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Abstract 

Diagenetic processes in sedimentary rocks have intrigued geologists, but they are poorly 

understood. In sedimentary fine-grained rocks, there is even less information, due to the 

complexity and lack of interest despite the current shale boom that has resulted in increased interest 

in mudrocks. This study aims to explain the geological processes that affect the reservoir quality 

on the Sycamore siltstones and present a model that shows the spatial distribution of the thin-

section-derived petrofacies for the Sycamore Formation. 

This study is divided into four chapters. In Chapter 1, I will introduce my motivation, the 

research questions, the data available, the contributions, and the limitations of the dissertation. 

Additionally, in this chapter, I provide a literature review on the geology of the Mississippian rocks 

in southern Oklahoma, our current understanding of the diagenesis on mudrocks, and a brief 

explanation of the most common machine learning techniques I will use in chapters 3 and 4.  

In Chapter 2, I present a diagenetic study of a mixed-carbonate siliciclastic system. This 

study evaluates and explains the impact of diagenesis on reservoir quality of the Sycamore 

Formation and identifies other intrinsic geological factors that control diagenesis. Cementation and 

dissolution are the main diagenetic processes that impact the reservoir quality of the massive 

siltstones. Additionally, differences in the sediment supply between carbonate- and siliciclastic-

dominated systems drive the calcite cementation and dissolution of feldspars in the Sycamore and 

consequently the reservoir quality.  

In Chapter 3, I propose a workflow that uses machine learning techniques to bridge the 

resolution gap between thin sections and well logs. To that end, we tested two semi-supervised 

approaches that use XRF data as input in combination with dimensionality reduction techniques 

to reliably classify the thin-section-based petrofacies. Both the semi-supervised approaches we 



 

vii 
 

use, a self-training approach and a labeled-clustering approach, achieve accuracies of more than 

90% on this dataset. Therefore, implementing the proposed workflow we generate petrofacies logs 

for cored wells. 

In Chapter 4, I present a machine learning-based workflow for assisting 3D models to 

reliably represent the petrofacies distribution in the Sycamore Formation. The workflow compares 

over 1,800 classification models and selects the best combination of well logs, algorithms, and 

hyperparameters to predict petrofacies in wells without cores. From 6 cored wells, the selected 

classification model predicted petrofacies logs on 75 wells. These predicted petrofacies logs were 

used to construct a 3D data-driven model. 
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Chapter 1: Introduction 

1.1 Introduction 

Research questions and scope of the thesis 

Diagenetic processes in sedimentary rocks have intrigued geologists, but they are poorly 

understood. In sedimentary fine-grained rocks, there is even less information, due to the 

complexity and lack of interest despite the current shale boom that has resulted in increased 

interest in mudrocks. This study addresses two main questions: What are the diagenetic 

processes that affect reservoir quality in the Sycamore Formation, especially in terms of the 

porosity and permeability? And what is the spatial distribution of the diagenetic products in the 

Sycamore Siltstones? 

When addressing the first question, what are the diagenetic processes that affect reservoir 

quality in the Sycamore Formation? The first observation is that authigenic calcite decrease the 

porosity of siltstones. Hence, this study focuses on the calcite distribution in the siltstones, and it 

considers the hypothesis authigenic calcite is the main mechanism that controls the porosity and 

permeability of the Sycamore Formation. In order to test this hypothesis, we used conventional 

techniques such as petrographic analysis, elemental and mineralogical composition of the whole 

rock, and routine core analysis.  

For the second question: what is the spatial distribution of the diagenetic products in the 

Sycamore Siltstones? We hypothesize that depositional processes drive the authigenic calcite 

distribution. However, the challenge remains in linking the information from the thin-sections 

scale with 3D models at a reservoir scale. For this, we propose to use machine learning 

techniques to bridge the resolution gap between thin-sections and 3D models to visualize the 

spatial variability of calcite-rich and -poor facies in the Sycamore.  
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The Sycamore Formation was selected for three main reasons. First, the Sycamore 

provides a unique example of clay and silt-rich mudstones. This study pays special attention to 

the siltstones because by studying them, one could fill the gap in knowledge between the 

diagenetic processes that are well studied on sandstones and the challenges brought by studying 

fine-grained rocks. Second, the Sycamore Formation is a mixed carbonate-siliciclastic system. 

This presents a unique opportunity to study the characteristic elements and processes of 

calcareous and siliciclastic systems that are coexisting. Thirdly, we selected the Sycamore 

because it has gained attention as an unconventional reservoir (Price et al., 2019; Milad et al., 

2020; Duarte et al., 2021), as well as to reconstruct paleoenvironments (McGlannan et al., 2019).  

This study is divided into two main portions, and it contributes to the understanding of 

diagenesis in the Sycamore Formation. The first portion, chapter 2, presents a unique diagenetic 

study of a fine-grained and mixed-carbonate siliciclastic system. This study presents the 

paragenetic sequence and a conceptual model to show the spatial distribution of calcite-poor and 

-rich siltstones in the Sycamore Formation. The second portion, divided into chapters 3 and 4, 

implements a workflow to build a robust 3D model of three thin-section-derived petrofacies. 

This workflow includes machine learning techniques to fill the resolution gap between scarce 

core data and the well log information. Therefore, the implementation of this workflow 

represents an advance on techniques to bridge the gap between information at a thin-section scale 

with 3D models at a reservoir scale. 
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Data available 

More than 1000 ft. (300 m) of core distributed in six wells, and additionally one outcrop were used 

for this study; each core has well logs and at least one-foot resolution hand-held XRF: 

▪ Myrtle Green 23 (115 ft) - API: 35137208380000 

▪ Moore Est 2-A (210 ft) - API: 35137212590000 

▪ Hunsucker 11-1 (44 ft) - API: 35019219380000 

▪ Frensley E 1-X (278 ft) - API: 35137223440000 

▪ Russell B-1 (292 ft) - API: 35137210400000 

▪ Winters-Hardin (104 ft divided in two cores) - API: 35019211340000 

Additionally, core plugs were taken from the cores for petrographic analysis (99 samples) 

including thin sections and secondary electron microscopy (SEM); routine core analysis (92 

samples) including Porosity and permeability data; mineralogical composition (48 samples) using 

X-ray diffraction spectrometer (XRD), elemental composition (99 samples) using a hand-held X-

ray fluorescence spectrometer (XRF) and organic geochemistry data (36 samples). A location map 

for the three chapter will be added to show the data used for each projects/publication. 

 

Contributions and limitations 

This study aims to contribute to the understanding of diagenesis in mixed carbonate-siliciclastic 

mudrocks and to bridge the resolution gap between thin-section-derived information and 3D 

models. The knowledge facilitated in this dissertation impacts the scientific community 

petroleum geologist working on the industry, and geoscientist in general that work with datasets 

at different scales. On one hand, the first part of the dissertation contributes to understand the 
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diagenetic and depositional processes for the Sycamore Formation. This is specially important 

for this Early Mississippian strata because eolian processes likely transported the Sycamore 

siltstones (McGlannan et al., 2019). Therefore, this eolian siltstones are important to reconstruct 

the paleoenvironment during the Early Mississippian time. On the other hand, the second part 

has two immediate impacts on the petroleum geology field: i) it provides a model of the 

authigenic calcite spatial distribution, and this contributes to predicting the reservoir quality in 

the Sycamore, and ii) it proposes a workflow that bridges the resolution gap between scarce 

information at thin-section scale and abundant well logs. This is important to geoscientists 

working with datasets at different scaled, and it contributes to generating robust 3D models at a 

reservoir scale from information at thin section scale. This, in the long term, will open the door 

for modeling more complex diagenetic processes observed only at a thin-section scale that help 

us to understand the subsurface strata to reveal geological processes from the past. 

The first part of the dissertation presents a conceptual model to show the spatial distribution 

of calcite-poor and -rich siltstones. However, the question about the origin of the authigenic 

calcite is still open. The common techniques available to measure the chemical and isotopic 

compositions of cement in sandstones are not enough to measure the small (60 μm) calcite 

crystals in mudrocks. Therefore, new techniques are required to understand the origin of this 

material.  

The second portion implements a workflow to bridge the resolution gap between thin 

sections and 3D models. The original goal of this project was to build 3D models to visualize the 

distribution of authigenic calcite, but instead, we built one model to show the distribution of 

three thin-section-defined petrofacies. This petrofacies are rock types with information from the 

lithology, mineralogy, and porosity/permeability data. Therefore, the workflow was implemented 
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using a discrete variable (petrofacies). However, other continuous geological attributes, such as 

percentage of authigenic calcite, TOC, and porosity could be estimated implementing this 

workflow. Nevertheless, we expect that more data is needed to predict continuous attributes at 

high accuracy. 

 

1.2 Literature review 

Geological Settings 

Ardmore basin is a northwest-southeast depression of Pennsylvanian age located in southern 

Oklahoma.  The Anadarko basin to the North, the Arbuckle uplift to the east, and Marietta basin 

to the southeast bound the Ardmore basin. Three major tectonic events explain the evolution of 

the Ardmore basin in the context of the Great Anadarko Basin: rifting, passive margin, and plate 

collision.  

The first event is related to a three-arm rift or triple junction during the late Proterozoic to 

early Paleozoic. Two of these arms are associated with the opening of the Protoatlantic Ocean, the 

other arm failed and formed the Southern Oklahoma Aulacogen (SOA) (Ham et al., 1965; Burke 

and Dewey, 1973; Hoffman et al., 1974; Wickham, 1978; Allen, 2000). The second event is 

associated with subsidence and passive margin of the aulacogen, this controlled the deposition of 

a thick sedimentary sequence during early Cambrian to early Mississippian time, along an 

asymmetric foreland and the Anadarko shelf(Lowe, 1975; Evans, 1979; Lane and De Keyser, 

1980; Gutschick and Sandberg, 1983; Keller et al., 1983; Perry, 1989). Finally, the closure of the 

Rheic sea during Pennsylvanian time due to the North America and Gondwana collision, triggered 

the Ouachita Orogeny. This formed major uplifts and basins that resulted in its present 

configuration (Ham et al., 1965; Feinstein, 1981; Perry, 1989; Ghosh et al., 2018). (Perry, 1989). 
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In Mississippian time three major structures existed: Anadarko-Ouchita basin, the northern 

Oklahoma shelf and the Ozark uplift. But late Mississippian-Pennsylvanian tectonism formed the 

Nemaha ridge and fragmented the Anadarko-Ouachita basin (Ham et al., 1965; Feinstein, 1981). 

During this collision several orogenic events formed major uplifts such as the Nemaha Ridge, 

Wichita and Arbuckles mountains, and major basins such as Marrieta, Ardmore and Anadarko. 

Ouchita uplift during Mississippian to Pennsylvanian time produced a major unconformity 

(Miss/Penn unconformity) (Siever, 1951; Stevenson et al., 1951; Sutherland, 1988; Nana Yobo 

and Yobo, 2014). 

During Cambrian and Silurian time in the SOA, a thick sequences of carbonate facies were 

accumulated in the Ardmore basin. Then, during late Devonian a major transgression resulted in 

the deposition of the organic-rich Woodford shale on top of a major erosional unconformity. 

Throughout Early Mississippian time (359-340 My.) great part of North America was covered by 

an extensive, shallow and tropical sea (Ham, 1978; Gutschick and Sandberg, 1983) (Figure 1). But 

in order to understand Early Mississippian strata is necessary to study the entire Mississippian 

units. The Carboniferous system is divided from older to younger into the Mississippian and 

Pennsylvanian period. This study focuses in the Mississippian subsystem divided into Tournaisian, 

Visean and Serpukhovian stages based on the international chronostratigraphic chart (Cohen et al., 

2019). But, in the North American system the Mississippian is divided into the Kinderhookian, 

Osagean, Meramecian, and Chesterian stages from older to younger. (Figure 2).  
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Figure 1: Paleography of the Early Mississippian strata. Taken from (Duarte, 2018) after 

(Gutschick and Sandberg, 1983; Blakey, 2013). Red square represents Anadarko basin. 

 

During Kinderhookian time, shallow and protected seas were close to the Caballos-

Arkansas Islands chain. Welden limestone (or “Pre-Sycamore”) in the Arbuckles and Ardmore 

basin, and Kinderhook in Anadarko basin are assigned to Kinderhookian age (Curtis and 

Champlin, 1959). Some authors have placed the top of the Woodford in Kinderhookian time 

overlying immediately the Sycamore limestone (Braun, 1961; Bennison, 1956). Also, a lower 

green shale is reported in south Oklahoma which marks the base of the Welden formation 

(Huffman and Barker, 1950; Braun, 1959; Culp, 1961).  



 

8 
 

Osagean rocks are truncated into the south by Meramecian units, suggesting an uplift 

related to the Ouchita orogeny. Welden limestone in the Lawrence uplift and Osage in the northern 

part of the Anadarko basin are interpreted in part as Osagean in age (Curtis and Champlin, 1959; 

Bennison, 1956). In the southern portion of the Anadarko basin the thick Sycamore limestone is 

divided into an upper limestone and a lower cherty limestone with shale. The lower part is placed 

in the Osagean series and correlated with the upper portion of the reported Pre-Sycamore (Harlton, 

1956). 

Then, during late Mississippian time The Nemaha ridge experienced an uplift in related to 

the Ouachita orogeny, consequently Meramecian units thin toward the north. General marine 

transgression and subsidence in late Mississippian time resulted in the deposition of the Sycamore 

and Meramec formations in the northern and southern portions of the Great Anadarko Basin, 

respectively (Curtis and Champlin, 1959; Peace, 1994). Braun (1961) restricted the name 

Sycamore in the Ardmore and south Anadarko basin to the upper massive and competent silty 

limestone of the Sycamore and proposed Meramecian age deposition (Braun, 1961; Culp, 1961; 

Bennison, 1956; Harlton, 1956). Finally, the thickness of Chesterian rocks (Caney, Goddard and 

Chester Formations) decreases towards the Nemaha ridge (Curtis and Champlin, 1959) product of 

the Mississippian-Pennsylvanian tectonism.  

Physicochemical conditions varied in the Mississippian system from the shelf in the north 

and West to basin in the south, resulting in a variety of lithofacies that are hard to correlate without 

a time framework. Also, during this time the tectonic activity increased resulting in three possible 

sources of material: Appalachian highlands in the North-east; transcontinental arch in the North-

west; and the Caballos-Arkansas Island chain in the south. These two factors helped the facies to 
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vary laterally and thus the nomenclature of Mississippian units along Oklahoma is more complex 

than it should be. 

This study focusses on the Sycamore formation, composed mainly of clay-rich and silt-

rich gravity flow deposits. Sycamore in the Ardmore basin is composed of up to 150 m of clay- 

and silt-rich mudstones with rear fine sandstones. Late Mississippian to Early Pennsylvanian 

tectonism resulted in the exposure of Mississippian strata to the east in the Arbuckle mountains, 

but Mississippian strata also dips up to 6,000 m depth to the west in the subsurface.  

 

 

Figure 2: Correlation of Mississippian units from different authors. (Bennison, 1956; Braun, 1959; 

Chenoweth et al., 1959; Curtis and Champlin, 1959; Culp, 1961; Peace, 1994) 

 

Diagenesis of Mudrocks 

Mudrocks are divided in claystones and siltstones depending on the most abundant grain size. In 

the following pages we used the term siltstones to the mudrocks that are formed mainly by silty 

size material, and clay-rich mudstones for the remaining mudrocks. In the petroleum geology, 

other common division for the mudrocks is based on the content of organic matter. Organic 
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mudstones or organic shales are used for the mudrocks with total organic content (TOC) above 1.5 

%. These organic shales have been studies for their importance as self-source reservoirs or 

unconventional reservoir (Loucks and Ruppel, 2007; Slatt and O’Brien, 2011; Turner et al., 2016; 

Alnahwi and Loucks, 2019; Slatt et al., 2021). Several studies have been completed on organic 

shales to understand diagenetic processes that affects brittleness, porosity, and permeability on the 

organic-rich shales (Nadeau et al., 2005; Dennie et al., 2012; Jennings and Antia, 2013; Elmore et 

al., 2016; Milliken and Olson, 2017; Roberts and Elmore, 2018; Wickard et al., 2020). However, 

in their counterpart Siltstones, the lack of studies difficult their understanding with consequences 

on the petroleum geology, but also as a paleoenvironmental (Gerilyn S. Soreghan, 1992; Kessler 

et al., 2001; Soreghan et al., 2007, 2008, 2015; Giles et al., 2013). Paleographic reconstructions, 

grain size statistics and geochemistry from the Mississippian strata suggest eolian processes take 

part in transporting the silty sediments prior to deposition in a subaqueous 

environment.(McGlannan et al., 2019). Therefore, studying the siltstones from the Sycamore 

Formation has implications for the scientific community and the petroleum industry. 

Diagenetic processes, such as cementation and dissolution, affect the reservoir quality of 

unconventional reservoirs in terms of porosity, permeability, and brittleness. This is especially 

important in unconventional reservoirs because how the rock response when is subjected to stress 

impacts the well plan (Wang and Gale, 2009; Slatt et al., 2018). The general idea is that rock with 

higher content of calcite, dolomite and quartz are more brittles, and rock with higher clay content 

are less brittle. Brittleness is the response of the rock when exposed to different loading conditions 

such as tension or compression (Zhang et al., 2014; Xia et al., 2019; Meng et al., 2021). Other 

important criterion to define the reservoir quality in mudstones is the capacity of the rock to store 

a fluid, we called this porosity. Porosity in mudrocks is variable, for example in organic mudstones, 
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organic porosity product of the maturity of organic matter is abundant (Slatt and O’Brien, 2011; 

Slatt et al., 2012, 2021; Mathia et al., 2016). However, siltstones are usually tight reservoir with 

different types of porous than the organic-rich shales. Finally, the other important criterion is 

permeability of mudstones that is highly controlled by the clay content, and cementation (Katsube 

and Williamson, 1994; Eichhubl and Aydin, 2005; Heij and Elmore, 2019; Wang et al., 2019; 

Duarte et al., 2021). Understanding the diagenetic processes that affect mudstones have 

implications in reconstructing the geological evolution of an area but also in the petroleum 

geology. 

 Because the lack of diagenetic studies on siltstones, the diagenetic processes are not well 

understood and this difficult the prediction of subsurface geology. Some of the most common 

diagenetic products linked with the Sycamore Formation are calcite cement, feldspar grains 

dissolution and authigenic clays. 

