

UNIVERSITY OF OKLAHOMA

GRADUATE COLLEGE

MACHINE LEARNING ENABLED QUERY RE-OPTIMIZATION ALGORITHMS
FOR CLOUD DATABASE SYSTEMS

A DISSERTATION

SUBMITTED TO THE GRADUATE FACULTY

in partial fulfillment of the requirements for the

Degree of

DOCTOR OF PHILOSOPHY

By

CHENXIAO WANG
Norman, Oklahoma

2021

MACHINE LEARNING ENABLED QUERY RE-OPTIMIZATION ALGORITHMS

FOR CLOUD DATABASE SYSTEMS

A DISSERTATION APPROVED FOR THE
SCHOOL OF COMPUTER SCIENCE

BY THE COMMITTEE CONSISTING OF

 Dr. Le Gruenwald, Chair

Dr. Mohammed Atiquzzaman

 Dr. Qi Cheng

 Dr. Sudarshan Dhall

 Dr. Xiangming Xiao

© Copyright by CHENXIAO WANG 2021
All Rights Reserved.

iv

ACKNOWLEDGEMENTS

This work would have been impossible to be accomplished all by my own. Many people

have provided their support, encouragement to me during these years. First of all, I would

like to express my sincere gratitude to my dissertation committee chair, Dr. Le Gruenwald,

for her expert advice, patience, and supervision throughout my Ph.D. studies. Also, I would

like to extend my thanks to my dissertation committee members, Dr. Mohammed

Atiquzzaman, Dr. Qi Cheng, Dr. Sudarshan Dhall, and Dr. Xiangming Xiao, for their

invaluable feedback and guidance. Also, I would like to thank Dr. Laurent d'Orazio for his

collaboration on this research and the members of The University of Oklahoma’s Database

Group (OUDB) for their suggestions and inspiration.

Moreover, I would like to express my special thanks to the National Science Foundation

and the University College at The University of Oklahoma for their financial support for

my studies. Also, Assistant Dean, Dr. Johnnie-Margaret McConnell, and Assistant to the

Director, Ms. Ingrid Ter Steege have provided me with a lot of support while I was working

for them in the past years.

Finally, I am deeply indebted to my family and my friends. Although I cannot stay with

them, they are always standing behind me.

v

TABLE OF CONTENTS

1.1 The Problem of Query Re-Optimization in Cloud DBMS ..1

1.2 Background ..2

1.3 Objective ..9

1.4 Contribution ...10

1.5 Organization ...12

2.1 Query Re-Optimization Algorithms for Cloud Database Systems13

2.2 Query Re-Optimization Algorithms for Cloud Database Systems Using Machine
Learning Techniques ...20

2.3 Summary ..26

3.1 Motivation of ReOpt ..28

3.2 Overview of ReOpt ..31

3.3 Details of ReOpt ..31

ACKNOWLEDGEMENTS .. iv

LIST OF FIGURES ... viii

LIST OF TABLES ...x

ABSTRACT .. xi

CHAPTER I INTRODUCTION ...1

1.2.1 Query Optimization and Re-Optimization in Traditional DBMS 2

1.2.2 Cloud DBMS and Query Re-Optimization .. 6

 CHAPTER II LITERATURE REVIEW ... 13

2.1.1 Rule-based Re-Optimization .. 14

2.1.2 Stage-based Re-Optimization .. 15

2.1.3 Sample-based Re-Optimization ... 17

2.1.4 Resource Provisioning-based Query Re-Optimization 19

2.2.1 Re-Optimization Using a Reinforcement Learning Model 20

CHAPTER III A PROPOSED QUERY RE-OPTIMIZATION ALGORITHM

FOR CLOUD DATABASE SYSTEMS (ReOpt) ..28

vi

3.4 Summary ..38

4.1 Motivation of ReOptML ..41

4.2 Overview of ReOptML ..45

4.3 Details of ReOptML ..47

4.4 Summary ..60

5.1 Reinforcement Learning-Based Algorithms for Query Re-Optimization63

5.2 Motivation of ReOptRL ...63

5.3 Overview of ReOptRL ...66

5.4 Details of ReOptRL ...67

5.5 Reward Function ..72

5.6 SLA-Aware Reinforcement Learning-based Algorithms for Query
Re-Optimization (SLAReOptRL) ..74

5.7 Summary ..77

6.1 Theoretical Analysis ..78

6.2 Experimental Results ...105

CHAPTER IV A PROPOSED MACHINE LEARNING BASED QUERY

RE-OPTIMIZATION ALGORITHM (ReOptML)... 40

4.1.1 Supervised Learning-based Algorithms for Query Re-Optimization 44

4.1.2 Unsupervised Learning-based Algorithms for Query Re-Optimization 44

4.3.1 Training Data Collection and Feature Selection .. 51

4.3.2 Machine Learning Model Selection ... 53

4.3.3 Applying Supervised Learning Model to Query Re-Optimization 54

CHAPTER V PROPOSED REINFORCEMENT LEARNING BASED QUERY

RE-OPTIMIZATION ALGORITHMS FOR CLOUD DATABASE

SYSTEMS (ReOptRL and SLAReOptRL) .. 62

5.6.1 SLA Definition ... 74

5.6.2 Extending ReOptRL to Consider SLA Violation .. 75

CHAPTER VI PERFORMANCE ANALYSIS ...78

6.1.1 Proof of Correctness of ReOpt, ReOptML and ReOptRL 78

6.1.2 Time Complexity Analysis of ReOpt, ReOptML and ReOptRL 90

vii

6.3 Summary ..136

7.1 Summaries of Performance Evaluation Results ...140

7.2 Future Research ...142

6.2.1 Experimental Hardware and Software Configurations and Benchmark

 Dataset .. 105

6.2.2 Competitive Algorithms ... 106

6.2.3 Performance Metrics .. 109

6.2.4 Experimental Results for ReOpt .. 111

6.2.5 Experimental Results of ReOptML ... 116

6.2.6 Experimental Results of ReOptRL and SLAReOptRL 125

CHAPTER VII CONCLUSIONS AND FUTURE WORK 138

7.1.1 Summary of Performance Results of ReOpt .. 140

7.1.2 Summary of Performance Results of ReOptML .. 141

7.1.3 Summary of Performance Results of ReOptRL and SLAReOptRL 142

REFERENCES ... 144

viii

LIST OF FIGURES

Figure 1. Steps of query processing ..4
Figure 2. Query processing using ReOpt ...33
Figure 3. Dispatch function..34
Figure 4. Optimization function ...35
Figure 5. Query processing using ReOptML ...48
Figure 6. The procedure for collecting training data ...51
Figure 7. Sample query ..51
Figure 8. QEP is divided into different stages after being compiled from the query52
Figure 9. Example of MergeTable ...55
Figure 10. Query processing algorithm with machine learning-based re-optimization.....59
Figure 11. Merge and GenerateQEP function ..60
Figure 12. General procedure of reinforcement learning ...63
Figure 13. Procedures of Q-Learning (the top figure) and DQN (the bottom figure)67
Figure 14. Procedure of ReOptRL ...70
Figure 15. Query processing using reinforcement learning-based re-optimization72
Figure 16. QEP P1 generated by the query optimizer before re-optimization82
Figure 17. QEP P2 after 1st re-optimization ...84
Figure 18. QEP P2 after operator O1 is merged ...84
Figure 19. QEP P2 after operators O1 and O2 are merged ..85
Figure 20. QEP P2 after 2nd re-optimization ..86
Figure 21. QEP P2 after operators O1 and O3 are merged ..87
Figure 22. Impact of data size on query response time of Query 1112
Figure 23. Impact of data size on query monetary cost of Query 1113
Figure 24. Impacts of data size on time for executing query ...116
Figure 25. Impacts of data size on monetary cost for executing query116
Figure 26. Model accuracy of three different machine learning algorithms that learn

from queries executed on (a) uniform data and (b) skewed data118
Figure 27. (a) and (b) Average response time and average monetary cost of executing

queries using three different machine learning models for query
re-optimization ..121

Figure 28. (a)-(d) Average query response time and monetary cost of executing one
query from different query types on skew data (a-b) and on uniform
data (c-d) ...125

Figure 29. Time performance for executing queries using different algorithms129
Figure 30. Monetary cost performance for executing queries using different

algorithms ...129

ix

Figure 31. Average SLA violation rate when executing queries using different
algorithms ...130

Figure 32. The impacts of RatioJOIN on the query execution time improvement when
queries are executed using different re-optimation algorithms compared
with NoReOpt ...132

Figure 33. (a) and (b) Impacts of the weight of time on the performance improvement
of the re-optimization algorithms over the baseline algorithm "NoReOpt" ...134

Figure 34. (a) and (b) Impacts of the weight of monetary cost on the performance
improvement of the re-optimization algorithms over the baseline algorithm
"NoReOpt" ...135

x

LIST OF TABLES

Table 1. Feature comparison of the query re-optimization techniques for cloud database

systems ..27
Table 2. List of selected features ...53
Table 3. Sequence of searching matching operators in MergeTable57
Table 4. Line by line time cost of ReOpt ...92
Table 5. Line by line time cost of ReOptML ...95
Table 6. Line by line time cost of ReOptRL ..103
Table 7. The comparison of the peak number of containers used in execution of

Query 1 ..114
Table 8. Average and cumulative query response time and monetary cost using three

different machine learning models ..120
Table 9. Performance results (Average Values ± Standard Deviations) of different

algorithms. The number (x) after each reported value indicates the ranking
of the algorithm with rank (1) being the best ..137

xi

ABSTRACT

In cloud database systems, hardware configurations, data usage, and workload allocations

are continuously changing. These changes make it difficult for the query optimizer to

obtain an optimal query execution plan (QEP) for a query based on the data statistics

collected before the query execution. In order to optimize a query with a more accurate

cost estimation to achieve such a QEP, performing query re-optimizations during the query

execution has been proposed in the literature. However, some of the re-optimizations may

not provide any gain in terms of query response time or monetary cost and may also have

negative impacts on the query performance due to their overheads. This raises the question

of how to determine when a re-optimization is beneficial. In addition, a Service Level

Agreement (SLA) is signed between users and the cloud. Thus, query re-optimization is

multi-objective optimization that minimizes not only query execution time and monetary

cost but also SLA violation. However, none of the existing query re-optimization

algorithms considers all these three objectives together and none of them can predict when

a re-optimization is beneficial.

To fill the gap, in this dissertation, four novel query re-optimization algorithms, ReOpt,

ReOptML, ReOptRL and SLAReOptRL are proposed. Extensive theoretical and

experimental evaluations performed on our proposed techniques showed that each of them

xii

has better performance in terms of time, monetary cost, and SLA violation rate than state-

of-the-art techniques when applied to the TPC-H database benchmark.

1

CHAPTER I
INTRODUCTION

1.1 The Problem of Query Re-Optimization in Cloud DBMS

In optimizing a query for fast execution, a traditional database management system

(DBMS) through its query optimizer is expected to produce an optimal query execution

plan (QEP) to execute the query. A popular way for the DBMS to derive this QEP is to

estimate the query cost using the available statistics of the database. However, as the

database changes over time, the statistics available at the time when the QEP is derived

may not reflect the actual database statistics during the query execution, and thus the QEP

may not be optimal. To solve this problem, query re-optimization conducted during query

execution has been proposed for traditional DBMS.

Query re-optimization is more challenging in cloud DBMS due to the dynamic nature of

cloud environments, the monetary costs that users have to pay to cloud service providers,

and the service level agreements (SLAs) between tenants and cloud providers, which if

violated, cloud providers have to pay penalties. While query re-optimization in traditional

DBMS only needs to deal with query response time, query re-optimization in cloud DBMS

needs to deal with all three performance objectives: query response time, monetary costs,

and SLA violation. However, none of the existing query re-optimization techniques for

cloud DBMS address all these objectives together. By using the existing techniques that

do not consider monetary costs, such as [1, 2, 3, 4], users may be charged with a large

amount of money for executing queries, or by using the existing techniques that do not

2

consider SLA violation, such as [5], cloud providers may be heavily penalized. In addition,

none of the existing techniques can predict when a query re-optimization is beneficial to

conduct so that the overheads incurred by unnecessary query re-optimizations can be

reduced. Thus, the existing techniques may not provide any gain in terms of query response

time or monetary cost and may also have negative impacts on the query performance due

to their overheads [1, 2, 3]. It is therefore important to develop a query re-optimization

algorithm for cloud DBMS that can address all the above issues.

1.2 Background

In this section, we provide some background concepts that are necessary for the reader to

follow the ideas introduced later in this dissertation. Section 1.2.1 gives a brief introduction

to query optimization and re-optimization in traditional database systems. Section 1.2.2

introduces query re-optimization in cloud database systems.

1.2.1 Query Optimization and Re-Optimization in Traditional DBMS

In this section, we present the background of traditional DBMS and its query optimization

and re-optimization processes.

1.2.1.1 Database System and Query

According to the definition given in [8], “A database is an organized collection of

structured information, or data, typically stored electronically in a computer system. A

database is usually controlled by a database management system (DBMS).” The data here

3

refer to anything that is digitalized, such as a text file, an image, or a clip of video. The

database is where those data are placed. The software that manages these data is called a

DBMS. Not like a file management system, DBMS organizes stored data in a specific data

structure and provides users with an interface to access and modify data more efficiently.

Besides that, a modern DBMS also has more functionalities in addition to storing data.

Data restoration, replication, protection, etc. are also important features of today’s DBMS.

Query in general means a request to retrieve data from a database system. To let DBMS

communicate with users easily, a structured query language (SQL) is invented in the late

1970s. SQL is a standard programming language for using relational database management

systems. SQL or SQL-like programming language is still widely popular and accepted by

most of the DBMS on the market today. Thus, a query usually refers to a query written in

SQL or a SQL-like programming language unless stated otherwise.

1.2.1.2 Query Optimization in Traditional DBMS

The first DBMS was invented in the 1960s by IBM [9] and has been evolved for many

decades. Many concepts and notable products are developed from that time till today, such

as System R (the late 1970s), Oracle (1980s), MySQL (1990s), and NoSQL (2000s). There

are different types of DBMS products. In this dissertation, to distinguish other database

systems from a cloud database system, we call the products that do not use any cloud

techniques as traditional DBMS or traditional database systems in the following chapters.

4

In Section 1.2.1.1, we mentioned that the purpose of a query is for the user to communicate

with the DBMS. To let the DBMS understand the query, the high-level query language

queries have to be translated into low-level expressions. Those expressions are then

translated into machine-readable codes and the codes are executed in the end. This process

is called query processing. Query processing is one of the most key processes happened in

a DBMS. Figure 1 shows the major steps of query processing in a relational DBMS.

Figure 1. Steps of query processing [9]

After a query is received by the DBMS, it is checked for syntax and compiled to a relational

algebra representation by the parser and translator. The sequences of performing the

operators in the relation algebra form logical trees. Then, the query optimizer converts this

representation to physical query execution plans. Each physical query execution plan is

5

evaluated to find its estimated cost for execution. The query optimizer uses its cost model

to do this evaluation and this evaluation usually works with the meta-data of the attributes

and tables stored in the DBMS, such as the selectivity of an attribute, average row size of

a tuple, etc. Those meta-data are referred to as data statistics. After all the query execution

plans are evaluated, the query execution plan with the best cost is selected. Notice that

different query optimizers have their definition of the “best query execution plan”. Some

optimizer considers the query execution plan that has the fastest response time as the

optimal plan while the others may select the query execution plan that uses the least

hardware resources. After a query execution plan is chosen, it is converted to low-level

machine code and executed on the stored data. Finally, the results are given to the user after

the execution.

1.2.1.3 Query Re-Optimization in Traditional DBMS

Query re-optimization means executing a portion of an optimized query execution plan,

measuring the data statistics, and optimizing the plan again before continuing execution

[10]. The runtime data statistics are collected after a portion of an optimized query

execution plan has been executed for updating the estimated data statistics. Those updated

data statistics are used by the query optimizer to re-optimize the remainder of the partially

executed query execution plan. As a result, in the new query execution plan, the optimizer

may choose different join orders, join algorithms, and/or execution order of query operators

based on the new data statistics. Such query re-optimization usually happens multiple times

during the entire query execution for the best performance.

6

1.2.2 Cloud DBMS and Query Re-Optimization

In this section, we introduce cloud DBMS and its query re-optimization.

1.2.2.1 What Is a Cloud DBMS?

A cloud database system is a database system built and deployed on a cloud platform, such

as Amazon AWS [11] and Microsoft Azure [12]. A cloud database system is usually

provided as a service called Database as a Service (DaaS). Users access such a database

system via the interface provided by the service providers. A cloud database system serves

many of the same major functions as a traditional database system. It provides persistent

storage and enables users to add, update, modify and delete data through provided APIs.

In addition, it adds cloud computing features, such as high availability and scalability [13,

14]. Also, it is a fee-based subscription service in which the database runs on the service

provider's infrastructure. There is a minimum requirement needed for the user to maintain

and manage the system.

Based on those advantages and the requirements of today’s applications, many IT

companies, and academic institutions focus on researching and developing cloud database

system products. Popular products, such as Amazon RDS, Oracle Cloud Database, and

Microsoft Azure Database are widely used in many applications.

7

1.2.2.2 Why Using a Cloud DBMS?

From the user’s perspective, the benefits of using a cloud database system include the

following:

 (a) Freedom from administration and configuration

All the major products serve as a black box and the users can access it using the

provided GUI, command-line interface, or APIs. There is no need for the users to

hire domain experts to install the software, tune the system parameters, or monitor

the status of the running system. It is always “ready to use” whenever the users

have access to the internet.

 (b) Freedom from physical hardware

The users do not need to consider how much system resource they need to purchase

for running the system. Making a plan of how many machines and what kind of

machines is not an easy task. Purchasing not enough machines may result in a

system that does not meet requirements. While over-purchasing wastes a lot of

money. On a cloud database system, there is no need to worry about these issues.

The cloud provider owns all the infrastructure. The users can access to that

infrastructure whenever they need it via the internet.

 (c) Easy to scale the database system

With the usage changes of the users’ applications, it is very common for the users

to add in or remove some resources. On a cloud database system, this can be done

easily by typing several lines of commands via the interface.

 (d) Monetary cost savings

8

Users are provided with a “pay-as-you-go” style of charges. They only need to pay

for the amount of resource they used. Usually, the price is charged whenever

applications are running. Monetary costs can be saved while applications are idle.

In addition, due to the advantages mentioned in (a), no need to hire experts also

saves monetary costs.

 (e) High availability for the database system

The database system runs on a highly reliable platform. When a user provisions a

database instance, the database system synchronously replicates the data to a

standby database instance which is generally in a different availability zone or data

center. The database system also performs backups, snapshots, and host

replacement automatically. All these tasks make the database highly available and

durable.

1.2.2.3 Query Re-Optimization in Cloud DBMS

In a cloud database system, query re-optimization is still an important feature. Query re-

optimization in cloud DBMS shares the same mechanism as in traditional DBMS. At the

beginning, many efforts [15, 16, 17, 18, 2] were made to improve query re-optimization to

reduce query response time only. This is known as single-objective query re-optimization.

Those techniques adapt query re-optimization algorithms in traditional DBMS [19, 20] to

the cloud environment. In traditional DBMS, query re-optimization only has one objective,

which is query response time. Later, cloud service providers have implemented a pay-as-

you-go price model for charging their services. In this price model, users only pay for the

9

services as long as they use the services without requiring long-term contracts [11].

Moreover, cloud service providers sign an agreement with their users before the users

purchase their services. In the agreement, the cloud providers commit to providing the

quality of their services and claim penalties if they fail to fulfill it. This agreement is also

known as a service level agreement (SLA). Under this scenario, some recent query re-

optimization techniques in cloud DBMS [7, 6] consider multi-objectives for optimization.

However, besides query response time, they consider only either monetary cost [6] or SLA

violation [7]. None of the existing query re-optimization algorithms consider all these three

objectives together. In addition, the query execution performances of these techniques

suffer from the overheads caused by conducting unnecessary query re-optimizations as

they cannot predict whether a re-optimization is beneficial before conducting it.

1.3 Objective

The objective of this research is to develop a novel query re-optimization technique for

cloud database systems that has the following abilities:

 Ability to re-optimize a query execution plan taking query response time, monetary

cost, and SLA violation into consideration simultaneously.

 Ability to predict whether a query re-optimization is beneficial to be conducted

after a query operator or a stage of query operators is executed in order to avoid

unnecessary query re-optimizations.

 Ability to re-optimize a query execution plan without depending on the accuracy

of the data statistics collected by the DBMS.

10

1.4 Contribution

To fill the gaps stated in Section 1.1, in this dissertation, we propose four different query

re-optimization algorithms for a cloud DBMS. These four algorithms are stage-based query

re-optimization (ReOpt), query re-optimization using machine learning (ReOptML), query

re-optimization using reinforcement learning (ReOptRL), and SLA-aware query re-

optimization using reinforcement learning (SLAReOptRL).

The first algorithm introduced in this work is ReOpt [21]. It is a query processing algorithm

in a cloud database system that does multi-objective query re-optimization. In this

algorithm, the query execution plan is optimized not only to reduce the query response time

but also to reduce the monetary cost needed to execute the query.

The second algorithm introduced is ReOptML [22]. The goal of designing the second

algorithm is to address one major issue found in the ReOpt. The issue is that a lot of the

query re-optimizations conducted are not necessary. The reason is that the re-optimization

does not always happen at the best timing during the query execution. Doing unnecessary

query re-optimizations adds extra overheads. To reduce the number of unnecessary query

re-optimizations, in ReOptML, we train a supervised learning model to predict whether the

re-optimization is useful or not. Only useful re-optimizations are allowed to be conducted

afterward.

11

The third algorithm introduced in this work is ReOptRL [23]. The purpose of designing

this algorithm is to address two issues found in ReOpt and ReOptML. The first issue is that

they both require updated data statistics whenever a re-optimization happens. Updating

data statistics does help the query optimizer generate a better query execution plan.

However, this operation itself is very expensive. The second issue is that with ReOptML,

the training data with the labels indicating which historical cases needed re-optimizations

and which historical cases did not need re-optimizations must be available to train the

supervised learning model. To avoid depending on the updated data statistics in query re-

optimization and on the availability of the training data, the reinforcement learning

technique is used in ReOptRL. In this technique, the query re-optimization process does

not require any data statistics and training data, and the learning model alone decides how

to optimize the query execution plan. Moreover, nowadays, since SLA is a very important

feature specifically for multi-tenant cloud platforms, ReOptRL is further extended to

SLAReOptRL, a technique that aims to reduce SLA violations in addition to query

response time and monetary cost in re-optimizing queries.

To the best of our knowledge, there does not exist a query re-optimization technique for a

cloud DBMS that considers query response time, monetary cost, and SLA violation at the

same time; predicts whether a re-optimization is beneficial; and does not depend on data

statistics. Our proposed techniques fill the gap.

12

For performance studies, we provide both comprehensive theoretical and experimental

analyses of the proposed algorithms. In theoretical analysis, we present the worst-case time

complexity and correctness proofs of proposed algorithms. In experimental analysis, we

present the studies of the proposed algorithms in comparison with the state-of-the-art

techniques. The results show that in most cases, our proposed techniques outperform

existing techniques.

