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PREFACE

At least since the pioneering work of Shimura on modular forms of half-
integral weight [Sh1] non-algebraic central extensions of algebraic groups have
played a substantial réle in number theory. The most well-known applications
have involved the metaple;:tic double cover of the symplectic group, starting with
Weil’s preparation for his work on Siegel’s formula in [Wei] and continuing with the
theory of theta lifting and dual pairs. However, other examples of non-algebraic
covers have also been useful. The metaplectic triple cove,r of SL(2) played a fun-
damental part in Patterson’s work on cubic Gauss sums (see [Pal] and [Pa2]) and
the metaplectic double cover of GL(3) was employed in Patterson’s and Piatetski-
Shapiro’s work on the symmetric square L-functions on GL(3) [PPS], later gener-
alized to GL(r) by BumpAand Ginzburg [BuG]. Numerous other examples could
be cited involving both the general linear group and othér algebraic groups.

At the same time the representation-theofetic point of view on modular forms
was being developed and it became naturél to study the iocal and the global rep-
resentation theory of the metaplectic groups. Although the general outlines of the
theory were the same as in the non-metaplectic case there were some surprises in
store. For instance, it is a widely—kﬁown and much used fact that the vast ma-

jority of irreducible admissible representations of GL(r) have a unique Whittaker
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model. As soon as we consider a non-trivial metaplectic cover of GL(r), however,
this becomes false. An irreducible admissible representation may now have many
Whittaker models or none and it becomes an interesting problem to locate the
rare “distinguished” representations which do have unique Whittaker models (see
[GeP] and [KaP]). Since the theory over the real numbers can use the fact that,
whilst not algebraic, the metaplectic groups are never the less Lie groups of a fairly
reasonable type, it boasts a degree of completeness which is not matched by the
non-Archimedean theory. For instance, the unitary dual of the metaplectic double
cover of GL(n,R) has been classified by Huang [Hua).

At present, which representations of the metaplectic covers of GL(r) over non-
Archimedean fields deserve detailed study has largely been decided on utilitarian
grounds. In the WOI‘kS.SO far cited, and the (I)thers of which the author is aware,
most attention has focussed on the so-called exceptional representations of these
groups, first defined in generality in [KaP]. These will also be the subject of the
current work. The interest which they evoke is largely justified by their importance
in studying the symmetric square L-functions on GL(r) (for which see [BuG]) and
also by the hope that they may provide an analogue for GL(r) of the justly famous
Siegel-Shale-Weil representation of the metaplectic double covers of the symplectic
groups.

We now turn to a brief description of the contents of this work, trying where
possible to indicate its relationship to the already existing literature. In the first

chapter we review the construction of the metaplectic cover of GL(n, F') associated
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with a Steinberg symbol ¢ : F* x F* — A where A is an abelian group. The
corresponding construction with GL(n) replaced by a semisimple group is due to
Matsumoto [Mat], and Milnor [Mil] gives a very clear account of Matsumoto’s work
in the case where the group is SL(n). In section 0 of [KaP] a 2-cocycle is exhibited
which defines the metaplectic cover of GL(n) in the case where c is the m*® order
Hilbert symbol on a local field F con;caining the m® roots of unity. Further
discussion of this construction may therefore seem superfluous. It is reviewed here
for two reasons; ﬁrs£ because this will serve to fix notation and secondly because
there is an error in the formule of [KaP] in the case Wherei c(—1,—-1) # 1. We
shall have to deal with this case and so it is necessary to correct the error.

In §1.1 we discuss the double covers of &, as these will play a role later
on. This material is‘well-krylown and we merely put .it in a form suitable to our
purpose. In §1.2 we use Milnor’s description of the central extension of SL(n)
associated to ¢ to find expressions for certain values of a 2-cocycle on GL(n). In
§1.3 we relate this 2-cocycle to that of Kazhdan and Patterson. As far as the
author is aware, the coboundary which connects the first of these cocycles with
(the inverse of) the second has not appeared before. In §1.4 we study the lifts of
the main involution on GL(n) to its metaplectic covers. The existence of a lift
of this automorphism has not been dealt with sufficiently carefully before and it
may come as a surprise to some readers familiar with the literature that the lift in
question is far from unique. In §1.5, the last in Chapter 1, we briefly discuss some

topological properties of the metaplectic covers in the case where F' is a local field



and ¢ a Hilbert symbol.

Chapter 2 contains the principal results of this work. It is mainly devoted
to the study of the exceptional representations of the metaplectic double cover
of GL(r) over a non-Archimedean local field. In §2.1 we construct a metaplectic
analogue of the tensor product functor. Here we work in a fairly general setting; the
category on which the construction takes place is that of admissible representations
of the metaplectic group of finite length possessing a central character. Having
this functor in hand makes it possible to phrase many constructions in a much
more natural way than has been possible previously. The author hopes to return
to this topic and extend the construction to the n-fold covers of GL(r). In §2.2
we merely collect our conventions on modular characters, parabolic induction and
the like and fix some‘notation.

The discussion of thg exceptional representations in §2.3 relies upon Kazh-
dan’s and Patterson’s work in [KaP]. We extend the notion of an exceptional
representation to cover representations of products of metaplectic groups, as was
suggested but not systematically pursued in [BuG]. The metaplectic tensor prod-
uct functor of section 1 turns out to be particularly convenient here. The section
ends with a few technical results which will be necessary later. In §2.4 we under-
take a systematic study of the semi- Whittaker functions, which provide models for
the exceptional representations similar to the Whittaker models of non-metaplectic
representations. As well z;s proving numerous results of mostly technical interest

we discover that, of the two species of semi-Whittaker functions, one gives an
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analogue of Kirillov models and the other does not.

The next two sections address a problem suggested by the applications of
exceptional representations in the construction of Rankin-Selberg integrals (see
[PPS] and [BuG]). In those integrals the product of two functions derived from
the exceptional representations occurs, multiplied by a non-metaplectic function
coming from some representation of GL(r). In order to understand such an integral
representation-theoretically it is natural to study the existence and uniqueness of
invariant linear forms on the tensor product of two exceptional representations
and a non-metaplectic re;.)resentation‘. This problem was investigatéd by Savin
on GL(3) and he obtained nearly definitive results when the third representation
belongs to the brincipal series (see [Sav]). In §2.5 we study the uniqueness of such
linear forms for generai T aﬁd establish it in many cases. ‘Our results include, for
instance, uniqueness in the case of a cuspidal represenfation, which Savin did not
address. In the course of proving one of the two main uniqueness results (Theorem
1 in §2.5) we take the opportunity to correct a serious error made by Bump and
Ginzburg in their paper [BuG]. For representations of the principal series our
results are not as precise as Savin’s, but they do indicate a strong restriction on
the induction datum if the tensor product of two exceptional representations with
the given principal series representation is to support an invariant functional. This
restriction is of exactly the kind to be expected if Savin’s ﬂeuristics about lifting
from orthogonal and symplectic groups are valid (see [Sav] for further discussion).

The existence result we are able to obtain in §2.6 suffices to establish the ex-
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istence part of Savin’s conjecture in [Sav]. We show (in rather different language
from that used later in this work — we do not subsequently discuss lifting) that
if an irreducible spherical principal series representation is lifted from the appro-
priate orthogonal or symplectic group then its tensor product with two suitable
exceptional representations does carry a non-zero invariant functional. The meth-
ods in this section rely heavily on the use of semi-Whittaker functions and we
hope that this will provide a partial justification for the lengthy technical prepa-
ration required in §2.4. Finally, §2.7 contains some suggestions for proving further
results.

I would like to thank my advisor, Dr. James Cogdell, for suggesting the prob-
lem which led to the one I solved and for his help throughout the enterprise and
Dr. David Wright for introducing me to Basic Number Theory without which none
of this would have been possible.

Ms. Belinda Bruner provided all manner of practical’, émotional and psycho-
logical support at more than one critical time. This work is dedicated to her with

gratitude and affection.
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CHAPTER 1

THE METAPLECTIC COVERS OF GL(n)

1. The Double Covers of G,,

Let F be a field of characteristic 0 and put K = F (\/i) Taken >2,r>0
integers and put V = K™*". Let {e1,...,€en4r} be the standard. basis for V and
define a bilinear form @ 0;1 V by Q(ei, ej) = —ds;.

If W < GL(n, F) denotes the group of permutation matrices then, provided

that r is odd, W = G,, may be embedded in SO(Q) via the map

Np T W — w 0
0 det(w)l,

and we shall identify W with its image under this map. There is a central extensioﬁ
1 — {£1} — Spin(Q) > SO(Q) 1
and we aim to identify the induced extension
1 {xl} =W =W =1

where W = ¢~ (W).
In order to be able to calculate conveniently we first recall the description
of Spin(®) in terms of the Clifford algebra C (Q). The associative algebra C (Q)
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is generated (as a K-algebra) by the elements of V' and these are subject to the

relation

There is a subalgebra C* (Q) which is generated by all products of an even number

of elements of V. For vectors vy,...,vp € V we define
(v1+evovp)" = (=1)Pvp- oo vy

and extend * linearly to C (Q). Then %2 = id and # is an anti-automorphism of

C (Q). We may now define
Spin(Q) ={z € CT(Q)|zz* =1 and zVz* CV}
and ¢ : Spin(Q) —+ SO(Q) by
p(z)v = zvz* for veEV.

We shall identify End(V) with M((n + r) X (n +r), K) using the standard
basis. For distinct 4, j satiéfying 1<4,5 <n+r we define m;; € End(V) by
—€; iftk=1
mijer = { € ifk=j
ek if k¢ {i,j}
and w;; € C* (Q) by |
iuij = %(1 — eiej) -
It is routine to check that w;; € Spin(Q) and ¢(w;;) = m;;.
Now let ® denote the root system of GL(n) and A be the standard choice of

positive simple system in ®. We may identify ® with the set of pairs
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{(4,5)11 <i,j < m, i # j}, whereupon A is identified with {(z,7+1)|1 <1 < n—1}.
If o € A then let s, denote the corresponding simple reflection, thought of as an

element of W. With this notation we have

mrlsa)er =3 ifke{l,...,n}\{i,i+1}

—e, ifke{n+1,...,n+r}

when o = (4,7 + 1) and hence

2 2 2
Nr(8a) = Mytrntr—1- Mpi3 n42™Mi41 041641

Now w2, = —e;e; and so if we write
j

ij
t — 1 e e . (1 — e:e: )
a = 3éntrlntr—1---€n43€n+2€i41€n+1 €i€it+1

1 (e )

= Zbndr - -€nt21€i41€n+1 + en+1€;)

then t, € W C Spin(Q) and ¢(to) = sa. (Recall that ¢(—1) = 1.)
IfJC{l,...,n+r}and e; =[];c;e; then (regardless of the order in which

the product is arranged) we have
¢ = (_1)%|J1<m+1>

‘ 1
where |J| denotes the cardinality of J. Let us put €, = (=1)2"" V. Using the

above observation we find that if & € A then

2 _
ta_—ET7

ifa=(i—-1,i) and 8= (§,i+ 1) then

tatﬁ = %61‘(1 - 61:-—1ei+1 + €;i-1€; + ei6i+1)
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and if o = (4,7+ 1) and B8 = (j,7 + 1) with (@, 5) = 0 then
talg = %Gr(eiej —ejejy1 T €jeiy1 +eir1€541)

where (-,-) denotes the standard inner product on &.
From these expressions we can further compute that if & = (7 — 1,7) and

B = (i, + 1) then

(tatﬂ)z = “%(1 +e;—1€i+1 — €;—1€; — 6i6i+1)

= —¢ (tatp)”
and if @ = (3,4 + 1) and 8 = (4,7 + 1) with (o, 3) = 0 then
(tatp)’ = —1.
Also if @ = (i —1,i) and = (5,i + 1) then

) v
tota = 56 (1 + ei—1€i41 — €i_1€; — €jeiq1)

= (tatﬂ)*

from which it follows that-

(tﬂta)z = —¢€r (tﬁta)* .

If, as usual, we denote by m(a, 3) the order of s,ss in W then the preceding

formulse may neatly be summarized as follows:
—€r if (a,8) =2

(tatg) ™™ ={ —,  if (a,8) = -1 (1)
-1 if (o, 8) =0



where o, 3 € A. Using the fact that the corresponding relations among the s,
give rise to a presentation of W one may show that these relations together with
(=1)2=1 and (—1)ty = to(—1) for all a € A suffice to give a presentation of w.

Note that €, depends only on the residue class of » modulo 4. Thus the
equivalence class of the central extension of W which has just been constructed
also depends only on this residue class. We have therefore obtained two central
extensions of W, which we shall call the 1 —-spin and 3—-spin extensions respectively.
These extensions each correspond to a class in H2(W, us) (where us denotes the
group {£1}), the I1-spin a..nd 3-spin classes.

Observe that if @ € A then the two elements of W mapping to the involution
Sq € W are £t,. When r = 1 these elements each have order four and when r = 3
they each have order two.. Thus the 1-spin class and thev 3—spin class are always
distinct. If o, 8 € A are orthogonal then the two elements +t,tg of W which
map to the involution s,sg have order four‘a,nd it follows that both spin classes
are non—trivial. This conclusion holds for n > 4 since this, is exactly the condition
necessary for A to contain orthogonal roots. If n = 2 or 3 then (1) shows that
in the 3-spin extension the elements {t,}4ca are subject to the same relations as
govern the elements {s,}aca of W. Thus in these cases the 3—spin class is trivial
and the 1-spin class non-trivial.

It is well-known ([How], [Sch]) that

Cz ifn=2,3

H?(G,, u2) &
( ﬂ2) {CzXCz ifn>4

where C> denotes the cyclic group of order two. It follows from the remarks we
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have just made that the two spin classes always generate H2(G,, up). If n > 4
then there is a third non-trivial class in H?(G&,, u2), which is the product of the
spin classes. Unlike them it is easy to describe; it is the class represented by the
central extension of G,, which carries a square-root of the sign character.

2. The Construction and a Partial Cocycle

Let ¢ : FXxF* — A be a Steinberg symbol with values in an abelian group A.
Here F is any field, not necessarily of characteristic zero. We are going to construct
a central extension of GL(n,F ) by pulling back the extension of SL(n + 1, F)
constructed by Matsumoto via the embedding n : GL(n, F) — SL(n + 1, F) given
by

" n(g) = (g det((;)_1> .

Let H, denote the group of diagonal matrices in GL(n), M? the group of
monomial matrices in GL(n) all of whose entries are £1 and M,, the group of
all monomial matrices. The subscript may sometimes be omitted. If G is any
subgroup of GL(n) then we shall write SG = G N SL(n).

Following Milnor ({Mil], §12) we let SH, be the set SH, x Aand ¢: SH, —
SH, be the projection onto the first factor. If d = digg(ul, ..oy Up) and d' =

diag(vy,...,vn) lie in SH, and a,a’ € A then we define

(d,a)(d’,a’) = (dd', ad’ H c(ui,v;))  and

i2j

(d,a)™t = (@71 a7 [ e(us, uy)) -

2
With these definitions SH » becomes a group and ¢ a homomorphism. Identifying

A with the subgroup {(1,a)|a € A} of the center of SH, we obtain a central
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extension

1—>A——>§}/Ini>SHn—>1.

Given u € F* and 4,7 € {1,...,n} with ¢ # j we define

dij(u) = diag(1,1,...,1,4,1,...,L,u"1,1,...,1)
? 7

and
(dij(u), 1) ifi<y
(dij(u), c(u, u)) ife>j5

With this notation we are ready for the first of several results which we shall quote
from [Mil] without proof.

Lemma 1: We have

(1) hji(u) = hij(u)™?

(2) hiej(u)hig (u) = hyj(u)

(3) hij(uw)hij(v) = c(u., v) hij(uv)

The next step is to define a group SM 0 a homqurphism oo : SM 0 — SMP
and certain elements w;;(1) € SM9. If ¢(—1,-1) = 1 thén we let SMO = SMY,
¢o be the identity map and w;;(1) be the matrix m;; which was introduced in the
last section. If ¢(—1,—1) # 1 then the field F' necessarily has characteristic zero
(this is a consequence of Steinberg’s theorem that a Steinberg symbol on a finite
field must be trivial). We fegard SMY as a subgroup of SO(n), restrict the central
extension

1 — pe — Spin(n) 2, SO(n) — 1

7



to SM? to obtain

1 — pp —» SMO 2% SM° — 1

and let w;;(1) be the element w;; of ¢5*(my;) given in the previous section. In
either case we also set wy;(—1) = w;(1)7! and hi;(—~1) = w;;(~1)*. Direct
calculation shows that w;;(—1) = w;;(1) regardless of the value of ¢(-1,—1), so
that hi;(—1) = w;s(1)®. These elements of SM? satisfy do(hi; (1)) = dij(=1) €
SMP.

We are now ready to define a central extension
1—>A—>§\]\7Ini>SMn—>1

of SM,,. The underlying set of SM, is the quotient of SH, x .S/'\]\_’ﬂ’L by the

equivalence relation ~ generated by the equivalences

(hh,-j(—l),wg) ~ (h h,- (—1)’11)0)

71_','

and the map ¢ : .S/'\]\/ln — SM,, is given by

$({(hwo)]) = d()go(wa) .

We may identify SH, and SM?, respectively, with the subsets {[(k,1)]|h € SH,}
and {[(1,wo)]|wo € 3’7\/491} of SM,,. Milnor shows that it is possible to define an
operation on SM n under which it becomes a group, which extends the multi-
plication on SH,, and SM? and which satisfies [(k, wo)] = [(h, D][(1,wo)]. This
operation is completely determined by these conditions together with the following

result.



Lemma 2: Letw € 37\7[,, and suppose that ¢(w) = prdiag(uy, ..., u,), where p,
is the permutation matriz corresponding to m € &,,. Then
(Dwhij(v)w™t = c(u; ™, v) By x5y (V)

(2)wwi;(Lw=t = hﬂ(i),ﬂ(j)(uiu;-l)wﬂ(i),ﬂ(j)(l)'

Milnor now shows _that there is a central extension
1 A—SL(n, F) % SL(n, F) — 1 1)

which on restriction to SM,, gives the central extension which we have just con-
structed. We do not need to recall the proof of this result here as we are mainly
concerned with the behavior of the extension over the m(;nomial matrices.

We now arrive at our main purpose in this chapter, which is to discuss the

central extension
1 — A—GL (0, F) 25 GL(n, F) -5 1 2)

which is obtained by pulling back the extension (1) (with n replaced by n + 1)
under the map 7 specified earlier. (The reason for the ' will become clear in
the next section.) Notice that if # is restricted to W C GL(n, F') then it agrees
with the embedding used .in section 1 with r = 1. Now n(W) € SM2,, and so
we conclude that if ¢(—1,—1) = 1 then the sequence (2) is split over W, but if
c(—1,—1) # 1 then the class of the restriction of (2) to W agrees with the spin
class (with r = 1), or rather its image in H%(W, A) WHere p2 is regarded as a
subgroup of A by identifying —1 with ¢(—1,—1), and hence may not be trivial.

9



Suppose that s : GL(n,F) — (’}\i’(n,F) is a section of the map p’ in (2).
Corresponding to the choice of s we obtain a 2-cocycle T representing the class of

(2) in the group H? (GL(n, F), A). This cocycle is defined by the equation

s(g1)s(g2) = (g1, 92)5(9192) :

In our situation it will be difficult to make an explicit choice of section s. What
we shall do is to specify a partial section and then extend it to the whole group
in any way. This will lead to explicit formule for the value of 7(g1,92) in those
cases where s(g1), s(g92) and s(g1g2) have been specified.

If h € H, then n(h) € SH,; and since §f;(n+ 1, F') contains ‘/S’ﬁm_l as a

subgroup we may specify a section of p over H,, by
s(h) = (n(h),1) € SHars .

If ¢(—1,-1) =1 then for w € W we set s(w) = n(w) € §T42+1. If ¢(-1,-1) #1
then we shall not specify s on W; we suppose it chosen in any way. Now every
element of M, may be written uniquely as the product of an element of H,, and

an element of W. We may thus extend s to M,, by defining
s(hw) = c(det(h), det(w))s(h)s(w)

for h € H, and w € W. Finally extend s to GL(n, F') arbitrarily.
Using the definition of the multiplication in SH n+1 1t i8 easy to check that if

h = diag(ui,...,u,) and b’ = diag(vi, ..., v,) lie in H, then

(b, ) =[] (i, ;). (3)

i2j
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Also, it follows from our choice of section over the monomial matrices and the fact

that det(w)? =1 for all w € W that
7(h,w) = c(det(h), det(w)) . (4)

Next we want to calculate 7(w, h) for w € W and h € H,. This is possible,
even though s is not completely specified on W in all cases, because W normalizes
H,, and the inner automorphism h — s(w)hs(w)~! of H, = (p)~!(H,) depends

only on w and not on the choice of s. With this in mind we define a map p :

W x H,, — A through the equation-
s(w)s(h)s(w)™! = ,u(w,h)s(h,“’_l) .

Lemma 3: We have

(1) If hy, by € H, and w € W then

p(w, hihg) = T(h}"_l,hg"_l)r(hl, ho) " p(w, by p(w, ha) .

(2) If w e W and h = diag(1,...,1,v,1,...,1) € H, then
p .

p(w, h) = c(det(w), det(h)) .

(3) If w € W corresponds to the permutation # € &, and h is the matric
diag(vy,vs,...,v,) € H, then
p(w, h) = H c(vi,vj) - c(det(w), det(h)) .
i<j
m(i)>m(5)

11



Proof:

(1) To derive this formula we shall calculate the quantity

(s(w)s(h1)s(w)™!) (s(w)s(he)s(w)™!) in two different ways. First

and secondly

(s(w)s(h)s(w) ") (s(w)s(ha)s(w) )
= s(w)s(hy)s(ha)s(w) ™"
= s(w)7(h1, ha)s(h1ha)s(w) ™}

= T.(hl, ha)u(w, hha)s((hih2)® ™).

Comparing these expressions gives the formula.

(2) If we put d = diag(1,...,1,v,1,...,1,v~) € SH, 1 then by definition s(h) =
P

(d,1) = hpny1(v). Now. we may write w = p, where 7 € &, is a suitable

permutation. Then ¢(s(w)) = prdiag(l,...,1,det(w)) and so by the first formula

12



of Lemma 2 we have

= C(det(w)7 U)h‘ﬂ'(p),n-i-l(v)

1

= c(det(w),v)s(h* )

1

= c(det(w), det(h))s(R™ ).

(3) We shall proceed by induction on the number of v; which are not equal to
1. If all but one of the v; equal 1 then the formula follows from (2). In general,
take p € {1,...,n} such that v, # 1 but v; = 1 for all ¢ > p. Then h = A'R"
where h' = diag(vy, ..., Vp-1, l‘, ...,1) and A" = diag(1,...,1,vp,1,...,1). Using
the inductive hypothesis we ha@

ww )= ] ewivy) - c(det(w), det(h))

1<j<p
n () >m(F)

and

p(w, B") = c(det(w), det(h"))
and from (1) we get
p(w, h) = () (R (B 1) o, B, 1)
The choice of p implies that 7(h’, h”) = 1 and therefore it only remains to calculate
()™, (R 7). Now

(h,)wﬂ _ { Ur~1(3) if 7!'-1(2‘) <p
’ 1 ifr (i) >p
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and

and thus

T((h/)w—l, (h//)w'l) — H C((hl);u_l, (h//);_u_l)

= H C('U.,T—l(i), ’Up)
i>7(p) .
=~ {i)<p

= H c(vg; vp)

g<p
m(g)>m(p)

on setting ¢ = 7~ 1(z). Hence

w(w,h) = H c(vi,v5) - H c(vg, vp) c‘(det(w),det(h))

i<j<p q<p
m(4)>m () w(g)>m(p)
= J[ clvi,v;) - c(det(w),det(h))
1<j
w (i) > (5)
and the induction step is complete. U

Lemma 4: Ifh,h' € H, and w,w’ € W then

1

T(hw, h'w") = p(w, M) (h, (K)* ") 7(w, w")c(det(h), det(w’))c(det(h'), det(w)) .

Proof: By definition
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s(hw)s(h'w')
= s(h)s(w)s(k)s(w')c(det(h), det(w))e(det(h), det(w"))
= s(h)s(w)s(h")s(w) " s(w)s(w')c(det(h), det(w))c(det(h), det(w'))
= s(W)u(w, K)s((W)*" )7 (w, w')s(ww') -
c(det(h), det(w))c(det(h'), det(w'))

= u(w, W) r(w, w7 (h, ()Y )s(h(R)* " )s(ww') -

c(det(h), det(w))c(det(h'), det(w"))

-1 -1 -1

= plw, W) (w, w)r(h, () )e(det (h(R)*), det(ww))s(h(h)"  ww')-
c(det(h), det(w))c(det(h'), det(w"))
= p(w, M)7(w, w’)T(h,.(h’)‘;’l)C(det(h), det(w’)) -
c(det(h'), det(w))s(hwh'w’)
and since
s(hw)s(h'w') = r(hw, k'w")s(hwh'w')

the formula follows. O

Setting h =1, b’ = h and w’ = 1 in Lemma 4 we obtain
7(w, h) = p(w, h)c(det(R), det(w)) (5)

and combining this with the third formula of Lemma 3 we find that if
h = diag(v,...,v,) € H, and w corresponds to the permutation = € &,, then
: T(w’ h) = H C(’Uz’, vj) . (6)
1<J
w(i)>m(F)
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Also we may use (5) to eliminate the occurrence of x4 in Lemma 4. This gives

1

T(hw, K'w') = 7(w, )7 (h, (B)* ") 7(w, w')c(det(h), det(w")) . (7)

3. The Cocycle of Kazhdan and Patterson

In this section we shall determine the relationship between the cocycle 7
constructed above and the cocycle used in [KaP] and in the various papers, such
as [BuG] and [BuH], which rely on it. This is somewhat awkward for two reasons.
First, the choices made by Kazhdan and Patterson in their work and by Matsumoto
in his original construction lead naturally to inverse classes in H*(GL(n), A) being
labelled as the metaplectic class. (Actually, since GL(n) .is not perfect, there are
several metaplectic classes in each case, those on one list being inverse to those on
the other.) We followed Matsumoto above and so we must expect that Kazhdan’s
and Patterson’s cocycle will be roughly 7~!. Since a number of authors (notably
Milnor) follow Matsumoto and a number (notably Bump) follow Kazhdan and
Patterson this annoyance is now firmly embedded in the literature. A really neat
solution is possible only when A has exponent two (as in the important special
case where A is pp) since then H?(GL(n), A) also has exponent two and the
classes coincide. Secondly, Kazhdan and Patterson erroneously assume that the
metaplectic extension is always split over the Weyl group. As we shall see, this is
only true in general when ¢(—1,—1) = 1 and so only in .this case can we expect
to recover the cocycle of [KaP] exactly. When the metaplectic cover is not split
over W no formula for the cocycle restricted to W is known at present. We shall
therefore have to be content with identifying the induced cover with one of those
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constructed in section one; this at least makes it possible to perform calculations
in the covering group if nécessary.

In order to relate Kazhdan’s and Patterson’s cocycle to that already con-
structed we shall require a coboundary built from certain functions on GL(n, F).
If g € GL(n, F)and 1 < £ < n then let X4(g) denote the first non-zero (£x £)—minor
formed from the last £ rows of g, where the minors are ordered lexicographically
according to the columns they involve. From Laplace’s expansion of the determi-
nant of g as a sum of products of these minors and their signed cominors it follows
that not all the minors can be zero and hence Xy(g) is well-defined. Of course
Xn(g) is simply the determinant of g.

If w € W then we let ¥ (w) = {a@ € &7 |wa < 0} and if h € H, and
a=(i,7) € d* we write h“ for hi/h;.

Lemma 1: Suppose that w,w’ € W and h,h' € H,,. Then
(1) Xg(hh') = Xe(h)Xe(R') for all ¢,
(2) Xo(hw) = Xp(h)Xe(w) for all £,

(3)

(4) |
Xe(hwh'w") _ Xe(wh')  Xyp(ww')
Xe(h’w)Xg(h"w') Xg(’w)Xe(h') Xg(’w)Xg(’w') '
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Proof:

(1) Since Xg(h) = [;5,—p41 ha this is clear.

(2) The matrix hw is obtained from h by a permutation of the columns. If we
fix our attention on the last £ rows of hw we shall see that the unique non-zero
(£ x £)-minor in the last £ rows of h has undergone a corresponding permutation,
mo say, of its columns. Thus Xg(hw) = sgn(m)Xe(h) and as X,(w) = sgn(mo), the

identity follows.

(3) Making use of (2) we obtain

Xg(’wh) . Xg (hw_l)
Xg(’w)Xg(h) - Xg(h)

and so we wish to show that

T Xe(R) _ o
ezl—ll Xe(h) Il &

€D+ (w)

We shall do this by induction on the length of w. If £(w) =1 then w is a simple

reflection. Suppose that w = s, where v = (p,p+ 1) € A. We have &*(w) = {v}

and
h; if i#p,p+1
(R )i =< hpy1 if i=p
hyp if t=p+1

Thus, using the formula from the proof of (1), we obtain

Xo(h) if £>n-p+1
Xe(h*™") = { Xn_p(h)hphyly if £=n—p
Xe(h) if £<n-p-1

and so
n—1 -1
Xg( Y )__ -1 __ 1y
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as required.
Now suppose that £(w) > 1 and choose v € A such that w = s,w; with

{(w) = £(wy) + 1. Then &+ (w) = ®F(w;) U {w 'y} and

X (W) T Xe((RPT)) T X hw1
£=Hl Xe(h) E X, (hvi’ H
= (hwl 1)7 . H h&

a€dt (w1)

— BT H B

a€dt (w1)

= J[ ®

a€dt (w)

which completes the induction.

(4) Using (1) and (2) repeatedly we have

Xo(hwh'vw')  Xe(hwh'w=lww')
Xo(hw)Xe(Ww) . Xe(hw)Xe(H'w')
. Xg(h)Xg(wh’w_l)Xg(ww')
o Xg(h)Xg(’w)Xg(h')Xg(’w')
_ Xg(wh’w_l) . Xg('ww’)
Xg(h') Xg(’w)Xg(’w')
_ Xe(wh'w H)Xe(w)  Xe(ww')
o Xg(’w)Xg(h') Xg(’w)Xg(’w')
_ Xp(wh')  Xp(ww')
= X)X ) X)X (w)’

as required. O

We now define

B E ) BT
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Notice that 7(g1, g2) = c(det(g1), det(g2)) is a 2-cocycle on GL(n, F') and that the

last factor in (1) is the coboundary derived from the 1-cochain

n—1

g [] e(=1,Xe(9)) .

=1

Therefore o is a 2-cocycle on GL(n, F) representing the cohomology class [7]~![]

in H2(GL(n, F), A). We let
1—A4—GL(n,F) 5 GL(n,F) > 1 (2)

be the central extension corresponding to the class [¢] and, by abuse of nota-
tion, denote by s : GL(n, F) — GL(n, F) a section with respect to which [o] is
represented by o.

Now we must identifsf the restriction of (2) to W. If ¢(—1,—1) = 1 then
7(w,w") = To(w,w’) =1 énd c(—1,Xg(w)) =1 for all w,w’ € W and all £. Thus
o(w,w") =1 for all w,w’ € W and the sequence (2) is split over W. Suppose now
that ¢(—1,—-1) # 1. We remarked in section 2 that resu.,(['r]) is always equal to
the image of the 7 = 1 spin class in H2(W, A), where res . denotes the restriction
homomorphism from H?(GL(n, F), A) to H2(W, A). Now one easily checks that
res . ([70]) € H%(W, A) is equal to the image of the non-trivial class in H2(W, us)
under extension of scalars when n = 2 or n = 3 and to the image of the product of
the two spin classes when n > 4. From this it follows that resW([a]) € HX(W, A)
is trivial when n = 2 or n = 3 and equal to the image of the r = 3 spin class when
n > 4. In particular, Wheq A = po and n > 4, (2) is never split over W.

From the identities for 7 which we obtained in the previous section and Lemma

1 we arrive at certain identities for o. If h,h' € H,, then (3) of section 2 and
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Lemma 1 (1) give

o(h,h') = Hc (hg, h; (3)

1<g

If h € H, and w € W then (4) of section 2 and Lemma 1 (2) give

olh,w)=1 (4)

and (6) of section 2 and Lemma 1 (3) give
o(w,h) = T clhi, hy) ™ e(=1, %) - c(det(w), det(h)) . (5)
a=(i,j)€®*(w)

Combining Lemma 1 (4) with (7) of section 2 we obtain
o (hw, K'w') = o(w, K)o (b, (B')* " )a(w,w'). (6)

When n < 3 or ¢(—1,—1) = 1 we also have o(w, w') — 1 for all w,w' € W and so
we have recovered the cocycle of [KaP]. If n > 4 and ¢(—1,—1) # 1 then we may
assume that s has been chosen so that if s(s,) = to for a € A then the ¢, satisfy

the relations

if (a,B)
(tat)™*7) = { 1—1 if Ea gi i 8. @)

The group W = p~1(W) is generated by {to|a € A} and A and the relations (7),
the trivial relations recorded after (1) in section 1, all the relations in A and the
relation ¢(—1, —1) = —1 suffice to give a presentation of w.
4. Lifting the Main Involution
We retain the assumptions and notation of the previous section. Recall that
1

the main involution on GL(n) is the automorphism g — ‘g given by ‘g = wo'g~ 1wy,
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where wg € W is the longest Weyl element. It is our intention in this section to
study the lifts of ¢ to (ﬁ;(n) (the formal definition is given below).
In order to recall some general facts about central extensions let us briefly

adopt the following notation. We suppose that
15A-G5 61 (1)

is a central extension of groups, that s : G — G is any section of p and that o
is the 2—cocycle representing the class of (1) in H?(G, A) with respect to s. If
f : G = @G is an automorphism then a lift of f is an automorphism f: G- G

making the diagram

1 » A y G ——— @ > 1
I A
1 s A sy G —2 5 @ y 1

commute. By the 5—lemma any homomorphism fmaking this diagram commute
is in fact a lift of f. We shall denote by L(f) the set of all lifts of f. Note
that Aut(G) acts on H2(G, A) by f[r] = [f()] where 7 is any 2—cocycle and
fy=ro(fxf).

Lemma 1: The set L(f) is non-empty if and only if flo] = [o].

