

problem. As can be readily seen from Table XVIII and Figure 38, there is an 

extremely good agreement between the three difforent solutions. 
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TABLE XVIII 

RELATIVE CONCENTRATION DATA 
at time =995 

Distance Discrete Dual Porosity Analytical 
X Solution Solution Solution 

0.0 1.0000 1.0000 1.0000 
0.1 0.8710 0.8807 0.8941 
0.3 0.7156 0.7055 0.7072 
0.6 0.4755 0.4748 0.4848 
1.0 0.2705 0.2694 0.2729 
1.5 0.1186 · 0.1209 0.1309 
2.2 0.0305 0.0381 0.0399 
3.0 0.0041 0.0090 0.0087 
4.0 -0.0001 0.0015 0.0010 
5.0 0.0000 0.0002 0.0000 
6.0 0.0000 -0.0000 0.0000 

The realizations shown in Figure 38 for the discrete and dual porosity numerical 

models are represented as points, whereas the analytical solution realization is 

presented as values along the line. The graph shows the realization outputs from the 

three different models are so close to each other they are difficult to distinguish in the 

figure. The goodness of fit between the three different solutions should be obvious to 

. . . I 
the casual observer, and indicates any one of the three models could ~used as a 

. . .. / 

proxy for any of the others in this situation. 
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_ Analytical 

This paper utilized equation 25 in an analytical solution as a vehicle by which to test 

the fuzzy number modeling concept against the two numerical modeling platform 

solutions. This was_ done by fuzzifing the molecular diffusion coefficient '.'D". While 

any or all of equation's parameters could have been fuzzified, only the molecular 

diffusion coefficient was chosen. This choice was made for many of the same reasons 

dispersion was fuzzified in the fuzzy models developed regarding flow and transport 

in non-fractured alluvium. 
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The centroid of the molecular diffusion coefficient, 1.38 x 10-4 was chosen to match 

a previously used crisp value [Tang. et al., 1981] of "D", while the endpoints of 1.24 

x 104 and 1.52 x 104 were chosen as plus or minus 10 percent of the centroid's 

value. As before an isosceles triangle was chosen to represent the shape of the 

membership function as this shape best approximates the statistical normal 

distribution. Table XIX shows the centroid and the endpoints of the resultant fuzzy 

relative concentration values obtained at various distances along the fracture after 995 

days of transport. 

Distance 
X(m) 

0.0 
0.1 
0.3 
0.6 
1.0 
1.5 
2.2 
3.0 
4.0 

TABLE XIX 

"NORMAL" FUZZY MODEL REALIZATIONS: 
RELATIVE CONCENTRATIONS 

Low Endpoint 

1.00000 
0.88672 
0.68070 
0.41733 
0.17274 
0.03613 
0.00135 
1.450E-4 
2.98E-11 

at time =995 

Centroid 

1.00000 
0.91113 
0.73553 
0.49358 
0.24610 
0.07677 
0.00818 
2.30E-4 
2.88E-7 

High Endpoint 

1.00000 
0.93503 
0.78944 
0.56978 
0.32307 
0.12437 
0.01834 
0.00068 
9.68E-7 

Figure 39 shows the results of the fuzzy platform solution along with the crisp 
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calculation of the analytical solution. The graph indicates the fuzzy endpoints 

effectively bound the analytical solution until lower values of the relative 

concentration are reached. These lower values of relative concentration effectively 

represent the leading edge of the contaminant plume. This behavior is reminiscent of 

the numerical behavior shown in Figure 30, whereby the fuzzy solution's lower 

endpoints better approximated the analytical solution in the trailing section of the 

plume. Also, like Figure 30, the analytical solution and the fuzzy solution centroid 

values become identical near the middle of the plume. 
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Figure 39. Analytical Solution and "Normal" Fuzzy Solution 
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After the midpoint is exceeded the analytical solution drifts towards the upper limit of 

the fuzzy solution. This observation suggests the fuzzy equivalent to a lognormal 

distribution for the input parameter should be investigated. 

The same fuzzy analytical modeling platform was utilized along with a lognormal 

equivalent distribution of the fuzzy coefficient "D." Lognormalcy was achieved in 

the triangular distribution by maintaining the relationship shown as equation 3 in 

Chapter IV. Table XX shows the relative concentration results predicted by utilizing 

the fuzzy lognormal equivalent triangular distribution to represent the input parameter 

"D." 

