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ABSTRACT 

 

Geomechanics is the study of the mechanical response of geologic formations subjected to 

injection, production, and storage of fluids in the subsurface. It plays a role in understanding 

formation integrity and the response to oil and gas depletion during well completion. Recent 

studies also relate geomechanics to energy transition methods, such as carbon capture storage and 

geothermal energy. In this thesis, we combine nanoindentation with hydraulic fracturing testing 

and acoustic emissions monitoring to approach one question. Can we combine nanoindentation 

and hydraulic fracturing laboratory testing to understand and improve solutions for common 

problematics in completions design, such as the reduction in hydraulic fracturing breakdown 

pressure, total stimulated reservoir volume, time-dependent deformation, and rock and fluid 

interactions?  

Using cyclic injection, a greater number of cycles reduced the monotonic breakdown 

pressure and the average seismic moment of induced acoustic events. The number of acoustic 

events increased with more cycles, reflected in a greater estimated stimulated reservoir volume 

(SRV). The 4-cycle test was the most efficient test, with the greatest SRV generated based on the 

work inputted. Additionally, nanoindentation showed linear gel as a damaging agent for carbonate 

rich samples, ash beds to record a significantly lower Young’s modulus than the formation matrix, 

and modeled primary and secondary creep in shales, showing a dependency on clay and total 

organic content. 
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1. INTRODUCTION 

Oil and gas production is one of the main drivers worldwide. Once hydrocarbons are 

refined and processed, petroleum becomes the energy source for multiple industries. Fig. 1.1 

displays the use of oil in different sectors, including transportation, industrial and residential, and 

electric power. Only within those three sectors, a total of 18.1 million of barrels per day are 

utilized, coming mainly from sources of gasoline, fuel, and hydrocarbon gas. Fig. 1.2 shows the 

U.S. natural gas consumption by sector; there in an incremental trend over the latest years. As 

consumption continued to increase, engineers needed to find ways and techniques to satisfy 

consumption by increasing the oil and gas production. One of the main techniques developed was 

hydraulic fracturing. It consisted of the injection of fluids -primarily composed of water- to the 

subsurface to induce fractures in low permeability rocks and recover stored hydrocarbons. 

Hydraulically fractured wells have increased over the last years (Fig. 1.3b). The steps followed 

during fracturing are explained: 

 

 

Figure 1-1. Petroleum products consumption in the United States for 2020 classified by the source and sector. This is a large 
production that continues to increase every year (U.S. Energy Information Administration, 2021) 
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Figure 1-2. Natural gas consumption in trillion cubic feet based on the sector for the past 70 years. Note the increasing trend 
over the last 10 years (U.S. Energy Information Administration, 2021). 

• Hydraulic fracturing starts by injecting fluids into the formation until it exceeds the fracture 

pressure. Multiple methods (Cyclic, Variable Rate, Zipper) have been used to reduce the 

breakdown pressure, and they have been proven to work according to the formation 

properties.  

 

Figure 1-3. a) Magnitude of the largest earthquake induced during hydraulic fracturing operations over the past 10 years. This 
shows how important it is to reduce magnitude of seismicity, as some of those earthquakes have a magnitude greater than 4.0 

B) Number of wells hydraulically fracture in the last 7 years for different formations. Note that there is an increasing trend, 
suggesting that advances in the technique could potentially lead to even a greater number of HF wells. 

• Fractures are induced through the formation extending through different layers and 

interfaces. Even though some people believe that fractures are planar, multiple studies have 



3 
 

shown fractures more complex than planar shapes. Elastic parameters of the layers are 

essential once the fracture tip energy is low (i.e., far away from the wellbore). 

• During fracture propagation, small earthquakes -known as microseismic- are induced. 

Location of these events is important as usually the greater in number, the greater the 

productivy. Mapping those microseismics allow the recreation of the fracture network, 

understanding what zones are part of the stimulated reservoir. 

• Proppant is placed inside the fracture, and fluids are flushed back to the surface. However, 

most water is never recovered and remains in contact with the formation, leading to rock 

and fluids interaction. Acids and fracturing fluids are common fluids that react with the 

formation. Depending on the pH and formation petrophysics, they can damage the fracture 

surface and reduce elastic properties, such as Young’s modulus. 

• Recall that proppant is placed to hold the fractures open. After long periods, creep is 

observed. The longer the proppant is holding the fracture at high stresses, the greater the 

deformation, leading to failure and fracture closure. 
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Research objective: 

 

Hydraulic fracturing faces different issues. Understanding what leads to those issues is the 

best method in finding a solution. In this study we will combine nanoindentation with hydraulic 

fracturing testing and acoustic emissions monitoring to understand topics such as fracture 

propagation in layering, increase in seismic intensity, reduction of breakdown pressure, and time-

dependent deformation in soft layers. This thesis will approach two questions: 

- Can we use hydraulic fracturing laboratory testing to aim to reduce breakdown pressure 

and seismicity, determining the effectiveness through acoustic emissions? 

- Can nanoindentation be used as a technique to understand better common problematics 

in hydraulic fracturings, such as the contrast in elastic properties from different layers, 

time-dependent deformation, and rock and fluid interactions? 

Synopsis: 

 

This study is divided into 6 chapters. The first and second chapters include the introduction 

and literature review. Then, chapter 3 will touch on studies using nano-indentation, divided into 

rock and fluid interactions, creep parameters, and fracture propagation. Chapter 4 will consist of 

an analysis of hydraulic fracturing, discussing the equipment and methodology, and two studies 

that determine the most efficient protocol for reducing seismic magnitudes and increasing fracture 

network. Chapter 5 will describe some of the field applications and suggestions for future research. 

The last chapter will give the general conclusions. 
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2. LITERATURE REVIEW 

2.1 Geomechanics 

Geomechanics is the study of the mechanical response of geologic formations subjected to 

injection, production, and storage of fluids in the subsurface. Historically, it is a subject that has 

been extensively studied in the petroleum industry. It plays a role in understanding formation 

integrity and the response to oil and gas depletion during well completion. Recent studies also 

relate geomechanics to energy transition methods, such as carbon capture storage and geothermal 

energy (Rutqvist et al., 2019). Knowledge on formation stresses at various depths and properties 

such as the uniaxial compressive strength, Young’s modulus, and Poisson’s ratio can improve oil 

extraction mechanisms such as hydraulic fracturing. Geomechanics knowledge is required at every 

stage in hydraulic fracturing to understand the mechanical properties and in-situ stresses of 

adjacent layers during well placement for better-stimulated reservoir volumes and fracture 

networks. In pre-pad and pad stages, fluid interaction with the formation matrix is critical for 

extended fractures and greater stimulated reservoir volumes. Information on creep and Young’s 

modulus is necessary to avoid proppant embedment and to maintain fractures apertures.  
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2.2 Hydraulic Fracturing Protocols 

Hydraulic fracturing is a technique that involves injecting fluids at different flow rates into 

the wellbore to open fractures in the subsurface and create paths for hydrocarbons to escape. This 

technique is usually best described in three main stages. First, acidizing the area around the 

perforation holes for cleaning and clearing paths; second, injecting low and high viscosity water-

based fluids until the formation breakdown pressure is reached, where fractures initiate and 

propagate; and last, pumping proppant (sand) to hold the induced fractures open while the injected 

fluid is flushed. This technique caused a breakthrough in oil and gas exploitation due to its ability 

in hydrocarbon recovery for unconventional reservoirs. Its advantages have expanded in other 

fields, including geothermal energy and carbon sequestration (Adams et al., 2013; Qian et al., 

2019). 

Hydraulic fracturing was patented in 1957 by J. Clark. He described it as a method to 

increase the well productivity by injection viscous fluids containing a granular material into a well. 

Since then, the monotonic injecting has been the most popular in field tests. Laboratory and field 

studies have been combined to understand and analyze this test. However, much remains 

undefined. 

Laboratory studies are usually performed at small scales, and relating them to the field was, 

at some point, very difficult. Zang and Stephansson (2010) built a relation between laboratory and 

field tests by comparing fracture fault length and process zone (Fig. 2.1). Even though the scales 

differ by up to five orders of magnitude, a strong correlation permits laboratory tests to be upscaled. 

The correlation is 1:50, implying that a process zone will be about 2% of the fault length. 
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Figure 2-1. Hydraulic fracturing upscaling from laboratory to field fractures. There is a 1:50 ratio between the process zone and 
the fault length. Note that laboratory experiments do not exceed a fault length of 30 cm, while field data shows faults to reach 

lengths up to 200 km (Zang and Stephansson, 2010). 

With the shale revolution, unconventional reservoirs became a target for exploration. It is 

well known that unconventional reservoirs are more complex than conventional reservoirs, and 

although monotonic injection was used initially as the primary method for fracturing, adjustments 

have been carried out. For example, different injection methods were tried to increase the 

stimulated reservoir volume, process zone and to reduce the breakdown pressure. Cyclic injection, 

variable rate injection, zipper fracking, highway fracking, and other tests have been implemented 

(Surgchev et al., 2008; Patel et al., 2016; Zhuang et al., 2017; Iriarte et al., 2017; Patel et al., 2017; 

Sukumar et al., 2019). 
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The cyclic injection test was first patented by Hulse (1959), where successive shock 

pressure waves were superimposed, which resulted in more fluid and proppant being injected into 

the fractures, increasing the total productivity.  

Subsequent studies improved the understanding of cyclic injection. Using 1-in core 

samples, Erarslan and Williams (2012) studied the effect of cyclic loading on Brisbane tuff using 

a Brazilian test and found that cyclic injection reduced the indirect tensile strength by 35%, 

agreeing with observations by Mighani (2014). In addition, Scanning Electron Microscopy (SEM) 

imaging showed grain breakage during cyclic loading. Zhuang et al. (2016) performed a laboratory 

test of Pocheon granite in South Korea, seeing a reduction in breakdown pressure with cyclic 

injection. The reduction of breakdown pressure with cycling has been observed on different rock 

types, such as Tennessee Sandstone (Patel et al., 2017) and isotropic materials such as cement 

(Falser et al., 2016). Zhuang also noted that breakdown pressure decreased as a function of cycle 

numbers, and fractures were planar under monotonic injection but branched more under cyclic 

injection. Modifications to this test caused higher reductions in formation breakdown pressure. Al-

Nakhli et al. (2019) held the pressure at each cycle peak before letting it drop to a baseline, getting 

a 23% reduction in breakdown pressure. Higher fracture width was obtained from cyclic hydraulic 

fracturing, agreeing with the increase in secondary fractures observed by Patel et al. (2017). 

Hofmann et al. (2018) compared cyclic injection with constant injection for both laboratory and 

field scales, showing agreement in lower magnitudes of seismic events under cyclic injection and 

more fractures produced for cyclic injection. 

A secondary alternative for monotonic injection has been intended for both laboratory and 

field experiments. Instead of changing the pressure, the flow rate was the controlled variable. The 

variable rate injection test or water hammer uses sudden changes in flowrate to act as pressure 
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pulses and damage the rock. Ciezobka et al. (2016) saw a rise in microseismic events during these 

pulses, which led to an increase in production as those pulses opened closed perforations. Iriarte 

and Merritt (2017) showed this test to depend on the completion type and fluid system. Using 

pressure pulses, a well-connected fracture network near the wellbore was created with increase in 

production. 

The Integrated Core Characterization Center has performed laboratory tests on hydraulic 

fracturing to understand what mechanisms drive fracture growth, process zone, and breakdown 

pressure. To briefly review them, Alvaro Ortiz (2010) and Camilo Moreno (2011) assessed 

microseismic mapping and location uncertainties in uniaxial experiments. Akash Damani (year) 

performed triaxial testing with different injection rates, fluid types, and rock mineralogy. Insights 

were gained on what parameters drive formation breakdown pressure and produce higher 

permeabilities and larger process zones. Swetal Patel (2017), Christopher Ratzlaff (2019) and 

Saurabh Goyal (2019) used the triaxial set-up and performed pre- and post-cyclic injection, noting 

further reductions in breakdown pressure and an increase in the stimulated reservoir volume. The 

latest studies attempt to take microseismic one step further and analyze attributes of acoustic 

emissions to understand types of failure mechanisms. 

2.3  Fluid’s Injection 

Large quantities of fluids are injected into the subsurface before and during hydraulic 

fracturing jobs. Acids and fracturing fluids are pumped to clean and induce pressure. One of the 

main concerns is understanding the effect fluids will have on a formation and how they impact it 

both chemically and mechanically.  

Wick et al. (2020) showed the mechanical damage caused by different acids (HCl, citric 

and formic) on samples with high quartz, carbonate, and clay content using nanoindentation. The 
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observations proved formation degradation under acid exposure. There was mineral removal on 

the surface, especially on the carbonate-rich sample, which significantly damaged the surface by 

leaving a patchwork frame and decreasing Young’s modulus by as much as 80%. Such a decrease 

can lead to proppant embedment and integrity issues in near-wellbore stability. 

  

The water weakening effect on rocks has been studied, addressing reduction by as much as 

70% on Young’s modulus and uniaxial compressive strength (Colback and Wiid, 1965; Almassodi 

et al., 2014; Gupta et al., 2018). These effects are dependent on different conditions such as 

temperature, salinity, and fluid additives, which can either trigger reactions and increase damage 

or reduce the rock-fluid interaction (Akrad et al., 2011; Lyu et al., 2018; Signh et al., 2019). 

Harrison et al. (2017) showed how mineralogy is the driving component of rock-fluid 

behavior (shales) on the geomechanical side. Their fracturing fluids dissolved calcite and pyrite, 

generating hydroxides that could block pores and affect fracture connectivity. Luo et al. (2021) 

observed pyrite oxidation, clay hydration, and swelling as the main factors in shale softening and 

degradation. 

From a mechanical perspective, Chen et al. (2019) analyzed the effect of water-based rock 

and fluid interactions. A significant reduction in fracture toughness and fracture growth index was 

observed with increased water content for Woodford samples, even though smectite was low. The 

opposite case was observed for carbonate-rich samples (Marcellus), where the water effect was 

insignificant. Clay-rich samples have a high probability of failure with water-based fluids due to 

subcritical fracture growth. Lyu et al. (2018) showed a considerable reduction (70%) in uniaxial 

compressive strength after water saturation in the Shichuan Basin shale samples with low clay 

content. Salinity content was determinant in partially recovering the decrease in UCS; having 

higher salinity concentrations reduced the UCS reduction. KCl was the most efficient salt to avoid 



11 
 

weakening. At a concentration of 25% KCl, the UCS reduction was only 20%, compared to NaCl 

and CaCl2 where the reduction was 40%. 

2.4  Fracture Initiation and Propagation 

Production in unconventional reservoirs has many challenges. A suitable fracturing 

protocol optimizes parameters such as breakdown pressure and contacted surface area; however, 

fracture propagation is still affected by layering and laminations in reservoirs (Suarez-Rivera et 

al., 2016). The layering refers to reservoirs with thick enough formations to be targeted, while 

laminated refers to thin below log resolution. Understanding mechanical properties in multilayer 

reservoirs, especially the contrast between the landing zone and the adjacent layers, is critical in 

overcoming poor fracture propagation and fracture connectivity.  

Philipp et al. (2013) showed a detailed analysis of the main factors that affect hydraulic 

fractures. Discontinuities, defined as a break or fracture of low or zero tensile strength, and stress 

barriers, defined as layers with unfavorable stress conditions for fracture propagation, were 

considered the least favorable factors for a hydraulic fracture. The relation between mechanical 

properties (e.g., Young’s modulus and Poisson’s ratio) and the stress state of rock control the 

fracture propagation of different layers. As the fracture tip moves toward an open contact, it either 

propagates along the contact or stops. These observations also occur in volcanic regions, where 

ash beds are common. Volcanic ash beds are heterogeneous thin layers commonly observed in 

unconventional formations with diagenetic alterations and sedimentary structures, making them 

act as barriers that affect fracture propagation (Calvin et al., 2015; Suarez-Rivera et al., 2016). 

