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CHAPTER I 

INTRODUCTION 

Feed intake is one of the major factors that determine the profitability of livestock 

production. The physiological processes that result in hunger and satiety have been the 

focus of extensive research, but the specific differences in genotype which contribute to 

the variation in appetite in animal populations remain largely unknown. Genetic variation 

in the control of hunger and satiety originates from differences in genes that encode the 

proteins involved. Evaluation of candidate proteins in populations that differ only in their 

genetic propensity to eat may lead to the identification of the responsible genes and 

regulatory sequences. 

Pigs have been a useful model species for studying appetite and related obesity 

(Anika et al., 1981; Houpt et al., 1979). Diverse selection lines of pigs have been studied 

to understand genetic variation in obesity (Wangsness et al., 1981). However, this 

approach has not been used to identify the relationship between genetic variation and 

mechanisms of appetite regulation; Our laboratory has lines of pigs from the same base 

population that have undergone ten generations of divergent selecticm for either fast (F) 

or slow (S) postweaning average daily gain (ADG). Woltmann et al. (1992) reported that 

the F and S lines differed in ADG (0.16 kg/d) and average daily feed intake (ADFI) (0.41 

kg/d) when allowed ad libitum access to feed, but had similar ADG when feed intake was 



standardized. Because these lines originated from a common base population and have 

been maintained in the same environment, the differences in appetite can be attributed to 

selection-induced changes in the frequencies of DNA sequences (gene alleles and gene 

regulatory sequences) that determine this trait. Thus, investigation of the genetic variation 

at the DNA level may help develop new methods to improve the genetic merit of this trait 

( e.g. molecular marker-assisted selection (MSA), Soller et al., 1982; Rothschild et al., 

1990). MSA selection will first require identification of candidate genes or anonymous 

genetic markers associated with traits of interest. A few studies have shown association of 

genes with quantitative trait loci (QTL) in pigs (Rothschild et al., 1990; Jung et al., 1989; 

Clamp et al., 1992; Andersson et al., 1994; Yu et al., 1995). 

The hormone cholecystokinin-8 (CCK-8) has been reported to play a role in 

appetite regulation through its ability to induce satiety in various species including pigs 

(Anika et al., 1981; Della-Fera et al., 1979; Micelli et al., 1983; McLaughlin et al., 1985; 

Denbow et al., 1982). Consequently, a study was conducted to determine the 

physiological and molecular bases for the genetic differences in feed intake between the F 

and S lines of pigs by focusing on CCK-8 as a candidate hormone. The objectives of the 

present study were (1) to determine if plasma concentrations of the satiety hormone 

CCK-8 differed between the lines during feeding; (2) to evaluate the dosage-dependent 

effects of exogenous CCK-8 on feed intake in pigs from F and S; (3) to estimate the 

relationship of CCK genotypes with ADG and backfat (BF) in offspring of Fl (F x S) 

sires. 
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CHAPTER II 

REVIEW OF LITERATURE 

I. Regulation of Food Intake 

The regulation of food intake is a complex process which involves interactions 

between circulating nutrients, hormones and neurotransmitters (Baile et al., 1983; 

Morley, 1987, 1995; Woods and Gibbs, 1989). Early studies were directed at the potential 

ability of circulating nutrients ( e.g. glucose, free fatty acids) to interact with either 

specific CNS neuronal populations ( e.g. neurons in the hypothalamus) or with peripheral 

afferent neuronal pathways. Gibbs et al. (1973) reported that intraperitoneal injection of 

the intestinal peptide hormone cholecystokinin (CCK) reduced meal size in rats, thus 

beginning the "peptide revolution" in the study of the control of feeding. To date, many 

peptide hormones secreted by the gut and/or brain have been shown to have effect on 

feeding. Some of the candidate satiety peptides include CCK, bomebesin, somatostatin, 

glucagon and calcitonin. Among these peptides, however, the best-characterized satiety 

peptide is CCK, which is released from the duodenum during meals in many species and 

appears to effectively inhibit feeding whether administered peripherally via any of several 

routes or directly into CNS (Morley, 1987; Reidel berger, 1994 ). Another group of 

peptides, opioid peptides have been shown to stimulate food intake at both peripheral and 

central sites (Bechara et al., 1985). Extensive evidence has demonstrated that 
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neuropeptide Y (NPY) increases food intake when administered exogenously (Clark et 

al., 1984; Levine et al., 1984; Stanley et al., 1984; Stanley et al., 1986; Leibowitz, 1990; 

Akabayashi et al., 1994; Stanley et al., 1992) and it is suggested that NPY is a long-term 

hunger signal (Shibasaki et al., 1993; Billinton et al., 1991). Insulin action in the brain 

reduces food intake. The relationship between plasma and CNS insulin levels may change 

in association with appetite and obesity, indicating an important role of insulin in the 

central control of food intake and energy balance (Woods et al., 1976; Woods et al., 

1979; Plata-Salaman et al., 1986; McGowan et al., 1992; Brief et al., 1994). The recent 

cloning and sequencing of the ob gene has suggested that its product, leptin, may regulate 

food intake and body weight (Zhang et al., 1994). A new model has been proposed that 

leptin, insulin and NPY may act as long-term regulators of food intake and body weight 

(Kaiyala et al., 1995; Figlewicz et al., 1996). 

Hypothalamus and Food Intake 

Food intake is regulated mainly by the CNS. The hypothalamus is an area of the 

brain associated with food intake. It receives and integrates internal and external signals, 

resulting in appropriate responses. Electrical stimulation of the lateral hypothalamus area 

(LH) initiates feeding, but electrical or chemical destruction of LH results in aphagia and 

weight loss (Hetherington et al., 1940). Electrical stimulation of the ventromedial 

hypothalamus (VMH) inhibits eating in hungry animals, but ablation of this area 

produces hyperphgia and obesity (Anand et al., 1951 ). Thus, interactions between the two 

areas may control food intake. 

Opioid and Feeding 
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Opioid peptides refer to a group of chemicals that produce a morphine-like effect. 

At least 20 opioid peptides from brain, pituitary and adrenal tissue have been isolated and 

characterized. All of them have an amino-terminal Met or Leu-enkephalin sequence, and 

all are derived from one of three precursor molecules, pro-opiomelancortin (POMC), 

proenkephalin or prodynorphin. 

Multiple opioid receptors exist in the brain and have been classified as Mu (µ) 

receptors, which have high affinity for morphine and ~-endorphin; delta (6) receptors, 

which have high affinity for enkephalin; and kappa (K) receptors, which have high 

affinity for dynorphin. The pioneering study of Holtzman (1974) showed that naloxone 

was a highly specific antagonist for Mu opioid receptor and decreased food intake in rats. 

Subsequently, naloxone has been shown to decrease food intake in a variety of species, 

including rats and mice (Holtzman, 1974), sheep (Baile al., 1981; Alavis et al., 1991), 

guinea pigs (Billington et al.,1990), rabbits (Sanger et al., 1981), and cats (Foster et al., 

1980). Among the three types of opioid receptors, K and µ receptors appear to be most 

important in the hyperphagia response (Morley et al., 1983, 1984). This assumption was 

supported by recent findings in rats that µ receptors mediated galanin-induced feeding 

whereas feeding induced by fasting was dependent on a pathway mediated by K receptors 

(Barton et al., 1996). Hence, endogenous opioid peptides play important roles in feeding 

behavior (Morley, 1995). 

NPY and Food Intake 

NPY, which contains 36 amino acids, is a member of the pancreatic polypeptide 

family found both in the peripheral sympathetic neurons and in the brain. Exogenous 
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NPY causes increased food intake when administered into the cerebral ventricular (Clark 

et al., 1984; Levine and Morley, 1984) or directly into the paraventricular nucleus in rats 

and mice (Stanley et al., 1984). Chronic administration ofNPY into the paraventricular 

nucleus resulted in obesity in rats (Stanley et al., 1986). Feed intake was reduced in rats 

when antisense oligonucleotides which inhibit the synthesis of NYP were administrated 

into the paraventicular nucleus (Akabayashi et al., 1994). Also in rats, similar results have 

been observed by the immunoneutralization of NPY (Stanley et al., 1992; Shibasaki et al., 

1993). Repeated administrations ofNPY into the paraventricular nucleus caused a 

persistent increase in food intake and considerably accelerated the body weight gain in 

rats (Morley, 1987; Stanley et al., 1986; Leibowitz, 1990). These results, along with the 

findings that NPY decreases energy expenditure (Billinton et al., 1991 ), led to the 

hypothesis that NPY acts as an anabolic central peptide which is involved in both single­

meal and long-term regulation of energy balance. 

Role of Insulin 

In contrast to the acute, peripheral actions of insulin, which are anabolic and 

calorie-storing, the chronic, CNS-mediated actions of insulin are catabolic. Hatfield et al. 

(1974) found that injection of large dose of insulin into the ventromedial hypothalamus 

reduced feeding in normal and diabetic rats. Intracerebroventricular injection of large 

doses of insulin also decreased food intake in rats (Brief et al., 1994; Woods et al., 1979; 

Plata-Salaman et al., 1986). Bilateral injection of insulin antibodies into the ventromedial 

hypothalamus increased food intake (Strubbe et al., 1977). McGowan et al. (1992) 

reported that the most sensitive sites that decreased food intake from injection of small 
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doses of insulin included portions of the ventromedial hypothalamus nucleus, 

paraventricular nucleus, dorsomedial hypothalamic nucleus and arcuate nucleus. They 

also confirmed that injection of insulin antibodies into the ventromedial hypothalamus 

increased food intake and body weight. There is a general agreement that insulin is not 

synthesized in significant amount in the adult animal brain (Figlewicz et al., 1996). Thus, 

changes of brain insulin concentrations can be considered to reflect changes in plasma 

insulin levels. It was hypothesized that insulin is secreted from the pancreas and enters 

the CNS via insulin receptor-mediated transcytosis across capillary endothelial cells 

which comprise the blood-brain barrier (Woods et al., 1976). 

Insulin receptors are located throughout the CNS, including specific hypothalamic 

nucleus which are thought to be important in the regulation of food intake, body weight 

or energy balance. Therefore, insulin effect on food intake may be due to enhancement of 

the effectiveness of some satiety signals and suppression of the effectiveness of some 

hungry signals. When injected intraventricularly with the dose of insulin which is 

subthreshold for suppression of body, exogenous CCK is more effective in the 

suppression of food intake in rats (Riedy et al., 1995) and in baboons (Figlewicz et al., 

1986, 1995). Moreover, a major target of insulin action in the CNS appears to be the 

hypothalamic neurons that synthesize NPY. NPY synthesis, as assessed by both mRNA 

levels in neuronal cell bodies that originate in the arcuate nucleus and NPY peptide levels 

in the paraventricular nucleus, is elevated in association with negative energy balance and 

insulin deficiency ( e.g., fasting and/or diabetes mellitus; Si pols et al., 1995). Replacement 

of insulin either centrally or peripherally in either of these conditions results in a 
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reduction in food intake and a partial or complete suppression of NPY gene expression to 

levels observed under insulin-replete, or free-feeding conditions (Sipols et al., 1995). 

Additionally, the effectiveness of bilateral paraventricular nucleus injections of NPY to 

stimulate feeding is blunted in rats which receive a chronic subthreshold dose of insulin 

through intravenous transfusion (Sipols et al., 1995). The effects of insulin on NPY 

neurons in the CNS appear to be specific for the hypothalamic population only, inasmuch 

as.neurons in other parts of the CNS are unaffected (Leroy et al., 1996). Recently, the 

expression of the leptin gene was reported to increase after insulin administration in rats 

(Saladin et al., 1995) and in vitro adipose tissue of mice (Leroy et al., 1996). Therefore, 

insulin may be an important regulator· for expression of the leptin gene (Saladin et al., 

1995; Leroy et al., 1996). 

Role of Leptin 

The ob gene, long known to be the site of a mutation associated with genetic 

obesity in mice, was recently cloned and found to be transcribed only in adipocytes 

(Zhang et al., 1994). Its product, leptin, is a polypeptide with 167 amino acids that can 

regulate food intake in mice (Zhang et al., 1994). 

Peripheral treatment of either ob/ob mice or wildtype mice with dietary-induced 

obesity with recombinant leptin reduced food intake, body weight and percentage of body 

fat (Campfield et al., 1995; Halaas et al., 1995; Pelleymount et al., 1995). Intravenous 

injection of recombinant leptin decreased food intake in fasted normal mice (Rentsch et 

al., 1995). These effects appeared to be sustained for as long as leptin was administered 

(Pelleymount et al., 1995). In the studies ofleptin's effect on energy balance, Halaas et al. 
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(1995) and Pelleymount et al. (1995) reported that intraperitoneal infusion of leptin 

normalized the reduced energy expenditure characteristic of ob/ob mice. All these 

findings suggest that the leptin plays an important role in the regulation of food intake 

and is necessary for a normal metabolic profile and for maintenance of normal adiposity 

in rodents. 

Moreover, numerous studies have been conducted to elucidate the relationships of 

leptin with other hormones involved in appetite regulation or/and energy balance 

(Stephens et al., 1995; Saladin et al., 1995; Grunfeld et al., 1996). Stephens et al. (1995) 

reported that leptin receptors were detected in the hypothalamus and infusion of leptin 

into the hypothalamic nucleus decreased hypothalamic levels of NPY in rats. This 

indicates that leptin produced by replete adipose tissue regulates food intake and the 

mechanism is due to the inhibition of NPY synthesis and release. Saladin et al. (1995) 

reported that injection of insulin in fasted rats increased leptin mRNA to the levels of the 

fed controls. So, insulin may regulate leptin gene expression directly in rats independent 

of its glucose-lowering effects, and the increased leptin gene expression after food 

ingestion in rats may act through a direct action of insulin on the adipocyte (Saladin et al., 

1995). In Chinese hamsters, expression of leptin was induced by endotoxin (LPS) and 

cytokines (TNF, IL-1) which are known to regulate adipose tissue metabolism and to 

induce secretion of several hormones involved in appetite regulation ( e.g. CCK, glucagon 

and insulin, etc.) (Grunfeld et al., 1996). 

Cholecystokinin and Its Effect on Satiety 
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The hypothesis that CCK functions as a satiety signal was based on the finding 

that systemic injection of CCK reduced food intake in rats (Gibbs et al., 1973). Since 

then, evidence from studies of both agonists and antagonists of CCK have supported this 

hypothesis in many species (Morley, 1985, 1995). It remains to be determined, however, 

where and how endogenous CCK might act to produce satiety. One popular hypothesis is 

that CCK acts indirectly through control of gastric emptying (Reidelberger, 1994; Figure 

1 ). This hypothesis proposes that chyme entering the small intestine during and after 

ingestion of a meal stimulates secretion of CCK from endocrine cells in the upper 

intestine. Circulating CCK slows gastric emptying, which produces an increased rate of 

gastric distention, activation of vagal afferent neurons, and inhibition of the brain feeding 

system. 

Food 
Intake 

+ 

• • . . . t 
I+ 

• • 
vagus 

· Brain 

+ • 

-..,_ -

- • 

Figure 1. Schematic diagram of putative cholecystokinin (CCK) satiety mechanisms based 
primarily on studies of the effects of exogenous CCK on food intake. Solid lines represent 
putative regulatory feedback mechanisms to suppress feeding. (Fmm Reidelberger, 1994) 
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It is generally agreed that heterogeneous forms of CCK exist in plasma and tissue. 

