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Abstract

To meet the diverse and stringent communication requirements for emerging networks use

cases, zero-touch artificial intelligence (AI) based deep automation in cellular networks

is envisioned. However, the full potential of AI in cellular networks remains hindered by

two key challenges: (i) training data is not as freely available in cellular networks as in

other fields where AI has made a profound impact and (ii) current AI models tend to

have black box behavior making operators reluctant to entrust the operation of multi-

billion mission critical networks to a black box AI engine, which allow little insights and

discovery of relationships between the configuration and optimization parameters and key

performance indicators. This dissertation systematically addresses and proposes solutions

to these two key problems faced by emerging networks.

A framework towards addressing the training data sparsity challenge in cellular networks

is developed, that can assist network operators and researchers in choosing the optimal

data enrichment technique for different network scenarios, based on the available informa-

tion. The framework encompasses classical interpolation techniques, like inverse distance

weighted and kriging to more advanced ML-based methods, like transfer learning and

generative adversarial networks, several new techniques, such as matrix completion the-

ory and leveraging different types of network geometries, and simulators and testbeds,

among others. The proposed framework will lead to more accurate ML models, that rely

on sufficient amount of representative training data. Moreover, solutions are proposed

to address the data sparsity challenge specifically in Minimization of drive test (MDT)

based automation approaches. MDT allows coverage to be estimated at the base station

by exploiting measurement reports gathered by the user equipment without the need for

drive tests. Thus, MDT is a key enabling feature for data and artificial intelligence driven

autonomous operation and optimization in current and emerging cellular networks. How-

ever, to date, the utility of MDT feature remains thwarted by issues such as sparsity of

user reports and user positioning inaccuracy. For the first time, this dissertation reveals

xi



the existence of an optimal bin width for coverage estimation in the presence of inaccurate

user positioning, scarcity of user reports and quantization error. The presented frame-

work can enable network operators to configure the bin size for given positioning accuracy

and user density that results in the most accurate MDT based coverage estimation.

The lack of interpretability in AI-enabled networks is addressed by proposing a first of its

kind novel neural network architecture leveraging analytical modeling, domain knowledge,

big data and machine learning to turn black box machine learning models into more

interpretable models. The proposed approach combines analytical modeling and domain

knowledge to custom design machine learning models with the aim of moving towards

interpretable machine learning models, that not only require a lesser training time, but can

also deal with issues such as sparsity of training data and determination of model hyper-

parameters. The approach is tested using both simulated data and real data and results

show that the proposed approach outperforms existing mathematical models, while also

remaining interpretable when compared with black-box ML models. Thus, the proposed

approach can be used to derive better mathematical models of complex systems. The

findings from this dissertation can help solve the challenges in emerging AI-based cellular

networks and thus aid in their design, operation and optimization.
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CHAPTER 1

Introduction

1.1 Motivation

The key features of emerging cellular networks, such as high multi-Gbps peak data speeds,

ultra-low latency, massive device connectivity, high reliability, increased network capac-

ity, and increased availability are set to revolutionize many industries and enable new use

cases and applications [3]. Different emerging network use cases have diverse communica-

tion requirements. In some cases, such as time-critical applications in healthcare sector,

these requirements can be very stringent. To meet these requirements, zero-touch deep

automation in cellular networks is envisioned, not only to provide better quality of expe-

rience but also for their technical and commercial viability [4] -[3]. This includes artificial

intelligence (AI) enabled self-configuration, self-optimization and self-healing capabilities

[4].

In order to enable these automation capabilities in future cellular networks, one key

aspect is designing network and user behavior models. This is of fundamental significance

as tuning the network parameters to identify the optimal network configuration, that

can maximize the vital key performance indicators, like coverage, capacity, reliability or

energy efficiency is necessary for network operators to fulfill the promises made by much

anticipated next generation networks.

To date, the design, operation and optimization of wireless networks, has relied either on

analytical models or on system level simulations (ray-tracing based simulators). The use

of analytical models enables insights into the system behavior. Analytical models also

allow optimization problem formulation that can often be solved in a computationally

efficient manner. Analytical model based optimization solutions also often lead to sys-
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tem designs with known or partially known optimality properties. In general, however,

analytical models are rarely sufficient for accurate system design and optimization of real

wireless networks. For example, cellular networks are often modeled by relying on the

abstraction models based on point processes such as Poisson point processes or Matern

hard core point process [7]-[8]. Such approaches allow analytical tractability, but they

are often not accurate enough to capture important details in practical cellular network

deployments such as spatio-temporally varying user and Base Station (BS) distributions,

complex antenna patterns, and propagation environment, etc.

The use of system-level simulators using ray-tracing, on the other hand, leads to func-

tional system designs. However, while far more accurate than assumptions-based ana-

lytical models [9], this approach offers limited insight into system behavior particularly

in terms of optimality of its performance for given design parameters. In addition to its

complexity, it also requires detailed information about the operating environment and

topographical data, such as digital elevation maps, digital terrain models, etc. Hence,

design, operation and optimization of large-scale complex networks such as 5G and be-

yond, using a simulator in lieu of network behavior models may, in addition to being

sub-optimal, be inefficient or infeasible altogether due to the huge number of optimiza-

tion variables and inability to incorporate measured data. It is vital to foresee, that while

these two approaches have sufficed to yield functional and economically viable legacy

networks, both of the above approaches will particularly become impractical in wake of

emerging cellular networks because of their inability to fit into the frame of zero-touch

automation.

Due to the limitations of these two existing approaches, a third approach to optimizing

networks is becoming increasingly popular: the machine learning (ML)-based data-driven

approach [10]-[11].

However, the full potential of AI in cellular networks remains hindered by two key chal-

lenges: (i) training data is not as freely available in cellular networks as in other fields

2



where AI has made a profound impact and (ii) current AI models tend to have black

box behavior making operators reluctant to entrust the operation of multi-billion mission

critical networks to a black box AI engine, which allow little insights and discovery of re-

lationships between the configuration and optimization parameters and key performance

indicators. This leads to little interpretability [12] or insights [13] for tuning and opti-

mizing different network parameters and complex forms of input and output parameter

relationships [14].

This dissertation systematically addresses and proposes solutions to these two key prob-

lems of sparsity of training data and lack of interpretability faced by emerging

networks These two challenges are further explained below.

1.1.1 Data sparsity challenge

Machine learning based techniques face a common key challenge that undermine their

utility: scarcity/sparsity of the training data. This is because of the several following

reasons:

• Conducting independent field trials on a large scale is costly and time-consuming.

• Mathematical models can not be used to generate training data since they are

based on too many assumptions and simplifications, that fail to depict real world

scenarios.

• Obtaining large amount of pertinent data from network operators is not a trivial

task.

• Network operators only try a limited range of COPs in live networks due to high

probability of significant network performance impairment of live mobile network

during the trial phase. Therefore, only a limited range of COP-KPI data can be

obtained.
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• Despite sourcing from multiple operators, the real data are expected to be sparse

or unevenly distributed.

• In dynamic scenarios, where the number and locations of measurements change, it

is infeasible to measure the radio frequency field strength values at every point of

interest.

• In ultra-dense deployments, small cells contain far fewer users compared to macro

cells. This makes user measurements at the base station of small cells sparse, which

particularly poses a problem for automation solutions that leverage minimization

of drive test (MDT) [15]-[17]. This problem is further aggravated if smaller bin size

is used to reduce quantization error, attributing to the fact that many bins might

not be visited by even a single user during the reporting period [17].

Deploying the new 5G and beyond network functionalities in a real world cannot be done

arbitrarily. If the training data is poorly distributed or sparse, it might not represent

the actual network scenario very well, which could lead to over-fitting during the model

training stage. In order to develop accurate models, machine learning algorithms require

large amounts of true training data since a model based on sparse data would rely on

assumptions and weak correlations [18]. In turn, unscrupulous network design and sub-

optimal parameter configuration will hamper not only the capability of future networks

that will impact the user experience negatively but will also increment the capital and

operational expenditure (CAPEX/OPEX) of mobile operators [19].

1.1.2 Lack of interpretability challenge

In additional to requiring vast and representative amounts of training data, a key limita-

tion of traditional ML-based approaches is that they allows little interpretability [12] or

insights [13], and remain predominately as black-box models [14]. However, from cellu-

lar networks design and optimization perspective, interpretability is a paramount quality
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that machine learning methods should aim to achieve if they are to be applied in prac-

tice. Instead of using machine learning as a black box, having an interpretable machine

learning based model (such as an explicit analytical relationship between different key per-

formance indicator (KPIs) and configuration and optimization parameters(COPs)) will

allow insights and discovery of relationships between different KPIs and COPs, which can

then to be used to optimize networks autonomously.

1.2 Research objectives

In light of the discussion in sections 1.1.1 and 1.1.2, following research questions are

explored in this dissertation:

• Different 5G and beyond (5G&B) enabled use cases have diverse and stringent com-

munication technical requirements. What are some examples of these requirements

and how do they compare with the current state of 5G capabilities for different use

cases? Why are meeting these requirements a challenge? How can future cellular

networks meet these stringent requirements?

• Emerging cellular networks will require artificial intelligence (AI) enabled automa-

tion capabilities to meet the requirements of future use cases. Minimization of drive

test (MDT) can be a promising way to automating cellular networks and address

certain aspects of data sparsity challenge. However, although standardized since

3GPP Release 10, why isn’t it still implemented?

• How can we overcome some of the issues that are thwarting the practical utility of

MDT feature?

• Training data remains sparse even in the age of big data. What framework can

be developed towards addressing the training data sparsity challenge in cellular

networks for different network scenarios?
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• What new techniques can be leveraged to address the data sparsity challenge?

• How can we create interpretable models of complex systems, such as cellular net-

works, using big data and machine learning? Is there a way to leverage analytical

modeling and domain knowledge to turn black box machine learning models into

grey or white box models?

• Can traditional machine learning models, like neural networks be used to derive

COP-KPI equations for cellular network?

1.3 Contributions

The primary contributions of this dissertation are summarized as follows:

• Diverse quantitative requirements for emerging cellular networks use cases are inves-

tigated and current gaps and challenges in meeting those requirements are identified.

• Minimization of drive test (MDT) allows coverage to be estimated at the base sta-

tion by exploiting measurement reports gathered by the user equipment without

the need for drive tests. Thus, MDT is a key enabling feature for data and artificial

intelligence driven autonomous operation and optimization in current and emerging

cellular networks. However, to date, the utility of MDT feature remains thwarted

by issues such as sparsity of user reports and user positioning inaccuracy. Quan-

tification of three key types of errors in MDT-based coverage estimation that stem

from inaccurate user positioning, scarcity of user reports and quantization is done.

For the first time, the presented analysis shows existence of joint interplay between

these errors on coverage estimation that result from inter-dependency between po-

sitioning error and bin width. Utility of the proposed framework is presented by

addressing practical applications from network optimization perspective.
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• By investigating the interplay between quantization and positioning error to esti-

mate coverage, the findings in this dissertation show that there exists an optimal bin

width for coverage estimation and we determine it as a function of positioning error

and user density. This can enable network operators to configure the bin size for

given positioning accuracy that results in the most accurate MDT based coverage

estimation.

• Several machine learning based techniques are proposed in current literature that

leverage training and tuning of machine learning based models to determine the

behavior of different configuration and optimization parameters. However, these

solutions, though very promising, require vast amounts of training data. Conse-

quently, the success of these solutions is limited by a fundamental challenge faced

by research community: sparsity of training data. To solve this problem, a frame-

work to address the data sparsity challenge in cellular networks is proposed based

on available information and combination of techniques including interpolation,

domain-knowledge based, generative adversarial neural networks, transfer learning,

simulators and testbeds. Potential new techniques to enrich sparse data in cellu-

lar networks are also proposed, such as by matrix completion theory, and domain

knowledge-based techniques leveraging different types of network geometries and

network parameters.

• Traditional machine learning based techniques to model different network aspects

also suffer from the challenge of lack of interpretability. A combination analytical

modeling and domain knowledge to custom design machine learning models with

the aim of moving towards interpretable machine learning models is proposed. The

proposed approach is tested using both simulated data and real data and results

show that the proposed approach outperforms existing mathematical models, while

also remaining interpretable. Thus, it can be used to derive better mathematical

models of complex systems.
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1.4 Dissemination and publications

Throughout the course of preparation for this dissertation, several dissemination activ-

ities were carried out. These activities have resulted in the following presentations and

(accepted or pending) peer reviewed articles.

Awards

A1. Awarded Gallogly College of Engineering Dissertation Excellence Award by Univer-

sity of Oklahoma, 2021.

A2. Secured first position in 3 Minute Thesis Competition, OU-Tulsa on presenting

“Artificial Intelligence based approaches to solving challenges of next generation cellular

networks”, 2020.

A3. Won the FDA Fellowship Award for ”work to develop an evaluation framework for

5G technology in medical devices”, 2020.

A4. Won the best research presentation award for academic year 2018-2019 in ECE/TCOM

department on presenting the work titled:“Optimal bin width for autonomous coverage

estimation using MDT reports in the presence of user positioning error” at OU Graduate

Research Meeting 2019.

A5. Won second prize at OU-Tulsa Research Forum 2019 on presenting poster titled:

“Planning and Optimizing Networks of The Future: Methods to reduce errors in au-

tonomous coverage estimation using MDT” and first prize at OU-Tulsa Research Forum

2018.

A6. Won second position in IEEE Tulsa section poster competition, 2018.

Journals

J1. Haneya Naeem Qureshi, Marvin Manalastas, Asad Zaidi, Ali Imran and Mohamad

Omar Al Kalaa, “Service Level Agreements for 5G and Beyond: Overview, Challenges
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and Enablers of 5G-Healthcare Systems,” in IEEE Access, vol. 9, pp. 1044-1061, 2021,

DOI: 10.1109/access.2020.3046927.

J2. Haneya Naeem Qureshi and Ali Imran. “Optimal bin width for autonomous coverage

estimation using MDT reports in the presence of user positioning error.” IEEE Commu-

nications Letters, vol. 23, issue 4, pp.716-719, 2019, DOI:10.1109/lcomm.2019.2899094.

J3. Haneya Naeem Qureshi, Ali Imran, Adnan Abu-Dayya. “Enhanced MDT-Based

Performance Estimation for AI Driven Optimization in Future Cellular Networks.” IEEE

Access, vol.8, pp.161406-161426, 2020, DOI:10.1109/access.2020.3021030.

J4. Haneya Naeem Qureshi, Marvin Manalastas, Ali Imran and Mohamad Omar Al

Kalaa, “Service Level Agreements for 5G-Enabled Healthcare Systems: Challenges and

Considerations”, IEEE Networks (accepted), 2021.

J5. Ahmad Asghar, Hasan Farooq, Haneya Naeem Qureshi, Adnan Abu-Dayya, and

Ali Imran. “Entropy Field Decomposition Based Outage Detection for Ultra-Dense Net-

works”, IEEE Access, 2021, DOI: 10.1109/access.2021.3056551.

J6. Shruti Bothe, Haneya Naeem Qureshi, and Ali Imran, “Which statistical distribution

best characterizes modern cellular traffic and what factors could predict its spatiotemporal

variability?”, IEEE Communications Letters, vol. 23, issue 5, pp.810-813, 2019, DOI:

10.1109/lcomm.2019.2908370.

J7. Haneya Naeem Qureshi, Marvin Manalastas, Aneeqa Ijaz, Ali Imran, Yongkang Liu

and Mohamad Omar Al Kalaa, “Communication Requirements in 5G-Enabled Healthcare

Applications: Overview and Considerations” (submitted to MDPI Healthcare), 2021.

J8. Haneya Naeem Qureshi, Usama Masood, Ali Imran. “Outage Detection for Emerging

Networks: Key Challenges and Solutions” (submitted to IEEE Computational Intelli-

gence), 2021.

J9. Ahmad Asghar, Usama Masood, Haneya Qureshi and Ali Imran, “An AI based

coordination framework for conflict avoidance in automated network functions: A key
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step towards zero-touch automation” (submitted to IEEE Computational Intelligence),

2021.

J10. Haneya Naeem Qureshi, Umar Farooq, Marvin Manalastas, Ali Imran, Yongkang

Liu and Mohamad Omar Al Kalaa, “5G-Healthcare in Mobile Scenarios: Challenges

and Considerations” (under review with FDA for submission in IEEE Communications

Magazine), 2021.

J11. Haneya Naeem Qureshi, Asad Zaidi, Usama Masood and Ali Imran, “Training Data

Remains Sparse Even in the Age of Big Data: A Framework Towards Addressing the

Training Data Sparsity Challenge in Cellular Networks” (under review with Ericsson for

submission in IEEE Communication Surveys and Tutorials), 2021

J12. Haneya Naeem Qureshi and Ali Imran. “Towards Using Big Data and Machine

Learning to Derive Mathematical Models of Complex Systems” (under review), 2021

Conferences

C1. Joel Shodamola, Haneya Naeem Qureshi, Usama Masood, and Ali Imran. “Towards

Addressing the Spatial Sparsity of MDT Reports to Enable Zero Touch Network Au-

tomation”, in IEEE Global Communications Conference (GLOBECOM), Madrid, Spain,

2021.

C2. Haneya Naeem Qureshi and Ali Imran. “Towards designing systems with large num-

ber of antennas for range extension in ground-to-air communications.” in IEEE Interna-

tional Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC), pp.

1-5, Bologna, Italy, 2018, DOI: 10.1109/pimrc.2018.8580713.

1.5 Organization

This dissertation is structured as follows. Chapter 2 identifies key communication re-

quirements for advanced use cases in emerging networks through examples from health-

care industry and the importance of meeting those requirements through service level
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agreements. Several challenges and gaps in existing approaches to meet the requirements

of emerging networks use cases are also identified in this chapter. Chapter 3, 4, and 5

of this dissertation aim to propose ways to solve these challenges towards meeting the

stringent requirements for use cases leveraging emerging networks. Chapter 3 addresses

different errors in MDT-based coverage estimation to enable AI-driven cellular networks.

Chapter 4 presents a framework to address the training data sparsity challenge to enhance

ML/AI-based solutions for cellular network design, operation and optimization. Chapter

5 addresses the lack of interpretability challenge in traditional ML-based solutions by

proposing to combine classical machine learning, analytical modeling and domain knowl-

edge. Finally, chapter 6 discusses the conclusions and future works, and it thus concludes

this dissertation.
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CHAPTER 2

Identification of key requirements for advanced use cases in emerging

cellular networks and challenges in their compliance

2.1 Introduction

This chapter identifies key communication requirements for advanced use cases in emerg-

ing networks. In some cases, such as time-critical applications in healthcare sector, these

requirements can be very stringent. The importance of meeting these stringent require-

ments is discussed in context of meeting service level agreements for emerging cellular

networks. Several challenges and gaps in existing approaches to meet the requirements

and service level agreements in emerging networks use cases are also identified.

2.2 Service level agreements for emerging network use cases

Emerging networks are set to revolutionize many industries and enable advanced appli-

cations with estimates of 1.2 billion 5G connections by 2025 [20]. One of the industries

where 5G and beyond networks are expected to create a significant impact is healthcare

[21, 22, 23]. In this section, identification of the communication requirements and chal-

lenges in their compliance are identified using specific examples from advanced emerging

networks use cases from the healthcare sector.

Different use cases require different quality of service (QoS) guarantees as shown in Fig.

2.1, which illustrates some 5G-enabled healthcare use cases and qualitatively highlights

several communication key performance indicators (KPIs) requirements for each. Inspired

by several sources including [24], combined with domain knowledge, we identify commonly

used KPIs to highlight the uniqueness of different healthcare use cases in Fig. 2.1. For
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example, while energy efficiency might be important for wearable and implantable devices,

it might not be so significant in other use cases like remote robotic-assisted surgery.

Similarly, mobility related KPIs are more important for use cases such as connected

ambulance on the move compared to their values to the static use case of telesurgery.

Therefore, it is important to properly document the communication requirements of each

application and ensure that those requirements are met to successfully enable the different

5G-enabled healthcare applications. Such documentation can be done through service

level agreements (SLAs) between a service provider and the consumer. An SLA details

the various aspects of services that the service provider will provide to the consumer,

which include but are not limited to performance metrics and guarantees, service level

failure and indemnification clauses, service level monitoring process, security and privacy

management frameworks, and costs, among others. Thus, SLAs can provide assurance of

the guaranteed level of services for facilitating 5G-healthcare use cases.

However, the unique technical characteristics and peculiarities of emerging 5G & beyond

technologies make the traditional practices and procedures across SLA stages inadequate

for 5G & beyond enabled healthcare Compared with wireless technologies that are cur-

rently common in medical devices like Wi-Fi and Bluetooth, 5G is a centrally-managed

network that expands the set of stakeholders participating to deliver the medical device

functionality. Assessing and managing the risks of communication loss, delay, or dis-

ruption is complicated by the rich set of 5G features that are necessary to enable some

medical device applications like network slicing where maintaining the performance of

several network slices at the same time is challenging compared to the existing service

assurances in legacy networks [25].

Moreover, 5G and beyond networks will operate in a multi-domain, multi-operator en-

vironment with increasing number of users and varying applications with diverse re-

quirements. Accordingly, these networks resemble an assembly of different autonomous

networks, each having their own role in the service provision, their own technology and
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Fig. 2.1: Some 5G-enabled advanced applications and their different degrees of expected re-
quirements. The three tiers of the hexagon indicate the level of expected requirements. The
innermost tier corresponds to lenient KPI requirement, the middle tier corresponds to stringent
KPI requirement and the outermost tier corresponds to highly stringent KPI requirement. For
example, remote robotic-assisted surgery needs very stringent latency, data rate and reliability
requirements, stringent capacity requirement and lenient battery life and mobility requirements.

operated by separated entities [26]. Therefore, ensuring that various 5G-enabled medical

devices receive the communication services needed per their unique requirements is im-

portant, especially for applications that perform critical functions (e.g., life-supporting,

life-sustaining).

There are gaps in the literature regarding 5G and beyond SLAs. SLAs in literature are

discussed in various technical domains, such as IT data centers [27, 28, 29, 30, 31], web

services [32, 33, 34, 35, 36], optical communication systems [37, 38], cloud computing and

IoT [39, 40]. Literature reports on SLAs for cloud computing and IoT are numerous. The

studies in [41] and [42] identified over 300 existing works related to SLAs in the domain of

cloud services in IoT. To present a systematic and comprehensive literature review on the
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topic, authors in [41] did a systematic mapping study on management of SLAs for cloud

computing and IoT and categorized their findings into various SLA stages and aspects and

analyzed select reports in [42]. However, the focus of [42] was not to compare the technical

details of the existing literature, but to to analyze the existing literature and categorize

the relevant reports with respect to their research contribution areas, maturity level of the

evaluated contributions, tool support and application domains within cloud computing

and IoT. Notably, the authors concluded that there are few studies focusing on concrete

metrics for qualitative or quantitative assessment of quality of service (QoS) in SLAs,

which highlights a need for in-depth research on metric specification and measurement

methods for SLAs.

There is scarce literature addressing SLAs for 5G and beyond networks. To the best

of our knowledge, the only papers that discuss SLAs in this context are [43, 44, 45,

46, 25, 47, 48, 49, 50]. There are gaps in literature regarding 5G-healthcare SLAs that

should be addressed to facilitate the implementation of 5G-enabled use cases. SLAs for

5G and beyond networks are addressed in a limited number of articles that primarily

aim to propose specific technical solutions and the evaluation of those solutions. No

previous work has comprehensively investigated whether traditional SLAs are adequate

for 5G and beyond networks or detailed the challenges and limitations that can render

them insufficient, which are gaps that will be filled in this chapter. Moreover, there is no

existing work that addresses any aspect of SLAs in advanced use cases of 5G-healthcare

systems.

2.2.1 Why are traditional SLA approaches insufficient in 5G and beyond

networks?

A comparison of SLAs in 5G and beyond environment with legacy SLAs is provided in this

section. Specifically, it is identified why traditional SLA approaches will not suffice for 5G

and beyond enabled use cases and applications and how to overcome those challenges in
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Section 2.2.1. All stakeholders in 5G SLAs can benefit from this information to facilitate

5G-enabled applications.

5G and beyond networks have new and evolved technical characteristics that are not

considered in existing practices of SLA generation and management. Hereafter, these

aspects are described and grouped based on the section of the 5G network architecture

where they appear and discuss how they can be addressed in evolved 5G SLAs.

RAN side/PHY layer aspects

5G and beyond networks are highly heterogeneous, including multi-vendor equipment,

multi-operator, multi-modal environments, and multi-frequency spectrum allocations (e.g.,

sub-6 GHz, millimeter wave spectrum [mmWave]). Accordingly, there are new SLA con-

siderations to the 5G radio access network (RAN) and physical layer (PHY).

Given the plethora of existing network carriers (i.e., spectrum physical resources or bear-

ers) in the sub-6 GHz bands, the user equipments (UEs) should be camped on the optimal

carrier for a given SLA service type. For example, in the case of SLAs leveraging ultra-

reliable low-latency communication (URLLC), voice users should camp on larger coverage

bands with commonly limited bandwidth and UEs with low latency requirements should

be camped on medium bands with larger bandwidth. Accordingly, an evolved SLA should

include the mechanism and guarantees for carrier association, i.e., assurance that UEs

will be camped on the desired band identified for the specific use-case. In massive ma-

chine type communications (mMTC) based SLAs, searching for multiple bands can have

negative implications on the energy efficiency of power-constrained IoT devices, which

also can be addressed by a band selection clause in evolved 5G SLAs.

Notably, the use of mmWave spectrum contributes to enhanced 5G network capabilities

compared to legacy networks. Using mmWave alleviates the capacity crunch in existing

networks because of the limited spectrum available in sub-6 GHz bands. However, cell

discovery in mmWave bands is challenging due to pencil-like beams, which might delay or
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prevent the UE from associating with a nearby large bandwidth mmWave cell. Therefore,

SLAs in the 5G context, should also consider the probability of miss-association and

the related impact to maintaining high download and upload speeds in SLAs leveraging

enhanced mobile broadband (eMBB) use case.

Also relevant in the mmWave spectrum is the UE hand over (HO) process, especially in

high mobility use cases. A successful mmWave HO completes the cell discovery process of

the HO target cell including the challenging beam alignment that can be complicated by

the user mobility or environmental changes like obstructions and nearby objects. There-

fore, new metrics addressing cell discovery and beam alignment issues as a function of

the user speed can be incorporated in evolved 5G SLAs for high-mobility scenarios.

Moreover, 3GPP specifies adaptive 5G numerology (i.e., frame structure) in order to

accommodate diverse services like eMBB, mMTC, URLLC and the associated user re-

quirements [75]. Compared to 4G networks, where the transmission time interval (TTI)

is fixed to 1 ms, 5G networks can adapt the transmission by varying the TTI or symbol

duration to address the desired KPI constraints, while considering the impact of UE mo-

bility and varying channel conditions. For example, an adaptive numerology to meet the

latency requirements for URLLC applications might be a subcarrier spacing of 120 kHz

and slot duration (i.e., equivalent to TTI) of 0.125 ms. When TTI becomes smaller, the

signals will be transmitted in a larger bandwidth since frequency is inversely proportional

to time scale. Due to larger signal bandwidth, the channel will be more susceptible to

frequency selective fading, which occurs when the signal bandwidth becomes larger than

the coherence bandwidth of the channel. A consequence of frequency selective fading is

that different frequency components in the signal get attenuated by different amounts,

which limits the range of communication or cell radius. Therefore, larger TTI is suited for

eMBB/mMTC use cases or use cases that require a larger radius, but with smaller TTI,

lower latency can be achieved at the cost of reduced cell size. Another factor to consider is

the subcarrier spacing where a small value leads to a short TTI, which might be desirable
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Fig. 2.2: The concept of 5G bandwidth adaptation.

for quick transmissions and hybrid automatic repeat request (HARQ) feedback. Hence, in

contrast to legacy SLAs, SLAs for 5G and beyond should consider the TTI constraints to

ensure the harmony between the application requirements and network capabilities (e.g.,

a conflict arising when the SLA specifies 0.125 ms TTI but the network is configured to

support 1 ms TTI).

Another 5G physical (PHY) layer aspect is the division of spectrum into the bandwidth

parts specified in 5G new radio (NR) as illustrated in Fig. 2.2. A static bandwidth

allocation close to the upper end of possible values (i.e., 400 MHz) is challenging for IoT

devices and sensors having low power and low processing capabilities that are typical in

mMTC applications. Therefore, the introduction of bandwidth adaptation in 5G can pro-

vide flexibility and facilitate power saving. This highlights the importance of considering

energy efficiency in 5G SLAs and how it relates to the bandwidth allocated to the user

by the 5G network to ensure a desired application receives adequate network resources

and avoid being under-scheduled.

4G LTE networks perform resource allocation as multiples of one time slot, where 1

slot = 1 ms = 14 orthogonal frequency-division multiplexing (OFDM) symbols. 5G

introduces the concept of mini slots where a UE can be allocated resources on the symbol

level (e.g., 2, 4 or 7 symbols in a minislot). The concepts of minislots and adaptive

numerology are illustrated in Fig. 2.3. Also possible in 5G is aggregating slots to reduce

the signaling overhead during resource allocation. Instead of acknowledging every physical

resource block (PRB) separately, ACK/NACK are sent for a group of PRBs due to slot
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Fig. 2.3: 5G adaptive numerology and minislots.

aggregation. Moreover, minislots can pre-empt normal transmissions, which can be useful

for URLLC services and time-critical communication. Accordingly, 5G SLAs can be

augmented to consider limits on the variable allocated resources, i.e., how many symbols

in a mini slot are needed and would be provisioned for a specific service, whether slot

aggregation is allowed, and whether and how frequently minislot pre-emption is allowed.

Core side/network layer aspects

5G network slicing is an innovative flexibility in the network architecture to facilitate the

provision of 5G network resources according to specific SLAs. Network slicing permits the

partitioning of network architecture into virtual elements, such that each virtual element

is suited for a specific use-case or SLA. However, to enable SLA assurance and verification,

the network performance data collected to establish SLA KPIs should address the network

slice which can be different from the data collected for the overall network.

Unlike SLAs in legacy telecommunication networks that share many similarities result-

ing in similar SLA metrics, slice-based 5G networks can offer unique services that can be
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addressed in a per-slice SLA approach, where individual SLAs have unique elements, met-

rics and structure. Notably, the business model, SLA structure, QoS specifications, cost

model, and the level of service can differ between slices [44]. Accordingly, new schedul-

ing and resource allocation mechanisms (e.g., via weighted slice distribution strategy)

and network admission control policies can be considered in the per-slice SLA. Other

types of SLAs that can be applicable in a 5G network slicing environment include shared

SLAs (i.e., shared between specific number of customers that use the same slice) and

hybrid SLAs (i.e., expected to serve certain customers first and then serve the authorized

customers of the same slice [44]).

5G and beyond networks are dynamic and can adapt the provided service according to

the customer demand for specific KPIs. Accordingly, dynamic SLAs should be considered

to capture the limits within which the service provider and customer will operate. An

example of dynamic service provisions is those of cloud services where the provider offers

cloud facilities in various modes that are capable of scaling up or down in real time to meet

the customer demand for resources. This flexibility is coupled with a dynamic change

in the SLA QoS parameters [51]. Another example is a telesurgery platform requiring

low-latency communication for the duration of the procedure, i.e., the customer can be

charged for a network slice to meet their demand for latency and bandwidth for the

duration of the surgery. However, when the surgery is complete, the customer would

invoke the mechanism specified in the dynamic SLA with the service provider to change

their demand for network resources [44].

2.2.2 Challenges in compliance of SLAs in 5G and beyond systems

Evolved SLAs for dynamic 5G and beyond networks are more complex than existing ones

in terms of agile network management to accommodate novel applications and dynamic

QoS requirements. In this section, we identify and describe 5G SLA challenges during the

various stages of the SLA lifecycle, including challenges in the stages of SLA development,
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Fig. 2.4: Challenges of 5G SLAs categorized according to the development, monitoring, fulfill-
ment, and assurance SLA parts.

monitoring, fulfillment and assurance. These challenges are illustrated in Fig. 2.4 and are

described below. Notably, there is a correlation between the challenges identified in this

section given the common theme of dynamic and heterogeneous 5G and beyond networks.

Challenges in SLA development

Specifying the customer communication needs and mapping those needs to the 5G net-

work technical capabilities establish the theme of challenges during the SLA development

that include the following:

Consolidating a range of end-to-end services in a multi-operator, multi-vendor, multi-

domain environment In 5G and beyond networks, the service is provided as a result of
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a multi-stakeholder collaboration that involve multiple network technologies. Ownership

of the entire ecosystem is commonly not held by a single entity. Outsourcing of service

functions is expected to increase in the 5G business model to save costs, reduce risk, or

to benefit from specialized service providers [52]. In this case, networks providers lease

parts of their networks, which can be managed through agreements with the lessees and

between providers and end customers. Accordingly, delivering a desired service to the end

customer involves processes for alignment and coordination between the various involved

service providers. This highlights the opportunity to establish methods for developing

SLAs where multiple parties are involved in the service delivery. One work in this direc-

tion is proposed in [53]. Other propositions in this context are given in [26], where two

scenarios are identified to provide an end-to-end service for an end-user: (i) the end-user

must manage different SLAs and is the only one who manages their interactions from

end-to-end; (ii) the end-user manages only one SLA with a service provider and all nec-

essary information for service management is propagated into the network from end to

end, including out-sourced components. Furthermore, it is not straightforward to imple-

ment an end-to-end service level management system that can accurately and granularly

measure network performance in a 5G environment with varying logical architectures,

functional splits, and QoS needs across network layers [26].

Lack of application metrics information model and mapping to network metrics Con-

sidering the application side, information models or templates might not exist to identify

the communication performance metrics and other technical details that are needed to

fulfill the intended functionality of the plethora of 5G service types and applications. Such

templates help the stakeholders to cooperate and negotiate tradeoffs to facilitate service

delivery. On the network side, choosing a configuration of network parameters to meet

the desired application performance can benefit from a mapping between the SLA metrics

and 5G network parameters that highlights the sensitivity of desired performance to the

change in network configuration. This can be accomplished by leveraging domain knowl-
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edge in both the service application area and 5G network management, which exceeds

in complexity compared to the legacy networks because of the increase in the number

of network parameters and their complex interdependencies. The work in [26] attempts

to map ten services to ten network technology independent parameters by considering

four performance classes: 1) very high performance, 2) high performance, 3) default per-

formance, and 4) indifferent. However, this work does not consider 5G applications and

metrics.

Mapping the end-user’s specified service requirements to the resource level attributes

and vice versa The exchange of information between SLA stakeholders becomes chal-

lenging with the increase in number and business interests of the stakeholders. Accord-

ingly, reaching a compromise that satisfies the SLA requirements can benefit from a

precise mapping of the customer high-level communication requirements (e.g., achieving

a specific latency value for a telesurgery platform) to the low-level network KPIs and

network policy resource-level attributes [45]. This helps bridge the gap between the ex-

pectations of customers and service providers and facilitate negotiation clarity between

stakeholders in the SLA development phase. The studies in [46] and [45] aim to address

this challenge using data analytics and artificial neural networks to automatically identify

the interdependencies between different parameters. A framework that implements the

reverse process is proposed in [54], where the authors address the translation of low-level

metrics to high-level SLA terms that are used in cloud service level agreements.

