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Abstract

Simultaneous Localization & Mapping (SLAM) is considered as the process of building a

mutual relationship between localization and mapping of the subject in its surrounding en-

vironment. With the help of different sensors, different types of SLAM systems have been

developed to simplify the problem of building the relationship between localization and

mapping. A limitation in the SLAM process is to consider dynamic objects into calculation

of mapping the environment, which is computationally heavier. Dynamic objects have not

been taken into consideration while building a SLAM system until recently. The proposed

system, DyOb-SLAM, is a Visual SLAM system which can produce an output considering

dynamic objects in the environment. With the help of a neural network and a dense optical

flow algorithm, dynamic objects and static objects in an environment can be differentiated.

DyOb-SLAM creates two separate maps, for both static and dynamic contents. For the

static features, a sparse map is obtained. For the dynamic contents, a trajectory global map

is created as output. As a result, a frame to frame real-time based dynamic object tracking

system is obtained. Through the pose calculation of the dynamic objects and the camera,

DyOb-SLAM can estimate the speed of the dynamic objects with time.

The performance of DyOb-SLAM is observed by comparing it with a similar Visual

SLAM system, VDO-SLAM and the performance is measured by calculating the camera

and object pose errors as well as the object speed error. In the following chapters, the entire

SLAM system along with some details of its predecessors are explained.
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Chapter 1

INTRODUCTION

With the advent of modern technology, people can now use GPS to know and understand

their surrounding and also to locate themselves in the GPS map. Robots can also use GPS

to track themselves in the global environment. But GPS is not always the best way for

gaining automation, especially in indoor areas. In robotics, understanding or recognizing

the environment of a robot by itself is one of the first steps for automation. This includes

understanding its local position. Simultaneous Localization and Mapping (SLAM) [4] is

the system in which a robot can create a map of the surrounding environment by adding

the key features in the map which the sensors are perceiving (Mapping) and at the same

time localize itself in the map (Localization), estimating its state or pose in the surrounding

environment.

The main goal of SLAM is to get a precise mapping of the unknown environment and

to find the robot’s current local position in the map in real time. With SLAM, a robot

can know its location and just like humans, can decide to move in any direction or do

some certain functions in an automated fashion. But the application of SLAM is not only

limited to automated robots or drones; SLAM can also be used in Augmented Reality (AR)
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technology. In AR technology, SLAM can be used to create the augmented map of the

world and locate the device’s 3D position in the world by calculating the spatial relationship

between the device itself and multiple keypoints configured in the environment.

The Simultaneous Localization and Mapping problem can be considered as maintaining

a mutual relationship between the mapping and localization of a robot in an explored envi-

ronment. Without mapping, the subject cannot be localized and without the pose estimation

of the subject, the map cannot be formed. With the help of the sensors, the significant land-

marks or key-features can be located, which will be processed by the device to match and

link them with the previously observed landmarks, as well as store them for mapping pur-

pose. The state and position of a robot can be estimated after updating the landmark features

and can be used for mapping as well. Many sensors have been utilized in SLAM, such as

laser range sensors, rotary encoders, inertial sensors, GPS, and cameras. Depending on the

sensors, SLAM can be classified into various types. In this proposal only Visual SLAM is

focused.

The prime goal of Visual SLAM is to estimate the camera trajectory and reconstruct the

surrounding environment as a map. In this technique, the camera takes consecutive frames

of the environment and by setting some key-points in these frames, the position of the robot

or drone is tracked at first. Then, the local map is created using these points and the robot

or drone localizes itself in the map by optimizing the results. The results can be optimized

by minimizing the difference between the projection points and the actual points.

The visual sensors are of different types:

• Monocular : Singular camera.

• Stereo : Combination of two monocular cameras

• RGB-D : Also called “Depth Camera”, gives depth in pixel as output.
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Most of Visual SLAM algorithms are based on an assumption called “Scene Rigidity

Assumption” or static world assumption. This assumption has been developed in many

approaches of SLAM systems where it is considered that the environment does not con-

tain dynamic objects and is completely static. Although the scene rigidity assumption is

required for the ease of computation since dealing with dynamic objects is computationally

expensive, it creates a limitation for the real world based applications of Visual SLAM.

SLAM systems developed in recent years have taken dynamic objects into consideration.

These algorithms function mostly in two different ways:

1. The moving objects detected from the sensors are treated as outliers and removed

from the estimation process.

2. After detecting the moving objects, they are tracked separately using multi-target

tracking approaches.

DynaSLAM [5] functions in the former way, where it detects “prior” dynamic objects,

i.e. objects which are potentially dynamic, segmenting the objects using a Mask-RCNN

model and then removes the segmented portions from the frames. The map that DynaSLAM

generates is based on the static objects in the surrounding environment. VDO-SLAM [6],

on the other hand, is a system which functions in the latter way, i.e. it tracks the dynamic

objects and estimates the object poses (both static and dynamic).

1.1 DyOb-SLAM

The proposed SLAM system, DyOb-SLAM is a combination of DynaSLAM and VDO-

SLAM. Figure 1.1 shows the output of the DyOb-SLAM system. Different features are

mentioned below:
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• The system consists of a Mask-RCNN module for segmenting out the dynamic ob-

jects based on prior.

• For getting a robust system of dynamic object tracking, a dense optical flow and a

scene flow algorithm are implemented.

• The back-end of the system consists of Bundle Adjustment module for the static

object points, the Partial Batch Optimization module for creating local maps and a

Full Batch Optimization module for the final result - a global map.

• With the help of the Bundle Adjustment [7] algorithm, a sparse map can be obtained

with the static feature points.

• The whole SLAM system is run in a cloud network to obtain fast and improved data

in comparison with the ones obtained in the local system.

So, as outputs, the followings are obtained:

1. A current frame showing the ORB features along with mask information and object

labels.

2. A sparse map based on the static features.

3. A global map showing the dynamic contents and their motion updated with time and

each frame.

The whole system will be explained in details in chapter 4
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Figure 1.1: Output of DyOb-SLAM
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Chapter 2

LITERATURE REVIEW

There are two types of approach in Visual SLAM - “Feature based” and “Direct based”.

Feature based approach [8] [9] [10] is based on key-point matching and builds a sparsely

reconstructed map of the environment, whereas direct based approach gives a dense recon-

struction map [11] or semi-dense map [12]. Direct based method usually requires more

computational cost, i.e. stronger GPUs.

Some of the popular feature based SLAM systems are MonoSLAM [13], PTAM [8],

ORB-SLAM [9], ORB-SLAM2 [10], OpenVSLAM [14]. MonoSLAM is the first real time

monocular visual SLAM system which provides a real time probabilistic 3D map updated

by Extended Kalman Filter method. PTAM [8] is the first visual SLAM system to have

separate but parallel tracking and mapping threads. The idea of Orb-SLAM [9] and Orb-

SLAM2 [10] came from PTAM’s system but with an added thread - loop closure. Loop

closure thread takes the last keyframe processed by the local mapping thread, and tries to

detect and close loops [9]. The features that are extracted from the image frames in [9]

and [10] are called ORB (Oriented FAST and Rotated BRIEF) [15], which are rotation

invariant and resistant to noise. It is based on two types of descriptor - FAST (Features from
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Accelerated Segment Test) and BRIEF (Binary Robust Independent Elementary Features).

In both [9] and [10], ORB features are extracted and then the features are accumulated to

initialize the map by performing Bundle Adjustment.

Direct method of visual SLAM is based on formation of dense or semi-dense maps.

KinectFusion [11], a dense SLAM, gives an output of a dense 3D reconstruction of com-

plex room sized scenes using the depth images obtained from the Kinect depth sensor. The

scene model is maintained with a volumetric, truncated signed distance function (TSDF)

representation using the consecutive depth frames and the associated camera poses. Elas-

ticFusion [16] is a real time dense SLAM which is capable of capturing comprehensive

dense globally consistent surfel-based maps of room scale environments. Direct methods

like LSD-SLAM [12] produces semi-dense global maps consisting of keyframes as vertices

and 3D similarity transforms as edges. Direct Sparse Odometry (DSO) [17] combines the

benefits of direct methods (seamless ability to use and reconstruct all points instead of only

corners) with the flexibility of sparse approaches (efficient, joint optimization of all model

parameters).