Among these molecular forms, the eight amino acid form of CCK (CCK-8) is thought to 

be the smallest bioactive (Jensen, et al., 1982) and the most biologically potent form of 

CCK causing satiety (Crawley et al., 1994; Reidelberger, 1994). Exogenous CCK-8 

inhibits feed intake in a variety of species (sheep, Della-Fera et al., 1979; rats, Joyner et 

al., 1993; goldfish, Himick et al., 1994; baboons, Figlewicz et al., 1992; chickens, Covasa 

et al., 1994; humans, Rehfeld et al., 1978) including pigs (Anika et al., 1981; Baldwin et 

al., 1992). Specific antagonists for CCK-A receptors (CCKAR) (Ebenezer et al., 1990, 

Baldwin et al., 1992), and specific immunoneutralization of circulating CCK-8 (Pekas et 

al., 1993), has been shown to increase feed intake in pigs. Conversely, CCK agonists 

decrease feed intake in pigs (Parrott, 1993). Thus, CCK is identified as a satiety hormone 

mp1gs. 

II. Biological Characteristics of CCK Peptides and Receptors 

Discovery of CCK peptides 

Ivy and Oldberg (1928) reported that instillation of fat into the dog small intestine 

stimulated the release of a substance that activated gallbladder contraction. The substance 

was termed cholecystokinin (CCK). Harper and Raper (1934) discovered a hormone that 

was released from the porcine duodenal mucosa and stimulated pancreatic enzyme 

secretion; they named the hormone pancreozymin (PZ) for that reason. Mutt and Jorpes 

(1971) isolated a 33-amino-acid polypeptide from extracts of small intestine which 

exhibited the properties ascribed to CCK as well as PZ (Jorpes et al., 1966). What 

11 



originally was regarded as two distinct hormones was a single hormone. Since the action 

on the gallbladder was first discovered, the acronym CCK is now used instead of PZ or 

CCK-PZ. 

CCK synthesis pathway 

CCK was originally purified from porcine intestine (Jorpes et al., 1966) and sequenced as 

a 33 amino acid peptide (Mutt and Jorpes, 1968, 1971\ Since then, molecular forms 

ranging in size from 5 to 58 amino acids have been identified in extracts of intestine, 

brain, and blood of several species. The 33-amino acid sequence and its 8-amino acid C­

terminal have been identified in pigs, rats, chickens, chinchillas, dogs and humans 

(Eysselein et al., 1984; Fan et al., 1987; Maton et al., 1982; Rehfeld, 1978 ). A 39- amino 

acid sequence was reported in pigs (Mutt, 1980), dogs (Eysselein et al., 1984) and guinea 

pigs (Dockary et al., 1981). A 58-amino acid sequence was reported in-cats, dogs and 

humans (Eberlein et al., 1988). A 47-amino acid sequence was found in frogs and in 

turtles (Johnson et al., 1992). As for forms shorter than CCK-33, CCK-25, CCK-18, 

CCK-8, CCK-7, and CCK-5 were isolated from dog intestine (Reeve et al., 1986), and 

CCK-22 and CCK-8 were identified from rat (Eng et al., 1984) and guinea pig intestines 

(Zhou et al., 1985). All of these molecular forms contain the same five amino acid 

sequence at the C-terminus which is identical to that of another gut hormone, gastrin. 

CCK-like bioactivity is conferred by sulfation of tyrosine at position 7 from the carboxyl 

terminus and all sulfated molecular forms larger than CCK-7 have full biological activity. 

The C-terminal sulfated octapeptide sequence, Asp-Tyr(S03H)-Met-Gly-Try-Met-Asp­

Phe-NH2, known as CCK-8, is relatively conserved across species, and appears to be the 
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minimum sequence for biological activity and the most biologically potent form of CCK 

causing satiety (Crawley et al., 1994; Reidelberger, 1994). 

All molecular forms of CCK are produced by the posttranslational modifications 

of a single gene (Crawley et al., 1994). The gene is about 7 kilobase in size and is 

composed of three exons. The first exon is small and encodes only the 5' untranslated 

portion of the CCK rnRNA. The second exon contains sequences encoding the signal 

peptide and prohormone regions of the peptide, and the third exon encodes the 

biologically important region of the hormone. Transcription of this gene in rats and in 

humans produces a mRNA of approximately 750 bases of which 345 encode the prepro­

CCK (Deschenes et al., 1984; Takahishi et al., 1985). Prepro-CCK consists of 114 amino 

acids in pigs (Gubler et al., 1984) and 115 amino acids in humans (Takahishi et al., 1985) 

and rats (Deschenes et al., 1984). Structure of human prepro-CCK is shown in Figure 2. 

Posttranslational modifications of prepro-CCK include sulfation of the tyrosine, cleavage 

of the C-terminal Gly-Arg-Arg extension, amidation of the C-terminal phenylalanine, 

cleavage of the N-terminal leader sequence, cleavage of the carboxyl side of Arg-74 

(Blanke et al., 1993), and cleavage of CCK-58 and smaller peptides (Turkelson et al., 

1990). The various molecular forms of CCK are generated by trypsin-like cleavage 

(Cantor, 1989). The proposed processing pathway of human prepro-CCK has been 

reported (Eberlein et al., 1992) and is shown in Figure 3. Both the C-terminal sulfation 

and amidation are important for the biological activity (Crawley et al., 1994; Cantor, 

1989). Sulfated CCK is 100 to 300 fold more potent than nonsulfated CCK (Vinayek et 

al., 1987), and nonamidated forms have no bioactivity (Morley et al., 1965). 
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Figure 2. Structure of human preprocholecystokinin. The structure is shown of human 
preprocholecystokinin determined by cDNA studies. Basic residues are boldface; double 
basic residues are italic; and predicted single basic residue processing sites are underlined 
Actual processing sites as determined by peptide purification and characterization are 
shown by arrows. Sulfation sites are shown with asterisks. (From Eberlein et al., 1992) 
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Figure 3. Proposed processing pathway of human preprocholecystokinin. Shown at 
the top are five regions of the primary preprocholecystokinin mRNA product of 115 
residues. The signal peptide (Sig. Pep.) is 20 amino acids long. The amino-terminal 
flanking peptide (N-Term. Fl. Pep.) connects the signal peptide to CCK-58. The amidation 
region (Am.Reg.) is a tripeptide (Gly-Arg-Arg), and the carboxyl-terminal flanking peptide 
(C-Term.Fl.Pep.) is a nonapeptide. Post-translational processing is regulated by enzymes 
shown above the arrows. PAM, peptidylglycine a.-amidating monooxygenase. 
Pyrrolidinecarboxylic acid (pQ) is formed by cyclization of the glutamyl at position 1 after 
the action of signal peptidase. (From Eberlein et al., 1992) 

15 



Enzymes involved in posttranslational processing include a 34,000 dalton 

molecular weight intestinal enzyme which degrades CCK-33 to CCK-12 and CCK-8 

(Turkelson et al., 1990). In plasma, CCK-33 is cleaved to CCK-8 by enterokinase and 

trypsin (Gaisano et al., 1984; Mutt et al., 1981; Straus et al., 1978), and CCK-9 and CCK-

10 are cleaved to CCK-8 by a trypsin-like enzyme(Deschodt-Lanckman, 1982). Sulfated 

CCK-8 may be cleaved into inactive fragments by aminopeptidase (Deschodt-Lanckman, 

1982). 

In the study of CCK peptides in human and rat plasma, half-lives of sulfated 

CCK-8 were 50 and 17 min, respectively, and that of desulfated CCK-8 were shorter, at 

18 min in human and 5 min in rats (Koulisher et al., 1982). 

Localization of CCK production 

1. Distribution of CCK in CNS 

Radioimmunoassay (RIA), immunohistochemistry and in situ hybridization have 

been used to study the distribution of CCK peptides in the CNS. Neurons containing 

CCK are widely distributed throughout the brain except the cerebellum (Beinfeld et al., 

1981). CCK or CCK mRNA is present in a very high concentration in the cerebral cortex 

(Crawley et al., 1994). The distribution of immunoreactive CCK in brain regions of the 

rat was reported by Beinfeld et al. (1981; Table 1). Most of the information regarding the 

localization of CCK in the brain has been obtained from studies of the rat, and similar 

distribution patterns of CCK were also observed in other species such as pig (Rehfeld, 

1978); guinea pig (Larsson et al., 1979); human (Beinfeld et al., 1981; Emson et al., 

1982; Geo la et al., 1981 ); cattle (Braden et al., 1981 ), rhesus monkey (Beinfeld et al., 

1983) and sheep (Dockray et al., 1978). 
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Table 1. Immunoreactive CCK in Brain regions of the rat a 

Region 

Cortex 
Striatum 
Hippocampus 
Septum 
Anterior 
hypothalamus 
Olfactory bulb 
Thalamus 
Amygdala 
Mesencephalon 
Posterior 
hypothalamus 
Pons 
Medulla 
Pituitary gland 
(whole) 
Cerebellum 

ng CCK-8 equivalents/ 
g net weight 

528 ± 129 
328 ± 73 
274 ± 0.3 
237 ± 68 

232 ± 58 
204 ± 61 
191 ± 36 
164 ± 57 
159 ± 21 

157 ±6 
28 ±3 
25±6 

25 ± 6 
1 ± 0.3 

ng CCK-8 equivalents/ 
brain region 

414 ± 75 
37± 13 
330±7 
4±0.8 

2±0.3 
10±2 
18 ±2 
2±0.2 
25 ± 0.6 

2±0.5 
3 ±0.4 
3 ±0.6 

0.3 ± 0.4 
0.3 ± 0.5 

a Means± SEM, n = 3. Striatum included equdate putamen, globus pallidus, and nucleus 
accumbens. Tissues were removed, frozen and weight before extraction (From Reinfeld et 
al, 1981). 

Rehfeld ( 1978) used RIA in combination with high performance liquid 

chromatography (HPLC) to show that heterogeneous CCK was present in the brain as 

well as in the small intestine of both humans and pigs. To date, CCK-8 has been isolated 

from the brains of a substantial number of mammalian species including, rabbits (Straus 

et al., 1977), pigs (Rehfeld, 1978), sheep (Dockray et al., 1978), and humans (Miller et 

al., 1984). CCK-58 has also been isolated from dog (Eyssenlein et al., 1984) and pig 

brain (Tatemoto et al., 1984). However, neither CCK-33 nor CCK-39 has been isolated 
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from the brain of any species. How the posttranslational processing occurs in the brain is 

still unknown. There may be different cleavage enzymes in the brain. 

2. Peripheral system 

a) Gastrointestinal tract 

High concentrations of CCK are present in the mucosa of the duodenum and 

jejunum in humans, dogs and rats (Soll et al., 1985). CCK-33 or larger forms are found in 

high concentrations in the mucosa in the duodenum and jejunum (Greeley et al., 1984a). 

Use of a C-terminal antiserum for CCK-8, Greeley et al. (1984a) determined that 

concentrations of CCK-33 and larger forms were 5 to 20 times higher than CCK-8 in the 

mucosa of the duodenum and jejunum. CCK-8 has also been detected in the gastric 

atrium, but not in liver, kidney, spleen, or pancreas of the rat, rabbit or dog (Brand et al., 

1981). 

b) Nervous system 

In the aforementioned studies, extracts of the whole tissues were used. 

Investigators have also found CCK in neural and nonendocrine cells of the 

gastrointestinal tract (Larsson et al., 1979). CCK is expressed in a small but significant 

population of neurons in both the myenteric and submucous plexus of the enteric nervous 

system (Schultzberg et al., 1980; Furness et al., 1985). In addition, CCK fibers were 

identified in the mucosa of duodenum and jejunum (Larsson et al., 1979). CCK was also 

found in nerve terminals of pancreatic islets (Rehfeld et al., 1980) and in vagal afferent 

fibers in dogs and cats (Dockray et al., 1981; Rehfeld et al., 1983; Zarbin et al., 1981 ). 

c) Plasma 
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CCK exists in heterogeneous forms in plasma and tissue (Crawley et al., 1994). 

However, the exact molecular nature of CCK in plasma has been much debated because 

of the presence of interfering factors (e.g., gastrin) and differences in the specificity of the 

assays employed. Investigators have pretreated plasma in various ways including 

extraction with acid or ethanol as well as application of resins to decrease the interference 

(Jansen et al., 1983; Go et al., 1980; Liddle et al., 1985; Walson et al., 1982; Cantor and 

Rehfeld, 1987). Although these methods remove interfering compounds, none resulted in 

complete recovery of added CCK. Various values in basal levels of CCK have been 

reported because of the use of antibodies with different specificities, different methods of 

extraction, and different methods and forms of CCK used for iodination (Jansen et al., 

1983; Go et al., 1980; Liddle et al., 1985; Walson et al., 1982; Cantor and Rehfeld, 1987; 

Chang et al., 1983; Kothary et al., 1983; Maton et al., 1982). 

With the use of antibodies specific for CCK-33 and CCK-39, values for CCK-33 

and CCK-39 in unextracted plasma from humans, dogs and pigs were in the range of 16 

to 50 pmol/L (Chang et al., 1983; Jansen et al., 1983; Kothary et al., 1983; Maton et al., 

1982). With the use of similar antibodies, the range of values in plasma pretreated by 

ethanol extraction was 1-4 pmol/liter (Lilja et al., 1982; Lonovics et al., 1981; Gaisano et 

al., 1984). 

In extracted plasma, the use of antibodies against both CCK-8 and CCK-33 or 

CCK-8 alone, resulted in measurement of fasting plasma levels of 1 to 8 pmol/L in rats 

(Maton et al., 1982; Eysselein et al., 1984; Chang et al., 1983; Calam et al., 1982; 

Greeley et al., 1984b ). In humans, the basal concentration was 1 to 3 pmoVL (Rehfeld, 
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1978; Cantor, 1986; Jensen et al., 1983; Liddle et al., 1985; Dockray et al., 1978), and 

similar concentrations have been reported in rats (Liddle et al., 1984) and pigs (Cantor 

and Rehfeld, 1989). 

Reports from different laboratories vary as to the exact molecular patterns of the 

heterogeneity of CCK in plasma. Kothary et al. (1983) reported that human plasma 

contained 10% of CCK peptides larger than CCK-39, 3% of CCK-33 and CCK-39, 11 % 

of CCK peptides with molecular weight between CCK-8 and CCK-33, 58% of CCK-8 

and 18% of CCK-4. Liddle et al. (1985) reported that predominant CCK-33/39, lesser 

amounts ofCCK-22 and CCK-8 and no CCK-58 were in postprandial plasma. Cantor and 

Rehfeld (1987) found a predominance of CCK-33/39 and CCK-8, and moderate to small 

amount of CCK-22 and CCK-58 forms, respectively. Jansen and Lamas (1983) reported 

that 8 to 40% of CCK-58, 44 to 60% of CCK-33 and CCK-39, 15 to 27% of CCK 

peptides greater than CCK-14 but less than CCK-33 were present in human plasma, but 

no CCK-8 was detected. Calam et al. (1982), however, reported CCK-8 to be the 

predominant form and a lesser amount of CCK-33 in human plasma. The molecular 

distribution of CCK in human and pig plasma is almost identical (Liddle et al., 1985; 

Cantor and Rehfeld, 1989), but CCK-22 and CCK-8 have been the only forms detected in 

rat plasma (Liddle et al., 1984). CCK-58 was reported to be the major form of CCK in 

dogs (Eysselein et al., 1987; Sun et al., 1992). These data indicate that various patterns of 

CCK occur in different species. 

