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Chapter 1 

1 Introduction 

The pioneering research in thennoluminescence (TL) dosimetry, led by Farrington Daniels 

and his group at the University of Wisconsin, began in the 1950s. Aluminum oxide (Al20 3) 

emerged as a thermoluminescence detector (TLD) in 1957 with a paper by Rieke and 

Daniels[ 1], which provided the first detailed study of the thermoluminescence properties of 

Al20 3. Around the same time, some of the material properties of Al20 3 (such as optical 

absorption bands[2,3] and their associated oscillator strengths[ 4]) were first determined. 

These investigations were extended in the 1960s and early 1970s to include the determination 

of lattice displacement threshold energy[5], the effect ofx-rays on the optical properties of 

ruby (Al20 3:Cr)[6], em1ss1on spectra of ruby[7,8], gamma energy dependence[9] and 

additional optical absorption band measurements[10, 11]. The era resulting in the most 

prolific research on Ali03 was the period spanning the mid:-l 970s to late.,J 980s. During this . 

time, most of the research related to o.-A120 3 focused attention on the origins of the optical 

absorption bands[l2-18] and luminescence centers[I8~27]. Unfortunately, the use of o.­

Al203 in TL dosimetry never gained the popularity of other TLD materials (most notably, 

LiF:Mg,Ti), due to the relatively poor sensitivity and higher en~rgy dependence at low gamma 

photon energies. Attempts to increase the popularity of ci.-Al20 3, by improving the sensitivity 

and readout parameters (i.e. peak temperature and emission wavelength) through the 

introduction of various dopants[28-3 l], were only marginally successful. 
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Beginning in 1990, the dosimetry community's attitude toward a.-Al20 3-based TLDs 

began to change with the introduction of a.-Al20 3:C[32] as a newTLD material. This new 

material possessed a sensitivity to gamma radiation some 50 times that of the industry 

· standard (TLD-100, otherwise known as LiF:Mg;Ti) and a linear dynamic range of nearly 7 

decades of gamma dose, with a dose threshold (i.e. minimum measurable dose) equivalent to 

only a few hours of natural background radiation exposure. Since that time, many researchers 
. . . 

have investigated the material and dosimetric propertles of a.-Al20 3:C. These investigations 

. . 

inciude descriptions of the general dosinietric properties[32-:-46], the TL and exoemission 

properties[47-53], the influence of the deep traps[54], the comparison between bulk crystal 

and surface layer sensitivity[55]; light-induced fading[56-59] of TL and other optically 

stimulated phenomena[60-67], such as phototransferred thermoluminescence (PTTL) and 

optically stimulated luminescence (OSL). 

1.l Crystal Growth and Structure 

The a-Al20 3:C samples used in this. research were grown using the Czochralski method 
·. . ' 

. . 

of crystal growth by either Medus (Russia) or Stillwater Sciences (Oklahoma} The starting 

material was Vemeuilgrown a.-Al20 3 (corundum), ·which was melted and pulled in a strongly 

reducing atmosphere in the presence of graphite[32], using a-Al20 3 seed crystals. As a result 

of these growing conditions, the crystals have a relatively large concentration of carbon 

(100-5000 ppm) with respect to other impurities (Ca -30 ppm, Cr and Ti -10 ppm, Ni and 

Si -5 ppm and Cu, :Re and Mg <2 ppm)[55]. The single-crystal a.-Al20 3:C rods have a 

diameter of5 mm and length of approximately 500 mm. The rods were cut into 1 mm.thick . 

discs, or crushed into powder form with a ball-tube mill. 
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The crystal structure of a-A120 3 :C is a distorted hexagonal close packed 0 2• ion sublattice, 

with Al3+ ions occupying two thirds of the octahedral interstices, as shown in Figure 1.1. 

Each oxygen atom is tetrahedrally bound by four aluminum atoms, as in Figure 1.2. The four 

0-Al bond lengths are paired, with two· longer bond lengths of 1. 97 A and two shorter bond 

lengths of l. 86 A. 

The strongly reducing atmosphere during crystal growth introduces additional oxygen 

vacancies into the crystal lattice. These oxygen vacancies create F- and F+ -centers in the 

crystal lattice. Two electrons trapped by an oxygen vacancy produces an F-center, which is 

neutral with respect to the crystal lattice. Similarly, an oxygen vacancy which traps only one 

electron produces an p+ -center, which is positively charged with respect to the crystal lattice. 

Electrons which become trapped at these latter defect sites convert the F+ -centers into F­

centers. These defect sites (F- and p+ -centers) are an integral part of the TL process. 

1.2 Material Properties 

Levy[l l] was the first researcher to measure a band gap of -9.0 eV in a-Al20 3. The 

optical absorption bands at 6.1 eV (205 nm) and 4.8 eV (255 nm) were measured by Levy 

and Dienes[3] and later assigned to an F-center (6.1 eV) by Lee and Crawford[13] and an F+­

center (4.8 eV) by Buckrnan[8]. The 5.4 eV (230 nm) optical absorption band discovered by 

Hunt and Schuler[2] was labeled an F+-center by Evans and Stapelbroek[15]. Lee and 

Crawford[13] first measured the optical absorption bands at 4.1 eV (300 nm), 3.5 eV (355 

nm) and 2.7 (450 nm), which were laterassigned to F2-, F/- and F/+-centers, respectively, 

by Pogatshnik et al.[16] The optical absorption band at 1.8 eV (692 nm) measured by 

Draeger and Summers[20] has not been assigned to any particular defect structure. 
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<OOOl>t 
C-axis 

Plane 1 (02·) ...,.11111(----- Plane 3 (02·) 

ligure 1.1 - Schematic Diagram of a.-Al20 3 .Crystal Structure. The crystal structure of 
aluminum oxide consists of a hexagonal close pack of 0 2• ions (larger circles) with Al3+ ions 
. ( smaller circles) interstitial ions. 
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• ~ • 
• 

<0001> 
C-axis 

0 

• 
Plane 3 (02-) 

~ Plane 2 (Al") 

• 

• '< Plane 4 (Al") 

• 
Figure 1.2 - Schematic Diagram of Oxygen Ion Tetrahedrally Bound to Aluminum Ions. Each 
oxygen ion (larger circles) has four bonds with aluminum ions (smaller circles) - two each of 
lengths 1.86 A and 1.97 A. 
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The emission bands at 3.8 eV (330 nm), 2.5 eV (505 nm) and 2.3 eV (550 nm) were first 

measured by Lee and Crawford[13]. Evans determined the 3.8 eV emission was due top+_ 

center luminescence[l 5], while F2- and F/+-centers[ 18) were responsible for the 2. 5 and 2.3 

e V emission, respectively. The 3. 0 e V ( 410 nm) emission was first detected by Hunt and 

Schuler[2] and has been labeled F-center luminescence by Brewer et al.[23) The emission 

lifetime of the 3. 0 e V emission was determined to be 3 5 ms(21 ], while that of the 3. 8 e V 

emission was measured as <7 ns[15]. 

The oscillator strength of the F-center was calculated by Lee and Crawford[ 13] to be 1. 3. 

Later, anF+-centeroscillatorstrength of0.66 was calculated by Evans and Stapelbroek[15]. 

The lattice displacement threshold energy of Al3+ and 0 2• ions were determined to be -50 eV 

and -90 eV, respectively, by Arnold and Compton[5). Table 1.1 summarizes the various 

material properties of a.-Al20 3:C. 
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T bl 1 1 S a e - ummary o fM . IP atena rt" f AlO C rope 1es o. · a- ~ "l· 

Description Value Units Reference 

Band Gap -9.0 eV 11 

Optical Abso1ption Bands 6.1 (205) eV(nm) 13,3 
F 5.4 (230) 16,2 
F+ 4.8 (255) 8,3 
F+ 4.1 (300) 23,13 
F2 3:5 (355) 23, 13 
F/ 2.7(450) 23,13 
F/+ 1.8 (692) 17 

Emissfrjn Bands 
.· 

F+ 3.8 (330) eV(nm) 16,13 
F 3.0 (410) 20,2 
F2 2.5 (505) 27,13 
F/+ 2.3 (550) 27,13 

Oscillator Strengths 
F 1.3 13 
F+ 0.66 16 

Lattice Displacement Threshold Energy 
Al -50 eV 5 
0 -90 eV 5 

Emission Lifehmes . 
3.0 eV 36 ms 27 
3.8 eV 7 ns 16 
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1.3 Dissertation Project 

This project involves the investigation of the dosimetric properties of a.-A120 3:C exposed 

to various forms of ionizing and non-ionizing radiation. The purpose of this investigation is 

to provide a comprehensive study ofthe PTTL properties, which, in turn, will provide a more 

comprehensive understanding of the role played by the deeper traps in a-A120 3:C in the TL 

process. The information regarding the PTTL properties of a-A120 3:C have also had a direct 

effect on the determination of this material's OSL properties (e.g. determination of the 

optimum wavelengths to use for OSL measurements). In addition, the inherent neutron 

response of this material is poor (about 4%, relative to gamma radiation). Thus, new methods 

of analyzing the neutron-induced TL signal were implemented, in order to enhance the 

detection of these signals. Finally, new methods of thermochemical treatment of this material 

have proven to be beneficial in the areas of neutron dosimetry and ultra high-dose 

measurement. 

Chapter 2 provides a detailed theoretical development of the mechanisms involved in the 

charge transfer, energy storage and energy release phases of TL and PTTL. 

In Chapter 3, the discussion centers on the general PTTL properties of a-A120 3:C, such 

as the dependence of the PTTL signal on wavelength, temperature, dose and illumination 

time. This analysis is then extended to characterize some deep trap parameters, such as 

thermal activation and selective phototransfer. Selective phototransfer involves the transfer 

of charge carriers from specific deep traps to specific shallow traps, based upon the 

wavelength used in the phototransfer process and the temperature of the sample during 

illumination. 

8 



The dependence of the PTTL signal on post-irradiation anneal, pre-dose history and 

temperature are detailed in Chapter 4. This includes a discussion of the wavelength 

dependence of the light-induced fading of the TL signal. As a result of these experiments, a 

theoretical model is developed which attempts to explain the balance between the fading and 

· the phototransfer of the TLIPTTL signal. 

Chapter 5 details the application of PTTL to a dosimeter which measures the integrated 

ultraviolet-B (UVB) exposure in air or in water. This drniimeter exploits the increased 

phototransfer efficiency of a.-Al20 3:C to light in the UVB region of the spectrum to produce 

a near-linear dynamic range of over three decades of UVB exposure .. The dosimeter exhibits 

virtually no temperature dependence in the region of biological interest. Through the use of 

diffusers, the inherent angular dependence . of the interference filter is broadened, thus 

improving the overall angular dependence.of the dosimeter. 

In Chapter 6; TL and PTTL signals are analyzed, using an algorithm which assumes that 

a distribution of trapping levels are responsible for the observed TL signals. The signals are 

deconvolved into unique distribution signatures, which. enable the discrimination between 

irradiations due to gamma/beta, alpha and neutrons. 

The results of experiments involving the high temperature anneal of a.-Al20 3:C powder 

in an oxygen atmosphere are discussed in Chapter 7. These experiments suggest a diffusion 

of oxygen vacancies out of the crystal lattice under these conditions, resulting in a decrease 

in F- and F+ -centers. As a result, the F-center luminescence is reduced - effectively 

desensitizing the gamma response of the material. In addition, TL resulting from exposure 

to ultraviolet light suggests a discrete distribution of trapping levels. Application of the 

deconvolution algorithm described in Chapter 6 confirms this analysis. 
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Chapter 8 summarizes the work performed in this study and provides a few possible 

directions for future work related to this study. 
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Chapter 2 

2 Theory of Ther.,ioh.nninescence and Phototransferred Thermoluminescence 

2.1 Introduction 

Radiation dosimetry is the measurement of the absorbed dose of radiation resulting from 
. . . 

the interacti~n of radiation with matter[68l The absorbed dose is the energy iri-iparted per .. 

unit mass by a medium, where the energy imparted is essentially the energy removed from the 

radiation field. In practice, however, radiation dosimetry is the determination of absorbed 

dose in the medium of interest, via the measurement of a radiation-induced effect in another 

medium[69]. Typically, this involves the detection of some quantity, such as temperature, 

charge or, as in the present case, luminescence intensity, which is proportional.to the absorbed 

dose in the medium of interest. 

Daniels et al. [70] were the first researchers to realize the potential benefit of using 

thermoluminescence in radiation dosimetry. 'Thermoluminescence (TL) is the thermally 

stimulated emission of light by an insulator or semiconductor that has previously absorbed 

energy in the form of ionizing radiation [71]. They realized that many materials exhibit an 
. . 

intensity of thermoluminescence which is proportional to the amount of radiation absorbed · 

by the material[71]. The observation of thermoluminescence was first published by Boyle in 

1663 (cited in McKeever[71]), and later by others throughout the period spanning theJate 

1600's to late 1800's. The word 'thermoluminescence' was not coined until 1895, in a paper 

by Weideman and Schmidt (cited inMcKeever[71]). Weideman and Schmidt also pioneered 
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the study of 'artificial' thermoluminescence by irradiating their specimens with an electron 

beam in the laboratory. Prior to this time, researchers had restricted their observations to 

'natural' thermoluminescence, which had been induced by natural background radiation. 

Daniels and colleagues first used LiF as a TL dosimeter in 1953, in order to measure the 

. . 

radiation resulting from an atomic weapon test(72] and also to measure the internal radiation 

dose received during cancer treatme~ts[70]. Daniels abandoned VF in 1957 to begin working 

with Al20 3. LiF did regain p~pularity until Cameron and colleagues (cited in McKeever[71]) 

developed an impurity-doped-version ofLiF, known as LiF:Mg,Ti. This material, marketed 

as TLD-100, by Bicron-NE,is the current industry standard. However, LiF:Mg,Ti is plagued 

by several properties which make the material unattractive for dosimetry purposes. The dose 

response ofLiF is unpr,edictable, unless various pre- and post-irradiation annealing procedures 

are adopted. In addition, the glow curve for LiF consists of several overlapping glow peaks, 

which can lead to difficulties in interpreting the dosimetric results. Several other materials 

(e.g. LiF:Mg,Cu,P; CaF2 - doped with Mn, Dy or Tm; CaS04 ., doped with Dy or Tm; BeO; 

MgO and a.-Al20 3 - doped with C or Mg, Y) have gained various levels of popularity over the 

years, as well[73]. 

Since 1965, eleven international conferences on luminescence dosimetry have been 

conducted: Stanford; USA (1965); Gatlinburg, USA (1968); Roskilde, Denmark (1971); 

Krakow, Poland (1974); Sao Paulo, Brazil (1977); Toulouse, France(l980); Ottawa, Canada 

(1983); Oxford, United Kingdom (1986); Vienna, Austria (1989); Washington, USA (1992) 

and Budapest, Hungary (1995). The published proceedings resulting from these conferences 

provide a history of the development of thermoluminescence dosimetry over the past 30 

years. 
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2.2 Thermoluminescence 

In general, this is described as energy (radiation) exciting an electron out of the valence 

band and into the conduction band. From the conduction band, the electron can then become 

trapped at some intermediate energy level (e.g. in the potential well of a lattice defect), 

referred to as an electr~n trap. (This discussion assumes that electrons are the charge carriers 

involved in the TL process; however, a similar argument can be ma,de with respect to 'holes'. 

A hole is an electron vacancy which behaves in a manner similar to that of an electron. The 

form · of the equations that follow· would remain unchanged and would t'equire only 

corrections to the charge carrier dependent definitions (e.g. nc ~. mv, etc.).) Figure 2.1 is an 

. . 

energy level diagram representing the thermoluminescence energy storage mechanism. The 

energy difference between the electron trap and the conduction band, Er, is referred to as the 

activation energy or trap depth .. The election will remain trapped until excited with sufficient 

energy to be released back into the conduction band. Heating the material can provide 

enough thermal energy to overcome the potential well of the electron trap. The energy 

transferred to the trapped electron is given by· · 

E ::.25kT I . (2.1) 

where k is Boltzmann's constant (eV K 1) and T (K)is the temperature of the material. The 

" . 

thermally released electron can become trapped again or recombine with a trapped 'hole' .. 

