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CHAPTER I 

INTRODUCTION 

Aquaculture is the rearing of aquatic organisms under 

controlled conditions. Pond culture can be traced to fifth-century 

China where carp and goldfish were kept for their aesthetic appeal 

(McLarney 1984). Aquaculture spread from China to Korea, then to 

Japan and Southeast Asia (McLarney 1984). Japan's extensive 

coastline allowed aquaculture to expand to include mariculture. 

Estuarine and cage culture were contributions of Southeast Asia to 

aquaculture 

Aquaculture in Europe developed in the Middle Ages, 

probably independently of Asia (Huet 1970). Contributions of 

European aquaculture included controlled spawning, application of 

the scientific method to fish-culture research, and culture of 

salmonids. The latter developed in response to concerns of 

sportfishermen that natural trout populations were declining. 

Aquaculture was introduced to the United States in the mid

nineteenth century, also in response to the perceived depletion of 

game fish stocks (McLarney 1984). 

Interest in freshwater fish farming in the United States has 

grown tremendously during the last four decades. This is due, in 

part, to greater demands for animal protein and the inability of 

livestock husbandrymen and commercial fishermen to keep pace 

with this increase (Smitherman et al. 1978). For example, in 1963 
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only 960 hectares were devoted to production of channel catfish, 

Ictalurus vunctatus, (Meyer et al. 1973). That figure had grown to 

29,895 hectares by 1982 (USDA 1982) and >60,729 hectares in 

1990 (McCall 1990). 

The majority of aquaculture throughout the world is 

conducted in ponds (Stickney 1979). Requirements for pond 

culture are soil with good water-holding capacity and an abundant 

and readily available water supply of suitable quality to support 

. aquacultural species of choice. If either of those requirements can 

not be met or the regional climate is such that pond aquaculture is 

not feasible, a closed, recirculating, water-reuse system may be a 

viable and energy efficient alternative (Lucchetti and Gray 1988; 

Muir 1982 Stickney 1979). 
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CHAPTER II 

LITERATURE REVIEW 

Collins (1976) characterized intensive aquaculture as culture in 

a system that required some environmental control, where fish were 

stocked at densities higher than the natural carrying capacity of the 

system and where all feed was provided from an outside source. One 

of the problems inherent with intensive aquacultural systems is 

accumulation of organic wastes (Bardach et al. 1972), particularly 

by-products of nitrogen metabolism (Martin 1978). Ammonia is the 

principal excretory product of fish that affects health, growth, and 

the number of fish that can be cultured in a recirculating or water

reuse system (Lucchetti and Gray 1988). Unionized ammonia (NH3) 

is highly toxic to fish and must be removed from the system. 

Sublethal concentrations of ammonia and nitrite can reduce growth, 

damage gills, and increase susceptibility of fish to disease (Lucchetti 

and Gray 1988). 

Nitrification oxidizes ammonia, first to nitrite, which is highly 

toxic to fish, then to nitrate, which is relatively harmless (Knepp and 

Arkin 1973). The nitrifying bacteria Nitrosomonas oxidize ammonia 

to nitrite, and Nitrobacter oxidize nitrite to nitrate. Uncertainty in 

establishing and maintaining colonies of nitrifying bactetj.a are major 

problems in aquaria (Spotte 1979). The oxidation process usually · 

involves a lag time of 33-56 days for nitrifying bacteria to reach 

equilibrium (Lucchetti and Gray 1988, Spotte 1979). Denitrification, 

usually by volatilization, removes nitrates from the system (Spotte 
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1979). Nitrate removal is necessary because "nitrate respiration," or 

dissimilation, can reduce nitrates to lower oxidation states; i.e., nitrite 

and gaseous nitrogen (Spotte 1979) in localized anaerobic areas of 

the filtering system (Muir 1982). 

Hydroponics is the cultivation of plants, including normally 

terrestrial forms, in an aqueous nutrient solution rather than soil. 

Hydroponics apparently developed at about the same time as 

aquaculture. The "Hanging Gardens" of Babylon and the "Floating 

Gardens" of the Aztecs and Chinese were examples of early 

hydroponic culture (Resh 1985). Modem hydroponics developed in 

Europe from experiments to determine composition of plants and 

plant growth substances (Laurie 1940). By the mid-nineteenth 

century, researchers had demonstrated that plants could be grown in 

an inert medium moistened with a water solution containing certain 

minerals (Matlin 1940). 

In 1929, W.F. Gericke conducted experiments with vegetables 

grown in nutrient solutions without soil. Because nutrients in the 

growth solutions could be controlled closely and plant roots were in 

constant contact with the nutrient solution, he experienced unusually 

high yields of vegetables (Turner and Henry 1939). Application of 

Gericke's findings led to food production for troops stationed on 

nonarable islands in the Pacific during World War II, to greenhouse 

culture, and to highly specialized culture in atomic submarines (Resh 

1985). 

Cultivation of plants in nutrient solutions is more efficient than 

soil culture (Douglas 1975). Labor, equipment, and energy 

requirements for soil preparation are either eliminated or drastically 
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reduced with a hydroponic system. Its principal advantages, 

however, are high yields of crops, utility in all climates, and 

suitability on nonarable lands (Douglas 1975). Many countries have 

developed large, automated, hydroponic greenhouses to produce 

vegetables throughout the year. The majority of hydroponics 

systems today use inorganic fertilizers in their nutrient solutions. 

However, use of organic nutrient solutions is possible when 

hydroponics is combined with aquaculture (McLarney 1984). 

The few joint aquaculture-hydroponics ventures to date were 

attempted primarily to determine if hydroponics could act as a filter 

for a closed, recirculating aquacultural system. Lewis et al. (1978), 

McLarney (1984), and Rakocy (1984) used aggregate culture, settling 

basins (for solid waste removal), and biological filters. Aggregate 

culture uses gravel of different sizes as the growing medium. Gravel 

is usually arranged in layers in a tank or trough with the larger 

particles on the bottom and smaller ones on top. Lewis et al. (1978) 

and Rakocy (1984) found that the hydroponic component effectively 

filtered enough nutrients from the aquaculture component to 

maintain water quality and promote good fish growth. 

For optimum growth, channel catfish require a nutritionally 

complete ration, water temperature close to 30 C and dissolved 

oxygen levels >5 mg/L (Dupree and Huner 1984). Water volumes to 

adequately maintain organic waste concentrations below toxic levels 

also are essential. Alternatives to the volumetric water requirement 

are flushing with fresh water and filtering. In a closed system, 

filtering is preferred because it is usually more economical than 

using pumped water for flushing, depending on the source of the 
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pumped water (Stickney 1979). As an added benefit, fish wastes can 

supply the majority of nutrients required for plant growth 

(McLarney 1984). Plants require conditions for growth comparable 

with those for channel catfish. Tomatoes, peppers, lettuce, spinach, 

and mint grow well in a closed aquaculture system (Kleinholz et al. 

1985). 

Nutrient-film hydroponics use plants grown directly on an 

impermeable surf ace to which a thin film of water and plant 

nutrients is continuously applied. Root production on this 

impermeable surface results in a large mass of roots and 

accumulated matter that act as a filter. Plant top-growth also results 

in nutrient uptake. Increased root growth accompanying plant top

growth and accumulation of suspended solids in the roots should 

cause a gradual expansion of the filter (Jewell et al 1983). 