Inefficient negotiation process Manual negotiations of SLA metrics and service assur-

ances can be inefficient. This is especially true in 5G and beyond networks due to the

increased complexities highlighted earlier in this section. Accordingly, it is likely that

automated inter-domain negotiation processes will be developed and used to determine

the importance of different KPIs by analyzing the predefined service parameters while

leveraging historic data documenting the service provider’s negotiations [45]. This ap-
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proach also helps focus on the most relevant KPIs for a certain application for inclusion

in the SLA.

The incompleteness of contracts SLAs are inherently limited by the technical scenarios

envisioned upon SLA creation. Hence, changing requirements might lead to situations

that are not covered by the SLA terms. Furthermore, verifiable data can be challeng-

ing to obtain for service level specification. Accordingly, it is not uncommon to find

qualitative statements such as “as soon as possible” in the SLA [55]. These gaps in SLA

coverage could result in conflict, which highlights the importance of transparency, ongoing

communication, and cooperation between the SLA stakeholders.

Challenges of dynamic and slice-based service architecture While network slicing con-

tributes to maintaining cost-effective network operations, it is challenging for the network

operator to allocate portions of the network on-demand. The trade-off between static and

dynamic network slicing, which is also applicable to static and dynamic SLAs, involves

network efficiency, complexity, and cost. In a static slicing scenario, simplicity is achieved

by configuring the network once to allow users continuous access to the allocated net-

work resources without impacting other slices. However, cost and network efficiency are

sub-optimal considering that users allocated to a busy slice cannot benefit from the re-

sources available in an idle slice. Dynamic network slicing on-demand can alleviate this

inefficiency. However, the challenge is to decide when and which slices to pre-empt to

provide the users in the slice covered by the SLA with the agreed services. Moreover,

accurate SLA assurance verification in a slice-based environment relies on per-slice KPI

monitoring, which should be clearly captured in the SLA.

Determining the optimization domain boundary The SLA stakeholders should consider

the limits of their influence on the network optimization strategies and the impact of

those strategies on the services promised to the customer and the services provided by
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the network operators to other customers.

Challenges in SLA monitoring

Revolving around the task of capturing useful data streams in a heterogenous network

to facilitate adequate SLA monitoring, we describe the following challenges of SLA mon-

itoring in 5G and beyond environments.

Autonomy and scalability Manual monitoring of SLA parameters can be expensive,

time-consuming, and unscalable. Although the automated monitoring tools used by net-

work operators could be leveraged to support SLA monitoring, access to these tools is

commonly reserved to the internal use of the service provider. Using common signaling

(e.g., generalized multi-protocol label switching) with a generic policy manager or a third

party can help automate the SLA monitoring tasks. However, this will include the added

burden of mapping the SLA requirements of each SLA to the technical configurations of

network equipment used by the service provider and the specification of tools to generate

SLA performance metrics [26].

Another challenge is the data volume resulting from data collection for SLA monitoring.

Service quality metrics are specified based on detailed infrastructure-based measurements

that can generate large volumes of data, which is challenging for customers to analyze

and determine the service consistency with the SLA terms. To alleviate the burden of an-

alyzing large data volumes, the stakeholders can identify the most important and relevant

data stream and only gather the associated technical reports for assessment. Although

this approach can reduce the administrative burden on the SLA stakeholders, there can be

cases where the customer requires detailed data collection for traceability and compliance

with external reporting commitments. The importance of SLA monitoring automation is

further highlighted by the large number of technical counters in heterogenous 5G and be-

yond networks, the use of vendor-specific monitoring tools by network operators, and the
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lack of unified data format for collected data. Accordingly, a gap in the existing methods

is the lack of automated SLA monitoring methods that are capable of efficiently address-

ing the SLA monitoring tasks of 5G and beyond networks. Automated, scalable, and

transparent data collection and aggregation helps build trust between SLA stakeholders

and promotes efficient use of resources to achieve the customer desired application.

Cross-domain interoperability SLA monitoring methods for 5G and beyond networks

should account for cross-domain monitoring involving multiple organizations (e.g., net-

work operators, connectivity outsourcing companies), systems, and entities (e.g., network

performance monitor, service and application monitor, virtualization manager or storage

manager). Therefore, methods should be considered to permit management information

flow across administrative domain boundaries and facilitate an end-to-end view of the

service provision in a common platform that promotes cooperation between multiple or-

ganizations and integrates multiple domain monitoring modules. However, the lack of

standardized performance metrics for use in data collection and aggregation hinders the

automation and interoperability of such platform across multiple domains for 5G SLA

monitoring.

Challenges in SLA fulfillment

SLA fulfillment is closely related to SLA monitoring. However, the impact of business

needs and expectations of the SLA stakeholders highlight the challenges listed below.

Complex customer enterprise structure In complex company structures, it is challeng-

ing to correlate the quality of services in terms of business value creation. With growing

enterprise complexity, the number of internal customer entities increases along with their

inter-dependencies and potentially conflicting requirements. When a value model for the

procured services is absent, the sensitivity of the business value of a desired application

to service changes is not easily predictable.
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Evolving technology offering Customers might attempt to improve their connected ap-

plications to remain competitive (e.g., serve more subscribers, increase access speed to

medical imaging data). However, there is no financial incentive for the service providers

to offer technical capabilities beyond what is needed to meet the established SLA terms.

Accordingly, evolving the technology offered by the service providers can be regarded as

a challenge since such investment in service quality can impact the provider’s cost struc-

tures. Customers wishing to expand their access to improved technology should initiate

a new negotiation process with the service provider [55]. Therefore, the customer should

maintain up-to-date technology landscaping efforts in the evolving 5G and beyond net-

works to be aware of what can be done with improved communication capabilities. On

the other hand, the service providers can benefit from the targeted marketing of their

communication service offerings to industry verticals.

Risk-sharing models Business costs and success can be perceived differently by the SLA

stakeholders, which extends to the associated risk to that success. Accordingly, the SLA

stakeholders should determine if and how to consider risk-sharing of the end-to-end service

provided to the end-user. Unique industry verticals can approach this topic according to

their unique needs.

Spectrum band selection to meet unique application requirements Due to an increas-

ing number of sub-6 GHz carriers in 5G and beyond networks, a challenge for service

providers is to ensure that users are camped on the optimal carrier in 5G according to

the service type. Spectrum bands in 5G networks are divided into low, medium, and

high bands corresponding to less than 1 GHz, 1 GHz to 6 GHz, and 24 GHz to 40 GHz,

respectively. Band selection is important because it ensures minimum inter-frequency

hand overs by avoiding measurement gaps, which is the key contributor to voice muting

occasions (i.e., due to cell radio shifting to another carrier during measurement gaps). In

5G voice services, the biggest problem is call muting, rather than call dropping or call
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quality. Muting is a gap in voice packets or real-time transport protocol (RTP) pack-

ets, which is perceived by human ears as silence. Call dropping means that a call ends

unexpectedly. However, in 5G packet-based voice service, with VoLTE, users are left on

the receiving end of silence (i.e., go mute during the call) due to loss of voice packets.

Packet loss has a pronounced impact on time-critical applications with low bandwidth

requirements whose users would expect to be camped on a low spectrum band with rel-

atively small bandwidth. However, low bands are congested with 2G, 3G, 4G and other

services. Accordingly, medium-band with larger bandwidths compared to low-band can

be considered for time-critical applications (i.e., SLAs for URLLC use cases).

Resource allocation request handling and management In 5G and beyond use cases,

provisions like spectrum sharing and infrastructure sharing complicate the resource allo-

cation in SLA management. For example, short-term services requested through signaling

can be challenging to meet by the service provider because of the complexity of manag-

ing the network resource reservation while balancing the overall services offered to all

customers and maximizing resource utilization [45]. Bandwidth adaptation in 5G and

beyond networks and how it can impact the desired application should also be considered

and documented in the SLA.

Managing spectrum sharing scenarios would be a challenge as well. If used, spectrum

sharing practices should be addressed in the SLA, whereby some service providers might

consider the temporary transfer of some or all their spectrum access rights. Furthermore,

the optional use of unlicensed spectrum bands is commonly best-effort and lacks service

guarantees due to the lack of interference protection in unlicensed spectrum, which raises

concerns for wireless coexistence. For example, the coexistence impact of LTE-Licensed

Assisted Access (LAA) on users of unlicensed spectrum including wireless medical devices

was investigated in [56]. Authors in [57] address the problem of modeling and evaluating

the coexistence of LTE LAA in the unlicensed band. Accordingly, considerations of

wireless coexistence should be addressed in the SLA if applicable to the offered service.

28



Another SLA consideration is the network physical resource sharing and its impact on the

offered service. Often, a customer does not need a high QoS at all times. For example,

in the case of connected ambulance facilitating patient treatment by a remote physician

while in transport, the service level needed to operate the associated connectivity would

only be needed while the patient is on the way to hospital. Once the patient reaches

the hospital, that communication service is no longer needed. For such applications,

customers can request on-demand services that are charged on a pay-as-you-use basis,

which might be an incentive for the provider to share the network resources between users

to achieve profitability [55].

Minislot pre-emption In URLLC use-cases, 5G minislots can pre-empt normal transmis-

sions, which can be useful when there is a need for time-critical communication. However,

pre-emption can negatively impact other network users, e.g., a user will be affected if its

transmission is pre-empted because of another higher priority user. Therefore, the SLA

should consider the trade-offs of using minislot pre-emption that are application specific

and lack established best practices.

Interoperability and non-standardized metrics Interoperability should be considered

between the various components of the 5G-enabled medical device application [58] in addi-

tion to the interoperability between various network equipment vendors to facilitate SLA

service delivery. Interoperability challenges for SLA fulfillment are further highlighted

by the fact that network performance metrics are commonly vendor-specific, where each

network equipment vendor defines metrics using its own set of counters and naming con-

ventions. In addition to managing non-standardized network performance metrics, SLA

fulfillment includes the challenge of translating the customer requirements to technical

specifications [55], which can be presented as customer business goals. In this case, the

SLA stakeholders develop a mapping between the technical and business metrics to align

the SLA with their business goals and document the expected business value contribution
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of the measurable network performance metrics. Business metrics indicate the progress

of a stakeholder’s goals and can include metrics for marketing (e.g., incremental sales),

sales (e.g., average profit margin), financial value (e.g., debt-to-equity ratio), software as

a service (SaaS, e.g., customer retention rate), or social media (e.g., number of twitter

followers) [59], [60].

Cost-benefit constraints The customer budget might limit the level of service obtained

from the network service provider. Accordingly, the challenge is to maintain a tolerable

customer cost-benefit ratio including the cost assessment of possible technical solutions

that can meet the customer expectations and the associated trade-offs.

Challenges in SLA assurance

This part of SLA management assures that the provided service achieves the performance

set in the SLA.

The rigidness of contracts While foreseeable future requirements are considered during

SLA development, the unpredictable change in customer requirements is challenging to

address for SLA assurance. Unpredictable requirements encountered during the lifecycle

of SLAs complicate the SLA applicability to evolving customer needs where the estab-

lished correlations might become outdated between business needs, network performance

metrics, and cost. Notably, the incentive to adapt an SLA to new situations decreases

as the contract period nears its end [55]. Accordingly, considering dynamic SLAs in 5G

and beyond networks can help prepare the stakeholders to address evolving technical and

business situations during for the SLA duration.

Forecast function An open research question is the development of continuous network

forecasting and optimization techniques to optimize a set of desired network aspects

(e.g., coverage, energy efficiency, spectral efficiency) based on variable inputs (e.g., traffic,
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environmental factors). Although there are reports on advancements in this area, it

is unclear what the optimal mapping is between the proposed forecasting techniques

and network parameters [26]. However, in dynamic 5G and beyond networks, forecast

functions are central to the deployment of features like network slicing, where the network

resources are dynamically optimized between slices to improve utilization while meeting

the SLA service levels [46]. Hence, the challenge is to develop, deploy, and document a

forecast function that meets the optimization objectives and constraints for every network

slice with the available input streams.

Manual problem resolution With increasing complexity and heterogeneity of 5G and

beyond networks, the lack of automatic problem resolution is challenging. To facilitate

efficient service problem resolution, automated tools can be useful in root cause analysis,

trouble ticketing, and traffic forecasting.

Reputation management algorithms SLA penalties can negatively impact the service

provider reputation [61]. This is augmented in cases where the service performance met-

rics include client reviews. In 5G and beyond networks, a challenge in the review-based

evaluation can be the ease of generation of large volumes of dummy clients by a service

provider to build their reputation or damage the competition. For example, due to post-

ing fraudulent reviews against its competitor HTC, Samsung was fined $340,000 in 2013

by the Taiwan Federal Trade Commission [62]. The interested reader is referred to the

comprehensive study in [63] for more information on this topic.

Notably, the challenges in meeting requirements for emerging networks identified in this

section can be solved using AI-based automation tools.
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2.2.3 Considerations and open research questions for enabling advanced

emerging networks use cases

This section illustrates open research questions in Fig. 2.5 based on the SLAs challenges

described in section 2.2.2. These include trade-offs and practical implementation con-

siderations in 5G network resource allocation. Other considerations include optimizing

device performance when using bandwidth adaptation, network slice sharing modes, and

dynamic network resource optimization. With the mmWave spectrum enabling 5G per-

formance, research is also needed to understand the integration of user mis-association

probability to mmWave cells in the medical device risk evaluation and strategies to address

it in the SLA. This is relevant in scenarios like connected ambulance where mobility is

important to deliver the intended functionality. With 5G and beyond networks becoming

increasingly complex in terms of the number of configuration and optimization param-

eters and counters, adaptive algorithms to reduce the large set of observable network

counters and metrics are needed for helping in efficient network monitoring, especially

during the SLA service monitoring and assurance phases. Moreover, algorithms are also

needed to flexibly map and optimize the network configuration parameters to meet a

desired healthcare application requirement while maintaining business objectives for all

stakeholders. This can extend to the development of continuous forecasting and opti-

mization techniques, where AI can play a key role. Given the evolving nature of 5G and

beyond networks, and the diverse communication requirements for different healthcare

use cases, mechanisms for dynamic SLA negotiation are also needed. Additionally, the

heterogenous and multi-domain nature of 5G and beyond networks indicates that collab-

oration frameworks are needed between the SLA stakeholders to promote interoperability

and service delivery.
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Fig. 2.5: Future research directions to facilitate the safe use of communication in emerging
network applications through SLAs.

2.3 Communication requirements for advanced use cases in emerging networks

Knowledge of requirements for emerging networks use cases is important for all the stake-

holders including developers, network providers and regulatory authorities in the health-

care sector to facilitate safe and effective healthcare [64]. The expansive set of 5G con-

figuration and optimization parameters offer network operators flexible options in setting

up their networks and dynamically optimizing network performance to achieve a desired

objective. Accordingly, a large set of parameters can impact the needed performance

for a 5G-healthcare use case. 5G network providers can use specific quantitative key

performance indicators (KPIs) to assess the feasibility of a given 5G-enabled healthcare

use case, provide the level of service required for the safe and effective functioning of

5G-enabled healthcare applications, and for drafting service level agreements with their

customers [64].

Clearly specified KPIs can also be helpful to the regulatory authorities like the U.S. Food
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and Drug Administration (FDA) to help assess whether communication service levels

and quality of service requirements are met to support the safe and effective use of a

5G-enabled medical device.

In this section, we identify, compare, and summarize the communication requirements for

several advanced use cases that can be enabled by 5G. Although, we focus on quantitative

requirements, qualitative requirements are also highlighted. Furthermore, we identify

gaps in the existing literature and highlight considerations in this area. Specifically,

we have surveyed the technical requirements for remote robotic-assisted surgery, mobile

connected ambulance (i.e., in-ambulance treatment by remote physicians), wearable and

implantable devices, and service robotics for assisted living. To the best of our knowledge,

the closest work to this section on the similar topic is the recent magazine article by

Cisotto et al. [65], which highlights select quantitative requirements for the use cases of

telepresence and robotic-assisted telesurgery, remote pervasive monitoring, healthcare in

rural areas, and mobile health (m-Health). Compared to the related work, this section

includes references specific to the use of 5G in healthcare, in addition to those addressing

the communication requirements of the healthcare applications regardless of the enabling

communication technology, which can inform how applications use 5G.

2.3.1 Key performance indicators for emerging networks applications

While KPIs such as data rate, accessibility, reliability, and mobility have been widely used

in the performance evaluation of 4G cellular networks, the diversity and heterogeneity of

5G applications are calling for further expansion to incorporating novel sets of KPIs for

measuring adequacy and efficacy of 5G-enabled services. The taxonomy shown in Fig. 2.6

highlights the vastness of 5G network KPIs. Inspired by [66, 67, 68] and combined with

domain knowledge, this taxonomy classifies 5G KPIs into four categories: network, ser-

vice, application, and user. Each category also includes high-level and low-level KPIs.

High-level ones measure the overall performance of the network based on metrics defined
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by the standardization bodies such as 3rd Generation Partnership Project (3GPP). How-

ever, most of the time, these high-level KPIs are focused on characterizing general features

of the cellular system/service. With this regard, we also introduce low-level KPIs under

each high-level one to further instantiate specific requirements. A certain 5G-enabled

healthcare application might depend on a given set of KPIs to deliver its function while

having low sensitivity to others.

The service level KPIs often discussed in 5G-enabled healthcare literature to address sev-

eral aspects of the communication network include availability, accessibility, reliability,

data rate and retainability. Availability is the fraction of time the network is available

to provide the services users demand [69]. Accessibility is discussed in the context of

connectivity time, which measures the time to establish a network connection, starting

at the user request and ending at the beginning of the data transmission. Reliability is

addressed through several low-level KPIs shown in Fig. 1: throughput, latency, jitter,

and packet loss rate (PLR) or bit error rate (BER). User throughput during active time

is the size of a burst divided by the time between the arrival of the first packet and the

reception of the last packet of the burst. Latency corresponds to the travel time of data

packets from the source to the destination (i.e., one-way, or end-to-end latency) [70]. The

round-trip latency is the time it takes a signal to be sent plus the time spent to receive an

acknowledgement of that signal. Jitter is a measure of the variation in the time of arrival

between packets. If uncontrolled, jitter impacts the audio and video quality which can

negatively impact applications where this type of communication is used (e.g., telesurgery,

remote diagnosis, service robotics for assisted living). PLR is the fraction of packets that

failed to reach the receiver out of total number of transmitted packets. BER is the total

number of bits received in error over the total number of bits sent. Like jitter, high

BER/PLR negatively impacts the audio and video quality. Also relevant to the service

level is the data rate, which is a measure of the volume of successfully received application

data, expressed in bits, within a period expressed in seconds. A high data rate is relevant

in applications that transport large volumes of data. Service retainability refers to the
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count of radio link interruptions following the activation of that link between the user and

the network. A related measure of service retainability is the number of reconnections,

i.e., the count of attempts a user performs to re-establish network connection following a

link failure.

The overall network characteristics are addressed in the literature with several network

level KPIs like network bandwidth, utilization and spectral efficiency. Bandwidth refers

to the network maximum aggregated data transmission rate. Connection density and

traffic density are measures of utilization. Connection density refers to the number of

connected devices per unit area. This is relevant in connected IoT application, where

the number of connected devices is large. Traffic density (or area traffic capacity) is a

measure of the volume of catered data in a unit area. Spectral efficiency is the maximum

number of bits the network can provide to users every second using a given bandwidth.

On the user level, KPIs of battery or power consumption, range and payload size are

commonly reported in literature covered in this paper. User battery consumption and the

its associated low-level KPI, duty cycle, which is the ratio between an application active

(ON) and idle (OFF) times, are relevant in IoT devices where transmissions are intermit-

tent and battery lifetime is limited. Range is the distance at which the signal transmitted

is sufficient for the transmitter and receiver to communicate effectively. Another relevant

KPI discussed in literature is the user payload size, which can be controlled to balance the

transferred data volume with the incurred transmission overhead. This promotes efficient

network resource usage while helping to meet specific application needs.

On the application level, security and position accuracy are the most commonly discussed

KPIs in literature reviewed in this paper. Security refers to the network ability to identify,

isolate, and eliminate threats to its infrastructure, users, and their data. Position accuracy

is a measure of the difference between the estimated and actual user locations. The 3GPP

(the entity that develops 5G specifications) has set different position accuracy targets for

different scenarios ranging from several meters for emergency calls to few decimeters for
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Fig. 2.6: Taxonomy of 5G network KPIs.

indoor plant operations and vehicle-to-everything (V2X) [71].

Although relevant to enabling 5G healthcare functions, some KPIs are seldom addressed

in the articles reviewed in this paper. For example, the network-coverage is relevant to

all applications using its services. While network coverage area probability is related to

user activity range, it refers to the percentage of service area where users can receive a

desired service. On the application level, privacy is relevant to healthcare applications

because it refers to the ability of the network to keep the data which passes through
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Fig. 2.7: Examples of 5G-enabled applications concepts and their projected needs for some
communication KPIs.

or stored in it private. Also on the application level, network resource elasticity is

relevant in applications with temporary need for elevated connection capabilities like

in-ambulance treatment and other emergency related applications. Resource elasticity

describes the network ability of responding to temporal and spatial fluctuations in traffic

demand by redistributing available resources to seamlessly meet the demand of critical

applications [72]. On the service level, mobility is relevant to applications that are mobile

like connected ambulance. Mobility is the maximum user speed that a network can

support. It also refers to the ability of a network to support mobile users. A measure of

mobility can be the rate of successful handovers between the coverage sites. Additional
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examples of KPIs related to the service level include the service restoration time under

resilience and survival time under reliability. The former refers to the period in which

the services are restored to normal operating status after experiencing a downtime. The

latter is the tolerable packet delay in which an application can still function effectively.

Fig. 2.7 illustrates a subjective summary of the general relevance of the high-level 5G

network KPIs we investigated in Fig. 2.6 to the following applications: remote robotic-

assisted surgery, connected ambulance or in-ambulance treatment by remote physician,

healthcare IoT applications, medical data management, teleconsultation and remote di-

agnosis, and service robotics for assisted living. These applications are only considered

as generic concepts, which recognizes that realistic medical devices implementing one or

more of these application concepts have unique KPI needs. Furthermore, the FDA guid-

ance document on radio frequency wireless technology in medical devices recommends

that the medical device wireless quality of service (QoS) is specific to the medical device

[73]. Accordingly, this summary can help inform the KPI value specifications that should

be determined for the specific intended use of a medical device and its design. Relevance is

qualitatively described as high, medium, or low. Notably, remote robotic-assisted surgery

needs careful provisioning of several KPIs including reliability where low-level KPIs such

as latency, jitter, and packet loss fall under. However, when the scenario is implemented

in an operating room, mobility is not as relevant as other KPIs since the connection will

not move across multiple network cells. On the contrary, in-ambulance treatment by

remote physician or connected ambulance needs exceptional mobility support since the

data exchange occurs while the ambulance is mobile. Support for mobility in this case

complements other relevant KPIs like reliability, data rate, availability, coverage, and

resource elasticity to enable the exchange of diverse data streams (e.g., video, audio, file

transfer, control commands). The number of connected wearable devices is expected to

grow globally from 720 million in 2019 to more than 1 billion in 2022 [74]. Accordingly,

the KPIs of utilization and UE battery consumption are highly relevant for enabling the

network connectivity for such devices given their energy constraints. In the case of med-
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ical data management, security and privacy are more relevant compared to other KPIs,

such as reliability. Like other services that use audio and video, remote diagnosis or

teleconsultation are negatively impacted with degraded reliability. Other relevant KPIs

for this use case include coverage, range, and utilization to facilitate the service access by

many users. Finally, we note that reliability, range, and position accuracy are relevant

in the service robotics for assisted living use case where the robot is mobile in a limited

area. The following sections will identify the requirements for each of these use cases.

Remote robotic-assisted surgery

Several studies have addressed quantitative KPI requirements for remote robotic-assisted

surgery, which we also refer to as telesurgery for the remainder of this chapter. This

use case involves the use of a robotic-assisted surgery platform by a surgeon located in a

remote geographic location. The most commonly reported KPIs include latency, data rate

and packet loss [75, 76, 77, 65, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94,

95, 96, 97, 98, 99, 100, 101, 102]. Few studies have also reported quantitative requirements

for reliability, communication service availability, payload size, traffic density, connection

density, service area dimension, survival time, range, and duty cycle [85, 89, 65, 99].

Table 2.1 presents the reported latency requirements for several communication streams

that can be used during telesurgery like camera flows, vital signs, and feedback for force

and vibration. Latency in this context is considered end-to-end. Compared to latency,

quantitative requirements for jitter are less investigated in literature. The reported jitter

requirements are detailed in Table 2.2. Similarly, requirements for data rate are detailed

in Table 2.3. These requirements can be influenced by different compression techniques

used. Reported packet loss and BER requirements are presented in Table 2.4. Reports

of other KPIs, such as reliability, availability, survival time, etc. are listed in Table 2.5.

The ability of current 5G networks to meet these KPIs will be discussed in Section 2.3.2.

Notably, the reported KPI values are inconsistent across literature reports, which could
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be attributed to the varying type of tasks considered by the researchers during telesurgery.

Additionally, the equipment used to perform telesurgery and the simulation environment

also varies across studies. To detail the context of the telesurgery KPI specification,

we also labeled the original source of the reported KPIs in each study as detailed in

Tables 2.1-2.5. Most KPI values were found in experiment and simulation settings of the

individual studies with exceptions where the values are a consensus view of the achievable

performance by wireless stakeholders [77], [88], and [85]. [77] is a white paper by the 5G

Infrastructure Public Private Partnership (5GPPP) that highlighted use cases for 5G in

healthcare and suggested quantitative requirements. A technical requirements document

was compiled by the IEEE 802.15 Task Group 6 for Body Area Networks (BAN), formed

in 2007 to help develop a communication standard optimized for the low power devices

and operation, in or around the human body to serve a variety of applications including

medical applications. The report in [85] outlined findings from the National Science

Foundation (NSF) funded workshop on ultra-low latency wireless networks. The report

addressed healthcare application requirements of the emerging applications, including

telesurgery, in terms of throughput, latency, and reliability. In the following, the relevant

experimental and simulation studies are summarized.

Experiment based In [78], the Aesop 1000TS robot (Computer Motion, Goleta, CA) was

adapted to hold a metal pin in addition to a laparoscope and camera (Stryker Instruments,

San Jose, CA). Programmed incremental time delays were introduced in the audiovisual

acquisition and the number of errors made while performing tasks at various time delay

intervals was noted. A remote surgeon in Baltimore, MD performed tasks 9000 miles

away in Singapore and determined that a delay of < 700 ms is acceptable.

A teleoperation capable ZEUSTM robotic minimally invasive surgery system was used in

[79], with a dedicated communication link by Bell Canada and Telesat Canada. This link

included a wired link with a roundtrip delay of 64 ms, a satellite link with a roundtrip

delay of 580 ms, and a software simulated delay link through a local switch. Different tasks
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were performed from London, Ontario to Halifax, Nova Scotia, Canada. These included

dry (typical surgical maneuvers at latencies from 0 to 1 s, in increments of 100 ms) and

wet (internal mammary artery takedown on a pig) experiments. A heuristic mathematical

model accompanied the task completion times and error rate results, showing acceptable

delays of up to 300 ms and 800 ms for simple tasks with training. It was concluded that

the effect of delay is not pronounced until the round-trip time exceeds 400 ms and the

maximum tolerable delay is approximately 600 ms.

Another work using the ZEUS system is [80], which attempted a remote robot-assisted

laparoscopic cholecystectomy on a 68-year-old woman with a history of abdominal pain

and cholelithiasis. The surgeon’s subsystem (Equant’s point of presence, New York) and

patient’s subsystem (operating room in European Institute of Telesurgery, Strasbourg)

were connected via a high-speed terrestrial network (i.e., ATM service), with a round-trip

distance of over 14,000 km. Robot motion data had a high priority and a rate guarantee

of 512 Kbps within the 10 Mbps virtual path. The operation was carried out successfully

in 54 min, with a 155 ms mean time lag for transmission. The study estimated that

300 ms was the maximum time tolerable delay.

Authors in [87] attempted a robot-assisted laparoscopic gall bladder removal for six pigs

with the surgeon located in Strasbourg, France and animals located in Paris, France using

the ZEUS system. The time lag was artificially increased from 20 ms up to 551.5 ms.

It was concluded that no packet was lost during any surgical procedure, the round-trip

delay was 78–80 ms, with additional 70 ms for video coding and decoding and a few

milliseconds for rate adaptation, summing to 155 ms [87].

To study the impact of haptic feedback in virtual environments, two experimental plat-

forms were implemented in [95]. Platform 1 consisted of two sites, the University of

Belfast separated by a few hundred meters and linked by Gigabit Ethernet connection.

The configuration of the experimental platform consisted of four 100 Mbps Ethernet seg-

ments, two 1000 Mbps fiber optic segments and four PCs. One PC was connected to a
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Table 2.1: Latency requirements for telesurgery.

Data type Reported Latency Source
< 150 ms [75] [76] Experiment [87]
< 200 ms [77] [65] Other [77]

2D camera flow < 700 ms [78] Experiment [78]
< 600 ms [79] Experiment [79]
< 300 ms [80] Experiment [80]

< 150 ms [75] [76] Experiment [87]
< 300 ms [81] Experiment [81]

3D camera flow < 500 ms [82] Experiment [82]
< 400 ms [83] [84] Simulation[93]

280 ms [103] Experiment [103]
20-50 ms [85] Other [85]
2-60 ms [104] Experiment [104]

146-202 ms [105] Experiment [105]
28 ms [106] Experiment [106]

258-278 ms [107] Experiment [107]
0.25-5 ms [108] Simulation [108]

Audio flow < 150 ms [75] [76] [86] [83] Experiment [87]
100 ms [85] Other [85]

Temperature < 250 ms [75] [65] [76] [88] [89] Other [88]
Blood pressure < 250 ms [75] [89] [65] [76] [88] Other [88]

Heart rate < 250 ms [75] [65] [76] [88] [89] Other [88]
Respiration rate < 250 ms [75] [65] [76] [88] [89] Other [88]

ECG < 250 ms [75] [65] [76] [88] [89] Other [88]
EEG < 250 ms [75] [65] [76] [88] [89] Other [88]
EMG < 250 ms [75] [65] [76] [88] [89] Other [88]

3-10 ms [75] [76] Experiment [92]
1-10 ms [85] Other [85]

Force 3-60 ms [83] Experiment [94]
< 50 ms [84] [90] Experiment [95] & Simulation [90]

40 ms [84] Experiment & Simulation [84]
< 100 ms [91] Experiment [91]

< 5.5 ms [75] [76] [83] [86] Experiment [92]
Vibration < 50 ms [84] Experiment [95]

1-10 ms [85] Other [85]

PHANToM Desktop, two generated background traffic, and one ran the remote virtual

environment. In Platform 2, one of the computers is used to emulate network impair-

ments. Haptic data, network congestion, and network-impairments were analyzed using

these two platforms by introducing controlled delay (0 ms to 50 ms), jitter (1 ms to

15 ms), and packet loss (0.1% to 50%). Study participants self-scored the sense of force
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Table 2.2: Jitter requirements for telesurgery.

Data type Reported Jitter Source

2D camera flow 3-30 ms [75] [65] Simulation [96] Simulation [93]

3D camera flow 3-30 ms [75] [65] Simulation [96] Simulation [93]

3-55 ms [108] Simulation [108]

< 30 ms [85][89] [83] [84]
[93] [96]

Other [85]

Audio flow
< 30 ms [89] [75] [83] [84]

[65]
Simulation [96] Simulation [93]

50 ms [85] Other [85]

3-55 ms [108] Simulation [108]

< 2 ms [75] [89] [65] [84] Experiment [95] Simulation [96]

Force 10 ms [85] Other [85]

1-10 ms [83] Experiment [97]

< 2 ms [84] [89] [75] [65] Experiment [95] Simulation [96]

Vibration 10 ms [85] Other [85]

1-10 ms [83] Experiment [97]

feedback. The haptic QoS requirements were summarized by less than 10 ms delay, less

than 3 ms jitter, 1% to 5% for packet loss rate, and haptic data transmission rate of

approximately 1 kHz.

The study in [84] involved both simulation and practical experiments where multimodal

data is transmitted over a QoS-enabled Internet Protocol (IP) network. The force feed-

back device was the PHANToM desktop from SensAble Technologies Inc., which could

provide force up to 3.3 N in 3 axis directions and generate 1000 packets/s of position

and force data during the haptic collaboration actions. In the experiments, the force

feedback device was used to manipulate moving virtual objects and to provide the user

with feedback from the virtual environment. The end-to-end delay experienced by the

haptic traffic was found to decrease from 200 ms (best effort) to 40 ms by running the

haptic application in a Differentiated services (DiffServ) network.

To understand the impact of vibration feedback latency, authors in [92] built a system

consisting of a liquid crystal display (LCD), touch sensor, rod device with a vibrator,

microcontroller, and a host computer. The microcontroller (NXP semiconductors, mbed
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Table 2.3: Data rate requirements for telesurgery.

Data type Reported data rate Source

2D camera flow < 10 Mbps [75] [76] Simulation [96] Experiment [95]

3D camera flow 137 Mbps-1.6 Gbps [75] [76] Simulation [83]

≈ 8 Mbps [104] Experiment [104]

95-106 Mbps [105] Experiment [105]

2.5–5 Mbps [84] [83] Simulation [96] Experiment [95]

1 Gbps [85] Other [85]

> 1 Gbps [65] Simulation [83]

Audio flow
22-200 Kbps [75] [76] [84]

[83]
Experiment [86]

Temperature < 10 Kbps [75] [76] [89] Other [88]

Blood pressure < 10 Kbps [75] [76] [89] Other [88]

Heart rate < 10 Kbps [75] [76] [89] Other [88]

Respiration rate < 10 Kbps [75] [76] [89] Other [88]

ECG 72 Kbps [75] [76] [89] Other [88]

EEG 84.6 Kbps [75] [76] [89] Other [88]

EMG 1.536 Mbps [75][76] [89] Other [88]

128-400 Kbps [75] [76] Experiment [83] [86]

Force 500 Kbps–1 Mbps [84] Simulation [96]

128 Kbps [83] Experiment [98]

128-400 Kbps [75] Experiment [83] [86]

Vibration 500 Kbps–1 Mbps [84] Simulation [96]

128 Kbps [83] Experiment [98]

NXP LPC1768) controlled the feedback latency from 0.1 to 25.6 ms, according to an

adaptive staircase algorithm. 24 participants first sat in front of the touchscreen and

were instructed to tap the touchscreen by raising the rod as quickly as possible after the

rod head made contact with the touchscreen with an approach velocity of 0.1-0.5 m/s.

After the practice, they experienced a 25.6 ms delayed vibration. The participants then

conducted eight staircases for further experiments involving two surface conditions (wood

or metal). The results showed a 5.5 ms detection threshold of the vibration feedback

latency.

Another experimental study proposed a multiplexing scheme that is evaluated using a

45



teleoperation system consisting of a KUKA light weight robot arm (KUKA Robotics),

a JR3 force/torque sensor, a force dimension Omega 6 haptic device [86], and real-time

Linux-based Xenomai development software. Using the robot arm, the human operator

could move toys and peg them in corresponding holes, which was considered as a repre-

sentative task for the teleoperation applications. Haptic teleoperation experiments were

performed and KPIs considered were varying end-to-end signal latencies (force delay,

video delay, audio delay), packet rates, peak delay, convergence time, and peak signal-to-

noise ratio (PSNR) for visual quality.

