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CHAPTER I 

INTRODUCTION 

Background 

It is well known that thinning increases tree growth and redistributes stand 

growth. This activity improves environmental conditions for residual trees by reducing 

competition between plants and increasing the amount of available nutrients, water, and 

light (Daniel, Helms, and Baker 1979, Lavigne 1988, and Wittwer et al. 1996). Changes 

of site attributes due to thinning or other cultural activities such as fertilization and 

irrigation affects productivity of the stands by influencing foliage mass and/or area 

production, needle morphology, foliage light interception, the capability of the plants to 

allocate photosynthate to tree parts other than leaves and roots, and needle efficiency 

(Brix 1981a, Lavigne 1988, Law et al. 1992, Magnussen et al. 1986, Nemeth 1973, 

Valinger 1993, Vose 1988, Vose et al. 1994, and Wang et al. 1995). 

Canopy foliage is limited by environmental site conditions such as water, 

nutrients, precipitation, and temperature (Brix 1981 b, Grier and Running 1977, Linder et 

al. 1987, Snowdon and Benson 1992, and Vose et al. 1994). In particular, thinning has 

been found to increase tree and stand foliage mass by expanding the canopy toward open 

spaces, and together with site improvement by cultural treatments, an improvement in the 



photosynthetic rate per unit of foliage is expected (Brix 1983). According to Lavigne 

( 1988) and Ginn et al. ( 1988), the amount of leaves per unit area decreases at the time of 
' 

thinning application, but thereafter increases as time progresses. This statement is 

supported by Brix (1981b, 1983) in a thinned Douglas fir (Pseudotsuga mensiesii (Mirb) 

Franco.) stand. 

Several studies have been applied trying to explain the relationship of changes in 

stand density to tree and stand growth, and tree and stand leaf biomass. Stemwood 

productivity is determined by the capability of leaf biomass to fix carbohydrates and the 

allocation to tree components. Carbon fixation and allocation depend on leaf biomass 

amount and its efficiency to intercept radiant energy and the conversion to chemical 

energy (Jarvis and Leverenz 1983, Linder 1985). Law et al. (1992) found that stand 

basal area growth was directly related to the intercepted radiation, but individual tree 

growth was inversely related to radiation as stand density increased. 

Stand and tree productivity is strongly related to leaf biomass amount (weight or 

area). The relationship between them is supported by the fact that foliage provides the 

surface across which photosynthetic gas exchange and transpiration occurs (Grier and 

Running 1977). Also, the amount, display, and duration of leaf biomass determine the 

quantity of intercepted radiation and the capability of photosynthesis, transpiration, and 

respiration processes to respond (Colbert et al. 1990, Vose and Allen 1988). The 

relationship between leaf biomass and forest productivity is supported by a variety of 

studies in conifer species such as Douglas-fir (Brix 1983), Sitka spruce (Picea sitchensis 

(Bong.) Carr.) (Ford 1982), lodgepole pine ((Pinus contorta ssp. latifoliada (Engelm. 

exWats.) Critchfield)) (Lavigne 1988 and Pearson et al. 1984), jack pine (Pinus 
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banksiana Lamb.) (Magnusen et al. 1986), loblolly pine (Pinus taeda L.) (Colbert et al. 

1990, Dalla-tea and Jokela 1991, and Vose and Allen 1988), slash pine (Pinus elliotti var. 

elliottii Engelm.) (Colbert et al. 1990, Dalla-tea and Jokela 1991, and Nemeth 1973), 

radiata pine (Pinus radiata D. Don) (Mead et al. 1984, Snowdon and Benson 1992), and 

scots pine (Pinus sylvestris L.) (Cousen 1988, Valinger 1993). 

Leaf area is an important characteristic of autotrophic ecosystems. Radiation 

interception, carbon fixation, carbon allocation, and water flux are highly dependent on it 

(Dalla-tea and Jokela 1991, Gholz 1982, and Grier and Running .1977). Leaf area index 

(LAI), an index that represents the amount of leaf area that occupies one square meter of 

soil surface (expressed as m2m"2), may be estimated as projected or all-sided leaf area 

index. Leaf area index is directly related t~ aboveground biomass production. 

Magnussen et al. (1986) derived a linear relationship between dry matter production and 

LAI for jack pine. He reported the relationship to be useful only for semistocked stands. 

Canopy foliage in overstocked stands will not allow increased production because 

respiratory losses and self-shading may be higher than the photosynthic gains. 

Comparable results were found by Vose and Allen (1988). They suggested that LAI is a 

good index of stocking because it integrates tree size, stand density, and site resources 

supply. In addition, Colbert et al. (1990) supported that LAI is useful to describe 

responses of cultural treatments and to compare stand leaf area responses between sites. 

However, Law et al. (1992) found that LAI varies between species, thus he proposed to 

use intercepted photosynthetically active radiation (IP AR) to compare stand growth 

efficiency between species. 
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In addition, growth efficiency (GE), defined as the amount of wood produced per 

unit leaf area or weight, incorporates the influence of photosynthetic efficiency and 

carbon allocation to tree parts (Stoneman and Whitford 1995). In general, foliage and 

roots have a higher priority than stemwood growth, but protective chemicals have lower 

priority than stemwood growth (Waring and Schlesinger 1985). Therefore, stemwood 

growth efficiency will be high when others tree parts have satisfied their carbon demand. 

Silvicultural activities such as thinning, fertilization, herbicides, and prescribed fires 

affect growth efficiency. Modification of site conditions affects leaf display and leaf 

production which in tum affects leaf efficiency and allocation of carbohydrates to tree 

parts (Brix 1981b, Mead et al. 1984, and Miller and Miller 1976). Vose and Allen (1988) 

found that nitrogen application increased LAI, but growth efficiency was reduced. The 

reduction in growth efficiency could be due to an increase in shading, respiration loss, or 

moisture stress due to an increase in leaf biomass amount. In contrast, Dalla-tea and 

Jokela (1991) reported that high levels of productivity are achieved through rapid leaf 

development due to increased absorption of photosynthetically active radiation in loblolly 

and slash pine. 

Problem Statement 

Leaf biomass dynamics and the contribution to stand and tree growth at different 

site and environmental conditions has been well documented for several conifer species 

such as Douglas-fir (Brix 1981b, Brix 1983), loblolly pine (Colbert et al. 1990, 
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Hennessey et al. 1992, and Vose and Allen 1988), slash pine (Dalla-tea and Jokela 1991 

and Colbert et al. 1990), Scots pine (Valinger 1993), and radiata pine (Linder et al. 1987, 

Mead et al. 1984, and Snowdon and Benson 1992). There has been little investigation on 

the effects of thinning on foliage development and the relationship of foliage to stand 

growth in shortleaf pine (Pinus echinata Mill.). Shortleaf pine is the most widely 

distributed southern pine and is the main softwood species in the Ouachita and Ozark 

Mountains of Arkansas, Missouri, and Oklahoma. In addition, most of the investigations 

related to LAI, needle biomass weight, and stand growth have overlooked mortality 

losses. Therefore, the derived relationships have been expressed either as net or survivor 

stand productivity, but little attention is focused on both components of production at the 

same time. Survivor growth is that on trees present at the beginning and end of a period 

(e.g. during a growing season). While, mortality is unsalvaged growth that counts 

negatively against survivor growth. Net growth is the resulting difference of survivor 

growth minus mortality (Smith et al. 1997). 

Purpose of the Study 

Based on the statement of the problem, the purpose of the present study is to 

investigate the effects of stand stocking density on stand leaf biomass production, LAI 

and growth efficiency as well as the relationship of stand leaf biomass and LAI to net and 

survivor stemwood growth. 
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Objectives of the Study 

The present study is conducted to achieve the following objectives: 

a) to monitor seasonal and annual needlefall patterns, 

b) to assess the changes in stand needle biomass, LAI, and GE due to different 
stand densities and site conditions, and 

c) to determine the relationship between stand needle biomass, LAI, GE, stand 
density, and stand growth. 

Hypothesis 

Based on responses to similar studies of conifer species other than shortleaf pine, I 

established the following hypotheses: 

a) stand needle biomass, LAI, and GE are correlated to stand densities, 

b) survivor and net stand stemwood growth are correlated to needle biomass and 
LAI, and 

c) stand needle biomass, LAI, and GE are different due to different site 
conditions. 
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Location 

CHAPTER II 

METHODOLOGY 

Study Area 

The present study is conducted in natural shortleaf pine stands located in the 

Ouachita Mountains of northwestern Pushmataha County, Oklahoma. The study sites are 

located on industrial lands of the Georgia Pacific Corp. According to the USDA-SCS 

soil survey, site one (SI 17 m at age 50) and site two (SI 22 m at age 50) are included in 

the Camasaw-Pirum-Clebit soil and Sherwood-Zafra associations, respectively. The soils 

are classified as well drained and deep, moderately deep, and shallow soils. The soil 

series are formed from sandstone and/or shale (Bain and Watterson 1979). 

Climate 

During the study period, total annual precipitation, recorded at Daisy Station in 

Atoka County, Oklahoma, ranged from 1308 (51.5 in) to 2243 mm (88.3 in) of rain. 