Kleinholz et al. (1985) devised a closed aquaculture

hydroponics system that maximized functions of each of the 

components of the system and thereby reduced the number of 

components needed, which made it more economically feasible than 

previous versions. The system (referred to here as the "Kleinholz 

system") combines nutrient-film hydroponics with intensive tank 

culture. This design solved the problem of a build-up of organic 

solids and also eliminated the need for separate biofiltration. The 

prototype for the Kleinholz system consisted of a 1.7-m2 hydroponic 

rack mounted over a 1,400-1 fiberglass tank. Nutrient solution was 

provided to the hydroponic rack by airlift and returned to the fish 

culture tank by gravity. The airlift and increased surface area of the 

hydroponic rack eliminated the need for additional aeration. The 
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thin (1.3 cm) layer of water on the hydroponic rack adequately 

supplied water to the plant roots, prevented any anaerobic areas 

from forming in root masses, and allowed roots to trap organic solids. 

Kleinholz et al. (1985) conducted experiments with treatments 

of 50 channel catfish and 5 tilapia Oreochromis aurea, 50 catfish, 5 

tilapia, and 48 pepper plants, and 150 catfish, 15 tilapia, and 48 

pepper plants. Those experiments suggested that the hydroponic 

component needed to be larger with more plants to allow higher 

stocking rates of fish. Higher densities of fish were necessary in this 

system to break down territorial behavior (Stickney 1979) and offset 

high costs of construction and energy use (Muir 1982). 

Several questions have to be answered to fully evaluate the 

Kleinholz system. How will the controlled environment in the 

greenhouse affect growth of the fish? Will fish grow at the same rate 

in the system as they would in a pond? Will the feed conversion 

ratio be the same in the system as in a pond? How many fish can be 

reared in the system without plants? Do fish wastes contain enough 

essential plant nutrients to adequately sustain plant growth? Will 

enough ammonia be converted to nitrate and subsequently be 

removed from the system to increase carrying capacity of fish in the 

system? How many fish and plants can be cultured in the system 

before overloading it? 

My study examined components and configuration of the 

Kleinholz system with the intent of identifying critical parameters 

and procedures, and developing a model, with which a recirculating 

aquaculture-hydroponics system can be evaluated. This study was 

designed to: (1) quantify fish production and determine if production 
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rates were enhanced by the hydroponic component; (2) assess effect 

of the hydroponic component on water quality; (3) determine if 

nitrification and nitrogen removal were adequate to permit stocking 

rates high enough to make this system a viable production venture 

for fish farmers; and (4) determine optimum ratios of plants to fish 

in the system. 

My study consisted of two experiments. In the first 

experiment, numbers of fish were kept constant and the number of 

plants were varied among treatments. .• In the second experiment, 

numbers of fish were varied and numbers of plant~ were kept 

constant. Analysis of data from those experiments should suggest an 

optimum ratio of fish and plants that the system could support. Null 

hypotheses were: (1) there were no differences in fish production 

among treatments with varying plant densities; (2) there were no 

differences in water quality among treatments with varying plant 

densities; (3) ammonia removal through nitrification and subsequent 

uptake by plants were not sufficient to allow higher stocking rates of 

fish in treatments with higher numbers of plants; and ( 4) there was 

no relationship between numbers of fish and plants that the system 

can sustain. 
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CHAPTER III 

METHODS 

Each experiment was comprised of three treatments. Effects of 

different stocking rates of channel catfish and plants in the system 

were determined by comparing mean weight gain of the fish in 

grams/fish/120 days. Concentrations of dissolved oxygen (DO), 

ammonia, and nitrite, which are affected by the density of fish in the 

system and are critical to survival and growth of catfish, were 

monitored. Comparison of plant and fruit production, turbidity, and 

chemical oxygen demand were used to test effects of different fish to 

plant ratios. Temperature, pH, and chlorine were monitored because 

of their potentially limiting effects on fish growth. Effects of the 

plants were determined by comparing differences in nitrate, 

phosphorus, and potassium levels. Iron, zinc, manganese, copper, 

boron, and molybdenum, all of which are essential for plant growth, 

were monitored to determine their availability to plants. Alkalinity, 

hardness, and calcium were used to monitor buffering capacity of the 

system. 

Nine experimental aquaculture-hydroponics units were used to 

evaluate effects of the different treatments. The nine experimental 

units were grouped in three complete blocks (Figure 1). Each block 

contained one replicate of each of three treatments. Positions of the 

treatments in the blocks were selected randomly. Each experimental 

unit consisted of a 1,400-1 tank (3 m x 0.6 m x 0.9 m, water depth 

0.8 m) with a 3.7-m2 hydroponic rack (2.4 m x 1.5 m) mounted 15 
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cm above it (Figure 2). The nutrient-film technique was used in the 

hydroponic component. Water containing plant nutrients (fish 

wastes) was supplied to the hydroponic rack from the tank by a 5-

cm airlift and was returned to the tank by gravity. 

I conducted two experiments. Stocking rates of catfish and 

plants in experiment I were: low density - 100 fish, 40 plants 

(treatment 1); high density - 100 fish, 80 plants (treatment 2); 

control - 100 fish, no plants (treatment 3). In experiment II, each 

replicate contained 40 plants; stocking rates of catfish were: control -

100 fish (the link with experiment I, treatment 1), low density - 200 

fish (treatment 2), and high density - 300 fish (treatment 3). Catfish 

used in these experiments were graded to ensure uniformity of size 

and averaged about 28 g (SE = 0.625) at stocking. 

The growth period was 120 days in each experiment. Catfish 

were fed a 36% protein complete catfish ration at 2% of the total 

weight of catfish, estimated weekly, for the 120-day growth period. 

Individual weights were recorded for all fish at the beginning and 

end of each growth period but fish were not tagged and weights 

were not linked. Weight gained and feed conversion ratios (FCR: 

weight of feed offered/weight gained) were determined at the end of 

each experiment. 

Bell peppers (Capsicum annuum) were used in the hydroponic 

component. Bell peppers have been successfully grown 

hydroponically (Kleinholz et al. 1985). Plants were started 3-4 

weeks before use in the system to ensure that they were a minimum 

of 8 cm tall and capable of absorbing nutrients. Equal plant numbers 

were maintained on all hydroponics racks in each treatment that 
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required plants. Bell peppers, fruit from the plants, were harvested 

once each month during the experiment (30, 60, 90, and 120 days), 

and mean fruit weight of the combined harvests was calculated. 

Weights of all plants were recorded at the end of each experiment. 

Concentrations of dissolved oxygen and water temperatures 

were monitored daily during each trial with a YSI model 57 

dissolved oxygen and temperature meter. Water quality parameters 

were monitored with HACH reagents and standards (HACH 

Incorporated, Loveland, Colorado). The nitrogen complex (NH3, N02 

and N03) and pH were monitored by colorimetric analysis twice each 

week with a HACH DREL 3 Spectrophotometer until the systems were 

conditioned (N03~0.01 mg/1, from Lewis et al. 1976 reporting 

molecular ammonia typically in the range of 0.005 to 0.015 ppm) 

and then weekly for the remainder of each experiment. Potassium, 

phosphorus, chlorine, sulfate, turbidity (NTU - the 

spectrophotometric equivalent of secchi disc transparency), and 

chemical oxygen demand were monitored weekly through the trials. 

The metals iron, zinc, maganese, copper, boron, and molybdenum 

were monitored bi-weekly. Alkalinity, hardness and calcium were 

measured titrimetrically. 

Critical parameters for fish in this study were dissolved 

oxygen, temperature, the nitrogen complex, pH, and chlorine (all 

water was from a municipal system) (Reynolds, 1982) Those 

parameters were monitored to determine if they contributed to 

mortality of catfish. Potassium, phosphorus, and metals were 

measured to determine their availability to the plants. 
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Differences in stocking weights of fish among treatments were 

tested using analysis of variance (ANOV A, Steel and Torrie 1960). 

Because no significant differences in stocking weights existed, 

harvest weights and mean weight gain were analyzed by ANOV A. 