Proof: If f € £(f) then s’ : G — G defined by

is a section of p. A computation shows that the 2—cocycle representing [¢] with
respect to s’ is f(o). Hence flol = [o] if L(f) # 0.
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Conversely suppose that flo] = [o] and let o = f(0) - Ok where K : G — A

and O denotes the coboundary map. We define

f(as(9)) = ax(g)~"'s(f(g))

for a € A and g € G. Since s is a section of p this gives a well-defined map
f:G — G which is easily verified to be a lift of f. O

In due course we shall use this Lemma to show that £(:) # 0. The next result
calculates the size of £(f) when this set is non-empty.

Lemma 2: Suppose that L(f) # 0. Then L(f) is a principal homogeneous space

for the group Hom(G, A).

Proof: We define an action of Hom(G, A) on L(f) by setting

o~ —~

(v £)@) = e(p(9))f(9)

for ¢ € Hom(G, A), fe L{f)and g € G. It is routine to check that this gives an
action; we must show in addition that the action is transitive and that the point
stabilizers are trivial.

If f~1,f~2 €eL(f)and t: G — G is any section of p then set

for g € GG. This function maps G to A since fl and fg are lifts of f and it is

independent of the choice of t. In addition if g,h € G then

o(gh) = fi(t(gh)) falt(gh)™")
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and so ¢ € Hom(G, 4). If g € G then we may choose t : G — G a section such

that t(p(g)) = g. With this choice we have

(- f2)@) = 0(@)F2(9)

!

(@GN0

Sepy

l

Il
~~
—

(9)

and hence ¢ - ]72 = f~1 This shows that the action is transitive. Finally if ¢ - f= f
for some ¢ € Hom(G, A) then ¢(p(§)) = 1 Vg € G and since p is onto, ¢ is the
trivial homomorphism. O
This Lemma implies that we cannot generally hope to obtain a unique lift of +
to @i(n) However if we assume that F is infinite, as we shall henceforth, then
SL(n + 1, F) is perfect and hence any automorphism of this group which lifts to
§f1(n + 1, F) does so uniquely. This makes it more éonveni‘ent to begin by studying
an involution of SL(n + 1, F) which induces + on GL(n, F) embedded as in section
two.

Let wy; = diag(wp,1) € GL(n+1,F), where wo € GL(n,F) is as above,
and for g € GL(n + 1,F)‘ put § = w19 w;. The map g — § is an involution
of GL(n + 1, F') which stabilizes SL(n + 1, F). When restricted to the subgroup
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GL(n) < SL(n + 1, F) it induces the involution ¢. Let us denote by v the 2—cocycle
which represents the class of the extension (1) of section two (with n replaced
by n + 1) with respect to any section s : SL(n+1,F) — §I:(n+ 1, F) whose

restriction to SH,,1 is s(d) = (d,1) € ﬁn_*_l. Thus if d = diag(ui, ..., Un+1)

and d’' = diag(vy,...,vp41) are in SHy, 1y then
v(d,d) = [ ] e(wi,v;)- (2)
i>j

Lemma 3: Suppose that n > 2. Then [v]” = [v] in H(SL(n + 1, F), A).
Proof: It follows from the remark in §11 of [Mil] that the restriction map

res : H*(SL(n + 1, F), A) — H?(SHp41, A)

is a monomorphism (it is here that we need n > 2; recall also that we are assuming
F to be infinite). Since g — § stabilizes SH,.1 and we have res([v]”) = res([v])”
it is enough to show that res([v])”~ = res([v]). We shall henceforth abuse notation
by omitting the restriction maps.

Let d,d’ € SH,11 be as above. Since H;‘:ll v; = 1 we may rewrite (2) as

v(d,d") = H c(us, vj) . (3)

n+1>i>j

1

Now d = diag(u;?,...,ur ", u 1) and hence, using (3),

o(d,d") = v(d,d)

_ -1 -1
= H C(“n—i+1v 1’n—g‘-+-1)
n+1>i>j
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= H c(un—i+17vn—j+i)

n+1>i>j

= H c(Uq, vp)

a<b<n+1
on settinga =n—i¢+1and b=n -7+ 1. Now using HZ':"ll U, = 1 this may be

rewritten as

p(d, df) = [ c(ua,vs)

a<b

or, using the skew-symmetry of Steinberg symbols, as
p(d,d) =v(d,d)"t.
Hence

(- 5=Y)(d,d) = v(d,d)v(d',d)

= HC(Ui,'Uj) : H ¢(Va; )

i>j a>b
= [ elwi,vy) - [ ] e(va, ue) (4)
i>j a>b

on once again using the identity ¢(z, y)c(y,z) = 1.

Now let us define « : SHn+1 — A by

k(d) = H c(ug, ug) . (5)

k>¢

Then

k(dd') = H c(ugvk, ugvyp)
k>¢

= k(d)k(d") - Hc(ui,vj) : H (v, Up)
i>j a>b |

= k(d)r(d)(v -0~ 1) (d,d)
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by (4) and hence

(v-o7)(d,d') = r(dd')/k(d)x(d")

= (9K)(d, d") .

The claim follows. O

Proposition 1: Suppose that n > 2. The involution g — § of SL(n + 1, F) has a
unique lift to éi(n + 1, F). This lift is itself an involution. Regarding g\'f/InH as

a subgroup of §f4(n + 1, F) and denoting the lift of ~ by the same symbol we have

-

(d,a)” = (d,an(d)™)
u)here d = diag(uy,...,Un+1) € SHp41, a € A and

k(d) = H c(ui, uj) .

1>5

Proof: Combining Lemma 1 and Lemma 3 shows that ¢ — § has a lift and Lemma
2 together with the discussion which follows it implies that the lift is unique. Also
~o™:SL(n+1, F)— §I’J(n+ 1,F)isan automorbhism oféi(n + 1, F') which lifts
the identity automorphism of SL(n + 1, F') and so the unicity of lifts implies that
e SAfJ(n +1,F) —» SAfJ(n +1,F) is an involution. The formula for ~ on SHp41
follows by combining the proof of Lemma 1 with that of Lemma 3. O

It may be of some service to the skeptical reader to prove directly that = is an
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involution of SH n+1. This amounts to checking that x(d)x(d’) = 1 for all d €

SH, .1, which is accomplished by the following calculation:

k(d)k(d') = Hc(ui,uj) . H c(ugtyupt) - elunip,urt - oun )

i>j k<f<n+1

= H c(ui, uj) - H c(ug, up) "L c(Una1, Uy - .- Up)?
n+1>i>j n+1>£>k

= C(’ll;n+1,U1 Cee ot ’U;n)2

= c(Un+1, 'Ufy—,,.}.l)z

= c(un+1,un+1)'2
= c(—l,un+1)"2
=c((—=1)7%, un41)

= C(l, un+1)

where we have used the identity c(z,z) = ¢(-1,z) vali(i for all Steinberg sym-
bols. We also remark that it follows from Lemma 3 that there is a function
k : SL(n+1,F) — A extending the one defined in Proposition 1 and satisfying
v =0 - (0k). We choose any such function and fix it for.the rest of this section. -
We are now ready to retufn to the main involution itself.

Proposition 2: For every n > 1 the set of lifts of the main involution of GL(n)
to @i(n) 1s non-empty. Fach of these lifts stabilizes ﬁn and one of them satisfies

ts(h) = [T e(hi, hy) - s(*h)
i>j
forallh € H,.
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Proof: The case n = 1 is trivial and we shall henceforth assume that n > 2. The
class of the metaplectic extension in H2(GL(n), A) is represented by the 2—cocycle
o given in equation (1) of the previous section. We seek a function A : GL(n) — A
such that ¢ = ‘o - (8\) and to find it we shall work separately with the three
factors constituting o.

Since 7 is the pull-back of v under the embedding 1 : GL(n) — SL(n + 1) we

know from the proof of Propositioﬁ 1 that

(91, 92) = v(n(91),n(g2))

= (9k)(n(91),n(g2)) - #(n(g1),n(g2))

= (0k)(n(g1),m(g2))v(n(g1)", n(g2)")
= (0K)(n(g1), n(g2))v(n(‘91), n(°92))
= (0A1)(91,92) " 7('91,"92)

= (8A1)(g1,92) " (") (91, 92)

where we have set A\1(g) = k(n(g))~!. Thus we have 7= = ‘71 . (8A;). The

second factor in ¢ is invariant under ¢. As for the third factor, if we set
n—1
z(g) = [] e(=1, Xe(g))

=1

then it is simply (0z) and: we have (0z) = “(8z) - (O\3) where
oty Xe(g)
Mg) = TTel-1,289) .
s9)=11 (- %5)

Combining these equations we find that if A : GL(n) —.A is defined by A(g) =
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A1(9)As(g) then o = *o - (0A). It follows that ‘lo] = [0] and by Lemma 1 we have
the first statement of the Propostion. |

Examining the proof of Lemma 1 we see that there is a lift of ¢ satisfying
‘s(g) = A(g)~'s(‘g). In order to verify the formula given in the statement it is
thus sufficient to calculate A(h) for h = diag(hy,...,hn) € H,. We begin with

As(h). Since X, (g) = det(g) and

_ Xn(g) = o(— o 2y _

we may write _
- Xe(g) )
As(g)=|]cl—-1,=—=%) .
() el;Il ( Xe('9)
We have remarked before that X,(h) = [[;5,,_¢4; hi and since (‘h); = hot 41 this

gives

X =[] rltj=]Ir"-

j>n—f+1 k<¢

From these identities and the formula for A3z just given it follows that

=1 k<t

= H C( 1,hi) . HHC(—l,hk)
£=1i>n—£+1 {=1kLZ¢

= [T1]e(-1,h) TT ] e(-1, Bs)
£=1i>¢ £=1k<¢

=[Te(-1he) - T[] e(=1, 1))
=1 =1j=1



Turning now to A;(h) we have, with ¢,5 € [1,n+ 1] and k,£ € [1,n],

(k) = w(n(h) ™

= T c(nth)i,n();) ™

1>]
(hiy hy)
C\ g, g
n+1>i>j J

=[] (e, he) ™" - c(det(h), det(h))
k>4

= c¢(—1,det(h H c(hg, he)™
k>¢

c(det(h)™1, hy) 1

;-'—_1=

i
-

Thus

A(h) = e(—1,det(R))" - [ ] c(hw, he)~
Ic>£

and it follows that there is a lift of ¢ satisfying
‘s(h) = ' ~1,det(h))" - [ ] c(hw, he) s (6)

k>¢
To obtain the formula given in the statement it is only necessary to observe that
according to Lemma 2 the group Hom(GL(n), A) acts on the set of lifts of ¢+ and
applying the element go(g)‘= c(—1,det(g))™ of this group to the lift of ; satisfying

(6) gives another answering the requirements of the Proposition. O

Proposition 3: FEwvery lift of the main tnvolution of GL(n) to éi(n) 18 itself an

involution.

Proof: Let ¢ € Hom(GL(n), A). Since A is abelian and [GL(n) , GL(n)] = SL(n)
(recall that we are assuming the underlying field to be infinite) the map ¢ must

31



have the form ¢(g) = ¥ (det(g)) for some ¢ € Hom(F*, A). In particular it follows
that ¢(g)p(g) = 1 for all g € GL(n). Using Lemma 2 it now follows that every lift
of ¢ is an involution if and only if one of them is. We may thus restrict attention to
the lift which was singled out in Proposition 2. We denote this particular lift by .
The map g — “(*9) is a lift of the identity map and so Lemma 2 implies that there
is some ¢ € Hom(GL(n), A) such that “(*9) = ¢(p(9))g. With ¢ € Hom(F*, A)
as before this is equivalent to ‘(*g) = ¢(det(g))g. But if A = diag(z,1,...,1) for
z € F* then the formula bf Proposition 2 gives ‘s(h) = s(‘*h) and then *(*s(h)) =
‘s(*h) = s(h) from which it follows that ¢y = 1. Hence *(*g) = g, as required.
]

We shall refer to the lift of ¢ singled out in Proposition 2 as the main involution
of GL(n) and denote it again by ¢.

Proposition 4: Ifz € p~1({\[, | A € F*}) then 2z = 27 L.

Proof: It suffices to show that ‘s(A,,) = s(Al,)~! for all A € FX. Using the

formula in Proposition 2 and (3) of section 3 we have

‘s(Mn)s(AL) = [ [ e(d, ) - s(A1,)s(M )
i>7 ‘
= c(A\, A"V 26( A1, AL
=c(\ )2 T e(A )
1<g

= (c(A, Ne(A~1, )" D2

=1,

as required. O
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Let us denote by N1 the unipotent raciical of the Borel subgroup of GL(n) which
corresponds to the positive system ®*. If @ € ®* then let z, : (F,+) — N¥ be
the standard homomorphism whose image is the “root subgroup” N©. Note that
nozy : (F,+) = SL(n+ 1) is itself such a homomorbhism with respect to some
positive root of SL(n + 1) and n(N™) is a subgroup of the unipotent radical of the
standard Borel in SL(n +1). Examining our construction of GL(n) in the light
of these remarks and of Lémme 5.1, Chapitre II of [Mat] and observing that the
second and third factors of (1) of section 3 are identically 1 on N* x N* we see that
the section s : GL(n) — C’i,(n) may be chosen so that s|N+. is a homomorphism.
We shall suppose below that this has been done.

Proposiﬁon 5: If A has exponent m prime to the characteristic exponent of F

then ‘s(n) = s(*n) for alln € Nt.

Proof: With s chosen as above the map n — ‘s(n)s(‘n)™! is an element of
the group Hom(N*, A) and so it suffices to show that this group is trivial. Let

¢ € Hom(N*, A) and o € ®*. Then for all t € F we have

- C(za(t)) = ((za(m™)™)
= ((za(m™t))™

=1

and so ((N*) = {1}. But the N® with @ € ®* generate N1 and this completes

the proof. |
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5. Topological Considerations

Up to this point our .discussion of the metaplectic éroups has proceeded in
almost complete generality; the only condition we have yet imposed is that the
underlying field be infinite. In this section we shall come closer to the situation
which will concern us in later chapters by imposing additional assumptions of a
topological and arithmetié nature on F, A and c.

If G, A and G are Hausdorff topological groups then an extension
15A-G5G6—1

is called topological if p is continuous and open and the inclusion map A G is
continuous and closed. The following two results record some useful general facts
about topological extensions of /—groups.

Proposition 1: Suppose that
154G 6 -1

s a topological extension of Hausdorff topological groups. If A and G are £— groups
then G is an f— group. If-in addition A is discrete then there is a compact open

subgroup of G over which the sequence is split and a continuous sections : G — G.

Proof: Suppose that A and G are £{—groups. We first observe that G is locally
compact. Indeed it suffices to find a compact neighbourh(;od of the identity in G.
Let us choose compact open subgroups K; < G and G2 < A. Then K = p~!}(K,)
is an open subgroup of G with K /K2 homeomorphic to K; and hence compact.
By I), section 19, Chapter 3 of [Pon] it follows that K is compact, as required. It
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is easy to check that since G and A are both totally disconnected, G is also totally
disconnected. Applying Theorem 16, section 22, Chapter 3 of [Pon] we conclude
that G is in fact an £—group.

If A is discrete then since the inclusion map A — Gis a homeomorphism
of A onto its image there is an open set W C G with ANW = {e}. Since G is
an {—group we may find a compact open subgroup U of G with U C W. Then
UN A= {e} and so if we set U = p(U) then plg: U — U is an isomorphism of
topological groups. The map (plﬁ)‘1 then splits the sequence over the subgroup
U. | |

Let S be a left transversal for U in G and for each s € S choose any s € G
such that p(s) = s. If we define s: G = G by s(su) = '.s*(plﬁ)_l(u) for s € S and

u € U then s is a continuous section of p. d

Propostion 2: Let

l12A—-G35G=1

be a topological central extension of £—groups with A discrete and of erponent
m. Suppose that G has a neighbourhood base at the z'dent"ity‘consz'st'ing of compact
open subgroups U such that U™ is open, where Uf" denotes the group generated
by{u™lueU}. Iff € Aut(G) is a homeomorphism then any lift of f is also a

homeomorphism.

Proof: Using Proposition 1 we may find a compact open subgroup Uy of G and

a splitting 9 : Uy — 9¥(Up). Using the hypotheses on f and G we may find a com-
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pact open subgroup Vp C Ug such that f(Vp) C Up and V3™ is open. Let ]?be a lift
of f and define ¢ : p~}(Vp) = p~} (Vo) by ( = floto fop. Then po( =pand
so ¢ is a lift of the identity map on Vy. From Lemma 2 of section 4 it follows that
¢ differs from the identity map by the action of some element of Hom(Vp, A). But
any such homomorphism is trivial on Vg™ and so ¢ |p—1(V07") = idp-1(yymy- Compos-
ing this equation on the left with fwe obtain f-—- Yo foponp~(Vg") and hence
on ¢ (Vg™). Now both (Vg"™) and #(f(Vg™)) are neighbourhoods of the identity
in G and it follows from what we havé just done that f : (V™) — »(f(Ve™)
is a homeomorphism. Since fis also an automorphism and the topology on G is

homogeneous the claim follows. (]

Let us novgl assume that F is a local field, ¢ is the m*® order Hilbert symbol
on F and A = p,,, the group of m*® roots of unity in F, which because of the
assumptions necessary to define the Hilbert symbol is a cyclic group of order m.
When necessary.we regard A as a topological group Witi’l the discrete topology.
In [Mat] Matsumoto determines the exact condition which must be placed on a
Steinberg symbol in order to make the corresponding central extension topological
(see [Mat], Théoréme 8.2 and also [Mil], Assertion 11.4). In the subsequent discus-
sion Matsumoto observes fhat the Hilbert symbols satisfy the necessary condition
and hence the extension (1) of section 2 is topological with the natural topology
on SL(n, F'). Since the map n introduced at the beginning of section 2 is a home-

omorphism onto its image it follows that the extension (2) of that section is also
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topological. The 2—cocycle 79(g1,92) = c(det(g1), det(gz)) on GL(n, F) is easily
seen to correspond to a topological extension; indeed the extension is split over the
open subgroup {g € GL(n, F) | det(g) € (F*)™} which suffices for the claim. It
follows from the results of Moore in [Mol] that the Baer product and Baer inverse
of topological extensions of locally compact groups are again topological. Hence
the metaplectic extension (2) of section 3 is toplogical with the natural topology
on GL(n, F'). |

It follows from Proposition 1 that when F' is non-Archimedean the metaplectic
group is an £—group and the metaplectic extension is split over some compact open
subgroup of GL(n, F'). This justifies the first assertion of {KaP], Proposition 0.1.2
which, contrary to their cl.ziim, does not seem to be proved in [Mo2]. Furthermore
GL(n, F) is easily seén to satisfy the hypotheses ,Of Proposition 2 and it follows
that the main invblution of C’;‘r\i(n) is a homeomorphism in this case. When F is
Archimedean both GL(n) and @(n) are Lie groups. Only thecase F =R, m =2
is interesting since otherwise GL(n) is merely the direct product of GL(n) and A.
In this case one may combine Propositions 2 and 5 of the previous section with
the standard theory of such groups to see that the main involution of ai(n) is an

analytic automorphism.
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CHAPTER 2

THE EXCEPTIONAL REPRESENTATIONS

1. Metaplectic Tensor Products

Let G (r) be the metaplectic n-fold cover of G(r) = GL(r) corresponding to
the n'h order Hilbert symbol (-, -) on a non-Archimedean local field F satisfying
lin (F)| = n, where p, (F) is the group of n*® roots of uhity in F. We denote
the projection homomorphism by p, : G (r) = G(r). For v = (r1,...,7%) with
ri,...,m5 > 1 we put G(v) = p?l(G(v)) where 7 = 7y + --- + 7, = |y| and
G(y) = G(r1) x -+ x G(rg) is embedded in G(r) in the standard way. If g € G(v)

then we set det(g) = det(p.(g)). For H; < é(r) and Hy < é(s) satisfying

H, = p7'(p,(H1)) and H, =p;1( s(Hz)) we define
‘Hl X Hy, = p:—is(pr(Hl) X ps(HZ))

and similarly for more than two factors. With this definition we have

Gy)=G(r) X ... x G(rg)
and an easy calculation shows that if g € G (v1) and ¢’ € G (72) then

99" = (det(g),det(g")) g'g

in G (1) G (72)-

X
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If 71 (resp. m3) is a genuine admissible representation of G (71) (resp. G (72))
of finite length then we aim to define a ‘;tensor product” m; ® m, which is to be a
representation of G (1) X G (v2). The difficulty is that G (v;) and G (y2) do not

| commute and so some care is necessary. In [Hua] Huang addressed this problem
for the real metaplectic group in the case where 7m; and 71"2 are irreducible and in
[FIK], §26.2 the problem is briefly discussed over a non-Archimedean local field,
again for irreducible representations. Note that this latter reference contains some
inaccuracies. We shall solve the problem in this section fqr the case where n = 2,
which is our focus in later sections. The main ingredient will be a study of the
decompositio;l of representations of G (r) oﬁ restriction to certain subgroups of
finite index, which will be carried out in somewhat greater generality.

We shall require several preliminaries of a technical nature; they must be
well-known to algebraists but I have been unable to locate a suitable reference.
Fix an algebraically closed field K (we shall eventually take K = C). Actually
algebraic closure is unnecessary for much of what we shall say but we have no use
for the possible extra generality. |
Definition 1: Let A be a K—algebra. We call A local if A\ A* is a two-sided
tdeal of A and strongly local if every element of A is either a unit or else is nilpo-

tent.

It is easy to check that every stongly local algebra is local. Also A is local if
and only if J(A) = A\ AX where J(A) denotes the Jacobson radical. If A is local

and Artinian then the radical of A is nilpotent and consequently A is strongly
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local. Thus local and strongly local coincide for Artinian algebras.
Lemma 1: Let A be a K—algebra and E an A—module of finite length. Then E

is indecomposable if and only if the algebra End 4 (E) is strongly local.

Proof: That the endomorphism algebra is strongly local when F is indecompos-
able is proved in [Lan] VI.9.4. Conversely it is immediate that a strongly local

algebra cannot contain non-trivial idempotents. g

Lemma 2: Let A; and Az be finite-dimensional local K —algebras. Then A1 Q As

is also local, where the tensor product is taken over K.

Proof: Let I; = A;\ Af and fz = Ay \ AY. The K —algebra A1/IL is a finite-
dimensional division algebra over K and hence A;/I; & K. Similarly A,/I, £ K.
We define

I=A410L+1L®A
which is a two-sided ideal of A = A; ® A>. Then
A/I = (Al ®A2)/(A1 QI+ 1 ®A2)

> (A1 ® (A2/12))/ (11 ® (A2/I3))

= A/ ® As/I

1%

K

and it follows that I = A\ A*. Thus A is local. O
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Lemma 3: Let A, and Ay be K—algebras and D1 and E; (resp. Dy and Ey) be

finite-dimensional Ay— (resp. A2—) modules. Then

HomA1®A2 (Dl ® Dy, E1 ® Ez) = HOI’IIA1 (D1, El) & HOI‘IlA2 (Dz, Eg) .

Proof: The natural map
Hompg (D1, E1) ® Homg (D2, E2) — Homg (Dy ® D2, E1 @ E»)
is an isomorphism which carries
Homy, (D1, FE1) ® ﬁomA2 (Do, Es)

into

HOIHA1®A2 (Dl X D,Z’El ® Ez) -

Thus only its surjectivity is in question. Let f € Homa,g4,(D1 ® D2, E1 ® E»)

and write
m
F=Y wi®%
i=1

with ¢; € Homg (D1, E1) and 9; € Homg (D2, F3). Rewriting this sum we
may assume that the set {¢;} is linearly independent. Fix 1 < ¢ < m; since
Homg (Ds, E2)* =2 Dy ® E3 it follows that there exist finite sets {A\;} C E3 and

{&} C D; such that

Z As (wz(gt)) = 51',q

8,1
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for all 1 <7 < m. Because f is an (A; ® As)—homomorphism the map

¢ Zml(idEl ® X)) [f(C®&)]

s,t

lies in Homy, (D1, E1) where my : E; ® K — FE; is the natural isomorphism. On

the other hand

S ma(idg, ® A [F(C ® )]

s,t

- Z m1(idg, ® Xs)(p; ® %) ® §t]

st

= Zml (¢i(€) ® As(¥i(€2)))

= ml (Wq(C) ® 1)
= Soq(C)
and so ¢, € Homy, (D1, E1).

We may find aset I C {1,...,m} such that {y; | ¢ € I'} is linearly independent

and {p;} C spang{y;|i € I}. This done we may write

F=Y ooy

i€l
for certain 9, € Homg (Dq, E;). Arguing as before we see that

’(ﬁ: S I’IOI.’['lA2 (Dz, Eg)
for all 7 € I, as required. O
Lemma 4: If A; and A, are K —algebras and E; (respectively E3) is a finite-

dimensional indecomposable A;— (respectively As—) module then E1 ® E; is an
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indecomposable (A1 ® Ag)—module.

Proof: The finite-dimensional K —algebras End 4, (E1) and Endg,(E;) are both
strongly local (Lemma 1) and hence local. Thus Endy, g4, (E1 ® E) is the tensor
product of finite-dimensional local algebras (Lemma 3) apd so is local (Lemma 2).
Being finite-dimensional it is Artinian and hence strongly local. Thus (Lemma 1)

E1 ® E, is indecomposable. O

We now recall some notation from [BZ1]. Let G be an £—group and N a com-
pact open subgroup of G. We denote by ‘H N the Hecke algebra of bi— /N —invariant
compactly supported distributions on G. If 7 is an algebraic representation of G
on the complex vector space E then we denote by mn the representation of Hy
on the space E of N—fixed vectors which corresponds t‘o .

Lemma 5: Let m be an algebraic representation of G of finite length. Then w
s indecomposable if and only if mn is indecomposable for some sufficiently small

open compact subgroup N.

Proof: Suppose that N is so small that if p is any noh—zero subquotient of «
then pny # 0. There are such N since 7 is assumed to be of finite length. If
7 is decomposable then it follows at once that mn is decomposable. Now as-
sume that 7n is decompbsable and that EN = V; @ V5 where V5 and V, are
non-zero Hy—submodules of EN. Let E; be the G—submodule of E gener-

ated by V;. It follows from the arguments of [BZ1], §2.10 that EN = V; and
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so (Ey1NE)N CVinV, = {0} and (Ey + E2)N = V; + Vo = EN. Recalling our
assumption on N this means that F1 N Ey = {0} and F = E; + E,. Thus 7 is

decomposable. O

Proposition 1: Let G and G2 be £—groups and 71 (resp. w2 ) be an indecompos-
able admissible representation of Gy (resp. G2) of finite length. Then m = 7 @ T2

s an indecomposable representation of G1 x Ga.

Proof: For all sufﬁcienﬂ}; small compact open subgroups N; of G; and N, of G2
we know from Lemma 5 that 71'* and 7% are finite-dimensional indecomposable
modules for ’HNII and Hpy, resp:'ectively. Thus with N = N; x N; we see that
N~ ﬂ’fl ' ® 7réV 2 is an ind(_ecomposablej Hy =H &1 H Nzlmc')dule from Lemma 4.

Since N may be made as small as required by making N; and N, small and = is

admissible and of finite length the claim follows by a second application of Lemma

o. U

Proposition 2: Let G1 and G2 be £—groups and m, and p; (resp. T2 and ps) be

admissible representations of G1 (resp. Ga). Then

Homg, x@, (71 ® 72, p1 ® p2) = Homg, (71, p1) @ Homg, (72, p2) .

Proof: It is routine to check that since all the representations are assumed alge-
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braic we have

~ T N ~ Y N
Er, = lm B By = Im By
N1 Nl

and

Homg, (Ex,, Ep,) = lim Homy , (ENEQY)
N,

where the limits are taken over the system of compact open subgroups of G; and
“similarly for G and its representations. Combining the admissibility of the repre-
sentations, Lemma 3 and the fact that direct limits commute with tensor products

proves the Proposition. U

Definition 2: If 7 is a }‘epresentation of a grbup G with center Z and w is a
character of Z then we say that m admits w if there is a non-zero subquotient of

on which Z acts via w.

Suppose that G is an Z—group with center Z and 7 is an admissible represen-
tation of G of finite length. Let E; denote the space of 7 and for each w € Z—

put
Er(w) = {€ € B |3m > 1 such that (r(z) — w(2))™¢ =0 Vz € Z}.

It follows easily from Schur’s Lemma and Fitting’s Lemma that E, = &, Er(w)
the sum being taken over the finite set of w which are admitted by n. Moreover
Z acts on every irreducibfe subquotient of E,(w) via w and the set of characters
admitted by 7 is the same as the set admitted by its socle. In particular, if 7 is
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indecomposable then 7 admits one and only one character of Z which we shall
denote by w;.

We now need a little Clifford theory in a slightly more general setting than
is usual. So let G be a group and H a normal subgroup of finite index. Recall
that restriction to H and induction from H both preserve the condition of being
of finite length (see [BZ1], §2.9).

Lemma 6: Let w be an indecomposable representation of G. Let o be any sum-

mand of w|g and suppose that if g ¢ H then

Hompg (90,0) = {0}

[

where 90 denotes the conjugate representation 90(h) = o(g~*hg). Then 7 =
ind% (c). Conversely if o is an indecomposable representatibon of H of finite length

which satisfies the above condition then .ihdg (o) is indecomposable.

Proof: The hypotheses imply that we may write E, = E, @ D where D is an
H—submodule of E.. Let q: B, — E, be the corresponding projection. We claim
that if £ € E, and g ¢ H then q(n(g)¢) = 0. Indeed the map & — q(n(g)¢) is an
H —intertwining operator from 90 to ¢ and so is zero by hypothesis.

We define maps T : 7 — ind§ (o) and S : ind§(s) — 7 by

(T€)(g) = q(m(9)€)

and

geH\G



One checks that these are well-defined and G—intertwining. If f € ind$(E,) and

go € G then

(T 0 S)(£)(90)
= q(m(g0)S(f))
= a(r(90) > m(g™Hf(9)

geH\G
= Y a(r(9eg7 )5 (9))
geH\G :
= q(ﬂ'(gog_l)f(g)) ~ where gog ' € H
= o(g09™")f(9)

= f(go)

and so T'o S is the identity. From [Lan] Lemma VI1.9.6 it follows that both T" and S
are isomorphisms. We now turn to the secdnd statement.” Combining the Mackey

subgroup theorem, Frobenius Reciprocity and the hypothesis on ¢ we obtain
Endg(ind§(0)) =2 Endg (o).

Now two applications of Lemma 1 complete the proof. U

Returning now to the metaplectic groups we define

G™ () = (g € G () | det(g) € (F)™);

this is a normal subgroup of G (y) and G () /G™ (y) & F*/(FX)™. If r is a
representation of a subgroup of G (v) containing G™ (7v) then we shall denote by
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7™ the restriction of = to G™ (7). We also set Z™(r).= {tI, | t € (FX)™},
Zm(r) = py1(Z™(r)), Z(r) = 2@ = (r) and Z(r) = p;*(Z(r)). It is shown in

[KaP] §0.1.1 that

pr ((ML | A7 e (F)"})

is the center of G (r) and one easily checks that this equals Z(r).

It will be useful to identify the finite-dimensional admissible representations
of Zm(r). For this purpose let ué reca,vll’ some Well-knowp facts about the finite-
dimensional admissible representations of GL(1, F'). Let the symbol V}, denote the
GL(1) —submodule of C*°(F*) generated by the function z — ordp(z)? where
ordg : F* — Z is defined by |z|r = ¢~°"97(®), ¢ being the module of F. Denote
by 7, the representation of GL(1) afforded by V,. Then {7, |p > 0} is a complete
set. of representativés for the isomorphism classes of finite-dimensional admissible
indecomposable representations of GL(1) which admit the trivial character. If 7 is
such a representation of GL™(1) then one easily sees that the units in GL™(1) act
trivially under 7 and hence that 7 extends to a representa.tion of GL(1). It follows
that 7 is isomorphic to the restriction of Tp for some p and ali these restrictions
are indecomposable. Thus the same classification holds for GL™(1) as holds for
GL(1). Evidently if 7, is restricted from GL™(1) to GL™2(1), @ > 1, it remains
indecomposable, and if v E Vp is a cyclic vector for 7, as a GL™(1) —module then
it is also a cyclic vector for m, restricted to the smaller group. |

Suppose now that w is a character of Z™ (r) and that p is a finite-dimensional
admissible indecomposable representation of Z™ (r) With'wp = w. Using the ob-
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servations in the previous. paragraph one sees that p &£ w ® m, for some p > 0
where 7, is regarded as a (non-genuine) representation of Z™(r). Also Pl‘ima(r)
is> indecomposable and a cyclic vector under Z™(r) remains cyclic under Zme(r).
Furthermore any ﬁnite—dimensional admissible representaﬁon of 'Zm(r) is a direct
sum of certain w ® 7, and it easily follows from this that if such a representation
has a cyclic vector and admits only one character then it must be indecomposable.
At this point we make the assumption that n | r(r — 1). This assumption will
be in force for the rest of this section and given it we factor n as n = s - (n/s)
where s | (r — 1) and (n/s) | r. It is unlikely that this hypothesis has any real
significance for the results to be proved; however it seems to represent the limit
of the elementary methods used in the proofs. It already covers the two special
cases of greatest interest, namely n = 2 and n = r.
Proposition 3: Letr = |y|, a = 1 or n/s and let = be an admissible inde-
composable representation of G (7) of finite length. Then % is indecomposable

and
{x € (G* (7) /G** ()" | Homg, ., (x ® 7,7) # {0}} = {x0)

where xo denotes the trivial character. Moreover

R

. 1G%() (. sa
1ndasa(7)(7r ) ~ @ Ax®7r.
X€(G(7)/G*2(v))

Proof: Note that Z(r) = Zr/s(r) C G° (v) since s = (n,'r —1). For any t € F*
we have s(t"/*1,) € Z(r). Also det(s(t"/*1,)) = t™™/* and since s | (r—1) it follows
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that s and rn/s are relatively prime. Hence we may choose coset representatives
for G (v) / G® (v) from Z(r) The character admitted by x ® 7 is XIE(T) - w, and

this equals w, if and only if x| is trivial. These two observations combine to

r)
prove the second statement.