Distance 
X(m) 
0.0 
0.1 
0.3 
0.6 
1.0 
1.5 
2.2 
3.0 
4.0 

TABLE XX 

"LOGNORMAL" FUZZY MODEL REALIZATIONS: 
RELATIVE CONCENTRATIONS 

Low Endpoint 
1.00000 
0.88446 
0.67551 
0.41011 
0.16642 
0.03348 
0.00115 
0.00006 
2.98E-11 

at time =995 

Centroid 
1.00000 
0.91149 
0.73617 
0.49361 
0.24355 
0.07182 
0.00583 
0.00007 
3.02E-7 

High Endpoint 
1.00000 
0.93640 
0.79230 
0.57357 
0.32701 
0.12725 
0.01921 
0.00074 
9.94E-7 

Figure 40 shows the differences between the centroid values of the two realizations 

obtained in the fuzzy analytical solution using the two different triangular input 
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membership functions. It is evident from Figure 40 the differences between the 

centroids of the fuzzy analytical solutions obtained with the normal distribution 

equivalent of a triangular membership function, and a lognormal equivalent of a 

triangular membership function for the parameter "D," are minimal. 
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The data shown in Table XX is plotted in Figure 41 along with the analytical solution 

data shown in Table XVIII. 
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As suggested by Figure 40, this figure indicates the fuzzy lognormal endpoints of the 

solution bound the analytical solution in a similar fashion as the non-lognormal fuzzy 

solution. 
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Figure 41. Analytical Solution and Lognormal Fuzzy Solution 

Figures 39 and 41 indicate analytical modeling with fuzzy numbers is a viable tool in 

modeling non-reactive transport in fractured media. The realizations obtained via 

fuzzy numbers have been shown to approximate real world flow and transport 

behavior as well as analytical, and by proxy, numerical models of the same. The 
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centroid of the fuzzy solution has been shown to overestimate an analytical solution's 

crisp realization in the trailing section of the plume, and underestimate the same in 

the leading section. Near the middle of the plume, the fuzzy and crisp solutions are 

identical. 

These are important results as they show fuzzy analytical solutions can be used to 

incorporate specialized knowledge into parameter value selection, and to estimate 

solute concentration and breakthrough when one is unsure about the accuracy of the 

dispersion parameter. As dispersion has been shown to be a scale dependent and non­

linear parameter, this is probably more often the case than not. 

128 



XI. SUMMARY AND CONCLUSIONS 

Summary 
Reflection on the alluvial and fractured groundwater systems discussed in this work 

should indicate the in situ flow and transport process is a very complex one which can 

be described mathematically. If a system can be described mathematically, it can be 

modeled with fuzzy algorithms. Fuzzy analytical groundwater flow and transport 

models were developed in this paper by linking analytical solutions with fuzzy number 

representations. Published data regarding both alluvial and fractured aquifers was 

utilized in the fuzzy models to obtain fuzzy realizations. The resultant fuzzy 

realizations were found to compare very favorably to published realizations derived 

via other modeling techniques. The use of fuzzy numbers in analytical modeling 

simulations allowed the incorporation of uncertainty and imprecision directly into the 

model in a non-statistical framework, and did not require the generation of a large 

number of realizations. 

This work has shown the fuzzy modeling platform can provide a robust and practical 

alternative to traditional methods of modeling complex nonlinear systems. This is 

possible primarily because fuzzy modeling platforms do an excellent job of trading off 

between realization significance and precision. While the fuzzy approach limits the 

precision in the description of a groundwater system, the approach increases the 
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practicality of the solution fonn by reducing the severity of the underlying 

assumptions. This characteristic of fuzziness may best be expressed by an early 

pioneer of fuzzy research, Lotfi Zadeh, in his Law of Incompatibility, "As the 

complexity of a system increases, our ability to make precise yet significant 

statements about its behavior diminishes until a threshold is reached beyond which 

precision and significance ( or relevance) becomes almost mutually exclusive 

characteristics. "[Zadeh, 1973] 

Conclusions 
From a groundwater modeling perspective, deterministic platform models are very 

useful when sufficient data is available regarding the necessary input parameters. 

When a system's definition or data is insufficient for deterministic modeling, 

stochastic models can provide realizations within certain degrees of statistical 

uncertainty. Unfortunately, these models require detailed information regarding the 

probability distributions of the ill-defined parameters. If there is a dearth of 

probability distribution information available, the use of a fuzzy modeling platform 

should be investigated as the informational requirements of a fuzzy platform are less. 