Luo et al. (2018) investigated the effect of bedding plane orientation on fracture mechanics 

(fracture propagation and fracture toughness) on a dry Longmaxi shale. When the crack was 

propagating at small bedding plane inclinations, the fracture initiated and propagated along the 
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same crack line; however, when the angle increased, the crack initiated along weak bedding planes. 

Fracture toughness was lower for crack propagation along bedding planes.  

Other industries have similarly analyzed crack propagation. Kim et al. (2005) examined 

the crack behavior across interfaces in ceramic dental bilayers, contrasting elastic properties 

between each layer. They noted that cracks arrested at the interface when traveling from low to 

high Young’s modulus. The opposite case was noted when traveling from high to low Young’s 

modulus, which enhanced the crack propagation. Using microindentation cracks in soda-lime 

glass, Rosenfeld et al. (1990) showed the direction of crack propagation to depend on the distance 

to the interface and using finite element modeling (FEM), they showed the propagation angle to 

depend on the elastic moduli difference. 

2.5  Creep Properties 

Once the fracture network is created, proppant is pumped into the fractures to keep them 

open while hydrocarbons are extracted. However, due to high stresses to which propping sand is 

subjected, proppant crushing, and embedment are common and likely issues. Understanding the 

plastic deformation properties of each layer becomes the key to maintaining production. 

Commonly known as creep, this property is defined as the permanent deformation of a material 

over long times and under constant loads. This property can be impactful depending on external 

factors such as temperature, loads, and material composition. Fig. 2.2 shows the three phases of 

creep in a curve of strain as a function of time. Primary or transient creep consists of a rapid 

deformation in a short time, where the strain is relatively high. As time progresses, primary creep 

transitions into secondary creep, also known as steady-state creep, due to its constant deformation 

rate over time. The change in strain is almost linear. Most studies have been analyzed during 

secondary creep, aiming to obtain the stress vs time slope as the predictor for the long-time 



13 
 

performance. The tertiary creep is the last stage where the strain abruptly increases, and failure 

occurs. After holding strain for long times in the secondary stage, strength is lost, and deformation 

leads to a total and irreversible rupture. Although sometimes neglected, few studies have been 

performed to understand creep behavior in unconventional reservoirs using uniaxial and triaxial 

systems.  

 

Figure 2-2. Strain vs time curve for creep. The rapid increase in strain (primary) is followed by the steady-state creep (secondary), 
which is the most important phase across industry studies. The latest stage has a sudden rapid increase in strain which leads to 

failure.  

Sone and Zoback (2013) performed long-term (6-hours) triaxial testing on different 

unconventional reservoirs to analyze the creep behavior and brittle strength of shale. Viscoelastic 

creep strongly correlated with the rock composition (especially clays and kerogen) and the static 

Young’s modulus. Deformation perpendicular to bedding planes was greater than parallel. In 

addition, Rybacki et al. (2017) studied creep behavior in Posidonia shales at different applied 

differential stresses. At low differential stresses, sample deformation did not reach secondary 
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creep, however, increasing the differential stresses not only achieved secondary creep but also 

reached failure. 

Primary and secondary creep are better understood through modeling. Fitting the stress and 

strain relation using the power-law function such as 휀 = 𝜎𝐵𝑡𝑛. Sone and Zoback (2014) showed 

how the stress exponent ‘n’ depended on mineralogy and anisotropy. Rassouli and Zoback (2018) 

performed different triaxial tests on the Haynesville formation. After performing creep tests over 

different time intervals, they calculated a consistent creep compliance factor, predicting time-

dependent deformation in shales. Similarly, Gupta et al. (2018) used the stress exponent to 

compare creep behavior in different formations. The Eagle Ford formation showed higher creep 

compared to the Wolfcamp and Woodford. 

2.6  Microseismics 

Microseismics have been historically used to evaluate the efficiency of a hydraulic 

fracturing job. It is one of the principle diagnostic procedures to monitor fracture development, 

and it expanded towards unconventional reservoirs (Albright and Pearson, 1982; Warpinski et al., 

1998; Warpinski, 2013). During fracturing testing, the pore pressure is increased until exceeding 

the fracture gradient, and failure is reached. During fracture propagation, energy is liberated by the 

opening of cracks, which liberates energy monitored with acoustic geophones. Knowing the 

precise location of each geophone, the compressional wave velocity, and having a certain number 

of signals allows the user to locate the source of a crack/fracture with relative confidence (Stein 

and Wysession, 2003; Moreno, 2011). A combination of the located acoustic emissions creates a 

fracture network map.  

Whitfield et al. (2018) aimed to mitigate the frac hits in the Eagle Ford formation as they 

can lead to collapse casing. Microseismic was a helpful in identifying locations where wells were 
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communicating with each other. Mayerhofer et al. (2011) integrated fracture diagnostics in the 

Marcellus for improvement in stimulation efficiency. Microseismics showed locations where BHP 

increased at different stages and the direction at which microseismics appeared after the 

communication between wells occurred (Fig. 2.3).  

 

Figure 2-3. Integration of fracture diagnostics, bottom hole pressure and microseismics for two wells in the Marcellus. 
Microseismic shows that according to the interference between two wells, there are changes in BH pressure. (Mayerhofer et al., 

2011). 

The accuracy and precision of microseismic locations have improved over time. Their 

application has been used in well placement, completion design, and stimulation optimization 

(Warpinski, 2013). Laboratory studies have aimed to complement and validate the field 

observations, not only through acoustic emission locations but by performing attribute analysis on 
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each emission and understanding failure modes, seismic magnitudes, source radius and 

displacement. This section will evaluate the methodology for calculating the source parameters 

and insights gained. 

Brune (1970) is one of the pioneers of seismic source analysis. His work contributed to 

calculations on the source radius using the frequency response and moment magnitudes. Source 

radius is the first parameter calculated using the corner frequency Fc and shear wave velocity Vs. 

The corner frequency, defined as the separation between the low and high frequency in the 

displacement spectrum, or center frequency in the velocity spectrum, was calculated by taking the 

Fourier Transform of the displacement spectrum (Papageorgiou, 1988; Warpinski et al., 2012). 

 

Evaluation of acoustic waves in the frequency domain offers information about the event 

that is not apparent in the time domain cannot. Bakker et al. (2016) conducted laboratory 

experiments to analyze the dyke injection at elevated pressure and temperatures of an Etna basalt. 

They found similarities in pre-breakdown events to classical volcano-tectonic waveforms; 

however, events after failure exhibited a low-frequency response. Mohamed Bak et al. (2016) 

characterized failure modes uniquely based on the frequency signal of single lap joint basalt/epoxy 

specimens. The acoustic emissions were recorded with piezoelectric sensors with frequencies of 

100-900 kHz. A threshold was set to classify events as an adhesive failure or a shear failure using 

the peak of the frequency spectra (Fig. 2.4). 
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Figure 2-4. Peak frequency spectra as a function of time. This is used to differentiate between the light fiber tear failure and 

adhesive failure in single lap joint basalt/epoxy (Bak et al., 2014). 

The seismic moment is an estimate of the energy release by a crack. It is calculated using 

Eqn. 2.1, where ρ is the density, R is the distance between the crack and the receiver, Ω is the low-

high displacement spectrum, Fc is the radiation pattern factor, and Vs is the shear wave velocity. 

The seismic moment is probably the most critical attribute from a seismic event, as it is used to 

obtain other parameters such as stress drop or displacement slip on the fracture plane, and it opens 

insights on events failure. The moment magnitude is a method to scale it, and it is also derived 

from the seismic moment. 

𝑀𝑜 =
𝛺𝑜

𝑅𝑜∅
4𝜋𝜌𝑅𝑉𝑝

3……………….………...…………………………………………………..(2.1) 

Baig and Urbancic (2014) studied two cases with acoustic events from the Horn River 

Basin and the Eagle Ford and showed the complexity of characterizing seismic events. They 

showed that large-magnitude events tend to be shear-driven, while small magnitudes represent 

fluid-driven signatures. An emphasis is made to consider the low frequency of the signal when 
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obtaining parameters such as corner frequencies, as this can underestimate the moment magnitude. 

A direct correlation was found between seismic moment and source radius.  

Zecevic and Eaton (2017) used moment magnitudes and corner frequency to classify 

acoustic events in the Barnett. Based on the relationship of Fc and Mw, two clusters were 

identified, one having greater moment magnitudes than the other. Those clusters showed that 

events with smaller magnitudes mainly show low double couple components, classifying them as 

tensile. Events with higher magnitude show a greater double couple (%) and are expected as shear 

events. 

Mizuno et al. (2019) proposed an approach to monitor static stress drop and rupture 

velocity changes by combining the corner frequency and seismic moment in the Barnett Shale and 

Cotton Valley. The changes in seismic moment were explained with variations in the static stress 

drop and rupture velocity, which allowed for the interpretation of properties such as permeability. 

They recorded a constant moment during the development of the hydraulic fracture system for the 

Barnett Shale; however, the Cotton Vale showed an initial increase in moment followed by a 

decrease towards the end of the fracture development. The increase was explained by the rise in 

permeability. 

Warpinski et al. (2012) reviewed microseismic information of multiple treatments for six 

basins in the United States. Using Brune’s (1970) model for calculating magnitudes, they observed 

that seismic magnitudes trend with depth in the Barnett, Woodford, and Eagle Ford, which 

suggested a dependency between the seismic magnitude and stress conditions (Zang and 

Stephansson, 2010). However, this trend was not repeated for the Marcellus formation. A direct 

correlation was observed between the slip area and the Zang and Stephansson (2010) seismic 

moment; the higher the magnitude, the greater the slip area. The Barnett exhibited the highest 
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moment magnitudes, while the Marcellus was the lowest. In a similar study, Warpinski (2012) 

showed that most of the events recorded during hydraulic fracturing have magnitudes in the range 

of -3.0 to 1.0, which in terms of energy is 1,000 times smaller than events felt at the surface. These 

events are not likely to cause earthquakes. 
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3. NANOINDENTATION 

Over the last decade, industries have improved their technology and started developing 

small size materials. Thin films and coatings are some examples of the materials that universities 

and industries analyze. Generally, these materials require mechanical testing before being used in 

semiconductor devices, solar cells and integrated circuits. Uniaxial and triaxial testing are 

conventional techniques for measuring parameters such as elastic modulus, while Brinell and 

Vickers hardness are applied for hardness measurements. However, these techniques are not 

capable of assessing materials on the order of micro- and nanometers. Oliver and Pharr. (1992) 

developed a method that works in small size materials and outputs both elastic moduli and 

hardness, called nanoindentation. The depth of penetration is measured using a three-plate 

capacitance displacement gage (Fig. 3.1). A diamond tip is placed at the indenter end, which 

changes in geometry according to its application. Indenter tips such as the Berkovich or Vickers 

are used for shallow indentation, while spherical indenters are more commonly used in defining 

yield stress (Bhushan and Li, 2013). 

 

Figure 3-1. Schematics of a nanoindenter. The coil and magnet create a load applied by the indenter tip. The displacement is 
measured with the capacitance displacement gage (VCU Engineering, Nanoindentation). 



21 
 

Fig. 3.2 describes the loading process, starting with the indenter tip contacting the sample 

surface, and gradually increasing the load until the desired limit. The tip is then held for a finite 

time (can be 10 seconds) and unloaded. During the tip release, the elastic moduli and hardness are 

obtained. The tip size is small allowing multiple indentations to be placed on the surface, which is 

important in heterogeneous materials. Additionally, the grain size needs to be significantly smaller 

than the indentation area. Although not as frequent, other properties such as creep and fracture 

toughness have also been quantified (Schiffmann et al., 2011; Liu et al., 2015; Mighani et al. 2015). 

 

Figure 3-2. Left) Indenter tip steps in a sample surface. Right) Loading curve as a function of displacement for one 
nanoindentation. A) indenter loading; B) holding time; C) unloading; D) drift coefficient measurements (Acosta et al., 2020). 

  Because of shale friability, mechanical properties are often difficult to obtain as core 

samples are challenging to acquire. Shales are very heterogeneous with small grain and pore sizes 

(nanoscale), allowing the use of cuttings of readily available chips. In the following sections, 

analysis of creep behavior under saturated conditions, the effect of fracturing fluids on mechanical 

properties, and the contrast in elastic parameters between the ash beds and the formation matrix 

will be discussed. 
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3.1  Fracturing Fluids on Mechanical Properties in Wolfcamp 

Rock and fluid interactions are a main area of study in completion operations. 

Understanding the formation response to injected fluids can improve completion designs, 

especially in hydraulic fracturing operations, where different fluid compositions are used. Previous 

studies have reported interactions between acids and brines with the formation matrix; however, 

there are limited studies on fracturing fluids. Large quantities of fracturing fluids are injected in 

each operation and their selection is crucial. Fluid viscosity controls fracture initiation and 

propagation. After completion, large amounts of fluid remain in the subsurface, leading to strong 

rock-fluid interactions. This study quantifies the effect on mechanical properties caused by 

reactions between common fracturing fluids and the formation, considering parameters such as 

additive concentration, saturation time, and formation mineralogy. 

3.1.1  Formation Evaluation 

The Permian basin is a large sedimentary basin located in Texas and the southeast of New 

Mexico. It contains numerous reservoirs mainly composed of limestone, sandstone, and shale. 

With a depth range between 7500 to 10000 ft and an area of about 75000 mi2, it is a thick formation 

with strong prospect zones for production. This is the largest oil-producing basin in the United 

States (“Permian Basin – Major Oil and Natural Gas Field”, 2013). Companies such as Exxon, 

OXY, BP, and Pioneer have assets in it. Some formations, such as the Avalon Shale, Leonard 

Shale, Bone Spring, Spraberry, and the Wolfcamp, are all within the Permian. The Wolfcamp is 

located at the bottom of the basin and is just above the Strawn formation, a carbonate (Fig. 3.3). 

The formation can reach temperatures around 170-200 ºF, a factor to be considered in this study. 
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Figure 3-3. Permian Basin depth diagram. IHS Energy (2016). 

3.1.2  Methodology 

A total of 12 samples were chosen for indentation and Scanning Electron Microscopy. 

Seven were selected from the Wolfcamp formation and five from the Strawn. A 1-in diameter disc 

was sliced from a plug with a thickness ranging between 0.2 to 0.3-in. The discs were cut in four 

pieces to accommodate multiple tests (Fig. 3.4a): 1) Native measurements, 2) Slickwater 

saturation, 3) Linear gel saturation, and 4) petrophysics. Saturation was done for 24 hours at a 

pressure of 1,000 psi. In Fig. 3.4b, saturating fluid filled the cup holding the sample to maintain 

saturation while running the indentations. 
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Figure 3-4. a) Illustration for disc testing at different saturation conditions. b) Stub protocol to hold the sample under saturation 
while performing nanoindentation. 

Slickwater and linear gel were chosen for testing as they are two of the most common 

fracturing fluids used in hydraulic fracturing operations. Slickwater is a low viscosity fluid, that 

yields high fracture conductivity. On the other hand, the linear gel has a greater viscosity, which 

helps proppant transport and fluid loss control. The pH of the slickwater and the linear gel were 

7.8 and 4.9 respectively. Other fluids used in the field, such as crosslinkers, are less common, more 

expensive and were not considered in this study.  

Rocks were dried at 100 ᴼC. Indentation arrays of 5x5 were randomly placed on the sample 

surface. The maximum load was set to 490 mN, with a holding time of 10 seconds. The effect of 

fluids on Young’s modulus and hardness were studied.  

The slickwater consisted of 120 ppm each of friction reducer and a clay stabilizer. The 

main component in the linear gel was guar, at a concentration of 2400 ppm, while the gel breaker 

used was ammonium persulfate at 60 ppm. These values were chosen by Schlumberger, who 

provided the fluids with predetermined concentrations based on their field use. 
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3.1.3  Petrophysics 

One of the sample fractions was selected for petrophysical measurements. TOC and 

mineralogy were run using the same methodology as in Section 3.1.3. The Wolfcamp formation 

showed a considerably higher TOC (1.5 – 6.8 wt%) than the Strawn (0.6 – 1.2 wt%). In addition, 

Wolfcamp samples showed variations in mineralogy, with low and high clays, carbonates, and 

quartz. The Strawn formation was carbonate-rich (over 70 wt%), with low porosity as shown in 

Table 3.1. 