 

Calcite cement 

The calcite (CaCO3) behavior is controlled by the following reversible reaction, where calcite is 

dissolved in the forward direction, and it is precipitated in the reverse direction: 

 

 CaCO3 (solid)  +  H2CO3  →    Ca+2  +  2HCO−3             (1) 

 

 H2O +  CO2  →   H2CO3    (2) 
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CaCO3 is the crystalline calcite; H2CO3 is the carbonic acid formed by the reaction between 

water (H2O) and carbon dioxide (CO2). Ca+2 is the calcium cation in solution and HCO-
3 is the 

bicarbonate ion (anion). Changes in temperature, pressure, organic activity, or acidity are some of 

the controlling factors in the precipitation or dissolution of the calcium carbonates. However, CO2 

is the determining factor that promotes or inhibits the production of carbonic acid, H2CO3 in 

equation 1, shifting a system in equilibrium to the right or left respectively in equation 2. 

The intergranular calcite cement in the Sycamore Formation was generated during early 

diagenesis supported by the absence of quartz cement, chlorite rims, and the lack of mechanical 

compaction evidenced by the floating texture in the massive siltstones. However, the origin of this 

cement is not clear and difficult to explain due to the deficiency of methodologies for separating 

calcareous cement from calcareous pellets, and the small size of the calcite crystals to measure the 

isotopic composition in situ. SEM observations indicate that the crystalline cement is replacing 

micritic matrix. Hence, we propose an internal source in the same formation as the source for that 

material needed to precipitate the crystalline cement (Kantorowicz et al., 1987; Saigal and 

Bjørlykke, 1987). 

Internal sources, such as interbedded mudstones, dissolution of calcium-bearing feldspars, 

fragment fossils, and calcareous pellets may be responsible for the precipitation of crystalline 

calcite cement (Morad et al., 1990). Some authors (Freed and Peacor, 1989; Sun et al., 2019) have 

reported that mudstones and feldspars could provide the needed ions (Na+ + Ca2 + Fe2 + Mg2) to 

precipitate carbonate cements. Nevertheless, this does not explain the great amount of calcite that 

have been precipitated in the massive siltstones. Therefore, it is more likely that micrite and 

carbonate pellets could account for the calcium needed for growing crystalline calcite. This idea 

is discussed in the chapter 2. 
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Feldspar grains dissolution  

Silts-sized quartz and feldspar grains are abundant in the massive siltstones. Feldspars dissolution 

is the main mechanism that drives secondary porosity and it is usually attributed to the presence 

of organic acid fluids. In the Sycamore formation, these fluids could be sourced by clay-rich 

mudstones intervals within the Sycamore or most like originated from the underlying Woodford 

Shale.  

The Woodford Shale is an organic rich shale, with TOC values up to 17% (Galvis et al., 

2018), that have been considered as the sourced rock for excellence in Oklahoma, and it has 

generated hydrocarbons since Mississippian time (Comer, 1992; Cardott, 2012). CO2 derived from 

this organic-rich shale during decarboxylation of organic matter dissolved in water (equation 2) 

may be responsible for the carbonic acid that contributes in the dissolution of feldspars in the 

Sycamore (equation 3) (Worden and Barclay, 2000; Rahman and Worden, 2016). Additionally, 

the dissolution of feldspars grains contributes to the formation of the authigenic clays in the 

sycamore formation by releasing K+, Al3+, and SiO2(aq) into the system (Sun et al., 2019).  

Quartz cement is very rare in the Sycamore formation, and considering that mechanical 

compaction was minor, silica that resulted in quartz cement is likely to be sourced from dissolution 

of feldspars. The small presence of quartz cement could be explained by two factors: first, the lack 

of time for the grow of quartz, this is due that quartz cement develops at temperatures higher than 

80-90 °C (Walderhaug and Bjørkum, 1992; Rahman and Worden, 2016; Li et al., 2017). Or the 

presence of clay minerals that prevents the quartz overgrowth (Ehrenberg, 1989; Rahman and 

Worden, 2016; Li et al., 2017). Additionally, some quartz grains exhibit corrosion textures 

associated with the calcite cement (Shaw and Primmer, 1991; Xiong et al., 2016).  
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 3KAlSi3O8 (K − feldspar) + 2H+  → KAl3Si3O10(OH)2 (Illite) + 6SiO2 + 2𝐾+ (3) 

 

 CaC𝑂3 + H+  →  C𝑎+2  +  HC𝑂3 (4) 

 

 𝐻2C𝑂3 → HC𝑂3 +  H+ (5) 

 

 Smectite +  K+  → Illite + SiO2 +  Na+ +  Ca2 +  Fe2 +  Mg2 +  H2O (6) 

 

Authigenic clays  

Feldspar dissolution, responsible in great part for the secondary porosity, occurs under acidic 

conditions and contributes to form authigenic phyllosilicates (Bjorlykke and Aagaard, 1992; 

Worden and Morad, 2003; Rahman and Worden, 2016). Decarboxylation of organic matter in the 

Woodford releases CO2 in which dissolves in water to produce carbonic acid with pH less than 7. 

The carbonic acid produces bicarbonate ions and hydrogen ions that are used in the K-feldspars 

and calcium carbonate reactions. When carbonic acid forms hydrogen ions and bicarbonate ions, 

the hydrogen ions are used for the dissolution of feldspars to generate clays such as illite. The 

remaining bicarbonate ions are used for the calcium carbonate precipitation. 

Carbonic acid could be replaced by hydrogen and bicarbonate ions in the calcium carbonate 

reaction (equation 4), resulted in the simplified equation 5. Moreover, the reaction responsible for 

the feldspar dissolution take two hydrogen ions to form illite and release potassium ions and silica 

(aqueous) in the systems. Thus, reaction 5 provides the hydrogen ions needed in the dissolution of 
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feldspars but also provided the bicarbonate ions needed for the precipitation of calcium carbonate. 

Additionally, smectite-to-illite transformation during late diagenesis is driven by an increase on 

temperatures (> 100°C). This transformation releases ions (Na+ + Ca2 + Fe2 + Mg2) used for the 

precipitation of calcium carbonate cements such as calcite and ferroan calcite, and dolomite (Sun 

et al., 2019).  

Therefore, dissolution of feldspars, phyllosilicates growth, and calcite precipitation are 

paragentically related in some extend (Rahman and Worden, 2016). These diagenetic processes 

have been extensively studied on sandstones(Bjørkum, Per Arne et al., 1998; Worden et al., 2018) 

(Rahman and Worden, 2016; Li et al., 2017; Sun et al., 2019); however, this is not the case for 

siltstones (Vaisblat et al., 2021) specially for mixed carbonate siliciclastic system such as the 

Sycamore Formation. In the Sycamore Formation the small grains size and the two sources, 

carbonate factory and a siliciclastic feeder, are limitations that difficult the understanding of 

diagenetic processes, but we tried to understand the paragenetic sequence and propose the genesis 

of the diagenetic products. This study has implications in understanding the subsurface geology 

specially for petroleum geology.  

 

Machine Learning techniques in geosciences 

Rock cores provide unique information about the depositional settings of the sedimentary layers 

that underlie petroleum operations. Despite their importance, cores are scarce, likely because of 

the elevated extraction costs. Alternative approaches with limited resolution, such as well logs, are 

more commonly used to characterize petroleum reservoirs. The need of resolving subtle changes 

in the rock properties calls for the development of novel techniques that allow to predict core-
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contained information from the already abundant well logs, while narrowing the resolution gap in 

the existing characterization techniques. 

Geosciences has witnessed a flourishment in the application of machine learning (ML) 

techniques to address many of the challenges imposed by the lack of core data. The two main types 

of ML techniques are supervised and unsupervised methods. Supervised ML techniques have been 

used in geoscience to classify core-based geological attributes (e.g. lithofacies) from well log 

information (Dubois et al., 2007; G. Wang et al., 2014; Bhattacharya et al., 2016; Wood, 2019; 

Bressan et al., 2020). However, it has been clear that for the supervised model to perform well, big 

data sets containing numerous observations from both predictor and predicted variables are 

required, posing a stringent need for data that is not always feasible to fulfill. On the other hand, 

unsupervised techniques have been used in geosciences to define facies (e.g., chemofacies or 

Electrofacies) based on indirect tools such as well logs or hand-held X-Ray fluorescence 

spectrometer (XRF) (Gupta et al., 2017; Duarte, 2018; Duarte et al., 2019; Hardisty et al., 2021; 

Slatt et al., 2021).  

The most common unsupervised methods are clustering analysis. Clustering is used when 

trying to understand the structure of the data, for this, groups or clusters are defined based on 

similarity of the data. The advantage of clustering is that labels or dependent variables are not 

needed so it has been used to define Electrofacies (Gupta et al., 2017; Davis, 2018; Hossain et al., 

2020) from well log, or chemofacies from elemental composition. However, the lack of dependent 

variable implies that the validation process is ambiguous since there is not data to compare with 

the results. Therefore, supervised ML techniques are more popular in geosciences to predict some 

geological attributes.  
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For supervised ML techniques, a model is trained using labeled data (data with independent 

and dependent variables) to predict some geological attributes. For example, build a model to 

predict lithologies from well logs. Depending on the nature of the output data we use regression 

or classification models when using continuous or discrete data, respectively. For this dissertation, 

even though the goal is to understand the calcite and porosity distribution, both continuous 

variables, we combined this information in discrete data called petroafacies. One of the most 

important information derived from core data is the characterization of facies with similar 

mineralogical composition, pore types and distribution (i.e., Petrofacies). Determining petrofacies 

allows for the identification of prolific petroleum reservoirs  (Watney et al., 1998) and the 

characterization of the diagenetic processes that help to predict petrophysical properties in the 

subsurface. 

 

1.3 Dissertation outline 

This dissertation is the result of the work I developed during my Ph.D. at the University of 

Oklahoma. This dissertation is organized into five chapters related to each other by the Sycamore 

Formation, but the body of the dissertation is from chapters 2 to 4. All the data for this dissertation 

came from six cores, one outcrop, and around 300 adjacent wells. All the chapters are the interest 

of petroleum geologists, however, chapters 3 and 4 use machine learning techniques that could be 

the interest of other fields. During my Ph.D., I had the privilege to work with several co-authors 

and they are recognized at the beginning of each chapter. Therefore, the chapters are written in 

first person plural because these chapters are organized based on journal papers published or 

submitted. However, I was responsible for the conception, design, analysis, interpretation of the 

data, figure creation, and the great majority of writing for these chapters.  
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Chapter 1 (this chapter) serves as an introduction to the dissertation, with the motivation, 

objectives, and implications of the project in general. Also, this chapter includes a literature review 

of the main topics. Then, Chapter 2, “Diagenetic Controls on Reservoir Quality of a Mixed 

Carbonate-Siliciclastic System: Sycamore Formation, Sho-Vel-Tum Field, Oklahoma, USA”, is 

presented as it was published in Marine and Petroleum Geology (Duarte et al., 2021). This chapter 

presents a conceptual model to explain the effect of diagenesis on the reservoir quality in terms of 

porosity and permeability.  

The second portion of the dissertation is divided into chapters 3 and 4. In this chapter, we 

used machine learning techniques that use XRF data and well logs that are incorporated in 3D 

models to validate the conceptual model from chapter 2nd. The objective for the 3D model is to 

give a visual distribution of the calcite-rich and -poor intervals in the Sycamore Formation. 

Chapter 3, “Semi-supervised Workflow to Generate Petrofacies Logs from Thin Sections and 

XRF Data”, is presented as it was submitted to Marine and Petroleum Geology. This chapter 

aims to present a workflow to bridge the vertical resolution gap between core data and well logs. 

Chapter 4, “3D Petrofacies model assisted by supervised machine learning techniques to increase 

well control”, is in preparation to be submitted in Marine and Petroleum Geology journal. The 

goal of this chapter is to build a workflow for increasing well control to build robust 3D models. 

In the end, the final remarks and future work are presented in chapter 5. 

 

 

 

 

 



 

19 
 

Chapter 2: Diagenetic Controls on Reservoir Quality of a Mixed Carbonate-Siliciclastic 

System: Sycamore Formation, Sho-Vel-Tum Field, Oklahoma, USA. 

David Duarte, Benmadi Milad, R. Douglas Elmore, Matthew J. Pranter, and Roger Slatt 

 

2.1 Preface 

This chapter is presented here as it was published in the Marine and Petroleum Geology journal. 

A portion of the data for this project was provided by Energy 89 company through the STACK-

Merge-SCOOP consortium led by Dr. Roger Slatt, the other portion was provided by the 

consortium. The results presented in this chapter show that reservoir quality in the Sycamore 

Formation is controlled by the diagenesis that is driven at the same time by the depositional facies. 

Some of the highlights for this chapter are: 

• Presentation of the diagenetic evolution for the Sycamore Formation in the Ardmore Basin. 

• Cementation and dissolution are the main diagenetic processes that impact reservoir quality 

of the massive siltstones. 

• Sediment supply between carbonate and siliciclastic systems drives diagenetic processes 

that affect reservoir quality. 

• Stratigraphic variation of cement between parasequences is linked with conditions during 

deposition and diagenesis.  

 

2.2 Abstract 

Reservoir quality (RQ), commonly related to diagenesis, is important to predict formation porosity 

and permeability. The lack of studies to understand the role of diagenesis on tight reservoirs is a 

limiting factor for predicting petroleum accumulation in unconventional reservoirs. This study 
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aims to determine the influence of diagenesis on RQ for the mixed carbonate-siliciclastic 

Sycamore Formation in southern Oklahoma. Additionally, this study assesses other geologic 

factors such as depositional facies control on diagenesis of the Sycamore.  

Petrographic observation, geochemical data, and conventional plug analysis from six cores 

and one outcrop were used to accomplish three objectives: i) reconstruct the paragenetic sequence; 

ii) determine the role of diagenesis on RQ; and iii) elucidate geological factors that control the 

diagenetic evolution in the Sycamore strata. 

Four facies were identified: Massive Calcite-cemented Siltstones, Massive Calcareous 

Siltstone, Bioturbated Mudstones, and Argillaceous Mudstones. However, this study focuses on 

the siltstones and their associated diagenetic processes and products. Porosity evolution in the 

siltstones is affected by cementation and dissolution processes. These diagenetic processes are 

related to each other; calcite cement decreases permeability during early diagenesis and controls 

the flow of later diagenetic fluids responsible for feldspar dissolution. Additionally, differences in 

the supply between a carbonate and siliciclastic material and a change from a carbonate-dominated 

system to a mixed system through time controls the distribution of calcite cement in the Sycamore.  

This study allows geologists to understand the diagenetic evolution and to characterize RQ 

of the Sycamore and similar formations by considering the sediment supply between carbonate- 

and siliciclastic-dominated systems, changes in stratigraphy, and influx of acidic fluids.  

Identifying geological controls on diagenesis and defining the influence of diagenesis on RQ in 

tight formations is important for the exploration and development of unconventional reservoirs, to 

build predictable porosity and permeability models, and to identify petroleum accumulations. 
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2.3 Introduction 

This study focuses on how diagenesis affected reservoir quality of the tight Mississippian 

Sycamore reservoir at Sho-Vel-Tum field (abbreviation of three oil fields combined, Sholem-

Alechem, Velma, and Tatums) in the Ardmore Basin (Figure 3) and how depositional processes 

and associated facies impact diagenesis. 

Reservoir quality in carbonate and siliciclastic rocks are affected by depositional processes, 

sea-level changes, diagenetic processes, tectonics, and input material either from a carbonate 

factory or a siliciclastic feeder (Worden et al., 2018).  Diagenesis in coarse-grained siliciclastic 

systems has been extensively studied (McBride, 1984; Mansurbeg, De Ros, et al., 2012; Rahman 

and Worden, 2016; Xiong et al., 2016; Li et al., 2017; Yang et al., 2017; Sun et al., 2019; 

Okunuwadje et al., 2020). Original reservoir quality and consequent diagenesis is determined by 

depositional setting including the composition of the grains, grain size, and sorting (Walderhaug 

and Bjørkum, 1998; Worden et al., 2018). In the siliciclastic reservoirs, compaction, cementation 

and dissolution are the main processes controlling reservoir quality (Rahman and Worden, 2016; 

Li et al., 2017; Sun et al., 2019). However, reservoir quality of carbonate rocks is controlled by 

other factors including the carbonate factory, sea-level changes, paleoclimate, clastic input, and 

the composition of the seas (Worden et al., 2018). The aforementioned diagenetic factors that 

control reservoir quality in a mixed carbonate-siliciclastic system are present in the Sycamore 

Formation at Sho-Vel-Tum field. 

This study focuses on the diagenesis of the Early Mississippian Sycamore Formation with 

the emphasis on how diagenetic alterations affected reservoir quality. The objectives of this study 

are i) to reconstruct the paragenetic sequence of the Sycamore Formation in the Sho-Vel-Tum 

field, ii) to determine the role of diagenesis on the reservoir quality, and iii) to elucidate the 
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geological factors that control the diagenetic evolution in the massive siltstones within the 

Sycamore Formation. 

 

Figure 3: Location map of study area. Black squares are cored well locations in Sho-Vel-Tum 

field (gray area). Red square is the roadcut with Mississippian strata along the southern limb of 

the Arbuckle Mountains. Dark red lines represent the faults in Arbuckles and the green areas 

represent Mississippian rocks from the USGS geological map (Cederstrand, 1997; Boyd, 2002; 

Heran et al., 2003). Faults in black in Sho-Vel-Tum field are from (Carpenter and Tapp, 2014).   

 

2.4 Geological setting 

The Ardmore basin is a northwest-southeast-oriented basin located in Oklahoma, USA. It is 

bounded by the Anadarko basin to the north, the Arbuckle uplift to the east and north, and the 

Marietta basin to the southeast. Three major tectonic events explain the evolution of the Ardmore 

basin. First, during the late Proterozoic to early Paleozoic a three-arm rift resulted in the opening 
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of the Protoatlantic Ocean from two arms. The other arm failed and formed the Southern Oklahoma 

Aulacogen (SOA) (Ham et al., 1965; Burke and Dewey, 1973; Hoffman et al., 1974; Wickham, 

1978; Allen, 2000). Then, subsidence and a passive margin setting in the aulacogen controlled the 

deposition of a thick sedimentary sequence (Lowe, 1975; Evans, 1979; Lane and De Keyser, 1980; 

Gutschick and Sandberg, 1983; Keller et al., 1983; Perry, 1989). Finally, during Pennsylvanian 

time, North America and Gondwana collided and triggered the Ouachita Orogeny. This formed 

major uplifts and basins that resulted in its present configuration (Feinstein, 1981; Ghosh et al., 

2018).  