Stochastic, deterministic, and fuzziness do not have to be viewed as mutually 

contradictory modeling concepts. Fuzziness should simply be viewed as a systematic 

way to process ambiguous information, and as such, can be used to represent data 

which possesses non-statistical uncertainty. This paper has shown: 
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a. Fuzzy models can operate effectively with reduced informational 
requirements than either stochastic or deterministic modeling 
platforms. 

b. A fuzzy modeling platform can perform equally as well as deterministic 
and stochastic modeling platforms in alluvial aquifers, as well as fractured 
media. 

c. The fuzzy model's realization was not very sensitive to the type of 
triangular membership function used to represent the fuzzified variables in 
this work. 

d. The fuzzy platform performed very favorably compared to discrete 
numerical models of the same fracture system. Although this research was 
limited to relatively short distances along a fracture, there is no reason to 
believe a fuzzy approach would not perform equally as well when longer 
transport distances are considered. 

Groundwater modeling in fractured media more often than not must be conducted 

under a high degree of uncertainty. The significant advantages of using a fuzzy 

platform becomes apparent in situations where the acquisition of precise data is 

impossible, too costly to obtain, or when the required calculations are computationally 

extensive. The relaxed formal informational requirements of fuzzy mathematics allow 

fuzzy modeling to be utilized in situations where uncertainty may have been 

previously unrecognized, or worse, ignored. 
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Appendix A 

The following examples illustrates the detail of four basic mathematical operations 

using two fuzzy numbers. All of the fuzzy numbers used in the following examples 

will be assumed to have a normal triangular membership function. 

Fuzzy Addition 

Y = X + Z 

Fuzzy Subtraction 

Y = X - Z 
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Fuzzy Multiplication 

Y = (X) x (Z) 

Fuzzy Division 

Y = (X) (Z) 

bj] 
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Fuzzy Operations at an a-level 

An a-level set of A, denoted as Aa, consists of all components of X whose 

membership grade is greater than or equal to a. Mathematically this is defined as: 

Fuzzy Addition 

Adding two fuzzy intervals at an a-level in R: 

Ac, (+)Ba = [a1, a2] ( +) [b1,b2] 

= [(a1 + b1) , (a2 + b2)] 

Fuzzy Subtraction 

Subtracting two fuzzy intervals at an a-level in R: 

Fuzzy Multiplication 

Ac, ( - ) Ba = [a1, a2] (-) [b1,b2] 

= [(a1 - b1), (a2 - b2)] 

Multiplication of two fuzzy intervals at an a-level in R: 

Fuzzy Division 

[a1, a2] (x) [b1,b2] 

[(a1 x b1), (a2 x b2)] 

Division of two fuzzy intervals at an a-level in R: 

Aa ( -;- ) Ba = [a1, a2] (-;-) [b1,b2] 

= [(a1 -;- b1), (a2 -;- b2)] 
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Appendix B 

(]) Case One (10%) 
:J 1.0 
C'CS 

> 
Q.. 
..c 0.5 / 
en 
'-
(]) ', 

..c 
E <D 0.0 
~ 4.5 5 5.5 

Hydraulic Conductivity (K) 

Case Two (20°/o) 
(]) 1.0 ::, 
C'CS 

> 
a. 

0.5 ..c:: ,' 

CJ) 
/ 

lo,,_ 

(]) 
..0 
E 0.0 (]) 

~ 4 5 6 

Hydraulic Conductivity (K) 

142 



~ 1.0 
C'CS 

> 
a. 

.r::. 0 .5 
~ 
Cl) 
.c 

Case Three (30%) 

~ 0.0 ~-r-'-T-~~~~~~~~~~ 
~ 4 5 6 

Hydraulic Conductivity (K) 

Cl) 
Case Four (40o/o) 

:J 1.0 
C'CS 

> 
a. 

0.5 .r::. 
Cl) 
I,,_ 

Cl) 
/ .c 

E 0.0 Cl) 

~ 3 5.5 

Hydraulic Conductivity (K) 

143 



Cl.) Case One ( 1 Oo/o) ::J 
aj 1.0 l 
> 
0. 

..c: 0.5 en 
!,,_ 

Cl.) 
..Q 

E 0.0 Cl.) 

~ 0.20 

Porosity (o/o) 

Cl.) Case Two (20°/o) ::J 
aj 1.01 > 
0. 

..c: 0.5 en 
!,,_ 

. Cl.) 
..Q 
E 0.0 Cl.) 