· Recombination ~th a trapped hole causes the luminescence center to become excited into a 

higher energy level. Relaxation of the luminescence center to the ground state energy level 

results in the emission of a phoJon, whose wavelength is related to the difference between the 

excited state(s) and ground state energy levels of the luminescence center by 

E=hcl).. (2.2) 
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Figure 2.1 - Energy Level Diagram of TL: Energy Storage. Solid arrows represent electron·. 
transitions, while dotted arrows represent.hole transitions. 
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where his Planck's constant (eV s), c is the speed oflight in a vacuum (m s·1) and).. is the 

wavelength of the photon (m). Figure 2.2 is an energy level diagram representing the 

thermoluminescence energy release mechanism. A plot of the resulting luminescence intensity 

with respect to the material temperature produces a TL 'glow peaks'. ATL 'glow curve' is, 

in turn, comprised of one or more TL glow peaks. · 

The TL glow peaks are a result of the combined effect of increasing the temperature of 

the sample. As the temperature is increased, the probability of releasing trapped electrons 

increases. At the same time,· an increase in free electrons increases the probability of 

recombination with trapped holes. However, at some point, the trapped electrol'.1 

concentration will begin to decrease. Thus, while the detrapping rate increases, the 

.luminescence will increase; however; as soori as the detrapping rate begins to decrease, the 

luminescence will decrease. The product of these tw:o processes, as wiU be shown, produces 

the.characteristic TL glow peak. 

The lifetime, r, of the electron in _the trap is related to the temperature, T, of the material 

and the energy of the trap by 

r=s -i exp{ElkT} (2.3) 

where s is a constant (s-1) (often referred to as the 'attempt-to~escape frequency'). 

' ' ' 

Alternatively, the probability p per unit time (i.e. p = ,·1) for thermai excitation from the trap 

is given by 

p=sexp{-E!kT} (2.4) 
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Figure 2.2 - Energy Level Diagram ofTL:.Energy Release. Smaller, solid arrows represent 
electron transitions. Larger arrow represents photon emission resulting from electron.:.hole. 
recombination. 
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The rate equations which describe the flow of charge into and out of the delocalized bands 

during heating are, from Chen and McKeever[77]: 

dnc. {-Et} . . . 
-· =nsexp - -n (N-n)A -n mA . 
dt kT c n c mn 

dn 
_v=O 
dt 

,J . . {-E} un · · t -=n (N-n)A -nsexp -
dt c n kT · 

dm -=-nmA dt c mn 

(2.5) 

(2.6) 

(2.7) 

(2.8) 

The concentrations are defined as follows: nc - free electrons in the conduction band, nv - free 

holes in the valence band, n - trapped electrons, m - holes available for recombination and 

N- n - empty traps. The transition coe:fficients (m3 s-1) are: An - the retrapping probability 

andAmn - the recombination probability. The transition coefficients, An and Amm are equal to 

the product of the free ele.ctron thermal. velocity and the capture cross-sections for the 

retrapping and recombination, respectively, of free carriers. 

From Randall and Wilkins[74], the rate of thermal excitation from level 1 back to the 

conduction band is 

-dn/dt =np =nsexp{-EI kT} (2.9) 

where the negative sign signifies a loss of electrons from level 1. Restricting this discussion 

to first-order kinetics (i.e. the probability of recombination is much greater than the 
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probability. of retrapping), the intensity of phosphorescence, I (t), is proportional to the rate 

of release of trapped electrons from level I and is given by 

l(t) = 17{-dnldt} = 1711sexp{-EI kT} (2.10) 

where 11 is the radiative efficiency. The radiative efficiency is I when all recombinations 

produce photons and all photons are det~cted. Integrating, Eq. (2.10) becomes 

where 10 is the intensity at time t ;:= 0. 

Charge neutrality considerations dictate that 

and, consequently 

n +n=m 
c. 

dnc .. dm dn 
---
dt dt dt 

(2.11) 

(2.12) 

(2.13) 

· The intensity of the TL emitted. during the heating stage is determined by the rate of 

recombination and can be summarized by 

. dm 
/TL::::: -17-. 

dt 
(2.14) 

Equations (2.5)-(2.8) are coupled, non-linear differential equations which represent 

the exchange of electrons during the heating stage of a system initially perturbed from 

equilibrium. · The concentrations are an· functions of time and temperature and the 

equations are analytically insoluble unless simplifying assumptions are introduced. The 
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most significant simplifying assumption requires the free electron concentration in the 

conduction band to remain relatively constant. This quasiequilibrium (QE) assumption 

dn 
_c :::,Q 

dt 

allows the rate equations (2.5)-(2.8) to be simplified, since 

dn = dm =I 
dt dt TL' 

Substitution ofEqs. (2.4) and (2.10) into Eq. (2.11) yields 

If the sample is heated at a linear rate, P=dT!dt, such that T(t) = T0 + pt, then 

- --{-E} { i 1 {-E} dT dt}· J(t)=n0sexp -_--1 exp -s exp -_ - 1 dt-·---
kT kT dt dT -

. ~ . . . 

I(t) =n0sexp{-E'}exp{-( !...) 1 rexp{-E1}de}· · ·. 
- kT - - p r kB 

. ' ' 0 

(2.15) 

(2.16) 

(2. 17) 

(2.18) · 

where n0 is the initial number of trapped electrons at T0 (i.e. t = 0) and is proportional to the 

absorbed energy: (FJ is a duinmy variable representing temperature. Eq.(2.18) is the Randall-

Wilkins[74] equation for the shape of a fir~t-order TL glow curve. Figure 2.3 (curve a) is a 

computer-generated first-order Tt glow curve (E1 = 1.5 eV, s = 1014 s-1), which was produced 

by numerically integrating Eq. (2.18). Also shown in Figure 2.3 are the detrapping probability 

( curve b) and the trapped electron concentration ( curve c) components of the TL glow curve. 
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Figure 2.3 - Computer-Generated First-Order TL Glow Curve. Intensity of TL glow peak 
calculated using the Randall-Wilkins equation, with E1 = 1.5 eV ands= 1014 s-1. 
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Curve b represents the increasing probability of releasing trapped electrons as the temperature 

is increased (rising side of TL glow peak), while curve c represents the decreasing probability 

of having trapped electrons to release (falling side of TL glow peak) due to a decrease in the 

concentration of trapped electrons. 

Randall and Wilkins[75] also developed a theory based upon the equivalent rates of 

retrapping and recombination. This second-order kinetics model was later developed further 

by Garlick and Gibson[? 6]. By considering equivalent rates of retrapping and recombination, 

Eq. 2.10 becomes 

dn 2 /(t) = -17- = an 
dt 

(2.19) 

where a is a constant at constant T Integration ofEq. 2.19 now yields 

(2.20) 

Now, with the assumptions that ina,,m « (N - n)a,, (i.e. retrapping dominates over 

recombination), N » n and n "." m, we have (from Chen and McKeever[77J) 

dn _ ( a,, ) · 2 ·{ E1 } 
/TL= - dt -s 'Na ·. n exp - kT · 

mn · 

(2.21) 

The final assumption that a,,= am,, yields, upon integration ofEq. 2.21, 

(2.22) 

Equation 2.22 is the Garlick-Gibson equation for the shape of a second-order TL glow curve. 
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The Randall-Wilkins expression (Eq.2.18) is considered first-order since dnldt ex n. The 

RandaH-Wilkins expression for TL produces asymmetric peaks, as shown in Figure 2.3. The 

asymmetry of the peak is a characteristic feature of first-order kinetics, whereas second-order 

kinetics (as developed by Garlick.and Gibson[76], in which dnldt ex n2) will produce peaks 

which are more symmetrical. The peak position of first-order peaks depends on the 

combination of activation energy and 'attempt-to-escape' frequency factor, while the peak 

height scales with n0. On the other hand, second--order kinetics predict that the glow peak 

will shift to lower temperature as n0 increases. 

First-order kinetics expressions for thermally stimulated conductivity (TSC) and TL have 

been derived without the quasiequilibrium approximation[78-80]. Lewandowski and 

colleagues abandoned the QE and kinetic-order (KO) assumptions of Randall-Wilkins and 

Garlick-Gibson. The QE assumption was replaced with the physically meaningful function 

Q(T}, which is defined as the degree to which QE is maintained;.similarly, the KO assumption 

was replaced by the P(T) function, which is defined as the degree o.f retrapping. . . 

Thus, instead of the QE assumption(Eq. 2.15), the Q function is given by 

dnc dm 
~-·=q-

dt dt 
(2.23) 

and 

(2.24) 

where Q = q + 1. As a result, QE would require Q "' 1 (i.e. q "' 0). 

The KO assumption is replaced by the P function, which is defined by 
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(N-n)a 
P(T)= n. 

n1a,,m 
(2.25) 

Thus, slow-retrapping feguires P « 1, while fast-retrapping is given by P » 1. 

The introduction of these parameters allows the degree. of adhe;ence to the QE and KO 

concepts to vary with temperature. This is in contrast to the assumptions made by Randall-

Wilkins and Garlick-Gibson, which were required to be fixed for ~lltemp.eratures. 

Defining the rate of recombination, Rrecom, as 

dm R =--=nv(J m 
recom dt c n mn .' 

the rate of thermal excitation, Rex,. as 

R =nsexp{- E,} 
ex · kT 

and the rate of recapture, Rrecap, as 

R =n (N-n)v a recap c n n 

allows the following relationships for the Q and P functions to be written: 

and 

. 1 .· 
0=-· -(R -R ) 
- R ex recap 

rec.om 

P= R,ecap 

R,ecom 

As a result of these definitions, the relationship between Q and P can be written as 
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(2.27) 

(2.28) 

(2.29) 
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and 

Rex 
O+P=--
- R 

recom 

(2.31) 

(2.32) 

From these definitions of the Q and P functions, Lewandowski and colleagues developed 

(within the confines of the chosen model) a perfectly general equation for TL,which assumes 

neither QE nor a particular KO. The TL intensity can thus be rewritten as 

J =n (-s l exp{-~}exp _.I_ r T(-. Q )sexp{-~}d(9. 
TL O Q+P kT 1JJT Q+P kB 

0 

(2.33) 

This general equation easily reduces to the Randall-Wilkins equation (Eq. 2.18), by 

substituting Q "' 1 and P « 1. However, Q "' 1 and P » 1 does not obviously reduce to the 

Garlick-Gibson equation (Eq. 2.22) .. 

TL is a particularly useful method for studying deep levels within a semiconductor's or 

insulator's band gap given the wide variety of analysis methods available. These methods, 

have been developed to extract trapping parameters such as 'attempt-to-escape' frequency 

factors and activation energies and include the initial rise technique of Garlick and 

Gibson[76], Hoogenstraaten's heating rate rnethod[81], Chen's peak shape method[82], 

computer-aided curve fitting. Keating approximated Eq. 2.18 using an asymptotic series, 

which produced a closed-form expression[83] given by 

{ Et} [ ksT2
( (b-4)kT) { E }] !TL =n0sexp -- exp --- 1 + exp --.-t . 

kT fJE1 E1 kT 
(2.34) 
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The 'attempt-to-escape' frequency factor is assumed to be proportional to T 2-b, where 

0 ~ b ~ 4. The fitting parameters for this expression are n0, s, E1 and b. 

The simple model described above (i.e. 1 electron trap and 1 recombination center, 

introduced by Haering and Adams[84J and Halperin and Braner[85]) provides a good basis 

for understanding TL kinetics, but real materials are much more complicated. A material 

described by the simple model would have only one TL peak and the emission would be at 

a single wavelength (unl~ss, of course, several excited energy levels exist for the excited states 

of the luminescence center), 'as depicted ·in Figure 2.3. Normally, a number of peaks are 

observed and emissions at several wavelengths or over a range of wavelengths are common. 

One extension to the simple model is the addition of a thermally disconnected trap[86,87]. 

A thermally disconnected .trap is one in which the trap depth is so great that any carriers 

trapped at the level are unable to be detrapped at the temperatures reached during the . 

. measurement. Chen et al.[88], found that the kinetics tended towards first-order when the 

number of carriers trapped in thermally disconnected traps was much greater than the number 

of trapped carriers at the non-thermally disconnected trap (i.e. the shallow trap). When the 

number of carriers in the shallow trap was much greater than the number in the thermally 

disconnected trap the kinetics were second-order. 

2.3 Phototransferred Thermoluminescence 

PTTL is the thermoluminescence resulting from the optically-inducedexcitation (and 

subsequent transfer) of charge from deeper, populated traps to shallower traps_· Typically, 

the induction of a PTTL signal involves the pre-irradiation of a sample at a temperature l';rr 

The sample is then preheated to a temperature J;,1, to excite charge carriers. out of shallower 

25 



traps which are thennally unstable at that temperature, while the population.of charge carriers 

in deeper traps remain unaffected. Illumination of the sample at a temperature T;11 < Tp;, will 

populate any shallower traps which are thermally stable at Till. Thus, the charge carriers of 

deeper filled traps are phototrm1sjerred to shallower traps. Subsequent heating of the sample 

will produce TL, without any additional irradiation. 

2. 3.1 A Simple Model 

The simplest model to describe the phototransfer mechanism involves the excitation of 

charge carriers from one deep trap into one shallow trap, with only one recombination center 

for luminescence, as shown in Figure 2A. Chen and McKeever[77] have developed a 

mathematical description of this model. For electron concentrations of n1 and n2 in the 

shallow and deep traps, respectively, and m concentration of holes in the recombination 

centers, the initial conditions following irradiation and preheat, but prior to illumination, are 

n 10 = 0 and n 20 = ma- Iff represents the optical excitation rate of electrons from the deep 

traps, then the rate equations which govern the illumination period are given by 

dm -=-nmA 
dt C fll 

(2.35) 

(2.36) 

(2.37) 

where N1 and N2 represent the concentration of shallow and deep traps, respectively, A 1, A 2 

and Am are the trapping (shallow (1) and deep (2)) and recombination constants (cm3 s-1), 

respectively, and nc is the concentration of free electrons. All concentrations are in units of 
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Figure 2.4 - Energ'/ Level Diagram of PTTL: Simple Model. Solid arrows represent electron 
transitions during illumination. 
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cm-3. The solutions to the above equations, assuming quasiequilibrium and no re-trapping 

into the deep source traps (nj>> nJN1 - n.JAJ, are 

n2(t) = n20 exp {-if} 

n/t) =N1 [1 - exp{-Bt}] 

m(t) = m0 exp{- tlr} 

(2.38) 

(2.39) 

(2.40) 

where B = n,A 1 and r = (nfi,,J1. (B and rare approximately constant if dn/dt"' 0, i.e: the 

quasiequilibrium approximation is true.) Therefore, after a period of illumination, each of the 

traps and recombination centers will have a concentration of charge, subject to the charge 

neutrality considerations given by 

(2.41) 

Once the illumination is complete, the sample must be heated in order to produce the 

PTTL signal. This phase of the process produces competition among the traps and 

recombination centers. Assuming quasiequilibrium and n/1) << N2-n;(t') (i.e. the number 

of electrons trapped in theshallow trap is much less than the number of available deep traps), 

we have 

or 

. Cm(t *)n1(t ') 
J(t *) = -~. --

(Nz - nz(t *)) 

C exp { - t * Ir } N1 [l - exp { ~ B t • }J 
J(t *) = -------,--------

(N2 ln20 -exp{-t *f}) 
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for the variation of the PTTL signal due to the shallow trap as a function of the illumination 

time, t*. 

2.3.2 A More Complex Model 

The results of the simple model. predict a PTTL versus time curve which increases 

monotonically from zero to some m~mum level. However; some e~perimental PTTL versus 

time curves initially increase, reach a· maximum and then decrease as the illumination time . 

continues.·· While this phenomena can be modeled as simply simultaneous optical bleaching 

· of the induced TL signal, a non-radiative recombination center can also explain the observed 

behavior. Figure 2.5 is an energy level diagram of the new model, first proposed by B0tter­

Jensen et al.[67,89] and discussed at length recently by Chen and McKeever[77], McKeever 

et al.[90..,..92], and Alexander.et al.[93]. 