1.5 Organization

The rest of the dissertation is organized as follows. Chapter II reviews the existing work

related to query processing for a cloud DBMS. Chapter III describes ReOpt, our proposed

technique for cloud database query re-optimization. Chapter IV describes ReOptML, our

proposed technique for supervising learning-based query re-optimization on cloud

databases. Chapter V describes ReOptRL and SLAReOptRL, our proposed techniques for

reinforcement learning-based query re-optimization on cloud databases. Chapter VI

presents the analytical results as well as the experimental results studying the performance

of our proposed techniques. Finally, Chapter VII provides conclusions and future research

directions.

13

CHAPTER II
LITERATURE REVIEW

The problem of query re-optimization has been studied in the literature. In the early days,

heuristics were used to decide when to re-optimize a query or how to do the re-

optimization. Usually, these heuristics were based on cost estimations which were not

accurate at the time when query re-optimization takes place. Besides that, sometimes, a

human-in-the-loop was needed in order to analyze and adjust these heuristics [24, 15].

These add additional overheads caused by query re-optimization to the overall performance

of queries. Unfortunately, these heuristic solutions can often miss good query execution

plans. More importantly, traditional query optimizers rely on static strategies, and hence

do not learn from previous experience. Traditional systems plan a query, execute the query

execution plan, and forget they ever optimized this query. Because of the lack of feedback,

a query optimizer may select the same bad plan repeatedly, never learning from its previous

bad or good choices.

2.1 Query Re-Optimization Algorithms for Cloud Database Systems

In this section, we present a brief survey of some of the query processing techniques on

cloud database systems that use re-optimization. These techniques are aiming to address

the problems of query processing on cloud database systems raised in Chapter I.

14

2.1.1 Rule-based Re-Optimization

Rule-based re-optimization techniques re-optimize the query execution plan based on one

or several human-determined rules. Whenever the monitored status of the query execution

meets the rule(s), the re-optimization is triggered.

In the early stage, progressing query optimization (POP) [18, 17, 15] is used. It detects

cardinality errors in the middle of execution. The actual runtime cardinality is compared to

the estimated cardinality. If there is a large difference between them, then the re-

optimization is triggered. This technique is originally designed for a centralized database

system. Later, Stillger et al. [2] have integrated this idea in the “LEO-DB2”, which is a

similar technique that re-optimizes queries on a cloud database system.

In these techniques, the inputs are a query q and a threshold t; they proceed as follows:

1. Query q is compiled and converted into a query execution plan P by an existing

query optimizer.

2. Plan P is sent to the execution engine and paused at some check points set by the

human. Usually, those check points are placed after certain types of query operator.

3. Data statistics are updated. The actual cardinality of each attribute in the

participated tables is checked. If the following holds,

|𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝑒 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝑐𝑎𝑟𝑑𝑖𝑛𝑎𝑙𝑡𝑖𝑦 − 𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝑒 𝑎𝑐𝑡𝑢𝑎𝑙 𝑐𝑎𝑟𝑑𝑖𝑛𝑎𝑙𝑖𝑡𝑦|

𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝑒 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝑐𝑎𝑟𝑑𝑖𝑛𝑎𝑙𝑡𝑖𝑦
> 𝑡

15

then the re-optimization is triggered, and the rest of the query execution plan is re-

optimized again by the same query optimizer.

Advantages:

 The actual data statistics are used to re-optimize the unfinished part of the query

execution plan. Also, cardinality change is an important indicator to tell whether

the rest of the query execution plan has the potential to be improved by re-

optimization.

 The re-optimization decision can be efficiently made as the decision-making only

depends on one rule.

Disadvantages:

 One main disadvantage about this technique is that the location of the check points

is still decided by a human. These check points might not align with the best timing

to do the re-optimization.

 Another disadvantage is that the threshold is fixed. Using a fixed value is very hard

to adapt this technique to a different application built on a dynamic environment.

2.1.2 Stage-based Re-Optimization

More recently, Bruno et al. [1] have proposed a query optimization method during the

query execution. The query execution is monitored and paused multiple times at the point

of one stage of the operators' finished execution. Those stages are determined by the query

16

optimizer. Similar to the previous algorithm, at each of the points, a new estimation of

executing the rest part of the query is made with statistics collected from the finished query,

and the rest of the query that has not been executed is adjusted with the new estimations.

The adjusted query applies more accurate estimations so that the query performance is

improved.

This technique accepts a query q as its input and proceeds as follows:

1. Query q is compiled and converted into a query execution plan P by an existing

query optimizer. Also, plan P is divided into different stages.

2. The first stage of operators is sent for execution. The actual data statistics are

collected and used to update the current data statistics.

3. The rest of the query execution plan is re-optimized using the updated data

statistics.

4. The current query execution plan is merged with the original query execution plan.

5. The next stage of the operators is continuously executed until all the operators are

executed.

Advantages:

 The re-optimization is triggered whenever one stage of operators finished

execution. By doing this, more re-optimization is triggered compared to the

previous algorithm.

17

 The query execution plan after re-optimization is combined with the original query

execution plan so that there are minimal changes in the original plan.

Disadvantages:

 The main disadvantage of this technique is that it heavily depends on the stage

divided by the query optimizer. If the optimizer fails to divide the stage well, the

actual timing of triggering the re-optimization still cannot be aligned with the best

timing to do the re-optimization

2.1.3 Sample-based Re-Optimization

Nikolay et al. [25] have proposed EARL, a query re-optimization technique specially

designed for the Hadoop system. It evaluates a sample size of stored data and adjusts the

cost estimation by the results of the sample evaluation. To process a sample-based re-

optimization, this technique takes query q, sample size w as input, and proceeds as follows:

1. Query q is compiled and converted into a query execution plan P by an existing

query optimizer.

2. The execution of plan P is converted into Jobs and the Jobs are assigned to Workers.

This process is determined by the Hadoop system.

3. After one Worker finishes execution, a selected data set sample of size w is

compared to the same data set before execution. A covariance function is used to

calculate the difference between distribution of the sample data set and the entire

data.

18

4. This difference is used to adjust the cost estimation and adjust the rest of the plan

P using the updated cost estimation.

Advantages:

 This technique uses the evaluation by one sample dataset to update the cost

estimation. It saves a large amount of time as getting the actual data statistics from

the entire data set is an expensive operation.

Disadvantages:

 Using a sample dataset saves time overhead, but it is not as accurate as getting the

actual data statistics from the entire data.

 The timing of re-optimization is fixed which only happens after one Worker

finishes execution. Again, by doing this, the timing of re-optimization may not be

aligned with the best timing of re-optimization.

Wu et al. [3] have proposed Sample, another query re-optimization algorithm that updates

data statistics estimated from a sample

 of tuples collected during the runtime. This algorithm takes Query q and sample size w as

input and proceeds as follows:

1. Query q is compiled and converted into a query execution plan P by an existing

query optimizer.

2. The first available operator in the query execution plan P is executed.

19

3. After a sample size w of tuples are processed, the cardinalities of the columns in

the table are updated by the cardinality of sample.

4. The rest of query execution plan P is re-optimized using the updated cardinality.

5. Steps 2 to 4 are repeated until all the operators finish.

Advantages:

 The time of updating data statistics is short because the query optimizer only

needs to update the data statistics collected from a sample dataset.

Disadvantages:

 In this algorithm, the query re-optimization only utilizes the updated

cardinalities. Other data statistics, such as average tuple size, histogram, and the

number of tuples, are not updated. Using partial data statistics in query re-

optimization may still produce a sub-optimal query execution plan.

2.1.4 Resource Provisioning-based Query Re-Optimization

Costa et al. [7] have proposed a query re-optimization algorithm that focuses on resource

provisioning. There are different types of nodes in the system. The algorithm sends parts

of the query to a node of one type and measures the tuple read rate, which estimates time

in seconds for the node to process a quantity of tuples. If the tuple read rate exceeds its

estimated value, the next part of the plan is sent to a node of another type.

20

Advantages:

 This algorithm also considers SLA violation when selecting the type of node to

execute a query.

 This algorithm can be built on an existing query optimizer without modification.

Disadvantages:

 This algorithm only re-optimizes the hardware resource allocation; it does not

adjust the query execution plan.

2.2 Query Re-Optimization Algorithms for Cloud Database Systems Using

Machine Learning Techniques

In Section 2.1, query re-optimization algorithms without machine learning techniques are

surveyed. Although the query execution plans are improved after re-optimization using the

surveyed techniques, they still suffer from different problems. One major problem is that

they rely on human-tuned heuristics for different purposes. To help improve the accuracy

of re-optimization and reduce the overhead of doing re-optimization, machine learning

techniques are adapted to query re-optimization. In the following sections, several query

re-optimization algorithms using machine learning techniques are surveyed.

2.2.1 Re-Optimization Using a Reinforcement Learning Model

In this section, several query re-optimization algorithms using reinforcement learning

algorithms are surveyed. Reinforcement learning is an online model and does not require

21

any training dataset. It can learn to improve query processing by running more queries

through trials and errors.

2.2.1.1 SkinnerDB

Trummer et al. [5] have proposed an algorithm using the regrets-bounded model to adjust

the join order of the query execution plan. This algorithm also re-optimizes the query

execution plan in the middle of query execution. After a batch of tuples is executed for a

join operator, the table that the next batch of tuples joins is adjusted based on the decision

made by the model. The choice is evaluated by a reward and this reward is used to adjust

the model. By doing this, this model becomes more accurate with more execution of the

join operator. This algorithm receives a query q and tuple batch size b as input. Notice that,

in this technique, the query q must be an SJP query. This algorithm then proceeds as

follows:

1. Query q is compiled and converted into a query execution plan. This plan is

executed till the Join operator.

2. Using the Upper Confidence Bounds for Trees (UCT) to pick the first two tables A

and B that participate in the Join. UCT is an algorithm that applies bandit ideas to

guide Monte-Carlo planning [26].

3. The Join operator executes the first batch size b of tuples from table A and pauses.

4. The Reward (Regrets) is computed for this execution.

5. Using the UCT algorithm again to select the next table to participate in the Join for

the next batch size of tuples.

22

6. Steps 1 to 5 are repeated until all the tuples are joined.

Advantages:

 This technique can adjust the Join order at a fine granulated level. The Join order

is adjusted after a batch size of tuples is executed. This means more tuples benefit

from the optimal Join order.

 Using the UCT algorithm guarantees that there is both exploitation and exploration

when searching for the next table to be joined.

Disadvantages:

 This technique can only optimize SPJ queries and assumes all the joins are left-

deep joins. It cannot deal with more complex query types and bushy joins.

 Only the Join order is optimized. The other part of the query execution plan and

the resource provision is not included in this algorithm.

2.2.1.2 ReJoin

Marcus et al. [6] have proposed a technique that uses deep reinforcement learning to re-

optimize queries. In this technique, a query is encoded with a one-hot vector and is then

sent to a deep neural network (DNN). The output of the DNN produces a probability

distribution over potential action. Those actions are choosing which tables to participate in

the join. A reward is also calculated after the selected action is performed. This reward is

23

sent back to improve the DNN. Given a query q and available relations {r1, r2, r3……rn} as

input, this technique proceeds as follows:

1. Query q is compiled and converted into a query execution plan P by an existing

query optimizer.

2. The Join operator in the query execution plan P is then converted into a one-hot

vector form which is called the state matrix m. This state matrix m uses a special

format to present the attributes from different relations that participate in a Join

operation.

3. The state matrix m is sent to the reinforcement learning model to decide the next

action that the query optimizer should take. In this technique, the model is a deep

neural network (DNN), and the actions are the potential join orders that the query

execution plan would take.

4. Each action is evaluated and an argmax function is used to select the best action.

5. The execution engine performs the selected action and gives feedback through the

reward. In this technique, the reward for every non-terminal state (a partial

ordering) is zero, and the reward for an action arriving at a terminal state Sf (a

complete ordering) is the reciprocal of the cost of the join.

6. This reward is also used by the DNN to adjust the weights.

Advantages:

24

 The Join order optimization is independent of the query optimizer. The

reinforcement learning model decides the join order. The join order is better than

the one optimized by the original query optimizer if the model is well trained.

 The traditional query optimizer does not learn from past queries because it lacks

feedback. Thus, a bad query execution plan might be chosen repeatedly. This

technique addresses this issue.

Disadvantages:

 Still, this technique only focuses on join order enumeration. The other types of

query operators and resource provision optimization are not investigated.

2.2.1.3 CuttleFish

Kaftan et. al [4] have proposed a technique that uses a reinforcement learning model to

tune the join operator. In this technique, the multi-armed bandit (MAB) model is used to

decide the best physical operator to implement the join. This technique takes query q as

input and proceeds as follows:

1. Query q is compiled and converted into a query execution plan P by an existing

query optimizer.

2. The query execution plan P is executed and is paused if a join operator is

encountered.

25

3. The Multi-armed bandit (MAB) model is used to decide the best physical operator

of this join. Inside MAB, instead of using ε-greedy, Thompson sampling randomly

chooses arms according to the likelihood that they have the highest expected

reward.

4. This join is then executed using the selected physical operator.

5. The execution of query execution plan P continues until the next join operator is

encountered.

6. Steps 2 to 5 are repeated until the execution of query execution plan P finishes.

Advantages:

 This algorithm does not require updated data statistics for choosing the best

physical join operator.

 Adapting Thompson sampling to this algorithm guarantees that the action with a

high reward is selected.

Disadvantages:

 This algorithm only focuses on selecting the best physical operator of join. Other

types of query operators and resource provision optimization are not investigated.

Table 1 presents a feature comparison of the query re-optimization techniques for cloud

database systems reviewed in Chapter II. A cell containing the word “Yes” means that

the technique referred to in that row addresses the issue listed as the header of that

26

column, and a cell containing “No” means the technique does not address the

corresponding issue.

2.3 Summary

In this chapter, we surveyed existing query re-optimization techniques in cloud DBMS. As

shown in Table 1, none of the surveyed techniques addresses all the issues. In particular,

none of the surveyed techniques has considered query response time, monetary cost, and

SLA violation simultaneously, and none of them can predict whether a re-optimization is

beneficial before conducting it. Additionally, only ReJoin [6] and SkinnerDB [5] do not

require updated data statistics and ReJoin [6] re-optimizes queries in offline mode.

Moreover, ReJoin [6], Cuttlefish [4], and SkinnerDB [5] do not target re-optimizing the

whole query execution plan and the technique proposed by Stillger et al. [2] still needs

human interference. To fill the gaps in the literature, we introduce our four algorithms in

the next four chapters. First, in Chapter III, we introduce ReOpt, the first query re-

optimization algorithm in cloud DBMS that considers both query response time and

monetary costs. Then, we introduce ReOptML to address the issue of deciding whether re-

optimization is beneficial in Chapter IV. Finally, we introduce ReOptML to address the

issue of depending on updated data statistics in query re-optimization and SLAReOptRL

to consider SLA violation in Chapter V.

27

Table 1. Feature comparison of the query re-optimization techniques for cloud database systems

 Multi-objectives

Requiring
Updated

Data
Statistics

Deciding
Whether Re-
Optimization
is Beneficial

Processing
Mode

End-to-End
Query

Optimization

Without
Human

Interference
Time Money SLA

Stillger (2003) [2] Yes No No Yes No Online Yes No

Bruno (2013) [1] Yes No No Yes No Online Yes Yes

EARL (2012) [25]

&Sample (2016) [3]
Yes No No Yes No Online Yes Yes

Costa (2016) [7] Yes No Yes Yes No Online Yes Yes

CuttleFish (2018) [4] Yes No No Yes No Online No Yes

SkinnerDB (2018) [5] Yes No No No No Online No Yes

ReJoin (2018) [6] Yes Yes No No No Offline No Yes

ReOpt (2018) [21] Yes Yes No Yes No Online Yes Yes

ReOptML (2020) [22] Yes Yes No Yes Yes Offline Yes Yes

ReOptRL (2021) [23] Yes Yes No No Yes Online Yes Yes

SLAReOptRL (2021) [23] Yes Yes Yes No Yes Online Yes Yes

28

CHAPTER III
A PROPOSED QUERY RE-OPTIMIZATION ALGORITHM FOR

CLOUD DATABASE SYSTEMS (ReOpt)

Most of the existing database query optimization techniques are designed to target

traditional database systems with only one optimization objective. These optimization

algorithms are not suitable for cloud database systems. Users will take both query response

time and monetary cost paid to the cloud service providers into consideration for selecting

a database system product. Thus, query optimization for cloud database systems needs to

target reducing monetary cost in addition to query response time. This means that query

optimization is more challenging than one objective found in traditional algorithms.

We present a novel stage-based query re-optimization algorithm for cloud database systems

(ReOpt) in the following sections of this chapter. In Section 3.1, the motivation of ReOptL

is introduced. In Section 3.2, the overview of ReOpt is given. In Section 3.3, we present

the details of ReOpt.

3.1 Motivation of ReOpt

Query optimization on a cloud database differs from optimization on a traditional

distributed database for several reasons. First, a cloud database is provided to the user via

a leasing service with several options of payment. The user would need to take the

monetary cost paid to the cloud service provider for query processing into consideration

on top of the query response time. While in traditional database query optimization, the

monetary cost is usually negligible because the infrastructure configuration is fixed, and

29

the monetary cost is paid up-front. Thus, in the usage of a cloud database system, the user

can provide both the query response time limit and monetary budget of a query, which are

defined as User Constraints. Query optimization becomes multi-objectives to satisfy

multiple user constraints. Secondly, a cloud database is elastic. Cloud service providers

provide a finite pool of virtualized on-demand resources. Similarly, users can decide the

number and types of containers on which they would like to run their queries, and they can

change the combination of container types over time. If users select more containers or

more powerful containers, the time cost of the query execution may decrease, but the

monetary cost may increase. That is, the time cost often contradicts the monetary cost.

Query optimization on cloud databases should balance both time and monetary cost so that

the users can obtain the result of the query with all the user constraints being satisfied. So,

cloud database systems are responsible for providing the users with a feasible query

optimization solution to deliver the query results that satisfy the user constraints as well as

minimize the multiple costs of query execution. Besides that, the time and monetary costs

needed to execute a query are estimated based on the data statistics that the query optimizer

has available when the query optimization is performed. These statistics are often not

accurate, which may result in inaccurate estimates for the time and monetary costs needed

to execute the query. Thus, the query execution plan (QEP) generated before the query is

executed may not be the best one. Adaptively optimizing the QEP during the query

execution to employ more accurate statistics will yield better QEP selection, and thus will

improve query performance. There are some existing techniques that address part of these

issues, which is that the selected QEP is suboptimal. However, they do not optimize queries

30

based on both time and monetary costs and do not take adaptive optimization into

consideration [27].

Optimizing a query in a cloud database environment requires an important consideration.

Since the query will be executed on multiple nodes, one must consider how to allocate

computational resources optimally as there is an infinite number of workload/node

combinations. However, not all allocation solutions are feasible. Users will have query

constraints, and resource allocation will influence performance. Thus, optimal resource

allocation becomes a problem, known simply as the scheduling problem. A scheduling

algorithm is also applied for resource allocation on cloud systems. Besides that, good data

statistics are critical to deriving a good schedule. They will affect the overall performance

of query execution as a sub-optimal query execution schedule will be produced by the

optimizer if data statistics are erroneous. An effective schedule is based on accurate cost

calculations of the tasks to be scheduled. It would be beneficial if we could use the actual

runtime query statistics instead of their estimates in the query optimization process. This

is because estimates may not be as accurate as the actual running statistics. However,

existing techniques [28, 29] either focus on optimizing queries based on only time, which

is not sufficient for cloud database environments or do not consider query re-optimization

for more accurate statistics.

31

3.2 Overview of ReOpt

In this technique, a regular query optimizer first generates an initial QEP. Then this QEP

will be divided into stages and executed by the execution engine stage by stage. After

finishing each stage, the data statistics will be updated. These statistics include the

cardinality, selectivity, and max and min values for each attribute in each database table.

By updating these statistics, the estimation of the resulting data size used in the next stages

will be updated accordingly. The rest of the stages in the QEP are also sent to the query

optimizer for re-optimization using the updated statistics. Three things are required to be

submitted to the system by the user: a query, a time constraint, and a monetary cost

constraint. Our adaptive optimization algorithm (ReOpt) presented in Figure 2 is the main

framework that gives an overview of how the query is processed. Algorithm 1 in Figure 2

will call the algorithms in Figures 3 and 4. Algorithm 2 in Figure 3 describes how the

containers are assigned to execute the QEP and Algorithm 3 describes how each schedule

is optimized individually.

3.3 Details of ReOpt

As we can see in Figure 2, the user submits a query and the time and monetary cost

constraints for finishing the query. In Line 1, the query is compiled into a query optimizer

tree. This tree contains all the physical operators needed to process the query. Line 2 shows

that these operators are grouped into different stages. The operators that do not require the

results from their previous operators can be grouped. In Line 3, the Optimizer_Tree is

processed one stage at a time. In Line 4, a stage is mapped to a DAG according to their

32

dependencies in the Optimizer_Tree. In Line 5, Algorithm 2 is called to generate an initial

schedule which is optimized by Algorithm 3 in Line 6. The result is then obtained by

executing all the operators in the current stage according to the Optimized_Schedule. The

finished operators in the current stage are then eliminated from the Optimizer_Tree. The

process from Line 3 to Line 9 is repeated for each stage until all the stages are finished and

the result is returned to the user. The following paragraph explains how to find an optimized

schedule and illustrates the cost-reducing re-optimization process of this schedule. To better

illustrate the idea, we provide a running example.

SELECT Department, count(Name)
FROM STUDENT
GROUP BY Department
WHERE Grade <=‘C’;

Suppose we execute the above query, and the user constraints are as follows: the query

response time must be less than 2 minutes, and the monetary cost must be less than $30.

Assume that each container costs $0.1 per second. The database table STUDENT is stored

in 3 separate locations. Each table has three columns, Name, Department and Grade, and

each of the three tables contains 65,000 rows of data. The first step is converting the query

to the optimized operator tree like in traditional database systems. The query optimizer

groups these operators including TableScan, Filter, Sort, Aggregation, Merge, and Partition

into different stages. After the stages are formed, the first operator TableScan will be

executed on 3 data partitions in parallel on 3 different containers and the allocation of

containers is decided by the Algorithm 2. In Algorithm 2, the execution time of each

operator executed on each container is first estimated. Then, from Line 6 to Line 9, a set of

33

candidate containers are found for the next operator that has no dependencies. These

candidate containers are the ones that the operation execution time estimate satisfies the

user time constraint. From Line 13 to 17, this operator will be assigned to the container

which has the shortest estimation time. This assignment is then added to the schedule with

its current timestamp as the starting time. The current timestamp plus the estimating

execution time is added as the ending time.

Figure 2. Query processing using ReOpt

Algorithm 1: ADAPTIVE OPTIMIZATION (ReOpt)

INPUT:
Sql: query
CONS: two-dimensional variable containing time and money constraints.
C: a set of containers each of which has the percentage of the current CPU usage and the network bandwidth.
P: unit price of leasing one container.
Min_value: a loop control parameter.
Iter_limit: a pre-defined variable.
OUTPUT:
Result: the result of the query.

1. Ops  compile query Sql to get its set of compiler-generated operators
2. Optimizer-Tree  generate a multi-staged optimizer tree from the set of operators Ops
3. for each stage in the multi-staged Optimizer-Tree
4. G  map the stage in Optimizer-Tree to form a dataflow graph
5. Initial-Schedule  call function DISPATCH (G, C, CONS) to assign operators to containers to

form the initial schedule
6. Optimized-Schedule  call function OPTIMIZE (Initial-schedule, CONS, Min_value,

Iter_limit, P) to find the optimized schedule for the initial schedule
7. Result  execute the current stage of Optimized-Schedule
8. Optimizer-Tree  Eliminate the finished operators from the Optimizer-Tree
9. Update constraints and data statistics
10. end for
11. return Result

34

Algorithm 2: DISPATCH

INPUT:
G: the dataflow graph.
C: a set of containers.
CONS: two-dimensional variable containing time and money constraints.
OUTPUT:
SG: Schedule with assignment of operators to container.