Table 3-1. Detailed composition for the Wolfcamp and Strawn samples. The Wolfcamp formation has a variation in mineralogy, 
while the Strawn is very carbonate-rich and low in TOC. All mineral and TOC percentages are weight percentages. 

 

3.1.4  Results 

Mechanical properties response under fracturing fluids 

The native samples were indented, and Young’s modulus was plotted against mineralogy. 

with the results were consistent with previous data from Shukla et al. (2013). Due to the high 

carbonate content, Strawn showed a higher Young’s modulus, ranging from 70 to 80 GPa, while 

the Wolfcamp moduli ranged between 30 to 50 GPa (Fig. 3.5). A direct proportionality was 

observed between the moduli and quartz and carbonate, while samples with higher clay content 

had lower Young’s moduli.  
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Figure 3-5. Young’s modulus as a function of quartz and carbonates (left) and clay and TOC (Right). The current data matches 
historical measurements performed by Shukla et al. (2013). The Strawn and Wolfcamp are measurements from this study. 

Fig. 3.6 compares Young’s modulus of the native state with those of the saturated samples. 

High carbonates (> 60 wt%) samples were the most affected. A decrease in Young’s modulus of 

21% under slickwater and 31% under linear gel was measured. On the other hand, low carbonates 

samples showed a 6% decrease with slickwater and 22% with linear gel. This suggests more 

damage with linear gel than under slickwater, independent of the carbonate content. 

Hardness results were identical to those observed for Young’s modulus (Fig. 3.7). The 

lowest hardness was observed using linear gel, decreasing in almost every sample (independent on 

carbonate content) by more than 50%. Sample 8 (Strawn) had a higher hardness after saturation, 

but it also had a high standard deviation. Slickwater also decreased hardness after saturation, 

suggesting an increase in the plastic deformation, yet it was not as significant change.  
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Figure 3-6. Bar chart on Young’s modulus for the Wolfcamp and Strawn samples showing the native sample (blue), slickwater 
saturation (red) and linear gel (green) responses. Note the standard deviations are marked with the error bars. There is a 

greater Young’s modulus decrease using linear gel than slickwater. Carbonate-rich samples (7-12) were the most affected. 

 

Figure 3-7. Bar chart showing hardness reduction after saturation. Note the Strawn has a greater decrease in hardness than the 
Wolfcamp. The linear gel caused the greatest damage. 

Scanning Electron Microscope 

In order to understand the possible microstructural changes, low and high carbonate 

samples were examined under the Scanning Electron Microscope. Backscattered images were 
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taken before (left) and after (right) saturation with each fluid. The yellow triangles represent the 

size of an indentation with respect to the scale image. 

Fig. 3.8 shows the effect of slickwater. In the top row, images at a 40-µm scale showed 

small grain boundary dissolution for the low carbonate sample (red arrows). At the bottom row, 

slickwater had a different effect on the high carbonate sample. Extensive grain boundary 

dissolution and some etching were observed. The boundary dissolution could weaken the rock 

matrix and reduce Young’s modulus in high carbonate samples, explaining the decrease observed 

in Fig. 3.6. 

 

Figure 3-8. SEM Imaging for slickwater saturation. Native samples are in the left column, while saturated samples are in the 
right. Small grain boundary dissolution is noted in the low carbonate sample (top row), while etching and extensive boundary 
dissolution is noted for the high carbonate sample (bottom row). These images were not taken at the same location but have 

similar scales. 
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To better understand surface changes on the sample saturated with linear gel, the 

magnification was increased 5 times in some affected areas (from 5000x to 25000x). This exposed 

that not only grain boundaries were being dissolved, but that etching had occurred on the surface 

of some minerals (Fig. 3.9). 

 

Figure 3-9. Series of SEM images for a high carbonate sample saturated under slickwater, increasing in magnification from left 
to right. Higher magnifications expose etching and grain boundary dissolution (right image). 

Fig. 3.11 shows the effect of the linear gel on the surface. In low carbonates (top row), 

empty spaces appeared after saturation. It suggests that some minerals were dissolved and 

removed, explaining the further reduction in Young’s modulus as porosity is increased. A chemical 

reaction also occurred, which led to guar deposits on the surface. It also revealed the most 

damaging and substantial reaction between the high carbonate sample and linear gel (bottom row), 

which significantly altered the surface. Etching and mineral removal occurred all over the sample, 

but quartz grains did not suffer from the linear gel exposure.  

 

Figure 3-10. Surface roughness change after linear gel saturation on a high carbonate sample using confocal microscopy. Note 
the depth changes in the surface map.  
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Surface roughness was calculated using the chromatic confocal microscope, by obtaining 

the root mean square roughness (Rrms) in an area of 0.5 mm2 pre- and post- saturation. After 

saturation, there was 10 times increase in surface roughness (Fig. 3.10), suggesting more 

roughness created in the fracture surface under linear gel exposure. 

 

Figure 3-11. SEM image under linear gel saturation. Both low and high carbonate samples were impacted by linear gel exposure. 
Note that low carbonate samples have small grains being dissolved (black color), while the high carbonates (bottom row) have 

etching and massive grain boundary dissolution. The carbonate removal can lead to increased porosity. 

Higher magnification images were taken of the linear gel saturated samples, as there was a 

more aggressive reaction. Increasing the magnification by 50 times showed carbonate residuals 

and quartz grains in detail (Fig. 3.12). Carbonates seem to be affected; however, the two silica 

crystals remain intact. This showed massive carbonate dissolution. 
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Figure 3-12. SEM Imaging on a high carbonate sample after linear gel exposure. Note the intact silica grains in the center, while 
carbonates were dissolved. 

Considering that some minerals were dissolved under linear gel saturation (pH=4.9) 

images, an additional sample was prepared, and SEM images were taken at the same magnification 

and location before and after saturation. A low carbonate sample was used with three main 

carbonate types: ferroan dolomite (red), dolomite with ferroan dolomite (yellow), and calcite 

(green). After the 24-hour saturation, every carbonate was removed (Fig. 3.13). Other minerals 

such as pyrite and clays remained stable. The carbonate dissolution becomes void space implying 

higher porosity. 
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Figure 3-13. SEM Images for linear gel saturation on a low carbonate sample using the same magnification at the same location. 
Not that the black holes correspond to carbonates being dissolved. Ferroan dolomite, dolomite and calcite are all dissolved. 

Ammonium persulfate impact 

Understanding the chemical reactions is important. The linear gel has two major 

components: guar and ammonium persulfate. The guar is the primary molecule, while the 

ammonium persulfate acts as a breaker. The temperature is significant for this reaction to occur; 

at 150°F thermal decomposition starts, and the molecule produces highly reactive radicals, which 

eventually break the acetyl linkage as illustrated in Fig. 3.14 (Montgomery, 2013). This reduces 

the viscosity of the gel, and liberates radicals, which could explain minerals dissolution.  

 

Figure 3-14. Gel breaker reaction (Montgomery, 2013). The reaction breaks the gel molecule reducing its viscosity and liberating 
SO4 radicals. 
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Eqn. 3.1 and 3.2 show the guar molecule decomposition and the reaction between radicals 

and the carbonates at high temperatures (Al-Mohammed et al., 2007; Montgomery, 2013). 

[𝑂3𝑆 − 𝑂 − 𝑂 − 𝑆𝑂3]2− → 𝑆𝑂4
2− + 𝑆𝑂4

2−……………………………………………...…...(3.1) 

𝐶𝑎𝐶𝑂3 + 𝑆𝑂4
2− + 2𝐻+ → 𝐶𝑎𝑆𝑂4 + 𝐶𝑂2 + 𝐻2𝑂……………………………………...……..(3.2) 

Due to the high damage caused by the linear gel, three samples with different compositions 

were selected and used to evaluate ammonium persulfate’s effect (0.5 ppt). Two fluids were used, 

a linear gel with and without guar presence. More damage was expected in the sample with no 

guar, as the ammonium persulfate would not react with guar. The samples selected were 1) a 56% 

clay sample, 2) a 44% dolomite sample, and 3) a 70% calcite sample (Fig. 3.15). 

 

Figure 3-15. Bar chart for Young’s modulus change under linear gel (green) and ammonium persulfate with no guar (blue). Note 
the difference in damage for the ammonium persulfate, which is greater in the carbonate samples. 
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For the clay-rich sample, Young’s modulus decreased for the ammonium persulfate 

(18.4%) in a similar percentage as the linear gel (18.7%). This might also be due to the low 

carbonate composition. On the other hand, carbonate-rich samples experienced a different 

behavior. For the dolomite-rich sample, the decrease in Young’s modulus under ammonium 

persulfate was 8% greater than with linear gel, while it was 12% more reduction for the calcite-

rich sample. It is possible that since ammonium persulfate did not react with guar, all the radicals 

liberated at high temperatures were used to dissociate the shale surface. 

Exposure Time 

Lastly, exposure time under fracturing fluid saturation was evaluated. A low carbonate 

sample was used, and a disc was prepared and cut into 4 pieces (see Fig. 3.4). Each piece went 

through polishing and broad beam argon ion milling. Nanoindentation measurements were carried 

out after different linear gel saturation times: 5, 12, 24, and 72 hours. The linear gel was used as it 

was the most damaging fluid. The maximum time was 72 hours due to common fracturing fluids 

holding times in the field. 

 

Figure 3-16. Young's modulus as a function of saturation time (linear gel). A fast decrease in Young’s modulus after 5 hours is 
followed by a slower but steady decrease for the next 3 days.  
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As illustrated in Fig. 3.16, Young’s modulus decreased significantly within the first hours 

of saturation. Starting at 39±3 GPa, it dropped to 32 GPa within 5 hours, decreasing 20%. Young’s 

modulus continued to decrease after 5 hours, but at a lower rate, which is essential as operators 

should avoid holding fluids in the subsurface for extended time periods. SEM images were retaken 

before and after saturation using the Energy Dispersive X-Ray Spectroscopy (EDS), for the 5- and 

72-hours scenarios (Fig. 3.17). Only 5 hours were necessary to remove all the carbonates, which 

also explained the rapid reduction in moduli.  

 

Figure 3-17. EDS imaging for linear gel exposure during 5 and 72 hours. Only 5 hours are necessary for carbonate removal. Note 
that pyrite is not affected by the linear gel. 

3.1.5  Discussion 

Fracturing fluids are widely used but their effect on formations is poorly known. The linear 

gel was the most damaging fluid, weakening the sample more than the slickwater and decreasing 

the moduli by up to 40% for the Wolfcamp samples. SEM imaging showed surface damage when 

exposed to different saturation fluids. In addition, the main damaging component in the linear gel 

was ammonium persulfate. 

When designing hydraulic fracturing treatments, special consideration should be given to 

carbonate-rich formations. It is important to minimize rock-fluid exposure. Young’s modulus 

decreased even after 3 days of saturation. The decrease in rock strength and hardness can lead to 

common issues such as proppant embedment and reduction in fracture conductivity. Prevention of 
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high persulfate concentrations is necessary when using gel breakers. Lastly, different breakers 

should be considered, as a more neutral solution might avoid carbonate removal. 
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3.2  Brine Saturation in the Barnett Shale 

 Several studies have proved the application of nanoindentation in shales. Properties such 

as Young’s modulus and hardness have been extensively studied, however, creep measurements 

on shales are not very common, especially using fluid saturation. Nevertheless, creep properties 

are helpful, as they can predict fracture degradation over time and contribute to understanding 

proppant embedment. This study reports measurements of creep under dry and saturated conditions 

using samples from the Barnett Shale. The Miller-Norton and steady-state creep equations 

modeled the creep displacement, creep strain and stress. 

3.2.1  Formation Evaluation 

 Located in the north of Texas at a depth of approximately 8000 ft, the Barnett Shale is one 

of the leading unconventional hydrocarbon producers in the United States. It is a very thick shale 

formation with an average thickness of 300-ft, mainly composed of quartz and clays. Due to 

technological advances such as hydraulic fracturing and horizontal drilling, it has become a prolific 

gas producer. Uses of multi-stage fracturing are common due to the formation thickness. Barnett 

gas reserve forecasts range from 5 to 30 trillion cubic feet (“Barnett Shale – Oil and Gas Field”, 

2013). Although it is mainly known for its large natural gas reserves, it also has oil quantities that 

make it economically feasible. In fact, this has been referred to as a “Combo play” due to both oil 

and gas composition. Fig. 3.18 shows the Barnett Shale Map with the hydrocarbon window based 

on region.  



38 
 

 

Figure 3-18. Barnett Shale Map. Different hydrocarbon windows are shown based on the location from east to west (“Barnett 
Shale – Oil and Gas Field”, 2013). 

3.2.2  Methodology 

 

Thirteen vertical samples were selected from the Barnett shale based on mineral 

composition and total organic carbon (TOC). Samples were sliced from 1-in cores for 0.25-in 

thickness discs and placed in specimen stubs, progressively polished to 1500 grit, and broad beam 

argon-ion milled. 

Fig. 3.19 compares two nanoindentation tests; 10 seconds holding time in blue, and 600 

seconds extended holding time in black. Because 10 seconds hold was insufficient to quantify the 

steady-state creep, hold time was extend to 600 seconds. For this test, 36 indentations were placed 

around the sample in four grids of 3x3.  

A model presented by Dean et al. (2013) was used to obtain the parameters from the 

secondary creep. In Fig. 3.20, the holding time segment displays creep rate as a function of time. 

There is an initial rapid decrease in rate during the first seconds; however, there is a transition from 
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primary to secondary creep after three minutes. Note that extending the holding time from 10 to 

600 seconds is supported.  

 

Figure 3-19. Nanoindentation curves for standard tests with holding time of 10 seconds (blue) and creep tests with increased in 
holding time to 600 seconds (black). Creep is imperceptible during either hold time. 

 

 

Figure 3-20. Creep rate during the 600 seconds of holding time. Primary creep happens in the first 200 seconds, and then an 
assumed steady state creep is modeled. 
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3.2.3  Petrophysics 

 Petrophysical properties, mineralogy, porosity, and TOC were measured on each sample. 

Porosity was obtained from the core sample using a helium porosimeter. A small portion of each 

sample was taken and used in mineralogy and TOC measurements. Samples were crushed using a 

mortar and pestle, and 100 mg were measured and acidized using HCl (16 wt. %), where 

carbonates were removed. TOC was obtained using the LECO™ instrument. With the same 

crushed material, transmission Fourier Transform Infrared Spectroscopy (FTIR) was used to 

obtain mineralogy (Hunt et al., 1950). The rock composition was divided into four main categories. 

1) Quartz, 2) Carbonates, 3) Clays, and 4) TOC, as indicated in Fig. 3.21. Each mineral group has 

a wide composition range, where clays and quartz are the most abundant; carbonates are more 

visible in samples 7-13, and TOC ranges from 1 to 9 wt%.  

 

Figure 3-21. Sample mineralogy and TOC (%) of the 13 Barnett shale samples. Four groups were separated into quartz, 
carbonates, clays, and TOC. Note the high variability in all the mineral groups. TOC ranged from 2-9 wt%. 
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3.2.4  Results 

Creep displacement is the displacement measured during holding time; creep rate is the 

change in displacement per time step; creep strain is the creep displacement divided by the total 

displacement, and the stress exponent is a value used to compare stress and strain. 

Impact of sample composition  

Creep displacement directly correlated with TOC and clay content (Fig. 3.22). The higher 

the clay and TOC, the greater the plastic deformation. The point circled in red illustrated an outlier, 

which corresponded to a high drift coefficient during testing. 