2.1 Mapping

The most important factor of SLAM is how precisely the robot maps its environment. In

general, mapping is a very challenging aspect in SLAM. The environment can be mapped

in many ways, depending on what sort of algorithm is used. Some of the well known map

representations are described as follows with examples -

2.1.1 Metric Map

In [18], metric representation or metric mapping is defined as a symbolic structure that

encodes the geometry of the environment, i.e. the environment is represented in terms of
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geometric relations between the objects and a fixed reference frame [19]. For 2D cases,

there are two types of paradigms for metric representation - “landmark-based maps” and

“occupancy grid maps”. Landmark-based maps give a sparse set of landmarks as the output

map, while occupancy grid maps provide a discretized map of the environment assigned

with an array of cells, where each cell has a probability of region occupation. For 3D cases,

there are many forms of mapping.

1. Feature maps represent the environment in a form of sparse geometric shapes such as

points and straight lines [19]. The features which are detected to be set in the map are

described by the location and geometrical shapes. Orb-SLAM [9] and Orb-SLAM2

[10] detects the ORB [15] features and map out the environment using the ORB

features in their correct location and shape in the form of points. This accumulation

of points with the help of Bundle adjustment technique, forms a point cloud map.

2. In dense mapping systems, information collected from all the pixels from the image

are applied. KinectFusion [11] uses the depth information collected from the sensors

and incrementally fuse the consecutive depth frames to make a 3D reconstruction.

In CNN-SLAM [20], depth measurement is also used to reconstruct the 3D space

depending on the selected keyframes and their pose. In ElasticFusion [16], a dense

surfel map is created by fusing surfel model with the initialized deformation graph

which mirrors the surfel model. LSD-SLAM [12] being a semi-direct SLAM system

generates a large-scale, consistent, semi-dense map using a semi-depth map along

with a pose graph optimization tool “g2o” [21].

3. In 3D spaces, occupancy grid map works the same way as in 2D spaces - it creates a

discretized map of the environment. But in 3D cases, the volume of the key features

are considered to be discretized and reconstructed in the map. A very important
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method for occupancy grid map that is followed in three dimensional cases is use of

octree. Octo-map [22] is based on an octree data structure and explicitly represents

not only occupied space, but also free and unknown areas.

2.1.2 Topological Map

A topological map is basically a graph representation of the surrounding. It usually

consists of nodes which describe the certain landmarks and contain the distinct features.

In [23], the topological map is created based on the “Generalized Voronoi Graph (GVG)”

which is a one-dimensional set of curves that captures the salient topology of the robot’s

environment. Topomap [24] transforms a sparse feature based map into a 3D topological

map by extracting the occupancy information from the point cloud.

2.1.3 Semantic Map

Semantic SLAM is an approach to SLAM method which adds semantic information

about the environment. Semantic map creation is highly dependent on deep learning tech-

niques. Some of the semantic map induced SLAM systems are SLAM++ [25], CNN-

SLAM [20], SemanticFusion [26] and more. A design is made in [25] where high quality

3D models of the repeatedly occurring objects were established in the map and a mesh of

the objects were extracted from truncated signed distance volume using marching cubes. In

CNN-SLAM [20], reconstructed maps were generated using the semantic labels obtained

from Convolutional Neural Network (CNN) and fusing it with the depth map. Semantic-

Fusion [26] map deals with a combination of semantic labelling from CNN and a dense

SLAM system, ElasticFusion [16], providing a long term semantic dense correspondence.

Object detection is one of the prime aspect of Computer Vision algorithms. Usually

semantic mapping process of visual SLAM techniques depends on a neural network struc-

ture. After training these modules on different databases these neural networks detect the
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objects with the help of probabilistic bounding boxes or mask segmentation. Some of the

popular neural network architectures are - Single Shot Detector (SSD), You Only Look

Once (YOLO), Region based-CNN (RCNN) and Mask-RCNN.

• SSD: Single Shot detector (SSD) [27] produces default boxes as discretized bounding

boxes and generates scores for presence of each object category in each default box.

Detect-SLAM [28] uses SSD as the object detector in its system.

• YOLO: You Only Look Once (YOLO) [29] is considered as one of the fastest detec-

tor. The reason is that this network is based on a single layered convolutional layer in

which multiple bounding boxes and class probabilities of those boxes are predicted

simultaneously. YOLO is used as the detector part of SLAM in [30].

• R-CNN:Region based CNN (R-CNN) [31] uses a region proposal algorithm to local-

ize objects and computes the fixed size CNN input from each region proposal. There

have been many updates on the R-CNN structure making the detector more accurate

and faster.

– Fast R-CNN: For each object proposal in R-CNN, the neural network is for-

ward passed, as a result the training process slows down. In Fast R-CNN [32]

the training algorithm is improved and performed in a single stage using multi-

task loss and can update all the network layers.

– Faster R-CNN: In Faster R-CNN [33], a full convolutional network “Region

Proposal Network” is introduced in the Fast-RCNN system, which predicts

bounding boxes for objects and their probabilistic scores at each position.

– Mask R-CNN: The most recent version of R-CNN is Mask-RCNN [1] which

gives a more accurate result in object detection. In this method, an object in-
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stance segmentation network is added on the Faster R-CNN model, which runs

parallely with the branch of bounding box recognition. Many SLAM systems

have recently added Mask-RCNN for the detector part - Mask-Fusion [34], Dy-

naSLAM [5], DetectFusion [35] and more. Mask-RCNN is mostly used for

dynamic object detection purpose.

In SLAM methods, the most common assumption made is that the observed scene in

the environment is static. This assumption leaves out the dynamic objects. As a result, in

a system if there is no moving objects, then any motion of an object is treated as an outlier

and thus occluded from the tracking and mapping [35]. This will result in failure of tracking

and subsequently the mapping. For this purpose, dynamic object detection is widely used

currently to eliminate this issue. Some of the dynamic object detector SLAM methods are

described below:

• Detect-SLAM: In Detect-SLAM [28], ORB-SLAM2 [10] and the object detector

SSD [27] mutually co-exist in the system to detect the dynamic objects for occlusion

in the local map, and with the help of SSD, an instance level semantic map are formed

based on the static objects.

• Detect-Fusion: With the help of YOLOv3 [36], the dynamic objects are detected

and then an instance level segmentation is applied using 3D geometric segmentation

method. The dynamic contents are omitted in the tracking stage. [35]

• DynaSLAM: Based on ORB-SLAM2, DynaSLAM [5] detects and segments the dy-

namic contents using Mask-RCNN [1] to obtain a tracking output with less error. The

background where the dynamic object occlusions take place are then inpainted with

an algorithm from camera’s previous data.
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• Mask-Fusion: In [34], a purely geometric map of the static scene is constructed.

If the static objects are manipulated by moving them, the map will still contain the

objects after occluding the human hand or disturbance.

2.2 Optimization Techniques

Every SLAM system is based on two parts - Front end and Back end. The front end of

SLAM consists of the tracking and mapping portion - where the sensor data is turned into

models. These sensor data is optimized later in the back end. The back end can feedback

its output to the front end again to optimize the results. Optimization based SLAM systems

usually consist of two parts: one portion identifies the constraints of the problem depending

on the sensor data and finds correspondences between the newly found keypoints and the

previous developed map points, while the other portion fine-tunes the pose of the sensors

and objects eventually updating the map to obtain a whole perspective of the explored

environment. Filter based approach of optimization in SLAM systems can be identified by

two main branches - Bundle Adjustment and Graph based approach.

• Bundle Adjustment [7] optimizes the 3D structure and the pose information in a joint

fashion. The main objective of Bundle Adjustment is to minimize the reprojection er-

ror, i.e, the distance between the detected key features in an image and the reprojected

past features.

• Graph based approach deals with the graphical representation of the relationship

between the key features observed and the sensor or object poses. This graphical

method is later on converted to an optimization framework, i.e. a cost function to be

minimized.