1. SG. assigns  Ø
2. ready  {operators in G have no dependencies}
3. for all operators in dataflow graph G
4. estimation_duration  {estimate execution time of each operator}
5. end for
6. while ready! = Ø do
7. n  {Next operator to assign}
8. candidates  {containers that assignment of n satisfy CONS}
9. if candidates = Ø then
10. return ERROR
11. else
12. C  {the container which has minimum time cost if this operator run on this container}
13. Assign (n, C)
14. ready  ready - {n}
15. ready  ready + {operator that have no dependencies}
16. start_time  {current timestamp}
17. SG.assigns  SG.assigns + {assign (n, c, start_time, start_time+estimation_duration)}
18. end while
19. return SG

Figure 3. Dispatch function

35

Figure 4. Optimization function

Algorithm 3: OPTIMIZE (OPT)

INPUT:
Initial_schedule: a schedule to be optimized.
Cons: a two-dimensional variable containing time and money constraints.
Minimum value: a loop control parameter.
Iteration_limit: a pre-defined variable.
P: unit price of leasing one container.
OUTPUT:
SG: an optimized schedule with estimated time and money costs that satisfies the constraints

1. old_schedule  Initial_schedule
2. old_cost  GET_COST (old_schedule, P)
3. while T is greater than Minimum value
4. while i is less than Iteration_limit
5. new_schedule  {find a neighbor schedule of old_schedule}
6. new_cost  GET_COST (new_schedule, P)
7. if new_cost dominates old_cost a new_cost satisfies Cons
8. add the new_schedule to the schedule space
9. old_schedule  new_schedule

 else
10. ap  {calculate the acceptance probability with old_cost, new_cost and T}
11. if ap is greater than a multi-dimension value in every dimension
12. old_schedule  new_schedule
13. end if
14. end if
15. i++
16. end while
17. reduce the value of T
18. end while
19. return SG  {select a schedule from the schedule space}

FUNCTION: GET_COST (Schedule, P)

INPUT:
Schedule: a schedule needs to be evaluated for the cost.
P: unit price of leasing one container.
OUTPUT:
Cost: a two-dimensional variable contains time and monetary costs of the input schedule.

1. Cost.time  Ø
2. Cost.money  Ø
3. for each assignment A in Schedule
4. if A.tend is the largest timestamp
5. Cost.time  A.tend
6. end if
7. Cost.money  Cost.money + (A.tend - A.tstart) * P
8. end for
9. return Cost

36

This process keeps repeating until all the operators in the DAG have been assigned. Since

this schedule is not optimized yet, it is called the initial schedule. One initial schedule looks

like the following:

initial_schedule =

{

Assign(𝑆𝑂𝑅ଵ
ଵ,c1,12.3,75)

Assign(𝑇𝑆ଵ
ଵ,c1,0,12.3)

Assign(𝑇𝑆ଶ
ଵ,c2,0,65)

Assign(𝑆𝑂𝑅ଶ
ଵ,c3,12.3,65)

Assign(𝐹𝐼𝐿ଵ
ଵ ,c1,75,75.05)

Assign(𝐹𝐼𝐿ଵ
ଵ ,c2,75,75.05)

}

where Assign(𝑆𝑂𝑅ଵ
ଵ,c1,0,75) means the sort operator 𝑆𝑂𝑅ଵ

ଵis assigned to be executed on

container 1, the estimated starting time is 0 and the estimated ending time is 75. This initial

schedule may not meet the constraints, so it will then be optimized by the simulation

annealing algorithm [30] presented in Algorithm 3. This creates an optimized schedule that

satisfies user constraints. The following is an example of an optimized schedule. We can

see that the assignment of 𝑇𝑆ଵ
ଵ is changed from c1 to c3

optimized_schedule = {

Assign(𝑆𝑂𝑅ଵ
ଵ,c1,12.3,75)

Assign(𝑇𝑆ଵ
ଵ,c3,0,12.3)

Assign(𝑇𝑆ଶ
ଵ,c2,0,65)

Assign(𝑆𝑂𝑅ଶ
ଵ,c3,12.3,65)

Assign(𝐹𝐼𝐿ଵ
ଵ ,c1,75,75.05)

Assign(𝐹𝐼𝐿ଵ
ଵ ,c2,75,75.05)

}

37

From the optimized schedule above, we obtain the estimated total time for executing the

query as 75.05 as the last operator finished at 75.05 seconds and the monetary cost is

calculated by each container cost $0.1 per second which is

ቆ
$0.1

𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑟 ∗ 𝑠
ቇ (75.05 𝑠)(3 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑟𝑠) = $22.515

After the completion of a stage, the statistics are updated with the new statistics collected

from the finished stage. The user's constraints will be adjusted to reflect the remaining

constraints for the unfinished stages. Each new constraint is computed as follows:

New Constraint = Old Constraint − (Elapsed Cost + Overhead)

where the Elapsed Cost is the accumulated actual time and monetary cost of all the

previously executed stages and the Overhead is the overhead of collecting the new statistics

and updating the estimations. For example, after the execution of Stage 1, we update the

constraints first as follows:

𝑁𝑒𝑤 𝑇𝑖𝑚𝑒 𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 = 120 𝑠 − (75.05 𝑠 + 0.01 𝑠) = 44.94 𝑠

𝑁𝑒𝑤 𝑀𝑜𝑛𝑒𝑦 𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 = $30 − ($22.515 + $0.003) = $7.482

Then we update the operators in the unfinished stages with the new statistics gathered from

the completed stages. For example, the actual data size after executing the FIL operators in

Stage 1 is lower than the estimated data size before the query is executed. Then, the number

of containers needed to execute the AGG operator in Stage 2 is reduced; accordingly,

otherwise, the number of containers used in Stage 2 is not updated and there will be some

wasted containers. In our example, the number of containers needed to execute Stage 2 is

38

reduced from 2 to 1. Thus, the total monetary cost is reduced. Using the same procedure,

this AGG operator will still be sent to the scheduler to be optimized and executed.

An optimized schedule of Stage 2 is:

optimized_schedule=

{

Assign(𝐴𝐺𝐺ଵ
ଶ,c1,75.05,75.10)

}

Suppose the time cost of finishing the AGG operator is 0.05 sec. In the original schedule,

the monetary cost of finishing Stage 2 is

(2 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑟𝑠) ቆ
$0.1

𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑟 ∗ 𝑠
ቇ (0.05 𝑠) = $0.01

and after the query re-optimization, even the time remains unchanged, but the monetary cost

becomes

(1 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑟) ቆ
$0.1

𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑟 ∗ 𝑠
ቇ (0.05 𝑠) = $0.005

For this partial query, the monetary cost is halved. This will benefit the total time cost as

well as the monetary cost of the whole query execution plan. Such savings are substantial

considering the high number of queries issued in many real-world applications.

3.4 Summary

In this chapter, we presented the query re-optimization algorithm, ReOpt. In this algorithm,

39

after one query operator or a stage of query operators has been executed, the updated data

statistics are used by the query optimizer to re-optimize the remainder of the query execution

plan, considering both query response time and monetary cost. In the next chapter, to reduce

unnecessary query re-optimizations, we propose the second algorithm, ReOptML.

40

CHAPTER IV
A PROPOSED MACHINE LEARNING BASED QUERY RE-

OPTIMIZATION ALGORITHM (ReOptML)

In cloud environments, hardware configurations, data usage, and workload allocations are

continuously changing. These changes make it difficult for the query optimizer to select an

optimal query execution plan. To optimize a query with more accurate cost estimation,

performing query re-optimizations during the query execution has been proposed in the

literature [18]. However, some of the re-optimizations may not provide any gain in terms

of query response time or monetary costs, which are the two optimization objectives for

cloud databases, and may also have negative impacts on the performance due to their

overheads. This raises the question of how to determine when a re-optimization is

beneficial. In this chapter, we present a technique that uses machine learning-based re-

optimization that executes a query in stages, predicts whether a query re-optimization is

beneficial after a stage is executed, and invokes the query optimizer to perform such re-

optimization automatically.

We present ReOptML in the following sections of this chapter. In Section 4.1, the

motivation of ReOptML is introduced. In Section 4.2 and Section 4.3, the overview and

details of ReOptML are given.

41

4.1 Motivation of ReOptML

One key difference between query optimization in cloud databases and in conventional

databases is that query optimization in cloud databases seeks to reduce the monetary cost

paid to cloud service providers in addition to the query response time. The time and

monetary costs needed to execute a query are estimated based on the data statistics

available to the query optimizer at the moment when the query optimization is performed.

These statistics are often approximate, which may result in inaccurate estimates for the

time and monetary costs needed to execute the query [14]. Thus, query execution plans

generated before query execution may not be the best.

 One approach that can be applied to address the previously mentioned issue is adaptive

query processing [15]. This strategy consists of not executing queries as a whole at one

time, but instead dividing the execution of each query into multiple stages and then re-

running the query optimizer after each stage is executed. By doing this, the query optimizer

can collect more accurate statistics in-between stage executions, which may allow for

changing the QEP at runtime, thus possibly improving query performance [18]. Operators

that do not rely on the completion of others are grouped and such groups are called

“Stages”. For example, if a QEP has a join operator, its left and right sides are each

executed in a separate stage. After the completion of each stage of the QEP, the data

statistics are updated, so that the query optimizer can make use of the latest statistics to

generate improved (i.e.re-optimized) QEPs for those stages that remain to be executed. As

a result of query re-optimization, the QEPs of stages that have not yet been executed may

42

change because the operators in these QEPs might be replaced by others, or because any

stage might be re-scheduled to run on a different machine. Such changes in QEPs might

produce different query response times and different monetary costs. However, calling the

query optimizer multiple times during query execution has an associated time overhead,

which in turn produces additional monetary costs. For this reason, it is desirable to re-

optimize a query only if the cost improvements of the re-optimized QEP over the original

QEP can offset the cost incurred in calling the optimizer multiple times.

At any given stage of the execution of a query, deciding if a re-optimization will likely

bring performance improvements is not an easy task. In early work [19], such a decision is

made by a rule-based heuristic. Several check points are placed manually between a certain

type of operator. The difference between the estimated cost and the actual cost of executing

the query after a check point is reviewed. If such difference exceeds a pre-defined

threshold, then re-optimization takes place. The problem with this technique is that the rule

of placing check points and the threshold is fixed. Due to the dynamic of the cloud

environment, the timing of re-optimization decided by this technique is not accurate

enough to reduce the query execution time. The work in [1] presents a query processing

algorithm that performs query re-optimization after the completion of each stage. However,

that work shows that many of these re-optimization calls produced no change in the

underlying QEP, which means that the query re-optimization was performed unnecessarily.

This was because the stages were not aligned with the best timing to apply the re-

optimization. For example, after running the example Query 1 given in Section 6.2.4.1, we

43

observed that out of the 10 times that the optimizer was called for re-optimization during

the execution of this query, only 2 out of these calls changed the QEP for the remaining

stages; Therefore, the majority of the re-optimization calls produced no improvement on

either the time or the monetary cost.

Naturally, calling the re-optimization routine unnecessarily increases both the query

response time and monetary cost. The problem, therefore, lies in determining the most

appropriate time when to call for re-optimization, and in determining those occasions

where re-optimization can negatively impact query performance. To address this problem,

this chapter presents a new machine learning-based algorithm for query re-optimization in

the cloud. The key idea behind this algorithm consists in using past query executions to

learn to predict the effectiveness of query re-optimizations, and this is done to help the

query optimizer avoid unnecessary query re-optimizations for future queries. While

machine learning has been used to improve query processing in recent work, such as [31,

32], they have not been used to avoid unnecessary query re-optimization calls in adaptive

query processing.

Among the issues that need to be addressed when using machine learning for this purpose

are the following. The first one consists of the many features that influence query cost

estimations, such as selectivity, cardinality, min and max values of a column, the most

frequent value of a column, histogram, etc. The difficulty here lies in selecting the most

44

appropriate subset out of all these features. The second issue consists of the large space of

possible machine learning models.

4.1.1 Supervised Learning-based Algorithms for Query Re-Optimization

Supervised learning algorithms like Random Forest and Support Vector Machine [33] are

suitable but need to be used correctly. The common issue of using a machine learning model

is about the collection of the historical data on the selected subset of features that are needed

to train the prediction model constructed using the selected machine learning algorithm.

Specifically, for supervised learning models, the training data also need to be labeled.

Labeling this data requires a lot of efforts and sometimes this task is not doable when the

size of the dataset is large.

4.1.2 Unsupervised Learning-based Algorithms for Query Re-Optimization

To avoid the effort that needs to be put into data labeling, unsupervised learning-based

models are used, such as clustering and neural network. In those models, they allow the

model to work on its own to discover information that was previously undetected, and they

deal with the unlabeled data. However, the problem of applying an unsupervised learning

model is that the user still needs to define the classes after the data is sorted into some pattern

and also the accuracy of using an unsupervised learning model is lower than using a

supervised learning model [33].

45

Thus, measuring the effectiveness of the learning algorithm becomes a research problem.

Some works such as [27] show the learning algorithm is effective for their own purposes,

such as improving the cost estimation, but not all of them are effective in actual query

execution performance. The selection of the machine learning model in this algorithm is

discussed in Section 4.3.

4.2 Overview of ReOptML

To provide more details to support our motivation for the work proposed in this chapter, in

this section we report the findings we obtained when performing query re-optimization

without using machine learning. We discovered that query re-optimization can enable the

optimizer to select better physical operators to execute the QEP and select better hardware

configurations to execute the QEP (such as the number of containers and the type of

containers). Also, in our system, multiple machines with different hardware configurations

are used in parallel to execute query operators. Our best QEP considers not only the query

response time but also the monetary cost. In order to take both of them into consideration,

we use the Normalized Weighted Sum Model [34] to select the best plan. The idea is that

every possible QEP alternative is rated by a score that combines both the objectives, time,

and monetary costs, with the weights defined by the user and the environment for each

objective, and the user-defined acceptable maximum value for each objective. The

following function is used to compute the score of a QEP:

46

 (1)

𝑎௜௝ is the value of alternative i (QEPi) for objective j, 𝑚௝ the user-defined acceptable

maximum value for objective j, and 𝑤௝ the normalized composite weight of user and

environment for objective j is defined as follows:

 (2)

where uwj and ewj describe the weight of the user and the environmental weight for objective

j, respectively. The user weight is from the user’s input. Since the different objectives are

representative of different costs, the algorithm chooses the alternative with the lowest score

to minimize costs.

These optimizations are beneficial for improving either the overall query execution time or

the monetary cost or both. In our experiment query, which is Query 1 shown in Section

6.2.4.1, there is a join of two subqueries. The data size of each subquery is unknown. We

want to see how the physical operator of this join will change depending on the data size of

the subquery. So, we purposely make the data size of the right side of the join operator small

enough to fit in the cache. As a consequence, the Shuffle Join operator is changed to the

Broadcast Join operator only after the re-optimization. Broadcast Join is executed around

40% faster than Shuffle Join in our experiments. The results show that using re-optimization

𝑤௝ =
𝑢𝑤௝ ∗ 𝑒𝑤௝

∑(𝑢𝑤 ∗ 𝑒𝑤)

𝐴௜
ௐௌெି௦௖௢௥௘ = ෍ 𝑤௝

𝑎௜௝

𝑚௝

௡

௝ୀଵ

47

has approximately 20% improvement on average in terms of the overall time cost over using

no re-optimization, while the monetary costs of the two approaches are close, with only a

4% difference. This increase in monetary cost is because the more powerful containers that

are selected to run the query are the containers that charge more hourly.

If the query is re-optimized only when such changes can be guaranteed, there will not be

any unnecessary re-optimization. To detect such changes, in the next section, we present a

new machine learning-based technique to predict if a QEP will change after a re-

optimization based on the historical query execution data is performed.

In the next section, the four parts of this algorithm are presented: feature selection, training

data collection, machine learning model selection, and the query processing algorithm that

integrates with the machine learning-based re-optimization to optimize query response time

and monetary cost.

4.3 Details of ReOptML

Figure 5 shows the major steps of our proposed ReOptML algorithm. First, the optimizer

receives a query and records the current data statistics. Then the query is compiled into a

QEP with the stage information. The first stage in the QEP is executed and removed from

the QEP. During execution, the data statistics are monitored and updated. After the

execution of the first stage, these updated data statistics are compared with the current data

statistics that were recorded before the stage was executed. The supervised learning model

is used here to make the difference between the current data statistics and the new data

48

statistics as input and record the re-optimization decision (“YES” or “NO”) as output. The

query is re-optimized if the decision is “YES” and the current first stage in the new QEP

after the re-optimization is executed; otherwise, if the decision is “NO”, the QEP remains

the same and its next stage is executed. This procedure continues until there is no stage left.

The changes in a QEP after a re-optimization implies such re-optimization is beneficial. We

define such changes occurred on a QEP if at least one of the following occurs: 1) changes

in the physical operator types, 2) changes in the number of containers, or 3) changes in the

types of containers. This means that if any of these three changes occurs, then re-

optimization should take place.

1) A change in the physical operator types means that if there exists any physical

operator in the current QEP that is different from the physical operators in the

Figure 5. Query processing using ReOptML

49

previous QEP, then the QEP has changed. For example, in our previous experiments,

the change in the physical operator from Shuffle Join to Broadcast Join is defined as

a change in the physical operator types. This change highly influences query

execution time. Thus, by detecting such changes in the QEP after a re-optimization,

this re-optimization will probably be beneficial, and thus the re-optimization will be

applied if a similar situation is encountered.

2) A change in the number or types of containers means that the total number of

containers used to execute the current QEP is different from that of the previous

QEP. Such changes are also called changes in the degree of parallelism. For

example, the TableScan operator is assigned to four containers before the re-

optimization and uses only three containers after the re-optimization. This change

highly influences the monetary cost of query execution. Thus, such re-optimization

becomes useful if such changes are detected.

3) Similarly, a change in the types of containers means that after the re-optimization,

the operators are assigned to different types of containers than the ones that the

operators were assigned to before the re-optimization. These new containers may

be more or less powerful than the old ones. Detecting such changes may influence

the monetary cost as well.

The above three changes occur whenever the estimated data size has also changed. This is

because the query optimizer uses these estimations to decide how to execute the query and

50

how many containers should be used. Thus, in order to tell whether the re-optimization will

be beneficial, we use the data features that are relevant to the changes in data size estimation.

Assume that in the current DBMS, there exist the C1, C2, …, Cn columns in all the tables.

The differences in the selectivity (DIFF_SELECTIVITY), in the number of distinct values

(DIFF_NDV), and in the histograms (DIFF_HISTOGRAM) of each column before and

after a stage is executed are used as the data features in the training data used for prediction.

The binary value YES/NO is used as the predicted class in the training data, where YES

means that the re-optimization is predicted to be useful and NO otherwise. Many works

show that the selectivity, the number of distinct values, and the histogram influence the data

size estimation [13, 35]. Thus, the differences in these three features before and after a stage

is executed result in changes in the data size estimation of the intermediate results. Hence,

they become relevant in deciding the effectiveness of re-optimization. This model is

applicable to the database system which has these features available.

51

4.3.1 Training Data Collection and Feature Selection

 Figure 6. The procedure for collecting training data

First, we collect the training data by running random queries generated from all 22 types of

queries in the TPC-H benchmark [36] on our system and recording the data statistics, which

are the values of the features we have selected in Section 4.3.1. This way the prediction

model can be applied to all queries. If re-optimization is only for the costliest/most

representative queries, then in this first step, the training data should be collected from

running only the random but most costly/representative queries.

Figure 6 shows the procedure of the training data collection. In order to better explain in

detail how the training data is collected, we demonstrate an example of executing the

SELECT Department, COUNT(Name)
FROM STUDENT
GROUP BY Department
WHERE Grade <= ‘C’

Figure 7. Sample query

52

following sample query shown in Figure 7. After the query is submitted, we record the

current data statistics gathered from the system logs. These current statistics are called

Statcurr. Then, the query is sent to the optimizer to generate a QEP. This QEP includes the

stage information and the nodes on which these stages will be executed. Figure 8 shows the

QEP generated by the query optimizer for the sample query. In Figure 8, each node stands

for a query operator. The arrows indicate the data flow between the operators. The QEP is

divided into stages, each of which is denoted by a rectangular. TS, SOR, FIL, and AGG

stand for TableScan, Sort, Filter, and Aggregate operators, respectively. In a cloud database

system, as data are distributed among different containers, the subscripts distinguish the

same operators that are executed in parallel on different data on different containers.

Figure 8. QEP is divided into different stages after being compiled from the query

53

Table 2. List of selected features

4.3.2 Machine Learning Model Selection

There exist a lot of machine learning models, but we need to choose a model that has high

accuracy in predicting if a re-optimization is beneficial and incurs smaller overheads than

the amounts of query execution time and monetary cost that it can save by avoiding

unnecessary re-optimizations. The overheads incurred by a prediction model include the

time to train the model (training time) and the time to apply the trained model for prediction

(prediction time). For each database system, an individual model should be trained. In our

case, as the model is trained offline, we are only concerned about the prediction time

overhead. Applying different models trained by different learning algorithms may have

different prediction time overheads. For example, applying a model created by a Neural

DIFF_SELECTIVITY(C1)

DIFF_SELECTIVITY(C2)

DIFF_SELECTIVITY(Cn)

DIFF_NDV(C1)

DIFF_NDV(C2)

DIFF_NDV(Cn)

DIFF_HISTOGRAM(C1)

DIFF_HISTOGRAM(C2)

DIFF_HISTOGRAM(Cn)

54

Network learning algorithm may have a different prediction time overhead compared with

the prediction time overhead when applying a model trained by a Random Forest algorithm

[33] as the former model is one tree while the latter model consists of multiple trees. This

overhead may be different even when applying different models that are trained by the same

learning algorithm. For example, checking a Neural Network with 50 layers to derive a

prediction is far different from checking a Neural Network with 1000 layers

4.3.3 Applying Supervised Learning Model to Query Re-Optimization

In this section, we illustrate how the trained model is applied during the query execution,

and the details are provided in Algorithm 1 in Figure 10. From Line 1 to Line 3, it initializes

the OldStatistics, Result, and MergeTable with an empty value. The OldStatistics and the

NewStatistics in the following are the regular data statistics used in existing database

systems. Using those two variable names is to distinguish the data statistics before and after

updating.

MergeTable is a temporary table in the memory. It is created when a query is received by

the optimizer and destroyed after this entire query has been executed. The purpose of the

MergeTable is to store the temporary results of any executed physical query operators. Line

4 uses the GenerateQEP function to generate an initial query execution plan from the query.

From Figure 11, the GenerateQEP function first uses an existing logical plan generator to

convert the query into a logical query execution plan (Line 1) and then uses an existing

55

query execution plan generator to convert the query into a physical query execution plan

(Line 2). And Line 3, this physical query execution plan is merged with the merge table by

Merge function.