In [94], authors demonstrated an experiment on haptic interaction between two users over

a network with 2.4 Gbps connection. Authors used two PHANToM force-feedback devices

at both sites; one was located at UCL VECG Lab, London, UK and the second was in

MIT Touch Lab, Massachusetts, USA. The experimental subjects were to cooperate in

lifting a virtual box together under different conditions.

Authors in [91] proposed a mutual tele-environment system named “HaptoClone”, which

mutually copies adjacent 3D environments optically and physically using micro-mirror

array plates technology. Haptic feedback was also given by using an airborne ultrasound

tactile display. Different objects were touched by users and the perceived delay of tactile

feedback was measured. Simulations showed that a 100 ms delay was allowable to achieve

the real-time interaction.

Other experimental studies using robot systems of SoloAssist (AKTORmed) in Germany,

Panda robot (Franka Emika) in Italy, 3D-microscope (Karl Storz) and TiRobot system

(Tinavi), and MicroHand (WEGO Group) in China are surveyed in [101].

Simulation based The surgical simulator dV-Trainer from Mimic technologies Inc.,

Seattle, USA was used in [81, 82]. In [81], sixteen medical students performed an energy

dissection and a needle-driving exercise on the dV-Trainer, with latencies varying between

0 and 1,000 ms with a 100 ms interval. These latencies were communication latencies
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Table 2.4: Packet loss or bit error rate for telesurgery.

Data type Reported loss Source

2D camera flow < 10−3 [75] [76] Experiment [95] [96]

3D camera flow < 10−3 [75] [76] Experiments [95] [96]

< 1% [84] [83]
Experiments [95] [96] & Simulation

[93]

0.01-0.06% [108] Simulations [108]

Audio flow < 10−2 [75] [76] Experiments [95] [96]

0.01-0.06% [108] Simulations [108]

< 1% [84] [83] Experiments [95] [96], Simulation [93]

10−5 [85] Other [85]

Temperature < 10−3 [75] [76] Other [88]

< 10−10 [89] (BER) Other [88]

Blood pressure < 10−3 [75] [76] Other [88]

< 10−10 [89] (BER) Other [88]

Heart rate < 10−3 [75] [76] Other [88]

< 10−10 [89] (BER) Other [88]

Respiration rate < 10−3 [75] [76] Other [88]

< 10−10 [89] (BER) Other [88]

ECG < 10−3 [75] [76] Other [88]

< 10−10 [89] (BER) Other [88]

EEG < 10−3 [75] [76] Other [88]

< 10−10 [89] (BER) Other [88]

EMG < 10−3 [75] [76] Other [88]

< 10−10 [89] (BER) Other [88]

< 10% [84] Experiments [95] [96]

Force < 10−4 [75] [76] Experiments [95] [96]

0.01-10% [83] Experiments [95] [96]

< 0.1 [90] Experiments [90]

< 10% [84] Experiments [98] [95] [96]

Vibration < 10−4 [75] [76] Experiments [98] [95] [96]

0.01-10% [83] Experiments [98] [95] [96]

from the time that a movement was initiated by the surgeon until the image of the

movement is visible on the surgeon’s monitor. The difficulty, security, precision, and

fluidity of manipulation were self-scored by subjects. It was concluded that the surgical

performance deteriorates in an exponential way as the latency increases. This study

further concluded that latencies less than 200 ms were ideal for telesurgery; 300 ms was
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Table 2.5: Other requirements for telesurgery.

KPI Reported requirement Source

Reliability 1− 10−7 [65] [99]

Availability 1− 10−5 [65]

Payload size Big 1 [65]

Traffic density Low [Gbps/km2] [65]

Connection density Low [/km2] [65]

Service area dimension 10 m x 10 m x 5 m [65]

Survival time 0 ms [65]

Range Up to 200 km [85]

300 km [65]

Duty cycle for vital signal
monitoring

< 1-10% [89]

also suitable; 400–500 ms may be acceptable; and 600–700 ms was only acceptable for

low risk and simple procedures. Surgery was quite difficult at 800–1,000 ms. The same

simulator was utilized in [82]. However, in this study, instead of students, 37 surgeons

were involved and performed different exercises in an easy-to-difficult order. The dV-

Trainer simulator was permitted to introduce fixed latencies into the exercises between

the gesture on the grips and the visual feedback on the console. Instead of a self-scoring

system as in [81], the dV-trainer in [82] included a built-in scoring system, capturing

instrument collisions, drops, etc. This study concluded that although the impact of delay

is related to the difficulty of the procedures, but overall, delays of 100 to 200 ms caused

no significant impact, delays higher than 500 ms caused a noticeable increase in surgical

risk, and surgery became extremely difficult and should be avoided at delays higher than

700 ms.

In [84], following experiments on a testbed, a probability density function (PDF) model

of the haptic traffic from a distributed haptic virtual environments (DHVE) application

was created for the use in a simulated DiffServ network using OPNET simulation tool.

Subsequently, the effect of running the haptic traffic over a DiffServ IP network was

obtained. Results indicated that the haptic throughput increases with the increase in the

1By big payload, we mean when the packet exceeds 10 Kb [65].
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queue scheduling weight.

Another work leveraging a similar testbed, used a force-feedback haptic device in the

PHANToM experimental testbed [96]. The set-up involved two computers that were con-

nected through a gigabit Ethernet fiber optic link running on the best effort IP service.

The collected network traces from the test network were used to generate statistical mod-

els of each type of DVHE traffic that can be used in the standard network simulation

packages such as OPNET. The measured network parameters included throughput, packet

lost, delay, and jitter. Results from this simulation model showed a close match of simu-

lation network throughputs with experimental throughputs of 850 Kbps and 630 Kbps in

asynchronous and synchronous modes, respectively. DHVE effective throughput deterio-

rated sharply above 90% background load. End-to-end delays of more than 5 ms occurred

at above 90% background load. The impact of jitter, latency, and packet loss was studied

in [93] using the analytical models, OPNETWORK, and OPNET simulators. For audio,

the simulated traffic behavior model was based on two-state (ON-OFF) Markov modu-

lated rate process (MMRP) with the exponentially distributed time at each state. For

video, the model was based on K-state MMRP. The QoS requirements for the audio were

reported as: delay < 150 ms, jitter < 30 ms, and packet loss < 1%. For video, these

requirements were concluded as: delay < 400 ms, jitter < 30 ms, and packet loss < 1%.

Another simulation-based study to investigate the haptic- audio-visual data communica-

tion used an interpersonal communication system, HugMe, which consisted of a haptic

jacket for a remote person to simulate nurture touching. A haptic device for a local per-

son to communicate his feelings with the remote person, and a depth camera to capture

the image and depth information of the remote person and send it back [83].

Several studies citing jitter requirements for telesurgery have referred to the work in [98]

that used Image Server and Haptic Handshake applications. The network emulation in

[98] consisted of two endpoint computers and a third intervening computer that simulates

the network using NISTNet software. The Handshake application is intended to train
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students remotely in surgical procedures by placing a haptic device at each endpoint and

having the instructor guide the movements of the student remotely. The performance was

evaluated under varying packet loss, delay, and jitter. Minimum end-to-end performance

requirements for throughput was 128 Kbps, packet loss was less than 10%, delay was less

than 20 ms with abrupt movement and less than 80 ms with gentle movement, and jitter

was less than 1 ms.

In [90], authors investigated the effect of packet loss and latency in multimodal telepres-

ence systems. The packet loss caused the impression of time delay and influenced the

perception of the subsequent events. The simulated haptic feedback force was generated

via PHANToM haptic device. The visual 3D environment was presented on a monitor,

which was fixed above the haptic device and tilted 80◦ toward the observer. The visual

space was collocated with (i.e., projected into) the haptic space by means of a mirror and

participants viewed the mirrored image through a pair of shutter glasses for the stereo

image presentation. Visual-haptic event judgment was investigated under packet loss

rates of 0, 0.1, 0.2, and 0.3, respectively. The minimum required latency for visual-haptic

events was concluded to be 50 ms. Finally, telesurgery reports using software-defined

networking (SDN), fog, and cloud infrastructures are described and compared in [108].

Connected ambulance

Table VI summarizes the literature relevant to the connected ambulance use case in terms

of the investigated communication KPIs. The literature covers a wide range of applica-

tions termed as connected ambulance. In essence, this involves providing medical care

enroute to a healthcare facility while exchanging relevant data (e.g., imaging, vital signs,

audio, video) with healthcare providers. Requirements for 5G-enabled mobile health-

care in general are discussed in [109], where the authors propose to implement two-way

connectivity between ambulances and hospitals across the UK. The KPIs discussed in

the paper include the maximum allowed end-to-end latency for different data types (i.e.,
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150 ms for camera and audio flow, 250 ms for vital signs, and less than 10 ms for force and

vibration). Data rate requirements for different data types were also specified, with the

highest data rate requirement being 10 Mbps for two-way visual multimedia streaming,

followed by haptic feedback including force and vibration data types with 400 Kbps each,

and then audio multimedia stream with a requirement of 200 Kbps. Depending on the

required quality and bandwidth constraints the data rate requirements for audio data can

vary between 22-200 Kbps. Moreover, different types of vital signs were assigned different

data rates, with EEG having the highest requirement of up to 86.4 Kbps [109].

The studies in [77, 65] also highlighted some general requirements for this use case,

including 10 ms latency, 2 ms jitter, < 2 ms survival time, 1 − 10−5 service availability,

1− 10−7 reliability, and 0.05 Mbps data rate.

The project“improving treatment with rapid evaluation of acute stroke via mobile telemedicine”

(iTREAT) in [110] reported that 93% of connected ambulance cases achieved a minimum

9 min of continuous, live video transmission with a mean mobile connectivity time of

18 min and 87.5% of tests achieved bidirectional audio video quality with ratings of 4

out of 5 or higher, excluding one route with poor transmission quality. The transport

routes were 20 min to the University of Virginia Medical Center and 30 test runs were

performed. Limitations of this study include manual ratings of the service quality, not

explicitly incorporating patient while testing, exclusion of one route with poor coverage

conditions, small size of study, and being limited to one region.

Another e-ambulance study used biosensor emulators in a laboratory to mimic biosensor

communication behavior and studied KPIs with the varying number of biosensors and

payload sizes [111, 112, 113]. Reported outcomes include an upper bound of 250 ms on

latency, 0.4 Mbps for average overall throughput, and the success ratio of transmitted

samples varied between 97.7% and 99.9%.

A connected ambulance use case was investigated in [114] in the context of proposing

a video encoding configuration that jointly optimizes the clinical video quality, time-
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varying bandwidth availability, and heterogeneous device’s performance capabilities. The

proposed model estimated structural similarity quality with a median accuracy error of

less than 1%, bitrate demands with the deviation error of 10% or less, and encoding frame

rate within a 6% margin.

The study in [115] proposed measurement-based requirements for high-definition ultra-

sound images (uplink rate > 20 Mbps, downlink rate > 5 Mbps, network delay < 80 ms,

jitter < 30 ms), 4K video (uplink rate > 20 Mbps, downlink rate > 20 Mbps, network

delay < 50 ms, jitter < 20 ms). Reliability was set to 99.99%, and mobility was of 0-

120 km/h. The measured download rate inside the ambulance, which is a user of a 5G

private network, reached 1361.21 Mbps, and upload rate reached 257.52 Mbps.

Handling specific patient conditions was also addressed in the context of connected ambu-

lance e.g., prehospital stroke evaluation and treatment [116]. A Prehospital Stroke Study

at the Universitair Ziekenhuis Brussel investigated the safety, technical feasibility, and reli-

ability of in-ambulance telemedicine [117]. A total of 43 attempts were made to perform a

prehospital teleconsultation of neurological and non-neurological conditions (e.g., strokes,

trauma, respiratory, gastro-intestinal, acute pain, intoxication, labor, dysglycemia, vascu-

lar disease). The authors concluded that 30 teleconsultations were performed with success

rate of 73.2%. Transient signal loss occurred during 6 teleconsultation sessions (14.6%).

The time before the connection was re-established varied from 38 seconds to 5 minutes

and 47 seconds. Permanent signal losses occurred in 5 teleconsultations (12.2%). The

success rates for the communication of blood pressure, heart rate, blood oxygen satura-

tion, glycemia, and electronic patient identification were 78.7%, 84.8%, 80.6%, 64.0%, and

84.2%, respectively. Communication of a prehospital report to the in-hospital team had

a 94.7% success rate and prenotification of the in-hospital team 90.2%. Most problems

were caused by unstable bandwidth of the 3G/4G mobile network, limited high speed

broadband access, and software, hardware, or human error. The study’s main limitations

include the small sample size, short study duration, and complex observational design. A
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TABLE VI: Summary of literature for relevant connected ambulance KPIs.

Use case KPIs Data type Tools Study
A mobile small cell-based

ambulance in the uplink direction
in a heterogeneous network.

Latency, data rate, PLR,
retainability, spectral

efficiency
Ultrasound video LTE Sim system level simulator [60]

Project proposal aiming to capture
more than 6000 ambulances

across the UK provided by 200
different vendors

Latency, data rate, PLR
Ultrasound video, in-ambulance
video vital signs, EEG, ECG,

force, vibration

Sonography and vital-signs-measuring
equipment in ambulances [53]

Ambulance transporting cardiac
patients to hospital Latency, PLR 12-Lead ECG

Philips standard (basic device model without
advanced features such as computer-assisted
ECG interpretations), embedded, integrated

ECG device in ambulance
[61]

Ambulance transporting stroke
patients to hospital

Retainability, bandwidth
(mean and maximal

upload and download
speeds for data transfer),

accessibility

Audio-video, blood pressure,
heart rate, blood oxygen
saturation, glycemia, and

electronic patient identification

PreSSUB 3.0 system in ambulance [62]

Ambulance transporting stroke
patients to hospital

Bandwidth (median
maximal and average

upload download speed)

Audio-video, blood pressure,
heart rate, blood oxygen

saturation, glycemia,
temperature, cardiac rhythm,
Glasgow Coma Scale (GCS),

and electronic patient
identification

PreSSUB 3.0 system in ambulance [63]

Mobile stroke treatment units for
patients with acute onset of

stroke-like symptoms

Service restoration time,
PLR, latency CT, audio-video, vital signs MSTUs with CT system, camera (RP-Xpress;

InTouch Health) [64]

Ambulance transporting cardiac
patients to hospital Retainability, PLR 12-lead ECGs Rhythm-surveillance and defibrillation

equipment [65]
Ambulance transporting stroke

patients to hospital
Throughput, number of

reconnections Audio, video, vital signs TeleBAT system in ambulance [66]

Ambulance transporting stroke
patients in rural area to hospital Retainability, reliability Audio, video,

iPad, Jabber video app, University of Virginia
Health System firewall, COR IBR600 LE-VZ;
CradlePoint router, 4G Verizon Wireless sim,
AP-CW-M-S22-RP2-BL and AP-CG-S22-BL

antennas

[54],
[67]

Stroke patients in mobile stroke
units en route to hospital Reliability, retainability Audio, video, ECG, vital signs

MEYTEC GmbH telemedicine systems of
Vimed car and Vimed Doc for

videoconferencing and teleradiology
[68],
[69]

Simulation of mobile ambulance
using emulated biosensor data

Latency, average
throughput, PLR

Body temperature, blood
pressure, heart rate

Data Distribution Service (DDS) middleware,
biosensor emulator [55]–

[57]

Connected ambulance prototype
study with QoS control in

network slicing environment

Uplink/downlink
throughput, latency
(average per-hop)

Video slices (eHealth,
conferencing, surveillance and

entertainment)

MEC-based TeleStroke service by SliceNet,
NetFPGA cards, SimpleSumeSwitch

architecture, LTE eNodeBs, OpenFlow-enabled
switches, Software Development Kit (SDK),

Dell Edge Gateway, P4 NetFPGA

[70]

Connected Ambulance prototype
study in network slicing

environment

Average packet loss,
latency (round trip time),
throughput (frames per

second)

Audio, video

eHealth infrastructure at Dell, Ireland, pfSense
security, OpenVPN, Dell Edge Gateway series
3003, LTE SIMS, OpenMANO OSM, MEC by

SliceNET
[71]

Testing of video encoding
framework on ultrasound videos

of carotid artery in connected
ambulance scenario.

Bitrate, data rate,
time-varying bandwidth

availability

Ultrasound videos of the
common carotid artery

Multi-objective optimization, Philips ATL 5000
ultrasound machine, x265 open source

software, Ubuntu 14.04.4 LTS/Linux 64-bit
platform

[58]

Prediction of ambulances’ future
locations to overcome

mobility-based challanges
Position accuracy GPS data Apache Spark, Spark SQL, algorithms [72]

Proposition of an architecture for
connected ambulance

Uplink/downlink rate,
number of device

connections, latency,
speed, reliability, jitter

Ultrasound image, vital signs,
video

Vital signs monitor, ultrasound equipment,
video cameras [59]

Connected ambulance evaluation
in network slicing environment

using a test platform

Downlink/uplink data
rate, uplink latency

Video, CT image, vital signals,
medical record

5G customer-premises equipment (CPE) signal
transceiver and a 5G user plane function (UPF)

gateway service flow forwarding device,
medical data acquisition device, MEC cloud

computing node

[73]

Ambulance transporting stroke
patients to hospital Reliability, retainability Audio, video

In-Touch RP-Xpress telemedicine device,
Verizon Jetpack 4G LTE mobile hotspot

(4620LE) for 4G LTE [74]

Ambulance transporting stroke
patients to hospital Retainability Audio, video VIMED CAR, head and body cameras,

specialized microphones [75]

Report compiled by industry
experts and academic researchers

based on their studies

Latency, jitter, survival
time, communication
service availability,
reliability, data rate

4K video, audio Reference given to [21] [10]
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continuation of this study was carried out in [118], that addressed patients with suspected

acute stroke and reported median maximal and average upload speeds as 196 Kbps and

40 Kbps, respectively. The download median maximal speed is reported as 407 Kbps

and average speed is reported 12 Kbps, using 4G. An experimental study evaluated the

use of mobile stroke treatment units (MSTUs) to diagnose and treat 100 residents of

Cleveland who had an acute onset of stroke-like symptoms [119]. It was concluded that

there were 6 instances of video disconnection, of which 5 were because of an area of poor

wireless reception and one was due to the compatibility issue of the devices. No video

disconnections lasted longer than 60 s. One limitation pointed out by the authors is the

small sample size of this study.

TeleBAT system in [120] used an integrated mobile telecommunications system while

transporting patients to the University of Maryland hospital via an ambulance. Results

showed feasibility of the case, with number of disconnections resulting from coverage

holes, or network switching.

Another case study [121], consisted of a combination of two studies, PrioLTE2 (Reliabil-

ity of Telemedically Guided Pre-hospital Acute Stroke Care With Prioritized 4G Mobile

Network Long-Term Evolution) study and TeDir (TeleDiagnostics in Prehospital Emer-

gency Medicine [Tele-Diagnostik im Rettungsdienst]) study. Remote neurologist in this

study rated audiovisual quality. The study in [121] reported high inter-rater reliabilities

between the onboard and remote neurologist and 16 out of 18 treatment decisions agreed.

Limitations of this study included 12.6% of the teleconsultations not being completed

due to the failure of video connection, higher rate of aborted attempts than the previous

studies (1% in [119] and 2% in [122]), small number of patients and inclusion of the data

from 2 separate studies with different assessment metrics.

A prehospital utility of rapid stroke evaluation using in-ambulance telemedicine (PUR-

SUIT) pilot feasibility study was conducted in [123]. Actors performing pre-scripted

stroke scenarios of varying stroke severity were used in live acute stroke assessments. It
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is concluded that 80% of the sessions were conducted without major technological lim-

itations. Reliability of video interpretation was defined by a 90% concordance between

the data derived during the real-time sessions and those from the scripted scenarios. A

previous pilot study, StrokeNET in Berlin, could not conclude assessments because the

audio video was lost in 18 out of 30 scenarios [124].

As for cardiac patients, a study published in 2010 [125] demonstrated the transmission of

12-lead electrocardiography (ECG) in an ambulance driving at 50-100 km/h to the cell

phone of the attendant emergency medical technician and then to the hospital and to the

cell phones of off-site cardiologists using a 3G network, after going through the hospital

ECG-processing server. It was concluded that the ECG can be transmitted successfully

at the first attempt in all five trials, except in one remote, mountainous ambulance ser-

vice area. The average transmission time of an ECG report ranged from 91 to 165 s.

Interruption of ambulance ECG transmission occurred in up to 27% of transmissions.

[126] reported a 1 year study included data from 17 ambulances enroute to Silkeborg

Central Hospital (distance ranging from 20-75 km) transmitting 12-lead ECGs and in-

volving 250 patients with the suspected diagnosis of acute myocardial infarction using

a GSM network. Results indicated that 86% of prehospital diagnoses were successful.

Geographically related transmission problems were the primary reason for failure. Lim-

itations of this study included patient history taking by direct communication between

the physician and patient and the lack of a randomized setup.

Mobility is one of the unique features of the connected ambulance use cases and this

raises the connectivity issues that can be observed in high-speed moving vehicles (e.g.,

poor signal quality, multiple handovers, greater occurrences of connection drops, and

penetration loss from metallic walls of vehicle). To address these challenges, authors in

[127] evaluated data streaming between one ambulance and hospital nodes on the uplink

with a small cell inside the ambulance traveling at a speed of 120 km/h. In the simulation

scenario, a transceiver was installed on the roof of the ambulance to transmit/receive data
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to/from the backhaul macrocell network. The small cell installed inside the ambulance

made a wireless connection between the paramedics and the small cell access point (SAP).

The SAP and the transceiver were connected through a wired network. The PLR value

when using the small cell was reduced to 4.8% compared to 14% in case of 10 users trying

to connect to the outside macrocell base station. All 10 users were located in the same

ambulance. Throughput also improved by a small amount with the small cell. Authors

concluded that using small cell inside the ambulance could be particularly useful in high

bandwidth congestion scenarios. Another way to help address mobility challenges can be

to predict the future location of the ambulance based on its previous locations as reported

in [128]. The authors proposed an algorithm, NextSTMove, which is 300% faster than

traditional algorithms and achieved accuracies of 75% to 100%.

Among the 5G features that can enable connected ambulances is network slicing, where

logical network resources can be provisioned to accommodate specific application de-

mands. A study conducted in network slicing environment using facilities at the 5G

Prototyping Lab at Dell EMC facilities Ireland and SliceNet reported an average round

trip latency of 296.91 ms from client to core, an average round trip time of 50.68 ms

from client to edge, and an average packet loss of 7.2% for the core and 0.1% at the

edge [129]. Another study was carried out in [130] using the same experimental tools

with the added features like QoS control based on the data plane programmability and

low-latency cloud-based mobile edge computing (MEC) platform. Throughput was eval-

uated for the coordinated and uncoordinated network slicing strategies and ranged from

0 to 18 Mbps. In QoS-aware slicing, average delay of less than 0.05 ms was observed.

However, in non-QoS aware slicing, no guarantee of low latency was given for any network

transmission.

Another network slicing system architecture for 5G-enabled ambulance service was tested

in the experimental settings with ambulance speed of 30 km/h. Two types of data were

considered in this study, video data for remote consultation and uploading of 4.5 GB
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Embedded Medical 

Devices

Glucose sensor,  cardiac arrhythmia monitor/recorder, brain liquid
pressure sensor, endoscope capsule, drug delivery capsule, deep

brain stimulator, cortical stimulator, visual neuro-stimulator,
audio neuro stimulator, brain-computer interface
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walk assistive robot, service task robot,

robotic arm

BIRON, Paro, SCITOS G5 mobile robot ,
NABAZTAG, iCat, PaPeRo

Monitoring  Chronic 
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Aid for the Physically Impaired 

Track Life Threatening
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Fitness Tracking and Health

Improvement

Exoskeleton suit, hearing aid, muscle tension
monitor, assistive device for the blind

EEG, ECG, EMG, heart rate monitor, glucose sensor,
blood pressure sensor, tear-based wearable

Smart watch, sleep monitor, stress
level monitor, mood detection

Fall detection monitor, gyroscope,
accelerometer, seizure detection

Wearable and

Implantable

Devices/IoT

Service Robotics for

Assisted Living

Service Assistive Robots

Companion Robots

Fig. 2.8: Types of healthcare IoT devices and service assistive robots.

of computed tomography (CT) image data from an ambulance to a destination hospital

affiliated with the Zhengzhou University [131]. For video data, the average downlink

speed of 1080p 30 Hz HD video in the 5G network environment was 4.6 Mbps, compared

to 3.5 Mbps with unstable network and packet loss in 4G. For CT data, the upload time

was shortened by 33 percent in 5G as compared to 4G and the average latency for 5G

was 12.88 ms, compared to 76.85 ms for 4G which was 6 times that of 5G.

Other relevant studies are ongoing by the groups such as PRE-hospital Stroke Treatment

Organization’s (PRESTO) [132, 133] and EU 5G PPP Trials working group by SliceNET

[134, 135].

Healthcare IoT

Based on the American Society of Engineers, medical internet of things refers to the amal-

gamation of the medical devices and applications that connect to healthcare information

technology systems by leveraging the networking technologies[136]. Healthcare IoT sys-
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tems encompass diverse applications and computational capabilities and target diverse

populations. Notably, many healthcare IoT systems predate 5G and are being used with

4G and local area wireless technologies like Wi-Fi and Bluetooth. However, 5G can enable

an expanded use of healthcare IoT and facilitate the development of novel applications

[154]. Accordingly, we dedicate this section to highlighting the wide range of healthcare

IoT applications and summarizing their reported communication KPIs. We broadly cat-

egorize healthcare IoT systems, which include, medical and non-medical devices, into five

types as shown in Fig. 3: 1) fitness tracking and health improvement, 2) chronic disease

monitoring, 3) aid for the physically impaired, 4) tracking of life threatening events, and

5) embedded/implantable medical devices.

Applications targeted for the healthy individuals can be used for a wide range of purposes

including routine monitoring, lifestyle improvement, or disease prevention, where they

act as early warning systems [137]. Examples include smart watches [138, 139] that

can monitor heart rate, blood glucose level, blood pressure, and breathing rate. Other

fitness and health improvement wearables include temperature sensors [140, 141], pulse

oximeter SpO2 [142, 143, 144], sleep trackers [145], fertility and pregnancy trackers [146],

and monitors for respiration [147], blood pressure [148, 149, 150, 151], pH [152, 153],

stress [154], mood [155], and sleep [156].

Patients with underlying conditions or those who need assisted living in chronic sce-

narios can benefit from the applications for measuring and reporting electroencephalo-

gram (EEG) [157, 158], ECG [[159, 148, 160], electromyography (EMG) [161, 162] heart

rate [163, 164, 165] for cardiac patients, glucose [166, 167], insulin for diabetic patients

[168, 169, 170], continuous respiratory rate for chronic respiratory patient [171]. For

assisting the physically impaired, there are numerous wearable devices to help improve

the quality of life such as hearing aid (ear to ear communication) [172, 173], devices for

disability assistance, e.g., muscle tension monitor [174], muscle tension stimulation [175],

wearable assistive devices for the blind [176, 177, 178, 179], devices for speech impairment
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[180, 181], artificial/wearable limbs [182, 183, 184], and exoskeleton suits [185]. Other

examples that can be used by the elderly and Alzheimer or epilepsy patients include

wearables for fall detection [186, 187, 188], seizure detection [189, 190], and gyroscopes

[191] and accelerometers [192] for localization monitoring. Examples of implantable de-

vices include pacemakers [193] and implantable cardioverter defibrillators (ICD) [194],

and implanted actuator [195, 196].

Despite the diversity of healthcare IoT applications, the underlying KPIs requirements

are shared by most. However, KPI levels vary for different applications. Following are

some of the KPI requirements for this category.

Energy efficiency is vital for the battery-operated devices, where the needed battery

lifetime can range from a few days to a few years. Accordingly, battery lifetime can be

> 1 week2 for non-implantable devices, for monitoring ECG, EEG, EMG, glucose, etc.

[197]. For implantable devices, this figure can grow to several years (e.g., > 3 years

for deep brain stimulator) or remain within the range of hours for some applications

like > 24 hr for capsule endoscopes[89]. The importance of battery lifetime increases

in implanted devices given the risks associated with the device replacement because of

depleted battery. In an attempt to overcome constraints on the battery form factor to

accommodate specific implant application, solutions for energy harvesting were considered

in the literature that can benefit from the energy present in the environment, human body,

and wireless signals [198]. Duty cycle is also relevant in this context, where a lower duty

cycle contributes to longer battery lifetime. It captures the tradeoff between the need to

timely communicate data and the cost of battery power to do so. The work in [89] reports

on duty cycle requirements ranging from < 1% (e.g., temperature sensors, fall detection

devices, respiration monitors) to < 50% (e.g., implantable endoscope capsules).

The efficiency of data transmission during the device ON time is described by the data

rate with varying requirements according to the application and the used transmission

2The life-time numbers are expected/calculated based on normal use conditions for continuous mon-
itoring.
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protocol. Literature reports offer a wide array of data rate requirements. For example, [89]

reports that monitoring devices for temperature, heart rate, breathing, blood pressure,

blood sugar, and oxygenation require < 10 Kbps data rate, 72 Kbps for ECG, 86.4 Kbps

for EEG, 1 Mbps for deep brain stimulation and capsule endoscopy, and 1-1.5 Mbps for

EMG and location tracking devices [89, 199]. Other references, [200, 201, 197, 202],

listed different values including 128-320 Kbps for deep brain stimulators, 3 Kbps per

ECG channel per link, and 16 bps for the wearable temperature sensors. Data rate can

be influenced by the device processing capabilities, the data use model (i.e., real-time

processing by an external processor is associated with demand for a high data rate while

applications suitable for post-processing can use a low data rate), and the capabilities of

the wireless technology being considered. With the advancement of 5G, literature reports

now point to a higher data rate to be supported by wearables (e.g., 10 Mbps [203], 0.1-

5 Mbps [65].) Requirements for BER also varied by application and were reported in

[204] that generally range from 10−10 to 10−5. Specific examples included an ultrasonic

wearable device prototype designed to be used as heart rate monitor, ECG respiratory

rate monitor, and step counter reported a BER requirement of lower than 10−5 using a

transmission power of 13 dBm [205]. BER for vital sign monitoring devices such as ECG,

pulse oximeters, and implantable devices like hearing aid is reported as < 10−10 [89].

To facilitate the diverse healthcare IoT applications, the overall reliability and service

availability should be 1− 10−3 [65].

Latency requirements also varied across the applications and by the source. [199] reports

< 50 ms latency for monitors of chronic disease and emergency event detection. Vital

signs monitors were assigned a latency of < 1 s while fitness tracking devices increased

latency tolerance to a few seconds. A blanket latency requirement for wearables was set

at 250 ms in [65, 89] while survival time was set at 10 ms in [65, 77] and jitter < 25 ms

in [65]. Other reported latency values include < 50 ms for deep brain stimulators and

< 100 ms for hearing aids [197]. In [206], LTE based data transmission experiments

using a real time video wearable device (i.e., BlueEye) under impaired channel loss and
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propagation loss were performed. The purpose of the study was to test whether mHealth

services could be used in the locations with poor coverage conditions. For different mo-

bility scenarios, the jitter values obtained were 0.473 ms for the static users, 2.05 ms for

the pedestrian users, and 3.54 ms for the vehicular users. In an attempt to reduce latency

in healthcare IoT applications, significant research was dedicated to data processing and

analytics at the edge side of the system to circumvent delays caused by the processing

lag and cross network data transfer [207, 208]. In this context, latency of transmitting

various raw ECG captures from a gateway to a remote cloud was compared with the total

latency of processing on fog computing service and transmitting preprocessed ECG data

in [209]. At the data rate of 9 Mbps there was 48.5% latency reduction by leveraging fog

computing in this case. This comes at the cost of addressing data security and privacy

while in transport between the device and the cloud. To help manage medical device

risks including security, a risk management process is specified in the international orga-

nization for standardization (ISO) 14971 standard for the application of risk management

to the medical devices [210]. Moreover, the FDA published a draft guidance on the con-

tent of premarket submissions for the management of cybersecurity in medical devices

[211], which provides recommendations to industry regarding cybersecurity aspects of the

medical device cybersecurity management, such as risk assessment. Security KPIs in the

context of 5G-enabled healthcare applications are summarized in [64], including authen-

ticity, confidentiality, integrity, agility, vulnerability, resilience, mitigation/recovery time,

and proactiveness.

Network-level KPIs were addressed in the context of healthcare IoT including a connection

density of 20,000 devices/km2 in remote pervasive monitoring settings such as in smart

home wearables and 10, 000 devices/km2 for general mHealth wearables [77, 65]. Other

reported KPIs include 50 Gbps/km2 traffic density and 50 km user activity range [65].

Given that the healthcare IoT includes diverse applications that can be used in the diverse

environments, their enabling KPIs can be influenced by practical deployment factors such

as number of nodes, topology, operating frequencies, transmit power restrictions height of
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device [212], interference and co-existence [212, 213], and others. Finally, we note that one

of the emerging 5G-enabled healthcare applications is medical augmented reality/virtual

reality (AR/VR). According to a study by Qualcomm, [214], the requirements for AR/VR

can go to as high as 10-50 Mbps for 360◦ 4K video, 50-200 Mbps for 360◦ 8K video, and

up to 5000 Mbps (or 5 Gbps) for 6 degree-of-freedom (DoF) video. Moreover, a study

by Facebook indicates a real-time playback rate of 4 Gbps (or 32 Gbps) for 6 DoF video,

indicating there might be some use cases where individual sustained per-user rates of

> 1 Gbps might be needed [215].

Robots for assisted living

Robots in assisted living environments have been widely studied in literature [75, 76, 77,

65, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100,

101, 102]. An assistive robot can be defined as an aiding device that has the ability to

process the sensory information for helping the physically/mentally impaired or elderly

persons to perform tasks of daily living without the need of attendants, in hospital or at

home [227]. Assistive robots can be broadly classified into two categories, i.e., services

assistive robots and companion robots as shown in Fig. 3. In this section our focus is on

the communication KPIs for this application with a summary provided in Table VII of

the reported cellular network KPIs.

Position accuracy is pertinent to robots used for fall detection and real-time assistance.

The authors in [228] demonstrated that by exploiting the information from the reflected

multipath components, increased accuracy and robustness in localization can be achieved.

Moreover, they proposed 5G mmWave as one of the promising solutions for indoor accu-

rate localization for assistive living.

According to the EU Horizon 2020 project “Robots in Assisted Living Environments”

[229], assisted living considerations include reliability, connectivity, low battery discharge

profile, low latency, high communication success rate, and minimum localization error
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Table VII: Summary of literature for relevant assistive robots KPIs.