Annual precipitation was above the 30 year average, except for the last growing season of 
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the study period in which it was near average. Average annual temperature, taken at 

McGee Creek Dam, at Atoka County, Oklahoma, was around 16° C (62° F) over the study 

period. The lowest monthly mean temperature registered during the winter was 3° C 

(37.4°F) and the highest during the summer seasons was 30° C (86° F) (NOAA 1989-

1994). 

Sampling Design 

At the beginning of the study the stands were composed of 25-30 year-old natural 

shortleaf pine stands. At site one, nine square treatment plots of 0.16 ha (0.4 ac) were 

distributed among three blocks; a 0.04 ha (0.1 ac) measurement plot was established 

within each treatment plot. At site two, plot dimensions were 0.24.ha (0.6 ac) with a 

0.08 ha (0.2 ac) measurement plot. Five 1 m2 traps for litter fall collection were 

systematically distributed inside of the measurement plots. The sampling design was 

appropriate for applying a complete randomized block design to test for differences 

between treatments. 

Treatments 

The prescribed treatments were the application of three densities levels. The 

density levels were thinning to approximately 15 m2ha·1 or 50 percent relative density (50 

PRO) and 25 m2ha-1 (70 PRO) and the unthinned control with approximately 35 m2ha-1 

(control). The stand stocking levels correspond to conditions defined in the stocking 
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chart developed for shortleaf pine by Rogers (1983). The 50 PRD is classified as 

understocked, the 70 PRD corresponds to normal stocking, and the control is considered 

overstocked. Thinning treatments were applied prior to the 1989 growing season at site 

one and prior to the 1990 growing season at site two. 

Variables 

Stand Density and Stand Stemwood Growth. 

Diameter at breast height (dbh) and number of trees per ha were the basic 

measurements used to calculate stand stocking. Stand density was measured as stand 

basal area and stocking as percent relative density. 

Relative density was determined from equations used to prepare stocking charts 

for shortleaf pine developed by Rogers ( 1983). Annual stand basal area and relative 

density growth were determined from annual increments of individual trees. Annual 

basal area and relative density growth were expressed as survivor and net growth. 

Survivor growth is the annual basal area growth on trees that are alive at the beginning 

and end of the period. Net annual growth is the difference between standing basal area in 

two consecutive years. Wittwer et al. ( 1996) reported initial stand characteristics, 

quadratic mean diameter, and number of trees per unit area as well as survivor, and net 

basal area growth until the 1993 growing season for site one. 

Total stemwood volume was estimated from Farrar and Murphy's (1987) taper 

equations for shortleaf pine using dbh, height, and crown-length measurements of 
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individual trees. Total stemwood volume was estimated as inside bark stemwood 

volume. 

Needlefall Estimation 

Needlefall was collected beginning in September of 1990 for site one and 1991 for 

site two. Needlefall collection was made monthly during the Fall season and the first 

month of the winter, then needlefall was collected at least two times before the next peak 

leaf fall season started. Needlef all samples were collected and placed in paper bags ang 

carried to the laboratory. Samples were ovendried for about 72 hr. at 65° C to constant 

weight and weighed to the nearest 0.01 g. 

Because it was impossible to collect needlefall samples exactly the first day of 

each month, computational estimations were used to adjust the starting time of needlefall 

to the first day of each month. Similarly, it was necessary to estimate the amount of 

needlefall for the months in which collections were not made. The starting date for 

annual estimations was the first day of September and the ending date the last day of 

August. This date was based on the assumption that needlefall peak normally starts early 

in the fall season although climate may affect the starting time of needlefall as described 

for loblolly pine by Hennessey et al. (1992). 
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Needle Biomass Estimation 

In addition, stand needle biomass by growing season was estimated from 

needlefall. Similar to other southern pines, shortleaf pine needles are retained on the tree 

for two growing seasons (Kinerson et al. 1974); therefore, the needles that fall in a given 

year are considered one year old and correspond to needles that were active during the 

previous and current growing season. Needles formed the current growing season are 

considered new and they fall during the Fall of the next year. Therefore, the sum of two 

consecutive years of needlefall was assumed to correspond to the amount of active 

needles during a growing season (Table 1). Needle biomass was estimated for four and 

five growing seasons for site two and one, respectively. 

Stand All-sided Leaf Area Index Estimation 

Stand all-sided LAI estimation was made using needlefall samples. Vose (1987) 

validated the use of needlefall to estimate LAI when he compared destructive sampling 

against a needlefall method. He found that there is a strong positive relationship between 

the two methods and the slope of the relationship is very close to unity. Needlefall 

samples for LAI estimations were selected from collections beginning in April of 1994 

for both sites, four and five years following thinning application, respectively. Monthly 

selections were made from 1994 through 1996, except for the months when needlefall 

was not collected. 
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Table 1. Needlefall collection, needle biomass production, and growing season of 
needle biomass activity. 

Needlefall Collection Needle Biomass Growing Season 
Production 

( 1990-199J )+(1991-1992) 1989 and 1990 1990 

(1991-1992)+(1992-1993) 1990 and 1991 1991 

(1992-1993)+(1993-1994) 1991 and 1992 1992 

(1993-1994)+(1994-1995) 1992 and 1993 1993 

(1994-1995)+(1995-1996) 1993 and 1994 1994 
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Estimation of all-sided LAI was based on specific leaf area (SLA) estimations. 

The first step to estimate SLA was to select randomly five complete fascicles from each 1 

m2 needlefall trap to obtain 25 fascicles per plot. From preliminary analysis, it was 

determined that shortleaf pine in the study sites had approximately 60% two-needle 

fascicles (Appendix A); therefore, three fascicles were selected from two-needle fascicles 

and two fascicles were selected from three-needle fascicles. 

Since specific leaf area (SLA) is defined as the ratio between leaf area and needle 

weight (Hager and Sterba 1985), the second step was to determine total needle area (all

sided needle area) and ovendry needle weight. Total needle area was estimated using a 

leaf area measurement method for pine needles developed by Bingham (1983). It is a 

simple method that relies on the use of a low power magnifying lens with a scale arranged 

in such a way that it is seen through the lens. The projected diameter of the fascicles with 

two needles and chord of the fascicles with three needles was measured to the nearest 

0.05 mm, length of the needles was measured to the nearest 0.5 mm with a standard 

metric rule. The leaf area per fascicle was calculated using the following equation 

(Bingham 1983): 

A= 2RL( N+1t) 

where: 

A= fascicle area, 

R= average radius of needles, 

L= average length of the fascicle, 
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N= number of needles per fascicle, and 

1t= 3.1416 

Needlefall collected in 1994 and 1995 had previously been ovendried at 65° C 

before weighing while the 1996 samples had not been. There was concern that drying 

could affect the dimensions of the 1994 and 1995 sample material. A comparison of the 

effects of the drying on dimensional stability was completed using subsamples for two 

different monthly collections for 1996 from both sites. Paired subsamples subject to 

drying before measurement of needle length and radius were compared with those not 

dried before measurement. No significant differences were found and it was concluded 

that measurement of needle dimensions for estimating SLA could be made on the 

previously dried 1994 and 1995 samples. 

SLA was estimated for each one of the sites, seasons, and years by block and 

treatment. Because only two or three monthly samples were available from January to 

August and monthly samples for September to December, the year was divided in two 

seasons. Comparisons showed no effect on SLA due to season during the year. 

Stand all-sided LAI was estimated by multiplying the total annual leaf biomass 

per ha by mean annual SLA and converted to m2m-2 units. Annual stand all-sided leaf 

area was estimated for each replicate plot. Similar to annual biomass, annual total stand 

LAI was calculated from the sum of two consecutive years of LAI. It was estimated for 

each site and treatment for 1993 and 1994 growing seasons. 
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Growth Efficiency Estimation 

Growth efficiency (GE), defined as the ratio of net total stemwood volume growth 

produced per year to amount of stand leaf weight or area, was calculated for each 

treatment in both sites from stand needle biomass and stand LAI. GENB indicates GE 

estimations from needle biomass while GELA1 indicates estimations from leaf area index. 

Four and five annual GENB estimations were made for stand needle biomass and two 

GELAI estimates were made for LAI. 

Statistical Analyses 

A complete randomized block design was used to estimate the analyses of 

variance in order to test for the effects of stand stocking densities on annual stand 

needlefall, annual stand needle biomass, stand all-sided LAI, and GE per year and site. 

When the analyses of variance were significant, comparisons of means were made using 

Ryan-Einot-Gabriel-Welsch multiple F test (SAS Institute Inc.1988). Student t-test were 

applied to test for differences in annual needlefall, stand needle biomass, LAI, and GE 

between sites at the control level and to look for any significant difference in SLA 

between seasons. 

In addition, regression analyses were applied to determine the tendency and the 

correlation between annual leaf biomass or all-sided LAI and stand basal area, net and 

survivor stand stemwood growth, stand relative density, net and survivor relative density 

15 



growth, and net GE, respectively. Regression analyses were applied independently by site 

and year and by combining data from years and sites. 
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Seasonal Patterns 

CHAPTER ill 

RESULTS 

Study I. Needle Biomass 

Needlefall 

Monthly needlefall was not very consistent between years during the study period, 

although similar patterns were observed for all treatments within the same years. Peak 

needlefall mainly occurred in October, November, and/or December. Sometimes it was 

concentrated in one month and other years it was distributed over two or three months 

(figures 1 and 2). The start of needlefall was very variable. Sometimes it started during 

August and increased gradually over the next three months, but other times it started later 

with a single monthly peak needle fall during October or November. 