CCK receptors---Characterization, distribution and function 
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There are two subtypes of CCK receptors. They are pharmacologically classified 

on the basis of their affinity for the peptide agonists CCK and gastrin, which share the 

same C-terminal pentapeptide amide sequence but differ in sulfation at the sixth (gastrin) 

and seventh (CCK) tyrosyl residues, and by recently developed subtype-specific 

antagonists (Presti et al., 1993). CCK A-receptor (CCKAR) was first characterized on rat 

pancreatic acinar cells (Sankaren et al., 1980), and the second subtype with a different 

pharmacology was discovered in the brain and termed as CCK B-receptor (CCKBR; Innis 

and Synder, 1980). CCKAR is highly selective for sulfated analogues of CCK and the 

antagonist L-364,718 (Lotti et al., 1989), whereas CCKBR has a similar affinity for both 

sulfated and nonsulfated peptide analogues of CCK/gastrin peptides (Saito et al., 1981) 

Table 2. Characteristics of the two subtypes of CCK receptors b 

Nomenclature CC KAR CC KBR 

Potency order CCK-8 >> gastrin, 8 = gastrin, des-CCK-8 
des-CCK-8CCK- (0 to 10 fold) 

(-500 to 1000 fold) CCK-8 > CCK-4 
CCK-8 >>> CCK-4 (10 to 600 fold) 
(-10,000 fold) 

Selective antagonist L-364,718 L-365,260 
G protein coupled Yes Yes 
Signal transduction 
PLC, IP, DAG Yes Yes 
cAMP Yes No 

b CCK, cholecystokinin; CCK-8 and CCK-4, cholecystokinin octapeptide and 
tetrapeptide, respectively; CCKAR and CCKBR, CCK-A and CCK-B receptors, 
respectively. G Protein, guanine nucleotide-binding regulatory protein; PLC, 
phospholipase C; IP, inosito phosphate; DAG, diacyglycerol. (From Wank, 1995) 
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Table 3. Location and function of CCK receptor subtypes c 

CCKAR 

Pancreatic acini 
Enzyme secretion t; growth. 
Gastric mucosa 
Chief cell---pepsinogen t; 
D cell---SMS t· 

' 
Gallbladder and GI smooth muscle 
contraction; motility. 
Select area of CNS and PNS 
Satiety; 
Dopamine release t; 
Opioid anlgesia; 
Neoplastic cells---growth 
AR42J 
CHP212 

CCKBR 

Throughout CNS 
Anxiety, panic attack; Dopamine release .J... 

Gastric mucosa 
Growth; 

Parietal cell---acid t; 
ECL cell---histamine t; 
Chief cell---pepsinogen t; 

Immune cells 
T lymphocytes; monocytes. ? function. 

Neoplastic cells---growth 
ARJ42; Leiomysarcoma; SCLC; 
Gastric carcinoma; Colonic carcinoma. 

c CCK receptors are classified into a major subtypes on the basis of their pharmacology. 
Arrows indicate the change in function mediated by each rec_eptor subtype. SMS, 
somatostatin analogue. CNS and PNS, central and peripheral nervous system, 
respectively; GI, gastrointestinal; ECL, enterochromaffine-like. _ SCLC, small cell lung 
carcinoma (From Wank, 1995) 

and the antagonist L-365,260 (Lotti et al., 1989). Molecular genetics analysis indicates 

that the CCKBR and the gastrin receptor are derived from the same gene and are the same 

protein (Wank et al., 1992). Characteristics of the CCKAR and CCKBR, and their 

locations and functions are summarized in Table 2 and Table 3, respectively. 

Using radioligand and autoradiography, high levels of CCKAR binding in 

peripheral organs, and high levels of CCKBR binding in the CNS have been detected 

(Wank, 1995). Stimulation of CCKAR with physiological concentrations of CCK causes 

pancreatic exocrine enzyme secretion (Sankaran et al., 1980), endocrine islet cell 
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secretion of insulin (i.e., the incretin effect of CCK; Karlsson et al., 1992), secretion of 

pancreatic polypeptide (Liddle et al., 1990), and pancreatic growth (Zucker et al., 1989). 

CCKAR in the stomach mediate secretion of pepsin from gastric chief cells (Gaisano et 

al., 1984) and release of somatostatin from D cells of gastric mucosa resulting in the 

inhibition of acid secretion. Also, CCKAR on smooth muscle cells have been reported to 

cause gallbladder emptying (Bitar et al., 1982). 

CCKAR are located predominantly in the peripheral, however, they are also 

present in nerve fibers in select areas of the CNS and peripheral nervous system (PNS) 

(e.g. vagus nerve) where they mediate the satiety effect of CCK released from the small 

intestine or enteric neurons after a meal (Corp et al., 1993; Ritter et al., 1994; Smith et al., 

1981, 1985; South et al., 1988). CC KAR in the medial posterior nucleus accumbens 

regulate dopamine release (Grawley, 1991) and those in the dorsal horn of the spinal cord 

in primates antagonize opioid analgesia tolerance (Baber et al., 1989). CCKAR on the 

anterior pituitary are suggested to mediate the release of adrenocorticotrophic hormone 

and ~-Endorphin (Kamilaris et al., 1992). CCKAR are also found in several cell lines, 

e.g., the rat pancreatic carcinoma cell line (AR42J) (Logsdon, 1986) and the human 

neuroblastoma cell line (CHP212) (Klueppelberg et al., 1990), leading to the conclusion 

that they may mediate cell growth. 

CCKBR are predominantly found throughout the CNS. CCK acting on CCKBR 

in the anterior nucleus accumbens, unlike CCKAR in the posterior nucleus accumbens, 

has an inhibitory effect on dopamine release (Crawley, 1991 ). This suggests a possible 

role in the pathogenesis of dopaminergic related movement and behavioral disorders in 
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the human (Crawley, 1991). CCKBR are also found to mediate the regulation of anxiety 

by peripheral and central CCK (Harro et al., 1993). CCKBR are present on immune cells 

such as monocytes (Sacerdote et al., 1991) and T lymphocytes (Lignon et al., 1991 ), 

where their functions are still unknown. Like CCKAR, CCKBR are also detected on 

tumors and tumor-derived cell lines such as the AR42J (Logsdon, 1986) and human 

leiomyosarcoma cells (Pearson et al., 1989) where they may stimulate growth. 

III. Animal Models in The Study of Genetic Variation in Appetite 

Food intake is a quantitative trait affected by many genes. In normal animals, each 

of these genes has relatively small effect on phenotype. Genetic variation in appetite may 

be due to the simultaneous segregation of many genes involved in the control of food 

intake and the regulation of energy balance. Genetically-inherited models of obesity in 

rodents have been clearly established to study the genetic nature of the regulation of food 

intake. The identification of the genes involved in the development of obesity in these 

animal models may lead to the elucidation of the underlying basis for quantitative genetic 

variation in appetite and energy balance. 

Yellow obese (AYa) mouse 

Obesity in the AYa model is inherited through a dominant gene (the agouti gene) 

(Bray et al., 1979). Recent studies have determined that the agouti gene is located on 

chromosome 2 in the mouse and on chromosome 20 in the human (Kwon et al., 1994). 

The mouse agouti gene was cloned and found to encode a 131 amino-acid protein 
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(Bultman et al., 1991, 1992; Miller et al., 1993; Michaud et al., 1994; Lu et al., 1994). 

The agouti protein antagonizes the binding of a-melanocyte-stimulating hormone ( a­

MSH) and certain other pro-opio-melanocortin peptides (POMC) to their receptors (Lu et 

al., 1994; Willard et al., 1995). One of the effects of a-MSH is to stimulate food intake 

(Morley, 1987; Shimizu et al., 1989). 

Obesity is associated with a change of pigmentation from black to yellow because 

the genes controlling obesity and the agouti coat colors are so closely linked. To date, 34 

or more alleles at the mouse agouti locus have been identified (Lyon et al., 1990; 

Siracusa, 1994 ). These alleles can be arranged in a phenotypic dominance hierarchy 

(Lyon et al., 1990). A vy is one of the four dominant agouti mutations associated with 

pleiotropic effects (the other three are AY, Aiapy and Aiy). The most prominent effects are 

obesity, hyperinsulinemia and hyperphagia (Yen et al., 1994). Yellow Avy/- mice eat 10 

to 36% more than their non-Avy siblings, depending on genetic strain background (Yen et 

al., 1994). The pituitary of yellow Avy/a mice has a reduced a-MSH: desacetyl-a-MSH 

ratio (Bray et al., 1988). Because desacetylated a-MSH is more potent than a-MSH in 

stimulating food intake (Shimizu et al., 1989), reduced acetylation of a-MSH may play a 

role in A vy -associated hyperphagia. 

Obese (ob/ob) mouse 

Obesity in ob/ob mice is caused by an autosomal recessive mutation (Ingalle et 

al., 1950). The ob/ob mice are obese, hyperphagic, hyperglycemic, hyperinsulinemic, 

insulin resistant and hypoactive (Bray et al., 1979). CCK content in brains of ob/ob mice 
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is lower than their lean (-lob) littermates (Straus and Yalow, 1979). Furthermore, ob/ob 

mice overexpress the neuropeptide Y gene in hypothalamus (Wilding et al., 1993). 

To date, the ob (leptin) gene has been located on chromosome 6 in mice (Zhang et 

al., 1994), on chromosome 7 in human (Green et al., 1995), on chromosome 4 in bovine 

(Stone et al., 1996) and on chromosome 18 in porcine (Sasaki, et al., 1996; 

Neuenschwander et al., 1996). As described in the previous section, studies have revealed 

that leptin plays an important role in the regulation of food intake and energy balance in 

rodents (Halaas et al., 1995; Pelleymount et al., 1995; Rentsch et al., 1995). However, to 

my knowledge, the function of leptin has not been clarified in other species. 

Diabetic (db/db) mouse 

The recessive mutation of the db gene originally arose in the C57BL/KsJ strain of 

mice at the Jackson Laboratories (Coleman, 1978). The db/db mouse is distinguished 

from other obese mouse models by the appearance of ketosis. Like all other obese rodent 

models, the db/db mouse is hyperphagic, hyperinsulinemic and obese (Bray et al., 1979). 

Increased levels of leptin mRNA were reported in adipose tissue of the db/db mouse 

(Trayhum, 1996). Also, leptin suppressed food intake and decreased body weight 

dramatically when administered to normal and ob/ob mice, but not db/db (diabetic) mice 

(Stephens et al., 1995). Thus, the db/db phenotype seems to reflect a defect in the leptin 

action. Recent studies have determined that the db gene encodes the leptin receptor and is 

located on chromosome 4 in the mouse (Tartaglia et al., 1995; Lee et al., 1996). 

Fatty (fa/fa) rat 
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The autosomal recessive mutation (fa) in the rat was first described by Zucker and 

Zucker (1961) and arose from a cross between Sherman and Merck stock M rats. 

Homozygous recessive (fa/fa) rats are obese, hyperphagic, hyperinsulinemic and 

hyperlipemic. Zucker obese rats (fa/fa) are less sensitive to the satiety effects of CCK 

(Moos et al., 1982) and have elevated NPY production in the arcuate nucleus (Beck et al., 

1990; Sanacora et al., 1990). In addition, the level of leptin mRNA in adipose tissue is 

higher infa/fa rats (Trayhum, 1996). The/a locus maps to chromosome 5 in the rat (Chua 

et al., 1996; Iida et al., 1996; Murakami and Shima, 1995) and the normal allele (FA) 

encodes the leptin receptor (Chua et al., 1996; Chen et al., 1996). 

OLETF rat 

Results from a Japanese laboratory described physiological and molecular studies 

performed on an inbred strain of rats, Otsuka Long-Evans Tokushima Fatty (OLETF) 

rats. The OLETF rat was developed in 1992 as a model of human-non-insulin-dependent 

diabetic mellitus from an outbred colony of spontaneously diabetic rats (Kawano et al., 

1992). Male rats develop late-onset hyperglycemia (after 18 wk of age), mild obesity, and 

insulin deficiency ( after 65 wk of age). Elevation of plasma CCK by either exogenous 

CCK administration or endogenous secretion after bile-pancreatic juice diversion failed to 

stimulate pancreatic exocrine secretion in the OLETF rat (Funakoshi et al., 1995). 

Cerebroventricular administration of sulfated CCK-8 did not inhibit daily food intake in 

the OLETF rat (Miyasaka et al., 1994). The incretin effect of CCK, a function mediated 

by CCKAR on islet cells, is also absent in the OLETF rat (Funakoshi et al., 1995) and no 

CCKAR mRNA is detected in either pancreas or hypothalamus (Miyasaka et al., 1994; 
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Funakoshi et al., 1994, 1995). These physiological and molecular studies suggest that the 

OLETF rat may represent a naturally occurring CCKAR gene "knockout" rat and can be 

used as a model to study the physiological function of CCKAR, especially for feeding 

behavior (Wank, 1995). 

IV. Animal Population in the present Study 

1) Establishment of divergent selection lines 

A study was started in 1979 to investigate direct and correlated responses to 

divergent selection for postweaning average daily gain (ADG). In the first year, 

Hampshire boars were purchased in pairs from central test stations in Iowa, Missouri, 

Nebraska and Oklahoma. Boars were evaluated on the index recommended by the 

National Swine Improvement Federation that emphasized increased ADG, decreased 

backfat, and improved feed efficiency as described by Woltmann et al. (1992). In each 

pair, one boar had a high index value (index value ~ 118) and the· other a low index value 

(index value < 90). These boars were mated to a population of Duroc x Yorkshire x 

Landrace x Spotted crossbred gilts from a previous study. In the second year, pairs of 

Duroc boars were purchased on the same index criteria as in the first year. Duroc boars 

were mated with females produced in the first year. The fast growth line (F) was 

generated from pigs sired by high-indexing Duroc boars and out of gilts sired by high­

indexing Hampshire boars. The slow growth line (S) was derived from pigs sired by low­

indexing Duroc boars and out of gilts sired by low-indexing Hampshire boars. The lines 

were then closed and underwent ten generations of selection for either fast (F) or slow (S) 
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ADG from 9 wk of age to 100 kg. Selection lines were replicated in spring- and fall­

farrowing groups. The spring replicate farrowed during mid-March through April and the 

fall replicate farrowed during mid-September through October. Complete replacement of 

boars and gilts resulted in a generation interval of 1 year. 

2) Responses to selection 

Response to selection in F and S through generation four was reported by 

Woltmann et al. (1992). Barrows and gilts from F grew 0.16 kg/day faster than those 

from S. Pigs from Falso ate 0.41 kg/day more feed and had 0.10 cm more backfat at 105 

kg than those from S. After five generations of selection, average daily feed intake for F 

was 23% more than for S (Woltmann et al., 1995). This divergency in feed intake and 

ADG continued through further selection (Clutter et al., 1995). An evaluation of F and S, 

reflecting seven generations of selection is summarized in Tables 4 through 6 (Clutter, 

1992). 

Physiological effects of the divergent selection in F and S were also investigated. 

Norton et al. (1989) measured several plasma characteristics in gilts sampled from F and 

S after generation four. Fasting concentrations of insulin and glucose in peripheral plasma 

were greater in F than in S gilts, but nonesterified free fatty acid levels were greater for S 

gilts than for F. 