KPI
Service
Robot

Assigned Tasks
Target

Population
Study

UE battery

Mobile robot
BENDER

with
telepresence
capabilities

Assistance in routine
tasks and user

localization
Elderly [216]

Latency, PLR
Companion

robot
User finding and

medication reminder
Elderly [217]

Latency, data rate Cloud robot Monitoring of vital signs Elderly [218]

Accessibility,
position accuracy

Domestic
health

assistant Max

Assistance in routine
tasks,user searching and

following
Healthy elderly [219]

Throughput (packets
per seconds)

Domestic
robot DoRo

Video streaming through
robot cameras

Elderly and
children

[220]

Latency, PLR,
position accuracy
(mean localization

error)

Service robot
Recognition and

localization of users
Healthy elderly [221]

Latency (round trip
time), retainability
(total service time)

Mobile robot
DoRo

Personalized medical
support and pre-set

reminder event

Elderly people
with chronic

diseases (multi-
morbidity)

[222]

Latency, reliability
Nao, Qbo and
Hanson robots

Streaming of
teleoperation website

Elderly and
children

[223]

Position accuracy ASTRO robot
Assistance in routine
tasks, health related

reminders
Healthy elderly [224]

Position accuracy
Assistive

robotic arm
Tablet placement infront

of patient

Patients with
limited or no

mobility
[225]

Position accuracy
Mobile

humanoid
robot GARMI

Support for household
tasks and emergency

assistance

Elderly and
patients

[226]

with appropriate feedback to support people with limited mobility, who require assistance

and companionship.

To provide personalized medical support to the elderly in the presence of several chronic

diseases, the authors in [222] designed a hybrid robot-cloud approach. The robot au-
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tonomously reached the user with the pre-set reminder events acting as a physical re-

minder. This case study in DomoCasa Lab (Italy) evaluated the robot (DoRo) based on

KPIs such as latency (i.e., round trip time), retainability (i.e, in terms of total service

time), along with robot processing time (RPT), average travel time, and mean velocity.

Latency over the 20 experimental trials was reported as 56 ms and RPT as 0.012 ms.

For the use case where DoRo had to travel 12.6 m to deliver the services with a mean

velocity of 0.31 m/s, the total service time was 40.08 s.

The ASTROMOBILE system was evaluated in [224]. The mean path length for the

simplest use case (moving in the kitchen) was 9.6 m with a mean velocity of 0.51 m/s,

path jerk of 0.023×106, and a mean position accuracy error is 0.98 m.

Under the German research project SERROGA, which lasted from 2012 to mid 2015, a

companion robot for domestic health assistance was developed [219]. Its services include

communication, emergency assistant, physical activity motivator, navigation services,

pulse rate monitoring, fall detection, and others. The robot was evaluated in different

apartments and labs for a minimum of 29 min and a maximum duration of 255 min, with

a velocity range of 0.25-0.27 m/s for distance covered of 355-2600 m. The robot was able

to complete the user following tasks with a positioning accuracy of 95%.

A cloud-robotic system for the provisioning of assistive services for the promotion of active

and healthy ageing in Italy and Sweden was assessed in [221] on the basis of latency (i.e,

round trip time), PLR (i.e, data loss rate), position accuracy (i.e, mean localization error),

and localization root mean square error (RMSE) KPIs. The reliability and responsiveness

of the cloud Database Management Service (DBMS) was evaluated based on latency, as

the time a robot waits for the user position, after a request to the server. The study took

place in two sites: smart home in Italy (Domocasa lab) and residential condominium in

Sweden (Angen). The mean latency in Domocasa lab was 40 ms, while for the Swedish

site it was 134.57 ms. The local host latency acquired during the experimentation was

7.46 ms, and was used as a benchmark. The rate of service failures was less than 0.5%
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in Italy, and 0.002% for the Angen site. In Domocasa and Angen, the mean absolute

localization error was 0.98 m and 0.79 m, respectively, while the RMSE were 1.22 m

and 0.89 m, respectively. On average, the absolute localization error considering the two

setups was 0.89 m, and the RMSE was 1.1 m. The use of the presence sensors increased

the localization accuracy in the selected positions by an average of 35%.

Assistive living robots domain can suffer from errors caused by the communication con-

nection issues, latency, and spatiotemporal dynamic environment changes. To improve

the autonomy and efficiency of robots in smart environment, the authors in [230] pro-

posed a framework for the improvement of the assistive robots performance through a

context acquisition method, an activity recognition process, and a dynamic hierarchical

task planner. Also, authors in [231] proposed to use full duplex 5G communication for

reliable and low latency robot based assistive living.

2.3.2 Requirements for use cases in emerging networks vs current status

of network capabilities

5G technology was developed to meet the use cases specified by the International Telecom-

munication Union (ITU) International Mobile Telecommunications-2020 (IMT-2020). These

are enhanced mobile broadband (eMBB), ultra-reliable and low latency communications

(URLLC), and massive machine type communications (mMTC). As detailed in the previ-

ous sections, many applications can benefit from the communication capabilities of these

5G use cases. A study based on simulation confirmed that the 3GPP 5G system com-

plies with the ITU IMT-2020 performance requirements [232]. 5G trials and commercial

deployments are accelerating throughout the world [233, 234, 235]. These show varying

levels of performance toward the theoretical goals. For example, 2 Gbps throughput and

3 ms latency were achieved in Austria using spectrum in the 3.7 GHz band [233]. In

another 5G trial in Belgium, 2.94 Gbps throughput and 1.81 ms latency were achieved.

The peak throughput of 15 Gbps, 5 Gbps, and 4.3 Gbps in 5G trials were also reported
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by European network operators Telia, Elisa, and Tele2 Lithuania, respectively [233]. In

the U.S., AT&T reported on 5G use cases like video streaming, downloading, and con-

ferencing and achieved upload and download speeds around 1 Gbps [233]. Sprint tested

streaming 5G virtual reality systems and 4K video and achieved peak download speeds of

more than 2 Gbps using the 73 GHz mmWave spectrum [234]. Verizon achieved 4.3 Gbps

speeds by aggregating C-band spectrum with mmWave spectrum in a lab trial [235].

Although, commercial 5G coverage is still limited [236, 237, 238], 5G tests by OpenSignal

in 2020 compared services offered by Verizon (mmWave), T-Mobile (mmWave, 600 MHz),

Sprint (2.5 GHz), and AT&T (850 MHz) [239]. The report concluded that users should

not automatically expect speeds of several hundred Mbps on 5G, as in the tests, they

observed an average 5G download speeds ranging from 47.5 Mbps to 722.9 Mbps. They

also noted that the U.S. carrier’s 5G services are held back by 5G spectrum availability

and some services are fast, however, they are limited by the coverage. Those with greater

coverage offer slow speeds due to the limited spectrum. They also highlighted the need

for the U.S. carriers to repurpose large portions of the mid-band spectrum for 5G in the

U.S. to facilitate the 5G performance goals.

Comparing the realistic performance reports with the most stringent data rate require-

ment for telesurgery (i.e., 1.6 Gbps for 3D camera flow as listed in Table III), we note

that the throughput requirements of many healthcare use cases might be possible to meet

with current 5G. However, use cases requiring 6 DoF content like AR/VR might be chal-

lenging with current 5G capabilities. Furthermore, our review highlights that the latency

for the haptic feedback can go as low as 1 ms and for connected ambulance, the lower

limit is 10 ms. However, realistic latency figures are expected to remain in the 10-12 ms

range [240, 241], rather than 1-2 ms. 5G mmWave frequencies—also known as frequency

range 2 (FR2)—can support large subcarrier spacing resulting in smaller transmission

time interval and thus improving latency. This indicates a favorable latency require-

ment support for use cases when using the mmWave spectrum. However, this comes at
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the expense of limited coverage due to the wave propagation properties in the mmWave

spectrum, which can impact applications that need mobility support like the connected

ambulance. Moreover, the realistic deployments and trials are limited by the specific used

configurations and the small set of reported KPIs like downlink throughput and latency.

Accordingly, enabling a specific healthcare application using 5G requires a collaboration

between the application developer, 5G network service provider, and the application user

to ensure that the service meets the application requirements for communication and that

the application can be used safely.

2.3.3 Gaps in literature and future considerations

Although some reports describe individual KPIs in detail, the trade-offs between multiple

KPIs and their interactions with configuration and optimization parameters (COPs) in

advanced use cases are often omitted. For example, one trade-off between throughput

and latency for next generation video content is described in [214], which states that

achieving 5-20 ms latency requires 400-600 Mbps throughput, while achieving 1-5 ms

latency requires 100-200 Mbps throughput. Another example of trade-offs is between

coverage, capacity, and load balancing [242] or the trade-off between coverage, height of

BS, and antenna parameters [243]. Such trade-offs are rarely considered in the literature

on 5G-enabled healthcare use cases, which can complicate applications with conflicting

requirements like achieving high throughput with high mobility or low battery consump-

tion. One way to study these trade-offs might be to combine several KPIs into a new

one. For example, Samsung developed representative KPIs to describe the performance

of multi-objective optimization involving more than two KPIs, such as sum of log of data

rate, considering both throughput and fairness. It can be used as a joint KPI of wearable

devices applications to represent both energy efficiency and throughput, energy efficiency

and delay, or energy efficiency and reliability [244].

Another gap in the literature is the limited 5G network scenarios that are assessed.
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Limitations include the small number of network trials, small number of infrastructure

configurations, small coverage area, and the lack of spatiotemporal variability for trials

being conducted in the laboratory settings. A critical analysis of 5G network failure modes

that can impact 5G-enabled healthcare use cases is an open question not addressed in the

literature. For example, only the success of the connected ambulance use case is discussed

in the literature. However, this use case might be negatively impacted in situations with

extremely high mobility, high user density, a disaster scenario where a large number of

ambulances rush to the same point, a cell outage, or the presence of multiple critical

traffic flows in the network.

Moreover, network KPIs are commonly vendor-specific, where each network equipment

vendor specifies the performance metrics using its own set of counters and naming conven-

tions. This may give rise to the challenge of managing non-standardized KPIs. The large

number of technical counters in the heterogeneous 5G deployments, the use of vendor-

specific monitoring tools by the network operators, and the lack of unified data format

for collecting and reporting the performance data also pose a challenge for managing

the service level agreements between the 5G network operators and the end users of the

5G-enabled healthcare systems [64].

AI can help enable bridge the above highlighted gaps by automating several tasks, such

as determination of optimal COP-KPI relationships that can be used for network design,

operation and optimization.

2.4 Conclusion

5G and beyond networks will transform many industries by enabling novel use cases and

applications, such as telesurgery, remote patient diagnosis, smart medication, and health-

care big data management in the healthcare sector. However, facilitating user access to

novel 5G and beyond enabled applications requires that integration of technology takes

place safely and effectively to deliver the intended application function. SLAs are a frame-
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work for documenting the communication requirements for different use cases. However,

current practices for SLAs will not suffice for 5G and beyond networks. In this chapter,

tradeoffs, challenges and practical implementation considerations in 5G network resource

allocation like provisioning minislots for a specific service, optimal triggering of minislots

pre-emption, optimizing device performance when using bandwidth adaptation, network

slice sharing modes, and dynamic network resource optimization, UE miss-association

probability to mmWave cells are discussed. With increasing network complexity, the

need arises for adaptive and automated algorithms to reduce the large set of observable

network counters and metrics and facilitate efficient network monitoring for service as-

surance. Additionally, algorithms are also needed to flexibly map and optimize network

configuration parameters to meet desired application objectives while maintaining busi-

ness objectives for all stakeholders. The heterogenous and multi-domain nature of 5G

and beyond network illustrate the opportunity to develop collaboration frameworks to

promote interoperability and robust service delivery. To this end, robust artificial in-

telligence based solutions for designing, operating, optimizing and managing emerging

networks can greatly help in the full realization of the emerging networks based advanced

use cases.

Understanding the communication KPI requirements for 5G-enabled use cases can help

the application developers, 5G network providers, and regulatory authorities in the health-

care sector to promote safe and effective healthcare. Knowledge of requirements for 5G-

enabled use cases highlighted in this chapter can also help network service providers, users,

and regulatory authorities in developing, managing, monitoring, and evaluating service

level agreements in advanced emerging networks use cases. We have also identified gaps

in the existing literature and highlight considerations in this space, including the lack

of focus on quantitative requirements, omitting relevant KPIs, overlooking the trade-offs

between multiple KPIs and COPs, the lack of unified KPI specifications across different

network operators and equipment vendors and lastly, the limitations 5G scenarios con-

ducted in the existing trials. The gaps in this space and considerations highlighted in this
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chapter can help direct future 5G-enabled application studies towards addressing these

gaps to facilitate the efficient implementation of 5G technology in various applications.

Moreover, quantitative and qualitative KPI requirements for different use cases, including

remote robotic-assisted surgery, mobile connected ambulance, wearable, and implantable

devices in the healthcare IoT, and service robotics for assisted living are identified. A

comparison of 5G-healthcare requirements with the status of 5G capabilities reveals that

some healthcare applications can be supported by the existing 5G services while others

might be challenging, especially those with stringent latency requirement. This calls for

zero-touch artificial intelligence (AI) based deep automation in cellular networks to meet

the diverse and stringent communication requirements for emerging networks use cases.
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CHAPTER 3

Enabling AI-driven cellular network optimization by solving the

challenges in MDT-based coverage estimation

3.1 Introduction

The first step to enable AI based automation is to have abundant telemetric data about

network health and performance. This requires continuous gathering of telemetric data

about network health and coverage [245]. Currently, however, network performance for

the most part is gauged by methods such as drive tests, hardware or software failure

alarms at the operation and maintenance center or complaints received from customers

[246]. These methods incur inevitable delay and unreliability which stems from human

error and low spatio-temporal granularity of reports gathered via drive tests and alarms

[247]. In addition, the drive test based measurements are gathered from only a small

fraction of the total coverage area, i.e., paved roads and are difficult to obtain in indoor

environments. This problem is likely to aggravate with the advent of small cell enabled

ultra dense networks, as the probability of cell outages is likely to increase in proportion to

the cell density and increasing network complexity [3, 248]. In addition, several use cases

for 5G and beyond demand low latency and high reliability requirements, which means

that classic methods of drive test based or even alarm based for performance monitoring

and outage detection will not suffice [245], [249].

To overcome the aforementioned challenges, 3GPP has standardized a self-organizing net-

work use case, called minimization of drive test (MDT), which exploits the measurement

reports gathered by the user equipment [250]. MDT allows the mobile network operators

to collect data about network coverage and signal strength from the user equipment (UE)

measurements. The UE measurement reports are tagged with their geographical location
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information, sent to their serving base station (BS) and ultimately used to generate cov-

erage maps [251]-[253]. Feeding these MDT reports as input to the network automation

and optimization processes, can provide autonomous mechanisms to compensate outages

quickly and seamlessly by enabling the network to detect anomalies [254], such as coverage

holes, weak coverage spots, sleeping cells [255], or other performance degradation prob-

lems and make timely decisions [4], [245]. Therefore, MDT based coverage/performance

estimation is a fundamental step to enable and trigger any AI or self-configuration, self-

optimization or self-healing routine [3]. However, up till now the utility of MDT feature

remains hindered by several issues that include sparsity of user reports and user posi-

tioning inaccuracy. These issues cause the following three major types of errors in MDT

based autonomous performance estimation solutions, thereby undermining their utility:

1. Positioning error: The reported geographical coordinates of the UE obtained from

the positioning techniques, such as assisted global positioning system are susceptible

to errors, resulting in the reports being tagged to a wrong location [256]. These

locations can also be inaccurate to preserve user privacy.

2. Quantization error: Storing MDT reports from all users is computationally inef-

ficient. Practical implementation demands that, the coverage area is divided into

bins. The average received power from each bin is then stored and used to build

coverage maps. This results in quantization error due to averaging.

3. Scarcity of user reports: A key challenge in developing MDT based autonomous

solutions for self-configuration, self-optimization and self healing for ultra-dense

deployments is that small cells contain far fewer users compared to macro cells. This

makes the MDT reports from small cells sparse. This problem is further aggravated

if smaller bin size is used to reduce quantization error, attributing to the fact that

many bins might not be visited by even a single user during the reporting period.

In order to enable the full realization of MDT-based approach for performance estimation

72



and in turn pave the way to enable AI-based autonomous networks, it is important to

characterize and simultaneously address the aforementioned three errors. Simultaneous

characterization of the three errors is essential because of their inter-dependency. This

dissertation, not only presents a framework to quantify the three errors and characterize

their interplay but also quantifies the overall effect of these errors on coverage estimation

concurrently.

3.2 Relevant work

Authors in [246], [247], [256] addressed the reliability of MDT-based coverage estimation

in the presence of positioning errors. However, these studies do not take into account the

errors resulting from quantization or scarcity of user measurements. Focusing on only

the quantization error, authors in [257] estimate the cell radius. Moreover, the work in

[257] does not use MDT-based approach for coverage estimation.

User measurements per base station, particularly in the case of emerging small cells can

be often sparse. The problem of sparsity of user reports is investigated in [258]-[259].

Authors in [258] use regression clustering for construction of received signal strength

maps from a sparse set of MDT measurements. However, this work [258] assumes perfect

user locations and a fixed bin width. The authors in [260] analyze the performance of

selected spatial interpolation techniques used in the estimation of interference produced

by an LTE-Advanced network. The authors in [261] provide a visualization method based

on inverse distance weighted interpolation that shows every point of the received data

as a heatmap. Another work [262] investigates several classical interpolation methods

to reconstruct interference maps in cognitive radio networks. However, the effect of bin

width and positioning error on the spatial interpolation techniques investigated in [258]-

[262], remains unexplored.

Authors in [263], [264] use Bayesian kriging technique on cellular network data to build
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radio environment maps for the purpose of coverage hole detection. They show that

the accuracy of such a technique is directly impacted by the bin size. Authors in [265]

extend the work in [264] to include a more realistic coverage hole definition, where the

coverage of neighboring pixels is also taken into account. Authors in [266] propose a

new technique, called Fixed Rank Kriging that is superior in terms of computational

complexity as compared to Kriging. Authors in [267] use this technique to study the

tradeoff between computational complexity and prediction accuracy when using Kriging

to predict coverage, using real measurement data. The authors in [268] extend this work

to a multi-cell scenario. Kriging-based prediction of propagation environment is presented

in [269] for two different frequencies and environments. This work is extended to study

how Kriging behaves in the presence of propagation model uncertainties, that stem from

shadowing [270]. However, the works in [263], [264], [265], [266], [267], [268] assume

perfect geo-location information.

One work that takes into account the impact of location uncertainty on sparse coverage

data is the work in [271], where the authors modify their earlier proposed algorithm

[266], [267],[268] to incorporate the location uncertainty in the measurements. However,

this work is limited to studying the impact of location uncertainty on the prediction

algorithm and does not focus on the combined effect of location uncertainty, quantization

and sparsity on coverage estimation.

Studies that consider the recovery of sparse coverage data in an indoor environment in-

clude [272], [273], [259]. Using low-cost spectrum sensors in an office indoor environment,

authors in [272] present an accuracy comparison between the spatial interpolation meth-

ods of Kriging, Gradient Plus Inverse Distance Squared and Inverse Distance Weighted

methods. The results show that there is no significant difference in the accuracy for the

considered interpolation methods, relative to the variability in the measurements reported

by different low-cost devices. Another study in an indoor environment [273], analyzes

several spatial interpolation techniques based on Inverse Distance Weighting (IDW) and
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compares them in terms of reliability bounds of interpolation errors. Authors in [259]

compare various interpolation techniques, including Kriging, splines, weighted moving

average, theissen polygons, trend surfaces, classification, in terms of accuracy, spatial

distribution of measurements, measurement density and impact of location inaccuracy in

an indoor environment. However, assessing interpolation performance for a wide range

of location uncertainties is not the focus of this work [259]. Instead, it considers the

interpolation performance for an average location error of 18 meters only.

Most relevant to this study is our earlier work in [17]. In [17], we determined optimal bin

width by considering the impact of positioning uncertainty and quantization on coverage

estimation using MDT. This work differs from [17] in the following aspects: 1) This study

incorporates the effect of sparse user reports in MDT-based coverage estimation and its

applications, which was not a focus of the study in [17]. Incorporating this error in

coverage estimation is vital because sparsity/scarcity of data is a fundamental challenge

that can become bottleneck for MDT-enabled coverage estimation for unleashing its true

potential. MDT-enabled network automation require a significant amount of data as the

presence of more data results in better and accurate coverage estimation models, instead

of relying on assumptions and weak correlations. To this end, this work analyzes the effect

of quantization, positioning uncertainity and sparsity of MDT-data independently as well

as studies their combined effect on coverage estimation and its practical applications. 2)

In contrast to the study in [17], which investigates the coverage estimation error by

considering its mean value, in this work, we treat the errors as random variables and

determine their distributions. 3) We present a solution to solve the errors incurred in

coverage estimation due to positioning uncertainty and quantization by presenting results

and analysis that can enable network operators to calibrate the observed coverage in order

to estimate the true coverage. We do so by not only quantifying the coverage estimation

errors due to different factors, but also determining the directionality of coverage (i.e.,

whether the coverage is over-estimated or under-estimated and by what amount). Such

coverage calibration and directionality of coverage estimation error is not considered in
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Fig. 3.1: System model configuration and geographical information.

[17]. 4) The work [17] considers a fixed coverage probability threshold. However, in this

work, we present a generic analysis by considering the difference between the actual and

perceived RSRPs. Specific operator defined threshold-based coverage estimation errors

can be easily derived from the results and analysis presented in this work.

3.3 System model
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Fig. 3.2: User distribution.

We use a ray-tracing based commercial planning tool [274] to create a sophisticated

network topology (Fig. 3.1), in order to generate the MDT data in our study. For the

calibration of propagation model, environmental conditions, terrain profile and buildings,

were considered and also validated through drive tests in the simulator. Therefore, it can
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Table 3.1: Network Scenario Settings.

System Parameters Values

Carrier Frequency 2100 MHz

Maximum transmit power 43 dBm

Cell sectors 3 sectors per BS

Path loss model Aster propagation (ray-tracing)

Propagation matrix resolution 5 m

BS height 30 m

Geographical information Ground heights, building heights, land use
map

User distribution Poisson Distribution

Antenna gain 18 dBi

Horizontal half power beamwidth 63o

Vertical half power beamwidth 4.7o

be assumed that coverage data obtained from this simulator represents the ground truth

very closely in the area under consideration.

Users are distributed according to Poisson distribution. The area of interest is divided

into n2 bins of width, w as shown in Fig. 3.2 for 500 users and bin width of 50m. Given

a reported UE position, we assume that its actual location is within a circular disc with

radius u which is centered at the reported UE position, as illustrated in Fig. 3.2 for one

user. Hence, the actual position of the ith UE with coordinates (xi, yi) is generated as

(xi + u
√
vi cos(2πqi), yi + u

√
vi sin(2πqi)), where vi and qi are pseudo random, pseudo

independent numbers uniformly distributed in [0, 1]. The shadowing effect is modeled

by a random variable, which follows a zero mean Gaussian distribution with standard

deviation φ in dB, based on clutter type. Other simulation parameters are reported in

Table 3.1.
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3.4 Quantification of errors in autonomous coverage estimation using MDT

3.4.1 Error due to user positioning uncertainty

Error due to user positioning uncertainty without bins

In this section, we address the following challenge: When the coverage area is not divided

into bins, how much coverage is misclassified due to positioning uncertainty as a function

of positioning error radius? In order to address this question, we express the error as a

random variable due to random distributions of reported and actual positions of users as:

EP,Q′(x, y, v, q, u) = rP,Q
′
(x, y, v, q, u)− rP ′,Q′(x, y) (3.1)

where the superscripts P and P ′ indicate the presence and absence of user position-

ing error respectively. The superscript Q′ indicates no quantization. rP,Q
′

is the mea-

sured/perceived received signal strength of the user in the presence of positioning uncer-

tainty (in dBm) and rP
′,Q′ is the received signal strength of the user without positioning

uncertainty (in dBm). Note that the RSRP of the users would not be affected by posi-

tioning error, however, the measured RSRP reports would be tagged to wrong locations

due to positioning error since the received signal estimation is based on the measurement

report, which is tagged to a wrong position. Thus, the PDF of coverage estimation error

due to positioning uncertainty at the user-level, fP,Q
′

E (eP,Q
′
) represents the probability

of users that are misclassified by a certain amount due to positioning uncertainty. Note

also that since the random variable, EP,Q′ is a difference in dB, the probability that this

random variable takes on a value greater than 0 (EP,Q′ = eP,Q
′
> 0) represents the proba-

bility of users whose coverage is over-estimated by eP,Q
′

and fP,Q
′

E (eP,Q
′
) corresponding to

EP,Q′ = eP,Q
′
< 0 represents the probability of users whose coverage is under-estimated

by eP,Q
′
.

In our simulations, the bin width is varied from wmin = 10m to wmax = 50m and u

is varied from 0m to 100m. Fig. 3.3 illustrates the PDF of coverage estimation error
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Fig. 3.3: PDF of coverage estimation error due to positioning uncertainty in the absence of bins

due to positioning uncertainty in the absence of bins for u = 0, 10 and 100m. It can be

observed that the variance of this error increases with increase in positioning error radius.

Using distribution-fitting tools, we determine that this error distribution follows a Logistic

Distribution with mean zero and parameter s1, that is proportional to the square root of

variance. Using multiple terms exponential regression, we determine parameter s1 as a

function of positioning error radius as follows:

s1(u) = a1 exp(b1u) + c1 exp(d1u), (3.2)

where a1 = 5.333, b1 = 0.001, c1 = −5.325, d1 = −0.107

Fig. 3.4 shows the variation of parameter s1 with u. The PDF of this error as a function

of positioning error radius then becomes:

fP,Q
′

E (eP,Q
′
, u) =

exp
(
− eP,Q

′

a1e(b1u)+c1e(d1u)

)
(a1e(b1u) + c1e(d1u))

(
1 + exp

(
− eP,Q′

a1e(b1u)+c1e(d1u)

))2 (3.3)

Note that the parameters {a1 . . . d1} would vary with different path loss and shadowing

models. However, this is out of scope of this study and can be part of a future work. Note

also that the errors in coverage estimation are quantified as errors between the actual and

perceived RSRP measurements in this work. For generality, we do not consider a specific

RSRP threshold-based coverage definition. However, the coverage estimation error based

on different RSRP thresholds can be easily inferred from our results and analysis, i.e.,
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Fig. 3.4: Parameter s1

by truncating the PDFs according to different operator-defined coverage (RSRP) error

thresholds.

Error due to user positioning uncertainty with bins

The preceding section quantified the impact of user positioning error on coverage esti-

mation without binning. In scenarios where the coverage area is divided into bins, the

coverage estimation would be impacted by both positioning error as well as the bin width.

In order to address this case, we consider the following error measure:

EP,Q(x, y, v, q, u, w) = rP,Q(x, y, v, q, u, w)− rP ′,Q(x, y, w) (3.4)

where rP,Q is the measured averaged received power of users in a bin of width w in

presence of positioning uncertainty and rP
′,Q is the averaged received power of users in

the same bin with no positioning uncertainty. The integral of PDF of this error from

0 < EP,Q <∞ thus represents the percentage of misclassified area that is over-estimated

on average and the integral of PDF from −∞ < EP,Q < 0 represents the percentage of

misclassified area that is under-estimated.
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To understand the impact of user positioning error as a function of bin width, consider

a user located at the bin center, with coordinates (25,25) as shown in Fig. 3.2. In the

presence of no positioning uncertainty, the user is actually present at this location. How-

ever, due to positioning uncertainty, the actual location of the user lies within a circular

radius u. Depending on the radius u and bin width, w, the probability of user being

actually located in adjacent bins would vary, which would impact coverage estimation.

We define this probability of misclassification, Pm as the probability that user’s actual

position lies in bin j, given that its reported position lies in bin i, where i 6= j. Using

geometry from Fig.1, three cases of Pm can be distinguished depending on u. By express-

ing θ = 2 cos−1(w/2u) and calculating the fraction of area of circle with radius u that

lies outside the square with side w, or equivalently, calculating the fraction of user’s all

possible actual locations that lie outside bin i, Pm when a user is located at the i-th bin

center can be derived as follows:

Pm(w, u) =

0, 0 < u ≤ w/2

4u2 cos−1( w
2u)−2u2 sin(2 cos−1( w

2u))
πu2 , w/2 < u < w/

√
2

πu2−w2

πu2 , u ≥ w/
√

2

(3.5)

Pm as a function of u and w is illustrated in Fig. 3.5. Note that the case when a user

is located at the bin center is a lower bound on Pm as Pm will increase as the user

moves away from the bin center. Therefore, for any arbitrary user location, the error in

coverage estimation due to positioning error in the presence of bins is likely to increase

with larger u for the same w or with smaller w for the same u, as the probability of

misclassification would increase in these scenarios. It is observed from Fig. 3.5 that a

zero probability of user location being misclassified occurs at the combination of large

bin width and small positioning error radius. Note that the RSRP perceived by the users

is affected by positioning error since the measured RSRP reports are tagged to wrong
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locations due to positioning error. This results into error (caused by tagging to wrong

location) in the RSRP-location duo reported as part of the MDT reports. This leads to

error in the coverage being investigated here. Therefore, the error in coverage estimation

due to positioning uncertainty is expected to be the least when bin width is large and

positioning error radius is small. In order to capture this effect, we quantify the impact

of user positioning error in the presence of bins as follows:

EP =
1

m2

m2∑
i=1

|P[rP,Qi > γ]− P[rP
′,Q

i > γ]| (3.6)

where the operator P represents probability, rP,Q and rP
′,Q are vectorized forms of matri-

ces RP,Q and RP ′,Q respectively. The i-th element of the vector rP,Q, rP,Qi represents the

measured average received power of users in i-th bin in presence of positioning uncertainty

and rP
′,Q

i is the average received power of users in the same bin with no uncertainty.

The effect of positioning error on coverage estimation with varying bin widths is shown

in Fig. 3.6. It can be observed from Fig. 3.6 (b)-(e) that for the same positioning error

radius, the variance of this error decreases as the bin width increases, attributing to the

fact that for the same positioning error radius, the effect of positioning error on coverage

estimation will be greater when bin width is small as the probability of a user being
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Fig. 3.6: PDF of coverage estimation error due to positioning uncertainty in the presence of
bins

actually located in adjacent bins instead of the reported bin is likely to increase with

decreasing bin width.

Similarly, for the same bin width, the error variance increases with increasing positioning

error radius. Note that since the plotted error in coverage estimation captures the effect

of positioning error only, it approaches the delta function as the positioning error radius

reduces to 0m, as shown in Fig. 3.6 (a). It can also be observed from Fig. 3.6 (d)

and (e), that for the same user positioning uncertainty, the percentage of area that is

falsely estimated to be covered (i.e., over-estimated coverage) increases with increase in
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Fig. 3.7: Parameter µ2

bin width. These findings can be used to calibrate the coverage estimated through MDT,

for given values of positioning error radius and bin width. In order to facilitate this goal,

we determine an analytical expression by performing distribution fitting for part of the

PDF of EP,Q for a range of bin widths and positioning error radii, yielding the following

expression:

fP,QE (eP,Q, u, w) =
exp

(
− eP,Q−µ2(u,w)

s2(u,w)

)
s2(u,w)

(
1 + exp

(
− eP,Q−µ2(u,w)

s2(u,w)

))2 ,

∀ eP,Q when µ2 = 0, for eP,Q < 0 when µ2 ≥ 0 (3.7)

where µ2 and s2 are as follows:

µ2(u,w) = a2u+ b2w + c2u
2 + d2uw; (3.8)

s2(u,w) = (e2w
f2 + g2) exp(h2u/(w + i2))

+(j2w
k2 + l2) exp(m2wu+ n2u) (3.9)

where a2 = −0.00262, b2 = 1.587 × 10−5, c2 = 1.124 × 10−5, d2 = 0.0001663, e2 =

−0.00473, f2 = 1.538, g2 = 5.04, h2 = 0.04628, i2 = 13.67, j2 = 0.004732, k2 = 1.538, l2 =

−5.04,m2 = 0.001935, n2 = −0.2277.
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Fig. 3.8: Parameter s2

The parameters µ2 and s2 are shown in Fig. 3.7 and 3.8, respectively and indicate an

excellent fit between the simulated results and parameter fitting. For the purpose of

determining the directionality of misclassified coverage, and ultimately calibrating for

correct coverage estimation, the percentage of area that is under-estimated is sufficient

since the remaining fraction would be the percentage of area that is over-estimated.

Further discussion on utility of these results from coverage calibration perspective is

presented in Section 3.5.1.

3.4.2 Quantization error

Quantization error without positioning uncertainty

The error in coverage estimation incurred due to averaging by dividing the coverage area

into bins can be quantified as follows:

EQ,P ′(x, y, w) = rP
′,Q(x, y, w)− rP ′,Q′(x, y) (3.10)

where rP
′,Q′ is the received signal strength of a user without positioning inaccuracy and

rP
′,Q is the averaged received signal strength being reported from the bin in which the

same user resides, in absence of positioning inaccuracy. Alternatively, rP
′,Q is the averaged
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Fig. 3.9: PDF of coverage estimation error due to quantization error without positioning uncer-
tainty
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Fig. 3.10: Variance of error, EQ,P
′

received signal strength that is being reported from a bin, where a user resides with an

individual received signal strength equal to rP
′,Q′ . Assuming a constant user density,

rP
′,Q is a function of bin width in addition to user locations since a larger bin width

would mean more spatially spread users with more widely different received powers in

that bin, resulting in greater averaging error, whereas a smaller bin width would mean

lesser averaging error.

Fig. 3.9 depicts the PDF of EQ,P ′ with varying bin widths. It can be observed that this

error converges to a delta distribution (no error in coverage estimation due to quantiza-

tion) as w → 0. The variance of this error, s3 is depicted in Fig. 3.10 and it increases

with increase in bin width according to:
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Fig. 3.11: PDF of coverage estimation error due to quantization in the presence of positioning
uncertainty

s3(w) = a3 exp(b3w) + c3 exp(d3w), (3.11)

where a3 = 42.34, b3 = 0.005597, c3 = −42.16, d3 = −0.2408

Quantization error with positioning uncertainty

In this section, we show how the presence of user positioning uncertainty changes the

distribution of coverage estimation error due to quantization that has been illustrated in

the previous section. More specifically, for a given positioning uncertainty, in order to
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Fig. 3.12: Parameter µ4

correctly calibrate coverage, it is important for the network operator not only to know how

much coverage is misclassified, but also know the directionality of misclassified coverage

(i.e., whether the coverage is over-estimated or under-estimated and by what amount).

To aid this goal, we define the error in coverage estimation due to quantization in the

presence of positioning uncertainty as:

EQ,P (x, y, v, q, u, w) = rP,Q(x, y, v, q, u, w)− rP,Q′(x, y, v, q, u) (3.12)

where rP,Q is the measured averaged received signal strength that is being reported from

a bin, where a user is reported to reside in the presence of positioning uncertainty with

its measured received power (at user-level) equal to rP,Q
′

in the presence of the same

positioning uncertainty.

Fig. 3.11 illustrates the PDF of this error with varying bin widths and positioning error

radius. It is observed that EQ,P → EQ,P ′ as u → 0 as Fig. 3.11 (a), (c), (e) converge

to Fig. 3.9 (a), (b), (c) respectively. However, as u increases, the variance of this error

and the percentage of area that is falsely estimated to be covered starts to increase. The

PDF of this error can be expressed as follows:
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Fig. 3.13: Parameter s4

fQ,PE (eQ,P , u, w) =
exp

(
− eQ,P−µ4(u,w)

s4(u,w)

)
s4(u,w)

(
1 + exp

(
− eQ,P−µ4(u,w)

s4(u,w)

))2 , for eQ,P > 0 ∀ µ4 (3.13)

where

µ4(u,w) = (a4w
b4 + c4) exp (d4u exp(e4w) + f4u exp(g4w)) (3.14)

where a4 = −0.0002718, b4 = 1.948, c4 = 0.1824, d4 = 0.03437, e4 = −0.05875, f4 =

0.0003263, g4 = 0.07777

and

s4(u,w) = (h4w
3 + i4w

2 + j4w + k4)u2+

(l4w
3 +m4w

2 + n4w + o4)u+ p4w
q4 + r4 (3.15)

with h4 = −1.086e−08, i4 = 9.973e−07, j4 = −2.307e−05, k4 = 0.0002294, l4 = 1.325e−

06,m4 = −0.0001289, n4 = 0.00371, o4 = −0.02346, p4 = −20.58, q4 = −0.09358, r4 =

21.17. Figures 3.12 and 3.13 illustrate the excellent fit between simulated parameters and

(3.14)-(3.15).