 

Figure 3-22. Creep displacement vs clay + TOC (wt.%). The cylinder represents the orientation of the indentation perpendicular to 
the bedding planes. Higher clay and TOC percentages led to greater deformation. 

Impact of hardness 

The measured creep displacement was compared to hardness in each sample. Fig. 3.23 

shows creep displacement and hardness inversely proportional; the higher the hardness, the lower 

the plastic deformation. Note that both parameters were acquired through different physical 

measurements. 
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Figure 3-23. Creep displacement versus hardness. An inversely proportional relation is observed. Note the same outlier 
highlighted in Fig. 3.7. 

Stress exponent 

Using the steady-state equation from Dean et al. (2013), terms were rearranged to establish 

a relation between stress and strain. The values of the universal gas (R = 8.3 J/mol*K), A (3.8x10-

8 MPa-1s-1), and temperature (T = 298 K) were all assumed constant. The equation was simplified 

as given by Eqn. 3.3: 

𝑑𝜀𝑐𝑟𝑒𝑒𝑝

𝑑𝑡
= 𝐴𝜎𝑛𝑒𝑥𝑝 (

−𝑄𝑠

𝑅𝑇
) →  𝐵𝜎𝑛……………………………………………………………...(3.3) 

and by taking the natural log on both sides, it follows Eqn. 3.4: 

ln (
𝑑𝜀𝑐𝑟𝑒𝑒𝑝

𝑑𝑡
) = 𝑛 ∗ ln(𝜎) + ln (𝐵)……………………………………………………………..(3.4) 

Eqn. 3.4 displays the stress exponent, n, to depend only on the applied stress and creep 

deformation change over time. The higher the deformation change per time for the applied stress, 

the higher the stress exponent. Fig. 3.24 shows a plot of the log of creep rate against the log of 

stress. The more plastic deformation, the lower the calculated stress exponent. 
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Figure 3-24. Creep rate with respect to stress for different stress exponents. The lower the stress exponent, the faster the creep 
rate stabilizes and the sooner it achieves steady-state creep. 

The stress exponent averaged 7.1 for the 13 samples under dry conditions. This value is 

slightly higher compared to values obtained by Gupta et al. (2018), who measured an average 

stress exponent through the same methodology for three different formations: Eagle Ford (6.9), 

Woodford (6.0), and Wolfcamp (5.6), with the latter 2 overlapping within standard deviation. If 

compared to the other unconventional reservoirs, lower creep is expected in the Barnett, probably 

due to the higher quartz content. 

Creep strain, the displacement during the holding time with respect to the total 

displacement, was compared with the stress exponent. Fig. 3.25 shows a strong correlation, 

suggesting the creep exponent to be lower when there is low plastic deformation. 
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Figure 3-25. Stress exponent compared to creep strain. Creep strain increases when the stress exponent decreases, suggesting 
greater plastic deformation. 

Creep on saturated samples 

Following the methodology used for dry samples, the stress exponent was also calculated 

under saturated conditions. A significant decrease was calculated from a 7.1 average on dry 

conditions to a 2.9 average under brine saturation. The lower stress exponent suggested more 

creep. The dry (red) and saturated (blue) stress exponent can be fit to one exponential decline 

function (see Fig. 3.26). 

A ratio between creep displacement under saturated to dry conditions was calculated. The 

saturated and dry creep ratio displacement is plotted against saturation (%) in Fig. 3.27. The greater 

the saturation, the greater the ratio, essential that full saturation is important when running 

mechanical testing, as there will be a closer match to field conditions. Fluid saturation must always 

be considered in mechanical testing, not only with brine but also with other fluids.  
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Figure 3-26. Stress exponent as a function of creep strain for dry and saturated samples. Saturated samples follow the same 
trend. It also indicates higher creep under saturated conditions. 

 

Figure 3-27. Ratio of creep displacement from saturated to dry samples. A small correlation was observed between 
displacement change and the saturation (%). 
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3.2.5  Discussion 

Wick et al. (2015) performed mechanical testing under fluid exposure. They measured the 

change in Young’s modulus for shales under acid exposure. Gupta et al. (2018) found similar 

behavior after brine saturation and measured a decrease in Young’s modulus and hardness. Others 

(Al-Bazali et al., 2013; Colback and Wiid. 1965; Lyu et al., 2018) found that compressive strength 

decreased with the presence of water.  

The time factor must be considered to explain the behavior and change in creep 

displacement, as every nanoindentation test per sample took at least 5 hours. The weight difference 

before and after testing was small (less than 10%). Furthermore, the Young’s modulus for the first 

and last indentations was similar, which would not have been the case if there was water loss.  

Shales are clay-rich, and some of the Barnett samples reached more than 60% clay content. 

Clay swelling was considered as one of the main reasons for the difference in displacements (Lyu 

et al., 2015) showed how plasticity was directly correlated to clay percentage. Based on FTIR, 

illite was the primary clay, a non-swelling clay. However, some studies have observed that illite 

can interact with water (Aksu et al., 2015).  

This study only considered one fluid. Literature showed that distinct behaviors occurred in 

the same material if exposed to different fluids (Wick et al., 2020). In the next chapter, I will 

continue to address this issue. 
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3.3  Mechanical and Microstructural Studies of Volcanic Ash Beds in 

Unconventional Reservoirs 

The success of the ‘shale revolution’, which made US energy independent, strongly depends on 

horizontal drilling and hydraulic fracturing (HF). HF is used to increase the surface area through 

the creation of fractures. The greater the number and size of fractures, the greater the contacted 

reservoir and hydrocarbon production. Shale reservoirs are usually multi-layered, and the contrast 

in mechanical properties of those layers is one of the main factors determining the vertical growth 

of a fracture. Volcanic ash beds are thin layers commonly observed in unconventional formations 

(e.g., Eagle Ford and Vaca Muerta). They have a different mineral composition than the main shale 

reservoir, which can produce a considerable contrast in mechanical properties with respect to 

surrounding layers, decreasing the fracture extent and as consequence, total hydrocarbon recovery 

(Xu et al., 2016). Thus, quantifying the mechanical properties of ash beds becomes significant. 

However, it is still a challenge to subject samples to conventional testing methods because of their 

friability. Additionally, no previous measurements of mechanical properties of ash beds have been 

reported in the literature. This section reports the mechanical properties of ash beds and analyzes 

their contrast with the surrounding formation matrix from the Eagle Ford shale play. 

3.3.1  Formation Evaluation 

The Eagle Ford Shale is one of the richest hydrocarbon formations in the United States. 

Located in south Texas, it has reserves in both oil and natural gas (“Eagle Ford Shale – Oil and 

Natural Gas Field”, 2013). This formation is subdivided into two zones: the upper and lower Eagle 

Ford, lying underneath the Austin Chalk and over 11,000 ft deep and 470 ft thick. Wells are placed 

from southwest to northeast, as illustrated in Fig. 3.28, with different decreasing maturity windows 
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going from (S-N). The Lower Eagle Ford is the main production target. This zone also contains a 

high variability in mineralogy, having volcanic ash beds.  

 

Figure 3-28. Well placement and completion in the Eagle Ford in 2018 (“Eagle Ford News”, 2019). The green and red dots 
illustrate the oil and gas scheduled wells. Note that the maturity increases from north to south.  

3.3.2  Methodology 

The 150-ft of core used in this study comes from La Salle County, Texas. Ash beds were 

easily identified under UV-Light. Their presence was detected from top to bottom with an average 

of a 5% thickness ratio. Two 1-in thick beds were selected for this study (Fig. 3.29). Ash bed #1 

was located between clay and carbonate layers. This bed was chosen due to the high clay content 

(80 wt%), which clays included mica, kaolinite, illite, and smectite. Ash bed #2 showed a 

particularly rich composition in plagioclase and high clay content based on x-ray diffraction 

(XRD). This bed was adjacent to a calcite layer.  
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Figure 3-29. Ash bed illustration with the correspond mineralogy. Ash bed #1 is a clay rich sample mainly composed of illite, 
kaolinite and smectite. Ash bed #2 is mostly composed of clays and plagioclase. Note the yellow color under UV light due to the 

illite composition. 

Ash beds were initially placed in aluminum discs and filled with rigid epoxy (JB-Weld). 

Epoxy was let to cure for 24 hours, followed by slices to obtain vertical and horizontal pieces. The 

surfaces were first polished with a 120-grit paper until the epoxy was removed from the surface: 

then, progressively dry polished to a 1200-grit. Lastly, broad beam argon-ion milling was 

completed.  

Once the ash bed sample was prepared, mechanical testing started. The loading protocol 

was modified because the samples were more plastic. The maximum load was set to 49 mN, 10 

times lower than the experiments on the Barnett and Wolfcamp samples. The holding time was 

initially set to 10 seconds, but it was extended to 400 seconds while measuring creep. A total of 

100 indentations were made on each sample in multiple 5x5 grids. 
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3.3.3  Results 

The microstructural analysis includes both SEM imaging and thin-section analysis. On the 

other hand, mechanical properties will describe parameters such as Young’s modulus, creep, and 

anisotropy. 

Microstructural analysis 

Thin-section analysis was used on both ash beds. Fig. 3.30 shows optical microscopy on 

ultrathin sections (Courtesy: Dr. Richard Larese). Ash bed #1 shows illite and illite/smectite matrix 

with small calcite grains. Forams were observed in portions of the sample; these were often 

replaced with diagenetic kaolinite, calcite, or pyrite. In Ash bed #2, the illite and illite/smectite 

matrix was observed but with the presence of many plagioclase grains which underwent chemical 

alteration. 

 

Figure 3-30. a) Thin section image of Ash bed 1 with illite-smectite matrix and calcite grains (blue arrows), and fossil forams 
replaced with diagenetic kaolinite, pyrite, and calcite (Red arrows). b) Thin section of ash bed 2 which shows plagioclase grains 

with diagenetic alterations (red arrows). Blue arrows show a clay matrix of mainly illite and smectite.  

Scanning electron microscope describes surface observations through backscattered 

electron imaging. Fig. 3.31 illustrates Ash bed #1. Note that the right image is at a higher 

magnification. This bed had illite and kaolinite as the main components, the lighter and darker 
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regions in the right images, with some pyrite (bright) present. Pyrite seemed to be a replacement 

mineral in fossils, as noted in the left image of Fig. 3.31. Most of the porosity occurred in illite, 

smectite, and mica zones. Kaolinite had very low porosity. 

 

Figure 3-31. Ash bed #1. Illite and kaolinite are the main components on the sample surface, which also has a pyrite (brightest 
objects) presence. Porosity is observed in the illite. Courtesy: Dr Mark Curtis. 

Ash bed #2 showed a highly heterogeneous matrix (Fig. 3.32). Minerals such as quartz, 

calcite, pyrite, and plagioclase are present, but illite and kaolinite dominate clay components, while 

plagioclase is the main non-clay mineral. Note the porosity difference in two adjacent kaolinite 

minerals, partially due to diagenesis. 

 

Figure 3-32. Ash bed #2. Heterogeneous matrix is observed with clays, calcite, and plagioclase. Note the two kaolinite grains; 
one of them is porous and the other is not. Courtesy: Dr Mark Curtis. 
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Mechanical Properties 

Young’s modulus was initially measured on each bed (Fig. 3.33). Ash bed #1 moduli 

ranged from 12 to 24 GPa, with an average near 17 GPa. This ash bed has fairly homogeneous 

mineralogy mainly composed of clays (80%). On the other hand, Ash bed #2 had a higher standard 

deviation in Young’s modulus, ranging from 7 to 47 GPa, with a mean of 25 GPa. This higher 

modulus was attributed to the plagioclase and quartz content, corresponding to 40% of the total 

composition.  

 

Figure 3-33. Young’s modulus for both Ash bed #1 and #2. There is a small standard deviation in ash bed #1 as it is mainly 
composed of clays. Ash bed #2 has a higher standard deviation due to mineralogic heterogeneity. 

Fig. 3.34 shows slightly greater horizontal moduli than the vertical value for Ash Bed #1; 

however, their standard deviations overlapped. The range in Young’s modulus oscillated between 

12 to 24 GPa. This showed little to no anisotropy within the ash beds.  
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Figure 3-34. Anisotropy within an ash bed. Horizontal direction in Ash bed #1 has a slightly higher Young’s modulus than the 
vertical, but they overlap within the standard deviation. The average is around 17 GPa. The degree of anisotropy is small. 

A comparison in elastic properties was performed between the ash bed and the adjacent 

layers to determine the contrast in elastic parameters. Fig. 3.35 shows core images with their 

respective mineralogy on the left. A calcite bed and two mixed layers of carbonate and clay content 

were adjacent to the ash bed. The calcite bed had a higher modulus with an average of 68 GPa, 

similar to the standard value of pure calcite. The mixed layer had a high standard deviation in 

Young’s modulus, ranging from 25 to 85 GPa and a 45 GPa average. The large range was due to 

the extreme mineralogic composition of clays and carbonates. The ash bed #1 had the lowest 

Young’s modulus (17 GPa average), with significant contrast. A 1:2 ratio of Young’s modulus 

was observed with the mix zones, while a 1:4 ratio was observed with the calcite bed. This contrast 

was significant but is not noticed in logging tools, and it is significantly high over such small 

distances, which can have a tremendous impact on fracture propagation.  
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Figure 3-35. Ash bed #1 and adjacent layers with their compositions (wt.%). The boxplot (right) shows a significant contrast 
between the ash bed Young’s modulus and the remaining layers. 

Creep properties were also measured. Instead of using the standard 10 second holding time, 

400 seconds were used to capture secondary creep parameters. Fig. 3.36 shows the indenter tip 

displacement as a function of time. Each curve shows the average displacement with the solid line 

and the standard deviation. A steadier, almost linear deformation rate follows a rapid deformation 

during the first seconds. During this steady time, ash beds deformed at a rate of nearly 0.9 nm/s, 

three times higher than the rate in the mixed and calcite zone. This is critical as proppant 

embedment can be a significant issue in ash bed rich zones. 
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Figure 3-36. Displacement as a function of time for the 400 seconds holding time. Ash beds have the highest plastic deformation, 
being nearly three times greater than the mix zone and the calcite bed.  

After determining little to no anisotropy in the ash beds and calculating such high contrast 

in elastic parameters between the ash beds and the Eagle Ford matrix, the impact of ash beds in 

the formation anisotropy was calculated. The Backus Averaging technique was used to determine 

anisotropy for potential ash bed thicknesses (Kumar et al., 2013). The same three layers used in 

this study were assumed to be the dominant layers in the Eagle Ford with the corresponding 

properties as shown in Table 3.2. 

Table 3-2. Input properties for calculating the Backus average. The description on each property was acquired is explained in this 
section. 
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The elastic stiffness matrix was calculated using the formulas below, where ρ is the bulk density, 
while ε, γ, and δ are the Thomsen parameters. 

• 𝐶33 = 𝑉𝑝
2 ∗ 𝜌 

 

• 𝐶44 = 𝐶55 = 𝑉𝑆
2 ∗  𝜌 

 

• 𝐶11 = (1 + 2휀) ∗ 𝐶33 
 

• 𝐶66 = (1 + 2𝛾) ∗ 𝐶44 
 

• 𝐶13 =  √2𝛿𝐶33(𝐶33 − 𝐶55) + (𝐶33 − 𝐶55)2 − 𝐶55 

Input parameters are required: 

• The bulk density (ρ) was obtained using the X-Ray Fluorescence (XRF) mineralogy (Fig. 

3.37). Based on the mineral composition, the density was calculated.  

 

Figure 3-37. Well mineralogy measured with the XRF. Note that carbonates are the main components with clays and 
quartz as the secondary minerals. Ash beds are not observed due to the low XRF resolution. 

• The shear velocity was obtained from a shear modulus using an empirical relation 

established for the late time loading of the nanoindentation data (Gupta et al., 2018). As 

shown in Fig. 3.38, the shear modulus and bulk density were used to obtain the shear 

velocity with Eqn. 3.5.  
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Figure 3-38. Empirical correlation between the ultrasonic velocity and late time loading slope in nanoindentation 
(Gupta et al.,2018). 