To show that 7°% is indecomposable, we shall in fact prove more. We claim
that if D is a G*@ (y)-submodule of E, then D is stable under G@ (7). Suppose
not; then D cannot be stable under 7(Z(r)) and so we fnay choose £ € D such
that V = spanc{n(2)¢ | z € Z(r)} is ndt contained in D. There is a p > 1 such
that (7(2) — wx(2))PEx = {0} and hence for every z € Z(r) the set {(2°) | ¢ € Z}
spans a finite-dimensional subspace of Endaa(’y)(E,,). Since 7 is admissible there
is an f > 1 such that 7(2) = ¢ - idg, for some ¢ € pn(C) if p,(2) € (1 + PL)I,
where Pr denotes the prirﬁe ideal in OF. The group F* /(1 + PIJ;) - I- is finitely-
generated and if we choose z1,...,2 € z(r) éo fhat {p-(21),...,0r(26)} generates
it then 7 (Z(r)) is generated by {m(z1),...,7(2)} together with 7 (ker p,), which
is a finite set of scalar operators. Combining this with the previous observation we
see that spanc{wv(z) | z € Z(r)} is finite-dimensional and hence that V' is finite-
dimensional. Now V has a cyclic vector by definition and admits only the character
wr. By the remarks made-above on the representation theory of ! *(r) it follows
first that V is indecomposable and secondly that V = spanc{n(2)¢ | z € Z"(r)}.
But Z"(r) C G** (4) and hence V C D, a contradiction. This proves the claim

and so the first statement.

Finally the isomorphism is well-known, relying as it does simply on the fact
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that G® (y) /G® (v) is abelian. O

We remark that any divisor of s could replace s in the statement of the
Proposition. This follows at once from Clifford theory and what has already been
proved.

Proposition 4: Letr = |7, a = 1 or s and = be a jenuz’ne admissible inde-
composable representation of G® () of finite length. Suppose that o is any of the

indecomposable summands of n™%/5. Then

~ i 1G2()
= 1ndam/s(7) (o),

XQT7 forall x € (é“ (7) /ém/s (7))” and

qna/s o @ 9o .

g€(Ga(y)/Gnels(y))

Moreover if g ¢ Gna/s () then Homam,sm (90,0) = {0}.

Proof: Since Z!(r) is central in G(r) the map from F* x G(r) to u,(F) given by
(t, k) — [s(t],),s(k)]
is bimultiplicative and hence there is a bicharacter v of F* such that
[s(tl),s(k)] = v(t, det(k)).

A direct calculation using (3) of Chapterl, section 3 with « = diag(z,1,...,1)

shows that v(t,z) = (¢,z)"~! and hence

s(tl,)g = (t,det(g)) " gs(tI;) 1)
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for every t € F* and g € G (r).

Now Z8(r) C G"4/5 () and in fact it follows from (1) that Z*(r) is central in
Gne/s (). Since ¢ is an indecomposable admissible representation of Gme/* () of
finite length it admits a unique character w, as above. Since 7 is genuine, so is o

and hence w,. If g € G9 () then for t € (F*)* we have

weo (s(tl,)) = %(g'ls(tlr)g)

— w, (¢, det(g)) " s(¢],))

on using (1). Thus if we = w, then (t,det(g))™t =1 for all t € (F*)*, which .
implies that det(g) € (F*)™* by the non-degeneracy of the Hilbert symbol and

the fact that r — 1 and n/s are relatively prime. Thus
det(g) € (F*)* N (FX)™/* = (FX)re/s

(recall that s and n/s are relatively prime) and so g € G™/*(y). From this we

conclude that if ¢ ¢ G™%/¢ () then Homg,,,, (7)(90, o) = {0} and consequently

an appeal to Lemma 6 shows that

~ Ge (7
T 1ndam/5(7)(a) .

Now if x € (G2 (v) /G"%/% (4))" then

o : aa('Y)
XQTEX® mdana/sm(a)

o~ 3 aa (m

= 1ndam/8(7) (x®o0)
G%(y)

Tner(?)

1%
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giving the second claim. Finally the last isomorphism follows from the Mackey

subgroup theorem. t

Note that when we speak of a representation being geﬁuine there is an implicit
choice of a faithful character of u, (F) (or equivalently of an isomorphism between
pn(F) and p,(C)) involved. For the preceding result it is irrelevant how that
choice is made.

From now on we restrict to the case n = 2. If 7 is a genuine admissible
indecomposable representation of G (7) of finite length then we wish to point out
the consequences of Propositions 3 and 4 for 7. If r = || is odd then s = 2 and so,
according to Propostion 3, 7 remains indecompoéable on restriction to G2 (v) and
is not isomorphic to any of its twists by non-trivial characters of G (v) /G2 (7). If
r = |y| is even then s = 1 and so, according to Proposition 4, m decomposes as
much as possible on restriction to G2 (v) and is isomorphic to all of its twists by
characters of G () trivial on G2 (). Much use will be made of these observationé
in what follows.

If r,s > 1 then Z%(r) & Z2(s) via the map a : Z2(r) — Z2(s) given by
a(s(tl,)e) = s(tly)e for t € F* and € € . ‘(Note that Z!(r) and Z!(s) are
not generally isomorphic.)~ Thus a character of Zz(r) may also be regarded as a
character of 22(3) via o and we shall do this without comment in what follows.
The group G2 (v1) X G2 (y;) is isomorphic to (G2 (v1) x G2 (v3))/B where B =

{(e;€) | € € pz}. If m is a genuine representation of G (v;) and y is a genuine
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representation of G (72) then B acts trivially on 72®n2 and so this may be regarded
as a (genuine) representa{;ion of G2 (71) X G2 (v2). If w; is a genuine character of
72(r) and ws is & genuine character of Z2(s) then the sar.ne construction gives us
a genuine character wy ® wy of Z2(r) X 72(s). It must be distinguished from the
(non-genuine) character wy - ws obtained by regarding w; and w, as characters on
the same Z2(s) and multiplying them. Note that 7 ® 72 admits the character
(rs @ rz) G, ol

Theorem 1: Let m; (resp. wa) be a genuine admissible indecomposable represen-
tation of G (v1) (resp. G (v2)) of finite length and put r = |y1| + |y2|. Suppose

that w is a character of Z(r) such that

wiiz(r) = (wm ® wﬂz)"'z'z(r) . (2)
Then the representation

n-np A o)
has an indecomposable summand admitting w. Any two indecomposable summands
of Il admitting the same character are isomorphic. The restriction of an indecom-
posable summand of 11 to G2 (1) X G? (v2) is isomorphic to the direct sum of

[FX : (F*)?] copies of 72 ® 72 if both |y1| and |vy2| are odd and to 72 ® 72 other-

wise.

Proof: If G is a group, H a normal subgroup of finite index with and J is an

intermediate group with J /H abelian then it is easy to check that

ind%(pln) = @ wd§(x®p)
x€(J/HY
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where p is any representation of J. If we take H to be G2 (y1) X G2 (v2), J to be

G (71) X G2 (v2) and p = 7, ® 73 then the hypotheses are satisfied and we obtain

II

1%

. 1G(711) % G(r2) \
g @ Ade(vl) x G2(72)((X @m)@m3).
XE(G(M)/G2%(m))

If go € G (72) then we denote by Xg, the character of G (71) /G2 (1) given by
Xgz (91) = (det(g1),det(g2)). The non-degeneracy of the Hilbert symbol implies
that every element of (G (y1) /G2 (y1))” arises iﬁ this way and we have g5 'g1g2 =
Xg,(g1)g1 for all g1 € G (71) and go € G (72). From this it follows that if p; is a
representation of G (v1) and p is a representation of G2 (72) then 9192 (p; @ pa) =
(Xgo ®91p1) ® 92y for g1 € G(v1) and g, € G (v2).

If g5 € é ‘(’72) then

. 2G(n) X G(m) (/. (1) X G(m) a7t 2
g )% G o) (Xoe @) ©72) Zindgg o2 20 (ma @ % o)

& g GOom ¥ S() 2
indz ™2 Gl (M1 O 7T2)

. -1
since 92 72 = 2. Thus if we put

e B(m) % G(r) >
th & indg 1105 Go (™1 @ 72)

x. X \2
then IT = H?[F “F™)1 and it follows that it is sufficient to prove our claims with
II; in place of II.
If both |y;| and |y2| are odd then 73 is indecomposable and so 71 ® 72 is

indecomposable by Proposition 1. If g5 € G (v2) \ G2 (72) then

2 2
Homg )% Ga (o) (7 (M ® 73), m1 @ 73)
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~ 9 9
= Homa(‘h); 52(12) ((X92 ® 7T1) ® T, M1 &® 772)

2

=~ Homy, (X4, ® m1,m) ® Homy,, . (72,73) by Proposition 2

G(m) G2(v2)

= {0}

from Proposition 3. Lemma 6 then implies that IT; is indecomposable. Since 7 is
even, (2) determines w uniquely and it is equal to the character admitted by II;.
The last claim follows from the Mackey subgroup theorem.

If either ]'yl.‘[ or |v2| is even then we may assume without loss of generality that

|v2| is even. Let dz be an indecomposable summand of 73. Then from Proposition

4 we have
~ : a(’h); a(‘Yz) g2
= ~ ®~ lnda(‘h); G2(v2) (Wl ® 02)
926(G{(72)/G2%(72)) '
A . 1G(1) % G(2)
IS @ Alnda(’h) % G2(m2) ((X ®m)® 02) .
X€(G(711)/G%*(m))
Let us put

_: 2G(1) X G(r2)
X = mda(*n) X G2(12) (x@m)®0s).

Since all the conjugates of o5 are distinct it follows as above that FEX is indecom-
posable. If |v;| is also even then Proposition 4 implies that x ® m; & m; for all
X € (G (v1) /G2 (y1))" and so II; & E%[FX:(FX)Z]. Agaiﬁ r = |m| + |y2| is even,
(2) determines w uniquely and it equals wy. Computing the restriction of £, to
G2 (1) X G2 (v2) in stages one finds that it equals 72 ® n2 and the Theorem is
proved in this case.

Finally suppose that 'l'yll is odd. The character admitted by X, is equal to
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XlE(I'YID -wy, and since G (1) = Z(}71]) - G2 (1) this character runs over

{w € ’Zv(lr')A ‘ w‘zz(,.) = (wﬂ'l ® w‘n'z)l'iz(.,.)}

as x runs over (G (v1)/ G2 (71))". This proves the first two statements and since

we also have (Z,) >~ 72 ® 72 we are done. [

1G20n) % G2 0)
Definition 3: Letm (resp. m2) be a genuine admissible indecomposable represen-
tation of G (1) (resp. G (v2)) of finite length and w a character of Z(|v1] + |v2))
satisfying

w| = (Wr, ® Wr,)

Z2(|y1 |+1721) |22<m|+|~y'2|> :

We define m1 @, 3 to be an indecomposable summand of the representation I of
the theorem admitting the character w. (It follows from the theorem that m, ®,, mo

is well-defined.)

Proposition 5: Let m be a genuine irreducible admissible representation of the
group G (v1) X G (v2) admitting the character w of Z(|v1| + |v2|). Then there
are genuine irreducible admissible representations my and my of G (v1) and G (7v2)
‘ respectively such that m ='m; Q,, my. Conversely any such tensor product is irre-

ducible.

Proof: If m; and 3 are irreducible then 7} and 73 are semisimple and so II as in
the Theorem is semisimple. Since 7; ®,, m2 < II is indecomposable by construction
it follows that it is irreducible.

a7



Conversely suppose that 7 is as stated. Then the restriction 722 of 7 to
the group G2 (1) x G2 (72) is semisimple and regarding it as a representation of
G2 (y1) x G2 (y2) on which the group B acts trivially we see that we may find

irreducible representations p; and pz of G2 (y;) and G2 () respectively such that

Hom§2(71); 62(72)(7r2’27 P11 p2) 74 {0} .

Let m; be an irreducible constituent of ind S0 (p1) such that 7rf contains p; and

G2 (n )

similarly with p; and mo. If II denotes the representation of the Theorem then

H

Oma('n); ’é(b'yz)(ﬂ’n)

= Homy (72?72 ® 73)

G2(m) X G2(v2)

#{0}

and since 7 is irreducible it follows that it is a subrepresentation of Il. Since II is

semisimple in this case we obtain 7 & m; ®,, 2 from the definition. O

Proposition 6: Suppose that w1 and p1 (resp. w3 and ps) are genuine indecom-
posable admissible representations of é('yl) (resp. G (v2)) of finite length such
that

(@1 @ Wra) g oty = o1 © Wou) syl

Let w be a character of Z(|y1] + |y2|) whose restriction to Z2(|v1| + |v2|) s equal

to this common value. Then it is possible to find two characters

x1€(Gn)/G )" and  xz2€(G(r) /G (1)
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such that

Homa(%); a(72)(7r1 ®w T2, 01 Bu p2)

= Homa(,n)(Xl & 1, Pl) ® Homa(72)(X2 ® 7, p2) .

Proof: Suppose first that 7 and p are genuine indecomposable admissible repre-

sentations of G () of finite length with r = lv] and w, lAz’?(r) = ""P|§2(r)' If r is odd

then let x be the unique element of (G (v) /G2 (7)™ such ‘that Xli(r) ‘Wr =Wy In

this case we have

~ / -
Homg ., (x ® 7, p) = (DHomg (x' ®,p)
X’
= @ Homg (7)(7r, X' ® p) on rearranging the sum
Xl

~ N . G(y) (2 i
= Homg, (m, 1nd62(7) (p )) by Proposition 3

= Homa2 ") (7!'2, pZ) .

If r is even and v is an indecomposable summand of p? then for any

e (G /G2 ()"
we have

Homaﬁ) (x ®m,p) = Homa(ﬁ) (m,p) by Propostion 4

dg(’Y) (

G2(v) V)) by Proposition 4

= Homféh) (7r, in

= Homazh) (m2,v).
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It follows from the proof of the Theorem that 7; ®,, T2 and p1 ®. po are isomor-
phic to representations induced from either G (v;) X G2 (72) or G2 (v1) X G (72)
to G (v1) X G (72) and the inducing representation is explicit in each case. Thus
the space of homomorphisms from m; ®,, 72 to p1 ®,, p2 may be calculated using
Frobenius reciprocity. Oﬁ doing this and then using Proposition 2 and the iso-

morphisms which have just been established we obtain the Proposition. O

Corollary 1: Suppose that m1 and p; (respectively mo and p2) are genuine wr-
reducible admissible representations of G (y1) (resp. G (72)) and w is a charac-
ter of Z(|y1| + |y2|) such that both m, ®, 7y and p, ®. p2 are defined. Then

T ®, To 1 Q0 p2 if and only if there are characters

X1 € (G(n) /G2 (n)” and  x2 € (G (12) /G (2))”

such that x1 @ m1 = p1 and x2 ® T = p,.

Proof: The “if” direction is immediate from the definition and the “only if” di-

rection follows from Pfoposition 6. O

Proposition 7: Suppose that w1 (resp. m2) is a genuine indecomposable admis-

sible representation of G (1) (resp. G (72)) of finite length. Then

where ~ is being used to denote the contragredient representations and w is any

suitable character.
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Proof: We have

Gim) X G(n) 2 N\~ o 1 3CG(r) X G(72) A2 o ()2
St % G (L O T2) I  y (F)7 @ (2)°)

and by using Lemma 5 to reduce to the case of a finite-dimensional module over
an algebra we see that the contragredient of an indecomposable representation is
indecomposable. Thus (m; ®, )" is an indecomposable summand of

B F Gm) ((m2 o 2
lndaz(n); 52(72)((7&) ® (72)?)

and since it admits the character w™! the claim follows. O

Proposition 8: For i = 1,2,3 let m; be a genuine admissible indecomposable
representation of G () of finite length and put r = |y + |v2| + |v3l- Then for

any character w of Z(r) such that

wl‘iz(,.) = (wm ® Wg, @ wﬂ’s)"Zz(,.)

~

we have 1, @, (T2 ® 73) = (11 @ T2) By T3. Here the inner tensor products may

be formed with respect to any suitable character.

Proof: Using the definition of ®, and the transitivity of induction it is routine
to check that both 71 ®,, (s ® m3) and (m; ® T2) ®. T3 are isomorphic to any

of the indecomposable summands of

da(’h) X G(v2) X G(ya)

2 2 2
G X o) X Glae) T O T2 BT
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admitting the character w. g

Finally we want to extend the definition of ®, to include representations
which are not necessarily indecomposable. Call a representation 7 of G () homo-
geneous if it admits only one character of AZ(M), if 7 is homogeneous then it still
makes sense to write w,. If m; (resp. m3) is a genuine é,dmissible homogeneous
representation of G (v;) (resp. G (y2)) of finite length and w is a character of

Z(|71] + v2]) satisfying

= (Wr, ® Wy )|

“"Ez(mmm) Z2(|v1 |+ |72])

then we define m ®, o by requiring Ry to distribute over direct sums. It
follows from the Krull-Schmidt Theorem that this extension is well-defined. The
properties of ®,, given in Propdsitions 6, 7 and 8 remain valid in this setting.
2. Parabolic Inducﬁon and Jacquet Functors

Continuing with the notation of the previous section with n = 2 we let
R(G (7)) denote the category of genuine admissible representations of G (y) of
finite length for v = (r1,...,7%) a k-tuple of positive integers. Let us introduce
an equivalence relation ~ on the objects of R(G (v)) by defining x ® = ~ = if m is
indecomposable and x € (G (v) /G2 (v))” and then m; ~ my if m; ®%_1mi; with
7;; indecomposable and 7y ~ my; for all j. For 7 € R(G (7)) we let [w] denote the
equivalence class of 7 under ~. The set of equivalence classes in R(G (7)) may be
regarded as the set of objects in a category R[G (v)] where a morphism from [m1]

to [me] is simply a G (7)-homomorphism from any element of [r;] to any element
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of [m2]. We know from the previous section that if 7 € ’R,(C~} (7)) is indecomposable
then [r] consists of one element if || is even and of [F'* : (F*)?] elements if ||
is odd. In the latter case the elements of [r] are distinguished by the character
of Z(|7|) which they admit. It follows from the definition of ~ that we may set
[m1] + [mg] = [m @ ma] for my, m € R(G (7))

Fory = (ry,...,7x) and r = |y| welet Q (y) < G(r) be the standard parabolic

subgroup corresponding to the set of simple roots
A(y) = A\{(r1,r1+1), (ritro, ritra+1), . (rite o1, Tt g1 +1) )

Then G(v) is a Levi subgroup of Q () and we denote by N(v) the unipotent
radical of Q (y). For any subgroup H < G(r) let us put H = p=}(H) < G (r).
Recall that it is possible to choose s so that S|N(y) is a-homomorphism and we
shall always do this in what follows. Then N* ('y) = s(N('y)) is a normal subgroup
of Q (7) and Q (7) = G (7) - N*(v) with G (7) N N*(y) = {1}.

Ify=(ry,...,7%x) and § = (31’.“’32)' are both partitions of r then we say

that 7 refines 6 and write v < ¢ if there exist &y, ..., k; such that

j=ki—1+1
where kg is interﬁreted as 0. If v < 6 then we let N(6,7) = G(6) N N(v) and
N*(4,v) = s(N(d,~)). Note that since G(v) < G(d), N(4,~) is normalized by G()
and N*(§,~) is normalized by G (7).
If v < 6 we now define i, s to be the normalized induction functor and s
to be the normalized Jacquet functor corresponding to the groups G (8), G (v)
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and N*(4,v) and the trivial characterb on N*(4,v). The definitions of i, and
©s5,~ together with many properties enjoyed by these functors are given in [BZ2],
beginning on page 444. In addition to the properties recorded there we want te
mention that both i, 5 and s, take representations of finite length into represen-
tations of finite length. That is, iy5 is a functor from R(G (y)) to R(G (4)) and
s, 1s a functor from R(G (8)) to R(G (7)). In both cases this is simply a matter
of adapting a proof available in the literature for G(¢) and G(vy) to the situation
of the covering groups. One first establishes along theflines of [BZ1], §4.1 that,
for admissible representations of G (7), being of finite length is equivalent to be-
ing finitely-generated. Then imitation of [Cas], §3.3 shows that i., ;5 preserves the
condition of being finitely-generated and imitation of [BZ1], §3.13 establishes the
corresponding broperty of s,y (The developmeﬁt leading up to §3.3 in [Cas] is
not quite accurate, but it can easily be repaired for the purpose at hand using re-
sults from [BZ1].) Proposition 1.9 (f) of [BZ2] applied to the functors @5 and i, s
shows that they respect the equivalence relation ~ introduced above. Therefore
they may also be considered as functors on the categories R[G ()] and R[G (7)].

It will be useful to make some remarks on the modular function which occurs
in the definitions of i, s and ¢s.. Since G (v) is a locally compact Hausdorff
topological group any closed subgroup of it carries a Haar measure and hence
if G1,G, < G (v) are closed subgroups with G; normalizing G2 then there is a

corresponding modular character mod : G; — R} defined by
[ Horgo) dg = mod(a) ™" [ #(9)dg
G2 G2
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for any f € L(G3) and ¢g; € G; where dg denotes any Haar measure on Gs.
Suppose that Hy, Hy < G(vy) and H; normalizes H,. If modﬂ2 denotes the mod-
ular character of H; acting on Hs and modﬁ2 denotes the modular character of
H; acting on Ho then since ps is central in H; and p : G (v) = G(v) is a local

homeomorphism we have

modz (h) = modg, (p(h))

for every h € H;.

Let v < 4 be partitions of r. With the considerations of the previous para-
graph in mind we define ps., : G (y) = RX to be the quular character of G (v)
acting by conjugation on N*((S; fy.). It is the same as the modular character of G ()
acting on ﬁ(d, ~v) and, after composition with p, it also equals the modular char-
acter of G(v) acting on N(4,~). We shall identify all of these by the usual abuse
of notation. A calculation in G(r) shows that if v = (ry,.:.,7%) and kq, ..., k¢ are
as in the definition of ~ <‘<5 then

Hin(gns o) =T] T | det(g)i™ &

i=1j=k;_1+1

k.
where mg; =Y .1, 1 €jaTa,

1 fa<b
b=+ 0 ifa="5
-1 ifa>b

and | - | denotes the standard absolute value on F'. If 8 is a third partition of r and
B <7 < & then we have N(4, 8) = N(d,v) - N(v, 8) and N(§,7) NN(~,8) = {1}. It
follows from this that psg = fi5. - ity,5 as characters of G(8) or of G (8).
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Next we would like to define a “cross” product of representations as in [BZ2]
and [Zel]. Unfortunately on the category @rzoR(é (r)). the definition is rather
awkward and only gives rise to a partial operation. This is due to the role of the
character of z(r) which must be chosen in order to define the tensor products.
Although it will not be necessary in what follows we would also like to indicate
how a more satisfactory definition can be made on the cétegory @rZOR[é (r). If

r=ry+ry m € R(G(r1)) and my € R(G (r3)) are homogeneous representations,

w is a character of Z(r) satisfying

_ wl’iz(r) = (wr, ® wwz)lzfz(r) | (2)

and x € (G (r) /G2 (r))” then
X ® (11 ®u M2) 2 M1 Ry T2.

Every character of 2(7”) satisfying (2) has the form x-w for some x and so the class
of T, ®,, T does not depend on w. This allows us to define [1;] ® [ms] = [71 ®. T2
for any homogeneous representations 7; and w2 and any w satisfying (2). We may
then extend this definition to general [m1] € R[G (r1)] ;nd [1r2] e R[G (ry)] by

making ® distributive over +. Then given [m;] € R[G (r;)] fori = 1,..., k we set

~ —~

[m1] x - X [me] =iy ),y ([T ® -0 ® [mk])

with 7 = r1+- - -+rg. This operation has the same good properties as Bernstein and
Zelevinsky’s x operation; in particular, if R[G (r)] is replaced by its Grothendieck
group with respect to short exact sequences then x becomes commutative. If
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m; € R(G‘ (r;)), with ¢ = 1,...,k, are homogeneous representations and w is a

character of Z(r) with r =r; + - - - + i, satisfying

wl'iz(,.) = (Wr, ®+® wﬂ'k)!EZ(r)

then we also define

T X T X oo X T = i(ﬁw.,f‘k),(‘f‘)(”rl Ru T ® ... Q 7rk).

In view of Proposition 8 of Section 1 it is unnecessary to specify the order in which
the tensor products are formed or the intermediate choices of central character.
The operation x,, is associative and distributive over direct sums and m; X, 7y X
s X T 18 hémogeneous, admitting the character w. The first two of these claims
are clear; for the last one observe that if 7 = 7ri Qu T2 ® ... @ T then we may
find m > 1 such that (7(2)—w(z))™ annihilates Ey for all z € Z(r). It then follows
directly from the definition that (II(2) — w(z))™ with IT = 7 Xo T2 X --- X 7
annihilates the space of the induced representation for all z € Z(r), which implies
the claim.
We close this section with a technical result which Will be useful later on.

Proposition 1: Let 71 € R(G (61)) and w3 € R(G (82)) be homogeneous repre-

sentations and suppose that v; < 41, 'yé < 09. Then

‘p(51,52),(’71,’72)(7r1 éw T) & Pé1.m (1) éw Pé2,72 (2)

for every character w of Z(|61] + |82]) for which m, ®,, w2 is defined.

Proof: Set § = (d1,02) and v = (v1,72). We begin by applying Theorem 5.2 of
[BZ2] to compute the composition of s, with induction from G (&) X G2 (42) to
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G (6). Since we may choose coset representatives for G2 (02) \G (8,) from G (72)

there is a single

(G (61) X G*(62), G (7) - N*(6,7))
double coset in G (6). Using this observation we obtain an isomorphism of functors

G(@1) % G(E2) a jqC(1) X Gl2)

2
Loy OG5 % @) TG R @) (617 ® ©5,.0) @)

where ¢F, R(G2 (8;)) — R(G2 (72)) is the Jacquet functor with respect to the

trivial character on N*(da,7v2) < G2 (82). Also

&~ 2 ~
igz(%) ©Péy,y2 = (1052‘,’72 © |G2 (62)

where the vertical bars represent the restriction functors. If both |61] = |y1| and

|02| = |v2| are odd then

’ ) ol G((Sl) X G((Sz) : 2
T B T2 = mdc(él) > G2(62)( 187)

and similarly for the representations of G (v1) and G (2). In this case the Propo-
sition follows directly from (3). |

If either |0;| and |d2] is even then we shall assume that |62| is even, the other
case being similar. We‘ may also assumé that 7; and o are indecomposable since
both sides of the proposed isomorphism respect direct sums. For each suitable w

there is an indecomposable summand o3 of 72 such that

G(61) X G(52)
T @ Ty =2 de(él)x G2(62)( 1 ®02)

and so

- s 1G(m) X Glr2) 2
‘105,’7(71-1 Ow 71'2) de(:i) X GzZiz) (‘1051,’71 (71'1) ® Ps2,7v2 (02)) : (4)
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The representation s, ,(m2) will generally have several indecomposable sum-

mands, say

@62,’72(772) =pD--Dpk.

The indecomposable summands of pjz- are distinguished by the character of Z1(|d2|)

which they admit. We choose a particular character of this group from amongst

those restricting to wy, on Z2(]62]) and let v; be the summand of p? admitting

this character. It then follows from Proposition 4 of section 1 that

2 ~ g,.
Pj = @ Vi

9€(G(72)/G2(72))

and so if we set v =v; @ --- D vy, then

<P§2,’)’2 (ﬂ.g) g @ gu‘

9€(G(72)/G*(12))
Moreover if the character admitted by v was chosen correctly then we have

Gin) X Glm)

G(m) X G2(y2) (961,7 (1) ® V).

Pé1,m (771) éw ©é2,72 (’/Tz) = ind

In addition

T3 @ Y9
9€(G(72)/G?(12))

and so

<P§2’72 (ﬂ-%) = @ g<p§2 yY2 (02) °
9€(G(72)/G?(12))

(7)

Since o is indecomposable it is homogeneous for Z!(|ds|) and hence ©3 s (02)

is also homogeneous for this group and each conjugate in (7) admits a different

character of Z!(|6,]). Comparing homogeneous summands under Z!(|d2|) between
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(5) and (7) we conclude that s, ,,(02) = 9 for some g € (G (12) /G2 (72)). Now

(4) and (6) combine to show that

(P6,7(7T1 éw 7r2) = X® (‘P51,’71 (71'1) éw Pé2,72 (71'2))

for some x € (G () /G2 (v))” and since both sides admit w we can conclude that

©5,4(T1 B M2) = sy 4 (T1) Bu Pb3,7(T2)

as required. O

3. The Local Exceptional Representations

In this section we place the exceptional representations of [KaP] in the frame-
work of the last two sections and prove various results about them which will sub-
sequently be needed. From (3) of Chapter 1, section 3 we see that G(1) = F* X ps
and hence every character. x of F* gives rise to a genuine character of G (1) and
conversely; we shall use the same symbol to denote both objects. If x is such a

character and we let H2 = G2 (1) X ... X G2 (1) then

Yl = (XIE'-’(l)) R - ® (X|E2(1)) (r factors)

is a genuine character of ﬁf Let us choose a character w of z(r) which satisfies

: wli(r)nﬁa = x"" |E(r)nﬁa . (1)

This is always possible because Z(r) is an abelian group and Z(r) N fI,z, = 72 (r)
is an open subgroup of finite index (this second remark means that any extension
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of a continuous character will again be continuous). Note also that any such w is
automatically genuine. When w and x as above satisfy condition (1) we shall call

them compatible. We may define a character (w - x[™!) of Z(r) ﬁf by setting

(w - xI)(zh) = w(2)x"(h)

for every z € Z(r) and h € ﬁf, it follows from the choice of w that this is well-
defined. If w € W and g € G (r) then we let g¥ = s(w)~'gs(w). This defines an
action of W on G (r) .WhiCh preserves the subgroup Z(r) - H2 and hence induces
an action of W on the characters of this .subgroup given by (“0)(g) = 6(g"™).

For any x and w as above we set

Xr,w=X®wX®---®X' (rfa,ctors)‘

which is a genuine irreducible fepresenta,tion of H, = G(1,...,1) < G(r) on
which Z('r) . ﬁf acts by w - xI"). It follows from Frobenius reciprocity that x., is

an irreducible constituent of the representation

~

r . A7)
ndE(r).ﬁg (w-x'™).

From the theory of representations of Heisenberg groups {see, for example, [KaP)]

§0.3) or by direct computation we see that any representation of I:Ir obtained by

inducing a genuine character of Z(r) . ﬁf is isotypic. This remark may be used to

good effect in proving facts about x, .. For instance suppose that w € W; then it

is clear from the definitions that “w = w and *(x["]) = x" and hence



It follows at once from this that “x; ., = xr . for all w € W. We will use this kind
of argument again in the proof of Proposition 2.

For any partition v of r let us define

- -1/4
7T1(X,w) =1(1,...,1), (/1’1’1({’__.,1) ® Xr,w)

where fi, (1,... 1) is the modular character introduced in section 2. From now on we
shall let 7o stand for thé partition (1,...,1) of  and write 7o for 7o, when no
ambiguity will arise. For any partition v of r we let W(v) be the subgroup of W
generated by the set of simple reflections {sq |a € A(v)}. ‘The group W (7) is nat-
urally iden’tiﬁéd with the Weyl group of G(v). We also let &, = ® Nspanz(A(7))
and ®F = ®, N ®%; then @, ié the root system of G(y) and ®7 is the positive
system corresponding to the simple system A(7y).

If 7 is a representation of any £—group and 7 has a chain

of subrepresentations such that m;/m;—1 = 7; for i = 1,..., k then we follow [BZ2]
in saying that 7 is glued f}om the representations 7, ..., 7.
Lemma 1: Let v < & be partitions of r and p be an algebraic representation of

H,. Then ps.(in,5(p)) is glued from the representations i, o(*“p) as w runs over

W(y\W(9).
Proof: We have a Bruhat decomposition

GO = U  (H-N@Ew)w ' (GH)-NG7))
weW(j)\W(é)
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and it follows that

G@E)= |J  (H-N0))sw) (G H) N(5,7)).
weW (v)\W (4)

Given this observation the Lemma is simply a version of Bernstein and Zelevin-

sky’s Geometric Lemma and it follows from Theorem 5.2 of [BZ2] just as in that

paper. O

Lemma 2: Let v < § be partitions of r and suppose that w € W(4) is such that

Wis 4o = Wo, OT the group Z2(y) = Z(y) NH2 where H2 = p, (H2) and Z(v) is the

center of G(v). Then w € W(vy).

Proof: Suppose that v = (r1,...,7%) and § = (51,...,.§g) and let ko,..., ks be

as in the definition of v < 6. A typical element of Z?(y) has the form

z=diag(gl,...,zlj,\zz,...,zj,...,gk,...,sz)

WV v WV
Ti ‘T2, Tk

where z; € (F*)? for all 4. Using (1) of section 2 we obtain

(gt =11 TT ol

i=1j=8;_1+1

where S; =Y. _, s, and

mij = E €ja

a=S;_1+1
=card{a|j <a < S;} —card{a|Si—1 +1<a<j}
=(Si—4) - (1 — (Sic1+1))
=85 +8i-1—-2j+1,
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which gives

L S,
M&,'yo.(diag(tl, . t,.)) = H H |t]_ Si+Si—1—2j+1 (2)

i=17=S;_1+1

Let us define R, = Zgzl ry; it follows from the deﬁnitioﬁ of v < § that S; = Ry,

foralli=1,...,¢ and hence
k;
[Si—l +1,Si] = U [Rm-—l +1,Rm].
m=k;_1+1

Now w € W (4) if and only if w, thought of as a permutation of {1,...,r}, satisfies
the condition

w[S;_l +1, Sz] = [Si—l +1, Sz]
fori=1,...,£and w € W(y) if and only if
w[Rm—1+1,Rp] =[Rm-1+ 1, Rp) (3)

form=1,...,k.
If we write z = diag(ty,...,t,) with z as above then tj = 2zm for Rp_1+1<
j < Ry, and since the |z,,| may be varied in ¢*% independently of one another it

follows from (2) that “us~, = s, as characters of Z%(y) if and only if

R, R,
o= Y w() (4)

J=Rm-1+1  j=Rep_1+1
for all 1 < m < k. Thus we are reduced to showing that condition (4) implies
condition (3) for w € W (§). We do this by induction on m, the first case being
included in the general case. So suppose that w € W (4) satisfies (4) for all m
and (3) for m =1,...,(c=1) with ¢ < k. Then w(l, R.—1] = [1, R.—1] and con-
sequently w[R.—1 + 1, Rg] = [Rc—1 + 1, Ri]. Now Zf__ﬁRc_ﬁlj is the sum of the
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smallest (R, — R.-1) distinct numbers in [R.—1 + 1, Ri] and hence it is strictly
less than any sum of (R, — R.—1) distinct numbers in [R._1 + 1, R} except itself.
Using condition (4) now implies that w[R.—1 + 1, R = [Re—1 + 1, R.] and this

completes the induction step. O

Proposition 1: Let v < § be partitions of r. Then

¢5,7 (7T¢5 ( ‘-‘J)) = @ b,y (wﬂg_,.lyélx ® Xr,w) .
weW (7)\W ()

Proof: Since ms(x,w) =.i70,5(‘ S/

5y @ Xrw) it follows from Lemma 1 that the

representation s (ms(x,w)) is glued from the representations i, (w(u;%‘l ®

Xrw)) as w runs over W(y)\W (8). We know that “x; ., = Xr,., for all w € W and

hence

o (U520 @ X)) 2 iy (gl ® X -

It remains to see that there can be no non-trivial extensions between these con-
stituents so that ¢g.(7s(x,w)) must in fact be their direct éum. To do this we
observe that Z2(y) is central in G (¥) and the character of Z2(y) admitted by
o,y ("“u;,lrg ‘o xr,w) is '“’ug,% ‘. x"l. It follows from Lemma 2 that these characters

of Z2(~) are all distinct as w runs over W (y)\W(§) and this settles the remaining

point. O

Suppose that 7 is a character of }~I£ Then following [KaP] we let 72 be the
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character of H, defined by n?(h) = 7(s(h?)). From any character A of H, and root
a = (1,7) of G(r) with respect to H, we obtain a character A\, of F* by setting

Aa(z) = A(ha(z)) where |
ho(z) = diag(l,...,z,...,z7 %, ... 1).