Contrary to EP,Q, the variance of EQ,P increases with increase in bin width for a fixed

89



(a) u = 100m, w = 10m (b) u = 10m, w = 50m (c) u = 50m, w = 30m

Fig. 3.14: PDF of coverage estimation error due to both positioning uncertainty and quantization

positioning error radius. This is because EQ,P characterizes the effect of quantization

for a fixed positioning error radius, which increases with increase in bin width, owing

to greater averaging error of received signal strength measurements with increase in bin

width. On the other hand, EP,Q, captures the effect of positioning error radius on coverage

estimation. The effect of positioning error becomes more profound with decrease in bin

width as the probability of a user being actually located in adjacent bins and not the

reported bin increases with decrease in bin width, for a fixed positioning error radius.

3.4.3 Combined effect of positioning and quantization errors on coverage

estimation

In Section 3.4.1, we analyzed the effect of positioning error on coverage estimation, both

with quantization and without quantization, while in Section 3.4.2, we investigated the

effect of quantization error on coverage estimation, both with and without positioning

uncertainty. The results and analysis from the preceding section serve as a basis for

coverage calibration for a given bin width or a given user positioning error. However, in

applications where the goal is to minimize effect of both errors simultaneously, following

questions arise:

• Is the impact of user positioning error on coverage estimation independent of quan-

tization error?

• If the two errors are dependent, how do they affect coverage estimation using MDT?
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We will begin by addressing the first question in this section. This dissertation, for the first

time investigates the concurrent effect of user positioning uncertainty and quantization

on coverage estimation. In order to reveal this interplay, we characterize the error in

coverage estimation due to both positioning and quantization errors as follows:

EC(x, y, v, q, u, w) = rP,Q(x, y, v, q, u, w)− rP ′,Q′(x, y) (3.16)

where rP,Q is the measured averaged received signal strength that is being reported from

a bin, where a user resides in the presence of positioning uncertainty (both quantization

and positioning inaccuracy) with its received signal strength equal to rP
′,Q′ , in the absence

of positioning uncertainty (no positioning inaccuracy and no quantization).

Fig. 3.14 illustrates the PDFs of coverage estimation errors for different bin widths and

positioning error radius. In Fig. 3.14 (a), we show the case of large user positioning

error (u = 100m) and small quantization error (w = 10m). It can be seen from the

figure that the effect of quantization alone on coverage estimation leads to almost no

error in coverage estimation (see gray histogram for EQ,P in Fig. 3.14). However, a large

positioning error causes a large error in coverage estimation (shown by large variance of

red histogram of EP,Q in Fig. 3.14). The combined effect of the two errors is shown by

EC and it is dominated by the error in user positioning since a large user positioning

error overshadows the small quantization error. On the contrary, Fig. 3.14 (b) shows the

case of small user positioning error (u = 10m) and large quantization error (w = 50m).

Here, the combined error in coverage estimation follows the distribution of EQ,P , since

the large error due to quantization is much more significant than the small error due to

user positioning. Fig. 3.14 (c) shows the case for u = 50m and w = 30m. Over here, the

variance of error in coverage estimation due to quantization alone, user positioning error

alone, and due to both quantization and user positioning uncertainty is large. Note that

unlike Fig. 3.6 and Fig. 3.11, the distributions of EC in Fig. 3.14 would converge to a

delta distribution only when both u→ 0 and w → 0 simultaneously.
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Fig. 3.15: Parameter µ5
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Fig. 3.16: Parameter s5

The mathematical expression to characterize the distribution of under-estimating cover-

age due to both quantization and user positioning error in this scenario is found to be as

follows:

fCE (ec, u, w) =
exp

(
− ec−µ5(u,w)

s5(u,w)

)
s5(u,w)

(
1 + exp

(
− eC−µ5(u,w)

s5(u,w)

))2 , for eC < 0 ∀ µ5 (3.17)

where
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µ5 = a5 + b5u+ c5w + d5u
2 + e5uw + f5w

2+

g5u
2w + h5uw

2 + i5w
3 (3.18)

s5 = j5wu+ k5u+ l5w
m5 (3.19)

and a5 = 0.372, b5 = −0.008895, c5 = −0.03936, d5 = 4.532 × 10−5, e5 = 0.0004475, f5 =

0.0013, g5 = 2.191× 10−6, h5 = −6.576× 10−6, i5 = −9.658× 10−6, j5 = −0.0005075, k5 =

0.03271, l5 = 1.936,m5 = 0.3147. Fig. 3.15 and Fig. 3.16 depict parameters u5 and s5

respectively.

3.4.4 Error due to scarcity of data
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Fig. 3.17: Percentage of area with no MDT reports with varying bin width and number of users

One key challenge in practical implementation of MDT reports based coverage estimation

is the sparsity of user reports. The problem of sparse MDT reports is illustrated in Fig.

3.17. From Fig. 3.17, it is observed that the mean percentage of area containing no

reported user measurements increases exponentially as the bin width decreases or number

of users (user density) decreases. Therefore, it is important to find a robust method to

predict the coverage status of empty bins.

Consider the scenario in which the predicted coverage area is divided into n × n bins.

93



5.9505 5.951 5.9515 5.952 5.9525 5.953 5.9535 5.954 5.9545 5.955

x 10
5

5.63335

5.6334

5.63345

5.6335

5.63355

5.6336

5.63365

5.6337

5.63375

5.6338

y

10
6

-130

-120

-110

-100

-90

-80

-70

-60

-50

(a) Full coverage map

5.951 5.952 5.953 5.954 5.955

x 10
5

5.63335

5.6334

5.63345

5.6335

5.63355

5.6336

5.63365

5.6337

5.63375

5.6338

y

10
6

-130

-120

-110

-100

-90

-80

-70

-60

(b) Sparse coverage map

5.951 5.952 5.953 5.954 5.955

x 10
5

5.63335

5.6334

5.63345

5.6335

5.63355

5.6336

5.63365

5.6337

5.63375

5.6338

y

10
6

-130

-120

-110

-100

-90

-80

-70

-60

(c) Recovered overage map with
kriging

Fig. 3.18: Kriging for coverage map reconstruction, u = 0 and w = 10m

Gathered coverage data from different bins can be represented in a matrixC of dimensions

n×n. Thus, the coverage area forms a square matrix ∈ R(n×n), where each entry is located

at the i-th row and j-th column. Following the time window for gathering measurements

and updating the coverage map, it is possible that values are available in only m random

bins where m < n×n such that {Cij : (i, j) ∈ Ψ} and Ψ is a set of cardinality m sampled

at random.

In order to quantify the accuracy of possible solutions for MDT data sparsity, we use the

measure of relative error:

EM = ||Ĉ −Cfull||F/||Cfull||F (3.20)

where Cfull is the matrix with full entries, considering that RSRP measurements are

available from all bins and Ĉ is the recovered coverage matrix.

Fig. 3.18 illustrates the coverage map for a square area of 500m× 500m taken from Fig.

3.1, with 500 users. A bin width of w = 10m forms a coverage matrix of dimensions

50× 50, leading to 81.1 % missing entries in the matrix, i.e., empty bins as shown in Fig.

3.18 (b).

To predict missing coverage values in empty bins, one approach can be utilizing the

average of neighboring bins to approximate the coverage value in an unreported bin.
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However, this scheme can induce large errors, particularly when two or more adjacent

bins are empty. After carrying out a literature review of possible techniques that can be

employed in order to recover these missing coverage values, we present a comparison of

selected techniques and propose some new approaches to address this issue in the next

section. We apply these selected techniques on sparse coverage data and the resulting

outputs are shown in the next section. More approaches to addressing this challenge in

various cellular networks scenarios will be discussed in Chapter 4.

Comparison of selected techniques to address data sparsity challenge

Fig. 3.19 shows a visual comparison of some selected techniques (namely, moving average,

matrix completion via different algorithms, inverse distance weighted, nearest neighbor,

natural neighbor, spline and kriging techniques) when applied on a sparse coverage map

for a bin width of 5m. Details of these techniques are discussed comprehensively in

Chapter 4. It can be seen from these figures that kriging interpolation method performs

the best. Note that although Fig. 3.19 shows a part of the simulated area, the conclusions

remain same for other geographical parts from the simulated area.

Positioning uncertainty is then added to the analysis and the recovery errors for u = 100m

are shown in Fig. 3.20. In this chapter we focus only on the accuracy of recovery methods.

Other aspects, such as computational complexity are out of scope of this work and can

be considered in a future study. From these results, we conclude that kriging works

best in extreme scenarios of high positioning uncertainty and low bin widths. This is

because other methods are directly based on the surrounding measured values or on

specified mathematical formulas that determine the smoothness of the resulting surface,

whereas kriging is based on geostatistical methods. Therefore, it performs better even in

conditions such as large user positioning uncertainty. Hence, we select this technique for

the case studies presented in Section 3.5.

A 3D graph for the matrix recovery error, EM using Kriging as a function of bin width
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(b) Sparse coverage map
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(c) Moving average

5.951 5.952 5.953 5.954 5.955

x 10
5

5.63335

5.6334

5.63345

5.6335

5.63355

5.6336

5.63365

5.6337

5.63375

5.6338

y

10
6

-120

-100

-80

-60

-40

-20

(d) Matrix completion via SVT
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(e) Matrix completion via FPC
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(g) Nearest neighbor
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(h) Natural neighbor
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(j) Kriging

Fig. 3.19: Comparison of coverage map reconstruction techniques for u = 0 and w = 5m
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Fig. 3.20: Recovery error with varying bin widths using different reconstruction techniques.

and positioning error radius is shown in Fig. 3.21. It can be seen from Fig. 3.21 that

this error increases with increase in positioning error radius and decrease in bin width.

3.5 Practical applications

From a cellular network design perspective, the analysis and insights obtained from results

of this study can be used for many practical applications. In this section, we highlight

two fundamental aspects of network planning and optimization as practical applications

of this work, i.e., coverage calibration and determining optimal bin width.

3.5.1 Coverage calibration

Having investigated and characterized the various types of errors in MDT-based au-

tonomous coverage estimation, we can now 1) quantify coverage estimation error and 2)

determine the direction of coverage estimation error, i.e., is the coverage over-estimated

or under-estimated and by what amount? This information can be used by network

operators to correctly calibrate the coverage for different geographical areas.

The probability of area whose coverage is under-estimated due to given positioning uncer-
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Fig. 3.21: Matrix recovery error with varying bin widths and positioning error radius using
Kriging.

tainty, APu (u,w) can be calculated by integrating (3.7) from −∞ to 0 while the probability

of area that is over-estimated due to quantization, AQo (u,w) can be determined by inte-

grating (3.13) from 0 to ∞ as follows:

APu (u,w) =

∫ 0

−∞

exp
(
− eP,Q−µ2(u,w)

s2(u,w)

)
s2(u,w)

(
1 + exp

(
− eP,Q−µ2(u,w)

s2(u,w)

))2 deP,Q

APu (u,w) =
1

e
µ2(u,w)
s2(u,w) + 1

(3.21)

AQo (u,w) =

∫ ∞
0

exp
(
− eQ,P−µ4(u,w)

s4(u,w)

)
s4(u,w)

(
1 + exp

(
− eQ,P−µ4(u,w)

s4(u,w)

))2 deQ,P

AQo (u,w) = 1− 1

e
µ4(u,w)
s4(u,w) + 1

(3.22)

Fig. 3.22a shows the probability of area that is under-estimated due to positioning un-

certainty for given bin widths while Fig. 3.22b shows the probability of area that is

over-estimated due to quantization for given positioning uncertainties. The probability

of area that is under-estimated due to both quantization and user positioning error can be

found by integrating (3.17) from −∞ to 0, yielding the expression in (3.23) and illustrated

by Fig. 3.22c.
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(a) Percentage of area that is underesti-
mated due to incorrect user positioning as

a function of w and u

(b) Percentage of area that is overesti-
mated due to quantization as a function

of w and u.

(c) Percentage of area that is underesti-
mated due to both quantization and in-
correct user positioning as function of w

and u.

Fig. 3.22: Coverage area miscalculated due to different causes.

Acu(u,w) =
1

e
µ5(u,w)
s5(u,w) + 1

(3.23)

The probability of area that is over-estimated is then 1−Acu(u,w) Note that the integral

limits of (3.21)-(3.23) can also be modified based on minimum coverage thresholds deter-

mined by the network operator. Given the bin width and positioning error radius, Fig.

19-21 can be used to calibrate observed coverage in order to estimate true coverage in a

specified area.
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3.5.2 Determining optimal bin width

While on one hand, decreasing bin size reduces the quantization error, on the other

hand, it increases the error in coverage estimation due to incorrect user positioning and

sparsity of user reports. This study is the first to show that there exists an optimal bin

width for given user positioning error that can minimize the overall error in the MDT

based coverage error, i.e., the combined error caused by quantization (dictated by bin

size), user positioning inaccuracy and error due to sparse MDT reports. This calls for an

optimization of bin width that would minimize the overall error under positioning error

constraints.

The errors in (3.4), (3.12) and (3.20) can have an upper bound of greater than 1. In order

to get a bounded measure between 0 and 1 of these errors and to enable comparison of

combined quantization and user positioning error with matrix recovery error, we define

new bounded error measures based on the relative error measures as follows:

EP,Q
B =

1

n2

n2∑
i=1

|rP,Qi − rP
′,Q

i |
|rP,Qi − rP ′,Qi |+ |rP ′,Qi |

(3.24)

EQ,P
B =

1

U

U∑
i=1

|rP,Qi − rP,Q
′

i |
|rP,Qi − rP,Q′i |+ |rP,Q′i |

(3.25)

EC
B =

1

U

U∑
i=1

|rP,Qi − rP
′,Q′

i |
|rP,Qi − rP ′,Q′i |+ |rP ′,Q′i |

(3.26)

where rP,Q is the measured averaged received power vector of users in bins in the presence

of positioning uncertainty and rP
′,Q is the averaged received power vector of users in bins

without any positioning uncertainty. rP,Q
′

is the received power vector at the user level

with positioning uncertainty. rP
′,Q′ is the received power vector at the user level without

positioning uncertainty (i.e., the user reporting RSRP value from a particular location is

actually present at that exact location).

Similarly, a bounded measure for matrix recovery error (this can be considered analogous
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(a) Individual errors, u = 10m
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(b) Total error, u = 10m
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(c) Individual errors, u = 60m
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(d) Total error, u = 60m
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(e) Individual errors, u = 100m
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(f) Total error, u = 100m

Fig. 3.23: Different errors in coverage estimation, leading to optimal bin widths.
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to error caused by sparsity of MDT reports) can be expressed as:

EM
B =

1

n2

n2∑
i=1

(
|ĉi − cfulli |

|ĉi − cfulli |+ |c
full
i |

)
(3.27)

where ĉ = vect(Ĉ) and cfull = vect(Cfull) are vectorized forms of matrices Ĉ and Cfull.

For the percentage of area from where MDT reports are unavailable, we want to minimize

the matrix recovery error and for the remaining fraction of the total geographical area,

we want to minimize total quantization and averaging error. The optimization problem

can then be formulated as:

w∗ = arg min
w

E
(
EM
B + EC

B

)
(3.28)

subject to wmin ≤ w ≤ wmax (3.29)

positioning error radius = u (3.30)

Owing to the small search space, we can solve (3.28)-(3.30) via brute force.

The quantization error, error due to incorrect user positioning and error due to sparse

user reports is shown in Fig. 3.23 (a), (c) and (e) for u = 10, 60 and 100 m respec-

tively. Quantization error increases with increase in bin width owing to greater spatial

gap among users in a given bin as bin width increases. On the contrary, error due to

incorrect user positioning decreases with increase in bin attributing to the fact that for

a given positioning error radius, a larger bin width would mean a lesser probability that

a particular user reporting MDT data from a given bin is in fact present in any of the

adjacent bins. This error is then combined with the matrix recovery error. Since the

number of vacant entries in the coverage matrix increases as the bin width decreases as

previously illustrated by Fig. 3.17, it becomes difficult to recover the missing coverage

values as bin width decreases. Finally, Fig. 3.23 (b), (d) and (f) show the effect of all

errors simultaneously. We note that the optimal bin width increases as positioning error

radius increases. This work therefore presents a framework to determine the optimal

102



bin width that minimizes overall error in MDT-based coverage estimation and can be

extended for different UE densities and environmental conditions, that can be focus of a

future work.

3.6 Conclusion

In this chapter, we have investigated three key types of errors in MDT-based coverage

estimation that stem from sparse user measurements, quantization/binning and inaccu-

rate user positioning. We have determined the distributions of these three types of errors

as a function of positioning error radius and bin width. We also present analysis that

can not only quantify the error in the estimated coverage but also the direction of the

error, i.e., whether the coverage is under estimated or over estimated for given bin width,

positioning error and user data sparsity. Our results reveal a very important insight that

can play a pivotal role in optimal design of a MDT based coverage algorithm, i.e., there

exists an optimal bin width for given user positioning inaccuracy that minimizes the over-

all error in the MDT based coverage estimation. Thus, for a given positioning accuracy

and user density, the findings from this study can be directly used by network operators

to configure the bin size that results in most accurate MDT based coverage estimation.

Practical applications of this work are then presented such as determining optimal bin

widths that minimize the effect of all these errors concurrently and improving the utility

of the MDT estimated coverage by its calibration enabled by quantification of the errors.

The findings from this work can thus aid in operation and optimization of future cellular

networks as MDT based coverage estimation which can not only substantially improve the

self-organizing networks based optimization in legacy networks but act as key enabler for

most of the AI based automation use cases envisioned for the operation and optimization

of future cellular networks such as 5G and beyond.
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CHAPTER 4

A framework towards addressing the training data sparsity challenge in

cellular networks

4.1 Introduction

In order to enable these automation capabilities in next generation cellular networks, the

process of heterogeneous base station (BS) deployment, implementing existing and newly

proposed network features and tuning the associated network parameters has to be metic-

ulous. This is because the process of selecting an optimal network configuration that can

maximize the vital key performance indicators, like coverage, capacity, reliability or en-

ergy efficiency is a rather challenging task. Identifying the optimal network configuration

is necessary for network operators to fulfill the promises made by much anticipated 5G

and beyond networks and to realize the efficacy of several new use cases.

Research community heavily rely on mathematical yet tractable analytical models [275]-

[280] to propose planning, operation and optimization of different aspects of network.

They, however, are based on restrictive assumptions and simplifications with respect to

transceiver architecture, base station and user distributions and propagation character-

istics, to name a few. Furthermore, stochastic geometry-based models are unable to

capture the network dynamics which include mobility management and transmission la-

tency. Therefore, several machine learning (ML) based techniques are proposed in current

literature that leverage training and tuning of ML based models to determine the behav-

ior of different configuration and optimization parameters (COPs), such as antenna tilt,

transmit power, cell load in relation to different key performance indicators (KPIs), like

coverage, capacity or energy efficiency [281]-[283]. These COP-KPI relationships can then

be used for COP-KPI optimization. Moreover, in cellular networks context, awareness
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Fig. 4.1: Methods to address data sparsity challenge and chapter organization.

about radio environment in a wireless system is crucial given that the radio spectrum is

a limited resource [284]. Ample data is required for constructing radio environment maps

which can be used for operations such as spectrum management, to construct interfer-

ence maps, to make decisions about spectrum availability for enabling dynamic spectrum

access, for assessing/monitoring network health, minimizing signalling, interference man-

agement, optimization of radio resources allocation, dynamic spectrum allocation, identify

bad-signal areas, automatic neighbor relation, minimize drive tests, handovers optimiza-

tion and coexistence of various technologies [285]-[286]. However, all such techniques face

a common key challenge that undermine their utility: scarcity/sparsity of the training

data, the reasons for which were outlined in Chapter 1, Section 1.1.1.

It should be noted that measured data can be sparse and still be representative. On the

other hand, data can be big but not representative. We begin this chapter by presenting

an overview of techniques that will work best in the first case. In the case when data is

sparse and representative, but the only information known are the measured data points

and their location, interpolation methods in Section 4.2 are likely to perform best.

Moving forward, when some additional information beyond the data points and their loca-

tions is known, we can utilize the methods using contexual information or domain knowl-
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edge in Section 4.3. Several machine learning techniques can also be leveraged to address

the data sparsity challenge. These include generative adversarial networks, autoencoders,

transfer learning and few shot learning techniques (Chaper 4.5). On the contrary, when

the available data is big and non-representative or sparse and non-representative, the

solution lies in either resorting to generate synthetic data (Chapter 4.4) or get real data

(Chapter 4.6). In addition, for scenarios with no starting real data, for example, for new

or anticipated scenarios which are not yet deployed in a real network, simulators, and

testbeds to generate real data are most likely going to be the best option for wireless

communications community. An overview of this chapter organization is presented in

Fig. 4.1.

4.1.1 Related work

Data scarcity challenge has been addressed in the domain of environment sciences field,

such as ecology, marine, agriculture, soil science, elevation, precipitation, and chemical

concentrations. [287]-[290] . Authors in [287], [289], [290] survey a wide range of interpo-

lation methods for use in environment sciences field. However, literature on addressing

the training data sparsity challenge in cellular networks to enable AI-based solutions

remains very constrained.

In cellular networks context, literature remains largely confined to either interference

cartography generation techniques in cognitive radio networks [285], [291], [292], [293] or

radio environment map reconstruction [294], [273], [295], [296].

In the domain of cognitive radio networks, authors in [285] compare three interpola-

tion methods, namely, natural neighbor, kriging and spline for constructing interference

cartographs from a sparse set of data. They conclude that both kriging and natural

neighbor interpolations perform similarly when the channel uncertainty is lower and that

the average efficiency of all interpolation techniques improves with increased shadowing

decorrelation [285]. Authors in [291] conclude that Kriging performs best among nearest
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neighbor and inverse distance weighted (IDW) methods. Results in [292] again demon-

strate the superior performance of Kriging among nearest neighbors, IDW and triangular

irregular network interpolation, but has demonstrated the robustness of IDW method

overall. Among the considered techniques in [293], nearest neighbor interpolation is con-

cluded to be the least complex method and natural neighbor, linear, cubic and quadratic

interpolation techniques have shown to exhibit comparable performances in terms of pri-

mary emitter localization accuracy.

In the context of radio environment maps construction from a sparse set of measurements,

the most relevant study is [294]. Advantages, disadvantages and asymptotic complexity

comparison of seven different direct (interpolation) techniques and three indirect con-

struction methods is provided. Extending the study in [294] to interference map genera-

tion, classification of interpolation methods used for interference map creation based on

characteristics such as local/global, exact/inexact, deterministic/stochastic is presented

in [297]. Authors in [295] compare Kriging, Modified Shepard’s method (MSM) and

Gradient plus inverse distance squared (GIDS) and IDW for creating radio enviromment

maps. It concluded that Kriging and IDW are highly flexible and offer trade-off be-

tween the computational cost and accuracy, while GIDS is simple from implementation

perspective. Authors in [298] use graph signal processing techniques to estimate radio en-

vironment map using sparse availability of measured data and compared its performance

with Kriging in terms of higher prediction accuracy and reduced time complexity. Focus

of the work in [273] is on the reliable estimation of radio interference field with small num-

ber of measurements. For this purpose, different variants of IDW spatial interpolation

method are employed which have proven robustness when dealing with limited number

of observations [273]. A more practical implementation of Kriging based approach using

real data from the University of Colorado, Boulder campus has been demonstrated in

[296].

However, to the best of authors’ knowledge, there is no existing work that presents a
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consolidated framework to solve the training data sparsity challenge in cellular networks.

4.2 Interpolation methods

When the only information required from cellular network are the measurement values

(location-value pair) in order to recover the missing values, we classify such methods as

‘interpolation methods’. Interpolation methods are based on the interpolation approach.

In order to address the data sparsity challenge, spatial interpolation assumes that the

data are spatially dependent and continuous over space [299].

Consider the scenario in which the predicted coverage area is divided into n × n bins.

Gathered data from different bins can be represented in a matrix C of dimensions n×n.

Thus, the coverage area forms a square matrix ∈ R(n×n), where each entry is located at

the i-th row and j-th column. Following the time window for gathering measurements

and updating the coverage map, it is possible that values are available in only m random

bins where m < n×n such that {Cij : (i, j) ∈ Ψ} and Ψ is a set of cardinality m sampled

at random. A comparison of selected reconstruction techniques for a particular scenario,

in which coverage map for a square area of 500m× 500m with 500 users and bin width of

w = 10m forms a coverage matrix of dimensions 50×50, leading to 81.1 % missing entries

in the matrix, is shown in Fig. 3.18 (b). Different recovery techniques are then applied

on this matrix and the resulting outputs are shown in Fig.3.18 (c)-(j). Each technique

has its own set of advantages and disadvantages; we elaborate these techniques in this

section.

4.2.1 Matrix completion theory based recovery

We propose a scheme that jointly exploits matrix factorization theory and convex opti-

mization to recover the missing data in matrix C. We note that this scheme is likely

to work well in small cells environments since matrix C will naturally be low ranked

108



in such scenarios. This observation stems from the fact that propagation conditions are

mostly dominated by line of sight in small cells and the standard deviation of shadowing is

generally small. Moreover, the shadowing phenomenon that heavily determines coverage

values, particularly in a small cell environment, remains correlated over small distances

that separate users in the same small cell. This leads to the following optimization prob-

lem in order to find the missing values in matrix C:

minimize rank{P }

subject to Pij = Cij (i, j) ∈ Ψ (4.1)

However, the problem in (4.1) is known to be not only NP-hard, but also all known

algorithms that provide exact solutions require time doubly exponential in the dimension

n in both theory and practice [300]. However, the analysis presented in [300] proves that

the coverage values in vacant bins can be obtained with high accuracy by solving the

following alternate convex optimization problem:

minimize ||P ||∗

subject to Pij = Cij (i, j) ∈ Ψ (4.2)

where ||P ||∗ is the nuclear norm and is given as:

||P ||∗ =
n∑
k=1

σk(P ) (4.3)

In (4.3), σk(P ) denotes the kth largest singular value of P . (4.2) therefore aims to

determine the matrix with minimum nuclear norm that fits the data.

The problem in (4.2) can be solved with the singular value-based threshold (SVT) algo-

rithm presented in [301]. The SVT algorithm solves the following problem:

minimize η||P ||∗ +
1

2
||P ||2F

subject to OΨ(P ) = OΨ(C) (4.4)
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where OΨ is the orthogonal projector onto the span of matrices vanishing outside of Ψ

so that the (i, j)th component of OΨ(P ) is equal to Pij if (i, j) ∈ Ψ and zero otherwise.

It is shown in [301] that the solution of the problem of (4.4) converges to that of (4.2) as

η →∞. The SVT algorithm is iterative and produces a sequence of matrices {P ,Q}. At

each step, a soft-thresholding operation is performed on the singular values of the matrix

Qt. Thus, by selecting a large value of the parameter, η in (4.4), the sequence of iterates,

{P t} converges to a matrix which nearly minimizes (4.2). Starting withQ0 = 0 ∈ R(n×n),

the algorithm inductively defines

P t = shrink(Qt−1, η) (4.5)

Qt = Qt−1 + ∆iOΨ(C − P t) (4.6)

where {∆i}, i ≥ 1 is a sequence of scalar step sizes, until a stopping criteria is reached.

The shrink function in (4.5) applies a soft-thresholding rule at level η to the singular

values of the input matrix. It is defined as

shrink(Qt−1, η) = Sη(Qt−1) := USη(Σ)V ∗ (4.7)

Sη(Σ) = diag({(σk − η)+}) (4.8)

where f+ = max(0, f). Equivalently, this operator is the positive part of f and simply

applies a soft-thresholding rule to the singular values of P , shrinking them towards zero.

U ,V are matrices with orthonormal columns and the singular values Σ are positive.

U ,V and Σ are obtained from the singular value decomposition of matrix P of rank r:

P = UΣV ∗, Σ = diag({σk}), 1 ≤ k ≤ r (4.9)

In case of the presence of random shadowing in the model, the stopping criteria of the

algorithm can be modified as follows:

||OΨ(P t −C)||2F ≤ (1 + ζ)mφ2 (4.10)
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where ζ is a fixed tolerance. The SVT algorithm is stopped as soon as P r is consistent

with the data and obeys (4.10). Therefore, our reconstruction matrix, Ĉ is the first P t

obeying (4.10). This algorithm is outlined in Algorithm 1.

Another similar rank minimization based algorithm used to recover the matrix C is the

fixed point continuation (FPC) algorithm [302]. While SVT is efficient for large matrix

completion problems, it only works well for very low rank matrix completion problems.

For problems where the matrices are not of very low rank, SVT is slow and not robust

and therefore, often fails [302]. To solve this problem, FPC-based algorithm is proposed

in [302]. FPC-based algorithm has some similarity with the SVT algorithm in that it

makes use of matrix shrinkage as in (4.5)-(4.8). However, it solves (4.4) by leveraging

operator splitting technique [303].

Algorithm 1: Singular value thresholding algorithm for finding missing coverage values

Input : sampled set Ψ and sampled entries OΨ(C) , tolerance ζ, parameter η, step
size ∆, increment α, number of maximum iterations, IM , shadowing
standard deviation φ, and cardinality of Ψ , m

Output: P opt

1 Set Q0 = i0∆OΨ(C)
2 Set τ0 = 0
3 for t = 1 to IM
4 Set ht = τt−1 + 1
5 repeat
6 Compute [U t−1,Σr−1,V t−1]ht
7 Set tt = ht + α
8 until σt−1

ht−α ≤ η
9 Set τr = max{j : σt−1

j > η}
10 Set P t =

∑τr
j=1(σt−1

j − τ)ut−1
j vt−1

j

11 if ||OΨ(P t −C)||2F ≤ (1 + ζ)mφ2 then break

12 Set Qt
ij =

{
0 if (i, j) 6∈ Ψ

Y t−1
ij + ∆(Cij − P t

ij) if (i, j) ∈ Ψ

13 end for t
14 Set P opt = P t
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4.2.2 Inverse distance weighted

In this section, we first discuss the simplest form of inverse distance weighted (IDW)

method, the simple IDW. Then we highlight several improvements in simple IDW inter-

polation and finally present an adaptive IDW method from literature.

Simple IDW

The simplest form of IDW method is also known as the Shepard’s method. It is based

on the assumption that the distribution of signal samples is strongly correlated with

distance. To estimate the missing received signal strength value, ĉ (at a particular bin

location, D) in the matrix C, weighted average of N known signal strength values, ck

from N adjacent bins are used, where k = 1 . . . N . Each known received signal strength

value is weighted with a weight that is equal to the inverse of distance, dk = d(D,Dk)

between the location of the bin with missing RSRP value and location of the k-th bin

and raised to the power p. Mathematically, the missing received signal strength value is

calculated as:

ĉ =


∑N
k=1

1

d
p
k

ck∑N
k=1

1

d
p
k

if dk 6= 0

ck if dk = 0

(4.11)

The choice of p is an important parameter in this method. For p < 1, ĉ remains no longer

differentiable. Therefore, the exponent has to exceed 1 for the interpolation function to

remain differentiable. It is shown by empirical testing that higher exponents tend to make

the surface flat near all data points and the gradients over small intervals between data

points are very steep. On the other hand, lower exponents tend to produce a relatively flat

surface with short blips to achieve appropriate values at data points [304]. When p = 0

in (4.11), the missing coverage value is set equal to the weighted arithmetic average of

the neighboring coverage values and the recovery method is often termed as the ‘moving

average method’.
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Simple IDW method’s disadvantages are that it leads to the production of the “bull’s-

eyes” effect, it is sensitive to measurement outliers, it introduces significant errors in

case of non-uniform distribution measurements or unevenly distributed data clusters,

computational error becomes highly significant in the neighborhood of a data point, the

calculation of missing value increases proportionally with the number of data points,

leading to inefficiency of the method when the number of data points is large. Also,

there is no way of pre-determining the optimal weighting power factor that will construct

the most accurate RF-REM. The appropriate search radius also needs to be optimized.

Another drawback is the lack of directionality, i.e., different configurations of co-linear

points could yield the same results, attributing to the fact that only the distances from

the missing location to the points with known locations are considered and not their

direction [294],[304].

However, the advantages of simple IDW method include the its efficiency and ease of

comprehension since it is intuitive. This interpolation works best with evenly distributed

points.

Improved IDW

In order to address the drawbacks of simple IDW method in the preceding subsection,

several improvements have been suggested in literature.

Authors in [305], [304] and [306] improve the weighting function by proposing a framework

to intelligently select the nearby data points to be used in predicting the missing data

point. This approach is developed keeping the overall density of the data points into

consideration.

Authors in [304] incorporate a direction factor, in addition to the distance factor in

defining the weights. This direction factor is based on the cosine of angle of DiDDj, where

i 6= j and i, j = 1 . . . K. If other data points Dj are in approximately the same direction

from D as Di, then the angles, l − cos(DiDDj) are close to 0. On the other contrary,
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if other data points are in the opposite D from Di, then the angles l − cos(DiDDj) are

close to 2. The direction factor in the improved weighting function in [304] leverages this

fact.

Other improvements to simple IDW involve reduction of computational complexity and

errors and making features of the interpolation function desirable, i.e., ensuring non-zero

gradients at every location to achieve the desired partial derivatives for the function to

remain differentiable [1], [304].

Since simple IDW assumes that the distance decay is uniform throughout the entire

study area, it does not perform well in case of clustered data or data that depicts spatial

variability. To address this problem, authors in [307] suggested an improvement based on

the weighted median of data in the neighborhood of missing data point. The weighting

function in [307] is a function of inverse-distance weights and the de-clustered weights

that include the effects of distance and clustering among spatially correlated data in the

estimator.

In order to increase the accuracy of predictions through the IDW method, authors in [308]

proposed the use of piecewise least-square polynomial regression estimators to increase

the accuracy, after evaluating fifteen different estimators using an extensive evaluation

data set.

For reducing the “bull-eye” effect in simple IDW method, a distribution-based distance

weighting (DDW) technique is used [306]. Weight calculations in DDW method are based

on appropriate distributions according to available data, such as Gaussian, Lorentzian

and Laplacian distributions. Such a distribution-based calculated ensures that if data

variations are very small, then the distribution will have a fairly sharp peak and will

cause the weighting to be more sensitive to the distance. On the contrary, if data included

in the interpolation are more spread out, a distribution with a larger variance would be

a good choice and this would result in the distances having less impact on the weight

calculations.
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Table 4.1: Improvements to IDW interpolation

Improvement References

Intelligent selection of data in neighborhood [305], [304], [306]

Addition of directionality [304]

Reduction of computational complexity [305],[304],[306], [1], [304]

Reduction of computational errors [1], [304], [308]

Addition of desirable features [1], [304]

Extension to clustered/non-uniformly
distributed data

[307]

Addition of temporal dimension [306], [309]

Reduction of “bulls-eyes” effect [306] [294]

Authors in [306] and [309] propose another improvement to the IDW-based method, that

incorporates temporal dimension in addition to spatial dimension. Although these ap-

proaches are evaluated in the context of environmental data, such an approach can also

be applied to wireless network data. In the approach in [306], time is treated indepen-

dently from the spatial distance dimension and weights are calculated in two steps: using

the inverse of 2D-spatial distance, followed by the inverse of the 1D-temporal distance

[306]. Authors in [309] assume second-order non-stationarity of both spatial and tempo-

ral distributions of the data, based on which they treat the space-time variables in their

proposed method as a sum of independent spatial and temporal non-stationarity com-

ponents. Heterogeneous covariance functions are constructed to obtain the best linear

unbiased estimates in spatial and temporal dimensions [309].