𝜇𝑑 = 𝜌𝑉𝑠
2…………………………………………………………………….……………………………………………(3.5) 

 

• Thickness ratio was measured over the 150-ft core length. The ratio of the ash bed 

thickness with respect to the total thickness was calculated. 

• The P-wave velocity was calculated using a combination of two formulas. The Poisson’s 

ratio (ν) was obtained using Eqn. 3.6: 

𝐸𝑑 = 2𝜌𝑉𝑠
2(1 − 𝜈) ………………………………………………….……………….………..…………………..(3.6) 

 

Then, Eqn. 3.7 was used to solve for the p-wave velocity: 

𝜈 =
0.5∗(

𝑉𝑝

𝑉𝑠
)

2

−1

(
𝑉𝑝

𝜈𝑠
)−1

 ……………………………………………….………………………….…………………………….(3.7) 

The Thomsen parameters were calculated as followed: 

• 휀 =
C11−C33

2C33
 

• 𝛾 =  
𝐶66−𝐶44

2𝐶44
 

• 𝛿 =  
(𝐶13+𝐶55)2−(𝐶33−𝐶55)2

2𝐶33∗(𝐶33−𝐶55)
 

Based on the XRF mineralogy, a starter composition was assumed, with 25% calcite and 

75% mixed zones. The presence of each zone was gradually decreased by 1% and compensated 

with an increase in 2% of ash beds until reaching a 10% ash bed thickness. Fig. 3.39 shows that 
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increasing ash bed thickness increases the overall anisotropy; nevertheless, the parameters were 

small. This suggested that ash beds do not make the Eagle Ford significantly anisotropic, and their 

detection with seismic will be difficult. 

 

Figure 3-39. Thomsen parameters as a function of ash bed thickness. The anisotropy increases as the ash bed thickness 
increases. Calculations based on Backus averaging ash bed thicknesses and properties. 

3.3.4  Discussion 

Nanoindentation has been successfully applied to measure Young’s modulus and creep in 

ash beds. Young’s modulus for the ash beds ranged between 12 to 24 GPa with an average of 18 

GPa, giving rise to a large mechanical property contrast between the formation matrix and these 

beds. Young’s modulus was up to five times smaller in ash beds compared to neighboring  layers. 

The ash beds also displayed more creep than other layers, leading to issues such as proppant 

embedment and fracture closure. Based on the Backus averaging, the presence of ash beds does 

not make the Eagle Ford formation significantly anisotropic; note that the core used in this study, 

came from La Salle County, which is one of the lowest in cumulative bentonite thickness (Antía 

et al., 2013). Fig. 3.40 shows that zones towards the northwest are richer in ash beds, with 

cumulative thickness up to 7.0 ft. Well placement needs special consideration in those zones. 
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Figure 3-40. Bentonite characterization and distribution in the Eagle Ford (Antía et al., 2013). 

There was high variability in the ash beds mineralogy. Illite and kaolinite were the primary 

clays, plagioclase and calcite were also common components depending on the ash bed type, and 

porosity was highly variable and largely depended on the presence of clays and smaller calcite 

grains. 
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4. HYDRAULIC FRACTURING 

Hydraulic fracturing has become a main stimulation technique in exploiting 

unconventional resources. Acids are pumped downhole to clear the pathway for fluid flow, and 

fracturing fluid is injected, raising the pressure to exceed the fracture pressure. The fractures open 

from the wellbore in the direction of least resistance and propagate perpendicular to it. Proppant 

(sand) is injected at this stage to hold the fractures open, and hydrocarbons are extracted. Lastly, 

fracture closure occurs due to in-situ rock stresses after injection stops and continues during 

hydrocarbon withdrawal. Parameters such as fracture length and width are measures of 

effectiveness; the greater the contacted area, the greater the recovery. Changes in hydraulic 

fracturing protocol design are required to increase recovery; fluid viscosity, fluid flow rates, 

injection pressures, and proppant sizes are commonly evaluating factors. Acoustic waves and 

emissions (microseisms) are used to determine the stimulated reservoir volume. Acoustic 

emissions are known as microseismics in the field. They refer to the energy generated by a crack 

during fracturing. These emissions contain important information related to fracture mechanics 

(location, magnitude, frequency, mechanism, orientation) and are a determinant factor in deciding 

the success of a job.  

In this section, the steps considered for data acquisition and processing during hydraulic 

fracturing will be explained. Next, two main hydraulic fracturing studies are considered. First, 

three different laboratory hydrofracturing protocols were studied using acoustic emissions. This 

study considers a constant injection rate test, a pre-cyclic injection test, and a variable rate injection 

test under dry conditions. Based on the results of the first study, pre-cyclic injection is further 

analyzed by changing the number of cycles used before breakdown, aiming to determine an 

optimal number of cycles. This latter test was achieved under brine-saturated conditions. 
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4.1  Experimental Procedure 

4.1.1 Sample preparation  

A) Tennessee sandstone cuboids of 12” x 12” x 6” are cut into four smaller blocks. Then, 

4” diameter – 6” length samples are cored in the vertical direction and polished using a 

surface grinder. Samples are dried for 48 hours in the oven at 100°C. 

B) Circumferential velocity analysis (CVA) is performed to determine the velocity 

anisotropy of each sample. Fig. 4.1 shows the CVA set-up elements, including the 

computer, signal generator, oscilloscope, and amplifiers. An acoustic wave is sent across 

the sample using the signal generator, and the travel time is recorded on the oscilloscope. 

The travel time is measured across the cylinder every 10°, using a motor to rotate the 

sample. A curve of P-wave velocity as a function of the azimuth is generated.  

 

Figure 4-1. Circumferential Velocity Analysis (CVA) set-up. It includes A) the motor that rotates the base, B) The 
oscilloscope which digitizes the acoustic wave, C) the signal generator which sends the pulse to the excitation 

transducer, D) Amplifiers, E) Computer. 

C) Wellbore preparation starts by drilling a 0.25” OD hole in the center of the sample, with 

a length equal to the core half-length plus 0.2”. Then, a 0.25” OD steel tubing with two slit 
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holes 180° apart on the bottom end is inserted and epoxied (Fig. 4.2). The sample is set to 

cure for 24 hours. 

 

Figure 4-2. Wellbore tubing. Note the drips which allow the epoxy to settle once the tubing is inserted at the hole. 
There are two holes 0.2” away from the bottom of the tubing which act as perforation holes in the tubing. There are 

no perforation holes in the sample. 

D) A copper jacket (0.01” thick) is placed around the sample to avoid confining fluid 

penetration. First, natural honey is spread on the outer surface of the sample, and then the 

jacket is placed and tied with rubber bands. At the jacket end, a strip of JB Weld epoxy is 

placed to secure the jacket and seam soldered. Then, the sample is dried for 24 hours. 

Vertical lines are drawn in the outer jacket from top to bottom with 45° spacing for 

transducer placement. 

E) The sample is weighted at dry conditions, and a brine solution (2.5% KCl) is prepared 

with deionized water. The cylindrical sample is placed in a pressure vessel and pressurized 

to 5000 psi for 48 hours. Post-saturation, the sample is extracted, cleaned, and re-weighted. 

F) Two endcaps are placed at the top and bottom of the sample, secured with heat-

shrinkable rubber and JB weld epoxy. The rubber boot is shrunk using the heat gun. Metal 

wires are cut to twice the circumference length, wrapped around the rubber, and tightened 

at both ends. Clamps are also used to firmly secure the rubber boot (Fig. 4.3a). 
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Figure 4-3. a) Sample with acoustic sensors. The flatjacks are placed on each side to apply the maximum horizontal 
stress. b) Hydraulic confining chamber. The chamber is lowered before starting the test. 

G) Lastly, fourteen 500 kHz piezoelectric crystals mounted on conformal brass stubs are 

and are placed in their corresponding locations, as illustrated in Fig. 4.4. Note that the x 

and y coordinates correspond to the transducer position (top view), while the z coordinate 

is the depth with respect to the top (tubing end). The sixteen acoustic sensors are connected 

to Panametrics – NDTTM model 5660B wide band preamplifiers at 40 dB, that capture the 

signal in an FM-1TM low-frequency unit manufactured by Digital Wave Corp, and send it to 

the monitor.  
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Figure 4-4. Acoustic sensors position. There are 16 transducers, two of which are placed at the top and bottom, while the 
remaining 14 are placed on the exterior of the copper jacket. 

4.1.2  Running protocol 

 The sample is placed in a closed chamber (Fig. 4.3b). Hydraulic fracturing experiments 

start by setting the stresses to the desired magnitudes. One vertical stress and two horizontal 

stresses are applied.  

Fig. 4.5 shows the applied stress orientations. The vertical stress is applied using an internal 

piston (σv = 1500 psi). Mineral oil is the confining pressure fluid and represents the minimum 

horizontal stress (σh = 500 psi). The maximum horizontal stress is set by pressurizing a pair of 

flatjacks (σH = 3000 psi). 
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Figure 4-5. Applied stresses (σV=1500 psi, σH=3000 psi, σh=500 psi). 

A Teledyne Isco pump with a capacity of 102.93 mL was used to inject the fracturing fluid. 

Once all the stresses are adjusted, fluid is pumped into the wellbore, building up the injection 

pressure until breakdown. The fracture propagates away from the wellbore in the direction of the 

maximum horizontal stress. When the pump is shut off, the fracture closes. Simultaneously, 

acoustic emissions are recorded, and pressure versus time and events versus time are plotted. 

4.1.3  Post experimental analysis 

Permeability measurements, Scanning Electron Microscopy, and Computerized 

Tomography (CT) scanning were performed post-fracture. Those studies compare each protocol’s 

effectiveness and provide insights with respect to fracture dimensionality and damage. 
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Figure 4-6. Extracted core plug locations after fracturing. The two side cores were used for permeability and SEM Imaging, while 
the middle plug was used for CT-Scanning. 

After failure, two fractured wings are induced. Generally, one of them would be greater in 

length than the other. A 1” diameter by 4” long core is extracted at the center and at each wing 

(Fig. 4.6). Permeability tests are carried out with an AP-608, which uses a pulse decay technique 

as described by Jones (1971). For SEM imaging, a similar procedure was followed in core 

preparation; Soxhlet extraction is used for core cleaning and broad beam argon ion milling after 

polishing with 1200 grit. SEM images capture other parameters such as fracture width and 

connectivity. 

4.1.4  Data analysis 

a) Signal processing 

 Each signal is sampled at a rate of 5MHz and consists of 1024 data points at a time step of 

0.2 µs, for a total recorded time of 204.6 µs. Signal attributes were extracted from the time domain 

signal displayed in Fig. 4.7. The arrival time is the time at which the acoustic wave is first detected. 

The signal polarity is either positive or negative based on the direction of the first deflection. The 

peak envelope is extracted by calculating the maximum absolute of the envelope during the first 

d = 1 in 
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10µs after arrival. The envelope function in MATLAB was used to return the upper envelope of 

the input sequence (wave), as the magnitude of its analytic signal. The analytic signal is found 

through the discrete Fourier transform. The signal-to-noise ratio is calculated as a ratio of the 

signal peak (after arrival time) with respect to the absolute noise peak (before arrival time).  

 

Figure 4-7. Acoustic emission waveform for an individual event recorded by one acoustic receiver (transducer). The arrival time 
and peak amplitude are some of the parameters acquired. 

Signal-to-noise metrics are used to eliminate noisy events. Arrival times are used to 

calculate the event hypocentral. Polarities are used for focal mechanisms and seismic moment 

calculations. 

b) Acoustic Emission Location 

 Using an algorithm developed by Ortiz (2010) and further improved by Moreno (2011), 

acoustic emissions are mapped based on the P-wave arrival time and the P-wave velocity. The 

sensor locations are known, and assuming a constant isotropic velocity and obtaining at least four 

clean first arrivals from 4 transducers, a system of equations (4) can be solved (Eqn. 4.1). The 

unknowns are the three event coordinates (xs, ys, and zs) and the acoustic event origin time (to). 
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The arrival times (ti) are recorded at the transducer locations (xi, yi, and zi) complete calculations 

can be found in Moreno (2011). Note that even though only four transducers are required for 

calculating the hypocenter, an event is accepted if it has at least 6 good quality first arrivals. 

𝑡𝑖 = 𝑡𝑜 +
√(𝑥𝑖−𝑥𝑠)2+(𝑦𝑖−𝑦𝑠)2+(𝑧𝑖−𝑧𝑠)2

𝜈
………………..…………………………………………….(4.1) 

c) Frequency Analysis 

 A Fast Fourier Transform (FFT) is performed on the time signal to convert it from the time 

domain into the frequency domain. However, having 16 transducers means having 16 frequency 

spectra for each event. Thus, the received signals are sequentially stacked, and the Fourier 

transform is performed over the new composite waveform (Fig. 4.8). The frequency resolution is 

calculated using Eqn. 4.2, with a time step (Δt) of 0.2 µs, and 1024 data points recorded (N). 

𝛥𝐹 =
1

𝛥𝑡∗𝑁
……………..………………………………………………………..……………....(4.2) 

 

Figure 4-8. Acoustic emissions stacking for one event. In this event, thirteen transducer signals were received and stacked 
sequentially. 

The spectral peak is observed from 20 to 600 kHz, with the main peak being from 90 kHz 

to 200 kHz (Fig. 4.9). This range is selected as the study interval. Two methodologies are carried 

out to calculate a dominant frequency: an absolute peak frequency and a mean frequency. 
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Figure 4-9. Signal transformation for one event. In most of the events, the frequency signal decays after 400 kHz, so this signal 
bandwidth is set between 20 to 600 kHz for our analyses. 

The absolute peak frequency is calculated by obtaining the point at which the frequency 

shows the highest amplitude. On the other hand, to calculate the mean frequency, I used Eqns. 4.3 

and 4.4, where Yi is the amplitude for each frequency, and Xi is the corresponding frequency. 

𝑌𝑁𝑜𝑟𝑚 =
𝑌𝑖

∑ 𝑌𝑖
𝑛
1

…………..………………………………………………….……..……………...(4.3) 

𝑀𝑒𝑎𝑛 𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 = ∑ (𝑋𝑖 ∗ 𝑌𝑁𝑜𝑟𝑚)𝑛
1 …………………………………………..……………….(4.4) 

 The absolute and mean frequencies are compared by calculating the FFT over two different 

time windows as illustrated in Fig. 4.10: The complete signal and a 40-µs window after the arrival 

time is in the left plot. On the right, note the mismatch between some of the data points in the peak 

frequencies between different time windows; however, note the consistency between the mean 

frequencies in both windows.  
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Figure 4-10. Frequency response for two different time windows for one event. Note that the mean frequency method has a 
direct correlation between the 40 µs window and the full window. On the other hand, the peak frequency does not give the 

correlation, but shows some mismatch. 

Fig. 4.12 displays the frequency signal for different time windows after the arrival time. 

Peak frequency changes for every time window, being close to 100 kHz for 40 and 20-µs windows 

and significantly increasing for the 10-µs window (≈200 kHz). The peak frequency is dependent 

on many factors such as reflections, attenuation, and time window. The peak frequency is not the 

optimal parameter to indicate a dominant frequency for an individual event; however, it is useful 

to filter out noise events (See Fig. 4.11). 

 

Figure 4-11. Acoustic emission filtering through frequency. The left map shows all the located events, while the right figure has 
the map after removing those events with peak frequency near 0 kHz. 
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Figure 4-12.  Frequency spectral for different time windows. Note that the peak frequency changes for each image, showing 
variability across time windows. This is partly due to smaller windows mostly capturing the initial P-wave. The peak frequency is 

useful as it can separate whether the event is noise or an actual fracture event. 

 

Figure 4-13. Mean frequency correlation for different time windows. Using windows of 40 and 20 µs there is a strong 
correlation. For smaller time windows the trend is preserved, but the smaller time windows have a higher frequency meaning 

the earlier arrivals suffer less attenuation and perhaps reflect the source spectra more accurately. 