A character n of H2 (or of Z(r)-H2) is called ezceptional by Kazhdan and Patterson
if it satisfies 72 = | - | for all & € A.
Let us denote by wq the longest element of W with respect to the positive
1/4

system ®t. We wish to show that o (;L(T) o @ X[T]) is an exceptional character.

Since for ¢ € A and z € F* we have

(wox[r]) (ha (.'1:2)) — X[r] (S(ha (.'1:2)))

1/4

this amounts to showing that "’O,u;r) "o is exceptional. From the proof of Lemma

2 we have the formula

K)o (dl&g t1,...50 H lt i'f' 2]+1

and hence
“O(r) 0 (diag(ty, - - H ;|72
If = (3,1+ 1) € A then this gives
YOy o (e (27)) = |2| 7T g =2 T~

= Jo|*
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—1/4

and 50 %0,

(ha(2?)) = |z|, as claimed. Once this fact is available Theorem
1.2.9 of [KaP] implies that for every character x of F* and every character w of
Z(r) satisfying (1) the representation m(,y(x,w) has a unique irreducible subrepre-

sentation. This subrepresentation is isomorphic to the unique irreducible quotient

of

: -1/4 ~ i 1/4
“y0.(r) (wo(u(f),'ro ® Xr,w)) = Lyo,(r) (u(r),'yo ® X",w)

and is called by Kazhdan and Patterson an ezceptional representation. We shall
denote the unique irreducible subrepresentation of 7(,)(x,w) by 9 (x,w)-

We define a representation 9. (x, w) of G () for any partition v of r by setting

o e .
19»7()(,(.0) = /"'(.,( Y 0 L),y (19(1') (Xaw)) . (5)

Any representation of G (v) which-arises in this way will be called a y—ezceptional

representation or simply an ezceptional representation if <y is either evident or

unimportant.

Theorem 1: Let x be a character of F*, w a character of i(r) compatible with

x and v < & be partitions of r.

(a) We have

05y (0500, w)) = p5 24 @ 0, (x,w) -

(b) There is an isomorphism ¥, (X, w) = Xrw-
(c) The representation J(x,w) is isomorphic to the unique irreducible subrepre-
sentation of my(x,w).
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(d) If v is written as vy = (y1,72) where vy is a partition of 1 and 7y, is a partition
of ro then

Gy (s w) = oy (X, 1) B By (X, w2)

where w; € Z([vjl)A 18 compatible with x for j =1, 2.
(e) The contragredient of 9,(x,w) is isomorphic to 9(x~* w™?).
(f) The representation 95(x,w) is isomorphic to the unique irreducible subrepre-

sentation of iy (,u;i/‘l ® V4 w))-

Proof: (a) We have

5. (9500 0)) = 054 (s s ® ) 6 (V) (X5 0)))

~ . 1/4 - .
= 1t/ ® (e (9 (0 )

—1/4 1/4
= gy ® iy ® 0y () (1))

= N:s_,},/‘l ® Iy (x,w) -

(b) When rewritten in our terminology the Periodicity Theorem (Theorem

1.2.9 (e) of [KaP]) asserts that

o —1/4
P(r)0 (ﬁ(r) (x w)) = By o QD Xrw -

In order to verify this claim it is essential to recall that the Jacquet functors
in [KaP] are unnormalized whereas ours are normalized and that the irreducible

constituents of



are constructed in [KaP] by first extending w-x[" to a maximal abelian subgroup of
ﬁ, and then inducing, whereas here they appear as tensor products of characters
- of G (1) in the sense of section 1. Combining the above isomorphism with the
definition gives (b).

(c) Using parts (a) and (b) of this Theorem and Frobenius Reciprocity we

obtain

Homfé(,y) (19’7(Xa w)v Ty (X’ w))

~ TTA —~1/4 —1/4
= Hom'éh.o) (/1/,7,7{) ® Xr,ws /1'»7,7{) ® Xr,uJ) .

The identity map from u;}y{f ® Xrw to itself corresponds under this isomorphism

to an embedding of ¥, (x,w) into 7, (x,w). Thus ¥,(x,w) may be regarded as a
subrepresentation of m,(x,w). Now 7 (x,w) is an inducéd representation and it
follows from (the metaplectic analogue of) [BZ2] Theorem 2.4 (a) and (d) that
7 (X, w) has no cuspidal constituents. In particular 9. (x,w) has no cuspidal con-

stituents and since

Pv,v0 (19’7 (X7 w)) = /1’;,}7{,4 ® z9’70 (Xa w)

= 3ot @ Xrw

is irreducible it follows that 9., (x,w) is irreducible. Finally we must show that
7y(X,w) has no other irreducible subrepresentations. So let p < m,(x,w) be an
irreducible representation other than 9. (x,w). Using Proposition 1, the fact that

Jacquet functors are exact and the observations just made we see that

Pv.v0 (P) = w/”;,}y{,‘l @ Xrw
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for some w € W () \ {1}. The transitivity property of induction implies that

7r(7') (Xa w) = i'y,(r) (:UJE;;,/: ® 7r’7(Xa w))

and so i%(r)(,u(_r;/: ® p) is a subrepresentation of m(,)(x,w). Since ¥, (x,w) is the

unique irreducible subrepresentation of m,y(x,w) it follows that

Homg,, (9(r) (3 &) i, (r) (1 ®p)) # {0}

However

-= —~1/4
Hom&'(r) (19(7") (X w), by (r) (:u(r),/,7 ® p))
o 1/4
= Homg )(“(r) , ® 94 (x,w), IL(,,)/ ® p)

= Homg, (0,(x,). )

and consequently ¥.,(x,w) = p. This isomorphism gives rise to a contradiction,
since Lemma 2 shows that ¢, ., (9,(x,w)) is not isomorphic to @, (p)-

(d) Using Proposition 1 of section 2 we obtain

#v,7 (19’71 (Xa wl) Quw '19’72 (X, w2))
= oy, Y0,y ('19'71 (X’ wl)) éw Pv2,70,r0 ("9'72 (Xa w2))

& (uyMd @0y, (xw1) 8w (W3 @14 (x,w2))

~ , —1/4 ~
- ‘u(’h ¥Y2)5Y0 ® (Xﬁ,uh Ow sz,wz)

-1/4

= By B Xrw

and so the representation ., (X, w1) ®w U, (X, w2) may be regarded as a subrep-
resentation of 7, (x,w). It follows from the construction of ®,, in section 1 that
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Yy, (X w1) ®uw Jny, (X, w2) is also irreducible and hence isomorphic to 9, (x,w) by
the previous part of the Theorem.

(e) From Proposition 1.9 (d) of [BZ2] we see that

~n ~1/4 ~

T(r) (Xa w) = Ty, (r) (('u’('r),'yo 2 Xr,w) )
~ 1/4 ~
= 7"707(7') (M(T),’)‘o ® XT"‘) )

where ~ is being used to denote contragredients. By Proposition 7 of section 1 we

have

These isomorphisms imply that

T () 06 ©) ™ 2 g () (B e ® (X Do) -

We know that 9(,y(x™*,w™") is the unique irreducible quotient of

. 1/4 _
/L'YO)(T) ('u‘(r),'yo ® (X 1)7‘7“)‘-1)

and under the pairing between 7(y(x,w) and 7(;)(x,w)” the irreducible subrep-
resentation ﬂ(r)(x,w) must be paired with an irreducible quotient. Therefore we
have an isomorphism 9(ny(x,w)” = 9y (x~,w™?). Using part (d) repeatedly

shows that if v = (rq,.. ., rk) then

Ty (%) Z (1) (X) Buw ir)(X) ® -+ @ Iy (X)
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and using Proposition 7 of section 1 gives the claim in general.
(f) From (c) and the exactness of induction we know that the representation

/4

U5 (ué_’i ® (X, w)) may be regarded as a subrepresentation of

. —-1/4 ~ - —1/4 . -
ly,6 (/*1’6,'7/ ® oy (X5 w)) =1y, (Né,q/ ® 7'70,7(#7,}7{)4 ® Xr,w))

~ ~1/4
= 1,8 (""70,'7(/15,7({ ® Xr,w))

= 7:'70,(5 (,U/,;_’ig‘i b2 Xr,w)

=T (X7 LU) .
The claim now follows from another application of (¢) together with the fact that

all the representations concerned have finite length. O

Next we svtate a simple result which shows that all the exceptional represen-
tations may be derived from a small number of them simply by twisting with
non-genuine characters. We let xo denote the trivial character of F* and 7 be a
partition of r. If w is a character of z(r) which is compatible with xo then we
denote the representation ¥, (xo,w) by ¥ . Note that any two characters of Z(r)
compatible with xo differ by a character trivial on zz(rj. Since Z(r) /Z%(r) has
order one if r is even and order [F* : (F*)?] if r is odd, there is a unique character
of Z(r) compatible with xo if 7 is even and [FX : (F*)?] such characters if r is
odd.

Proposition 2: Let x be a character of F*, w a character of Z(r) compatible

with x and v a partition of r. Then

Il?’Y(X’ w) = X(det) ® Uy, wo
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where wy = x~!(det) - w.

Proof: We have

. JH r

x(det) ® lndE(r)-Hg (wo X([) ])
’llndﬁr ~ (x(det) ® (wo xk ]))

7(r)-H2 0
~ ool [r]
s indflr - (x(det) -wo) - (x(det) - &)
o ingfr 7]

dE(r).ﬁg (w-x")

Since we know that these induced representations are isotypic this calculation

implies that x(det) ® (X0)rwo = Xrw- From this we obtain

x(det) ® Ty (x0,wo) = x(det) ® U,y (“—7}7{)4 ® (XO)T,WO)

2 gy (1755 ® x(det) ® (X0)rwo)

= g,y (“—7}7{)4 ® XT,W)

= Ty (X w)

and since tensoring with a character does not affect the submodule structure of
a representation it follows from Theorem 1 (c) that x(det) ® 9w, = 94(x,w) as

required. U

In our definition of a y—exceptional representation it might be thought more

natural to have allowed representations of the form

-~

197‘1 (Xlawl) Quw - é 197‘:; (Xkawk) (6)
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where v = (r1,...,7%), X; is a character of F'* for j = 1,..., k and w; is a character
of Z(rj) compatible with x;. The Proposition which has just been proved shows
that nothing essential was lost by making our more restrictive definition. Indeed
the representation (6) is isomorphic to x ® 9, where x is the character of G ()

given by

k
X(g1,---,98) = [ | x5 (det(g)))
-

J

and v=x"1-w.

As a complement to Proposition 2 we would like to describe in detail the
characters of"Z(r) which are compatible §vith Xo- It is no harder to describe all
genuine characters of Z!(r) and this descrjption will be iniportant later in matching
the local and global situations. If ¢;,t5 € F'* then a direct computation using (3)
of Chapter 1, section.3 gi\}es |

o(t1l, tal) = (t1,t2)" " D/2
and it follows that when 7 = 0,1 (mod 4) we have Z'(r) = G (1). When r = 2,3
(mod 4) we have instead that Z(r) = G'(1) where G.(1) = (Ei'(l,F) is the
central extension Originaliy constructed in Chapter 1, s‘ection 2. Explicitly we

may take
G(1)= {[t,e”tEFx,eE,uz}

with the multiplication law

[t1, €1] [t2, €2] = [tata, (f1,2)€r1€2]
As we have already observed, the set of genuine characters of G (1) is in one-

to-one correspondence with the set of characters of F* and this correspondence is
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independent of any additional choices. It is a remarkablé fact that after a choice
of additive character ¢ on F a similar statement holds true for G’ (1). Recall that
in [Wei] Weil associates to each additive character ¢ of F' a complex number ().
If v is such a character and a € F* then we put ¥,(z) = ¢¥(az) for all z € F.

The essential property of fy for our purposes is expressed by the equation

(a’ b) — ’YEd)ab)’Y(d)) | (7)

which holds true for all a,b € F*. A very useful reference for this and other
properties of <, including the question of computing its value for a particular 1,

is the appendix to [Rao]. Following [GeP] we introduce a function on F* by

With this notation equation (7) may be rewritten as

(a,b) = py (@) ()1 (ab) 2. 8)

If x is a character of F'* then let us define x,, : é'(l) — C* by

Xy ([t €]) = x (&) py (t)e.

A routine calculation using (8) shows that x.; is a genuiné character of G'(1) and
every such character arises in this way from some y. We have thus obtained a
description of the genuine characters of Zl(r) for all values of r.

Proposition 3: Let ¢ be an additive character of F and Xy = {x € (F*)" |
x2=x0}. Ifr is even the.uquue character w on(r) compatible with xo satisfies
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w(s(t?)) =1 for allt € F*. If r is odd then the set of characters ofi(r) compat-
ible with xo is {wy | x € X2} where wy satisfies wy (s(t)) = x(t) for allt € F* if

r =1 (mod 4) and wy (s(t)) = x(t)py(t) for allt € F* if r =3 (mod 4).

Proof: This follows immediately from what we did above. O

We have seen in Chapter 1 that G (r) has an involution g — *g which lifts
the main involution of G(r). Our next task is to describe the interaction between
this involution and the exceptional representations.

Lemma 3: Let x be a um’tary character of F* and w a- character of Z(r) com-
patible with x. Then there is a conjugate linear map A-: EXr,w — E,, . which

satisfies Ao A =idg,  and

A(Xr,w(h)f) = Xrw (Lh)A(E) (9)
foralheH, and€ € Ey, . . i}
Proof: According to the theory of representations of Heisenberg groups, the

irreducible genuine representations of I:ir are determined up to isomorphism by

their central character. Let us consider the representation (“x,.) of ﬁr. It is

irreducible and its central character is zh — w(*z) - x"I(*h) for z € Z(r) and
h € H2. Since w satisfies
w]

SUNRU | J IO
Z(rynH2 — X |Z(r)an

it is also unitary. According to Proposition 4 of Chapter 1, section 4 we have

‘2= 27! and so w(*z) = w(z~1) = w(2). Proposition 2 of the same section implies
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that ‘s(p(h)) = s(‘p(h)) and it follows from this that x["}(*h) = x["}(h)~! and
hence x[rI(+h) = x"1(h). Thus x,. = (*x,.) and any choice of isomorphism gives
a conjugate linear map A : E, , — E,,  which satisfies (9)

The map A is a bijection and A~ : E,__ — E,, _ is conjugate linear. Since

v is an involution we may replace h by *h and € by A~1(£) in (9) to obtain

A (Xr,w(h)g) - Xr,w(bh)A_l(f) .

Thus A~! is also én isomorphism from x, ., to (“*x, ) and it follows from Schur’s
Lemma that A™! = cA for some c. Thus (¢!/2A)~! = ¢!/2A and replacing A by

c}/2A we obtain a map with the required properties. d

Proposition 4: Let x be a unitary character of F* and w a character of Z(r)
compatible with x. There is a conjugate linear ‘mdp §(+—> ¢ from Eyg .y (xw) to itself

which satisfies (€') = € and

() 06 @) (9)€) = Iy (x, w) (g) €'

forallge G (r) and § € By, (xw)-

Proof: If f € E;  (x,) then let us define f': G (r) = Ey.. by f'(9) = A(f(*g))

where A is the map from Lemma 3. We claim that f' € E, In section 5

(r) (X 7“") °
of Chapter 1 it was shown that the main involution of G (r) is a homeomorphism.

From this it follows that f’ is smooth, since f is. For h € ﬁ,. we have

f'(hg) = A(f(*h*g))
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= Al (B (B F9))
— il R (WA (9))

= u%‘iﬁo (h)Xr,w(h)f/(g)

where we have used the fact that ,u%‘i o

is a real-valued character of ﬁr stabilized
by ¢. By Proposition 5 of section 4, Chapter 1 we know that ‘N*(vyo) = N*(vo) and
so f'(ng) = f'(g) for n € N*(p). These three observations establish the claim.

The map f + f’ is conjugate linear and it is routine to show that (f')’ = f

and
(7 O @) (9)F) = 7y (x, ) (“9) £ (10)

for all g € G (r) and f € E; _ (x,w)- Suppose that E < Er .y (xw) 18 the space of a

() (
subrepresentation of 7(,(x,w) and let E' = {f' | f € E}. It follows from (10) that
E' is also the space of a subrepresentation of m(,)(x,w). II; E; < Ej then E] < E)}
and E” = FE for all such E. It follows that E — E’is an order preserving bijection

on the lattice of submodules of FE = By, (xw) and

wm (xw)- Lherefore Eg

(r) (X7L‘))

the Proposition is prox}ed. d

Proposition 5: Let x be a character of F* and w a character OfZ(T) compatible
with x. Then, provided that r > 2, the representation m(,)(x,w) has no non-zero

vectors invariant under the group N*((r — 1,1)).

Proof: Suppose that f : G(r) — E,.. is a non-zero N*((r — 1, 1))-invariant
vector in the space of m()(x,w). Since f is smooth, it is necessarily non-zero at
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some point of the “big cell” and hence if we set

00 ... 01
00 ... 10
wo=|: Do
01 ...0°0
10 ...00

and use the transformation law of f on the left under H, - N*(vo) we see that
f(s(wo)no) # 0 for some ng € N*(7yo). But N*((r — 1,1)) is normal in N*(v,) and
hence if f is N*((r — 1,1))-invariant then so is m()(x,w)(no)f. Replacing f by

this vector, we may assume that f(s(wo)) # 0. Let us put

Calculation (in G(r)) shows that when z # 0 we have
s(wo)n(z) = e(z) h(z)n(z)honi(z™")
where €(z) € pg, h(z) = s(diag(z~%,1,...,1,2)), ho = s(diag(~1,1,...,1)) and

1 0 ... 00
0 1 0 0

8o -
==

Therefore, when x # 0,

f(s(wo)) = f(s(wo)n(z))
= f(e(z)h(z)n(z)homi(z ™))

= e(@) )y o (@) Xr o (A(2)) X0 (o) £ (T2 7H)) . (11)
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We shall now restrict = to be a square, so that X, (h(z)) is the identity. As
z — oo, n(z~!) — e and since f is smooth we may take z large enough that

f(@(z~1)) = f(e). Substituting the value of the modular character in this situation

we obtain

f (s(wo)) = e(@)lz]* " 2xr 0 (ho) f(e) - (12)

From equation (12) we conclude in turn that f(e) # 0, that e(z) is constant for
large = and that |2|(}=7)/2 is constant for large z. However  # 1 and so we have

reached a contradiction. O

4. Derivatives and Semi—~Whittaker Models

The theory of derivatives was introduced by Bernstejn and Zelevinsky in its
fully elaborated form in [BZ2] after having been prefigured in [BZ1] and [{GeK].
It will be the major technical tool on which the results of this section rely and
we shall recall the basic definitions of the theory. Most of the derivatives of the
exceptional representations are computed in [BuG| and with the aid of the results
in the previous section tl;e list will Be completed here. It has been established
by Bump and Ginzburg (in [BuG]) that the exceptional representations, which
do not generally possess Whittaker models, do have similar models with respect
to certain degenerate characters of N(v). This section will close with a number
of results on these so-called semi-Whittaker models and their interaction with the
derivatives. We seek to place the theory of the associated semi-Whittaker functions
on a similar footing to the more familiar theory of Whittaker functions, which will
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be our guide. It will be possible to obtain somewhat more precise results than in
that theory since we are dealing with specific representations. We shall also see
that there are certain differences arising from the degeneracy of the character with
respect to which the semi-Whittaker functions are defined.

We let P(r) < G(r) be the subgroup of G(r) defined by

Hﬂ:{(gij!geG@—lﬁxeF“?.

Equivalently P(r) is the stabilizer in G(r) of the vector .(0,...,0,1) € F" when
G(r) acts on F" on the right in the standard way. The group P(r) is called the
mirabolic subgroup of G(r). If s > r then P(r) may also be regarded as a subgroup
of G(s) via the usual embedding G(r) — G(s). Following the notation of the last
section we let P(r) be the pre-image of P(r) under the rﬂap priG(r) = G(r). If
r > £ then we define Y, (£) = N((¢,r — £),({ —1,1,7 — £)) with Y, (r) abbreviated

to Y,. Displayed schematically we have

Ié—l T 0
Y, (0) = 0 1 0 e F&t
‘ 0 0 L., '

and Y, () is equal to the unipotent radical of P(£) regarded as a subgroup of G(r).
The image of Y, (£) under the homomorphism s : N(v9) — N*(vq) will be denoted
by Y (£).

Let us fix a non-trivial continuous additive character 1 of the field F. This

gives rise to a character v of N(-yo) defined by

jﬁ((nab)) = ¢(:Z:ni,i+1) :
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In addition we obtain characters §! and 6% of N(7yg) defined by

1 P(nos + Nas + -+ Npgro1) if r is even
0" ((nap)) = o
’d)(nlz +ngs+---+ nr—2,r-—1) if r is odd
and
Y R if r is eve
() = { eI ) T
w(n23+n45+~--+nr_1,r) if r is odd.

Observe that we always have 3 = 61 -92 as characters of N(7yp). Since s : N{vg) —
N*(p) is an isombrphism, any character of a subgroup of N(y) may also be
regarded as a character of the corresponding subgroup of N*(yg). We shall do this
for 9, 8! and 92 without any change in notation.

For any /—group G we lét" A(G)vdenote the category of all algebraic repre-
sentations of G. The theéry of derivativéé for representations of G (r) rests upon

the properties of four functors

AP -1)) =25 4Br) 25 4Br - 1)

U U

AG(r-1)) 25 ABr) L 4@ -1))

which are the exact analogues in the metaplectic setting of the eponomous functors
introduced in [BZ2]. Thus &~ is the Jacquet functor with respect to (Yr,v),
U~ is the Jacquet functor with respect to (Y: , 1), ot ig the composition of the
Y—twisted extension from P(r — 1) to P(r — 1) - Y; with compactly supported
induction and U+ is the trivial extension from G (r — 1) to G (r — 1) - Y? = P(r).
It is important to remember that both the Jacquet functors and the extension
functors are normalized by a suitable modular character. Thus U7 includes a
twist by the square-root of the modular character of G (r — 1) acting on Y} and
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similar remarks apply to the other functors. The basic properties of ®* and ¥* as
recorded in §3 of [BZ2] remain unchanged in the metaplectic setting. Indeed they
are formal consequences of the properties of induction and Jacquet functors which
were proved in [BZ1] for general f-groups. We also note that the four functors
take genuine representations into genuine representations.

Ifre A(lg(r)) then following [BZ2] we define a sequence of representations
®) ¢ A(G (r—k)) by

0 =00 (7))
for k=1,...,r and call 7(¥) the kth derivative of T. T 7 € A(é (r)) then the k*
derivative of the representation 7r|§(r) is also referred to as the k' derivative of =
and denoted by n(¥). In this case the notation is naturally extended by setting
70 = 7. |
Proposition 1: Let x be a character of F* and w, a character of 2(r) compatible
with x. If r is odd then
90 (x, wr) 2 | det |74 @ Or_1(x, wr-1)
where w,_1 18 the unique character ofi(r -1) compatible with x Ifr is“éven then
9 (x, w;.) @ |det |4 @ 9,_1(x, Lf}"_l)

Wr-1

where the sum is over all characters of 2(7‘ — 1) compatible with x.
Proof: By definition K1) 06 wr) = T~ (3, (x, w,.)|§(r)) and since Jacquet functors
and restriction functors commute this may be expressed alternatively as

195.1) (X,w'r) = @(r),(r-1,1) (ﬁr(X’ w’r))l'é(.,-__l) .
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By Theorem 1 (a) of the previous section

~ —1/4
P(r),(r-1,1) ("9T(Xa wr)) = 'u’(r),/(r—l,l) ® "9(1'—1,1)(X7 Wr)

and using (d) and (b) of that Theorem

[}

Fr—1,1 (% wr) = 9r_1(X, wr—1) Bu, J10,w1)

> Yr_1(X, wr-1) ®u, X

where wy and w,.; are compatible with x. Using (1) of section 2 we obtain, for

geG(r—-1),
t(ry,(r—1,1)(g, 1) = | det(g)|

and so it remains to evaluate

(’191-—1(Xa (4)1-_1) é“Jr X)la(r—l) )

Now 9r—1(x, wr-1) éwr X occurs as an indecomposable summand of

G(r-1) X G(1)

ind= Z 2
G(r—1) X G2(1)

(’19,-__1()(, Wr—1) ®X2) (1)

where x2 denotes the restriction of x to G2 (1) and using the Mackey subgroup

theorem we obtain

G(r-1) X G(1) 2\|_
da<r_1); G2(1) (Fr-106 wr-1) ® X )lG(r—l)

1%

P Wrwr-1)

g€G(1)/G2(1)

@ ’\®19r—1(Xawr—1) (2)

AE(G(r—1)/G2(r—1))"

IR
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since conjugation by g € G (1) induces a character of G (r — 1) trivial on G (r — 1)
and every such character arises in this way. If r is even then (r — 1) is odd and so

the representation (1) is indecomposable and hence equal to 9,—1(x, wr—1) ®u X-

Moreover, we have
A® 191'—1(X7w'r—1) = ﬁr—l(X, )\IE(T—l) &® w'r—l)

by a double application of Proposition 2 of section 3. Since A ® w, 1 runs over all
characters compatible with x as A runs over the range gi;/en in (2) we obtain the
second isomorphism in the Proposition.

If r is odd then (r —1) is even and so the representation (1) is the direct sum
of the reprepresentations Ir—1(X, Wr—1) ®u X as w runs over all the characters of
Z(r) for which this is deﬁﬁed. Alternatively these summands may be obtained by
fixing w = w, and forming the representations v ® (9,_1(x,wr—1) ®w, X) Where
v runs over (G (1) /G2 (1))™. It follows that all these summands have isomorphic
restrictions to G (r — 1), of which there are [F* : (Fx)'z] in all. On the other
hand by Proposition 4 of section 1 all the summands in (2) are isomorphic to
Or-1(x,wr—1) and there are [F* : (F*)?] of them. Combining these facts gives

the first isomorphism in the Proposition. O

Next we would like to compute the second derivative of an exceptional repre-
sentation. It is shown in [BuG] that this must again be an exceptional representa-
tion, but to identify precigely which one we must work a'iittle harder. Note that
since N*(r) < G2 (r) for every r the conjugation action of Z!(r) on N*(r) is trivial
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and hence Z'(r) stabilizes every charécter of N*(r). It follows from this that if
any Jacquet functor with respect to N*(r) is applied to a representation of G (r)
the result may be regarded as a representation of zl(r). This observation applies
in particular to the derivatives. Recall from the discussion preceding Proposition
3 in the previous section that, since we have fixed an additive character of F,
we have in every case a correspondence between characters of F'* and characters
of Z1(r). After these remafks we can state the following result of Gelbart and
Piatetski-Shapiro, which appears in [GeP].

Lemma 1: "Let x be a character of F* and wy be the unique character of 2(2)
compatible with x. Then the group Z'(2) acts on ﬁgz)(x,wz) via the character
(x2)y where ¢ is the additive ‘chamcter of F' with respect io which the derivative

18 formed.

Proof: This is Theorem 2.2 of [GeP]. Note that it follows from the definition of
9q (x, ws) together with their Proposition 2.3.3 that J2(x, (4)2) is the representation

which they denote by r,:. g

Proposition 2: Let x bea character of F* and w, a character ofi(r) compatible
with x. Then

191(‘2) (Xa wr) = i det }—1/2 ® 191'—2 (X, wr—-2)
where

wr = (Wr—2 ® (Xz)w)l’i(r) . (3)
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Proof: The second derivative functor factors through ¢(y) (r—2,2) and we begin

with the isomorphisms

P(r),(r—2,2) ("91' (Xa wr)) = M(—,.;y/(‘t._z’z) & 19(7-_2,2)()(, wr) (4)
and
19(1'—2,2)()(7‘”1‘) = 191'—-2(Xa1/) éwr 192(X7‘-”2) (5)

which are furnished by Theorem 1 of the previous section. Here v is any character

of Z(r — 2) compatible with x and w, is as in Lemma 1. For g € G (r — 2) we have

K(r),(r=2,2) (97 1) = ‘ det(g)lz

and so'it remains to apply the Jacquet functor
AGEr-2)%xG(©2) = AG(r-2)

which corresponds to the character 1 of N*(2) to the right-hand side of (5). This
may be done in stages by first restricting the representation to G (r—2) G? (2)
and then applying the Jacquet functor with respect to v in the second factor.

We may choose an irreducible subrepresentation o of 92 (x,w2)? so that

= a1 qG(r=2) X G(2)
ﬁr—Z(Xa V) Quw;, 192(Xa (.Uz) = 1nda(r_2) = 62(2) (ﬂr—Z(Xa V) ® 0)

and hence

(19r-2(Xa v) éwr ﬁZ(X,wZ))la(r_z)I G2(2)

=~ D (xe®02(0v) 0% (6)
9€G(2)/G2(2)
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where, as usual, xg(h) = (det(h),det(g)). This implies that for all elements

g € G(2)/G?(2) we have .

wr = ((xg ® V) ® woo) "Z(r) . (7)

We know from [GeP] that ﬁgz)(x, wo) is one-dimensional and the Lemma says that

o~

Z'(2) acts on it by (x?)y. Thus, after applying the (N*(2),%) Jacquet functor,
all the summands in (6) give zero except for the one which satisfies we, = (x?)y-
This summand yields a representation isomorphic to x4 ® ¥,_2(x,v). Now this
is an exceptional representation and it follows at once from (7) that its central
character satisfies the stat‘ed condifion. g

Note that since 7 and r — 2 havé the same parity
Z(r) CZ(r = 2) X Z}(2)

and hence equation (3) serves to determine w, from w,_» or vice versa.
Proposition 3: Let x be a character of F* and w a character on(r) compatible

with x. Then 9% (x,w) = 0.

Proof: Proposition 2 of t-he previous section shows that it is sufficient to assume
that x = xo. Using the fact that the third derivative functor factors through
©(r),(r—3,3) and Theorem 1, parts (a) and (d) of the previous section we are reduced
to showing that 95> (xo,w) = 0. But this is true by Lemma 6, §4 of [FKS]. O
For non-dyadic local fields the fact that ﬁﬁr)(x,w) = 0 for > 3 is proved in
[KaP], Theorem 1.3.5. Thus for these fields the Proposition may be strengthened
to 195.’“) (x,w) =0 for k > 3. One expects this to remain true for dyadic fields also,
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but although it is stated in [FKS] that 19£T)(Xo, w) = 0 for r > 3 even in the dyadic
case, the proof given there is only complete when r = 3. i‘hus we must at present
restrict ourselves to Proposition 3.

We now turn to a discussion of the semi-Whittaker models of the exceptional
representations.
Definition 1: A semi- Whittaker functional of the first kind on a representation

TE A(é (r)) is a complez linear functional A on E, which satisfies

A(m(n)€) = 6 (n)A(€)
A (€)€) = e(§)

for alln € N*(vp), € € ug and § € E;. A semi-Whittaker functional of the second

kind is defined similarly replacing 6 by 6.

As usual there is a one-to-one correspondence between semi-Whittaker func-

tionals on 7 and embeddings of 7 into

a(r) ]
Ind, ) X+v0) (n-6)

where 7 denotes the non-trivial character of us and j = 1 or 2 as appropriate. An
embedding of this kind will be called a semi- Whittaker model (of the first or second
kind). The space of the semi-Whittaker models of 7 ma‘y be identified with the
dual of the image of 7 under the Jacquet functor corresponding to (N*(vo),67).
Thus, as we remarked before Lemma, 1, the space of semi-Whittaker models of 7
may be regarded as a representation of Z1(r).
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Proposition 4: Let x be a character of F* and w a character of Z(r) compat-
ible with x. The space of semi-Whittaker models of ﬁr(%,w) of the second kind
is one-dimensional. The space of semi-Whittaker models of U (x,w) of the first
kind is one-dimensional if 7 is odd and of dimension [F* : (F*)?] if r is even.
Furthermore if 7 is even and w' is an extension of w to,zl(r) then the space of

semi- Whittaker functional& A of the first kind which satisfy

for all z € zl(r) and £ € Ey_(yw) 15 one-dimensional.

Proof: From the remarks before the statement of the Proposition it follows that
the dimension of the space»(.)f. semi-Whittaker models of J,(x,w) is equal to the
dimension of the image of ¥, (x,w) under the (N*(vo),6’)—Jacquet functor, with
j = 1 or 2 as appropriate. But from the definition of #7 it is clear that this
Jacquet funetor may be regarded in all cases as the composition of a sequence
of first and second.derivative functors. Suppose first that r is odd. Then thé
Jacquet functor corresponding to 6! is equal to the composition [2]("1)/2 o [1]
and the Jacquet functor éorrespondiﬁg to 62 is equal to [1] o [2]¢~1/2 where
[1] and [2] denote the first and second derivative functors respectively. Using
Propositions 1 and 2 repeatedly we see that in either case the space of semi-
Whittaker models is one-dimensional. Now suppose that‘ r is even. The Jacquet

functor corresponding to 62 is equal to [2]7/?