This model includes an additional deep trap ( concentration N3, electron population n;) and 

a non-radiative recombination center (concentrationM5, hole populationm5). The additional 

deep trap is not thermally or optically active; although the high temperature annealing will 

release any trapped charge, and serve~ only to provide.sensitivity changes. The additional 

recombination center provid~s a competing, non-radiative pathway and the resulting charge 

neutrality of this new model becomes . 

(2.44) 

where m4 is the concentration of the radiative recombinati.on center previously discussed in 

section 2.3 .1. 

With this model, PTTL now follows the principles outlined by McKeever[94,95] where 

the reduction of the PTTL as ·a result of continued illumination is due to the removal of holes 

from the radiative recombination centers during illumination. Although the simple model of 

29 



... E 
. C 

~--,··Ev 
Figure 2.5 "' Energy Level Diagram of PTTL: Complex Model. Solid arrows represent 
electron.transitions during illumination. Gray arrow represents electron transitions into non­
radiative recombination center. 
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the previous section produces a similar removal of holes via recombination, the charge 

neutrality condition of that model (Eq. 2.41) restricts n1 to values less than (or equal to) m4. 

As a result, whenever n1 is increasing, sufficient holes always exist such that the PTTL signal 

follows n1. However, in the present model, the new charge neutrality conditions (Eq. 2.44) 

allow n1 to be less than or greater than m4 . As a result, while n1 may be increasing, sufficient 

holes may not exist in the radiative recombination centers.to accommodate all of the available 

electrons - even though the total number of available holes (m4+m5) will always be greater 

than (or equal to) n1. As a result, n1 will be less than m4 at the beginning of the illumination 

and the PTTL signal will increase with n1. However, as the illumination progresses, n1 may 

become greater than m4 and the PTTL intensity will decrease with m4 •. This effect can be·· 

summarized by 

(2.45) 

However, this argument is too simplistic if competition and multiple recombination pathways 

for the electrons exist In these cases, the PTTL intensity does not always follow the 

minimum of n1 or m4, and t~e resuhant PTTL intensity must be calculated by solving the 

appropriate equations numerically[93]. 

Using this scenario, Alexander etal.[93] have shown a decrease in the PTTL intensity is 

possible ~ithout ·optical bleaching of the shallow traps. In addition; the steady-state PTTL 

(following long illumination times) need not be zero.· This situation can occur when the 

. . . 

source trap electron concentration depletes due to long illuminations (i.e. n2 ,.. 0 as t - oo ). 

Thus, a final steady-state value of m4 ~ 0 would yield a PTTL steady-state value ~ 0, 

depending upon the relative initial values of n 2 and m 4. These authors. have shown· numerical 

solutions to the complex model for PTTL which exhibit increases in the PTTL intensity for · 
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shorter illumination times, followed by decreases after longer times. The curves of PTTL vs. 

illumination time vary, depending upon the wavelength of the stimulating light used for 

phototransfer. Shorter wavelengths cause both the growth and decay portions of the curve 

to change more rapidly thari longer wavelengths. The wavdength dependence of the 

stimulating light was introduced into these computations by considering an optical excitation -

rate of the form 

(2.46) 

where arfl) is the photoionization cross-section (m2) and <p(J) is the photon fluence (photons 

m-2 S-1 ). The photoionization cross-section for the excitation of electrons from the deep traps 

is assumed to follow that of parabolic delocalized bands, given by_ 

(2.47) 

where C is a constant, y is a constant dependent upon the electron effective mass, E0 is the 

optical threshold energy for ionization and hv is the photon energy[96]. 

2.4 Summary 

This chapter has focused on the theoretical background of TL_ and PTTL. This includes 

a description of the rate equations for the flow of charge into and out of the delocalized bands 

and two models for, TL: one, first-order kinetics, which assumes a condition of 

'quasiequilibrium' exists within the conduction band and that mamn » (N-n)an (slow 

retrapping); while the other, second-order kinetics, considers the possibility of the retrapping 

and recombination rates being equivalent (fast-retrapping). In addition, two models for PTTt 

_ are described: the simple model, which assumes excitation from one optically active deep trap 
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into one shallow trap and recombination via a single radiative recombination center; however,. 

the complex model, includes a competing, non-radiative recombination center, as well. 

The analysis of the data presented in the balance of this dissertation will focus on the first-

' ' . . 
order kinetics described by the Randall-Wilkins equation (Eq. 2.18) and the description of the 

complex model for PTTL (section 2.3.2). In general, these models are used as tools, in order 

to extract dosimetric information from the data obtained: In most cases, the analysis supports 

the use of first-order 'kinetics, rather than secorid-order kinetics. In fact, sortie of the data 

refute claims of other authors as to possible second-order behavior of the main dosimetric 

peak in a-Al20 3:C. However, the validity of the models (and/or their assumptions) are not 

challenged. 
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Chapter3 

3 Phototransferred Thermoluminescence in a-Al20 3:C 

3. 1 Introduction 

The study of optically induced effects in a-Al20 3:C is bec<:>ming increasirtgly important 

in view of the strong sensitivity of the TL signal from this material to light[32,54,60,66], and 

in view of the potential applications of the material in OSL dosimetry[66]. Understanding 

these optically induced effects is important for understanding the TL and OSL properties of 

this material. In particular, establishing the optical stimulation spectra, the thermal stability 

of the optically sensitive centers and the dependence of these effects on dose is necessary 

information in this context, and PTTL is a useful tool in this regard. 

Recently, Oster et al.[60] reported stiniulatio~ spectra for PTTL in a-Al20 3:C for the 

phototransfer of charge from deep traps into the so 9alled 'main dosimetry' trap[ 45,55, 71, 73} .. . . . . 

(The TL peak of the 'main dosimetry peak' appears near 450 K.) Earlier, Akselrod and 

Gorelova[54] examined the temperature dependence of the process and established that the 

deep traps.responsible for the phototransfer effect become unstable at temperatures around 

900 K and 1200 K. In· this work, these studies are extended to the study of phototransfer to 

traps unstable below room temperatµre, i.e. into traps which yield TL peaks below room 

temperature. 
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3. 2 Experimental 

The experiments were conducted using TLD-500 a-Al20 3:C samples supplied by 

Harshaw-Bicron. The samples were 1 mm thick, 5 mm in diameter and unpolished. The light 

source was a 150 W Xe arc lamp with silica condenser optics. Wavelengths were selected 

using a GCA/McPherson 0.3 m scanning monochromator. The bandwidth varied between, 

1.49 nm and 3. 90 nm. A fused silica .fiber optic guide was used to direct the light on to the 

sample. The sample was mounted to the planchet using a small amount of vacuum grease to 

improve thermal contact. The temperature controller provided a linear heating rate of 

0.3 K s-1. Light was coHected with a model 9635QB Thorn-EM! bi-alkali PMT, which was 

used in current mode. The illumination power was adjusted to give the same photon flux at 

the sample, at each wavelength. 

Two PTTL peaks were monitored in this experiment, at 265 K and 450 K. The 

response of the peaks was monitored as a function ofillurnination time, pre-heat temperature, 

wavelength and dose. · All the irradiations were performed at room temperature using a 

9()SrflY source. The illuminations were conducted at 190 K for the 265 K peak, and at 340 K 

for the 450 K·peak. In the latter case, the trap responsible for the 450 K peak was first 

emptied, immediately after irradiation and before illumination, by either heating to 500 K, or 

by annealing for -5 min at 5 7 5 K. 

For the illumination time dependence, the sample was pre-irradiation annealed for 15 

min at 1175 Kand given a dose of 10 Gy. For each PTTL measurement, the sample was 

illuminated for 10 s with 500 nm light. The experiment was then repeated using different 

illumination times from 30 s to 3000 s. The whole experiment was then repeated using 

400 nm and 300 nm light. The power was adjusted at each wavelength to maintain a constant 
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photon flux of 3.3 x 1013 photons s·1 cm·2 at the sample. Typical powers used were irt the 

range of 50 µW to 250 µW. Preliminary measurements showed that, for the doses used in 

. . 

this experiment, such low powers and short illumination times do not significantly deplete the 

source of the phototransferred charge. Therefore, all measurem~nts, at a given wavelength, 

were performed from the sai:rle initial irradiation. 

For the pre-heat terriperattire dependence, the same procedures were used, except that 

each sample was pre-heated to a temperature ~" for 2 min, before being ,ilfuminated for 2 min 

with 300 nm or 500 Jim light at a constant photon flux of 6.6 x 1014 photons s·1 cm·2 at the 

sample. The experiment was repeated several times for pre-heat temperatures varying from 

room temperature to U 75 K (675 K, for the measurement using 500 nm light). As before, 

all measurements were performed from the s·ame initial irradiation. For the 265 K PTTL 
. ·, 

peak, the experiment ·was performed with 300 nm and 500 nm light; for the 450 K PTTL . . 

peak, only 300 nm light was used. 

For the wavelength dependence; the same procedures used in the illumination time 

experiment were adopted, except that each sample was· illuminated for a fixed time of 1 min. 

with light of a given wavelength. The experiment was repeated, changing the wavelength . 

each time in increments of 10 nm, from 250 nm up to 700 nm { for the low temperature PTTL 

peak) or up to 450 nm (for the main dosimetric PTTL peak), The power was adjusted at each 

wavelength to maintain a constant photon flux of 1.2 x 1014 photons s·1 cm·2 at the sample. 

As before, all measurements were performed from the same initial irradiation. 

For the dose dependence, the sample was pre-irradiation annealed for 15 min at 

1175 K, irradiated, and illuminated for 1 min with 300 nm light. The sample was then re-

annealed and the.process repeated, for doses ranging from 64 mGy to 40 Gy. For the low 
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temperature PTTL peak, the experiment was repeated with 500 nm light. The power was 

adjusted at each wavelength to maintain a constant photon flux of 6. 6 x 1014 photons s-1 cm-2 

at the sample. 

3.3 Results 

Figure 3.1 represents a typical glow curve for a-Al:z03 :C obtained by irradiating a 

sample at 80 K with 10 mGy from a 137Cs source and heating at a rate of 0.3 K s-1. Three 

peaks are observed - which we label peaks 1, 2 and 3 - at temperatures of -265 K, -310 K 

and -450 K, respectively. Peak 3 is the 'main dosimetric peak'. Figure 3.2 shows the 

relationship between the 265 Kand 450 K PTTL peaks with respect to illumination time. The 

data show that the PTTL signals are linear up to 3000 s, indicating a lack of significant source 

trap depletion at these illumination times (in agreement with the observations by Oster et 

al.[ 60]). In addition, the relatively short illumination times used are not sufficient to test the 

PTTL theory of Chapter 2, which predict a linear rise for short. illumination times and 

reaching a plateau for very long illuminations. 

Figure 3 .3 displays the relationship of the PTTL signal with respect to the preheat 

temperature. At 500 nm, the 265 K trap appears to receive most charge carriers from the 

450 K trap (with only-0.1% stemming from deeper traps). However, at 300 nm, the 265 K 

trap appears to receive charge carriers from the 450 K trap, as well as from deeper traps 

which become unstable near 900 Kand 1200 K. Similarly, the 450 K trap also appears to 

receive charge carriers from both the 900 K and 1200 K traps, but there is also a reduction 

in the PTTL efficiency as the temperature increases past -550 K. A weak TL peak has often 

been reported here and is believed to be related to the presence of Cr(97]. 
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Figure 3.1 -Typical TL Glow Curve for a.-Al20 3 :C. Dose of 10 mGy 137Cs delivered at 80 K 
and heatedat 0.3 K s."1 The three main peaks are labeled peak 1 (265 K), peak 2 (310 K) and 
peak 3 ( 450 K). 
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Figure 3 .2 - PTTL as a Function of Illumination Time. Dose of 10 Gy 90Sr/9°Y delivered at 
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Figure 3.3 -PTTL as a Function of Preheat Temperature. Dose of 10 Gy 90Sr/9°Y delivered 
at room temperature and heated at 0.3 K s·1. The illumination was at 190 K for 1 min with 
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irradiation and illumination. Filled circle - 450 K peak at 300 nm ( 40 Gy dose); filled square -
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Figure 3.4 shows the relationship of the PTTL signals with respect to illumination 

wavelength. The most effective wavelengths are in the short wavelength visible to UV range. 

Several features can be seen in the stimulation spectrum, including a maximum for aU curves 

at approximately 280 nm. For peak 1 there are stimulationbands centered at approximately 

340 nm and 420 nm. The stimulation spectrum for peak 2 is almost identical to that of 

peak 1, namely a maximum at 280 nm and a shoulder at 340 nm. In addition, even after pre­

heating to a temperature of975 K, the stimulation spectrum of the 450 K PTTL peak remains 

the same as that observed without the pre:-heat. 

Figure 3.5 represents the variation of the PTTL signals with pre-dose. The data show 

that the PTTL signal is slightly supralinear with dose in the range of 6 mGy to 40 Gy. 

One interesting aspect of the. experiments concerns the position and shape of the 

PTTL peaks with respect to those of the TL peaks. For peak 1, the shape and position of the 

PTTL peak are identical to those of the TL peak under all conditions examined. However, 

for peak 3, the PTTL peak position varies, depending upon the exact conditions of dose and 

pre-heat temperature. In particular, the PTTL peak is observed at -448 K following either 

low doses or after pre-heating the sample to temperatures >900 K, in agreement with the 

results of Oster et al.[60]. However, if the dose is high, and the sample has not been pre­

heated to >900 K, the PTTL peak appears at--455 K. 

3 .4 Discussion 

The wavelength dependence data shown in Figure 3 .4 demonstrate that charge 

transfer takes place from a number of traps of different optical trap depths. The 265 K PTTL 

peak shows stimulation maxima at -280 nm, -340 nm and-420 nm. The 450 K peak, on the 
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other hand, shows stimulation maxima at:-280 nm, but only a weak shoulder at -340 nm. 

An important observation is that the stimulation spectrum for the 450 K PTTL is the same 

for pre-heat temperatures <900 K as it is for temperatures >900 K. This suggests that the · 

stimulation spectrum represents the optical trap depth of the deep, 1200 K traps .. As a result, 

the stimulation bands at 280 nm and 340 nm appear to correspond to the release of charge 

from the 1200 Ktrap. Stimulation spectra for OSL were reported earlier,· albeit over a much 

narrower wavelength range[61]. · Oyer the same range, the· spectra reported here for the 265 

K PTTL peak agree well with the reported OSL data and support the view that the OSL 

signal results from the phototransfer of charge from the same traps. 

The temperature stability of the deep traps involved in the phototransfer process may 

be inf erred from Figure 3 .3. When shorter wavelength light is used in the photo transfer 

process, deep traps can be accessed. These deep traps contribute to both the 265 K and the 

450 K PTTL signals, and become thermally unstable at temperatures of-550 K, -900 Kand 

-1200 K. The latter two traps have been identified by Akselrod and Gorelova[54] as a hole 

trap and an electron trap,. respectively.·· The 550 K trap has been suggested to be a hole 

trap[97]. In addition to the deep traps, the trap at 450 K is also observed to contribute to the 

PTTL at 265 K. Indeed, when longer wavelength light is used, such that the deep traps . 

cannot be probed, the 450 K trap is. seen to contribute >99% of the PTTL to the 265 K trap. 

Taken together, Figures 3.3 and 3.4 clearly demonstrate the potential of selectively probing 

different traps using different wavelengths and thisJeads to advantages when using OSL as 

a dosimetric method[61,66]. 

The trap responsible for the 265 K peak has been identified as an electron trap[24,25]. 

Attempts at peak fitting, using standard TL equations, suggest that a single trap is responsible 
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for this peak, exhibiting classic Randall-Wilkins, first order behavior. The lack of a shift in 

the PTTL peak independent of the conditions of the experiment, and the agreement between 

the position and shape of the PTTL peak and the TL peak induced at this temperature all 

support this view. 