Characteristics of GH, IGF-1 and IGF-binding proteins (IGFBP) were studied in 

gilts sampled from the lines after seven generations of selection (Clutter et al., 1995). 

Repeated blood samples were obtained from gilts (-55kg BW) during a period of feed 

deprivation and again during refeeding. None of the characteristics of plasma GH 

concentrations was significantly different between F and S gilts. Plasma IGF-1 
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Table 4. Average daily gain and backfat thickness of F and S Barrows and Gilts 

Sex Line n ADG, kg ADJBF, cm 0 

Barrows F 173 0.91 (0.02i 3.38 (0.01) 
s 129 0.7 (0.02) 2.72 (0.01) 

Gilts F 365 0.88 (0.02) 3.15 (0.01) 
s 218 0.62 (0.02) 2.31 (0.01) 

Mean± S.E. 
0 Average backfat thickness was measured by ultrasonic probe adjusted to 105 kg. 

Table 5. Average daily feed intake and feed conversion ratio of F and S Barrows 

and Gilts E 

Line 

F 
s 

n 

538 
347 

e Mean± S.E. 

ADFI, kg 

2.71 (0.04l 
2.01 (0.04) 

E ADFI was evaluated on the pen basis. 

Feed: Gain 

3.10 (0.02) 
3.14 (0.02) 

Table 6. Carcass Characteristics of F and S Barrows 

Line n 

F 73 
S 86 

Mean±S.E. 

ADJBF, cm 

3.38 co.02l 
3.10 (0.02) 

Lean% 

46.3 (0.39) 
49.1 (0.35) 

30 

LeanADG, kg 

0.33 (0.01) 
0.28 (0.01) 



concentrations were greater in F than in S gilts during feed deprivation and during 

refeeding. A greater IGFBP2 and IGFBP3 activity was detected in S. Therefore, response 

to selection in these lines may have produced some alterations in the IGF-1 pathway. 

V. Genetic Improvement, Molecular Markers and Quantitative Trait 

Loci 

Genetic improvement with the aid of molecular tools 

Genetic improvement as a result of single-trait selection is determined by the 

heritability of the trait, the amount of variation among potential replacements, the genetic 

superiority of the selected replacements, and the time interval required to tum over a 

generation: 

2 R per year = h x SIL 

where 

R is the annual response to selection 

h2 is the heritability of a selection trait 

S is the selection differential 

L is the generation interval 

To enhance annual genetic improvement, breeders need to either increase the 

heritability of a trait ( or the accuracy with which the most genetically superior animals 

are identified), increase the selection differential ( or the measured superiority of selected 

replacements), or decrease the generation interval. 
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Selection of parents is often based on a combination of phenotypic measurements, 

including performance of the individual itself, its ancestors, its siblings and its progeny. 

All of the phenotypic information is analyzed with statistical methodologies to obtain 

breeding values or Expected Progeny Differences (EPDs) for individuals in a population, 

and these EPDs information can be used to make selection decisions. However, it is a 

time-consuming task to obtain these phenotypic data. 

Production traits like growth rate, body composition and litter size are quantitative 

in nature, which by definition means they are affected by many genes each of which has a 

relatively small effect. By selecting the animals with superior performance to be parents 

in the population, the genetic merit of the population is then improved by increasing the 

frequencies of superior gene forms and reducing the frequencies of inferior gene forms. 

However, little is known about the specific genes that affect the various production traits 

and which forms of those genes are desirable. 

Now, due to developments in quantitative and molecular genetics, it is possible to 

study the genetic basis of quantitative traits at the DNA level. These studies include to 

identify, map, and measure the effects of quantitative trait loci (QTLs) or economic trait 

loci (ETLs). QTLs are those loci with relatively minor, quantitative effects on phenotypes 

of production traits, while ETLs are all loci with relatively minor, quantitative or with 

major effects on economically important traits. In order to determine which genes or 

chromosomal regions are important in the control of production traits and to identify 

superior forms of those genes to be used in the selection, a genetic marker map of the 

genome is necessary. When the map is sufficiently saturated with markers, every QTL or 

ETL of interest will reside next to a marker. By monitoring the inheritance of specific 
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marker alleles and the corresponding phenotypic performance of offspring that receive 

them, markers linked to desirable sequences at QTLs or ETLs may be identified. 

Molecular Markers, Mapping and QTL 

There are two major approaches for QTL or ETL studies, the candidate locus 

approach and the genome scanning approach. 

In the candidate locus approach, a restriction fragment length polymorphisms 

(RFLPs) within a gene with known biological functions is used as a genetic marker. 

Genotypies at the candidate locus are are determined for individuals in a segregating 

resource family and association to the phenotype of interest is determined. For example, 

in a study of individual genes affecting murine growth, Winkelman and Hodgetts (1992) 

scored molecular variants at the insulin-like growth factor 2 (IGF-2) and growth hormone 

(GH) loci since these growth factors are known to be important in somatic growth. 

Several genes of major effect on quantitative traits in farm animal species have been 

detected in recent years. In pigs, discoveries have been made which indicate that the 

estrogen receptor locus (ESR) influences litter size (Rothschild et al., 1996) and pituitary 

transcription factor 1 (PITl) is associated with birth weight and backfat (Yu et al., 1996). 

Insulin-like growth factor 1 (IGFl) locus is associated with average daily gain (ADG) 

(Casas-Carrillo et al., 1997). Detection of the associations of these genes with the 

phenotypic performance provides useful scientific tools for the investigation of the 

genetic causes of phenotypic variation. There are several advantages to the candidate 

locus approach: 

1) The results are interpretable in relation to trait physiology; 

2) It provides direct measures of genotypic values. 
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In the genome scanning approach, genotypes are measured at a large number of 

marker loci including candidate gene markers and anonymous markers. The anonymous 

markers are usually in nonfunctional sequences of DNA with unique sequence variation, 

such as microsatellites---DNA sequences made up of tandem repeats and alleles based on 

variable number of repeats (e.g. (CA)n repeats). Amplified microsatellites may be scored 

by agarose or polyacrylamide gel electrophoresis if alleles differ in size (Figure 4). 

Ideally, marker loci spaced approximately 5 to 10 centiMorgans throughout the genome 

are evaluated. With such a high density of marker loci, it is likely that alleles at marker 

loci will be in linkage disequilibrium with QTL alleles resulting in a correlation between 

quantitative trait values and marker genotypes. The advantages of this approach are: 

1) It surveys the entire genome; 

2) It allows discovery of previously unknown genes. 

Primer 1 
Microsatellite region 

ATGATTACGACGTAGGTT ~ 

ATGATTACGACGTAGGTTACCGCTGCACACACACACACACACAACGTGAGTACAGTCATGCA 
TACTAATGCTGCATCCAATGGCGACGTGTGTGTGTGTGTGTGTTGCACTCATGTCAGTACGT 

Genotypes 
Individual A: (CA)n I (CA)n+2 
Individual B: (CA)n+l I (CA)n+3 
Individual C: (CA)n+2 I (CA)n+2 

+-TCATGTCAGTACGT 
Primer2 

Figure 4. Principles for microsatellite amplification and sconng of alleles by gel 
electrophoresis. 
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M Q 

Heterozygous Fl: 

m q 

F2 Genotypes: 

m q M Q M Q 

m q m q M Q 

Figure 5. An example of Fl individual heterozygous for both a DNA marker (with forms M and m) and 
linked QTL locus of interest (with forms Q and q). Genotypes of the marker, and along with them 
genotypes of the linked QTL, segregate in production of the F2. Comparing performance for production 
traits of F2 individuals that receive the different marker genotypes determines the value of QTL linked to 
segregating marker. This example depicts only the pair of chromosomes on which the marker and the QTL 
reside and assumes they are linked tightl)'. enough that there is no crossing over between them. 

Theoretically, studies to locate QTLs or ETLs that affect important traits are 

straightforward. By following the inheritance of alleles of markers throughout the 

genome, and determining the associations of those marker alleles with trait(s) of 

performance, regions of the genome harboring QTLs (ETLs) can be identified. If enough 

evenly spaced markers are used, wherever a QTL resides it will be linked to one of the 

markers. The most effective design is one in which segregating marker alleles are studied 

in an F2 resource family produced by crossing very divergent grandparent stock (e.g. 

wild boar x domestic female). 

A simple example involving a single marker and linked QTL is shown in Figure 

5. The cross of divergent lines should result in an Fl that is heterozygous for the marker 

and QTL alleles. The expectation for the F2 is the 1 : 2 : 1 ratio for three possible 

genotypes at each locus. By comparing average performance of the marker · genotype 

groups for traits of interest ( e.g. growth rate, fat deposition, food intake), a linked QTL 

can be detected. 
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In pigs, this genomic scan approach with microsatellite markers has been used to 

identify chromosomal regions or "hot spots" controlling fatness (Andersson et al., 1994; 

Rothschild et al., 1996), meat quality (Le Roy et al., 1990), growth (Andersson et al., 

1994; Casas-Carrillo et al., 1997b) and ovulation rate (Wilkie et al., 1996; Rathje et al., 

1997). 

Comparative Mapping 

During evolution a dynamic process of chromosomal rearrangements occurs. 

DNA segments are inserted or deleted, chromosomes are translocated or split, and 

genomes are polyploidized. Related species share many features of genomic organization 

and chromosomal structure as seen directly from their karotypes (Nash et al., 1982; 

Sawyer et al., 1986; 0 'Brien et al., 1988; Levan et al., 1991 ). In comparative mapping, 

the genomic localization of two or more loci is compared between species (Nadeau, 1989; 

0 'Brain et al., 1991 ). If the loci are linked or syntenic in more than one species, a 

conserved chromosomal segment is present. These conserved segments are of particular 

importance for gene mapping in farm animals. Whenever a locus is localized to a 

particular conserved chromosomal region, the map can be compared with those of human 

and mice which are much more dense, to find potential candidate genes. By using this 

comparative mapping approach, positional candidates for the RN gene for meat quality 

has been identified in pigs (Milan et al., 1995). OTFl has been located on porcine 

chromosome 4 within a large syntenic group conserved on HSA 1 (Tuggle et al., 1995). 

Thus, the positional candidates for a QTL or ETL in this syntenic region detected on 

HSA 1 will probably be mapped to SSC 4. 
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Marker-Assisted Selection 

In animal industries, the ultimate purpose of gene mapping is to apply the derived 

information in breeding programs. This can be carried out by selection on favorable 

QTLs via selection on linked markers, i.e. marker-assisted selection (MAS) (Soller et al., 

1982, 1990; Rothschild et al., 1990). Better understanding of gene action will also aid in 

building models of phenotypic variation, permitting breeding values to be more 

accurately estimated (Weller, 1996).Although considerable genetic enhancement in some 

performance traits has been achieved with traditional methods (Buchanan et al., 1993), 

more genetic improvement may be obtained by application of MSA (Soller, 1994; 

Weller, 1996). 

MAS has potential to increase genetic response to single trait selection in three 

ways: 1) increase the accuracy for predicting superior candidates; 2) increase the selection 

intensity by considering more young animals as potential parent candidates, as many as 

young animals can be first selected based on genetic markers, and then selected groups of 

parents progeny-tested; 3) decrease the generation interval by elimination of the progeny 

test. Moreover, MAS will be particularly useful for the improvement of traits which are 

sex limited such as milk production by analyzing the DNA information from males, traits 

which are expensive to measure such as feed intake, or traits which can only be measured 

after animals are slaughtered such as body composition (Buchanan et al., 1993). 
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CHAPTER III 

PLASMA CHOLECYSTOKININ-8 DURING FEEDING IN PIGS WITH 
DIVERGENT GENETIC POTENTIAL FOR FEED INTAKE AND GROWTH 

Abstract 

Plasma concentrations of cholecystokinin-8 (CCK-8) in response to feeding were 

studied in lines of pigs with divergent genetic potential for feed intake and growth. 

Differences in feed intake between the lines resulted from ten generations of divergent 

selection for either fast (line F) or slow (line S) growth when both lines were fed ad 

libitum. Two experiments were conducted to test the hypothesis that the lower feed intake 

in S than in F may be due in part to greater plasma concentrations of the satiety hormone 

CCK-8 in S pigs both in the fasted and fed state. In experiment 1, F (n=23) and S (n=19) 

barrows were fed maintenance to attain zero growth at 90 kg body weight and were used 

to determine plasma CCK-8 concentrations in response to ad libitum feed consumption 

independent of differences in growth rate. Blood samples were collected via jugular 

catheter in overnight fasted pigs at 30, 15, and 1 minute before feeding (0800 hr) and at 

10, 20, 30, 60, 90 and 120 minutes after feedings. As expected, barrows from Fate more 

than those from S when allowed ad libitum access to feed (P<0.05). Averaged across 

sampling times, mean concentrations of CCK-8 tended to be greater (P = 0.07) in S (7.63 

pg/ml) than in F (5.76 pg/ml). In experiment 2, plasma CCK-8 concentrations were 
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measured for pairs (F, S; n = 9) of the same barrows in experiment 1 when the intake of 

each pair was standardized to that of the S pig during experiment 1. Blood samples were 

collected as in experiment I. Averaged across times, the difference between CCK-8 

concentrations of S (13.28 pg/ml) and F (9.05 pg/ml) barrows was not significant (P = 

0.18). A line x time interaction was not detected in either experiment. Overall, these 

results indicate a tendency for greater concentration of CCK-8 in S than in F barrows and 

suggest that CCK-8 may play a role in genetic differences between the lines for feed 

intake. 

Introduction 

Feed intake is one of the major factors that determine profitability in the swine 

industry. A better understanding of the genetic basis of appetite may lead to the 

development of more effective selection methods for feed efficiency. Although the 

general physiological processes that result in hunger and satiety have been the focus of 

extensive research (Morley, 1995; Kaiyala et al., 1995; Figlewicz et al., 1996), the 

molecular nature that contributes to genetic variation in appetite remains largely 

unknown. Genetic variation in appetite originates from differences in genes that encode 

the peptides/proteins involved in the feeding control pathways. Investigation of 

populations that differ only in their genetic propensity to eat may lead to identification of 

the relevant physiological pathways that control appetite, and aid in the search for the 

specific genes involved. 
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Divergently selected lines of pigs have been studied to understand genetic 

variation in obesity (Wangsness et al., 1981); However, this approach has not been used 

to identify a relationship between genetic variation and mechanisms of appetite 

regulation. Our laboratory has two lines of pigs that have been undergone ten generations 

of divergent selection for either fast or slow postweaning average daily gain (ADG). 

Woltmann et al. (1992) reported that after four generations, barrows from the lines 

differed in gain (0.16 kg/d difference) and feed intake (0.41 kg/d difference) when 

allowed ad libitum access to feed, but had similar gains when feed intake was 

standardized. They concluded that most of the difference in gain was expressed through a 

correlated genetic response in feed intake. Subsequent evaluations of the lines through 

seven generations of selection revealed that gain and feed intake have continued to 

diverge between the lines (Woltmann et al., 1995; Clutter et al., 1995). 

