
UNIVERSITY OF OKLAHOMA

GRADUATE COLLEGE

DELINEARIZATION OF POLYHEDRAL ABSTRACTIONS TO CHARACTERIZE QUANTUM ASSEMBLY

A THESIS

SUBMITTED TO THE GRADUATE FACULTY

in partial fulfillment of the requirements for the

Degree of

MASTER OF SCIENCE

By

BLAKE GERARD
Norman, Oklahoma

2021

DELINEARIZATION OF POLYHEDRAL ABSTRACTIONS TO CHARACTERIZE QUANTUM ASSEMBLY

A THESIS APPROVED FOR THE
SCHOOL OF COMPUTER SCIENCE

BY THE COMMITTEE CONSISTING OF

Dr. Martin Kong, Chair
Dr. Changwook Kim

Dr. Chongle Pan

© BLAKE GERARD 2021
All Rights Reserved.

Gerard

Abstract

Increasingly complex quantum algorithms are designed in a hardware-agnostic fashion, implemented leveraging high-level
programming languages, and then lowered to simpler sequences of quantum operations (gates) using a format such as the
Open Quantum Assembly (OpenQASM). Unfortunately, lowering the program to a quantum assembly representation also
results in a loss of structured information that can be extremely useful in later compilation passes. As a result, several quantum
optimization passes simply operate on arbitrary network layers determined by the QASM-level program’s dependence graph,
or focus on relatively small sliding windows with peephole optimizations. For the era of Noisy Intermediate-Scale Quantum
(NISQ) devices and beyond, more robust quantum compiler passes are required to tailor these decompositions and subsequent
optimizations to match stringent topological and fidelity constraints.
In this paper we introduce QRANE, a tool for lifting QASM-based quantum programs into the polyhedral compilation

model. QRANE groups and identifies linear relationships in the qubit indices used in two-qubit and single-qubit gates to
construct iterations domains and access relations, all while preserving the original semantics of the quantum program. We
explore various policies for deciding among different delinearization strategies, and discuss their effect on the quality of the
reconstruction. Our experimental evaluation demonstrates the high coverage and efficiency of QRANE while also permitting
to assess the potential benefits of affine transformations on large quantum circuits. Specifically, QRANE reconstructs affine
iteration domains of up to 6 dimensions, and consisting of up to 128 points per domain. The parallel reconstruction of affine ab-
stractions achieves strong scaling, facilitating the usage of higher search parameters to produce denser domains. Preliminary
results also show the strong impact that affine transformations can have once domain-specific knowledge is considered.

iv

Delinearization of Polyhedral Abstractions to Characterize�antum Assembly

Contents

Contents v
1 Introduction 1
2 Motivation and Related Work 1
3 Background 3
3.1 Quantum Computing (QC) 3
3.2 Affine Abstractions 4
4 Overview 4
4.1 1D Domains and Access Relations 4
4.2 Raising Dimensionality through Merging 6
4.3 Scheduling 6
5 Recovering 6
5.1 Auxiliary Dependence Analysis 7
5.2 One-Dimensional Domain Recovery 7
5.3 Finding Affine Qubit Access Functions 8
5.4 Access Relations 9
5.5 N-Dimensional Domain Reconstruction 9
5.6 Scheduling 10
5.7 Parallel Lifting 10
5.8 Verification 10
6 Evaluation 11
6.1 Experimental Testbed 11
6.2 Reconstruction Coverage 12
6.3 Reconstruction Scaling 13
6.4 Exploring Affine Transformations 13
7 Conclusion 14
References 14

v

Delinearization of Polyhedral Abstractions to Characterize�antum Assembly

1 Introduction

Quantum Computing (QC) has gained considerable traction in the last decade, owing to several novel high-level programming
languages being introduced (QUIPPER [15], QWIRE [34], SILQ [4], Scaffold [28, 29]) as well as many efforts to improve the
overall compilation pipeline in problems such as qubit allocation and layout synthesis [30, 39, 41, 53], improving the reliability
of quantum programs via noise-adaptive and noise-aware schemes [33, 43, 44], and breaking abstractions [21, 37]. All of these
advances have made it possible to focus on more complex application to demonstrate Quantum Supremacy [1], for instance,
by focusing on the Quantum Approximate Optimization Algorithm problems [12] or leveraging domain specific framework
such as OpenFermion [32].
Regardless of the programming language used to specify a quantum program, ultimately, it has to be eventually compiled

down to a low-level representation such as OpenQASM [11], a quantum assembly language. At this point, the program effec-
tively consists of long sequences of single- and two-qubit quantum gates, potentially interleaved with some simple dynamic
control conditions. Lowering the representation to this level of abstraction results in significant loss of structured informa-
tion that can be beneficial and heavily impactful in later compilation stages, such as qubit mapping. An example of this takes
place in qubit allocation passes, where the compiler typically constructs a dependence graph from the QASM representation,
proceeding to extract information from only the first few network layers, and mapping qubits that participate in long paths
(or cycles) found in the dependence graph [20, 30, 39, 53]. In addition, several quantum compilation passes utilize only small
sliding windows and peephole optimizations that results in finding local optima instead of global solutions. Finally, the scale
of current experiments is making paramount to equally focus on scalability aspects of tools and techniques for NISQ devices
and beyond [35], particularly, when quantum circuits can consist of hundreds of thousands and even millions of operations.
Recent works have proposed the use of loop-based optimization frameworks to analyze and optimize quantum programs

[18, 28]. In addition, the strong impact that polyhedral compilation techniques and affine frameworks have had on high-
performance computing and domain specific languages [2, 5, 6, 13, 17, 26, 45, 46, 48] leads to the next natural question: can
polyhedral and affine techniques contribute to the same extent to the field of quantum computing?. This work is
a significant step forward to answer this question. We introduce QRANE, a tool for automatically lifting quantum programs,
written in quantum assembly, that exhibit static control (i.e. no dynamic control conditions) to the intermediate representation
(IR) used in polyhedral frameworks.

QRANE fully automates the delinearization process [49], the detection and reconstruction of linear relationships among qubit
indices, producing the well-known polyhedral abstractions: iteration domains (associated to what in classical computing
amounts to loop iterations executed by a program statement), access relations to characterize the qubit entries used in a
program, and the program schedule [14, 16]. We discuss the design and implementation of the delinearization mechanism,
including the challenges faced and the meta-parameters that control the quality and behavior of the reconstruction. Our goal,
is to provide the entry point by which affine analyses and transformations can contribute in the same way that they have to
classical computing.
In summary, our contributions are the following: i) The design and implementation of the first quantum assembly de-

linearizer that produces the IR abstractions used in affine compilation frameworks (Sec. 4 and Sec. 5); ii) A comprehensive
evaluation to demonstrate the quality and coverage product of the delinearization process, the efficiency of the reconstruc-
tion implementation, the effect of meta-parameters when lifting quantum assembly, and the potential impact and usefulness
of polyhedral compilation techniques on circuits ranging from a few tens of operations to beyond half million gates (Sec.
6); iii) A tool serving as the entry point to exploit affine transformations in quantum compilation, and a preliminary study
demonstrating the current potential.

2 Motivation and Related Work

Limitations of Current Approaches. Quantum compilers compute space-time mappings of the quantum operations (Q-
OPS) in a program to a quantum processor, modeled as a (coupling) graph. Most scheduling and mapping techniques fall into
one of the following categories: i) graph traversals and peephole optimizations [7, 10, 23, 27, 30, 31, 37–40, 51, 52], ii) Precise,
instance-wise formulations using Integer Linear Programming and/or Satisfiability Modulo Theory solvers [3, 33, 41?], iii)
Exhaustive enumeration and search techniques [39, 53]. The above techniques aim to tackle variations of the qubit mapping
problem, which has been proved to be NP-complete [31]. Hence, scalable and yet precise methods are necessary. The three
classes of techniques span the spectrum of fast but approximate results (type i), and slow (and computationally expensive)
but precise solutions (types ii and iii). While some graph-based techniques performing multiple passes over the DAG could
scale to millions of Q-OPS, this is not the common case. Lack of scalability hinders several of these methods, especially when
they utilize expensive graph operations such as computing (Hamiltonian) cycles, paths with properties, and isomorphisms.
Methods of the class ii, rely on precise formulations for each quantum operation of the program, and often producing$ (62)

1

Gerard

(or more) constraints on the number of Q-OPS. These techniques are only applicable to extremely small quantum programs,
owing to ILP solving being double-exponential in their dimensionality.

Benefits of using QRANE. At the core, QRANE performs a grouping of quantum operations to produce more regular
structures. Grouping is done by gate type and then by linear properties. This allows for the extraction of a regular, well-
structured representation of the QASMprogram. Its benefits are two-fold: First, grouping gates that have parallel dependencies
enables us to collapse these dependencies into a single structure, ultimately reducing the dimensionality of the ILP problemwe
solve and, consequently, its complexity (solving ILPs is double-exponential in the dimensionality). Second, a good grouping
maintains scheduling freedom and flexibility by exposing a structured representation that makes the dependence patterns in
the original circuit explicit. The complexity of polyhedral scheduling is (mostly) independent of the number of points in an
iteration domain, as for each iteration domain exactly one shared affine scheduling function is computed

QRANE’s Long Term Impact. Being the first known tool to extract a regular structure from QASM programs, we see
QRANE as the foundation of a larger ecosystem of polyhedral tool-chains for QC. Analyses and optimizations over regular
structures are typically both computationally cheaper and easier to understand. By exposing such regular structure, QRANE
enables the development of more aggressive optimizations, e.g. scheduling in the polyhedral model or even applying ma-
chine learning over the affine IR, both of which have already brought enormous benefits in classical computing. Within the
polyhedral model, lifting with QRANE already reduces the size of the program representation asymptotically. As more con-
crete future benefits, using our tool, the community can now focus on high-level compiler scheduling heuristics that exploit
quantum domain knowledge, e.g. commutative, canceling and identity properties [37].