Bundle Adjustment is one of the most used framework for optimization in SLAM sys-
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tems. Different systems have used this algorithm in different ways according to the require-

ment. In [37], to solve the bundle adjustment complexity of multiple variables, two key

frames are chosen among all the frames to represent a given driving scenario. A technique

of using sliding windows over the selected keyframes have been used in [38] to locally

minimize the reprojection error. Local Bundle Adjustment used in [39] optimizes the cam-

era points observed from the last frames based on the 2D reprojections of the points at the

frames to obtain areal time localization system. Two objective functions based on vision

and inertial sensor data have been optimized in [40] which are weighed with a machine

learning approach. In [41], only a set of frames are chosen to be optimized and the other

frames are marginalized out in the process.

Graph based SLAM approach is based on the graphical representation of the SLAM

problem. The graphical method can be converted to objective functions where different

algorithms like Gauss-Newton, Levenberg-Marquardt, Gauss-Siedel relaxation, etc. can be

applied. In [42], a tree based parameterization technique is used to describe the nodes of

the graph which is then optimized using a stochastic gradient descent algorithm. In [43], a

hierarchical representation of the SLAM problem is used in a manifold structure, where the

lowest level represent the ground information and the highest level represent the structural

information of the explored environment. g2o [21] uses a Hessian Matrix structure for

solving the complex nature of data optimization. iSAM [44] or Incremental Smoothing and

Mapping uses QR factorization method to obtain a sparse smooth information matrix.

There are also other methods of optimization used in the solving the SLAM problem.

One of them is pose graph optimization. In [18] pose graph optimization is defined as the

system in which variables to be estimated are poses sampled along the trajectory of the robot

and where each factor imposes a constraint on a pair of poses. In [45], a non-linear least-
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squares optimization method, Gauss-Newton method is used at the back-end, which deals

with singularities in the representation of the robot poses in an elegant manner. In most

systems like ORB-SLAM [9] and PTAM [8], an outlier rejection method is used which

is called RANSAC (Random Sample Consensus), to minimize the reprojection error. RS-

SLAM [46] utilized RANSAC sampling to check for inlier misclassifications in the original

correspondences to mitigate the errors.

2.3 Challenges

The biggest challenge in SLAM methods is projecting dynamic objects in the local

map without affecting localization. The dynamic object-aware SLAM systems mentioned

previously [28] [35] [5] [34] treat dynamic objects as outliers and filter them to get a static

object based environment. This is a big limitation in real life based scenarios, especially in

online application of autonomous driving.

The recent dynamic object based SLAM systems not only detects the objects but also

tracks the motion of these objects. Some of the recent works in the SLAM based tech-

nology deal with mapping and localization of dynamic objects. In CubeSLAM [47], 3D

objects are detected in dynamic scenes forming 3D shaped cuboids on the dynamic objects,

instead of 2D bounding boxes and tracked after optimizing the object data with a multi-

view Bundle adjustment. VDO-SLAM [6] integrates dynamic and static structures in the

environment into a unified estimation framework using pre-processed object detection in-

formation and optical flow algorithm. ClusterVO [48] is a visual odometry (VO) system in

which a heterogeneous clustering approach is used to cluster the tracked keypoints in the

segmented regions of dynamic objects obtained from the object detector YOLOv3 [36] and

simultaneously estimates the semantic spatial and motion information. DOT or Dynamic

Object Tracking [49] combines instance segmentation and multi-view geometry to generate
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masks for dynamic objects, which works like a tracker. The improved and extended version

of DynaSLAM [5], DynaSLAM II [50] deals with an object-aware Bundle Adjustment [7]

to jointly optimize both the static and dynamic contents to obtain a tracker for multiple

dynamic objects and a global map including dynamic contents. Besides, other dynamic

object-aware SLAM systems such as - in [51], dynamic objects are detected and tracked

with a 3D box inference method and a dynamic object based Bundle Adjustment (BA) [7]

approach is done to continuously track the state of the objects.

Another big challenge in SLAM is to find a solution for running computationally heavy

SLAM systems in real time. For example - using deep learning in SLAM systems to pro-

duce semantic information needs a lot of energy for computation which cannot be run effi-

ciently in real time. One solution to run heavy computational systems in real time is cloud

computation. The higher computational jobs are performed in a cloud to get real time data

for building up the map and localization information. In robotics, there are many cloud

computation platforms for robots like - Rapyuta [52] which is an open source Platform-

as-a-Service (PaaS) framework designed specifically for robotics applications (SLAM),

DAvinCi [53] which is a software framework that provides the scalability and parallelism

advantages of cloud computing for service robots in large environments, ROS-bridge which

bridges communication between a robot and a single ROS (Robot Operating System) [54]

environment in the cloud.

The proposed SLAM system DyOb-SLAM deals with the solution of these mentioned

challenges. The two SLAM systems - DynaSLAM [5] and VDO-SLAM [6], which the

proposed system DyOb-SLAM is based upon, are described below:
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2.4 DynaSLAM

DynaSLAM [5] is a SLAM system which deals with dynamic moving objects. The

whole system is built on Raul Mur’s ORB-SLAM and ORB-SLAM2 and it can be im-

plemented with Monocular, stereo and RGB-D image sets. The system is comprised of a

neural network Mask-RCNN to segment out the dynamic objects along with a multi-view

Geometry algorithm, a tracking component to track the static objects and a mapping com-

ponent to map out the static feature points. The main contribution of this system is that it

has a dynamic object occlusion algorithm, along with a background inpainting algorithm to

inpaint the occluded spaces in the frames with previously observed background.

2.4.1 Mask-RCNN and Multi-View Geometry

DynaSLAM uses a combination of a convolutional neural network, Mask-RCNN [1]

and a multi-view geometry algorithm for instance segmentation of the dynamic objects.

The Mask-RCNN model was trained with MS-COCO [55] dataset and the system works by

segmenting the potential dynamic objects first, for example- person, cars, birds, etc. The

multi-view geometry algorithm helps to segment out the dynamic objects which are not

potentially dynamic but movable. The combination of the two models give a proper and

robust result in detecting the dynamic objects.

2.4.2 Low-Cost Tracking

The low cost tracking module is a computationally lighter version of the tracking mod-

ule of ORB-SLAM2 [10]. After the segmentation of the input images, the low-cost tracking

module determines the camera pose using the static part of the environment. The tracked

static parts are then fed to the multi-view geometry module to detect the moving objects in

the surrounding.
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2.4.3 Tracking & Mapping

The tracking and mapping part of DynaSLAM is similar to ORB-SLAM2 [10], only

the difference is that in DynaSLAM the inputs are the RGB and depth images along with

the segmentation masks. The ORB [15] features are extracted from all the regions of the

frames excluding the segmented portions. A sparse point cloud map is created using the

static background.

2.4.4 Background Inpainting

After segmentation of the potential dynamic objects as well as the moving objects,

the segmented dynamic objects are occluded from the frames. To get a complete static

environment, DynaSLAM has a background inpainting feature which inpaints the occluded

dynamic object region with the static background using the previously observed frames.
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2.5 VDO-SLAM

Visual Dynamic Object-aware SLAM system, or VDO-SLAM [6] is designed by Jun

Zhang, Mina Henein, Robert Mahony and Viorela Ila which is the first dynamic SLAM

system to perform motion segmentation. The system’s novelty is that it can track multiple

dynamic objects with the semantic information, estimate the camera pose of both static

and dynamic structures and it has an object velocity extracting algorithm. The tracking of

multiple dynamic objects is done using dense optical flow algorithms.

2.5.1 Pre-Processing the inputs

The system takes stereo or RGB-D images as inputs. For detection of dynamic objects,

instance level semantic segmentation is done for potentially dynamic objects. Dense op-

tical flow is taken into measure for better tracking of the dynamic objects. The semantic

information (.txt file) and optical flow data (.flo file) are provided as input.

2.5.2 Tracking

Tracking of static and dynamic objects is composed of two modules - camera ego-

motion estimation and object motion tracking. For camera ego-motion module, the camera

pose is estimated along with the object feature information. The corner features of objects

are first detected and then tracked with optical flow.