~ 0.15 0.20 0.25 

Porosity (%) 

144 



Q) Case Three (30°/o) :J 
ca 1.0 ·, 
> /' 

.. 

a. '" // '··,, 

..c 0.5 
',, 

~ / 
/ 

'··-Q) 
..c / 

-, 
', 

E 0.0 Q) 

~ 0.15 0.20 0.25 

· Porosity (o/o) 

Q) Case Four (40o/o) :J 
ca 1.0 
> /' 
a. 

/ ..c 0.5 en / I,.. / ··., 
Q) ··-

..c // 

E 0.0 ·, 
Q) 

~ 0.20 

Porosity (%) 

145 



Case One (10%) 
Q) 

1.0 :l 
ctS / 

> / 
,, 

'· a. '·, 

0.5 / 
', 

..c / ',, 

~ 
·, 
' 

/ ''·,. 
Q) '· ' 
.c ,.,/· 

E 0.0 Q) 
I 

~ 1,100 1,350 1,600 

Travel Time (days) 

Case Two (20o/o) 
Q) 

1.0 :l . ' 
/ '·· 

ctS I 

> / 
/ 

/ 
·,, 

a. ·,, 

0.5 
/ ', 

/ ', ..c ', 
Cl) "· 
I... 

/ ··,. 

Q) / ',. 
I '· ' .c ', . 

I 

E / 

0.0 / 

Q) 

~ 900 1,400 1,900 

Travel Time (days) 

146 



~ 1.0 
ctS 
> 
a. 

..c: 0.5 
~ 
Q) 
.c 

Case Three (30o/o) 

/ 

i 
I 

/ 
i 

/ 
I 

I 

I·· •• 

'•. 
'·· ·, 

~ 0.0 --~~~~~~~~~~~ 

~ 600 1,600 2,600 

Travel Time (days) 

Q) 1.0 ::::J 

Case Four (40o/o) 
/ · .. 

ctS 
> 
a. 

0.5 ..c: 
~ 

/ 

Q) 
.c 
E 0.0 Q) 

~ 400 1,400 2,400 3,400 

Travel Time (days) 

147 



~ 1.0 
ro 
> 
0. 

..c: 0.5 
~ 
Q) 
..a 

APPENDIX C 

Case One (S-1 Oo/o) 

~ 0.0 -+--------.----~~-r-~~----.-----.------,-----;,._________,_ 

~ 4.5 5 5.5 

~ 1.0 
ro 
> 
a. 
..c 0.5 
~ 
Q) 
..a 

Hydraulic Conductivity (K) 

Case Two (S-20°/o) 

~ 0.0 ---'r----r'------,--,--r--r---.------.-----.----.-----r-.---r---'--r--

~ 4 5 6 

Hydraulic Conductivity (K) 

148 



Q) 
:::::, 1.0 
ro 
> 
C. 

0.5 ..c 
~ 
Q) 
.0 
E 0.0 Q) 

~ 

~ 1.0 
ro 
> 
C. 
..c 0.5 
~ 
Q) 
.0 

Case Three (S-30°/o) 

4 6.5 

Hydraulic Conductivity (K) 

Case Four (S-40o/o) 

~ 0.0 -+----,.......-~~~~~~~.,..---r-----r-

~ 3 5.5 8 

Hydraulic C~nductivity (K) 

149 



Q) Case One (S-1 Oo/o) · ::, 
ca 1.0 
> 
0.. ·-.c 0.5 
~ 
Q) 
.0 
E 0.0 Q) 

~ 0.20 0.23 

Porosity {o/o) 

150 



(1) 
:::J 
Ctj 1.0 
> 
c.. 

..c: 0.5 en 
i..... 
(1) 
.0 
E 0.0 (1) 

~ 

Case Two (S-20o/o) 

0.20 

Porosity (o/o) 

Case Three (S-30%) 

0.15 0.20 0.25 

Porosity (O/o} 

151 

0.25 

0.30 



Q) Case Four (S-40°/o) :J - 1.0 ctS 
> 
a. 
.c: 0.5 en 
~ 

Q) 
..a 
E 0.0 Q) 

~ 0.10 0.20 0.30 

~ 1.0 
ro 
> 
C. 
..c 0.5 
~ 
Q) 
..c 

Porosity (o/o) 

Case One (S-10%) 

E 
Q) 

0.0 ____.__,___.___,____~~~~~~~---,---,....,.-
~ 1,100 1,350 1,600 

Travel Time (days) 

152 



~ 1.0 
co 
> 
0. 