Consequently, a study was conducted to determine the physiological basis for the 

observed genetic differences in feed intake between the lines. The peptide hormone 

cholecystokinin (CCK) has been reported act as a satiety signal in several species 

including pigs (Anika, 1981; Della-Fera et al., 1979; Micelli et al., 1983; McLaughlin et 

al., 1985; Denbow et al., 1982; Morley, 1985, 1995; Silver et al., 1990; Reidelberger, 

1994). The objective of the present investigation was to determine if plasma 

concentrations of an eight amino-acid molecular form of the putative hormone CCK 

(CCK-8) differed between the lines during feeding. The hypothesis was that the S line 

pigs have less appetite and relatively greater circulating concentrations of CCK-8. 
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Materials and Methods 

Selection Lines and Sampling of Lines 

A study was started in 1979 to investigate direct and correlated response to 

divergent selection for ADG. Detailed descriptions of the base population, animal care 

and selection procedures have been reported previously (Woltmann et al., 1992, 1995; 

Clutter et al., 1995). In the first year, Hampshire boars were purchased in pairs from 

central test stations in Iowa, Missouri, Nebraska and Oklahoma. Boars were evaluated on 

the index recommended by the National Swine Improvement Federation that emphasized 

increased ADG, decreased BF, and improved feed efficiency as described by Woltmann 

et al. (1992). In each pair, one boar had a high index value (index value~ 118) and the 

other a low index value (index value < 90). These boars were mated to a population of 

Duroc x Yorkshire x Landrace x Spotted crossbred gilts from a previous study 

(Woltmann et al., 1992). In the second year, pairs of Duroc boars were purchased by the 

same criteria. Duroc boars were mated with females produced in the first year. Line F was 

generated from pigs sired by high-indexing Duroc boars and out of gilts sired by high­

indexing Hampshire boars. Line S was derived from pigs sired by low-indexing Duroc 

boars and out of gilts sired by low-indexing Hampshire boars. The lines were then closed 

and have undergone ten generations of selection for either fast (F) or slow (S) ADG from 

9 wk of age to 100 kg. The selection lines were replicated in spring- and fall-farrowing 

groups. The spring replicate farrowed during mid-March through April, and the fall 

replicate farrowed during mid-September through October. Complete replacement of 

boars and gilts resulted in a generation interval of 1 year. Selection was relaxed after 10 
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generations. Animals for the present experiments were sampled from F and S litters in the 

final set of progeny from selected parents ( spring 1993 ), and the first two consecutive sets 

under relaxed selection (fall 1993 and spring 1994). 

Barrows were chosen for the present study so that potential variation due to sexual 

activity would be avoided and because the most extensive data previously collected in the 

lines for feed intake were from barrows (Woltmann et aL, 1992). Each barrow was 

sampled from a different litter. The litter began postweaning test at 8 weeks of age 

according to the routine procedures implemented in the reference population. When a 

litter reached the approximate average weight of 75 kg, the barrow closest to the average 

weight was chosen so that the candidate barrow from each litter weighed approximately 

90 kg at data collection. The candidate barrows were penned in groups of 4 to 6 in a room 

before they were brought into the experimental rooms. 

Experimental Procedures 

Barrows chosen for the experiments were housed individually in pens (1.8 m2) in 

rooms with an average temperature of 23 ± 3 °c and subject to a 12 hr light: 12 hr dark 

cycle. During an initial acclimation period, barrows were allowed ad libitum access to 

feed (Table 1) except for removal of feed and feed troughs between 2000 hr and 0800 hr 

each day. After this period of acclimation, barrows were fed amounts intended to be 

sufficient only for maintenance of body weight (zero growth) for a minimum of 14 d 

before the start of experiment 1. This was done so that plasma CCK-8 in response to feed 

intake could be compared in F and S barrows without confounding due to differences in 

growth rate. During feeding for zero growth, barrows received approximately 8.5 g 

feed/kg body weight at 0800 hr and 1800 hr daily. The average growth rate of barrows 

42 



Table 1. COMPOSITION OF DIET USED IN THE STUDY 

Ingredient 

Com 
Soybean meal (445 CP) 
Dicalcium phosphate 
Calcium carbonate 
Salt 
Vitamin-trace .mineral 

a As-fed basis 
b Balanced to 0.75% lysine. 

a b 
Percentage ' 

82.40 
14.63 
1.50 
0.82 
0.40 
0.25 

during the week before experiment 1 was 0.09 kg/d, and did not differ between the F and 

S groups. Thus, the difference in growth rate between barrows from F and S was 

successfully removed for the present experiments. Polyvinyl catheters were inserted into 

the jugular vein of anesthetized barrows 48 hr before experiment 1 began. Catheters were 

tunneled subcutaneously and exteriorized on the dorsal midpoint of the neck. The distal 

end of the exteriorized catheter was fitted with a luer stub adapter, capped and placed in a 

protective packet that was glued to the skin. Catheter length allowed blood sampling from 

outside the pen and thus prevented interference in normal feeding behavior during the 

experiments. Feeding for zero growth was continued during the 48 hr before experiment 

1. Blood collected during feeding was discarded, in order to acclimate barrows to the 

experimental conditions. 
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In experiment 1, barrows sampled from F (n=23) and S (n=19) were used to 

determine the plasma CCK-8 in response to unrestricted feed intake. On the morning of 

the experiment, blood samples (10 ml) were collected into heparinized syringes at 30, 15, 

and 1 min before and 10, 20, 30, 60, 90 and 120 min after introduction of feed and the 

beginning of feeding at 0800 hr. Blood was transferred immediately into tubes held in an 

ice-water bath. 

To measure individual feed intakes, feed (2.0 kg) was weighed to the nearest 1.0 g 

and placed in each of six feed troughs 1 hr before the beginning of the experiment. The 

first trough containing feed was placed in the pen at time O and troughs were removed 

and replaced with a fresh trough of feed at 10, 20, 30, 60, and 90 min. Feed intakes were 

determined as the difference in weight of feed in each trough before and after its 

placement in the pen. Feed intakes were measured within 1 min of blood sample 

collections. 

Experiment 2 was conducted 48 hr after experiment 1. Feeding for zero growth 

was maintained during the 48 hr between experiments 1 and 2. Experiment 2 determined 

the plasma CCK-8 response to feed intake when intakes were equally matched in pair-fed 

F and S barrows. Barrows from F and S were paired randomly and each barrow within a 

pair was allocated an amount of feed equal to the ad libitum intake of the S barrow in that 

pair as measured in experiment 1. Blood samples were collected and feed intakes 

determined as described for experiment 1. A total of 9 pairs of barrows were evaluated in 

experiment 2. 

Radioimmunoassay Protocol and Validation 
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Plasma Extraction: For each sample, 0.7 ml of plasma was extracted with 1.4 ml of 

100% ethanol (Aaper Alcohol and Chemical Co., Shelbyville, KY). Samples were placed 

at room temperature for 30 min after vigorous vortexing for 10 sec. The mixture was 

centrifuged for 30 min (1,500 x g) at 4 °C. The supernatant was transferred into a clean 

12 x 75 mm polypropylene tube and then evaporated in Speed Vac Concentrator (SVC-

1 OOH, Savant Instruments Inc., Farmingdale, NY) at room temperature. The dried 

extracts (unreconstituted) were stored at -20 °C until assayed. 

Radioimmunoassay Procedure: Dried samples were reconstituted to original volume 

with assay buffer (pH 8.5) containing 20 mmol/1 Barbital, 0.05% sodium azide, 0.11 % 

gelatin (all reagents from Sigma Chemical, St. Louis, MO) at least one hour before use. 

Cholecystokinin octapeptide (CCK-8; [Tyr(S03H)27]-Cholecystokinin Fragment 26-33 

Amide, Sigma Chemical, St. Louis, MO) was dissolved in distilled water and diluted with 

assay buffer to produce CCK-8 standards. Reconstituted plasma extract (200 µl) or CCK-

8 standards ( 0, 1, 5, 10, 20, 40, 80, and 120 pg/ml) were added to 12 x 75 mm 

polypropylene assay tubes. Rabbit antiserum (NO. 92128; kindly provided by Dr. J.F. 

Rehfeld, University Hospital, Copenhagen, Denmark) specific for tyrosine 0-sulfated and 

phenylalanine a-amidated CCK-peptides was added ( 200 µl) to all tubes except Total 

Counts and NSB in an initial dilution 1 : 12,500 (a final solution of 1: 50,000), resulting 

in an initial binding of labeled hormone of approximately 34%. Assay buffer (200 µl) was 

added to NSB tubes, and then 300 µl of assay buffer to all tubes except Total Counts. 

Tubes were incubated 24 to 36 hours at 4 °C. One-hundred µl of [125I]-CCK-8 

(Amersham Corporation, Arlington Hts, IL) containing 3000-5000 cpm in assay buffer 

was added to all tubes. Tubes were incubated overnight at 4 °C. One milliliter of cold 
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charcoal/dextran (0.75% dextran, 3.00% charcoal, Sigma Chemical, St. Louis, MO) was 

added to all tubes except Total Counts to separate antibody-bound and free [ 125I]-CCK-

8. Supernatant was aspirated after centrifuging at 1,500 x g for 10 min at 4 °C. Charcoal­

precipitate was counted in an automatic gamma-counter (Micromedic systems, Inc., 

Horsham, PA) and concentrations of CCK-8 in standards and unknown samples were 

calculated by an iterative least-squares regression on percentage binding. 

Validation of CCK-8 Radioimmunoassay: The sensitivity of the assay, defined as the 

smallest amount of CCK-8 which could be differentiated from zero hormone 

concentration with 95% confidence, was 1.4 pg/ml. Accuracy, defined as the extent to 

which measurements of CCK-8 agreed with the exact amount present in a sample, was 

evaluated by adding known amounts of purified synthetic CCK-8 to plasma. When 

known amounts of synthetic CCK-8 were added to pig plasma samples (n=6) before 

extraction, a correlation coefficient (r) of 0.99 was associated with the recovery curve 

(Figure 1). Essentially 100% of the added CCK-8 was recovered by the assay after 

subtraction of the endogenous hormone. Intra-assay precision was determined by 

calculating the coefficient of variation (CV) of 3 pools of pig plasma containing low 

(L.P.), medium (M.P), and high (H.P.) concentration of CCK-8 when each was run seven 

times in one assay (Table 2). Inter-assay precision was determined by calculating the CV 

of 3 pools of pig plasma (L.P., M.P., and H.P.) estimated in 10 separate assays (Table 2). 

The inhibition curves produced by the standard solution of CCK-8 and serial dilutions of 

pig plasma pools are shown in Figure 2. Parallel inhibition curves demonstrated an 

unique combination of antibody and antigen and indicated that the same substance in 

standard solutions and plasma was being measured. 
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Statistical Analyses: 

Methods of least-squares analyses used for data from both experiments 1 and 2 

were as follows. Plasma concentrations of CCK-8 at each of the times relative to 

introduction of feed (-30, -15, -1, 10, 20, 30, 60, 90 and 120 min), as well as cumulative 

feed intake at 10, 20, 30, 60, 90 and 120 min after introduction of feed, were analyzed 

with a model that included the effects of farrowing group (spring 1993, fall 1993, or 

spring 1994), line, the farrowing group x line interaction, animal within farrowing group 

x line, time and all interactions of time with line and farrowing group. Effects of 

farrowing group, line and the farrowing group x line interaction were tested using animal 
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Figure 1. Recovery ofCCK-8 when known amounts of synthetic CCK-8 were added to 
pig plasma samples before samples were extracted (see methods) (n=6). 
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Table 2. PRECISION IN THE CCK-8 RADIOIMMUNOASSA Y 

Precision Pool N 

Intra-assay L.P. 7 
M.P. 7 
H.P. 7 

Inter-assay L.P. 10 
M.P. 10 
H.P. 10 

90 

80 

(!J 
70 z 

Q 
z 60 
CD 

I- 50 
z 
w 40 
() 
C: 

30 w 
a. 

20 

10 

1 

Concentration (pg/ml) 

6.81 ± 0.46 
21.15±1.52 
60.40 ± 5.04 
7.68 ± 0.54 
19.83 ± 0.88 
42.55 ± 1.70 

• 

1:8 1 :4 

CV(%) 

10.9 
19.0 
18.6 
22.0 
14.0 
12.6 

•-• CCKa STANDARD CURVE 
IN pH 8.5 BAR BIT AL BUFFER 

c-c PIG PLASMA POOL 1 

v-v. PIG PLASMA POOL 2 
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Dilution Ratio of Pig Plasma 
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CCK8 pg/ml 

Figure 2. Paralfolism in the CCK-8 radioimmunoassay. 
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CCK-8 and feed Intake in S and F Pigs 
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Figure 3. Cumulative feed intake of barrows and plasma concentrations of CCK-8 in 
barrows from the F and S lines during experiment 1. Barrows were at zero growth, fasted 
overnight and were allowed ad libitum access to feed for 2 hours. Concentrations of CCK-
8 at time O were calculated using the average of 3 observations in each pig. 
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times, concentrations of CCK-8 tended to be greater (P = 0.07) in S barrows (7.63 pg/ml) 

than in F barrows (5.76 pg/ml). A time x line interaction was not detected. 

Results of the analyses of basal CCK-8, response in CCK-8 and total CCK-8 are 

presented in Table 3. Basal CCK-8 tended (P = 0.09) to be greater in S than in F. 

However, neither response in CCK-8 nor total CCK-8 differed between the lines. 

Experiment 2. Mean values for cumulative feed intake in experiment 2 are plotted in 

Figure 4. Cumulative feed intakes did not differ significantly between F and S barrows at 

any of the measurement times. Thus, the objective to constrain F and S barrows to an 

equally matched feed intake was achieved. 

Table 3. LEAST-SQUARES MEANS FOR BASAL CCK-8, RESPONSE IN CCK-8 

AND TOTAL CCK-8 CALCULATED FROM THE AREA UNDER EACH 

CURVE a. 

CCK-8 (muml · min} 
Basal Response Total 

Experiment 1 b 

189.13 ± 35.87d F 894.93 ± 126.07 1084.11 ± 149.50 
s 514.29 ± 181.16 796.92 ± 207.34 1311.22 ± 195.87 

Experiment 2c 
F 551.47 ± 158.07 877.34 ± 173.14 1428.81 ± 255.29 
s 726.93 ± 102.23 1361.39 ± 371.7 2088.32 ± 414.23 

a Trapezoid method. 
b Barrows had ad libitum access to feed after overnight feed deprivation. 
cBarrows pair-fed (F, S) amounts equal to the ad libitum intake in experiment 1 of the S 

barrow in the pair. 
ct Least-square mean± SE. 
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Figure 4. Cumulative feed intake of barrows and plasma concentrations of CCK-8 in 
barrows from the F and S lines during experiment 2. Barrows were at zero growth, fasted 
overnight and F pigs were pair-fed amounts equal to the previous ad libitum intake of the 
S barrow in each pair. Concentrations of CCK-8 at time O were calculated using the 
average of 3 observations in each pig. 
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Least-squares means from the analysis of individual CCK-8 concentrations are 

also plotted in Figure 4. As in experiment 1, concentrations of CCK-8 in both lines 

increased (P < 0.01) after feeding began. Averaged across time, the difference between 

CCK-8 concentrations of S (13.28 pg/ml) and F (9.05 pg/ml) barrows was not significant 

(P = 0.18). A time x line interaction was not observed. 

Each of the mean values for area under the CCK-8 response curve was 

numerically greater for S than for F barrows (Table 3), but no significant difference was 

detected. 

Discussion 

The reports of the selection lines from different generations revealed a continued 

divergence in daily feed intake and ADO between F and S lines (Woltmann et al., 1992, 

1995; Clutter et al., 1995). Barrows from F and Shad similar ADO when feed intake was 

standardized , leading to the conclusion that most of the difference in ADO was exhibited 

through a correlated genetic response in feed intake (Woltmann et al., 1992). Those 

results from the selection lines were in agreement with reports of direct and correlated 

responses to selection for growth in other populations of pigs (Baird et al., 1952; Fine et 

al., 1953; Kuhlers et al., 1992). In other words, the selection for ADO has targeted DNA 

sequences which encode proteins involving the feeding control pathways. 