(with notation as above) and from
Proposition 2 we see that the space of semi-Whittaker models of the second kind

is one-dimensional. The Jacquet functor corresponding. to #' is equal to [1] o
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[2]("=2)/2 5 [1] and again combining Propositions 1 and 2 shows that the dimension
of the space of semi-Whittaker models of the first kind is equal to the cardinality
of G (r —1) /G2 (r — 1), which has the stated value.

In order to obtain the last statement recall that

Hw)?z @ 9)

REG(r)/G2(r)

where o is any one of the indecomposable summands of 9, (x,w)?. Moreover as
h runs over G (r)/ G2 (), the central character of o ;‘uns over all the characters
of Z'(r) which extend w. Since there are [F* : (F*)2] of these we see from the
results of the ﬁrevious paragraph that all we need do is show that when the functor
(1] o [2]~2/2 o [1] is applied tvolany of the summands on the the right of (9), the

result is non-zero. From Proposition 1 we see that

. R . X, X\2
I (x, w)? =2 (I det |~/ ®'l9r—1(X7wr—-1)2)®[F ) ], (10)

where w;_l is compatible with x, and we know alreadsr Ithat if [1] o [2]("=2/2 is
applied to ¥,_;(x,wr_1)?, the result is non-zero. The proof will be completed by
showing that the first derivative of each " is equal to |det |4 ®@9,_1(x, wr—1)>.
Comparing (9) and (10) we see that one of the "o must have non-zero first deriva-
tive and we assume without loss of generality that it is . Since (r — 1) is odd,

2

Ur—1(x,wr—1)* is irreducible and hence

oM = (|det |4 @ 9p_1(x, wr—1)2) " (11)

for some m. But we may choose the coset representatives of G (r) /G2 (r) to
have the form h = s(diag(l,...,1,t)) where t € F* and if this is done then
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each h commutes elementwise with G2 (r —1). Also the first derivative is formed
using the trivial character of Y} and although A acts non-trivially on this group
by conjugation it stabilizes this character. These facts imply that for all h €

G (r) /G2 (r) we have (")) = ¢(1) and from (10) and (11) it follows that
R\ (1D ~ —1/4 2
( 0) - |detl ® Fr—1(x, wr—l) ;

as required. O

Up to now we have allowed x to be a general character of F*. However, as
Proposition 2 of the previous section shows, the essential case is x = o and it
will be convenient to restrict attention to this case henceforth. It follows from
Proposition 4 and the remarks before it that if r is even then Z'(r) acts on the
space of semi-Whittaker fuﬁctionals of the second kind by some character. This
gives usﬂa,dristingfuiéhed extension of the unique character of Z(r) compatible with
Xo to Zl(r). In order to be able to inake uniform statements encompassing the
various cases, we shall define 7 (r) to be the set of characters, w, of Z1 (r) such that

wl= . is compatible with xo and there is a non-zero semi-Whittaker functional of

Z(r)
the j*® kind on 19”"@@) transforming under Z!(r) via w. .If 7 is odd then Q7 (r) is
simply the set of all characters of Z(r) compatible with xo. If 7 is even then Q(r)
is the set of all extensions to Z!(r) of the unique character of Z(r) compatible
with xo and Q%(r) is the singleton set containing the distinguished extension of
that character to zl(r). Notice that, regardless of the parity of 7 and the value

of 7, the restriction of the characters in Q9(r) to Z(r) always gives us exactly the
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set of characters of Z(r) compatible with xo. If w € Q7(r) then we shall allow
ourselves to write ¥, to mean 9, ,,. in order to ease the notation. Notice also
Z(r)

that, regardless of the parity of r, we have

QY r)- Q¥ r) ={p € Z(r)" | »* = x0} -

Lemma 2: Ifr is even then

Q%(r) = { (x0)s & - ® (x0)4) by }

where (Xo)y s the character of 21(2) corresponding to xo as in section 3 and there

are r/2 factors in the tensor.

Proof: For 7 even let w, be the unique character of Z(r) compatible with xo. In

the course of the proof of Proposition 2 we showed that there is a G (r — 2) X Z!(2)

(2)

isomorphism between 195?2,, and 0r_2.4, ,®V; ..

Using this repeatedly we see that

the space of semi-Whittaker functionals of the second kind on Uy, 18 isomorphic

to

95, ® - @05,
as a representation of Z!(2) X --- X Z(2). Since we know that Z!(2) acts on
19&22 via the character (xé),/,, the Lemma follows. O

Definition 2: Let w € QI(r) and X be a non-zero semi- Whittaker functional of

the j* kind on 9,,. Put

Efé’w (g) = /\(’191-,«1 (g)f)
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forallg e G(r) and all € € Ey, .. We call Eé"" a semi- Whittaker function of the

G0 kind.

The map & — 29 intertwines the representation 19r‘; with the representation
Y ¢ A ,

—~

of G (r) on the space

Eé’w €€ Es,.}

by right translation. Since ¥, is irreducible and Eé""(e) # 0 for some £ € Ey,_
by definition it foliows thaf this map is an isomorphism. In particular if EZ"" =0
then £ = 0.

The semi-Whittaker functiqn Eé"" transforms under zl(r) via the character
w. This presents a momentary puzzle ‘when T is even, sinée in that case it follows
from the results of section 1 that the representation 9, ., has a non-zero subspace
transforming under zl(r) by any given charactef whose restriction to Z(r) is com-
patible with xo. To resolve this dilemma, let £ € Ey,_, satisfy 9, . (2)€ = n(2)§ for

every z € Z1(r), where 7 is some character of Z1(r) such that n]> . is compatible

Zr)

with xo. With this notation we may calculate as follows:

=1,w

w(2)E¢" (9) = E¢% (29)
_ Eé"" (g2) - (t,det(g)) where p,(z) = tI,
=5 e(9) - (8, det(g))
= 20“(9) - (=) (1, det(s))
where we have used equation (1) of section 1 to pass from the first to the second

line. Thus Eé""(g) = 0 unless w(z)n~1(z) = (t,det(g)) for every z € Z1(r). This
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':],w

equation determines det(g) as a class in FX/(F*)? and it follows that B is
supported on a single coset of G2 (r) in G (r). Expressing a general £ € Eyg_,
as a sum of vectors each of which transforms under zl(r) by some character is
therefore parallel to expressing Eg’“’ .as the sum of its restrictions to the various
cosets of G2 (r) in G ().

We now wish to begin investigating the formal and analytic properties of the

semi-Whittaker functions. Note, however, that although the set

El¥ | € € By, }

Eé’w has not, since the

has been defined unambiguously, the ind‘ividual‘function'
semi-Whittaker functional used to produce it is at present defined only up to
a scalar factor. Thus any equation between two semi-Whittaker functions must
be understood as saying that the underlying semi-Whittaker functionals may be
chosen so that the equality obtains. Alternatively, one may understand such an
equality as expressing a proportionality between the two functions, with the con-
stant depending only on the choice of semi-Whittaker functionals on either side.

In order to state our first result it will be conveniegt to introduce yet more
notation. If 7 = 1 or 2 then we shall set

,,_{j if r is even
T=1s~5 ifrisodd

With this notation it is easy to check that we have ‘ -




for all n € N*(vp), where ¢ denotes the main involution of G (r) defined in chapter
1, section 4.

Proposition 5: Let w € Q7(r). Then

=7 () == (9)

forall§ € By and g € C~}(r) Here £ — &' is the map whose ezistence was

established in Proposition 4 of section 3.

Proof: Let A be a non-zero semi-Whittaker functional of the j*® kind on Vrw
transforming by w under Z!(r). For £ € FEsy, . let us set A'(§) = A(¢'). Since £ — ¢’
is conjugate linear, A’ is a non-zero linear functional on Ey, . For n € N*(yo) we

have

/\I (191',(‘1 (n)&) = /\((’19"’“}(”)6),)
S NFE)
= 07('n)A\(€)

-7

=67 (n)A¢')

=67 (m)N(©)
and since ‘e = € for € € py we also have X (9,,(€)¢) = eX'(£) by a similar
calculation. Thus X is a semi-Whittaker functional of the (j')*® kind. We know

from chapter 1, section 4, Proposition 4 that ‘z = z~! for z € Z!(r) and since w

is a unitary character we get

X (0r,0(2)6) = M(Brw(2)€)')
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and so N transforms under Z!(r) by w. If we use X to form the semi-Whittaker

function on the right of the proposed equation and A to form that on the left we

obtain
Z277(9) = N (9rw(9)€)
= /\((ﬁr,w (g»)fl)/)
= A(Frw(49)(€")")
= A(ﬂr,w (Lg)f)
=&} (*9)
from which the claim follows. O

Theorem 1 (Inductive Structure): Letr >3, £ < |r/2], w, € Q3(r),
Q2(20) = {wa} and wy_yy be the character of Z(r — 2¢) determined by the equa-

tion

wr = (Wr—2¢ @ way)] (12)

Zi(r) *

Let £ € Eg,, - Then there are two finite sequences of vectors {¢r20 M

i Jij=1
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Eys and {2112, in Es,, , , such that

r=2L,w,_op

T— ""2 L 2,
g’wr(glgz) | det(g1)]/?| det(ga)| ¢ 2£)/4Z rwzz” (91) §§72£(Q2)

whenever gy, gs € G (r) satisfy the following two conditions:

(1) We have

o= (5 5)  ma we= (T )

where x denotes an arbitrary matriz of the appropriate size in either case.

(2) At least one of det(g1) and det(gé) is a square.

(13)

Here g1 is being regarded indifferently as an element of G (r) and of G (r —2¢)

and similarly with go and G (26).

Proof: From Theorem 1 of section 3 we know that

_1/4 C o~
@(r),(r—2£,2£)("9r_,wr) ,u(.r)/(.r 2¢,2¢) ® "9r~2£,wr_2g Ruw, 792£,w23

and from Theorem 1 of section 1 it follows that

. -1/4 2
P(r),(r-2¢,20) 2 Wr)lc;z(r —20)%X G(28) = P(r) (r—2¢,2¢) ® ﬁr—ze,wr_ze ® V22,03,

and

—1/4
P(r),(r—22,28) (ﬂr,wr)l'é(.,._zg) X G2 (26) = ,Uf(.,.) (r—2£,20) ® G _ag Wrag @ ’192£ wae

(14)

(16)

regardless of the parity of . Note that the underlying spaées of the representations

on the left in (14), (15) and (16) are equal and that the same is true of those on

the right. Further, the linear map underlying all three isomorphisms is the same.
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Let us denote by ¢ + [(] the map from E4,, to Eg_,,, . ® Eg,,,,, given by
composing the natural projection from Ey,_, to the space of ¢(r) (r—2¢,2¢) (¥r,w,)
with this linear map. Rec_é,lling that the Jacquet functor in (14) is normalized we

have

[197‘,401» (9192)q = ﬂz-,{)‘f(r_zg,zg) (91792) ’ (197‘-23,4%—2@ (gl)A® 1922,&12@ (92))[d (17)

provided that g; and g; s;a,tisfy conditions (1) and (2). Also [J,,..(n)¢] = [(] for
all n € N*((r — 2¢,2£)) by the definition of the Jacquet functor ¢(r) (r—2¢,2¢)-

It follows from Lemma 2 that Lur_gg € Q%(r — 2£). Hence we may choose
a non-zero semi-Whittaker fun‘ctional. of the second kind, Ar_2¢, on 9r_2¢.0._,,
transforming by wy_2, under zl(r — 2¢). We may also choose a non-zero semi-
Whittaker functional of the second kind, Agg, on 924 oy, tranSforming by wop under

Z'(2£). Let us define a functional on Ey,_, by

A(Q) = (Ar—2e ® A20)([C]) -

Since ¢ — [¢] is onto, A is non-zero. We have a factorization

N*(v0) = N*((r — 2£,2¢),v0) - N*((r — 2¢,2¢))
= [N*(r — 26,70) x N*(2£,70) | - N*((r — 2£,2¢)) (18)
and #? is trivial on the second factor and decomposes as 2_,,-62, on the first. Also

N*(r — 2£,70) < G2 (r — 2¢) and N*(24,v0) < G2 (20). If n € N*(7o) is written as

n = ninang as in (18) then

A(Orw, (n)C) = (Ar—2¢ ® A2e) [Ur,, (R1m213)(]
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= (Ar—2e ® Aag) (Tr—20,0, 5, (N1) ® F24,005, (n2)) [Fr e (n3)(]
= (62_g¢(ny) - ng(nz)) (Ar—2e ® Aa) [¢]-
= 6%(n)A(C) -
Since both ¥y_2¢,._,, and ¥z ,, are genuine it follows that A is also. Hence A is

a semi-Whittaker functional of the second kind on ¥, ,, . Finally, the inclusions
Z(r) < Z'(r — 26) X Z}(26) < G (r — 26) X G*(20)

and equation (12) serve to show, by a similar calculation, that A\ transforms by w;,

under :7:1(7'). Using A to define the semi-Whittaker functi‘on on the left hand side

of (13), Ar—2¢ and Aoz to define the semi-Whittaker functions on the right hand

side and observing that
1/4 ' ~ ' o
“(r/-ze,ze) (91792) = | det gl|3/2| det 921 (r—2¢)/4

now gives the equation with

M
HEDW kT8
j=1
O
The next result is the analogue of Theorem 1 for semi—Wﬁittaker functions of the
1%t kind. Unfortunately it is very awkward to state, although the proof will be
exactly analogous bto the proof of Theorem 1.
Theorem 2 (Inductive Structure): Let r > 3 and £ < r both be odd, w, €
QL(r), Q2(r —€) = {wr_s} and wy € Q1(€) be the character of Z1(£) determined by
the equation
o = (ot @ el (19)

110



ref,w._p

Let§ € Ey,, . Then there are finite sequences of vectors {{;—e}j]‘il in By

and {€5}}L, in By, ,, such that

M

E¢“" (9102) = | det(g0)[*/*|det(g2)| """ Y D 20T (91) - B (92)  (20)
j=1 7

whenever g1, g2 € G (r) satisfy condition (1) below and at least one of det(g1) and
det(g2) is a square.

(1) We have

P(gl)‘;—‘ (3 l?e) “and P(gz)% (Iro—e 2)

where x denotes an arbitrary matriz of the appropriate size in either case.

Let v > 2 be even and £ < r be odd, w, € Q(r), we € Q1(¢) and wr_y €
O%(r —f). Let & € Eﬁr,w,- Then there are two finite sequences of vectors,

and {C] (r—g)s 1 By

{J,x Jj= 1,x€fll(l) j= 1,xef22

r—Lf,w._p

and two finite sequences
2 My ¢ 1V ; |
of vectors, {éj,x}j=1,xeﬂl © and {Cj,x}j=1,x€f22(r—l) in By, such that whenever

91,92 € G (r) satisfy condition (1) above and det(gy) is a square we have
5 (oa0n) = | den(g) ] det(g) 70

> Z"“f‘ ) EX () (D)

N r=t
and whenever gy, g2 € G (r) satisfy condition (1) above and det(g2) is a square we

have

Eé,wr (glgz) = Idet(gl)ll/4| det(gz)l_(r"e)/‘i-

2 Z~r- ) Eie). (22

XEN2(r—£) j=1 o
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Proof: Since the structure of the proof is identical with that of the proof of
Theorem 1 there seems to be little point in giving all the details. We begin with

the isomorphism

‘P(r),(r—lﬂ,l)(ﬂr,wr) = ﬂa-i,/(‘:-_g’g) ® ﬂr—l,wr_g éwr ﬂé,w( (23)

as before. If r is odd then (r — £) is even and it follows from Theorem 1 of section

1 that

~  —1/4
P(r),(r—=£,8) (ﬁr,wr)iaz (r—0)% E(e) = 'p'(r)‘,/('r—l,E) &® ﬁg—&wr_z &® ’193’“,2 (24)

and

~d -1 :
P(r),(r—£,8) (ﬁr,wr‘)la(,._g) % G = #(r),/(i_g,g) ® Vr_tw,_, ® ﬁf,w . (25)

On the other hand, if 7 is ‘even then (r — ?) is odd and we have instead

(P('r),('r—l,ﬂ) (ﬁr,wr)‘ag (r—£) X 5(2)
~ =1/4
= ”(r)((r—e,e) ® V7 _pu,_, ® ( 69 X® z9e,w)
X€(G(8)/G2(0))”

~  —1/4 2
= L) r-,0) @ Vr b, @ ( @ >19£’X) (26)
X€ 2

on using Proposition 2 of section 3. Similarly we have

(p('r),(r—f,ﬁ) (1‘9.7',(111-) |a(,’,_e) ; 62 (e)

~  —1/4
= “(r),/(r—e,e) ® ( GB' ﬁr—e,x) ® 93, (27)
XEQ2(r—£)

when 7 is even.
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Regardless of the parity of r we have a decomposition

N(0) =N ((r = £,0),70) - N*((r - £,6))

> [N*(r — £,70) x N*(£,70) ] - N*((r — £,£)) (28)

and since £ is odd it is easy to check that #' is trivial on the second factor in (28)
and factorizes as §2_, - 6} on the first. With these observations in hand the proof

is completed as in Theorem 1. O

Recall that A denotes the standard choice of positive simple system inside
the root system of G(r) and that A may be identified with the set {(¢,s+ 1) | ¢ =
1,...,7 =1} We define two subsets, A; and A, of A by

A, = { {—(2’ 3)’ (4v 5)""’ (’I”— 2,"’"— 1)} if r is even
"T{(1,2),3,4),...,(r—2,r 1)} ifrisodd

and

92 =

{ {(1,2),(3,4),...,(r=1,7)} if r is even
{(2,3),(4,5),...,(r—1,7)}  ifris odd.

Notice that A = A; UAs and A; NAy = (. Corresponding to these sets of simple
roots we define

Tj(r);{heHr lh* =1 for ae€Aj;}.
We have T,(r) N Ty(r) = Z!(r) and T,(r) - To(r) = H, for all r. The sets A,
and Az have been chosen so that the torus T,(r) stabilizes the (non-metaplectic)
character §7. Moreover, the only class in T;(r) /Z'(r) which stabilizes 637 is the

identity class. The factorizations

Ty(r) = To(r — 2) x Z1(2) (29)
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and

T,(r) = To(r — 1) x Z}(1) | (30)

will be useful below; they follow immediately from the definitions.

2(p) — 2
Let us set T%(r) = T;(r) N H; where, as before,

H2={hcH, |h; € (F*)? for j=1,...,7}.

The metaplectic cocycle is identically 1 on the group ’T‘?(r) = p~}(T%(r)) and
hence T?(T‘) = T3(r) x pa. We let 7 : ’T‘?(r) — {£1} b‘e the genuine character
which is trivial on the first factor in this decomposition.

Proposition 6: Let w € QI(r) and £ € Es, .. Then
=1 (hg) = (W) igly., (W) EL*(9) (31)
S M= My 3\ =g )

for all h € ’T?(r) and geG(r).

Proof: Note first that by replacing £ with 9, ,,(g)€ it suffices to prove the equation
with ¢ = e. We begin with 5 = 2; the proof will be' by induction on r. If
r =1 then ¥, ,, is simply .a genuiﬁe character Whiéh agrees with n on ’T‘%(l), the
modular character is trivial, Ez’w(g) = Y, ,(g)¢ € C and (31) follows. If r = 2
then T2(2) = Z2(2) and so the modular character is trivial on T2(2) and since
nlE?(z) = wl'zvz(z) equation (31) follows from the transform‘ation law for Eg’w under
22(2). Now suppose that r > 3; we shall apply Theorem 1 with £ = 1. Factor
h € T2(r) as h = h'z where b’ € T2(r —2) and z € Z2(2) as in the (square,

metaplectic) version of (29). Then the conditions of Theorem 1 are satisfied and
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we have

M

=2, 1/4 —2,wp_ —2,w

B2 (h) = ity panpy(B) 3 B () - S5 (2)
i1

1/4 1/4 1/4
= iy ey (s 2R Y2l L oy (W3, (2)
M ‘
Ez;“f{z (e) -525_“2 (e) by the inductive hypothesis
J J

= U(h)ﬁ‘a{i(r—z,z)(h)“gﬁz,z),ﬁm(m B¢ (e)

= (Rt (WE(e) (32)

and the result follows in this case.
If j =1 and r = 1 then (31) is trivially true. If » > 2 then applying Theorem
2, with £ = 1, reduces (31) to the same equatioh for 7 = 2, which has already been

proved, and the r =1, j=1 case. Thus we have (31) for'j = 1 also. O

Proposition 7: Let w € Q/(r) and € € Ey,_ . Then there is a constant C¢ > 0

such that Eg’w(h) = 0 whenever h € ﬁ,. and |h*| > C¢ for some a € A;.

Proof: Thisresult is proved just as for Whittaker functions in the non-metaplectic
setting. If o = (4,4 + 1) then we set ny(z) = I, + zE;;11, where E; ;4 is
the usual elementary matrix, and n}(z) = s(ne(z)). Then if h € H, we have
ny(z)h = hnk(h~%z). Since @ € A; we may fix some z € F with 67(n2(z)) #
1. The representation 9, is smooth and so we may find C; > 0 such that

Orw(nk(bz))€ = € if |b] < C*. If |R®| > C¢ then we have



= 22 (hn(h™x))

= Z*(h)

and so Eé’“’(h) =0. O

Proposition 8: Let w € QM (r) and € € Eg,,. Then there is a constant C¢ > 0
such that

|58 )| < Cely, (0) (33)

for all h € H,.

Proof: Since we may choose a fixed set, S, of representatives for the finite group

ﬁf\ﬁr and replace the constant C¢ which we obtain below by
: -1/4
max{Cs, ,(s)¢ - u(r)’/%(s) [seS}

it suffices to assume that h € ﬁf We begin with 5 = 2 The inequality will be
established by induction. Indeed, looking back at (32), it is clear that if we had
(33) for r = 1 and 7 = 2 then by using Theorem 1 with E_:—; 1 we would obtain (33)
in general. The 7 =1 case is the statement that the trivial character is bounded.
Thus the heart of the proof is the inequality when r = 2.

In order to obtain this, observe that we may factor an element of ﬁ% as

ES.’E2OSyzO
0 1 0 y?

where € € 9 and z,y € F*. We know that
2
2w [ [T 0
(5 1)

2 2
=2, z¢ 0 Y 0 _
2 (o(5 1):(5 )=
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and when |z| > 1 this vanishes by the previous Proposition. When |z] < 1 it

follows from Proposition 3.3.4 of [GeP] that

2 2
—2,w zv 0 _ o, 1/4 z“ 0
Se (S ( 0 1))’ = kla['/? = ki), 1,0) (S ( 0 1))

for some constant k£ > 0; this gives (33).

The case j = 1 then reduces to the case j = 2 on using Theorem 2 with £ = 1.

These results do not exhaust what may be learnt about the form of the func-
tions Eg"" on ﬁr by using Theorems 1 and 2. For instance, a very similar induc-

tive argumen"c‘starting with Prdposition 3.3.4 of [GeP] shows that if h € H2 and

|h*| < 1 for all @ € A; then

22 (h) = kn(h) gy g ()

for some constant k. From this we conclude that if h € I:ir and |h%| < 1 for all
a € Aj then Eé"" (h) is a linear combination of functions of the form ,uzr/ )4: o (h)x(h),
where x is a genuine character of i:Ir restricting to 7 on ﬁf

We close this section on a different note by determining when the semi-
Whittaker functions give rise to Kirillov models of the exceptional representations.
Proposition 9: Suppose. that F is not dyadic, let x be a character of F* and

w a character of Z(r) compatible with x. Then 9,(x,w) has a unique irre-

)
ducible subrepresentation. The second derivative of this subrepresentation is equal

to 19&2)()(, w) and its other derivatives are zero.
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Proof: The claims are trivial if 7 = 1 and so we may assﬁme in what follows that
r > 2. We will allow ourselves to use without further comment various results on
the functors ®* and ¥+ v?hich have been proved by Bernstein and Zelevinsky for
G(r) but which extend routinely to G (). By Corollary 5.22 in [BZ1], ¥, (x, ) |'§(T)
has finite length; let us consider an irreducible subrepresentation 7 of ¥, (x, w)|§(r).
We know from Proposition 5.12 in [BZ1] that there is a short exact sequence

0 — 277 (9, (x,w)) = 9 (v, Wi,

— Ut (9, (x,w)) — 0

and it follows from this and the irreducibility of 7 that 7 is either a subrepre-
sentation of ®+®~ (3, (x,w)) or else that it is isomorphic to a subrepresentation
of U0~ (9,(x,w)). However N*((r —1,1)) acts trivially on ¥T¥~ (9, (x,w))
and we know from Proposition 5 of section 3 fhat 9r(x,w) does not contain
any non-zero vectors ﬁxeci bunder this group. Thus T is a subrepresentation of
®+e~ (9, (x, w)).

By Proposition 5.12 of [BZ1], T~ &+ = 0 and the functor =3+ is naturally
equivalent to the identity functor. We have shown that r < @t~ (9 (x,w)) and
it follows that 7(!) = 0 and that & (1) < &~ (9-(x,w)). As a consequence of
this second observation we may regard 7() as‘ a subrepresentation of 199 )(x,w)
for all j. From the hypothesis that F' is not dyadic and the remarks following
Proposition 3 we know that g )(X,w) = 0if j > 3 and hence 7(9) = 0 unless
j = 2. By Corollary 5.14 of [BZ1], some non-trivial iterated derivative of 7 must
be non-zero and this is only possible if 7(2) # 0. But 9 (x,w) is irreducible and
hence 7 = 9 (x,w).
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If 71 and 75 were distinct irreducible subrepresentations of ¥, (x,w) then

li;(r)

we would have 11 @ 75 < ﬁr(x,w) and 7'1-(2) = ﬂgz)(x,w) for 1 = 1,2. Since

I5tr) 5t

the second derivative is an additive functor, this leads to a contradiction. Thus
I (X, w)lg(r) has a unique irreducible subrepresentation and the conclusions of the

previous paragraph apply to it to complete the proof. O

Theorem 3 (Existence of Kirillov Models): Suppose that F is not dyadic.

Let w € Q%(r) and suppose that £ € Eg,  satisfies Ez’“(p) =0 forallp € 13(1")

Then & = 0.

Proof: Let us set
—-2,w -~
V={¢€Es  |E*P)=0 VY peP(r)}.

Then V is a P(r)-submodule of ¥ and hence, if it is non-zero, it must

o lftr)

contain the space of the unique irreducible subrepresentation of whose

rolgy)

existence was proved in the previous Proposition. From that we would conclude

that V@ = Ef,i)w. The functional { — Eg’“’(e) on Ey,_, is non-zero and fac-

tors through the second derivative of Urw- Let us choose ( € Ey,_ , such that

Eg""(e) # 0 and then & € V such that £ and ¢ have the same image in Eézr)w. Then
—2,w

Eg(e) = Eg’“’(e) # 0, a.contradiction. Thus V = {0}, proving the Theorem.

d0
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Theorem 4 (Non-Existence of Kirillov Models): Suppose that F is not a

dyadic field. Let w € QY(r) and define V to be
{¢€By,, 15¢°(p)=0 ¥ peP(r)}
if r is odd and |
{f €Ey, ., |Eé’”(p) =0 V pe 1:3(7‘) and v € Ql(r)}

if 7 is even. Then V is the space of the unique irreducible subrepresentation of

Drwls

Proof: Let 7 <9 be the unique irreducible subrepresentation. Suppose

relfr)

that £ € F.,. Then, since T<1) = 0, the image of £ in qulr)w is zero. The functional

¢~ Eé’”(e) (where v € Q1(r) is w if r is odd and arbitrary if r is even) factors

through the first derivative and so Eé’”(e) = 0. If p € P(r) then

=) = 54 () =

since U, ,(p)§ € E, also. Thus E; < V. The map £ — E thus factors

| ; ’ul?l‘(r)
through the quotient V/E.. We know that ﬂrv“'ﬁr) JT =2 Ut (19&712,) and each
Eé’"|a (r—1) gives rise to a semi-Whittaker function of the 2°¢ kind on one of the
exceptional representations whose sum is 19$,12, IfeEeV fhen each of these semi-
Whittaker functions is identically zero and it follows that the image of £ in V/E.,
is zero; that is, £ € E,. Thus V = E,, as claimed. O

We note that, by the remarks after Proposition 3, the hypothesis that F is not

dyadic may be replaced in the last three results by the hypothesis that r < 3.
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5. Tensor Products of Exceptional Representations I

In this section we shall study the (inner) tensor product of two exceptional
representations. Since both representations are genuine, their tensor product is
non-genuine and may be regarded as a representation of G(r). As such it is smooth
but not generally admissible. Apart from the intrinsic interest of these representa-
tions, our main motivatiqn comes from applications to the local symmetric square
L-functions on G(r). From this point of view, the most interesting questions are
the existence and the uniqueness of invariant pairings between the tensor product
and a given irreducible, admissible representation of G(r) and our investigation
will focus on these questions. When r = 3 they have been considered by Savin
in [Sav] and we shall obtain extensions .of some of his r;asuits to general r. His
methods, relying as they do on explicit calculations with models of the exceptional
representations on G (3), do not (at least in the present state of knowledge) extend
to general 7 and we shall have to employ other methods. The price to be payed for
allowing general r is that our results will not be as complete as Savin’s. Along the
way we shall point out and correct two errors made by Bump and Ginzburg in one
of the central arguments in [BuG]. This will necessitate a more thorough review
of the properties of the functors U* and ®* than was called for in the previous
section.

As an aid to brevity, a character, w, of Z(r) will be called suitable if w is
compatible with xo. Thus whenever w is a suitable charapter and v is a partition

of r we have a representation 9, ., defined as in section 3. We shall carry over all
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the associated notation from the earlier sections of this chapter. We observe that a
suitable character takes its values in {41} and hence is equal both to its complex
conjugate and to its inverse. This implies that each of the representations 9, ,, is
self-conjugate and self-contragredient (see Theorem 1(e) of section 3).

We shall begin by determining the decomposition of a tensor product of ex-
ceptional representations when v = 9. As well as being the easiest case of our
problem, this information will be useful in what vfollows. If x is a character of H,
then x is the direct produ.ct of r characters of H; & F* and we shall denote this
decomposition by writing x = (x1,-..,Xr). Also we shall sometimes write “1”
instead of “xo” for the trivial character, in order to avoid having subscripts on x
in the same formula meaning different ﬁhings.

Proposition 1: Let w and v be suitable characters of Z(r). Then 0. ® V.
is the direct sum of all characters x = (x1,.-.,Xxr) of Hy which satisfy X? =1 for

j=1,...,7 and, if r is odd, also satisfy H;___l Xj=w- V..

Proof: By Theorem 1(b) of section 3 we have

—~

19'70,“-’ = (XO)‘I‘,LU = XO éu XO é - ® XO

where there are r factors in the metaplectic tensor product. From the construction

of metaplectic tensor products in section 1 it easily follows from this that
dim(Eﬁvo,w) = [FX : (F*)2]lr/2]

and hence that

[F>* . (F*)% if r is even

dim(Ey,, . 005,,) = { [F* . (FX)?]r—1 if r is odd.
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This dimension is equal to the number of characters of H, which satisfy the con-
ditions of the statement. Hence if we can show that all of these characters occur
in the given representation then the proof will be complete.

Since H; is abelian, 9., ® ¥,,,, is a sum of characters. The group HZ acts
on both 4., ., and 9., ., by the same character and the square of this character is
trivial, so H2 acts on the tensor product trivially. Hence each of the characters in
the sum must satisfy the first condition of the statement.. The group Z(r) acts on
Uy Via w and on 9, , by v and thus Z(r) acts on the tensor product via the
non-genuine character w-v. If r is even, Z(r) = Z?(r) and this imposes no further
condition, but if 7 is odd, Z(r) = Z'(r) and we obtain the second condition of the
statement. It follows that every character occurring in .the decomposition does
satisfy the conditions of the statément.

Let us choose one character x of H, which occurs in the decomposition of the
tensor product. Say that £ # 0 in the space of the tenso‘ri product transforms by

x. Fix a € fIr and consider the vector

§o = (19.70,‘,,,(0,) ® bVo,V(e))E'

For h € H, we have

(19'70#4-’ ® 19’70 11’) (h)Ea

= (19’70 w ® 19'70,1/) (h) (19,,0,‘,,,((1) ® 19-70,1,(6))5

= (19’707“’(}”0’) ® "9'70,11(77'))5 where p( ) =h

= [77" al (19'70,40 (a) ® 19—70,1,(6)) (19’70,01 (h) ® ﬁwo,u(h))f
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= [R, a]X(}.L)fa

and so &, transforms by the character h ~ [h, a]x(h) where, as usual, [k, a] denotes
the commutator of and a. A direct calculation using formula (3) of Chapter 1,

section 3 shows that if h = diag(hy, ..., h,) and p(a) = diag(ay,...,a,) then
- T
[k, a] = (det(h),det(a)) - [ [ (hy,a;)7".
j=1
From this it is easy to check that the kernel of a — [-,a] is Z(r) - H2 and so we

have produced [H, : Z(r) - H2] distinct characters of H, which occur in the tensor

product. But it follows from (1) that
= S
H, :Z(r) - HZ] = dim(Ey,_ ,g0.,..)

and the proof is complete. O

That part of Bump’s and Ginzburg’s paper [BuG] on the symmetric square
L-functions on GL(r) which deals Witbh the local theory of these functions centefs
around two results, the “unramified computation” in section‘ 4 and the local func-
tional eqﬁation in séction 5. The central point in the lat’ter is to éstablish a certain
representation-theoretic uniqueness statement (Theorem ‘5.1 of that paper) from
which the local functional.equation flows. The argument by which they establish
this uniqueness statement appears to be susceptible to substantial refinement and
we shall do this below. However, it is first necessary to point out two rather subtle
errors in Bump’s and Ginzburg’s proof and to show how'they may be overcome,
so that we are refining a valid argument.
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One of the errors in ciuestion involves a misuse of the properties of the func-
tors U+ and & and their close relative ®* and so it may be helpful to recall some
of their properties and also to clarify some points which have not been adequately
addressed in the literature. Here and throughout this wbrk, we employ the nor-
malized versions of the functors as defined in section 3 of [BZ2]. We shall assume
below that the reader is familiar with this work and also with [BZ1]. As we have
already remarked the basic properties of these functors (and that is all we shall
need here) remain unchanged when we pass to the metaplectic setting. The next
Proposition recalls the properties of these functors which Will particularly concern
us here and adds one which is not explicit in [BZ2]. Recall that A(G) denotes the
category of algebraic representations of G for any E-group; G. We use ~ to denote
contragredient; this should not cause any confusion with its use in the symbol o+

If 7,72, 73, T2 GA(IS(T)) then for purely’ algebraic réasons we have a natural

isomorphism

Homg, | (11 ® 72,73 ® 74) Homg, (11 ® 74,73 @ 72)

but since (#)” is not generally isomorphic to 7 many of the other familiar iso-
morphisms involving contragredients do not hold on 13(7') For example, it is not

generally true that
Homﬁr) (7'1, Tz) = HOID’I;(T) (’f‘z, ’f'l) .