On the other hand, seasonal patterns were very consistent over the study period on 

both sites. The heaviest needlefall amount always occurred during the fall season. The 

maximum and minimum amount of needlefall in control plots ranged from 2171 kgha-1 

to 3535 kgha-1 at site one and from 2422 kgha-1 to 3357 kgha-1 at site two. Fall needlefall 

amount was around 60% of the total annual needlefall. Normally, a period of low 
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monthly needlefall (January-August) was observed after the seasonal leaf fall occurred. It 

was very consistent between sites and treatments over the study period. 

Annual Pattern 

Annual needlef all varied between years, but the patterns between sites were 

similar. The lowest absolute needlefall amounts in site one occurred during the first and 

sixth year after thinning in all the treatments. In site two, the lowest amount was 

observed during the first year of the study period. The heaviest needlefall was observed 

during 1992-93 period in both sites and all the plots. 

The effect on mean annual needlefall due to different densities in site one showed 

variable results for the six-year study period (table 2). Mean needlefall of unthinned plots 

was significantly different ( a.<=0.05) from means of 50 PRD and 70 PRD treatments 

during the first year of the study period. Mean needlefall amounts for the second year and 

the fifth year were significantly different (a.<=0.05) among all the three treatments. In 

contrast, during the following two year periods ( 1992-1993 and 1993-1994) and the last 

period ( 1995-1996) annual needlef all showed no effects due to thinning. In spite of the 

varied mean annual needlefall responses due to thinning effects each year, 

needlefall was always greater in unthinned plots followed by the 70 PRD and the 50 PRD, 

respectively. 

In contrast to site one, site two presented a consistent trend in mean annual 

needlefall response due to thinning (table 3). The control was always significantly 

different ( a.=0.05) from the 50PRD and 70PRD treatments, but no significant difference 
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Table 2. Mean annual stand needlefall (kgha-1yf1) by treatment in site one (SI 17 m 
at base age 50 yr.). 

TREATMENTS PERIOD1 

1990-91 1991-92 1992-93 1993-94 1994-95 1995-96 

50PRD 2722a2 2779a 3895a 3363a 3514a 2987a 

70PRD 3301a 3298b 4437a 3594a 3821b 3222a 

CONTROL 4376b 3741c 4840a 3972a· 4166c 3512a 
Correspond to September-August year period. 

2 Columns followed by different letter are significant different according to Ryan-Einot-
Gabriel-Welsch multiple F test (SAS Institute Inc. 1988) (ex=0.05). 
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Table 3. Mean annual stand needlefall (kgha-1yf1) by treatment in site two (SI 22 m 
at base age 50 yr.). 

TREATMENT PERIOD1 MEAN 

1991-92 1992-93 1993-94 1994-95 1995-96 

50PRD 2697a2 3696a 3446a 3396a 3807a 3408a 

70PRD 2831a 4017a 3532a 3762a 4130a 3654a 

CONTROL 3988b 4987b 4394b 4211b 4913b 4499b 
Correspond to September-August year period. 

2 Columns followed by different letter are significant different according to Ryan-Einot-
Gabriel-Welsch multiple F test (SAS Institute Inc. 1988) (ex=0.05). 
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was found between the two thinning treatments. Comparing annual average needlefall 

amount for the overall five and six years, the unthinned treatment was significant 

different (p-value>0.05) from thinned treatments. Mean needlefall was only different 

between thinned treatments in site one, but not in site two. 

The study in site one was established one year before that on site two; therefore, 

comparison of means were made at the control level for a five-year period. A non

significant difference between the sites (4046 vs. 4499 kgha·1yf1, a.=0.05) was found. 

Needle Biomass 

Annual needle biomass was estimated as the sum of two continuous years of 

needlefall. It was assumed that new leaves were produced each spring and were active 

for two complete growing seasons (Kinerson et al. 1974). Therefore, the estimation of 

the annual needle biomass amount was based on new plus old needles (table 1, p. 12). 

The study on site one began one year before that on site two and needle biomass 

estimation was for five and four growing seasons, respectively. 

Annual needle biomass amount varied between treatments every year, except for 

1992 and 1993 growing seasons in site one for which treatments effects were not 

significantly different (table 4). Needle biomass was lowest at 50PRD and highest at the 

control level at both sites. The annual responses of needle biomass between thinned 

treatments were different on site one during the first, second and fifth year period. On 

site two, the response of stand needle biomass to thinned treatments in each one of the 
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Table 4. Mean annual stand needle biomass (kgha·1yr"1) by treatment in site one (SI 
17 m base age 50 yr.) and site two (SI 22 mat base age 50 yr.). 

SITE TREATMENT GROWING SEASON MEAN 

1990 1991 1992 1993 1994 

50PRD 550la1 6674a 7258a 6877a 6501a 6562a 

ONE 70PRD 6599b 7735b 8031a 7415a 7043b 7365b 

CONTROL 8117c 8581c 8812a 8138a 7678b 8265c 

50PRD -o- 6393a 7142a 6842a 7203a 6895a 

TWO 70PRD -o- . 6848a 7549a 7294a 7892a 7396a 

CONTROL -o- 8975b 9381b . 8605b 9124b 9021b 
1 Columns followed by different letter are significant different according to 

Ryan-Einot-Gabriel-Welsch multiple F test (SAS Institute Inc. 1988) (a=0.05). 
Mean comparisons are independently by site. 
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growing seasons was similar. The unthinned treatment was significantly different from 

both thinned treatments. 

Analysis of mean annual stand needle biomass for the four and five year period 

showed a significant difference ( a=0.05) between thinned and unthinned treatments at 

both sites. At site one, mean annual needle biomass was significantly different between 

thinned treatments, but at site two, the mean response of thinned treatments was not 

significantly different . The unthinned treatments produced the greatest stand needle 

biomass followed in descending order by the 70PRD and the 50PRD (table 4). 

Because thinning treatments were done one year earlier in site one than in site 

two, differences due to year of thinning was confounded with site differences and 

comparisons between sites for thinned treatments were not possible. Thus, data from 

control treatments was used to compare effects between sites for a four-year study period. 

The analysis showed no significant difference in stand needle biomass amount due to 

differences in site productivity between the two sites. 

Absolute amounts of stand needle biomass were very inconsistent between years. 

Site one was characterized by an increase in stand needle biomass from the first year to 

the third year of the study period in every treatment. The amount of stand needle biomass 

decreased during the fourth growing season to levels below the third but above the first 

and second growing seasons of the study period. The fifth growing season had a slightly 

higher amount than the first growing season. 

Absolute amounts of stand needle biomass on site two increased from the first to 

the second growing season and from the third to the fourth growing season. The amount 

decreased in the third growing season to below the levels of the second season but above 
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the levels of the first growing season. The fourth growing season needle biomass showed 

the greatest accumulation (table 4). 

The ratio of needlefall on thinned plots to control on site one showed increases 

from 0.68 to 0.85 in the 50 PRO and 0.81 to 0.93 in the 70 PRO as the study period 

progressed (table 5). Ratios ranged from 0.71 to 0.79 for the 50 PRO and 0.76 to 0.87 for 

the 70 PRO treatments on site two. The first year of the study period site two exhibited 

higher ratios than site one, but ratios were lower at the end of the study period suggesting 

that thinned plots on site two invested relatively less carbohydrates in foliage 

development than site one. The maximum relative increase was observed from the first 

to the second growing season at both sites and each treatment, then the rate was lowered 

as time progressed. Ratio estimations would tend to reach one as canopy levels of 

thinned plots approached those of unthinned plots at both sites. 

Stand Needle Biomass, Density, and Stocking Relationship 

Decisions concerning forest density manipulation and evaluation of tree growth 

are normally made by using measures of density and stocking. Stand basal area, a 

quantitative measure of density, is the amount of vegetation expressed in square units per 

unit area (eg. m2ha·1). Percent relative density, a qualitative expression of stocking, is a 

percentage relative to the minimum density required to fully occupy the site (Smith 1986, 

Rogers 1983 and Baker et al. 1996). It is important to see how these two measures are 

related to stand attributes such as needle biomass which in turn are related to 
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Table 5. Ratio of stand needle biomass between thinned and unthinned treatments in 
site one (SI 17 m base age 50 yr.) and site two (SI 22 mat base age 50 yr.). 

SITE TREATMENT GROWING SEASON 

1990 1991 1992 1993 1994 

50PRD 0.68 0.78 0.82 0.84 0.85 

ONE 70PRD 0.81 0.90 0.91 0.93 0.92 

CONTROL 1.0 1.0 1.0 1.0 1.0 

50PRD -o- 0.71 0.76 0.79 0.79 

TWO 70PRD -0- 0.76 0.80 0.85 0.87 

CONTROL -o- 1.0 1.0 1.0 1.0 
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physiological and ecological functions. 