Similar attempts to fit the peak at 450 K, however, suggest an overlap of several 

peaks, or even a distribution of trapping levels. This view is supported by the alteration in 

the shape and position of both the TL and the PTTL peaks, dependent upon the dose and 

thermal history of the sample (as will be shown in Chapter 4). Furthermore, the TL peak at 

450 K of Mg-doped samples emits primarily at 420 nm on the low temperature side, and 

primarily at 330 nm on the high temperature side[24]. The former is usually described as 

originating from e·-F -center recombination, whereas the latter is thought to. result· from h+ -F­

center recombination[25]. Possible explanations of these observations include a distribution 

of hole states thermally unstable at these temperatures. The released holes may recombine 

with F-centers, thereby producing excited F+ -centers. Energy transfer from the F,. - to F­

centers may then occur, yielding emission at both 330 nm and 420 nm.. Note that excited F­

centers are thermally unstable at these temperatures and this process would also result in F­

center ionization and the emission of electrons. Alternatively, the 450 K peak may be 

considered to be a composite of both electron and hole traps, with the electron traps 

dominating at the low temperature side of the peak, and hole traps dominating at the high 

temperature side. The shifts in position and changes in shape of the overall peak are then 

explained as changes in the ratios of the component peaks as a function of dose, dose history, 

and thermal history. (This idea of a distribution of traps responsible for the observed TL 

signal wiHbe discussed in detail in Chapter 6.) 
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Although the current data do not lead to any resolution of these different views of the 

TL process in a.-Al20 3:C, they do indicate the importance of both electrons and holes in the 

) 

phototransfer processes. Furthermore, they highlight the fact that several traps, with different 

optical trap depths, are involved in the transfer process and by selecting particular . 

wavelengths one can probe these traps separately. This has relevance to the use ofthis 

material in optically sti,rnulated luminescen~e dosimetry[6 l ~ 66]. 
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Chapter 4 

4 Light-Induced Fading of Thermoluminescence from a-Al20 3:C 

4.1 Introduction 

One potential limitation in the use of a-A120 3:C for dosimetry is the reported 

sensitivity of this material to light. The light sensitivity of this material occurs in three ways: 

(a) the generation of a TL signal in unirradiated samples[59], resulting from the absorption 

of light by oxygen-vacancy centers (F- and F+-centers) which generates free charge 

carriers[25]; (b) the phototransfer of charge from deep states to shallower states, giving rise 

to a PTTL signal[54,60,65] and (c) a light-induced fading of the TL signal. 

A number of groups[32,56,57,59,98, I 00] have previously studied the light-induced 

fading of this material using fluorescent and incandescent light sources. The only detailed 

studies of the wavelength dependence of this effect are a suggestion[ 56] that yellow light 

appears to be less effective than unaltered fluorescent and incandescent light, and an 

observation[ I 00] that red light is less effective than light of shorter wavelengths. 

In this chapter, the results of a detailed study of the wavelength dependence of the 

light-induced fading of the TL signal from a-A120 3 :C are presented. Samples which had been 

annealed at 1175 K for 15 min after TL readout and prior to the next irradiation, and samples 

which were reirradiated after TL readout but without an annealing sequence were both 

studied in order to monitor the simultaneous effects of fading and phototransfer. 
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4. 2 Experimental Details 

The samples used in these studies.were TLD-500 single crystals from Bicron-NE 

(formerly Harshaw/Bicron, U.S.A.) grown at the Urals Polytechnical Institute. All samples 

were given an initial anneal at 1175 K for 15 min. Thereafter, two irradiation-illumination 

readout-annealing sequences were adopted. In the first sequence, we irradiate using a 

9()SrfOY beta-particle source at room temperature, illuminate at. a fixed wavelength for a given 

time, readout the TL signal and then anneal at 117 5 K for 15 min in air. The sequence was 

repeated using a different illumination wavelength. These samples are referred to as the 

'annealed' samples. The other sequence adopted was as described above, but without the 

annealing at 1175 K for 15 min. These are referred to as the 'unannealed' samples. 

Two sets of TL apparatus were used: one at Oklahoma State University (OSU), 

U.S.A. and the othe.r at Ris0 National Laboratory, Roskilde, Denmark. At OSU the 

illumination of the sample was achieved using a 150 W Xe lamp and a GCA/McPherson 218 

monochromator (equipped with a 1200 lines/mm grating blazed at 300 nm and with a 

dispersion of 2.65 nm/mm). The. light was directed through a silica fiber cable and silica lens 

onto the sample in.the TL cryostat. Efforts were made to ensure that the photon flux (i.e. the 

number of photons per unit area per unit time) incident on the sample was approximately the 

· same at all wavelengths. This was done by adjusting the output slit widths of the 

monochromator (between 0.05 nm and 2.0 nm) at each wavelength used. The widest 

bandwidth used was 5.3 nm. The wavelength range used in the measurements was from 300 

nm to 600 nm. The power was measured using a Newport Research model 815 power meter 

with model 818-UV silicon photodetector. The power was varied to maintain a constant 

photon flux of 1. 73 x 1012 photons s·1 cm·2 at the surface of the sample. The TL 
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measurements were performed in a nitrogen atmosphere at a partial vacuum of 600 torr. The 

emission was detected using an EMI 9635QB photomultiplier tube at ambient temperature 

in the integrated current mode. No filters were used for the TL output. In all cases the 

heating rate was approximately 2.0 K s·1. The irradiation dose was 0.1 Gy, unless otherwise 

noted. 

Similar measurements were also made at the Ris0 National Laboratory, using the Ris0 

automatic TL/OSL reader. This system was equipped with a 75 W tungsten halogen lamp 

(with a color temperature of 3350 K) as an illumination source, and a monochromator with 

a linear graded interference filter to obtain different illumination wavelengths[ 101]. The 

system does not allow for the adjustment of the illumination power. · As a result, the time of 

illumination was adjusted to give the same incident energy (250 mJ) at each wavelength used. 

The wavelength range was from 425 nm to 650 nm. The irradiation dose was 70 mGy from 

a 90Srt°Y beta source. A heating rate of 2. 0 K s·1 was used during TL readout. A Hoya U-

340 filter was used for the TL output 

All samples were pre-annealed at 1175 K for 15 min. Thereafter the two irradiation-

illumination-readout sequences adopted were the same as those used at OSU, except that a 

pre-heat stage was added between the irradiation and the illumination. The pre-heat consisted 

of heating the sample (at 2.0K s·1) to 325 K. In each case the TL data were plotted as the 

percentage TL lost due to the illumination, defined as 

TL - TL 
%TL = 0 ). X 100 

. , lost TL 
0 

(4.1) 

where TL 0 is the TL obtained immediately after irradiation (and pre-heat) but without any 

illumination, and TL;. is the TL following illumination for a given time at wavelength A. 
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4.3 Results 

4. 3.1 TL Glow Curves 

Figure 4.1 shows some typical 1L glow curves from a.-A120 3:C (TLD-500) following 

irradiation (33 mGy-300 Gy) at room temperature. The same sample was reused in these 

measurements; following each TL reading, the sample was annealed at 1175 K for 15 min 

before being re-irrc!.diated. All curves are normalized to the same peak height. The variation 

in the positio.n and shape of the peak as a function of the absorbed dose suggests that the 

apparently single peak is in fact made up of several overlapping peaks, in agreement with 

earlier assertions[34,54]. Over the dose range from 10 mGy to 10 Gy the peak position is 

steady at 453 K (for a heating rate of2.05 K s·1). However, for doses> 10 Gy, the combined 

peak shifts to lower temperatures. This is illustrated in Figure 4.2, and is in agreement with 

previous data[ 45]. The observation of a shift over a certain dose range, coupled with the 

symmetric shape of the peak, has led some authors to conclude that the kinetics of TL 

production are non-first-order. For example, Kitis et al.[37J conclude that the TL signal is 

a single peak, described by a kineti~ order of -1.45. Similarly, Kortov et al. [3 8] and Milman 

et al.[39] assume a single peak, concluding that the kinetics are second-order. However, the 

conclusions of these authors predJct a monotonic shift in the peak position with dose - a 

prediction which. is not observed in our work. Using the parameters determined by Kortov 

et al.[38] and Milman et al.[39], the predicted shift[71] in the peak position is illustrated in 

Figure 4.3. The actual behavior of the peak position as a function of dose (Figure 4.2) does 

not conform to this simple pattern. The present data, along with the data from other 

studies[45,65] indicate that the shift is a complex function of the dose, the type of radiation, 

the annealing conditions and the illumination history. In addition, the shift is sample 
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Figure 4.1 - Changes in TL Peak as a Function of Dose. The variation in the TL peak as a 
function of dose over the dose range 33 mGy-300 Gy. The peaks have been normalized to 
the same peak height. 
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The comparison indicates that the kinetics do not follow simple second-order but suggests 
that the TL peak is, in fact, a composite of several overlapping components. [Note that 'dose' 
is given in arbitrary units since this is a calculation of the shift in the peak position as a 
function of the level of trap filling. The latter is related to 'dose' by unknown constants.] 
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dependent. The observed dependence on dose is more likely to be a function of the different 

growth rates of each of the overlapping components of the TL peak, as a function of dose, 

rather than non-first-order kinetics. Thus, the data suggest that several closely spaced energy 

levels ( or even a distribution of levels) contribute to the TL signal. The contribution of a set 

of energy levels ( or distribution) is important in understanding the wavelength dependence 

of the optical sensitivity of the TL signal. 

The TL from a-Al20 3 :C is known to suffer from thermal quenching[55J. As a result, 

the high temperature side of the TL glow curve may be distorted (i.e. reduced intensity) and, 

in principle, one should correct for this before analysis of the glow peak is performed. The 

correction curve for thermal quenching of luminescence is generally of the form of the Mott-

Seitz equation[7 l]: 

1 
17(1)=---­

. 1 +C exp {-LIE/ kT} (4.2) 

where 17(T) is the luminescence efficiency at temperature T, C is a constant, LIE is the 

activation energy required for *ermal quenching, and k is Boltzmann's. constant. Corrections 

of this sort are not normally applied during routine dosimetry measurements, however. In the 

present work the TL intensity is defined as the peak height. Although small shifts in peak 

position are observed as a function of bleaching, the errors associated with ignoring the 

thermal quenching correction when determining the normalized TL intensity ( cf Equation 

4. 1) are minor and have little effect on the final conclusions. As a result, no attempt was 

made to account for thermal quenching of the TL signal in any of the measurements. 

Similarly, since for first-order kinetics, the peak height is proportional to the peak area, no 

major alterations to the conclusions would be found by monitoring the peak area. 

54 



Since the TL peak shifts to lower temperatures at higher doses (>,..., 10 Gy), the TL 

peak is likely to be less affected by thermal quenching in this dose range, such that the TL 

peak will be slightly larger than otherwise expected at these dose levels .. This may partially 

explain why more supralinea:rity is observed in the TL response of this material[32,98] than 

in the OSL response[61,66]. .In fact, a more appropriate interpretation may be that the TL 

response is actually sublinear at lower doses. 

4.3.2 Wavelength Dependence ofLight-:lnducedFading 

Measurements of the dependence on wavelength were performed at Ris0. The 

illuminations were performed at fixed energy, varying the illumination time to account for the 

variation in the power of the lamp at different wavelengths. The wavelength dependence of 

the bleaching efficiency under these condifions ( expressed as the percentage TL lost) is 

summarized in Figure 4.5. Two sets of datafor urtannealed samples and one set for annealed 

samples are shown in this figure. Little difference is observed between the data sets, which 

suggests that samples exposed tci low doses of irradiation do not require annealing prior to 

re-use. Figure 4.4 clearly shows longer wavelengths are less effective at removing the TL 

signal than shorter wavelengths. 

4. 4 Discussion ., 

4.4.J Wavelength Dependence 

The data presented reveal that then., signal from o.-Al20 3:C is extremely sensitive to . 

visible light and that significant loss of the TL signal can occur. The overall behavior is 

insensitive to whether or not the samples had been annealed immediately before irradiation 

and illumination for the relatively small doses used in this experiment. However, a more 
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pronounced dependence upon annealing is expected for samples which have received larger 

doses. The simplest interpretation of these data, therefore, is that the light is optically 

stimulating charge into the delocalized band from the traps responsible for the main dosimetry 

peak (Figure 4.4), thus giving rise to a weaker TL signal. The proposition that the light 

excites charge into the delocalized bands is supported by the photoconductivity data of 

Walker et al. [ 58], which show a maximum photocurrent in this same wavelength region. This 

proposition is further supported by recent PTTL data[65] (as discussed in Chapter 2), which 

clearly show that the main TL peak is the major source of phototransferred charge to low 

temperature traps (i.e. traps responsible for TL peaks at temperatures less than or equal to 

room.temperature, RT), when an irradiated sample is illuminated at T:::; RT. 

The PTTL data also show the illumination of an irradiated sample transfers charge 

from deep states into the main dosimetric traps. Oster et al.[60] and Colyott et al.[65] 

determined the wavelength dependence of this process and the relevant data from the latter 

authors are shown in Figure 4.5, which shows wavelengths less than400 nm are the most 

efficient for these processes. We also observe that some transfer occurs over a part of the 

wavelength range used in the present experiments. Thus, as the wavelength is reduced there 

is an increasing likelihood that the light, in addition to emptying charge from the dosimetric 

traps, is also transferring charge into these traps from the deep traps. The balance between 

these two effects, and their individual wavelength dependencies, determine the net trapped 

charge population at the dosimetric traps for a given irradiation dose, illumination power and 

illumination time. Thus, for fixed conditions of illumination (power, time, etc.) we can write 

that the wavelength dependence of the TL lost is determined by: 

% TL 10s/).) =F1().)-Ft ().) (4.3) 
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where F1 ().) is a 'fading function' and FJ).) is a 'transfer function'. The form of the fading 

function can be approximated by the photoionization cross-section uo().) expected for 

ionization of charge from deep centers into the delocalized band. Assuming parabolic bands, 

this can be written[96] as (fromEq. 2.47, with hv » yE0) 

(4.4) 

where K1 and K2 are constants, E 0 is :the threshold energy for ionization (i.e. the optical trap 

depth) and hv is the energy of the incident photon. Similarly, F1 ().) is determined from the 

function FPTrd1) shown in Figure 4.5, i.e, 

(4.5) 

where K 3 is a scaling constant. 

Figure 4.6 shows a fit of experimental %TL1os1 data to Equation 4.3, using Equation 

4.4 and Equation 4.5, with K2; K3 and E,; as fitting parameters. While the fit is crude, the main 

· elements of the data can, be observed - namely, a threshold energy near 2 eV and a maximum 

in the response near 2.75 eV (450 nm). 'This illustration assumes only one trap, whereas, as 

noted earlier, the TL signal under study appears to be made up of several overlapping 

components, implying several closely spaced traps, each with its own optical trap depth. (For 

example, the addition of an extra trap with a threshold energy of-1.82 eV could easily 

account for the low energy tail in the data.) This crude model suggests the observed result 

can be reasonably explained by considering the wavelength dependence of both the optical 

emptying of the trap and the optical transfer of charge into the trap. 

If PTTL must be considered in order to explain the wavelength dependence of the TL 

fading, then a sample which has not been annealed at high temperature between uses should 
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display a greater PTTL effect than a sample which had been annealed. Akselrod and 

Gorelova[54] have demonstrated that the PTTL efficiency is dependent upon the annealing 

temperature and is much reduced after annealing above 1075 K. However, the doses used 

by these authors (3 kGy) are over four orders of magnitude higher than the doses used in the 

present study (100 mGy). While we find.little difference in the behavior of the annealed and 

the unannealed samples at low doses, samples which· had previously been exposed to large 

doses (such that a considerable population of charge will be present in the deep traps) may 

display a noticeable dependence on the annealing treatment. This assertion is supported by 

the data ofFigure 4.7. The A-dependence of the fading was examined for a sample which had 

experienced a pre-irradiation dose of only 500 mGy, as compared to the A-dependence of the 

same sample after it had received larger pre:-doses of 5.0 and 50 Gy. In each case, the OSU 

apparatus was used and a constant photon fluence was maintained for each wavelength. The 

sample had been annealed at 1175 K before the start of the experiment. For the photon flux 

and illumination times used in this experiment only about 20% of the TL is lost due to fading 

for the 500 mGy pre-dosed sample. After a 50 Gy pre-dose, however, the PTTL component 

is so strong that, at short wavelengths, a large increase (60% at 300 nm) in the TL signal is 

observed. The 5.0 Gy pre-dose case is intermediate between these two. This result justifies 

our use of Equation 4.3 in describing the wavelength dependence of the TL sensitivity. 