During Cambrian and Silurian time in the SOA, a thick sequence of carbonate and clastic 

facies accumulated in the Ardmore basin. Then, during the late Devonian, a major transgression 

resulted in the deposition of the organic-rich Woodford Shale on top of a major erosional 

unconformity. Throughout Mississippian time, an extensive and tropical sea covered a  great part 

of North America (Curtis and Champlin, 1959; Ham, 1978; Gutschick and Sandberg, 1983; 

Blakey, 2013). During this marine transgressive episode, limestones, clay- and silt-rich mudstones, 

such as the Sycamore Formation, were deposited. Through the Wichita Orogeny in late 

Mississippian-early Pennsylvanian time, erosion of Paleozoic sediments resulted in the deposition 

of marine shales, sandstones and conglomerates in the Ardmore and Marietta basins (Allen, 2000). 

The Sycamore Formation was initially described by Taff (1903) as a limestone. Since then, 

multiple studies have been completed in outcrops (Cooper, 1926; Chenoweth et al., 1959; Milad 

and Slatt, 2018; Milad et al., 2020) and in the subsurface (Prestridge, 1957; Braun, 1959; Culp, 

1961; Cole, 1989; Coffey, 2001) and defined the Sycamore Formation as a mixed carbonate-

siliciclastic system. However, to the best of the authors’ knowledge, only Coffey (2001) has 

addressed the Sycamore porosity and its relationship to diagenetic processes. Coffey (2001) 
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indicated that secondary porosity (fracture porosity) of the Sycamore in the Carter-Knox field, 

towards the north of the Sho-Vel-Tum field, was structurally developed due to uplift where higher 

fracture porosity occurred in structurally high areas.  

The Sycamore Formation is bounded by two important source rocks, the Woodford and 

Caney shales (Figure 4), and it has two informal zones, a lower transition zone and an upper zone 

with intervals of massive siltstones separated by clay-rich mudstones (Fay, 1989; Donovan, 2001). 

The lower transition zone is separated from the underlying Woodford Shale by a glauconitic layer 

(Donovan, 2001; Duarte, 2018), and it is dominated by gray-greenish claystone (Galvis et al., 

2018; Milad et al., 2020). The upper zone is dominated by gravity-flow deposits separated by 

shale-dominated intervals. Biostratigraphic studies suggest the Sycamore Formation was deposited 

during Meramecian time (Schwartzapfel, 1990; Schwartzapfel and Holdsworth, 1996) and some 

authors interpreted that it was formed by material derived from carbonate and siliciclastic systems 

in the north and west, and deposited as gravity flows (Schwartzapfel, 1990; Coffey, 2001; 

Donovan, 2001; Milad et al., 2020). Donovan  (2001) mentioned a source for the carbonate portion 

to the west and north from a distal shelf and a fluvial system developed to the north and/or east. 
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Figure 4: General stratigraphy of the study area. The Sycamore Formation is divided into 5 

paraseqeunces (A-E). Parasequence A is a transition zone from the Woodford Shale to the massive 

siltstones in the Sycamore Formation. Parasequences B through E are massive siltstones (blue) 

divided by clay-rich mudstones (gray).  Modified from Bebout et al. (1993) and  Henry and Hester 

(1995). 

 

2.5 Data and methods 

Rock description and petrography 

A total of 287 m (942 ft) of Sycamore core from six wells (Frensley, Russell B, Moore Est, Myrtle 

Green, Hunsucker, and Winters-Hardin) were described in this study (Figure 3) in terms of 
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lithology, grain size, bioturbation index, key surfaces, and fractures. Also, 137 m (450 ft) of 

Sycamore outcrop on interstate highway 35 (I-35)(Milad et al., 2020) was also used. Ninety-nine 

plugs from different cores were collected for: thin sections, X-ray diffraction (XRD), energy 

dispersive x-ray fluorescence (Ed-XRF), hand-held X-ray fluorescence (Hh-XRF), porosity, and 

permeability analyses. All thin sections were impregnated with blue epoxy and stained with 

Alizarin-Red S for porosity and calcite identification, respectively. A Zeiss AxioImager Z1TM 

petrographic microscope was employed to characterize the detrital siliciclastic grains, allochems, 

clays, and diagenetic phases. Later, this information was used to define the paragenetic sequence 

based on cross-cutting relationships. Point-counting (Dickinson, 1970) based on 300 points per 

thin section was used to quantify the amount of intergranular calcite and allochems in the bulk 

carbonate portion.  

 

Scanning electron microscopy (SEM) 

Ten selected thin sections were coated with gold prior to the analysis under the SEM. A Zeiss 

NEON 40 EsB SEM was used to study the diagenetic minerals with an emphasis on the 

intergranular calcite and types of porosity. The SEM was coupled with an energy dispersive 

spectroscopy analyzer (EDS), INCA Energy 250 Energy, to acquire observations for elemental 

composition in selected samples. Intergranular calcareous material could be either micritic matrix 

or crystalline since sometimes the limit for classification becomes diffuse when point counting. 

Thus, SEM was used to distinguish the calcite types in the massive siltstones.  
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X-ray diffraction spectroscopy (XRD) 

Forty-eight samples were selected for bulk XRD mineralogical composition performed at 

Weatherford laboratories. Powdered samples were scanned with a Bruker AXS D4 Endeavor X-

ray diffractometer using copper Kalpha radiation. The scanning parameters for a bulk scan are 

from 5° 2θ to 70° 2θ. The step size is 0.020°, and the dwell time at each step is 0.5 seconds. Mineral 

phases were identified with MDI JadeTM 9+ software and ICDD PDF 4+ 2018 database. 

 

Porosity and permeability 

Ninety-two samples were selected for conventional plug analysis where porosity, air permeability, 

and Klinkenberg permeability were measured at ambient temperature and 800 psi net confining 

stress. The samples were dried at 140 °F (60 °C) prior measurements.  

 

X-ray fluorescence spectroscopy (XRF) 

X-ray fluorescence spectroscopy from a Hh-XRF is a semiquantitative elemental analysis 

technique based on the principle that each element has a characteristic combination of fluorescent 

(or secondary) X-rays related to the energy lost. When an atom is excited by a primary X-ray 

source the electrons are ejected, this leaves the atom unstable. Then, electrons from higher shells 

drop to a shell closer to the nucleus; this release of energy produces the secondary X-ray. The 

energy of this X-ray is used to identify each element and consequently determine the bulk 

elemental concentration of the sample. 

Bulk elemental composition was measured at one-foot resolution in the six cores, including 

the exact location of the 99 thin sections, to identify the described facies and to highlight zones 

with similar lithology but different elemental composition. We used a portable Bruker Traces IV-
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SD hand-held X-ray fluorescence (Hh-XRF) at the University of Oklahoma to measure the 

elemental composition of the core plugs and the aforementioned cores at 0.3-m (1-ft) resolution. 

The major elements were scanned under vacuum at 15 kV accelerating voltage for 90 seconds, 

then, trace elements were analyzed under atmospheric pressure with a Ti-Al filter at 40 kV 

accelerating voltage for 60 seconds. The resulted data were converted to parts per million (ppm) 

using fundamental parameters (FP) for mudrocks in Rowe et al., 2012a.  

 

2.6 Results 

Facies classification 

Mississippian strata are divided into two main lithologies (silt-rich mudstones and clay-rich 

mudstones) that are subdivided into four facies (Figure 5) based on grain size, mineralogical 

composition, and rock fabric. Siltstones have phyllosilicates content lower than 10% and 

mudstones have phyllosilicates content equal to or higher than 10% (Figure 6). The siltstones are 

structureless (or massive) with a low amount of clay, and the clay-rich mudstones are either 

massive or bioturbated and composed of clay- to silt-size grains. The massive siltstones are 

bounded at the base by a sharp contact and at the top by a transitional contact to clay-rich 

mudstones. Additionally, each of these lithologies are subdivided into two facies. The massive 

siltstones are divided into a) massive calcite-cemented siltstones (MCcSt) with intergranular 

calcite of > 40% and b) massive calcareous siltstones (MCSt) with intergranular calcite of 40% or 

less. The amount of detrital siliciclastic grains and clays in the MCSt are usually higher than the 

MCcSt. However, the clay-rich mudstones are divided into a) argillaceous mudstones (AMdst) 

with bioturbation index (BI) < 3  and b) bioturbated mudstones (BMdst) with BI equal to or > 4 

following the Taylor and Goldring (1993) classification. 
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Figure 5: Facies in the Sycamore Formation. A) ideal facies succession for Sycamore deposits. 

Clay-rich mudstones are characterized by high GR response and low calcite content and include 

B) argillaceous mudstones and C) bioturbated mudstones. Silt-rich facies include D) massive 

calcite-cemented siltstones and E) calcareous siltstones.  

 

The calcite content is variable in the Sycamore facies. The massive siltstones have higher 

calcite content than the mudstones; however, there are other differences between the massive 

siltstones and clay-rich mudstones. Importantly, the calcite component includes calcareous pellets, 

micrite, and crystalline calcite cement. Figure 6A shows a linear inverse relationship between the 

tectosilicates and the carbonates in the massive siltstones. Also, XRD data reveal that the massive 

siltstones can be differentiated in MCcSt and MCSt by the calcite content.  However, it not possible 

to distinguish the bioturbated from the argillaceous mudstones based only on mineralogical 

composition (Figure 6). 
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Figure 6: Cross plots from XRD data color coded by facies: Argillaceous mudstones (AMdst), 

bioturbated mudstones (BMdst), massive calcareous siltstones (MCcSt), and massive calcite-

cemented siltstones (MCSt).  A) Tectosilicates vs. carbonates. Silt-rich mudstones show a linear 

relationship between carbonates and tectosilicates. B) Phyllosilicates vs carbonates. Silt- and clay-

rich mudstones are differentiated based on phyllosilicate content (silt-rich mudstones < 10 W% 

phyllosilicates). Massive calcite-cemented siltstones have higher carbonate content than the 

calcareous siltstones. C) Phyllosilicates vs. tectosilicates.  
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Stratigraphy 

The contact between Sycamore Formation and the underlying Woodford Shale is unconformable 

and followed by a transition zone that consists of AMdst and BMdst facies. Similarly, the upper 

contact with the Caney Shale is unconformable. We divided the Sycamore into five parasequences 

(A, B, C, D, E) (Figure 4). These fining upward parasequences are bounded by flooding surfaces 

that are easily identified in the gamma-ray (GR) log; thus, we used them for correlations. 

Parasequence A corresponds to the lower transition zone from Donovan (2001) and Fay (1989), 

and it is characterized by clay-rich mudstones. Parasequences B, C, D, and E correspond with the 

upper Sycamore zone and they contain a higher proportion of massive siltstone facies (MCSt and 

MCcSt) at the base and a higher proportion of clay-rich mudstones at the top. 

 

Detrital compositions 

Massive siltstones are well sorted and mainly composed of tectosilicate grains (grains formed by 

single crystals of tectosilicates minerals) and ovoid calcareous pellets. Quartz grains, the most 

common tectosilicate grains, are subangular and range in size from silt to very fine sand and are 

more abundant in MCSt than in MCcSt. The pellets are well rounded and elongated in shape, and 

contrary to tectosilicate grains that are subangular. They are more abundant in the MCcSt than in 

the MCSt facies.   

Clay-rich mudstones facies (AMdst and BMdst) are mainly composed of clays and quartz 

grains, but allochems and detrital organic matter are also present. Clay-rich mudstones have fewer 

pellets and calcareous rock fragments than the massive siltstones. However, fossil fragments 

longer than 1 cm (0.4 in) (mainly brachiopods) have not been observed in the massive siltstones. 

The most common ichnofacies is Phycosiphon (Figure 7A), but Nereites and Zoophycos also exist 
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in the Mississippian cores. From the I-35 Sycamore outcrop, Chondrites, Planolites, large 

Cosmoraphe, Thalassinoides, and Rhizocorallium are also documented in the clay-rich facies 

(Milad et al., 2020). 

 

 

Figure 7: Sycamore Formation core and outcrop images. A) Bioturbation features caused by 

Phycosiphon (Py) in Moore East core. B) Average thickness of one complete parasequence in I-

35 outcrop including massive siltstones at the base overlain by massive and bioturbated clay-rich 

mudstones. C-E) Fractures in the silt-rich siltstones in Myrtle Green core.  Fractures are filled with 

calcite only when cutting massive calcite-cemented siltstone MCcSt. Note that the fractures filling 

material stop at the boundary between the MCcSt (lighter color) and MCSt (darker color). F) 

Schematic diagram shows how fractures are filled with calcite only when cutting through massive 

calcite-cemented siltstone MCcSt.   The two siltstones types are easier to differentiate in core vs. 

outcrop.  G) Breccia found in the Russell B core.  
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Diagenetic minerals and cements 

The highest porosity and permeability observed in this study correspond to the massive calcareous 

siltstones (Figure 8A & Figure 8B). Consequently, the diagenetic history of these rocks is 

important. The next paragraphs present the main diagenetic minerals in these massive siltstones 

which are calcite and clay minerals, but we also identified pyrite, dolomite, and silica.  
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Figure 8: Sycamore Formation thin-section photomicrographs (A-C) and SEM images (D-F). A) 

Dissolution porosity in isolated feldspar grains in massive calcite-cemented siltstone (arrows) 

(appendix C53). B) Porous massive calcareous siltstone (appendix C8). C) Dissolution porosity in 

a feldspar grain (appendix C12). D-E) SEM images of dissolution porosity in massive calcareous 

siltstone (appendix C50). Note the rocks are not entirely cemented. F) Small-scale dissolution 

porosity in well-cemented massive calcite cemented siltstone (appendix C8). 
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Figure 9: Sycamore Formation thin-section photomicrographs (A-C) and SEM images (D-F). 

Various colored arrows highlight tectosilicate grains (green), pellets (yellow), intergranular calcite 

cement (blue), porosity (red), and dissolution porosity (orange). A) Massive calcite-cemented 

siltstone with abundant intergranular calcite and a calcite-filled fracture (CF) (appendix C24). Note 

that the cross-cutting relationship indicates that the calcite fill in the fracture is younger than the 

intergranular calcite cement. B) Massive calcareous siltstones. Note dissolution porosity is present 

in the sample and calcite cement is less abundant than in A (appendix C7). C) Micrite and calcite-

filled fracture (appendix C20). D) Intergranular calcite cement, pellet, and quartz grain (appendix 

C50). E) Effect of calcite cement in micritic intervals (appendix C52). Note the division of the 

sample by the yellow line, the upper portion is well cemented without porosity and the lower 

portion is less cemented and with microporosity. F) Micritic interval with cemented portion to the 

left and visible micrite grains with microporosity to the right (appendix C52). G) SEM image 

showing a fracture filled with calcite, barite, and celestine (appendix C50). H) Barium map using 

an EDX coupled with the SEM to illustrate the variation in the elemental composition in the 

fracture (appendix C50). Based on cross-cutting relations calcite precipitated first, then celestine, 

and finally barite. These minerals have been reported in the underlying Woodford Shale (Roberts 

and Elmore, 2018) in a nearby location. 

 

In general, calcite in the massive siltstone facies occurs as allochems, micrite, and calcite 

cement filling fractures (Figure 9A & Figure 7C-F) and the spaces between tectosilicate grains. 

This intergranular calcite, including micrite and cement, is higher in the MCcSt (avg. 44%) than 

in the MCSt (avg. 26%) facies. However, it is difficult to quantify these two types of calcite under 

the petrographic microscope due to the diffuse limit between them.  The SEM is necessary to 

differentiate and qualitatively define the distribution of the micrite and intergranular calcite cement 

in the massive siltstones. The calcite cement is more common in the MCcSt than in the MCSt. In 

addition to the intergranular calcite cement, fracture-filling calcite is in sharp contact with other 

authigenic minerals including intergranular calcite cement (Figure 9A) and only precipitates in 

the fractures when cutting the MCcSt facies but not in the MCSt facies (Figure 7C-F). Also, this 

fracture-filling calcite is usually associated with celestine and barite (Figure 9G).  
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From XRD data, the main phyllosilicates in the Mississippian strata are illite/micas (up to 

40%), mixed layers of illite-smectite (up to 4.9%), and chlorite (up to 0.9%). Phyllosilicates are 

less abundant than calcite cement but based on the XRD data they represent about 4.6% of the 

siltstone facies and 34% of the mudstone facies.  

 

Porosity and permeability 

Based on conventional core analysis, porosity ranges from 0.2 - 14.6% and permeability ranges 

from 0.0000044 - 0.27 mD. In general, calcareous siltstones have higher porosity followed by 

bioturbated mudstones whereas bioturbated mudstones have higher permeability followed by 

calcareous siltstones (Figure 10). Also, the distribution of the porosity shows that BMdst has a 

broad range of porosity and permeability.  
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Figure 10: Porosity and permeability cross plot (A) and box plots (B, C). AMdst (n=16), BMdst 

(n=30), massive MCcSt (n=28), and MCSt (n=25) are illustrated. A) Cross plot of ambient porosity 

vs air permeability. The highest porosity values correspond to massive calcareous siltstones. A 

moderate positive relationship exists between porosity and permeability. However, some clay-rich 

mudstones and massive calcite-cemented siltstones with low porosity have permeability values 

higher than 0.01 mD. B, C) Box plots of porosity and permeability by facies.  Massive calcareous 

siltstones have the highest porosity and Argillaceous mudstones have the lowest porosity values. 

Note the broad distribution of permeability in the Bioturbated mudstones.   
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Petrographic and SEM analyses show two main types of porosity in the massive siltstones: 

microporosity and dissolution porosity. Primary porosity in the massive siltstones is mainly related 

to microporosity between the mud-size calcareous grains. However, in some cases, integranular 

calcite cement occludes this microporosity. Microporosity is more common in the MCSt than 

MCcSt due to the limited abundance of calcite cement. Secondary porosity caused by the 

dissolution of detrital feldspar grains (dissolution porosity) is the other main type of porosity in 

the massive siltstones, MCcSt and MCSt. In addition, fracture porosity is present but is minor; 

therefore, it does not significantly impact RQ. 