Regression analyses showed a strong linear correlation (p-value<0.001) between 

mean annual stand basal area and needle biomass for independent sites and pooled data. 

In particular, site two showed a very strong correlation (R2=0.91). Although correlation 

estimations for site one and combined sites (figure 3) were lower than those for site two, 

they were also highly significant. 

Generally, dense stands tend to reach a plateau in terms of stand density and 

needle biomass while understocked stands develop in basal area and needle biomass. In 

this study, unthinned areas presented narrower needle biomass and basal area 

development ranges than thinned areas. Shortleaf pine needle biomass production in 

unthinned plots ranged from 7678 to 9381 kgha·1yr"1 and in thinned plots needle biomass 

ranged from 5501 to 8031 kgha· 1y-1• Basal area in unthinned plots remained in the range 

of 38 to 45 m2ha·1 while basal area in thinned plots ranged from 16.3 to 30.6 m2ha·1• 

Percent relative density (PRO) was positively correlated to stand annual needle 

biomass. Since PRO is related to number of trees and basal area, it was expected to be 

correlated to needle biomass in the same way as stand basal area (figure 4). The 

coefficients of determination for PRO-needle biomass relationship for site one, two, and 

combined sites are 0.62, 0.90, and 0.65, respectively. The higher correlation between 

percent relative density and leaf biomass suggests it should be a useful parameter for 

manipulation of stand density and productivity. 
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Stand Growth 

Survivor and Net Basal Area Growth 

Thinning effects on survivor basal area growth were not significantly different 

between all the treatments during the 1990 growing season at site one (table 6). 

However, during the 1991 growing seson, survivor growth of thinned treatments was 

significantly higher than that of unthinned treatment. During the last growing season of 

the study period, the 70 PRD treatment was significantly higher than the unthinned 

treatment. 

At site two, survivor basal area growth was not significantly different among all 

the treatments, except for 1991 growing season (see table 6). During that growing season 

the control treatment was significantly higher than the 50 PRD treatment. The five-year 

mean survivor basal area growth was not significantly different among all the treatments 

in site one and two. 

Net basal area growth of thinned treatments was significantly higher than net basal 

area growth of unthinned treatments in both sites, respectively (see table 6). Net basal 

area among thinned treatments was not significantly different. The lowest net basal area 

observed was 0.01 m2ha"1yr"1 during 1991 growing season at the control level at site two. 

During that particular year, mortality was almost equal to survivor growth. Regardless of 

site and year, the lowest net basal area was at the control level because mortality 

frequently occurred in over-stocked stands. Survivor and net basal area growth was 
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Table 6. Annual stand basal area growth (m2ha-1yr"1) for site one and site two. 

SITE ONE 

TREATMENT GROWING SEASON MEAN 

1990 1991 1992 1993 1994 

Survivor Basal Area Growth 

SOPRD 1.82a1 1.98a 2.32a 1.98a 1.55ab 1.94a 

70PRD 1.89a 2.19a 2.21a 2.lla 1.84b 2.05a 

CONTROL 1.80a 1.62b 2.12a 2.07a 1.28a 1.78a 

Net Basal Area Growth 

SOPRD 1.82a 1.98a 2.32a 1.98a 1.40ab 1.90a 

70PRD 1.89a 2.19a 2.14a 2.lla 1.84b 2.03a 

CONTROL 0.79b 0.63b 1.43b 1.16a 0.82a 0.97b 

SITE TWO 

Survivor Basal Area Growth 

SOPRD -o- 1.29a 1.18a 1.27a 1.15a 1.22a 

70PRD -o- 1.54ab 1.26a 1.59a 1.36a 1.44a 

CONTROL -o- 1.74b 1.18a 1.45a 1.10a 1.37a 

Net Basal Area Growth 

SOPRD -o- 1.29a 1.18a 1.27a l.15ab 1.22a 

70PRD -o- 1.54a 1.26a 1.59a 1.36a 1.44a 

CONTROL -0- O.Olb 0.04b 0.92a 0.61b 0.40b 
1 Columns followed by different letter are significant different according to 

Ryan-Einot-Gabriel-Welsch multiple F test (SAS Institute Inc. 1988) (a=0.05). 
Mean comparisons are independently by site and productivity measure. 
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similar for 50 PRO and 70 PRO treatments, respectively. 

Net Stemwood Volume Growth 

Periodic net volume growth ranged from 7.07 to 20.01 m3ha-1yr"1 at site one and 

12.27 to 17.09 m3ha-1yr"1 at site two. At site one, net volume growth was not significant 

different among all the treatments, except during the last growing season (table 7). 

During that growing season 70 PRO treatment was significantly higher than the control 

treatment. The five-year mean annual volume growth was not significantly different 

between all the treatments. At site two, significant differences were only observed in 

1992 growing seasons and for the mean four-year period. The 70 PRO treatment was 

higher than 50 PRO and control levels. Periodic mean annual volume increment over the 

study period was not significantly different among the sites. 

Stand Needle Biomass and Stand Growth Relationship 

Mean annual stand growth was measured in terms of basal area, percent relative 

density, and volume. Basal area and percent relative density were estimated as survivor 

and net growth and volume as net growth. Differences between survivor and net growth 

are due to mortality of trees, especially in overstocked stands. Net annual stand growth is 

the annual survivor growth minus mortality. This study involved stands with stocking 

ranging from understocked to overstocked plots; therefore, it was important to analyze 

33 



Table 7. Mean annual net volume increment (m3ha-1yf1) for site one and site two. 

SITE TREATMENT GROWING SEASONS MEAN 

1990 1991 1992 1993 1994 

50PRD 1 l.54a1 13.54a 17.31a 16.39a 8.79ab 13.41a 

ONE 70PRD 12.13a 15.81a 16.78a 20.0la 11.61b 15.37a 

CONTROL 10.26a 13.05a 15.62a 15.92a 7.07a 12.39a 

50PRD -o- 12.25a 12.36a 13.00a 13.48a 12.77a 

TWO 70PRD -0-: 14.69a 14.19b 17.09a 16.64a 15.65b 

CONTROL -o- 12.25a 10.27c 15.83a 12.77a 12.80a 
1 Columns followed by different letter are significant different according to 

Ryan-Einot-Gabriel-Welsch multiple F test (SAS Institute Inc. 1988) (ex=0.05). 
Mean comparisons are independently by site. 
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needle biomass and stand growth relationships with the productivity measures previously 

described. 

Site one presented a weak quadratic relationship between net annual stand growth 

and needle biomass (R2=0.28 and 0.47 P-value>O.l) for basal area and relative density, 

respectively (figures 5 and 6). In spite of the weak tendency, it was observed that net 

annual stand growth tended to increase at low canopy amounts, but decreased thereafter 

as needle biomass increased. The low coefficient of determination was attributed to the 

high variability of the observations. Maximum net annual stand growth was associated 

with needle biomass of approximately 6500 kg·ha-1.yf 1• This amount of needle biomass 

was related to a stand basal area of 25 m2·ha-1 and 80 PRO, approximately. Net annual 

stand growth declined dramatically when needle biomass exceeded 7500 kg·ha-1.yf 1• 

Negative net relative density growth was related to high stand needle biomass in the 

control plots. Negative net growth rates were due to mortality in control plots. 

Basal area and relative density growth were a function of needle biomass at site 

two (R2=0.83 and 0.77, p-value<0.001). Net stand growth (figures 7 and 8) tended to 

increase at low canopy amounts, but then as the canopy increased, net annual basal area 

and relative density growth decreased. Net annual growth reached its maximum at about 

7000 kg·ha-1 of needle biomass. Relating needle biomass, basal area, and relative density, 

this amount of needle biomass is obtained when the stand reached approximately 70 PRO 

or 22 m2·ha-1 of basal area. Comparing this information against the stocking chart used 

for shortleaf pine (Rogers 1983), it is possible to see that maximum growth corresponds 

to the fully stocked range (between 60 and 100 PRO). Stands reached zero annual net 
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basal area growth and negative net relative density growth at approximately 9000 kgha-

1yf1 of needle biomass. 

In addition, pooled data from both sites reflected the results obtained by 

independent analyses for each site. These analyses showed a weakly significant quadratic 

relationship with basal area (figure 9). The relationship of stand needle biomass to net 

annual basal area growth, and net relative density growth indicated similar coefficient of 

determination, (R2= 0.49 and 0.50), respectively. 

Figure 10 shows that there was not a strong relationship between needle biomass 

and survivor basal area growth. This was attributed to the fact that annual survivor basal 

area growth was not significantly different between treatments although needle biomass 

increased with density in both sites. Because of the high number of trees in unthinned 

stands, higher stand survivor growth might have been expected than in thinned 

treatments. However, annual tree growth is inhibited and tree mortality is increased by 

stressed site environmental resources reducing stand growth of unthinned treatments to 

levels of thinned treatments. 
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Stand Needle Biomass, Density, and Growth Efficiency 

Thinning modifies the stand environmentby reducing competition and increasing 

availability of nutrients, water, and light per tree (Smith 1986). Studies in paper birch 

(Betula, papyrifera March.) showed that thinning influenced net photosynthetic rate, 

specific leaf area, interception of photosynthetically active radiation, water use efficiency, 

and nitrogen use efficiency (Wang et al. 1995). Site productivity regulates biomass 

production through its influence on foliage quantity and efficiency in carbon fixation, and 

carbon allocation (Kramer 1986). Therefore, stand growth is regulated by modifications 

of the physical environment, stand density and related changes in foliage quantity. 