4. 4. 2 Relevance to Dosimetry 

A few years ago, the use of u-Al20 3:C in low dose dosimetry, without thermal 

annealing, was demonstrated by Moscovitch[34]. The present data indicate that for low dose 

dosimetry the lack of thermal annealing does not have a significant effect on the optical fading 

characteristics of the TL, over the wavelength range studied. Our observation that red light 
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(580-600 run) does not induce significant fading of the TL signal, for the light intensities and 

illumination times used in this study, is particularly important for dosimetry applications. 

Thus, while handling samples in red light may be acceptable, shielding them from shorter 

wavelength light is essential. Furthermore, packaging dosimeters in light-proof containers is 

imperative during dosimetry operation. 
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Chapter 5 

5 An Application of PTTL to Ultraviolet-B Dosimetry 

5. I Introduction 

In the past, most environmental ultraviolet (UV) dosimetry has been concentrated in the 

wavelength region from 320 nm to 400 nm (UVA)[ I 02]. This was primarily due to the lack 

of any shorter wavelength UV transmission through the atmosphere. Specifically, the ozone 

layer, as well as atmospheric oxygen, absorbs all wavelengths below 280 nm and, until 

recently, most of the wavelengths below 320 nm[l03]. Recent evidence of ozone layer 

depletion[l04-106] however, has raised the issue of UV dosimetry for wavelengths shorter 

than 320 nm, particularly at southern latitudes where the ozone layer depletion appears to be 

most significant. A recent study in Antarctica indicates a 29% increase in ultraviolet-B 

(UVB) levels, concurrent with a 21% decrease in ozone layer column thickness[l07]. Studies 

as far north as Toronto have indicated that summer ultraviolet-B (UVB), 280-320 run, levels 

are increasing at a rate of7% pery~ar[108J. 

The current interest concerning UVB is due to the uncertainty of the biological impact this 

wavelength region may have on the molecules of plants and animals. Biological molecuies 

such as proteins and nucleic acids may absorb UVB[109] and this may lead to problems 

regarding plant growth and flowering[l 10], pigment concentrations[l 11] and increased ratios 

of UV-absorbing compounds to chlorophyll[ 109, 111-116]. In addition,, several investigators 

have reported damaging effects to physiological processes (DNA damage[l14], 
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photosynthesis, respiration and ion transport[l 17-119]) as a result of enhanced UVB 

irradiation. 

Human and animal populations may expect a suppression of normal immune 

function[l20]. In addition, increases in erythema (sunburn)[l21], skin cancers (specifically, 

basal and squamous cell carcinomas)[l22-124], eye disorders (particularly cortical 

cataracts)[125-127] and DNAdamage[122,123,128] have been shown to increase as UVB 

levels increase. 

Biological dosimeters (i.e. dosimeters based upon the response of a particular biological 

system), such as Bacillus subtilis[l07], pre-Vitamin D and bacteriophage T7, have been used 

as UV dosimeters due to their small size, portability, lack of any power requirements, linear 

response to increasing radiation and sensitivity. Additionally, a UV dosimeter should 

preferably be unaffected by temperature and humidity[l29]. 

UV dosimetry using TL has been suggested in the past[130,-144] and offers the advantage 

of being able to place the dosimeters in situ, without requiring any special monitoring or 

logistical considerations ( e.g. portable field power source for any electronics, which other UV 

dosimeters may require). The design reqµirements of the UVB dosimeter described in this 

chapter included the ability to measure an integrated UV exposure, in air or in water, ranging 

from a few minutes in early morning sunlight to several days of total exposure. TLDs appear 

to offer these characteristics and, based upon previous work[58,65], a.-Al20 3:C appeared to 

be a suitable TLD material to accomplish the task. This material is a sensitive TL and PTTL 

detector. In particular, the PTTL properties of a.-Al20 3:C provided the versatility required 

for this UVB dosimeter. 
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In general, PTTL involves the production of TL by the phototransfer of charge to empty 

traps from deeper, filled· traps. Thus, by filling the deeper traps ( as well as the dosimetry trap) 

of a.-Al20 3:C with a pre-dose ofirradiation and subsequently preheating the sample to remove 

any trapped charge from the dosimetry trap, charge can be transferred from the deep traps to 

the dosimetry trap when ~xposing the sample to light. When heated, a TL peak - the PTTL 

signal - is .observed when the transferred charge is released from the dosimetry traps. The 

PTTL signal is proportional to the light e~posure, ~ well as the initial pre-dose of irradiation. 

The light-induced effects of transferring charge from deep traps; while at the same time fading 

the induced TL signal, have been discussed in depth in Chapter 4. While a.-Al20 3:C's 

sensitivity to light can be a disadvantage when dealing with TL fading issues[32,47,56-59], 

this 'problem' can be taken advantage of through the use of PTTL. The PTTL wavelength 

dependence of a.-Al20 3:C has been shown[58,65] to peak in the region of interest. As a 

result, the current design of this UVB dosimeter is based upon the UV PTTL efficiency of a.­

Al203:C. 

5.2 Dosimeter Design 

Figure 5 .1 is a schematic drawin,g of the dosimeter. The dosimeters were machined from 

black: Delrin™. Each dosimeter consisted of a Teflon™ window/diffuser (thickness - 0.3 

mm), a UVB interference filter, a second Teflon™ diffuser (thickness - 0.8 mm) and a thin­

layer a.-Al20 3:C detector. The 25 mm diameter UVB interference filters (CVI model F25-

307.1-4, diameter - 25.4 mm, thickness - 3.5 mm) were centered at 307 nm with a FWH1v1 

of 25 nm~ 0-rings at the window interface and the cap/base interface make the dosimeters 

light tight, as well as watertight. 
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Figure 5.1 - Schematic Diagram ofUVB Dosimeter. Dosimeter dimensions: cap diameter -
41.3 mm, base diameter - 50.8 mm, height (when sealed) - 32.1 mm, opening diameter -

19.1 mm. 
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Thin-layer a-Al20 3:C detectors were used, which have been described previously and used 

in beta-particle dosimetry[45]. They consisted of a thin layer of a-Al20 3:C powder (2-5 

mg cm·2, grain size< 40 µm) on a 1 cm diameter by 1 mm thick aluminum substrate. The · 

· a-Al20 3:C powder is pressed into the substrate and requires no binding material[45]. The 

thin-layer a-Al20 3:C detectors were provided by Stillwater Sciences, LLC. 

5. 3 Experimental ·. 

Dosimeter calibrations were conducted usmg natural sunlight and a Biospherical 

Instruments model GUV-511 C ground-based ultraviolet radiometer. The 305 nm channel 

was monitored and data recorded every 30 seconds. Each 30 second record comprised an 

average of approximately 100 scans of the 305 nm channel. Measurements ofUVB intensity 

with respect to the time-of-day (and, indirectly, the angle of the sun) were made using an 

Ultra-violet Products model UVX-31 radiometer. Intensity readings were made on the same 

sunny day, recorded every 30 seconds for 30 minutes and integrated. 

In order to perform the PTTL measurements, the thin-layer detectors were first pre­

irradiated to a dose, D (typically 1~30 Gy), in a 6°Co gamma source at room temperature. 

The detectors were then preheated at 600 K for 2 minutes to remove the charge trapped at 

the main dosimetry trap (-465 K). Subsequent UV illumination then produced the PTTL 

signal which, as will be shown, is proportional to the UV exposure. 

Each detector calibration was·performed using multiple laboratory UV illuminations and 

PTTL measurements. The UV calibration illuminations were conducted using a 150 W Xe 

arc lamp with silica condenser optics and a GCA/MacPherson model 218 monochromator. 

The monochromator was equipped with a 1200 lines·mm·1 grating, blazed at 300 nm with a 
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linear dispersion of2.65 run rnnf1, and set to 307.0 nm with a bandwidth of2.3 run. A fused· 

silica fiber optic guide was used to focus light onto the sample. Illuminations were made at 

room temperature for .10 minutes with an intensity of 0.250 µ W cin.-2. The power was 

measured using a Newport Research model 815 power meter with model 818-UV silicon 

photodetector. 

All PTTL measurements were made with the computerized TL system at Oklahoma State 

University (OSU) in a nitrogen atmosphere at a partial vacuum of600 torr. The temperature 

controller provided a linear heating rate of2 K s-1. Light was collected with a model 9635QB · 

Thorn-EMI bi-alkali photomultiplier tube (PMT), which was used in current mode. · 

The dependence of the PTTL signal on the temperature of the sample during illuinination 

was investigated over the temperature range 200-400 K. The sample was heated or cooled 

to the appropriate temperature with a heating rate of 1 K s-1 in a nitrogen atmosphere at a 

partial vacuum of 600 torr. Once the Sample reached the appropriate temperature, the 

illumination was performed, while . maintaining a constant temperature. The PTTL 

measurement was then performed, as described above. 

Measurements of the angular dependence of the interference filter were performed, using 

a Varian Corporation model Cary 5 UV-VIS-NIR spectrophotometer. 

While individual a.-A120 3:C single crystal detectors can be used repeatedly, the detectors 

are normally annealed at -:--1200 K to remove charge carriers from all known traps, prior to 

each irradiation. Earlier measurements have indicated that the deep traps are thermally stable 

up to 900 K and 1200 K[55,65]. One disadvantage of using thin-layer detectors is the 

inability to anneal these deep traps. Since each detector consists of a.-A120 3:C powder on an 

aluminum substrate (melting point 933 K), the thin-layer detectors cannot be annealed above 

69 



this latter temperature (unlike their single crystal counterparts). As a result, a 'weak beam 

calibration' was used for each sample. In this way, each sample is irradiated with a pre-dose 

of, say, 30 Gy, preheated and iHuminated with a 'weak beam' (0.250 µW cm-2) of307.0 nm 

light for 10 minutes. This produces a given (relatively small) PTTL signal. Further 

measurements are the~ each followei by a similar 'weak beam calibration' to detect any 

change in the concentration of charge trapped in the deeper, source traps. If the 'weak beam 

calibration' signal indicates a depletion of charge in the source traps, a small ·restoration-

dose' is applied to the detector to bring the calibration signal back to within tolerance (i.e, l 

stand.ard deviation). 

5. 4 Results and Discussion 

5. 4.1 Phototransferred Thermoluminescence 

As previously noted, phototransferred thermoluminescence is. the production oflight via 

phototransfer from deeper filled traps to empty shallower traps. Figure 5.2 shows a typical 

PTTL glow curve (30 Gy pre-dose) for the thin-layer detectors used in this study, following 

illumination at 200 K Deeper traps, thermally stable up to approximatley 550 K, 900 K and 
. . 

1200 K[55,65J, are used as the source traps in the PTTL process. Figure 5.3 shows the 

PTTL glow curve of peak 3 produced with 'weak beam calibrations', for illumination 

temperatures of 200 K and 400 K. The PTTL signal used in this study is the area under the 

curve of peak 3. Figure 5. 4 shows multiple 'weak beam calibrations' (illuminated at room 

temperature) for three typical detectors. The reproducibility of the PTTL measurement per. 

detector showed an average percent standard deviation of± 2.7%, as shown in Table 5.1. 

The detectors used in this study had a relatively large distribution in sensitivity from detector 

70 



3 

60 

,,-.., 
vi ..... ·a 
;::3 

·-€ 40 ~ 
'-' 
~ 
E-s 
E-s 
p.. 

20 

350 400 450 500 550 

Temperature (K) 

Figure 5.2 - PTTL Glow Curve for u-Al20 3:C Thin-Layer Detectors. Typical PTTL glow 
curve for u-Al20 3:C thin-layer detector following iJlumination at200 K. The predose of30 
Gy 6°Co was delivered at room temperature. The sample was preheated to 600 K for 2 
minutes and illuminated for 10 minutes at 307.0 nm with an intensity of 0.250 µW·cm·2 before 
being heated at 0.33 K·s·1 .. Peak3 is the 'main dosimetric' peak. 
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Figure 5.3 - Dependence of PTTL Glow Curve Shape on Temperature of Illumination. 
Comparison of PTTL glow curves following illumination at 200 K and 400 K. The predose 
of30 Gy 60Co was delivered at room temperature. The sample was preheated to 600 K for 
2 minutes, then illuminated for 10 minutes at 307.0 nm with an intensity of0.250 µW·cm-2 

before being heated at.2.0 K·s-1. 
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Figure 5.4 - Multiple Weak Beam Calibrations for Three Thin-Layer a-A120 3:C Detectors. 
The predose of 30 Gy 60Co was delivered at room temperature. The sample was preheated 
to 600 K for 2 minutes and illuminated for 10 minutes at 3 07. 0 run with an intensity of 
0.250 µW·cm-2 before being heated at 2.0 K·s·1. Each symbol represents a different thin-layer 
a.-A120 3 :C detector. Solid line - mean PTTL signal, dotted line - ± l standard deviation. 
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Table 5 1 'Weak Beam Calibration' for Selected a Al O ·C Thin-Layer Detectors - - L) ',. 

Average 
Detector PTTL 1 s.d. %s.d. Normalization 

1 9018.3 30.6 0.3 1.13964 

2 10855.6 254.1 2.3 1.37181 

5 · 5732.0 137.0 2.4 0.72435 

6 5170.0 150.0 2.9 0.65333 

9 9149.9 209.0 2.3 1.15626 

10 7130.7 106.7 1.5 0.90111 

13 8166.2 246.5 3.0 1.03195 

14 6764.6 169.9 2.5 0.85483 

17 8490.5 717.2 8.4 1.07294 

18 8419.3 399.0 4.7 1.06394 

21 7609.1 52.8 0.7 0.96155 

22 8514.9 183.1 2.1 1.07602 

25 9137.4 445.9 4.9 1.15468 

26 8896.2 301.5 3.4 1.12421 

29 9473.7 34.1 0.4 1.19718 

30 8684.6 192.7 2.2 1.09746 
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to detector(± 17%, with respect to the mean), which may be due to differences in the mass 

of powder deposited on each detector. The calibration of each detector (i.e. thin-layer of a­

Al203:C powder on an aluminum substrate) was performed separately from that of each 

dosimeter (i.e. detector, with optics, inside ofDelrinTM holders (see Figure 5.1)), as shown 

in Table 5.2. As a result of these measurements, a matrix of detector and dosimeter responses 

exists which allows calibration of any detector/dosimeter combination: 

5. 4. 2 Dosimeter Response 

Our UVB dosimeters were calibrated against the 305 nm channel of the GUV-511 C 

radiometer. The exposures were made in natural sunlight at periodic intervals during the 

same day. Figure 5. 5 shows the relationship between the response of the GUV-511 C 

· radiometer and the PTTL signal from our UVB dosimeters, using the calibration data for each 

detector/dosimeter combination, as described above. The data show a nearly linear 

relationship (slope= 0.95) over at least 3 decades ofUVB exposure. As a result, we have 

dosimeters with a near-linear responsefrom several minutes of early morning natural sunlight 

exposure to 4 days of total exposure. Based upon these and other measurements, we project 

we will be able to extend the high exposure limit of the dosimeters to approximately 60 days, 

while maintaining this linearity, with the current configuration of pre-dose, diffusers, etc. 