Computational Complexity and Scalability. One of the main motivations for this work is to demonstrate that, at the
current pace, current quantum compilation techniques will hit a scalability wall. Recent qubit allocator approaches such as
Zulehner et al.’s [53] and Siraichi et al.[39], which leverage A* search techniques [20] and dynamic programming, respectively,
have proven that even relatively small circuits can incur high complexity execution times andmemory footprints. For example,
Fig.1 shows the compilation times obtained with the TKET compiler [40] on circuits of the IBM-QX circuit set [25] that have
more than 100,000 gates. We can clearly notice that compilation time will continue to increase as a function of the number of
QASM operations in the near term. In Section 6.3 we demonstrate that QRANE scales effectively to very large circuits.

125K 128K 164K 171K 184K 187K 207K 423K 512K
Circuit Size (qops)

0

25000

50000

75000

100000

125000

Re
co

ns
 ru

c
io

n
Ti

m
e

(s
ec

on
ds

)

TKET
QRANE

Figure 1. QRANE and TKET Processing Time for the Largest IBMQX Circuits

Impact of Re-ordering Affine Transformations. Table 1 shows an excerpt of our results that demonstrate the potential
impact of affine transformations on lifted quantum assembly programs.We apply two well-known loop transformation heuris-
tics to select circuits of the QUEKO-BIGD dataset [42] The Improvement column represents the circuit depth (critical path)
ratio obtained directly with TKET (and without affine transformations) and while using PLuTo Min/Max-fuse. The second
column shows the number of original Q-OPS in the program.
Though the applied transformations are designed for the optimization of classical computations and have yet to be tuned

to the characteristics of quantum programs and devices, we nonetheless observe significant circuit depth reductions relative
to circuit sizes. In particular, the transformations seem to provide greater benefits on circuits with one to two-qubit density
ratios less than or equal to one, suggesting that affine abstractions can offer useful information about the temporal and spatial
behavior of two-qubit gates.
QRANE lifts quantum assembly representations into an affine IR with high efficiency and efficacy, as supported by Table 2,

where we present the coverage obtained for the largest circuit of the benchmark which contains 0.5M quantum operations.
QRANE achieves a compression factor of 4.2x, relative to the number of domains produced for the circuit, by aggregating

quantum operations into expressive, multi-dimensional affine structures. Figure 1 and Table 2 both begin to reveal that QRANE
2

Delinearization of Polyhedral Abstractions to Characterize�antum Assembly

Table 1. Tket Final Circuit Depth with Transformed Circuits of Varying QUEKO-BIGD 20QBT Gate Densities (Ratio of single-
qubit and two-qubit gates in program).

QASM No. Input TKET PLuTo PLuTo Impro-

gates Min Max vement

0D1_.8D2_1 360 524 480 504 1.09x, 1.04x

1D1_.7D2_9 405 524 381 381 1.51x

2D1_.5D2_8 405 400 348 348 1.15x

3D1_.3D2_4 405 280 240 240 1.16x

4D1_.3D2_8 495 256 176 176 1.45x

5D1_.2D2_2 540 182 160 160 1.13x

Table 2. Domain Dimensionality Profile for IBMQX’s Largest (0.5M) Circuit

Dimension Domain Count Point Count

1D 943 959

2D 70374 185905

3D 43155 226161

4D 7943 82753

5D 896 16286

Total 123311 512064

builds an efficient and powerful IR with celerity, supporting the growing quantum compilation toolchain without becoming
a bottleneck.

3 Background

In this section we briefly recap the main concepts pertaining to quantum computing, their representation and the polyhedral
abstractions we attempt to reconstruct.

3.1 Quantum Computing (QC)

Quantum Bits and Gates. The basic unit of information in QC is the qubit. A qubit is commonly represented as a two-
vector with components U and V that represent the probability that the qubit’s superposition will collapse to the state |0〉
or |1〉 upon measurement, respectively. Multi-qubit states are represented as the tensor product of all constituent qubit state
vectors, so the resultant state vector |k〉 has dimension 2=, where = is the number of qubits.

Quantum gates, unitary operations, are modeled as 2<G2< matrices, where < is the number of qubit the gate acts upon.
While theoretical quantum gates can be designed to act on any number of qubits, in practice, all gates are decomposed into
sets of “basis” gates that are physically implemented in hardware.

QuantumCircuits. Quantum circuits are a visual representation of quantum programs. Circuit diagramsmodel individual
qubits as horizontal lanes, while gates applied to one or more qubits appear either on the affected lane or connecting two
of them. Figure 2 shows a simple QASM program and its corresponding circuit representation. From here on we assume the
input to QRANE is given in the OpenQASM format [11] format, and that its free of dynamic control dependencies.

qreg q[3];

t q[0];

h q[1];

s q[2];

cx q[0],q[1];

cx q[1],q[2];

(a) OpenQASM Code

0) •

1 � •

2 (

(b) Circuit Diagram

Figure 2. Simple Quantum Program with two CNOT Gates

Notably, multi-qubit gates impose control dependencies. Multi-qubit gates are typically extensions of single-qubit gates in
that they take a control argument and a target argument. If the control qubit is in the |1〉 state, then the corresponding single-
qubit gate is applied. For example, the “CNOT” gate shown in Figure 2 inverts the state of the target (bottom) qubit if the

3

Gerard

control condition (top qubit lane) is satisfied. The SWAP gate is a unique two-qubit gate in that the qubit states are simply
exchanged with no control.

3.2 Affine Abstractions

We represent quantum circuits in a polyhedral IR by encoding gate streams into the classic four structures: iteration domains,
access relations, dependence relations, and schedules. Iteration Domains are sets in Z

= whose points represent the dynamic
instances of multi-dimensional loops, where the loop bounds are affine functions of outer loop iterators and symbolic (con-
stant) parameters. In the case of quantum gate streams, we assume an underlying stream generator takes an affine loop nest
form, wherein quantum register accesses are affine functions of the loop iteration variables. Thus, we can group together
multiple OpenQASM operations whose corresponding register accesses appear to be governed by the same affine functions.
Access Relations are functions of the iteration domain, �(: Z

3 ↦→ N, that model indices accessed on quantum registers.
Since control qubits are unaltered by multi-qubit gates and target qubits can undergo state change, we define read relations
and write relations as a mapping of iteration domain points to control and target qubit accesses, respectively. Dependence
Relations represent ordering constraints among instances of iteration domains. Just as in the classical case, quantum pro-
grams exhibit flow, anti, read, and write dependencies based on control and target qubit accesses. As we show in 5.6, after
encapsulating gate operations into affine iteration domains, we can convert time-space (global operation number) instance-
wise dependencies imposed in the original gate ordering to the domain-space, allowing the description of coarse-grained
dependence relations via affine functions. Schedules are affine relations that assign logical multi-dimensional time-stamps
to iteration domain points. Our work uses a single 1-dimensional linear schedule preceded by a single scalar dimension
encoding the chunk identifier when performing parallel lifting.

4 Overview

2 4

3

5

6

7

8

9

10

11

12

13

14

(a) Time-step 3

4

3

5

6

7

8

9

10

11

12

13

14

(b) Time-step 4

5 8

7

6

9

10

11

12

13

14

(c) Time-step 5

8

7

6

9

10

11

12

13

14

(d) Time-step 6

Figure 3. Evolution of 1D Reconstruction. Green represents Frontier, Red represents selected Domain.

We first provide an overview of our approach to the delinearization of quantum gate streams. The Quantum Fourier Trans-
form (QFT) circuit on five qubits [8], shown in Figure 4, serves as our motivating example. Walking through each step of
QRANE’s reconstruction process, we outline the techniques used in the one-dimensional and N-dimensional reconstruction
phases, describe the formation of access relations, and discuss potential scheduling options.

4.1 1D Domains and Access Relations

The first step is to generate one-dimensional iteration domains. That is, QRANEwill first look for gate sequences whose qubit
register accesses could have been generated by a single affine loop. The immediate observation and convenient constraint is
that the number of points in any one-dimensional iteration domain must be less than or equal to the size of the qubit register.
Thus, QRANE (mostly) limits its view of the circuit to the set of gates that most recently accessed each qubit in the register (a
reconstruction improving heuristic that does take a look deeper into the circuit is discussed in Section 5.2). We refer to this
set of gates as the circuit “frontier”, which is equivalent to the set of vertices in the time-space dependence graph of in-degree
zero. At each time-step in the one-dimensional reconstruction phase, QRANE examines the frontier of the circuit and attempts
to find an affine function that generates the largest gate access sequence possible. The gates covered by the chosen function
are then removed from the circuit, allowing their immediate successor gates to enter the frontier. This process is repeated until
the circuit is empty. We note that in this context, an iteration domain contains points of only one gate type, so the analysis is
performed for the gate type that most frequently occurs in the frontier, so as to maximize the chance of constructing a large
iteration domain at each time-step.