Although thinning causes temporary reduction in foliage quantity, increased efficiency 

may result. 

Net assimilation rate is defined as biomass production per unit of foliage. It 

includes photosynthetic and respiratory effects on dry matter production (Brix 1983). 

Therefore, net assimilation rate may be synonymous with growth efficiency (GE) and can 

be regarded as a measure of the efficiency of the foliage in wood production. GE 

accounts for the influence of photosynthetic efficiency and carbon allocation on 

stemwood growth (Stoneman and Whitford 1995). 

Normally, GE has been analyzed utilizing LAI (m2m"2) as denominator, but in the 

case of this study stand needle biomass (kgha·1yr-1) was also used as a denominator. 

GENs analyses were related to needle biomass and stand density independently by site and 

by using the pooled data. 
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The analysis of net GENB means showed that thinned treatments were significantly 

greater than unthinned treatments for the five-year period at site one and for the four-year 

period at site two (table 8). Thinned treatments, were not significantly different on either 

site during growing seasons, except for the 1990 growing season at site one. GENB at the 

control level was significantly lower than thinned treatments during the first and second 

growing seasons of the study period at site one and site two and the last growing season at 

site one. Net GENB was not significantly different between sites for any of the treatment 

levels over the study period. Annual net GENB ranged from 0.92 to 2.64 m3 of stemwood 

volume per metric tons of leaf biomass. 

Stemwood volume net GENB had a significant quadratic relationship (p

value<0.10) with stand basal area and needle biomass. In particular, stronger coefficients 

of determination were obtained for site two than site one. Stand basal area explained 

35%, 64%, and 40% of the growth efficiency variability for site one, two, and combined 

sites, respectively (figures 11, 12 and 13). Leaf biomass was not related to growth 

efficiency at site one, contrasting the high curvilinear relationship at site two (figure 14). 

The relationship with combined sites was significant at p-values =0.03 (figure 15). The 

lower correlation value was due to the additive variability by each one of the two sites. 
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Table 8. Mean net GENE (m3 of stem wood volume per metric tons of foliage) 
estimations by site and treatment. 

SITE TREATMENT GROWING SEASON 

1990 1991 1992 1993 1994 

50PRD 2.09a1 2.03a 2.32a 2.41a 1.35a 

ONE 70PRD 1.86b 2.05a 2.15a 2.64a 1.66a 

CONTROL 1.27c 1.53b 1.78a 1.97a 0.92b 

50PRD -o- 1.93a 1.75a 1.93a 1.88a 

TWO 70PRD -o- 2.16a 1.88a 2.35a 2.1 la 

CONTROL -o- 1.41b l.Olb 1.84a 1.40a 

MEAN 

2.04a 

2.07a 

1.49b 

1.87a 

2.12a 

1.44b 
1 Columns followed by different letter are significant different according to Ryan-Einot-Gabriel-Welsch multiple F test 
(SAS Institute Inc. 1988) ( a=0.05). 
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Study II. Leaf Area Index 

Specific Leaf Area 

Specific leaf area (SLA) was estimated for the period September-August to 

coincide with annual needle biomass production to estimate leaf area index (LAI). Mean 

annual all-sided SLA ranged from 109 cm2g-1 to 114 cm2g-1 over the three-year study 

period. SLA was not significantly different between seasons (table 9). Also, analyses of 

variance showed a non-significant difference between treatments by year and for the 

three-year study period at both sites (table 10). 

Comparing our results to others studies, all-sided SLA of shortleaf pine was 

within the range determined for other southern pine species. For instance, Dalla-tea and 

Jokela (1991) estimated an all-sided SLA range between 111 and 129 cm2t 1 and 96 and 

110 cm2t 1 in loblolly and slash pines, respectively. Also, Shelton and Switzer (1984) 

reported 89 to 144 cm2t 1 all-sided SLA range in loblolly pine. For the same species, 

Blanche et al. (1985) found that all-sided SLA ranged from 60 to 140 cm2g-1• These 

results are supported by Vose and Allen (1988). They estimated projected SLA in 

loblolly pine to range from 38.9 to 60 cm2t 1 equivalent to all-sided SLA=lOl to 156 

cm2g-1. 

Hager and Sterba (1984) found that SLA of Norway spruce was not affected by 

thinning treatments. Also, Shelton and Switzer ( 1984) found little variation in SLA of 

loblolly pine over a diverse range of stand conditions and sites. They mentioned that the 
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Table 9. Mean specific leaf area (cm2t 1) by site, year, season, and treatment. 

YEAR PERIOD 

SITE TREATMENT 1994 1995 1996 

Jan-Aug Sep-Dec Jan-Aug Sep-Dec Jan-Aug Sep-Dec 

50PRD 111 112 106 111 112 112 

ONE 70PRD 111 112 108 115 113 112 

CONTROL 113 112 107 114 112 112 

50PRD 112 111 113 110 117 117 

TWO 70PRD 108 110 110 110 114 114 

CONTROL 111 110 109 111 116 116 
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Table 10. Mean annual specific leaf area (cm2g"1) by site, year, and treatment. 

SITE TREATMENT PERIOD (SEPT-AUG) MEAN 

1993-94 1994-95 1995-96 

50PRD 111 109 111 111 

ONE 70PRD 111 110 114 112 

CONTROL 113 109 113 112 

50PRD 112 112 113 112 

TWO 70PRD 108 110 112 110 

CONTROL 111 109 114 111 
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variation found was not significant given the great diversity of stand conditions. In terms 

of seasonal variation, Vose and Allen (1988) found significant variation in SLA; 

however, Dalla-tea and Jokela (1991) reported little seasonal SLA variation in slash pine 

and loblolly pine (99 to 105 and 111 to 116 cm2t\ respectively. 

Most of the related studies agreed in that SLA varies with needle age and position 

within and among trees and stands. Current year foliage has higher SLA than older 

leaves (Dalla-tea and Jokela 1991 and Hager and Sterba 1984). Also, lower canopy 

leaves show the highest SLA. According to age and canopy positions, Shelton and 

Switzer (1984) ranked SLA as older-upper<older-lower<current-upper<current-lower. 

Variations in SLA with canopy position are due to differences in light exposure as an 

adaptation to maximize radiant energy harvest in a light limiting environment (Blanche et 

al. 1985, Del Rio and Berg 1979, and Kellomanki and Oker-Blom 1981). Branch 

bifurcation helps to reduce overlap and self-shading in loblolly pine; therefore, loblolly 

pine has higher SLA in lower canopy positions compared to slash pine (Dalla-tea and 

Jokela 1991). 
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Leaf Area Index 

Leaf area index (LAI) and growth efficiency (GE) are important physiological tree 

parameters that explain annual stand increments. Leaf area, measured as LAI, is 

important for determining what is the contribution of stand leaf area to stand growth. In 

addition, GELAr is the ratio between periodic annual stemwood volume growth and LAI, 

thus it relates photosynthetic capacity of the leaves to carbon allocated to stemwood. 

Both parameters may be affected by stand stocking; therefore, the purpose of the present 

study was to estimate the effect of thinning and site qualities on LAI and net GELAr, and 

the relationship of LAI and stand density to annual stand growth and net GELAr three, 

four, and five years after thinning application in two different shortleaf pine site 

conditions. 

Stand Density Effect on LAI 

The greatest mean all-sided LAI was found in unthinned plots followed in 

decreasing order by the 70 PRD and 50 PRD for both sites and growing seasons. All

sided LAI varied between 7.2 m2m-2 to 10.2 m2m-2 (table No. 11). The lowest LAI was 

estimated in site one and the highest in site two. According to the analyses of variance, 

mean LAI was significantly different due to the effects of stand density in both sites and 

all growing seasons, except at site one in 1993 (p-value<0.03). At site one in the 1993 

growing season the difference in LAI among density levels was not significant (p

value=0.08). In 1994, LAI of the control was significantly greater than the 50 PRD 
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Table 11. Mean stand all-sided LAI (m2m"2) by site, treatment, and year. 

TREATMENT SITE ONE 

19931 19942 

50PRD 7.6a4 7.2a 

70PRD 8.la 7.9ab 

CONTROL 9.la 8.5b 
1 These dates correspond to four years after thinning application. 
2 This date correspond to five years after thinning application. 
3 This date correspond to three years after thinning application 

SITE TWO 

19933 

7.7a 

7.9a 

9.5b 

19941 

8.la 

8.3a 

10.2b 

4 Columns followed by the different letter are significant different according Ryan-Einot-Gabriel-Welsch 
multiple F mean test (SAS Institute Inc. 1988) (a=0.05). 
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treatments in site one. Analyses of means estimated that mean LAI in unthinned 

treatments was always significantly greater, and mean LAI in 50 PRD and 70 PRD were 

not significantly affected by stocking densities ( a=0.05) in both growing seasons at site 

two. 