Figure 9 shows an example of MergeTable. There are two columns in the MergeTable. The

first column stores the hash code of executed operator types, and the second column stores

the result of those executed operators. Notice that, we record the hash code of executed

operator types only, not the actual operators. The reason is that the purpose of using

MergeTable is to find the reusable results of executed operators. For the physical operators

of the same type, the result is the same so that all of those operators can be replaced with

the same operator called “ReadMergeTable”. For example, for reading table A, optional

physical operators plan can be “FileScan (A)” in one physical query execution plan or

“IndexScan (A)” in another plan. But, both physical operators, belong to the same operator

type and generate the same results after execution. Hence, we only recode “TableScan” for

both.

Hash code of executed operator types Executed Operator
Result

B422ED….// TS(Suppliers) 1,32,Boeing,13,1st
street,Seattle,WA
2, 31,Amazon, 14, 4th ave,
Seattle,WA
3, 32, Oracle, 13, 5th street, SF, CA

F2AC13……// TS(Suppliers),FIL(sctiy=Seattle,sstate=WA) 1,32,Boeing,13,1st
street,Seattle,WA
2, 31,Amazon, 14, 4th ave,
Seattle,WA

Figure 9. Example of MergeTable

56

Besides that, there are two reasons for storing hash code here. First, using hash code can

quickly locate the result of executed operators. Second, hash code can locate the exactly

matched executed operators. Exactly matched operators mean not only those operators have

to be the same type respectively, but also the order of the operators has to be the same as

well. By using hashing can make sure both of the types and the order are matched correctly.

The Merge function explains how a physical query execution plan is merged with the

MergeTable. Suppose we have 4 operators Op1, Op2, Op3, and Op4 in the physical query

execution plan and they will be executed respectively. From Line 1 to Line 4 shown in

Figure 11, we initialize PreparedOperators to empty and two control variables i and j to 1.

In Line 7, we put Op1 into the PreparedOperators and convert it to a hash code. Line8

checks if this hash code has any match in the MergeTable. In Line 9 and 10, If it is matched

to one hash code in the 1st column of the merge table, this Op1 will be replaced with

ReadMergeTable (hash code). So, in the modified physical query execution plan, Op1 will

not be executed, and instead, we just need to read the result of executing Op1 from the

MergeTable. Then the algorithm goes back to Line 7 again, both Op1 and Op2 are put in

the PreparedOperators and are converted into hash code. This hash code again is checked

for if there is any match in the MergeTable. If the match is found, the same process from

Line 9 and Line 10 repeats. If there is no match that can be found, in Line 13, the

PreparedOperators is set to empty. The algorithm goes back to Line 7, and at this time,

57

Op2 alone is put into the PreparedOperators and is converted into hash code to find any

matches in the MergeTable.

If the match is found, Op2 and Op3 are converted and checked in the next step. And if the

match is still found, Op2, Op3, and Op4 are converted and checked. The Merge function

terminates after the last operators in the physical query execution plan is converted to hash

code and checked for a match. Simply speaking, this function starts checking the hash code

of the first operator Op1 in the physical query execution plan as the beginning. Then add

the next operator and these new added operators are converted together with all the previous

operators and checked for a match. When there is no match found in the MergeTable, it

starts from the second operator Op2 and repeats the same process. Whenever the final

operator is converted and checked for a match, the whole function terminates. The following

Table 3 gives an example of the order of those operators are converted and checked.

Table 3. Sequence of searching matching operators in MergeTable

Sequence Operators being converted and

checked

 If match is found

1 Op1 Yes

2 Op1, Op2 Yes

3 Op1, Op2, Op3 No

4 Op2 Yes

5 Op2, Op3 No

58

6 Op3 Yes

7 Op3, Op4 No

8 Op4 No

9 Terminates as no more operators are
found in the physical query execution
plan

Here, we continue from the main function in Figure 10.

In Line 5, The first operator or first stage of operators are executed and in Line 6, the

MergeTable is updated. The 1st column is updated by converting the executed operator in

Line 5 into hash code and the 2nd column is updated by the results of executing this operator.

In Line 7 and Line 8, we update the data statistics and compute the difference between

OldStatistics and NewStatistics. In Line 9, when there still exists an operator that has not

been executed. In Line 10, we use the decisional model to decide if the query needs to be

re-optimized. If the answer is “YES” in Line 11, we will use the same function GenerateQEP

again to generate a new QEP in Line 12. From Line 13 to Line 14, we execute the next

available operator or next stage of operators in the new QEP and update the MergeTable

with the results generated in Line 13. In Line 15, we set the current QEP to the new QEP.

In Line 16, if the re-optimization is “No”, the QEP is not re-optimized, and the next available

operator or next stage of operators are executed continuously in Line 17. From Line 19 to

Line 22, no matter the QEP is re-optimized or not, the data statistics are always updated and

prepared for the decision model to make a decision on re-optimization. In Line 25, after all

59

the operators are executed, the loop from Line 9 to Line 24 terminates and the final results

are returned to the user.

Figure 10. Query processing algorithm with machine learning-based re-optimization

Algorithm 1: Query Processing with Machine Learning-based Re-Optimization
(ReOptML)

INPUT: Query // SQL query
OUTPUT: The query result set of the input query
1. OldStatistics = get current data statistics
2. Result = Ø
3. MergeTable = Ø
 //query optimizer generates a physical query execution plan
4. QEP = GenerateQEP (OldStatistics, Result, Query, MergeTable)
5. Result = execute the next available operator or stage if stage is available in QEP
 // record the hash codes and results of the executed operators
6. MergeTable = UpdateMergeTable (Result)
 // call query optimizer to update the data statistics
7. NewStatistics = UpdateDataStatistics ()
8. DiffStatistics = compute difference between OldStatistics and NewStatistics
 // if there still exists an operator that has not been executed
9. while QEP ≠ Ø
 // using the learning model to predict whether the query should be re-optimized
10. ReOptDecision = RunPredictiveModel (DiffStatistics)
11. if ReOptDecision = ‘YES’

 //query optimizer generates a new physical query execution plan
12. NewQEP = GenerateQEP (NewStatistics, Result, Query, MergeTable)
13. Result = execute the next available operator or stage if stage is available in NewQEP

 //record the hash codes and results of the executed operators
14. MergeTable = UpdateMergeTable (Result)
15. QEP = NewQEP
16. else if ReOptDecision = ‘NO’
17. Result = execute the next available operator or stage if stage is available in QEP
18. end if
19. if QEP ≠ Ø
20. OldStatistics = NewStatistics

 // call query optimizer to update the data statistics
21. NewStatistics = UpdateDataStatistics ()
22. DiffStatistics = compute difference of OldStatistics and NewStatistics
23. end If
24. end while
25. return Result

60

Function GenerateQEP (Statistics, Result, Query, MergeTable)
1. LogicalPlan = LogicalPlanGenerator (Query, Statistics)
2. PhysicalPlan = PhysicalPlanGenerator (LogicalPlan, Statistics)
3. ModifiedPhysicalPlan = Merge (PhysicalPlan, MergeTable)
4. return ModifiedPhysicalPlan

Function Merge (PhysicalPlan, MergeTable)
1. PreparedOperators = {}
2. ModifiedPhysicalPlan = PhysicalPlan
3. i = 1
4. j = 1
5. while there exists one operator has not been visited
6. i = i + 1
7. PreparedOperators. Add (Opj)
 // convert the prepared operators to hashcode
8. HashCode = Hash (PreparedOperators)
9. if MergeTable.found (HashCode)

//Replace the executed operators with one operator called “ReadMergeTable”
//which reads the results of those executed operators from the MergeTable

10. ModifiedPhysicalPlan.Replace (PreparedOperators, Read MergeTable (HashCode)
11. j = j + 1
12. else
13. PreparedOperators = {}
14. j = i - 1
15. end while
16. return ModifiedPhysicalPlan

Figure 11. Merge and GenerateQEP function

4.4 Summary

In this chapter, we presented ReOptML, an algorithm that uses supervised machine

learning to re-optimize queries in a cloud DBMS. In this algorithm, a well-trained

supervised machine learning model takes the difference of data statistics before and after

executing a portion of a QEP as input to predict whether the re-optimization is beneficial

or not. Only beneficial re-optimizations are then triggered. In the next chapter, we

introduce our third and fourth proposed algorithms, ReOptRL and SLAReOptRL, which

61

conduct query re-optimization considering query response time, monetary costs, and SLA

requirements. The algorithms do not depend on labeled training data and updated data

statistics.

62

CHAPTER V
PROPOSED REINFORCEMENT LEARNING BASED QUERY RE-

OPTIMIZATION ALGORITHMS FOR CLOUD DATABASE
SYSTEMS (ReOptRL and SLAReOptRL)

In cloud database systems, a Service Level Agreement (SLA) is signed between users and

cloud providers before any service is provided. If an SLA is violated, cloud providers will

need to pay a penalty [37]. Thus, from the profit-oriented perspective for the cloud

providers, query re-optimization is multi-objective optimization that minimizes not only

query execution time and monetary cost but also SLA violation. However, none of the

existing query re-optimization algorithms consider all three objectives. To fill this gap, in

this chapter, we introduce reinforcement learning based query re-optimization algorithms

for cloud database systems, ReOptRL and SLAReOptRL, two novel query re-optimization

algorithms for cloud database systems based on deep reinforcement learning. ReOptRL

considers query execution time and monetary costs. It bootstraps a QEP generated by an

existing query optimizer and dynamically changes the QEP during the query execution

based on the optimization model which keeps learning from incoming queries. The QEP is

adjusted based on the recent performance of the same query so that the algorithm does not

rely on cost estimations. SLAReOptRL extends ReOptRL by also including SLA

requirements in the adjustment of QEPs.

We present ReOptRL and SLAReOpt in the following sections of this chapter. In Section

5.1, the reinforcement learning algorithm is briefly introduced. In Section 5.2, we give the

63

motivations for designing ReOptRL. In Section 5.3 and Section 5.4, the overview and

details of ReOptRL are given. In Section 5.5, the design of the reward function is introduced.

In Section 5.6, we describe how we extend ReOptRL to SLAReOptRL.

5.1 Reinforcement Learning-Based Algorithms for Query Re-Optimization

As described in [38] and shown in Figure 12, reinforcement learning describes the

interaction between an agent and an environment. The possible actions that the agent can

take given a state St of the environment are denoted as At = {a0, a1, . . ., an}. The agent acts

as the action set At based on the current state St of the environment. For each action taken

by the agent, the environment gives a reward rt to the agent and the environment turns into

a new state St+1, and the new action set is At+1. This process repeats until the terminal state

is reached. These steps form an episode. The agent tries to maximize the reward and will

adjust after each episode. This is known as the learning process.

5.2 Motivation of ReOptRL

Traditionally, the query optimizer evaluates the time and monetary costs of different QEPs

to derive the best QEP for a query before execution. These time and monetary costs are

Figure 12. General procedure of reinforcement learning [38]

64

estimated based on the data statistics available to the query optimizer at the moment when

the query optimization is performed. These statistics are often approximate, which may

result in inaccurate estimates for the time and monetary costs needed to execute the query.

Thus, the QEP generated before query execution may not be the best one.

To solve the problem, researchers have developed learning-based algorithms to adjust the

data statistics to get more accurate cost estimations [31]. These methods are heuristic-based

and the adjustment of QEP is not adaptable to a dynamic environment. Later, machine

learning-based algorithms are introduced [39, 28]. More accurate cost estimations are made

by data statistics estimated by machine learning models. The optimizer uses these cost

estimations to adjust the QEP. More recently, the work in [39] presents a machine learning-

based approach to learn cardinality models from previous job executions, and these models

are then used to predict the cardinalities in future jobs. Again, even those methods improve

the accuracy of data statistics estimation such as cardinalities, the overall performance is not

improved much. This is usually because updating data statistics for the optimizer to use is a

very expensive operation by itself. This becomes the main source of negative impacts on

the overall performance. In work [40], the authors examine the use of deep learning

techniques in database research. With supervised machine learning, labeled data must be

available in advance for training, which is not always possible to obtain. To avoid this

problem, reinforcement learning (RL) is used. Some algorithms used reinforcement learning

in adjusting their QEPs also. However, these adjustments are only focusing on the join order

65

of queries [6]. None of the reviewed algorithms addresses monetary costs and SLA

requirements for cloud databases.

There are various kinds of RL algorithms that have been proposed. Q-Learning is one of the

popular value-based RL algorithms [41]. In Q-Learning, a table (called Q-table) is used to

store all the potential state-action pairs (Sn, an) and an evaluated Q-value associated with

this pair. When the agent needs to decide which action to perform, it looks up the Q-value

from the Q-table for each potential action under the current state and selects and performs

the action with the highest Q-value. After the selected action is performed, a reward is given,

and the Q-value is updated using the Bellman equation [38]:

Q(S୲, a୲) ← Q(S୲, a୲) + α൫R୲ + ϒ Q(S୲ାଵ, a୲ାଵ) − Q(S୲, a୲)൯ (3)

In Equation (3), 𝑄(𝑆௧, 𝑎௧) is an evaluated value (called Q-value) for executing Action 𝑎௧ at

State 𝑆௧. This value is used to select the best Action to perform under the current state. To

keep this value updated with accurate evaluation is the key to reinforcement learning. α is

the learning rate and ϒ is the discount rate. These two values are constant between 0 and 1.

The learning rate α controls how fast the new Q-value is updated. The discount rate ϒ

controls the weight of future rewards. If ϒ = 0, the agent only cares for the first reward, and

if ϒ = 1, the agent cares for all the rewards in the future [38]. Rt is the reward; the detailed

reward function in this algorithm is described in Section 5.5.

66

5.3 Overview of ReOptRL

In this chapter, how a deep reinforcement learning algorithm is used in query processing to

select the best action for the performance of queries is introduced. Two algorithms are

presented. In this section, we present the first algorithm which is a non-SLA-based

algorithm (ReOptRL). In this algorithm, a query will be converted into a logical plan by a

traditional query parser. Then for each logical operator, we use a deep reinforcement

learning model to select the exact physical operator and machine to execute the logical

operator so that each operator execution is optimized in order to gain the maximum

improvement on the overall performance. These machines are called containers in the rest

of this chapter. These selections learn from the same operator executed in the system

previously. As in large applications, there will be a large number of queries running at the

same time. It is reasonable to refer to the performance of the same operator in the system

because the times of the previous executions of the same operator are very close to each

other. The second algorithm that we present is the SLA-based query re-optimization

algorithm (SLAReOptRL). The detail of this algorithm will be presented in Section 5.6.2.

Notice that, in the scenario of this chapter, queries are processed in a cloud database system.

There is a large number of available containers on which a single query operator can be

executed. There are potentially many state-action pairs in the Q-table. Iterating a large Q-

table incurs extra time overhead which delays the query execution. To solve this issue, Deep

Q Network (DQN) [42] is applied as reinforcement learning for query re-optimization. DQN

67

works similarly to Q-Learning. The major difference is that, as shown in Figure 13, given a

state, instead of using the Q-table, it uses a neural network to estimate the Q-values for all

the potential actions. After each action is performed, a reward is given, and the Q-value is

updated using the Bellman equation. This updated Q-value is then used to adjust the weights

of the neural network using the back-propagation method. As the Q-values of all the actions

are evaluated at once, there is no need to look up the Q-value from the Q-table for each

action repeatedly. Thus, the processing time of running the DQN method is much shorter

than that of Q-Learning. Since query response time is critical and to reduce the time

overhead, we apply DQN to our query re-optimization algorithm. Figure 13 describes the

different procedures of Q-Learning and DQN.

5.4 Details of ReOptRL

Figure 13. Procedures of Q-Learning (the top figure) and DQN (the bottom figure)

68

In this algorithm, the policy gradient deep RL algorithm [41] is used for query re-

optimization. This algorithm uses a deep neural network to help the agent decide the best

action to perform under each state. In this work, the agent is the query optimizer, an action

is a combination of a physical operator to execute a logical operator and a machine to

execute this operator, and a state is a fixed-length vector encoded from the logical query

execution plan produced by a conventional query optimizer.

The input of the neural network is the current state. The input is sent to the first hidden layer

of the neural network whose output is then sent to the second layer, and so on until the final

layer is reached, and then an action is chosen. The policy gradient is updated using a sample

of the previous episodes, which is an operator execution in our case. Once an episode is

completed (which means a physical operator and a container to execute the physical

operator are selected in our case), the execution performance is recorded, and a reward is

received where a reward is a function to evaluate the selected action. The details of the

reward function are explained later Section 5.5. The weights of the neural network are

updated after several episodes using existing techniques, such as back-propagation [41].

For the current QEP to represent the current state and to be used as the input of the neural

network, we use a one-hot vector adapted from the recent work [28] to represent a QEP.

Each component in a one-hot vector is mapped to an attribute in a relation. A component

69

has a value of 1 if the corresponding attribute is present in the query operator and 0

otherwise.

For example, we have the following SQL query:

Select *

From Stu, Dep

Where Stu.depid=Dep.depid

This SQL query is first optimized by a conventional query optimizer which produces the

following QEP:

Assume the schemas or the two tables are Stu (id, name, depid) and Dep (depid, name). The

JOIN operator in this QEP can be represented as a one-hot vector V as follows:

V=[OperatorName, Stu.id, Stu.name, Stu.depID, Dep.depid, Dep.name …]

 =[‘JOIN’, 0, 0, 1, 1, 0…]

Scan (Stu) Scan (Dep)

Join
(Stu.id=Dep.depid)

Proj

70

Figure 14 shows the major steps in query processing when ReOptRL is incorporated for

query re-optimization. Firstly, the optimizer receives a query and then the query is compiled

into a QEP. Secondly, the first available operator is converted into a vector representation

and is sent to the RL model. The RL model will select the optimal action, which is the

Figure 14. Procedure of ReOptRL

71

combination of a selected physical operator and a selected container to execute the selected

physical operator. The physical operators are generated by the query optimizer and the

containers are those available on the cloud platform. Then the selected physical operator is

executed, and the execution time and monetary costs of this execution are recorded to update

the reward. Once the reward function is updated, the weights of the RL model are adjusted

according to the updated reward. Then the updated RL model is ready for future action

selections of the same operator. Figure 15 shows the pseudo-code of the proposed algorithm.

First, a query is submitted to the query optimizer which generates the QEP for the query

(Line 4). Then the QEP is converted into a one-hot vector representation (Line 7). This

vector is sent to the RL model, which is a neural network as described in Section 5.1. The

RL model will evaluate the Q-values for all the potential actions to execute the next

available query operator (Line 8). Each of these actions consists of two parts, a physical

operator, and a container to execute the physical operator. Then the action with the best Q-

value will be selected and performed by the DBMS (Line 9). After that, the executed query

operator is discarded from the QEP (Line 10). The reward is updated with the time and

monetary cost needed to execute the operator and then the expected Q-value is updated by

the Bellman Equation (3) with the updated reward (Lines 11-13). The weights of the neural

network are updated accordingly by the back-propagation method (Line 14). This process

repeats for each operator in the QEP and terminates when all the operators in the QEP are

executed. The query results are then sent to the user (Line 17).

72

Figure 15. Query processing using reinforcement learning-based re-optimization

5.5 Reward Function

In ReOptRL, after an action is performed, the reward function is used to evaluate the action.

This gives feedback on how the selected action performs to the learning model. The

performed action with a high reward will be more likely to be selected again under the same

state. The reward function plays a key role in the entire algorithm. According to the Bellman

equation, if the reward of performing the previous action at-1 is high on the state st-1, the Q-

value will also be high. This means, given the same state, the action with the good previous

performance will have a higher chance to be selected. In our algorithm, we would like the

Algorithm: Query Processing with Reinforcement Learning Based Re-
Optimization (ReOptRL)
INPUT: SQL query, Weight Profile wp, Reward Function R (),
Learning rate α, Discount rate ϒ
OUTPUT: The query result set of the input query

1. t = 0
2. Result = Ø
3. Qt = 0
4. QEP = QueryOptimizer (query)
5. while QEP ≠ Ø
6. Op = next available operator in QEP
7. State St = convert QEP to a state vector
8. Actiont = RunLearningModel (St, wp)
9. Result = Result ⋃ Execute (Op, Actiont)
10. QEP = QEP - Op
11. Update Rt = R (wp, Actiont.time, Actiont.money)
12. Obtain Q-value of next state Qt+1 from the neural network
13. Update Q-value of current state Qt = Bellman (Qt, Qt+1, Rt, 𝛼, ϒ)
14. Update Weights in the neural network
15. t = t + 1
16. end while
17. return Result

73

actions with low query execution time and monetary cost to be the ones that will be more

likely to be chosen. To reflect this feature, here we define the reward function as follows:

 𝑅𝑒𝑤𝑎𝑟𝑑 𝑅 =
ଵ

ଵା(ௐ೟∗ ೚்೛
೜

)ା(ௐ೘∗ெ೚೛
೜

)
 (4)

where 𝑊௧ and 𝑊௠ are the time and monetary weights provided by the user, and 𝑇௢௣
௤ and 𝑀௢௣

௤

are the time and monetary costs for executing the current operator op in the query q.

According to this reward function, the query is executed based on the user’s preference

which is either the user wanting to spend more money for a better query execution time or

vice versa. We call these preferences Weights. These weights defined by the user are called

Weight Profile (wp), which is a two-dimensional vector, and each dimension is a number

between 0.0 to 1.0. Notice that, the user only needs to specify one dimension of the weight

profile, the other dimension is computed with 1-Weight automatically. For example, if a

user demands fast query response time and is willing to invest more money to achieve it, a

possible weight profile for this user could be <Wt=0.9, Wm=0.1>. The detail can be found

in Section 4.2.

This reward function is a monotonic decreasing function. With the increase of (𝑊௧ ∗ 𝑇௢௣
௤

) +

(𝑊௠ ∗ 𝑀௢௣
௤

), which is the total costs for executing a query operator, the reward decreases.

Notice that, as (𝑊௧ ∗ 𝑇௢௣
௤

) + (𝑊௠ ∗ 𝑀௢௣
௤

) approaches zero, the reward approaches positive

infinity. When this situation happens, if an action A is performed with small total costs, then

74

A will always be selected and performed, and all the other actions will be ignored. This is

not desirable, and to keep the relationship of reward and total costs close to linear, we use

1+(𝑊௧ ∗ 𝑇௢௣
௤

) + (𝑊௠ ∗ 𝑀௢௣
௤

) as the denominator in the reward function. In summary, if

performing an action takes high costs, this action will be less likely to be chosen in the

future. Also, according to the following Equation (5), if an action is selected but fails to

perform due to some error which results in the time cost that becomes positive infinity, the

reward is 0. This can make such an action less likely to be chosen again in the future. The

failure of an action to perform can be caused by different reasons, such as the wrong physical

query operator being chosen, or the container assigned being unavailable.

lim
೚்೛
೜

→ஶ

ଵ

ଵାቀௐ೟∗ ೚்೛
೜

ቁାቀௐ೘∗ெ೚೛
೜

ቁ
= 0 (5)

5.6 SLA-Aware Reinforcement Learning-based Algorithms for Query Re-

Optimization (SLAReOptRL)

In this section, we introduce the algorithm, SLAReOptRL. In Section 5.6.1, we explain what

SLA is and in Section 5.6.2, we show how the SLA is used in query re-optimization by

SLAReOptRL.