Such properties can be recovered for admissible representations of 13(7'), but these

are comparatively rare — even if 7 € A(é (r)) is admissible (or even irreduciblt_e),

71"'1;(7‘) will not be admissible in general.
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Proposition 2: Let p € A(G(r—1)), 7 € A(P(r)) and k € A(P(r—1)).
Then

(1) Homg, (1, 0% (p)) = Homa(r_l) (T=(7), p)

(1) Homf};(r) (@F(k),7) = Homﬁr-1) (5, ‘19_(7'))

(113) Homg, (@~ (1), k) = Homg, (r, % (k)

——

(v) U+ (p) = |det | 7" @ U*(p)
(v) &+ (k) = |det |1 @ &+ (| det | ® &)
(vi) &= (7) = &~ (#)

Except for those in (v) and (vi), all the implied maps underlie natural transforma-

tions.

Proof: Statements (i)—(iii) are in [BZ2], Proposition 3.2 and (iv) and (v) are in
[BZ2], Proposition 3.4 except for the naturality claim in (iv); however this follows
immediately from the proof. The map underlying (v) in not natural, except in
trivial situations, because .it involves the éhoice of an element of P(r) with which
to conjugate 6 to 8. It could be made natural, if this was desired, by including the
character 6 explicity and using the conjugate character in the appropliiate place.

We now turn to (vi). We have

k,®7(#)) 2 Homs_ (2" (k),7) by (ii)

Hom~ Br)

P(r—l)(

e —

>~ Homs, (7, &+ (k)

B(r)

T

~ Homg )(7', |det|™' @ & (| det | ® &)) by (v)

= Homg, _,, (ldet|® @ (7),|det|® &) Dy (iii)
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e—

= Homg (. = (1)).

If we now take k = & (7)-and observe that at each stage of the above calculation
an isomorphism in one Hom space is carried to an isomorphism in the next, we see
that the identity map in the first Hom space gives rise to the required isomorphism
in the last. O

There doesn’t seem to be é simple relationship like (vi) for the functor ¥~. How-
ever, if we assume that 7 € A(lg(r) ) is such that ¥~ (7) is admissible (which would
be true, for example, if 7 were the restriction to 1’5(7,) of a representation of finite
length on G (r)) then we can prove the following.

Proposition 3: Let 7 € A(lg(r)) be such that ¥~ (1) is admissible. Then there

18 a natural surjection

T~ () — | det | ® T (r).

Proof: For any p € A(é (r — 1)) we have

Homg ;) (¥7(7),#) = Homg , (1, ¥%(p)) by Proposition 2(i)

= Homﬁr) (r,|det| ® \Iﬁ'(\p)) by Proposition 2(iv)

= Homi;(r) (|det|"* @ T*(p), 7) . (2)
The short exact sequence

0—=dTd (#) =+ —= ¥HT~(#) =0
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gives rise to an exact sequence

{0} — Homg (| det|"" @ T*(p), 2T 0 (7))
—+ Homg, (|det["1®‘lf+(p) 7) (3)
— Homg (| det |"* @ Ut (p), TTT (7))
and since ®+®~(#) embeds in ®+®~(#), the first possibly non-zero term in (3)
embeds in
Homg | (Idet|~* @ TF(p), 210 (7))
= Homg, | (|det|"' ® @~ ¥*(p),®2(#)) by Proposition 2(iii)
= {0}

since ®~UT = 0. Using this in (3) we see that

Homg,_,) (¥~ (r),7) = Homs (| det ™ © * (o), U3~ (7))
= Homg , _ (| det |71 @ U~ T (p), T (7))
= Homg,, . (|det | ® p, ¥~ (#)) (4)

since ¥~ ¥+ ~ Id. Now if p is admissible (even though ¥~ (7) need not be) then

the last space in (4) is isomorphic to

Homa(r_l) (|det|™t @ U=(%), p)

and so

Homa(r_l)(\lf_('r) p) — Homg (ldet|"1®\lf (%), p)
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e —

naturally for all admissible p. Taking p = ¥~ (7), which is admissible since ¥~ (1)

is, and using naturality we obtain
|det |~ ® T (7) - T~ (1)

or

\I//'-(\f') — |det|®@ U7 (1),

as required. O

One adjoint functor is conspicuously absent from the list in Proposition 2,
namely the right adjoint of ¥. This functor arises so infrequently that it seems
to have no standard name in the literature. We discuss it here because we shall
need it subsequently. By analogy with ®+ and &+ we probose tocallit U—. If 7 €
A(IS(’I‘)) then G (r — 1) preserves the space of N*((r — 1,1))-invariant vectors in
the space of 7 and restricting 7 to thiS‘subspace yields a representation of G (r—1).
This representation twisted by |det [~/ will be U~ (7).. If T € Homg (11, 72)
then ¥~ (T) will simply be the restriction of T to the space of B~ (71). This gives us
a functor from A(lg(r) ) to A(é (r —1)). It is clear that, for p € A(G (r — 1)), the
image of S € Homﬁr) (T*(p), 7) lies in the space of ¥~ (7). From this observation

the existence of a natural isomorphism

Homg, | (TH(p),7) = Homg (p, I~ (1))

is immediate and thus ¥~ is right adjoint to U+. We note that ¥~ ¥+ = Id.
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Proposition 4: For v € A(P(r)) there is a natural isomorphism

U (7) = |det| ® T~ (%).

Proof: Let p€ A(é (r—1)). Then
Homa(£;1) (e, i (7)) = HOmg(T) (T*(p), 7)

= Homﬁr) (T, m)

= Homg )(7', |det |t @ T (p))

T

= Homﬁr) (i det| ® T, \Il+(ﬁ))

= Homg ., (|det |® T~ (1), p)
= Homg, _,, (p,|det |7t @ ¥~ (7)) .

with naturality at every stage. It follows that U= () & | det |~} ®\I’/_(\T) naturally;

hence the result. 4

We now turn to explaining the errors made by Bump and Ginzburg in the
proof of Theorem 5.1 of [BuG]. We assume that the reader has access to the
paper. In comparing their work with what is doné here it should be remembered
that Bump and Ginzburg; use the unnormalized versioné of U* and ®* (which
they denote by ¥ and ®.) and that they do not refer explicitly to x or w when
discussing ¥, (x,w), so that twists are frequently absorbed into x without mention.
The preliminary material, on the first three pages of the. proof, is all correct. In
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the last paragraph of the proof, in the course of completing the induction step,

they write
Homlgk (ﬂ'k ®0p @V, k-1, (I)+q)_9k) = Homﬁk (q)+q)_(9k) &® 5;; @V, 0,1, ?rk) .

They are using the duality property of contragredients, but as we have seen above,

e — ~ o~

.0 0, =0, (D_(6r) = d,0_ (1)

and so the isomorphism is not obviously correct as it stands. This suggests that
some other error in the argument might have led to q)+©._§k standing in place of
é+©_§k in the second place in the first Hom space in the isomorphism. However
this is not so; the representation ©+@_§k got there because of its appearance in

the short exact sequence
0— 3, 0_(0;) = 6 — T U_(6;) >0

and there is no reason to believe that the natural map {>+©_(§k) — By extends

to a map &, ®_ () — B%. If the statement of Theorem 5.1 is modified to read “

» »

... there exists at most one ... ” instead of “ ... there exists exactly one ...
then this problem can be avoided. Even though we shall point out a much more
serious error in the proof of Theorem 5.1 below, it is worth explaining how to get
around the difficulty because we shall use the same argument ourselves later on.
The point is to observe that, since ©+©_§k is a subrepresentation of <i>+@_5k, if
we replace ©+©_§k by é+{>_§k in the Hom space above then the dimension of

the space can only increase and afterwards the inductive step can be completed.
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The second error which Bump and Ginzburg commit in their proof of Theorem
5.1 involves a pun on the symbol 0. If pE A(é (r)) then it is conventional to
confuse p with p|p];(r) whenever the & and ¥ functors are involved. This convention
leads to an ambiguity when applied to the symbol p; does it mean (ﬁ);ﬁ(r) or

e —

(p[ﬁr))? Unfortunately these objects are very different in general. For instance,

—

if p has finite length then so does (§) but not usually (plg(r)). We may give a

%)
more concrete example on G(2) where the situation is very well-understood. Let p
be an irreducible cuspidal representation of G(2). Then, in the notation of [BZ1]
(see §5.13fF), we have [)]5(2) = 79 and

e —

(ol

o o

T g P -

Consideration of the restrictions of principal series representations of G(2) to P(2)
(see [BZ1], §5.24) shows that 7p/73 (which is most naturally regarded as a rep-
resentation of G(1)) contains every character of G(1). In particular, ¥~ ((@))
contains every character of G(1) and-is certainly not of finite length.

Near the beginning of the main argument in the proof of Theorem 5.1 Bump

and Ginzburg say

“ ... so this space is isomorphic to

Homlgr (7r @0, gr—l ® 511;3) o Homﬁ (mr ® 0p ® 0,1, @) R

In this congruence the symbol @-1 really means \Il+(§r_1), where the contragre-
dient is taken on G (r — 1), and this is isomorphic to ‘If_jﬁr\_l) The symbol 6,

on the left means 6, h;(r) and so the symbol 8, on the right means (HT[;(T)) The
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isomorphism is thus correct provided one changes §% to 5;’;1 on the right — this
change is not significant for their argument. Continuing with their analysis they

eventually arrive (at the first inductive step with k£ = r) at the space

Homg (T (7 ®0p @ U10,_1),0_6,).

They correctly conclude that this is isomorphic to

Homar_1 (\Il_(m) ®op ® 9,‘_1,,\11_@') .

However they then behave as if the representation \If_/O\TV had finite length and
analyze its composition factors in terms of their central characters. But we have
seen that the symbol \I/_’O\T appearing on the right explicitly means ¥_ ((O/Tl—};\r))
and there is no reason to bélieve that this has finite length. If it did then the above
space would indeed be »z‘ero for generai s as Bump and Ginzburg claim, but if not
then we cannot dra§v this conclusion on general grounds alone. We commend to
the reader’s attention theAfol‘lowing' simple related examéle: If p is as at the end

of the previous paragraph then the space

Homg(1) (l : lsa v_ (,OTP(\z)))

is non-zero for all s € C.

In light of these remarks I believe that Bump’s and Ginzburg’s proof of The-
orem 5.1 of [BuG] must be rejected and with it their proof of the local functional
equation for the symmetrif: square L-functions. Below I shall prove a result which
implies the generic uniqueness part of Theorem 5.1 (though not the existence) and
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this will be enough to salvage the local functional equation. Bump and Ginzburg
remark that their proof of Theorem 5.1 bears a close resemblance to the unfolding
argument for their global Rankin-Selberg integral. However, this is not exactly
true; the unfolding is “2-periodic” (that is, it takes two steps for the integrand to
return to its original form) wheréas their proof of Theorem 5.1 is 1-periodic. The
proof of Theorem 1 below is 2-periodic, restoring the expected harmony between
the local and global theories.

If 7 € A(G(r)) then we shall refer to 7 .. 71 as the intermediate
derivatives of m (that is, intermediate between 7(® = 7 and 7(")).
Definition }1: Let m € A(E} (r)) and s € C. We say that ™ s general with
respect to s if no non-zero subquotient bf any of the odd intermediate deriva-
tives 7 7). has central character, a, satisfying o® = | det ]_23_1/2 and no
non-zero subquotient of any of tﬁe eben intérmediate derivatives 73, 74, .. has

central character, a, satisfying o = |det I—2s+‘1/2'

Theorem 1: Suppose that F is not dyadic or that r < 3. Let w and v be suitable
characters ofi(r), seC and T a homogeneous, admissible "repre'skentation of G(r)
of finite length which s géneral with respect to s and whose central character, wy,
satisfies w,,!z(r) =w-V. J;hen the dimension of the space of invariant functionals

on the representation

9rw ®indS") (9 4y, @62

“Q((r-1,1)) Q((r—l,l))) ®r

is at most the dimension of the space of Whittaker models of .
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Proof: We abbreviate Q ((r — 1,1)) by Q. First suppose that r is odd. The space

in question is then

Homg, , (V5w ® 1nda (Bro11)0 ® 63) ® T, 1)

~ . a(r) -
o Homa(r) (00 ®, md6 (Fr=1,1),0 ® 5Qs))

= Homa(ﬁr,w Qm, \Il+(7~9(r—1,1),u) ® (Sés) . (5)
Since r is odd the representations in the first and second places in (5) have the
same character under Z'(r) and, because Q = Z(r) - f’.(r), the space in (5) is

isomorphic to

Homﬁr) (Orw @, ‘I’+(19(r—1,1),u|a(r_1) < M) ® | det 7). (6)

But (r — 1) is even and so 19(@1,1), = Yr_1,4,_, where v,_; is the

VIE(T—1)§<'M2

(unique) suitable character of Z(r — 1). Thus (6) is isomorphic to
Hom—I;(r) (Orw @m, U (91, ) ®|det|™?). (7)

If r is even then we must reach (7) by a slightly different route. In this case (r—1)

is odd and so

d§(T—1) X GQ)

G(r-1) X 62(1) (’tgr—lvur—l ® 1)

Dr-1,1),, = in

where v,_ is any suitable character of Z(r —1). Thus if Ql = P(r) - Z2(r) we

have, by transitivity of induction, that

a(r)

1nd»(5 (19(,..1,1),,, ® 55) = mda,

(’l9r_1,yr_1 ®1® (56)
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and repeating (5) with the right hand side of this isomorphism in place of the left

we find that our space is isomorphic to
Homa: (19,-’0., ® T, \I]+ (19,-_1’,,1__1 (03] 1) K 558)

and since the Z%) characters in both places in this Hom space agree, this is
isomorphic to (7).

From this point onwards the particular suitable characters with respect to
which the exceptional representafions are formed will not play a significant réle.
We shall thus allow ourselves to omit them from the notation and simply write 9,
for any exceptional representation 9., .

For 0 < k < r -1 and z € C we shall consider the spaces

Hr (7r,. 2) = Homﬁr_k) w"’“@ (@7)*(n), T (9y—k—1) ® | det |*)

and

Ji(m,z) = Homg, (Ut (Frp—1) ® (@7)*(7), 9k ® | det |*) .

We have a short exact sequence
0 — ®TO™ (D,_r) = 9r_p — LTI (9,_) = 0 (8)

and since the tensor product yields an exact functor on the category of vector

spaces we obtain from this an exact sequence

0— &TO™(9,—g) ® (®7)F(m)
— Oy ® (37)%(n)
— U™ (9,_p) ® (&7)* (1) — 0.
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Using this sequence in the definition of H (7, z) we obtain an exact sequence

0 — Homs THO™ (,—p) ® (7)*(m), UH (0 —p—1) ® | det |*)

Fri

— Hi(m, 2) (9)

— Homg, (@10~ (9y—) ® (7)*(n), T (Fr—k—1) ® | det |?).

Hom~ T~ (9,_) ® (Q—)k(ﬁ), Ut (9p—1) ® | det ‘z)

B
> Homg, ) (0™ (UM~ (0,-%) ® (B7)¥(x)), rx-1 ®| det |*)

= Homg, _, (T~ (9r—k) ® 7®* D @ | det |2, 9, _x—1 ® | det |?)

= Homa(r—k—l) ( SVrk-1® 77(k+1) b ! det 11/47 Vrek—1® l det Iz)

> Homg, (@ Ur—k-1® ) 9, k1 © |det|F71/4) (10)

where @9,_j_; denotes a finite direct sum of exceptionai representations formed
with respect to various suitable characters. In this calculation we used Proposition
2(i) from the first to the second line and Proposition 1 of section 4 from the
third to the fourth. All the exceptional representations .in. (10) transform via a
suitable character of Z2(r' — k — 1). The representation (1) is of finite length
and comparing Z2(r — k — 1) characters in both entries in (10) we see that the
space of homomorphisms is {0} provided that no non-zero subquotient of 7(¢+1)
has central character, a, satisfying o = |det [?*~1/2. If this is the case then (9)

shows that Hy(w, z) may be regarded as a subspace of

Homig(r_k) (@+q>—(19,._k) ® (q;—)k(ﬂ,), \I’+(19r—k—1) ® ldet Iz)
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= Homg, (240~ (0,_1), U¥ (6__1) ® (B)¥(r) ® | det |*)

—

= Homg, (27 (9,4), @ (UH (I, 1) @ (87)5(m) @ | det[))

o Homi;(r_k_l) (‘I)_(ﬁr—k), Fr—km1 ® (D7)*+1(7) ® | det !z+1/2)

= Homﬁr~k—1) ((I)_(ﬁr—k) ® ((I)_)k+1(7r)a Vr—k-1® |det |z+1/2) (11)

where we have used Proposition 2(ii) from line two to line three and Proposition

2(vi) from three to four.

Up until now we have not made any use of the hypothesis that F' is not dyadic
or else that r 5 3. This hypothesis becomes necessary when we attempt to analyze
(11) further. Applying the standard short exact sequence to the representation

®~(0¥,_k) we obtain
0 — &F(97)?(9,—x) — &~ (9,_x) — o) = 0. (12)

Since 199_) . = 01if 7 > 3, we see that all the proper derivatives of the representation
(®~)%(9,_) are equal to zero and arguing as in Proposition 9 of section 4 this

implies that (®~)2(9,_x) = 0. Hence (12) implies that
& (9p_) 2 U (WP,) 2 |det |2 @ U (I, —p_2)

by Proposition 2 of section 4.

Using this we see that (11) is isomorphic to

Homg, ., (Idet|™/> @ UF (9, —4—3) ® (87)5+! (), #r—p-1 ® | det |"+1/2)
= Homi;(r—k—l) (\IJ+(197._k_2) ® ((I)_)k+1(7r), 9r_k_1 ® | det |z+1)
= Jk+1(m,z+1).
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To summarize this part of the argument, we have shéwn that if 7(+1) has no
non-zero subquotient with central character, «, satisfying o® = | det [?*71/2 then
Hi(m, z) is a subspace of Jyy1(m, 2z + 1).

We must now undertake a similar, but somewhat easier, analysis of Ji (7, 2).
Applying (8) in the second place in the definition of Ji (7, z) we obtain an exact

sequence

0 — Homg (T (k1) ® (™) (m), @O~ (F,_k) ® | det |*)

— Ji(m,2) ‘ (13)

— Homg, . (TF (Fp—gpm1) ® (@7)F(m), TH T~ (J,_k) ® | det |7}

The last term in this sequence is isomorphic to

Homa(r—k—l) (ﬁr—,kéi ® 7r(k+1) ® |det ‘1/2’ \P_(ﬂr—k) ® ldet Iz)

=Homz _, 1 (Or—k—1 @ 75D @ | det |2, @8, _r_1 ® | det [7/4)

= Homg . ., (9 ——1 @ 7*FD @9, 5 ® |det|*~%/4) (14)

where we have used Proposition 1 of section 4 from the first to the second line. As
before, this space is {0} if no non-zero subquotient of m(k+1) has central character,
a, satisfying o = | det |2*~3/2. If this condition is satisfied then (13) shows that

Ji(m, ) is isomorphic to

Homg o (U (Br—k-1) ® (87)*(r), 8+~ (9,-4) ® | det |*)

which is a subspace of

Homg, _\ (U (9r—k=1) ® (27)*(m), 82~ (9,_1) ® | det|*)
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= Hom’ﬁ(r_k-l) (Fr—k—1 ® (@) (n) @ | det |V/2, & (F,—k) @ | det B

& Homﬁr—k—l) (ﬂr—k—l ® (7)1 (7) @ | det |12, T (P, _k—2) ® | det Iz—l/z)

= Homg, . . (9r—k—1 ® (®7)FF (1), U (Fy_gp—2) ® | det |*71)

=’Hk+1(7r,z— 1)

To summarize, we have shown that if 7(**1) has no non-zero subquotient with
central character, a, satisfying o = |det |?*=3/2 then Jx(w,z) may be regarded
as a subspace of Hgy1(m, z — 1). |

With the analysis of Hy(m, z) vand Jk(m, z) complete it is time to return to
the space of invariant functionals whose dimension we are trying to estimate. In
the first part of the proof we saw that this space is isombrphic to (7) and this is
Ho(m, —s) by definition. In the diagram below we have indicated the sequence of
inclusions which has been established. Each arrow is labelled with an abbreviated

form of the condition under Which it is valid:

Ho(m,—8) ——-—> Ji(m,1-35) o Hp(m,—5) oo

1 1 1
a?#|det| 7272 a’#|det |72t 2 a?s|det |72 2
(3)

on w1V on n{? ' on T
Since we are assuming that 7 is general with respect to s, all these conditions are

satisfied and we conclude that the space of invariant functionals is a subspace of

either #,_1(m, —s) or J.—1(m,1 — s) depending on the parity of r. Now

Hr—1(m, —s) = Homg) (1 ® (&) (x), ¥ (dp) ® | det | ) (15)'

and both entries in the Hom space are genuine representations of f’(l) = uo. Both

the exceptional representations are one-dimensional and (®~)"~!(n) is realized
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on the same space as 7("). Hence (15) has the same dimension as the space of
Whittaker models of 7. The same conclusion holds for J._1(m, 1 — s) by a similar

argument. This finally completes the proof of the Theorem. O

Corollary 1: Suppose that F' is not dyadic or that r < 3. Let w and v be suitable
characters of Z(r) and 7 a homogeneous, admissible representation of G(r) of fi-
nite length which is geneﬁzl with respect to 1/4. Then the dimension of the space
of invariant linear functionals on ¥, , ® ¥, , ® 7 is at most the dimension of the

space of Whittaker models of .

Proof: If w, l'z“(r) # w - v then the space has dimension zero, so we may assume
that the central characters match. Combining parts (e) and (f) of Theorem 1 in

section 3 we see that 9, , is isomorphic to a quotient of

. d§(r) YN s1/4
4 (-1, =200 ®3g7)

and hence there is an injective map from the space of invariant linear functionals

on ¥, , ® ¥, ® m to the space of invariant linear functionals on

9y, ® indS Ir11re QN @ 7.
; ® m Q(('r—l,l))( ( 171)’ ® Q ) ® T
The result now follows from Theorem 1. d

Note that if 7 is a cuspidal representation of G(r) then 7¢) = 0 except for j =
0 and j = r (see [BZ2], Theorem 4.4). Thus 7 is automatically general with respect
to any s € C. If 7 is also irreducible then n(") = 1 and it follows from Corollary 1
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that the space of invariant linear functionals on ¥, , ® 9, , ® 7 is always at most
one-dimensional. In order to see that the hypothesis of generality in Corollary
1 is necessary let us take 7w to be the trivial representation of G(r) with r > 2.
Then 7 has no Whittaker models, but the space of invariant linear functionals
on Y, ® ¥y, ® 7 is exactly one-dimensional because 9, ,, is irreducible and self-
contragredient. The first derivative of 7 is the one-dimensional representation
|det |1/ on G(r—1) anci all higher derivatives of = are zero. Thus the condition
of generality with respect to 1/4 is violated in this case and this shows it to be a
necessary assumption.

Definition 2: Ifw and v.are suitable charavcters and T isla representation of G(r)

then we shall denote the space of invariant linear functionals on ¥, , ® 9, , ® 7 by

L(w,v;m). If w = v then we shall write L(w; ) in place of L(w,w;T).

Theorem 2: Suppose that F is not dyadic or that r < 3. Let w and v be suitable
characters of Z(r) and p a homogeneous admissible representation of G(r — 1) of

finite length. If r is odd then define a character o of F* by
a(z) = wp(2lr—1) 7" - (w- v)(2I}) (16)

where w, is the central character of p. If r is even then define a by (16) on (F*)?

and extend it in any way to F*. Let
T =ir-1,1),r) (PO ).
If r is odd then there is an exact sequence

{0} — L(n; p) = L(w,v;7) = LW, V"5 pM)
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where 1 is the unique suitable character of Z(r —1) and v’ and V' are suitable

characters of Z(r — 2) related to w and v by

w=('® 1¢)\§(r) and v=0® 1¢)]§(r) : (17)

If r is even then w = v and there is a space V which completes the following

diagram

L(w;m)

]

{0} —— @y L1, 723 ) 14 L(w'; pD)

with the row ezact. Here w' is related to w by (17) and the direct sum is over
all pairs of suitable characters. The space V is independent of the extension of a
from (F*)? to F* initially chosen and if V is non-zero then L(w;m) is non-zero

for at least one choice of extension.

Proof: Welet Q = Q((r—1,1)) as before. The space L(w, v; ) is isomorphic to

HomG(r) (ﬂr,w b2 791‘,1/ Qm, 1)
=~ Homgy) (Fr ® 0, ind (p @ o !
= G(r)( r,w® rv,y 111 Q (,0®01 ))

=~ Homq (W0 ® %0, TT(p® a'l)) i (18)

We note explicitly that the p in (18) refers to the contragredient of p as a repre-
sentation of G(r — 1). The Z(r)-character of the representations on the left and
right of this Hom space have been arranged to match. Thaus if 7 is odd we may

drop the center to see that (18) is isomorphic to

Homp(r) (97w ® 970, TF(5)) . (19)
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If r is even then (19) will be the space denoted by V in the statement. It ev-
idently does not depend on the extension of @ which wés chosen and since the
P(r)-intertwining property required of elements of (19) is less restrictive than the
Q-intertwining property required of elements of (18), £L(w; ) is always a subspace
of (19). Since Z'(r) /Z2(r) is a finite abelian group, any element of (19) may be
written as a sum of linear maps between the underlying spaces each of which is
P(r)-intertwining and transforms under Z!(r) by one of the square-trivial char-
acters. These summands give elements of the various £(w;7), where 7 is formed
with one of the possible e_xtensions of a. If the original map is non-zero then at
least one of its summands must be non-zero and this shows that if V' # {0} then
L(w;m) # {0} for at least one choice of a. This said, it remains to analyze (19).

We shall begin with the short exact sequence
020707 (9,,) @0, = 0rw®0, =T T (0,,)®9, =0
which yields an exact sequence

{0} —s Hompyry (LT (3,.0,) ® Oy, TF(5))
— HOInp(,.) (191-,(‘; &® '491-,1/7 ‘Il+(ﬁ)) (20)

— Hompy (272~ (9rw) ® 9ru, TH(P)) .

The first term in (20) is easy to analyze. Indeed, by Proposition 2(i), it is isomor-

phic to

HOHlG(,-_l) (l det tl/? &® ‘Il—('ﬂ'r,u) ® \Ilﬁ(ﬂr,l/): ﬁ)
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2 Homg,—1) (| det|"? @ U~ (9,,,) ® T (3,.,) ® p, 1)
and by Proposition 1 of section 4 this is isomorphic to £(n; p) if r is odd and to

Dn1.ne ‘C(Tllv 12, P)

if r is even. This gives the first part of the exact sequence in the statement.
The analysis of the third term in (20) is much more challenging and, in order
to avoid a string of isomorphisms stretching for a whole page, we shall break it

into shorter steps. First we have

HomP(r) (q)+q)_(79r,w) ® "91',1” \P+(ﬁ))
=~ Homp,) (<I>+¢>"(19,»;w) Q@ Vrp,|det| ® \I//"‘(\p))

= Homg, , (| det|™* @ U* () ® V., B+8-(J,..))

= T
where we have used Proposition 2(iv) and the duality property of contragredients.

By Proposition 2(v) this is isomorphic to

Homg,, (| det |1 & U+(p) ® Oy, | det |~ @ (| det| ® 7(9,..))
= Horng,, (T* () ® 9y, 7 (| det | ® 37 (9,.,))
= Homg, _,, (|det|"? ® p® B (9,.,), | det| ® B (9..,))

2 Hompyr—1) ] det|"V2@p@ &~ (¥,.,) @ B~ (9,,), 1) (21)

where we have used Proposition 2(iii) and the duality property of contragredients.

The first hypothesis in the statement implies, as in the proof of Theorem 1, that

O™ (0r) =2 |det [TV 2@ UF (9r—2,07)
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and

O™ (V,,) = | det ]"1/2 Q Ut (9p_2,).

Hence (21) is isomorphic to

HomP('I‘—l) (] det ]_3/2 XS \I’+ (ﬁr;Z,w’) b2 \I’+ (191‘—2,11'), 1)
= HomP(r—l) (l det l~3/2 ® \I’+ (191'—2,4‘;’) ® ut (191'-2,11’)’ ﬁ)

=~ Homp(,—1) (| det | 7' @ UH (Fr_20r @ 9r2,1), 5)

where the symbol p now refers to the contragredient on P(r — 1) of p|pr—1)- By

the discussion preceding Proposition 4, this is isomorphic to

Homgy,_o) (1 th_l_l ® Vr—2,0 @ Vr_2.u, ‘i’_(ﬁ))

> Homggr—g) (| det |72 ® By a0 ® O 00, | det |} ® T (1))

e —

= HomG(r--Z) (191‘—2,0.:’ ® 191‘—2,1/” \I}_(p))

= HomG(r—2) (ﬂr—2,w’ ® 191‘—2,1/' ® ‘I’—(p), 1)

= L',V pM)
by Proposition 4 and the duality property of contragredients. This completes the

proof. O

We shall now concentrate our attention on the principal series of G(r) and at-
tempt to obtain further information about the spaces £(w, v; ) when 7 belongs to
this series. It will be convenient to have a more compact ﬁotation for these repre-
sentations than is presently available and so we shall write I(x) or I(x,..., xr) for
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the representation obtained by normalized parabolic induction from the character
x = (x1,---,xr) of Hy.

Definition 3: A character x = (x1,--.,Xxr) of Hy will be called balanced if there
is an involution j — j* of the set {1,...,r} such that, forall1 <j <r, x3x% =1

J

ifj# 3% and x=11if j=j*.

We note that if » = 1 then the character x is balanced if and only if 2 =1
and if 7 = 2 then the character x = (X1, x2) is balanced if and only if x3x3 = 1.
In general, if x = (x1,.-.,Xr) is balanced then H;=1 X? = 1, but additional
restrictions are also being imposed when r > 3.
Theorem 3: Suppose thiztvF is not dyadic or that r < 3. If L(w,v;1(x)) # {0}

for some choice of suitable characters w and v then x is balanced.

Proof: Since ¥, ,®4Y,, transforms under Z(r) by w-v, a _ﬁrst necessary condition
for L(w,v;m) # {0} is that w, = w-v on Z(r). (Note that (w-v) = (w-v)71.) In
particular, w, must be square-trivial.

We shall establish the result by induction on r. If r = 1 or r = 2 then x
being balanced is equivalent to I(x) having square-trivial central character and
hence the claim is true in either of these cases. Now suppose that » > 3 and that

L(w,v;I(x)) # {0}. By transitivity of induction we have

I(x) 2 indG" (L(x1 - - -y Xr—1) ® Xr) -
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If we set p = I(x1,.-.,Xr—1) then
r—1
wp(z-[r——l) = H X] (Z)
=1
and it follows from the remarks in the first paragraph that
wo(zlr—1) - Xr(2) = (w-v)(21;) for zI,. € Z(r).

Thus, regardless of the parity of r, a = x, is one suitabie choice in Theorem 2.
We conclude from that Theorem that either £(n1,n2; p) # {0} for some suitable
m and 2 or that £(w',v';p)) # {0}. If the first possibility obtains then we
conclude inductively that (x1,...,Xr-1) is balanced. In particular, H;;i xi=1
and hence x2 = 1. If we ex.teﬁdvthe involution j +— j* of {1,...,7=1} to {1,...,r}
by setting 7* = r then we obtain an involution which shows that x is balanced.
Suppose now that the second possibility obtains. Using Corollary 4.6 of [BZ2]
(the “Leibniz rule” for derivatives) we see that p is ghied from the representa-

tions

pe:]I(Xl?"’7ﬁ?""XT—1)

where the hat denotes omission. Since £L(w’, v/, pM) # {0}, it follows that we must
have L(w’,V; pg) # {0} for some £. Then, by induction, (X1,-.,Xe---s Xr—1) iS

balanced for that £. In particular,
Xi'Xg'---’Xg—l'Xgﬂ‘~--‘X£—1 =1

and since [[;_, x? = 1 it follows that x7x2 = 1. Thus if we take the involution
grrg*of{1,...,£—-1,£+1,...,7 — 1} corresponding to the induction datum of
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pe being balanced and extend it to {1,...,7r} by setting £* = r then we have an

involution showing that x is balanced. This completes the induction. g

As usual, a character x = (x1,--.,Xr) of H, will be called regular if it is not
fixed by any non-identity element of the Weyl group under the natural conjugation
action; here it simply means that all the characters x; are distinct.

Theorem 4: Suppose that F is not dyadic or that r < 3. Suppose that x =
(X1,---,Xr) is balanced and that x? is regular. Then, for any suitable characters
w and v,

| dime (L(w,v;1(x))) < 1. (22)

Proof: We shall again use induction on r, beginning with r = 1 and r = 2. If
r = 1 then I(x) = x1 is a square-trivial character and s6 dime (L(w,v;1(x))) is
one if x; = w-v and zero otherwise. Thus (22) holds. If r = 2 then we are dealing
with an induction datum x = (x1,x2) which satisfies x3x3 = 1 and x? # x3; in
particular, x? s 1. Thus £(n1,m2;x1) = {0} for all suitable n; and 7, and using

Theorem 2 with p = x; and o = X2 we obtain an injection

L(w;I(x)) < E(w';x&l)) .

But xgl)

is the trivial representation of G(0) and hence E(Q’ ; Xgl)) = C. This gives
(22) in this case.
Now suppose that r > 3. We shall apply Theorem 2 with p = I{x1,...,Xr-1)
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and o = x,. First assume that x2 # 1. Then wf, = x72# 1 and so L(n,7n2;p) =

{0} for all suitable 7; and 7;. Theorem 2 then implies that there is an injection
[,(w, v; ]I(X)) — [,(w', v p(l)) . (23)
As in the proof of Theorem 3, p(1) is glued from the representations

Pt =T(X15-«-yXlr+++y»Xr—1)

for £ = 1,...,7r — 1. If £ # # but the central characters of p; and py have
equal squares then we could conclude that x% = xg,, contradicting the regularity
assumption. Thus the squares of the central characters of the p; are all distinct.