For object motion tracking, at first the segmented objects are classified into static and

dynamic objects and then the dynamic objects are associated across pairs of consecutive

frames to estimate the scene flow. The magnitude of scene flow gives us information about

the dynamic objects if it surpasses a threshold value. Then for tracking the moving objects,

the optical flow estimation is used.
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2.5.3 Mapping

After camera pose estimation and tracking the objects and surrounding, only the inlier

points are saved into the map. The output is a global map and a local map which is extracted

from the global map. Both the maps are updated with a batch optimization processes - Local

batch and Global batch. After the local map is constructed, a factor graph optimization is

performed for better refinement of the points and then updated into the global map. The

local map consists of only the previous frame information, while the global map consists of

the tracking outputs - the camera poses and object motion information along with the inlier

structure.
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Chapter 3

THEORY

In this chapter, the theory behind the methodologies used in the DyOb-SLAM system are

explained in details. The object detector consists of a Mask-RCNN [1] module for instance

segmentation and a PWC-Net [56] trained input for optical flow purpose. The tracking

module estimates the camera and object motion pose information from the 3D-2D repro-

jection errors. The mapping module along with the optimizing back-end of the system uses

the local and global map formation algorithms and optimizing them with Bundle Adjust-

ment [7] techniques. These methodologies are described in the following sections:

3.1 Mask-RCNN

Mask-RCNN [1] is an extended version of Faster-RCNN [33] which has an extra branch

for producing output as object masks along with the bounding box recognition. From

Faster-RCNN two outputs are obtained - a class label and a bounding box offset. Mask-

RCNN gives a third output, which is an object mask. The network in Mask-RCNN is

similar to the one of Faster-RCNN as the two stages of the network in serial being a Re-

gion Proposal Network (RPN) which proposes bounding boxes for objects and a layer that

extracts features from each bounding boxes, helping in classification of the objects. The
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difference is that in Mask-RCNN, the second stage also produces a binary mask in parallel

for each Region of Interest (RoI).

The figure 3.1 shows the framework of Mask-RCNN for instance segmentation of ob-

jects. For extracting the features from the RoI, a standard operation is executed called

RoIPool [32] which quantizes the floating numbers of RoI and discretizes them. After be-

ing discretized, the numbers are separated into spatial bins from which the feature values

are aggregated using a discretizing method like Max-Pooling. The main objective of max

pooling is to down-sample the image or reducing its dimensions and then to predict the

features based on the classes the model has been trained to detect. In Mask-RCNN, the

quantization of RoIPool is replaced by a new layer called RoIAlign which aligns the ex-

tracted features with the inputs. After the features are properly extracted and aligned, a

Km2 dimensional mask is produced as outputs for each RoI, where K is the number of

m×m resolution binary masks for each of K number of classes.

Figure 3.1: Framework of Mask-RCNN for instance segmentation [1]

In the convolutional neural network (conv) portion, the features in the images are ex-

tracted using a network called ResNet-50 [57] which consists of 50 layers. This network

is a part of Faster-RCNN [33] and in its final convolutional layer of the fifth stage, the fea-

tures are extracted. This is termed as the head of the Mask-RCNN convolutional network.
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The head of the network also consists of a Feature Pyramid Network (FPN) [58] which

have fewer filters compared to that of Faster-RCNN. The RoI features are extracted by the

different levels of the FPN backbone.

The Mask-RCNN module used in DyOb-SLAM is a pre-trained model which has been

trained on the COCO [55] dataset. It creates pixel-wise semantic segmentation and instance

object labels. The Mask-RCNN network is trained to detect potentially dynamic objects

like - person, bicycle, car, motorcycle, airplane, bus, train, truck, boat, bird, cat, dog, horse,

sheep, cow, elephant, bear, zebra and giraffe. After instance segmentation of the frames,

the network is further designated to allocate the objects of different classes with different

shades which will be easy for mapping the object trajectories in the global map. The details

of Mask-RCNN used in DyOb-SLAM can be found in chapter 4.

3.2 Optical Flow

Optical Flow is one of the most promising methods to analyze the motion characteristics

of dynamic objects in computer vision. With the help of optical flow, velocity shifts as well

as the displacement of points of dynamic objects can be tracked. This method determines

the displacement of the intensity of each pixel (x,y) of the dynamic object regions at each

frames in a certain time range, i.e. (dx, dy) at time dt. In [59], optical flow has been

explained as an equation of intensity of the pixels for a pixel displacement (dx, dy, dt) as -

I(x, y, t) = I(x+ dx, y + dy, t+ dt) (3.1)

which later can be transformed to a standard optical flow equation -

(
∂I

∂x
)Vx + (

∂I

∂y
)Vy + (

∂I

∂t
) = 0 (3.2)
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where Vx and Vy are the horizontal and vertical velocity components and ∂I
∂x

, ∂I
∂y

and ∂I
∂t

are

the partial derivatives of intensity with respect to x, y and t.

In DyOb-SLAM, dense optical flow method is chosen to track the dynamic objects,

which gives flow vectors of all the pixels in the frame. Its details will be found in the

chapter 4.

3.3 PWC-Net

PWC-Net [56] is a CNN model for optical flow algorithm. It processes the optical flow

estimate from the current frame using it to warp the CNN features from the next frame.

The warped features of second image and first image’s features are used to create a cost

volume to estimate the actual optical flow using the CNN model. In DyOb-SLAM, the

dense optical flow used is at first trained by PWC-Net on FlyingChairs [60] dataset and

then fine-tuned on Sintel [61] and KITTI [62] training datasets. The dense optical flow data

for the experimented datasets are stored and then used as inputs directly.

3.4 Bundle Adjustment

Bundle Adjustment has been defined in [63] as the most accurate way to recover struc-

ture and motion by performing robust non-linear minimization of the measurement (re-

projection) errors. It is a core component in state-of-the-art multi-view geometry systems.

In [7], the author described Bundle Adjustment as the process which minimizes the sum of

errors between 2D observations and the predicted 2D points, where the predicted points are

re-projected from 3D structures by camera parameters. It is actually a least square problem

as follows:

min
n∑

i=1

m∑
j=1

(uij − π(Cj, Xi))
2 (3.3)

In [64], Bundle Adjustment is defined as a problem of refining visual representation to
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produce 3D structure of the surroundings and creating parameters like camera pose. The

cost function shown in equation 3.3 is a quadratic function for feature reprojection errors

and to obtain robustness, outlier screening is required. The following points are mentioned

in [64] to understand why Bundle Adjustment is better than other optimization techniques:

• Bundle Adjustment is very flexible in handling varieties of different features, scene

types, information sources and error types.

• Since it uses accurate statistical error models, the end result of Bundle Adjustment is

close to accurate and easily interpretable.

• Bundle Adjustment can be very efficient when solving larger problems as economical

and rapidly convergent numerical methods are used.

One of the most prominent algorithms used for Bundle Adjustment error function is the

Levenberg-Marquardt Algorithm [65]. The algorithm is defined as an iterative technique

that locates a local minimum of a multivariate function that is expressed as the sum of

squares of several non-linear, real-valued functions. It is also considered as a combination

of the steepest descent and Gauss-Newton methods. In LM algorithm, if the current solution

is not very close to the local minimum, the algorithm will behave like the steepest descent

method which is slow but will converge. If the solution is close to the local minimum, the

algorithm will act like the Gauss-Newton method which exhibits fast convergence.
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Chapter 4

METHODOLOGY

DyOb-SLAM is a system which tracks dynamic objects, maps both the static and dynamic

objects separately and simultaneously estimates the camera and object poses by comparing

with the ground truth information. The system is comprised of -

• an object detector module

• a tracking component

• two different mapping algorithms

• an orientation optimizing back-end

The input to the system are stereo, RGB-D images. Figure 4.1 shows the block diagram of

the DyOb-SLAM system.
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Figure 4.1: Block diagram of DyOb-SLAM

The object detector module at first creates instance-level semantic segmentation infor-

mation of dynamic objects present in each frames. The dynamic object segmentation is

based on prior, i.e. the objects which are potential dynamic objects or movable in real

world, for example - car, people, etc. Due to the semantic segmentation of a priori dy-

namic contents, the static and dynamic objects are separated which will be easier to track

the objects separately. With the help of a dense optical flow algorithm, the number of

dynamic objects to be tracked is maximized. The dense optical flow information is pre-

processed using PWC-Net, which samples all the points of dynamic contents in the frame

from the semantic information.
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The semantic information along with the optical flow information are then passed onto

the Tracking module which tracks the dynamic points extracted from the semantic and op-

tical flow information and produces camera and object pose information. It also compares

the pose information with the ground truth information provided and gives out pose er-

rors as output. Next, the tracking information is projected in two different maps - a sparse

point-cloud map for the static contents and a global map for the dynamic contents along

with the camera which provides trajectory information along each frames. The sparse map

is optimized using a Bundle Adjustment algorithm and the global map is optimized using

batch optimization process (both full and partial). The different stages are described in the

subsections below.