72 
 

The mean frequency is consistent across time windows. Fig. 4.13 shows a direct correlation 

in the mean frequency for the 40 and 20-µs windows. The correlation is weaker for the 10 and 5-

µs windows. This is explained by two main factors: first, fewer data points affect the signal 

transformation as the resolution decreases. Second, the small-time windows mostly capture the P-

wave arrival, while the longer time windows might partially have the P-wave and part of the S-

wave and scattered or reflected waves. Note that the smaller time windows contain higher 

frequencies, which suggest P-waves have the highest frequencies. 

d) Seismic moment and b-values 

 Event attributes are calculated to determine the failure mechanism associated with each 

crack event. Corner frequency, source radius, seismic moment, stress drop, displacement on the 

fracture plane, and moment magnitude are obtained. This section describes the method for 

calculating them: 

Corner Frequency: Consider Fig. 4.14, start with a time domain signal (A). The time 

signal is integrated (B). The signal is then detrended using a Matlab function (C). The FFT is 

executed over the resulting signal (D). Lastly, the logarithm is taken on both axis, and the change 

in trend between the low and high frequencies is the corner frequency (Fig. 4.15). Note that the y-

axis corresponds to the displacement spectrum, Ωo, a parameter used to calculate the moment 

magnitude. 

Source Radius: also defined as the rupture length, it is a measure of damage of a specific 

crack. Using Eqn. 4.5 for corner frequency presented by Mizuno et al. (2013), the source radius, r 

,  is calculated, where Vp is the P-wave velocity   and fc is the corner frequency.  

𝑟 =
2.34∗𝑉𝑝

2𝜋∗𝑓𝑐
……………….........………………………………………………………………...(4.5) 
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Figure 4-14. A) Time domain waveform for one event. B) Area under the curve for the time domain waveform. C) Detrend 
waveform for the area under the curve. D) Frequency spectrum for the detrended waveform. 

 

Figure 4-15. Log-log plot for spectral displacement as a function of frequency. Low(red) and high(green) frequency fitted lines. 
The intersect is defined to be the corner frequency. 

Seismic moment: the moment of an event is measured using Goodfellow et al.’s (2015) 

equation (see Eqns. 4.6 and 4.7). Both the seismic moment (Mo) and the moment magnitude (Mw) 

are used. Note that ρ is the bulk density, and R is the distance from the event to the source. 
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𝑀𝑜 =
𝛺𝑜

𝑅𝑜∅
4𝜋𝜌𝑅𝑉𝑝

3……………….………...…………………………………………………..(4.6) 

𝑀𝑊 =
𝑙𝑜𝑔10𝑀𝑜−9.1

1.5
………………………...…………………………………………………….(4.7) 

Stress drop: this is the difference between the stress across a fault before and after the 

rupture. Eqn. 4.8 relates the seismic moment (Mo) and the source radius (r) on a circular fracture 

(Madariaga et al., 2007).  

∆𝜎 =
7∗𝑀𝑜

16∗𝑟3………………………………………………………………………………...…...(4.8) 

Displacement on the fracture plane: using the seismic moment (Mo), the source radius (r), 

and the shear modulus (µ), the displacement on the fracture plane can be obtained by using Eqn. 

4.9 from Mizuno et al. (2013). 

𝐷 =  
𝑀𝑜

𝜋∗𝑟2∗𝜇
……………………………………………………………………..…………...…(4.9) 

b-value: using the Gutenberg-Richter magnitude frequency relationship, Eqn. 4.10 is 

plotted with the logarithm of the number of earthquakes that exceed a specific magnitude (M) on 

the y-axis, versus the magnitude (M) on the x-axis. The negative slope is the b-value.  

log(𝑁) =  𝑎 − 𝑏𝑀……………………………………………………………..……….....…(4.10) 

e) Failure mechanism 

 Field experiments have claimed that shear failure is the dominant mechanism for fracture 

propagation. In laboratory studies, having more events is often related to inducing more damage. 

We are also interested in classifying events as tensile, compressive or shear. Tensile events are 

thought to be associated with fracture initiation.  



75 
 

The polarity of the transducers was checked before the start of the test by performing a pencil 

break test. The transducers mostly showed a negative polarity. Positive first arrivals (up) were 

associated with tensile events, while the negative first arrivals are compressive failure (Fig. 4.16). 

Event classification is defined as having at least 85% of signals towards either positive or negative. 

If the event recorded mixed polarities, it was classified as shear. For the experiments performed in 

sections 4.2 and 4.3, two acoustic sensors were turned off due to noise in the system, thus, 14 

transducers were active. Only events with at least 7 clean arrivals (polarity reading) were used to 

classify the event failure mechanisms.  

  

Figure 4-16. Classification of events based on polarity of first arrival. Positive arrivals are classified as compressive while 
negative arrivals are tensile. Polarities were inverted because the transducers polarity was negative (Modified from Chitrala et 

al., 2013). 
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4.2. Acoustic Attribute Analyses in Different Fracturing Protocols 

In these experiments, microseismic attributes were used to evaluate the behavior of three 

hydraulic fracturing protocols. The acoustic emission attributes were analyzed in the time and 

frequency domains in three stages (Pre-breakdown, propagation, and shut-in or closure). Fig. 4.17 

shows the pressure curves for each protocol. 

 

Figure 4-17. Top row: Pressure (black) and locatable acoustic events pre-(red) and post-breakdown(blue). Note the significant 
number of events located in pre-cyclic injection. Bottom row: Pressure (black) and Injection rate (green) as a function of time. 

Note failure occurred on the 9th cycle of the pre-cyclic injection and at a much-reduced pressure. 

4.2.1  The protocols 

Constant injection rate: the injection pressure increases at the injection rate of 10 cc/min. 

This was a monotonic test, meaning that pressure increased steadily until failure. This is the most 

common test used in the field. 

Pre-cyclic injection: this test increases pressure to a specific limit and then the pressure 

decreases to a base level, e.g., 500 psi. This is consistently performed, increasing previous pressure 
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by a set amount until breakdown is reached. Greater cumulative fluid volumes are injected before 

failure. 

Variable rate injection: the flow rate is changed as a function of time. Starting with 0.5 

cc/min for 4 minutes, the flow rate was gradually increased by doubling it (1.0 cc/min, 2.0 cc/min) 

until reaching 8.0 cc/min, while the time for each rate was held to half the previous time (Table 

4.1). 

4.2.2  Results 

 Acoustic emissions signals were used to locate events. Even though the number of recorded 

events was a reasonable indicator of the stimulated volume, the locatable number of events was 

better. Pre-cyclic injection produced the greatest number of locatable events compared to the other 

two testing protocols, suggesting a greater stimulated reservoir volume (SRV).  

Table 4-1. Protocol results for each test. The percentage of events located in constant rate injection was smaller than Pre-cyclic 
and variable rate tests. The injection volume was the highest in pre-cyclic injection. 

 

The frequency spectra were calculated for each stage (pre-breakdown, propagation, and 

shut-in) in the three experiments. Overall, the propagation and shut-in phases showed a similar 

frequency response in each test; however, the ranges fluctuated between tests (see Fig. 4.18). Pre-

breakdown events showed a significantly higher frequency response as compared to those events 

after failure. This could be due to difference in source mechanism, crack density or attenuation. 
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Figure 4-18. Frequency distribution for each experiment. Pre-breakdown events had the highest frequencies. Note that shut-in 
phases tend to locate a larger number of events as compared to the propagation phase. 

The constant injection rate recorded most of the locatable events after breakdown, with a 

frequency between 150 to 270 kHz. Only 9 events appeared before the breakdown. In addition, 

frequencies were analyzed for propagation and shut-in, having similar ranges with an average of 

195 ± 15 kHz. 

The pre-cyclic injection test recorded similar frequencies between the propagation and 

shut-in stages; however, recorded frequencies were higher in the constant injection rate test (220 

± 17 kHz). The average frequency for pre-breakdown events (251 ± 32 kHz) was significantly 

higher than any other phase. These frequency differences suggested a different failure mode.  

Lastly, in the variable pumping rate, the propagation phase recorded the larger number of 

locatable events, with the pre-breakdown events having a marginally higher frequency than in 

propagation and shut-in phases. Within the pre-breakdown events, there were two frequency 

ranges; the first matched the propagation ranges (200 ± 20 kHz), occurring in the early times, while 
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the second group was significantly higher frequency (268 ± 18 kHz), and these events 

corresponded to the last 2 seconds before failure. This implied that two different types of failure 

mechanisms were induced. 

The acoustic map for each test is shown in Fig. 4.19. The constant rate fracture test had a 

planar fracture with the greatest length, while the pre-cyclic test had the highest crack density, with 

the most damage near the wellbore.  

 

Figure 4-19. Acoustic emission map (plan view looking down on the sample) for each test post-filtering. Pre-cyclic injection 
shows a wider fracture as compared to constant rate and variable rate tests. The variable injection rate test appears to have the 

narrowest distribution. Note the orientation of the main fracture is the same in all tests, aligned with the maximum horizontal 
stress direction. The samples were brine saturated Tennessee sandstones. 

Pre-breakdown analysis 

Further analysis was carried out on the pre-breakdown events based on the frequency 

content, in the pre-cyclic and variable rate tests; the constant injection rate test had too few events 

to warrant analysis. 
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In pre-cyclic injection, the first six cycles averaged a frequency of 200 kHz; however, the 

last two cycles noted frequencies higher than 250 kHz and up to 310 kHz (Fig. 4.20). After 

fatiguing the rock, the last cycles overcame a critical threshold and initiated new fractures, even 

with higher frequency changes before final failure suggested a different failure mechanism. 

 

Figure 4-20. Frequency distribution for pre-breakdown events in cyclic injection. Note the bimodal distribution with the first 
cycles showing lower frequencies, and the last cycle having a higher frequency. b) pressure as a function of time with the event 

frequencies. Cycles 7 and 8 recorded the highest frequency. 

In the variable pumping rate test, two frequency ranges were recorded (Fig. 4.21). Early 

events recorded a similar frequency to those in the propagation and shut-in phases, while latter 

events (2 seconds before failure) had a considerably higher frequency. The unexpected and abrupt 

change in frequency before failure suggested a transition to new and different failure mechanisms 

 

Figure 4-21. a) Frequency distributions for events in the variable injection rate test at different times. Note again the bimodal 
distribution. b) injection pressure (black) as a function of time with the recorded event frequencies. The last second contains 

events with significantly high frequencies, suggesting a change in source mechanisms since damage is at its maximum. 
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Amplitude  

 The average amplitude was calculated through an arithmetic average with the available 

signals per event. Fig. 4.22 displays the logarithm of the number of events having an average 

amplitude greater than an amplitude (A), with the pre-breakdown phase on the left and the 

propagation phase on the right. The pre-cyclic test had the highest amplitude in both pre-

breakdown and propagation phases. The constant injection test was not analyzed during pre-

breakdown because there were too few events. Additionally, propagation events possessed higher 

amplitudes as compared to pre-breakdown. 

 

Figure 4-22. Normalized distribution of acoustic event amplitudes for both pre-breakdown (left) and propagation (right) phases. 
Pre-cyclic (red) injection has the highest amplitudes during both phases. 

Wave amplitude was compared with frequency for the pre-cyclic injection events (Fig. 4.23). Pre-

breakdown events showed a low amplitude range, between 0.05 to 0.4 (m.u). The pre-breakdown 

events with a high-frequency range (250-310 kHz) were considered part of the crack initiation. 

The propagation and shut-in events showed a large range in amplitude but with no correlation to 

frequency.  



82 
 

 

Figure 4-23. AE event amplitudes versus event frequency. Pre-breakdown events are characterized by low or high frequencies, 
and low amplitudes. The propagation and closure phases have higher amplitudes. The highest frequencies are associated with 

the pre-breakdown events. 

Attenuation  

 Attenuation is a significant factor affecting the frequencies in recorded events especially 

under saturated or partially saturated conditions (Shatilo et al., 1995). Using data from a saturated 

Tennessee sandstone from Patel et al. (2016) fractured under pre-cyclic injection, a comparison 

was made between the AE frequency content for dry and saturated conditions. The events recorded 

in the saturated sample showed lower frequency ranges, i.e., consistently 20% less than the dry 

sample (Fig. 4.24a). Furthermore, the pre-breakdown phase dominated the brine-saturated test. 

The saturated sample showed a main spectral peak near 100 kHz (Fig. 4.24b). 
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Figure 4-24. a) Average frequency for AE events recorded in saturated vs dry pre-cyclic injection tests. Note that Pre-breakdown 
events have the highest frequencies. b) Frequency signals for one event in dry and brine-saturated tests. Not the faster decay of 

high frequencies in the saturated sample as compared to the dry. 

4.2.3  Discussion 

Acoustic emissions are essential to understanding failure modes in hydraulic fracturing 

experiments. High-frequency events (250-310 kHz) were dominant during pre-breakdown in both 

pre-cyclic and variable rate testing, especially within the last 5 seconds before failure. Tensile 

failure is associated with high-frequency events. Shear events are associated with low-frequency 

events during propagation and closure. This is consistent with observations of Chitrala et al. (2013) 

and Damani et al. (2018), where focal mechanisms showed tensile events to occur mainly in the 

early propagation phase. 

Locatable acoustic emissions are directly correlated with crack density. Fig. 4.25a shows 

that most of the acoustic events occurred within 1 cm of the main fracture. Using a threshold of 

250 kHz to account for high frequency events, events with higher frequency than 250 kHz occurred 

within 1 cm of the main fracture and decayed with distance away from the main fracture plane 

(Fig. 4.25b). Grain size is a parameter that should be considered to analyze the different frequency 

and amplitude ranges. 
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Figure 4-25. a) Normalized number of AE events for pre-cyclic injection. The center of the distribution does not occur at 0, but it 
is slightly to left. b) Event frequency as a function of distance away from the fracture plane. Note that high frequency events 

occur close to the wellbore, while low frequency are more distant. 

The projection of the hypocenter distribution of the events was fitted to a Lorentzian 

function with distance away from the fracture plane (Eqn. 4.10), where I is the peak height, x0 is 

the location parameter, and γ is the scale parameter to determine the spread. 

𝑓(𝑥) =
𝐼

[1+(
𝑥−𝑥0

𝛾
)

2
]
...…………………………………………………………...……………..(4.10) 

Fig. 4.26 shows the AE event distribution along the fracture and the z-axis for each test. 

Constant injection rate had the smallest γ, with the smaller process zone, which agrees with the 

secondary fracture count by Patel et al. (2016). The greatest process zone was calculated in the 

pre-cyclic injection, which also had the highest spread, explaining the greatest event distribution 

away from the fracture plane and potentially having the highest recovery on the field scale. 

Furthermore, a higher process zone also implies a higher surface area, which is crucial in EOR 

experiments.  

The pre-cyclic injection was the test that yielded the greatest fault length and process zone. 

Values of the 5-cm fault length and the 1-cm process zone are consistent if scaled to field 
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observations and natural faults developed by Zang and Stephansson (2010) as illustrated in Fig. 

2.1. 

 

 

Figure 4-26. Normalized fracture distribution with respect to the maximum number of events for each test. The γ defines the 
event spread in the fracture axis. Pre-cyclic injection has the largest spread. Constant injection shows the smallest spread. In the 

vertical direction, the events for pre-cyclic occurred more in the perforation area, while the other tests show a wider vertical 
distribution. Note that the pre-cyclic test had a higher number of events. 

Even though the amount of fluid used in pre-cyclic injection was greater than for the 

constant injection test by 25%, the number of locatable induced events by pre-cyclic injection was 

85% higher, suggesting a significant surface area difference with the volume addition. It is 

recommended for operators to follow pre-cyclic injection in the field as more damage is created. 