It follows that

PN = @71

and that at most one of the py has square-trivial central character. Thus
L(w', v V) 2,21 L(w',V'; po) (24)

and all but one of the summands on the right Qf (24) are zero on central character
grounds. If one of them is non-zero then it is at mést one-dimensional by the induc-
tion hypothesis. Hence the left hand side of (24) is at most one-dimensional and
it follows from (23) that L(w, v;1(x)) is at most one-dimensional. This completes
the induction in this case.

Now assume that x2 = 1. Then x? # 1 forall j = 1,...,7r — 1 and so
the involution j — j* of {1,...,7} which corresponds to x being balanced must
satisfy r* = r. If r were even then the restriction of j — j* to {1,...,r — 1}

150



would necessarily have a fixed point and this would produce some 1 < 7 <r -1
with XJ2- = 1. This is impossible and so r must be odd. Hence we have an exact

sequence

{0} = L(n,0) = L(w,v;1(x)) = L(',V; pMY . (25)

The central character of p is square-trivial and thus if p; had square-trivial central
character for some £, we would conclude that x7 = 1, contradicting regularity.
Therefore £(w’,v'; pg) = {0} for all £ and so L(w',v'; p()) = {0}. Using this fact,

(25) yields an isomorphism

E(w,V;IH(X)) = L(m; p)

and the space on the right is at most one-dimensional by the inductive hypothesis.
We conclude that L£(w,v;1(x)) is at most one-dimensional and this completes the

inductive step in this case also. O

We have two results 'available which allow us to estimate the dimension of
the space L£(w,v;1(x)), namely Corollary 1 and Theorem 4. Their range of appli-
cability is not the same and it seems that Corollary 1 should allQW us to obtain
an estimate for certain balanced characters xy with x? irregular. Unfortunately,
Corollary 1 is never applicable to I(x) with y balanced once r > 3. We can, how-
ever, complete our results when r = 2. 'We need not even assume that F' is not
dyadic, since 2 < 3.

Proposition 5: Let x = (x1,x2) be a character of Hy satisfying x3x% = 1. Then,
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if w is the unique suitable character of Z(2), we have

dime (L(w;1(x))) < 1.

Proof: The result follows from Theorem 4 unless 2 is irregular; that is, unless
X2 = x2. If x2 = x2% then x} = x5 = 1; let us assume that this is so. The only
intermediate derivative of I(x) is I(x)™), which is glued from x; and x2. We can-
not have 2 =| - |7tor x2=]|-|"!since |- |72 # 1 and so I(x) is general with
respect to 1/4 (see Definition 1). By Corollary 1 we know that dime (£(w; I(x)))
is at most equdl to the dimension of fhe spéce of Whittaker models of I(x) and it

is well-known that this is one. Ol

6. Tensor Products of Exceptional Representations I1

In this section we shall continue with the investigatioﬁ of the spaces L(w, v;7)
which was begun in the previous section. Our focus here will be on existence results
to complement the uniqueness results already obtained.
Proposition 1: Let w and v be suitable characters and x1,-..,xr be characters
of F* satisfying sz- = l‘for all 3 and also H;=1 X; = w-v if ris odd. Put

X = (X1,--+,Xr). Then L(w,v;1(x)) # {0}.

Proof: Since I(x)~ = I(x~!) we have

L(w,v;1(x)) = Homggr) (95,0 ® U0, L(x 1))
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& Hoer ((P(-p)’»m (ﬁr,w ® 197‘,1!)7 X—l)

by Frobenius reciprocity.

Next we wish to understand the relationship between ¢(r) , (¥r,w ® ¥r,) and

‘10(7‘)7'70 (1'97'1‘-‘)) ® (p(’f‘),‘)‘o (1'91‘,1/) 9

which is slightly complicated by the normalizations of the Jacquet functors. Let
E = E; ® E; where Ej is the space of ¥, ,, and F, that of 9, ,. We let E(N(vo))

be the subspace of E spanned by the set

{(ﬁr,w ® 19r,u_) (n)é—¢&|ln G N(vo),€ € E}

and Eng,,) be E/E(N(v)) as usual, with similar notation for the other spaces.

For n € N(v), &1 € F71 and & € E, we have.

(rw ® Urp)(n)(&1 ® &2) — (&1 ® &2)

= [ﬁr,w (n)€1 - 61] ® ’191-,,,(71,)62 + 51 ® [191‘,V<n)€2 - 62]
it follows that E(N(v0)) € E1(N*(v0)) ® E2(N*(70)) and so the space of
. P(r)v0 (ﬁr,w) ® P(r),70 (ﬁr,u)

is a quotient of the space of ¢(r) 4, (9rw ® ¥r,,) and the resulting surjection in-
tertwines the unnormalized H, actions on these spaces. Taking into account the

normalizations, we conclude that there is an intertwining map

P(r)r0 (197'7“" ® 197'7”) - #'21()2,‘70 ® P(r)0 (197'?“") ® P (197'7”) :
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Using Theorem 1(a) of section 3 this gives an intertwining map

QD(T),’)‘O (197'7“1 ® 197‘7”) - 19'70 e ® 1‘9’707’-’

and hence a surjection

/:,(LU, v, H(X)) — Hoer (ﬂvo,w ® 19’7071” an) ’

This last space is non-zero by Proposition 1 and the conclusion follows. O

We cannot expect to make much progress in determining the dimension of the
space L(w,v;I(x)) for a general balanced x by such simpl'e methods as the above.
What is needed is a systematic 'proced'ure for producing elements of £L(w, v;I(x)).
For most x (those for which II(x) is irreducible) we may conjugate x by an element
of the Weyl group without alterihg I(x). Thus we shall largely be content to
produce an element of L’(g}, v;I(x)) after replacing x by some Weyl conjugate. We
need several preliminary resulfs.

Lemma 1: Ewvery balanced character x = (x1,...,Xxr) of H, is conjugate to a
character which is trivial on T%(r). Conversely, a character of H, which is trivial

on T2(r) is balanced.

Proof: From the definition it follows that

Ty(r) = { {diag(a1,a1,a2,a2,...,aq,a,) | a; € Fx'} if r is even
{diag(ao, a1, a1,...,aq,aq) | aj € F*} if r is odd
where ¢ = [r/2] and to obtain T3(r) we need only replace the condition a; € F*

by a; € (F*)2. Every involution of {1, ..., r} is a product of disjoint transpositions
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and the conjugacy class of the involution within &,. is determined by the number
of these which occur. Suppose that x is balanced with respect to the involution
j — 7*. After conjugating x and hence the involution we may suppose that j — 5~

is equal to the product

(i +1)(GE+2,i+3)-...-(r—1,7)

in &, for some 7 > 1 with : =r — 1 (mod 2). From the definition of balanced we

then have x2 =1 for j < i and x3x3,, =1 for j =4,i+2,... and so x is trivial
on T%(r). Conversely, if x is trivial on TZ(r) then it is balanced with respect to

the involution

(12)(34) -...- (r—1,7)

if r is even and

(23)(45) - ...- (r—1,7)

if r is odd. O

The next Lemma refines Proposition 6 of section 4 for semi-Whittaker func-
tions of the second kind. The character n is defined immediately before that
Proposition.

Lemma 2: Let w € Q2 (r) Then there is a character 1, of ’Tz(r) agreeing with

n on T3(r) such that

25 (hg) = mu(h)uglyo () E2*(9)
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for all h € Ty(r), € € Ey,, and g€ G(r).

Proof: Let A be any semi-Whittaker functional of the second kind. We fix h €

T,(r) and consider the functional A; given by

£ A9y (7))

on Ey_ . The group H, acts on N*(vo) by conjugation and the character 82 of

N*(vo) is fixed by T,(r) under this action. Thus

(B (m)E) = 02 (m)Mn(E)

for all n € N*(yp) and so Ap is a semi-Whittaker functional of the second kind.
The map h — (A — Ap) defines a representation of ’Tz(r) on the space of semi-
Whittaker functionals of the second kind. By Proposition 4 of section 4 this
space is one-dimensional .and hence there is a character £ of ’T‘z (r) such that
A =rk(h™1) A for all A € ’T‘z('r). Thus if the semi-Whittaker functions are formed

with respect to A then

We know from Proposition 6 of section 4 that x(h) = 77(h),u(lr/)4,,y0 (h) for h € T3(r)

and the Lemma follows. d
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Using the Inductive Structure Theorem (Theorem 1 of section 4) it is possible
to compute 7, explicitly. The answer depends, as expected, on the choice of
additive character 1. We shall not need to record the result of this calculation here;
we merely note that 7, - 7, is a character of To(r) trivial on T3(r) and therefore,
since T,(r) /T2(r) is a finite group, the character 7, is necessarily unitary.

Next we need to recall a particular case of a well-known result from the general
measure theory of locally compact, Hausdorff topological groups. Unfortunately,
it is difficult to give a reference for it in exactly the fofm we shall need. The
reader unfamiliar with it may consult, for instance, section 2.6 of [Fol] (see also
the discussion in the first three sections of chapter 6 of the same work), and will also
find it discussed in most other books which deal with the theory of Haar measure
on not necessarily abelian' topological groups. Note,_however, that Folland (and
several other of the standard references) put the subgroup on the right in forming
homogeneous spaces, whereas we shall always put it on the left. This leads to
some inverses appearing ip the formulse when they are translated from Folland’s
notation to ours. A brief treatment of the result we want in close to the form we
shall require is contained in sections 1.20 and 1.21 of [BZ1], but with hypotheses
which are slightly too restrictive.

We suppose that L is a closed subgroup of H, and consider the group L-N(vp).
This is a closed subgroup of H, - N(vy¢) and has the structure of a semi-direct
product, with L acting by conjugation on N(-g). The module of this action is the

restriction to L of () 4,; this is the inverse of the modular character of L - N(-yo)
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restricted to L (under the usual conventions).

We initially consider the space D, of continuous complex-valued functions, f,
on G(r) which satisfy the conditions
((Inv) ) f(fng) = u(r),;m (£)f(g) forall£ € L, n € N(7y) and g € G(r) and
((Supp)) supp(f) € L - N(v) - C for some compactum C C G(r).
The letter D is chosen to suggest the word “density”, since a function satis-
fying (Inv) may be regarded as a section of the vector bundle of densities on
L - N(70) \G(r). The space D, contains a cone of everywhere non-negative func-
tions (note that (., is a positive real-valued character) and so it makes sense
to speak of a functional on D, as being positive. Also, D, carries a natural topol-
ogy as the iﬁductive limit of the spaces D(C), which are defined in the same way
as D, but with the compactum C fixed, where we take the topology of uniform
convergence on C on the space D(C). The first form of the result we shall need
is that D, carries a continuous, positive linear functional which is invariant under
the action of G(r) on D, given by (go - f)(g9) = f(99e). This functional is, in
fact, unique up to positive scalar multiples. It corresponds, as in [Fol], to a Radon
measure on L-N(v¢) \G(r) which is “strongly quasi-invariant”. It follows from this
that the functional extends to several spaces related to D.. For instance, if Dt
is the space of continuous positive real-valued functions on G(r) satisfying (Inv)
then the functional extends to Dt as an R-valued functional. From here we may
extend it to the space D consisting of those continuous complex-valued functions,

f, satisfying (Inv) and such that the functional is finite on Re(f)* and Im(f)*.
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We shall follow an almost universal abuse of notation and write

f(9)dg | (1)
L -Nyo)\G(r)

for the value of this functional (with a normalization fixed once and for all) on
feDor feDr.

We shall also require a “convergence” criterion for ’pseudointegrals such as
(1). Let us suppose that we have another closed subgroup L’ of H, and that L - L'
is of finite index in H,. Since H, - N(vo) \G(r) is compact we conclude from the

construction of (1) that if f € DF then (1) is finite if and only if

“(?%m (HYf()dl < . (2)
LNLA\L/

Here d¢' is the Haar measure on L ﬁ L\L/, which exists since both L’ and L N L/
are abelian and hence unimodular. Note that (Inv) implies that the integrand in
(2) is L N L’-invariant on the left, so that the integral is well-defined. There is a
similar absolute convergence criterion.

Definition 1: Let x be a character of H, unitary on To(r). We say that x has
positive real part, and write Re(x) > 0, if h € H, and |h®| < 1 for all o € A,

implies |x(h)| < 1.

If x is a character of H, trivial on Ty(r) then it is determined by its restric-
tion to T,(r), which is necessarily trivial on T;(r) N Ty(r) = Z(r). The torus
Z*(r)\T,(r) is isomorphic to F* x --- >< F* with ¢ = |r/2] factors via the map
[} = (h*)aen, (where we enumerate Ay in the standard order). Every character,
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X, of H, trivial on T,(r) corresponds to a character of F* x --- x F* (g factors)
under this isomorphism, and we denote the resulting character by x. We may
express X as (X1,..-,Xq) Where each X; is a character of F*. Note that x has
positive real part if and only if |X;(w)| < 1 for all j = 1,...,q, where w is any
uniformizer of F.

We recall that the complex conjugate representation of ¥, is isomorphic to
¥, -1 since any suitable w is, in particular, a unitary character. In the function
space models of ¥, and 9, -1 given in section 3 the map is literally complex
conjugation of functions. Thus an element of L(w,w™!;7) gives rise to a G(r)-
invariant semi-Hermitian form on 9, , X ¥, , X m, by which I mean a form which is
G(r)-invariant, complex linear in its first and third arguments and complex anti-
linear in its second. The Converse is also true and it will be notationally more
convenient to work with semi-Hermitian forms in What follows.

For the reader’s conve;nience we add a few remarks 6n the relation between w
and w™! when w is a suitable character. When r is even, so that w is a character
of Z2(r) = (F*)2 x p, trivial on the first factor, we have w = w™! and hence
L(w,w 7)) = L(w; 7). When r =1 (mod 4) it follows fré)m the discussion before
Proposition 3 of section 3 that Z1(r) 2 F* X uy and w is a genuine square-trivial
character on this group. Thus again w = w™! and L(w,w™;7) = L{w;7). In
the last case, when r = 3 (mod 4), this is no longer necessarily true. In fact, a

calculation using Proposition 3 of section 3 together with [Rao], Corollary A.5 (3)
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shows that

wTH(s(th) = w(s(tl)) - (-1,t)

for all suitable w when 7 = 3 (mod 4). Thus £(w,w™!;7) is not necessarily the
same thing as £L(w;7) in this case.

In what follows, if w is a suitable character then we shall allow ourselves to
write Ez"". This is legitimate since each suitable charactef extends uniquely to an
element of Q2(r). Note that Eé"" would be ambiguous if » were even since in that
case the unique suitable character extends to an element of 2!(r) in many ways.
Proposition 2: Let x be a character of H, which is trivial on T4(r) and has

positive real part. For w a suitable character, &1, &, € Es,, and f € Ey(, let

T(es, &0, f) = / =22 (9) 22%(g) f(g) dg. 3)
T(r) - N(vo )AG(r)

Then Y is a G(r)-invariant semi-Hermitian form on 9., % 9, X I(x) and hence

gives Tise to an element of L(w,w™;1(x)).

Pro‘of: The integral in (3) is meant in the sense of (1) and we must check that the
integrand is a function of the ‘correct kind. We note first that the product of the
two (genuine) semi-Whitte;,ker functidns is being regarded as a non-genuine object
in the usual way. We know from Lemma 2 that 52;“’ and Ezz‘" both transform on
the left under ’T‘z(r) by 1. - “%7{ ;: o and since 7, is a unitary character it follows
that |
=5, (hg) Sgy° (hg) = il (M) EE” (9) B (9)
for all A € To(r) and g € G(r). Recalling that the induction is normalized, we
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have

f(hg) = iy (Wx(R)F(g) = il () £(9)

for h € To(r) and g € G(r). Thus the integrand has the correct transformation law
under T,(r). Under left multiplication by n € N(vp), the first factor transforms
by 62(n), the second by 62(n) and the third is invariant. Since 62 is a unitary
character, the whole integrand is invariant on the left by N(«). Every factor in
the integrand is continuous (indeed locally constant) on G(r) and hence (3) is
intelligible.

Next we must show that (3) converges, for which purpose we shall use the
absolute convergence test mentioned above. We have H, = Ty(r) - To(r) and

T,(r) N To(r) = Z'(r) and hence it suffices to establish the convergence of the

integral
B} o (1) | Z22 (R) 22 (B) £ (1) | db
ZY{r)\Ty(r) ' . _
o IO I GINOIE BHC]
ZY(r)\T(r) .
= [ | m e s mkwdn- £ @
Z{r)\T(r)

Combining Propositions 7 and 8 of section 4 we see that the function

ENOESQIM0

is bounded on T,(r) and vanishes whenever |he| is sufficiently large for some

a € Ay. Thus (4) is bounded by a constant times

Ix(h)| dh
{R€ZY(r)\T,(r) such that [he|<C V a€l,} ’
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q g

= -/ TT 1% (el - I] ¢*a;
{(a1,.,aq)E(F*)? such that |ajj<C} I=1 j=1

which converges since |¥;(w)| < 1forallj =1,...,q. It follows that Y(£;, &2, f) is

well-defined and since it is clearly semi-Hermitian and G(r)-invariant, the Propo-

sition follows. O

The r'eader may-have been surprised to see the hypothesis that x is trivial
on T,(r) rather than that it is trivial on T2(r) appearing in Proposition 2 and
some explanatibn is called for.‘ A little extra generality isvpossible; if we allowed
two suitable characters instead of one in forming the integral (3) when r was odd
it would be possible to require x to be trivial only on Fh'ose elements in Ty(r)
for which the (1, 1)-entry is a square. But this merely amounts to twisting both
I(x) and one of the two exceptional representatiohs by #(det) where & is a square
trivial character. It can thus be deduced from Proposition 2. If the results of
[Sav] afe correct then, except for the‘representations covered by Proposition 1, of
the irreducible I(x) with X balanced, only those mentioned in Proposition 2 have
L{w,w™ 1 1(x)) # {0} when r = 3. This suggests that the results of section 5 are
not the whole truth and indeed the author does not at present see how to obtain
elements of the other C(w, v;1(x)) spaces which the resu'lts of section 5 allow to
be non-zero.

In order to prepare for the next result we must recall some further facts. If
X is a character of F'* then yx is said to be unramified if it is trivial on the units,
O7 of the ring of integers .of F. If we fix a uniformizer w of F' then any character
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of F* may be dcomposed as x = xu - X4 Where we define x4(z) = x(zw ")) and
xu(z) = x(w¥®)) Here v : F* — Z is the normalized additive valuation on F. It
is easy to check that both x, and x4 are characters, thgt X« 18 unramified and
that x4 is “radial”; that is, x4(w™z) = xq4(z) for all m € Z. The character xq is
determined by its restriction to O and any character of O may be extended to a
radial character of F'*. Now any unramified character of F'* has the form | - |* for
some s € C/2milog(q)Z where g = |zo|~! is the module of F. (The double use of
g, once for |r/2] and once. for the module of F should not cause confusion.) Thus
the space of unramified characters of F> has the structure of a complex manifold
and this may be extended to the entire space of characters by giving the characters
of O the discrete topology (and corr‘esp'onding' unique zérp dimensional complex
manifold structure) and using the decomposition X = X« * Xd above. Changing the
choice of uniformizerv produces a permutaﬁion of which connected components of
the space of characters are labelled by which characters of O and also a purely
imaginary shift in the vaﬂable s on each connected component, but does not
alter the complex structure. In particular, for a given uniformizer =, the map
x — x(w) is an analyfic function on the space of characters. It gives a local
coordinate around any point in the space of characters.

If we speak of a “Laurent polynomial” on the space of characters then this
is to be understood with respect to the function x — x(w) for some (and hence
any) uniformizer w. That is, f a function on the space of characters is a Laurent

polynomial if for each connected component there is a Laurent polynomial P
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such that f(x) = P(x(w)) on that component. (In the literature the phrase

“Laurent polynomial in ¢~*”

often occurs; the notions are identical.) All of these
considerations extend in an obvious way to the space of characters of F'* x- .. x F'*.
We let K(r) be the natural maximal compact subgroup of G(r), namely

GL(r,Or). It is well-known (see [Cas] for example) that as a representation of

K(r), I(x) is isomorphic to

indsg ey (xlieryn,)

the isomorphism in one direction being simply restriction to K(r). Thus, once
X|x(rynu, is fixed, all the~indu§ed representations may be realized on the same
space. If f € Ey(y.) and Xx|kr)nu, and X*]K(r)ﬁHr are equal then we shall denote
by [f]y the element of Ey(, whose restriction to K(r) is f|k(). Since we shall be
dealing with I(x) only when x is trivial én Tz(r> we shall also allow ourselves to
write [f]y with X a chara(;,ter of (F*)4. The notation means [f], where x is the
character of H, trivial on T,(r) corresponding to X.

Proposition 3: Fiz a uniformizer, w, of F. Let w be a suitable character,
£1,82 € Ey,, and f € Ej(,,) where x. is a chamcterlof H,.itm'm'al on To(r).

Then the function
g
x= [0 - %)) - T, & [flx) (5)
j:l .
on the space of characters % of (F*)4 satisfying \Xj(w)| <1 forj=1,...,q and

X|kr)nH, = XslKr)nH, (6)
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s a Laurent polynomsial.

Proof: We first note that (6) simply fixes the ramiﬁedlpart, xq of x; thus the
function we are discussing is defined on an open set (a poly-half-cylinder, to be
precise) within a single connected component of the space of characters of (F*)9.
The condition |x;(w)] < 1V j is precisely what is required for Y(£1, &2, [flx) to
be convergent. |

Since all the functions in (3) are right K(r)-ﬁnite and T2(r)\T,(r) is a finite

group, Y(&1,&2, [fly) is a sum of finitely-many integrals of the form

Hy o (W EL () EZ” (RvX () dh (7
Z2r)\T¥(r)

where (1,(2 € Egr’w and vX € Ey(,) with vX|g,y fixed as x varies. It thus suffices
to establish the claim with (7) in place of Y (1, &2, [f]y)- Since vX(e) does not

depend on y, (7) is equal to a fixed multiple of

-1/2 —2,w —2,w
‘U'(T;,/'yo(h) :‘2; () 522 (h)x(h)dh. (8)

Z3(r)\Ti(r)
We analyze (8) using Fubini’s Theorem and the Inductive Structure Theorem

(Theorem 1 of section 4). Firstly, it is easy to see that

Z*(r)\T3(r) = Z%(r — 2)\Ti(r — 2) x Z*(2) \T}(2)

and with respect to this decomposition the Inductive Structure Theorem gives

M

,: /4 2292 (1) 22
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Since
H(r),yo = H(r),(r—2,2) ° ()U’(T—Z),‘yo X M(z)‘,»,o)
this and Fubini’s Theorem express (8) as a sum of products of factors of the form
3 o (1) Bt (ha) B2 (h) Xlzzr—2y (1) dhy (9)

Sips G
Zr—2)\T¥Hr—2)

and

/ “(—2;/720 (hz) e (h2) E (h2) X|12(2)(h2) dha . (10)
ZA2)\TH(2)

Inductively, the product of (9) with

H 1 - X (w

is a Laurent polynomial. Thus we are reduced to beginning the induction and

completing the inductive step by showing that functions of the form

a-x@P)- [ eEEmEmEEmmda o

Z2(2)\T(2)

are Laurent polynomials. Writing

_1/2 -0 =2,w t 0 =2,z t 0
¢(t) = P (2) 70 (0 1) =1 ’ <S<0 1)) —(2 (S(o 1 ’

(11) becomes

-x@?- [ ewxwart (12)

te(Fx)2

and we know from section 4 that ¢(¢) = 0 when |¢t| > 1, ¢(¢t) = k, a constant,
when |t| < 1 and for intermediate ||, ¢(¢) is a locally constant function. With the
additional restriction |t| > €, the integral in (12) is itself a Laurent polynomial.
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The integral over the range on which ¢(t) = k may be evaluated directly; it is zero

if %2 is ramified and a constant times ¥(w)2™ - (1 — X(w)2)~! for some m € Z if

not. This completes the proof. U

Proposition 3 shows that ¥ — Y(&1, &2, [flx) is a rational function of ¥ with

at worst simple poles at the zeros of
g
[Ta-x%@)?. (13)
=1

If X% is ramified then it is possible to choose the uniformizer @ so that (1- xi(@)?)
is non-vanishing and it follows that x — Y (&1, &2, [f]5) has no poles in the variable
X;- In any case Proposition 3 serves to analytically continue ¥ — Y (&1, &2, [flx)
and hence give a meaning to Y(&1, &2, f) with f € I(x) provided that ¥ in not a
zero of (13).

We shall also require the following estimate, which follows by a slight variation
on the argument in Proposition 3.
Proposition 4: Fiz a uniformizer, w, of F. Let w be a suitable character,
£1,§2 € Ey_, and x‘* a chardcter of H, trivial on Tz(r). Take 6 > 0 and let

X be the set
{X € (F*) | Ity r) = 1, XIkir)nH, = XslKr)nH,» 0 < |[Xj(w)] <1V j}.
Then there is a constant C(£y,&2,0) such that

Y (€1, &, [flg)] < Cl61,5,0) Hll—x, 17 1 £ gy
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forall x € X5 and f € Eﬁkx_); where || - || denotes the uniform norm.

Proof: We can estimate |Y (&1, &2, [f]y)| by

W2 () 25 (hk) E2° (hk) x(R) dh | |f ()| dk. (14)

Ty (r)NK(r)\K(r)  ZYr)\T(r)
Since both &; and &5 are K(r)—ﬁnite, the inner integral is a sum of finitely-many
similar terms involving the semi-Whittaker functions of the K-translates of & and

&2. Now any integral of the form

Hirymo (R)ECL” () Egy (1) x(h) dh

ZHr)\Ty(r)

has been shown, in the course of the proof of Proposition 3, to equal

II 1- %(@)2) 7 Po o (a(®@), - X (@)

where P, ¢, is a Laurent polynomial depending only on ¢; and (2. On the set X
any Laurent polynomial is bounded by a constant involving the absolute values
of its coefficients, the multidegree of each term and 4. Thus the absolute value of

the inner integral in (14) may be estimated by

C'(£1,€2,9) H|1—XJ 21-1

We conclude that

IT(&, €2, [flo)]

< C'(£&1,&2,8) - vol(Ty (r) NK(r H 11— X3(@)? ™ 11 fllr)
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as required. d

Using Proposition 4 we can show that the G(r)-invariance of Y(-, -, -) ex-
tends to the closure of thé domain on which we presently have it, provided that
we do not encounter a pole.

Proposition 5: Fiz a uniformizer, w, of F. Let w be a suitable character and .
a character of H, trivial on To(r). Suppose that I)Z*,j(wj| <1 but x4,(w) # £1
forallj=1,...,q. Then Y(-,-,+) is a G(r)-invariant semi-Hermitian form on
Ey, ., X Es, ., X Ey(y.)- |

rw W

Proof: Let £;,82 € Ey, , and fe FEj(y.)- In order to save some notational clutter
we shall write g - £, ¢ - f and so on for the action of g on vectors in the various
representations: Fix

0 < min %, ;(w)]

and let X5 be as in the previous Proposition. Then we have

T(§1,§27f) = lim T(&la&?a[f]i) . ‘ (15)

X—x=XEXs

and

Y(g-&1,9-82,9-f) = X—->X1;lr§21€x5 T(g-&1,9 €109 flx)

= i -1 . . =
= x—->x1il,’§21€X6 T(£1,82.9 ‘ lg- flx) (16)

by the G(r)-invariance of T when } € X;5. We must show that (15) and (16) are
equal.
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For k € K(r), let kg~ = n(k)a(k)k'(k) be an expression for kg~! with respect
to the Iwasawa decomposition G(r) = N(p) H,K(r). None of the factors in this
expression is unique, but a(k) is restricted to a compactum as k varies over K(r)

and this will be sufficient. For k£ € K(r) we have

g7 lg- fle(k) =g - flx(kg™)
=[g- flg(n(k)a(k)k'(k))
= 1y o (@) x(a(k)) (g - ) (k' (k)

= (o (a(R))x(a(R)) F (K (k)9)

i ZRCONCONCORIDRD

= x(a(k))x«(a(k))~ £ (k)

and so

=97 lo- s o
< 1oy 1 = x(a(k))xs (a(R)) i

< 1l lee @O iy s (aB)) — x(@k)) i - (17)

The topology on the space of characters is that of uniform convergence on com-

pacta and so (17) implies that

lim || [flx—97 " g flxllxry = 0.

XX =

Thus

|T(g§1,g§2,gf) _T(§1a§2af)|
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=  lim |T(£1,£z,g'1-[g-f]x—[f]x)

XX XEXs
< C(61,¢2,9) - —>xlfl,§<lex5 H 11— %; (@)% - g7 - [g- Flx — [Flx lixen
from Proposition 4
q
=C(61,62,6) - [] 11— Xej(@)’I7t - 0=0.
Jj=1
This shows that T is G(r)-invariant, as required. O

If x« is a character of H, trivial on Ty(r), |X« j(w)| < 1for j=1,...,q and

Y«j(@)?=1for j € J C{l1,...,q} then for a suitable § > 0 we may define

Tres,J(&l; £2a f) =

lim . H(l - X*,j(w)z) . T(§1a§27 [f1x)

XX+, XEXs jeJ
to be the “residue” .(more.correctly, a multiple of a coefficient in the partial frac-
tions expansion of) Y (&1, &2, [fly) at X«. We know from Proposition 3 that this
limit exists and by following the proof of Proposition 5 mutatis mutandis we find
that Tres s defines a G(r)-invariant semi-Hermitian form ,en Ey,,xEg, , % Ejy.)-
In order to show that the apparatus so far developed is not vacuous we must
demonstrate that Y is at least sometimes non-zero. If this were our only aim then
it could quickly be realized. Indeed, if we choose ¥ = (| - |°,...,| - |?9) where
01, ...,04 are positive real numbers then we may find f € Ej,) such that f(g) > 0
for all g € G(r). Choosing a vector £ € Ey, , we see that
2
reen= [ |E)
Ty(r) Nvo)\ &)

f(g)dg
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and the integrand is everywhere non-negative. If Y(£, ¢, f) = 0 then it follows from
f(g) > 0 and the local constancy of the semi-Whittaker function that Ez""(g) =0
for all g € G (r) and hence £ = 0. Thus Y(&,&, f) > 0 if £ # 0. However, we shall
learn a good deal more by computing Y (&1, &2, f) explicitly when &), & and f are
“spherical”.

We begin by reviewing. a few known facts. Suppose that y is an unramified
character of H,, which means that XlK(r)nH, = 1. Then we may define a vector

fo € Ej(y) by setting

fol9) = ul}, (@(9)x(a(9))

where g = n(g)a(g)k(g) is an Iwasawa decomposition of. g.. This vector satisfies
k-fo=f,forall ke K(r) aod is called the (normalized) spherical vector in I(x).

In the representations 9, . we cannot, of course, hope to find a vector fixed
under K(r) since K(r) D py and the representations are genuine. Thus we must
first enquire when the metaplectic double cover of G(r) is ‘split over K(r). It turns
out that this happens (for non-Archimedean ground fields, F ) precisely when the
residual characteristic of F' is odd. This follows from the argument .(though not,
as implied in [KaP], the statement) of Lemma (11.3) of [Mo2]. Thus in all our
discussion of spherical vectors below we must assume that F is not dyadic and we
shall do so from now until the end of this section. The splitting of the metaplectic
cover over K(r) is then unique and we shall suppose that s : K(r) — K*(r) has
been chosen to be a homomorphism.

We note that under our new assumption on F the Hilbert symbol takes a
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particularly simple form. Indeed, by Proposition 8, §3, chapter XIV of [Ser] we

have

(g-1)/2
v(b)
— —1)v(a)v(b) a :
(a1 b) {( 1) ( ) b.u(a) }

where v(-) is the normalized additive valuation, q is the module of the field and
the bar denotes reduction modulo the prime ideal in Op. In particular, (a,b) = 1if
a and b are both units and it is always possible to find a unit a so that (a, w) = —1
for any given normalizer . This is arranged by cthsing a so that its reduction
modulo the prime ideal is a quadratic non-residue in F.

It is still not always possible to find #‘K*(r)-ﬁxed vector in the space of ¥, ,,,
since the choice of suitable character w might not allow it. Clearly for ¥, to have
a non-zero K*(r)-fixed vector the- characfer w must be trivial on Z(r)NK*(r). If
r is even then there is only one choice of suivt-able character and it always satisfies

this condition. If r is odd then

Z(r) NK*(r) = Z}(r) NK*(r) = 0%,

as follows from the discussion preceding Proposition 3 in section 3 plus what we
have just said about the Hilbert symbol. The characte.r w 18 airead& assumed
to be trivial on (OF)? and we are requiring that it should in fact be trivial on
Of. In the rather odd terminology of [K#P] such characters are referred to as
“normalized” (their “unramified” characters must be trivial on K*(r) N Z2(r) but
may be non-trivial on K*(r) N Z!(r) — a departure from the usual sense of this
term). There are two suitable unramified normalized characters of Z!(r) when r
is odd. They correspond (in the sense of Proposition 3 of section 3) to the trivial
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character and the “unramified signum” sgng.(z) = (—1)?®) (the terminology is
Casselman’s). We shall simply call them unramified suitable characters. We note

that if w; and ws are suitable characters then, since r is odd,
Ir oy 2 (w31 - w1)(det) ® Vr,w,

and so

Vrw, & Vrws = Vrw, ® Frw,

in any case.

If w is an unramified suitable character then it follows ,from [KaP] LemmaI.1.3
that the induced representation 7(r)(X0,w) contains a unique normalized K*(r)-
invariant vector and from [Kan I.:2.4 that this vector lies in the space of ¥, , inside
this induced representation. We shall denot}el this ‘vector by &, (the normalization
will not be importaﬁf to us and so we sﬁall not discuss it further).

Finally, in order to be able to compute the spherical semi-Whittaker functions,
we shall have to assume that the additive character % is itself unramified; that is, }

it is trivial on Of but non-trivial on @™ 10F.

Lemma 3: Let Q*(2) = {w} and put
h = s(diag(t1,t2)) € Hy.