..c:: 0.5 -
~ 
Q) 
.0 

Case Two (S-20o/o) 

~ 0. 0 ----"--r---4--~~~~~~~~---r--'--------1 

~ 800 1,300 1,800 2,300 

~ 1.0 
co 
> 
0. 

..c:: 0.5 
~ 
Q) 
.0 

Travel Time (days) 

Case Three (S-30%) 

~ 0. 0 ---L--,--"---r--,-------,---,----,---,---~,--------.----.------.-'------r--

~ 600 1,600 2,600 

Travel Time (days) 

153 



~ 1.0 
co 
> 
a. 

..c: 0.5 
~ 
Q) 

..Q 

Case Four (S-40o/o) 

~ 0 . 0 -----'r-----,--L,--,-,--,------,----,---,-~-r--,--,---,---,-,----,-------,---.->----r-----,-

~ 200 1 ,200 2,200 3,200 4,200 

Travel Time (days) 

154 



APPENDIX D 

Each component section utilized in the determination of the point concentration data 
at spatial coordinate X can be found below. Each average isopleth value is weighted 
by the plumes' corresponding thickness value. 

Spatial X Total Plume 
Coordinate (m) Thickness (m) m(mg/1) +m(mg/1) +m(mg/1) +m(mgll) = Cone. 

25 0.0 0.0(0) =0.0 

30 1.2 1.2(26) =31.0 

35 2.1 0.3(23) + 1.0(44) + 0.6(31) =69.5 

40 2.3 0.4(23) + 1.0(112) + 1.0(44) =164.7 

45 2.5 0.2(12) + 1.0(116)+ 1.0(58) +0.3(13) = 180.3 

50 2.2 0.7(88) + 1.0(40) + 0.3(11) =104.9 

55 1.6 0.5(27) + 1.0(32) =45.5 

60 0.8 0.8(33) =26.4 

65 0.0 0.0(0) =0.0 
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APPENDIX E 

Elapsed Time Mass in Center of Mass Location (m) 
(days) Solution (Kg) Xe Ye Zc 

1 6.7 0.2 0.1 2.78 
9 9.2 0.7 0.4 3.02 
16 9.2 1.6 0.7 3.06 
29 11.5 2.9 0.9 3.27 
43 11.3 4.1 1.6 3.34 
63 9.0 5.7 2.0 3.50 
85 11.2 7.7 3.2 3.75 
259 11.5 22.7 11.6 4.52 
381 9.6 32.3 15.3 5.18 
429 9.2 35.9 17.2 5.25 
462 8.2 38.2 17.4 5.33 
647 9.1 53.1 23.9 5.55 
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Appendix F 

The following equation is taken from Numercial Recipes in C, 2°d edition, Cambridge Press, 1992, pg 221. 

Thi~ equation is based on a Chebyshev fitting.of the complementary error function erfc(x), and returns answers 
with fractional errors everywhere less than 1.2 X 10-1 • 

float t,z, ans; 

z=fabs(x) 
t= 1.0/(l.0+0.5*z) 
ans=t*exp(-z*z-1.26551223 +t*(l .00002368 +t*(0.37409196 +t*(0.09678418 + 

t*(- 0.18628806+t*(0.27886807 + t*(-1.13520398+t*(l.48851587 
+t*(- 0.82215223 +t*0.17087277))))))))) 
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Appendix G 

FIGURE 37 DIGITIZED DATA 
( from Grisak & Pickens) 

Relative Time 
Concentration (days) 

0.102 0.12 
0.157 0.23 
0.192 0.30 
0.214 0.40 
0.256 0.50 
0.346 0.60 
0.400 0.70 
0.428 0.90 
0.438 0.93 
0.510 1.10 
0.518 1.20 
0.549 1.23 
0.584 1.40 
0.627 1.50 
0.638 1.60 
0.676 1.90 
0.709 2.10 
0.729 2.30 
0.763 2.60 
0.764 2.70 
0.769 2.90 
0.779 3.30 
0.872 3.70 
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Appendix H 

DATA: FIGURES 5a and 5b 

FuzziCalc Results 

Case 10% 
Case 20% 
Case 30% 
Case 40% 

Min. Endpoint 

1,152 
939 
758 
604 

Centroid 

1,425 
1,477 
1,573 
1,725 

Results Using A Stochastic Normal Distribution 

Case 10% 
Case 20% 
Case 30% 
Case 40% 

Min. Endpoint 

1,181 
994 
815 
702 

Centroid 

1,409 
1,415 
1,429 
1,425 

Max. Endpoint 

1,721 
2,112 
2,618 
3,289 

Max. Endpoint 

1,677 
2,031 
2,398 
2,912 

Results Using A Stochastic Lognormal Distribution 

Min. Endpoint Centroid Max. Endpoint 

Case 10% 1,175 1,411 1,676 
Case 20% 971 1,420 2,096 
Case 30% 756 1,445 2,771 
Case 40% 562 1,466 3,514 
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Appendix I 