4

Delinearization of Polyhedral Abstractions to Characterize�antum Assembly

@0 � ' (c2) ' (c4) ' (c8) ' (c

16)

@1 • � ' (c2) ' (c4) ' (c8)

@2 • • � ' (c2) ' (c4)

@3 • • • � ' (c2)

@4 • • • • �
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Figure 4. Quantum Fourier Transform (QFT) on Five Qubits

Figure 3 shows the evolution of the 1D reconstruction over the dependence graph of QFT-5. The first and second time-steps
are elided, because the dependence frontier is occupied by only gate one in time-step one, and by only gate two in time-step
two. QRANE considers these points as “stray points” as they don’t follow the greater dependence pattern evident in the circuit;
singleton domains are created to house these points, and they are then removed from the dependence graph. The vertices
representing gates two and three enter the frontier in time-step 3. Since domains may only cover one gate type, a decision
must be made to draw a domain from gate two or three. QRANE engages in a breadth-first lookahead here, computing the ratio
of one to two-qubit gates immediately neighboring the vertices of the frontier. Finding the ratio to be one, QRANE defaults to
build a domain for one-qubit gates, putting gate two in a singleton domain.

Domains Read/Write Relations

Structures repeat with unique X identifier for H gates

SX[i] : 0 <= i <= 0; SX[i] -> q[i];

Structures representing each grouping of R gates.

S1[i] : 0 <= i <= 0; S1[i] -> q[i+1], q[i]

S3[i] : 0 <= i <= 1; S3[i] -> q[i+2], q[i]

S6[i] : 0 <= i <= 2; S6[i] -> q[i+3], q[i]

S10[i] : 0 <= i <= 3; S10[i] -> q[i+4], q[i]

Figure 5. 1D Iteration Domains and Access Relations

Extended Structures

All H gates aggregated into one domain

S0[j, i] : 0 <= j <= 4 and i = 0;

S0[j, i] -> q[j];

All R gates aggregates into one domain

S1[j, i] : 0 <= j <= 3 and 0 <= i <= j;

S1[j, i] -> q[j+1], q[0*j+i];

Figure 6. 2D Iteration Domains and Access Relations

From here on out, QRANE exploits a consistent pattern where the frontier is occupied by a single H gate and a number
of controlled phase gates. In time-step 4, we have '3 and '4 now in the frontier, giving QRANE the opportunity to test for
linearity amongst both qubit access arguments of the two gates. For two-qubit gates, QRANE considers the control and target
qubits to serve as coordinates in a 2D coordinate space, immediately revealing linearity between these points (of course, any
affine line will suffice). QRANE records the qubit argument strides, and ensures a consistent lexicographic ordering between
all points in the domain. The read/write access relations [8] → @[2], @[8] are constructed based on the positive stride of 1
for the target qubit accesses. Furthermore, lexicographic consistency is needed to ensure that the gate access sequence can
be feasibly modeled with an affine multi-dimensional schedule. The constraints placed on 1D domain creation are discussed
further in Section 5.2.
The above pattern is repeated until the dependence graph is empty, yielding the iteration domains and access relations

shown in Figure 5.
5

Gerard

4.2 Raising Dimensionality through Merging

We can increase the dimensionality and improve the efficiency of our affine abstractions by repeatedly “merging” lower-
dimensional structures into single structures that characterize N-D loop nests. A merger of two domains requires that we in-
troduce a new linear dimension into the structure that serves as the “outer-most” loop variable, while the existing dimensions
of the constituent domains are preserved as the “inner-most” loop variables. This step allows QRANE to represent sequences
of d-dimensional domains as a single linearly consistent system of d+1 dimensions.
Continuing with our example of Fig. 4, QRANE recognizes that the 4 R gate sequences can be reproduced by a system of 2

linear variables, j and i, where j controls the number of R gate sequences, and i controls the number of R gates occurring in
each sequence. We can also reproduce the qubit access sequences by varying the control accesses by a linear function of j
and the target accesses by a linear function of i. QRANE also recognizes that, by fixing the variable i (distinct from that of the
R gate system) to a single iteration and bounding j to reflect the five singleton H gate domains. The extra linear variable in
this system is a byproduct of the dependence graph-based reconstruction, but the compression effect is identical to that of
a single domain on one variable. At this point no further merges are possible, so QRANE completes the reconstruction phase.
The resulting N-Dimensional affine abstractions are depicted in Figure 6.

QRANE searches for combinations of domains to merge together, up to a user-defined limit, permitting a merger only if the
candidates meet the conditions discussed in Section 5.5. Once the list of candidate domains is produced, QRANE iteratively se-
lects and removes the largest candidate domains by cardinality, until the set is empty. This process continues to N-dimensions
until no further changes are possible, as is the case in our example after reaching the 2D structures shown in Fig. 6.

4.3 Scheduling

The schedule maps the points of each iteration domain to some multi-dimensional time coordinate composed of both scalar
and linear dimensions. For example, the hand-written schedule in Figure 7 exactly reproduces the original circuit by mapping
the j’th iterations of domain S0 to an even outer time dimension and those of S1 to an odd outer time dimension. The i

component of the schedule produces the inner-most loop at each outer time dimension.
By default, QRANE constructs the implicit schedule for the program, which simply maps the points of each iteration domain

to the original 1D time-space of the program. However, QRANEmay invoke the scheduling capabilities of ISL to produce legal
transformations that re-order the quantum operations to achieve some optimization goal. For example, QRANE can leverage
the minfuse and maxfuse heuristics of the PLuTo scheduling algorithm in attempt to minimally or maximally fuse the loops
encoded in our affine abstractions. The re-ordering produced with the maxfuse option is shown Figure 7. This schedule
interleaves the points of each domain to minimize all dependence distances in the time-space. The effect of these schedule
transformations on circuit compilation metrics is investigated in Section 6.

Implicit Schedule

S0[0, 0] -> [0]; S0[1, 0] -> [5];

S0[2, 0] -> [9]; S0[3, 0] -> [12]; S0[4, 0] -> [14];

S1[j, 0] -> [1+j] : 0 <= i0 <= 3;

S1[j, 1] -> [5+j] : 0 < i0 <= 3;

S1[j, 2] -> [8+j] : 2 <= i0 <= 3; S1[3, 3] -> [13];

PLuTo Maxfuse Schedule

S0[j, 0] -> [j, j, 0] : 0 <= j <= 4;

S1[j, i] -> [j, i, 1] : j <= 3 and 0 <= i <= j;

Figure 7. Schedule Examples for QFT-5

5 Recovering

We now present our methodology for reconstructing iteration domains, access relations, and the identity schedule for a given
OpenQASM file. The lifting is divided into 3 stages: dependence analysis, 1D and N-D domain recovery. Firstly, since we
deal with straight-line code, we assign each quantum operation (Q-OP) a global id corresponding to its sequence number
in the program. We refer to this bijection of {6;>10; 83 → Q-OP} as the time space of the original program. Furthermore,
we maintain a separate bijection of {6;>10; 83 → 3><08= 8=BC0=24}, hereafter called the domain space, so that each Q-OP in
the program is associated with a specific point in some iteration domain. The range of the relation is initially empty and is
continuously updated throughout the reconstruction process to reflect set membership of reconstructed iteration domains.

6

Delinearization of Polyhedral Abstractions to Characterize�antum Assembly

Our reconstruction requires all gates on 3 or more qubits to have been previously decomposed into equivalent one and two-
qubit gates. In addition, we defer to future work the handling of dynamic control dependences.

5.1 Auxiliary Dependence Analysis

We first perform a quick dependence analysis pass on the OpenQASM stream. As in [22], the DAG creation process from a
qubit access trace is straightforward. We annotate each qubit with the global id of the gate that most recently wrote to it, and
draw dependencies between all subsequent gates reading from and writing to that qubit. The annotation is then updated to
reflect the latest write. The result is a set of point-to-point dependencies in the original time space of the input sequence. This
simplified dependence representation is necessary for the subsequent components of QRANE.

5.2 One-Dimensional Domain Recovery

Many prior works in trace analysis individually process memory access streams of each unique instruction, attempting to
find minimal affine loop nests capable of reconstructing the access patterns. In the context of OpenQASM programs, we have
very little auxiliary information to differentiate sets of quantum operations as belonging to the same or separate generating
instructions. Thus, we can set rules for operation grouping that provide precise and correctness-preserving limitations on the
reconstruction.
Firstly, we require our future assembly-generating-statements to issue accesses of a single gate type. Secondly, as described

in Sec. 4.1, QRANE asserts linear relationships among quantum gates based on their qubit access patterns. In the 1D recovery
stage then, QRANE attempts to draw these relations between the set of gates that have most recently accessed each element
of the qubit register. This set of gates is equivalent to the “frontier” of the dependence graph, or those vertices that have zero
in-degree. QRANE iteratively fetches the frontier of the dependence graph, finds the affine function of one variable that covers
the largest number of points in the current time-step, and removes the covered gates off the dependence graphwhile updating
the domain space to reflect the new gate grouping. The removal operation cause an in-degree reduction for all neighbors of
the covered set, of which some will enter the frontier. Alg. 1 performs these steps.