LAI, Density, and Growth Relationship 

All-sided LAI and its relationship to stand density and annual stand growth was 

analyzed independently by site and growing season and by combining data from the two 

growing seasons and sites. Analyses of pooled data from the two sites were based on 

annual means of the treatments. Independent and pooled growing seasons analyses at 

each site were based on observations from each replicate plot. Both annual net and 

survivor growth were examined for relationships with LAI. 

LAI was highly related to stand basal area at both sites. Pooled data from the two 

growing seasons reflected the results of independent annual estimates. Both sites 

indicated a linear relationship, but site two exhibited a stronger relationship than site one 

according to coefficients of determination (R2=0.67 and 0.36, respectively) (Figures 16 

and 17). However, the strongest linear relationship was obtained when mean treatment 

estimations of LAI and stand density were pooled (R2=0.76) from the two sites and 

growing seasons (figure 18). 

There was a quadratic relationship between LAI and net annual stand basal area 

growth the fourth and fifth year after thinning at site one and for the combined growing 

seasons at site two. The trend showed that net growth increased to a point, decreasing 
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thereafter. Maximum annual stand basal area growth was found with different levels of 

LAI at each site. At site one maximum net annual stand basal area growth four and five 

growing seasons after thinning was related to LAI of 7.5 m2m-2, approximately. These 

relationships were supported by coefficients of determination of 0.49 and 0.58, 

respectively (figures No. 19 and 20). Because linear and quadratic tendencies were 

estimated in site two, the optimum growth related to LAI was not defined; however, the 

general trend was to decrease annual net stand basal area growth as LAI increased 

(figures No. 21). Since LAI was related to stand density, it was assumed that mortality 

occurred more frequently in stands with high LAI reducing net annual stand basal area 

growth as LAI increased. 

A lack of a significant relationship was found between LAI and survivor stand 

basal area growth either for independent or pooled analyses in site one and two. The 

exception was a weak negative relationship observed in 1994 growing season in site one. 

LAI explained 21 % of the stand annual survivor basal area growth variability in this 

growing seasons. In general, survivor stand annual basal area growth was maintained 

unchanged in spite of the increase in total LAI. 

Stand Density Effects on Net GEi AI 

Net GELAI was not significantly different between treatments, except for 1994 

growing season (table 12) at site one in which the control was significantly lower. At site 

two, the two year mean GELAI of 70 PRD treatment was significantly higher than the 50 

PRD treatment and control. The lowest net GELA1 was found in unthinned plots for both 
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Table 12. Mean net GELA1 (m3ha-1 of stemwood volume per a unit of LAI) by site, year, 
and treatment. 

SITE TREATMENT GROWING SEASONS MEAN 

1993 1994 

50PRD 2.19a1 1.22a 1.71a 

ONE 70PRD 2.47a 1.49a 1.98a 

CONTROL 1.78a 0.83b 1.30a 

50PRD 1.72a 1.67a 1.70a 

TWO 70PRD 2.16a 2.00a 2.08b 

CONTROL 1.67a 1.26a 1.46a 
1 Columns followed by different letter are significant different according to Ryan-Einot-Gabriel-Welsch 

multiple F mean test (SAS Institute Inc. 1988)(a=0.05). 
Mean comparisons were made independently by site. 
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growing seasons and sites. The range in net GELA1 was between 0.83 and 2.47 m3ha-1 of 

stemwood volume per each m2m-2 of LAI. In spite of the lack of differences, net annual 

GELA1 observed at the control was about two thirds of that at the 70 PRD at both sites. 

Net GELA1 means were not different between sites at each treatment level. 

LAI, Density, and GE!.A! Relationship 

Net stand stemwood volume GELAI was significantly related to LAI. When 

mortality is subtracted from survivor stand growth, stand stemwood net GELAI is very low 

at high LAI. In particular, net GELAI analyses in site one showed linear and curvilinear 

tendencies in 1993 and 1994 growing seasons, respectively (figures 22 and 23). The 

coefficients of determination were 0.61 and 0.51 for each growing season. Analyses of 

site two showed a negative linear trend in both growing seasons (figures 24 and 25). The 

coefficients of determination explained 26% and 53% of the net stand stemwood GELAI 

variability, respectively. Combined data from both years reflected the negative linear 

tendency of independent growing season analyses ( figure 26). 

Previously, LAI was used as a surrogate of stand density, but it is also important 

to relate density, measured as basal area, directly to net GELAI. In 1993, the trend was 

undefined at site one, but in 1994, it showed a significant quadratic tendency. A lack of 

relationship between stand basal area and GELAI was observed when combined data from 
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site one was analyzed. Site two showed significant curvilinear tendencies independently 

for each growing season. The annual curvilinear tendencies were reflected when data 

from combined years was used. The general tendency was an increase to a point and then 

a decline in net GELA1 as stand density increased (figure 27). Maximum net GELA1 

occurred approximately at a basal area of 30 m2ha·1, after that density level was reached 

net GELAI declined. A decline in stemwood GELA1 as density increases probably indicates 

that most of the carbohydrates are allocated to priority uses by the trees to survive and 

that much photosynthate production is consumed by respiration. 
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CHAPTER IV 

DISCUSION 

Study I. Needle Biomass 

Needlefall and Needle Biomass Patterns 

General patterns of shortleaf pine seasonal needlefall agreed with previous 

research in a variety of species. Regardless of species, origin, age, site, and 

environmental differences, maximum needlefall always occurs in the fall season in the 

northern Hemisphere, although the starting time may vary because of the effect of 

climatic conditions. Crosby (1961) reported that about 60% of shortleaf pine litter 

accumulated in the fall season in 19 to 76 year-old stands in southeast Missouri. The 

remainder was equally distributed between winter, spring and summer seasons. 

Similarly, Dalla-tea and Jokela (1991), Lockaby and Taylor-Boyd (1986), and Van Lear 

and Goebel (1976) reported that most loblolly pine leaf fall occurred from October 

through December. Dalla-tea and Jokela (1991) estimated that between 50% and 70% of 

needlefall accumulated within the fall season. These patterns were very similar to those 

reported in our study in which about 60% of annual needlefall occurred in the fall. 

Regardless of similar seasonal patterns, shortleaf pine needlefall quantity varied 

from year to year. Needlefall was variable within treatments through the study period, 
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although annual needlefall changes were synchronized between treatments (see figures 1 

and 2 and tables 6 and 7). From previous studies, it could be hypothesized that annual 

leaf production is partially related to differences in weather conditions such as 

precipitation. However, no relationship was observed between total annual and growing 

season precipitation and needle production in this study. Growing season precipitation 

and water balance seemed to be related to the next year's leaf production (see table 13). 

The above normal precipitation and surplus water balance present during the study period 

may have resulted in water balance not being the controlling factor in needle production. 

Under more severe water deficits, Hennessey et al. ( 1992) found that needle production 

of loblolly pine was related to water balance. Grier and Running ( 1977) indicated that 

leaf area increases as precipitation increases, but that the factors regulating leaf 

production are more complex than a simple relation to annual precipitation. Leaf biomass 

like leaf area has an upper production limit; therefore, beyond some precipitation limit 

additional increases in leaf area would not be expected. 

Normally, thinning improves nutrients, moisture, and light availability, and these 

attributes are related to needlefall and needle production. For instance, fertilized and 

irrigated sites had improved needle formation and delayed monthly peak needlefall 

(Hennessey et al. 1992, Raison et al. 1992, and Snowdon and Benson 1992). Miller et al. 

(1976) found that corsican pine needlefall was delayed the first year after nitrogen 

application, but increased the following year. Dalla-tea and Jokela (1991) found that the 

interaction between fertilization and weed control improved needlefall of 6 year-old 

loblolly and slash pine about 1050% and 400%, respectively. 
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Table 13. Needle production in relation to precipitation and water balance. 

GROWING NEEDLE PRODUCTION PRECIPITATION WATER BALANCE 
SEASON (k~ha·1~f 1) (mm)1 (mm) 

.I:(PREC - EV AP) 
(SITE ONE) (SITE TWO) (MAR-OCT) (Mar-Oct) 

1989 4376 -0- 836 -28 

1990 3741 3988 1130 262 

1991 4840 4987 937 25 

1992 3972 4394 1043 224 

1993 4166 4211 924 -8 

1994 3512 4913 707 -247 
1 Precipitation and pan-evaporation w~s taken from NOAA (1989-1994). 
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Stand needlefall in unthinned stands increases with stand age until needle 

production is limited by site resources. For instance, the highest loblolly pine (Dalla-tea 

and Jokela 1991) and slash pine (Gholz et al. 1985) needlefall was approached at age 15, 

approximately. Thinned stands also tend to reach maximum annual needle production 

through time. In this study, shortleaf pine showed a variable annual needle production, 

but the highest occurred in dense unthinned plots and thinned plots tended to approach 

the levels of the unthinned plots. However, after six grnwing season, needle production 

of unthinned plots was not attained by any thinned plots at each site. Comparatively, the 

highest annual shortleaf pine needle production (4987 kgha-1yf1) was similar to slash 

pine (4453 kgha-1yf1) and longleaf pine (4884 kgha-1yr-1), higher than radiata pine (3200 

kgha-1yf1) and lower than loblolly pine (5800 kgha-1yf1)(Cromer et al. 1984, Gholz et al. 