The regulation of feed intake involves many physiological factors (Morley, 1995; 

Kaiyala et al., 1995; Figlewicz et al., 1996) which, therefore, are candidate sources of 

genetic variation in feed intake. Many peptide hormones have been shown to have effect 
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on feeding (for example. CCK, glucagon, bombesin, leptin, insulin, and NPY). Among 

these peptides, however, one of the best-characterized satiety peptides is CCK (Morley, 

1995). The hypothesis that CCK functions as a satiety signal was initially based on the 

finding that systemic injection of CCK reduced food intake in rats (Gibbs et al., 1973). 

Since then, evidence from studies of both agonists and antagonists has supported this 

hypothesis in many species including pigs (Morley, 1987, 1995; Crawley et al., 1994; 

Reidelberger, 1994). 

CCK is encoded by a single gene (Deschenes et al., 1985) and synthesized via the 

preprohormone pathway. PreproCCK consists of 114 amino acids in pigs (Gubler et al., 

1984) and 115 amino acids in man (Takahishi et al., 1985) and rats (Deschenes et al., 

1984). Different molecular forms of CCK containing 58, 39, 33, 22, 12, 8, or 4 amino 

acids have been identified in tissues arid blood (Cantor,1989; Crawley et al., 1994). In 

pigs, Cantor and Rehfeld (1989) observed that CCK-22-like immunoreactivity accounted 

for 42% of all CCK immunoreactivity in peripheral plasma after intraduodenal infusion 

of HCI, but also reported lesser and equal amounts (24%, respectively) of CCK-33- and 

CCK-8-like forms. Exogenous CCK-8 inhibits feed intake in a variety of species (Della­

Fera et al., 1979; Joyner et al., 1993; Covasa et al., 1994) including pigs (Anika et al., 

1981; Baldwin et al., 1982). Agonists for CCK-A receptors decreased feed intake in pigs 

(Parrott, 1992). Specific antagonists for CCK-A receptors (Ebenezer et al., 1990; Baldwin 

et al., 1992, 1994), and specific immunoneutralization of circulating CCK-8 (Pekas et al., 

1993), have been shown to increase feed intake in pigs. Thus, CCK has been established 

as a satiety hormone in the pig and CCK-8 was chosen as the focus of the present 

experiments. 
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In both experiments 1 and 2, the general patterns of CCK-8 concentrations in 

response to feeding were similar to those reported for humans (Cantor, 1989) and pigs 

(Cantor et al., 1989) in which the assays detecting bioactive forms of CCK were used. 

Cantor (1989), in summarizing reports of CCK in human plasma, concluded that basal 

concentrations of CCK-8 averaged 1 to 2 pM/L ( or 1.1 pg/ml to 2.3 pg/ml) and increased 

from 6 to 8 pM/L (or 6.8 pg/ml to 9.1 pg/ml) after a meal. Cantor and Rehfeld (1989) 

reported basal concentrations of CCK-8 approximately 1 pM/L (or 1.1 pg/ml) in the pig 

that increased to 12.3 pM/L (or 14.1 pg/ml) by 10 min after intraduodenal infusion of 

HCI. 

In experiment 1, CCK-8 concentrations increased following the introduction of 

feed, and seemed to reach a plateau after 30 min in S and after 90 min in F (Figure 3). 

Thus, the tendency for a greater concentration of CCK-8 in S than in F prior to feeding 

was maintained through the first hour after the introduction of feed. The slightly 

contrasting CCK-8 patterns in Sand Fat the end of the experimental period are consistent 

with the continued feed consumption of F barrows from 60 to 90 min after the 

introduction of feed. 

In experiment 2, numeric differences between CCK-8 concentrations of S and F 

barrows were greater than in experiment 1, but can only be considered significant with 15 

to 20% probability of a Type I error. Comparison of the CCK-8 patterns (Figure 4) 

suggests that following the introduction of feed, concentration of CCK-8 tended to 

increase at a greater rate during the first 10 min of feeding in S than in F, after which the 

patterns were very similar for the two lines. The similarity of CCK-8 patterns between S 

and F during the latter part of the experimental period is consistent with the pair-feeding 
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design of experiment 2 and, on the average, the limitation of feed intake by F barrows 

relative to experiment 1. 

Taken together, these results indicate a tendency for greater plasma concentrations 

of CCK-8 in S than in F barrows and support the hypothesis that selection has changed 

feed intake, in part, by altering circulating CCK concentrations. Although the assay 

accurately measured concentrations of CCK-8, adequate statistical power for comparisons 

of this type is generally difficult to achieve due to inherent genetic variation among 

individuals within a selection line. Thus, detection of differences between the lines when 

allowed a standard feed intake (experiment 2) was probably inhibited by the relative low 

power associated with observations on only 18 total pigs. 

The assay procedures implemented here were specific for CCK-8. Although the 

importance of CCK-8 as a satiety signal in the pig has been implied through infusion 

studies (Anika et al., 1981; Baldwin et al., 1982) and the specific immunoneutralization 

of CCK-8 (Pekas et al., 1993), the relative effects of bioactive forms of CCK on feeding 

behavior remains to be determined. The . effect of selection on relative changes of 

molecular forms of CCK in the present experiments can only be determined by additional 

work to separate peptide fractions (HPLC/RIA). In addition, experiments to determine the 

effects of CCK infusion, CCK receptor antagonists and CCK immunoneutralization on 

feed intake in F and S may provide a more complete picture of the role of CCK action in 

genetic differences between the lines. 

Reports of physiological differences between selection lines are relative rare 

(Goddard et al., 1988; McKnight et al., 1989; Arbona et al., 1992; Hastings et al., 1993), 

especially in large-animal species (Arbona et al., 1988; Norton et al., 1989). To our 
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knowledge, studies of CCK in different genetic strains have been limited to ob/ob mice 

(Straus et al., 1979) and Zucker obese rats (McLaughlin et al., 1985; Moos et al., 1982). 

In each case the inheritance of obesity is due to a single gene mutation. Straus and Yalow 

(1979) reported that the CCK content in brains of ob/ob mice was lower than in the brains 

of their OBI- (lean) littermates. Zucker obese rats expressed greater hypothalamic 

concentrations of CCK during the feeding period, but also consumed more feed than 

controls (McLaughlin et al, 1985). Moos et al. (1982) reported that Zucker obese rats 

expressed less sensitivity to satiety effects of CCK than their control littermates. 

Characteristics of CCK action associated with quantitative genetic differences between 

selected lines of animals have not been reported. 

Direct and correlated responses to selection are due to changes in the frequencies 

of gene forms (alleles) affecting each of the measured traits (Falconer, 1989). Although 

differences between divergent lines may be due in part to founder effects in the 

establishment of the lines or random changes in gene frequencies due to finite population 

size (Falconer, 1989), the primary factor affecting gene frequencies in F and S was 

selected for ADG. Therefore, phenotypic and physiological differences between the lines 

are likely due to differences in the frequencies of alleles targeted by selection. Because of 

the complex and quantitative nature of these traits, selection for ADG, and indirectly for 

feed intake, has no doubt targeted the alleles of many genes. 

A previous study of F and S (Clutter et al., 1995) revealed greater plasma IGF-1 

and lesser IGF binding proteins in F than in S, a relationship consistent with the relative 

growth rates of the lines. As those authors discussed, the results indicated the IGF 

pathway was an important mechanism of response to selection, but th,e degree to which 
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selection targeted the IGF and IGF binding protein genes versus other genes that affect 

growth through IGF was not discernible. In addition, because Sand F pigs were measured 

during full expression of their growth potential, the physiological differences observed 

were confounded by the differences in growth rate. 

The design of experiment 1 and 2 of the present study included the condition of 

zero growth to avoid the confounding influence of different growth rates between the 

lines, and experiment 2 was designed to remove confounding due to differences in feed 

intake. However, as discussed by Clutter et al. (1995), these physiological evaluations of 

selection lines only provide a picture of the genetic differences at the protein level. If, in 

fact, concentrations of CCK-8 are different in F and S, it is impossible to determine from 

these comparisons between the lines if selection has acted on the CCK gene directly, on 

genes that code for enzymes involved in the posttranslational modifications of the 

preproCCK, or other genes that result in altered CCK concentrations. 

The availability of markers in anonymous DNA and functional genes from 

throughout the porcine genome (Archibald et al., 1995; Rohrer et al., 1995), including a 

marker for the CCK gene (Clutter et al., 1996), provides the opportunity to identify 

chromosomal regions and eventually the specific genes that contribute to genetic 

variation in growth and its components feed intake and efficiency. The successful 

application of these markers to detect important loci affecting traits of interest requires a 

population in which the relevant alleles are segregating at those loci (Lander et al., 1989); 

An example of such a resource population is an F2 cross originating from grandparent 

stock that is phenotypically divergent for the traits of interest. The phenotypic and 

physiological divergence detected between the F and S lines in the present and previous 

58 



studies (Woltmann et al., 1992, 1995; Clutter et al., 1995) suggests the lines as candidates 

to produce a resource family in which loci contributing to variation in feed intake and 

growth can be identified. 

In summary, results from the present experiments revealed a tendency for greater 

plasma concentrations of CCK-8 in S than in F, and support the hypothesis that the line 

has been selected for slow growth, and that exhibits less appetite than the line selected for 

fast growth, has relatively greater circulating concentrations of CCK-8. Studies of the 

effects of infusion of exogenous CCK, CCK receptor antagonists, or CCK 

immunonuetralization on feed intake may provide a more complete picture of differences 

in CCK action between these selected lines. 

Although the results suggest that genetic differences in appetite between the lines 

are reflected in part by differences in CCK action, the relative contributions of individual 

genes or chromosomal regions to variation in appetite can only be determined in families 

in which the important gene forms are segregating. The F and S lines may be useful as 

parent or grandparent stock in the production of such a family. 
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CHAPTER IV 

FEEDING RESPONSE TO EXOGENOUS CHOLECYSTOKININ-8 IN PIGS 
WITH DIVERGENT GENETIC POTENTIAL FOR FEED INT AKE AND 

GROWTH 

Abstract 

The objective was to determine the effects of an eight amino acid molecular form 

of the satiety hormone cholecystokinin (CCK-8) on feed intake in lines of pigs with 

divergent genetic potential for feed intake and growth. After ten generations of selection 

for either fast (F) or slow (S) postweaning gain (ADG), overall daily feed intake and 

ADG were 36% and 47% greater in F than in S, respectively. It was hypothesized that the 

lower feed intake in S relative to F may be partly due to a greater sensitivity to feeding-

induced increases in CCK-8 in S than F pigs. Barrows from F and S restricted to zero 

growth during the experimental period were infused iv with O (saline), 60, 100, or 300 

ng/kg sulfated CCK-8 immediately before they were allowed ad libitum access to feed for 

2 hr. Individual feed intakes were determined at 10, 20, 30, 60, 90 and 120 min after 

introduction of feed. Blood samples were collected via jugular catheter at 30, 15, and 2 

min before and 10, 20, 30, 60, 90 and 120 min after introduction of feed. Plasma 

concentrations of CCK-8 were similar (P > 0.30) in F and S at each dosage of CCK-8. 

Feed consumption was reduced in both lines as dosage of CCK-8 increased, but the 

reduction at each dose was greater in S than F (P < 0.01). The dose of CCK-8 needed to 
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inhibit intake by 25% or 50% was less (P < 0.05) in S (D25 = 56.6 ng/kg; D50 = 146.47 

ng/kg) than in F (D25 = 94.9 ng/kg; D50 = 745.58 ng/kg) pigs. These results indicate that 

the genetic difference between these lines for appetite may be due in part to a difference 

in sensitivity to the CCK-8 satiety signal. 

Introduction 

The peptide hormone CCK is synthesized via the preprohormone pathway and 

exists in different molecular forms. To date, 58, 39, 33, 22, or 8 amino acid forms have 

been identified in tissues and blood of pigs (Crawley et al., 1994). The C-terminal 

sulfated octapeptide sequence, Aps-Tyr(S03H)-Met-Gly-Try-Met-Asp-Phe-NH2 (CCK-

8), is relatively conserved across species. CCK-8 appears to be the minimum sequence 

necessary for the biological activity (Crawley et al.,1994) and the most biologically 

potent form of CCK for the satiety effects (Reidelberger, 1994). The hypothesis that CCK 

functions as a satiety signal was first based on the reduction in feed intake of rats that 

received systemic injections of CCK (Gibbs et al., 1973). Since then, physiological 

evidence from studies of both agonists and antagonists have supported this hypothesis in 

many species (Morley, 1985, 1995; Silver et al., 1990; Baldwin et al., 1992; Parrott, 

1993). Agonists for CCK-8 or CCK-33 decreased feed intake (Baile et al., 1981; Morley, 

1985, 1995) and antagonists for CCK-8 or CCK-33 increased feed intake (Baile et al., 

1981; Baldwin et al., 1992; Ebenezer et al., 1990; Silver et al., 1990). Exogenous CCK-8 

inhibits feed intake in a variety of species including sheep (Della-Fera et al., 1979), rats 

(Joyner et al., 1993), mice (Silver et all., 1989), goldfish (Himick et al., 1994), baboons 

(Figlewics et al., 1992), chickens (Covasa et al., 1994), humans (Kissileff et al., 1981) 
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and pigs (Anika et al., 1981). Intravenous injection of CCK-8 (Anika et al., 1981; 

Baldwin et al., 1982) and CCK-A agonists (Parrott, 1993) decreased feed intake in pigs. 

Specific antagonists for CCK-A receptors (Ebenezer et al., 1990; Baldwin et al., 1992, 

1994) and immunoneutralization of circulating CCK-8 (Pekas et al., 1993) also have been 

shown to increase feed intake in pigs. 

Studies of the genetic basis for the relationship between CCK and appetite 

regulation have been limited to obese rodent strains. The total CCK content of brains of 

ob/ob mice was lower than that of their OBI- contemporaries (Straus et al., 1979). Zucker 

obese (fa/fa) rats expressed greater total CCK concentrations in hypothalamus during 

feeding, but lesser sensitivity to satiety effects of CCK (Moos et al., 1982). OLEFT rats 

increased CCK-8 concentrations in plasma during feeding, but failed to response to 

satiety effects of exogenous CCK-8 (Miyasaka et al., 1994). In each case the inheritance 

of obesity is due to a single gene effect. However, the relationship between normal 

genetic variation in feed intake and CCK has not been reported. 

Our laboratory has lines of pigs that have been undergone ten generations of 

divergent selection for either fast (F) or slow (S) postweaning average daily gain (ADG). 

Evaluation of results from the generation ten revealed that F pigs ate more (36% per day) 

and grew faster (47% per day) than S pigs (Clutter et al., 1997). Less appetite in S than in 

F may be in part due to more satiety effects of CCK-8 in S. This may be caused either by 

greater plasma CCK-8 in S than F or by changed/unchanged plasma concentrations of 

CCK-8 together with greater cellular response (i.e., satiety) to CCK-8 activation of CCK 

receptors involved with regulation of appetite in S than in F. Results reported in Chapter 

III indicated greater plasma concentrations of CCK-8 in S than in F barrows at the a. level 
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of 0.07 and suggested that CCK satiety action may play a role in genetic differences 

between the lines for feed intake. The objective of present investigation was to determine 

if pigs with divergent genetic potential for feed intake differ in feed consumption in 

response to infusion with exogenous CCK-8. The hypothesis was that the genetic 

differences for appetite between the lines is due in part to differences in sensitivity to the 

CCK-8 satiety signal. 