Differences in water quality parameters were determined by nested 

ANOVA (SYSTAT 1992) and by analyzing treatment means with 

simple ANOVA (Steel and Torrie 1960). Mean plant weights also 

were analyzed by ANOV A. Means were compared using Fisher's 

Least Significant Differences (LSD) (SYSTAT 1992). In addition to 

statistical analyses, biological observation (visual, comparative) of 

data recorded daily was used to explain fluctuations in water quality 

parameters and fish mortality. 
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Figure 2. Diagram of an aquaculture tank with a nutrient-film hydroponic rack 
mounted above. Water is moved up to the hydroponic component by air-lift 
and drains back to the aquaculture tank by gravity. Scale: 1 cm = 0.24 m. 



CHAPTER IV 

RESULTS 

EXPERIMENT I 

Experiment I was conducted during summer 1989 and was 

terminated after 120 days. Catfish in treatment 3, block 2 were lost 

during week 13 of the experiment. Low dissolved oxygen s3.0 mg/1 

and water temperature fluctuations that week contributed to the 

mortality. 

Mean catfish gain showed treatment and block differences (p = 
0.01). Treatment 2 performed best at 80.4 grams of gain/fish with 

treatment 1 and 3 yielding 75.2 and 77.7 g, respectively. Mean 

catfish gain by block was: block 1- 83.6 g, block 2- 78.6 g and block 

3- 71.1 g (Figure 3). Survival ranged from 89% to 97% and was not 

significant among treatments (Figure 3). Feed conversion ratio 

ranged from 1.0:1 to 1.3:1 but did not differ significantly between 

treatments (Figure 3). Mean plant growth was 131.6 g in treatment 

1 (low density) and 85.5 g in treatment 2 (high density) but was not 

significant among treatments (Figure 3). Mean fruit weight· was 19.9 

g (mean fruit count = 210) in treatment 1 and 18.5 g (mean fruit 

count = 200) in treatment 2 and did not differ significantly among 

treatments. Average fruit weight per plant was 109.5 g in treatment 

1 (40 plants) and 49.8 g in treatment 2 (80 plants) and did not differ 

significantly among treatments. 
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Mean dissolved oxygen in treatment 3 (7 .0 mg/1) differed 

significantly (p < 0.01) from treatments 1 (6.5 mg/1) and 2 (6.5 mg/1). 

Mean dissolved oxygen did not differ among blocks but did show a 

significant treatment by block interaction (p = 0.01) (Figure 4). Mean 

temperature of block 2, 23.4 C, differed from block 1, 22.8 °C (p = 
0.06) and from block 3, 22.9 C (p < 0.01), but there were no among

treatment differences or block by treatment interaction (Figure 4). 

Ammonia did not differ significantly among treatments or 

blocks (Figure 5). Mean nitrite in treatment 3 was significantly 

higher than either treatment 1 or 2 at p < 0.03 (Figure 5). Mean 

nitrate was similar and ranged from 7.74 mg/I in treatment 1 to 

13.16 mg/I in treatment 3 (p = 0.01) (Figure 5). There were no 

among block differences in nitrite or nitrate. 

Alkalinity differed (p = 0.01) among treatments but not blocks 

(Figure 6). Hardness was similar with only treatments differing 

significantly (p = 0.01) (Figure 6). The pH in tanks ranged from 6.5 

to 8.9 but did not differ significantly among treatments or blocks 

(Figure 6). Calcium differed (p < 0.01) among blocks but not 

treatments (Figure 6). 

Phosphorus was higher in treatment 3 with a mean of 7 .66 

mg/1, which was significantly different from treatments 1 and 2 (p = 
0.01) (Figure 7). Potassium also showed a significant treatment 

difference (p = 0.01) with treatment 3 having the highest mean of 

14.39 mg/1. There was a significant treatment by block interaction 

(p = 0.03) (Figure 7). 

Chemical oxygen demand was different among treatments (p = 
0.01) and blocks (p = 0.03), but there was no interaction between the 
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two (Table 1 ). Turbidity differed among treatments (p = 0.01) with 

treatment 3 having the highest mean of 51.11 NTU (Table 1). 

Chlorine differed among treatments (p = 0.02) (Table 1). Sulfate 

differed among treatments (p = 0.01) and blocks (p = 0.02), and it 

exhibited treatment by block interaction (p = 0.01) (Table 1). 

Boron, molybdenum, iron, zinc, manganese, and copper were 

available in minute quantities (s 0.1 mg/1), and none differed among 

treatments or blocks (Appendix A). 

EXPERIMENT II 

Experiment II was conducted during summer 1990. Catfish in 

treatment 1 block 3 and treatment 3 block 2 were lost during week 

13 of the experiment. As in experiment I, low dissolved oxygen s 3 . 0 

mg/1 and water temperature fluctuations contributed to mortality of 

catfish. Mean catfish gain showed no significant treatment or 

block differences (Figure 8). Survival ranged from 92% to 99% and 

did not differ among treatments (Figure 8). Feed conversion ratios 

ranged from 1.1:1 to 1.3:1 but did not differ significantly among 

treatments or blocks (Figure 8). Mean plant growth days was not 

significantly different among treatments but block effects were 

greater than treatment effects (Figure 8). Mean fruit weight of 

treatment 3, 46.8 g (mean fruit count = 67), was different from 

treatments 1, 42.1 (mean fruit count = 67) and 2, 43.7 (mean fruit 

count = 89), respectively (p = 0.03) (Figure 8). Average fruit weight 

per plant was 75.5 g in treatment 1, 87,1 g in treatment 2, and 76.1 g 

in treatment 3 and did not differ significantly. 
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Mean dissolved oxygen of 7 .3 mg/1 in treatment I differed 

from treatment 2 (p < 0.01) (6.6 mg/1), and treatment 2 differed 

from treatment 3 (5.1 mg/1) at p = 0.01 (Figure 9). Dissolved oxygen 

in block 1 (6.7 mg/1) was different (p < 0.01) from blocks 2 (6.0), and 

3 (5.8 mg/1) (Figure 9). Dissolved oxygen also showed significant 

treatment by block interaction (p s 0.01) (Figure 9). There was a 

significant difference in mean temperature among treatments {p s 

0.04) and blocks (p s 0.01). Treatment 3 and block 3 were highest at 

25.5 C and 25.0 C, respectively (Figure 9). Temperature also showed 

significant treatment by block interaction (p < 0.01 ). 

Ammonia differed significantly (p < 0.01) among treatments 

and showed treatment by block interaction (p < 0.01) (Figure 10). 

Nitrite was significant among treatments (p < 0.01), and treatment 3 

had the highest mean (Figure 10). Mean nitrate also was significant 

among treatments and blocks and showed treatment block 

interaction (p < 0.01) (Figure 10). 

Alkalinity and hardness both differed significantly among 

treatments and blocks (p < 0.01) (Figure 11). Treatment by block 

interaction also was significant at p < 0.01 (Figure 11). The pH 

differed by treatment and block, and the treatment by block 

interaction was significant at p < 0.01 (Figure 12). Calcium differed 

among treatments and blocks, and the treatment by block interaction 

also was significant at p < 0.01 (Figure 12). 

Phosphorus was higher in treatment 3 (3.95 mg/1), which was 

significantly different at p < 0.1, and the treatment by block 

interaction was significant at p < 0.01 (Figure 13). Potassium showed 

a significant block difference (p < 0.01) (Figure 13). Chlorine differed 
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among treatments (p < 0.01) (Table 2). Sulfate differed among 

treatments and blocks, and it exhibited a treatment by block 

interaction (p <0.01) (Table 2). 

Chemical oxygen demand differed among treatments and 

blocks with a treatment by block interaction p < 0.01 (Table 2). 