1985, Gresham 1982, Hennessey et al. 1992, and Trofymow et al. 1991). 

Since stand annual needle biomass was estimated directly from annual needlefall, 

trends were very similar. Absolute values showed variable annual needle biomass 

patterns over the study period, but relative estimations showed a clear tendency to reach 

those amounts produced in unthinned plots over time (see table No. 5). By the end of the 

study period, the thinned plots had not reached the levels of the control plots. The 7678 

to 9381 kgha-1yf1 range in stand needle biomass observed in the unthinned control plots 

is near the range reported for other conifer species such as lodgepole pine, Douglas-fir, 

loblolly pine, and radiata pine (Keyes and Grier 1981, Mead et al. 1984, and Pearson et 

al. 1984). 
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Stand Needle Biomass and Density Relationship 

Percent relative density may provide a better method of evaluating stocking levels 

than basal area, the most commonly used parameter. Since basal area includes the cross 

sectional area of physiological dead heartwood , it has less direct biological significance 

(Smith et al. 1997). Percent relative density incorporates stand basal area, number of 

trees and diameter, providing a better indication of site occupancy by trees and allows 

comparison of certain stand attributes with established norms (Wittwer et al. 1996). 

Stand needle biomass clearly reflected stand basal area and/or percent relative 

density. There was a strong linear relationship between them, although differences were 

found between sites. Site two (high quality site) exhibited a stronger correlation than site 

one (low quality site) (R2=0.91 vs. R2=0.64). This was attributed to higher annual needle 

biomass variability in site one. Needle biomass increased as stand or stocking density 

increased up to 45 m2ha-1 or 150 PRO, respectively. Although an asymptote showing the 

maximum stand needle biomass-stand density relationship point was expected, none was 

found in this study. Assuming that annual needlefall corresponded to annual needle 

production (Hennessey et al. 1992), annual stand needle production should increase with 

stand basal area until it reaches a maximum and then stand needle production should 

level off as overstocking develops. Nutrients, water, and light are insufficient to 

supporting needle growth beyond a certain maximum level. Also, as an acclimation 

process, self-shading at low crown positions may reduce needle dry weight, accelerating 

needlefall and reducing needle development (Magnussen et al. 1986). 
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Stand basal area, sapwood area, and diameter have been found to be strongly 

related to stand leaf biomass in several tree species (Blake et al. 1991, Gholz 1982, 

Hennessey et al. 1992, Loomis et al. 1966, and Wang et al. 1995). The sapwood area

stand needle biomass relationship shows stronger correlation and has a physiological 

explanation. Sapwood area is expected to be strongly correlated with foliar weight 

because water transport to the canopy is through the sapwood. Grier and Waring (1974) 

found that estimation of foliage from diameter at breast height is reliable for stands with 

small or relatively young trees, but not for irregular old stands: They found that leaf 

biomass in Douglas-fir, noble fir, and ponderosa pine was more closely related to 

sapwood area than diameter (R2=0.97, 0.98, and 0.97, respectively). Similar results were 

found in Scots pine by Whitehead (1978). Long et al. (1981) added that a linear 

relationship occurred between sapwood cross-sectional area at a given height and the 

needle biomass above that height in Douglas-fir trees. Marchand (1984) found similar 

results in balsam-fir and red spruce when he related sapwood cross-sectional area at the 

base of the live crown to needle biomass. 

Stand Needle Biomass·and Annual Growth Relationship 

Stand needle biomass was significantly related (p-value=0.05) to stand growth. 

However, the trends differed when net or survivor growth were related to stand needle 

biomass. Net annual stand growth increased to a maximum and then decreased as stand 

needle biomass increased. An increase in stand basal area with needle biomass 

represented the influence of radiation interception by leaf biomass while the decrease was 
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attributed to the effect of tree mortality due to stressed environmental site resources (Vose 

and Allen 1988). High annual survivor growth of stands at high stand needle biomass 

was expected because of the greater number of trees. However, light could have 

influenced annual tree growth rate reduction in dense stands and improvement in thinned 

stands maintaining similar stand growth rates at all treatment levels (Waring et al. 1981). 

Since water balance (precipitation minus evaporation) was above normal, moisture 

availability may not have been considered a limiting factor in stand biomass production. 

Annual stand survivor growth remained unaltered in the range of stand needle biomass 

studied. Large amounts of stand needle biomass contribute little improvement in 

photosynthetically active radiation absorption. In heavily stocked stands, canopy 

structure is very dense and light can not penetrate to lower crown positions. Thinning 

improves canopy structure by reduction of clumpliness and foliage reflectance and 

transmitance (Dalla-tea and Jokela 1991). Net, and survivor periodic annual growth were 

similar among thinned stands, but net growth was substantially less than survivor growth 

in unthinned stands. 

Stand needle biomass explained similar proportion of variation in growth when it 

was related to stand basal area growth and percent relative density. This was expected 

since stand basal area was strongly correlated with percent relative density. Values below 

zero are attributed to high occurrence of mortality in highly dense stands. 
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Study Il. Leaf Area Index 

LAI and Stand Density Relationship 

LAI values in shortleaf pine stands were dependent on stand density and site, 

ranging from 7.2 m2·m-2 to 10.2 m2m-2. Low LAI corresponded to a low density and 

quality site, and high LAI values were related to overstocked stands. The lowest LAI in 

site one may be due to poorer environmental site conditions. In support of this, Grier and 

Running (1977) found that LAI is linearly related to site water balance. Brix (1983) 

reported that thinning and fertilization increased tree foliage in Douglas-fir. Similarly, 

Binkley and Reid (1984) found that fertilization increased stand leaf area in Douglas -fir. 

In addition, Vose and Allen ( 1988) said that stand LAI increased with fertilization in 

nitrogen deficient sites, and suggested that maximum LAI is restricted by moisture 

availability in loblolly pine sites. Therefore, LAI may increase only if the managed stands 

have less LAI than that allowed by moisture availability. Similar findings were reported 

by Colbert et al. (1990), and they added that the interaction of fertilization and weed 

control improved LAI development ofloblolly and slash pine by 1210% and 290%, 

respectively. Lastly, Binkley et al. (1995) found that LAI and stand growth is restricted in 

old stands of lodgepole pine because of a decline in nutrient supply. 

To compare all-sided LAI to projected LAI, all-sided LAI of shortleaf pine may be 

divided by a factor of 2.6 as indicated by Vose and Allen ( 1988) in loblolly pine. In 

general, all-sided LAI values estimated for shortleaf pine under site conditions in this 

study were comparable to several species. For instance, Vose ( 1987) reported projected 
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LAI range of 2.4 to 4.29 m2m-2 (all-sided LAl=6.24 to 11.15 m2m-2) in loblolly pine. 

• °Colbert et al. (1990) estimated all-sided LAI as low as 1.2 and 1.9 m2m-2 and as high as 

15.7 and 7.4 m2m-2 in loblolly and slash pine, respectively. In addition, Smith et al. 

(1991) reported projected LAI for lodgepole pine between 2.66 to 4.22 m2m-2 (all-sided 

LAI=6.92 to 10.97 m2m-2). Similar to our study, these LAI were related to low and high 

density stands, respectively. Long and Smith (1992) reported a LAI range of 1.23 to 6.53 

m2m-2 in lodgepole pine. A similar LAI range was reported by Penner and Deblonde 

(1996) for jack and red pines. Magnussen et al. (1986) estimated a maximum projected 

LAI of 5.0 m2m-2 for jack pine (all-sided LAI=13 m2m-2). Also, Nel and Wessman 

(1993), estimating LAI using canopy transmitance models, found similar values in a 

forest dominated by Engelmann spruce, subalpine fir, Douglas-fir and aspen. 

Although stand basal area was well correlated to stand LAI, sapwood area 

appears to be better related to LAI. Whitehead (1978) estimated a linear relationship 

between cross sectional area of sapwood and foliage area in Scots pine. The coefficient 

of determination indicated that sapwood basal area explained 97% of the variability in 

foliage production. Marchard (1984) found that sapwood area had a high degree of 

correlation with LAI in balsam fir (R2=0.96) and red spruce (R2=0.93). In addition, 

Blanche et al. (1985) determined that sapwood cross sectional area at the base of the 

crown is better related to leaf area than that estimated at breast height and from diameter 

at breast height. Although, a variety of different regression models were tested, the linear 

model appeared to adequately predict leaf area in loblolly pine. 
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LAI and Stand Growth Relationship 

LAI was significantly curvilinearly related to net stand basal area growth. Waring 

et al. (1981) described the same relationship in naturally established Douglas-fir stands. 

He estimated a maximum net basal area growth at projected LAI of 6 m2m·2. They agreed 

that net, but not gross, production falls to zero or below in very high LAI. Magnussen et 

al. (1986) mentioned that a positive linear relationship occurs only in semistocked stands 

when competition for environmental site conditions is favorable for developing full 

productivity and leaf area. In addition, Vose and Allen ( 1988) found that annual volume 

growth was linearly related to LAI in semistocked loblolly stands, but fully stocked 

loblolly stand approached an asymptote at projected LAI equal to 3.5 m2m·2• Other 

studies have described a positive linear tendency, but most of these studies have been 

based on destructive and individual tree measurements; therefore, mortality has been 

neglected as a component of the stand productivity (Binkley and Reid 1984, Lavigne 

1988, Long and Smith 1992, and Penner and Deblonde 1996). The lack of relationship 

between survivor growth and LAI confirmed that mortality is a very important stand 

variable to take into account when overstocked stands are analyzed. 