 

Elemental composition 

average values in ppm of selected XRF elements, such as aluminum (Al), potassium (K), 

titanium (Ti), and silicon (Si) are substantially higher in clay-rich mudstones than in the Massive 

siltstones, the opposite happens with the carbonate proxies (Ca and Sr). By comparing the XRF 

values within clay-rich Mudstone facies, there is not a significant difference between BMdst and 

AMdst. However, by comparing the Massive Siltstones, the MCSt have a higher content of clay 

and continental input proxies (Ti and Zr), but less carbonate proxies than the MCcSt. 

 

2.7 Discussion 

The aforementioned data integration including petrophysical observations, SEM 

evaluation, geochemical analyses, core and outcrop investigation, and well-log analysis were used 

to: 1) reconstruct the paragenetic sequence, 2) determine the role of diagenesis on reservoir quality, 

and 3) investigate the geological factors that control the diagenetic evolution in the massive 

siltstone rocks. The two major Sycamore facies, which are massive siltstones and clay-rich 
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mudstones, are the result of differences in the conditions of deposition and sediment source. While 

massive siltstones are divided into calcareous siltstones and calcite-cemented siltstones based on 

the amount of calcite cement, the mudstones are divided into bioturbated and argillaceous based 

on the amount of clays and bioturbation.  

Results show that the massive calcareous siltstones are more porous and permeable than 

the massive calcite-cemented siltstones. This is because MCSt was partially cemented, but not to 

the same degree as the MCcSt. Additionally, the highly cemented MCcSt restricted the movement 

of dissolving fluids inhibiting the generation of dissolution porosity. On the other hand, 

permeability in BMdst is relatively high compared to the other facies. Based on the petrographic 

analysis we found that BMdst are more prone to develop induced fractures during the sampling 

process, however more data needs to be analyzed to understand the relationship between 

bioturbation and fractures.  

 

Paragenetic sequence of diagenesis 

Petrographic and SEM analyses and XRD data were used to understand the paragenetic 

sequence of the Sycamore Formation. The main diagenetic processes that occurred in the Massive 

siltstones (Figure 11) are calcite cementation, feldspar and calcite dissolution, corrosion of quartz, 

smectite-to-illite transformation, calcite cement filling fractures, and pyrite formation.  
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Figure 11: Paragenetic sequence of the Sycamore formation in the area of study. Note that calcite 

cement in the matrix started during early diagenesis and continue during middle diagenesis even 

when dissolution porosity started in some parts of the basin. Also, the calcite filled-fracture, and 

other digenetic minerals filling the fractures, are younger than the intergranular calcite cement. 

 

Calcite cement 

Two main types of authigenic calcite are present in the Sycamore Formation: intergranular calcite 

cement and calcite cement filling fractures. These types of calcite are not genetically related due 

to cross-cutting relationships that indicate the fracture fills are younger than the intergranular 

calcite cement (Figure 9A). There also could be differences in the source of the cementing fluids.  

The intergranular calcite cement was precipitated during early diagenesis based on the 

absence of quartz cement and chlorite rims, and the floating texture in the massive siltstones 

(Figure 9A & Figure 9B), suggesting a pre-compaction event. Composition of early Mississippian 

seas were primary calcite over aragonite; thus, this support the idea of early cementation. However, 
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the origin of this cement using isotopic analysis is not clear and difficult to explain due to the 

deficiency of methodologies for separating calcareous cement from calcareous pellets, and the 

small size of the calcite crystals. Furthermore, SEM was used to distinguish between intergranular 

calcareous material that could be either micritic matrix or crystalline cement (Figure 9E-F). Based 

on SEM results (Figure 8 & Figure 9), micrite is more common in the MCSt and crystalline 

cement is more common in the MCcSt. SEM observations also indicate that the crystalline cement 

is replacing micritic matrix (Figure 8F, Figure 9E-F, & Figure 12). Hence, we propose an internal 

source in the same formation as the source for that material needed to precipitate the crystalline 

cement (Kantorowicz et al., 1987; Saigal and Bjørlykke, 1987). 

Contrary to the intergranular calcite cement, fracture-filling calcite precipitated during late 

diagenesis (Figure 9A). Roberts and Elmore (2019) reported that the study area was affected by 

external fluids and that calcite, barite, and celestine fill fractures in the Woodford Shale. The 

presence of these minerals in the Sycamore suggests that, like the Woodford Shale, it was an open 

system late in its diagenetic evolution. 

Internal sources, such as interbedded mudstones, dissolution of calcium-bearing feldspars, 

fossils, and calcareous pellets may be the source of the crystalline calcite cement (Morad et al., 

1990). Some authors (Freed and Peacor, 1989; Sun et al., 2019) have reported that mudstones and 

feldspars could provide the needed ions (Na+ + Ca2 + Fe2 + Mg2) to precipitate carbonate cement. 

Nevertheless, this does not explain the great amount of calcite that has been precipitated in the 

Massive siltstones. Therefore, it is more likely that micrite and allochems could account for most 

of the calcium needed for growing crystalline calcite. This idea is consistent with the observation 

that calcite cement is more abundant in samples with more calcareous material such as pellets. 
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This also might explain the floating texture given by the original abundance of micrite that has 

been replaced by the crystalline calcite cement. 

 

Feldspar grain dissolution and quartz grain corrosion 

Silt-sized tectosilicate grains are abundant in the massive siltstones. Feldspar dissolution 

is the main reason for secondary porosity followed by calcite dissolution, and both processes are 

usually attributed to the presence of organic acid-rich fluids (Harrison and Thyne, 1992; Worden 

and Barclay, 2000; Rahman and Worden, 2016). In the Sycamore Formation, these fluids could be 

sourced by clay-rich mudstones intervals within the Sycamore or most likely they originated from 

the underlying organic-rich Woodford Shale.  

CO2 derived from the organic-rich Woodford Shale during decarboxylation of organic 

matter may be responsible for the acidic fluid that is interpreted to have caused the dissolution of 

feldspars in the Sycamore (Worden and Barclay, 2000; Rahman and Worden, 2016). Additionally, 

the dissolution of feldspar grains contributes to the formation of the authigenic phyllosilicates in 

the Sycamore Formation by releasing K+, Al3+, and SiO2(aq) into the system (Sun et al., 2019).  

Quartz cement in the Sycamore Formation is very rare and its minor presence might result 

from Si released during the feldspar dissolution. 
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Controls on reservoir quality 

Reservoir quality in the Sycamore Formation, especially in the massive siltstones, is related to the 

diagenetic evolution. However, other geologic factors like depositional facies controlled the 

diagenesis in the Sycamore Formation.  

 

Diagenetic controls on reservoir quality 

Porosity evolution in the Sycamore Formation is affected by cementation and dissolution 

processes. Cementation, as opposed to compaction, is the main process that reduced original 

porosity and started during early diagenesis (Figure 11). The floating texture of massive siltstones 

supports the idea that calcite cement formed during early diagenesis, preventing the impact of 

mechanical compaction on the reservoir quality of the Sycamore. On the other hand, dissolution, 

occurred later than cementation in the paragenetic sequence. Our hypothesis is that initially, 

micrite fills intergranular spaces among the tectosilicate grains and generates microporosity 

between the mud-size calcareous grains (Figure 12). Then, cementation occurs, helped in part by 

the abundant calcareous material, and in part because microporosity facilitates the flow of the 

cementing fluids in the rock. This results in highly and poorly cemented facies. Finally, dissolving 

fluids move easier along permeable rocks than in highly cemented facies causing feldspar and 

calcite dissolution. Therefore, Massive Calcareous Siltstones-MCSt are less cemented and more 

porous than Massive Calcite-cemented Siltstones-MCcSt as a result of the cementation and 

dissolution processes. 
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Figure 12: Schematic diagram to illustrate the simplified evolution of crystalline calcite cement 

and secondary porosity in A) massive calcite-cemented siltstones (MCcSt) and B) massive 

calcareous siltstones (MCSt) from relative time 1 to 3. Time 2 represent a transition point from 

depositional facies in time 1 to the facies described in this study in time 3. Sample B initially (time 

1) has more tectosilicate grains and less micrite and pellets than sample B (in time 1). This resulted 

(time 3) in less calcite cement and more dissolution porosity in sample B than A. 

 

Crystalline calcite cement occludes primary intergranular porosity and some microporosity 

(Figure 12). Therefore, micrite and the associated microporosity are important factors that control 

the presence of the calcite cement and consequently porosity. Point-count data (Figure 13) show 

an inverse relationship between undifferentiated intergranular calcite and porosity and 

permeability values. Point-count data and SEM observations strengthen the idea that calcite 

cement is a major (but not the only) factor that drives the evolution of the porosity in the Sycamore 
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Formation. Furthermore, the calcite cement decreases the permeability and consequently 

influences the movement of late diagenetic fluids responsible for the dissolution porosity. 

 

 

Figure 13: Cross plots using point counting data. They illustrate how the percentages of porosity 

(A), permeability (B), pellets (C), and detrital grains (E) vary with the percentage of intergranular 

calcite (undifferentiated) for massive calcite cemented siltstones (blue) and massive calcareous 

siltstones (gray). Pellet, detrital siliciclastic grain, and calcite cement percentages based on point 

counting (n=300). Porosity and permeability values are from conventional core plug analyses, and 

they present an inverse relationship with intergranular calcite. Also, note the direct relationship 

between intergranular calcite and pellets, but the inverse relationship between intergranular calcite 

and detrital siliciclastic grains. 

 

Opposite to calcite cementation, feldspar and calcite dissolution increases the porosity of 

the rock. However, these two diagenetic processes are related to each other; calcite cement 
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decreases the permeability during early diagenesis and controls the flow of later diagenetic fluids. 

In other words, a decrease of permeability in zones with abundant calcite cement prevents late 

diagenetic fluids from permeating the rock and dissolving feldspar grains. Thus, comparing 

Sycamore massive facies, MCcSt facies has higher calcite cement and lower dissolution porosity 

than the MCSt.  These resulted in low and high relative reservoir quality facies, respectively. 

 

Depositional controls on diagenesis 

Variation in the degree of diagenesis between the MCcSt and the MCSt is partially due to 

variations of conditions during deposition. For instance, the abundance of intergranular calcite is 

directly proportional with pellets abundance and inversely proportional with detrital siliciclastic 

grains (Figure 13C -D). This is due to greater input from the carbonate shelf in the north and west 

(Donovan, 2001) and results in abundant micrite filling spaces between tectosilicate grains. This 

implies that the abundance of calcite cement in the massive siltstones is driven by depositional 

facies. The greater the input of calcareous material in the depositional facies, the more 

intergranular micrite, and consequently the more calcite cement. Therefore, by understanding, sea-

level change and position along the depositional profile or proximity to the sediment source can 

assist in predicting reservoir quality in the Sycamore.  

MCSt facies are enriched in detrital siliciclastic grains and depleted/poor in calcareous 

material such as pellets, compared to the MCcSt that has less siliciclastic material, but more pellets 

(Figure 13C-D). These differences in the rock composition are the result of differences in sediment 

supply. Figure 14shows the relationship among paleoenvironmental proxies where MCcSt facies 

contains higher calcium (carbonate proxy) but less aluminum and titanium (clay and detrital input 
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proxies, respectively) than the MCSt facies. Therefore, the ratio of detrital grains over calcareous 

material, such as pellets and micrite, in the rock is given by the relative location between the feeder 

of the siliciclastic material and the source of the calcareous material. Consequently, depositional 

facies proximal from the carbonate source and distal from the siliciclastic source results in well 

cemented MCcSt. Also, depositional facies distal from the carbonate source but proximal to the 

siliciclastic input results in more porous MCSt facies. Therefore, diagenetic calcite cement is more 

abundant where the input from the carbonate shelf is more notable.  

 

 

Figure 14: Cross plots of facies elemental abundance of calcium (Ca) as compared to aluminum 

(Al) and titanium (Ti) (in ppm based on HH-XRF).  Al is a proxy for clays, Ca is a carbonate 

proxy, and Ti is a detrital siliciclastic input proxy. A) The Al vs Ca cross plot shows a negative 

relationship between the clay and carbonate content. B) The Ti vs Ca cross plot also shows a 

negative relationship between detrital siliciclastic input and carbonate content.  
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Additionally, more calcareous transported material such as micrite and pellets implies more 

material (e.g. Ca+) that could be the source to precipitate the crystalline calcite cement. This 

evidence presents at the fractures and the filling material (Figure 7C-F). The calcite cement only 

precipitated in the fractures when cutting the MCcSt facies but not in the MCSt. Therefore, the 

diagenetic evolution controlled in part by different depositional facies between the MCcSt and 

MCSt Sycamore facies has led to different reservoir quality. 

 

Stratigraphic controls on diagenesis 

The distribution of calcite cement in the Sycamore Formation is also temporally related to the 

paleoenvironmental conditions. Variable sediment input from the siliciclastic and carbonate 

systems through time resulted in differences in the distribution of calcite cement in the four 

parasequences that contain massive siltstone facies (B, C, D, E). Moreover, the consequence of 

this stratigraphic variation in the distribution of calcite cement is the evolution of different 

pathways or impermeable zones that affect reservoir quality and heterogeneity (Mansurbeg, 

Morad, et al., 2012). 

Some authors have observed that the lowest porosity and permeability values are usually 

in the interface between mudstones and sandstones (Xiong et al., 2016; Yang et al., 2017; Sun et 

al., 2019). However, this is not the case in this study because, in the Sho-Vel-Tum field, the highest 

porosity values correspond with the base of parasequence C located immediately above the 

interface between clay-rich mudstones-massive siltstones; porosity decreases toward the top of 

parasequence C (Figure 15). Additionally, the lowest porosity and permeability values correspond 
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to parasequence B. The contact between these parasequences (B and C) is of special interest 

because the highest and lowest porosity values are located around this stratigraphic position.  

 

 

Figure 15: W-E stratigraphic cross section of Sycamore Formation Parasequences. Parasequence 

B is less porous than parasequences C, D and E (black dots represent porosity values base on core 

plugs). Additionally, the highest porosity values are at the base of parasequence C and decrease 

upward (red arrows). This is accompanied by a sharp increase in detrital siliciclastic input from 

parasequence B to C based on the Si/Ti ratio (black arrows).  The top of parasequence B is the 

datum. 
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The siltstones from parasequence B have higher carbonate proxies (Ca) and lower clay 

proxies (Al and K) as compared to the other parasequence siltstones (C-E). Parasequence B is well 

cemented due to the replacement of abundant micritic material by crystalline calcite cement. The 

incursion in Si/Ti ratio from parasequence B to C (Figure 15) implies different compositions 

between these two sections due to changes in the detrital input composition. We observe that this 

boundary represents a sharp increase in clay content and a decrease in carbonate material from 

parasequence B to C. Therefore, this boundary could be related to a major sea-level fall and 

transition from a more carbonate-dominated system during early Mississippian, where a great part 

of North America was cover by shallow epicontinental seas (Gutschick and Sandberg, 1983), to a 

more siliciclastic-dominated system. This is also observed toward the north in the Anadarko basin, 

where the Osage formation is a pure carbonate system and the Meramec is a mixed carbonate-

siliciclastic system (Price et al., 2019).  

 

Model of depositional, stratigraphic, and diagenetic processes controlling the reservoir quality 

in the Sycamore Formation 

Reservoir quality, especially porosity, in the Sycamore Formation is controlled by diagenetic 

processes such as calcite cementation and dissolution of feldspars and calcite; however, other 

intrinsic factors such as depositional environment and stratigraphy are also necessary to predict 

reservoir quality. The stratigraphic distribution of clay-rich mudstones and calcite cement 

distribution in massive siltstones is illustrated for the Sycamore parasequences (Figure 16). 

Parasequence B overlies the transition zone (parasequence A), is well cemented, and 

exhibits the lowest porosity and permeability of the Sycamore parasequences that contains massive 
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siltstones. This might be caused by a major change in sea-level during Mississippian time that, 

analogous to the Anadarko basin in the north, resulted in a change depositional environment from 

a carbonate-dominated system (e.g. Osage), to a mixed carbonate-siliciclastic system (e.g. 

Meramec). The carbonate-dominated system resulted in a greater amount of crystalline calcite 

cement responsible for the low RQ in parasequence B.  

Parasequence C has the highest porosity at its base and decreases in porosity upward 

(Figure 15 & Figure 16). This can be explained by diagenetic fluids that come from the organic-

rich Woodford Shale and move on top of and across the well-cemented (impermeable) 

parasequence B. As a result, the diagenetic fluids move easily to the base of parasequence C, 

resulting in the generation of secondary porosity due to the dissolution of feldspars. This pattern 

has not only been observed from porosity and permeability data and petrographic analysis but also 

from well logs in Sho-Vel-Tum field where the highest porosity values are at the base of 

parasequence C. The distribution of calcite cement in the overlying parasequences (D and E) is 

variable depending on depositional facies and diagenetic history. 

Although the aforesaid porosity trend is continuous in the Sho-Vel-Tum field, the absolute 

values vary depending on the area. For instance, Frensley and Russel B cores exhibit similar trends 

(Figure 15), but the Frensley core is generally more porous than the Russel B. This might be 

because the Frensley core is located next to a fault and fluids moving through this fault have a 

higher impact on the nearby formation by creating secondary porosity. 
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Figure 16: W-E stratigraphic cross section to illustrate the distribution of calcite cement in the 

Sycamore Formation siltstones at Sho-Vel-Tum Field. In general, the massive calcite-cemented 

siltstones are well cemented (pink) and the massive calcareous siltstones are the massive siltstones 

in blue. The massive siltstones from parasequence B are well cemented, then the lower portion of 

parasequence C is the most porous interval and decreases upward. The diagenetic fluids move 

easily to the base of parasequence C, resulting in the generation of secondary porosity due to the 

dissolution of feldspars, and as a consequence the rocks with better RQ are present in this interval. 

 

2.8 Conclusions 

• Clay-rich mudstones and massive siltstones are the two main facies of the Sycamore 

Formation at Sho-Vel-Tum field. The clay-rich mudstones are subdivided in argillaceous (AMdst) 

and bioturbated (BMdst) mudstones and the massive siltstones are subdivided in massive calcite 

cement (MCcSt) and massive calcareous (MCSt) siltstones. 

• Cementation and dissolution are the main diagenetic processes that impact reservoir quality 

of the massive siltstones. These diagenetic processes are related to each other; calcite cement, that 

replaces micrite, decreases permeability during early diagenesis and controls the flow of later 

diagenetic fluids responsible for feldspar dissolution 
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• Differences in the sediment supply between carbonate- and siliciclastic-dominated systems 

controls the distribution of calcite cement in the Sycamore. Detrital siliciclastic input increase, 

accompanied by a decrease in pellets and micrite, leads to less calcite cement, thus better reservoir 

quality. The consequence of this variation in calcite cement is the evolution of different permeable 

and impermeable zones that affect how the acid fluids flow and generate secondary porosity.  