Turbidity differed among blocks (p < 0.01) with block 2 having the 

highest mean of 33.6 NTU, and the treatment by block interaction 

was significant at p < 0.01 (Table 2). Boron, molybdenum, iron, zinc, 

manganese, and copper were present in trace amounts and were not 

significantly different among treatments or blocks (Appendix B ). 
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Table I. Mean chlorine, sulfate, chemical oxygen demand, and turbidity - Experiment · I. Chlorine 
(mg/1), sulfate (mg/1), chemical oxygen demand (mg/1), and turbidity (NTU) by treatment and 
block. Treatment 3 block 2 perished week 13. Numbers with common or no letter following are 
not significantly different. 

Treatment Block Chlorine SE Sulfate SE COD SE Turbidity SE 

Raw Data 

1 1 0.05 0.01 24.1 1.37 65.9 10.2 23.2 6.07 
1 2 0.06 0.01 23.5 1.37 62.2 10.2 21.7 6.07 
1 3 0.06 0.01 19.3 1.37 67.3 10.2 16.5 6.07 
2 1 0.07 0.01 22.7 1.37 62.3 10.2 20.7 6.07 
2 2 0.07 0.01 21.9 1.37 55.7 10.2 17 .8 6.07 
2 3 0.08 0.01 16.3 1.37 57.1 10.2 17 .3 6.07 
3 1 0.09 0.01 29.8 1.37 154.5 10.2 55.2 6.07 
3 2 
3 3 0.09 0.01 31.3 1.37 141.7 10.2 55.5 6.07 
Means 

1 0.06a 0.01 22.28 0.79 65.12a 5.89 20.43a 3.50 
2 0.07b 0.01 20.27 0.79 58.35a 5.89 18.61a 3.50 
3 0.09c 0.01 29.24 0.83 131.lOb 6.26 51.llb 3.68 

1 0.07 0.01 25.54a 0.79 94.26a 5.89 3302 3.50 
2 0.07 0.01 23.97b 0.83 71.68b 6.26 27.39 3.68 
3 0.08 0.01 22.27c 0.79 88.70a 5.89 29.45 3.50 
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Table II. Mean chlorine, sulfate, chemical oxygen demand, and turbidity - Experiment II. 
Chlorine (mg/1), sulfate (mg/1), chemical oxygen demand (mg/1), and turbidity (NTU) by treatment 
and block. Treatment 1 block 3 and treatment 3 block 2 perished week 13. Numbers with 
common or no letter following are not significantly different. 

Treatment Block Chlorine SE Sulfate SE COD SE Turbidity SE 

Raw Data 

1 1 0.07 0.01 74.3 2.54 38.1 3.6 16.9. 2.90 
1 2 0.07 0.01 63.9 2.54 74.7 3.6 42.1 2.90 
1 3 
2 1 0.08 0.01 100.9 2.54 81.4 · 3.6 35.1 2.90 
2 2 0.09 0.01 87.6 2.54 67.1 3.6 28.9 2.90 
2 3 0.10 0.01 78.5 2.54 51.4 3.6 24.8 2.90 
3 1 0.10 0.01 90.2 2.54 61.4 3.6 27.6 2.90 
3 2 
3 3 0.12 0.01 92.4 2.54 53.2 3.6 22.9 2.90 
Means 

1 0.07a 0.01 76.56a 1.56 50.97a 2.13 27.28 1.74 
2 0.09b 0.01 89.02b 1.50 66.67b 2.05 29.58 1.67 
3 O.llc 0.01 90.56b 1.56 59.60c 2.13 26.78 1.74 

1 0.08 0.01 88.46a 1.50 60.29a 2.05 26.53a 1.67 
2 0.09 0.01 80.17b 1.56 68.69b 2.13 33.62b 1.74 
3 0.10 0.01 87.57a 1.56 48.26c 2.13 23.47a 1.74 
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Figure 3. Mean catfish gain (SE) by treatment and block, survival, feed conversion ratio 
by treatment, plant growth and fruit weight grouped by treatment and block - experiment I. 
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Chapter IV 

Discussion 

EXPERIMENT I 

The first experiment was designed to answer the following 

questions. (1) How would the controlled environment in the 

greenhouse affect the growth of the fish? (2) Would fish grow at the 

same rate in the system as they would in a pond? (3) Would the 

feed conversion ratio be the same in the system as in a pond? ( 4) 

How many fish could be reared in the system without plants? (5) Did 

fish wastes contain enough essential plant nutrients to adequately 

sustain plant growth? (6) Would enough ammonia be converted to 

nitrate and be subsequently removed from the system to increase 

carrying capacity of fish in the system before overloading it? 

We were concerned primarily with the growth of catfish in this 

system. The value of plant growth was its ability to act as a biofilter 

in this system and as a secondary crop. Water quality parameters 

determine health and productivity of a system. Beem (1986) stated 

that an aggregate of water quality parameters determine the amount 

and rate of growth of any organism in such a system. This study was 

not designed to study cumulative effects of those water quality 

parameters, but they were grouped as parameters essential for, or 

detrimental to, growth of catfish and peppers. 

The high density treatment (100 catfish: 80 plants) gained an 

average of 3 g/fish more than the low density treatment (100 

33 



catfish: 40 plants) and 5 g/fish more than the control (40 catfish: no 

plants) which suggested that may have been the best ratio of fish to 

plants. That small difference in catfish growth, although significant, 

would suggest that culture conditions for the fish were consistent 

throughout experiment I despite differences in plant densities. 

Catfish growth was about 80 g/120 days, a growth rate of 375%, 

which is less than the 688% seasonal gain for fish of this size in cage 

culture reported by Beem (1986). That gain is an average of 0.67 

g/day/fish, which is also less than the mean of 2.05 g/day/fish 

reported by Lewis et al. (1978). 

The catfish were fed a 36% protein, nutritionally complete 

catfish ration daily at 2% of their estimated total weight, which was 

increased weekly. The feed conversion ratios were all uniform and 

between 1.0:1 and 1.3:1. The implication here is that the 2% feeding 

rate may not have been enough for maximum growth under those 

culture conditions. The only feed available to the catfish was that 

offered once a day six days a week. However, the amount of feed 

offered did not cause extreme deterioration of water quality as was 

reflected by levels of dissolved oxygen, ammonia, and nitrite through 

the duration of experiment I. 

Dissolved oxygen remained at acceptable levels through the 

majority of the experiment I. That implied that the system was not 

overloaded. Dissolved oxygen dropped to 1.5 mg/1 in treatment 2 

block 3 during week 13 and was associated with a temperature 

increase. The catfish in that replicate survived. 

Water temperature for the most of the 120 days was below the 

28 to 30 C required for maximum growth (Lewis et al. 1978). It 
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fluctuated continually throughout the experiment. A 5 C drop in 

temperature overnight contributed to the stress in treatment 3 block 

2 that led to total mortality in that tank. Although the growing 

season was only 120 days long, the lower temperatures may account 

for the less than ideal growth of catfish in this study. 

Unionized ammonia (NH3) was below the 96 hour LC50 of 3.1 

mg/1 (Robinette 1983) throughout experiment I. Treatment 1 block 

2 reached a maximum of 2.9 mg/1 in week 4 but was quickly 

converted to nitrite and then nitrate by bacteria in the system. The 

conditioning of experimental units before stocking allowed bacterial 

populations to increase to proportions that could nitrify excess 

ammonia that was produced as a result of handling during stocking. 