Mean annual growth of individual trees was higher in thinned than in control 

plots. The decline in individual tree growth in overstocked stands is not only a function 

of associated attributes of LAI such as light interception and shading, but is also 

associated with stressed environmental site resources due to high stand density (Colbert et 

al. 1990 and Vose and Allen 1988). Waring et al. (1981) mentioned that not only leaf 

area appears to have a direct effect on tree growth, but also other factors such as site 
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moisture and nutrients are expected to interact with light interception and the shading 

effect of the canopy. Generally, dry matter production increases when intercepted 

photosynthetically active radiation increases, but stressed environments and structural 

canopy properties may influence light use efficiency (Dalla-tea and Jokela 1991). In 

addition, gains in intercepted radiation may be offset by higher maintenance respiration 

and water use by high stand LAI (Vose and Allen 1988). Also, increases in respiratory 

losses and shading conditions may outweigh gains in photosynthesis, thus increased 

production in overstocked stands with high LAI is not assessed (Magnussen et al. 1986). 

LAI, Stand Density, and Growth Efficiency 

Growth efficiency is an index that measures the amount of stemwood produced 

per unit leaf area or biomass. It accounts for the influences of carbon allocation to 

stemwood and photosynthetic efficiency and is a tool for evaluating silvicultural 

experiments (Binkley and Reid 1984, Brix 1983, and Stoneman and Whitford 1995). Net 

GE (measured as GENs or GELA1) was similar between the thinned treatments. Therefore, 

stand net GE was little affected by stand densities or LAI in the range of 15 to 30 m2ha·1 

or 7 to 9 m2m·2, respectively. In contrast, although not significantly different in some 

growing seasons, net GE in unthinned plots was lower because of mortality. On average, 

tree GE was higher in thinned stands, suggesting that tree carbon allocation and 

photosynthetic efficiency was higher in thinned plots. This seems logical since thinning 

removes less vigorous and efficient trees. Also, sufficient nutrients and moisture allow 
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trees to develop in stemwood. When the relative carbon demands by roots and leaves are 

low, stemwood GE is normally high (Waring and Schlesinger 1985 and Brix 1983). 

Net GE was related to LAI and stand density. In general, GENB increased to a 

maximum and then decreased and GELAI, after four growing seasons, decreased as stand 

density and LAI increased. Stoneman and Whitford (1995), Binkley and Reid (1984), 

and Waring et al. ( 1981) found a decrease in stand GE as density increased. Similar to 

our results Binkley and Reid (1984) found that stemwood GE-LAI correlation was lower 

than that of stemwood growth-LAI. Brix (1983) explained that an increase in foliage 

causes a decrease in light intensity in the lower crown position and this is a major reason 

for low GE in overstocked stands. Thinning improves needle production in the lower 

parts of the canopy and in combination with increased radiation interception tree growth 

and GE are improved. However, as the stands develop over time, the canopy foliage 

became dense decreasing light interception and stand growth and GE are reduced . 

Therefore, GE is dependent on foliage amount and photosynthetic efficiency of the 

leaves. According to Lavigne ( 1988), the non-productive biomass surface to foliage ratio 

may explain allocation patterns. Higher surface:foliage ratios consume more energy from 

respiration to maintain living tissues, reducing synthesis of new tissue. In the unthinned 

stands photosyntate production may be offset by maintainance respiration. In addition, 

Lavigne (1988) claimed that photosynthetic production was higher in unthinned balsam

fir plots, but at the tree level phosynthetic production was higher in thinned stands. In 

general, reduction of stand survivor GE may be due to increased shading, respiration, or 

stress in the environmental site resources (Colbert et al. 1990, Law et al. 1992, and Vose 

and Allen 1988). 
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From independent annual analyses, it is inferred that after four growing seasons 

LAI has reached its maximum positive influence in stemwood volume GE. Therefore, a 

silvicultural implication is to thin the stands below a basal area of 25 m2ha-1 or LAI below 

7 m2m-2 to maintain a positive stemwood growth. Ecophysiological attributes are 

optimized to maximize stand growth under the densities described above at these 

particular sites. 
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CHAPTERV 

CONCLUSION AND MANAGEMENT IMPLICATIONS 

In summary, needlefall of shortleaf pine (Pinus echinata Mill.) followed a typical 

seasonal pattern. Normally, around 60% of the leaf fall occurred during the fall season. 

The remainder was distributed homogeneously during the remaining months. Annual 

needlefall was a function of stand stocking densities. It increased as stand stocking 

density increased. However, annual amounts by treatments did not increase consistently 

over time. 

Annual needle biomass was affected by stand density, with higher stocking 

densities supporting higher needle biomass. Relative needle biomass amounts for thinned 

treatments showed that needle production tended to approach needle biomass amounts of 

unthinned plots as the study period progressed. Needle biomass was not significantly 

different between sites. 

Although percent relative density may provide a better indication of site 

occupancy than basal area, it did not improve the relationship with stand needle biomass 

in this study. Both stand basal area and percent relative density were linearly related to 

stand needle biomass. Annual net basal area growth was related to needle biomass by a 

curvilinear trend. Thinned stands exhibited similar annual growth within a leaf biomass 

range of 5,500 to 8,000 kgha-1, but growth of unthinned stand abruptly decreased above 
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8000 kgha-1• Net GENB was curvilinearly related to needle biomass. Generaly, net GENB 

increased and then decreased as stand density increased. 

All-sided LAI ranged between 7.2 to 10.2 m2m-2, respectively. LAI among 

thinned levels was not significantly different, but LAI was different from unthinned 

treatments. LAI increased as stand density increased. The LAI-stand net annual basal 

area growth relationship was expressed by a curvilinear trend. All-sided LAI was 

negatively related to net GELAI· Mean net GELA1 was lower in unthinned plots, but 

differences were only significant in the 1994 growing season. 

Needle biomass, LAI, and GE are three important variables that help to explain 

and determine potential stand productivity. For instance, from this study we can 

determine that the best growth is achieved when LAI is not above 7 .5 m2m-2 and the 

highest GE is found within stand density ranges of 25 to 30 m2ha-1. At this density leaf 

canopy optimize environmental site resources to produce wood. Above that point 

respiration maintenance overshadows photosynthetic gains. In addition, the highest 

annual basal area growth and GE occurred within the range suggested by Rogers' (1983) 

stocking chart for shortleaf pine. Optimum GE occurred at a LAI range of 7 to 7 .5 m2m-2 

approximately, corresponding to stocking density ranges of 60% to 100% on Rogers' 

stocking charts. After that point, although stand needle biomass and LAI still increased, 

gross annual basal area growth and growth efficiency were constant because of the high 

number of trees, but at the individual tree level it decreased. Analyses of stand density 

and stand growth to LAI and GE relationships are important to determine maximum 

interaction of site environmental resources such as nutrients, moisture, and light. 

Thinning helps to release site environmental stresses by opening the canopy and 
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redistributing site resources. Also, thinning reduces shade effects due to canopy structure 

reducing canopy respiration and water use by high LAI. 

Undoubtedly, these three variables (stand needle biomass, LAI, and GE) are 

related to ecophysiological plant attributes such as light interception, photosynthesis, 

respiration, and transpiration and they play an important role in tree growth. Mortality 

occurs in overstocked stands as a consequence of stressed environmental site conditions 

that affect the balance between light interception, photosynthesis, respiration, and 

transpiration. Stand needle biomass, LAI, and GE reflected these effects on stand and 

tree growth. 
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APPENDIX A. Number of two-needle, three-needle fascicles, and ratio of three-needle 
to two-needle fascicles in subsamples of pine leaf litter by treatment and 
block. 
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SITE ONE 
TWO-NEEDLE THREE-NEEDLE 

TREATMENT BLOCK FASCICLES FASCICLES RATIO 

50PRD 114 86 0.75 

70PRD 2 111 73 0.66 

CONTROL 3 67 73 1.09 

50PRD 1 110 65 0.59 

70PRD 2 95 78 0.82 

CONTROL 3 66 83 1.26 

50PRD 93 75 0.81 

70PRD 2 140 52 0.37 

CONTROL 3 185 59 0.32 

50PRD 1 240 99 0.41 

70PRD 2 155 76 0.49 

CONTROL 3 202 74 0.37 
SITE TWO 

50PRD 1 175 92 0.53 

70PRD 2 129 67 0.52 

CONTROL 3 58 25 0.43 

50PRD 1 72 22 0.31 

70PRD 2 66 39 0.59 

CONTROL 3 63 45 0.71 

50PRD 1 118 70 0.59 

70PRD 2 85 44 0.42 

CONTROL 3 80 44 0.55 

50PRD 1 138 77 0.56 

70PRD 2 121 83 0.68 

CONTROL 3 157 118 0.75 

MEAN 0.61 
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