Adaptive IDW

The IDW method assumes that the distance-decay structure is uniform throughout the

entire study area. However, recognizing the potential of varying distance-decay relation-

ships over area, authors in [1] proposed a variation in the value of weighting parameter,

p according to the spatial pattern of sampled points in the neighborhood using informa-

tion derived from empirical data. Intuitively, when the unsampled location has highly
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clustered points around its neighborhood, a small p is appropriate so that the nearest

sampled values will not have an overwhelming influence on the estimated value. On the

contrary, a large p is desirable when data is spatially dispersed since the more reliable

source for the estimate will likely be influenced from the closest location, therefore, if a

small p value is used in this case, the contributions from local and more reliable sources

will be small, resulting in less reliable estimates [1].

In order to adjust p according to the spatial pattern of known data, authors in [1] first

quantify the spatial pattern of sample locations in the form of nearest neighbor statistic:

R = ro/re, re =
1

2(M/A)0.5
(4.12)

where re and ro are the expected and observed average nearest neighbor distances respec-

tively and A is the area under consideration.

After normalizing R to get the normalized local nearest neighbor statistic, µR, in the

adaptive IDW method, this neighbor statistic carries a fuzzy membership that belongs to

certain categories of p. This membership function is depicted in Fig. 4.2. As an example,

µR corresponding to R of 0.8 will be 0.35, yielding two points in the membership degree

(0.3 for category C and 0.7 for category B). The final p would then be a weighted sum

of these membership degrees and corresponding p values (0.5 for category B and 1 for

category C). Consequently, the final p will be: 0.7× 0.5 + 0.3× 1 = 0.65.

Adaptive IDW (AIDW) method can outperfom IDW and work well in situations where

local variability is relatively large or spatial correlation structure of the data is not strong

or data is too limited to support data intensive methods, such as kriging. It is shown to

outperform ordinary Kriging, when the spatial structure of data was such that it could

not be modeled accurately by a variogram function [1].

However, as compared to IDW, the AIDW method is computational intensive as the

distribution of p has to be formulated to find the optimal set of parameter values, which

require significant level of heuristics [1].
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Fig. 4.2: Triangular membership function for different adaptive distance-decay parameters
(modified from [1]).

4.2.3 Gradient plus inverse distance squared

Gradient plus Inverse Distance Squared interpolation (GIDS) combines multiple linear

regression and inverse distance based weighted coefficients for the interpolating missing

data. By assuming that the data of interest can be represented by a multivariate function,

for the unsampled location, D, an ordinary least squared regression is done using N

neighboring locations. This yields the coefficients which represent the location gradients.

If the measurements are taken at different heights, GIDS method can incorporate the

elevation dimension in interpolation too. Assuming D = (x, y, z) with corresponding

coefficients Cx, Cy, Cz, representing the x, y, z gradients respectively, the missing data

point through GIDS can be estimated as [295]:

ĉ =

∑N
k=1 (ck + Cx(x− xk) + Cy(y − yk) + Cz(z − zk)) /d2

k∑N
o=1 1/d2

o

(4.13)

The advantage of GIDS method is its ability to account for signal level gradients and

elevation of the terrain at the interpolated location and at locations of the measure-

ments. However, this method is very sensitive to the selection of neighborhood points

as a small neighborhood selection would leave out important measurements and a large

neighborhood selection may introduce noise [294].
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4.2.4 Modified Shepard’s method

The IDW based modified Shepard’s method (MSM) is a local interpolation that makes

the estimation based on a real multivariate function, f , whose local approximation is

referred to as nodal functions. If Qk is the output of the nodal function of the data point

Dk (local approximation to f at xk, yk), then the missing value using the MSM method

can be written as a weighted average of the nodal functions within some radius influence

(about the missing data point), Rw in the following manner [295], [273]:

ĉ =

∑N
k=1WkQk∑N
k=1Wk

(4.14)

First, the weights, Wk are calculated by the following formula:

Wk =


[Rw − dk]/Rwdk]

p if dk < Rw

0 if dk ≥ Rw

(4.15)

Then, another radius, Rv around each known data point is considered and the weights

are again calculated using (4.15), this time, replacing Rw with Rv.

This technique can be extended to multivariate case but is dependent upon optimization of

Rw, Rq and p. It is also shown to perform poorly if measurements lie in a low-dimensional

subspace [294]. However, this method can reduce the “bull’s eye’ effect as compared to

classical IDW methods.

4.2.5 Nearest neighbor

The nearest neighbor (NeN) method is also known as proximal interpolation or point

sampling. Let Dl be the nearest neighbor of the missing point, D and d(D,Dl) denote

the distance between Dl and D, then min{d(D,Dk)} = d(D,Dl), k = 1 . . . N . In this

case, the estimated value will be the same as the value in the nearest sampled location l.

Mathematically, the weights, λk can be represented as [292]:
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λk =


1 if k = l

0 if k 6= l

(4.16)

which leads to the missing point prediction as:

ĉ =
N∑
k=1

λkck = cl (4.17)

Although nearest neighbor approach is of low complexity, it results in sharp transitions

between the individual signal level zones and increases noise, especially at the boundary

of a given area, since it does not consider the influence of the sample data points apart

from the nearest neighboring data point [294], [310].

4.2.6 Natural neighbor

The natural neighbor (NaN) interpolation is based on Voronoi decomposition (tessella-

tion) of a set of given points in the plane. The the received signal strength value at a

particular location is found from a weighted average of N from all available measurements

which fall within its ‘natural neighborhood’.

The natural neighbors of any point are those associated with neighboring Voronoi poly-

gons. If the 2-D point Dk is a natural neighbor of the 2-D point D, the portion of Voronoi

region, VDk stolen away by D is called the natural region of D with respect to Dk. Ini-

tially, a Voronoi diagram is constructed of all the available coverage values. Then, a new

Voronoi polygon is created around the interpolation point (missing coverage value). The

proportion of overlap between this new polygon and the initial polygons is then used as

weights. If we denote the Lebesgue measure of this natural region by lDk
, the natural

coordinate associated to Dk is used as weights [285]:

λDk
(D) =

lDk
(D)∑

k lDk
(D)

(4.18)

The weights are thus the ratio of the area of overlap to the total area of the new polygon.
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Once the weights are obtained, interpolation to find the missing coverage value can be

carried out by a weighted sum of known coverage values.

The natural neighbor interpolation method performs well with non-homogeneous distri-

bution of measurements as well. However, its major drawback is that it can not find

missing signal values that lie outside the convex hull of Voronoi polygons since it requires

that the points to be interpolated be in the convex hull of the measurement locations as

the Voronoi cells of outer data points are open-ended polygons with an infinite area [294].

4.2.7 Splines

The spline method is also referred to as the radius basis function and “rubber sheeting’

[294]. It estimates the missing value by a mathematical function or piecewise defined

polynomials called splines that minimizes the total surface curvature. This results in a

smooth surface that passes exactly through the sampled points.

There are different kinds of splines, such as linear, quadratic, cubic, biharmonic and

thin-plate splines. For example, in the case of thin-plate splines, the unknown value is

estimated as [285]:

ĉ =
N∑
k=1

wk||D −Dk||2 ln(||D −Dk||) (4.19)

where ||.|| is the Euclidean norm. wk can be obtained by solving Ow = i, where i and

w are the column vectors of input data points and weights respectively, while O is the

matrix of output of the basis function (||D − Dk||2 ln(||D − Dk||) in this case) for all

possible input values.

Spline method can generate perform fairly well even with a small number of measurements

whose surface can be represented with a gentle variance and perform relatively smooth

interpolation, which can be useful to recover coverage maps. However, the spline method

is sensitive to outliers due to the inclusion of original data values at the sample points.
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It also performs poorly when measurements are closely clustered and have large variance

[299]. Moreover, solving the system of linear equations in order to determine weights

adds to the computational complexity of this method.

4.2.8 Kriging

Kriging, unlike the other methods discussed above, also takes into account the statistical

relationships in additional to spatial relationships among the measured data points to

estimate the missing values of data.

In Kriging, the weights are based not only on the distance between the measured points

and the prediction location but also on the overall spatial arrangement of the measured

points [311]. The weight coefficients are calculated by minimizing the variance of the

estimation error, σ2
e :

σ2
e = V [Ĉm − Cm] (4.20)

where V is the variance operator and Cm is the missing coverage value located at the 2-D

point, p.

The first step in kriging therefore involves creating a prediction surface map in order to

uncover the dependency rules to make predictions. To achieve this, kriging first creates

a semivariogram and covariance functions to estimate the statistical dependence values

that depend on the model of autocorrelation. To solve the optimization problem in (4.20),

semivariogram function, γ is used to characterize the spatial correlation.

The next step is to fit a model to the points forming the empirical semivariogram. A

mathematical function is used to fit the empirical semivariogram as the theoretical semi-

variogram model to model spatial autocorrelation. There are many variants of kriging

based on advanced and robust semivariogram models, such as simple kriging, block krig-

ing, factorial kriging, kriging with a trend, dual kriging, universal cokriging, kriging with

an external drift, indicator kriging, probability kriging, to name a few. A comparison of

these variants is presented in [290], [287]. Kriging weights then come from the semivari-
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ogram that was developed by analyzing the spatial nature of the data. These weights are

a result of minimizing the variance in (4.20), which yield the following solution [292]:λ
δ

 = X−1y (4.21)

where X and y are defined as:

X =



X1,1 · · · X1,N 1

...
. . .

...
...

XN,1 · · · XN,N
...

1 · · · 1 0


, y =



y1

...

yN

1


(4.22)

Each element of matrix, X, Xi,j = γ(||pi − pj||) and each element of the column vector

y, yi = γ(||p − pi||). The extra element in the weight vector solution in (4.21), δ, is

the result of fitting by assuming a mean trend component in the reconstructed coverage

matrix.

The major drawbacks of Kriging are that it requires a large number of measurement points

in order to achieve high precision and it involves significant input from the user in order

to select the best fit function for the semivariogram. Identifying the most appropriate

theoretical variogram for the given data is critical is in order for Kriging to perform

well. If, for example, the data exhibits large spatial heterogeneity or the number of data

points are too less, the theoretical variogram function may not be able to reflect the spatial

structure of the data adequately, and therefore, yield poor predictive results when Kriging

is performed. Although Kriging has relatively high computational complexity, it is the

most commonly applied technique in the literature [311] [299] due to its higher precision.

As Kriging is geostatistical method, it also can estimate the variances of predicted values

in the unsampled location.
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4.3 Methods using contextual information

The preceding section discussed techniques that can be leveraged to address the data

sparsity challenge when the only known information are the measured data and their

locations. However, if some additional information other than the observed data is known,

taking advantage of that extra information, we can employ other techniques, or use that

extra information to enhance the direct methods. We classify those methods as ‘indirect

methods’ which require additional information other than the observed data in order to

enrich it. This additional information can be knowledge of propagation model, such as

path loss and other relevant parameters, transmitter parameters, such as transmit power

or antenna patterns, transmitter location estimation, network geometry, or characteristics

of the operating environment. This additional information is then combined with observed

sparse data to augment it. Based on the availability of known information, different

indirect approaches can be employed.

4.3.1 Utilizing geometry of network

Interpolation using locations of data base stations

One way to estimate measurements for bins with no user reports can be using the geom-

etry of the base stations as shown in Fig. 4.3. This is particularly suitable in ulta-dense

deployment scenarios [312], where the data base stations (DBSs) are very densely de-

ployed (by virtue of switching OFF DBSs to keep energy consumption and interference

low). These additional measurements, after appropriate transformation, can then be

used to increase the accuracy of interpolation methods proposed above. However, this

approach can complement only simple measurements such as received signal strength.
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Fig. 4.3: Leveraging dense base station deployment to enrich sparse data.

Exploiting pattern among clusters in polar coordinates

Another way to enrich sparse data in a given network area can be by dividing the area

into clusters into polar coordinates as shown in Fig. 4.4. Each cluster has a value that

can show a given KPI, such as the average RSRP or SINR of the users in that cluster.

To find the missing value in a particular cluster, geometric pattern among other clusters

can be exploited, for example, if we travel along a particular circumference, we observe

that the Tx-Rx distance remains constant on that circumference and the only variation

is in azimuth angle (θ1 to θ4 in Fig. 4.4). Conversely, if we traverse a path radially

outwards, we can notice that the azimith angle remains the same but there is variation

in Tx-Rx distance (d1 to d3 in Fig. 4.4 assuming base station is located at the center of

the sector). If we model the received signal strength as a function of azimuth angle and

Tx-Rx distance, this pattern can be exploited to find the unknown signal strength values.

Learning cluster values by exploiting this pattern using a supervised DNN has been

proposed in [313]. However, authors in [313] has not used this approach to address the

data sparsity challenge. In [313], correlations among their SINRs has been exploited to

learn the locations of users at macrocells. However, we propose that such a model based

on correlations among SINRs of known clusters can also be used to find the missing SINR

in another cluster.
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Fig. 4.4: Leveraging cluster geometry to enrich sparse data.

4.3.2 Through propagation modeling and transmitter parameter estimation

Received signal strength (RSS) based method

The RSS based method to recover sparse data is based on a combination of analytical

models with statistical evaluation through measurements [314]. The RSS at a particular

receiver, i located at a distance, d can be represented as:

Pi(d) = Pt − L− 10p log10(d) + φ (4.23)

where Pt is the transmit power, L is the free space path loss and φ represents a lognor-

mal random variable for shadowing. L, p and standard deviation of φ are environment

dependent parameters.

After averaging out RSS measurements (in order to reduce random shadowing effect),

and assuming the sample size of RSS measurements is large enough, the average RSS at

a particular location can be estimated as:

P av
i (d) ≈ Pt − L− 10p log10(d), where P av

i (d) =
N∑
k=1

P k
i (d)/N (4.24)

After performing some algebraic manipulations, taking the anti-log of (4.24) and repre-

senting d is cartesian coordinates, (4.24) can be transformed into a regression problem

which can be expressed as a system of linear equation as follows [315]:
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

10
−L−Pav1 (d)

5p 2x1 2y1 −1

10
−L−Pav2 (d)

5p 2x2 2y2 −1

...
...

...
...

10
−L−PavN (d)

5p 2xN 2yN −1





10
Pt
5p

xt

yt

x2
t + y2

t


=



x2
1 + y2

1

x2
2 + y2

2

...

x2
N + y2

N


(4.25)

where xt, yt is the transmitter location and(xi, yi) is the i-th receiver location. Therefore,

by solving (4.25) using least-squares methods, we get estimates for transmit power, Pt

and the location of transmitter, (xt, yt). These estimates can then be using to evaluate

estimated received power at the missing location, by first calculating the Tx-Rx distance

at the missing location and then using it to find RSS.

Note that since path loss and shadowing parameters in the model are assumed to be

known and are highly environment dependent, the quality of estimated is likely to be

drastically affected if there is an error in estimation of propagation parameters, caused

by, for example, high shadowing fading in the environment. However, this method is

likely to show improve if propagation conditions are not too drastic, for example, in rural

areas and if the number of receivers with known measurements are large. It is also shown

in [315] that unlike IDW and Kriging, RSS-based method is not affected by the minimum

distance between receiver and transmitter and therefore, is more robust as compared to

direct methods.

Received signal strength difference (RSSD) based method

The RSSD method is based on the received signal strength difference (RSSD) between two

base stations or transmitters. It is assumed that transmit power is known, transmitter

location, (xt, yt) is estimated based on the idea that the ratio of the signal powers (or their

differences expressed in dB) observed at two different receiver locations is related to the

ratios of the transmitter to receiver distances. Specifically, the received power differences

between any two receivers, located at (xa, ya) and (xb, yb) can be represented as [314]:
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Pab = 5p log10

(
(xt − xa)2 + (yt − ya)2

(xt − xb)2 + (yt − yb)2

)
(4.26)

The transmitter location in (4.26) can then be estimated by solving a linear system of

equations of the following form:

1− β12 −2(x2 − β12x1) −2(y2 − β12y1)

1− β13 −2(x3 − β13x1) −2(y3 − β13y1)

...
...

...

1− β1N −2(xN − β1Nx1) −2(yNβ1Ny1)




x2
t + y2

t

xt

yt

 =



β12(x2
1 + y2

1)− (x2
2 + y2

2)

β13(x2
1 + y2

1)− (x2
3 + y2

3)

...

β1N(x2
1 + y2

1)− (x2
N + y2

N)


(4.27)

where βab = (xt−xa)2+(yt−ya)2

(xt−xb)2+(yt−yb)2 . Solution to (4.27) by ordinary least squares using avail-

able receiver locations yields estimates for xt, yt, x
2
t + y2

t . Once the transmitter location

has been estimated, the received signal level at any location can also be estimated by

subtracting the path loss from transmitted signal power. As with RSS based method,

this method is also dependent on selection of propagation parameters, such as path-loss

exponent and shadowing spread.

Angle of arrival (AOA) based method

Using prior knowledge of transmit power and using measurements from N receivers with

known locations, this method first estimates the angles of arrival at the locations of

the measurements and combines them with the received signal powers to estimate the

location of the transmitter. Once the location of the transmitter and its transmit power

is available, any appropriate propagation model can be applied to estimate unknown data

at different locations.
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The signal model for received signal at i-th receiver is modeled as [316]:

Ri =
√
α(di)h(θi)s+ ni (4.28)

where s is the complex baseband transmitted signal with known transmit power, di is

the unknown distance between the unknown transmitter and receiver, θi is the unknown

angle by which the signal reached the i-th receiver and ni is additive white Gaussian noise

vector. The (θi, di) pair represents a unique position. The directional and attenuation

characteristics of the channel h can be modeled by:

h(θi) =

 1

exp(j π
2

sin(θi))

 , α(di) = φ

(
c

4πf

)
d−pi (4.29)

For the recovery of missing measurements, first, the angle of arrival based on the re-

ceived signal strength is estimated at each receiver and then a fusion of these estimates

is performed. For angle of arrival estimation, authors in [316] apply the multiple signal

classification (MUSIC) algorithm and obtain estimated of the pair (θi, di), that translate

into a location estimate for the i-th receiver:x̂it
ŷit

 =

xi
yi

+

d̂i cos(θ̂i)

d̂i sin(θ̂i)

 (4.30)

Next, these estimated locations are transferred to a central network that combines these

estimates. One way to combine these estimates can be through simple averaging. Another

fusion method proposed in [317] obtains the following over-conditioned system from the

estimates: 
−x1 sin(θ̂1) + y1 cos(θ̂1)

...

−xN sin(θ̂N) + yN cos(θ̂N)

 ≈

− sin(θ̂1) cos(θ̂1)

...
...

− sin(θ̂N) cos(θ̂N)


x̂t
ŷt

 (4.31)

Solving this system of equations through least squares solutions yields the transmitter
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location, which can then be combined with known transmit power and a suitable propa-

gation model to estimate signal strengths at unknown locations.

Signal to noise ratio (SNR) based method

The initial steps of this method are similar to AOA based method in which the estimation

step at each receiver enables the estimation of the angle of arrival and the received signal

power. However, in the later step, combination of the location estimates is done through

SNR-aided fusion. The basic idea of this approach is the observation that receivers far

away from the transmitter yield worse location estimates. Hence the receiver results are

weighted with their respective receiver’s SNR, Γi as follows [316]:x̂t
ŷt

 =
N∑
i=0

Γi∑N
k=1 Γk

x̂it
ŷit

 (4.32)

where the received SNR at the i-th receiver is:

Γi(d) = E

[
α(di)Pt
NoB

]
(4.33)

with No being the the noise power density and B being the bandwidth of the receiver.

Self-tuning method

Another method utilizing propagation parameters but also taking the antenna pattern

into account is the self-tuning method (STM) is proposed in [318]. In addition to leverag-

ing characteristics of the operating environment, it performs estimation of the transmitter

location, antenna parameters, transmit power and parameters of the propagation model

such that the error between available measurements and predicted data is minimized.

Using the sparse data collected, the STM first estimates transmitter parameters and

calibrates the propagation model. This is then used to predict missing data, such as signal

levels. Among these transmission parameters, the location of transmitter is calculated
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using localization algorithms based on parameters such as angle of arrival or timing

advance, time of arrival or time difference of arrival. Then, based on the transmitter

location, distance from transmitter to receiver is calculated. This distance is then used in

an appropriate propagation model. As an example, if the Okumura-Hata model is used,

the received power at a particular location can be represented as:

Pr = Pt − Ao − A1 log10(d)− A2 log10(He)−

A3 log10(d) log10(H) + 3.2(log10(11.75Hm))2−

44.49 log10(f) + 4.78(log10(f))2 − Ld − Lc +G (4.34)

where Pt is the transmit power, d is the transmitter-receiver distance, f is the operating

frequency, Ld represents the diffraction loss, Lc is the loss through terrain clutter, H is

the height of transmitter and Ao, A1, A2, A3 are the constant coefficients. G represents

the antenna gain and can be represented as [318]:

G = Gmax − Fθ + Fθ | cosp1

(
θazi− θu

2

)
| −Fφ + Fφ | cosp2

(
φtilt − φu

2

)
| (4.35)

where φtilt is the tilt angle of the antenna, φu is the vertical angle from the reference

axis (for tilt) to the user. θazi is the angle of orientation of the antenna with respect to

horizontal reference axis i.e., positive x-axis, θu is the angular distance of the user from

the horizontal reference axis. Gmax represents the maximum antenna gain and Fθ and Fφ

are the front to back ratios in both directions, whereas the antenna form is approximated

with the cosine functions to the power of p1 and p2

We suggest that another option for a more practical directional antenna model defined

by 3GPP and utilized in [279] can be as follows:

G = λφ

(
Gmax −min

(
12

(
φu − φtilt

Bφ

)2

, Amax

))
+

λθ

(
Gmax −min

(
12

(
θu − θazi
Bθ

)2

, Amax

))
(4.36)
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The additional antenna parameters in this model are the half power vertical and horizontal

beamwidths, Bφ and Bθ respectively and the side and back lobe attenuation, Amax.

Having defined a suitable propagation and antenna model, the optimal antenna, trans-

mitter and propagation environment parameters can then be obtained by minimizing the

mean squared error between the measured and estimated signal strengths. Authors in

[318] solved this optimization problem in a non-least squared sense, using prior knowledge

of the bounds for the parameters to be optimized.

After solving the optimization problem by a suitable algorithm, the optimized parameters

are applied in the calculation of signal levels at unknown location to augment the existing

data.

Note that Ld and Lc require knowledge of the propagation environment, such as access to

clutter database of a mobile operator or knowledge of the digital elevation model [318].

Also, antenna parameters knowledge through antenna datasheets or antenna diagrams is

required in this method.

4.4 Synthetic data generation

The techniques mentioned in previous sections are likely to work well when the sparse

available data is somewhat representative of the whole data or exhibits some degree of

correlation. In situations where the available data is sparse and non-representative, the

methods presented in preceding sections are likely to perform poorly. Likewise, in other

scenarios, the available data can be big, but still not representative. In these cases, the

solution lies in either resorting to get real data or generate synthetic data. In this section,

we will present ways to generate synthetic data through simulators.
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4.4.1 Simulators

System level simulators are widely used in both industry and academia due to limitations

of analytical models and field experiments. Analytical models, in the pursuit of ensur-

ing tractability, are often over-simplified. Apart from the limitation of mounting Base

Stations (BSs) on predefined locations, the support of antenna height, tilt, transmission

power etc. for individual BSs is absent in the analytical model. Furthermore, stochas-

tic geometry-based models are unable to capture the network dynamics which include

mobility management and transmission latency. On the other hand, field trials exhibit

the most realistic modeling of network performance, evaluation and tuning. However,

this approach is impractical owing to the cost and time effort required to conduct field

trials on a large scale, and with the high probability of significant network performance

impairment of live mobile network during the trial phase.

A list of existing simulators along with a comparison of their features is presented in

Table 4.2. As observed from Table 4.2, none of the simulators is based on comprehensive

5G standard incorporating all aspects outlined in the standard. To tackle this problem,

we have developed a simulator called SyntheticNET built on Python platform. The Syn-

theticNET simulator is modular, flexible, microscopic and versatile, built in compliance

with the 3GPP Release 15. This simulator supports features like adaptive numerology,

actual hand over (HO) criteria and futuristic database-aided edge computing to name a

few. Instead of an objected-oriented programming (OOP) based structure like existing

simulators, SyntheticNET simulator supports commonly used database files (like SQL,

Microsoft Access, Microsoft Excel). Site info, user info, configuration parameters, an-

tenna pattern etc. can be directly imported to the simulator. As a result, the simulation

environment is more realistic and closer to actual deployment scenarios. For further

details of this simulator, the reader is referred to [319].

Python based platform and the flexibility of different input and output data formats in

SyntheticNET simulator can assist in solving the data scarcity challenge by generating
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Table 4.2: Comparison of different simulators for solving data sparsity problem.

Feature Simulator

GTEC [320]

OpenAirInterface [321]

5G-K [322]

X.Wang et al. [323]

V.V.Diaz et al. [324]

ns-3 [325]

OMNeT++ [326]

NYUSIM
[327]

MATLAB/SIMULINK [328]

C-RAN [329]

OPNET [330]

Vienna 5G [331]

Atoll [274]

SyntheticNET [319]

Scheduling support 4 4 4 4 4 4 4 4 4 4 4 4

mm-Wave support 4 4 4 4 4 4 4 4

Adaptive numerology 4 4 4 4

QCI support 4 4 4

Parallelized offline traces and time-
independent KPIs pre-generation for re-
duced online computational cost

4 4

Realistic antenna patterns modeling 4 4 4

Signaling overhead modelling 4

Realistic mobility modeling 4

AI based pathloss modeling 4

500+ COPs modeling 4

Realistic HO management 4

Realistic mobility pattern 4

Python based to enable data processing
and easy incorporation of ML libraries

4

Free license* 4 4 4 4 4 4 4 4 4 4 4 4

ample amounts of synthetic data to enrich the available sparse real data, which can

then be used to implement different Self Organizing Networks (SON) related features

or AI based network solutions [3]. Mobile operators can use it for planning, evaluating

or even optimization of 5G networks. Research community can also benefit from it by

implementing the new ideas on data generated from this 3GPP-based realistic 5G network

simulator.

4.5 Enriching real data using machine learning

Several machine learning techniques can be leveraged to address the data sparsity chal-

lenge. These include generative adversarial networks, autoencoders, transfer learning and

few shot learning techniques.

1Free license means free for academia use and in some cases under a signed contract by the lab head.
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4.5.1 Generative adversarial networks

Generative adversarial networks (GANs) success in image processing has been well es-

tablished [332]-[336]. Although this concept has widely been used in image processing,

it can also be used in wireless communications. In wireless communications context, the

works that utilize GANs are limited to [2, 337, 338, 339, 340, 341, 342, 343]. While GANs

have been widely used for image data, its application to tabular data remains relatively

limited. The works that use GANs on tabular data in a non-cellular network data con-

text include [344, 345, 346, 347, 348, 349]. However, similiar concepts can be applied to

wireless data domain too.

The basic idea is to use GAN to generate large amount of synthetic data building on

small amounts of real data which will not be distinguishable from real data. The intuition

behind GANs is to exploit the potential of deep neural networks (DNNs) to both model

nonlinear complex relationships (the generator) as well as classify complex signals (the

discriminator). In GAN, a two-player minimax game is set between the discriminator

DNN and generator DNN. In each training epoch, the generator iterates its weights to

produce synthetic data trying to fool the discriminator DNN. The discriminator DNN on

the other hand, tries to discriminate between real data and generated data. In theory,

when Nash equilibrium is reached between the generator DNN and discriminator DNN,

the pair of DNNs will provide us a generator that can exactly duplicate or reproduce

the distribution of the real data so that the discriminator would be unable to identify

whether a sample is synthetic i.e., whether it is generated by the generator DNN or it is

from the real data. At this point, the synthetic data generated by the generator DNN

are indistinguishable from the real data, and are thus as realistic as possible.

To assess the efficacy of GAN-based approach outlined above, as a preliminary study

recently published in [2], GAN was leveraged to generate synthetic call data records

(CDRs) data and thus increased training dataset size by enriching the real sparse CDR

with realistic synthetic data. CDRs data are selected as preliminary case study because
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(a) Real Calls Start Hours
(b) Synthetic Calls Start

Hours
(c) Real Calls Durations

(min)
(d) Synthetic Calls

Durations (min)

Fig. 4.5: Leveraging GAN for enriching the sparse training data [2].

CDR data can be used by a large number of SON solutions such as in [350], [351].

Real network traces with call durations and call start time stamps, provided by one of

the leading mobile operators in USA, were used in this study to train the GAN. The

discriminator was trained beginning with 20,000 data points (from a record of several

hundred thousand). Once the discriminator could reliably differentiate between the real

data taken from the record and randomly generated CDR data with two features i.e., call

duration and start time, the generator was trained. After the generator was generating

data that the discriminator perceived to be real, we used the trained generator to produce

another 20,000 CDR data samples. Figs. 4.5a and 4.5c and represent the distribution of

the real data used to train the discriminator. Figs. 4.5b and 4.5d show the distribution

of the 20,000 synthetic data points produced by the trained generator. These preliminary

results show the high similarity between real and synthetic data produced by the proposed

GAN based approach.

Other GAN-based approaches in cellular networks context include the use of GANs to

address the imbalance data issue in cell outage detection [337] Authors in [337] use an LTE

simulator to get RSRP and RSRQ data and combine GAN wirh Adaboost to improve

classification performance of imbalanced data for cell outage detection in self-organizing

cellular networks.

A radio environment maps estimation algorithm leveraging a GAN-based pixel regression

framework (PRF) for underlay cognitive radio networks using incomplete training data

is proposed in [338, 339]. In these works, the authors first transform the radio envi-

ronment maps estimation task into a pixel regression through color mapping. Then they
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extract helpful information from the incomplete training data, design a feature enhancing

module for the PRF algorithm, which intelligently learns and emphasizes the important

features from the training images. Finally, they train the PRF to reconstruct the radio

environment maps in the target area. Three indicators are used to test the proposed algo-

rithm: the visual display of the radio environment maps, the estimated power spectrum

of primary users, and the average REMs estimating error against different numbers of

secondary users. Results are bench-marked with IDW and Kriging with the exponential

semi-variogram estimation.

In the context of mitigating wireless jamming attacks, the work in [340] explores a GAN

for the jammer to reduce the time to collect the training dataset by augmenting it with

synthetic samples. In the context of wireless signal spoofing, GAN is used to generate

and transmit synthetic signals that cannot be reliably distinguished from intended signals

in [341]. Over here, a GAN-based spoofing attack that generates synthetic data that is

transmitted by an adversary transmitter and distinguishes real and synthetic data at an

adversary receiver. The minimax game between the adversary transmitter and receiver

tunes both the generator and the discriminator. Then the signals generated by the GAN

generator are transmitted for spoofing attack.

Using a RSS dataset in an indoor environment, the authors in [342] use GAN-generated

synthetic data to enhance the accuracy of fingerprint-based localization.

Moreover, authors in [343], while drawing inspiration from image processing design a

deep-learning architecture tailored to mobile networking, which combines Zipper Network

(ZipNet) and GAN models. Using Telecom Italia’s dataset, they infer fine-grained mobile

traffic patterns to monitor city-wide mobile traffic via the GAN.

However, GANs suffer from many challenges, such as vanishing gradients, oscillations,

modal collapse and the design of suitable evaluation metrics to evaluate their performance.
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4.5.2 Autoencoders

Another machine learning based generative method that can be utilized for addressing

data sparsity challenge is autoencoders. Unlike GANs, which come in the class of implicit

density methods (where the prior distribution of latent features is not known), autoen-

coders fall under explicit density method, meaning that the distribution of latent features

is explicitly defined.

Some works in this direction include [352, 353, 354]. An adversarial autoencoder using

power spectral density data is demonstrated in [352] for detecting anomalous behavior in

wireless spectrum. Along with anomaly detection, the proposed model in [352] shows a

semi-supervised signal classification accuracy close to 100% on datasets using 20% of the

labeled samples. Autoencoders for radio map estimation task using sparse measurements

are investigated in [353]. Data-driven spectrum cartography via autoencoders is explored

in [354]. After learning the propagation phenomena from data, the autoencoders based

algorithm in [354] can construct a spectrum map from a significantly smaller number of

measurements.

4.5.3 Transfer learning

The interpolation methods in section 4.2 are expected to work well when the sparse data

has at least some latent features. Same is true for methods such as GANs that are

used to enrich sparse data by generating synthetic data. However, for situations where

this is not the case, alternatives have to be used. For such data streams where latent

features are too little to allow use of GANs, matrix completion or other interpolation

techniques identified above, the transfer-learning paradigm [355, 356] can be leveraged.

Given a source domain and source learning task, a target domain and a target learning

task, transfer learning aims to help improve the learning of the target predictive function

using the source knowledge. In cellular network context, similarities among cells can be

leveraged for determining when to use transfer learning.
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Several works have been carried out using transfer learning to address various aspects of

cellular networks. Authors in [357] propose a transfer learning-based caching procedure

at small cell base stations. They do so by exploiting the rich contextual information

extracted from device-to-device interactions, referred to as source domain. This prior

information is incorporated in the target domain where the goal is to optimally cache

strategic contents at the small cells. A transfer learning data correlation-aware resource

management approach in wireless virtual reality is presented in [358]. After formulating

data correlation-aware resource management problem as an optimization problem, the

authors in [358] developed a neural network reinforcement learning algorithm that uses

echo state networks along with transfer learning to find the most suitable resource block

allocations. Their simulation show an improved performance of the proposed approach

compared to a classical Q-learning algorithm. Another transfer learning approach for pa-

rameter configuration of cellular networks is proposed in [359]. In this work, contextual

bandit algorithm is leveraged along with transfer learning to optimize parameter configu-

rations in cellular networks. Experimental results based on simulations and real network

tests demonstrate the effectiveness of the proposed scheme. A transfer actor-critic learn-

ing framework for energy saving in cellular radio access networks is proposed in [360].

This work utilizes the transferred learning expertise in historical periods or neighboring

regions for predicting traffic load variations. The problem of predicting the signal strength

in the downlink of a real LTE network, where the antennas can be tuned to operate with

different antenna tilt configurations is addressed using transfer learning in [361]. The

authors show that augmenting the data from the source domain by adding data avail-

able from other tilts configurations of the same antenna improves the performance of the

proposed transfer learning approaches. Transfer learning for channel quality prediction is

proposed in [362], using dataset from a commercial LTE network. The results show how

transfer learning can be carried out across pairs of cells working at different frequencies,

or at the same frequency in different locations. In [363], authors presented a method for

reducing the cost of data augmentation during the transfer learning of neural networks
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on embedded devices. This is especially important when large models are implemented

on embedded devices with limited computational and energy resources.