Nitrite levels were low to moderately high compared with the 

96-hour LC50 of 7.5 mg/I (Robinette 1983). Treatment 3 with no 

plants showed a peak level of 5.8 mg/1 nitrite, which may be 

explained in part by the lack of plants in that treatment. Treatment 

2 with 80 plants had the lowest nitrite levels throughout experiment 

I, which could have been the result of the increased surface area of 

the plant roots providing more surface area for nitrifying bacteria. 

Vegetative growth (g/120 days) was sparse in all treatments. 

There was more mean plant top growth in treatment 1 than 

treatment 2. Blocks 1 and 3 produced 100 g more plant growth than 

block 2. Treatment 1 produced a higher mean fruit weight than 

treatment 2. Apparent treatment differences in mean fruit weight 

and number of peppers per plant were not statistically significant. 

That lack of significance was due to a limited number of degrees of 

freedom (W. Warde pers. commun.). The mean weight of peppers 
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was similar for all blocks. All peppers were small and irregularly 

formed, which suggested that plant nutrients were the limiting factor 

in plant growth and pepper production by treatment. Low and 

fluctuating temperature was the probable cause of the block effect 

on plant growth and pepper production. 

Nitrate, phosphorus, and potassium, which are all essential 

plant nutrients, were low in experiment I. Smith (1979) suggested a 

nutrient solution for peppers hydroponically grown in rockwool that 

included concentrations of nitrate - 172 mg/I, phosphorus - 39 mg/I, 

and potassium - 234 mg/I (Appendix III). Nitrate the end product 

of nitrification was below the tolerance limit of 80 ppm noted in 

Lewis et. al. 1978. Phosphorus was lower in treatment 1 than 

treatment 2, but potassium was lower in treatment 2 than treatment 

1. The nitrogen-phosphorus ratio may have been the limiting factor, 

but further investigation is needed (S Burks, 1991, pers. common., 

Wetzel 1983). 

The pH remained constant and the same as the input water 

through experiment I. The catfish and bacteria in the system did not 

produce enough carbon dioxide to lower the pH, another indication 

that the system was buffered well and not over stocked. Mean 

alkalinity was lower than the input water, which suggested that 

nitrifying bacteria were consuming CO2 from alkalinity, expressed as 

CaC03 (Loyless and Malone, 1997; Sawyer and McCarty, 1978). 

Hardness, also expressed as CaC03, and calcium increased by a small 

amount in conjunction with the decrease in alkalinity (Wetzel 1983). 

The difference in chlorine levels was the result of having to 

add more make-up water to some tanks as a result of leakage from 
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the hydroponics racks. Chlorine was low enough not to have been 

toxic in this experiment. Chlorine was not toxic to guinea pigs at 0.07 

mg/1 but caused deterioration in the nutritional state and blood 

alterations at 1.7 mg/1. However, repeated exposure of rabbits to 

concentrations of 0.7 - 1.7 mg/1 over periods up to 9 months caused 

weight loss and increased incidence of respiratory disease (Smith et 

al. 1976). 

Turbidity is an indication of the particulate matter available to 

form sediment in the system. COD is a measurement of organic 

matter in the system terms of the total quantity of oxygen required 

for oxidation to carbon dioxide and water (Sawyer and McCarty 

1978). COD is an indication of anaerobic respiration occurring in the 

sediments (Wetzel 1983). Sulfate is a measure of the amount of 

sulfur released by decay in the sediment. Sulfur when released in 

the sediment is in the form of hydrogen sulfide which is toxic to fish, 

but it is quickly converted to sulfate if the system is well oxygenated 

(Wetzel, 1983). Increases in turbidity, COD, and sulfate indicated 

that all systems were well oxygenated and vigorous throughout 

experiment I. 

Boron, molybdenum, iron, zinc, manganese, and copper were 

present in negligible quantities in experiment I. All concentrations 

were below levels suggested for a nutrient solution to grow peppers 

hydroponically in rockwool (Appendix C). Their availability is 

required by both fish and plants in minute quantities. If available 

along with all other required nutrients, all organisms grow well. If 

not, despite other nutrient levels, organisms grow poorly. 
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Ambient conditions were very difficult to control in experiment 

I. Air temperature, although not considered in this experiment, 

fluctuated more than 10 C during daylight hours. Although water 

temperature changes more slowly than air, evaporative cooling, 

exposure of the water on the hydroponics racks, and recirculation 

times caused fluctuation in water temperature that limited catfish 

growth. Growth rate of catfish was less in this system than in pond 

or cage culture. High air temperature and extreme fluctuations along 

with limited nutrients were the possible cause of poor plant growth. 

The feed conversion ratio in experiment I was less than that 

experienced in pond catfish culture (Stickney 1979). The combined 

water quality parameters indicated that the systems were not over 

stocked with catfish. The biological comparison of the means of 

catfish growth, feed conversion ratios, ammonia, nitrite, and pH 

indicated that this system supported 100 catfish equally well with 

and without plants and suggested that this number could possibly be 

increased if temperature could be controlled better. Poor plant 

growth is an indication that plant nutrients were a limiting factor. 

Nitrification was very effective in converting ammonia to nitrate, and 

the stocking rate of fish could be increased without overloading. 

EXPERIMENT II 

Examination of data from the first experiment suggested that 

plant growth was limited by levels of plant nutrients. The decision 

was made at that time to use the lowest number of plants and to 

increase the number of fish by 100 and 200 in treatments 2 and 3, 

respectively. Treatment 1 (100 catfish, 40 plants) was the control, 
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and the link between the two experiments. Treatment 2 (low 

density) had 200 catfish, 40 plants and treatment 3 (high density) 

had 300 catfish, 40 plants. 

Experiment II was designed to answer the following questions. 

(1) Would enough ammonia be converted to nitrate and be 

subsequently removed from the system to support an increase m 

stocking rate of fish in the system before overloading it and (2) did 

wastes from increased numbers of fish contain enough essential 

plant nutrients to adequately sustain plant growth? 

Extremely low gain and no variation among treatments or 

blocks indicate that all catfish in experiment II were severely 

stressed. Catfish growth was about 35 g/120 days in all treatments. 

That gain was an average of < 0.3 g/day/fish, which was far less than 

the mean of 2.05 g/day/fish reported by Lewis et al. (1978). 

The catfish were fed a 36% protein, nutritionally complete 

catfish ration daily at 2% of their estimated total weight, which was 

increased weekly. The feed conversion ratios were all uniform and 

between 1.1:1 and 1.3:1. The 2% feeding rate combined with poor 

environmental control was not adequate for maximum growth. The 

feeding regime was the same as in experiment I. However, the 

amount of feed offered caused some deterioration of water quality as 

reflected by levels of dissolved oxygen, ammonia, and nitrite through 

the duration of experiment II. That deterioration in water quality 

may also be an indication of the presence of uneaten feed, and its 

subsequent decomposition. 

Dissolved oxygen remained at acceptable levels through the 

majority of experiment II. That again implied that the system was 
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not overloaded. Water temperature for the most of the 120 days 

was below the 28 to 30 C required for maximum growth (Lewis et. al 

1976). It fluctuated continually throughout the experiment. A 5 C 

drop in temperature overnight contributed to the stress in treatment 

1 block 3 and treatment 3 block 2 that led to total mortality in those 

tanks. Although the growing season was only 120 days long, the 

lower and sporadic temperatures may have accounted for the less 

than ideal growth of catfish in experiment II. 

Levels of unionized ammonia (NH3) were very similar to those 

in experiment I. Nitrite levels were once more low to moderately 

high compared with the 96-hour LC50 of 7 .5 mg/1 mentioned by 

Robinette (1983). Treatment 1 with 100 catfish had the lowest mean 

nitrite levels throughout expeclment II and treatment 3 with 300 

catfish had the highest. Mean nitrite levels increased threefold for 

each 100 catfish increase in stocking rate. 