The following pages detail the concentration calculations produced by the FuziCalc 
software for transport at various distances along the fracture. The fuzzy concentration 
shown in the bottom graph corresponds to the depth of investigation shown in the 
upper left hand comer of each page. 
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trac-trans X•.1 METERS I 
I {{Par. • D) I {V.b)) • X I 

INPUT PARAMETERS erfc I ...................................... I 
0.01 • V (m/day) I 2[0 • {t-x/v)}"0.5 I 

1.00E-004 • b(m) 

0.1 • X (m) erfc s, 5.SOE-004 

4.2E-005 • Porosity !:> 7.37E-001 

~ 1.38E-004 • D (m"2/day) 

995 • t ( days) erfc • > f>, 0.0790208 

COMPLEMENTARY ERROR FUNCTION APPROXIMATION 

6'1- 0.07902 • beta 

s, 0.96201 • t • 11(1 +.s· beta) 

~ -0.65777 al 

6'1- 0.85573 a2 erfc(beta) • t} 0.91113 

f>, -0.31197 a3 erf(beta) • 6'1- 0.08887 

~ -0.02128 a4 

1)- -0.20679 a5 

t} -0.10219 a6 

~ 0.27575 a7 

~ 1.26534 a8 

FUZZY "D" 

1.0] LOW 0.000124 

CENTROID 0.000138 

HIGH 0.000152 

0.5 
J 

0.0 ~' I I ' I 

1.3E-0041.4E-0041.5E-004 

FUZZY RELATIVE CONCENTRATION ALONG FRACTURE Cl/Co 

LOW 0.88672 1J CENTROID 0.91113 

HIGH 0.93503 
I 

I 0.5-i 

~ i j 
J 

0. 
I ,v I I I I ' 

0.90000 0.92500 

161 



frac-trans X • 0.3 METERS I 
I ((Por. • 0) / IV.bl) • X I 

INPUT PARAMETERS erfc I ...................................... I 
0.01 • V Im/day) I 2(0 • (t-x/v)} ·o.5 I 

\ 1.00E-004 • b(m) 

0.3 • X(m) erfc El> 1.74E-003 

4.2E-005 • Porosity ~ 7.29E-001 

t> 1.38E-004 - D (m"2/day) 

995 • t ( days) erfc • > t:-, 0.239506 

COMPLEMENTARY ERROR FUNCTION APPROXIMATION 

;'> 0.23951 • beta 

;:, 0.89319 - t - 1/(1 +.s· beta) 

~ ,0.66953 al 

~ 0.89048 a2 erfc(beta) • t> 0.73553 

t:-, ,0.33974 a3 erf(beta)• f;> 0.26447 

~ -0.02478 a4 

~ -0.20864 a5 

;:, -0.08977 a6 

~ 0.29371 a7 

p 1.26256 a8 

FUZZY "O" 

1.0- LOW 0.000124 

CENTROID 0.000138 

HIGH 0.000152 

0.5-

I 
I 

0.0 I 
' I I I I 

1.3E-0041.4E.,0041.5E-004 
I 

! 
FUZZY RELATIV_E CONCENTRATION ALONG FRACTURE Cf/Co 

LOW 0.6807 

1.0- CENTROID 0.73553 

HIGH 0.78944 I 

: 0.5-
I 
I 
I 

0. I 
I I I 

0.70000 0.75000 0.80( 11'"11'"1 I -- I 
I 
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frac-trans X • 0.6 METERS 

I ((Par. ' D) I (V'b)) ' X I 
INPUT PARAMETERS erfc I ·-···-································ I 

0.0, • V (m/day) I 2(0 '(t-x/v)} ·o.5 I 
1.00E-004 • b(m) 

0.6 • X(m) erfc S> 3.48E-003 

4.2E-005 • Porosity !;,- 7.18E-001 

!), 1.38E-004 • D (m"2/day) 

995 • t ( days) erfc • > f> 0.486637 

COMPLEMENTARY ERROR FUNCTION APPROXIMATION 

;'lo 0.48664 • beta 

S> 0.80472 • t ~ 1/(1+.5' beta) 