• Stratigraphic variation of cement between the Sycamore parasequences is linked with 

conditions during deposition and diagenesis. The parasequence B is relatively more cemented than 

the other parasequences (C, D and E) that contains massive siltstones. Additionally, the highest 

porosity is at the base of the parasequence C and is associated with dissolution porosity of feldspars 

grains and carbonate material immediately on top of parasequence B. 
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Chapter 3: Semi-supervised Workflow to Generate Petrofacies Logs from Thin Sections 

and XRF Data 

David Duarte, Rafael Pires de Lima, Deepak Devegowda, Matthew J. Pranter 

 

3.1 Preface 

This chapter is presented here as it was submitted to the Marine and Petroleum Geology journal. 

The data for this project was acquired through the STACK-Merge-SCOOP consortium led by Dr. 

Roger Slatt. The 2nd chapter resulted in a conceptual model to predict the reservoir quality in the 

Sycamore Formation. The 3 and 4 chapters combined try to validate this conceptual model by 

linking the thin-section information with 3D models. The results presented in this 3rd chapter 

concluded that machine learning techniques and XRF data could be used to increase the vertical 

resolution gap between thin-sections and well logs. Some of the highlights for this chapter are: 

• UMAP dimensionality reduction technique demonstrated to be effective to transform high-

dimensional XRF data to low-dimensional projections. 

• A self-training approach combined with XRF-data enhances the vertical resolution of thin-

section-defined petrofacies by creating pseudo-labels (predicted petrofacies) for cored intervals. 

• Machine learning bridges the resolution gap between the scarce core data and the well log 

information. 

 

3.2 Abstract 

 Core data provide valuable in situ information on the chemical and physical characteristics of 

subsurface formations. For example, from thin sections it is possible to define rock types with 
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similar mineral composition, lithologies, and pore types (i.e., petrofacies). Petrofacies logs 

illustrate the stratigraphic variability of reservoir rocks and are often used to constrain 3-D facies 

and petrophysical-property models. However, core data are commonly scarce, thus, alternative 

data, such as well logs, with a different vertical resolution are more commonly used to characterize 

the mineralogy, lithology, and porosity of subsurface formations.  Given the differences in vertical 

resolution between thin sections and well logs, novel Machine Learning techniques and workflows 

are used to relate these data types and identify subtle changes in rock properties at an appropriate 

vertical resolution The data available are thin-section-based petrofacies and X-ray fluorescence 

(XRF) data on collocated cores. XRF data is relatively lower in resolution compared to thin-section 

images. Our aim is to use machine learning techniques to bridge the resolution gap between thin 

sections and well logs. To that end, we develop two semi-supervised approaches that use XRF data 

as input in combination with dimensionality reduction techniques to reliably classify the thin-

section-based petrofacies. Both the semi-supervised approaches we use, a self-training approach 

and a labeled-clustering approach, achieve accuracies in excess of 90% on this dataset. Although 

we used different dimensionality reduction techniques, UMAP provided the best results for both 

semi-supervised approaches. By generating petrofacies logs, we bridge the resolution gap between 

core-based thin sections and well-log data. Additionally, we demonstrate that by including semi-

supervised methods in routine core analysis, leads to enormous cost and time savings for 

stratigraphic correlation, identifying target zones, design horizontal wells, and constrain 

subsurface models. 
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3.3 Introduction 

Table 1: Nomenclature for chapter 3 

 
 

From core observations and petrographic analysis of core-derived thin sections it is possible to 

define rock types with similar mineral composition, lithologies, and pore types (i.e., petrofacies).  

Core data and thin sections are generally scarce, therefore petrophysical properties from well logs 

are more commonly used to infer and characterize the mineralogy, lithology, and porosity of 

subsurface formations.  Thin sections and associated core plugs provide direct mineralogical and 

porosity data for a subsurface formation, whereas mineralogy and porosity are not directly 

observed from well logs but can be estimate from other analysis such as X-ray diffraction (XRD) 

and routine plug analysis.  Given these differences and the differences in vertical resolution and 

volume support between thin sections and well logs, novel Machine Learning (ML) techniques 

and workflows are used to relate these data types and to classify rock types or petrofacies at an 

appropriate vertical resolution so as to characterize subtle changes in rock properties.   

There have been many applications of ML techniques to relate core and petrographic data 

to well logs. For example, supervised ML techniques have been used to classify core-based 

geological attributes (e.g. lithofacies) from well-log information (Dubois et al., 2007; G. Wang et 

al., 2014; Bhattacharya et al., 2016; Wood, 2019; Bressan et al., 2020).  ML has fostered the 

NOMENCLATURE

Al Aluminum MCSt Massive calcareous siltstones

Ca Calcium Mdst Clay-rich mudstones 

CGR Core gamma-ray ML Machine learning 

DBSCAN Density-based spatial clustering analysis PCA Principal component analysis

ECS Elemental Capture Spectroscopy PCs Principal components

GR Gamma-ray log SEM Scanning electron microscope

HCA Hierarchical clustering analysis Si Silicon 

ICA Independent component analysis SVM Support vector machine 

ICs Independent components t-SNE t- Distributed Stochastic Neighbor Embedding

K-means K-means clustering analysis UMAP Uniform Manifold Approximation and Projection 

KNN K-nearest neighbor XRF X-ray fluoresce 

MCcSt Massive calcite-cemented siltstones XRD X-ray diffraction 
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development of models that predict thin-section-defined information, such as mineralogical 

composition and diagenetic facies, from photographs and Elemental Capture Spectroscopy (ECS) 

logs (Cheng et al., 2018; Duarte-Coronado et al., 2019; Lai et al., 2020; Pires de Lima et al., 2020). 

However, it has been clear that for the supervised model to perform satisfactorily, big data sets 

containing numerous observations from both predictor and predicted variables are required, posing 

a stringent need for data that is not always feasible to fulfill.  

Semi-supervised techniques, which stands somewhere between supervised and 

unsupervised learning, have emerged as an alternative tool. These techniques combine a small 

amount of labeled data (data with true labels) and a large amount of unlabeled data avoiding the 

challenges of finding a large amount of labeled data to train supervised models (Basu, 2009; Liu 

and Özsu, 2009). Semi-supervised approaches have been used to predict lithology and facies 

observations from well logs in a data set with abundant well logs but limited observations on the 

intended predicted variable (i.e. lithofacies) (Dunham, Malcolm, and Kim, 2020; Xie and Spikes, 

2020). The challenge remains in obtaining unified and unambiguous workflows to enhance the 

resolution of the scarce core data at high accuracies and bridge the resolution gap between thin 

sections and well logs.  

Determining petrofacies allows for the identification of prolific petroleum reservoirs 

(Watney et al., 1998) and the characterization of the diagenetic processes to predict subsurface 

petrophysical properties. We present a workflow that combines semi-supervised techniques and 

elemental composition of the rock to enhance the resolution of the thin-section-defined petrofacies 

in cores. By using the elemental composition and petrographic information from thin sections for 

the Mississippian Sycamore Formation at Sho-Vel-Tum Field in the Ardmore Basin of southern 
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Oklahoma (Figure 17), we develop a ML workflow to generate petrofacies logs (predicted 

petrofacies variations with depth) with high accuracy in cored wells. 

 

 

Figure 17: Location map of the study area. Black squares are cored well locations in Sho-Vel-

Tum field (gray area) and black dots are non-cored wells. Faults in black in Sho-Vel-Tum field 

are from Carpenter and Tapp (2014).   

 

3.4 Data & methods 

We use core data for six wells from the Sycamore Formation in the prolific Sho-Vel-Tum Field 

(Figure 18). The core data include 96 thin sections that are used to define petrofacies and the 

elemental composition of the rock.  The thin-section-defined petrofacies can be considered to be 

true labels that we attempt to predict in a ML workflow using elemental compositions derived 
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from the XRF. The elemental compositions for 29 elements was conducted at 0.3-m (1-ft) intervals 

in the cores (>1,000 samples) with a hand-held X-ray fluorescence analyzer (herein referred to as 

XRF data).  

 

Figure 19 shows the general workflow with the main steps implemented in this study: i) define 

petrofacies (true labels) using thin sections, ii) preprocess XRF data, iii) use techniques to reduce 

the dimensionality of the XRF data, and iv) train two semi-supervised approaches use XRF data 

as input to classify petrofacies logs. 

 

 

Figure 18: Cross section from west to east with the 6 cored wells and the thin-sections locations. 

The black rectangles next to the well logs (Gamma Ray-GR, density-RHOB and resistivity-RESD) 

represent the cored section where the X-ray fluorescence (XRF) data were measured at 0.3-m (1-

ft) resolution. The yellow lines in the black rectangles represent the locations of the thin-sections 

that were used to define the petrofacies. The Sycamore Formation overlies the Woodford Shale 

(WD), and it is divided in parasequences from A to E. 
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Data processing 

XRF data were normalized with min-max normalization method:  

 
𝑥 𝑠𝑖  𝑠𝑐𝑎𝑙𝑒𝑑 =  

𝑥𝑖 − min (𝒙)

max(𝒙) − min (𝒙)
 

(1) 

 

where 𝑥 𝑠𝑖 is the scaled version of sample 𝑖 ∈ (1, 2, . . . , 𝑁) of variable 𝒙 containing 𝑁 samples. 

This method rescales all variable values in the range of [0,1] to prevent one variable having an 

increased importance when compared to others only based on its range. Contrary to some other 

normalization methods, min-max scaler preserves the natural distribution of data. XRF data were 

normalized prior to being used in the following steps (Figure 19). Samples that lacked values for 

any variable were discarded.  

 



 

62 
 

 

Figure 19: Generalized workflow that uses core thin-section-defined petrofacies and XRF data to 

create petrofacies log in cored intervals. Cylinders in dark gray represent data used and oval 

represent the output for each of the two main steps. The thin-sections (N=96) were used to define 

the three petrofacies and the X-ray fluorescence (XRF) provides the element logs (29 elements at 

0.3-m resolution) of the rock. Two semi-supervised approaches were tested, self-training and 

labeled-clustering.  

 

Dimensionality reduction techniques 

ML methods have a tendency to perform poorly when using high-dimensional data (too many 

variables) due to a phenomenon defined as the curse of dimensionality, which causes data to appear 

equidistant in high-dimensions (Bellman, 1961). For example, clustering methods that measure 
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the distance between points produce poor results when dealing with too many variables. Thus, we 

use five techniques to transform 29-dimensional XRF data to a 3-dimensional representation. The 

first technique consisted of simply selecting the most important elements based on our geological 

knowledge of the rock. These were calcium (Ca), aluminum (Al), and silicon (Si). We called this 

set of elements “proxies”. We also use four different algorithms including Principal Component 

Analysis (PCA), Independent Component Analysis (ICA), t- Distributed Stochastic Neighbor 

Embedding (t-SNE), and Uniform Manifold Approximation and Projection (UMAP). We 

evaluated the dimensionality reduction algorithms based on how well these techniques cluster the 

true labels in 2D graphical representations (qualitatively), and in terms of the fidelity of the 

classification using the semi-supervised models. Thus, we used the accuracy of the final supervised 

model to define which dimensionality reduction technique resulted in models with higher 

accuracy. 

PCA and ICA apply linear transformations to reduce high-dimensional data into fewer 

dimensions called principal components (PCs) and independent components (ICs), respectively 

(Pearson, 1901; Comon, 1994; Hyvärinen and Oja, 2000; Hyvärinen et al., 2001; Jolliffe, 2002). 

While PCA computes projections based on the variance of the data, ICA aims to separate 

superimposed information into different sources. On the other hand, t-SNE and UMAP are 

stochastics and nonlinear techniques, respectively, used mainly for visualizing high-dimensional 

data in a two or three-dimensional maps (van der Maaten and Hinton, 2008; McInnes et al., 2018). 

Because t-SNE is a stochastic method, it produces different results with different initializations. 

Thus, selecting the parameters, such as perplexity and learning rate, is important for the 

optimization of the method. Perplexity is related to the number of neighbors and the learning rate 

is related to the separation of each point is from its neighbors. In this study, we use values of 5 and 
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12, respectively. The main parameters to tune in UMAP are the number of nearest neighbors that 

balances local versus global structure, and the minimum distance between points in the low-

dimensional space that controls how tightly the points are packed together. In this study, we use 

values of5 and 0.35, respectively. 

 

Semi-supervised model 

Semi-supervised ML methods use a small amount of data with true labels and a large amount of 

unlabeled data to generate pseudo labels (predicted petrofacies) (Figure 20). In this case, the data 

with true labels, or labeled data, are the thin-section-defined petrofacies. Collocated XRF data is 

used in two semi-supervised approaches to generate petrofacies logs at 0.3 m (1-ft) resolution. We 

implemented two using the XRF data as the input. The first approach, self-training, uses a 

supervised classification model to create the pseudo-labels (predicted petrofacies for unlabeled 

data). And the second approach, labeled-clustering, uses unsupervised algorithms to create the 

pseudo-labels. 
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Figure 20: Cross plots of the elemental abundance in the cores. Aluminum (Al) as compared to 

silicon (Si) and aluminum (Al) as compared to calcium (Ca) (in ppm based on XRF data) show 

the distribution of unlabeled data (x). The three thin-section-defined petrofacies (squares) are 

referred in the text as true labels. Notice that labeled data represent a small portion (~8%) of the 

whole data and the three petrofacies are grouped based on the elemental composition (Al, Si, Ca). 

Also, in the Al vs Si cross plot clay-rich Mudstones (Mdst) are separated from massive siltstones 

(MCcSt and MCSt).  

 

Self-training approach 

With the self-training approach, we use three different input data: i) All 29 XRF-derived elements, 

ii) only the proxies (Al, Ca, and Si), and lastly, iii) the results from the dimensionality reduction 

techniques as the input data. First, we train a support vector machine (SVM) classification model 

(supervised) to classify petrofacies. (Figure 21). The classified petrofacies, or pseudo-labels, are 

associated with a probability of being correctly predicted. Pseudo-labels with higher probabilities 

than a set probability threshold of being correctly predicted are used to train a new model. This 

step is repeated until no more predicted petrofacies achieved the probability threshold (Steen, 

2020; Figure 21). We use three different probability thresholds (60%, 80%, and 90%). Finally, we 
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train a classification model using only the pseudo-labels, and we validate the model with the true 

labels. For the SVM (Boser et al., 1992) model parameters, we usegamma=0.01 and C=1 following 

hyperparameter tuning. 

 

 

Figure 21: Self-training workflow. Self-training uses the scarce data with thin-section-defined 

petrofacies (true labels) to create pseudo-labels (classified petrofacies) for core intervals without 

thin-sections. First, we trained a support vector machine (SVM) classification model that uses XRF 

data to classify petrofacies in unlabeled data. These classified petrofacies, or pseudo-labels, were 

weighted by the probability of being correctly predicted. Then, pseudo-labels with probability 

higher than 80% of being correctly predicted were used to train a new model. This step was 

repeated until no more predicted petrofacies achieved the 80% probability threshold (Steen, 2020). 

This workflow was repeated with different input data and probability threshold (60%, 80%, and 

90%). All 29 elements, the proxies (Al, Ca, Si), and the results of the dimensionality reduction 

techniques (PCA, ICA, t-SNE, UMAP) were used as the input data. 
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Labeled-Clustering approach 

The second semi-supervised approach we use is based on unsupervised clustering and the resulting 

clusters are compared to the true labels obtained from thin sections.  Again, we use three different 

sets of input data and compare the results. We use all 29 elements, only the three selected proxies 

and finally, the results of the best dimensionality reduction technique as determined by the results 

of the self-training approach.  

We use three different clustering algorithms: K-means, hierarchical clustering analysis 

(HCA), and density-based spatial clustering (DBSCAN) (Xu and Tian, 2015). To validate the 

results, we assign labels to each cluster. These clusters are compared to thin-section-defined 

petrofacies to calculate the accuracy of the model. Accuracy is defined as the number of accurate 

predictions relative to the size of the dataset. Similar to accuracy in classification models, this 

helped to compare clustering techniques, that sensu stricto are unsupervised methods. 

In all clustering methods, the number of clusters is defined as the number of petrofacies 

defined from thin sections. For k-means, we used 3 number of cluster, 100 iterations and the 

accelerated algorithm from  Elkan (2003), while for HCA, we use Ward linkage (Ward, 1963) and 

Euclidean distance (Dokmanic et al., 2015). DBSCAN relies on identifying high density grouping 

of datapoints as clusters and relies on two important parameters: “eps”, the maximum distance 

between points for two points to be considered from the same cluster and “minSamples”, the 

minimum number of points in the neighborhood that the algorithm requires to form a cluster (Ester 

et al., 1996; Schubert et al., 2017; Campello et al., 2020). We used five for the minSamples 

parameter, but we varied the eps parameter based on the input data: we used 0.25 when using all 

29 elements as the input data; 0.05 for the proxies; and 0.6 for UMAP projections. The advantage 
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of DBSCAN over other clustering algorithms is that it does not require the user to specify the 

number of clusters. 

 

3.5 Results 

Two main rock types are present in the Sycamore Formation: clay-rich mudstones (Mdst) 

characterized by high clay content, and siltstones characterized by abundant silt-size quartz grains, 

calcite cement, and calcareous allochems (Figure 22). Siltstones are divided into Massive 

calcareous siltstones (MCSt) and Massive calcite-cemented siltstones (MCcSt); MCSt being more 

porous than MCcSt. Calcium is higher in MCcSt than in MCSt due to calcite cement; however, 

silicon is higher in MCSt because it has higher quartz and clay content than MCcSt. Once the three 

petrofacies, Mdst, MCSt, and MCcSt were defined, we implemented the ML techniques.  
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Figure 22: Petrofacies characterization. Thin-section images for the three thin-section-defined 

petrofacies A) Mudstones (Mdst), B) Massive calcareous siltstones (MCSt), and C) Massive 

calcite-cemented siltstones (MCcSt). The boxplots depict the Aluminum (Al), Calcium (Ca), and 

Silicon (Si) distribution for each petrofacies. Al is used as an indicator of the clay content, the Ca 

for carbonates and Si for Silicon. The clay-rich mudstones (Mdst) are characterized by high clays 

content, and massive siltstones by abundant silt-size quartz grains, calcite cement and calcareous 

allochems. These massive siltstones were divided into Massive calcareous siltstones (MCSt), and 

Massive calcite-cemented siltstones (MCcSt), being the former more porous than the latter MCcSt. 
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Also, calcium is higher in MCcSt than in MCSt due to calcite cement. On the other hand, Silicon 

is higher in MCSt because it has higher quartz content than in MCcSt. 