Vegetative growth in experiment II was more profuse and 

luxuriant in all treatments than in experiment I. There was more 

mean plant top growth in treatment 3 than treatments 1 or 2. Mean 

plant growth was a minimum of 60 g higher than experiment I. 

Again, blocks 1 and 3 produced a higher mean plant growth than 

block 2, but the difference in experiment II was not significant. 

Mean fruit weight (bell peppers) in experiment II was similar for all 

treatments but was double the fruit production in experiment I. 

Again, all peppers were irregularly formed. These factors suggested 

that temperature and nutrients ratios were the limiting factor in 

pepper production in experiment II as well. 
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Nitrate levels in experiment II were all higher than experiment 

I. Treatment 1, which was the same as treatment 1 in experiment I, 

had a mean nitrate level 10 mg/1 higher. Nitrate levels in 

experiment II were 3 times higher in treatment 1 than experiment I, 

6 times higµer in treatment 2, and 10 times higher in treatment 3. 

That combined with mean nitrite levels was an indication that the 

catfish were under stress that caused them to produce more 

ammonia during experiment II than during experiment I. 

Phosphorus and potassium, both essential plant nutrients, were low 

in experiment II. Phosphorus was lower in treatment 1 than 

treatment 2, but potassium was lower in treatment 2 than treatment 

1. That also suggested that the nitrogen-phosphorus ratio may have 

been the limiting factor for plant growth and fruit production in 

experiment II. 

The pH increased in experiment II which was partially caused 

by a profuse filamentous algae growth on the hydroponics racks 

during the second half of the experiment. The catfish and bacteria in 

the system did not produce enough carbon dioxide to support 

photosynthesis (Stickney 1979), consequently the algae used CO2 

from CaC03, which left free oxygen to combine with hydrogen ions to 

form water molecules, therefore raising the pH (Sawyer and McCarty 

1978). Mean alkalinity was lower than the replacement water which 

suggested that nitrifying bacteria were also consuming CO2 from 

alkalinity, expressed as CaC03 (Loyless and Malone, 1997). Hardness, 

also expressed as CaC03, and calcium increased 2 to 3 times the 

amount in the replacement water as a result of the decrease in 
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alkalinity (Kleinholz, pers. commun.). Algae also competed with the 

bell peppers for nutrients. 

The difference in chlorine levels in experiment II was again the 

result of having to add more make-up water to some tanks as a 

result of leakage from the hydroponics racks. Turbidity was not as 

high in experiment II, compared with experiment I, showing the 

effectiveness of the increased root systems and the algae as a 

particulate filter. Levels of COD were the same in all treatments, 

which was more evidence of the filtering capability of the root 

systems. All sulfates in experiment II were 3 times higher than m 

experiment I, which indicated the presence of more decaying organic 

matter, but sufficient oxygen was available to convert the hydrogen 

sulfide produced to sulfate. 

Ambient conditions were very difficult to control in experiment 

II. The combined water quality parameters indicated that the 

systems were not overstocked with catfish. Nitrification was very 

effective in converting ammonia to nitrate and would support this 

level of stocking if temperature could be controlled. Wastes from 

increased numbers of fish contained enough essential plant nutrients 

to adequately sustain plant growth but not fruit production. Poor 

fruit production in experiment II was an indication that plant 

nutrients and fluctuating temperature were limiting factors. 
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CHAPTER V 

CONCLUSIONS 

My study examined components and configuration of the 

Kleinholz system with the intent of developing an instrument and 

protocol with which a closed aquaculture-hydroponics system could 

be evaluated. The inability to control ambient conditions combined 

with the small size of the fish culture units resulted in temperature 

fluctuations that were problematic in both experiments. Despite the 

difficulty of keeping the catfish alive, I was able to determine that 

production rates were enhanced by the hydroponic component. The 

hydroponic component effectively aided in the removal of nitrogen 

from the fish culture systems. The increased surf ace area provided 

ample substrate for nitrifying bacteria, which was shown by the 

rapid lowering of nitrogen levels after the catfish were stocked and 

by the low levels of ammonia and nitrite throughout both 

experiments. With adequate environmental control, I can conceive 

of stocking rates high enough to make this system a viable 

production venture for small scale fish farmers or backyard 

ventures. 

Catfish mortalities in week 13 of both experiments is an 

anomaly that requires elucidation. I can not completely explain 

those mishaps. I surmise here that large temperature, and 

associated dissolved oxygen fluctuations during weeks 11, 12, and 

13 caused additional stress for catfish in those tanks that were 

already stressed by the synergistic effects of low dissolved oxygen 

and sublethal levels of ammonia and nitrite. Individual parameters 
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here were sub-lethal, but their cumulative effects may have been 

lethal to catfish in those tanks. Those effects also may have been 

intensified by the location of those tanks in the greenhouse and by 

the addition of chlorinated replacement water, made necessary by 

leakage from the hydroponics racks. 

Catfish gain in experiment I was greater than in experiment I. 

Feed conversion ratios were similar in both experiments despite 

different numbers of fish and different amounts of feed offered. 

Uneaten feed particles impinged in the airlift and were carried up 

to the hydroponic racks with the water. Nutrients from the uneaten 

feed particles supplemented the nutrients available to the plants in 

the fish waste. Those supplemental nutrients are partially 

responsible for the lush growth of vegetation in experiment II 

Analysis of data from the experiments should have suggested 

an optimum ratio of fish and plants that the system could support. 

However, difficulties encountered with the system, the result of a 

lack of control of ambient conditions, prevented me from 

determining an optimum ratio of plants to fish in the system. 

Null hypotheses (Ho) were as follows. (1) There were no 

differences in fish production among treatments with varying plant 

densities. I reject hypothesis 1 because catfish production in 

experiment I was significantly greater in treatment 2 with 80 

plants. (2) There were no differences in water quality among 

treatments with varying plant densities. Hypothesis 2 was rejected 

because parameters crucial for fish growth, dissolved oxygen, 

ammonia, and nitrite were moderated in treatments with plants. 

(3) There were no differences in plant production among 
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treatments with varying catfish numbers. Treatment 3, experiment 

II with 300 catfish produced more vegetative growth than 

treatments 1 and 2. Treatments 2 and 3 produced more fruit than 

treatment 1 in the same experiment. The differences were not 

significant, therefore the null hypothesis is supported. ( 4) There 

were no differences in water quality among treatments with 

varying catfish densities. Significant differences in dissolved 

oxygen, ammonia, nitrite, and nitrate suggest that hypothesis 4 

should be rejected. (5) Ammonia removal through nitrification and 

subsequent uptake by plants was not sufficient to allow higher 

stocking rates of fish in treatments with higher numbers of plants. 

Significantly lower levels of nitrite and nitrate in treatments 1 and 

2 of experiment I suggest that hypothesis 5 should be rejected. ( 6) 

There was no relationship between numbers of fish and plants that 

the system can sustain. I did not find the sustainable fish to plant 

ratio for this system The statistically significant differences in a 

number of crucial parameters and the biological examination of the 

data from the two experiments were sufficient to reject 4 of the 6 

null hypotheses. 

The ability to better manage ambient conditions in the green 

house and better control of leakage and algae growth are of utmost 

importance in any future endeavors. Investigation of sustainable 

ratios of fish to plants in this system should be extended. The 

synergistic effects of nutrients in this system should also be 

investigated. 
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APPENDIX A 

SUMMARJES OF CHANNEL CATFISH 
GAJN, PLANT GROWTH AND SELECTED 

WATER QUALITY PARAMETERS -
EXPERilvlENT I 
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APPENDIX A.1 

Means of catfish gain (g), survival (%), and feed conversion ratio by treatment and block -
experiment I. 