!;,- -0.68465 al 

;'Jo 0.93751 a2 erfc(beta) • f;> 0.49358 

!> .Q.38050 a3 erf(beta) • f;> 0.50642 

~ -0.02786 a4 

;;.,. -0.20910 a5 

f> .Q.07195 a6 

f;l- 0.31575 a7 

;'Jo 1.25450 a8 

FUZZY "D" 

1 o] LOW 0.000124 

CENTROID 0.000138 

HIGH 0.000152 

0.5 
-l I I j /' I I 0.0 I ' I ' I I I I ' I ' ' I 

1.3E-0041.4E-0041.5E-004 

FUZZY RELATIVE CONCENTRATION ALONG FRACTURE Cf/Co· 

LOW 0.41733 

1.~ 
CENTROID 0.49358 

HIGH 0.56978 

0. I 

~ // I 
I O.u I I l 0.50000 I 
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frac-trans X • 1.0 METERS 

I ((Par. ' D) / IV'b)) 'X I 
INPUT PARAMETERS erfc I ...................................... I 

0.01 • V Im/day) I 2(0 '(t-x/v)} ·o.5 I 
1.00E-004 • blm) 

1 • X Im) erfc ~ 5.80E-003 

4.2E-005 • Porosity l;> 7.02E-001 

~ 1.38E-004 • D lm"2/day) 

995 • 11 days) erfc - > ;:,, 0.828988 

COMPLEMENTARY ERROR FUNCTION APPROXIMATION 

;;> 0.82899 • beta 

~ 0.70779 • t • 1/11 + .5' beta) 

t,, -0.70121 al 

;l> 0.99211 a2 erfclbeta) • ::,- 0.24610 

;) -0.43252 a3 erf(beta)• !:> 0.75390 

l;> -0.02818 a4 

;l> -0.20676 a5 

;) -0.05022 a6 

l;> 0.33795 a7 

1~ 1.23967 a8 

FUZZY "D" 

1.0- LOW 0.000124 

CENTROID 0.000138 

I HIGH 0.000152 

0.5-

0.0 " I 
I I I I I 

1.3E-0041.4E-0041.5E-004 I 

FUZZY RELATIVE CONCENTRATION ALONG FRACTURE Cf/Co 

LOW 0.17274 

1.J CENTROID 0.2461 

HIGH 0.32307 

10. 

I 
0. ~ I I I I 

0.20000 0.30000 
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frac-trans X• 1.5 METERS 

I I ((Por. • D) I (V'b)) • X I 
INPUT PARAMETERS erfc I ...................................... I 

0.01 • V (m/day) I 2[D '(t·x/v)} ·o.5 I 
J.OOE-004 • b(m) 

1.5 • X (m) I erfc :> 8.69E-003 

4.2E-005 • Porosity ~ 6.82E-001 

~ 1.38E-004 • D (m • 2/day) 

995 • t ( days) erfc • > ;)- 1.27974 

COMPLEMENTARY ERROR FUNCTION APPROXIMATION 

!'> 1.27974 • beta 

~ 0.61106 • t • 11(1 +.5' beta) 

i)), -0.71774 al 

~ 1.04980 a2 erfc(beta) • :} 0.07677 

S> •0.49308 aJ erf(beta)• !'> 0.92323 

~ .Q.02363 a4 

~ .Q.20124 a5 

~ ,0.02690 a6 

~ 0.35706 a7 

!:), 1.21860 a8 

FUZZY "D" 

1.0- LOW 0.000124 

CENTROID 0.000138 

HIGH 0.000152 

0.5-

0.0 I 

1.~~-~041.4~-0041.5~-004 i 

FUZZY RELATIVE CONCENTRATION ALONG FRACTURE Cf/Co 

LOW 0.03613 

1.1 CENTROID 0.07677 

HIGH 0.12437 

0.5--~ 

I 
0. ,, 

I I 
, 

0.05000 0.10000 I 
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frac-trans X • 2.2 METERS 

I IIPor. * D) / IV'b)) ' X I 
INPUT PARAMETERS erfc I ...................................... I 

0.01 • V Im/day) I 2[0 'lt-x/v)} ·o.5 I 
1.00E-004 • blm) 

2.2 • X Im) erfc ;> 1.28E·002 

4.2E·005 • Porosity f;, 6.54E-001 

!:> 1.38E-004 • D lm"2/day) 