 

Dimensionality reduction techniques 

Visualizations are an effective tool to evaluate dimensionality reduction techniques. Figure 23 

shows the results of the four transformations (PCA, ICA, t-SNE, and UMAP) including the 

unlabeled data, and the data with the true labels (thin-section-defined petrofacies). Figure 23 

corroborates the observations from the petrographic analysis that rocks samples are divided into 

two main groups, mudstones (Mdst) and siltstones (MCSt and MCcSt).   
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Figure 23: Cross plots of the resulting projections using four dimensionality reduction techniques 

A) principal component analysis (PCA), B) independent component analysis (ICA), C) t-

Distributed Stochastic Neighbor Embedding (t-SNE) and D) Uniform Manifold Approximation 

and Projection (UMAP). These cross plots show how well the dimensionality reduction techniques 

group the three thin-section-defined petrofacies (squares) referred in the text as true labels, but 

also plot the distribution of unlabeled data (x) respect to the projections. Notice the separation in 

all four plots between the three petrofacies. 
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PCA and ICA separated data into two main groups; while both non-linear transformations 

(t-SNE and UMAP) separated MCSt from MCcSt better than linear transformations. Furthermore, 

UMAP separated siltstones from mudstones better than t-SNE. Also, the data points that were 

plotted in a group which they do not belong to were closer to their similar data points in the UMAP 

visualization than when using t-SNE. 

 

Semi-supervised model 

Two semi-supervised approaches were executed, self-training and clustering with true labels. In 

addition to the original 96 thin-section-defined petrofacies, the self-training approach created 

hundreds of pseudo-labels (Figure 24). We evaluated 18 different self-training methods with 

accuracies between 87% and 93%. For the methods that the self-training model did not classify at 

least one of each petrofacies, we did not calculate the accuracy (). We found that the higher the 

probability threshold (e.g., 90%) the more data remained unlabeled after the last iteration. In some 

cases, for example when using the proxies and PCA results, this led to higher accuracy values, but 

in other cases, such as when using ICA, not enough data were available to train and test the model 

accuracy. Also, corroborating the results that the UMAP was the best dimensionality reduction 

technique for this dataset, the models that used UMAP as the input data outperformed the models 

that used other dimensionality reduction techniques or the proxies.  

 

Table 2: Self-training results using support vector machine (SVM). 18 cases were compared 

using different input data and probability thresholds. All the 29 elements, the selected proxies 

(Al, Ca, Si) and the results of four dimensionality reduction techniques (PCA, ICA, t-SNE, and 

UMAP) were selected as the input data. Additionally, for each input data, three probability 

thresholds were evaluated (60%, 80%, and 90%). The unlabeled data are the data points that 

remained unlabeled because the probability of these points to be correctly predicted was lower 
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than the probability threshold. Accuracy was calculated after training a model with the pseudo-

labels and testing the model with the thin-section-defined petrofacies (true labels). The blank 

spaces mean that the accuracy was not calculated because the self-training model did not predict 

at least one sample for each (3) petrofacies. 

 

 

Input Data
Probability 

Threshold

Unlabeled 

Data
Accuracy

 All elements 60% 4 0.91

 All elements 80% 58 0.91

 All elements 90% 143 0.93

 Proxies 60% 10 0.87

 Proxies 80% 47 0.88

 Proxies 90% 147 0.91

 PCA 60% 14 0.89

 PCA 80% 72 0.89

 PCA 90% 195 0.91

 ICA 60% 0 ----

 ICA 80% 0 ----

 ICA 90% 742 ----

 t-SNE 60% 5 0.92

 t-SNE 80% 147 0.91

 t-SNE 90% 763 ---

 UMAP 60% 14 0.93

 UMAP 80% 64 0.93

 UMAP 90% 190 0.93
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Figure 24: Self-training results using a support vector machine model (gamma=0.01, C=1), 

UMAP projections as the input data and 80% probability threshold. A) bar plot shows the number 

of data points that are labeled by each iteration (pseudo-labels). Notice that no pseudo-labels were 

created in the iteration number 6 because any predicted petrofacies achieved the 80% threshold of 

being correctly predicted, thus the self-labeling process stopped. B) confusion matrix of the model 

trained with all the pseudo-labels and tested with the true labels with accuracy of 93%. 

 

In the clustering approach, K-means and HCA over performed the DBSCAN clustering 

technique (Figure 25). Additionally, similar than in self-training methods, K-means and HCA 

algorithms achieved higher accuracy when using UMAP than when using all the elements or the 

proxies (Al, Ca, and Si) as input data (Table 2). Contrary to K-means and HCA that include all 

points into one of clusters, DBSCAN considers noise for points that do not belong to a group; 

however, we interpreted the clusters and noise points to mimic the three petrofacies. 
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Figure 25: Cross plots of aluminum vs silicon (in parts per millon) colored with the thin-section-

defined petrofacies in A) and with the clustering-based-petrofacies in B-C. UMAP was used as 

input data for the three clustering results depicted in the cross plots. Compare the results from K-

means (B), HCA (C), and DBSCAN (D) with the true labels (A) and refer to Table 3 for metrics. 
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Table 3: Labeled-clustering results. 9 cases were compared using three clustering algorithms (K-

means, HCA, and DBSCAN) and three different input data. All the 29 elements, the selected 

proxies (Al, Ca, Si) and the projections when using UMAP were selected as the input data. 

Accuracy for the clustering approach was calculated after comparing the interpreted clusters with 

the true labels.  

 

 

 

Because the semi-supervised method that used UMAP and the self-training approach 

outperformed the models that used other input data and/or the clustering approach, we selected the 

self-training approach that used UMAP and 80% probability threshold as the semi-supervised 

method to predict petrofacies for unlabeled samples. This method labeled over 900 points and after 

the 6th iteration, 64 data points remained unlabeled because the probability of these points to be 

correctly predicted was lower than 80%. This model was tested with the true labels, and it achieved 

93% accuracy (Table 3).  

 

3.6 Discussion 

XRF data (element logs), thin-section-defined petrofacies, and semi-supervised techniques 

provided a successful strategy to predict petrofacies at a 0.3-m (1-ft) resolution with an accuracy 

Clustering Algorithm Input Data Accuracy

K-means  All elements 0.91

K-means  Proxies 0.85

K-means  UMAP 0.92

HCA  All elements 0.89

HCA  Proxies 0.79

HCA  UMAP 0.92

DBSCAN  All elements 0.71

DBSCAN  Proxies 0.69

DBSCAN  UMAP 0.67



 

77 
 

>90%. XRF is an inexpensive and nondestructive technique (Alnahwi and Loucks, 2019) that 

provides elemental information from the exact locations where the thin sections were sampled but 

also at the well-log resolution. XRF data provide enough information that, combined with 

dimensionality reduction techniques and semi-supervised methods, are an effective way to 

generate petrofacies logs for cored intervals that lack thin sections (Figure 26). 

 

 

Figure 26: Russel B core profile with synthetic core gamma ray (CGR), well logs (GR, ResD, 

RHOB and NPHI), location of the thin sections (dots), XRF data (Al, Ca, and Si) and petrofacies 

logs creates using different semi-supervised methods (including self-training and clustering). The 

petrofacies log from the self-training approach uses Support vector machine as the classifier, 

UMAP projections as the input data and an 80% probability threshold. All the petrofacies log from 

K-means, HCA, and DBSCAN use UMAP projections as the input data. Notice the difference 

between in GR log and the core GR (CGR). Also, notice the difference between the petrofacies 

logs when using different semi-supervised methods. 
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We propose to always use a dimensionality reduction technique with XRF data because it 

is a good practice when dealing with high-dimensional data, and it avoids the issue of selecting 

the most important elements (proxies) for each specific dataset. Visualizations help to identify the 

best dimensionality reduction technique and to determine whether the relationship between the 

original variables is linear; an important criterion when selecting the best dimensionality reduction 

technique. Figure 20B shows a non-linear relationship between Al and Ca in this dataset which 

likely explains why PCA and ICA failed to separate the three petrofacies as these are linear 

transformations. On the other hand, t-SNE and UMAP, two non-linear transformations, more 

clearly separated the three petrofacies. We selected UMAP because the boundary between 

mudstones and siltstones was more clearly separated than in t-SNE. Every technique has 

limitations, for example, t-SNE requires more computation power than UMAP (McInnes et al., 

2018) and varying the perplexity parameter leads to completely different results.  Or for PCA, one 

selects the number of components to be used; therefore, important information might be left behind 

in the other principal components.  In ICA, the first independent components might be different to 

the most important independent components. Therefore, one should consider the limitations of 

each dimensionality reduction technique at the early stages of the analysis.  

We compare two effective semi-supervised approaches to predict petrofacies. We selected 

the self-training approach because, contrary to the clustering approach, the training is supervised 

in the initial model, then the model itself generates pseudo-labels based on a given probability of 

being correctly predicted. Another advantage of this approach is that only data points that fulfill 

the probability requirements of being predicted correctly were labeled; the residual data remained 

unlabeled at the end of the self-training process. Thus, we determine the probability threshold to 

find a balance between having too few pseudo-labels with high probability and many pseudo-
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labels with a low probability of being correctly predicted. Like supervised methods, the amount of 

data used in the training process limits the performance of the self-training approach. 

One of the main advantages of clustering methods is that petrofacies labels are not required 

to define clusters. However, because we used the clustering approach as a semi-supervised 

approach rather than an entirely unsupervised method, we needed labels to validate the cluster 

results. Additionally, contrary to self-training when using this approach, the results must be 

interpreted after clustering the data and this might lead to misinterpretations when dealing with 

more petrofacies. Like the self-training approach, cluster results were better when using UMAP 

than when using all the elements or proxies. Also, DBSCAN failed on generating pseudo-labels 

for this dataset because finding the best value for eps parameter is not intuitive because the two 

main types of rocks, clay-rich mudstones and massive siltstones, have different density (distance 

between points in the same petrofacies in space) (Figure 20 & Figure 23). The depositional setting 

affects the elemental composition of the rock. The massive siltstones were deposited in a shorter 

period of time and have a more homogenous composition than the clay-rich mudstones. DBSCAN 

also failed to generate pseudo-labels because DBSCAN detects outliers that is an advantage when 

used as an unsupervised method to understand the structure of the data, but it is a disadvantage 

when used as a semi-supervised method for trying to imitate the thin-section-defined petrofacies.   

Creating an unambiguous methodology for clustering data as a semi-supervised method is 

the main disadvantage for this approach, thus it is necessary to try different methods and select the 

most feasible and accurate method for a specific dataset. Some authors have used semi-supervised 

ML techniques to improve well-log facies classification (e.g., Dunham et al., 2020b, 2020a; Xie 

and Spikes, 2020). However, none of those studies attempted to combine XRF data, dimensionality 
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reduction techniques, and semi-supervised ML techniques to enhance the resolution of thin-

section-based information in cores. 

Thin-section-defined petrofacies provide information on the texture, composition, and 

porosity of the rock, and they are important in characterizing formation reservoir quality. We 

demonstrate that including semi-supervised ML methods with petrographic and XRF data is an 

effective approach to predict petrofacies. By classifying petrofacies logs, we can use them for 

stratigraphic correlation, to identifying target zones, to design horizontal wells, and to constrain 

subsurface models.  

 

3.7 Conclusions 

In this paper, we propose an effective workflow that combines semi-supervised techniques with 

petrographic and XRF data to predict petrofacies in cored sections. The self-training approach 

outperformed the clustering semi-supervised approach, achieving accuracies of 93% in the 

Sycamore Formation. However, using clustering techniques with true labels as a semi-supervised 

approach achieved accuracies of 92% with K-means and HCA algorithms. Additionally, we 

obtained better results when using UMAP projections than when using all the elements or the 

proxies as the input data. Thus, we conclude that it is important to transform high-dimension XRF 

data to low-dimension projections regardless of the approach or algorithms used. For this dataset, 

the UMAP dimensionality reduction technique outperformed linear transformations such as PCA 

and ICA.  We demonstrate that the implementation of the workflow we discuss herein has the 

potential for extracting high-quality information from cores and reducing the resolution gap 

between scarce core data and well logs.  
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Chapter 4: Spatial variability of petrofacies using supervised machine learning and 

geostatistical modeling: Sycamore Formation, Sho-Vel-Tum Field, Oklahoma, USA. 

David Duarte, Rafael Pires de Lima, Javier Tellez, and Matthew Pranter 

 

4.1 Preface  

This chapter is in preparation to be submitted to the Marine and Petroleum Geology journal. This 

chapter is the second portion of the project that combines chapters 3 and 4 to validate the 

conceptual model from chapter 2 by linking the thin-section information with 3D models. After 

generating petrofacies logs from chapter  3, this 4th chapter presents a workflow that uses 

machine learning techniques to build a 3D petrofacies model. Some of the highlights for this 

chapter are: 

• This workflow selects the best combination of well logs, classifiers, and hyperparameters 

over hundreds of models. 

• Trained models use well-log data to classify thin-section-derived petrofacies with precision 

up to 77%. 

• Machine-learning techniques are useful to generate petrofacies logs in non-cored wells to 

use to constrain 3D facies models. 

 

4.2 Abstract 

Core data provide unique information about subsurface geology such as lithology, mineralogy, 

and porosity. Such information is necessary to define petrofacies, which are often used for 

constraining 3D facies models and to illustrate the stratigraphic variability of reservoir rocks.  This 



 

82 
 

study develops a machine learning-based workflow for assisting 3D models to reliably represent 

the petrofacies distribution in the Sycamore Formation. The workflow compares over 1,800 

classification models and selects the best combination of well logs, algorithms, and 

hyperparameters to predict petrofacies in wells without cores. For each combination of well logs, 

we optimized four classification algorithms: Artificial Neural Network (ANN), K-Nearest 

Neighbor (KNN), Support Vector Machine (SVM), and Random Forest (RF). To optimize each 

classifier, we used Grid-Search and 5-Fold cross-validation to find the best combination of three 

hyperparameters to tweak each algorithm. Then, out of 244 wells, 75 wells with predicted 

petrofacies logs were used to construct a 3D data-driven model.  The presented workflow obtains 

more information from cores efficiently and at a low cost. At the same time, the 3D models assisted 

by the machine learning model aid in the understanding of the diagenetic processes that occurred 

in the subsurface and affected the reservoir quality. 

 

4.3 Introduction 

Core data provide unique information about subsurface geology such as lithology, mineralogy, 

and porosity. With this information it is possible to define petrofacies, which are often used for 

constraining 3D facies models to illustrate the stratigraphic variability of reservoir rocks. Despite 

their importance, cores are scarce because of their high cost. Well logs are more commonly 

available therefore; various techniques are used to predict core-derived information from well logs. 

Recently, machine learning (ML) techniques have been used to generate models for predicting 

core information. 
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Supervised machine learning techniques have been applied in the geosciences to address 

many issues related to core data. Supervised ML models have been used to classify lithofacies 

from well-log information (Dubois et al., 2007; G. Wang et al., 2014; Bhattacharya et al., 2016, 

2016; Al-Mudhafar, 2017; Bestagini et al., 2017; Brcković et al., 2017; Bhattacharya and Mishra, 

2018; Mandal and Rezaee, 2019; Wood, 2019; Halotel et al., 2019; Bressan et al., 2020; Ippolito 

et al., 2021). Additionally, some authors have optimized supervised models after finding the best 

combination of the options, called hyperparameters, that can be chosen to tailor  each algorithm 

for a specific issue (Castro et al., 2017; Dunham, Malcolm, and Kim, 2020; Daviran et al., 2021).  

Also, some studies have addressed the importance of different well logs on model performance 

(Singh et al., 2020; Merembayev et al., 2021). In addition, cross-validation techniques have been 

used to compare and validate supervised models to avoid overfitting (G. Wang et al., 2014; Al-

Mudhafar, 2016; Bhattacharya et al., 2016; Bhattacharya and Mishra, 2018; Handhal et al., 2020; 

Daviran et al., 2021; Pang et al., 2021).  However, workflows on building robust supervised ML 

models to predict facies are inconsistent, and the challenge remains in obtaining unified and 

unambiguous workflows to select the best model for predicting thin-section-derived petrofacies 

using well logs.   

The lack of well-established workflows may be attributed to the fact ML techniques in 

geosciences are at an early stage, the lack of standardized studies and standardized datasets, or the 

interest in testing new algorithms (classifiers) and techniques over consolidating workflows. 

Therefore, this study aims to develop a workflow, based on ML techniques, to generate rock-type 

logs to constrain 3D petrofacies models  for the Sycamore Formation in the Sho-Vel-Tum Field 

(Figure 27 & Figure 28). The workflow compares hundreds of classification models and selects 

the best combination of well logs, algorithms, and hyperparameters for predicting core-derive 
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petrofacies (from Chapter 3) in wells without cores. This workflow has the versatility of including 

new algorithms and hyperparameters, and more well logs, providing the user with the ability to 

compare new ML models with previously published models. By selecting the best ML model out 

of hundreds of models, one can increase well control and construct robust 3D data-driven 

petrofacies models. 

 

 

Figure 27: Location map of the study area. Red squares are wells with original/true petrofacies 

logs in the cored sections, black dots are non-cored wells, and black dots with gray areas 

correspond to uncored wells with predicted petrofacies logs. Names in black correspond to the 

three fields that combined forms the Sho-Vel-Tum field, 3D model boundary in blue. Faults in 

black are from (Carpenter and Tapp, 2014) and names in blue correspond to counties. 
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4.4 Data & methods 

Six cored wells with thin section-derived petrofacies (petrofacies logs from Chapter 3) and 

additionally, 244 wells without cores in the Sho-Vel-Tum field were used for this study (Figure 

27). All wells contain gamma-ray (GR), density (RHOB), and deep resistivity (RESD) logs. 

Seventy-five of the wells were used to construct the 3D model for the Sycamore Formation (Figure 

28). Petrofacies logs is a term used to denote thin-section-derived petrofacies at 1-ft (x-m) 

resolution (from Chapter 3). 

 

 

Figure 28: General stratigraphy of the study area on the left, Russell B well in the middle with the 

five finning-upward parasequences (A-E) from (Duarte et al., 2021), and vertical proportion curve 

(VPC) for the Sho-Vel-Tum field on the right. VPC shows the petrofacies proportion by 

zone/parasequence. 