Transfer learning can also be adapted for algorithms that are not neural network based.

For example, in a non-cellular network context, the XGBoost algorithm is expanded as a

transfer learning framework [364].

4.5.4 Few shot learning

Few-shot learning (FSL) is another branch of machine learning that addresses the perfor-

mance degradation problem of deep learning algorithms when the training dataset size

is small. Using prior knowledge, FSL can master new tasks from a limited number of

examples [365]. This type of learning is primarily motivated from the ability of humans to

learn from only a few examples. Therefore, FSL can eliminate expensive data collection

efforts and help in building suitable models for rare cases of limited supervised data [365].

FSL can be used for classification, regression and even reinforcement learning tasks using

only few labeled, input-output and state-action examples respectively. However, the most

common application scenario for FSL is“N-way-K-shot classification”, where a classifier is

built for distinguishing between N classes, each having only K examples per class. When

only one example with supervision is available, it is referred to as One-Shot Learning and

when no example is available, it is called Zero-Shot Learning.

FSL is a very active area of research these days and the methods being proposed in the lit-

erature for solving the few-shot problem can be broadly classified in two different branches:

1) Meta learning, and 2) Metric learning. The key idea in Meta learning-based methods is

to learn a learning strategy to adjust well to a new few-shot learning task by developing

a task-agnostic learner (learn to learn). Examples of methods include Model Agnos-

tic Meta Learning [366], Task-Agnostic Meta Learning [367] and Meta-transfer Learning

[368]. These methods are good at out-of-distribution tasks and can handle varying and

large shots well, but their model and architecture are intertwined and their optimization

139



process is challenging [369]. On the other hand, Metric learning-based methods learn to

compare query set (test set) with support set (few-shot training set) by learning transfer-

able representations in semantic embedding space using a distance loss function (learn to

compare). Examples include Siamese Neural Networks [370], Matching Networks [371],

Prototypical Networks [372], Relation Networks [373] and Graph Neural Networks [374].

As compared to meta learning-based methods, these are relatively simple, entirely feed-

forward, computationally fast and easy to optimize, but harder to generalize to varying

shots and to scale to very large shots [369].

A few works have been carried out using few shot learning to address training data

sparsity issue in cellular networks. Authors in [375] use prototypical networks, a few

shot learning-based algorithm for performance metrics analysis in LTE networks. They

used eNodeB trace data from live network and classified individual eNodeBs into different

performance classes based on their KPIs. Their results show an improved performance as

compared to baseline DNN, 1-D CNN and 2-D CNN. Authors in [376] use self-imitation

via transfer learning to achieve few-shot learning for the network power minimization

problem in Cloud Radio Access Networks (C-RAN), for the scenario where the target

domain (sparse dataset) only has unlabeled training samples. Their simulation results

show the performance gap when compared to other learning-based methods. Authors

in [377] use Siamese networks for achieving few shot learning for gesture recognition in

indoor WiFi networks using channel state information (CSI) from commercial routers.

Furthermore, the authors claimed that their proposed model achieved satisfactory results

for spatio-temporal representation learning even under one-shot conditions.

4.6 Real data generation

The preceding techniques, with the exception of using simulators, are likely to work well

when the sparse available data is somewhat representative of the whole data or exhibits

some degree of correlation. In situations where the available data is sparse or big but
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non-representative, the solution lies in obtaining get real data.

One way of getting access to real data can be utilizing historic logs of data gathered by

other researchers. However, these logs might become outdated quickly with the emergence

of new technologies, heterogeneous deployments or change in traffic patterns, number of

users, construction of buildings and other terrain changes. Another way of generating real

data can be through the use of mobile phone applications. However, what if researchers

require data for scenarios which are not yet deployed in a real network? The techniques

presented in previous sections (except simulators), all require some starting real data but

with the advent of AI based next generation networks, there exists the potential of new

or anticipated scenarios which do not exist in a real network. In such cases, testbeds to

generate real data are going to be the best option for wireless communications community.

4.6.1 Phone applications and parametric subscriber/third-party data

Many smartphone applications offer the ability to log parameters such as RSRP, RSRQ,

SNR, events occurring (handover, cell re-selection), serving time, speed, height, cell ID,

along with timestamp and location (latitude, longitude) information). As an example,

one of our studies [351], used a novel methodology of utilizing smartphone application,

based on the idea of participatory sensing, to collect real LTE network data for building,

training and evaluating the performance of mobility prediction schemes in live network

[351]. An android application, “LTE Discovery” was installed on the smartphone to log

the timestamp and new cell IDs around the OU-Tulsa campus. This information was

then used to build a semi-markov model for mobility prediction.

The quality of data gathered through smartphone applications, however, depends on

a number of factors, including measurement capabilities of different smartphones and

GPS error inaccuracy for measuring heights and positions. Smartphones equipped with

barometers are likely to give a better estimate of heights in scenarios with varying terrains.

In addition, transmitter parameters, such as type of antennas and their characteristics
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remain unknown, unless the network operator is involved. When the network operator is

involved, it is possible for the subscriber to obtain parametric data from them. However,

that type of data may be limited to a certain number of possible configurations. For this

reason and for potential new scenarios, the solution may lie in resorting to testbeds.

4.6.2 Testbeds

Field trials using testbeds generate real training data and provide the most realistic

picture of the network. An aerial view of some of these testbeds is presented in Fig.

4.6. However, conducting field trials on a large scale is time-consuming and expensive.

For this reason, we have summarized the existing and emerging testbeds in Table 4.3

to make readers aware of current and emerging platforms to access real data in order

to overcome data sparsity challenge. Most of these testbeds are open, i.e., available to

external experiments. This will foster collaboration among different academic institutions

as well as with industry, which will in turn enable the utilization of these existing facilities

to the fullest and accelerate quality research in the field.

Apart from individual testbeds, several federations or consortiums of testbeds have been

formed around the world. Some key federated testbeds comprising of the testbeds in

Table 4.3 are presented in Fig. 4.7.
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(a) Turku Testbed (b) Surrey Testbed (c) CORNET Testbed
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Indoor Mobile/static Nano Cell lab and TurboRAN OMC

Stationary 
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Wi-Fi Node (4)

DBS/Small Cell -HF (8)

CBS/Micro Cell (4) Gigabit Ethernet Link

500 m

60
0 

m

DBS/Small Cell –
mmWave (8)

DBS/Nano Cell - mmWave 
(4)
Optical Fiber

Wireless Backhaul

(d) OU-Tulsa Testbed

(e) 5G-VINNI Norway (f) FLEX Testbed (g) 5G Playground Testbed (h) 5G Test Network, Espoo

(i) 5G Test Network,
Tampere

(j) 5G-VINNI Berlin (k) 5G-VINNI Greece

Fig. 4.6: Some current and emerging 5G testbeds.
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﻿NITOS
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LTE/ LTE advanced testbed (TUD, Vodafone)

TWIST (TUB)
IRIS

w-iLab.t (iMinds)
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5GIC Surrey
Malaga platform

 Limassol platform
Berlin 5G Platform

Athens.5Glink

﻿FOKUS NGNI

﻿TSN Interoperability Lab
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FED4FIRE

NITOS
NETMODE
LOG-a-TEC
FuSeCo
PL-Lab
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Grid'5000
Perform LETE
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PlanetLab Europe
ExoGENI
IRIS
CityLab
Portable Wireless Testbeds
Virtual Wall
w-iLab.t

5GINFIRE

WINS – Wireless Network Slicing Functionality for 5G
University of Bristol 5G Testbed
PPDR One Facility
NITOS
IT-Av Automative Testbed
Experimenter Tools
eHealth EVI Instance
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5Tonic

﻿5GVINNI

Moving Experimentation Facility Site
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Greece main facility site
Spain main facility site
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Norway main facility site

SoftFIRE

JolNet
ADS NFV Lab

Fokus
Ericsson

D1
5GIC Surrey

﻿5G TNF

Centria University's test network
Tampere University wireless test networks

5GTN (Linnanmaa)
University of Helsinki

Aalto 5G research infrastructure

﻿OneLab

﻿FIT NITOS-Lab
﻿NITLab

﻿FIT CorteXlab
﻿PlanetLab Europe

﻿FIT IoT-Lab

Fig. 4.7: Federated testbeds.
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Table 4.3: Worldwide existing and emerging testbeds for solving data sparsity problem.

Testbed Location Key Features

NITOS

[378] [379]

NITlab, University of

Thessaly (UTH), Volos,

Greece

- Open (facilities available to external experimenters)

- Over 100 wireless indoor and outdoor nodes

- 45 nodes equipped with a mixture of Wi-Fi and GNU-radios

- One Cloud installation with 200-cores

- Multiple wireless wensor network deployments

- Cameras, temperature and humidity sensors

- Software defined radio testbed with 10 USRP devices

- Two programmable robots provide mobility

- WiMAX/3G/LTE technologies

- 5G virtual infrastructure provisioning by 5GINFIRE [380]

5GIC

[381] - [384]

ICS, University of Surrey,

Guildford, UK

- 4G LTE and 5G NR

- 4km2 comprising indoor and outdoor environments

- Outdoor: 4G ultra-dense C-RAN comprising 3 macro cells, 39 LTE-A TDD

small-cell sites, operating at 2.6 GHz, 1x 4G FDD site operating at

700 MHz, 8x 5G NR TDD sites, operating at 3.5 GHz

- Indoor: 6x TDD and 6x FDD cells over 2 floors, and Wi-Fi APs

- 28 GHz (PtP), 60GHz (PtMP) mmWave and satellite backhauling also supported

- Core Network supports separate 4G and 5G core segments

- Supports broadband mobile radio

- Fixed core network and service platform based on software defined networking

- Supports Internet of Things

ORBIT

[385] [386] [387]

WINLAB, Rutgers University,

USA

- Open: available for remote or on-site access

- Radio grid with 20x20 two-dimensional grid of programmable radio nodes

- Outdoor ORBIT network provides a configurable mix of both high-speed cellular

(WiMAX, LTE) and 802.11 wireless access

- SANDBOX networks used for debugging and controlled experimentation

- Software defined networking (SDN) resources

- Cloud resources

PhantomNet

[388] [389]

Flux Group, University of

Utah, USA

- Remotely accessible and sharable

- Mobility testbed

- Built on top of Emulab

- EPC/EPS software (OpenEPC), hardware access points (ip.access eNodeB), PC

nodes with mobile radios (Nexus 5 phones and SDR-based)

- Provides configuration directives and scripts

LuMaMi

[390] [391] [392]

Lund University, Sweden

- Real time 128-antenna MIMO test bed

- National Instruments USRP RIO SDRs

- LabVIEW system design software and PXI platforms

- Mobile base stations

- Used for channel sounding, high speed data streaming, evaluation of baseband

solutions, assessing circuit design

- Demonstrated mobile multi-user tests with University of Bristol [393]

Firecycle

[394] [395]

Intrusion Detection Systems

Group, Columbia University,

USA

- Scalable test bed for large-scale LTE security research

- Implement, test, analyze impact of security attacks against LTE mobility network

- Prototyping and testing attack mitigation strategies for future cellular networks

- Implemented on OPNET
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Berlin LTE-A

[396] [397] [398]

Center of Berlin, operated from

Fraunhofer HHI, Deutsche

Telekom Laboratories and

University of Technology,

Berlin

- 3 base station sites with 9 sectors

- Incorporates LTE key features: frequency dependent scheduling in 20 MHz

bandwidth, adaptive MIMO mode selection for 2x2 MIMO utilizing spatial

multiplexing, and low round-trip delay on the PHY layer of 8 m

CEWiT

LTE and 5GNR

[399]

IITMadras Research Park,

Chennai, India

- 2 types of testbeds based on: 1) CEWiT hardware 2) TI’s multi-core DSPs

- Hardware is made using SDR radio nodes

- LTE PHY for UE and eNB has been developed in collaboration with IITM

- Basic implementation of LTE L1 downlink and uplink chains

- L2 MAC, RLC and a thin layer of PDCP

- Both eNodeB and UE implementations

- End-to-end IP application flow both in DL, UL

- Supports 3GPP Release 8 specifications

- Supports up to 10 MHz bandwidth and can be extended to 20MHz

- 5G NR for sub 6GHz and mm wave under development

TitanMIMO-6

[400] [401]

Nutaq, Québec, Canada

- Sub 6 GHz wideband Massive MIMO testbed

- FDD+TDD capabilities

- Up to 56 MHz real-time baseband processing

- Radio tumble up to 5 GHz

- Nutaq’s SDR systems (PicoSDR) can be combined with TitanMIMO system

to build up complete HetNet, MUMIMO or CRAN testbed solutions

- Enabling evaluation of interoperability behavior for various deployment scenarios

Aalto 5G research

infrastructure

[402]

Otaniemi, Espoo,

Finland

- Network slicing

- Support for NB-IOT to be used for IoT hackathon

- Mobile and edge computing, VR/AR, Gaming, Industrial Internet

- Part of 5G TNF

University of

Helsinki Test

Network

[403]

University of Helsinki,

Kumpula campus,

(Exactum building), Finland

- 17 Nokia Flexi Zone Indoor Pico BTS (eNBs)

- Band: 2600 MHz (E-UTRA 7) FDD

- Sync: 1588v2 (PTP) / GPS / Sync-E

- 3 connections to cores through VLANs: UH core(s), Aalto core and Nokia core

- Part of 5G TNF

VodaPhone

Chair

[404] [405] [406]

TU Dresden, Germany

- Online Wireless Lab (OWL) testbed

- Software Defined Reconfigurable Radio Devices

- LabVIEW/LVC in combination with USRPs

- Many projects and startups, e.g., 5G Lab Germany, 5GNetMobil, 5G Picture,

HPE-5G-Testbed, Airrays GmbH [407]

CORNET

[408] [409]

Virginia Tech University, USA

- University-wide testbed

- Software-defined radios, cognitive radio and dynamic spectrum access

- 48 indoor SDR nodes, 14 fixed outdoor nodes, 6 mobile units (O-CORNET)

- A few LTE-capable nodes (LTE-CORNET)

- CORNET nodes are remotely accessible

- Awarded the grant from DURIP for upgrading to LTE and LTE-A

- Outdoor network of 15 radio nodes and 2 mobile nodes
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5G Playground

[410]

Fraunhofer FOKUS and TU

Berlin campus, Germany

- Empowers the 5G Berlin testbed

- Support for multi-slicing

- Ultra reliable, low latency communication in Industria IoT lab of FOKUS

- Automotive testbed environment in underground parking of FOKUS building

- Coverage of dense urban areas, like portable 5G edge nodes in progress

- 3 Toolkits: Open5GCore, OpenSDNCore and Open5GMTC

Tampere

University

Wireless Test

Networks

[411] [412]

Tampere University, Hervanta,

Finland

- Part of 5G TNF

- FDD-LTE operating at band 1, 7, and 28 for mostly indoor coverage

- TDD-LTE operating at band 38 to provide campus wide outdoor test network

- Upcoming outdoor 5G test network in band n78 with 60 MHz channel

- LoRa: Digita’s LoRaWAN test network in ISM band at 868 MHz

FUSECO

Playground

[413]

Fraunhofer FOKUS Institute,

Berlin, Germany

- Open IMS Core solution

- Heterogeneous indoor and outdoor radio access technologies

- DSL/WLAN/2G/3G/4G-LTE/LTE-A and soon 5G

- M2M communication, IoT, sensor networks

- SDN/OpenFlow, NFV cloud environments

- Toolkits: Open5GCore, OpenSDNCore and Open5GMTC, OpenMTC,

Open Source IMS Core, OpenStack-based Cloud Testbed, OpenXSP

5G Ready

Trial Platform

[414]

Fraunhofer FOKUS, Berlin,

Germany

- Consolidated turn-key solution of the Fraunhofer FOKUS software components

- Addresses trial needs of emerging network infrastructures -

- Edge Instantiation: solution for micro-operators and local networks, provides

customized IoT connectivity for x100 devices.

- Data Center Instantiation: multi-slice environment, support for multiple parallel

instances of IoT and multimedia communication

- Technology Elements: Virtual Core network, Network slicing, IoT support,

Low delay network, Dynamic spectrum access and management

Ericsson 5G

[415] [416]

Ericsson, Stockholm, Sweden

- Live testing of key capabilities, such as multipoint connectivity with

distributed MIMO and 5G-LTE dual connectivity

- 5G devices and base stations operate in 15 GHz band

- TDD and OFDM

- Up to 256 QAM modulation in downlink and up to 64 QAM in the uplink

- mm-Wave testbeds 15 GHz and 28 GHz

- Bandwidth is 80 MHz, centered at 3.5 GHz

- Massive MIMO antenna array of 128 cross-polarized antennas

SK Telecom

5G Playground

[417] [418] [419]

SK Telecom R&D Center,

Bundang, Korea

- Developing a centimeter-wave (cmWave) 5G radio system with Nokia

- 5G 3D system level simulator with Nokia and Ericsson

- 3D beamforming techniques with large scale array antennas with Samsung

- Developing Anchor-Booster Cell and Massive MIMO with C-RAN with Intel

- Achieved 19.1Gbps transmission speed over the air

- Futuristic services including 4K live broadcast system and AR/VR

5GTN

(Linnanmaa)

[420] [421] [422]

University of Oulu and

VTT Technical Research

Centre of Finland

- Multi-access edge computing

- Core network in cloud environment

- Cloud systems for applications

- Secure connection to other 5G sites worldwide, 10 Gb VPN

- Part of 5G TNF
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TurboRAN

[423]

AI4Networks Research Center,

University of Oklahoma,

Tulsa, USA

- Developing first end to end programmable cellular test bed for enabling

AI based SON research towards 5G and beyond

- Complete integrated mobile cellular network over 300,000 m2 area

- Tier 1: 4 outdoors macro cells on 1.2-6 GHz HF band

- Tier 2: 16 small cells (programmed to pico or femto cells). 8 small cells can

operate on the HF band, other 8 can operate on the unlicensed mmWave

- Both tier cells are programmable

- Both tier cells connected to EPCs and a big data processing Hadoop cluster

- Hadoop cluster: 1 high performance master node, 15 slave nodes with

high capacity data modems

- Support both high mobility and low mobility users

OAI

[424]-[427]

EURECOM, France

- Open-source platform

- 8-node testbed, equipped OAI compatible RF front-ends, UEs and VMs

- 4 machines that can be used for running OAI as eNodeB

- 4 nodes that are equipped with COTS UEs

- 2 physical layer emulation modes

- 64 antenna Massive MIMO testbed

.

Munich

[428] [429]

TU Munich, Munchen,

Germany

- 5G RAN with two sectors, each having carrier frequency: 3.4 GHz,

bandwidth: 40 MHz, transmission power: 5 W antennas: up to 8

- 5G Mobile Terminals with vehicular speeds up to 50 km/h, enablingV2X

- 5G Core network: HW/SW platform

- Hardware: in-house platform of several dozen servers representing a data centre

- Software: extended network emulators, controllers, open-source and proprietary

switch implementations

- Testbed can deploy virtual networks with different topologies as needed

- 5G Core network supporting functional split – SDN – NFV Orchestration

- Distributed data centres for mobile edge computing use cases

Perform Networks

[430] [431] [432]

University of Malaga, Spain

- T2010 conformance testing units by Keysight Technologies

- LTE release 8 small cells (Pixies) by Athena Wireless working on band 7

- Polaris Core Network Emulator

- Several LTE UEs, working on different bands

- ExpressMIMO2 and USRP SDR cards

- SIM cards from an Spanish LTE operator to be used on commercial deployments

Centria’s

Test Network

[433]

Centria University of Applied

Sciences,Ylivieska, Finland

- TDD-LTE operating at band 40 and 42 for both outdoor and indoor coverage

- Upcoming 5G test network in band n78 with 60 MHz channel outdoor network

- Implementation plan of first 5G Non-Standalone during 2019

- Later 5G Standalone during 2020

- Part of 5G TNF

w-iLab.t

[434] [435] [436]

Ghent and Zwijnaarde,

Belgium

- w-iLab.t Office testbed: three 90 m x 18 m floors of iMinds office in Ghent

- w-iLab.t Zwijnaarde testbed: 5 km away from w-iLab.t Office in Zwijnaarde

- Sensor nodes, Wi-Fi based nodes, sensing platforms, and cognitive radio

- Heterogeneous wireless/wired experiments

- Virtual Walls: Virtual Wall 1 and 2 containing 206 and 159 nodes respectively

- OpenFlow experiments

- 20 programmable moving robots
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5TONIC

[437]

Madrid, Spain

- 9 members: Telefonica, Institute IMDEA Networks, Ericsson, Intel,

Commscope, Universidad Carlos III de Madrid, Cohere Technologies,

Artesyn Embedded Technologies and InterDigital

- NFV orchestrator, implemented with Open Source MANO (OSM)

- Dedicated NFVI for 5GINFIRE: 3 server computers, each with six cores,

32GB of memory, 2TB NLSAS, network card with 4 GbE ports, DPDK support

- Second NFVI: 2 high-profile servers, each equipped with eight cores in a

NUMA architecture, 128GB RDIMM RAM, 4TB SAS and eight 10Gbps

Ethernet optical transceivers with SR-IOV capabilities

University of

Bristol 5G

[438]

University of Bristol, England

- Multi-site network connected through a 10 km fibre

- Core network is located at HPN Lab at the University of Bristol

- Extra edge computing node is available at Watershed

- Access technologies are located at Millennium Square for outdoor

coverage and “We The Curious” science museum for indoor coverage

- Multi-vendor SDN enabled packet switched network

- SDN enabled optical (Fibre) switched network

- Nokia 4G and 5G NR

- Self-organising multipoint-to-multipoint wireless mesh network

- LiFi Access point, Cloud and NFV hosting

- 2 different NFV orchestration and management solutions:

Open Source MANO , NOKIA CloudBand

- 2 cloud/edge computing solutions:Openstack Pike, Nokia MEC

- 1 SDN controller: NetOS

D-15 Labs

[439]

Ericsson, Santa Clara, CA,

USA

- Validation and development platform for 5G use-cases, leverages cloud edge support,

core network, and AI-based management and orchestration

ENCQOR 5G

[440]

Ontario Region, Canada

- iPaaS Services: 5G connectivity of 5 Gbps Mobile Throughput and sub 5ms

latency, cloud services of IoT Accelerator, emulation cloud, edge computing

- iPaaS Infrastructure: 5G mobile user equipment (android-based Qualcom

terminals operating at 3.5 GHz), 5G radio access technology

(NR/LTE/CAT-M1/NB-IoT), 5G transport/backhaul, distributed core network

and programmable data plane

- Future features expected by 2021 include: 5 Gbps 5G NR, sub 5ms latency,

predictive analytics, federated network slicing, real time machine learning / AI

- Technology partners: Ericsson, Thales, CGI, IBM, Ciena

4.7 Conclusion

In this chapter, a systematic framework to address the data sparsity challenge was pro-

posed and emerging new techniques were introduced that can be applied to wireless

communication domain.

Table 4.4 summarizes the data augmentation techniques for handling sparse datasets in
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mobile networks. The typical use cases targeted in existing literature include mobile

traffic maps generation using sparse CDR data, spectrum sensing, MDT-based outage

detection, CSI/RSS for localization, BS trace data for performance analysis, WiFi CSI

for indoor localization, network power minimization, optimizing BS Tx power using UE

SINR data, network parameter configuration optimization for power control and user

scheduling, resource allocation, traffic load based energy saving, CQI and RSS prediction,

radio environment map reconstruction, channel estimation in Massive MIMO systems and

discovering user patterns using user trajectory data. The tools in existing literature to

address these use cases include GANs and its variants, transfer learning, autoencoders,

interpolation techniques, simulators and testbeds. While these techniques have proved to

be beneficial for particular use cases, the generalization ability of a particular technique

to different scenarios remains a challenge. Another notable challenge is the applicability

of these techniques to highly dynamic or mobile environments. Efforts are also being

made to reduce the training time of machine learning based models and modifying them

for more robustness.

It should be noted however, that the success of any technique for solving the data sparsity

challenge depends on a number of factors, including type of data under consideration,

number of transmitter and receivers, distributions of users and base stations in a given

area, distribution of measurement data, level of accuracy required, measurement capabil-

ity of receivers, dynamics of propagation environment, propagation modeling accuracy,

time and computational resources available. Also, highly dynamic spatio-temporal envi-

ronment would greatly hamper the outputs of techniques covered in this report. In that

case, using data through simulations and testbeds may provide the best option. Further

options on addressing the data sparsity challenge for highly dynamic environments is out

of the scope of this work and can be considered as part of a future study. Therefore,

while a certain technique might work well in a particular scenario, it is likely to perform

poorly in other scenarios. It should also be noted that the selection of a performance

metric to assess the accuracy of a particular method is important too. As an example,
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if the metric of mean residual error is used to access Kriging accuracy, it would always

yield zero, since this type of interpolant satisfies the unbiased-ness condition, and so some

other performance metric, like the average relative error would be more appropriate in

this case.

Finally, in order to assess the applicability of a particular method, the tree diagram in

Fig. 4.8 is aimed to assist the researchers and network operators in choosing the best

possible techniques, based on available information.

Table 4.4: Review of data augmentation techniques for handling sparse datasets in mobile
networks.

Reference Year
Data Augmentation

Technique

Dataset

Type
Use-Case

Task

(Use-Case)
Labels

[2] 2019 GAN Tabular CDR Data (Call Start Hour and Call Duration) Prediction -

[343] 2020 ZipNet-GAN Spatio-temporal
Fine Mobile Traffic Maps generation using

coarse CDR Data
Generation -

[340] 2018 C-GAN Tabular Spectrum Sensing Data Classification Required

[337] 2020 GAN Tabular MDT Data for Outage Detection Classification Required

[342] 2020 GAN Tabular CSI/RSS Data for Localization Classification Required

[375] 2020 Few-Shot Learning Tabular
eNodeB Trace data for Performance

Metrics Analysis
Classification Required

[377] 2019 Few-Shot Learning Tabular
WiFi CSI Data for Gesture Recognition /

Indoor Localization
Classification Required

[376] 2020
Few-Shot Learning +

Transfer Learning
Tabular Network Power Minimization in C-RAN Prediction -

[356] 2019 Transfer Learning Tabular UE SINR Data for optimizing BS Tx Power Prediction -

[357] 2015 Transfer Learning Tabular
D2D Interactions Data for creating Content

Popularity Matrix for Proactive Edge Caching
Prediction -

[359] 2019 Transfer Learning Tabular
Network Parameter Configuration Optimization

for Power control and User Scheduling
Prediction -

[358] 2019 Transfer Learning Tabular
Tracking data of VR users for

Correlation-aware Resource Allocation
Prediction -

[360] 2014 Transfer Learning Tabular
Traffic Load Arrival Rate Data for

Energy Saving using BS ON/OFF Switching
Prediction -

[362] 2019 Transfer Learning Tabular
Hourly CQI Data for Inter/Intra-Cell

CQI Prediction
Prediction -

[441, 361] 2018-2020 Transfer Learning Tabular
UE RSS (RSRP) data for prediction

under different Antenna Tilt
Prediction -

[338] 2020 GAN Spatial Radio environment Map Generation Imputation -

[442, 443] 2020
Deep Completion

Autoencoders
Spatial Radio environment Map Generation Imputation -

[339] 2020
Transfer Learning +

GAN
Spatial Radio environment Map Generation Imputation -

[444, 445, 446, 447, 448] 2015-2020
Context-Aware

Interpolation
Spatial

REM construction using BS location

estimated through reverse triangulation
Imputation -

[449, 450, 451, 452, 453, 454] 2018-2020
Kriging Interpolation +

Variants
Spatial Radio environment Map Generation Imputation -

[455] 2019
Correlation-based

Interpolation
Spatio-temporal Spatio-temporal REM Generation Imputation -

[456] 2019
Adaptive Spatial

Interpolation
Spatial

Uplink Channel Estimation in 3-D Massive

MIMO Systems
Imputation -

[457] 2019
Adaptive Triangulation-

Induced Interpolation
Spatial Multiple REM Generation Imputation -

[458] 2019
NN-enhanced

Kriging Interpolation
Spatial Radio environment Map Generation Imputation -

[459] 2018 Congregate group pattern Spatio-temporal
Signaling data (User trajectory data) for

discovering congregate group patterns
Prediction -
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CHAPTER 5

Towards interpretable models using machine learning to model

complex systems

5.1 Introduction

As discussed in Section 1.1.2, traditional ML approaches suffer from lack of interpretabil-

ity. In this chapter, using a hybrid approach consisting of analytical modeling, domain

knowledge and machine learning, we move towards realistic and inherently interpretable

mathematical models. Instead of using machine learning as a black box, the approach

in this chapter allows insights and discovery of relationships between different KPIs and

COPs, which can then to be used to optimize networks autonomously. The key idea

behind the proposed approach is that instead of blindly selecting a hypothesis i.e., math-

ematical form of the model and then train it, as is the standard practice in ML— first

leverage analytical modeling and domain knowledge to build a crude mathematical model,

and then apply ML to learn some or all parameters in that model. This is a leap over

conventional blindfold search in the hypothesis space when applying ML where one gen-

erally starts the training with a simple hypothesis e.g. linear equations, and move to

gradually more complex ones.

After the model has been developed, COP-KPI analysis can be performed on the model

to gather knowledge, such as determining what parameter ranges are more crucial to

the model. These ranges can then be exploited for selective collection and enrichment

of training data. This can provide the useful range of KPIs for intelligent optimization

and provide a potential solution to solve the data scarcity problem. For example, as

compared to a uniform or random collection for enrichment of training data, based on

insights gained from the interpretable model, instead of uniform or random measurement
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campaigns, more resources can be dedicated to data collection for KPI data corresponding

to those KPI ranges that contribute the most in the model.

5.1.1 Related work

There are some existing studies that aim to address some of the challenges of traditional

machine learning, namely, making machine learning models interpretable [460]-[468], re-

ducing the model’s training time and increasing its accuracy as new training data become

available [469], [470].

Authors in [460] highlight the use of dimensionality reduction techniques that can lead

to methods of information visualization in order to make the machine learning models

more interpretable. By seeing interpretability as a problem of knowledge extraction from

data regularity patterns, authors in [460] present visualization techniques as one of the

forms of achieving knowledge extraction. Another work [461] studies the task of making

some black-box models (support vector machines) interpretable, through constant B-

spline kernel functions and sparsity constraints. This work [461] uses graphical tools

and is medical domain focused. In [462], a cartogram-based method to reintroduce the

local distortion into the low-dimensional data visualization provided by the batch-SOM

(Self-organizing Maps) algorithm is provided. Reintroducing this distortion explicitly

enables factorization of non-linearity of mapping in the visualization, which eases the

SOM interpretation.

Other techniques that attempt to make ML-based models interpretable are discussed in

[463]. These consist of adding interpretability constraints to the model, for example, a

model is encouraged to use relatively fewer features for prediction and features are kept

such so that they have monotonic relations with the prediction. Adding such constraints

makes a model simpler and could increase the model’s comprehensibility by users. How-

ever, it compromises on the features space and accuracy. Another approach to achieve

this goal is mimic learning or surrogate model [465] , which means to approximate a
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complex model using an easily interpretable model such as a decision tree, rule-based

model, or linear model. The idea behind this approach is that if the approximation is

sufficiently close, the statistical properties of the complex model will be reflected in the

interpretable model. In order to assess the importance of a specific feature to the overall

performance of a model to enhance interpretability, the idea of model-agnostic explana-

tion is used, that is based on permutation feature importance, i.e., by measuring how

the prediction accuracy changes when that feature is altered. Another approach to this

end is the model-specific explanation, in which the model is explained by examining in-

ternal model structures and parameters. However, interpretability of an explanation will

decrease when the feature dimensions become too large. A major limitation of existing

work on interpretable machine learning highlighted in [463], [460] is that the explanations

are designed based on the intuition of researchers [463]. Since current explanations are

usually given in the form of feature importance vectors, they are a complete causal attri-

bution and hence a low-level explanation [463]. In addition, by introducing approaches

such sparsity and dimensionality reduction in models, they compromise on the explicit

features or KPI to model a COP, in search for simpler/interpretable models. Moreover,

these approaches do not output an explicit mathematical relationship between COPs and

KPIs.

Using the Monte Carlo dropout technique and modeling the mis-specification distribution

for Uber data, authors in [467] make the ML model more insightful by providing a way

to model uncertainty estimation for a neural network forecast. Insights into prediction

uncertainty, may help determine how much we can trust the forecast and also assist in

reliable anomaly detection [467]. Another approach for interpreting ML-based model

using tree ensembles is by finding prototypes in tree space utilizing the naturally-learned

similarity measure [468].

Authors in [465] classify the existing interpretability models according three criteria: 1)

the complexity of interpretability, which covers a class of methods that offer a post-hoc
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explanation by using reverse engineering to provide some explanations of the model with-

out even knowing the inner works of the model; 2) the scoop of interpretability, which

further covers the classes of global and local interpretability; 3) the level of dependency

from the used ML models, which covers model-agnostic and model-specific interpretabil-

ity. Model-agnostic methods, being model-free, are preferred, and cover methods based

on visualization, surrogate models, knowledge extraction, sensitivity analysis, feature im-

portance and example-based explanations [465]. Subsections of the methods in [465] are

also discussed in [466]. However, most of these approaches are still non-parametric and

aimed at explaining the existing black-box models, rather than creating models that are

inherently interpretable and thus able provide their own explanations [471].

Several hybrid machine learning/analytical models are discussed in [469], [470] that lever-

age both analytical modeling and machine learning with the goal of reducing the model’s

training time and increasing its accuracy over time as new data from the system becomes

available. These techniques can be classified into the following seven different categories:

1) Estimate and model : This approach first uses ML to perform system model character-

ization and then uses this information to instantiate an analytical model. However, the

accuracy of these solutions is ultimately dependent on the accuracy of the adopted analyt-

ical model technique. 2) Bootstrapping : In contrast to estimate and model approach, this

technique first uses analytical modeling followed by machine learning. Analytical model

is used to produce a synthetic training set over which black box learners are trained to

correct analytical model’s inaccuracies.

3) Divide and conquer : This approach consists in building specialized models, for different

components of the target system, that rely either on analytical modeling or on ML. In

the end, these sub-models are combined according to some formula in order to achieve

the prediction output of the system as a whole. However, this approach suffers from long

training phases and inaccuracies due to approximations.

4) Ensembling: In this technique, first an analytical model is built to predict the target
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KPI, then, a chain of several black box learners is incrementally trained on both the

KPI and the residual prediction errors of the previous model. 5) K Nearest Neighbors :

This approach takes in a training set, analytical model and several black box machine

learning models. It then selects which black-box model is best for a given configuration

of training data by calculating the average error between the analytical model and ML-

based learners across K-nearest neighbor configurations in the validation test. 6) Hybrid

Boosting : Based on the intuition that the residual error of an analytical model may be

learned more easily than the original target function that describes the relation between

input and output variables, this approach aims to learn the residual error of an analytical

model instead of the actual COP-KPI relationship. Unlike K Nearest Neighbors method,

the ML learners are not used to build alternative models of the performance of the

target system. Conversely, the learners are stacked in a chain and used to learn the

error introduced by the previous learner in the chain. 7) Probing : The key idea of this

approach is to use ML to perform predictions exclusively on the regions of those features

in which analytical model does not achieve sufficient accuracy (rather than across the

whole space). After a classifier identifies these regions of the feature space, a second

black box regressor is trained on those regions to learn the desired performance function.