5. 4. 3 Angular Response 

The angular response of the dosimeter is an important design and performance 

consideration. Figures 5.5 and 5.6 show the response of the interference filter.with respect 

to the incident angle of illumination. As expected, the central wavelerigth of the interference 
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Table 5.2 - UVB Dosimeter Calibrations 

Normalized Dosimeter 
Dosimeter PTTL Detector PTTL Normalization 

1 9382.8 23 8362.7 1.00000 

2 7946.4 24 7825.5 0.93576 

3 8728.6 25 7559.3 0.90,393 

4 9396.6 . 26 8358.4 0.99949 

5 5148.1 27 6276.6 0.75055 

6 5438.2 28 5772.8 0.69031 

7 9233.9 29 7713.0 0.92231 

8 7321.9 30 6671. 7 0.79779 

9 7035.7 31 5747.8 0.68731 

10 5758.3 32 5099.4 0.60978 

11 7163.0 6 10963.8 1.31104 

12 . 12110.8 10 13440.0 1.60713 

13 14513.1 13 14063.7 1.68172 

14 10997.4 .· 16 11975.6 · 1.43202 

15 15383.3 17 14337.5 1. 71446 
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Figure 5.5 - UVB Dosimeter Response to Natural Sunlight. The predose of30 Gy 6°Co was 
delivered at room temperature. The sample was preheated to 600 K for 2 minutes. The 
heating rate was 2.0 l(:s·1. 
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Figure 5. 7 - UVB Interference Filter Response versus Incident Angle Illumination. Filled 
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filter (Figure 5.6) shifts to lower wavelengths as the incident angle of illumination increases, 

with respect to the normal of the dosimeter. At the same time, the transmission of the 

interference filter (Figure 5. 7) at both the central wavelength and at 307 nm (for which the 

filter was originally engineered) decreases as the incident angle increases. Figure 5.8 shows 

the overall dosimeter response with respect to the incident angle. For comparison, an 'ideal' 

cosine response curve is shown which represents the maximum normal component of light 

possible at a given angle of incidence. Comparing Figure 5. 7 with Figure 5. 8 shows how the 

dosimeter angular response is broader than that of the interference filter. 

One reason for this is the effect of the Teflon™ diffusers. By scattering the incident light 

before passing through the interference filter, the 'bandwidth' of the incident angle is 

increased, allowing a distribution of incident angles 8 to pass through the interference filter. 

The resulting response of the dosimeter becomes a summation of curves similar to those of 

Figure 5.7, each displaced by some L18. The angular dependence of the dosimeter is thereby 

flattened with respect· to that of the interference filter. In addition, the PTTL efficiency · 

changes as the wavelength decrease[ 65]. · Since the maximum PTTL efficiency occurs near 

280 nm, as the central wavelength of the dosimeter shifts from 307 nm (at 0° with 20% 

transmission) to 268 nm (at 75 ° with <1 % transmission) the efficiency of charge carrier 

phototransfer increases. This effect also contributes to the flattening of the dosimeter's 

angular response. The current design restricts the amount of high incident angle light entering 

the dosimeter as a result of the 6 mm ridge around the Teflon™ window. Beveling the cap 

near the window to -30° would al.low more light to enter at higher incident angles. This 

design change should flatten the angular response even more, by simply increasing the amount 

oflight entering the dosimeter at higher incident angles. 
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Figure 5. 8 - UVB Dosimeter Response versus Incident Angle of Illumination. The predose 
of30 Gy 6°Co was delivered at room temperature. The sample was preheated to 600 K for 
2 minutes and illuminated for 10 minutes at 307.0 nm with an intensity of 16.0 µW·cm-2 

before being heated at 2.0 K-s-1. Solid line - 'ideal' cosine response for incident light. 
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The response of the GUV-511 C with respect to the time-of-day of the measurement is 

displayed in Figure 5. 9, along with the response of the UVB dosimeters. In each case, the 

curves have been fitted to an equation which takes into account the approximate angle of the 

sun and the thickness of the atmosphere with respect to the angle of the sun. 

Consider light of initial intensity, 10, incident at an angle B with respect to the normal. 

Defining B = 0 as the direction of normal incidence and assuming the atmosphere is a thick 

slab ( thickness, d) above the region of interest, the actual pathlength for any incident light 

would be d/cosB. This light is absorbed by the atmosphere (absorption coefficient,µ) with 

a resulting intensity of 11 = 10 exp{-µd/cos8}. The final form of the fitting equation is 

12 = 10 cosB exp{-µd/cosB}. 

5. 4. 4 Temperature Response 

Figure 5 .10 represents the efficiency of phototransfer into the main dosimetry trap as a 

function of the sample temperature during illumination. While the PTTL efficiency is 

essentially flat in the region surrounding room temperature, the efficiency decreases by about 

10% when illumination occurs at or below the temperature of the shallowest trap responsible 

for the TL at "--265 K .(peak 1 of Figure 5.2(a)). The beginning of another increase of 

. approximately 10% is observed once the illumination temperature of the sample is above that 

of the two shallow traps (peaks 1 and 2 at -265 K and -310 K, respectively (see Figure 

5.2(a))). 

The PTTL peak maximum shifts as a function of the temperature of the sample during 

illumination. The PTTL peak maximum appears at approximately 488 K, when illuminated 

at 200 K, and shifts to approximately 481 K, when illuminated above 240 K. Changes in the 
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Figure 5.9 - GUV-51 lC Response and UVB Dosimeter Response as a Function of the Time­
of-Day of Illumination. The predose of 30 Gy 6°Co was delivered at room temperature. The 
sample was preheated to 600 K for 2 minutes. The heating rate was 2.0 K-s·1. 
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Figure 5.10 - Efficiency of PTTL versus Sample Temperature during Illumination. The 
. predose of 30 Gy 6°Co was delivered at room temperature. The sample was preheated to 

600 K for 2 minutes and illuminated for 10 minutes at 307.0 nm with an intensity of 
0.250 µ W·cm·2 before being heated at 2.0 K·s-1. 
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PTTL glow peak shape were shown in Figure 5.2(b). At low illumination temperatures, the 

low temperature side of the PTTL peak is significantly smaller than that produced at higher 

illumination temperatures. Thus, as a result of the decrease in the temperature of the 

illumination, the PTTL signal is smaller and T max is shifted toward higher temperature. These 

data support the view that the glow peak is caused by a distribution of trapping states[55,65]. 

5.5 Summary 

An integrating UVB dosimeter with a response centered at 307 nm has been developed. 

This dosimeter takes advantage of the UV-induced phototransferred thermoluminescence 

efficiency of a-Al20 3 :C in the wavelength region of 307 nm. The dosimeter can be used in 

air or in water and has no significant temperature dependence in the region of biological 

interest (273-323 K). The response of the dosimeter is consistent with the response which 

would be expected for light incident through an absorbing medium (the atmosphere). The 

UVB PTTL efficiency and addition of Teflon TM diffusers help to flatten the inherent angular 

dependence of the interference filter used in the dosimeter design. The observed changes in 

the glow curve shape due to the illumination temperature support previous work of the 

authors which suggest a distribution of electron traps may be responsible for the behavior of 

the 'main dosimetric peak', in a-Al20 3:C. The dosimeter has been field tested, in air and in 

water, and used in biological experiments at sites in Argentina, Belize, Chile, Mexico, and 

Oklahoma. 
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Chapter 6 

6 Enhanced Numerical Analysis of TL and PTTL 

6. 1 Introduction 

Traditional TL glow curve analysis produces the activation energies (E1) and attempt-to­

escape frequency factors (s) associated with particular glow peaks, subject to the initial 

assumptions made and parameters chosen for the analysis. However, this analysis does not 

discriminate between which type of incident radiation (y, ~' n, p, a) deposited energy into the 

TLD. As a result, unless the TL glow curve exhibits grossly distinct behavior when irradiated 

with y-,~-,n-,p- or a-particles ( e.g. peaks appear or disappear, depending upon the type of 

incident radiation), the TLD's response must be qualified with statements such as 'gamma 

dose equivalent'. In other words, although the measured dose response is similar to that 

obtained when calibrated against, say, 60Co (E.1 = 1.250 Me V), the actual source of irradiation 

cannot be determined. This information is particularly important when considering the 

different biological effects on tissue due to various forms of radiation and the fact that TLDs 

do not respond in a constant manner when exposed to various forms of radiation. 

This problem is most pronounced when considering the dose response in mixed radiation 

fields. For example, most neutron sources also produce a high gamma background. This 

results from the fact that most radioactive neutron sources depend upon the Be(a,n) reaction. 

An alloy is made of Be and a radioactive a-particle source, which results in the neutron 

emission. The a-emitter is usually 210Po, 239Pu, 241 Am, 226Ra or one of their isotopes. The 
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mixed field results from the gamma photons emitted during the a-particle decay. Thus, a 

TLD with a markedly better response to gammas relative to neutrons will produce a 

significant TL signal that may erroneously be attributed to neutrons when, in fact, the 

response is due almost entirely to the gamma background. This is the case with a-Al20 3:C, 

where the neutron response is only -4% of the gamma response. 

Some TLDs have been engineered to respond differently to gammas and neutrons. LiF 

has proven to be the most sensitive TLD for thermal neutrons. This is due to the very high 

thermal neutron capture cross section of 6Li (945 barns). Natural Li contains only -7.4% 6Li. 

By enriching the concentration of 6Li to -95.6%, the TLD's neutron sensitivity can be 

increased by a factor of 10. Similarly, by reducing the 6Li concentration to only -0.007%, the 

sensitivity can be reduced by a factor of 100. This is due to the relatively low thermal neutron 

capture cross section of7Li (0.033 barns). Thus, by using two TLDs, one with a relatively 

high 6Li concentration and the other with a relatively low 6Li concentration, a simple 

subtraction of the two signals will yield the actual neutron dose, i.e. while the 6Li-based TLD 

will be sensitive to both neutrons and gammas, the 7Li-based TLD will be sensitive only to 

gamma photons. The difference in the signals represents the neutron dose. The problem with 

this approach lies in the calibration of multiple TLD elements required to measure each type 

of radiation. The optimum approach is to allow the discrimination of various types of 

radiation, using a single TLD element. 

Unfortunately, the absence of any grossly distinct TL effects within a single TLD means 

that information regarding the form ofincident radiation is qualitative at best. Ideally, a truly 

useful analysis would produce quantitative information as well ( e.g. the relative dose of each 

particle type in a mixed field environment.) 
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6.2 Linear Energy Transfer Dependence of a-Al20 3:C TL Glow Curves 

Different forms of radiation are classified by the amount of energy deposited within a 

given local volume while traveling through the medium ofinterest. This linear energy transfer 

(LET) is intended to focus on the energy deposited in the medium of interest, rather than the 

energy lost by the incident particle, and to emphasize the local nature of the energy transfer. 

The LET of a particle of incident energy E, L(E), is defined as 

dE L(E) = · · local 
dx 

(6.1) 

where dE,ocal is the average energy locally imparted to the medium by a particle of specific 

energy, while traversing a distance dx. The general trend for LET ordering of incident 

radiation particles is y, ~' n, p, a, where y photons are considered to have a low LET, while 

a-particles have a much higher LET. Of course, these particles have broad energy ranges and 

penetration depths. As a result, different particle types may have the same LET ( e.g. a high 

energy gamma photon may have a LET similar to that of a low energy neutron). 

The main dosimetric peak of a-Al20 3:C shows a slight LET dependence. As shown in 

Figure 6.1, the peak width increases slightly with LET, where the peak height of each curve 

has been normalized to unity. (Specifically, the high temperature side of the TL signal shifts 

to significantly higher temperature, while the low temperature side appears at approximately 

the same temperature.) However, the main dosimetric peak width of a-Al20 3:C can vary 

widely from sample to sample and as a function of dose, even for the same radiation type. 

(In fact, although the temperature of maximum TL signal remains approximately the same, 

both sides of the TL signal may shift to different temperatures - unlike the LET dependent 

shift of only the high temperature side.) As a result, an increase in peak width does not 
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necessarily indicate irradiation with higher LET particles, unless the particular sample in 

question has been calibrated as a function of LET. In addition, the increase in the peak width 

is more of a qualitative, rather than quantitative, feature and the. discrimination of mixed 

fields, in particular, requires a more quantitative approach. The shift of the TL peak and the 

variation in width as a function of sample, radiation type and radiation dose appear to be a 

microdosimetric effect related to the distribution or trapping states responsible for the main 

TL peak - as previously inferred from Chapters 3-5. 

6.3 Distribution of Activation Energies 

In general, TL and PTTL glow peaks have been considered single-valued functions, 

attributable to first-, second- or mixed-order kinetics. However, the trap depths associated 

with specific defects may be distributed over a range of vaiues. ff the lattice surrounding the 

defect responsible for the TL signal contains variations in the nearest neighbor bond lengths . 

and bond angles, th~ trap depths may be distributed, rather than ·unique[77]. 
. .· . .. . . - . 

When assuming a distribution ofactivati9n energies (trap depths), the Randall-Wilkins 

equation for first-order kinetics (Eq. 2.18) becomes 

. ·1 EB. · .{ El} · ... [ .. 1 T ·{· E'} · .. ] 
I1i1) = n(E)sexp -:-··-··exp -!.... exp "'.""-.. dB dE 1 · 

· · . . · kT ··. /J kB .. 
~ . ~ . . 

(6.2) 

where n(E ') represents the activation energy: dependent trapped charge distribution function, 

with high and low energy limits of EA and E9 , respectively[71]. For a uniform distribution, 

(6.3) 
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where n1 is the concentration of constant trapped charge between EA and Es. For an 

exponential distribution, from EA= 0 to Es, 

. J(E-EB)} 
n(E) = ii e exp l kTc (6.4) 

where ne is a constan.t arid T;; is a characteristic ternperature for the distribution. For a 

Gaussian distribution, 

(6.5) 

where nm is the maximum concentration at the center of the distribution, E0, and aE is the 

standard deviation of the energy· distribution. 

In the case of a.-Al20 3:C, the results of several experiments (described previously in 

Chapters 3-5) suggest a distribution of traps are responsible for the TL (and PTTL) signal 

of the main dosimetric peak. However, the data further suggest that the distribution is 

comprised of only first-ord_er peaks (see Chapter 4; in particular). As a result, we decided to 

model the glow curve of the main dosimetric peak as a superposition of several first-order 

'curvlets', generated using Eq. 2.18. 

6.4 Curve-Fitting Using the Marquardt,:Levenberg Algorithm 

In order to analyze the TL glow curves produced in this study, a computer program was 

developed which compared the original TL glow curve data with a superposition of several 

(typically, 40--60) first-order Randall-Wilkins TL curvlets, with activation energy increments 
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ranging from 0.01 eV to 0.05 eV. The comparison was made using a Marquardt-Levenberg 

algorithm, which is a non-linear least-squares fitting method to quantitatively evaluate the. 

differences between two sets of data - namely, the original TL glow curve data and·the 

superposition ofseveral first-order Randall-Wilkins curvlets (i.e. the fitted data) .. The 

program adjusts the rel~tive populations of each of the curvlets and continuously minimizes 

the difference between. the original and fitted TL glow curves. As a result, the original TL 

glow curve is ·'deconvolved' into a normalized distribution of first-order Randall..:Wilkins TL 

glow curves. 

Ideally, this analysis should include the determination of the proper attempt-to-escape 

frequency factor, s, as well as the activation energy, E1. However, this requires an additional 

data set (e.g. the heating rate dependence of the TL glow curve), which is computationally 

expensive. Such a 3-diniensional (n(E,s), E, s) deconvolution spectra would more closely 

mimic the current 2-dimensional analysis (E, s) techniques used, however, the current 2-

dimensional (n(E), E) deconvo.lution spectra may be considered a useful starting point. As 

a result, the attempt-to..:escape frequency factor; s, has been assumed to be constant 

throughout this study. 