 

Figure 29 shows the general workflow with four main steps implemented in this study: i) 

first, we selected the best combination of well logs, algorithms (classifiers), and hyperparameters, 

ii) we built the classification model using the selected model, iii) we used the selected classification 

model for predicting petrofacies logs in uncored wells, and iv) we built a 3D model to evaluate the 
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petrofacies distribution in a portion of the Sho-Vel-Tum field. The following section explains the 

methods for the supervised classification model and the methods used to generate the 3D 

petrofacies model.  

 

 

Figure 29:  Generalized workflow that uses predicted petrofacies logs to build 3D petrofacies 

model. Cylinders in dark gray and ovals represent the input and output data respectively. First, we 

compared thousands of models to define the best combination of well logs, classifier, and 

hyperparameter using Grid-Search and k-fold cross-validation. Then, we used this information to 

create the final classification model that uses well logs to predict the petrofacies logs in uncored 

wells. Third, we used the model to predict petrofacies logs in uncored wells, and finally the 

predicted petrofacies logs were used to build the 3D petrofacies model. 

 



 

87 
 

Compare and select the best classification model for predicting petrofacies using well logs  

We used Grid-Search (LaValle et al., 2004; Bergstra et al., 2012; W. Wang et al., 2014) and cross-

validation (Lachenbruch and Mickey, 1968; Stone, 1974, 1977) to optimize and select the best 

classification model for predicting petrofacies in non-cored wells using well logs. However, first, 

we normalized GR, RHOB, and RESD logs using the min-max scaling method. This prevents one 

well log from having more importance than the other logs only based on its range. This method 

rescales all well logs in the range of [0,1]. Contrary to Z-score normalization, the min-max scaler 

preserves the natural distribution of data.   

 

Model optimization 

To improve the performance of the model, we tested over 1,800 models with different 

combinations of well logs, algorithms (classifiers), and hyperparameters. First, we identified all 

seven possible combinations of well logs using GR, RHOB, and RESD (e.g. GR + RHOB; GR + 

RHOB + RESD). Then, for each combination of well logs, we tested four classifiers using Scikit-

learning libraries (Pedregosa et al., 2011): 1) Artificial Neural Network (ANN) (McCulloch and 

Pitts, 1943; Ivakhnenko and Lapa, 1968; Shannon and McCarthy, 2016), 2) K-Nearest Neighbor 

(KNN) (Cover and Hart, 1967), 3) Support Vector Machine (SVM) (Boser et al., 1992), and 4) 

Random Forest (RF) (Ho, 1995; Breiman, 2001). For optimizing each classifier, we used Grid-

Search to find the best combination of hyperparameters that can be chosen to tweak each model 

(Table 4), this process is called hyperparameters tuning.  
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Table 4: Hyperparameter values used in the Grid-Search to optimize the classification model. We 

used four classifiers: Artificial Neural Network, Artificial Neural Network (ANN), K-Nearest 

Neighbor (KNN), Support Vector Machine (SVM), and Random Forest 

 

 

We selected three hyperparameters to optimize each of the four classifiers (Table 4), but 

more hyperparameters and corresponding options could be added as needed. ANN uses neurons 

organized into layers to predict the petrofacies. ANN has an input layer that receives the input 

data, an output layer to predict the petrofacies, and the hidden layer(s) in between the input and 

output layers. We varied the hidden layer size that is the number of neurons for each layer, the 

solver to specify the algorithm for weight optimization, and the learning rate (constant vs 

adaptive). The second algorithm, KNN, is a non-parametric model. KNN uses a K-number of 

nearest neighbors to predict the petrofacies. Similar to other ML algorithms, KNN uses distance 

metrics such as Euclidean distance to measure the distance between the point of interest and its 

nearest neighbors. For KNN, we tuned the number of neighbors the algorithm uses as queries, the 

p parameter to decide between using Manhattan or Euclidean distances, and the leaf size that 

affects the construction and query time. The third algorithm, SVM (Boser et al., 1992),  uses a 

hyperplane in an n-dimensional space, given by the n-number of independent variables, to separate 

the data into the petrofacies. The closest points to the hyperplane are the support vectors and they 

Classifier Hyperparameter 1 Hyperparameter 2 Hyperparameter 3 No Models

ANN
Hidden layer sizes:                      

(50,50,50), (50,100,50), (100,)

Learning Rate:             

(Constant, Adaptive)

Solver:                                

(sgd, adam)
168

KNN
Number of neighbors: 

(3,4,5,6,7,8,9,10,11,12,13,14,15)

p:                                                 

(1,2)

Leaf size:                               

(1,2,3,5)
1820

SVM
C:                                                           

(0.1, 1, 10,50, 100)

Gamma:                               

(0.001, 0.01, 0.1, 1, 10)

Kernel:                               

(rbf, linear)
700

RF
Number of estimators: 

(1,5,10,50,100)
Minimum samples leaf: (1,2,3)

Maximum depth: 

(3,4,5,6,10)
1050
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belong to different classes. We optimized the C parameter that penalizes misclassified points, the 

gamma parameter to determine the distance of influence of a training point, and the kernel type 

that could use radial- or linear-based functions. Finally, RF classifier assembles decision trees to 

predict the petrofacies (Ho, 1995; Breiman, 2001). We optimized the number of estimators which 

is the number of trees, the minimum samples leaf that is the minimum number of samples required 

to be at a leaf node, and the maximum depth of the three. 

 

Cross-validation 

Additionally to the Grid-Search method for evaluating different hyperparameters for each model, 

we included cross-validation (CV) to avoid overfitting and to better compare the models (Stone, 

1977; Kohavi, 1995). With this method, we tested every model on multiple train-validation subsets 

to avoid differences on the model performance based on the way we divided the data in training 

and validating sets. We used a method called K-Fold cross-validation where the data is partitioned 

in K subsets. Then, one of subsets is used as the validating set and the remaining data (K-1) as the 

training set.  We used K=5, thus for every combination of well logs, classifier, and hyperparameters 

we repeated the process five times using a different, randomly selected, validating subset every 

time. In other words, the first time, we randomly select 85% of the data as the training set and the 

remaining 20% as validating set, the second time we used another 20% as the new validating set, 

and we repeated this process five times until all the data were once, and only once, used for 

validating. Finally, the average precision and standard deviation of the five iterations were used to 

compare and select the best model. Precision was used over accuracy to compare the models 

because the petrofacies have different number of samples (Figure 30). This is called imbalanced 
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data. However, other metrics, such as recall and F1, could be easily added to the workflow. In fact, 

we used precision and recall metrics, but only precision is reported in the results of this paper.  

 

Construct classification model and predict petrofacies logs 

After we used Grid-Search and 5-Fold cross-validation to compare over 1,800 models and select 

the best combination of classifier, hyperparameters and well logs, we trained the selected model. 

For this model, we used 85% of the data for training and 15% of the data for validating the model. 

In this case, only 15% of the data was used for validation because we already validated the model 

using 5-Fold cross validation. Therefore, this step was used to corroborate the performance of the 

selected model. This selected model was used to predict petrofacies at well log-resolution when 

cores were unavailable. We predicted the petrofacies logs for 75 wells within the model boundary 

(Figure 27). 

 

Figure 30: Petrofacies distribution before and after splitting for the selected model. The training 

dataset correspond to the 80% and the validation dataset to the remaining 20% of the entire data. 

Note the three petrofacies have different number of samples (x-axis), but we maintained the 

proportions equal in both sub-datasets. 



 

91 
 

 

3D petrofacies model 

The 3D petrofacies model was created on a portion of the Sho-Vel-Tum Field (Figure 1) to 

understand the petrofacies distribution in the Sycamore Formation. This model was constructed 

with sequential-indicator simulation (SIS), the predicted petrofacies logs, and a 3D grid with areal 

cell dimensions of 100 × 100 ft (30 × 30 m) and an approximate layer thickness of 1 ft (0.3 m). 

The following constraints were used for the SIS model: i) the stratigraphic framework with five 

zones/parasequences (A-E) built from all 244 wells (i.e., the 3D grid with proportional layering 

scheme). ii) 75 upscaled petrofacies logs that were created from assigning the petrofacies that is 

most represented in the log to a cell from the 3D grid. iii) vertical proportion curves for the 

petrofacies in the Sho-Vel-Tum field, iv) petrofacies percentages by zone obtained from the 

upscaled logs, and v) vertical and horizontal variograms. The variograms ranges were estimated 

from variography analysis of the petrofacies logs (appendix). 

 

4.5 Results 

Three petrofacies were described in the Sycamore Formation: Clay-rich mudstones (Mdst) 

characterized by low porosity and CaO content, and a broad range of permeability (Figure 31). 

The variation in permeability is likely attributed to the effect of the bioturbation (Duarte et al., 

2021); however, the acquisition of more data is needed for this evaluation. Massive Calcite-

cemented Siltstones (MCcSt) are characterized by high CaO, and low porosity and permeability. 

And Massive Calcareous Siltstones (MCSt) are characterized by higher porosity and permeability 

than its counterpart, MCcSt. 
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Figure 31: Petrofacies photomicrographs for the three thin-section-defined petrofacies A) 

Mudstones (Mdst), B) Massive calcareous siltstones (MCSt), and C) Massive calcite-cemented 

siltstones (MCcSt). The boxplots depict the porosity, permeability, and CaO distribution for each 

petrofacies. The clay-rich mudstones (Mdst) are characterized by a broad range of porosity and 

permeability. MCSt and MCcSt are massive siltstones that are differentiated by the amount of 

calcite cement (Duarte et al., 2021). MCSt is more porous and permeable but has less CaO than 

the MCcSt. 
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Classification model 

First, we identify seven possible combinations of well logs using GR, RHOB, and RESD. Then, 

four classifiers were compared and their hyperparameters were optimized to predict the 

petrofacies. In total, 1,869 models (Figure 32) were created and distributed as following: 84 ANN 

models, 910 KNN models, 350 SVM models, and 525 RF models. Training all the models takes 

less than 30 minutes on a computer with CPU E5-2620 v4 @ 2.10GHz. Out of the first 100 models 

with the highest mean precision, only three models did not use all three well logs. Commonly, the 

models with the lowest mean precision used only one log. Models that only used GR performed 

better (up to 70% mean precision) than using RESD (up to 52%) or RHOB (up to 47%) logs. Table 

5 shows the top-three models for each classifier, its hyperparameters, and the selected well logs. 

RF and SVM achieved higher precision scores than ANN, and KNN. Only ten RF and three SVM 

models achieved mean precision higher than 75%. Furthermore, all well logs (GR, RHOB, and 

RESD) were used in all top-3 models. However, Figure 32 shows a narrower distribution and 

overall better performance for RF and KNN models than ANN and SVM models. 
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Table 5: Top-3 results for every classifier after using Grid-Search and cross-validation. We used 

Grid-Search to evaluate the best combination of well logs (GR, RESD, and RHOB), classifier 

(ANN, KNN, SVM, and RF), and hyperparameters. After evaluating over 1,800 models, these are 

mean precisions and standard deviation (std) of the top-3 results for every classifier. The mean 

precision came from 5-fold cross-validation to better evaluate and compare the models. 

 
 

 

 

Figure 32: Cross plot between mean precision and standard deviation for all 1,869 models after 

cross-validation. Models achieved precision as low as 12% and as high as 77%. Thus, evaluating 

thousands of models is important to select the best model. B) Box plots show the variability in the 

mean precision results from every classifier. Note the number of models used for the graphs is 

indicated on top of the box plots. 

 

Classifier Input (Well Logs) Hyperparameters 1 Hyperparameters 2 Hyperparameters 3 Mean std

(GR RESD RHOB) hidden_layer_sizes: (50, 50, 50) learning_rate: constant solver: adam 0.74 0.06

(GR RESD RHOB) hidden_layer_sizes: (50, 50, 50) learning_rate:adaptive solver: adam 0.74 0.06

(GR RESD RHOB) hidden_layer_sizes: (100,) learning_rate:  constant solver: adam 0.73 0.05

(GR RESD RHOB) n_neighbors: 14  p: 2 leaf_size: 1 0.75 0.05

(GR RESD RHOB)  n_neighbors: 14  p: 2 leaf_size: 3 0.75 0.05

(GR RESD RHOB) n_neighbors: 14 p: 2 leaf_size: 30 0.75 0.05

(GR RESD RHOB) C: 50 gamma: 10 kernel: rbf 0.77 0.06

(GR RESD RHOB) C: 100  gamma: 10 kernel: rbf 0.76 0.06

(GR RESD RHOB) C: 10 gamma: 10 kernel: rbf 0.76 0.05

(GR RESD RHOB) No Estimators: 50 Max Depth: 5 Min Samples Leaf: 2 0.77 0.06

(GR RESD RHOB) No Estimators: 100 Max Depth:5 Min Samples Leaf:3 0.76 0.06

(GR RESD RHOB) No Estimators: 50 Max Depth:5 Min Samples Leaf: 3 0.76 0.07

RF

SVM

KNN

ANN
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The cross-validation results show that the best model obtained a mean precision of 77% 

using all well logs, RF classifier and the following hyperparameters: max depth of the tree=5, min 

samples required to be a leaf node=2, and number of estimators=50. Figure 33 shows the mean 

precision of all RF models and the best model that was selected to predict the petrofacies in 

uncored wells. However, the similarity of well-log response between the MCSt and the MCcSt 

blurs the differentiation of these petrofacies. The selected model increased the well control from 

six cored wells to around 120 wells with petrofacies logs in the Sho-Vel-Tum field. 

 

 

Figure 33: Comparison of all models generated in the hyperparameter tuning process of the 

Random Forest (RF) classifier. Left: parallel coordinates plot. The first three columns are the tuned 

hyperparameters from Table 4 and the last column represents the mean precision of the model 

using 5-k fold cross-validation. The models with mean precision below 75% are colored in gray 

and the models with precision equal to or higher than 75% are colored in blue, additionally, the 

thick blue line represents the selected model based on the mean precision (77%) and standard 

deviation (0.06). Note most of the models with Max Depth equal to 10 have low precision. On the 

right, the confusion matrix shows the result of the selected classification model. Note the selected 

model struggle in differentiating between MCSt and MCcSt. 
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3D Petrofacies Model 

 

Figure 34: 3D data-driven model. On top, north-south, and east-west slices of the 3D petrofacies 

model, petrofacies logs, and top of the Woodford Shale horizon in the Sho-Vel-Tum field. On the 

bottom, cross-section from X to X’ with the five zones that represent the finning upward 

parasequences in the Sycamore Formation. 
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The constructed 3D model has over 21 million cells and used 75 petrofacies logs (Figure 

34) predicted from the previous classification model. The model maintains similar petrofacies 

percentages (Figure 35) as those of the original petrofacies logs and upscaled petrofacies logs. 

Also, Figure 36 shows the petrofacies in the cored wells at different steps: from the cores, the 

predicted petrofacies logs, and finally from the upscaled petrofacies logs. These three steps of the 

petrofacies logs show similarity between them; however, the upscaled petrofacies logs and the 

predicted petrofacies maintain similar vertical resolution (1-ft; x m). The vertical proportion curve 

(Figure 28) and the 3D petrofacies model show an increase of MCSt and a decrease of MCcSt 

from parasequence B to E. On top of that, Mdst are abundant in parasequence A, but also at the 

top of each parasequence. 

 

 

Figure 35: Histograms of the petrofacies proportions for the original petrofacies logs, upscaled 

petrofacies logs, and 3D petrofacies model 
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Figure 36: Cross-section from west to east with four wells with cores in the Sho-Vel-Tum field. 

The black rectangles next to the well logs (GR, RHOB, and RESD) represent the cored section 

with true/original petrofacies logs. True facies are the original petrofacies logs from (Chapter 3), 

the predicted facies are the petrofacies logs predicted using the selected classification model, and 

upscaled facies are the upscaled petrofacies logs that were used to constrain the 3D petrofacies 

model. 

 

4.6 Discussion 

We found that 3D facies models can be assisted by the proposed machine learning workflow to 

understand the petrofacies distribution of the Sycamore Formation in the Sho-Vel-Tum field. We 

used a supervised classification model with 77% precision that increased well control from 6 cored 

wells to 75 wells with predicted petrofacies logs. We also found that combining different 

classifiers, hyperparameters, and well logs may result in models with completely different 

performances.  
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Classification model 

We found that by using Grid-Search and 5-Fold cross-validation for evaluating and comparing 

hundreds of models we are secure to select the best model, honoring major trends and avoiding 

overfitting. With over 1,800 trained models, selecting the best model is crucial, especially when 

precision varies from values as low as 13% and as high as 77%.  In general, the models performed 

better when using all three well logs and selecting the best hyperparameters for each classifier 

made the difference between a useful model and a model that ‘guesses’ the petrofacies.  

5-fold cross-validation provides good information when selecting the best model over 

hundreds of models. However, our results show models with precision results lower than 80%. 

These low performances could be associated to differences between core data and well-log 

information. Correlating core depths with log data depth is still a limitation due to logging and 

coring techniques. Thus, we need better techniques to correct the depth shift between core data 

and well logs to achieve higher precision models. Also, including other well logs, such as neutron 

porosity (NPHI) and photoelectric factor (PE) may improve the model performances. Additionally, 

the wells used for this study were drilled in the 1970s, and service companies have improved and 

standardized the logging processes since then. 

Previous studies have successfully used classification algorithms for predicting lithofacies 

from well logs  (Dubois et al., 2007; G. Wang et al., 2014; Bhattacharya et al., 2016; Brcković et 

al., 2017; Bhattacharya and Mishra, 2018; Halotel et al., 2019; Mandal and Rezaee, 2019; Wood, 

2019; Ippolito et al., 2021). Recently, in geosciences a significant effort on building classification 

models have been focused on using RF and SVM algorithms. However, using this workflow other 

algorithms such as, Probabilistic Neural Networks (Al-Mudhafar, 2017), Bayesian Network 

Theory (Bhattacharya and Mishra, 2018) and Gradient Boosting (Bestagini et al., 2017), can easily 
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be added to the workflow and compared with the models we evaluated. Some of these studies have 

addressed the superiority of RF and SVM models over other classifiers, but our data show that 

even though these classifiers achieved the higher precisions, in general the average cross-

validation precision is higher for KNN than SVM (Figure 32Figure 31). On top of that, SVM and 

ANN results are more broadly distributed compared with the KNN and RF models. This indicates 

selecting the best hyperparameters could be as important as selecting the algorithm.  