Treatment Block Gain SE Survival SE FCR SE 

Raw Data 
1 1 80.6 97 1.1 
1 2 77.0 100 1.0 
1 3 68.0 95 1.3 
2 1 86.0 97 1.0 

l1l 2 2 80.7 95 1.1 
tv 

2 3 74.6 77 1.6 
3 1 83.6 90 1.2 
3 2 
3 3 70.6 95 1.0 

Means 
1 75.2 0.52 97 4.4 1.1 0.13 
2 80.4 0.52 90 4.4 1.2 0.13 
3 77.6 0.69 95 5.8 1.0 0.18 

1 93.4 0.52 95 4.4 1.1 0.13 
2 78.8 0.69 98 5.8 1.0 0.18 
3 71.1 0.52 89 4.4 1.3 0.13 



APPENDIX A.2 

Mean plant growth (g), fruit weight (g), dissolved oxygen (mg/1 DO), and temperature by 
treatment and block - experiment I. 

Treatment Block Plant growth SE Fruit Wt. SE DO SE T~erature SE 

Raw Data 
1 1 216.0 22.9 6.5 23.3 
1 2 57.0 16.5 7.2 23.3 
1 3 122.0 20.2 6.2 23.8 
2 1 57.0 15.1 6.4 23.3 
2 2 19.0 18.3 6.5 23.4 

U1 2 3 181.0 22.2 6.6 22.8 w 
3 1 7.5 23.2 
3 2 
3 3 7.0 23.0 

Means 
1 131.6 44.6 19.9 2.3 6.6 0.08 0.13 
2 85.4 44.6 18.5 2.3 6.5 0.08 0.13 
3 7.0 0.08 0.14 

1 136.5 54.6 19.0 2.8 6.8 0.08 0.03 
2 37 .0 54.6 17.4 2.8 6.7 0.08 0.14 
3 151.3 54.6 21.2 2.8 6.6 0.08 0.13 



APPENDIX A.3 

Means of ammonia (mg/1), nitrite (mg/1), and nitrate (mg/1) by treatment and block - experiment I. 

Treatment Block Ammonia SE Nitrite SE Nitrate SE 

Raw Data 
1 1 0.63 0.11 7.9 
1 2 0.82 0.58 9.0 
1 3 0.79 0.12 6.4 
2 1 0.71 0.24 7.7 
2 2 0. 71 0.18 9.5 

Ul 2 3 0.76 0.27 8.2 w::,. 

3 1 0.75 0.29 16.9 
3 2 
3 3 1.01 0.85 11.6 

Means 
1 0.75 0.056 0.27 0.097 7.74 1.05 
2 0.73 0.056 0.23 0.097 8.48 1.05 
3 0.88 0.058 0.57 0.100 13.16 1.08 

1 0.70 0.056 0.21 0.097 10.81 1.05 
2 0.80 0.058 0.45 0.100 9.84 1.08 
3 0.86 0.056 0.41 0.097 8.73 1.05 



APPENDIX A.4 

Means of pH, alkalinity (mg/1), and hardness (mg/1) by treatment and block - experiment I. 

Treatment Block pH SE Alkalinity SE Hardness SE 

Raw Data 
1 1 7.6 100.2 180.8 
1 2 7.7 99.2 179.3 
1 3 7.7 112.2 165.9 
2 1 7.7 118.9 180.8 
2 2 7.7 114.8 195.2 
2 3 7.6 95.7 167.9 

Vl 3 1 7.5 74.1 213.6 Vl 

3 2 
3 3 7.7 90.1 179.1 

Means 
1 7.6 0.08 106.5 4.19 175.3 5.29 
2 7.7 0.08 109.8 4.19 181.3 5.29 
3 7.6 0.08 86.2 4.46 190.8 5.62 

1 7.6 0.08 100.4 4.19 191.7 5.29 
2 7.6 0.08 102.8 4.46 184.7 5.62 
3 7.7 0.08 99.3 4.19 171.0 5.29 



APPENDIX A.5 

Means of calcium (mg/1), phosphorus (mg/1), and potassium (mg/1) by treatment and block -
experiment I. 

Treatment Block Calcium SE Phosphorus SE Potassium SE 

Raw Data 
1 1 91.2 2.30 3 .61 
1 2 78.2 6.85 4.76 
1 3 78.1 1.93 4.34 
2 1 86.8 5.17 5.52 

l1l 2 2 86.3 4.46 3. 78 
O"\ 

2 3 83.2 1.12 5.02 
3 1 101.6 16.96 8.90 
3 2 
3 3 75.4 16.59 8.91 

Means 
1 82.5 3.03 3.69 0.98 4.25 0.87 
2 85.4 3.03 3.58 0.98 4.77 0.87 
3 86.3 3.24 14.40 1.04 7 .66 0.91 

1 93.2 3.03 8.14 0.98 6.01 0.87 
2 82.1 3.24 6.97 1.04 4.57 0.91 
3 78.9 3.03 6.54 0.98 6.10 0.87 
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APPENDIX A.6 

Means of boron (mg/1), molylbdenum (mg/1), and iron (mg/1) by treatment and block -
exJ!eriment I. 

Treatment Block Boron SE Molybdenum SE Iron SE 

Raw Data 
1 1 0.10 0.07 0.03 0.04 0.04 0.01 
1 2 0.10 0.07 0.04 0.04 0.04 0.01 
1 3 0.07 0.08 0.00 0.04 0.06 0.01 
2 1 0.10 0.07 0.00 0.04 0.04 0.01 
2 2 0.10 0.07 0.00 0.04 .0.03 0.01 
2 3 0.10 0.07 0.00 0.04 0.04 0.01 
3 1 0.08 0.07 0.07 0.04 0.04 0.01 
3 2 
3 3 0.09 0.07 0.00 0.04 0.03 0.01 

Means 
1 0.09 0.04 0.02 0.02 0.05 0.01 
2 0.10 0.04 0.00 0.02 0.04 0.01 
3 0.09 0.04 0.05 0.02 0.04 0.01 

1 0.10 0.04 0.03 0.02 0.04 0.01 
2 0.10 0.04 0.04 0.02 0.04 0.01 
3 0.10 0.04 0.00 0.02 0.04 0.01 



APPENDIX A.7 

Means of Zinc (mg/1), manganese and copper (mg/1) by treatment and block - experiment I. 

Treatment Block Zinc SE Manganese SE Copper SE 

Raw data 
1 1 0.11 0.09 0.10 0.04 0.10 0.05 
1 2 0.12 0.09 0.06 0.04 0.07 0.05 
1 3 0.11 0.10 0.08 0.04 0.10 0.06 
2 1 0.13 0.08 0.08 0.04 0.07 0.04 
2 2 0.11 0.08 0.10 0.04 0.07 0.04 

u, 2 3 0.10 0.08 0.10 0.04 0.04 0.04 co 
3 1 0.10 0.08 0.11 0.04 0.05 0.04 
3 2 
3 3 0.14 0.08 0.08 0.04 0.07 0.04 

Means 
1 0.11 0.05 0.09 0.02 0.09 0.02 
2 0.12 0.05 0.10 0.02 0.06 0.03 
3 0.12 0.05 0.09 0.02 0.06 0.03 

1 0.12 0.05 0.10 0.02 0.10 0.02 
2 0.12 0.05 0.08 0.02 0.07 0.03 
3 0.12 0.05 0.10 0.02 0.07 0.03 
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APPENDIX B.1 

Means of catfish gain (g), survival (% ), and feed conversion ratio by treatment and block -
experiment II. 