However, these hybrid approaches [469], [470] despite improving the training time and

accuracy, still remain predominately black-box approaches, without the ability to output

an explicit mathematical COP-KPI relationship.

Our approach differs from other hybrid approaches [469], [470] in that it offers inter-

pretability, while reducing training time. The models in [469], [470] still remain pre-

dominantly black-box models, without the ability to model explicit relations between

COP-KPI relationships. Moreover, as compared to the interpretable models in [460]-

[464], our proposed approach aims at an interpretable model without compromising on

the feature space or searching for alternate ML-based simpler models or tweaking the

parameters of existing ML-based models. Instead, it designs ML-based models based on

starting analytical models to guide us to the right hypothesis class and learns the system-
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specific parameters. Therefore, rather than trying to create a method for explaining the

black box models, our approach aims at creating a model that is inherently interpretable

in the first place.

5.2 Proposed approach

In our proposed approach, we address the challenges of COP-KPI modeling highlighted

in the preceding section by leveraging a combination of domain knowledge of COP-KPI

interactions, analytical modeling and ML. Firstly, using domain knowledge and available

data sets, we build a crude analytical model of a complex system, such as one of the

cellular network KPIs. This is done by using statistical analysis on available datasets to

uncover some of the COPs-KPI dependencies while using domain knowledge and some

assumptions in order to develop a parametric analytical model. Parametric models are

preferable as they allow use of more deterministic (gradient based) optimization methods

thanks to their tractable mathematical forms. Therefore, instead of blindly pre-supposing

the hypothesis class, we use analytical modeling and subsequent mathematical insights

to guide us to right hypothesis class (crude analytical model) and then apply ML by

designing a custom neural network that is based on the crude analytical model. We then

train this custom-designed neural network using training data. We will use the example

of cellular network system to illustrate the approach.

A key challenge in this approach is the complex form of COP-KPI modeling if we consider

the top-level KPIs. Hence, we start from the bottom and illustrate the proposed approach

using the simplest indicator of coverage, RSRP. From RSRP, we can then calculate other

top-level KPIs, such as SINR or capacity.

From domain knowledge, RSRP at the user can be written as:

Pr [dBm] = Pt − F +G− L+X (5.1)

where Pt is the transmit power of the base station (BS), F is the free space path loss,
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Fig. 5.1: Custom neural network variant to tune empirical parameters of RSRP.

G represents antenna gain, L denotes additional losses, such as cable, feeder or other

equipment losses and X is a zero mean normal random variable with a certain standard

deviation to model shadowing.

The free space path loss, F can be represented as a function of frequency and distance

as follows:
F (f, d)[dB] = 10η log10

(
4πfd

c

)
(5.2)

where η is an environment dependent constant, referred to as the path loss exponent.

We model the antenna gain, G as a combination of the maximum antenna gain, Gmax and

the antenna attenuation, Aatt. Gmax is a function of antenna efficiency, ζ and antenna

directivity, D. The antenna directivity can be further modeled as a function of horizontal

and vertical beamwidths of the directional antenna, Bh and Bv, respectively, as follows:

Gmax(Bh, Bv, ζ) = ζD = ζ
4π

BhBv

(3)

The three dimensional antenna attenuation can be approximated according to 3GPP

recommendation [472]:
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Table 5.1: Description of neurons and layers with activation functions in the custom designed
neural network in Fig. 5.1.

Neuron/layer name Brief description with activation function

dense 1 to dense 10, dense 12 to
dense 15

core layer of type dense with custom
activation function: K.abs

dense 11 core layer of type dense with custom
activation function: K.sum

add 1, add 2 merge layer that adds a list of inputs

subtract 1 merge layer that subtracts a list of inputs

minimum 1, minimum 2 merge layer that computes the minimum of
a list of inputs.

lambda 1, lambda 2 custom core layer of type lambda that
wraps the expression K.square

(input1/input2) as a layer object

lambda 3 to lambda 6 custom core layer of type lambda that
wraps the expression K.log (input) as a

layer object.

Aatt(Bh, Bv, φu, φtilt, θu, θazi, λh, λv, Ah, Av)[dB] =

λv min

(
12

(
φu − φtilt

Bv

)2

, Av

)
+ λh min

(
12

(
θu − θazi
Bh

)2

, Ah

)
(4)

where φtilt is the tilt angle in degrees of the BS antenna, φu is the vertical angle in

degrees from the reference axis (for tilt) to the user. θazi is the angle of orientation of the

antenna with respect to horizontal reference axis i.e., positive x-axis and θu is the angular

distance of user from the horizontal reference axis. Bh and Bv represent the horizontal half

power beamwidth and the vertical half power beamwidth of the BS antenna, in degrees

respectively, while λh and λv represent the weighting factors for the beam pattern in

both directions respectively. Ah and Av denote the maximum attenuation at the sides

and back of bore sight in horizontal and vertical dimensions respectively.

For more realistic RSRP modeling, we also add an additional term, BS height, hb, since

the RSRP at user from BS would be affected if the height of BS changes. Thus, RSRP

in (5.1) can now be written as a function of several COPs as in Eq. 5.3.

159



Pr(ζ, Av, Ah, φu, φtilt, θu, θazi, Bv, Bh, hb, f, d, λh, λv, Ah, Av) = Pt − 10η log10

(
4πfd

c

)
+ 10 log10

(
ζ

4π

BhBv

)
−

λv min

(
12

(
φu − φtilt

Bv

)2

, Av

)
− λh min

(
12

(
θu − θazi
Bh

)2

, Ah

)
+ 10 log10 (hb)− L+X

(5.3)

R = k1 log10

(
4πfd

c

)
+ k2 log10(ζ) + k3 log10

(
4π

BhBv

)
+ k4 min

(
k5

(
k6φu − k7φtilt + k8

k9Bv + k10

)2

+ k11, k12

)
+

k13 min

(
k14

(
k15θu − k16θazi + k17

k18Bh + k19

)2

+ k20, k21

)
+ k22 log10(hb) + k23

(5.4)

Eq. 5.3 is a crude approximation of real RSRP that would be observed at a point. Now

we will use RSRP data to fine-tine (5.3) using ML. This fine tuning can be in form of

adjusting the values of empirical parameters such as pathloss co-efficient and exponents,

antenna efficiency, system design parameters such as antenna parameters e.g., weights

of vertical/horizontal beamwidths, or predictable parameters such as user locations. For

this, we take part of the equation from (5.3) in which we can introduce tuneable/trainable

coefficients that can represent empirical and system design parameters as in (5.4).

Now this expression in (5.4) for RSRP can be used as a starting point by the ML. We

then proceed to design a custom neural network variant based on (5.4) as shown in Fig.

5.1. The activation functions for various layers or neurons are listed in Table 5.1. We

use the abstract Keras backend API (the backend of which is imported as K) to design

custom layers based on (5.4).

This ML model is then trained to tune values of k = (k1 . . . k23) in (5.4) using input

training data. Therefore, instead of assuming values of k based on mathematical analysis

that is often either too presumptuous to be accurate or asymptotic [9], ML will learn

actual system and scenario specific values of k to give a more realistic COP-KPI model.

Once RSRP is known, it can be translated into the top level KPIs, such as SINR or

capacity analytically or using ML or combination of both.
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Fig. 5.2: Network topology.

Table 5.2: Key simulation parameters.

Parameter Value/Type

Path loss model Aster propagation

Propagation matrix resolution [m] 10

BS height [m] 20-40

Sectors per BS 1-3

Antenna tilt [o] 0-8

Antenna azimuth [o] 0-360

User distribution Poisson

BS Transmit power [dBm] 30-43

5.3 Numerical results and analysis

5.3.1 Testing the proposed approach using simulated data

To evaluate the efficacy of the proposed idea, we generated RSRP values for various

combination of COPs in a commercial cell planning tool, Atoll [274] based on 3-D ray

tracing. The network topology used is shown in Fig. 5.2. Key simulation parameters and

antenna types used are summarized in Table 5.2 and 5.3 respectively. Using the simulated

data as ground truth, we implemented hybrid approach as described in the previous

section and compared two approaches: (i) Pure analytical model-based approach (Pr)
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Table 5.3: Key antenna types used in simulations.

Bh

[o]
Bv

[o]
Gmax

[dBi]
φtilt
[o]

θazi
[o]

fmin
[MHz]

fmax
[MHz]

30 14 18 0-8 0-360 1710 1900

33 9 21 0-8 0-360 1920 2170

60 10 16 0-8 0-360 2620 2690

65 8 18 0-8 0-360 1920 2170

90 6 16.5 0-8 0-360 1920 2170

Table 5.4: Coefficients in proposed approach obtained through neural network.

Coefficients Value Coefficients Value

k1 -33.47 k13 -1.81

k2 10.00 k14 8.37

k3 5.33 k15 0.83

k4 -4.63 k16 1.00

k5 5.69 k17 -13.90

k6 1.23 k18 1.17

k7 0.74 k19 11.64

k8 2.08 k20 3.01

k9 1.47 k21 11.66

k10 4.71 k22 15.41

k11 -4.76 k23 7.99

k12 -1.16 - -

and (ii) Analytical model with coefficients learned through neural network (Pt +R+X).

The parameters learned through the custom designed neural network are shown in Table

5.4. Another clear advantage of this approach is its ability to learn system design and

empirical parameters, even if they are unknown. Therefore, exact information about

parameters like path loss exponents, antenna attenuation, antenna efficiency or even

frequency or beamwidths is not required for this approach, since the neural network will
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Fig. 5.3: RSRP versus distance of proposed approach compared with analytical modeling.

Fig. 5.4: Histograms of RSRP error using the two approaches.

learn or adjust these parameters when it is custom designed using appropriate starting

equation from domain knowledge. For example, from Fig. Table 5.4, it can be seen that

the path loss exponent, −k1/10 = 3.347 and the horizontal antenna side and back lobe

gain equals k21 = 11.66 dB

In Fig. 5.3, we show a comparison of RSRP estimated using both approaches with

the ground truth (Atoll data) for a particular scenario, where Bh = 65o, Bv = 9o, f =

2100 MHz, φtilt = 8o, θazi = 180o, Pt = 43 dBm, hb = 30 m.

163



BS Locations

Fig. 5.5: Real data RSRP traces from two base stations.

The error in predicted RSRP using the two approaches with ground truth is presented in

Fig. 5.4 wherein it is observed that our proposed approach of leveraging crude analytical

approximation for guiding neural network to learn various parameters outperforms con-

ventional analytical only approach with mean square error (MSE) decreasing from 71.36

to 2.16.

5.3.2 Testing the proposed approach using real data

In order to test the proposed approach on real data, we gathered RSRP data from two

LTE pico cells from the University of Surrey 5GIC testbed. Fig. 5.5 shows a snapshot

of data collected. One base station is mounted on top of the building and the other one

is on ground as shown in Fig 5.6. We use the RSRP values gathered from BS on top of

the building as training data for the custom designed neural network in order to learn

environment-specific parameters as well as other system parameters. The final model

obtained after training is then tested using data from the other base station. From Fig.

5.6, we note that these base stations have omni-directional antennas. Therefore, φtilt = 0

in this case. Further, note that with φtilt = 0, the azimuth plane becomes perpendicular to

the boresight and the horizontal antenna attenuation term in (4) is no longer applicable.

Therefore, the neural network for training can be either left unaltered as in Fig. 2 or the
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(a) Base station on ground (b) Base station on building top

Fig. 5.6: Base stations used to collect real data
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Fig. 5.7: Empirical CDFs of RSRP error using real test data.

modeling of horizontal antenna attenuation can be eliminated from it. In the former case,

the neural network will automatically assign near-zero weight to the horizontal antenna

attenuation term, while following the approach in the later case will lead to decreased

computational complexity.

The CDF plots of absolute error in RSRP estimation utilizing both approaches are plotted

in Fig. 5.7. It can be seen from Fig. 5.7 that 90% of RSRP values have error of less
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than 5.9 dB using proposed approach, while this error value is 11 dB using analytical

only approach. The MSE using proposed approach is reduced to 11.02 as compared to

MSE of 41.79 using analytical only approach. Note, however, that a greater MSE of

proposed approach using real data as compared to simulated data is observed. This can

be attributed to the presence of GPS uncertainties in real data, that range from 1m-11m

and consequently affect the distance between BS and receiver.

5.4 Conclusion

By combining domain knowledge and analytical modeling, we propose to design ML-

based models such that instead of blindly selecting a hypothesis i.e., mathematical form

of the model and then train it, as is the standard practice in ML— first leverage analytical

modeling and domain knowledge to build a crude mathematical model, and then apply ML

to learn some or all parameters in that model. Using RSRP data from both simulators

and real world scenario, it is observed that the proposed model outperforms existing

mathematical models, while also remaining interpretable. This RSRP model can be also

be used to derive models of top-level KPIs, such as SNR or capacity. Thus, this approach

can used to derive better mathematical models of complex systems. Motivated by the

success of proposed approach to derive a mathematical model of an example KPI, RSRP,

where some part of the RSRP equation as a function of COPs is already known through

domain knowledge, future work will consider applying this approach for scenarios in which

the analytical equation is completely unknown, since the results of this work show that

a neural network model is capable of deriving a mathematical model of the KPI as a

function of COPs.
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CHAPTER 6

Conclusions and future work

6.1 Conclusions

This dissertation first identifies key communication requirements for advanced use cases

in emerging networks. Several challenges and gaps in existing approaches to meet the

requirements for emerging networks use cases are also identified. To meet the diverse and

stringent communication requirements for emerging networks usecases, zero-touch artifi-

cial intelligence (AI) based deep automation in cellular networksis envisioned. However,

traditional ML approaches to enable AI-based automation suffer from various challenges,

including data sparsity challenge and lack of interpretability challenge. This dissertation

addresses these two major challenges.

To address the training data sparsity challenge, a framework comprising of classical in-

terpolation techniques, like inverse distance weighted and kriging to more advanced ML-

based methods, like transfer learning and generative adversarial networks, several new

techniques, such as matrix completion theory and leveraging different types of network

geometries, and simulators and testbeds, among others is developed. Case studies are also

demonstrated that show the success of these new techniques in enriching sparse data in

cellular networks. The proposed framework can assist network operators and researchers

in choosing the best possible techniques, based on available information.

Combining the data sparsity error with other errors in coverage estimation problem, such

as quantization and positioning error uncertainty, some practical applications are ad-

dressed in a MDT-based case study. MDT is a key enabling feature for data and artificial

intelligence driven autonomous operation and optimization in current and emerging cellu-

lar networks. However, although standardized since 3GPP Release 10, the full potential
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of MDT still remains thwarted. This dissertation addresses the issues in MDT-based

coverage estimation. For the first time, this dissertation reveals the existence of an op-

timal bin width for coverage estimation in the presence of inaccurate user positioning,

scarcity of user reports and quantization error, that minimize the effect of all these errors

concurrently. The presented framework can enable network operators to configure the

bin size for given positioning accuracy and user density that results in the most accurate

MDT based coverage estimation.

In order to address the lack of interpretability challenge, machine learning, big data

and domain knowledge are leveraged derive mathematical models of complex systems.

The results of this work show that a neural network model is capable of deriving a

mathematical model of a KPI as a function of different COPs and hence can be used to

derive interpretable equations of complex systems. The findings from this dissertation can

solve the challenges in AI-based cellular networks and thus aid in their design, operation

and optimization to meet the requirements of advanced use cases and applications.

6.2 Future works

In chapter 4, the idea of GANs has been leveraged to solve the data sparsity chal-

lenge. However, both the generator and discriminator in traditional GANs rely on back

propagation, that in turn, rely on gradient descent method to reach to a good optima.

Convergence of gradient descent becomes a major issue particularly when the distribu-

tion/process to be modeled has large dimensions (as is often the case in cellular network

data), due to greater chances of different variables undoing each other’s progress. This

problem is aggravated if the training data is sparse, which is going to be the case for

most data streams in mobile data. As a future work, I plan to solve this problem by

incorporating domain knowledge to kick start the GAN training instead of relying on

random hyper parameter initialization.

In chapter 5, a proof of concept was presented: a neural network is capable of deriving
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an equation for a KPI as a function of different COPs. The neural network in chapter

5 is based on a starting equation. Motivated by this study, future work will explore

the possibility of using a neural network to derive equations of complex systems, i.e,

extracting an analytical equation from a black box neural network, when the starting

equation is not completely known. One possibility is to expand different mathematical

functions by taylor series expansion and try to trace those mathematical functions from

the neural network by their taylor series expansion. I plan to leverage domain knowledge

to custom select different parameters of the neural network, such as activation functions

and layers.
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Vallvey, A. J. Palma et al., “Wireless wearable wristband for continuous sweat pH
monitoring,” Sensors and Actuators B: Chemical, vol. 327, p. 128948, 2021.

[153] S. Nakata, M. Shiomi, Y. Fujita, T. Arie, S. Akita, and K. Takei, “A wearable

185



pH sensor with high sensitivity based on a flexible charge-coupled device,” Nature
Electronics, vol. 1, no. 11, pp. 596–603, 2018.

[154] J. Wijsman, B. Grundlehner, H. Liu, H. Hermens, and J. Penders, “Towards mental
stress detection using wearable physiological sensors,” in 2011 Annual International
Conference of the IEEE Engineering in Medicine and Biology Society. IEEE, 2011,
pp. 1798–1801.

[155] G. Valenza, M. Nardelli, A. Lanata, C. Gentili, G. Bertschy, R. Paradiso, and
E. P. Scilingo, “Wearable monitoring for mood recognition in bipolar disorder based
on history-dependent long-term heart rate variability analysis,” IEEE Journal of
Biomedical and Health Informatics, vol. 18, no. 5, pp. 1625–1635, 2013.

[156] A. Gruwez, A.-V. Bruyneel, and M. Bruyneel, “The validity of two commercially-
available sleep trackers and actigraphy for assessment of sleep parameters in ob-
structive sleep apnea patients,” PLoS One, vol. 14, no. 1, p. e0210569, 2019.

[157] C.-T. Lin, L.-W. Ko, M.-H. Chang, J.-R. Duann, J.-Y. Chen, T.-P. Su, and T.-P.
Jung, “Review of wireless and wearable electroencephalogram systems and brain-
computer interfaces–a mini-review,” Gerontology, vol. 56, no. 1, pp. 112–119, 2010.

[158] A. J. Casson, D. C. Yates, S. J. Smith, J. S. Duncan, and E. Rodriguez-Villegas,
“Wearable electroencephalography,” IEEE engineering in medicine and biology mag-
azine, vol. 29, no. 3, pp. 44–56, 2010.

[159] J. E. Ip, “Wearable devices for cardiac rhythm diagnosis and management,” Jama,
vol. 321, no. 4, pp. 337–338, 2019.

[160] B. Jeon, J. Lee, and J. Choi, “Design and implementation of a wearable ECG
system,” International Journal of Smart Home, vol. 7, no. 2, pp. 61–69, 2013.

[161] S. Beniczky, I. Conradsen, O. Henning, M. Fabricius, and P. Wolf, “Automated real-
time detection of tonic-clonic seizures using a wearable EMG device,” Neurology,
vol. 90, no. 5, pp. e428–e434, 2018.

[162] Y. Tsubouchi and K. Suzuki, “BioTones: A wearable device for EMG auditory
biofeedback,” in 2010 Annual International Conference of the IEEE Engineering in
Medicine and Biology. IEEE, 2010, pp. 6543–6546.

186



[163] V. Nathan and R. Jafari, “Particle filtering and sensor fusion for robust heart rate
monitoring using wearable sensors,” IEEE journal of biomedical and health infor-
matics, vol. 22, no. 6, pp. 1834–1846, 2017.

[164] J.-H. Park, D.-G. Jang, J. W. Park, and S.-K. Youm, “Wearable sensing of in-ear
pressure for heart rate monitoring with a piezoelectric sensor,” Sensors, vol. 15,
no. 9, pp. 23 402–23 417, 2015.

[165] F. El-Amrawy and M. I. Nounou,“Are currently available wearable devices for activ-
ity tracking and heart rate monitoring accurate, precise, and medically beneficial?”
Healthcare informatics research, vol. 21, no. 4, p. 315, 2015.

[166] C.-W. Tsai, C.-H. Li, R. W.-K. Lam, C.-K. Li, and S. Ho, “Diabetes care in mo-
tion: Blood glucose estimation using wearable devices,” IEEE Consumer Electronics
Magazine, vol. 9, no. 1, pp. 30–34, 2019.

[167] G. Cappon, G. Acciaroli, M. Vettoretti, A. Facchinetti, and G. Sparacino, “Wear-
able continuous glucose monitoring sensors: a revolution in diabetes treatment,”
Electronics, vol. 6, no. 3, p. 65, 2017.

[168] J. C. Pickup, “Insulin-pump therapy for type 1 diabetes mellitus,” New England
Journal of Medicine, vol. 366, no. 17, pp. 1616–1624, 2012.

[169] J. Weissberg-Benchell, J. Antisdel-Lomaglio, and R. Seshadri, “Insulin pump ther-
apy: a meta-analysis,” Diabetes care, vol. 26, no. 4, pp. 1079–1087, 2003.

[170] M. Gadaleta, A. Facchinetti, E. Grisan, and M. Rossi, “Prediction of adverse
glycemic events from continuous glucose monitoring signal,” IEEE journal of
biomedical and health informatics, vol. 23, no. 2, pp. 650–659, 2018.

[171] A. Angelucci, D. Kuller, and A. Aliverti, “A home telemedicine system for contin-
uous respiratory monitoring,” IEEE Journal of Biomedical and Health Informatics,
2020.

[172] M. Scherer, K. Menachery, and M. Magno,“SmartAid: A Low-Power Smart Hearing
Aid For Stutterers,” in 2019 IEEE Sensors Applications Symposium (SAS). IEEE,
2019, pp. 1–6.

[173] B. Sudharsan and M. Chockalingam, “A microphone array and voice algorithm

187



based smart hearing aid,” arXiv preprint arXiv:1908.07324, 2019.

[174] S. DJordjevic, S. Stancin, A. Meglc, V. Milutinovic, and S. Tomazic, “Mc sensor—A
novel method for measurement of muscle tension,” Sensors, vol. 11, no. 10, pp.
9411–9425, 2011.

[175] B. Mansuri, F. Torabinejhad, A. A. Jamshidi, P. Dabirmoghaddam, B. Vasaghi-
Gharamaleki, and L. Ghelichi, “Transcutaneous electrical nerve stimulation com-
bined with voice therapy in women with muscle tension dysphonia,” Journal of
Voice, vol. 34, no. 3, pp. 490–e11, 2020.

[176] R. Velázquez, “Wearable assistive devices for the blind,” in Wearable and au-
tonomous biomedical devices and systems for smart environment. Springer, 2010,
pp. 331–349.

[177] J. A. Garcia-Macias, A. G. Ramos, R. Hasimoto-Beltran, and S. E. P. Hernandez,
“Uasisi: a modular and adaptable wearable system to assist the visually impaired,”
Procedia Computer Science, vol. 151, pp. 425–430, 2019.

[178] H. P. Savindu, K. Iroshan, C. D. Panangala, W. Perera, and A. C. De Silva, “Braille-
Band: Blind support haptic wearable band for communication using braille lan-
guage,” in 2017 IEEE International Conference on Systems, Man, and Cybernetics
(SMC). IEEE, 2017, pp. 1381–1386.

[179] M. Sun, L. E. Burke, Z.-H. Mao, Y. Chen, H.-C. Chen, Y. Bai, Y. Li, C. Li,
and W. Jia, “eButton: a wearable computer for health monitoring and personal
assistance,” in Proceedings of the 51st annual design automation conference, 2014,
pp. 1–6.

[180] A. Kapur, S. Kapur, and P. Maes, “Alterego: A personalized wearable silent speech
interface,” in 23rd International conference on intelligent user interfaces, 2018, pp.
43–53.

[181] N. Marjanovic, G. Piccinini, K. Kerr, and H. Esmailbeigi, “TongueToSpeech (TTS):
Wearable wireless assistive device for augmented speech,” in 2017 39th Annual
International Conference of the IEEE Engineering in Medicine and Biology Society
(EMBC). IEEE, 2017, pp. 3561–3563.

[182] W. Huo, S. Mohammed, J. C. Moreno, and Y. Amirat, “Lower limb wearable robots
for assistance and rehabilitation: A state of the art,” IEEE systems Journal, vol. 10,

188



no. 3, pp. 1068–1081, 2014.

[183] A. Hadi, K. Alipour, S. Kazeminasab, and M. Elahinia, “ASR glove: A wearable
glove for hand assistance and rehabilitation using shape memory alloys,” Journal
of Intelligent Material Systems and Structures, vol. 29, no. 8, pp. 1575–1585, 2018.

[184] M. Gandolla, A. Antonietti, V. Longatelli, and A. Pedrocchi, “The effectiveness of
wearable upper limb assistive devices in degenerative neuromuscular diseases: A
systematic review and meta-analysis,” Frontiers in bioengineering and biotechnol-
ogy, vol. 7, p. 450, 2020.

[185] B. Chen, C.-H. Zhong, X. Zhao, H. Ma, X. Guan, X. Li, F.-Y. Liang, J. C. Y.
Cheng, L. Qin, S.-W. Law et al., “A wearable exoskeleton suit for motion assistance
to paralysed patients,” Journal of orthopaedic translation, vol. 11, pp. 7–18, 2017.

[186] Y. S. Delahoz and M. A. Labrador, “Survey on fall detection and fall prevention
using wearable and external sensors,” Sensors, vol. 14, no. 10, pp. 19 806–19 842,
2014.

[187] D. Chen, W. Feng, Y. Zhang, X. Li, and T. Wang,“A wearable wireless fall detection
system with accelerators,” in 2011 IEEE international conference on robotics and
biomimetics. IEEE, 2011, pp. 2259–2263.

[188] W.-J. Yi and J. Saniie, “Design flow of a wearable system for body posture as-
sessment and fall detection with android smartphone,” in 2014 IEEE international
technology management conference. IEEE, 2014, pp. 1–4.

[189] E. Bruno, A. Biondi, S. Thorpe, M. Richardson, R.-C. Consortium et al., “Patients
self-mastery of wearable devices for seizure detection: a direct user-experience,”
Seizure, vol. 81, pp. 236–240, 2020.

[190] J. Jeppesen, A. Fuglsang-Frederiksen, P. Johansen, J. Christensen, S. Wüstenhagen,
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M. Bonaccorsi, “Cloud-based robots and intelligent space teleoperation tools,” in
Robot Intelligence Technology and Applications 4. Springer, 2017, pp. 599–610.

[224] F. Cavallo, R. Limosani, L. Fiorini, R. Esposito, R. Furferi, L. Governi, and
M. Carfagni, “Design impact of acceptability and dependability in assisted living
robotic applications,” International Journal on Interactive Design and Manufactur-
ing (IJIDeM), vol. 12, no. 4, pp. 1167–1178, 2018.

[225] A. Brunete, E. Gambao, M. Hernando, and R. Cedazo, “Smart Assistive Architec-
ture for the Integration of IoT Devices, Robotic Systems, and Multimodal Interfaces
in Healthcare Environments,” Sensors, vol. 21, no. 6, p. 2212, 2021.
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[357] E. Baştuğ, M. Bennis, and M. Debbah, “A transfer learning approach for cache-
enabled wireless networks,” in 2015 13th International Symposium on Modeling and
Optimization in Mobile, Ad Hoc, and Wireless Networks (WiOpt), May 2015, pp.
161–166.

[358] M. Chen, W. Saad, C. Yin, and M. Debbah, “Data Correlation-Aware Resource
Management in Wireless Virtual Reality (VR): An Echo State Transfer Learning
Approach,” IEEE Transactions on Communications, vol. 67, no. 6, pp. 4267–4280,
Jun. 2019, conference Name: IEEE Transactions on Communications.

[359] J. Chuai, Z. Chen, G. Liu, X. Guo, X. Wang, X. Liu, C. Zhu, and F. Shen, “A
Collaborative Learning Based Approach for Parameter Configuration of Cellular
Networks,” in IEEE INFOCOM 2019 - IEEE Conference on Computer Communi-
cations, Apr. 2019, pp. 1396–1404, iSSN: 2641-9874.

[360] R. Li, Z. Zhao, X. Chen, J. Palicot, and H. Zhang, “TACT: A Transfer Actor-Critic
Learning Framework for Energy Saving in Cellular Radio Access Networks,” IEEE
Transactions on Wireless Communications, vol. 13, no. 4, pp. 2000–2011, Apr. 2014,
conference Name: IEEE Transactions on Wireless Communications.

[361] C. Parera, Q. Liao, I. Malanchini, C. Tatino, A. E. C. Redondi, and M. Cesana,
“Transfer Learning for Tilt-Dependent Radio Map Prediction,” IEEE Transactions
on Cognitive Communications and Networking, vol. 6, no. 2, pp. 829–843, Jun. 2020,
conference Name: IEEE Transactions on Cognitive Communications and Network-
ing.

[362] C. Parera, A. E. Redondi, M. Cesana, Q. Liao, and I. Malanchini, “Transfer Learn-
ing for Channel Quality Prediction,” in 2019 IEEE International Symposium on
Measurements Networking (M N), Jul. 2019, pp. 1–6, iSSN: 2639-5061.

[363] M. S. Abrishami, A. E. Eshratifar, D. Eigen, Y. Wang, S. Nazarian, and M. Pedram,
“Efficient Training of Deep Convolutional Neural Networks by Augmentation in
Embedding Space,” in 2020 21st International Symposium on Quality Electronic
Design (ISQED), Mar. 2020, pp. 347–351, iSSN: 1948-3287.

207



[364] W. Fang, C. Chen, B. Song, L. Wang, J. Zhou, and K. Q. Zhu, “Adapted tree
boosting for Transfer Learning,” arXiv:2002.11982 [cs, stat], Apr. 2020, arXiv:
2002.11982. [Online]. Available: http://arxiv.org/abs/2002.11982

[365] Y. Wang, Q. Yao, J. Kwok, and L. M. Ni, “Generalizing from a Few Examples:
A Survey on Few-Shot Learning,” arXiv:1904.05046 [cs], Mar. 2020, arXiv:
1904.05046. [Online]. Available: http://arxiv.org/abs/1904.05046

[366] C. Finn, P. Abbeel, and S. Levine, “Model-agnostic meta-learning for fast adapta-
tion of deep networks,” arXiv preprint arXiv:1703.03400, 2017.

[367] M. A. Jamal and G.-J. Qi, “Task agnostic meta-learning for few-shot learning,” in
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
2019, pp. 11 719–11 727.

[368] Q. Sun, Y. Liu, T.-S. Chua, and B. Schiele, “Meta-transfer learning for few-shot
learning,” in Proceedings of the IEEE conference on computer vision and pattern
recognition, 2019, pp. 403–412.

[369] C. Finn and S. Levine, “Meta-learning: from few-shot learning to rapid reinforce-
ment learning,” in ICML, 2019.

[370] G. Koch, R. Zemel, and R. Salakhutdinov, “Siamese neural networks for one-shot
image recognition,” in ICML deep learning workshop, vol. 2. Lille, 2015.

[371] O. Vinyals, C. Blundell, T. Lillicrap, D. Wierstra et al., “Matching networks for
one shot learning,” in Advances in neural information processing systems, 2016, pp.
3630–3638.

[372] J. Snell, K. Swersky, and R. Zemel, “Prototypical networks for few-shot learning,”
in Advances in neural information processing systems, 2017, pp. 4077–4087.

[373] F. Sung, Y. Yang, L. Zhang, T. Xiang, P. H. Torr, and T. M. Hospedales, “Learning
to compare: Relation network for few-shot learning,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, 2018, pp. 1199–1208.

[374] V. Garcia and J. Bruna, “Few-shot learning with graph neural networks,” arXiv
preprint arXiv:1711.04043, 2017.

208

http://arxiv.org/abs/2002.11982
http://arxiv.org/abs/1904.05046


[375] S. Aoki, K. Shiomoto, C. L. Eng, and S. Backstad, “Few-shot Learning for eNodeB
Performance Metric Analysis for Service Level Assurance in LTE Networks,” in
NOMS 2020 - 2020 IEEE/IFIP Network Operations and Management Symposium,
Apr. 2020, pp. 1–4, iSSN: 2374-9709.

[376] Y. Shen, Y. Shi, J. Zhang, and K. B. Letaief, “LORM: Learning to Optimize for
Resource Management in Wireless Networks With Few Training Samples,” IEEE
Transactions on Wireless Communications, vol. 19, no. 1, pp. 665–679, Jan. 2020,
conference Name: IEEE Transactions on Wireless Communications.

[377] J. Yang, H. Zou, Y. Zhou, and L. Xie, “Learning Gestures From WiFi: A Siamese
Recurrent Convolutional Architecture,” IEEE Internet of Things Journal, vol. 6,
no. 6, pp. 10 763–10 772, Dec. 2019, conference Name: IEEE Internet of Things
Journal.

[378] D. Giatsios, “FLEX - FIRE LTE testbeds for open experimentation: Flex overview,”
in 3RD INTERNATIONAL NORNET USERS WORKSHOP, OSLO, 2015.

[379] “Nitos - network implementation testbed using open source platforms, [online] avail-
able: http://nitlab.inf.uth.gr.”

[380] “5g virtual infrastructure provisioning over nitos testbed, [online] available:
https://5ginfire.eu/nitos/.”

[381] K. Kondepu, F. Giannone, S. Vural, B. Riemer, P. Castoldi, and L. Valcarenghi,
“Experimental demonstration of 5G virtual EPC recovery in federated testbeds,”
in 2019 IFIP/IEEE Symposium on Integrated Network and Service Management
(IM), 2019, pp. 712–713.

[382] “5G innovation centre, university of surrey, [online] available:
https://www.surrey.ac.uk/5gic.”

[383] J. Costa-Requena, A. Poutanen, S. Vural, G. Kamel, C. Clark, and S. K. Roy,
“Sdn-based upf for mobile backhaul network slicing,” in 2018 European Conference
on Networks and Communications (EuCNC), 2018, pp. 48–53.

[384] Surrey Platform. [Online]. Available: https://5genesis.eu/surrey-platform/

[385] M. Ott, I. Seskar, R. Siraccusa, and M. Singh, “Orbit testbed software architecture:

209

https://5genesis.eu/surrey-platform/


Supporting experiments as a service,” in First International Conference on Testbeds
and Research Infrastructures for the Development of NeTworks and COMmunities,
2005, pp. 136–145.

[386] T. Chen, M. B. Dastjerdi, G. Farkash, J. Zhou, H. Krishnaswamy, and G. Zuss-
man, “Open-access full-duplex wireless in the orbit testbed,” arXiv preprint
arXiv:1801.03069, 2018.

[387] “Open-access research testbed for next-generation wireless networks (orbit) , [online]
available: http://www.orbit-lab.org/.”

[388] “Open-access research testbed for next-generation wireless networks (orbit) , [online]
available: https://www.phantomnet.org/.”

[389] A. Banerjee, J. Cho, E. Eide, J. Duerig, B. Nguyen, R. Ricci, J. Van der Merwe,
K. Webb, and G. Wong, “Phantomnet: Research infrastructure for mobile net-
working, cloud computing and software-defined networking,” GetMobile: Mobile
Computing and Communications, vol. 19, no. 2, pp. 28–33, 2015.

[390] E. Luther, “5G massive MIMO testbed: From theory to reality,” white paper, 2014.

[391] S. Malkowsky, J. Vieira, L. Liu, P. Harris, K. Nieman, N. Kundargi, I. C. Wong,
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