Materials and Methods 

Selection Lines and Sampling of Lines 

A study was initiated in 1979 to investigate direct and correlated response to 

divergent selection for ADG. The lines have undergone 10 generations of selection. 

Animals for the present experiments were sampled from F and S litters of the 10th 

generation in the first two consecutive sets of progeny from selected parents (fall 1993 

and spring 1994). The establishment of the selection lines, selection procedures and 

methods used to sample the lines for present experiment were described in detail in 

Chapter III. 

Experimental Procedures 

The same barrows as in experiments 1 and 2 (Chapter III) were used to determine 

efficacy of exogenous CCK-8 on satiety response in ad libitum fed F and S pigs. Animals 

continued to be fed for zero growth after experiments 1 and 2 (Chapter III) and allowed a 

48 hr acclimation period for this experiment. Each pig within a line was assigned 

randomly to one of the 24 sequences possible for four CCK-8 dosages of O (saline), 60, 
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100 or 300 ng/kg/min. The first dose was administered on the morning after the 48 hr 

acclimation period and at least 2 d separated successive doses. Doses of CCK-8 were 

infused (1 ml/min) via the jugular catheter for 12 min using a Harvard Model 22 infusion 

pump. Each infusion began 2 min before pigs were allowed ad libitum access to feed for 

2 hr. 

Individual feed intakes were determined at 10, 20, 30, 60, 60, 90 and 120 min 

after introduction of feed. Feed intakes during saline infusion established the control meal 

size for each animal. Methods used to collect individual feed intake data were the same as 

described in Chapter III. 

Blood samples were collected via jugular catheter at 30, 15, and 2 min before and 

10, 20, 30, 60, 90 and 120 min after introduction of feed. Blood samples (10 ml) were 

immediately transferred into glass tubes containing a 100 µl mixture of benzamidine (200 

mg/ml) and heparin (500 IU/ml) that were held in an ice-water bath. Chilled blood 

samples were centrifuged for 10 min (1,500 x g) at 4 °C and recovered plasma samples 

were stored at -20 °C until assayed. Thirteen barrows from F and nine from S of the fall 

1993 and spring 1994 farrowing groups completed the present study. 

The details for plasma extraction and radioimmnoassay (RIA) procedures as well 

as the validation of the CCK-8 RIA were described in Chapter III. To evaluate CCK-8 

concentrations within the range of standard curve, reconstituted plasma samples of some 

time intervals were diluted by assay buffer before RIA. For the 60 ng/kg/min dosage, 

reconstituted plasma samples of 10 and 20 min after feeding were diluted to 1 : 5 and 1 : 

2, respectively. For the 100 ng/kg/min dosage, reconstituted plasma samples of 10, 20 

and 30 min after feeding were diluted to 1 : 10, 1 : 5 and 1 : 2, respectively. For the 300 
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ng/kg/min dosage, the ratios of dilution for samples of 10, 20 and 30 min were 1 : 20, 1 : 

10 and 1 : 5, respectively. 

Calculations and Statistical Analysis: 

Methods of least-squares analysis used for data from the present experiment were 

as follows. Plasma concentrations of CCK-8 at each of the interval time relative to 

introduction of feed and cumulative feed intake at 10, 20, 30, 60, 90 and 120 min during 

the feeding period were analyzed with a model that included the effects of farrowing 

group (fall 1993 or spring 1994), line, dosage, and all associated interactions, animal 

within farrowing group x line x dosage, time and all interactions of time with line, dosage 

and farrowing group. Effects of farrowing group, line, dosage and two- and three-way 

interactions of farrowing group, line and dosage were tested using animal within 

farrowing group x line x dosage as the error term. Effects of time and associated 

interactions were tested using the residual as the error term. 

In addition to analysis of individual CCK-8 concentrations, areas under the curve 

for CCK-8 concentrations were calculated for each animal in the experiment by trapezoid 

method. Basal CCK-8 was based on the average of the three concentrations at -30, -15 

and -2 min. Response area in CCK-8 was the difference between total area under the 

curve and the basal area. Values for basal CCK-8, response in CCK-8 and total CCK-8 

were analyzed with a model that included the effects of farrowing group, line, dosage and 

all interactions. 

Maximum decrement in intake occurred at 10 to 20 min after infusing 60, 100, 

and 300 ng/kg CCK-8. Intakes at 10 and 20 min after feeding were averaged for each 

dose of CCK-8 and the average values were used in data analysis. Average intakes at 10-
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20 min after 60, 100 and 300 ng/kg CCK-8 infusion were expressed as percent of 

corresponding control intake after O ng/kg CCK-8 infusion. The relationship between 

percent of control intake and log dose of CCK-8 were analyzed by polynomial regression 

analysis (Fig.P, BioSoft, Durham, NC, USA). Comparisons of regression residual sum­

of-squares and coefficient of determination determined that a first degree polynomial best 

described the dose-response effect of CCK-8 on acute intake in F and S pigs. Doses of 

CCK-8 inhibiting intake by 25% (D25) and 50% (D50) were calculated using the equations 

derived from regression analysis of the mean data in each group of pigs. Significance of 

difference in the mean D25 and D50 doses were determined using the 95% confidence 

interval range for each estimate. 

Results 

For the control groups (saline infusion), least-squares means for CCK-8 

concentrations in plasma and for cumulative intakes are both presented in Figure 1. CCK-

8 concentrations in plasma increased in response to feeding and saline in both F and S, 

but no significant differences were observed between the lines (P > 0.40). Intake after the 

control infusion of saline was greater (P < 0.01) in F than S throughout the 2 hr feeding 

period. 

For the infusion groups, least-squares means for CCK-8 concentrations in plasma 

and for cumulative feed intake are plotted in Figure 2 to 4. CCK-8 concentrations in 

plasma were significantly affected by the infusion doses (P < 0.01) and time of feeding (P 

< 0.01) as well as by the dosage x time interaction (P < 0.01). Differences in plasma 
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CCK-8 Concentration and Feed Intake in S/F Pigs Treated with Saline 
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Figure 1. Mean cumulative feed intakes and CCK-8 concentrations in plasma in F and S 
treated with saline and allowed ad libitum intake for 2 hr. Pigs were fasted for hr before 
the introduction of feed at time 0. 
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CCK-8 Concentration and Feed Intake in S/F Pigs Treated with 60 ng/kg CCK-8 

2.5 

w 
~ 1.5 
I-
~ 
w 
> 
I­
< 
-I 
::, 
:::::E 
::, 0 .5 
(.) 

0 

250 

e ..... 
C, 
a. -
co 
I 

:..:: 
(.) 
(.) 

25 
2.5 • 

0 

====---------•~~~~~~-.~~~~-----
20 40 60 80 100 120 

TIME AFTER FEED INTRODUCTION (min) 

Figure 2. Cumulative feed intakes and CCK-8 concentrations in plasma from F and S pigs 
treated with 60 ng/kg of CCK-8 and fed ad libitum. Note the log scale on Y-axis for 
plasma CCK-8. 
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CCK-8 Concentration and Feed Intake in S/F Pigs Treated with 100 ng/kg CCK-8 

0, 

:.:: 

w 

2.5 

~ 1.5 
I-
~ 
w 
> 
I­
< 
...I 
::::l 
~ 
:::J 0.5 
0 

0 

600 

e ..... 
0, 
0. -

QQ 

I 
:.:: 
0 
0 

60 
6 • 

0 20 40 60 80 100 120 

TIME AFTER FEED INTRODUCTION (mini 

Figure 3. Cumulative feed intakes and CCK-8 concentrations in plasma from F and S pigs 
treated with 100 ng/kg of CCK-8 and fed ad libitum. Note the log scale on Y-axis for 
plasma CCK-8. 
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CCK-8 Concentration and Feed Intake in S/F Pigs Treated with 300 ng/kg CCK-8 
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Figure 4. Cumulative feed intakes and CCK-8 concentrations in plasma from F and S pigs 
treated with 300 ng/kg ofCCK-8 and fed ad libitum. Note the log scale on Y-axis for 
plasma CCK-8. 
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Table 1. LEAST-SQUARES MEANS FOR BASAL PLASMA CONCENTRATIONS OF 
CCK-8, RESPONSE AREAS IN CCK-8 AND TOTAL CCK-8 CALCULATED 
FROM THE AREA UNDER EACH CURVEa. 

CCK-8 (nglml · min} 
Basal Response Total 

0 ng/kg/minb 
F 317.18 ± 81.98c 1108.07 ± 334.37 1425.24 ± 376.99 
s 321.20 ± 85.02 618.32 ± 138.48 939.52 ± 170.85 

60 ng/kg/min 
F 331.86 ± 38.82 3607.07 ± 479.46 3938.94 ± 488.56 
s 434.80 ± 64.63 4369.98 ± 431.44 4554.78 ± 392.32 

100 ng/kg/min 
F 429.09 ± 61.77 9255.32 ± 1321.75 9684.41 ± 1277.30 
s 383.90 ± 61.44 8479.10 ± 564.68 8844.20 ± 534.57 

300 ng/kg/min 
F 456.48 ± 77.78 15419.35 ± 2003.47 15875.95 ± 2011.08 
s 453.00 ± 61.22 15379.58 ± 1271.53 15832.58 ± 1244.01 

aTrapezoid method. 
1nosage for infusion of exogenous CCK-8. 
cLeast-square mean ± SE. 



CCK-8 concentrations between lines were not detected (P = 0.40). Results of the analysis 

of basal CCK-8 and feeding-induced responses in CCK-8 are presented in Table 1. No 

significant differences in basal CCK-8 and response in CCK-8 detected between the lines 

(P = 0.12). 

To allow comparison of the effects of CCK-8 in F and S pigs, cumulative intakes 

during the experimental period were recalculated as percentage of corresponding control 

intakes at each time point (Figure 5). Significant dose-dependent and time-dependent 

inhibitory effects of CCK-8 on intake were observed in both F and S line (P < 0.01). 

There were dosage x time and dosage x line interactions. Response to each dosage, 

averaged across the 2 hr feeding period, is shown in Figure 6. Increasing dosage of CCK-

8 decreased intake in both lines, but by a significant greater amount in the S than in the F 

line (P < 0.01 ). 

Maximum inhibition of intakes occurred during the first 20 min after infusion of 

any of the three doses of CCK-8 in both F and S (Figure 5). The dose-response curves of 

CCK-8 effect on feed intake are presented in Figure 7. The significant (P < 0.05) best fit 

regression line in F was Y= - 27.92 (log dose) + 130.20 and that in S pigs was Y= -

60.57 (log dose) + 181.18. CCK-8 dosages suppressing mean intake by 25% (D25) and 

50% (D50) were calculated from these equations and were less (P < 0.05) in S (D25 = 56.6 

ng/kg; D50 = 146.5 ng/kg) than in F (D25 = 94 7 ng/kg; D50 = 745 ng/kg) pigs (Figure 8). 

The results indicate a greater sensitivity in S than in F pigs to CCK-8. 
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pigs treated with CCK-8. Intakes at each time point expressed as percent of corresponding 
intake after Ong/kg CCK-8. 
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Discussion 

Results reported in Chapter III revealed that the cumulative feed consumption of 

barrows from F was greater than from S and CCK-8 concentrations in plasma in S tended 

to be higher than in F barrows. These results suggested CCK satiety action may play a 

role in genetic differences for appetite between the selection lines. The results from the 

present study again confirmed that the divergent selection for ADG may have targeted 

genes involved CCK satiety action pathways. 

In the present studies, significant dose-dependent and time-dependent inhibitory 

effects of CCK-8 on intake were observed in F and S (Figure 7). These results are in 

agreement with previous reports in pigs (Anika et al., 1981; Houpt et al., 1979, Baldwin 

et al., 1982). 

Feed consumption was reduced in both lines as dosage of CCK-8 increased, but 

the reduction was greater in S than in F. Maximum inhibition of intakes occurred during 

the first 20 min after infusion of either of the three doses of CCK-8 in both lines. These 

results are consistent with the suggestion that CCK-8 acts as an acute, short term satiety 

signal (Reidelberger, 1994; Morley, 1995). Calculated dose of CCK-8 suppressing mean 

intake by 25% or 50% was less in S than in F pigs. This dose range was in agreement 

with another report in which 67 ng/kg CCK-8 infused into the jugular vein in pigs 

suppressed intake by 35% (Houpt et al., 1979). 

The present results indicated a greater sensitivity in S than in F pigs to CCK-8. 

The relatively greater inhibitory effects of CCK-8 in S than F pigs were associated with 

similar plasma concentrations and patterns of CCK-8 in both S and F after infusion of 
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either 60, 100 or 300 ng/kg dose of CCK-8. Similar results were reported in obese men 

(Kissileff et al., 1981 ), obese mice (Strohmayer et al., 1981; MaLaughlin et al., 1981) and 

obese Zucker rats (McLaughlin et al., 1980) in which obese individuals expressed a 

decrease in sensitivity to satiety-inducing effects of CCK-8. Thus, decreased sensitivity to 

CCK, which appears to be exhibited by obese animals, may be a cause or consequence of 

obesity and increased meal size (Baile et al., 1986). 

Taken together, results from the present experiments indicate that the genetic 

difference between these lines for appetite may be partly due to a difference in sensitivity 

to this satiety signal. Metabolic clearance of the infused CCK-8 may be similar in both 

lines because of the similar concentrations and patterns of plasma CCK-8 in Sand F pigs. 

The differences in sensitivity to satiety action of CCK may be caused by differences in 

DNA frequencies encoded in the genes for CCK receptors (CCKAR or CCKBR) 

involved with regulation of appetite. To obtain a more complete picture of the CCK 

action in genetic variation between F and S on protein levels, additional experiments to 

determine effects of specific CCK receptor antagonists, CCK immunoneutralization, 

distribution patterns and molecular forms of CCK (HPLCIRIA) on feed intake in F and S 

are necessary. 

Direct and correlated responses to selection are due to changes in the frequencies 

of gene alleles affecting each of the measured traits (Falconer, 1989). In pigs, genetic 

correlation of ADG with daily feed intake is quite high (Buchanan et al., 1993). Selection 

for ADG, and indirectly for feed intake, has no doubt targeted the alleles of many genes 

involving in feeding control pathway. Results from Chapter III and from the present 
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experiment suggest that the CCK gene and genes encoding CCK receptors may be 

targeted by the selection for ADG in pigs. 

Current approaches for genome analysis in porcine (Archibald et al., 1995; Rohrer 

et al., 1995) provide opportunity to identify the molecular basis of genetic variation in 

growth, feed intake and efficiency. To detect important loci that influence traits of 

interest, the first step is to establish a resource family in which the relevant alleles are 

segregating at those loci (Lander et al., 1989). The phenotypic and physiological 

divergence detected between the F and S lines in the present and previous studies 

(Woltmann et al., 1992, 1995; Clutter et al., 1995) suggest that the F and S lines can be 

used to produce a resource family to search for loci contributing to variation in feed 

intake and growth. 