Treatment Block Gain SE Survival SE FCR SE 

Raw Data 
1 1 36.4 97 1.1 
1 2 33.0 98 1.2 
1 3 
2 1 23.1 98 1.3 

O"I 2 2 25.0 99 1.2 0 

2 3 30.7 98 1.2 
3 1 29.7 87 1.3 

' 3 2 
3 3 21.8 98 1.3 

Means 
1 35.0 4.26 98.8 3 .11 1.1 0.06 
2 26.3 3.18 97.8 2.32 1.2 0.04 
3 24.9 4.26 92.1 3 .11 1.3 0.06 

1 29.7 3.17 93.7 2.32 1.2 0.04 
2 27 .1 4.26 96.2 3 .11 1.2 0.06 
3 29.4 4.26 98.8 3 .11 1.2 0.04 



APPENDIX B.2 

Mean plant growth (g), fruit weight (g), dissolved oxygen (mg/I DO), and temperature by 
treatment and block - experiment II. 

Treatment Block Plant growth ._ SE ___ _ Fruit Wt. _SE_ DO SE Temperature SE 

Raw Data 
1 1 260.9 34.2 7.7 23.7 
1 2 141.5 . 50.0 6.9 23.0 
1 3 
2 1 214.9 31.0 6.4 25.9 
2 2 59.3 51.0 6.2 23.9 

°' 2 3 168.1 45.0 5.5 25.1 
I-' 

3 1 347.8 54.0 6.0 24.5 
3 2 
3 3 130.1 39.8 4.6 25.0 

Means 
1 187.5 51.9 42.1 12.8 7.3 0.07 24.3 0.17 
2 147.4 38.7 43.7 9.5 6.1 0.06 25.0 0.16 
3 205.4 51.9 46.8 12.8 5.1 0.07 25.5 0.07 

1 274.5 38.7 39.3 9.5 6.7 0.06 24.7 0.16 
2 113.0 51.9 58.8 12.8 6.0 0.07 24.7 0.17 
3 152.8 51.9 34.5 12.8 5.8 0.07 25.4 0.17 



APPENDIX B.3 

Means of ammonia (mg/1), nitrite (mg/1), and nitrate (mg/1) by treatment and block - experiment II. 

Treatment Block Ammonia SE Nitrite SE Nitrate SE 

Raw Data 
1 1 0.57 0.05 50.49 
1 2 0.69 0.53 5.45 
1 3 
2 1 0.90 0.20 71.54 
2 2 0.80 0.29 46.57 

°' 2 3 0.80 0.06 13. 71 tv 

3 1 1.07 0.23 78.54 
3 2 
3 3 1.05 0.23 79.35 

Means 
1 0.58 0.022 0.05 0.051 22.48 1.57 
2 0.83 0.021 0.18 0.049 . 43.93 1.51 
3 1.03 0.022 0.30 0.051 78.48 1.57 

1 0.84 0.021 0.16 0.049 66.86 1.51 
2 0.82 0.022 0.20 0.051 43.19 1.57 
3 0.78 0.022 0.18 0.051 34.86 1.57 



APPENDIX B.4 

Means of pH, alkalinity (mg/1), and hardness (mg/1) by treatment . and block - experiment II. 

Treatment Block pH SE Alkalinity SE Hardness SE 

Raw Data 
1 1 7.9 73.9 395.4 
1 2 8.2 176.5 255.8 
1 3 
2 1 7.8 79.6 496.6 
2 2 7.9 107.6 402.1 

°' 2 3 8.1 183.4 302.8 
t,J 

3 1 7.5 53.8 482.5 
3 2 
3 3 7.4 60.5 444.7 

Means 
1 8.1 0.038 126.5 2.25 303.2 5.55 
2 7.9 0.036 123.5 2.19 400.5 5.40 
3 7.5 0.038 68. 7 2.27 462.4 5.55 

1 7.7 0.036 69.1 2.19 458.5 5.40 
2 7.9 0.038 115.3 2.25 372.7 5.55 
3 7.9 0.038 124.3 2.27 335.0 5.55 



APPENDIX B.5 

Means of calcium (mg/1), · phosphorus (mg/1), and potassium (mg/1) by treatment and block -
experiment II. 

Treatment Block . Calcium SE Phosphorus SE Potassium SE 

Raw Data 
1 1 225.8 0.64 1.18 
1 2 117.4 2.95 11.94 
1 3 
2 1 268.3 2.67 8.17 

O"I 2 2 198.6 3.03 17.11 ~ 

2 3 135.9 3.66 15.76 
3 1 253.9 5.31 10.44 
3 2 
3 3 239.5 3.92 14.49 

Means 
1 161.0 3.69 1.53 0.213 10.70 1.55 
2 200.9 3.59 3.12 0.203 13.69 1.49 
3 250.5 3.69 3.95 0.213 11.89 1.55 

1 249.3 3.59 2.87 0.203 6.60 1.49 
2 191.3 3.69 2.87 0.213 13.26 1.55 
3 171.7 3.69 2.86 0.213 16.41 1.55 
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APPENDIX B.6 

Means of boron (mg/1), molylbdenum (mg/1), and iron (mg/1) by treatment and block -
ex_Qeriment II. 

Treatment Block Boron SE Molybdenum SE Iron SE 

Raw Data 
1 1 0.11 0.03 0.04 
1 2 0.10 0.00 0.07 
1 3 
2 1 0.12 0.00 0.06 
2 2 0.12 0.00 0.06 
2 3 0.16 0.00 0.03 
3 1 0.08 0.07 0.04 
3 2 
3 3 0.09 0.00 0.03 

Means 
1 0.09 0.042 0. 24 0.022 0.06 0.007 
2 0.13 0.039 0.000 0.022 0.04 0.006 
3 0.09 0.042 0.048 0.022 0.04 0.006 

1 0.10 0.039 0.033 0.022 0.05 0.006 
2 0.11 0.042 0.038 0.022 0.05 0.007 
3 0.11 0.042 0.000 0.022 0.05 0.007 



APPENDIX B.7 

Means of Zinc (mg/1), manganese and copper (mg/1) by treatment and block - experiment II. 

Treatment Block Zinc SE Manganese SE Copper SE 

Raw data 
1 1 0.17 0.13 0.18 
1 2 0.19 0.06 0.07 
1 3 

O'I 2 1 0.16 0.09 0.07 
O'I 

2 2 0.23 0.10 0.07 
2 3 0.10 0.15 0.04 
3 1 0.11 0.13 0.05 
3 2 
3 3 0.20 0.08 0.07 

Means 
1 0.19 0.054 0.09 0.025 0.12 0.028 
2 0.16 0.048 0.11 0.022 0.06 0.025 
3 0.13 0.050 0.09 0.023 0.06 0.026 

1 0.15 0.050 0.11 0.022 0.10 0.025 
2 0.16 0.051 0.08 0.023 0.07 0.027 
3 0.17 0.051 0.10 0.024 0.07 0.027 



APPENDIX C 

NUTRIENT SOLUTION FORMULA FOR 
PEPPERS GROWN IN ROCKWOOL 
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APPENDIX C.l 

Nutrient Solution formula for peppers grown m rockwool. 

Nitrate-N 
Phosphate (P) 
Sulfate-S 
Ammonium-N 
Potassium (K) 

Calcium (Ca) 
Magnesium (Mg) 

Iron (Fe) 
Copper (Cu) 
Zinc (Zn) 
Manganese (Mn) 
Boron (B) 

Molybdenum (Mo) 

pH 
Bicarbonate (HC03) 

Note: lppm = lmg/1 

Smith, D. 1979. 
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172 ppm 
39 ppm 
40 ppm 
nil 

324 ppm 
150 ppm 

30 ppm 

0.56 ppm 
0.03 ppm 
0.25 ppm 
0.55 ppm 
0.38 ppm 
0.05 ppm 

5.8 
50 ppm 
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