4.1 Object Detector

4.1.1 Mask-RCNN

In the system, a Convolutional Neural Network (CNN) is used to segment out the po-

tential dynamic objects from the frame. An instance-level semantic segmentation algorithm

module, Mask-RCNN [1] is used which is an extended version of Faster-RCNN [33] with

an added branch for predicting an object mask in parallel with the bounding box feature.

It can extract both pixel-wise semantic segmentation and instance labels of objects. In this

system, both the functions are used - the priori dynamic objects are segmented out and

instance labels are obtained to track the dynamic pixels.

The input to the Mask-RCNN module are stereo, RGB-D images. The network has

been trained in such a way it can detect about 20 different potential dynamic objects, for

example - people, car, trains, truck, birds, dog, cat, etc. The network has been trained on

MS COCO [55] and trained to segment out the selected classes. The main concept is to
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segment out these classes and obtain an output matrix of size m× n× l where m,n are the

row and column of the input matrix of images and l is the number of objects in the frames.

For each class of objects, a specific ID value has been assigned which is obtained in the

output matrix where the pixel has been masked by the neural network. For each value in

the matrix, a specific color of mask is assigned for visualizing dynamic object segmentation

in the tracking output (see figure 4.3).

The figure 4.2 shows the semantic segmentation of a frame scene. The dataset that is

used to test the system contains cars and other vehicles, which are the only objects seg-

mented out. The ground truth of the dataset contains the object pose and semantic informa-

tion. The Mask-RCNN’s output matrix is then processed for the other modules (Tracking

and Mapping) in such a way that the dynamic objects detected are relabelled according to

the ground truth. As a result the output becomes closer to ground truth information.

Figure 4.2: Semantic Segmentation of scene using Mask-RCNN in the experiment

4.1.2 Dense Optical Flow

With the help of PWC-Net [56], a dense optical flow algorithm is used to at first pre-

process the optical flow information of the input images and saved as .flo files. These files

are used as input to the system. The dense optical flow information sample all the points

from the dynamic objects within the segmented masks. This helps to maximize the number
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of tracked points and later on used for tracking multiple objects. Even if the semantic

segmentation fails at one point, dense optical flow information can help obtain the object

masks again by tracking the unique ID for each points in the mask around the object. Since

sparse feature matching method is not very effective for tracking dynamic contents in the

long term consecutive frames, optical flow estimation has been used for that purpose.

4.2 Tracking

The input to the tracking component are the RGB images, the depth information of each

frames, the segmentation masks and the optical flow information obtained from the object

detector module. Multiple functions take place simultaneously in the tracking component

and they are divided in 3 modules -

• ORB Feature Extraction

• Camera Pose Estimation

• Object Motion Tracking
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Figure 4.3: Tracked Dynamic Objects

4.2.1 ORB Feature Extraction

This module is similar to the process used in ORB-SLAM [9] or ORB-SLAM2 [10].

This module consists of the following -

1. Localization: It localizes the camera, finding feature matches in every frame and

forms visual odometry tracks of unmapped regions.

2. Loop Closing: It uses a place recognition algorithm to detect and validate large

loops. For place recognition, a Bag of Words module DBoW2 [66] is used.
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Figure 4.4 shows the output of ORB [15] feature extraction. It detects the corner fea-

tures in the frames, i.e. ORB features and extract them to form a sparse map as output.

The ORB features are extracted from the static part of the image frames excluding the seg-

mented mask portions of dynamic objects.

Figure 4.4: ORB feature extraction in the current frame

The ORB features are used for tracking, place recognition (Loop Closing) and local

mapping functions and these features are very robust to rotation and scale [10] [15]. ORB,

which is in short for Oriented FAST [67] and Rotated BRIEF [68], is a combination of

FAST (Features from Accelerated Segment Test) keypoint detection method and BRIEF

(Binary Robust Independent Elementary Features) descriptor which uses binary test for

smoothing the noisy patches of pixels.

Since the system deals with stereo and RGB-D image types, the ORB extraction is done

for both the images (left and right) and the ORB extractor searches for an ORB match in

both the images. This matched keypoint associated with the depth information are used

for differentiating between close and far points. Keypoints are considered close points ac-

cording to [10] when the associated depth is less than 40 times the stereo/RGB-D baseline.

Otherwise, the keypoint will be considered a far point. The baseline has been calculated

according to [69]. The close points are usually considered and triangulated while the far
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points are discarded. But the far points are triangulated if they are viewed from multiple

view points.

4.2.2 Camera Pose Estimation

After the sparse and dynamic features are separated using the object detector module,

the camera pose is estimated using the static feature points. For initializing the process,

motion models are generated to compare the inlier numbers depending on the camera re-

projection error. Two models are formed for robust estimation - one is used by considering

the previous camera motion and the other produces a new motion transform using PnP

based RANSAC algorithm. Each of the models creates a number of inliers and the model

with the most inliers is chosen for initialization.

For camera pose estimation, at first the reprojection error equation is established. If

Pk−1 is a set of static points at frame (k-1) in the global reference frame and Ck is the set

of corresponding static feature points in the image at frame k, then the camera pose Xk

according to [6] is estimated by minimizing the reprojection error -

e(Xk) = Ck − π(Xk
−1Pk−1) (4.1)

Here π(.) is a projection function. A least squares error function is established from equa-

tion 4.1 using Lie-Algebra parameterization of SE(3). This least squares error function is

then minimized using the Levenberg-Marquardt algorithm [65].
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4.2.3 Object Motion Tracking

The Mask-RCNN and optical flow modules segment out the potentially dynamic objects

separating the static features from dynamic. Using a scene flow algorithm, the motion of the

dynamic objects are estimated. This algorithm helps to further detect the dynamic objects

properly. The scene flow algorithm can decide whether an object is in motion. Since the

scene flow estimation of static objects is zero, a threshold of 0.12 is selected to decide

whether the object is static or dynamic. If the magnitude of a scene flow vector of a certain

point in the frame is greater than the threshold, that point is considered as dynamic. The

scene flow vector is calculated using the camera pose and the motion of the object’s point

between two consecutive frames.

With the help of the dense optical flow information, a point label is associated with the

dynamic object points. If the first dynamic object is detected, the point label will read l = 1

where l ∈ L and L are the point labels. For static objects and background, value of l is

considered to be 0. So for frame k, the point labels will be aligned with the corresponding

point labels obtained in previous frame k-1.

Similar to the camera pose estimation, object pose estimation is also calculated at first

by calculating the reprojection error and then Lie-Algebra parameterization of SE(3). If the

object point motion from frame k-1 to k in the global reference frame is k−1Ok the motion

estimation equation can be derived as -

Pk =
k−1OkPk−1 (4.2)

This equation is the point motion estimation equation. Here, Pk is the set of static points in

the frame k of image and Pk−1 is the static points in the frame k-1. Using equation 4.2 the
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reprojection error between the object point in global reference frame and the static points

in image frame -

e(k−1Ok) = Ck − π(Xk
−1[k−1Ok]Pk−1) (4.3)

After Lie Algebra parameterization of SE(3) the optimal solution is obtained minimizing

the least squares error function.

With the help of the dynamic object motion tracking, the object speed is also calculated

from the difference of estimated speed ve and ground truth speed vg, i.e.,

E = vg − ve (4.4)

4.3 Mapping

The mapping component produces two types of map - Sparse Map for the static features

and Global Map for the dynamic contents and camera motion.