Algorithm 1: Construct One-Dimensional Domains

Input: G: Data Dependence Graph

Output: D: Mapping of unique ID to iteration domain

1 Let domain_count = 0

2 Let d = 1

3 while G not empty do

4 F = copy_frontier (G)

5 Q1, Q2 = separate_by_num_args (F)

6 DOM = selection_policy (G, d, Q1, Q2)

7 G.remove (DOM.points)

8 D[domain_count] = DOM

9 domain_count += 1

10 return D

Once the dependence frontier is retrieved, we split the nodes into sets of one (Q1) and two (Q2) qubit gate operations per
our single gate type criterion. While these sets are further subdivided by gate type, only the most frequently occurring gate
type is chosen to comprise Q1 and Q2. One critical decision that QRANE must make here is, in the current-time step, from
which of these sets should a domain be constructed? While decisions are correct with only a view of the frontier, QRANEmay
optionally perform a lookahead in the dependence graph up to breadth d (default two), computing the ratio r of one to two
qubit gates among the immediate d neighbors of each vertex in the frontier. The rationale of this heuristic selection policy

is that QRANE ought to select Q1 if A < 1 because more 2-qubit gates are expected to enter the frontier in future-time steps,
exposing more 2-qubit gates for analysis in a single time-step, and vice versa for the selection of Q2. The other cases for r are
shown in Alg. 2. The core process of finding the most profitable affine function is the same regardless of the selection, though
one added filtering step for 2-qubit gates is discussed in 5.3.

7

Gerard

Algorithm 2: One Qubit or Two Qubit Selection Policy

Input: G: Data Dependence Graph, d: Lookahead depth,

Q1, Q2: One and two qubit vertices ∈ G.frontier, respectively

Output: Q: Chosen Gate Type

1 Let forecast.ones = 0, forecast.twos = 0

2 foreach vertex v ∈ Q1 do

3 N = get_neighbors_by_depth (G, v, d)

4 foreach neighbor n ∈ N do

5 forecast.increment_counter (n.num_arguments)

6 // repeat 2-5 for Q2

7 if forecast.ones = |�.5 A>=C84A |: return Q1

8 if forecast.twos = |�.5 A>=C84A |: return Q2

9 if forecast.twos >= forecast.ones: return Q1

10 return Q2

5.3 Finding Affine Qubit Access Functions

Given a set of qubit access arguments Q drawn from the gate set chosen by the selection policy, we construct a directed graph
G where:

Vertices+ = &, and Edge 4 = {@1, @2 } ∈ � iff @2 > @1,

and Annotation 0 = (U, V) on 4 where

U = @2 − @1 and V = ;4G82>6A0?ℎ82_>A34A (@1, @2) (1)

where ;4G82>6A0?ℎ82_>A34A (@1, @2) represents the third restriction on the reconstruction. The function determines whether
@1 and @2 are lexicographically positive or negative in the program time-space. Qubit access sequences must be both produced
by some affine function, and maintain a consistent lexicographic ordering, lest a valid affine schedule for the sequences be
impossible.
Each annotation carries the stride between two points, as well as their lexicographic ordering. We perform a depth-first

search on each vertex in the topological ordering of G, shown in lines six and seven of Algorithm 3, establishing a baseline
annotation on the first edge of each path and only extending a path when the annotations are equal to the baseline. The
stride of the longest, constant annotation path found in that search is selected as the stride of the affine function covering the
chosen domain from the frontier. The lexicographic ordering must also remain constant between points because a domain
whose constituent points have both positive and negative lexicographic ordering cannot be produced by an affine schedule.

In the case of two qubit gates, we first find the largest co-linear subset from the Q2 set by considering the control and target
qubits as coordinates in a 2D space in order to reveal point groupings that could potentially exhibit linearity. We iteratively
perform the aforementioned search procedure to ensure constant stride and lexicographic continuity amongst the largest set
of co-linear points.

Algorithm 3: One-Dimensional Domain Selection

Input: Q: Set of points from G.frontier

Output: Selected Domain

1 Let Q’ = ∅ if Q.is_two_qubit_gate_set then

2 Q’ = largest_colinear_subset (Q)

3 else

4 Q’ = Q

5 Let P = ∅

6 foreach vertex v ∈ topological_ordering (G) do

7 Perform Depth-First Search with source v, recording annotation a’ of each outgoing edge, and recursing on paths with

annotations equal to a’

8 Store longest such path in P

9 return construct_domain (max ((P)))

8

Delinearization of Polyhedral Abstractions to Characterize�antum Assembly

5.4 Access Relations

A key product of the one-dimensional reconstruction phase is an “access matrix” that simply encodes all of the register
accesses made by a domain. Its form is shown in the matrix below: 2.



81,1 . . . 81,< 1 01,1 1 01,2
...

. . .
...

...
...

...
...

8=,1 . . . 8=,< 1 0=,1 1 0=,2



(2)

This matrix encodes a system of = quantum operations whose register arguments could be generated by affine function
of< variables. Thus, each point in the potential new domain occupies one row of the matrix, and the values in the first <
columns of each row represent the integer values of each loop iteration variables corresponding to that point in the domain.
The two fixed column vectors of constant value one represent the constant term of the affine function potentially generating
the access sequence. The columns 0=8 ,1 and 0=8 ,2 take the value of the control and target qubits for each operation, respectively.
The matrix in Equation 2 thus models a two-qubit gate system, and a domain of one-qubit gates would have just one constant
column and one arguments column. The solution to this system of equations then gives affine access relations for each point
in the domain, allowing us to generate Read andWrite-relations mapping each point in a domain to a multi-dimensional affine
access to the qubit register. However, the unsolved state of this matrix is retained and heavily utilized in the N-Dimensional
recovery phase — discussed in 5.5 — where the concatenation and extension of access matrices for multiple domains is solved
and tested for consistency before admitting a merger of those domains.

5.5 N-Dimensional Domain Reconstruction

Once all gate accesses are characterized by one-dimensional affine abstractions, QRANE iteratively merges lower-dimensional
domains into higher-dimensional domains by augmenting structures with new iteration variables, as per Alg.4. QRANE will
examine a set of d-dimensional domains in effort to detect repeated or similar register access patterns by equivalent gate
types. If the access patterns made by multiple domains can be generated by a consistent (d+1)-dimensional affine loop nest,
QRANE will “merge” the domains into a single (d+1)-dimensional domain that forms some polyhedral structure in that space.
This step is necessary to improve the expressiveness and efficiency of our abstractions, enhancing the quality of information
available when computing schedule transformations.
We first describe the conditions that must be met for two d-dimensional domains, A and B, to be merged into a single

higher-dimensional domain. These are higher-dimensional generalizations of the rules described in Sections 5.2 and 5.3:
A and B have equivalent gate types. This is a requirement to maintain the gate type consistency stipulation from Section

5.2
A andB are lexicographically consistent. Just as the points of any one-dimensional must be lexicographically consistent

relative to one another, the lexicographic ordering of the domains must match the original lexicographic ordering of the lower-
dimensional domains. That is, if A and B are lexicographically positive themselves, then all points in B must be greater than
all points of A in the time space. Thus, A and B must be disjoint in the original time-space of the program to ensure schedule-
ability of their higher-dimensional extended domain in an affine multi-dimensional space.
A and B form a consistent system of (d+1) dimensions. It may not be possible to form a consistent linear system on

(d+1) variables that governs the combined qubit access patterns of A and B. To test for consistency, we build the new access
matrix C of (d+1) dimensions via concatenation and extension:

� =

[
0 1 0
1 1 2

]
� =

[
0 1 1
1 1 3

]
� =



0 0 1 0
0 1 1 2
1 0 1 1
1 1 1 3



The prepended column represents the (d+1)’th linear variable. This new access matrix is then reduced to test for consistency.
QRANE searches the set of lower-dimensional domains, admitting any groupings of domains that meet the three previously

described qualifications as candidate higher-dimensional domains. Since some OpenQASM circuits may be large and highly
irregular, a large number of lower-dimensional domains may be produced; QRANE performs the candidate search up to a
user-defined search limit, offering the user a trade-off between execution time and the quality of the reconstruction.
QRANE selects domains from this list to proceed to the next iteration of the reconstruction. While the candidate list is not

empty, QRANE picks the largest domain by cardinality from the list and removes all other domains that reference the now
covered set of lower-dimensional domains. At the end of this process, QRANE has a set D of d-dimensional domains that were
not merged with any other domains, and a set D’ of selected (d+1) -dimensional domains. D is offloaded to a set of unchanged
domains, and D’ becomes the focus of the search for the next iteration of the N-Dimensional reconstruction process. The
process completes when QRANEmakes no further mergers at a given level.

9

Gerard

Algorithm 4: Construct n-Dimensional Domains

Input: D: 1D iteration domains, l: Search Limit

Output: D’: ND iteration domains

1 Let D’ =

2 while D not empty do

3 Let W =

4 C = {� × � where �8� 9 is linearly consistent and 9 − 8 >= ;}

5 while C not empty do

6 d = max_cardinality (C)

7 W.insert (d)

8 C.erase (G8 ∈ 3)

9 D’ = D - W

10 D = W

11 return D’

5.6 Scheduling

As identity schedule, QRANE utilizes the implicit 1D linear schedule representing the operation number of a given iteration
domain point. We thus defer the task of computing a more compact schedule to ISL. This doesn’t pose any scalability issue,
specially when leveraging our parallel reconstruction feature. All affine transformations available in ISL can then be used, in
particular the Pluto minfuse (nofuse) and maxfuse loop fusion heuristics [5, 47], which we evaluate in Sec.6.