Some studies have compared different algorithms to select the best classifiers. Nonetheless, 

as previously observed, the performance of models is highly sensitive to the selected 

hyperparameters. That is the reason why some authors have optimized classification algorithms 

by tuning the hyperparameters (G. Wang et al., 2014; Bhattacharya and Mishra, 2018; Halotel et 

al., 2019; Mandal and Rezaee, 2019; Bressan et al., 2020; Daviran et al., 2021; Ippolito et al., 

2021). Additionally, some authors have addressed the importance of well logs for lithofacies 

prediction (Singh et al., 2020; Ippolito et al., 2021; Merembayev et al., 2021), but we are not aware 

of other publications using well-log data to classify facies defined at the thin-section scale.  

Contrary to previous studies, our workflow finds the best classifier (ANN, KNN, SVM, and 

RF), input data (well logs), and hyperparameters at the same time, this allows us to evaluate and 

select the best classification model for a specific dataset. Using this workflow, over 1,800 models 

were evaluated and compared, making the final model a robust one. 

 

3D Petrofacies Model 

We review a ML-based workflow to predict petrofacies logs. The predicted petrofacies logs in 

non-cored wells are used to increase well control and constrain 3D petrofacies models. We found 



 

101 
 

that the more detailed 3D data-driven petrofacies model is consistent with the conceptual model 

developed from Duarte et al. (2021) (Figure 37) that illustrates the distribution of three facies: 

well-cemented siltstones, massive siltstones, and clay-rich mudstones. These facies correspond 

with the three petrofacies described in this study: Massive Calcite-cemented Siltstones (MCcSt), 

Massive Calcareous Siltstones (MCSt), and Clay-rich Mudstones (Mdst), respectively (Figure 31). 

 

 

Figure 37: 3D data-driven model and conceptual model.. On top, a 3D model cross-section from 

A to A’ in the location map. On the bottom, cross-section with the 6 cored wells and the conceptual 

model modified from (Duarte et al., 2021). Note the 3D model cross-section is consistent with the 

conceptual model in regard to petrofacies distribution. Parasequence A is a transition zone from 
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the Woodford Shale to the Sycamore Formation. Parasequence B is the most cemented interval in 

the Sycamore formation depicted by abundant MCcSt (blue), and the base of parasequence C 

shows the highest porosity values depicted by the presence of MCSt petrofacies. In general, the 

Sycamore formation transition from a carbonate-dominated system at the base to a siliciclastic-

dominated system at the top. 

 

The 3D model shows the distribution of three petrofacies for the five parasequences of the 

Sycamore Formation. Similar to the conceptual model of Duarte et al. (2021), Massive Calcite-

cemented Siltstones (MCcSt) are more abundant in parasequence B (Figure 38), therefore, this 

sequence is characterized by a high abundance of calcite cement and low porosity. On the other 

hand, Massive Calcareous siltstones (MCSt) are more abundant at the base of parasequence C, 

where the highest porosity values have been reported. In general, both models show parasequence 

A is enriched in Clay-rich mudstones (Mdst). Parasequence B represents a carbonate-dominated 

environment with higher proportions of MCcSt petrofacies over MCSt. And parasequence C to E 

show an increase in a siliciclastic-dominated environment characterized by an increase in MCSt 

and Mdst petrofacies toward the top of the Sycamore Formation. 
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Figure 38: Petrofacies percentage maps for the MCSt (left) and MCcSt (right) by parasequence. 

Note the abundance of MCSt and Mdst petrofacies increase from parasequence B to E, contrary to 

petrofacies MCcSt that decreases from B to E. Parasequence B is the most cemented interval in 

the Sycamore Formation. 

3D petrofacies models are important to quantifiy and illustrate the spatial variability of 

petrofacies that could control the distribution of geological attributes such as porosity, 
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permeability, and mineralogical composition implied by the petrofacies. Therefore, the presented 

workflow is important to obtain more information from cores efficiently and at a low cost. At the 

same time, the 3D data-driven models assisted by the proposed workflow aid the understanding of 

the diagenetic processes which occurred in the subsurface and affected reservoir quality. Future 

studies should be completed to compare 3D petrophysical models conditioned by different facies. 

For example, porosity models constrained to lithofacies models vs porosity models constrained to 

petrofacies models. This will highlight the value of the thin-section-based petrofacies. 

 

4.7 Conclusions 

In this paper, we propose a workflow that uses machine learning techniques to evaluate hundreds 

of models for selecting the best classification model that predicts petrofacies from well logs. The 

workflow consists of testing all combinations of the selected well logs, classifiers, and 

hyperparameters using a Grid-Search step followed by a 5-Fold cross-validation step. The first 

step demonstrated to be effective to generate over 1,800 models with different combinations of 

well logs, classifiers, and hyperparameters. The second step allowed us to validate and select the 

best model. The final model achieved 77% mean precision, but well-to-log calibrations are still a 

limitation to achieving higher performance. Furthermore, we demonstrated that the 

implementation of the workflow we discuss here has the potential for increasing control wells for 

constructing 3D data-driven facies models. More studies are needed to improve the proposed 

workflow, but in the current state, it has the capability to more effectively utilize core and well-

log data at a low cost to help geoscientists understand the subsurface and to constrain geological 

models. 
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Chapter 5. Final Remarks and future work 

This study was divided into two main portions, the first part, chapter 2, is a diagenetic study that 

presented a conceptual model to show the distribution of calcite-poor and -rich siltstones. The 

second part, chapters 3 and 4 validated the conceptual model with a robust 3D model. This part 

implemented a workflow that bridged the resolution gap between the scarce core data and the 

well log information to build robust 3D models based on thin-section information.  

The knowledge facilitated in the first part impacts the scientific community and 

petroleum geologists in the industry. For the scientific community, this part contributed to the 

understanding of diagenesis in mixed carbonate-siliciclastic mudrocks, but also to reconstructing 

the paleoenvironment during the Early Mississippian time. From the 2nd chapter, we observed a 

major increase of silt-size quartz grains from parasequences B to C. This silt size material is so 

characteristic of eolian siltstones and it is important as a climatic archive (Soreghan et al., 2008). 

For the industry stakeholders, this first part provides a model of the authigenic calcite 

distribution, and this contributes to predicting the reservoir quality in the Sycamore. 

Understanding the areas and stratigraphic intervals that are more affected by diagenetic processes 

make the difference between good and bad reservoirs. The next step needs to be the 

understanding of the origin of the authigenic calcite, but the lack of techniques to measure the 

composition of the authigenic minerals in mudrocks difficult this task. However, we hope that 

these findings provide the foundation to begin studying the diagenetic processes in mixed-

carbonated siliciclastic mudrocks.  

The second portion contributes to generating robust 3D models at a reservoir scale from 

thin-section information. This also impacts both, the scientific community and the petroleum 

geologist working in the industry. The techniques implemented in the proposed workflow were 
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used to predict thin-section defined petrofacies. These petrofacies were used as proxies for the 

authigenic calcite distribution where the Massive Calcite-cemented Siltstones petrofacies are 

calcite-rich intervals, and the Massive Calcareous Siltstones petrofacies are calcite-poor 

intervals. However, the proposed workflow opened the door for modeling more complex 

diagenetic processes observed only at a thin-section scale. On top of that, the 3D petrofacies 

model has an immediate impact on the petroleum geologist working on the Sycamore Formation. 

This 3D model provides the visualization of the intervals with better reservoir quality in the Sho-

Vel-Tum field. There are many research areas to be explored in the field of machine learning in 

geoscience, but first seismic data should be included to build a more robust model for the 

petrofacies distribution. 
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Frensley E 10X 6281.1 C4 MCcSt

Frensley E 10X 6289.7 C5 BMdst

Frensley E 10X 6292.8 C6 BMdst

Frensley E 10X 6316.8 C7 MCSt

Frensley E 10X 6328.3 C8 MCSt 46.2 50.1 3.7 0.0

Frensley E 10X 6358.6 C9 MCSt 63.7 31.7 4.6 0.0

Frensley E 10X 6380.5 C10 BMdst

Frensley E 10X 6393.6 C11 BMdst

Frensley E 10X 6434.7 C12 MCcSt 20.5 77.1 2.4 0.0
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Russel B01 8050.5 C48 MCSt
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Russel B01 8073.5 C51 MCcSt 35.0 58.4 5.9 0.7

Russel B01 8087.9 C52 MCSt

Russel B01 8096.8 C53 MCcSt 26.2 72.1 1.7 0.0
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Russel B01 8232.3 C65 BMdst 44.5 35.2 18.4 1.9

Moores Est 20A 8761.7 C66 AMdst 40.1 7.5 47.5 4.9

Moores Est 20A 8783.2 C67 BMdst 45.7 22.1 27.3 4.9
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Moores Est 20A 8940.1 C97 MCSt

Moores Est 20A 8946.7 C98 BMdst

Moores Est 20A 8950.9 C99 MCcSt

Moores Est 20A 8957.7 C100 MCcSt
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Frensley E 10X 6275.3 C2 BMdst 0.0061 6.963856392

Frensley E 10X 6277.2 C3 BMdst 0.161 8.024702562

Frensley E 10X 6281.1 C4 MCcSt 0.0001 3.008654727 29 23 0 1 42 1 2 2 0 100

Frensley E 10X 6289.7 C5 BMdst 0.093 6.226215232

Frensley E 10X 6292.8 C6 BMdst 0.0095 5.271394231

Frensley E 10X 6316.8 C7 MCSt 0.0039 8.315129386 35 13 0 0 33 3 4 12 0 100

Frensley E 10X 6328.3 C8 MCSt 0.089 12.49087333 35 7 0 0 36 2 2 18 0 100
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Myrtle Green #23 7294.6 C22 MCcSt 0.0003 3.429559847 29 28 0 0 43 0 0 0 0 100

Myrtle Green #23 7308 C23 AMdst + 6.476993006

Myrtle Green #23 7311.9 C24 MCcSt 0.0003 1.891872744 25 32 1 0 42 0 0 0 0 100

Myrtle Green #23 7328.9 C25 AMdst 0.0000079 1.141159415

Myrtle Green #23 7337.6 C26 MCcSt 0.000017 0.892679886 36 21 1 0 41 2 0 0 0 100

Myrtle Green #23 7357.4 C27 MCSt 0.0064 8.325461055 52 3 0 0 29 3 4 7 0 100

Myrtle Green #23 7380.5 C28 MCSt 0.0058 8.130884037 36 10 0 0 39 2 5 8 0 100

Myrtle Green #23 7384.7 C29 MCcSt 0.0009 3.834731027 26 22 0 0 44 1 0 6 0 100

Russel B01 7945.4 C30 MCSt 0.0038 4.739591918 58 12 0 1 19 2 2 6 0 100

Russel B01 7948.1 C31 MCSt 0.0019 3.800586049 51 19 0 0 26 1 1 2 0 100

Russel B01 7949.7 C32 MCSt 0.0048 5.339576813 53 19 0 0 23 1 0 3 1 100

Russel B01 7963.8 C33 BMdst 0.0022 3.054960508

Russel B01 7965.4 C34 AMdst 0 0

Russel B01 7975.6 C35 AMdst 0.00001 0.209751265

Russel B01 7977.5 C36 AMdst 0.0000025 0.246016861

Russel B01 7979.5 C37 AMdst 0.0000023 0.238951433

Russel B01 7983.5 C38 BMdst 0.0000027 0.828532405

Russel B01 7986.4 C39 BMdst 0.012 0.639178496

Russel B01 7990.9 C40 BMdst 0.0021 1.412850204

Russel B01 7996.6 C41 BMdst 0.033 0.217514408

Russel B01 7997.6 C42 AMdst 0.0000013 0.276967327

Russel B01 7999.7 C43 MCcSt 0.148 1.3660816 35 23 0 0 40 1 0 0 0 100

Russel B01 8007.5 C44 MCSt 0.0011 4.530681939 57 14 0 0 22 3 0 4 0 100

Russel B01 8014.6 C45 MCcSt 0 0 28 23 1 0 47 1 0 0 0 100

Russel B01 8026.7 C46 MCSt 0.0006 4.835680693 56 2 0 0 22 8 9 3 0 100

Russel B01 8047.2 C47 AMdst 0 0

Russel B01 8050.5 C48 MCSt 0.0027 4.567860765 58 12 0 0 23 2 1 4 0 100
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Russel B01 8060.8 C49 AMdst 0.0000017 0.24197096

Russel B01 8066.4 C50 MCcSt 0.0071 1.725844407 21 27 0 0 49 1 0 1 0 100

Russel B01 8073.5 C51 MCcSt 0.0031 5.863501808

Russel B01 8087.9 C52 MCSt 0.0022 5.796863332 42 6 0 1 33 3 3 12 1 100

Russel B01 8096.8 C53 MCcSt 0.000046 2.005068682 20 26 1 0 51 0 0 2 0 100

Russel B01 8105.8 C54 MCSt 0.0099 6.755173448 40 5 0 0 37 5 2 11 0 100

Russel B01 8113.7 C55 MCSt 0.031 9.400011465 41 4 0 0 35 3 2 15 0 100

Russel B01 8118.7 C56 MCcSt 0.0003 2.353193131 24 25 0 0 47 2 0 2 0 100

Russel B01 8121.4 C57 MCcSt 0.000015 1.858667961 32 23 0 0 41 2 1 1 0 100

Russel B01 8125.5 C58 BMdst + 2.858940278

Russel B01 8129.8 C59 BMdst 0.053 1.32077261

Russel B01 8148.5 C60 MCSt 0.0004 2.456217293 43 21 0 0 33 3 0 0 0 100

Russel B01 8183.5 C61 MCcSt 0.0003 1.453248293 26 31 0 0 42 0 0 0 0 100

Russel B01 8197.6 C62 BMdst 0.185 1.78081495

Russel B01 8200.3 C63 BMdst 0.035 0.239029826

Russel B01 8221.5 C64 BMdst 0 0

Russel B01 8232.3 C65 BMdst 0.00000029 0.220023896

Moores Est 20A 8761.7 C66 AMdst 0.0025 1.493005218

Moores Est 20A 8783.2 C67 BMdst 0.000019 0.248905814

Moores Est 20A 8784.8 C68 AMdst 0.0043 0.297775564

Moores Est 20A 8785.4 C69 AMdst + 0.282738587

Moores Est 20A 8788.2 C70 AMdst 0.0001 0.270712522

Moores Est 20A 8793.7 C71 MCcSt 0.000011 0.637943301 37 19 0 0 41 3 0 0 0 100

Moores Est 20A 8795.4 C72 BMdst 0.032 5.734078414

Moores Est 20A 8807.2 C73 BMdst + 4.074100528

Moores Est 20A 8810.5 C74 BMdst 0.0094 4.337669069

Moores Est 20A 8812.1 C75 AMdst 0.0002 0.831903173

Moores Est 20A 8815.2 C76 BMdst + 1.608209093

Moores Est 20A 8821.2 C77 MCSt 0.0006 3.37033398 46 14 0 0 31 9 0 0 0 100

Moores Est 20A 8824.1 C78 MCcSt 0.0009 3.218063493 41 10 0 0 40 10 0 0 0 100

Moores Est 20A 8829.5 C79 MCSt 0.0005 3.136591611 54 12 0 0 25 8 1 0 0 100

Moores Est 20A 8837.9 C80 BMdst 0.022 0.44841679

Moores Est 20A 8840.8 C81 BMdst 0.0009 4.88071282

Moores Est 20A 8857 C82 BMdst 0.0054 4.239403476

Moores Est 20A 8864.7 C83 MCcSt 0.0002 1.381968609 30 19 7 0 42 2 0 0 0 100

Moores Est 20A 8867.1 C84 MCSt 0.0001 3.365365254 48 13 0 0 35 3 1 0 0 100

Moores Est 20A 8876.4 C85 MCcSt 0.00002 1.81191186 27 24 0 0 48 1 0 0 0 100

Moores Est 20A 8881.2 C86 MCSt 0.0015 5.565877853 53 13 0 0 20 4 5 4 0 100

Moores Est 20A 8888.1 C87 MCSt 0.0024 5.783587922 61 4 0 0 22 8 5 2 0 100

Moores Est 20A 8890.2 C88 MCSt 0.0014 4.565081567 52 5 0 0 31 6 5 1 0 100

Moores Est 20A 8894.6 C89 MCSt 0.0015 4.631162978 57 3 0 0 27 7 3 1 1 100

Moores Est 20A 8900.7 C90 MCcSt 0.000033 1.548742537 33 23 0 0 43 1 0 0 0 100

Moores Est 20A 8901.9 C91 MCSt 0.0003 3.368579482 51 6 0 0 29 9 5 0 0 100

Moores Est 20A 8905.2 C92 MCcSt 0.0039 0.439644558 35 18 0 0 44 2 1 0 0 100

Moores Est 20A 8911.9 C93 BMdst 0.00002 0.722575889

Moores Est 20A 8918.1 C94 AMdst 0 0

Moores Est 20A 8923.8 C95 BMdst 0.0000054 2.969815204

Moores Est 20A 8936.3 C96 MCSt + 2.752200292 46 7 0 1 34 6 5 1 0 100

Moores Est 20A 8940.1 C97 MCSt 0.0001 3.268542018 46 8 0 0 42 3 1 0 0 100

Moores Est 20A 8946.7 C98 BMdst 0.0006 4.068179894

Moores Est 20A 8950.9 C99 MCcSt 0.0003 3.444067472 36 12 0 0 50 1 0 1 0 100

Moores Est 20A 8957.7 C100 MCcSt 0.0002 3.041449894 29 7 0 0 54 1 4 5 0 100
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Chapter 4 

 

Zone Petrofacies Major (ft) Minor (ft) Vertical (ft) 
Azimuth                  

(degrees from N)

Mdst 2500 2000 15 315

MCcSt 2500 2000 10 315

MCSt 2500 2000 12 315

Mdst 2500 2000 15 315

MCcSt 2500 2000 13 315

MCSt 2500 2000 12 315

Mdst 2500 2000 25 315

MCcSt 2500 2000 13 315

MCSt 2500 2000 13 315

Mdst 2500 2000 16 315

MCcSt 2500 2000 12 315

MCSt 2500 2000 8 315

Mdst 2500 2000 8 315

MCcSt 2500 2000 8 315

MCSt 2500 2000 7 315

Sycamore E

Sycamore D

Sycamore C

Sycamore B

Sycamore A