4.3.1 Sparse Map

Like ORB-SLAM [9] or ORB-SLAM2 [10], the ORB features extracted in the tracking

component are used to produce a sparse point-cloud map of the static background. This

sparse map is also a local map consisting of triangulated ORB features from connected

keyframes. The corresponding ORB features are matched with the previous keyframes and

new points are generated into the local map. For triangulation of the ORB matches, the

parallax error, reprojection error and scale consistency are checked. Figure 4.5 shows the

sparse map obtained from the ORB extraction.
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4.3.2 Global Map

The inputs to the formation of global map are the output from the tracking compo-

nent, i.e. the camera pose information and the object motion. With each frame and gradual

change in time step, the detected object motion and camera pose are saved and continuously

updated. The inlier points obtained from the previous frames are utilized to gather the track

correspondences in the current frame to estimate the camera pose and object motion. With

different assigned colors for different values in the pixel matrices, the camera and object

trajectories are visualized in the global map. It is only based on the dynamic content and

camera. Figure 4.3 shows the global trajectory map of the detected dynamic objects.

Figure 4.5: Sparse map of the static features in the scene
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4.4 SLAM Back-end

The SLAM back-end is the part of the system where the data and output obtained from

the other modules at the front-end are optimized to get a better and more optimized output as

a whole. DyOb-SLAM uses the g2o [21] module for all the optimization functions and the

Levenberg-Marquardt [65] method is implemented from it. The SLAM system is designed

using three different types of optimization techniques for optimized static featured map,

camera pose error and dynamic object motion estimation:

• Bundle Adjustment

• Local Batch Optimization

• Global Batch Optimization

4.4.1 Bundle Adjustment (BA)

The selected keyframes and sparse map points obtained from the mapping component

are optimized by the Bundle Adjustment. It is used only for optimization of different at-

tributes of the static features. The Levenberg-Marquadt method is used for Bundle Adjust-

ment which is implemented in g2o.

Three different types of Bundle Adjustment are used in the system. To optimize the

camera pose estimation obtained from the tracking component, a Motion-Only Bundle

Adjustment is performed. This optimizes the camera orientation and minimizes the repro-

jection error obtained from the matched keypoints. Local Bundle Adjustment is used to

optimize the selected local keyframes and local map points of the static features. After loop

closure, Full Bundle Adjustment is used to optimize all the map points and keyframes

except the origin keyframe to achieve the optimal solution.
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4.4.2 Local Batch Optimization

Local Batch Optimization is used for formation of the local map and to be used as input

of Global Batch Optimization. Its purpose is to ensure correct camera pose which is assisted

by the Bundle Adjustment algorithm and sent to the global batch optimizer to form a precise

global map. It optimizes the camera pose estimation by minimizing the reprojection error

using the Levenberg-Marquardt method. For local optimization, only the static features are

optimized as dynamic contents are big constraints.

4.4.3 Global Batch Optimization

After local batch optimization, its output along with the output of tracking components

are directly used to optimize the global map. The tracked object points are optimized fully

to form the global map with every consecutive time steps and obtain updated object poses.

This optimization minimizes the pose error of both camera and objects. The global map

is obtained after all the time steps and frames are processed and the pose estimations are

globally optimized.
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Chapter 5

CLOUD COMPUTING

With the gradual growth in the world of robotics, heavy computation based systems which

deal with big forms of data are being executed for which a single computing system is not

able to process efficiently. Such heavy computational systems, like SLAM systems that

have developed over time, require more speed and accuracy to function like an online, real

time based system. For such reasons, Cloud based services have been chosen as the latest

method to solve this issue.

Cloud has been defined in [70] as a networking system on which any robot or automa-

tion system relies on for supporting the operation using data or code. Cloud Computing

is a process of running a system in a virtual environment to obtain services like - storage

or high processing power. With the help of Cloud computing technology, the computation,

data sensing and memory usage for any robotics system can be distributed into multiple

computing environments, i.e. all these functions will not be done in a single computer sys-

tem. In [71], a cloud based SLAM system is designed where an open source framework,

IoTCloud [72] has been used to connect the SLAM system to cloud services. IoT-Cloud

is an open source cloud framework designed by the Indiana University which consists of
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some distributed nodes to submit information from the IoT (Internet of Things) devices to

different cloud services and also from the cloud services to the devices. SLAM systems like

C2TAM [73] is based on a distributed framework of a Visual SLAM system in which the

maps built are stored in the clouds and can be fused with newly explored maps. For C2TAM

system, Bundle adjustment [7] has been performed in the cloud server for building up the

maps. In [2], a framework of Visual SLAM has been shown (figure 5.1) which consists of

an ROS [54] middleware providing necessary modules for the SLAM implementation and

a cloud server is used for feature matching functions.

Figure 5.1: Framework of [2] using an ROS as middleware

Cloud computing can be differentiated in 3 different model types - Software as a Ser-

vice (SaaS), Platform as a Service (PaaS) and Infrastructure as a Service (IaaS). Software

as a Service (Google Docs, ZOHO [74]) is the type of cloud service which provides clients
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with necessary softwares provided by the cloud which are called cloud applications. This

type also provides the platform for the user to run their systems and the necessary infras-

tructures required for the systems to run on the platform. Platform as a Service (Google

Application Engine [75]) is the type of cloud service which provides only the platform to

run the system and the IT infrastructures required to run. Infrastructure as a Service (Ama-

zon Web Services [76]) is the type which provides only the IT infrastructures like storage,

computing and networks. In the robotics world, the three major frameworks popularized

in the SLAM system development sector - DAvinCi [53], Rapyuta [52] and C2TAM [73].

These frameworks are widely used in the three cloud model types described above, for ex-

ample - Rapyuta [52] works like a Platform as a Service framework, while DAvinCi [53]

uses ROS [54] as a middleware to provide the necessary packages and then passes on to a

Software as a Service cloud model. The DAvinCi server acts like a Platform as a Service.

5.1 Cloud computing in SLAM systems

Cloud computing technology is desired in SLAM systems, especially in the systems

which contain modern object detection algorithms, as these algorithms require very high

end GPUs (Graphic Processing Unit). In the proposed case, deep neural network Mask-

RCNN requires high level GPUs which a single computer system would be expensive to

be applied on. In [77], [71] and [78], there are mentions of different algorithms which are

used to deploy a certain portion of the entire SLAM system in the cloud. For example

- The Cloud Chaser [77] system deployed its object detection algorithm in cloud to get

better performance and avoid latency issues. DyOb-SLAM consists of a dynamic object

detector which is computationally heavier in comparison with the other modules in the

system. Besides, the output of object detector is also pre-processed which results in a slower

computation time, leading to weaker performance for the SLAM system. To obtain a much
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better performing system, we deployed the proposed SLAM system in a cloud environment.

A Software as a Service (SaaS) cloud environment has been chosen for running DyOb-

SLAM which has been described in chapter 6 section 6.3. The output results are also

discussed in the section. The results are also compared to the ones resulting in the local

computer.

5.2 Edge-Fog Cloud computing

Although cloud computing solves the requirement for heavy computation based func-

tions in SLAM, a small disadvantage of cloud computing is the network latency. The

network latency is observed in many systems which are based on object detection and/or

surveillance. The output obtained from the cloud may have a latency for which a real-time

system will be compromised. One solution for solving the network latency of cloud com-

puting is using “Edge computing” and “Fog computing”, where the data transfer is done in

a relatively less distance from the user or source of data. Both Edge and Fog are enablers of

data traffic to the cloud [79]. The difference between Edge computing and Fog computing

is that Edge computing is data computation which occurs at the edge of the network in close

proximity to the physical location of the source of data, while Fog computing acts like a

mediator between the Edge and the Cloud for various purposes. If the Edge computing

sends high stream of data directly to the cloud, the Fog computing layer can receive the

data and manipulate according to the system’s requirement.

Due to the network latency issue, some systems have considered Edge-computing and

Fog-computing for real-time based systems. In [80], the object detector module which is

an R-CNN model is divided into two components such that for each component, a single

contiguous object detection model is obtained running in an edge-cloud environment for

optimal performance in delivering a real-time based object detection system. EdgeLens [81]
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is a fog-cloud based system where a deep learning model is deployed to obtain real-time

based object detection. It consists of Fog devices like smart-phones or tablets which is

connected to an Edge-cloud server Aneka [82] to distribute the object detection tasks across

different Fog and cloud resources.