5.6.1 SLA Definition

SLA is a contract between cloud service providers and consumers, mandating specific

numerical target values which the service needs to achieve. Considering SLA in query

processing is important in cloud databases. Optimization of QEPs should be done in such a

75

way that will not violate the SLA requirements, while considering other objectives, such as

query execution time and monetary costs; otherwise, if the SLA violation happens, the cloud

service providers need to pay a penalty to their users in a form such as money or CPU credits

[37]. From a profit-oriented perspective, cloud service providers would want to keep the

SLA violations as low as possible. Different cloud service providers implement different

SLAs with their users. Many commercial cloud systems use “server availability” as their

SLA requirement. This means if a server fails, the cloud providers will pay a certain number

of credits to their users. In recent research, using time and monetary costs to execute a query

as the SLA requirements have been studied [40]. We find them practical and more specific

to users and, thus, adopt the same SLA requirements in this algorithm.

5.6.2 Extending ReOptRL to Consider SLA Violation

Our proposed algorithm, SLAReOptR, extends the ReOpRL algorithm presented in Section

5.4 to also consider SLA requirements besides query execution time and monetary costs. In

particular, it extends the reward function as defined in Equation (6) to make it possible to

select the best action according to the SLA requirements.

 𝑅𝑒𝑤𝑎𝑟𝑑 𝑅 =
ଵ

ଵା(ௐ೟∗ቀ ೚்೛
೜

ା௉೟ቁ)ା(ௐ೘∗(ெ೚೛
೜

ା௉೘))
 (6)

where 𝑇௢௣
௤ and 𝑀௢௣

௤ are the time and monetary costs for executing the current operator op in

the query q.

𝑃௧ = 𝛼௢௣ ∗ 𝑑𝑒𝑙𝑎𝑦_𝑡𝑖𝑚𝑒, 𝑃௠ = 𝛼௢௣ ∗ 𝑒𝑥𝑐𝑒𝑒𝑑𝑒𝑑_𝑚𝑜𝑛𝑒𝑦 (7)

76

where 𝛼௢௣ is the operator impact rate of the operator type op.

𝑑𝑒𝑙𝑎𝑦_𝑡𝑖𝑚𝑒 = ൜
0

 𝑇௢௣
௤

− 𝑆𝐿𝐴. 𝑇௢௣
௤

𝑖𝑓 𝑇௢௣

௤
> 𝑆𝐿𝐴. 𝑇௢௣

௤ (8)

𝑒𝑥𝑐𝑒𝑒𝑑𝑒𝑑_𝑚𝑜𝑛𝑒𝑦 = ൜
0

 𝑀௢௣
௤

− 𝑆𝐿𝐴. 𝑀௢௣
௤

𝑖𝑓 𝑀௢௣

௤
> 𝑆𝐿𝐴. 𝑀௢௣

௤ (9)

In this reward function (Equation 6), 𝑃௧ and 𝑃௠ as defined in Equation 7 reflect the extra

costs for executing a query operator if the SLA is violated. If the SLA is not violated for

executing every operator, then this equation is the same as the reward function used in

ReOptRL (Equation 4). In Equations (8) and (9), 𝑑𝑒𝑙𝑎𝑦_𝑡𝑖𝑚𝑒 is the amount of difference

between the actual time to execute a query operator and the maximum time allowed to

execute this query operator as specified in the SLA. The same idea applies to

𝑒𝑥𝑐𝑒𝑒𝑑𝑒𝑑_𝑚𝑜𝑛𝑒𝑦 for monetary costs. We use these two values to quantify the amount of

SLA violations on query execution time and monetary cost. In Equation (7), these two

values are used to compute 𝑃௧ and 𝑃௠ . It shows that the larger the amount of SLA

violations, the smaller the reward becomes. We build the reward function this way so that

the reward is related to the amount of SLA violations.

Also, we use the query operator impact rate 𝛼௢௣ to scale up the impact of SLA violations

on different types of operators. For example, the impact of the JOIN operator is usually

larger than the impact of other types of operators. Notice that, the SLA requirements

presented in Equations (8) and (9) are not the same as the SLA requirements specified in

77

the agreement. While the time and monetary costs are defined as “amount per query” in the

SLA requirements specified in the agreement, they are defined as “amount per query

operator” in Equations (8) and (9). Here, we average the SLA requirements specified in the

agreement by the total number of operators in the QEP. Besides this simple method of

computing SLA requirements, we plan to study alternative ways in our future research.

5.7 Summary

In this chapter, we presented ReOptRL, an algorithm that uses reinforcement learning to re-

optimize queries in a cloud DBMS. In this algorithm, instead of using an existing query

optimizer repeatedly in re-optimization, for a given query, once the query optimizer

produces the QEP for the query, the algorithm uses a reinforcement learning model to select

the best action to execute the next available operator in the QEP. The time and monetary

costs of executing this operator are used as a reward to improve the accuracy of the learning

model. Then, we presented SLAReOptRL, an extended version of ReOptRL to reduce SLA

violation where the reward function supports the selection of actions that meet SLA

requirements. In the next chapter, the theoretical analysis and experimental results of all the

four proposed algorithms are presented.

78

CHAPTER VI
PERFORMANCE ANALYSIS

In this chapter, we present the performance analysis of the proposed algorithms, ReOpt,

ReOptML, ReOptRL and SLAReOptRL. In Section 6.1, we present the performance

analysis theoretically. We analyze the time complexity and provide proof of the correctness

of these algorithms. In Section 6.2, we present the performance analysis experimentally.

Comprehensive experiments are conducted on each of the algorithms and the results are

compared to the results of the state-of-the-art algorithms.

6.1 Theoretical Analysis

In this section, first, in Section 6.1.1, we provide the proof of correctness of the three

algorithms, ReOpt, ReOptML, and ReOptRL. We prove that the query results are correct

after a query is processed by these three algorithms. In Section 6.1.2, we provide the time

complexity analysis of these three algorithms.

6.1.1 Proof of Correctness of ReOpt, ReOptML and ReOptRL

6.1.1.1 Proof of Correctness of ReOpt and ReOptML

As ReOpt and ReOptML use the same method to do the re-optimization. The difference

between them is that in ReOptML, the re-optimization only happens when the decision

model says “Yes” while in ReOpt, the re-optimization always happens when an operator or

a stage of operators finishes execution. From the correctness perspective, they can share the

same proof. Thus, in this section, we focus on analyzing the ReOptML algorithm

79

theoretically. Figure 10 and Figure 11 in Section 4.3.3 show the details of ReOptML. Here,

to prove the correctness of ReOptML, we show theoretically that after a QEP is re-optimized

and merged with the MergeTable, the results of executing the new QEP do not change.

Definition:

Let the Ordered Sequence,

P1= (O1, O2, …, On) denotes a physical query execution plan generated by a query optimizer.

Similarly, P2= (R1, R2, …, Rm) denotes a physical query execution plan generated by a query

optimizer. Also, we have Pk = (Ox, Ox+1, …, Ox+a), 1 ≤ x ≤ n-a denotes a sub physical query

of P1 and similarly, Pq = (Ry, Ry+1, …, Ry+b), 1 ≤ y ≤ m-b denotes a sub physical query of P2.

Exe (O1, O2, …, On) = Exe(O1) ⇒ Exe (O2) … ⇒ Exe (On) denotes that the results of

executing operators O1, O2, …, On is the same as executing operator O1 first and then using

the results to execute the operator O2. then using the results to execute O3, and so on, until

On is executed.

Theorem 1:

Given two physical query execution plans P1 and P2 from the same query by the same query

optimizer,

If Exe (Pq) = Exe (Pk),

Then Exe (P1) = Exe (R1, Ry+1, …, Ry-1) ⇒ Exe (Pk) ⇒ Exe (Ry+b, Ry+b+2, …, Rm)

80

In Theorem 1, P1 is the QEP before re-optimization and being merged. P2 is the QEP after

re-optimization and being merged. Pk contains the operators that have been executed. The

operators in Pk are converted into a hash code and stored in the 1st column of the

MergeTable and the results of executing Pk are stored in the 2nd column in the MergeTable.

Pq contains the operators in P2 that are being replaced with the ReadMergeTable.

Proof:

Proof by Induction

Step 1

Basic Case,

For n=1 and m=1

We have Exe (Pk) = Exe (P1) and Exe (Pq)= Exe(P2)

Right Hand Side: Exe (R1, Ry+1, …, Ry-1) ⇒ Exe (Pk) ⇒ Exe (Ry+b, Ry+b+2, …, Rm) = Exe(Pk),

Left Hand Side: Exe(P1) = Exe (Pk),

Then Exe (P1) = Exe (R1, Ry+1, …, Oy-1) ⇒ Exe (Pk) ⇒ Exe (Ry+b, Ry+b+2, …, Rm)

Step 2

Assume for some n and m, the theorem is true.

If Exe (Pk) = Exe (Pq)

then Exe(P1) = Exe (R1, Ry+1, …, Ry-1) ⇒ Exe (Pk) ⇒ Exe (Ry+b, Ry+b+2, …, Rm)

Step 3

81

Show for some n+1 and m+1, the theorem is true.

P’1 = (O1, O2, …, On, On+1), P’2 = (R1, R2, …, Rm, Rm+1), P’k = (Ox, Ox+1, …, Ox+a+1),

P’q = (Ry, Ry+1, …, Ry+b+1)

If Exe (P’q) = Exe (P’k)

Then Exe(P’1) = Exe (R1, R2, …, Ry-1) ⇒ Exe (P’k) ⇒ Exe (Ry+b+1, Ry+b+2, …, Rm, Rm+1)

As P’1 and P’2 are generated from the same query by the same optimizer.

Exe (P’1) = Exe (P’2)

= Exe (P2) ⇒ Exe (Rm+1)

= Exe (R1, R2, …, Ry-1) ⇒ Exe (Ry, Ry+1, …, Ry+b) ⇒ Exe (Ry+b+1, Ry+b+2, …, Rm) ⇒ Exe

(Rm+1)

= Exe (R1, R2, …, Ry-1) ⇒ Exe (Ry, Ry+1, …, Ry+b, Ry+b+1) ⇒ Exe (Ry+b+2, Ry+b+3, …, Rm)

⇒Exe (Rm+1)

= Exe (R1, Ry+1, …, Ry-1) ⇒ Exe (P’q) ⇒ Exe (Ry+b+2, Ry+b+3, …, Rm) ⇒ Exe (Rm+1)

= Exe (R1, Ry+1, …, Ry-1) ⇒ Exe (P’k) ⇒ Exe (Ry+b+2, Ry+b+3, …, Rm, Rm+1)

This proof shows that, after a query execution plan is re-optimized (from P1 to P2) and being

merged with MergeTable (from Pk to Pq), the result of executing this query execution plan

does not change. We use an example to illustrate how a query is re-optimized using

ReOptML and also show its connection to the Theorem 1.

82

Suppose we have the following query,

SQL:

Select sname

From Suppliers, Supplies

Where Suppliers.sno=Supplies.sno

And Suppliers.scity=”Seattle” And Suppliers.sstate=”WA” And Supplies.pno=2

This query is converted to the following logical plan (represented in relational algebra) using

GenerateQEP, Line 1

𝜋௦௡௔௠௘(𝜎௦௖௜௧௬ୀௌ௘௔௧௧ ∧௦௦௧௔௧௘ୀௐ஺(𝑆𝑢𝑝𝑝𝑙𝑖𝑒𝑟𝑠) ⋈ 𝜎௣௡௢ୀଶ(𝑆𝑢𝑝𝑝𝑙𝑖𝑒𝑠))

After that, the above logical plan is converted to the following physical query execution

plan (represented in the graph) using GenerateQEP, Line 2

<O1>FileScan(Suppliers)
<O3>FileScan(Suppli

<O5>SortMergeJoin(sno=sno)

<O2>FIL(sctiy=Seattle,
sstate=WA)

<O6>Project (sname)

<O4>FIL(pno=2)

Figure 16. QEP P1 generated by the query optimizer before re-optimization

83

P1 = (O1, O2, O3, O4, O5, O6)

Step 1

O1 is sent to be executed, and the re-optimization decision is “No”.

After O1 is executed, the MergeTable is updated.

MergeTable

Hash Code of Executed Operator Type

Executed Operator Result

B422ED….// TS(Suppliers) 1,32,Boeing,13,1st street,Seattle,WA
2, 31,Amazon, 14, 4th ave, Seattle,WA
3, 32, Oracle, 13, 5th street, SF, CA

Then O2 is sent for execution, and the re-optimization decision is “Yes”

After O2 is executed, the MergeTable is updated as follows:

Hash Code of Executed Operator Type

Executed Operator Result

B422ED….// TS(Suppliers) 1,32,Boeing,13,1st street,Seattle,WA
2, 31,Amazon, 14, 4th ave, Seattle,WA
3, 32, Oracle, 13, 5th street, SF, CA

F2AC13……//
TS(Suppliers),FIL(sctiy=Seattle,sstate=WA)

1,32,Boeing,13,1st street,Seattle,WA
2, 31,Amazon, 14, 4th ave, Seattle,WA

Suppose after re-optimization, we have the same QEP this time.

P2 = (R1, R2, R3, R4, R5, R6)

84

 We find O1 in the MergeTable. Merge P2 and MergeTable

<R1>FileScan(Suppliers <R3>FileScan(Supplies)

<R5>SortMergeJoin(sno=sno)

<R2>FIL(sctiy=Seattle,ss

tate=WA)

<R6>Project (sname)

<R4>FIL(pno=2)

<R1>ReadMergeTable(B422ED)

<R3>FileScan(Supplies)

<R5>SortMergeJoin(sno=sno)

<R2>FIL(sctiy=Seattle,
sstate=WA)

<R6>Project (sname)

<R4>FIL(pno=2)

Figure 17. QEP P2 after 1st re-optimization

Figure 18. QEP P2 after operator O1 is merged

85

We find O1, O2 in the MergeTable. Merge P2 and MergeTable

Step 2

Since we cannot find any more hash code matches in the MergeTable, the P2 is the above.

At this point, P1 = (O1, O2, O3, O4, O5, O6), P2 = (R1, R2, R3, R4, R5, R6), Pk = (O1, O2), Pq=

(R1, R2)

Exe(P2) = Exe (R1, R2, R3, R4, R5, R6) = Exe (R1, R2) ⇒ Exe (R3, R4, R5, R6) = Exe (O1, O2)

⇒ Exe (R3, R4, R5, R6)

As proved by Theorem 1, Exe (P1) = Exe (O1, O2) ⇒ Exe (R3, R4, R5, R6)

So, the results do not change after re-optimization and merge.

<R5>SortMergeJoin(sno=sno)

<R1,R2>ReadMergeTable

(F2AC13)

<R4>FIL(pno=2)

<R6>Project (sname)

<R3>IndexScan(Suppliers)

Figure 19. QEP P2 after operators O1 and O2 are merged

86

Now we send FileScan(Supplies) and FIL(pno=2) for execution and the re-optimization

decision is “Yes”.

We update the MergeTable

Hash Code of Executed Operator Type

Executed Operator Result

B422ED….// TS(Suppliers) 1,32,Boeing,13,1st street,Seattle,WA
2, 31,Amazon, 14, 4th ave, Seattle,WA
3, 32, Oracle, 13, 5th street, SF, CA
…

F2AC13……//
TS(Suppliers),FIL(sctiy=Seattle,sstate=WA)

1,32,Boeing,13,1st street,Seattle,WA
2, 31,Amazon, 14, 4th ave, Seattle,WA
…

D42423……//TS(Supplies) 1,sugar,2
2, cotton,4
3, rice,7
…

After re-optimization, we have a different plan here:

<R3>FileScan(Suppliers) <R1>IndexScan(Supplies)

<R4>IndexNestedLoopJoin(sno=sno)

<R6>Project (sname)

<R2>FIL(pno=2)

<R5>FIL(sctiy=Seattle,sstate=WA)

Figure 20. QEP P2 after 2nd re-optimization

87

After Merge, we have

Since we cannot find any more hash code matches in the MergeTable, the P2 is the above.

At this point, P1 = (O1, O2, O3, O4, O5, O6), P2= (R1, R2, R3, R4, R5, R6), Pk1= (O1), Pk2 =

(O3), Pq1 = (R1), Pq2 = (R3), Exe (Pk1) = Exe (Pq2), Exe (Pk2) = Exe (Pq1),

Exe (P2) = Exe (R1, R2, R3, R4, R5, R6)

 = Exe (R1) ⇒ Exe (R2) ⇒ Exe (R3) ⇒ Exe (R4, R5, R6)

 = Exe(O3) ⇒ Exe (R2) ⇒ Exe (O1) ⇒ Exe (R4, R5, R6)

According to Theorem 1, if Exe (O1) = Exe (R3)

Exe(P1) = Exe (R1, R2) ⇒Exe (O1) ⇒ Exe (R4, R5, R6)

 = Exe (R1) ⇒ Exe (R2) ⇒ Exe (R3) ⇒ Exe (R4, R5, R6)

<R1>ReadMergeTable(D42423)

<R4>IndexNestedLoopJoin(sno=sno)

<R6>Project (sname)

<R2>FIL(pno=2)

<R3> ReadMergeTable(B422ED)

<R5>FIL(sctiy=Seattle,sstate=WA)

Figure 21. QEP P2 after operators O1 and O3 are merged

88

 = Exe(O3) ⇒ Exe(R2) ⇒ Exe (O1) ⇒ Exe (R4, R5, R6)

So, Exe(P1) =Exe(P2)

This shows that after re-optimization and merging, the query results do not change, which

shows the correctness of the ReOptML algorithm. This process keeps repeating until O6 is

executed and the results are returned to the user.

6.1.1.2 Proof of Correctness of ReOptRL

In this section, we prove that ReOptRL is correct. This means we prove that for the same

query, the query result generated by ReOptRL is the same as the query result generated by

NoReOpt. We assume that a DBMS that will use our proposed algorithm ReOptRL for

query re-optimization will have a correct query optimizer, meaning that this query optimizer

will be able to convert an SQL query to a correct logical plan. Then to prove the correctness

of ReOptRL, we prove the following theorem 2:

Theorem 2:

Given Plan as the query logical plan produced by an existing query optimizer for a query q,

the query result of executing Plan by the two algorithms, ReOptRL and NoReOpt, is the

same.

Definition:

Let 𝐿௜be the logical operator in Plan and let

𝑃ℎ𝑦(𝐿௜ , 𝐾) = 𝑃௜௝
௞

89

denote the physical operator Pi of type j converted from the logical operator Li using

Algorithm K.

Let

𝑅𝑒𝑠௜ = 𝐸𝑥𝑒(𝑃௜௝)

denote the result of executing physical operator 𝑃௜ of type j

Proof:

By using the query optimizer Q to convert a logical operator to a physical operator,

𝑃ℎ𝑦(𝐿௜ , 𝐾) ∈ 𝑃௜ = {𝑃௜ଵ, 𝑃௜ଶ, 𝑃௜ଷ, … , 𝑃௜௡} ∀ K

Based on [43], 𝐸𝑥𝑒(𝑃௜ଵ)=𝐸𝑥𝑒(𝑃௜ଶ)=𝐸𝑥𝑒(𝑃௜ଷ) … =𝐸𝑥𝑒(𝑃௜ଵ) if 𝑃௜ଵ, 𝑃௜ଶ, 𝑃௜ଷ, …, 𝑃௜௡ ∈ 𝑃௜,

that is executing the same physical operator with different operator types, the result is the

same. Different operator types mean the execution of the operator is implemented using a

different algorithm. For example, the join operator can be implemented using

NestedLoopJoin or IndexJoin. Both implementations produce the same result.

As ReOptRL and NoReOpt will not generate new physical operator types,

let A be the algorithm ReOptRL and B be the algorithm NoReOpt.

Thus, we have

𝑃ℎ𝑦(𝐿௜ , 𝐴) ∈ 𝑃௜ = {𝑃௜ଵ, 𝑃௜ଶ, … , 𝑃௜௡} and 𝑃ℎ𝑦(𝐿௜ , 𝐵) ∈ 𝑃௜ = {𝑃௜ଵ, 𝑃௜ଶ, 𝑃௜ଷ, …, 𝑃௜௡}

So,

𝑅𝑒𝑠௜= 𝐸𝑥𝑒(𝑃௜௠)= 𝐸𝑥𝑒(𝑃௜௡)

90

This means the query result of the logical operator 𝐿௜ is the same whether it is executed

using ReOptRL or NoReOpt.

6.1.2 Time Complexity Analysis of ReOpt, ReOptML and ReOptRL

In this section, the time complexity of ReOpt, ReOptML and ReOptRL will be analyzed.

We will go through each algorithm line by line and compute the time cost of each step of

the algorithm.

6.1.2.1 Time Complexity Analysis for ReOpt

Figure 2 in Section 3.3 shows the algorithm of ReOpt. The variables of the time complexity

analysis of ReOpt are listed as follows:

C: constant

Op: total number of operators

Nattr: total number of attributes in all the tables

Lopi: string length of operator i, e.g., Lop of Read= 4

Min_value: a variable used in the Optimization function

Iter_limit: a variable used in the Optimization function

We analyze the time complexity by evaluating the time cost of each line in the algorithm

and adding them together as the result.

91

Line1: Ops  compile query Sql to get its set of compiler-generated operators

The time cost depends on the cost of a specific query compiler, so we assume the cost is X

here.

Line2: Optimizer-Tree  generate a multi-staged optimizer tree from the set of operators

Ops

The length of each operator is Lopi and there are Op operators in total, so the cost is Op*

Lopi

Line 4: G  map the stage in Optimizer-Tree to form a dataflow graph

The cost of this line is as same as Line2, so the cost is Op*Lopi

Line 5: Initial-Schedule  call function DISPATCH (G, C, CONS) to assign operators to

containers to form the initial schedule.

This line assigns each operator in the DAG to one of the containers.

So, the total cost is Op*Lopi*Ncont

Line 6：Optimized-Schedule  call function

OPTIMIZE (Initial-schedule, CONS, Min_value, Iter_limit, P) to find the optimized

schedule for the initial schedule.

The Min_value controls the number of outer loops in the Optimize function and the

Iter_limit controls the number of inner loops in the Optimize function. The worst case is

that the Optimize function conducts Min_value* Iter_limit times. For each iteration, as

shown in Figure 15 in Section 5.4, in Line 5, the cost of generating a new schedule is Lopi.

In Line 6, Get_Cost () function iterates the whole schedule. The time cost of this function

92

is Op* Lopi. And then, in Line 10, the time cost of calculating ap is 9*C. Finally, the costs

of Line 10 and Line 11 are 2*C.

Finally, the total cost of Line 6 is (11*C+ Op* Lopi)*Min_value*Iter_limit

Line 7: Result  execute the current stage of the Optimized-Schedule

The execution cost also depends on the query execution engine. Thus, we assign the cost

of this line to Y.

Line 8: Optimizer-Tree  Eliminate the finished operators from the Optimizer-Tree

The cost of this line is Lopi

Line 9: Update constraints and data statistics.

The constraints have 2 variables and data statistics depend on how many attributes are there

in the table.

The cost of this line is 2*C+Nattr.

The following table gives the summary of the time analyses of all the lines:

Table 4. Line by line time cost of ReOpt

Line No. One Time Cost Total Cost After Loop

Line 1 X X

Line 2 Op*Lopi Op*Lopi

Line 4 Op*Lopi Op2*Lopi

Line 5 Op*Lopi*Ncont Op2*Lopi*Ncont

Line 6 (11*C+Op*Lopi)*Min_value*
Iter_limit

(11*C+Op*Lopi)*Min_value*
Iter_limit*Op

93

Line 7 Y Y*Op

Line 8 Lopi Lopi*Op

Line 9 2*C+Nattr (2*C+Nattr) *Op

The total cost of the entire algorithm is

Total Cost = X + Op * Lopi + Op2 * Lopi + Op2 * Lopi * Ncont + (11*C + Op* Lopi) *

Min_value* Iter_limit * Op + Y * Op + Lopi * Op + (2 * C + Nattr * C) * Op

= Op2 * (1 + Ncont * Min_value * Iter_limit) * Lopi + Op * (2 * Lopi +11 *

Min_value * Iter_limit + Nattr + (2 + Y) * C) * Op + X

The worst-case time complexity of ReOpt is O (Op2)

6.1.2.2 Time Complexity Analysis for ReOptML

Similarly, we analyze the time cost of ReOptML by going through the algorithm in Figure

10 in Section 4.3.