In summary, results from the present experiments reveal a greater sensitivity to 

CCK-8 in S than in Fin suppressing feed intake and support the hypothesis that the line 

selected for fast growth has lesser sensitivity to the satiety effects of CCK-8. At the DNA 

level, further studies are needed to determine the relative contributions of the CCK gene 

and CCK receptor genes to variation in appetite in resource families in which alleles of 

these genes are segregating. 
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CHAPTERV 

RELATIONSHIP OF CHOLECYSTOKININ GENOTYPES WITH GROWTH 
AND BACKFAT IN OFFSPRING OF SIRES PRODUCED BY THE CROSS OF 

GENETICALLY DIVERGENT LINES 

Abstract 

The objective of this study was to identify relationships of a marker for the CCK 

gene with postweaning average daily gain (ADG) and 10th rib backfat thickness (BF) in a 

population of swine. Two families were produced using F 1 sires obtained from the cross 

of lines divergently selected for either fast or slow ADG. Two F 1 sires (A and B) were 

each mated to 15.unrelated dams and produced 147 and 132 offspring, respectively, in the 

resulting half-sib families. Alleles of the marker for the CCK gene located on 

chromosome 13 were significantly associated with ADG in the family of sire A (P < 

0.02), but not in the family of sire B. There was a tendency for relationship between 

alleles of the CCK marker and BF in the family of sire A (P < 0.1), but not in the family 

of sire B. Our results suggested that there may be a QTL for ADG on chromosome 13. 

Further analyses of the family of sire A, using additional markers in the region of the 

CCK gene are necessary to verify that a QTL is present and, if so, to more closely 

determine its position. 
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Introduction 

Swine breeders have used traditional methods ( e.g., phenotypic selection) to make 

considerable genetic advancement in some performance traits. Genetic improvement of 

production efficiency may be enhanced by molecular marker-assisted selection (MAS) 

(Soller, 1994; Weller, 1996). Molecular marker-assisted selection will first require 

identification of candidate genes or anonymous genetic markers associated with 

important traits. Only a few studies have shown associations of genes or anonymous 

markers with quantitative trait loci (QTL) in pigs (e.g., Jung et al., 1989; Clamp et al., 

1992; Andersson et al., 1994; Yu et al., 1995; Rothschild et al., 1995). Studies designed 

to determine the association of specific genes with genetic variation in traits of interest 

(i.e., "the candidate gene approach'') are justified when the genes are known to have 

functions related to characteristics of production or reproduction. 

Feed efficiency is one of the major factors that determine the profitability of the 

swine industry, but traditional methods of genetic improvement in feeding efficiency 

have be hampered by the cost of measuring individual feed intake. A better 

understanding of the genetic control of appetite regulation on DNA level may lead to the 

development of more effective selection methods ( e.g., MAS). 

The hormone CCK has been reported to play a role in appetite regulation in 

various species including pigs (Anika et al., 1981; Della-Fera et al., 1979; McLaughlin et 

al., 1985). Specific antagonists for CCK receptors (Ebenezer et al., 1990; Baldwin et al., 

1992), and specific immunoneutralization of circulating CCK-8 (Pekas et al., 1993), have 

resulted in increased feed consumption in pigs. Our previous studies of physiological 
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divergence of fast (F) or slow (S) growth selection lines of pigs revealed a tendency for 

greater plasma concentrations of CCK-8 (Chapter III) and a greater sensitivity in response 

to exogenous CCK-8 in S than in F barrows (Chapter IV), both results consistent with the 

relative feed consumptions of the lines. Thus, CCK action may play a role in the genetic 

differences in appetite between F and S. However, these physiological evaluations of 

selection lines only provide a picture of the genetic differences at the protein level. The 

relative contributions of the CCK gene to variation in appetite and growth can only be 

determined in families in which markers for the CCK gene are segregating. The 

phenotypic and physiological divergence detected between the F and S lines in the 

present and previous studies (Woltmann et al., 1992, 1995; Clutter et al., 1995) suggests 

the lines as candidates to produce a resource family in which loci contributing to variation 

in feed intake and growth can be identified. 

The objective of the present study was to examine the contribution of 

chromosomal reg10ns linked to the CCK gene to variation in growth and body 

composition in the offspring of F 1 sires produced by the cross of the F and S selection 

lines. 

Materials and Methods 

Resource Families 

Half-sib families were produced by mating two F 1 sires (A and B) each with 15 

unrelated sows at the University of Wisconsin-Platteville Swine Center. Both sires were 

obtained from the cross of lines divergently selected for either fast or slow ADG for 10 

80 



generations (Woltmann et al., 1992; Clutter et al., 1995). A total of 147 and 132 

offspring, respectively, were produced in the half-sib families. 

Phenotypic Traits 

Offspring were evaluated for ADG, measured as the difference in live weight 

before slaughter (approximately 110 kg) and at weaning, divided by days from weaning 

to slaughter. This was also the sole selection criterion in the F and S lines (Woltmann et 

al., 1992). BF at the 10th rib was measured on cold carcasses 24 hr after slaughter, as an 

indicator of body composition. 

DNA analysis 

DNA samples in the study were obtained from a collaborative laboratory at 

University of Wisconsin-Madison. Working dilutions of extracted DNA were obtained 

for each individual at a concentration of 50 ng/µl. Methods of animal handling, DNA 

extraction and preparation have been described by Casas-Carrillo et al. (1997ab). 

The marker for the CCK gene was previously described by Clutter et al. (1996). 

Briefly, the primers used to amplify the porcine CCK gene were designed on the basis of 

the exon/intron organization of the human and mouse CCK genes (Takahashi et al., 1985, 

1986; Vitale et al., 1991) and porcine cDNA sequences (Gubler et al., 1984) and were to 

flank an expected intron of-4 to 6 kb. Primer sequences were: 

5'-primer, 5'-CTGGCCAGATACATCCAGCA-3'; 

3 '-primer, 5' -ATCCATCCAGCCCATGTAGT-3 '. 

Polymerase chain reaction (PCR) [25 µl final volume] was performed using 50 ng 

genomic DNA, 1 mM Mg(OAc)z, 200 µMeach dNTP, 0.35 µMeach primer, 0.4 units 

rTth DNA polymerase-XL (Perkin-Elmer) and its supplied buffer. A hot start was used 
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(polymerase added at 80 °C), and thermal cycling began with an initial cycle of 95 °C for 

1 min, 60 °C for 1 min and 72 °C for 5 min, followed by 34 cycles of94 °C for 30 sec, 60 

°C for 1 min and 72 °C for 5 min. The last 19 cycles included additional, cumulative 

extension periods of 15 sec per cycle. The reaction resulted in a single DNA product of 

-3.57 kb. Terminal end-sequencing was used to verify that the product includes the 

expected exon regions of the porcine CCK gene. Digestion of the PCR product by the 

restriction enzyme Dpnll produced a restriction fragment length polymorphism (RFLP) 

that could be used as a marker for the CCK gene. The genotypes of individuals were 

expressed as AA, AB and BB. Both sires (A and B) were heterozygous (AB) for the 

marker, which allowed the analysis of relationships between the CCK marker .and 

phenotypic traits in each of the half-sib families. 

Statistical analysis 

Inheritance of paternal alleles for CCK was coded as the probability of inheriting 

allele A from the sire (Dentine et al., 1990). Where paternal inheritance was 

unambiguous, this probability was either l or 0. In cases where the offspring was 

ambiguous, that is, their heterozygous genotype was identical to that of sire and dam, the 

probability of inheriting sire allele A was 0.5. These probabilities were used as regressors 

in the statistical model. Data for ADG and BF were analyzed separately for each sire 

group with least-squares procedures using the following model: 

Y ij = µ + Li + BmarkerXmarker + Ejj 

where: 

y.. 
IJ = j-th observation from the i-th litter, 
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µ 

L· 1 

l3marker 

Xmarker 

E·· IJ 

= population mean, 

= effect of the i-th litter, 

= regression on probability of inheriting marker allele A from sire, 

= probability of inheriting marker allele A from sire, 

= random error. 

Results 

PCR products were obtained for 60 of 147 individuals in the family of sire A and 

36 of 132 individuals in the family of sire B. Due to missing phenotypic measurements, 

only 46 and 25 observations could be used in the analyses for the families of sire A and of 

sire B, respectively. 

There was a significant association between the inheritance of paternal marker 

alleles and ADG in the family of sire A (b = 0.032 ± 0.014 kg/d, p < 0.02). For the family 

of sire B, CCK genotypes were not associated significantly with ADG (b = 0.014 ± 0.022 

kg/d, p > 0.60). 

CCK marker genotypes tended to be associated with 10th rib BF in the family of 

sire A (b = 0.52 ± 0.31 cm, p < 0.1 ), but not in the family of sire B (b = 0.13 ± 0.51 cm, p 

> 0.80). 

Discussion 

The candidate gene approach is justified when genes previously identified in the 

species of interest or other species have functions related to the traits of interest. Several 
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studies have revealed associations of genes with growth traits in mice (Winkelman et al., 

1992; Pomp et al., 1994; Horvat et al., 1995; Keightley et al., 1996). In pigs, only a few 

studies have shown the associations of genes with quantitative traits. 

Clamp et al. (1992) reported the presence of gene(s) that affect rate of body 

weight gain linked to the glucose phosphate isomerase (GPI) loci on porcine chromosome 

6. In a study for detecting the relationships of growth hormone and insulin-like factor-I 

genotypes with growth and carcass traits in pig families, a potential association of IGFI 

genotype with ADG was observed and a QTL, closely linked to IGFl, may be located in 

the interval between Sw1071 and IGFl on chromosome 5 (Casas-Carrillo et al., 1997a). 

Significant associations of PITl genotypes with growth rate were detected; thus, PITl has 

been suggested to be a candidate gene for a QTL for growth on chromosome 13 (Yu et 

al., 1995). 

CCK has been established as a satiety hormone in the pig. However, the relative 

contribution of the CCK satiety action to variation in appetite and growth is still 

unknown. This could be verified by analyzing the associations between marker genotypes 

for CCK and CCK receptors with growth and feed intake traits in resource families in 

which there is segregation at loci contributing to variation in growth and feed intake. Due 

to the lack of phenotypic measurements for feed intake, only the relationship of CCK 

genotype with ADG and BF was evaluated in the present study. 

The CCK gene was reported to be located on porcine chromosome 13 (Clutter et 

al., 1996; Rettenberger et al., 1996). A briefly linkage map for chromosome 13 is 

presented in Figure 1. The CCK gene marker used in the study had no recombination 

with the Type I marker ITIH, was linked to the marker TF with a recombination 
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frequency of 0.19, and to microsatellite marker S0288 with recombination frequency of 

0.02 (Clutter et al., 1996). The frequencies of alleles of the marker for the CCK gene 

were not significant different between F and S (Clutter et al., 1996). 

A nominally significant association between the marker alleles and ADG and a 

tendency for association between the marker alleles and BF were observed in the family 

of sire A in present study. The results indicate that a potential QTL for ADG may be 

segregating in the region of the CCK gene on chromosome 13. The results are consistent 

with other studies in which potential QTLs for growth have been reported to be located 

on the porcine chromosome 13 in different resource families (Yu et al., 1995; Andersson 

et al., 1994). In the same resource families as used in the present investigation, however, 

no significant association of ADG with the genomic region on chromosome 13 was 

detected by scanning the genome with genetic markers (Casas-Carrillo et al., 1997b ). 

This result is in contrast with the present results. A limited number of markers used in 

their study may be one of the possible reasons for failing to detect the significant 

associations on chromosome 13. 

Although a significant association was detected in one family, the power for 

association detection was limited by the small amount of data due to unsuccessful PCR 

amplification and missing phenotypic measurements. Unsuccessful PCR may be due to a 

break down of the genomic DNA. Thus, additional work is needed to evaluate smaller 

size markers such as microsatellite markers which are in the chromosome region of the 

CCK gene ( e.g., S0288) and apply interval mapping analysis to confirm and refine the 

present results. 
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Figure 1. Linkage map of pig chromosome 13. Map distances ( cM) between markers are 
presented. The location of a potential ADG QTL was suggested to be in the region linked 
to the CCK gene. (Derived from Pig Genome Mapping, Roslin Institute, UK) 

86 



CHAPTER VI 

SUMMARY 

Genetic variation in appetite exists in animal populations. Better understanding of 

the genetic nature of appetite regulation may help development of more effective 

selection methods and better breeding programs for feed efficiency. Many animal models 

have been established to identify the molecular mechanisms of control of feed intake, 

regulation of body weight and development of obesity. However, all of these animal 

models are based on single gene mutations. Studies of normal quantitative genetic 

variation in feed intake and growth are rare. To our knowledge, no research has been 

reported to clarify the quantitative and molecular basis for variation in appetite regulation 

in normal animal populations using divergent selection lines as a model. 

In the present study, the selection lines of pigs with divergent potential in growth 

and feed intake were used to elucidate the role of satiety hormone CCK in appetite 

regulation. The genetic differences for appetite between the lines may be in part due to 

differences in satiety effects of CCK. Lesser satiety effects of CCK-8 in F than in Smay 

be caused by a lower concentration of plasma CCK-8 in F or by changed/unchanged 

plasma concentrations of CCK-8 together with decreased cellular response (i.e., CCK-8 

activation of CCK receptors involved with regulation of appetite). A tendency for greater 
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plasma concentration of CCK-8 and a significantly greater sensitivity to exogenous CCK-

8 in S than in F pigs was revealed in the present study. 

Although the importance of CCK-8 as a satiety signal in the pig has been implied 

through infusion studies, antagonists for CCK-8 and the immunoneutralization of 

circulating CCK-8, the relative effects of bioactive forms of CCK on feeding behavior 

remains to be determined. The effect of selection on relative changes of molecular forms 

of CCK in the present study can only be determined by additional work to separate 

peptide fractions (HPLCIRIA). In addition, experiments to determine the effects of CCK 

receptor antagonists and CCK immunoneutralization on feed intake in F and S may 

provide a more complete picture of the role of CCK action in genetic differences between 

the lines. 

To understand genetic variation in growth and body composition at the DNA 

level, resource families were produced by using the cross of the F and S selection lines as 

F 1 sires. A significant association was detected between the variation in ADG and a 

marker for the CCK gene. If this association is real, the effect may be due to alleles of the 

CCK gene or of some closely linked gene(s). 

Taken together, we concluded that the CCK satiety action plays a role in genetic 

variation in appetite in F and S and there may be a QTL for ADG in the chromosomal 

region of the CCK gene on chromosome 13. 

However, due to the complex and quantitative characteristics of feed intake, many 

loci probably contribute to genetic variation in appetite. For example, the frequencies of 

alleles of markers for the leptin gene and for the CCKAR gene were significant different 

between F and S, indicating that these loci may have been targets of selection and 
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contribute to genetic difference between the lines. Also, another potential QTL for ADG 

was detected on chromosome 3 in the family of one F 1 sire. Thus, additional work is 

necessary to learn more about genetic variation in feed intake. A genome scanning 

approach will be continued to identify important chromosomal regions affecting feed 

intake and efficiency. Then, the identified regions with suspected QTL or ETL for feed 

intake will be investigated using comparative mapping and positional candidates to try to 

identify the individual genes responsible for differences in appetite. Furthermore, the 

expression and function of relevant candidate genes at the molecular and physiological 

levels will be examined in detail. This multidisciplinary approach of positional candidate 

cloning and gene expression/function research will help to elucidate how genes affect 

feed intake and efficiency and how they can be manipulated for genetic improvement. 
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