Edge and Fog cloud computing are currently found to be used in different SLAM sys-

tems as well. Edge-SLAM [83] demonstrated a split architecture of a Visual SLAM system

where the tracking computation is done in the local device and the rest of the computation

(local mapping and loop closing) are done in the Edge server. In [84], a Mesh algorithm

based SLAM system is designed where an edge node layer is used for extracting the image

feature data and the cloud server to manage the edge nodes as well as provide the global

map. A visual SLAM system, edgeSLAM, has been designed in [85] which consists of

a semantic segmentation algorithm to enhance localization and mapping accuracy and of-

floads the entire computation in an Edge server to get a real-time based semantic SLAM

system. The system is designed into two where the tracking and mapping are performed in

the local device and the optimization and segmentation are done in the Edge server.

5.3 Cloud computing in DyOb-SLAM

To make DyOb-SLAM a better performing SLAM system compared to other systems,

the idea is to add a cloud computing portion for the SLAM system. Since the proposed

SLAM system consists of high GPU-required object detector modules, the system would

require a super-computing environment other than any local computing system. For such

reasons, the DyOb-SLAM system is run in a chosen super-computing environment based at

the University of Oklahoma (OU). This is the OU Supercomputing center for Education and

Research (OSCER) [86] which have been discussed in section 6.3. The main idea behind

using the OSCER system is to evaluate the DyOb-SLAM system’s performance in a cloud
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environment and to understand if it performs better than its performance in a local based

computing system.

The SLAM system is then planned to run in an Edge-Cloud based environment which

have been discussed in the Chapter 7. Since the purpose of the SLAM system is to obtain a

real-time based system, the latency issue that cloud computing usually faces can be solved

if the system runs in an Edge environment. The system requires a fast and heavy computing

SLAM performance if it is applied on a real life based scenario.
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Chapter 6

RESULTS & DISCUSSION

The proposed system has been evaluated on the basis of camera pose, object motion, object

speed and moving object tracking performance. At first the experiment is done in a local

computer system. The experiment is done in an Intel Core i7-8700 CPU @ 3.20GHz × 12

system with a 4 GB GPU of NVIDIA Quadro P620 processor. Then the SLAM system is

run in a cloud environment, which has been chosen to be the OSCER [86] environment.

The OSCER system has been described in details in this chapter. The SLAM system, at

present, is only applicable for outdoor scenes, mostly with scenes having objects like - car

or any other vehicles. The main dataset that has been effective to evaluate the performance

is the KITTI Tracking dataset [87].

6.1 KITTI Tracking Dataset

The KITTI Tracking Dataset [62] [87] is a dataset collection for the use of autonomous

driving and mobile robotics research. The calibrated, synchronized and time-stamped

dataset collection consists of real world traffic situations. The data are developed for stereo,

optical flow, visual odometry/SLAM and 3D Object detection experiments.

The KITTI data sequence that was chosen for this experiment is kitti-0000-0013. This
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dataset contains 55 sequences with RGB images (see figure 6.1), depth images, timestamps

and ground truth information of camera and object pose. The sequences are of a simple

scene where two cars are driving on a road.

Figure 6.1: RGB image of a frame of kitti-0000-0013

A settings (.yaml) file is set for the KITTI dataset where the parameters have been fixed

for running the SLAM system. Firstly, the camera parameters like the camera calibration

and distortion parameters (fx, fy, cx, cy), the camera frames per second, frame height and

width are chosen according to the dataset which have not been altered. Since the dataset is

comprised of RGB-D images, the depth parameters need to be set as well. The depth value

has been set for the two different features - static and dynamic. The depth variables in the

settings file, ThDepth is denoted as the depth value for the static features and ThDepthObj

denotes the depth value for dynamic features. ThDepth has been originally (by the makers

of KITTI dataset) set to 40.0 and ThDepthObj has been set to 25.0. For the sake of the

experiment the value of ThDepthObj has been set to 10.40. These depth values help to

differentiate the close and far points in the images. Besides, the depth map factor is set to

256, which is a scale factor that multiplies the input depthmap.
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6.2 Experimental Data

6.2.1 Camera and Object Pose

The main comparison of performance of the DyOb-SLAM system is established with

VDO-SLAM. The table in figure 6.2 shows the average of both Camera pose error and

object pose error containing both translational and rotational errors. Each sequence has

been run 5 times for both DyOb-SLAM and VDO-SLAM to locate the change in the non-

deterministic output.

Figure 6.2: Table of Comparison of errors for DyOb-SLAM and VDO-SLAM

Let the ground truth motion transform be denoted as T , where T ∈ SE(3) and the

estimated motion transform be denoted as Test. The pose error P will generally be calculated

as -

P = T −1
est T (6.1)

At the different camera frames and time steps, the root mean squared errors (RMSE) for

both camera pose and object motion pose are computed. After all the frames are processed,

the end result is an average of all the RMS errors calculated in each frames. The average

pose error is calculated for both camera and object motion.
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6.2.2 Object Speed

For both DyOb-SLAM and VDO-SLAM systems, the object speed error has been

evaluated. The linear velocity of each points in the object pixels are estimated. If the

pose change is expressed as H and mk be a point in the object pixel at frame k where

m = [mx,my,mz, 1], then the estimated velocity can be expressed as -

Vest = mk −mk−1 (6.2)

Vest = Hkmk−1 −mk−1 = Hkmk−1 − I4.mk−1 (6.3)

Here, I4 is an identity matrix. The equation 6.2 states that the difference of the point

coordinates from frame k-1 to k at the time step gives the estimated velocity. The equation

6.3 on the other hand simplifies equation 6.2 converting the new frame position of point as

a function of the pose change matrix H .

The figure 6.3 shows a bar chart of the average object speed error for DyOb-SLAM and

VDO-SLAM at the 5 iterations. If V is the ground truth speed information, the velocity

error -

Verr = |Vest| − |V| (6.4)
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Figure 6.3: Average object speed error for DyOb-SLAM and VDO-SLAM

The object speed is calculated at the end of processing every frame. In figure 6.4 it is

shown that the detected dynamic objects are bounded by bounding boxes and the speed of

the objects are printed in the processed frame. The average of these errors are obtained as

the output of the SLAM system.

Figure 6.4: Object Speed Calculation in each frame

6.3 OSCER

For better performance of DyOb-SLAM, the supercomputer of the University of Ok-

lahoma, OSCER [86] has been selected as a cloud to run the system in. The OU Super-

computing center for Education and Research (OSCER) [86] is a platform made by The
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University of Oklahoma (OU) Information Technology division where undergraduate and

graduate students, faculties and staff can run advanced computing algorithms for science

and engineering research and education purposes. It has a High Performance Computing

(HPC) infrastructure which provides hardware and software resources, technology transfer

support and outreach support. HPC [3] is a multi-processor environment where multiple

jobs can run in a parallel way, i.e. can run multiple jobs at the same time. An overview of

the HPC infrastructure of OSCER is shown in figure 6.5.

Figure 6.5: Infrastructure of OSCER [3]

OSCER was chosen as the cloud computing module for DyOb-SLAM. The idea is to at

first run the system in it and see if the performance is better. The next step is discussed in

the Future work chapter in chapter 7.

6.4 Discussion of Results

The key difference between VDO-SLAM and DyOb-SLAM is the semantic segmen-

tation process in the system. For VDO-SLAM, the semantic segmentation is done in a
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pre-processed way shaping the segmentation data according to the ground truth. On the

other hand DyOb-SLAM directly uses a Mask-RCNN network which segments out the

dynamic objects and later on the data is then processed (see figure 4.2). Due to this, the

average pose and speed errors are different for the two SLAM systems.