5.7 Parallel Lifting

QRANE leverages the implicit one-dimensional linear schedule (i.e. operation number) to enable the parallel reconstruction of
the affine IR. This is achieved by decomposing the input QASM into N disjoint chunks, each of which can be lifted in parallel.
Optionally, the user may insert OpenQASM “barrier” statements into circuit, forcing QRANE to independently delinearize and
schedule the sub-circuits delineated by the barriers. While this has the obvious advantage of accelerating the reconstruction
process, it also has the (unforeseen) benefit of allowing us to use larger values for our search parameters, thereby improving
QRANE’s reconstruction quality. In addition, we introduce in the implicit schedule a leading scalar dimension representing
the chunk number, converting it to a schedule with two time-components. Such an additional schedule dimension yields
semantically equivalent results when passed to ISL’s dependence analysis, but the structural representation of these depen-
dences might be different and has the potential to impact later scheduling decisions, e.g., by splitting the index space into
multiple pieces a scheduler can assign independent linear schedules for each piece. A comparison of the parallel vs. sequential
reconstruction is included in the Appendix, while results presented in Sec. 6 focus exclusively on the parallel lifting.

5.8 Verification

The user may request that QRANE run its verification passes to ensure correctness of the reconstruction and scheduling. QRANE
invokes ISL’s code generation utilities to produce C code capable of generating OpenQASM from its affine abstractions. The
resulting OpenQASM stream is sent through QRANE’s dependence analysis in order to verify the results.
QRANE performs four checks of increasing complexity. First, QRANE checks that all Q-OPS are accounted for in the affine

abstractions by invoking the Barvinok Integer Set Counting library [?] to count the points of the iteration domain produced
for the second. Next, QRANE checks for lexicographic positivity in the minimum delta of the reordered and original depen-
dences. A lexicographically negative delta implies that one or more original dependences have been violated in the reordered
OpenQASM. Next, QRANE tallies up the number of accesses to each qubit by each gate type in the original program, and checks
that the same tallies of the reordered program are exact, ensuring that no operations were left out of the reconstruction and
all access relations are correct. Finally, QRANE utilizes the NetworkX [19] implementation of the VF2 [9] algorithm to check for
semantic isomorphism between the reordered and original dependence graphs. That is, each vertex in the dependence graph
is labeled with the full quantum operation it represents, and the isomorphism check only admits a vertex mapping if their
labels are identical. These four verification steps show the user the correctness of QRANE’s reconstruction, most importantly
that any re-ordering of the OpenQASM code has not violated any dependences.

10

Delinearization of Polyhedral Abstractions to Characterize�antum Assembly

6 Evaluation

In this section, we apply QRANE to three large OpenQASM benchmark sets to evaluate the effectiveness of the reconstruction
and the optimization potential provided by the recovered affine abstractions. Section 6.2 examines the reconstruction quality
in terms of recovered domain dimensionality and density. Section 6.3 examines QRANE’s scalability. Finally, Section 6.4 explores
the impact of two affine schedule transformations on circuit compilation metrics.

1 2 3 4

Cardinalities (points)

101

102

103

Nu
m

be
r o

f D
om

ai
ns

1D

2 3 4 5 6 7 8 9 10 11 12 13

Cardinalities (points)

101

103

Nu
m

be
r o

f D
om

ai
ns

2D

4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Cardinalities (points)

101

103

Nu
m

be
r o

f D
om

ai
ns

3D

8 10 12 14 16 18 20 22 24

Cardinalities (points)

100

2 × 100

3 × 100
4 × 100

6 × 100

Nu
m

be
r o

f D
om

ai
ns

4D

Figure 8. Reconstruction Quality for QUEKO-BSS-20QBT

1 2 3 4 5 6 10 12 13 16

Cardinalities (points)

100

101

102

103

Nu
m

be
r o

f D
om

ai
ns

1D

2 3 4 5 6 7 8 9 10 11 12 13 15 16 18 20 24 25 26 28 30 32

Cardinalities (points)

100

101

102

103

104

105

Nu
m

be
r o

f D
om

ai
ns

2D

4 5 6 7 8 9 10 11 12 13 16 20 24 28 32 36 40 50 52 60 64

Cardinalities (points)

100

101

102

103

104

105

Nu
m

be
r o

f D
om

ai
ns

3D

8 9 10 11 12 13 14 15 16 17 18 19 48 80 10
4

12
8

Cardinalities (points)

100

101

102

103

104

Nu
m

be
r o

f D
om

ai
ns

4D

16 17 18 20 24 26 28 30 32 33

Cardinalities (points)

100

101

102

103

Nu
m

be
r o

f D
om

ai
ns

5D

32

Cardinalities (points)

102

103

Nu
m

be
r o

f D
om

ai
ns

6D

Figure 9. Reconstruction Quality for IBMQX

1 2 3 8 12 13 26 45 67 68 90 91 92 13
6

18
0

18
1

18
2

18
4

Cardinality (points)

100

101

Nu
m

be
r o

f D
om

ai
ns

1D

2 3 4 5 6 7 8 9 10 13 14 16 20 22 26 27 28 91 92 13
5

13
7

18
3

Cardinality (points)

100

101

102

Nu
m

be
r o

f D
om

ai
ns

2D
4 5 6 7 8 9 10 11 12 14 22 24

Cardinality (points)

101

103

Nu
m

be
r o

f D
om

ai
ns

3D

Figure 10. Reconstruction Quality for QASMBench-Large

6.1 Experimental Testbed

We evaluate QRANE on three benchmark sets,QUEKO by Tan and Cong [42], IBMQX [25], a large resource of quantum circuits
gathered by Zulehner et al. from RevLib [36, 50] and prior works, and QASMBench by Li et al. [?] at Pacific Northwest
National Lab.
QUEKO is a set of quantum circuits designed by construction with known optimal depth. We use two circuit sub-classes

of QUEKO, the BIGD set and the BSS set. The former consists of small circuits with varying gate densities (proportions of
1-qubit and 2-qubit gates), while the latter was designed for scaling studies, with ten sub-classes of circuits with optimal depth
values and ten variations within each class.

IBMQX [53] consists of 158 circuits pre-mapped to legacy IBMQX architectures using between 5 and 16 qubits. These
circuits vary dramatically in gate counts, ranging from five to half a million gates. Since these circuits were targeted for
smaller architectures and all follow a similar mapped structure, the circuits tend to be very narrow.
QASMBench provides several low-level implementations of quantum algorithms and subroutines at the core of chemistry,

optimization, machine learning, and more. Across the small, medium, and large categories, the circuits exhibit a variety of
widths (qubits), depths, gate densities, and other usefulmetrics.We chose to focus on the set of large circuits for this evaluation,

11

Gerard

as our results for the small and medium classes were very similar to those of the IBMQX benchmarks; large circuits reveal
interesting qualities of QRANE’s behavior with respect to the relationship between circuit width, depth, and gate density. All
QASMBench circuits were decomposed several times in QISKIT such that all gates were one and two-qubit decompositions
and all gate blocks were inlined.
We utilize Tket version 0.13 to collect compilationmetrics.We use Barvinok library version 0.41.4 and ISL 0.23 for operations

on integer sets and maps, as well as for the latter’s scheduling capabilities. All experiments were run on an AMD Ryzen
Threadripper 3970x 32-Core CPU operating at 4.5GHz. and equipped with 128 GB RAM.

6.2 Reconstruction Coverage

To assess the quality of QRANE’s reconstruction, we focus on the QUEKO-BSS and IBMQX benchmarks because their larger
circuits pose a greater compression challenge. Figures 8 and 9 chart the “Reconstruction Profile” obtained with with a search
limit of 1024 and lookahead-breadth of two. The Reconstruction Profile contains, for all domain dimensions produced for a
benchmark, all of the domain cardinalities recovered for those dimensions and the number of domains of those cardinalities.
QRANE’s primary goal is to compress as manyQ-OPS into high density iteration domains as possible, relying on dimensionality
extension to pack more points into a single domain while respecting the linearity of the system. While QRANE has to shuttle
many “stray points” into domains of 1, 2, and 3 points, in QUEKO-BSS, domains of cardinality four and above contain 2.59x
as many points as contained in lower cardinality domains. QRANE performs even better on the IBMQX benchmark, assigning
2.99x times as many points into domains of cardinality four or higher than of lower-cardinality domains.
QRANE produces very dense lower-dimensional domains for the QASMBench-Large circuits. Most circuits involve anywhere

form 16-27 qubits, along with the “ising_model” outliers on 500 and 1000 qubits. QRANE greatly benefits from a wider qubit
register, since the density of one-dimensional abstractions is directly limited by the size of the register. If QRANE can shuttle
more points into dense 1D domains, then it will have less work to do in merging irregular, heterogenous domains produced
over smaller registers, such as in IBMQX. Furthermore, QRANE prefers low depth, high qubit occupancy (gate density) circuits.
Such circuits exhibit patterns where one and two-qubit gates are applied in parallel across the entire register, leading to fewer
long gate paths in the dependence graph. The ising_model circuits are the perfect use cases for QRANE; these circuits have
very wide registers, and are amongst the lowest depth and highest gate density circuits in the benchmark set.