The variables of the time complexity analysis of ReOptML are listed as follows:

C: constant

Op: total number of operators

Nattr: total number of attributes in all the tables

Lopi: string length of operator i, e.g., Lop of Read= 4

Lattri: string length of attribute i, e.g., Lattri of “InstructorID” is 12

94

Line 1: OldStatistics = get current data statistics

The number of data statistics is determined by the total number of attributes in the table.

The cost of this line is Lattri *Nattr.

Line 2: Result = Ø

The cost of this line is C.

Line 3: MergeTable = Ø

The cost of this line is C.

Line 4: QEP = GenerateQEP (OldStatistics, Result, Query, MergeTable)

The time cost depends on the cost of a specific query compiler, so we assume the cost is X

here.

Line 5: Result = execute the next available operator or stage if a stage is available in QEP

The execution cost depends on the query execution engine. Thus, we assign the cost of this

line as Y.

Line 6: MergeTable = UpdateMergeTable (Result)

The worst case to update the MergeTable is that all the executed operators are recorded as

a hash code in Column 1 in the MergeTable. Suppose the time cost of the hash function is

Z, so the cost is Lopi*Z*Op

Line 7: NewStatistics=UpdateDataStatistics ()

The same as Line 1, the cost of this line is Lattri*Nattr.

Line 8: DiffStatistics = compute the difference between OldStatistics and NewStatistics

95

The cost of this line is 2*Lattri*Nattr.

Line 10: ReOptDecision = RunPredictiveModel (DiffStatistics)

It depends on the selected model to run. We assume the cost of this line is P.

In the result of the algorithm, the cost of each line is included in the above. So, we give the

summary of the time complexity analysis of the whole algorithm in the following table.

Table 5. Line by line time cost of ReOptML

Line No. One Time Cost Total Cost After Loop

Line 1 Lattri *Nattr Lattri *Nattr

Line 2 C C

Line 3 C C

Line 4 X X

Line 5 Y Y

Line 6 Lopi *Z*Op Lopi *Z*Op

Line 7 Lattri *Nattr Lattri *Nattr

Line 8 2*Lattri *Nattr 2*Lattri *Nattr

Line 10 P P*Op

Line 11 X X*Op

Line 12 Y Y*Op

Line 13 Lopi *Z*Op Lopi *Z*Op2

Line 20 Lattri *Nattr Lattri *Nattr*Op

Line 21 Lattri *Nattr Lattri *Natt*Op

Line 22 2*Lattri *Nattr 2*Lattri *Nattr*Op

96

The total cost of the entire algorithm is

Total Cost = Lattri * Nattr + C + C + X + Y + Lopi * Z * Op + Lattri * Nattr + 2 * Lattri * Nattr +

P * Op + X * Op + Y * Op + Lopi * Z * Op2 + Lattri * Nattr * Op + Lattri* Nattr *

Op + 2 * Lattri * Nattr * Op

 = Op2 * Lopi * Z + Op * (Lopi * Z + P + X + Y + 4 * Lattri * Nattr) + 4 * Lattri *

Nattr + 2 * C + X + Y

The worst-case time complexity of ReOptML is O (Op2)

6.1.2.3 Time Complexity Analysis for ReOptRL and SLAReOptRL

The variables of the time complexity analysis of ReOptRL are listed as follows:

 C: constant

 Op: total number of operators

 Nattr: total number of attributes in all the tables

 Lopi: string length of operator i, e.g., Lop of Read= 4

 Lattri: string length of attribute i, e.g., Lattri of “InstructorID” is 12

 Ai: total number of attributes used by operator i

 Ncont: total number of containers

 Ntype: total number of physical operator types supported in a database system

 Nlayer: total number of hidden layers in the neural network (excludes input and output

layer)

We analyze the time complexity by evaluating the time cost of each line in the algorithm

and adding them together as the final result.

97

Line 1:t = 0

This line contains one assignment. The time cost of the assignment is C

Cost of Line 1: C

Line2: Result = Ø

The cost is the same as that of Line 1.

Cost of Line 2: C

Line 3: Qt = 0

The cost is the same as that of Line 1.

Cost of Line 3: C

Line 4: QEP = QueryOptimizer (query)

Assuming the cost of running the query optimizer in a database system is X.

Cost of Line 4: X

Line 5: while QEP ≠ Ø

This line contains one comparison, the cost of comparison is C.

Cost of Line 5: C

Line 6: Lop=next available logical operator in QEP

The QEP is stored as a queue in implementation. The next available operator is always

stored at the head.

Cost of Line 6: C

Line 7: State St= convert QEP to a state matrix

This step is converting QEP to a state matrix. It can be decomposed to several sub-steps.

98

7.1 Read the 1st node of the logical plan tree (Node)

Cost of 7.1 is C

7.2 Create an empty entry in the State_Matrix

This entry is an array. As this array needs to hold the operator’s name and all the attributes

in the tables, the length of this array is Nattr +1. Assigning each slot of the array an initialized

value costs C. Thus, the total cost is (Nattr+1)

Cost of 7.2 is (Nattr+1)

7.3 Insert OperatorName at the 1st slot of the array

The cost of this step is equal to the number of characters of this OperatorName

Cost of 7.3 is Lopi

7.4 Get the 1st attribute in Node, Node.attributeslist[1]

This step reads the 1st attribute, the cost depends on the length of this attribute.

Cost of 7.4 is Lattri*C

7.5 Find the position of Node.attributeslist[1]

This step is to find the position of the attributes in 7.4. It needs to iterate every item in the

attribute list. If it matches, then write ‘1’ at that position, otherwise write ‘0’. Thus, the cost

depends on the length of the attributes list.

Cost of 7.5 is Nattr*C

For each attribute involved in the operator, Steps 7.4 to 7.5 are repeated. Thus, the total

cost of 7.4 and 7.5 is Ai*(Lattri+Nattr)

And for each operator in the QEP, Steps 7.1 to 7.5 repeat.

Cost of Line 7:

99

Op*(1+ Nattr+1+Lopi+Ai*(Lattri+Nattr))

Note that, for each time, one operator is removed from the QEP. The total number of

operators is reduced after the outer loop is executed.

The total cost of the 1st time running of Line 7: Op*(1+Nattr+1+Lopi+ Ai*(Lattri+ Nattr))

The total cost of the 2nd time running of Line 7: (Op-1)*(1+Nattr +1+ Lopi+ Ai*(Lattri+ Nattr))

The total cost of the opth time running of Line 7: 1*(1+ Nattr +1+ Lopi+ Ai*(Lattri+ Nattr))

Thus, the cost of running from 1st time to opth time is an arithmetic sequence, and the total

cost can be calculated as,

(Op+1)*Op/2*(1+ Nattr +1+ Lopi+ Ai*(Lattri+ Nattr))

Line 8: Actiont= RunLearningModel (St)

This step describes how an action is selected by running the RL model. This step contains

several sub-steps:

8.1 Convert all the operators in the current QEP into a numeric value.

The number of operators is Op and converting each operator to a numeric value depends

on the length of the operator.

Cost of 8.1: Lopi*Op

8.2 Read the State matrix as the input of the neural network.

Each node in the input layer of the neural network is corresponding to a value in the State

Matrix. Assume we have State Matrix S,

InputNodep=S[i][j].

Each assignment includes a read and an assignment, which costs 2*C

Cost of 8.2: (1+Nattr)*Op*2*C

100

Similar to Line 7, as the number of operator changes, the total cost of running the whole

loop is

2*C* (1+Nattr)*Op+(1+Nattr)*(Op-1)+ (1+Nattr)*(Op-2)+ … +(1+Nattr)*1

= (Op+1)*Op*C*(1+Nattr)

8.3 Initialize the weights (Wi).

As a fully connected neural network, the number of weights is equal to the number of nodes

in the neural network, and the number of nodes in the hidden layer is the same as the

number of nodes in the input layer. The nodes of the output layer are the same as the

number of actions. The number of actions is the number of containers * the number of

operator types. The total number of nodes is calculated as the number of nodes of the input

layer + the number of nodes of the hidden layers + the number of nodes of the output layer.

The cost of assigning a value to weight is C,

Cost of 8.3: C*(1+ Nattr)*Op *(Nlayer+1)+Ncont* Ntype

8.4 Calculate the node value of the hidden layer 1:

8.4.1 Calculate the value of the 1st node in the hidden layer 1

InputNode1*W1+ InputNode2*W2+…+ InputNodeop*(1+Nattr)*Wop*(1+ Nattr)

Cost of 8.4.1: 2*(Op*(1+Nattr))

8.4.2 Calculate the value of the 2nd node in the hidden layer 1

These steps repeat till all the nodes in the hidden layer 1 is finished

Repeat Op*(1+Nattr) times

Cost of 8.4: 2*C*(Op*(1+Nattr))2

8.5 Calculate the node value of the hidden layer 2

101

Similarly, total cost of 8.5: 2*C*(Op*(1+Nattr))2

These repeat for all the hidden layers.

The cost of all the hidden layers: 2*C*(Op*(1+Nattr))2*Nlayer

8.6 Calculate the node value of the output layer:

Similarly, Total Cost of 8.6: 2*C*(Op*(1+Nattr))*Ncont*Ntype

Total Cost of calculating the values of all the nodes: 2*C*(Op*(1+Nattr))2*Nlayer

+2*C*(Op*(1+Nattr))*Ncont*Ntype

8.7 Find the action with the max q-value

In the output node layer, every node contains a key-value pair <Action, Q-value>

e.g., <(Read, 4), 4.45>, <(Read,5), 3.1>,

The following sub-step is to find the action with the max Q-value:

8.7.1 Set max=0

Cost of 8.7.1: C

8.7.2 Read the key-value pair and the Q-value as the current Q-value

Cost of 8.7.2: C*(Lopi+1)

8.7.3 if the current Q-value > max, then max=q-value

Cost of 8.7.3: C+C

Steps 8.7.2 to 8.7.3 repeat for Ncont* Ntype times

Cost of 8.7: Ncont* Ntype *(2C+ C*(Lopi+1))+C= (Ncont* Ntype+1)*(3+ Lopi)

From Line 8.1 to Line 8.7, we can find the Cost of Line 8:

Lopi+(1+ Nattr)*Op +2*(Op*(1+ Nattr))2* Nlayer

+2*(Op*(1+ Nattr)) * Ncont* Ntype+ (Ncont* Ntype+1)*(3+ Lopi)

102

Line 9: Result=Result ∪ execute (Op, Actiont)

Assuming the cost of executing one query operator is Y.

Cost of Line 9: Y

Line 10: QEP= QEP - Op

The QEP is stored as a queue. Remove the Op is a dequeue operation in implementation.

The detail of this dequeue function is as follows,

function dequeue () {
 lop = head.value // c
 head = head.next // c
 size-- // 2c
 if (head == null) { // c
 tail = null //c
 }
 return lop // c
}
The cost of each line is also denoted at the end, and the accumulative cost is C+C+2C+

+C+C=7C

Cost of Line 10: 7C

Line 11: Update Rt=R (wp, Actiont.time, Actiont.money))

The reward function is the following:

𝑅𝑒𝑤𝑎𝑟𝑑 𝑅 =
1

1 + (𝑊௧ ∗ ൫𝑇௢௣
௤

+ 𝑃௧൯) + (𝑊௠ ∗ (𝑀௢௣
௤

+ 𝑃௠))

As one arithmetic operation cost C,

Cost of Line 11: C+(C+C)+C+(C+C)+C= 6C

Line 12: Obtain the Q-value of the next state Qt+1 from the neural network

This step has the same cost as the cost in 8.7.2

Cost of Line 12: C*(Lopi+1)

103

Line 13：Update Q-value of current state Qt = Bellman (Qt, Qt+1, Rt, 𝛼, ϒ)

Similar to Line 11，as one arithmetic operation costs C,

Cost of Line 13: C+(C+C)+C+(C+C)+C+C+C=9C

Line 14：Update Weights in the neural network

The cost of updating the weights is the same as the cost of initializing the weights in Line

8.3.

Cost of Line 14: C*(1+Nattr)*Op *(Nlayer+1) + Ncont* Ntype

Line 15：t=t+1

Cost of Line 15: 2C

From Line 6 to Line 15, each line is in the WHILE loop. Thus, to calculate the overall cost

of the whole algorithm, the cost of those lines should be computed in total considering the

loop.

The following table gives the summary of all the lines,

Table 6. Line by line time cost of ReOptRL

Line No. One time cost Total Cost After Loop

Line 1 C C

Line 2 C C

Line 3 C C

Line 4 X X

Line 5 2C 2C

104

Line 6 C C*Op

Line 7 Op*C*(1+ Nattr +1+ Lopi+ Ai*(

Lattri+ Nattr))

(Op+1)*Op2/2* C*(1+ Nattr +1+

Lopi+ Ai*(Lattri+ Nattr))

Line 8 Lopi+(1+ Nattr)*Op +2*(Op*(1+
Nattr))2* Nlayer+2*(Op*(1+ Nattr
)) * Ncont* Ntype+ (Ncont*
Ntype+1)*(3+ Lopi)

(Op+1)*Op/2*(Lopi+(1+
Nattr)*Op +2*(Op*(1+ Nattr))2*
Nlayer+2*(Op*(1+ Nattr)) *
Ncont* Ntype+ (Ncont*
Ntype+1)*(3+ Lopi))

Line 9 Y Y*Op

Line 10 7*C 7*C*Op

Line 11 6*C 6*C*Op

Line 12 C*(Lopi+1) C*(Lopi+1)*Op

Line 13 9*C 9*C*Op

Line 14 C*(1+ Nattr)*Op *(Nlayer+1) +
Ncont* Ntype

C*(1+ Nattr)*Op *(Nlayer+1) +
Ncont* Ntype*Op

Line 15 2C 2C*Op

So, the total cost of the entire algorithm is

Total Cost= 5C + X + (C + Y) * Op + C * (Op*(1 + Nattr + 1 + Lopi + Ai*(Lattri + Nattr)) +

(Lopi + (1 + Nattr) * Op +2 * (Op * (1 + Nattr))2* Nlayer+2 * (Op * (1 + Nattr)) *

Ncont* Ntype + (Ncont* Ntype + 1) * (3 + Lopi))

 = Op2 * (2*(C + Nattr))2) + (Y + (4C + Ai + Lopi) * Nattr + 7C + Lopi) * Ncont * Ntype

+ Lopi * (Ai * Lattri + 1)) * Op + 5C + X

105

The worst-case time complexity of ReOptRL is O (Nattr
2

 *Op2). The only difference

between SLAReOptRL and ReOptRL in terms of time complexity is that, in Line 11, the

cost is 13*C. The worst-case time complexity of SLAReOptRL is also O (Nattr
2

 *Op2).

6.2 Experimental Results

6.2.1 Experimental Hardware and Software Configurations and Benchmark

Dataset

There are two sets of machines (containers) that are used in our experiments. The first set

consists of a single local machine used to train the machine learning model and to perform

the query optimization. This local machine has an Intel i5 2500K Dual-Core processor

running at 3 GHz with 16GB DRAM. The second set consists of 10 dedicated Virtual

Private Servers (VPSs) that are used for the deployment of the query execution engine. 5 of

these VPSs are called small containers, each of which has an Intel Xeon E5-2682 processor

running at 2.5GHz with 1 GB of DRAM. The other 5 VPSs are called large containers, each

of which has two Intel Xeon E5-2682 processors running at 2.5GHz with 2 GB of DRAM.

The query optimizer and the query engine used in this experiment are modified from the

open-source database management system, PostgreSQL 8.4 [44]. The data are distributed

among these VPSs.

The queries and database tables are generated using the TPC-H database benchmark [36].

There are eight database tables with a total size of 1,000 GB and the database tables are

106

populated using the default data generator. We run 50,000 queries in total and these queries

are generated by the query templates randomly selected from the 22 query templates from

the benchmark. In the experiments, we set the query operator impact rate 𝛼௝௢௜௡ to 1.5 for

the JOIN operator and 𝛼௢௣ to 1 for other operators.

6.2.2 Competitive Algorithms

To evaluate the performance of the four proposed algorithms, ReOpt, ReOptML, ReOptRL,

and SLAReOptRL, the following existing algorithms are selected for experimental

comparison studies:

1) NoReOpt: This is an algorithm that uses no re-optimizations at all. There are multiple

query processing algorithms on the market. We use the one that is applied in the original

Postgre SQL. NoReOpt is also considered as the “Baseline” when comparing different

algorithms.

2) Tukwila [15]: This algorithm is a well-known adaptive query re-optimization

algorithm in the literature that triggers a re-optimization after an operator is executed if the

difference between the estimated query cost and the actual query cost exceeds some

threshold. The details of this algorithm were discussed in Section 2.1.1.

3) Sample [3]: This is an algorithm existing in the literature where query re-optimization

uses sampling-based query estimation. Unlike traditional query re-optimizers, the

estimation of executing each query is done by estimating a sample of the entire dataset so

107

that the speed of estimating execution cost is faster. The details of this algorithm were

described in Section 2.1.3.

We choose Tukwila as one of the competitive algorithms because we would like to study

query execution performance when the query re-optimization decision is made by different

methods. The workflow of Tukwila is similar to that of ReOptML. They both start with a

QEP generated by an existing query optimizer. After executing one or a stage of query

operators, the decision of whether or not to conduct query re-optimization needs to be made.

In Tukwila, if the difference of data statistics before and after execution is greater than a

threshold, the re-optimization is triggered. The threshold determines when a query re-

optimization should take place, but it needs to be set by domain experts, while in ReOptML,

a supervised learning technique is applied to make such decisions without any human

interference. We compare ReOpt, ReOptML, and Tukwila to investigate the difference in

query execution performance when query re-optimization is conducted without any

decision, with the decision made by the machine alone, and with the decision made by

humans, respectively.

Also, we choose Sample as another competitive algorithm because we would like to study

the impact of the time overhead from updating the data statistics on the overall query

execution performance. In Sample, after executing a sample of tuples, the column

cardinalities are updated. The query optimizer uses the new cardinality to re-optimize the

remainder of the query execution plan. The other data statistics such as histogram and the

108

number of rows are not updated in re-optimization. Thus, in this technique, the time

overhead from updating the data statistics is reduced. However, potentially, the overall

performance may not be improved as a bad QEP still can be generated after re-optimization

using only the updated cardinalities. To avoid the time overhead caused by updating data

statistics completely, ReOptRL and SLAReOptRL are designed. We would like to see if

the query execution performance can still be improved even without using any updated

data statistics. Thus, we compare the four proposed algorithms with Sample to investigate

the query execution performance when query re-optimization relies on fully updated data

statistics (ReOpt and ReOptML), partially updated data statistics (Sample), and no updated

data statistics (ReOptRL and SLAReOptRL).

Meanwhile, there exist more recent query re-optimization techniques other than Sample.

Those are SkinnerDB [5], CuttleFish [4], and ReJoin [6]. We do not choose them as

competitive algorithms in the experiments because there exist restrictions to use each of

those techniques. For SkinnerDB, it assumes that the existing query optimizer only

generates the left-deep trees for join operators, while in our experiments, besides the left-

deep trees, the query optimizer can also generate the right-deep trees and the bushy trees.

To compare with SkinnerDB, we have to restrict our query optimizer to generate the left-

deep trees only. This largely narrows the search space of QEPs and thus an optimal QEP

is more likely not chosen after re-optimization. The query execution performance in our

proposed algorithms is negatively impacted if a sub-optimal QEP is executed.

109

For CuttleFish and ReJoin, those two techniques focus only on re-optimizing the join order

and physical join operator. Although re-optimizing the join operator is very critical to the

query execution performance, other factors such as resource provisioning and execution

order of query operators are also important but are not re-optimized in these algorithms.

Thus, those techniques perform well only for executing queries that contain a high number

of join operators, while the queries in our experiments contain both a low and high number

of join operators. To compare with CuttleFish and ReJoin, we must restrict to executing

queries that contain a high number of joins only. Thus, the query execution performance

results are biased toward those two algorithms.

If we implement those restrictions in our proposed algorithms, those unchosen competitive

algorithms may outperform our proposed algorithms on query response time or monetary

cost. This is because the unchosen competitive algorithms are designed specifically for re-

optimizing join operators while our algorithms are designed for re-optimizing the entire

query execution plan which can consist of other operators, such as read, filter, and

aggregation, besides join. However, since none of the unchosen competitive algorithms

considers SLA violation, we expect our proposed algorithms to have lower SLA violation

rates than those algorithms do.

6.2.3 Performance Metrics

 In this section, the performance metrics used in our experimental evaluations of ReOpt,

ReOptML, ReOptRL and SLAReOptRL are presented.

110

6.2.3.1 Performance Metrics for ReOpt

The performance of ReOpt is measured based on two metrics: (1) average response time

of a query and (2) average monetary cost to pay to the cloud service provider to execute a

query. Query response time is the elapsed time from the moment when a user enters an

SQL query to a cloud DBMS until the moment when the results of executing this query are

displayed on the screen. The average query response time is the main performance metric

when evaluating a query processing algorithm. The queries used in the experiments are

generated from the TPC-H benchmarks [36]. There are 22 query types in total. Among

those query types, some of them are simple query types and some of them are complicated.

Multiple queries generated by the same type are evaluated. Hence, the average response

time per query to give a general overview of the performance of each algorithm. Similarly,

we use the average monetary cost per query to evaluate how much money should a user

pay to complete a query. As in the scenario of this dissertation, all the queries are executed

on a cloud database system, we need to consider monetary cost in addition to query

response time.

6.2.3.2 Performance Metrics for ReOptML

The performance of ReOptML is also measured based on average query response time and

average monetary cost.In addition, in order to select the best supervised machine learning

model to be used to predict when a re-optimization should be triggered, model accuracy is

also used as the metric for selecting the model. The model accuracy is measured by the

number of correct re-optimizations / the total number of re-optimizations.

111

6.2.3.3 Performance Metrics for ReOptRL and SLAReOptRL

Similarly, the performance of ReOptRL is also measured based on average query response

time and average monetary costs. In addition, in SLAReOptRL, which is an extended

algorithm of ReOptRL, we measure the SLA violation rate. The SLA violation rate is the

total number of queries executed that violate the SLA requirements divided by the total

number of queries executed. Using this metric, we can see whether the rate of SLA

violation is improved if the algorithm considers SLA requirements while a query is

processed.

6.2.4 Experimental Results for ReOpt

 In this section, the evaluation results for ReOpt are presented. There are two sets of results,

and each set of results is based on running 1140 queries generated from two different query

types obtained from the work in [1]. The first set of results aims to study the impact of data

size on different degrees of parallelism and the second set of results aims to study the

impact of data size on different physical operators.

6.2.4.1 Comparison of Query Response Time and Monetary Cost of ReOpt and

NoReOpt on Different Degrees of Parallelism

We hypothesize that query re-optimization is able to reduce the degree of parallelism of

the query execution plan which means the query response time and monetary cost will be

reduced as fewer computational nodes are planned to be used. The example Query 1 given

below is executed to test whether the time cost or monetary cost will be affected by the

112

degree of parallelism of the query execution plan as the number of containers will be used

in the query execution will be impacted. In this query, there are sub-queries that select data

from different partitions of the table and are executed in parallel, so there is a high degree

of parallelism in this query.