Then Ez;‘” (h) = 0 unless v(t1) > v(t2) and v(t1) = v(t3) (mod 2). If these condi-
tions are satisfied then

=29 (p) = { “(12/;‘,70(’7') if v(t1) is even

ud,(w)uzz/i%(h) if v(t1) is odd.
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Proof: That Ezo“' (h) # 0 implies that v(¢1) > v(t2) follows from the argument
used to prove Proposition 7 of section 4 once we use the assumptions made on
& and . The argument which shows that it also implies v(¢1) = v(t2) (mod 2)
will be made in generality in the proof of the next Proposition and need not be
preempted here. Thus we are reduced to evaluating Ezo“’(h) when h € G2 (2). In

this case

S(ng)h = s(diag(wtl, wtg))

and since s(wl,) € Z*(2) and vwz (s(wly)) = py(w) (see Proposition 3 of section
3 and Lemma 2 of section 4) the c;laim when v(t;) is odd is reduced to the claim
when it is even. But this value is computed (in a somewhat disguised form) in
Proposition 4.42 of [Ger. (Note the remark immediately after the statement.)

U

Observe that the conditions in the Lemma may be combined simply to say
that h® € O% where A, = {a}.

Proposition 6: Letw be an unramified suitable character and put

~

h = s(diag(tl,tg, .. .,tr)) € H,. .

Then Ez;“’(h) = 0 unless

V(tr—2j41) 2 V(tr—2j42) (18)
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and

U(tr-2j41) = v(tr-2;4+2) (mod 2) (19)

forall j =1,...,q. If these conditions are satisfied then
© =2, 1/4
ZE (1) = o (@) il (1)
if r 15 even and

CERY(h) = nu(s(diag(tr, 1, .., 1))y (@) ly o (B)
if v is odd, where p is the number of pairs in (19) with odd valuation.

Proof: The map £ — [¢] which occurs in the Inductive Structure Theorem (with
£=1)is a K*(r — 2) X K*(2)-intertwining operator and it follows from the unicity

of the spherical vector that [£,] = €772 ® £2. Thus we have

2 (B) = il (r—a.2) (h1 ha) EX578 (h1) B (ha) (20)

=t ._.gg_z _.Eg

where hy = s(diag(¢1, . . ., tr-2)) and hy = s(diag(t,—1,t,)), provided that t,_;t, €
(F)2.

:\2,(4}2
_agz
o

ductively using (20) that Eg;“’(e) #0. If k€ Ty(r) N K*(r) then k fixes & and

From the previous Lemma we know that (e) # 0 and we conclude in-
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where 7, is the character in Lemma 2. Thus 7,,(k) = 1 and so Eé;"”(kg) = Eg “(g)
for all k € ’Tz(r) NK*(r) and g € G (r).

Let us choose a € O such that (a,w) = —1 and set
k= s(diag(l, o la,aY)) € T(r) NK*(r).
A direct calculation‘using (3) of Chapter 1, section 3 shows that
hk = (a,t,—1t7 ') kh

and so

E2¢(h) = :§ (hk)

= (a;tr_1t; ") E5 (kh)

= (a,tr1t; ) EZY(R) .

It follows from this identity that Ezo“’(h) = 0 unless t,_1t, € (F*)2. Thus either

Shy ¢ (h) = 0 or (20) is applicable. We conclude inductively from this that ”z;“’ (h) =
0 unless (19) is satisfied. The necessity of (18) for j = 1 now follows from Lemma
3 and then we can deduce it inductively for j =2,...,q.

Now suppose that (18) and (19) are satisfied. Assume for a moment that r is

odd. Then we have

h = s(diag(t1,1,...,1))s(diag(1, ts,..., )

and the first factor on the right hand side lies in T,(r). Thus

E2Y(h) = (mw - iy ,) (s(diag(ts, 1, 1)) - B2 (s(diag(L, ta, - -, 1))
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by Lemma 2 and, comparing this with the identity to be proved when r is odd,
we see that we may henceforth suppose that £; = 1 when r is odd.

This said, (20) and Lemma 3 give inductively that

=2 (h)

I 14

= (@) 1 (@) il gy (B B2) 2 ) | ()l (B2)

= py (@) ik (h)

where p’ is the number of pairs with odd valuation up to r — 2 and p” is 1 or 0 ac-
cording as the pair ¢,_1, 1, does or does not have odd valuation. Since p = p’ +p",

the proof is complete. -0

Again, the conditions (18) and (19) may be combined to say that h* € 0%
for all a € A,.
Proposition 7: Letw be.an unramified suitable character and x be an unramified
character of H, trivial on To(r) and satisfying |x;(@)| < 1 forallj =1,...,q.

Then

T(€o3 o, fo) = C - []A = %s(=)?) 72,

=1

where C 18 a non-zero constant.

Proof: Since all the data are spherical we have

2
Yot = [ |22 n) i dn. (21)
ZYr)\Ty(r)
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Recalling that A — (h*)4en, is an isomorphism from Z*(r) \T;(r) onto (F*)?

and using Proposition 6 we see that (21) may be rewritten as

T(foagmfo) = / )\Z(t) d*t.

(OF)e

Since x is unramified this has the stated value. O

We are now ready for the result which has been the principal goal of this
section. In the light of Lemma 1, its range of applicability is larger than may
appear from the hypotheses.

Theorem 1: Let w be a;z unfamiﬁed suitable character and x be an unramified

character of H, trivial on To(r). Then L(w,w™Y; ) # {0} for some constituent,

7, of I(x)-

Proof: Without altering the constituents of I(x) we may conjugate x by an
element of the Weyl group in order to assume that IXj(w)] < 1forj=1,...,q.

Let us put
J={j | X%(w)* =1}

and define Y,es 7 as above (see the discuésion after the proof of Proposition 5).
Then Yies s is a G(r)-invariant semi-Hermitian form on 9, x 9,, x I(x) and,
from Proposition 7,
Yres,7(€or€or fo) = C - [ [ (1 = %5 (@)H) 7t #0.
i¢J
We know that 9, ,, ¥y w13 let £ — € be the map which realizes the isomorphism.
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Then the uniqueness of the spherical vector implies that E;; = &, w-1. If we define

(6136_% f) = Tres,J(&la 52, f)

then we obtain a G(r)-in\;ariant trilinear form on
rw X Op -1 X L(x)
with
(o0 o1, fo) # 0.

This gives rise to a non-zero element of £(w,w™1;1(x)) and hence £L(w,w™1;7) #

{0} for some constituent of I(}x). This completes the proof. O

7. Addenda
Many natural questions remain open after the work of the previous section.
One expects there to be numerous representations, =, of G(r) not belonging to the

principal series for which
L(w,w™m) # {0}
and the methods of section 6 do not extend to these. Also, Theorem 1 of section

6 does not address the question of precisely which constituents, p, of a reducible

spherical principal series representation satisfy

L(w,w™"p) # {0}

This section will be devoted to observations on these problems which seem worth
making although the author has not as yet been able to achieve any general results
by their use.
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We first note that if w € Q2(r) then w™! € Q(r). This is clear if r is odd since
then both Q!(r) and 92(r) consist of all suitable characters. If r is even then Q2(r)
is a singleton, but Q!(r) consists of all extensions of the unique suitable character
to Z'(r) and the claim follows. We shall denote by W(r,¢) the Gelfand-Graev
representation of G(r) with trivial central character formed using the additive

character 1. That is,

' — g &)
W(r,9) = Indgs) o) (1@ ¥)

where the induction is smooth but with no restriction on supports. If w € Q%(r)

then we define

T 9yt ® r — W(r, 1)

-1

T(E®&)(9) =" (9)Z8°(9), (1)

where the product of genuine objects is being regarded as non-genuine in the usual
way. Since the two semi-Whittaker functions transformvon the left under Z' (r)
by inverse charactersl,. T (&1 ® &2) transforms trivially bn the left under Z'(r). The
fact that 61 - 92 = ¢ shows similarly that T(§1 ® &2) trarllsforms correctly on the
left under N(p). Since both &; and &; are smooth, T(£; ®£3) is smooth and hence
(1) is well-defined. Its very definition makes it clear that T is an intertwining
operator.

We can actually be a iittle more precise about the range of T. If W € W (r,¢)
then |W(g)|? is left invariant by both Z!(r) and N(,) and so it makes sense to
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consider the integral

(W (g)*dg. (2)
ZY(r)-N(7v0)\G(r) '
We shall denote by W2(r, 1) the subspace of W (r,) consisting of functions for

which (2) is convergent. (The Cauchy-Schwarz inequality shows as usual that it
is a subspace.) Note that W?2(r, ) is a subrepresentation of W(r, ) and carries
the structure of a pre-Hilbert space.

Proposition 1: The range of T lies in W2(r, ).

Proof: The decomposition G(r) = N(vo) H,K(r) and the smoothness of the func-

tions involved show that W € W2(r, ) if and only if

[ wwp<w. ©)

ZY(r)\H-

For any Whittaker function, W, we have W (h) = 0 if |h%*| >w 1 for some a € A.

Thus (3) is equivalent to

W (h)?dh < co. (4)
{h€ZYr)\H, such that |h®|<1 V acA}

& € By, and &2 € Ey, , then we have

—2,w ‘ 1/4
=50 () | < il ()

by Proposition 8 of section 4. Thus

T ® &)()] < wls., (B) (5)

and we are reduced to the convergence of

K)o (h) dh
{h€ZYr)\H, such that |h®|<1 V a€A}
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which is well-known. O

If w is an irreducible admissible generic representation of G(r) and v € E,

then we may define

Gad= [ TE@oL@W)d, (©
Z1(r)-N(vo)\G(r) |

for &, € Ey___, and £ €.Ey,,, where W, € W(r, 1) is the Whittaker function

associated to v. By Proposition 1 we know that if W, € W2(r, %) then (6) will be

absolutely con&ergent (as (5) shows, this condition on W, isn’t sharp). When (6)

is absolutely convergent for all v € E., it defines an invariant trilinear form on

which then extends to an élement of L{w™t, w;m). .Thus we have a way of producing
an element of E(Q;l,w; m) for any irreducible .admissiblej generic representation,
7, whose Whittaker model lies inside W?2(r,1)). The difficult point is to show
that the resulting functional is not identically zero. Of course, this cannot be
true in general. There are many irreducible principal series representations whose
induction datum is not balanced but whose Whittaker model lies in>W“2 (r,4). For
these, (6) must be identic;lly zero by Theorem 3 of section 5 (at least when F is
not dyadic or r < 3).

We wish to close this section by showing that (6) gives rise to a non-zero
element of £(w™!,w;7) in at least one instance. We shall .postpone a discussion of
the significance of this result until after the rather lengthy calculation necessary
to prove it. From now on we assume that F' is not dyadic.
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Let o denote the Steinberg representation of G(2) (see [Cas], for example).
That is, o is the unique irreducible subrepresentation of the reducible principal
series representation m = I(x!/?) (the symbol p will henceforth stand for (9 (1,1))-
The other constituent of 7 is the trivial representation and there is thus a (non-

split) short exact sequence
0—=oc—r—1—0. (7)

The unique normalized spherical vector v, € E, has non-zero image in the trivial
representation under the map in (7) and thus the representation ¢ is not spherical.

Let us introduce some notation which will be useful in the calculation to come.

We set

for m > 0 and

o =(5 ). aerm= (% )
m(y)=<11; (1)) n(y)=<(1) 111>
(1) (i )

for £1,z2,2 € F* and y € F. The following identities connecting these matrices

may easily be established by direct calculation:

a(z1, z2)m(y) = m(27 ' v2y)a(z1, v2) (8)
a(z1, 72)n(y) = n(z123 " y)a(z1, 72) (9)
m(z) = n(z"Ha(z™, z)r(z) (10)

wm(y) = n(y)w (11)



for 1,20, 7€ F* and y € F.

Lemma 1: Letv=v, —7 (t(w‘z))vo. Then v is a non-zero vector in the space

of o which is fixed by K,.

Proof: In the function space model of 7, v, is given by ve(nak) = u(a) for

n € N(79), a € Hy and k € K(2). Thus v(e) = 1 — ¢® (where ¢ is the module of

F) and so v # 0. Clearly the image of v in the trivial representation in (7) is zero

and so v € E,. If ky € K, then

o (k2)v = 7 (k2)vo — 7 (kat(w ™ 2))vo

= o — W_(t(w'z))w‘(t(wz)kzt(w_z))vo .

If

a b
kz—(c d)EKz

then

H(w?) kot (w™2) = (w‘fzc deb) €K(2)

and so 7 (t(w?)kat(w=2))vo = vo. From (12) we then obtain o (k2)v = v.

Lemma 2: Let

Ko = {wm(a:)] z € [wO/w?O]} U {m(z) | z € [0/=?0]}

(12)

where [O/w?0)] indicates a transversal for O/w?O and so on. Then K, is a tran-

versal for K(2)/Ks,.
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Proof: This is a routine computation. U

The Steinberg representation is generic and we next wish to compute the
Whittaker function of v. We shall assume henceforth that the additive character
¥ is trivial on O but non-trivial on w=t0O. Thehcomplutation can be reduced
substantially by the following observations. The Whittaker function is given by

the absolutely convergent integral

20 ;/v(w ((1, ?)9) ¥(z) d . (13)

F

el =,!v5 (v (5 7)9) 7@ (14)

is also absolutely convergent and, although it cannot strictly be referred to as the

Now the integral

Whittaker function of v,, its value may be computed by the same method which
is used to compute the spherical Whittaker function for an irreducible spherical
principal series representation. Indeed, the computation in [God}, Theorem 11

remains valid for (14) and. we obtain

W o™ 0 0 ifm<0 15
Plo 1) TS im0 (15)

The Whittaker function W,, satisfies

. Wu(nzgks) = ¥(n)Wy(g)
for n € N(v9), 2 € Z1(2) and ks € K, and so it suffices to compute its values on
the set

{tt@™)k | me Z,k € K3} .
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Lemma 3: We have

0 m< -1
W, (H(@w™)m(z)) = ¢ 1 —o(z™?) m=0
0 m >
for x € wO*,
0 m< -3
m _ —p(w 2zt . om= -2
WA= = a1 m= -t
—g~ (14 g7 - m>0
for x € O* and
0 - m< =3
W, (tHw™)wm(z)) = —¢(w™2x) m= -2

for z € wO.

Proof: Initially imposing no restriction on z € O we have

W, (t(@™)m(2)) = Wa, ((w™)m(z)) — Wy, (t(@™)m(@)t(w™2)

=W, (t(@™)) = W, (H@w™ Hm(w™2z)). (16)

If z = 0 then combining this with (15) we obtain the first displayed formula. Now

suppose that z lies in O* or w®*. Then

2

m(w™2z) = n(w’z VHa(w?s™!, w%2)r(w%1),
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from (10), and since w?z~! € O, r(w~2z) € K(2). Thus (16) gives

W, (t(w™)m(2))
= W, (t(@™)) — Wy, (@™ *)n(w?s  a(w’z ™!, w ™ %z))
= W, (t(m™)) = Wy, (n(@™z"H)t(w™ )a(w’s ™, @ 2z))

=W, (t(wm)) — w(wmx_l)Wvo (t(wm"2)a(wzx—1, w_zz)) . (17)
If £ € wOX then wzr~! € O% and so

W, (H(@™ H)a(w’s™ !, w™%2)) = W, (H@w™ ?)a(w, @ Ha(wz ™, @~ 7))

which gives
W, (H@™)m(@)) = [1 - (@™ )W, (t(=™)

The second displayed formula follows from this and the fact that ¢ is trivial on

0.

Now suppose that z € @%. Then (17) gives

W, (t(@™)m(z))

= Wy, (H@™)) = Y(@™s™YW,, (H(@™ ?)a(w?, w~2))
= W, (t(@™)) — @™z )W, (t (@™ P )a(w 2, =)
= Wa, (H(@w™)) — b (@™z™ )Wy, (H(™F?))

from which the third displayed formula follows.
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Finally, suppose that z € wO. Then

which gives the last displéyed formula. 0

We shall need to compute in G(2). We let s : G(2) — G (2) be the section

corresponding to the Kubota cocycle

0'(g17gz):(X(9192) X(g1g2) )

X(g1) * X(g2)det(g1)

(see [KaP], page 41). Unfortunately this section is not a homomorphism over K(2)

and we shall briefly require the section t : G(2) — G (2) which is. Let us define

K(g) = { (c,d/ det(g)) if0<|c <1

) if e[ = 0,1
for

4= (G Z) € K(2)
Then

(91, 92) = ETHQ%
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for all g1, g2 € K(2) (see [Kub] §3, Theorem 3) and hence if we set

(with x extended to G(2) in any way) then
t: K(2) - K*(2)

is a homomorphism. It will be convenient to assume that x is extended to be
trivial on Hy. This is possible since k is trivial on Hy N K(2) (because we are
dealing with the unramified Hilbert symbol). It is easy to check that k(k) =1
for all k € K and so s = t on Ky and, with the assumption just made, s = t on
H,. These facts will allow us largely to avoid the section t below. We shall write
K3 = t(K;) for j > 0.

Now let w be the unique suitable character of 2(2) and let £, denote the
normalized spherical vector in the space of Y2 as in the previous section.

Lemma 4: The vector { = s(t(w™2)) - & is fized by K3.

Proof: Let

Then
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lies in K(2).- We have

() { (w=2c,d/ det(K'))  if c ¢ w?OX U {0}

1 if c € w2O0* U {0}
_ { (c,d/ det(k)) if c ¢ @?20* U {0}
11 if c € @?20* U {0}

and

_{ (c,d/ det(k)) ifc#0
H(k)_{lr . ifc=0.

It follows that k(k) = x(k') perhaps unless ¢ € w?(0*. But suppose that ¢ =

w?u € w2O*. Then d € O@* and so

(c,d/ det(k)) = (w?u,d/ det(k))
= (u, d/ det(k))

=1

since the symbol is unramified. Thus (k) = (k') in all cases and so

The claim follows at once from this equation. O
We remark that the vector s(t(w'l)) <& 1s not‘ fixed by K3. This is why we are
working at “level two” in this calculation.

From now on let w be extended to be the unique element of 02(2).

Lemma 5: We have Eé;w—l (e) # 0.

Proof: The set {e,a(w,1)} is a complete set of representatives for the double
coset space
Z'(2) Hj\Hy/H; N K(2)
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and it follows from the Iwasawa decomposition that

G(2) = N(v) Z'(2) H3K(2) UN(10) Z*(2) Hj a(w, 1) K(2).
Hence
G (2) = N"(70) 2'(2) HEK" (2) UN"(70) 2*(2) HE s (a(w, 1)) K*(2).
If n € N*(v0), 2 € Z1(2), h € H and k € K*(2) then

=7 (nehgh) = 0™ R (W) ZE ()

o

for any g € G (2), by Proposition 6 of section 4 and the definition of a semi-
Whittaker function of the first kind. Thus, for any g € G(2), Eé;‘”_l(g) is a
multiple of either = § _l(e) or :2 o (s( (w,1))). Since 50 #0,Z '"1 w (g) # 0 for

some g € G (2) and so-to obtain the result it will sufﬁce to show that

—1,w™?!

=17 (s(a(@, 1)) = 0.

Let u € O* be such that (u,w) = —1. Recalling that t = s on H, we have

1w -1

227 (s(a(w, 1)) = EX (sa(w, 1))s(a(u, u)))

1

= —w(s(a(w,w)) B (s(a(w, 1))

and so the conclusion will follow if we can show that w™(s(a(u,u))) = 1. We

already know, from Lemma 3 of section 6, that =2 “’( ) # 0. But



and so w(s(a(u, u))) = 1, as required. 0
In the light of Lemma 5 we are free to normalize the semi-Whittaker functionals

we are using in such a way that

and we shall do this in what follows.

Lemma 6: We have

for x € wO*,

for x € O* and

forxz € F.

Proof: For the first equation,

as claimed. If z € F* then a routine Kubota cocycle calculation establishes the
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identity

s(m(z))s(t(w™?))
= s(t(w™?))s(n(w’s™"))s(a(w’s™, w %2))s(r(w %)) . (18)
Now suppose that z € O* or z € wO*. Then w3z~ ! € OVand sor(w%z) € K(2).

It is easy to check that x(r(w2z)) =1 and so s(r(w2z)) € K*(2). Hence

-1

= ¢*/? Eg;“’ (s(a(wzz_l, w"zrz:))) . (19)
Now suppose that z € O*. Then
s(a(w?s™!, @ %)) = s(a(w*, 1))s(a(w ™, @ %))s(a(z" 1, 3))

and since k(a(z~,z)) = 1, s(a(z~,z)) € K*(2). Thus

F-ﬂ].,UJ_l
—

2 (s(m(2))) = ¢4 (a(@*, 1))w ™ (s(a(@ ™2, @72)))

= q—l/zw'1 (s(a(w“27 w_z)))'.

However, w™*(s(a(@w™2,w~2))) = 1 since w is suitable and the third equation
follows.

To obtain the second equation, let us return to (19) with the assumption that

z € w@*. We have

s(a(w’s™!, w™21))
= (w,w 'z)s(a(w,w ")) s(a(wz ™!, w_lm))

= (w,w ! )s(t(wz)) s(a(w™, @ ™)) s(a(wz ™, w " 1z))
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and s(a(wz™!,w ™ z)) € K*(2) because r(a(wz™!, w™'z)) = 1. Therefore

EeY (s(m(e)) = ¢"* (@, @ to)pt 4 (H(w?))w ™ (s(a(w ™ @)

= (w, ') w (s(w L))

giving the second equation.

Another routine Kubota cocycle calculation shows that

s(wm(z))s(t(w™?)) = s(n(z))s(a(l, w‘?))s (w)

and k(w) = 1 so that s(w) € K*(2). Thus

giving the last equation. O

In the following Proposition the quantity

g=-wl(s(wh)) Y = (4@)P(w ) (20)

u€[0* /14+wO]

will occur and we wish to note that it is a very classical object in number theory.
Under reduction modulo wO the set [0 /1 + wO] maps onto Fy , where F; is the
residue class field of F. The map u +— (u,w) is then simply the Legendre symbol
on F¥ and u E(w‘lu). is a non-trivial additive character on F,. Making the
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change of variable u ~ u~! in (20) we see that it is —w-l (s(wl;)) multiplied by
a quadratic Gauss sum. Since w™! is a unitary character it follows that |g| = ¢'/2
from the classical theory of such sums. Although g could be evaluated explicitly,
this observation will be enough for our purpose here.

Proposition 2: We have

<§,§0,‘U> =C (g - q—1/2 : - q—l)

1—¢3

where C is a positive constant. In particular,

(€, 60,) #£0

Proof: By definition

(6,00 = / =147 (g) 22¥(g) Wi (g) dg
ZY(2)-N(v0)\G(2)

where W, is formed with respect to ¢. Every function in the integrand is K3-

invariant on the right and so we have

<§,§0,’U>

~ Y0 B (Ha™)k) ZEY (Hw™)k) W, (H(w™)k)
meZ keEK, .

= 3" =2 (st@™) S EFT (s(t(@™))s(k)) W (H(w™)E)
meEZ keKq

= 3 pit@™) 3 2T (s(t(@™)s(k)) W (tH(=™)E)
me2N kex,

=Y WP (t@™) S Eé""_l(s(k)) W, (t(@™)k)
me2N kE’C2

— Z q—m/2 Z =lw™ W (t )
me2N keKx.
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where ~ denotes proportionalty by a positive constant (which depends on the

choice of Haar measure with respect to which the integral is performed) and we

have used Lemma 3 of section 5.

We now evaluate the inner sum by breaking it into four pieces, , ,

and . In the display below we indicate the range of summation for each of the

pieces:

[1]+— {e}
.<—}{m )|z € [0/w?0),z € OF}
+— {m(z) | r € [0/w?0),z € wO*}

+— {wm(z) | z € [@O/w?0O}}.

In the range m € 2N the .terms in the sums , and do not depend on z

and hence they may readily be evaluated using Lemmas 3 and 6. The results are

__ q1/2 m=0
A+ g gD m>2

=—(¢* - q)g V21 + ¢ 1)g (™D

= —qq (1 +¢7t)g~ Y.
We note that
.+. 1/2 1+q l)q—m-

For we obtain

= S (s ) (e @) (1 - ()

z€[0/w?2 0], z€wO*

198

(21)



if m = 0 and zero otherwise. Let us reindex (21) by setting £ = wu where

u € [0*/1 + wO]. Then (21) becomes

w(s(w 1)) Y (e (1-P(w )

u€[O* /1+w0O)]

= (s(@w L) Y ()Y@ Y

w€[O* /14w
=8

since u +— (u, @) is a non-trivial character. Thus

_[s m =20
31

m>2.

Putting this all together we obtain

(€ €o,v) ~ g+ ¢ /2 = ¢*?(1+¢7h)

+ Y g P+ g g — P14 g™

me2N+
=g—q 2+ Y 2214 q7N) (g - 1)
me2N+
1/2 73 1 ‘
=g-q7" +1—‘_—q—_§q/ (I+¢7)g—-1)
{—g-
g -1/2. 279

after a little further algebra. This proves the first claim. For the second we note

that, since ¢ > 1, the reverse triangle inequality gives

1€, 60,0} = C (lgl - q’1/2) =C (ql/z _ q—1/2)

and so (£, &, v) # 0. O
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Theorem 1: Suppose that F is not dyadic and let o be the Steinberg representa-

tion of G(2). Then L(w;0) # {0} for w the unique suitable character.

Proof: It is well-known (see [God] for example) that the Whittaker model of ¢
lies in W2(2,) and hence (6) defines an element of £(w; o). (Recall that w = w™!
in this case.) From Proposition 2 we know that this trilinear form is non-zero and

the Theorem follows. O

In order to understaﬁd the significance of this result, let us make some ob-
servations. First, Theorem 1 of seétion 6 assures us that some constituent, p,
of 7 = I(u'/?) satisfies L(w;p) # {0} and Proposition 5 of section 5 tells us
that, in any case, dimc(£(w; 7)) < 1. Secondly, since ﬂz;w is self-contragredient,
L(w;1) = C and any non-zero trilinear form in £(w;1) may be pulled back via
the surjection @ — 1 to give a non-zero element of E(w;w) which is zero on
V20 VY2, ® 0. Thus L{w;7) = C and we conélude thaﬁ a non-zero element of
L(w; aj cannot extend to all of 93, ® Y2, ® . This is concordant with the fact
that the integral (6) in this situation is generally divergent unless v EVEU.

We are led by this result to recognize that several constituents of a reducible
spherical principal series representation may carry invariant trilinear forms. It
would be interesting to determine whether any constituent which is neither spher-
ical nor generic can carry such a form, but this will have to await more detailed

investigation of GL(3) since such constituents do not arise on GL(2).

We note that Theorem 1 may be used to fill one of the gaps in Savin’s results
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in [Sav]. If we let A be a character of F* such that A2 = 1 then Savin writes
Sty = )\(det) ® St

where St = ¢ is the Steinberg representation. On his list of constituents of prin-
cipal series representations which may carry invariant trilinear forms are included

the representations
U2,1),(3)(Sta ® 1)

for the various possible A, but he does not decide whether or not they actually carry
non-zero forms. Applying Theorem 2 of section 5 with p = Sty (so that w, = 1),

w any suitable character of 2(3) and v = w™?! we obtain an exact sequence
{0} = L(m; ) = L(w,w ™ i1t @1)) = L, W ™1);860)  (22)

where 7 is the suitable character of Z(2). Now St{ 2 A| - |1/2 on GL(1) and since

this is not square-trivial, £(w', (w™1)’; Stg‘l)) = {0} and (22) gives
L{w,w™L; i(2,1),(3)(Sta ® 1)) = L(n; Sta) .
If A2 =1 then A® ¥, = 95, (by Proposition 4 of section 1, for instance) and so
Vo ® T2y ® Sty = s, ® V2, @St

which gives

L(n; Sty) = L(n;St) = C

by Theorem 1 and Corollary 1 of section 5. We conclude that
L(w, w-l; i(z,l),(g)(St,\ ®1))=C.
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APPENDIX

The purpose of this appendix is to point out a third error in [BuG]. We give
some examples to show that an arithmetic claim made in that paper is false.
Although this error is not as serious as that exposed in'section 5 of Chapter 2,
it does necessitate a modi‘ﬁcation of their local calculations and means that not
all of their results can be relied on in detail. Furthermore, noticing this error
restores the proper uniformity from the function field to the number field case;
unfortunately it means that both cases are a little more complicated than Bump
and Ginzburg allow. In order to explain this error let us recall some notation
from §3 of [BuG]; in that section F is a global field, A its ring of adeles, A* the
corresponding group of ideles and S a certain finite set of places of F including the
Archimedean places. In thé course of establishing the invariance of their proposed
integrand under the center Zp of GL(r,A) when 7 is even and F' is a number
field, they make the following ‘claim: “Now if F' is a number field, a consequence
of the strong approximation theorem is that F*(A* )2'(1.—[% s0x) = A*, and so
we have invariance under all of Z,.” They proceed to exclude the function field
case when r is even in order to be able to make use of invariance under the
center. Unfortunately, not only does the equality F*(A* )2(Hv¢ 50x) = A not
follow from the strong approximation theorem, but the equality itself is generally
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false, as we shall show below. This means that the integrand in Bump-Ginzburg’s
integral has not been show to be invariant under the center of GL(r,A) and their
Rankin-Selberg integral has not been shown to be well-defined when r is even; in
the absence of this, they gain nothing by restricting to thé number field case.

Proposition 1: Let F be a number field, A* its group of ideles, S some finite set
of places of F including the Archimedean places and CI(F) the ideal class group of

F. Then the finite group

K& F*([Togs o3)

maps onto the group Cl(F)/‘(Cl(F))z.

Proof: Let S, denote the set of Archimedean places of F. For any finite set

T D S, put

OX(T) =[] o .

vgT

It is well-known that
B (s, FF)0%(5.0) 2 U
and since ([],cs Fy)O*(Sx) 2 O*(S) it follows that t.he group
A JF*D%(S)
maps onto CI(F'). Under this homomorphism the subgroup

(A)? - (F*D*(8))/F*D*(8)
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maps into the group of square classes and so the quotient by this subgroup maps

onto CI(F)/(CI(F))?. However, this quotient is isomorphic to
AX /Fx (Ax )ZDX (S)

and the lemma follows. O

It follows from Proposition 1 that the equality AX = F* (A)*(TT,¢s o) can-
not hold for any number field F having even class number. It would be possible to
reformulate the truth of the equality in question as a rather complicated condition
involving only objects familiar from the classical (that is; non-adelic) description
of the arithmétic of F. Rather 't}vian“c.loing so we content ourselves with two fur-
ther observations. The first is that it is easy to see that the equality does hold
in the case F = Q-for every choice of S. Henbceié,ny application of the details of
Bump-Ginzburg’s work in which the only ground field of interest was the rational
numbers is not invalidated by the obséfvations made here. The second is that it
is not true that the only obstruction to Bump-Ginzburg’s equality is 2-torsion in
the class group of F'. We make this claim precise in the following Proposition.
Proposition 2: Let ' be a number field of class number one and S a finite set

of places of F' containing the Archimedean places. Let

n= [ {+1}

VE Sreal

where Sreal denotes the set of real places of F' and put

Yo = {(sgn(av))vesml acOF} <.
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Then the finite group
A J(K)2FX (ITogs 93)

maps onto the group X /%.

Proof: We may regard ¥ as a subgroup of A* and we do so in what follows.

Since F has class number one we have
& = P*([Lyes. FX)O* (Se0)
and hence

B /(K )2F* D% (So0)
=F~ (Huesw va)gx (SOO)/FX (HvESw (va)z)'gx (SOO)
= F*([Tyes. (FX)?) 9% (Se0) /F* ([Tyes. (FX)?)O* (Sco)

= E/E a (Fx (H’UESOO (va)2)D>< (SOO)) :

Now let us suppose that an idele (¢,) lies in TN (F* (Hvelso<> (FX)3)9D*(Sx)) and
let us write it as o - (82)ves.. - (v)vgs., Where a € F and suppressed components
of the ideles are all equal to 1. Comparing components we find that a, =, € o)}
for all finite places v and consequently oo € OF, the group of units of the ring of
integers of F. For v € Sr.eal we have €, = a, - 2 and since ¢, = %1 this gives
€y = sgn(ay). It is easy to see that any (e,) € ¥ satisfying these two conditions is

an element of the intersection. Thus

=0 (F* (loes,, (F)%)9*(Se0)) = Zo
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and it follows that
K J(K)F*D*(Se0) 2 /5.

Since D% (Soo) 2 D*(S), the Proposition follows from this. O

To show that Proposition 2 gives rise to obstructions to the Bump-Ginzburg
equality beyond those arising from the class group we must give an example of a
number field F' with class number one but with the group /%y non-trivial. This
is easily done: consider for example the field F = Q(+/3). It is well-known that F
has class number one and that Oz = {£1} x (¢) where ¢ = 2 + V3. The field F
has two real places and so X % {#1} x {£1}. Since € is positive at both of these
places we have £y = {(1,1), (-1, -1)} and hence ¥ /%y is cyclic of order two. So
the Bump-Ginzburg equality fails for this field for any choice of 5. More generally
we might take F' to be any real quadratic field with class number one and totally
positive fundamental unit.‘

For completeness let us observe that the statements made about the function
field case in [BuG] are also erroneous; generally the subgroup F XI'(AX )2(Hu¢ 505)
of A* has index greater than two.

Proposition 3: Let F' bé a function field, A* its group of ideles, S any finite set
of places of F, CI(F) the set of divisor classes of F and C1°(F) the set of divisor

classes of degree zero. Then the finite group
A JF*(A)*([Togs o)

maps onto the group Z/2Z x CL°(F)/(CI°(F))2.
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Proof: Using the same notation as above we have
AX /F"Dx(@) = CI(F)

and if we let Al denote the set of ideles whose idele norm is one then we have

isomorphisms
AX /FXDX(O)) >~ 7 X Al/FxDx(@)
and
AL /F* D% (0) = CI°(F).
From this point on the proof proceeds exactly as in the number field case. O

It is not difficult to manufacture examples in which the group Cl°(F) has non-
trivial 2-torsion. For instance, let F be a finite field of characteristic neither 2 nor
3 and let E be the elliptic curve over F with Weierstrass model y? = z(z—a)(z—b)
where a and b are distinct elements of . This elliptic curve is its own Jacobian
and its 2-torsion subgroup over F is isomorphic to Z/2Z x Z/2Z. If we let F be
the field of functions of E then, as usual, this subgroup gives rise to a subgroup
of CL°(F) isomorphic to Z/2Z x Z/2Z. Thus the indéx of (A)2F*(T], 0X) in A*

is at least eight for this field.
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