6.4.1 Camera and Object Pose Error

As we can see from the Table 01 (figure 6.2), the proposed system DyOb-SLAM has

slightly higher average pose error for both camera and object in every iterations. Neverthe-

less, both the systems have very low average pose error. It can be observed from the table

that the camera translational error of DyOb-SLAM differ about a range of 0.003-0.005 than

that of VDO-SLAM. The camera rotational error difference is seen to be about a range of

0.007-0.017 which is a bigger difference compared to the translational error difference. For

object pose error, the translational error difference ranges about 0.009-0.03 and the rota-

tional error difference ranges about 0.05-0.17. It is well observed that for DyOb-SLAM

system the first iteration gave higher outputs than the next 4. It is also observed, for both

camera and object poses, the rotational error is bigger compared to the translational error.

6.4.2 Object Speed Error

On the other hand, for the average object speed performance, it is observed that DyOb-

SLAM performs better than VDO-SLAM which can be seen from figure 6.3. The object

speed error for DyOb-SLAM gives a range of 0.96-1.20 more than the object speed error

found from VDO-SLAM. The difference is very high and it can be concluded that the

DyOb-SLAM system gives a satisfactory object speed error data.

6.4.3 Discussion

The settings file that has been obtained from the KITTI dataset has been modified for

the experiment. The Depth value for the objects have been lowered to 10.40, previously
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which was 25.0 . With Mask-RCNN’s segmentation information, the objects could not

be categorized as multiple. The scene contains different vehicles. The neural network

segments out even the static prior outlier points. To solve the matter and to only segment

out the required two cars that need to be tracked, the depth value has been compromised

to a limit. As a result of this, the two focused cars in the frames can be identified as

separate objects, instead of one. For this reason, the pose errors in the proposed system

are a bit higher than that of VDO-SLAM. Another reason is the computational energy.

If the computational energy of the two system is compared, the proposed system is more

expensive than VDO-SLAM. But since the aim of DyOb-SLAM system is to produce a real

time dynamic object tracking SLAM system in the future, this compromise can be done.

The speed of the detected objects is calculated when the objects are detected and seg-

mented out. After the dynamic objects are labelled with an object ID, the bounding boxes

along with the speed calculation appear as seen in figure 6.4. Due to focusing the two ve-

hicles at the close point portion in the frames which have been discussed before, the object

bounding boxes appear as per the segmented objects. This means, that when the detected

objects are in close point depth scale, the bounding boxes along with the speed calculation

appear accordingly. So, after the first car goes out of the depth scale, the speed of the car is

not measured.
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Chapter 7

LIMITATIONS & FUTURE WORK

The performance of the proposed SLAM system is not satisfactory compared to the closest

similar system (VDO-SLAM) [6]. Although the pose error is very similar to that of VDO-

SLAM, the performance could be better. One scope to improve the results is by changing

the object detector module. Due to the nature of the pre-trained Mask-RCNN model used,

the pose information of detected objects have major differences than the ground truth pose

information. The object detector module needs to produce a more robust and precise output

from the combination of the Convolutional Neural Network and the optical flow models.

For that, the Mask-RCNN model firstly needs to produce instance labels for detected ob-

jects. The PWC-Net [56] model can also be directly used to process the optical flow data

for each frames. The optical flow network should be fine-tuned as a result of which, a bet-

ter optical flow map can be obtained giving precise information about the detected moving

objects. However, this would increase the computation requirement which would further

slow the entire system more. Due to this, the system will be needing a stronger platform to

run so that the latency problem of running the system can be avoided and a real time system

can be obtained. One way is by running the system using cloud computing technology.
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The current DyOb-SLAM system uses the object detector in such a way that the output

of the object detector is pre-processed according to the ground-truth information of the

objects. The ground truth information is also used for evaluating the pose error. To produce

a real-time based SLAM system, the ground-truth information cannot be executed in the

system. As a result, the pre-processing of the semantic information obtained from the

Mask-RCNN module will not be required. For this, the combination of the instance label

based Mask-RCNN module and PWC-Net can directly be used for Tracking and Mapping

of the system.

Since the DyOb-SLAM system gives less efficient estimation of pose and has a low

computing time due to the Mask-RCNN processing, the system was intended to run in the

OSCER [86] to see how the proposed SLAM system would work in a cloud environment.

The purpose is to get a faster computational and more accurate SLAM system so that it

can give more precise data in a fast manner. Due to lack of time and missing resources,

the experiment could not be run in the OSCER system. Since the OSCER system is used

by multiple users, the job running in the system takes time as each job is run in a serial

way. Besides, while compiling the system in the OSCER environment, some pre-requisite

modules for the DyOb-SLAM code were not present in the OSCER environment, as a result

of which the compilation could not be successful. Without modules like - OpenCV’s extra

packages where optical flow assisting header files are present, the DyOb-SLAM system

will not compile. There were a lot of pre-requisites to this module which took time to be

loaded in the OSCER environment.

A real life based application for DyOb-SLAM is to use it particularly for search mis-

sions. Since the SLAM system can detect dynamic objects, this could be applied on Quad-

copters or Unmanned Aerial Vehicles to locate the dynamic contents in its field of view. The
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dataset on which DyOb-SLAM system has been experimented on is the KITTI [62] dataset

which is based only on autonomous driving technology. The KITTI dataset only consists

of ground based vehicles and terrestrial environment. The next step for DyOb-SLAM sys-

tem will be focused on aerial datasets and to form an efficient system for unmanned aerial

vehicles according to the required application.

The future idea is to run a specific portion of the DyOb-SLAM system in a cloud en-

vironment which can give real time accurate data to the core of the system. The system

will be a combined form using Edge nodes for computation and cloud for storage. Since

the object detector takes more time to process data, it could be deployed at the Edge node

which can give highly processed output from the Edge computing. The cloud environment

can store the output map results for an elongated period to be used later for obtaining a

more precise global map of the environment. Cloud can also provide the infrastructure

for necessary processing of the data. A network will be needed to be designed such that

the processes running in the local system, edge nodes and cloud could function together to

obtain the dynamic object tracking output in an online fashion.
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Chapter 8

CONCLUSION

With such advancement in the world of robotics, more SLAM systems are being developed

through time which include dynamic content in their processing algorithms. DyOb-SLAM

is one of those types of SLAM systems which can include dynamic objects in its map-

ping and track the objects in every frames. With the help of advanced technologies like

convolutional neural networks (Mask-RCNN [1]) and dense optical flow algorithms (PWC-

Net [56]), dynamic contents can be accurately detected and used for further processing. The

back-end of the DyOb-SLAM system can thoroughly give more optimized data for which

an optimized sparse map of static keypoints in the environment can be obtained, along with

a global map of camera and object trajectories with subsequent processing of each frame.

In the future, to obtain an even better SLAM processing system, a cloud environment

can be used to divide the system into two and process data parallelly in the main processing

unit and the cloud at the same time. In that way, the pose estimation error can be lowered

and a faster driven output can be obtained.
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[60] N. Mayer, E. Ilg, P. Häusser, P. Fischer, D. Cremers, A. Dosovitskiy, and T. Brox,

“A large dataset to train convolutional networks for disparity, optical flow, and

scene flow estimation,” CoRR, vol. abs/1512.02134, 2015. [Online]. Available:

http://arxiv.org/abs/1512.02134

[61] D. J. Butler, J. Wulff, G. B. Stanley, and M. J. Black, “A naturalistic open source

movie for optical flow evaluation,” in ECCV, 2012.

[62] A. Geiger, P. Lenz, and R. Urtasun, “Are we ready for autonomous driving? the kitti

vision benchmark suite,” in 2012 IEEE Conference on Computer Vision and Pattern

Recognition, 2012, pp. 3354–3361.

[63] R. Szeliski, Computer vision algorithms and applications. London; New York:

Springer, 2011. [Online]. Available: http://dx.doi.org/10.1007/978-1-84882-935-0

[64] B. Triggs, P. F. McLauchlan, R. I. Hartley, and A. W. Fitzgibbon, “Bundle adjustment

— a modern synthesis,” in Vision Algorithms: Theory and Practice, B. Triggs, A. Zis-

serman, and R. Szeliski, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000,

pp. 298–372.

[65] M. Lourakis and A. Argyros, “Is levenberg-marquardt the most efficient optimization

algorithm for implementing bundle adjustment?.” vol. 2, 01 2005, pp. 1526–1531.
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