Figure 62 shows ~ distribution of nine first-order Randall-Wilkins curylets, along with 

a computer-generated TL glow curve. The curvlets were generated using Eq. 2.18, with n0 

ands held constant and activation energies incremented by LlE = 0.05 eV. The activation 

energy of the TL glow curve was deliberately chosen to coincide with the activation energy 

of the center curvlet (i.e. E5 = 1.50 eV). As a result, the activation energy distribution that 

best fits the original TL glow curve data consists of a very narrow band, centered around the 

center curvlet (E5 = 1. 50 e V), with a weighted average activation energy of 1. 5 0 e V as shown 
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Figure 6.2 - Distribution of First-Order Randall-Wilkins TL Glow Curves. Computer­
generated TL glow curve (E = 1.50 eV, s = 1014 s-1), along with a distribution of nine first­
order Randall-Wilkins 'curvlets' (E1 = 1.30 eV through E9 = 1.70 eV, ti.E = 0.50 eV, s = 
I 014 s-1). 
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in Figure 6.3. Similarly, should the distribution not contain a curvlet whose activation energy 

precisely matches that of the original TL glow curve, the resulting activation energy 

distribution will still produce a weighted average activation energy of 1.50 eV, centered about 

the two curvlets adjacent to the 1.50 eV region, as displayed in Figure 6.4. 

6.5 Deconvolution of TL Glow Curves 

The TL glow curves of Figure 6. 1 were deconvolved assuming an attempt-to-escape 

frequency factor of 1014 s-1 and an activation energy range from 1.30 to 1.60 eV. Figure 6.5 

shows the deconvolution activation energy spectrum for the beta-induced TL glow curve of 

Figure 6.1. The deconvolution spectra clearly show two broad peaks in the distribution, 

centered around 1.36 eV (peak A) and 1.41 eV (peak B). Figure 6.6 shows the 

deconvolution spectra for the neutron-induced TL glow curve of Figure 6.1. Once again, two 

broad peaks appear, centered around 1.36 and 1.41 eV and the ratio of the relative population 

of peak B to peak A has increased. Similarly, Figure 6.7 shows the deconvolution spectra for 

the alpha-induced TL glow curve of Figure 6.1, Clearly, the ratio of peak B to peak A 

increases with higher LET particles. However, as shown in Figure 6.8, the sample-to-sample 

variability of as-grown a-Al20 3:C crystals can be significant. 

6.5.1 MonoenergeticNeutrons and Beta;.Particles 

A series of experiments were performed to investigate the deconvolved activation energy 

spectrum dependence on LET. Single crystal a-Al20 3:C samples were annealed at 1175 K 

for 15 minutes. Several Delrin™ sample holders were machined to hold four a-Al20 3:C 

samples. Each sample holder was 3 8 .1 mm in diameter and 6. 4 mm thick, with a 19.1 mm 

diameter insert. Each insert contained four radial sample indents. Once the insert is placed 
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Figure 6.3 - Deconvolution of Activation Energy Spectrum for Single First-Order Randall.,. 
Wilkins TL Glow Curve. The spectrum resulting from a deconvolution of the nine first~order 
Randall-Wilkins 'curvlets' shown in Figure 6.2. Curvlet #5 (E5 = 1.50 eV) has the same 
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Figure 6.8 - Sample-to-Sample Variability of Deconvolution Spectra. The deconvolution of 
three arbitrary single crystal a-Al20 3:C samples, exposed to 64 mGy, 90Sr/9°Y beta-particles. 
Deconvolution parameters: s = 1014 s-1 and L1E = 5 me V. 
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within the holder, the samples are protected from any light exposure. Eight sample holders 

were used: six for neutron exposures and two for transit dose controls. (A transit dose is the 

background radiation exposure that the samples would receive in route to and from the 

neutron source.) 

The samples were irradiated at the Naval Surface Warfare Center's (NSWC) Positive-Ion 

Accelerator in Silver Spring,,MD. Fast, monoenergetic (y-free) neutrons were produced at 

the NSWC facility via the 7Li(p,n)7Be reaction. · The reaction took place inside a vacuum 

chamber~ however, the neutron irradiations of the sample holders were performed in air. The 

sample holders were taped to the back end of the target chamber, at a distance of 11.3 cm 

from theLi20 source. The irradiation doses were 1 mGyand 100 µGy for neutron energies 

of 1, 2 and 3 MeV. After receiving their respective neutron doses, the TL of each sample was 

measured. Following the neutron-induced TL measurements, the samples were annealed at 
' . 

1175 K for 15 minutes and given a 64 mGy beta dose using a 90Sr/9°Y source. The beta-

induced TL of each sample was measured, as well. 

The neutron- and beta-induced TL glow curves were deconvolved using 41 first-order 

Randall-Wilkins cui-vlets, generated with an attempt-to-escape frequency factor of s = 1014 s~1 

and activation energies ranging from 1.33 eV to 1.53 eV, separated by LJE= 0.005 eV. The 

resulting deconvolved activation energy· spectra were analyzed by comparing the area under 

the low energy half of peak A, region 1, 'with the area under the remaining spectra (i.e. the 

high energy. half of peak A and all of peak B), region 2. As a result, the ratios of region 1 to 

region 2 for both monoenergetic neutrons and beta-particles can be determined. In addition, 

the ratio of the neutron to beta ratios can be calculated. The results of all calculations are 

shown in Table 6.1. Clearly, region 2 is greater for higher LET particles ( 1, 2 and 3 Me V 
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Tabl 6 D e .l- l . P k R . fi NSWC E econvo ut1on ea atlos or xposures 

Neutron Neutron Region2/Region 1 
Sample Energy (Me V) Dose (rad) Neutron Beta Neutron/Beta 

Al 1 0.1150. 0.7 0.6 LI 

A2 1 0.1150 0.3 0.2 1.6 

A3 1 0.1150 2.4 1.2 2.0 

Bl 1 0.0115 .0.7 0.4 1.6 

B2 1 0.0115 1.5 1.1 1.3 

B3 1 0.0115 0.7 0.5 1.5 

Cl 2 0.1120 0.1 0.5 0.2 
., 

C2 2 0.1120 0.7 0.4 1.7 

C3 2 0.1120 0.9 0.7 1.4 

Dl 2 0.0112 0.3 0.3 1.0 

D2 2 0.0112 0.9 0.8 1.1 

D3 2 0:0112 2.0 0.6 3.2 

El '.3 0.1386 2.8 2.5 1.1 

E2 3 0.1386 1.7 1.4 1.2 

E3 3 0.1386 2.5 0.8 2.9 · 

Fl 3 0.0145 0.7 0,6 1.2 

F2 3 .0:0145 0.7 0.4 \.6 

F3 3 0.0145 1.0 0.6 .1.7 
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neutrons) than for lower LET particles (beta-particles). In fact, out of 18 samples, only 2 

exhibit a lower response for region 2 than expected. However, the results are only qualitative 

at best, due to the lack of any trends with respect to neutron energy or dose. This is most 

likely the result of sample-to-sample variability of the as-grqwn a-Al20 3:C crystals. 

6.5.2 Alpha and Beta Particles 

The alpha- and beta-particle LET dependence of the deconvolved TL glow curves was 

also investigated using a single crystal a-Al20 3:Csample. The sample was annealed at 

1175 K for 15 minutes and then sequentially irradiated with varying doses of alpha~ {244Cm -

0.4, 1.2 and 4 Gy) and beta-particles (90SrflY - 1, 3 and 10 mGy), so as to form a LET matrix 

of alpha- and beta- particle exposures. Each element of the resulting 4 x 4 LET matrix ( 3.ob0 

= no alpha, no beta, while a3b3 = 4 Gy alpha+ 10 mGy beta) was deconvolved using 51 first­

order Randall-Wilkins curvlets, generated with an attempt-to-escape frequency factor of s = 

1014 s·1 and activation energies ranging from 1.33 eV to 1.58 eV, separated by L1E = 0.005 

e V. . The resulting deconvolved activation energy spectra were analyzed as described above. 

The results of all calculations are shown in Table 6.2. Once again, region 2 is clearly greater 

for higher LET particles (alpha-particle irradiations) than for lower LET particles (beta­

particles). However, while row 3.o, which represents no alpha-particle exposure, exhibits a 

response in keeping with the results of the monoenergetic neutron study (i.e. lower LET 

irradiation), the results are only qualitative. Similarly, the remaining elements, all of which 

received some alpha-particle exposure, follow the trends established above for higher LET 

irradiation. Thus, while the ratios of region 2 to region 1 are generally higher for higher LET 

particles, the absolute value of the ratio does not solely indicate the presence or absence of 
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Tabl 6 2 Al h P . l d B P . l LET M . e - lp a- art1c e an eta- art1c e atnx 

Matrix Alpha Beta 
Element. Dose (Gy) . Dose (mGy) Regionl Region2 Region2/Region 1 

a1bo 40 0 25.2 25.8 1.0 

a.zbo . 120 0 17.5 32.9 1.9 

a3bo. 400 0 15.3 35.3 2.3 

aob1 0 1 . 23.5 28.0 1.2 
.. 

a1b1 40 1 10.3 4Ll 4.0 

a.zb1 120 1 15.3 35.6 2.3 

a3b1 400 1 17.8 32.9 1.8 

aob2 0 3 12.6 38.5 · 3.1 

a1b2 40 3 18.6 33.1 1.8 

a2h2 120 3 25.1 25.1 1.0 

a3b2 400 3 15.9 34.8 2.2 

aob3 0 10 22.4 29.3 1.3 

a1b3 40. 10 9.8 42.l 4.3 

a.zb3 120 10 8.2 42.7 5.2 ..• 

a3b3 400 10 12.6 38.3' 3.0 
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higher LET particles. Once again, this appears to corroborate the view that the sample-to-

sample variability of the as-grown a-Al20 3:C crystals is significant. 

6.6 Summary 

The method · of TL glow curve deconvolution described in this · chapter clearly 

demonstrates the ability to detect thepresence or absence of high LET particle exposure. 

However, the current technique does not allow clear discrimination of LET specific 

information (i.e. particle type) and, as a result, cannot yet be used as a quantitative dosirnetric 

tool. This may be due to the irreproducible nature of the main dosimetric TL peak of 

a.-Al20 3:C, rather than the idea of deconvolution_ itself. Once a more homogeneous main 

dosimetric TL peak is produced ( either through improved crystal growth techniques or the 

use of powders) this method may indeed prove to be beneficial to the dosimetry community. 

One important consideration in the present. discussion involves the use of a constant 

attempt-to-escape frequency factor, s. The current program allows for multiple values of s; 

however, in order to p~oduce realistic fits, an additional fre~ parnnieter (such as TL glow 
. .• 

curve heating rate dependence) must be included in th~ data. Unfortunately, the size of the 

resulting matrix becomes very large, very quickly and is computationally expensive .. 

Nonetheless, this aspect of deconvolution· has not. been teste~ and may very well. produce 

· additional insight into the LET and dosimetric properties of this material. 
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Chapter 7 

7 Alteration of a-Al20 3:C Dosimetric Properties by Anneal in 0 2 Atmosphere 
. . . : .. . 

7. 1 Introd~ction 

As mentioned earlier, the neutroI:1-in:duced TL response of a.-Al20 3:C is only -4% that of 

gammas: Since the gamma-induced TL results from charge· carrier. interactiorts with the F-

and p+ -centers of a.-A120 3:C, and these centers result from oxygen vacancies introduced 

during the growth process, the elimination of some of these vacancies should decrease the 

gamrria sensitivity. of this material. As a result, the neutron response, relative to the gamma 

response, of this material may increase. 

Alternatively, the desensitized material may permit the detection of changes in the 

concentration of neutron-induced oxygen-vacancies. This may take the form of increased 

gamma-induced TL sensitivityfollowing neutron irradiation. In addition, the UV-induced TL 

response of this material may change due to an increase in neutron-induced defects. The UV-

induced TL can be used as a probe of the 6xygen~vacancy concentration, since UV exposure 

can excite .electrons from existing F-centers (producing F+-centers) into the conduction band · 

and, subsequently electron traps. Both methods inay, in turn, lead.to an indirect measurement 

of an increased neutron-induced response, resulting from neutron-induced oxygen-vacancies. 

One method of decreasing the oxygen~vacancy concentration· would involve the high 

temperature anneal of a.-Al20 3:C fine powder in an oxygen atmosphere. This should increase 

the diffusion of oxygen atoms into the a,-Al20 3:C crystal lattice, thereby decreasing the 
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concentration of oxygen-vacancies. Once the powder had been annealed, the degree of 

desensitization could be determined by measuring the initial UV-induced TL ( as a measure 

of the F-center (oxygen-vacancy) concentration and TL sensitivity); followed by gamma­

induced TL (as a measure of TL sensitivity). The neutron-induced TL could then be 

measured, thus providing· a determi.nation of the neutron sensitivity and possibly producing 

additional oxygen-vacancies. A second UV-induced TL measurement should then increase 

due to an increase of (neutron-induced) oxygen-vacancies. This was the method adopted for 

this study; 

7.2 Experimental 

Several grams ofa.-Al20 3:C powder were provided by Stillwater Sciences, LLC. The four 

powder grain sizes ranged from 10 µm ± 5 µm to 40 µm ± 5 µm, in 10 µm increments. Each 

grain size was divided into four separate samples of 1-2 grams each. Each sample was placed 

inside a quartz test tube (8 mm inner diameter, 12 mm outer diameter) using a quartz funnet 

which was designed to deposit the a.-Al20 3:C powder at the bottom of the test tube with no 

residue on the upper test tupe walls. (This was an important consideration, in order to 

prevent contamination, and subsequent weakening, of the quartz wall, once sealed.) Each test 

tube was evacuated and backfilled with 1 atm of oxygen using a pressure manifold, as shown 

in Figure 7 .1. The lower portion of each test tube was· cooled in liquid nitrogen to create a 

partial vacuum within the test tube. Each test tube was sealed, resulting in a quartz ampule, 

approximately 10 cm in length, containing a.-Al20 3:C powder in an oxygen atmosphere. 

The a.-Al20 3:C powder was evenly distributed throughout the ampules and the ampules 

were placed in a 375 K tube oven.· The temperature of the tube oven was ramped to 1375 K 
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Figure 7.1-Schematic Diagram of Pressure Manifold. A schematic diagram of the pressure 
manifold used to evacuate the quartz test tubes, prior to backfilling with 1 atmosphere of 
oxygen. The test tubes were subsequently sealed at the constriction shown, resulting in an 
ampule approximately 10 cm in length. 
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over approximately 90 minutes. The ampules were annealed in the tube oven at 1375 Kfor 

either, 0.33, 1.0, 3.0 or 10 hours. Once the appropriate time had elapsed, the tube oven was 

cooled to 375 Kover approximately 90 minutes. The ampules were removed from the tube 

oven and allowed to reach room temperature. In order to facilitate removal of as much a­

Al203 :C powder as possible and minimize the amount of quartz contamination, the ampules 

were scored with a file and wrapped with several layers of duct tape. Several light taps with 

a hammer riear the score line cracked the ampules along the scoreline. Careful removal of 

the duct tape allowed extraction of .the annealed a-Al20 3:C powder. 

Samples were made from the annealed powder by placing 18 mg of powder in the center 

of a 1 cm diameter aluminum disk (0.5 mm thick). Approximately 0.05 ml methanol was 

placed on the disk with an eye dropper and the powder was evenly distributed with the 

rounded end of a spatula. Each sample was dried for 1 minute at 550 K. This process was 

repeated 3 times for each grain size (4) and each anneal time (4), resulting in 3 matrices of 16 

elements each. 

The UV-induced TL of each sample was measured; prior to any irradiations, using a 3 0. W 

deuterium lamp. The sample was placed approximately 4 cm from the deuterium lamp, with 

the height being adjusted slightly to maintain a_ const~t energy flux density ofO. 075 µ W cm·2. 

Each sample was illuminated for 10 minutes cU1d the resulting UV-induced TL was measured. 

A small gamma test dose of 500 mGy 6°Co was delivered to each sample and the resulting 

gamma-induced TL was measured. Following these measurements, the samples were placed 

in a 239I>uBe neutron source (6 x 105 neutrons s·i) for 75 hours delivering approximately 

50 mGy each of neutrons and gammas. The resulting neutron- and gamma-induced TL was 
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measured for each sample. Finally, a post-neutron UV-induced TL measurement was made, 

using the same illumination parameters discussed earlier. 