1420 2840 4260 5680 7100 8520 9940 11360 12780
Circuit Size (gates)

2.5

5.0

7.5

Re
co

ns
tru

ct
io

n
Ti

m
e

(s
)

(a) QUEKO-BSS-20QBT

0 100000 200000 300000 400000 500000
Circuit Size (gates)

0

250

500

750

Re
co

ns
tru

ct
io

n
Ti

m
e

(s
)

(b) IBMQX

Figure 11. Sequential Subcircuit Reconstruction Scaling Time vs Circuit Size for QUEKO-BSS-20QBT and IBMQX

12

Delinearization of Polyhedral Abstractions to Characterize�antum Assembly

6.3 Reconstruction Scaling

We briefly examine the scalability of QRANE’s reconstruction. Figures 11a and 11b show average reconstruction time over in-
creasing circuit sizes. For QUEKO-BSS, we chunk all files into sub-circuits of 1000 operations, and impose no N-Dimensional
search limit within each sub-circuit. For IBMQX, we also chunk all files into 1000 gate sub-circuits, but also impose a search
limit of 512 domains. We do not here that, while the circuits are divided into sub-circuits, the execution time is indicative of
independent, sequential processing of each sub-circuit. This was done to highlight the noticeable scalability benefits of decom-
posing the circuit into sub-circuits and performing independent reconstructions, all without sacrificing reconstruction quality.
The addition of multi-threading directives, then, gives even faster results. These plots show that QRANE scales uniformly with
increasing circuit size, which allows QRANE to be a part of a larger compilation toolchain without becoming a bottleneck. Fur-
thermore, custom gate subroutines (marked by the “gate” signifier in OpenQASM 2.0) can be delinearized just once, and the
recovered abstractions simply reused for each occurrence of that subroutine in the circuit, further reducing reconstruction
time. A further look into QRANE’s scalability is provided in the Appendix.

6.4 Exploring Affine Transformations

In this section, we evaluate the effect of two polyhedral schedule transformations methods — PLuTo Minfuse and PLuTo
Maxfuse — on the Gate Count and Circuit Depth metrics after optimization and routing in Tket. Metrics are collected for
architectures IBM Montreal (27 qubits) and IBM Brooklyn (65 qubits) [24]. Here we have chosen the QUEKO-BIGD set to
examine the effect of these transformations on circuits with a variety of one and two-qubit gate densities (ratio of number
of single-qubit gates to two-qubit gates). We remind the reader that these heuristics are from classical computing,
and model classic data locality. Hence, results from Table 3 should be interpreted as an exploratory study of the two ends of
the loop distribution/fusion spectrum. The design of new scheduling heuristics with objectives leveraging quantum

domain knowledge, similar in spirit to Shi et al’s work [37], is left as future work enabled by QRANE.
Rescheduled (and semantically equivalent) QASM programs are obtained from building and executing the loop structure

defined by a given affine transformation. Original and re-ordered circuits are then provided to TKET for compilation, and
absolute gate count and circuit depth are collected. TKET has been configured to run NoiseAwarePlacement, FullPeephole
Optimization, Routing, and Rebase to IBM gates [40].
We show in Table 3 the baselinemetric (gate count and circuit depth) obtained on each architecture.We split the circuits into

instances exhibiting improvement and deterioration. These are represented as negative (correspondingly, positive) variations
over the baseline. One can observe then, overall, deterioration can range from 22% to 28% on both metrics, while improvement
can range from 12% to 19%.
Figure 12 shows the absolute Gate Count and Circuit Depth metrics collected with TKET. For each gate density vector in

the QUEKO-BIGD benchmark, we provide the original OpenQASM file as well as the re-ordered OpenQASM generated by
the affine Minfuse and Maxfuse transformations. The data shows that for both Gate Count and Circuit Depth metrics, the
gap between the baseline and transformations tends to narrow as the density of two-qubit gates increases. In these cases,
we suspect that as more two-qubit gates are introduced, there is a greater opportunity for re-ordering operations to expose
optimize-able patterns to local circuit re-writing routines. We intend to explore more precise re-ordering techniques in future
work.

We observe that the worst deterioration takes place when the density of 1-qubit gates (d1) is greater than that of 2-qubit
gates (d2). This is expected since 2-qubit gates tend to dominate the qubit mapping process due to them being the root cause
for the insertion of SWAP operations. We observe that the Maxfuse heuristic tends to outperform the Minfuse heuristic at low
one-qubit gate densities, while this gap closes to minimal or no performance difference as one-qubit gate density increases.
We emphasize again that the Minfuse and Maxfuse heuristics are designed for classical program optimizations, and as

such, are fairly agnostic to the quantum context in which we are working. These heuristics do not take into account the
device architecture or hardware fidelity metrics, nor are they tuned to the common behaviors and structures of modern
quantum programs. We suspect that in cases of improvement, the transformations were able to better reveal to the optimizer
candidate patterns for replacement, while in cases of deterioration, these patterns were inadvertently made harder to detect
[?]. Nevertheless, we believe that future affine transformations utilizing QRANE as a starting point will be able to better
expose better expose commutivity relationships and connectivity patterns among dense two-qubit gate routines. The close

gap in Tket’s average metric performance between the original circuits and the re-ordered circuits, in spite of the

generalizednature of the applied heuristics, foretells the potential for strong quantum-contextualizedpolyhedral
transformations enabled by QRANE.

13

Gerard

0D
1_1

D2

0D
1_2

D2

0D
1_3

D2

0D
1_4

D2

0D
1_5

D2

0D
1_6

D2

0D
1_7

D2

0D
1_8

D2

1D
1_1

D2

1D
1_2

D2

1D
1_3

D2

1D
1_4

D2

1D
1_5

D2

1D
1_6

D2

1D
1_7

D2

2D
1_1

D2

2D
1_2

D2

2D
1_3

D2

2D
1_4

D2

2D
1_5

D2

2D
1_6

D2

3D
1_1

D2

3D
1_2

D2

3D
1_3

D2

3D
1_4

D2

3D
1_5

D2

4D
1_1

D2

4D
1_2

D2

4D
1_3

D2

4D
1_4

D2

5D
1_1

D2

5D
1_2

D2

5D
1_3

D2

6D
1_1

D2

6D
1_2

D2

7D
1_1

D2

Density Vecto

0

200

400

600

800

1000

1200

1400

Ga
te

 C
ou

nt
 (g

at
es

)

baseline + tket-opt
minfuse + tket-opt
maxfuse + tket-opt

(a) Absolute Gate Count

0D
1_1

D2

0D
1_2

D2

0D
1_3

D2

0D
1_4

D2

0D
1_5

D2

0D
1_6

D2

0D
1_7

D2

0D
1_8

D2

1D
1_1

D2

1D
1_2

D2

1D
1_3

D2

1D
1_4

D2

1D
1_5

D2

1D
1_6

D2

1D
1_7

D2

2D
1_1

D2

2D
1_2

D2

2D
1_3

D2

2D
1_4

D2

2D
1_5

D2

2D
1_6

D2

3D
1_1

D2

3D
1_2

D2

3D
1_3

D2

3D
1_4

D2

3D
1_5

D2

4D
1_1

D2

4D
1_2

D2

4D
1_3

D2

4D
1_4

D2

5D
1_1

D2

5D
1_2

D2

5D
1_3

D2

6D
1_1

D2

6D
1_2

D2

7D
1_1

D2

Density Vecto

0

100

200

300

400

500

Ci
 c

ui
t D

ep
th

 (g
at

es
)

baseline + tket-opt
minfuse + tket-opt
maxfuse + tket-opt

(b) Absolute Circuit Depth

Figure 12. Impact of Transformations on QUEKO-BIGD with Tket for IBM Brooklyn

Table 3. Mean Improvement/Deterioration of Affine Transformations on Gate Count and Circuit Depth - QUEKO BIGD.

Result TKET Improvement Deterioration

Transfor-
Gate Count (gates)

mation baseline minfuse maxfuse minfuse maxfuse

Montreal 516.32 -98.13 (40) -88.75 (44) 117.78 (296) 118.81 (292)
Brooklyn 553.44 -74.92 (36) -67.59 (39) 137.36 (300) 138.20 (297)

Transfor-
Circuit Depth (gates)

mation baseline minfuse maxfuse minfuse maxfuse

Montreal 193.25 -30.12 (51) -28.34 (50) 49.94 (285) 49.01 (286)
Brooklyn 204.93 -36.02 (45) -33.52 (46) 58.67 (291) 58.10 (290)

7 Conclusion

In this paper we have presented the design and implementation of QRANE, the first polyhedral reconstruction tool that lifts
quantum assembly into an affine IR. QRANE performs the delinearization of qubit indices accessed to build iteration domains,
access relations and the identity schedule while, obviously, preserving the legality of the reconstruction in a cost-effective
fashion. Our results demonstrate the high-quality of the lifting process, the coverage, and the potential impact on large
quantum circuits. The next logical step is to customize the reconstruction process considering topological knowledge, qubit
physical parameters and tailoring affine transformations to exploit domain knowledge.

References
[1] Frank Arute, Kunal Arya, Ryan Babbush, Dave Bacon, Joseph C Bardin, Rami Barends, Rupak Biswas, Sergio Boixo, Fernando GSL Brandao, David A

Buell, et al. 2019. Quantum supremacy using a programmable superconducting processor. Nature 574, 7779 (2019), 505–510.