The induced fracture intensity is greater, which creates greater surface area for better recoveries in 

EOR studies. 
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4.3. Pre-Cyclic Injection Study 

The pre-cyclic injection was an effective and damaging protocol. Compared with 

experiments such as constant or variable rate injection, the pre-cyclic test generated more locatable 

acoustic emissions, suggesting higher process zones. However, larger quantities of fluid were 

injected. A method for reducing injection time was desired. As such, it was decided to study cyclic 

injection further, in this case, reducing the number of cycles, aiming for an optimal number that 

can create damage with less fracturing time and fluid volume.  

4.3.1  Methodology: the protocols 

Three different tests are performed. As described in the previous section, 8 cycles were 

used for cyclic injection at dry conditions. The following tests were performed under 2.5% KCl 

saturation. Because of the weakening that saturation causes in sandstone, fewer cycles were used. 

The baseline was set to 500 psi, and the number of cycles in the tests was 2, 4, and 6. The measured 

pressure using monotonic injection (1-cycle) was 2872 psi. 

4.3.2 Results 

The analysis will consist of pressure and acoustic events curves versus time, permeability 

data, SEM imaging, acoustic emission attributes and source parameters. Focus will be on the 

located events instead of the total recorded events, being consistent with the previous section 

(Table 4.2). 

Table 4-2. Total number of events per phase on each test. The total recorded events are in the left while the located number of 
events are in parenthesis. Note that the test with 6 cycles has the greatest number of events. 
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• HF Cyclic Injection: Two cycles 

The first cycle ramped injection pressure to 1900 psi, and the second was increased to 

failure. 1900 psi was selected because it was enough pressure to cause damage in the sample 

although not enough for failure in one cycle (monotonic). Note that this pressure is equivalent to 

66% of the breakdown for monotonic injection. With this method, the sample fractured at 2588 

psi (Fig. 4.27).  

Slightly more than 60 events were induced before breakdown, with 32 located. During 

propagation, 655 were located, where most of them occurred within the first 10 seconds. The 

closure phase had the most located events (808). Note that the percentage of located events was 

higher during closure than propagation. 

 

Figure 4-27. Injection pressure and acoustic events vs time. The number of events increase during propagation and closure. Note 
that the first cycle was about 75% of the breakdown pressure.  

Fig. 4.28 shows injection pressure as a function of time (black), with the event rate per 

second (red). After breakdown, there is a rapid increase in the event rate with approximately 250 

events per second during the first 7 seconds. As time progresses, the event rate declines, and after 

10 seconds, it is about 25 events per second, which is 10% of the event rate at its peak. Once shut-
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in starts, there is a quick ramp-up in events followed by a new decline. Note that the event rate is 

slightly higher during propagation than during closure. 

 
Figure 4-28. Injection pressure and event rate vs time(s). There is a rapid increase in the number of events after breakdown 

followed by a decline after 7 seconds. The events rate increases again after closure. 

• HF Cyclic Injection: Four cycles 

The first cycle ramps injection pressure to 1450 psi, equivalent to 50% of the monotonic 

breakdown, and gradually increases by 400 psi until reaching breakdown (Fig. 4.29). The cycle 

number 4 is programmed to reach 2650 psi, an injection pressure higher than breakdown for the 

2-cycle test (Pb = 2588 psi).  

The first three cycles produced a small number of acoustic events, but the last cycle 

recorded 82 events before failure, with only 29 located. The breakdown pressure was 2432 psi, 

decreasing by 6% with respect to the 2-cycle test. Furthermore, the number of acoustic events 

induced during propagation increased significantly, with over 4000 events recorded, and with 1508 

located. After shut-in, close to 2000 acoustic events were induced. There was an increase of 71% 

in the total recorded acoustic emissions and 76% in the located emissions. 

0

50

100

150

200

250

300

0

500

1000

1500

2000

2500

3000

0 20 40 60 80

Ev
en

t 
R

at
e 

/ 
s

P
re

ss
u

re
 (

p
si

)

Time (sec)

Total Number of Events



89 
 

 

Figure 4-29. Four cycle experiment. There is an increase of 400 psi per cycle after starting with 1450 psi. The fourth cycle reached 
pressures between 2250 and 2650 psi; sample fractured at 2432 psi. 

An event rate of 400 events per second was reached after breakdown (Fig. 4.30). The rate 

holds and decreases over time. Note that there are over 200 events recorded per second post-

breakdown during almost 15 seconds. The peak only rises to 200 events per second during closure, 

similar to observations in the 2-cycle test. The main difference in the acoustic emissions count 

happens during fracture propagation, which significantly exceeds the previous test. 

 

Figure 4-30. Pressure and event rate as a function of time. The 4-cycle test shows a rapid increase but that holds longer than for 
the 2-cycle test. About 400 events per second are recorded during propagation. 
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• HF Cyclic Injection: Six cycles 

The 6-cycle test was initially expected to have the lowest breakdown pressure and the AE 

highest count. An initial injection pressure of 1250 psi, which was equivalent to 40% of the 

monotonic breakdown, was followed by increments of 250 psi. The sixth cycle was set to reach 

2500 psi, pressure higher than the breakdown in the 4-cycle test (Fig. 4.31). 

 

Figure 4-31. 6-Cycle test. It had the largest number of acoustic emissions (3476), while it also had the lowest breakdown 
pressure (2246), being the most efficient. It also consumed the largest fluid volume before breakdown. Note the pressure steps 

are lower than the previous tests. 

The breakdown pressure decreased, only 2246 psi. It was lower than the breakdown 

pressure in the 4-cycle test (by 8%) and 2-cycle test (by 13%). During pre-breakdown, the number 

of events was considerably higher, twice the number of events and located three times more events 

than other tests. Propagation and closure were not significantly different from the 4-cycle test. 

However, the percentage of located events was 48% of events, the highest among all tests.  
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Figure 4-32. Rate of AE events per second for the 6-cycle test. There is a sharp increase in events at failure which is followed by a 

rapid decrease, and a second increase. A third increase in events occurs during closure. 

The plot of the rate of events per second (Fig. 4.32) showed two main characteristics: 1) 

during propagation, two ramps were observed. Initially, the first peak reached 400 events per 

second, followed by a steady decay, and a second peak which reached 220 events per second. 2) 

the closure signature was comparable to the other tests. This implies that the main difference in 

events’ count across each test occurs during fracture propagation.  

A comparison of events rate per second for each test is presented in Fig. 4.33. The increase 

in event rate after failure is different for each test. The 4- and 6-cycle tests had similar performance 

within 10 seconds after failure, recording up to 400 events per second and significantly higher than 

the recorded with 2 injection cycles. Notice that the 6-cycle test had longer recording times after 

failure as compared to the other tests, explaining the difference between the number of events per 

test. It shows that in terms of acoustic emissions, both the 4-cycle and 6-cycle tests create a similar 

damage which would suggest 4-cycles are more optimal than 6. 
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Figure 4-33. Rate of AE events per second for all the tests. Note the similarity on the event distribution and event count during 
the closure phase. The peak during propagation increased for the tests on 4 and 6 cycles. Rates suggest 4-cycles might be 

optimal. 

 The breakdown pressure decreased as a function of number of cycles (Fig. 4.34). Based on 

our testing conditions, the more cycles were used contributed to the reduction of breakdown 

pressure. The 6-cycle test had the greatest reduction of breakdown pressure, with 22% reduction 

with respect to the monotonic breakdown. This is a significant development for operations 

performed deep in the formation, and with rocks that require greater injection pressure, such as 

granite. 
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Figure 4-34. Reduction in breakdown pressure with respect to the number of cycles. The 6-cycle test had a 22% reduction, with 
the greatest reduction as compared to the other two tests. 

• Acoustic Emission maps and fracture distributions 

The acoustic emissions were mapped from the top view and paired with the corresponding 

fracture side view (Fig. 4.35). The events that showed a peak frequency near 0 kHz (0.5-1.0 kHz) 

were eliminated as these events are considered noise and do not represent the main fracture.  

For the 2-cycle test, the maps show most of the events located around the wellbore, with 

an orientation towards the maximum horizontal stress. The events were located within 30 mm of 

the main fracture. The side view shows that the events are mainly in the upper half of the sample, 

with fewer events located towards the bottom of the sample. 

The AE distributions for the 4-cycle test is far broader in the top view. The acoustic 

emissions reached a farther extent. The fracture side view shows the right wing (positive) to have 

more events towards the center of the sample. The left wing is wider from top to bottom. 

The 6-cycle test shows the most compact fracture from the top view. The fracture is slightly 

deviated from the maximum horizontal stress direction, with a deviation of 5ᵒ. The map shows the 

events in the middle of the sample, reaching part of the bottom section but mainly located in the 

top half.  
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Figure 4-35. Acoustic map from the top view (left) and fracture plane side view (right) for the 2, 4 and 6-cycle tests. The 4- and 6-
cycle tests show a more composed fracture distribution across the sample. These plots only show events that passed the 

frequency filter as the others are considered noise. 

The fracture distribution on both the fracture plane and the z-axis were fit to a Lorentzian 

function as described in section 4.2 (Fig. 4.36). The distribution in the y-axis was normalized with 
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respect to the greatest number of events on a 5 mm interval among the three tests. Propagation is 

always stronger in one of the fracture wings, contrary to symmetry assumed in field tests. There is 

a significant difference between the 2-cycle test and the remaining tests. The 6-cycle test shows a 

slightly greater number of events in the center than the 4-cycle test; however, the difference is 

minimal.  

 

Figure 4-36. Fracture distribution about the fracture plane in plain view for the three tests. The distribution for the 4- and 6-cycle 
tests almost overlap each other. 

The distributions perpendicular to the fracture plane and vertical have a similar response 

(Fig. 4.37). The 2-cycle test shows the more narrowed vertical distribution, with the smallest 

process zone; most events happened at 70 mm depth, which is right above the injection point. Both 

tests with 4 and 6 cycles have a wider vertical distribution in the center of the sample and almost 

identical, and their process zone is wider. The events located in the upper and lower 40 mm are 

few and almost nonexistent in the 2-cycle test.  

Based on the events distribution and acoustic maps, the 4- and 6-cycle test have a similar 

process zones and fracture networks. Calculating the area under each distribution, and multiplying 
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the three distributions, an approximate on the SRV is obtained. The 4-cycle test had a 5.6-fold 

increase with respect to the 2-cycle test, while the 6-cycle test had a 7.3-fold increase. 

       

Figure 4-37. Number of AE events in 5mm depth intervals (left) and Lorentzian distribution perpendicular to the fracture 
direction (left) and vertical (right). In this case, the 4- and 6-cycle test have a wider process zone (width) than the 2-cycle test. 

Similar response in the vertical distribution, where the 4- and 6-cycle tests almost overlap each other. 

• Permeability 

Physical measurements were carried out to compare the influence of fracturing protocols 

on permeability. Permeability tests were performed on the right wing of each sample using the 

AP-608TM permeameter previously described in section 4.1.3. The native and conventional 

permeabilities were taken from Goyal (2020). There is a declining trend for each experiment as a 

function of confining pressure (Fig. 4.38). This is expected as higher pressure will close the 

fractures and pores. The greater the number of cycles, the greater the measured permeability, 

suggesting more damage is created as more cycles are applied to the rock. There is a two orders of 

magnitude difference between the cyclic experiments and the native sample, showing the 

significant permeability increase after fracturing. Even with 2 injection cycles, there is an 
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improvement with respect to the conventional monotonic test. The decline in permeability is 

almost parallel between each test; however, the permeability for the 2-cycle test has a shift in the 

trend at the highest pressure. Note that the 4-cycle experiment did not register permeability at 4000 

psi, which is attributed to an error while running the experiment. The 5000 psi could be slightly 

overestimated.  

 

Figure 4-38. Permeability measurements under different confining pressures. The greater number of cycles in a test, the greater 
the permeability increase. All the pressure dependencies are very similar. 

Walsh equation (Eqn. 4.11) was used for fracture permeability as a function of effective 

pressure (Walsh, 1981).  

(
𝑘

𝑘𝑜
)

1

3
 ≈ 1 − (

√2ℎ

𝑎𝑜
) 𝑙𝑛 (

𝑝

𝑝𝑜
)

𝑒
…………………………………………………………………(4.11) 

The equation uses ko and Po as reference permeabilities and pressures, while k and P are 

the permeabilities obtained at different pressures (P); h is the root mean square roughness of the 

fracture surface, and 𝑎𝑜 is the half aperture of the fracture. The constant (
√2ℎ

𝑎𝑜
) ends up as the slope 

between the relation of permeability with effective pressure, which is a parameter used to measure 

the effect of fracture as a permeability contributor (Fig. 4.39). 
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Figure 4-39. Walsh correlation for the monotonic test and the cyclic injection tests. There is an almost perfect relation between 
the effective permeability and the effective pressure for each of the cases. The tests executed with 4- and 6-cycle had the 

greatest constant √2ℎ/𝑎0, suggesting those tests to have a greater contribution from the fracture in the permeability. 

The data for all the tests fits the Walsh equation, where the permeability decreases as a 

function of the effective pressure. The constants for the 4- and 6- cycle test are greater than the 2-

cycle test, indicating that there’s a greater contribution from the fracture in the measure 

permeability. 

• Test Efficiency 

To compare the efficiency between tests, the work generated on each test was calculated 

using Eqn. 4.12, where P is the peak at each pressure cycle measured in psi, and ΔV is the applied 

volume during each cycle in mL.   

𝑊𝑜𝑟𝑘 = 𝑃 ∗  ∆𝑉………………………………………………………..……………………(4.12) 

 

y = -0.34ln(x) + 1.01
R² = 0.998
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Figure. 4-40. Work generated per cycle on each test. Note that the work used per cycle increases towards the latest cycles as 
higher pressure are reached with greater volumes. 

First, the work generated per cycle is displayed in Fig. 4.40. The work generated increases 

towards the latest cycles on each test due to greater peak pressures reaching higher magnitudes. A 

total work inputted is calculated by adding the amount of work used under each cycle. By obtaining 

the ratio of total acoustic events recorded during propagation with respect to the amount of work 

inputted, the 4-cycle test was the most efficient under out test conditions (Fig. 4.41). 

 

Figure. 4-41. AE Events generated based on the total work inputted per test. The 4-cycle test was the most efficient under out 
test conditions, having near 80 AE Events per joule of work. The 2-cycle test showed to be the least efficient. 
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• SEM Imaging 

1-in diameter cores were cut and polished from the right fracture wing to perform SEM 

imaging. The 2-cycle test had a low count on the number of secondary fractures. Besides, the few 

secondary fractures had a small length, making them difficult to detect (Fig. 4.42). The 4-cycle 

test showed an increase in length for the secondary fractures. The largest secondary fracture 

measured 1.18 mm, extending parallel to the primary fracture, and connected to it in three different 

locations (Fig. 4.43). Some damage is also observed in the fracture wall. The last test had the most 

extended secondary fracture among the three tests, and the highest fracture count (Fig. 4.44). 

Damage was observed on both sides of the fracture wall. 

 

Figure 4-42. SEM image for the 2-cycle test with a scale of 200 µm. There was a low secondary fracture count with a small 
length. 
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Figure 4-43. SEM Image for the 4-cycle test with a scale of 400 µm resolution. A large secondary fracture was created connected 
through the primary fracture in three different zones. Overall, there was more secondary fractures that in the 2-cycle test. 

 

Figure 4-44. SEM Imaging for the 6-cycle test at a resolution of 400 µm. The longest secondary fracture was observed in this test, 
with a total length of 1.36 mm. Both sides of the fracture wall showed secondary fractures. 
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• Acoustic emissions amplitude analysis 

The acoustic attributes, specifically amplitude, frequency, and source dimension 

parameters such as moment magnitude and crack radius were analyzed. The amplitude was 

calculated as explained in section 4.1.4 using the peak amplitude of the signal envelope. Then, an 

arithmetic average was taken across all the transducers that registered a clean signal.  

Events before breakdown had the lowest peak amplitudes for every protocol (Fig. 4.45a). 