Query 1:
SELECT pid,RecursiveUDA(hr) AS sb
FROM (SELECT pid, hr, FROM patient_1
 UNION
 SELECT pid, hr, FROM patient_2
 UNION
 SELECT pid, hr, FROM patient_3
) AS R
WHERE UDF(pid,hr)>80
GROUP BY pid

We expect to see if re-optimization is applied, such change will be detected, and applying

this new data size in the rest stages of the query optimization and execution can result in

the change in the number of containers used accordingly. (Shown in Table 7). And

evidently, the monetary cost will also be changed.

0
20
40
60
80

100
120
140
160
180

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19Av
er

ag
e

Q
ue

ry
 R

es
po

ns
e

Ti
m

e
(s

ec
on

d)

Data Size (x100GB)
Average Query Response Time Without Re-Optimization(sec)

Average Query Response Time With Re-Optimization(sec)

Figure 22. Impact of data size on query response time of Query 1

113

From Figure 23, we can see that the monetary cost of the query execution has been reduced

with the re-optimization while the query response time does not change much, only within

8%, while the query monetary cost is reduced over 40% averagely. This is because the

degree of parallelism is updated after each stage; if the degree of parallelism is small, we

will schedule fewer containers for the rest of the QEP execution. Thus, the monetary cost

is reduced. For example, when the data size is over 1,000 GB, the peak number of

containers needed without re-optimization is 8 but this number is reduced to 2 with re-

optimization. As 6 fewer containers are used in query execution, this saves the monetary

cost.

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

1 2 3 4 5 6 7 8 9 10 11 12 13

Av
er

ag
e

M
on

et
ar

y
Co

st
 (d

ol
la

r)

Data Size (x100GB)
Average Query Monetary Cost Without Re-Optimization($)

Average Query Monetary Cost With Re-Optimization($)

Figure 23. Impact of data size on query monetary cost of Query 1

114

Table 7. The comparison of the peak number of containers used in execution of Query 1

Data Size

(x100GB)

The peak number of

Containers used without

Re-Optimization

The peak number of

Containers used with Re-

Optimization

1 4 2

5 4 2

10 8 2

15 8 2

20 8 2

6.2.4.2 Comparison of Query Response Time and Monetary Cost of ReOpt and

NoReOpt on Different Physical Operators

In this experiment, we study the impact of physical operators and the impact of different

data sizes on these physical operators on our proposed algorithms. The physical operators

will be changed with different data statistics even with the same logical operators in the

QEP. Similarly, if the QEP is not re-optimized, this change will not be detected before the

query is executed and the statistics are updated. To reflect this change, we purposely change

the type of the Join operator during the query execution. To test this impact, we run the

following Query 2:

Query 2:
SELECT R.p_id,R.p_name,R.sc,S.p_hr
FROM (SELECT p_id, p_name, AVG(p_bp) AS sc
 FROM patient GROUP BY p_id,p_name) AS R
JOIN (SELECT p_id,p_hr

115

 FROM patient
 WHERE UDF(p_id,p_hr)>80
) AS S
ON R.p_id=S.p_id

In this query, there is a Join of two subqueries and the data size of each subquery is

unknown. We want to see how the physical operator of this Join will change depending on

the data size of the subquery. So, we purposely make the data size of the right side of the

join operator to be small enough to fit in the cache so that the Shuffle Join operator will be

changed to the Broadcast Join operator for every query execution. As seen from Figure 24,

when the physical operator of Join is changed from Shuffle Join to Broadcast Join, the

execution time is reduced as the BroadCast Join is executed around 40% faster than Shuffle

Join in this experiment environment. The overall time cost using re-optimization has an

average of around 20% improvement over without using re-optimization. Also, as shown

in Figure 24, the bigger the data size, the more time is saved with re-optimization as

opposed to without query re-optimization even though both approaches will require more

time for query execution. This shows that re-optimization is worth for large data size. The

monetary cost between the two approaches is close, with only a 4% difference as shown in

Figure 25. This difference in monetary cost happens when some part of the query is

executed on the containers with a higher unit price after re-optimization.

116

6.2.5 Experimental Results of ReOptML

 In this section, the evaluation results are presented using ReOptML. First, we show the

performance of each supervised machine learning model. Then we compare the average

0

10

20

30

40

50

60

70

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Av
er

ag
e

Q
ue

ry
 R

es
po

ns
e

Ti
m

e
(s

ec
on

d)

Data Size (x100GB)

Average Query Response Time Without Re-Optimization(sec)

Average Query Response Time With Re-Optimization(sec)

0
0.005

0.01
0.015

0.02
0.025

0.03
0.035

0.04
0.045

0.05

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18Av
er

ag
e

M
on

et
ar

y
Co

st
 (d

ol
la

r)

Data Size (x100GB)

Average Query Monetary Cost Without Re-Optimization($)

Average Query Monetary Cost With Re-Optimization($)

Figure 25. Impacts of data size on monetary cost for executing query

Figure 24. Impacts of data size on time for executing query

117

query response time and monetary cost among multiple algorithms running on both

uniform and skew distributed data after applying the selected model.

6.2.5.1 Comparison of Accuracy of Different Supervised Learning Models

Model accuracy reflects the overall success rate of predicting useful re-optimizations. We

use 10-fold cross-validation to test the accuracy of three supervised learning models,

Neural Network, Random Forest, and SVM. We also study the impact of different data

distributions on the accuracy of the learning models. We populate the database tables with

both the uniformly distributed data and skew data and the same queries are executed on

both of them. Many traditional query optimizers, like PostgreSQL [44], assume that data

is uniformly distributed, so if only uniformly distributed data is used, there are more

chances that re-optimization has no effect at all. Skew data may cause wrong cost

estimations and thus the QEP selected by the traditional query optimizer is far from optimal,

thus re-optimization may be more useful when data is skewed. We use skew data on

purpose to see how model accuracy and query execution performance are impacted. As

shown in Figure 26, as the number of queries increases, the accuracy increases as well.

This is because as more observations were learned by the model, it is more capable of

predicting beneficial re-optimizations. We find the accuracy among these three models is

slightly different. Averagely, the Neural Network is near 70% accurate, while Random

Forest and SVM are close to 75%. From the data distribution perspective, the models on

118

the uniform data and on the skew data have slightly different accuracies with the average

accuracy being within 5% difference of each other.

Figure 26. Model accuracy of three different machine learning algorithms that learn from
queries executed on (a) uniform data and (b) skewed data

55%

57%

58%

59%

67%

68%

69%

72%

73%

74%

75%

76%

77%

78%

79%

80%

81%

82%

83%

10,000 15,000 20,000 25,000 30,000 35,000 40,000 45,000 50,000 55,000 60,000
Number of Queries

A
cc

u
ra

cy

NeuralNetwork

RandomForest

SupportVectorMachine

Uniform Dataset

50%

52%

55%

56%

57%

63%

65%

66%

67%

68%

69%

72%

73%

74%

75%

76%

77%

78%

79%

81%

82%

83%

10,000 15,000 20,000 25,000 30,000 35,000 40,000 45,000 50,000 55,000 60,000
Number of Queries

A
cc

u
ra

cy

NerualNetwork

RandomForest

SupportVectorMachine

Skew Dataset

119

6.2.5.2 Performance Obtained When Applying Different Supervised Machine

Learning Models for Query Re-Optimization to Query Processing

The model accuracy is close to each other as reported above; so, to select which supervised

learning model should be used eventually, in this section, we evaluate these models in

terms of performance on query execution when incorporating them into query processing

as shown in Figure 26. We generate 100 query instances from each of the 22 TPC-H

benchmark query types, totaling 2200 queries. On average, each query has 13 stages. These

queries are executed and re-optimized based on the decisions made by these three models.

Each QEP is evaluated with the same weight on time and monetary costs when the query

optimizer selects the best QEP. This means we assume the users have no preference on

time or monetary costs themselves. The actual time and monetary costs resulting from

applying these three models are compared. To be fair, these queries are newly generated

and not seen by any of these models during the model training process. Figure 27 shows

the end-to-end query response time and monetary cost on executing the queries generated

from all 22 query types of the TPC-H benchmark and these costs are summarized in Table

8. These results are averaged on running queries on both uniform and skew datasets.

120

Table 8. Average and cumulative query response time and monetary cost using three
different machine learning models

 Neural
Network

Random Forest SVM

Average Query Response Time 36.2 sec 35.4 sec 31.5 sec

Cumulative Query Response Time
of 2,200 queries of 22 query types

79,200 sec 77,880 sec 69,300 sec

Average Query Monetary Cost 0.070 ¢ 0.071 ¢ 0.069 ¢

Cumulative Query Monetary Cost
of 2,200 queries of 22 query types

154.6¢ 156.2 ¢ 151.8 ¢

From Table 8, we can see that SVM gives the best query response time. As shown in Figure

20, the three models have a very similar model accuracy. This means that the optimizer has

a similar chance to perform useful re-optimizations by using any of these models. However,

it takes different amounts of time to apply these models. As these models are applied online

during query execution, the overheads caused by using these models are added to the query

response time. Thus, a small difference in this overhead may cause a significant difference

in query response time, and thus is crucial to the users. From the monetary cost perspective,

the amount of money to execute each query seems negligible when using any of the three

models as shown in Table 8. However, this amount shown in this figure is just for one

query execution, but in practice, tens of thousands of queries are executed for enterprise

applications. This results in a large difference in cumulative monetary costs. Also, for each

query type, the monetary cost has a larger variation than the query response time. This is

because, in our hardware configuration, a large container is charged 4 times more money

121

than a small container according to our price model. If an operator is assigned to a large

container, it costs way more money to be executed but the time cost may be just a little bit

less. Thus, the accumulative monetary cost varies a lot. Overall, SVM has the best

prediction accuracy and query response time, and the second-best monetary cost. Thus, in

the following experiments, we select SVM as the machine learning model to be used in our

proposed machine learning-based query re-optimization, ReOptML, and compare this

algorithm against other query re-optimization algorithms. We select this model for

comparison purposes only; we do not intend to suggest which model should be selected

automatically as some QEPs may be executed faster but cost more money and vice versa,

depending on the selected model.

Figure 27. (a) and (b) Average response time and Average monetary cost of executing
queries using three different machine learning models for query re-optimization

122

6.2.5.3 Performance of Different Query Re-Optimization Algorithms

In this section, we compare the end-to-end query processing performances obtained when

the following query re-optimization algorithms are incorporated into query processing: 1)

the proposed algorithm in this chapter (ReOptML); 2) the algorithm proposed in Chapter

III (ReOpt) where a query re-optimization is conducted automatically after the execution

of each stage in the query is completed; 3) the algorithm proposed by Tukwila [15]

(denoted as Tukwila), a well-known adaptive query re-optimization algorithm that triggers

a re-optimization after an operator is executed if the difference between the estimated query

cost and the actual query cost exceeds some threshold; and (4) the baseline algorithm where

queries are processed without any query re-optimization (denoted as NoReOpt).

We launch 2200 queries with 100 queries being generated from each of the 22 TPC-H

query types both on uniform and skew data. We compare the average query response time

and monetary cost. We report the query types that have large differences between ReOpt

and ReOptML on average so that we can see with the help of machine learning, how much

improvement can be obtained with re-optimization.

Skew Data: we compare our algorithm with Tukwila, NoReOpt, and ReOpt on skew data.

The experimental results show that our algorithm performs the best both in terms of query

response time and monetary costs. From Figure 28 (a), on average we see that ReOptML

yields 13%, 22%, and 35% less query response time than ReOpt, Tukwila, and NoReOpt,

123

respectively. From Figure 28 (b), on average we see that ReOptML spends 17%, 34%, and

35% less monetary cost than NoReOpt, ReOpt, and Tukwila, respectively.

The above results show that ReOptML saves more time and monetary cost than the other

three algorithms, ReOpt, Tukwila, and NoReOpt. In this experiment, re-optimization

contributes to these savings, and it is beneficial in two aspects. First, after a re-optimization,

the optimizer implements different types of physical operators. Different types of physical

operators, such as NestedLoopJoin or HashJoin, used to execute these JOINs can result in

a large difference in query response time. Second, re-optimization helps decide the degree

of parallelism of each operator so that a lot of money is saved as fewer containers are used

for executing these operators. However, not all re-optimizations are useful as discussed in

Section 4.1, conducting more useful re-optimizations, and avoiding unnecessary re-

optimizations can further improve performance. We compare the QEP before and after re-

optimization in each algorithm to find out whether each re-optimization is necessary or not.

In this experiment, nearly 70% of the re-optimizations are necessary in ReOptML, while

only 35% in ReOpt and 28% in Tukwila are necessary. From this, we conclude that using

machine learning further helps improve both the time and monetary costs of query

execution by avoiding unnecessary re-optimizations.

Uniform Data: In addition to the results obtained from executing queries on skew data,

Figures 28 (c) and (d) also show the results of executing the same queries on uniform data.

These two figures report only the query types that have large differences in query response

124

time and monetary cost. From Figure 28 (c), on average we see that ReOptML yields 13%,

13% and 21% less query response time than ReOpt, Tukwila, and NoReOpt, respectively.

The total savings of query response times resulting from ReOptML, ReOpt, Tukwila, and

NoReOpt on uniform data are less than those on skew data because the optimizer assumes

the data is uniformly distributed by default. Thus, the error of cost estimation on uniform

data is less than that on skew data. This shows that query re-optimization, in general, is

more helpful in executing queries on skew data. In terms of monetary cost, from Figure 28

(d), on average we see that ReOptML spends the same amount of money as ReOpt, 7%

less money than Tukwila, but 10% more money than NoReOpt. From these results, we find

that when queries are executed on uniform data, re-optimization saves time but does not

improve monetary cost.

In summary, we conclude that using supervised machine learning to predict when a re-

optimization is beneficial does improve query response time no matter queries are executed

on a uniform or skew data. In terms of monetary cost, this algorithm also saves a significant

amount of monetary cost when queries are executed on skew data, but gives no

improvement when queries are executed on uniform data.

125

6.2.6 Experimental Results of ReOptRL and SLAReOptRL

In this section, the evaluation results of ReOptRL and SLAReOptRL are presented. We

show the evaluation of the two algorithms with and without SLA requirements. Then we

show the impact of RatioJoin and Weight on executing queries using different algorithms.

6.2.6.1 Evaluation of ReOptRL and SLAReOptRL with SLA Requirements

In this section, we compare the performance results obtained when the following query re-

optimization algorithms are incorporated into query processing: 1) our two proposed

algorithms, ReOptRL and SLAReOptRL; 2) the ReOpt algorithm proposed in Chapter III

where a query re-optimization is conducted automatically after the execution of each

Figure 28. (a)-(d) Average query response time and monetary cost of executing one
query from different query types on skew data (a-b) and on uniform data (c-d)

126

operator in the query is completed; 3) the ReOptML algorithm proposed in Chapter IV

where a query re-optimization is conducted by a supervised machine learning model

decision . In this algorithm, after a query operator is executed, conducting re-optimization

or not is decided by a supervised machine learning model. This decision is influenced by

the current data statistics such as column selectivity and histogram. The re-optimization is

done by the traditional query optimizer. Only whether to trigger the re-optimization or not

is decided by the supervised learning model; 4) the existing algorithm proposed in [3] where

query optimization uses sampling-based query estimation (denoted as Sample), and 5) the

existing algorithm that uses no re-optimization (denoted as NoReOpt).

In these experiments, we use NoReOpt as the baseline and the other algorithms are

compared to the baseline. Moreover, SLA requirements are implemented. We assign each

query with its SLA requirements and the query is executed using different query re-

optimization algorithms with the same SLA requirements. Because the SLA requirements

depend on the cloud service providers’ agreements with their users, there are different ways

to define the SLA requirements [37]. In our experiments, we manually set the SLA

requirements as the mean value of query response time and the mean value of monetary

costs to execute the queries. These mean values are the average query response times and

monetary costs obtained when executing 300,000 tested queries, which are the 50,000

queries executed using each of the six studied algorithms. These mean values are the same

for all the queries used in the following experiments.

127

From Figures 29 and 30, we can see that, for both the query execution time and monetary

costs, on average SLAReOptRL performs the best and ReOptRL performs the second-best

among all the algorithms. Specifically, comparing with the baseline NoReOpt where no re-

optimization is conducted, the query execution time improvement using SLAReOptRL is

45%, ReOptRL 39%, ReOptML 27%, ReOpt 13%, and Sample 10%, while the monetary

cost improvement using SLAReOptRL is 62%, ReOptRL 52%, ReOptML 27%, ReOpt

17%, and Sample 5%. The above results show that when considering all the 50,000 queries

generated from all the 22 TPC-H benchmark query types, compared with the baseline

NoReOpt, on average our proposed algorithms improve more time and monetary costs than

the three algorithms, ReOpt, ReOptML, and Sample. Especially, the monetary cost has a

significant improvement (SLAReOptRL and ReOptRl are 62% and 52% better than

NoReOpt, respectively). However, for the queries of simple query types (Q1, Q2, Q3, Q4,

Q6, Q8, Q10, Q11) which are 8 query types out of the 22 TPC-H query types, none of the

studied re-optimization algorithms performs better than NoReOpt. Simple query types mean

the QEPs for the queries of those query types contain a small number of JOIN operators

(usually 2 to 3) and the total number of operators in each of those QEPs is also small (usually

10 to 15). The query response time and the monetary cost for executing the queries of

optimization.

As shown in Figures 29 and 30, NoReOpt outperforms the re-optimization algorithms

(ReOpt, ReOptML, Sample, ReOptRL and SLAReOptRL) when simple queries are

128

executed. This is because the main benefits of re-optimization come from the JOIN operator

execution but extra overhead is also added. In executing simple queries, the accumulative

overheads outweigh the benefits gained from the re-optimizations. In our experiments, the

average query response time improvement of the re-optimization algorithms over the

baseline algorithm, NoReOpt, for executing JOIN operators is 23% and the average

monetary cost is 45%. However, each re-optimization causes around 5% extra query

response time and 6% monetary cost on average when simple queries are executed. Those

overheads are generated by the additional query processing steps in re-optimizations, such

as updating data statistics, running a decision tree model, or neural network. The overheads

caused by those procedures are fixed values. When simple queries are executed, the total

time and monetary costs are very low, the proportion of the overheads to the execution costs

becomes relatively large. Thus, NoReOpt performs the best when simple queries are

executed.

On the other hand, when the queries are complex, which means a QEP generated for each

of these queries contains a high number of JOIN operators (usually 5 or more) and a high

total number of operators (usually over 25), the algorithms with re-optimization (ReOpt,

ReOptML, Sample, ReOptRL and SLAReOptRL) outperform the one without re-

optimization, NoReOpt. When complex queries are executed, the overall query response

time and monetary cost are high and the proportion of the re-optimization overheads in the

costs of query execution drops. In our experiments, each re-optimization causes around 2%

129

extra query response time and 3% monetary cost on average. Since there are more JOIN

operators in those types of queries, more benefits are gained from re-optimization. Thus, it

is worth applying re-optimization algorithms to those types of queries.

0

10

20

30

40

50

60

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13 Q14 Q15 Q16 Q17 Q18 Q19 Q20 Q21 Q22

Av
er

ag
e

M
on

et
ar

y
Co

st
 (U

S
Ce

nt
)

Query Type

NoReOpt ReOpt ReOptML Sample ReOptRL SLAReOptRL

0

10

20

30

40

50

60

70

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13 Q14 Q15 Q16 Q17 Q18 Q19 Q20 Q21 Q22

Av
er

ag
e

Q
ue

ry
 E

xe
cu

tio
n

Ti
m

e
(s

ec
)

Query Type

NoReOpt ReOpt ReOptML Sample ReOptRL SLAReOptRL

Figure 30. Money cost performance for executing queries using different algorithms

Figure 29. Time performance for executing queries using different algorithms

130

Among the re-optimization algorithms, the above results also show that our proposed

algorithms, SLAReOptRL and ReOptRL, still yield less query execution time and monetary

costs than the other three algorithms, ReOpt, ReOptML, and Sample. In these experiments,

the Reinforcement Learning part of the query processing in our algorithms contributes to

these improvements. This is because, in all the three algorithms, ReOpt, ReOptML, and

Sample, query re-optimization requires a lot of overhead as the data statistics are required

to be accessed and updated frequently, while in our two proposed algorithms that use

reinforcement learning, SLAReOptRL and ReOptRL, no data statistics are needed. Instead,

our re-optimization is based on the results of learning which is decided quickly. In our

experiments, the overhead of the learning decision is only 1.7% of the total query execution

time.

30.12%

50.76%
55.16%

65.70% 68.12%
71.32%

0%

10%

20%

30%

40%

50%

60%

70%

80%

SLAReOptRL ReOptRL ReOptML ReOpt Sample NoReOpt

SL
A

Vi
ol

at
io

n
Ra

te

Figure 31. Average SLA violation rate when executing queries using different algorithms

131

Moreover, from Figure 31, we can also find that by using SLAReOptRL, the SLA violation

rate is the lowest one among the SLA violation rates caused by all the algorithms. This

shows the positive effect of considering SLA requirements in query re-optimization.

6.2.6.2 Impact of RatioJOIN

In this section, we aim to find out what queries would be suitable for re-optimization. As

discussed in Section 6.2.6.1, the major benefits of re-optimization come from optimizing

the execution of JOIN operators. However, it is not true that the more JOIN operators a QEP

has, the more improvement on query response time will be gained using the re-optimization

algorithms. One evidence of this is with the queries of the two query types, Q20 and Q21.

Both of these query types have the same number of JOIN operators, but Q21 has more

improvement on query response time than Q20 when using our proposed algorithms. The

reason is that Q20 has more operators than Q21. Since the re-optimization of a query is

conducted after each of the operators in the QEP of the query is executed, there is more

overhead caused by re-optimization in Q20 than in Q21 which increases the query response

time. Thus, we take both the number of JOIN operators and the total number of operators in

a query into consideration when investigating if the query is suitable for re-optimization.

Here we study the impacts of RatioJOIN, which is the ratio of the JOIN operators to the

total number of operators in a QEP as defined in Equation (10) below.

 𝑅𝑎𝑡𝑖𝑜𝐽𝑂𝐼𝑁 =
ேೕ

ே
 (10)

where Nj is the number of JOIN operators and N is the total number of operators in a QEP.

132

Figure 8 shows the relationship between the RatioJOIN and the improvement in query

response time when queries of different query types are executed using the re-optimization

algorithms and NoReOpt. In this figure, each bar represents the RatioJOIN for each type of

query; the yellow bars are for simple query types while the blue bars are for complex query

types. Each curve represents the query response time improvement for queries that were

executed using a re-optimization algorithm over NoReOpt. For the simple query types, the

curves are below zero because NoReOpt outperforms re-optimization algorithms when

simple queries are executed. For the complex query types, when the RatioJOIN increases,

the improvement of the query response time also increases. We can say that it is more

suitable to apply the re-optimization algorithms when queries are complex, i.e., those that

have a high number of operators and a high RatioJOIN.