995 • t ( days) erfc • > ;> 1.95989 

COMPLEMENTARY ERROR FUNCTION APPROXIMATION 

~ 1.95989 • beta 

s, 0.50674 • t • 1/(1 +.s· beta) 

f;, ·0.73556 al 

f;> 1.11563 a2 erlc(beta) • !:> 0.00818 

s, -0.56917 a3 erf(beta)• i:> 0.99182 

p -0.01086 a4 

ii, -0.19205 a5 

::, ·0.00116 a6 

i:> 0.37346 a7 

f;> 1.18953 a8 

FUZZY "D" 

1.01 

~ 
LOW 0.000124 

~ 
CENTROID 0.000138 

HIGH 0.000152 

0.5~ 

~ ~ 
0.0 ', "' ' ' I I I ' 

1.3E-0041.4E-0041.5E-004 

FUZZY RELATIVE CONCENTRATION ALONG FRACTURE Cl/Co 

LOW 0.00135 

1.~ CENTROID 0.00818 

1 HIGH 0.01834 
1 
l 

IO &-1 . 1 

~ 
~ 

I 
I 
1 J 

I o.o 11 J ' ' ' I I I I 
0.00000 0.01000 0.02 V'lf"'I 

''-''-'. 
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frac·trans X-3.0 METERS 

I I ((Por. • D) I (V.b)) • X I 
INPUT PARAMETERS erfc I ...................................... I 

0.01 - V (m/day) I 2[0 • (t·X/v)} "0.5 I I 
1.00E·004 - b(ml l 

3 • X (ml erfc t:, 1.74E·002 
--

4.2E·005 - Porosity f;;, 6.19E·001 

~ 
~ 1.38E·004 • D (m-2/day) 

995 - t ( days) erfc • > ;)- 2.8222 
·-

COMPLEMENTARY ERROR FUNCTION APPROXIMATION 

I ~ 2.82220 - beta 

t:, 0.41668 - t • 1/(1 + .5· beta) 

f;;, ·0.75095 al 

~ 1.17547 a2 erfc(beta) • ~ 0.00023 

~ ·0.64475 a3 erf(beta)• ~ 0.99977 

f;;, 0.00900 a4 

~ .Q.18236 a5 

r:, 0.02033 a6 

~ 0.38290 a7 I 
I :;, 1.15973 aB 

' 

FUZZY "D" 

1.0- LOW 0.000124 

CENTROID 0.000138 

HIGH 0.000152 

i 0.5-
! I i 

__J I 

i 0.0 i I 
I ' I I I ' I 
I 1.3E-0041.4E-0041.5E-004 

I 

I 
I FUZZY RELATIVE CONCENTRATION ALONG FRACTURE Cf/Co 

LOW 0.00000 

1.0- I 

I CENTROID 0.00023 

I HIGH 0.00068 

i 0.5- I 
i I I 
' I ' I 

i 0. r ' I I I 
, 

0.00000 0.00025 0.00050 I 
I 
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frac-trans X-4.0 METERS 

I ((Por. • 0) I {V'bll • X I 
INPUT PARAMETERS erfc I ............................. -....... I 

0.01 - V Im/day) I 2(0 • (t-x/vl} ·o.5 I 
1.00E-004 - b(ml 

4 • X(ml erfc ;l> 2.32E-002 

4.2E-005 • Porosity ~ 5.73E-001 

:;l> 1.38E-004 • D (m"2/day) 

995 • t ( days) erfc • > ? 4.06688 

COMPLEMENTARY ERROR FUNCTION APPROXIMATION 

p 4.06688 • beta 

S> 0.33167 • t • 1/{1 + .s· beta) 

I,, -0.76548 al 

p 1.23451 a2 erfc{beta) • t:;, 2.88E-007 

!:> -0.72520 a3 erf(beta)• 1i> 1.00000 

f;;, 0.03733 a4 

p -0.17318 a5 

~ 0.03904 a6 

!;> 0.38726 a7 

~ 1.12856 aB 

FUZZY "D" 

1.01 LOW 0.000124 

I 

asi 
CENTROID 0.000138 

HIGH 0.000152 

·"'·· 
I I 

0.0 1, "'' ' I I ' I ' I 

1.3E-0041.4E-0041.5E-004 i I 

FUZZY RELATIVE CONCENTRATION ALONG FRACTURE Cf/Co I 
LOW 2.98E-011 I 1.1 CENTROID 2.88E-007 

HIGH 9.68E-007 

~ 
0.51 I 

I 

~ I 
0.0 1 r I I I I I I I I 

0.00000 0.00000 0.0001 11"1 i 
I 
I 
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