[2] Cedric Bastoul. 2004. Code generation in the polyhedral model is easier than you think. In Proceedings. 13th International Conference on Parallel

Architecture and Compilation Techniques, 2004. PACT 2004. 7–16. h�ps://doi.org/10.1109/PACT.2004.1342537

[3] Debjyoti Bhattacharjee, AbdullahAsh Saki, Mahabubul Alam, AnupamChattopadhyay, and Swaroop Ghosh. 2019. MUQUT:Multi-Constraint Quantum

Circuit Mapping on Noisy Intermediate-Scale Quantum Computers. arXiv:1911.08559 [quant-ph]

[4] Benjamin Bichsel, Maximilian Baader, Timon Gehr, and Martin Vechev. 2020. Silq: A High-Level Quantum Language with Safe Uncomputation and

Intuitive Semantics. In Proceedings of the 41st ACM SIGPLAN Conference on Programming Language Design and Implementation (London, UK) (PLDI

2020). Association for Computing Machinery, New York, NY, USA, 286–300. h�ps://doi.org/10.1145/3385412.3386007

[5] Uday Bondhugula, Albert Hartono, J. Ramanujam, and P. Sadayappan. 2008. A Practical Automatic Polyhedral Parallelizer and Locality Optimizer. In

Proceedings of the 29th ACM SIGPLAN Conference on Programming Language Design and Implementation (Tucson, AZ, USA) (PLDI ’08). ACM, New York,

14

https://doi.org/10.1109/PACT.2004.1342537
https://arxiv.org/abs/1911.08559
https://doi.org/10.1145/3385412.3386007

Delinearization of Polyhedral Abstractions to Characterize�antum Assembly

NY, USA, 101–113. h�ps://doi.org/10.1145/1375581.1375595

[6] Chun Chen, Jacqueline Chame, and Mary Hall. 2005. Combining Models and Guided Empirical Search to Optimize for Multiple Levels of the Memory

Hierarchy. In Proceedings of the International Symposium on Code Generation and Optimization (CGO ’05). IEEE Computer Society, Washington, DC,

USA, 111–122. h�ps://doi.org/10.1109/CGO.2005.10

[7] Andrew M Childs, Eddie Schoute, and Cem M Unsal. 2019. Circuit transformations for quantum architectures. arXiv preprint arXiv:1902.09102 (2019).

[8] Patrick J. Coles, Stephan J. Eidenbenz, Scott Pakin, Adetokunbo Adedoyin, John Ambrosiano, Petr M. Anisimov, William Casper, Gopinath Chennupati,

Carleton Coffrin, Hristo N. Djidjev, David Gunter, Satish Karra, Nathan Lemons, Shizeng Lin, Andrey Y. Lokhov, Alexander Malyzhenkov, David

Dennis LeeMascarenas, SusanM.Mniszewski, BaluNadiga, DanO’Malley,DianeOyen, Lakshman Prasad, RandyRoberts, Philip Romero, Nandakishore

Santhi, Nikolai Sinitsyn, Pieter Swart, Marc Vuffray, Jim Wendelberger, Boram Yoon, Richard J. Zamora, and Wei Zhu. 2018. Quantum Algorithm

Implementations for Beginners. CoRR abs/1804.03719 (2018). arXiv:1804.03719 h�p://arxiv.org/abs/1804.03719

[9] Luigi P Cordella, Pasquale Foggia, Carlo Sansone, and Mario Vento. 2004. A (sub) graph isomorphism algorithm for matching large graphs. IEEE

transactions on pattern analysis and machine intelligence 26, 10 (2004), 1367–1372.

[10] Alexander Cowtan, Silas Dilkes, Ross Duncan, Alexandre Krajenbrink, Will Simmons, and Seyon Sivarajah. 2019. On the Qubit Routing Problem. In

14th Conference on the Theory of Quantum Computation, Communication and Cryptography (TQC 2019) (Leibniz International Proceedings in Informat-

ics (LIPIcs), Vol. 135), Wim van Dam and Laura Mancinska (Eds.). Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany, 5:1–5:32.

h�ps://doi.org/10.4230/LIPIcs.TQC.2019.5

[11] AndrewW Cross, Lev S Bishop, John A Smolin, and Jay M Gambetta. 2017. Open quantum assembly language. arXiv preprint arXiv:1707.03429 (2017).

[12] Edward Farhi and Aram W Harrow. 2016. Quantum supremacy through the quantum approximate optimization algorithm. arXiv preprint

arXiv:1602.07674 (2016).

[13] Paul Feautrier. 1991. Dataflow analysis of array and scalar references. International Journal of Parallel Programming 20, 1 (01 Feb 1991), 23–53.

h�ps://doi.org/10.1007/BF01407931

[14] Sylvain Girbal, Nicolas Vasilache, Cédric Bastoul, Albert Cohen, David Parello, Marc Sigler, and Olivier Temam. 2006. Semi-automatic composition of

loop transformations for deep parallelism and memory hierarchies. International Journal of Parallel Programming 34, 3 (2006), 261–317.

[15] Alexander S. Green, Peter LeFanu Lumsdaine, Neil J. Ross, Peter Selinger, and Benoît Valiron. 2013. Quipper: A Scalable Quantum Programming

Language. In Proceedings of the 34th ACM SIGPLAN Conference on Programming Language Design and Implementation (Seattle, Washington, USA) (PLDI

’13). ACM, New York, NY, USA, 333–342. h�ps://doi.org/10.1145/2491956.2462177

[16] Martin Griebl, Paul Feautrier, and Christian Lengauer. 2000. Index Set Splitting. Int. J. Parallel Program. 28, 6 (2000), 607–631.

h�ps://doi.org/10.1023/A:1007516818651

[17] Tobias Grosser, Armin Groesslinger, and Christian Lengauer. 2012. Polly—performing polyhedral optimizations on a low-level intermediate represen-

tation. Parallel Processing Letters 22, 04 (2012), 1250010.

[18] Jingzhe Guo and Mingsheng Ying. 2020. Software Pipelining for Quantum Loop Programs. arXiv preprint arXiv:2012.12700 (2020).

[19] Aric Hagberg, Pieter Swart, and Daniel S Chult. 2008. Exploring network structure, dynamics, and function using NetworkX. Technical Report. Los

Alamos National Lab.(LANL), Los Alamos, NM (United States).

[20] P. E. Hart, N. J. Nilsson, and B. Raphael. 1968. A Formal Basis for the Heuristic Determination of Minimum Cost Paths. IEEE Transactions on Systems

Science and Cybernetics 4, 2 (1968), 100–107.

[21] JeffHeckey, Shruti Patil, Ali JavadiAbhari, AdamHolmes, Daniel Kudrow, Kenneth R Brown, Diana Franklin, Frederic T Chong, andMargaretMartonosi.

2015. Compiler management of communication and parallelism for quantum computation. ACM SIGARCH Computer Architecture News 43, 1 (2015),

445–456.

[22] Justin Holewinski, Ragavendar Ramamurthi, Mahesh Ravishankar, Naznin Fauzia, Louis-Noël Pouchet, Atanas Rountev, and P. Sadayappan. 2012.

Dynamic Trace-basedAnalysis of Vectorization Potential of Applications. In Proceedings of the 33rd ACMSIGPLAN Conference on Programming Language

Design and Implementation (Beijing, China) (PLDI ’12). ACM, New York, NY, USA, 371–382. h�ps://doi.org/10.1145/2254064.2254108

[23] IBM. 2018. Qiskit. h�ps://qiskit.org

[24] IBM. 2021. IBM Quantum Services. h�ps://quantum-computing.ibm.com/services

[25] Johannes Kepler University Linz Institute for Integrated Circuits. 2019. IIC JKU - IBMQX QASM Circuits.

h�ps://github.com/iic-jku/ibm_qx_mapping/tree/master/examples Online; accessed on August 2021.

[26] F. Irigoin and R. Triolet. 1988. Supernode Partitioning. In Proceedings of the 15th ACM SIGPLAN-SIGACT Symposium on Principles of Programming

Languages (San Diego, California, USA) (POPL ’88). ACM, New York, NY, USA, 319–329. h�ps://doi.org/10.1145/73560.73588

[27] Raban Iten, Romain Moyard, Tony Metger, David Sutter, and Stefan Woerner. 2020. Exact and practical pattern matching for quantum circuit optimiza-

tion. arXiv:1909.05270 [quant-ph]

[28] Ali JavadiAbhari, Arvin Faruque, Mohammad J Dousti, Lukas Svec, Oana Catu, Amlan Chakrabati, Chen-Fu Chiang, Seth Vanderwilt, John Black, and

Fred Chong. 2012. Scaffold: Quantum programming language. Technical Report. PRINCETON UNIV NJ DEPT OF COMPUTER SCIENCE.

[29] Ali JavadiAbhari, Shruti Patil, Daniel Kudrow, Jeff Heckey, Alexey Lvov, Frederic T Chong, and Margaret Martonosi. 2014. ScaffCC: a framework for

compilation and analysis of quantum computing programs. In Proceedings of the 11th ACM Conference on Computing Frontiers. ACM, 1.