-40%

-30%

-20%

-10%

0%

10%

20%

30%

40%

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

Q6 Q11 Q2 Q3 Q8 Q1 Q4 Q10 Q20 Q13 Q16 Q22 Q17 Q19 Q15 Q12 Q18 Q21 Q14 Q5 Q7 Q9

Q
ue

ry
 E

xe
cu

tio
n

Ti
m

e
Im

pr
ov

em
en

t

Ra
tio

JO
IN

Complex Query TypesSimple Query Types

RatioJOIN ReOptML vs NoReOpt

ReOptRL vs NoReOpt SLAReOptRL vs NoReOpt

ReOpt vs NoReOpt

Figure 32. The impacts of RatioJOIN on the query execution time improvement when
queries are executed using different re-optimation algorithms compared with NoReOpt

133

6.2.6.3 Evaluation of ReOptRL and SLAReOptRL without SLA Requirements

In these experiments, we study the performance of our two proposed reinforcement learning

based query re-optimization algorithms under scenarios where there are no SLA

requirements. For NoReOpt, ReOpt, ReOptML, Sample, and ReOptRL, the results are the

same as those presented in Section 6.2.6.1. However, when comparing SLAReOptRL with

ReOptRL, the results show that SLAReOptRL spends 5% more time and monetary cost

than ReOptRL. This is because, without SLA requirements, both algorithms generate the

same QEP for query execution, but in SLAReOptRL, the reward calculation is more

complex which incurs more overhead than that in ReOptRL. This leads to a higher query

execution time and monetary cost.

6.2.6.4 Impact of Weights on Different Algorithms

Our algorithms allow users to input their weight profile, and this is also a contribution of

our work. This feature is enabled by adjusting the reward function with the weight profile.

We want to find out whether our proposed algorithms can adapt the weight profile better

than the other competitive algorithms. Figures 33 (a) and (b) show the percentage of

improvement of time and monetary cost of each algorithm compared to the baseline

NoReOpt on the different weights of query execution time. From the figures, we find that

our proposed algorithms have the largest improvement over the baseline. With the increase

in weight of time, such improvement also increases. When the weight of time is high at 0.9,

our proposed algorithms perform 70% better than the baseline NoReOpt. This happens

134

because when the weight profile is used in the reward calculation, performing the action of

selecting the container that processes the query fast gives the high reward.

-10%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90% 80% 70% 60% 50% 40% 30% 20% 10%

Pe
rc

en
ta

ge
 o

f Q
ue

ry
 E

xe
cu

tio
n

Ti
m

e
Im

pr
ov

em
en

t

Weight of Time
ReOpt vs NoReopt ReOptML vs NoReopt
ReOptRL vs NoReopt SLAReOptRL vs NoReopt
Sample vs NoReopt

-10%

-5%

0%

5%

10%

15%

20%

25%

30%

35%

10% 20% 30% 40% 50% 60% 70% 80% 90%

Pe
rc

en
ta

ge
 o

f M
on

et
ar

y
Co

st
 Im

pr
ov

em
en

t

Weight of Money

ReOpt vs NoReopt ReOptML vs NoReopt
ReOptRL vs NoReopt SLAReOptRL vs NoReopt
Sample vs NoReopt

(b)

(a)

Figure 33. (a) and (b) Impacts of the weight of time on the performance improvement
of the re-optimization algorithms over the baseline algorithm "NoReOpt"

135

Similarly, from the monetary cost perspective, with the increasing weight of time, the

improvement of monetary cost decreases, and still, both of our proposed reinforcement

-10%

0%

10%

20%

30%

40%

50%

60%

70%

80%

10% 20% 30% 40% 50% 60% 70% 80% 90%Pe
rc

en
ta

ge
 o

f Q
ue

ry
 E

xe
cu

tio
n

Ti
m

e
Im

pr
ov

em
ee

nt

Weight of Money

ReOpt vs NoReopt ReOptML vs NoReopt
ReOptRL vs NoReopt SLAReOptRL vs NoReopt
Sample vs NoReopt

(a)

-10%

-5%

0%

5%

10%

15%

20%

25%

30%

35%

90% 80% 70% 60% 50% 40% 30% 20% 10%

Pe
rc

en
ta

ge
 o

f M
on

et
ar

y
Co

st
 Im

pr
ov

em
en

t

Weight of Time
ReOpt vs NoReopt ReOptML vs NoReopt

ReOptRL vs NoReopt SLAReOptRL vs NoReopt

Sample vs NoReopt

(b)

Figure 34. (a) and (b) Impacts of the weight of monetary cost on the performance
improvement of the re-optimization algorithms over the baseline algorithm "NoReOpt"

136

learning-based query re-optimization algorithms perform better than the other four

algorithms. Even when the weight of time is high, our algorithms still have the improvement

of monetary cost by 10%.

Figures 34 (a) and (b) show the percentages of improvement of time and monetary cost of

each algorithm compared to the baseline on the different weights of money. From Figure

34 (a), we find that our two proposed algorithms, ReOptRL and SLAReOptRL, also have

the largest improvement over the baseline. When the weight of time is high at 0.9, our

proposed algorithms perform 30% better than the baseline NoReOpt. From Figure 34 (b),

we find that both of our proposed algorithms perform better than the other four algorithms

even when the weight of money is high; they still have the improvement of time cost by

40%. We can conclude that our reinforcement learning-based query re-optimization

algorithms are able to reflect the weight profiles on both query execution time and

monetary costs. Table 9 gives a summary of the results of the experiments conducted in this

algorithm.

6.3 Summary

In this chapter, we presented the correctness proof and the computational complexity and

experimental performance evaluations of the proposed algorithms. The time complexity of

ReOpt and ReOptML is O (Op2) and the time complexity of ReOptRL and SLAReOptRL

is O (Nattr
2

 *Op2), where Op is the number of operators in a query execution plan and Nattr

137

is the total number of attributes in all tables in the database. The experimental results show

that SLAReOptRL improves query response time (from 12% to 45%) and monetary cost

 (from 17% to 62%) over ReOptRL, ReOptML, ReOpt, NoReOpt and Sample. Also,

SLAReOptRL improves the SLA violation rate from 41% to 20% over those algorithms.

The conclusions and future research directions are presented in the next chapter.

Table 9. Performance results (Average Values ± Standard Deviations) of different
algorithms. The number (x) after each reported value indicates the ranking of the algorithm
with rank (1) being the best

 Avg Query Exe.

Time (Sec)

Avg Monetary

Cost (US Cent)

SLA Violation

Rate

With SLA

SLAReOptRL 15.38±1.4(1) 6.70±1.1(1) 30.12% (1)

ReOptRL 17.12±2.3(2) 8.66±1.2(2) 50.76% (2)

ReOptML 20.12±3.1(3) 13.80±1.6(3) 55.16% (3)

ReOpt 24.23±2.5(4) 15.30±1.2(4) 65.70% (4)

Sample 28.13±1.1(5) 17.22±0.9(5) 68.12% (5)

NoReOpt 28.22 ±3.2(6) 18.23±2.2(6) 71.32% (6)

Without SLA

ReOptRL 17.12±2.3(1)

18.38±1.4(2)

8.66±1.2(1)

8.90±1.1(2)

SLAReOptRL

ReOptML 20.12±3.1(3) 13.80±1.6(3)

ReOpt 24.23±2.5(4) 15.30±1.2(4)

Sample 28.13±1.1(5) 17.22±0.9(5)

NoReOpt 28.22 ±3.2(6) 18.23±2.2(6)

138

CHAPTER VII
CONCLUSIONS AND FUTURE WORK

In this research, four algorithms, ReOpt, ReOptML, ReOptRL, and SLAReOptRL for query

re-optimization in cloud database systems are presented.

The first algorithm, ReOpt, re-optimizes a query every time a query operator or a stage of

query operators finishes execution. It updates the data statistics and calls the query optimizer

to generate a new query execution plan based on the new data statistics. Then the previous

query execution plan and the new query execution plan are merged, the query operators that

have been executed are eliminated, and then the same process continues for the remaining

query operators in the query execution plan that have not been executed. The main

characteristic of this algorithm is that it considers both query response time and monetary

costs in re-optimization. As the new query execution plan is generated using the new data

statistics, it becomes closer to the optimal one. After all the query operators finish execution,

the query results are returned to the user.

The second algorithm, ReOptML shares the same re-optimization process as ReOpt, but it

does not always re-optimize the query each time a query operator or a stage of query

operators finishes execution. Instead, it uses a prediction model based on supervised

learning to tell whether a re-optimization should be conducted. This model uses the

difference between the old data statistics and the updated data statistics to predict whether

139

a re-optimization is worth it. As re-optimization is a complex operation in the query process,

reducing unnecessary re-optimizations is important to reducing the overhead of the whole

query process.

The third algorithm, ReOptRL, uses reinforcement learning instead of supervised learning

to optimize the physical query execution plan generated by the existing query optimizer. It

uses a logical query execution plan generated by an existing query optimizer. For each query

operator in the logical query execution plan, a deep neural network is used to select the

optimal physical query operator to execute this logical query operator. This selection is

based on a novel reward function that makes use of user preferences on query response time

and monetary costs to execute a query and the physical query operator with the lowest cost

has a higher chance to be selected again for future queries.

The fourth algorithm, SLAReOptRL, is an extension of ReOptRL. In SLAReOptRL, the re-

optimization is based on not only query response time and monetary costs but also the SLA

violation rate.

We have analyzed the worst-case time complexity of the four proposed algorithms, ReOpt,

ReOptML, ReOptRL and SLAReOptRL. The time complexity of the four proposed

algorithms is mainly impacted by the number of operators (Op) and the total number of

140

attributes in all the database tables (Nattr). Besides, we have also proved theoretically that

the query results are correct by using the four proposed algorithms.

We have also prorotyped the four proposed algorithms, incorporated them into the open-

source DBMS, PostgreSQL, and performed comprehensive experiments evaluating their

performance using the TPC-H database benchmark. We have compared ReOpt with

NoReOpt in terms of time and monetary costs. Besides, we have compared ReOptML with

ReOpt and the existing algorithm, Tukwila, in terms of time and monetary costs. We have

also compared the accuracy of re-optimization prediction among different supervised

learning models. Finally, we have studied the performance of ReOptRL and its extension

SLAReOptRL. We compared this algorithm with the two proposed algorithms, ReOpt and

ReOptML, and with the algorithm existing in the literature, Sample. A summary of the

experimental results is presented in the following section.

7.1 Summaries of Performance Evaluation Results

In this section, we present the summaries of the experimental performance results of our

proposed algorithms.

7.1.1 Summary of Performance Results of ReOpt

Our experimental results show that after query re-optimization, either the query response

time or the monetary cost benefits from ReOpt. For executing queries using query re-

141

optimization on different containers, the query response time is 20% less than the query

response time without re-optimization, although the monetary cost before and after re-

optimization remains similar, with only a 5% difference. For queries that have operators

changed during query re-optimization, the monetary cost is roughly four times less than

that without using re-optimization, while the query response time is almost the same in

both algorithms.

7.1.2 Summary of Performance Results of ReOptML

ReOptML uses a supervised machine learning-based model to decide whether or not a

query should be re-optimized. The experiments conducted show that for skew data,

ReOptML improves the query response time (from 13% to 35%) and monetary cost (from

17% to 35%) over the existing algorithms that use either no re-optimization, re-

optimization after each stage in the query execution plan is executed, or re-optimization

when a checkpoint is reached and the difference between the actual query cost and

estimated query cost exceeds some threshold. For uniform data, the proposed algorithm

also improves query response time (13% to 21%) over the existing algorithms but does not

improve monetary cost.

While our studies have shown that supervised machine learning has positive impacts on

deciding whether a re-optimization should be conducted, the supervised machine learning

model proposed in this work provides only a binary decision of whether or not a re-

142

optimization should be carried out, and the model relies on the data statistics which may

not be available in all DBMSs.

7.1.3 Summary of Performance Results of ReOptRL and SLAReOptRL

ReOptRL aims to reduce both query response time and monetary costs. SLAReOptRL

extends ReOptRL to also consider reducing the amount of SLA requirement violations

when re-optimizing queries. The experiments conducted using the TPC-H database

benchmark show that both SLAReOptRL and ReOptRL improve query response time

(from 12% to 45%) and monetary cost (from 17% to 62%) over the existing algorithms

that use either no re-optimization, re-optimization after each operator in the query

execution plan (QEP) is executed, supervised machine learning-based query re-

optimization, or sample-based re-optimization. In addition, we also find that when there

are SLA requirements, SLAReOptRL performs 19% better than ReOptRL on query

response time, 20% on query execution monetary costs, and 20% on SLA violation rate.

We also find that, when queries are complex, i.e., those queries that have a high total

number of operators and a high ratio of JOIN operators to the total number of operators, it

is beneficial to apply re-optimization algorithms, especially, our algorithms, ReOptRL and

SLAReOptRL, to process queries on cloud database systems.

7.2 Future Research

For future work, we plan to improve our proposed algorithms in the following directions:

a) Using a reinforcement learning technique to re-optimize the logical plan of a query

143

For ReOptRL, the re-optimization requires a logical plan provided by an existing query

optimizer. This assumes the existing query optimizer is able to generate an optimal logical

plan. In future research, we will generate the optimal logical plan by our algorithm so that

the algorithm is independent of any existing query optimizers.

b) Obtaining accurate SLA for each query operator

For SLAReOptRL, when we calculate the reward, the SLA used for each operator is

generated by the average overall query response time and monetary cost SLA. However,

the different operators should meet different SLA requirements by the characteristics of

the operators. In future research, we will study the impact of the SLA requirements on each

operator.

c) Improving performance for short queries

For the four proposed algorithms, we have observed from our experimental results that

there is a noticeable improvement when executing queries that contain a lot of operators.

However, for short queries, i.e., queries that contain only a small number of operators,

those algorithms do not perform as well as they perform on long queries. Thus, in future

research, we will investigate how to modify our algorithms so that they can improve the

performance of short queries.

144

REFERENCES

[1] N. Bruno, S. Jain and J. Zhou, "Continuous cloud-scale query optimization and

processing," VLDB Endow, vol. 6, no. 11, p. 961–972, 2013.

[2] M. Stillger, G. Lohman, V. Markl and M. Kandil, "LEO - DB2's LEarning

Optimizer," International Conference on Very Large Data Bases (VLDB '01), p. 19–

28, 2001.

[3] W. Wu, J. F. Naughton and H. Singh, "Sampling-Based Query Re-Optimization,"

International Conference on Management of Data (SIGMOD'16), pp. 1721–1736,

2016.

[4] T. Kaftan, Balazinska, Magdalena, Cheung, Alvin and J. Gehrke, "Cuttlefish: A

Lightweight Primitive for Adaptive Query," https://arxiv.org/pdf/1802.09180.pdf,

2018.

[5] I. Trummer, S. Moseley, D. Maram, S. Jo and J. Antonakakis, "SkinnerDB: regret-

bounded query evaluation via reinforcement learning," VLDB Endow., vol. 11, no.

12, p. 2074–2077, 2018.

[6] R. Marcus and O. Papaemmanouil, "Deep Reinforcement Learning for Join Order

Enumeration," International Workshop on Exploiting Artificial Intelligence

Techniques for Data Management (aiDM'18), pp. 1-4, 2018.

145

[7] C. Costa, L. Cicília and S. António, "Efficient SQL adaptive query processing in

cloud databases systems," in IEEE Conference on Evolving and Adaptive Intelligent

Systems (EAIS'16), 2016.

[8] Oracle, [Online], Available:"https://docs.oracle.com/en/,"

[Accessed November 2020].

[9] H. Garcia-Molina, J. D. Ullman and J. Widom, Database Systems: The Complete

Book, 2nd edition, Pearson, 2008.

[10] L. Kuiper, "Exploring Query Re-Optimization. In a Modern Database System.,"

Master Thesis Radboud University in Nijmegen, 2021.

[11] Amazon AWS, [Online], Available:

"https://aws.amazon.com/," [Accessed November 2020].

[12] Microsoft Azure, [Online], Available: "https://azure.microsoft.com/en-us/,"

[Accessed November 2020].

[13] D. Meignan, "A heuristic approach to schedule reoptimization in the context of

interactive optimization," Genetic and Evolutionary Computation, 2014.

[14] A. Sebaa and A. Tari, "Query optimization in cloud environments: challenges,

taxonomy, and techniques," The Journal of Supercomputing, vol. 75, p. 5420–5450,

2019.

[15] D. Amol, I. Zachary and R. Vijayshankar, "Adaptive Query Processing," Foundations

and Trends in Databases, vol. 1, no. 1, pp. 1-140, 2007.

146

[16] M. Armbrust, K. Curtis, T. Kraska, A. Fox, M. Franklin and D. Patterson, "PIQL:

success-tolerant query processing in the cloud," VLDB Endow., vol. 5, no. 3, p. 181–

192, 2011.

[17] S. Ewen, K. Holger, V. Markl and V. Raman, "Progressive Query Optimization for

Federated Queries," Advances in Database Technology (EDBT'06), vol. 3896, 2006.

[18] V. Markl, V. Raman, D. Simmen, G. Lohman, H. Pirahesh and M. Cilimdzic, "Robust

query processing through progressive optimization.," International conference on

Management of data (SIGMOD '04), p. 659–670, 2004.

[19] N. Kabra and D. DeWitt, "Efficient mid-query re-optimization of sub-optimal query

execution plans," SIGMOD Rec, vol. 27, no. 2, p. 106–117, 1998.

[20] M. Stonebraker, P. Aoki, R. Devine, W. Litwin and M. Olson, "Mariposa: a new

architecture for distributed data," 10th International Conference on Data Engineering

(ICDE'94), pp. 54-65, 1994.

[21] C. Wang, Z. Arani, L. Gruenwald and L. d'Orazio, "Adaptive Time, Monetary Cost

Aware Query Optimization on Cloud Database Systems," International Conference

on Big Data (Big Data), pp. 3374-3382, 2018.

[22] C. Wang, Z. Arani, L. Gruenwald, L. d'Orazio and E. Leal, "Re-optimization for

Multi-objective Cloud Database Query Processing using Machine Learning,"

International Journal of Database Management Systems, vol. 13, no. 1, pp. 21-40,

2021.

147

[23] C. Wang, L. Gruenwald, L. d’Orazio and E. Leal, "Cloud Query Processing with

Reinforcement Learning-Based Multi-objective Re-optimization," International

Conference on Model and Data Engineering, pp. 141-155, 2021.

[24] F. Wolf, N. May, P. R. Willems and K.-U. Sattler, "On the Calculation of Optimality

Ranges for Relational Query Execution Plans," pp. 663-675, 2018.

[25] L. Nikolay, Z. Kai and Z. Carlo, "Early accurate results for advanced analytics on

MapReduce," VLDB Endow., vol. 5, no. 10, p. 1028–1039, 2012.

[26] T. Vodopivec and B. Šter, "Enhancing upper confidence bounds for trees with

temporal difference values," IEEE Conference on Computational Intelligence and

Games, pp. 1-8, 2014.

[27] B. Kolev, P. Valduriez and C. Bondiombouy, "CloudMdsQL: querying

heterogeneous cloud data stores with a common language," Distributed and Parallel

Databases, vol. 34, p. 463–503, 2016.

[28] R. Marcus, P. Negi, H. Mao, C. Zhang, M. Alizadeh, T. Kraska, O. Papaemmanouil

and N. Tatbul, "Neo: a learned query optimizer," in VLDB Endow. 12, 11, 2019.

[29] R. Sellami and B. Defude, "Complex Queries Optimization and Evaluation over

Relational and NoSQL Data Stores in Cloud Environments," IEEE Transactions on

Big Data, vol. 4, no. 2, pp. 217-230, 2018.

148

[30] K. Herald, S. Eva, M. T. Manolis and Y. Ioannidis, "Schedule optimization for data

processing flows on the cloud," International Conference on Management of data

(SIGMOD '11), pp. 289-300, 2011.

[31] L. Willis, V. N. Rimma and R. Ian, "Database optimization for the cloud: Where

costs, partial results, and consumer choice meet," Conference on Innovative Data

Systems Research (CIDR'15), 2015.

[32] S. Thirumuruganathan, S. Hasan, N. Koudas and G. Das, "Approximate Query

Processing for Data Exploration using Deep Generative Models," 36th International

Conference on Data Engineering (ICDE'20), pp. 1309-1320, 2020.

[33] E. Alpaydin, Introduction to Machine Learning, Third Edition, MIT Press, 2014.

[34] F. Helff, L. Gruenwald and L. d'Orazio, "Weighted Sum Model for Multi-Objective

Query Optimization for Mobile-Cloud Database Environments," in EDBT/ICDE

Worshops, 2016.

[35] A. Kipf, T. Kipf, B. Radke, V. Leis, P. Boncz and A. Kemper, "Learned Cardinalities:

Estimating Correlated Joins with Deep Learning," in 9th Biennial Conference on

Innovative Data Systems Research, 2019.

[36] TPC-H Benchmark, [Online], Available:

"http://www.tpc.org/tpch/spec/tpch2.8.0.pdf," [Accessed November 2020].

[37] Amazon AWS servicle level agreement, [Online], Available:

149

"https://aws.amazon.com/legal/service-level-agreements/," [Accessed November

2020].

[38] W. Marco, Reinforcement Learning State-of-the-Art, Springer, 2012.

[39] Y. Park, A. Tajik, M. Cafarella and B. Mozafari, "Database Learning: Toward a

Database that Becomes Smarter Every Time," International Conference on

Management of Data (SIGMOD '17), p. 587–602, 2017.

[40] J. Ortiz, M. Balazinska, J. Gehrke and S. S. Keerthi, "Learning State Representations

for Query Optimization with Deep Reinforcement Learning," the Second Workshop

on Data Management for End-To-End Machine Learning (DEEM'18), pp. 1-4, 2018.

[41] M. Lapan, Deep Reinforcement Learning Hands-On: Apply modern RL methods,

with deep Q-networks, value iteration, policy gradients, TRPO, AlphaGo Zero and

more, Packt Publishing, 2018.

[42] M. Ramicic and A. Bonarini, "Attention-Based Experience Replay in Deep Q-

Learning," the 9th International Conference on Machine Learning and Computing

(ICMLC'17), p. 476–481, 2017.

[43] S. Gupta, Express Learning - Database Management Systems, Pearson India, 2012.

[44] PostgreSQL, "https://www.postgresql.org/docs/," [Online].

[45] D. Tansel, A. B. Murat and C. Ahmet, "Robust heuristic algorithms for exploiting the

common tasks of relational cloud database queries," Appl. Soft Comput, vol. 30, no.

C, p. 72–82, 2015.

150

[46] I. Trummer and C. Koch, "Multi-objective parametric query optimization," VLDB

Endow, vol. 8, no. 3, p. 221–232, 2014.

[47] C. Wu, J. Alekh, A. Saeed, P. Hiren, L. Wangchao, Q. Shi and R. Sriram, "Towards

a learning optimizer for shared clouds," in VLDB Endow. 12, 3, November,2018.

[48] Z. Karampaglis, A. Gounari and Y. Manolopoulos, "A Bi-objective Cost Model for

Database Queries in a Multi-cloud Environment," the 6th International Conference

on Management of Emergent Digital EcoSystems (MEDES '14)., p. 109–116, 2014.

[49] N. Papailiou, I. Konstantinou, D. Tsoumakos, P. Karras and N. Koziris, "H2RDF+:

High-performance distributed joins over large-scale RDF graphs," IEEE

International Conference on Big Data, 2013.

[50] Y. Silva, P.-A. Larson and J. ZhouZhou, "Exploiting Common Subexpressions for

Cloud Query Processing," 28th International Conference on Data Engineering, pp.

1337-1348, 2012.