The TL measurements were performed in a nitrogen atmosphere at a partial vacuum of 

600 torr. The emission was detected using an EMI 963 5QB photomultiplier tube at ambient 

temperature in the integrated current mode. No filters were used for the TL output. In all 

cases, the heating rate was 2.0 K s-1 .. 

7.3 Changes in TL Sensitivity 

· In general, the TL sensitivity of the oxygen annealed samples is - 3 orders of magnitude 

smaller than that of the unannealed powder. Figure 7.2 compares the gamma-induced TL 

signals for the 40 µm powder, with anneal times of 0, 0.33 and 10 hours. Similarly, Figure 

7.3 compares the TL signals for the 1.0 µm powder, with the same anneal times. In addition 

to changes in sensitivity; Figures 7.2 and 7.3 clearly show changes in the TL glow curve 

shapes associated with the high temperature anneal in an oxygen atmosphere. 

Figure 7.4 compares the powdergrain size dependence of the normalized gamma-induced 

(500 mGy, 60Co) TL sensitivity changes resulting from different anneal times. The data show 

a relatively flat relationship for normalized TL sensitivity changes, as a function of powder 

grain size. (The exception to this observation being the data for the 30 µm powder. In 

general, this data set did not behave in a manner similar to that of the other powder grain 

sizes.) 

The neutron-induced (50 mGy each, neutron and gamma; 239I>uBe) TL sensitivity is shown 

in Figure 7.5, as a function of powder grain size, for the various anneal times used in this 
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Figure 7.2 -Gamma-Induced TL of40 µm Powder. The gamma-induced (500 mGy, 6°Co) 
TL of the 40 µm grain size powder, as a function of the anneal times shown. The samples 
were irradiated at room temperature. 
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Figure 7.3 - Gamma-Induced TL of20 µm Powder. The gamma-induced (500 mGy, 6°Co) 
TL of the 20 µm grain size powder, as a function of the anneaJ times shown. The samples 
were irradiated at room t.emperature. · 
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Figure 7.4 - Normalized Gamma-Induced TL. The gamma-induced (500 mGy, 6°Co) TL, as· 
· a function of grain size, normalized to that of the unanriealed powders ( anneal time - 0 hrs). 

The samples were irradiated .at room temperature. Symbols shown for anneal times: filled 
circle - 0 hrs; filled square - 0 .3 3 hrs; filled triangle - 1. 0 hrs; filled inverted triangle - 3. 0 hrs; 
filled diamond - 10 hrs. 
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Figure 7.5 - Neutron-Induced TL. The neutron-induced (50 mGy each, neutron and gamma; 
239I>uBe) TL, as a function of grain size, for an anneal time of 0.33 hrs. The samples were 
irradiated at room temperature. 
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study. While the general sensitivity is low, the data show similar decreases in sensitivity, with 

respect to grain size and anneal time, as in the case of the gamma-induced TL. 

The pre-neutron exposure UV-induced TL is displayed in Figures 7.6 and 7.7, for the 

40 µm and 20 µm powder grain sizes, respectively. A comparison of these figures shows a 

decrease in the UV-induced TL response of the thermochemically treated a-Al20 3:C powder, 

with respect to grain size and anneal time. Figures 7.8 and 7.9 show the post"'neutron 

· exposure UV-induced TL, for the40 µm and 20 µm powder grain sizes, respectively. Once 

again, the ther~ochemically treated a-Al20 3:C powder sensitivity decrease~ with respect to 

grain size and anneal time. However, another interesting result can be seen when comparing 

Figure 7.6 with Figure 7.8 and Figure 7.7 with Figure 7.9. In both cases, the UV-induced TL 

sensitivity decreases following exposure to neutrons. This same result was seen in the 30 µm 

and 10 µm powders, as well. 

The average ratios ofthe post-neutron to pre-neutron exposure UV-induced TL for eaGh 

grain size and anneal time is summarized in Table 7 .1. This data is displayed in Figure 7 .10, 

as a function of powder grain size, foi the anneal times used in this study. The results of this 
. . . . 

experiment suggest.a general decrease in the UV-induced TL, following irradiation with 

neutrons. Furthermore, this effect appears to be more pronounced in the larger grain sizes 

following longer anneal times. 

7. 4 · Deconvolution of Glow Curves 

The TL glow curves of this studywere deconvolved using a distribution of 31 first-order 

Randall-Wilkins curvlets separated by LlE = 0.020 eV and a constant attempt-to-escape 

frequency factor of 1014 s-1 .. The area of the TL glow curves have been normalized prior to 
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Figure 7. 6 - UV-Induced 1L Spectra of 40 µm Powder Prior to Neutron Exposure. The pre­
neutron exposure UV-induced TL of the 40 µm powder, as a function of anneal time. 
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Figure 7. 7 - UV-Induced TL Spectra of 20 µm Powder Prior to Neutron Exposure. The pre­
neutron exposure UV-induced ll of the 20 µm powder, as a function of anneal time. 
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Figure 7.8. UV-Induced 1l Spectra of 40 µm Powder Following Neutron Exposure. The 
post-neutron exposure UV-induced TL of the 40 µm powder, as a function of anneal time. 
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Figure 7.9 - UV-Induced TL Spectra of20 µm Powder Following Neutron Exposure. The 
post-neutron exposure UV-induced Tl of the 20 µm powder, as a function of anneal time. 

119 



Tabl 7 1 A e - vera i:ie p N OSt'- eutron R l . e at1ve to p N re- eutron UVI d dTL - n uce 

Powder Anneal Time (hrs.) 
Grain Size 

(µm) 0.33 1.0 3.0 10 

10 0.52 ± 0.15 0.94 ± 0.45 0.82 ± 0.05 0.87 ± 0.27 

20 0.29 ± 0.12 0.92 ± 0.63 0.75 ± 0.45 0.24 ± 0.08 

30 0.38 ± 0.27 0.50±0.19 0.41 ± 0.24 0.12 ± 0.05 

40 0.56 ± 0.11 0.73 ± 0.40 0.34 ± 0.22 0.20 ± 0.13 
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Figure 7.1 O - Ratios of Post-Neutron to Pre-Neutron UV -Induced TL The ratios of the 
post-neutron to pre-neutron UV -induced TL, as a function of grain size and anneal time ( see 

Table 7.1) . 
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deconvolution. As a result, the deconvolution spectra are normalized, such that 

rE . J, sn(E)dE = 1. 
E,1. 

(7. l) 

Figure 7. 11 shows the deconvolved activation energy spectra for the glow curves of 

Figure 7.6 (40 µm, pre-:neutronUV-induced TL), while Figure 7.12 shows the same for the 

glow curves ofFigure 7.7 (20 µm, pre-neutron UV-induced TL). For comparison, the glow 

curves ofFigure 7.8 (40 µm, post-neutron UV-induced TL) were deconvolved, as shown in 

Figure 7.13. Similarly, the glow curves ofFigure 7.9 (20 µm, post-neutron UV-induced TL) 

were deconvolved and are displayed in Figure 7 .14. The deconvolved spectra of the pre- and 

post-neutron UV-induced TL do not show any grossly distinct features, which might have 

been used as a means of determining whether the sample had previously been exposed to 

higher LET particles. 

The gamma-induced TL for the 40 µm samples is shown in Figure 7.15. The resulting 

deconvolution spectra is displayed in Figure 7,16. The data of Figure 7.15 suggest a 

complete absence ofF-center luminescence for longer anneal times. Similarly, the gamma-

induced TL for the 20 µm samples is shown in Figure 7.17, while the subsequent 

deconvolution spectra in displayed in Figure 7.18. As with the deconvolved spectra of the 

40 µm samples, the 20 µm samples showno indication off-center luminescence, following 

an oxygen atmosphere anneal for relatively long times. 
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Figure 7.11 - Deconvolution Spectra of 40 µm Powder Pre-Neutron UV-Induced TL. The 
deconvolved activation energy spectra of the TL glow curves shown in Figure 7.6. 

Deconvolution parameters: 31 curvlets, s == 101
.i s·1 and b.E = 20 meV. 
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Figure 7. 12 - Deconvolution Spectra of 2 0 µ m Powder Pre-Neutron UV -Induced TL The 
deconvolved activation energy spectra of the TL glow curves shown in Figure 7. 7 

Deconvolution parameters: 31 curvlets, s = 1 OP s- 1 and L\E = 20 me V. 
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Figure 7 .13 - Deconvolution Spectra of 40 µm Powder Post-Neutron UV -Induced TL The 
deconvolved activation energy spectra of the TL glow curves shown in Figure 7.8. 

Deconvolution parameters: 3 l curvlets, s = lOP s·1 and Cl£= 20 meV. 
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Figure 7.14 - Deconvolution Spectra of20 µm Powder Post-Neutron UV-Induced TL. The 
deconvolved activation energy spectra of the TL glow curves shown in Figure 7.9 

Deconvolution parameters: 3 l curvlets, s = 1014 s·1 and~= 20 meV. 
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Figure 7.15 - Gamma-Induced TL Spectra for 40 µm Powder. The gamma-induced (500 
mGy, 

6
°Co) TL of the 40 µm powder, as a function of anneal time 
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Figure 7. 16 - Deconvolution Spectra of 40 µm Powder Gamma-Induced TL The 
deco nv o\ved activation energy spectra of the TL glow curves shown in Figure 715. 

Deconvolution parameters: 31 curvlets, s = l 01
~ s·1 and 6.E = 20 me V. 
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Figure 7.17 - Gamma-Induced TL Spectra for 20 µm Powder. The gamma-induced (500 
mGy, 

6
°Co) TL of the 20 µm powder, as a function of anneal time. 
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Figure 7. 18 - Deconvolution Spectra for 20 µm Powder Gamma-lndu ced TL The 
deconvolved activation energy spectra of the TL glow curves shown in Figure 7 .17 

Deconvolution parameters: 31 curvlets, s == 101
~ s-1 and .6.E == 20 meV. 
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7.5 Discussion 

The data presented suggest that the high temperature anneal of fine grain a-Al20 3:C 

powder in an oxygen atmosphere desensitizes the radiation induced response of the material. 

Since the sensitivity of this material has been attributed to the presence of oxygen vacancies 

introduced into the crystal during the growth proces~[321, this desensitization is presumed to 

. result from the diffusion of oxygen atoms into the crystal lattice. This is supported further 

by the apparent lack of appreciable F-:center luminescence in samples which have been 

annealed in oxygen for 10 hours,. regardless of the grain sizes used in ·this study. 

The most interesting result of this study is the apparent decrease of UV-induced TL 

resulting from exposure to neutrons. The UV-induced TL was initially anticipated to 

increase, as a result of neutron-induced defects within the crystal lattice; This contradicts the 

work of others, who report the introduction of additional oxygen-vacancies into Al20 3 

following exposure to neutrons[ 12, 15, 16, 18,22,26]. However, these authors exposed their 

samples to much higher rieutron fluences (-6-10 orders of magnitude higher) than those used 

in this study. The data presented simply suggest that while the exposure to neutrons may 

indeed introduce defects into the crystal lattice, any additional luminescence resulting from 

these defects is lost. 

One possible explanation of this phenomena assumes an increase in neutron-induced 

defects within the crystal. However, th~se defects are assumed to be localized around the 

damage track produced by the higher LET particles, rather than distributed throughout 

crystal. As a result, heating the material (following any post-neutron exposure excitation) 

may produce luminescence throughout the crystal, with localized bright spots related to the 

localized defects. However, the luminescence from these bright spots may not escape the 
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surrounding crystal structure (resulting from self-absorption in the surrounding track defects), 

much less be detectable by the photomultiplier tube. This effect could then account for the 

measured luminescence of the post-neutron UV-induced TL being less than that ofthe pre­

neutron UV-induced TL. 
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in water. The dosimeter has a near-linear ultraviolet dose response with a dynamic range of 

at least 3 decades, from 102 µJ cm·2 to 105 µJ cm·2, and very little temperature dependence 

in the region of biological interest (273-323 K). The inherent angular dependence of the 

interference filter used in the dosimeter is partially flattened due to the wavelength 

dependence of the phototransferred thermoluminescence·efficiency in this wavelength region, 

the shift in the transmission wavelength of the filter as a function of incident angle and 

through the use of diffusers. 

The results of the deconvolution study are mixed: In general, the method of TL glow 

curve deconvolution described demonstrates the ability to detect the presence or absence of 

high LET particle exposure, provided the LET dependence of the particular sample in 

question is known. However, the current technique does not allow clear discrimination of 

LET specific information (i.e. particle type) and, as a result, cannot yet be used as a 

quantitative dosimetric tool. This may be due to the irreproducible nature of the main 

dosimetric TL peak of a-Al20 3:C. 

The high temperature anneal of fine grain a-Al20 3:C powder in an oxygen atmosphere 

desensitizes the radiation induced response of the material by, presumably, diffusing oxygen 

atoms into the crystal lattice. The apparent lack of appreciable F-center luminescence in 

samples which have been annealed in oxygen for.10 hours supports this view. In addition, 

the UV-induced TL was initially anticipated to increase, as a result of neutron-induced defects 

within the crystal lattice. However, the most interesting result of this study is the apparent 

decrease of UV-induced TL resulting from exposure to neutrons. This effect has not yet been 

explained. One possible reason for no increase in UV-induced TL following exposure to 

neutrons may result from too little exposure. The neutron dose delivered in this study was 
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approximately 50 mGy, which corresponds to approximately 1 x 1011 neutrons. This may be 

several orders of magnitude lower than required for any detectable increase in the UV­

induced TL signal. 

8.2 Future Work 

The investigation of the TL and PTTL properties of as-grown a-A120 3:C have been fairly 

extensive. However, a study of the PTTL resulting from long illumination times, including 

an analysis similar to that of Alexander et al. [93 ], could provide additional insight into the 

trapping and detrapping mechanisms of the optically active deep traps. 

The UVB dosimeter could be redesigned to use optical stimulation (specifically, pulsed 

OSL or POSL) as the measurement stimulus, rather than heat. This would decrease the 

measurement time of each sample tremendously (approximately 1 s for POSL compared to 

approximately 600 s for TL). In addition, the a-A120 3 :C detector could consist of a 'powder­

in-plastic' thin-layer detector, rather than the current thin-layer design. These mass produced 

detectors are more homogeneous and much less expensive than the thin-layer design currently 

in use. As a result, hundreds of detectors could receive a pre-dose at the same time, thus 

eliminating the need for individual detector calibrations. Once the detectors have been used, 

they could be stored or discarded, eliminating the need for the restoration dose phase of the 

current design. The restoration dose has proven to be far too time consuming in exchange 

for the re-usabilty of the current detectors and would not be cost-effective for any commercial 

applications. 

Another goal of the UVB dosimeter project could involve the development of a portable 

field POSL reader. This would allow users of the UVB dosimeter to read the detectors in the 
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field, rather than shipping the detectors back to the laboratory for analysis. This could prove 

to be very attractive to UVB researchers around the world. 

The deconvolution analysis could be refined to include the analysis of the proper attempt­

to-escape frequency factor, rather than using a constant value supplied by the user. However, 

this analysis would require an additional data set ( such as the heating rate dependence of the 

TL glow curve) and this, in turn, would be computationally expensive. Nonetheless, the 

deconvolution of a set of heating .rate dependent TL glow curves into a contour plot of 

relative population·densities as a function of activation energy and frequency factor would be 

attractive to the dosimetric community. Since the current 2-dimensional analysis techniques 

typically resolve TL glow curves into trap dependent values of E ands, the 3-dimensional 

counterpart described above may help to assuage the anticipated criticism of the current 

deconvolution analysis method. 

Much of the work presented m Chapters 3 and 4 could be extended to the 

thermochemically treated a.-A120 3:C powders discussed in Chapter 7. In particular, the 

wavelength and temperature dependence ofPTTL may provide more information as to the 

existence of optically active deep traps in this material, as well as the extent to which the F­

and F+ -center population have been affected by the high temperature oxygen anneal. 

However, the decrease in UV-induced TL following exposure to neutrons indicates a lack of 

phototransfer from deep traps. As a result, the thermochemically treated powders may lack 

any significant concentration of optically active deep traps. 
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