[30] Gushu Li, Yufei Ding, and Yuan Xie. 2019. Tackling the Qubit Mapping Problem for NISQ-Era Quantum Devices. In Proceedings of the Twenty-Fourth

International Conference on Architectural Support for Programming Languages and Operating Systems (Providence, RI, USA) (ASPLOS ’19). ACM, New

York, NY, USA, 1001–1014. h�ps://doi.org/10.1145/3297858.3304023

[31] Dmitri Maslov, Sean M. Falconer, and Michele Mosca. 2008. Quantum Circuit Placement. IEEE Transactions on Computer-Aided Design of Integrated

Circuits and Systems 27, 4 (2008), 752–763. h�ps://doi.org/10.1109/TCAD.2008.917562

[32] Jarrod R McClean, Ian D Kivlichan, Damian S Steiger, Yudong Cao, E Schuyler Fried, Craig Gidney, Thomas Häner, Vojtĕch Havlíček, Zhang Jiang,

Matthew Neeley, et al. 2017. OpenFermion: The Electronic Structure Package for Quantum Computers. arXiv preprint arXiv:1710.07629 (2017).

[33] Prakash Murali, Jonathan M. Baker, Ali Javadi-Abhari, Frederic T. Chong, and Margaret Martonosi. 2019. Noise-Adaptive Compiler Mappings for

Noisy Intermediate-Scale Quantum Computers. In Proceedings of the Twenty-Fourth International Conference on Architectural Support for Programming

Languages and Operating Systems (Providence, RI, USA) (ASPLOS ’19). ACM, New York, NY, USA, 1015–1029. h�ps://doi.org/10.1145/3297858.3304075

15

https://doi.org/10.1145/1375581.1375595
https://doi.org/10.1109/CGO.2005.10
http://arxiv.org/abs/1804.03719
https://doi.org/10.4230/LIPIcs.TQC.2019.5
https://doi.org/10.1007/BF01407931
https://doi.org/10.1145/2491956.2462177
https://doi.org/10.1023/A:1007516818651
https://doi.org/10.1145/2254064.2254108
https://qiskit.org
https://quantum-computing.ibm.com/services
https://github.com/iic-jku/ibm_qx_mapping/tree/master/examples
https://doi.org/10.1145/73560.73588
https://arxiv.org/abs/1909.05270
https://doi.org/10.1145/3297858.3304023
https://doi.org/10.1109/TCAD.2008.917562
https://doi.org/10.1145/3297858.3304075

Gerard

[34] Jennifer Paykin, Robert Rand, and Steve Zdancewic. 2017. QWIRE: A Core Language for Quantum Circuits. In Proceedings of the

44th ACM SIGPLAN Symposium on Principles of Programming Languages (Paris, France) (POPL 2017). ACM, New York, NY, USA, 846–858.

h�ps://doi.org/10.1145/3009837.3009894

[35] John Preskill. 2018. Quantum computing in the NISQ era and beyond. Quantum 2 (2018), 79.

[36] Revlib. 2021. Revlib: An Online Resource for Reversible Functions and Circuits. h�p://www.revlib.org/functions.php Online; accessed on August 2021.

[37] Yunong Shi, Nelson Leung, Pranav Gokhale, Zane Rossi, David I Schuster, Henry Hoffmann, and Frederic T Chong. 2019. Optimized compilation

of aggregated instructions for realistic quantum computers. In Proceedings of the Twenty-Fourth International Conference on Architectural Support for

Programming Languages and Operating Systems. 1031–1044.

[38] Marcos Yukio Siraichi, Vinícius Fernandes dos Santos, Caroline Collange, and Fernando Magno Quintão Pereira. 2019. Qubit Allocation As

a Combination of Subgraph Isomorphism and Token Swapping. Proc. ACM Program. Lang. 3, OOPSLA, Article 120 (Oct. 2019), 29 pages.

h�ps://doi.org/10.1145/3360546

[39] Marcos Yukio Siraichi, Vinícius Fernandes dos Santos, Sylvain Collange, and Fernando Magno Quintao Pereira. 2018. Qubit Allocation. In Proceed-

ings of the 2018 International Symposium on Code Generation and Optimization (Vienna, Austria) (CGO 2018). ACM, New York, NY, USA, 113–125.

h�ps://doi.org/10.1145/3168822

[40] Seyon Sivarajah, Silas Dilkes, Alexander Cowtan, Will Simmons, Alec Edgington, and Ross Duncan. 2020. tket: a retargetable compiler for NISQ devices.

Quantum Science and Technology 6, 1 (Nov 2020), 014003. h�ps://doi.org/10.1088/2058-9565/ab8e92

[41] Bochen Tan and Jason Cong. 2020. Optimal Layout Synthesis for Quantum Computing. In Proceedings of the 39th International Conference

on Computer-Aided Design (Virtual Event, USA) (ICCAD ’20). Association for Computing Machinery, New York, NY, USA, Article 137, 9 pages.

h�ps://doi.org/10.1145/3400302.3415620

[42] Bochen Tan and Jason Cong. 2020. Optimality Study of Existing Quantum Computing Layout Synthesis Tools. IEEE Trans. Comput. (2020), 1–12.

h�ps://doi.org/10.1109/TC.2020.3009140

[43] Swamit S Tannu and Moinuddin Qureshi. 2019. Ensemble of diverse mappings: Improving reliability of quantum computers by orchestrating dissimilar

mistakes. In Proceedings of the 52nd Annual IEEE/ACM International Symposium on Microarchitecture. 253–265.

[44] Swamit S Tannu andMoinuddin K Qureshi. 2019. Not all qubits are created equal: a case for variability-aware policies for NISQ-era quantum computers.

In Proceedings of the Twenty-Fourth International Conference on Architectural Support for Programming Languages and Operating Systems. 987–999.

[45] Nicolas Vasilache, Oleksandr Zinenko, Theodoros Theodoridis, Priya Goyal, Zachary DeVito, William S Moses, Sven Verdoolaege, Andrew Adams, and

Albert Cohen. 2018. Tensor comprehensions: Framework-agnostic high-performance machine learning abstractions. arXiv preprint arXiv:1802.04730

(2018).

[46] Anand Venkat, Mary Hall, and Michelle Strout. 2015. Loop and Data Transformations for Sparse Matrix Code. In Proceedings of the 36th ACM

SIGPLAN Conference on Programming Language Design and Implementation (Portland, OR, USA) (PLDI ’15). ACM, New York, NY, USA, 521–532.

h�ps://doi.org/10.1145/2737924.2738003

[47] Sven Verdoolaege. 2010. isl: An Integer Set Library for the Polyhedral Model.. In ICMS, Vol. 6327. Springer, 299–302.

[48] Sven Verdoolaege, Juan Carlos Juega, Albert Cohen, José Ignacio Gómez, Christian Tenllado, and Francky Catthoor. 2013. Polyhedral Parallel Code

Generation for CUDA. ACM Trans. Archit. Code Optim. 9, 4, Article 54 (Jan. 2013), 23 pages. h�ps://doi.org/10.1145/2400682.2400713

[49] Sven Verdoolaege and Tobias Grosser. 2012. Polyhedral extraction tool. In Second International Workshop on Polyhedral Compilation Techniques (IM-

PACT’12), Paris, France, Vol. 141.

[50] R. Wille, D. Große, L. Teuber, G. W. Dueck, and R. Drechsler. 2008. RevLib: An Online Resource for Reversible Functions and Reversible Circuits. In

Int’l Symp. on Multi-Valued Logic. 220–225. RevLib is available at http://www.revlib.org.

[51] Xin-ChuanWu, Marc Grau Davis, Frederic T Chong, and Costin Iancu. 2020. QGo: Scalable Quantum Circuit Optimization Using Automated Synthesis.

arXiv preprint arXiv:2012.09835 (2020).

[52] Xiangzhen Zhou, Sanjiang Li, and Yuan Feng. 2020. Quantum circuit transformation based on simulated annealing and heuristic search. IEEE Transac-

tions on Computer-Aided Design of Integrated Circuits and Systems 39, 12 (2020), 4683–4694.

[53] Alwin Zulehner, Alexandru Paler, and RobertWille. 2018. Efficient mapping of quantum circuits to the IBMQXarchitectures. In 2018 Design, Automation

Test in Europe Conference Exhibition (DATE). 1135–1138. h�ps://doi.org/10.23919/DATE.2018.8342181

16

https://doi.org/10.1145/3009837.3009894
http://www.revlib.org/functions.php
https://doi.org/10.1145/3360546
https://doi.org/10.1145/3168822
https://doi.org/10.1088/2058-9565/ab8e92
https://doi.org/10.1145/3400302.3415620
https://doi.org/10.1109/TC.2020.3009140
https://doi.org/10.1145/2737924.2738003
https://doi.org/10.1145/2400682.2400713
https://doi.org/10.23919/DATE.2018.8342181

	Contents
	1 Introduction
	2 Motivation and Related Work
	3 Background
	3.1 Quantum Computing (QC)
	3.2 Affine Abstractions

	4 Overview
	4.1 1D Domains and Access Relations
	4.2 Raising Dimensionality through Merging
	4.3 Scheduling

	5 Recovering
	5.1 Auxiliary Dependence Analysis
	5.2 One-Dimensional Domain Recovery
	5.3 Finding Affine Qubit Access Functions
	5.4 Access Relations
	5.5 N-Dimensional Domain Reconstruction
	5.6 Scheduling
	5.7 Parallel Lifting
	5.8 Verification

	6 Evaluation
	6.1 Experimental Testbed
	6.2 Reconstruction Coverage
	6.3 Reconstruction Scaling
	6.4 Exploring Affine Transformations

	7 Conclusion
	References