Events in tests with 4- and 6-cycles had higher amplitudes than those in the 2-cycle test during this 

stage. The average peak amplitude during the remaining stages (propagation and closure) did not 

change as a function of cycles, however, it was higher than pre-breakdown. 

Fig. 4.45b shows the area under the frequency spectrum. The calculated area was assumed 

to represent the energy induced on each acoustic event and is calculated to detect energy variations 

for each stage. The pre-breakdown events showed the lowest energies, consistent with the peak 

amplitude.  

   

Figure 4-45. a) Average wave signal amplitude b) average area under the signal envelope (right) The pre-breakdown phase 
shows the smallest amplitudes, and a reduction in amplitude is observed for higher number in cycles in a test (propagation and 

closure). 
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Pre-Breakdown 

 

Propagation 

 

Closure 

 

Figure 4-46. Wave amplitude and area under the envelope for each phase. The pre-breakdown events have higher amplitudes 
for tests with more cycles. During propagation and closure, the signal peak amplitudes are similar among every test. The area 

under the envelope decreases for tests with more cycles. 
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The amplitude and area were plotted for each phase (Fig. 4.46). During pre-breakdown, 

the events in the 2-cycle experiment yield the smallest amplitudes and lowest energies. The 4- and 

6-cycle tests had larger amplitudes. Note that the amplitudes and energies have the same trends. 

Propagation and closure phases were harder to interpret as their ranges were very similar. 

However, during propagation, the 6-cycle test had lower amplitudes and energies than the other 

two tests. During closure, every test had behaved similarly. 

The implications of seismicity in geothermal are significant, as lower seismicity means a 

reduction earthquake size. Opposite to pre-breakdown, those events induced during propagation 

had high amplitudes. Using cyclic loading under multiple cycles could reduce the magnitude 

induced earthquakes during fracture propagation (Zhuang et al., 2017). 

• Acoustic emissions classification 

Classification of acoustic events based on polarity was performed as explained in section 

4.1.4. Tensile, shear, and compressive events were obtained. The classification was done based on 

the number of cycles per test and the event’s phase occurred (pre-breakdown, propagation, or 

closure). Mapping of tensile and compressive events is also displayed. At least 7 clean polarity 

readings per event were required for classification, so those events that did not pass the threshold 

were not considered. Note that the events that registered frequencies near 0 kHz were not 

considered. 

First, the total number of events was classified between tensile, compressive, and shear 

(Fig. 4.47). Every test was dominated by shear, which controlled more than 80% of events. Tensile 

events were the same relative to the total number of events, having between 3 to 4% per test. 

Compressive events significantly increased with the number of cycles. 
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Figure 4-47. Classification of acoustic events based on polarity. The higher number of injection cycles induce a higher percentage 
of tensile events, while compressive events are more consistent. Shear is the dominant failure mechanism. 

The damage by tensile and compressive events was also accounted for per phase. It is noted 

that most of the events correspond to shear failure, consistent with previous laboratory experiments 

(Damani et al., 2013; Warpinski et al., 2012). Fig. 4.48 shows tensile events mainly occurred 

during the propagation phase. This suggests that tensile events are contributing to fracture opening. 

Note that the 6-cycle test showed the greatest number of tensile events during propagation, 

suggesting that a larger number of cycles induces more tensile events. The closure phase showed 

a little record of tensile events, mainly dominated by shear.  
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Figure 4-48. Tensile events recorded for each test in each phase. They mainly occurred during the propagation phase, suggesting 
fracture opening is the main mechanism for tensile failure. Note that the 6-cycle test induces the largest number of events, 

which means that greater number of cycles causes more tensile events. 

In terms of compressive events, propagation was the phase where most of the compressive events 

were recorded (Fig. 4.49). In this scenario, we also observed many events during the closure phase. 

Note that the 6-cycle test has a drastic increase in compressive events.  

 

Figure 4-49. Compressive events recorded for each test in each phase. The greater number of cycles induces a larger number of 
compressive events. 
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Tensile and compressive events were mapped individually to capture their location with 

respect to the primary fracture (Fig. 4.50). The compressive events had a distribution through the 

main fracture. In the 2-cycle test, tensile events mostly locate near the wellbore. For the test with 

4 cycles, some events are slightly distant from the main fracture towards the left. The 6-cycle test 

is the best in recreating the fracture plane. Tensile failure events tend to be associated with mode 

I fracture opening. Tests with 2 and 4 cycles hardly recreate the fracture plane but instead are more 

scattered. In the test with 6 cycles, tensile events fall along the primary fracture, most occurring 

near the wellbore area. Both compressive and tensile events can describe the primary fracture in 

the 6-cycle test. 

 

 

 

Figure 4-50. Acoustic maps of tensile and compressive events from the top view. The compressive events are distributed along 
the fracture and are closely represent the primary fracture in the 4- and 6-cycle. Tensile events are more dispersed, and only 

represent the primary fracture in the 6-cycle test. 
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• Acoustic emission source dimensionality 

The last part of this study analyzes the moment magnitudes, source radius, event 

displacement on the fracture plane, and stress drop. The methodology is explained in section 4.1.4 

will be used. The input mechanical properties are presented in Table 4.3. 

Table 4-3. Tennessee Sandstone input parameters for source mechanisms calculations. 

Parameter Symbol Value Units 
Bulk density ρ 2700 Kg/m3 

Shear wave velocity Vs 2600 m/s 

Compressional wave velocity Vp 4335 m/s 

Shear modulus G 18 GPa 

Bulk modulus K 26 GPa 

Young's modulus E 45 GPa 

Poisson's ratio ν 0.22   

 

The seismic moment is used as a method to measure the magnitude of each earthquake. In 

this case, two main observations are obtained (Fig. 4.51). First, the moment magnitude decreases 

as more cycles are used pre-fracturing, which is important as field studies have shown how higher 

seismic moments are more prone to induce larger earthquakes. Second, those events before failure 

have the lowest moments, while propagation have similar moments, agreeing with observations 

on waveform amplitudes. Seismic moment is a parameter that needs more attention in geothermal 

fracturing, where seismicity is one of the main issues.  

   

Figure 4-51. Average seismic moment for each test separated by phases. The seismic moment is low during AE events in pre-
breakdown and increases during post-breakdown. The 4-cycle test is the optimal based on the events’ magnitude. 
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The source radius is directly proportional to the seismic moment (Fig. 4.52). In a semilog 

plot, both parameters have a weak correlation. The source radius range oscillates from 5 to 15 mm. 

The events in the 6 cycles test have the smallest in source radius. Note that some of the events for 

the 6-cycle test show a significantly lower seismic moment which should be further analyzed as 

they are off trend.  

 

Figure 4-52. Seismic moment versus source radius. There is a direct correlation, the greater the source radius, the greater the 
seismic moment. Note the 6-cycle have events in a lower range of moment compared to the other tests. 

4.3.3 Discussion 

In this study, pre-cyclic injection was performed on 2.5% KCl saturated Tennessee 

sandstone of 175 µm grain size, using different number of cycles before breakdown (2, 4, and 6).  

- The breakdown pressure decreased as the number of cycles increased, with 10, 15, and 22% 

difference for the 2-, 4-, and 6-cycle tests with respect to the monotonic test. 
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- The 4- and 6-cycle tests created a larger SRV than the 2-cycle test. There was a 5.6- and 7.3-

fold increase, respectively. 

- The average event seismic moments decreased as the number of cycles increased. This is 

important as larger moments are associated with large earthquakes. With recent developments 

in geothermal energy, hydraulic fracturing with cyclic injection could reduce the magnitude of 

associated microseismics, reducing the number of induced earthquakes. 

- There is an increase in permeability with increasing number of injection cycles. The 6-cycle 

test had twice the permeability compared to the 2-cycle test under 5000 psi of confining 

pressure. 

- Shear failure controlled the deformation of the samples. Tensile events increased as more 

cycles were used.  

- Our experiments suggest that the 4-cycles test is optimal under our testing conditions. 
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5. APPLICABILITY AND FUTURE WORK 

This section is divided in three parts. First, some of the applications of the tests used in this 

study are described. Second, a hydraulic fracturing test using cyclic injection is designed for field 

use. Last, recommendations for future studies are noted. 

5.1.  Applications 

1. Formations requiring high breakdown pressure require more energy and horsepower. 

Thus, reducing breakdown pressure through cyclic injection is a potential cost savings for field 

operations. This will be applicable to deeper formations as well as formations with rocks such as 

granite/gabbro and other igneous rocks which are encountered in geothermal wells and have higher 

breakdown pressure. 

 2. Field experiments have shown that the hydrocarbon recovery increases with the amount 

of surface area of the fractures created during hydraulic fracturing. Complex fracture networks are 

needed for larger surface area. Our cyclic injection technique showed greater AE events, and thus 

more complex fracture network, as compared to monotonic injection. Cyclic injection than will be 

more appropriate technique for greater hydrocarbon recovery. This technique can also be useful 

for Enhanced Oil Recovery in shales, which depends on the total surface contacted area.  

 3. Geothermal operations require fluid injection in the reservoir, which can reactivate 

fractures by increasing pore pressure. Increased pore pressure can result in inducing seismicity. As 

such, the use of event’s classification between tensile and shear through frequencies could aid to 

understand the type of events created. If the events are shear, pumping of fluid can be stopped in 

order to prevent/minimize induced seismicity. Note that cyclic injection while creating complex 

fracture network was shown to decrease the magnitude in the induced microseismic events. 
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 4. Nanoindentation is a technique used to measure mechanical properties on any 

unconventional formations with fine grain size. With subsurface carbon sequestration gaining 

popularity and the advent of hydrogen storage in shales, nanoindentation can be a technique that 

evaluates the effect of those gases in the elastic and non-elastic mechanical properties.  

5.2.  Hydraulic Fracturing Design  

A design was created for operators to apply pre-cyclic injection in the lab. The first step 

for the user is to input an approximate magnitude of the breakdown pressure for monotonic 

injection. Then, the starting pressure for the first cycle is calculated using Eqn. 5.1. Here, the total 

number of cycles and the percentage desired for reduction per cycle are necessary. (i.e., assume 

that breakdown pressure for monotonic injection is 1000 psi; if aiming for 3 cycles and wanting a 

reduction of 10% per the desired cycle, the starting pressure for the first cycle will be set to 700 

psi, 30% lower than your monotonic breakdown.) 

𝑃𝐶𝑦𝑐𝑙𝑒 1 = 𝑃𝑏−𝑚𝑜𝑛𝑜𝑡𝑜𝑛𝑖𝑐 − [# 𝑜𝑓 𝐶𝑦𝑐𝑙𝑒𝑠 ∗ (𝑅𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛 % ∗ 𝑃𝑏−𝑚𝑜𝑛𝑜𝑡𝑜𝑛𝑖𝑐 )]……………………………….…(5.1) 

Once the initial pressure is calculated, the remaining peak cycles are obtained. Eqn. 5.2 is 

used, where the resulting starting pressure (Pcycle1), the total number of cycles, and the specified 

cycle number are inputted.  

𝑃𝑒𝑎𝑘 𝐶𝑦𝑐𝑙𝑒 = 𝑃𝑐𝑦𝑐𝑙𝑒 1 +
(𝐶𝑦𝑐𝑙𝑒 𝑁𝑜 −1)∗(𝑃𝑏−𝑚𝑜𝑛𝑜𝑡𝑜𝑛𝑖𝑐 −𝑃𝑐𝑦𝑐𝑙𝑒 1 ) 

# 𝑜𝑓 𝐶𝑦𝑐𝑙𝑒𝑠
……………………………….………………….….(5.2) 

A screenshot of the created spreadsheet is displayed in Fig. 5.1. Note that the yellow cells 

correspond to the input parameters. The spreadsheet gives the user the design that should be used 

for any number of cycles selected from 2 to 10. If one specific number of cycles is desired, it is 

inputted in the pink cell. With this, the user will know how to set up the protocol based on the 

number of cycles that he wants to use. A baseline of 500 psi is recommended so that operators do 
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not have to shut the pump completely but instead can have a base pressure as a lower limit to drop. 

This design aims to have a method to compare different test efficiently. 

 

Figure. 5-1. Spreadsheet for the developed hydraulic fracturing design. The input parameters correspond to the monotonic 

injection breakdown pressure and the percentage reduction desired based on the number of cycles. Note that between C10:L17 

are the values of the pressures to use as peak based on the number of cycles. The part between rows 19 and 21 just shows a 

specific column based on the number of cycles inputted. The formulas are also displayed for reference. 
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5.3. Future Work Recommendations 

 First, I suggest repeating the cycle test using the design described in section 5.2. That will 

use similar peak pressures but change the initial starting pressure according to the number of cycles 

desired. I will recommend starting with a test using the monotonic breakdown pressure, then 

testing 3, 5, and 7 cycles. 

 Second, based on the tests performed in the first recommendation, an optimal number of 

cycles can be obtained. I would use that number of cycles and perform at least 3 cyclic injection 

tests with changes in differential pressures. If treating different differential pressures, operators 

would relate it better to stresses in the field. Confining pressure can be increased as it has been set 

to only 500 psi. 

  Third, I would suggest using the continuous monitoring system for any test. If this gives 

us the moment type, it can be compared to the measured frequencies, having a broader 

understanding of the waveforms recorded at each stage during the fracturing tests. 

 Forth, I would consider different fracturing fluids. Based on the laboratory experiments 

performed so far, no test has used fluids at high temperatures, but every fluid has been injected at 

room temperature. I would compare the signal waveforms obtained to those at standard conditions, 

as the wavelength, the frequency, and the moment magnitudes generated.  

  In nanoindentation, I would suggest performing indentation tests on rocks used to store 

CO2. I would grab rocks with known petrophysics (from different formations) and obtain elastic 

parameters’ change. It would be important to evaluate the elastic change under different times of 

CO2 storage, as this is a long-time process. Consider also that the nanoindentation can flow gases 

while testing. This might help in the test design. 
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6. CONCLUSIONS 

Each chapter has described its own set of conclusions in the discussion section. Here, a summary 

of the main findings is presented. 

▪ The number of cycles used in pre-cyclic injection relates to the stimulated reservoir volume, 

breakdown pressure, and induced seismicity.  

❖ Based on the testing conditions, a greater number of cycles reduces the monotonic 

breakdown pressure. As the number of cycles increased, there was a reduction of 10, 15, 

and 22% difference for the 2-, 4-, and 6-cycle test, with respect to the monotonic test. 

Breakdown pressure reduction is significant in fields such as geothermal, where operations 

occur at deeper conditions which require more work.  

❖ A greater number of cycles led to more located acoustic events. This was reflected 

in a greater estimated SRV. Compared to the 2-cycle test, there was a 5.6- and 7.3-fold 

increase in the 4-cycle and 6-cycle tests, respectively. 

❖ The average event seismic moments decreased as the number of cycles increased. 

This is important as larger moments are associated with large earthquakes. This can be 

applied in geothermal operations where fluid is injected in the reservoir, which reactivate 

fractures by increasing pore pressure, inducing seismicity.  

❖ The 4-cycle test was the most efficient test, with the greatest SRV generated based 

on the work inputted. 
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▪ Nanoindentation is shown as a successful technique to understand the mechanical behavior of 

unconventional reservoirs under different conditions. 

❖ Linear gel generates more damage than slickwater to elastic properties. The 

Young’s modulus had a greater reduction in carbonate-rich formations attributed to 

carbonate dissolution. Most of the elastic reduction occurred within the first 5 hours of 

saturation, which should be considered in field testing. 

❖ Nanoindentation was a successful technique to measure mechanical properties in 

ash beds, as those were not previously reported. The Young’s modulus was significantly 

lower than the formation matrix, leading to fracture closure. Additionally, it was observed 

that this layer could creep substantially more, which could cause proppant embedment. 

❖ Primary and secondary creep can be modeled through nanoindentation using the 

holding time. Using the secondary creep function, it was observed that creep mainly 

depends on clays and TOC. Furthermore, creep deformation increased for saturated 

samples. 
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