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Abstract 

 

 The Madden-Julian Oscillation (MJO) affects weather and climate globally, however it has 

been challenging to accurately represent it in Global Circulation Models (GCMs) which can lead 

to uncertainties with future climate projections and long-term forecasts. One of the suggested 

processes that are important to accurately represent the MJO in GCMs is cloud-radiative 

feedbacks. Previous studies have suggested the MJO to be a moisture mode, where moisture is 

the primary factor controlling the growth and propagation of the MJO. An important contributor 

to moistening within this theory is the atmospheric cloud-radiative heating as it acts to sustain 

the MJO by moistening the tropospheric column through lifting motions that offset the added 

diabatic radiative energy. The MJO is also known to have stronger cloud-radiative feedbacks 

compared to other convectively coupled equatorial waves. The objective of this study is to use 

observational data from and during the DYNAMO/AMIE field campaign to investigate how 

cloud-radiative forcing (CRF) evolution differs between wave modes, why the MJO has a unique 

evolution, and how this relates to MJO dynamics under moisture mode theory.  

 We found that the MJO shows a structured cloud type evolution, similar to previous results 

where cloud types began shallow and then deepened and stratified, while the Kelvin and 

Westward Interio Gravity (WIG) waves saw a less structured cloud type evolution. Interestingly, 

most cloud types maximize in frequency after the enhanced phase of the MJO, which was not 

witnessed for the higher frequency wave modes. CRF evolution during the MJO was stronger 

and lags the enhanced phase compared to higher frequency wave modes. Our linear model which 

uses cloud type frequency to diagnose CRF accurately replicated CRF evolutions for all wave 

modes, validating the model’s performance and suggesting the CRF evolution can be diagnosed 

by simply knowing cloud type evolution. This relationship is important for a moisture mode as 

this added cloud-radiative heating within wave modes translates to adiabatic lifting, which acts to 

moisten the tropospheric layer. Cloud-radiative moistening acts to prolong/maintain the 

enhanced phase of the MJO. The radiatively-driven moistening was decomposed to its 

contributions by different cloud types and we found that the simultaneous moistening by all 

cloud types is responsible for the prolonging/maintenance of the enhanced phase of the MJO. 

This analysis demonstrates the importance of capturing the correct evolution of different cloud 



 vii 

types and their radiative effects, which can be used to better understand the dynamics that govern 

the MJO, overall improving MJO representations in GCMs.
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Chapter 1 
 
Introduction to Wave Mode Dependence on Cloud-Radiative Effects 
 

The Madden-Julian Oscillation (MJO), a slow (~5 m s-1) eastward moving envelope of 

planetary scale tropical convection on an intraseasonal timescale, has challenged scientists on 

how to appropriately model such an oscillation since its discovery (Madden and Julian, 1971). 

The MJO is most convectively active through the Indian Ocean and Western Pacific, but beyond 

this longitudinal domain its convection becomes weaker while its circulation continues to 

propagate at much faster speeds (Kiladis et al., 2005). Producing accurate model representation 

of the MJO is important beyond just its influence on rainfall variability locally, as it has been 

also shown to affect rainfall variability globally (Martin & Schumacher, 2010, Alvarez et al., 

2016), the Asian monsoon (Yasunari, 1979), tropical cyclone activity (Liebmann et al., 1994), 

ENSO events (Hendon et al., 2007), and much more (see Jiang et al., 2020 MJO review paper). 

Therefore, the MJO’s effect on local and global weather and climate events makes the MJO a 

critical oscillation for numerical prediction models to depict accurately. However, global 

circulation models (GCMs) continue to struggle depicting the MJO, most likely due to our lack 

of understanding of key processes that dictate the MJO (Jiang et al., 2015). 

Since its discovery, major strides in our basic understanding of the MJO have been made in 

theoretical, observational, and numerical modeling. Some of the current theoretical frameworks 

point towards cloud-radiative feedbacks, heating through the interaction between radiation and 

clouds, playing a key role in maintaining the amplitude (strength) and/or scale of the MJO. One 

of these theories, moisture mode theory, considers that water vapor is the primary factor 

controlling the growth and propagation of wave modes in the tropics under the assumption of a 

weak temperature gradient (Yu and Neelin, 1994). Weak temperature gradient (WTG) 

approximation stems from a weak Coriolis force which is true only over the Tropics, which ends 

up translating to weak geopotential (pressure) fluctuations through the momentum equation. 

With this assumption, the thermodynamic equation is approximately balanced with equal but 

opposite adiabatic and diabatic cooling/heating. Raymond (2001) related the theory of moisture 

mode to the MJO and argued that moisture fluctuations destabilized by cloud-radiative feedbacks 

are the cause for the observed MJO precipitation anomalies. For example, the presence of clouds, 

specifically high thin clouds, reduces radiative cooling (anomalous warming) by letting in 
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shortwave radiation but trapping outgoing longwave radiation (OLR), ultimately heating the 

tropospheric column (Harrop & Hartmann, 2016). With this added diabatic radiative heating 

(𝑄!), there must be an equal and opposite response in vertical wind speeds that act to 

adiabatically cool the column, according to WTG balance. This aids in moistening the column as 

moist air from the lower troposphere is lofted upwards which acts to deepen convection. Overall, 

the moistening process ahead of the MJO, which is comprised of many processes, is the primary 

mode for the eastward propagation of the MJO under moisture mode theory (Maloney, 2009). 

With this evolution of moisture, a strong variation in cloud types (anvil, shallow, deep etc.) is 

also witnessed throughout its oscillation, so it becomes important to observe the evolution of 

cloud-radiative feedbacks, how they affect the MJO, and if existing theories are in line with 

observational results. 

Numerous numerical modeling studies have suggested the importance of including cloud-

radiative feedbacks in their studies in the existence of tropical intraseasonal variability (Benedict 

et al., 2020) by showing that MJO-like disturbances disappear, or its propagation speed changes 

when cloud-radiative effects are excluded (Lin et al., 2007, Kim et al., 2015, Bony and Emanuel, 

2005). Moreover, GCMs that explicitly do not resolve clouds have a difficult time capturing the 

cloud-radiative feedbacks (McFarlane et al., 2007) while cloud resolving GCMs produce more 

accurate cloud-radiative effects and have improved representation of the MJO (Lim et al., 2018). 

However, cloud resolving models come at a very high computational cost and cannot realistically 

be applied in real-time and in climate temporal scales without limitations. Observational studies 

aim to continue to uncover results that can be introduced in these GCMs in forms of 

parameterizations to improve MJO prediction skill further without the need for computationally 

expensive methods. 
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Figure 1.1: Schematic diagram of the discharge–recharge mechanism associated with the MJO. 
Along the horizontal axis appears SST’ [red (blue) indicates warmest (coolest) anomalies] and 
the lag days relative to the day of maximum rainfall (day 0). Stages of the discharge–recharge 
process, as seen in ERA-40 data, are listed below the lag days. The approximate top level of 
convective cloud processes is indicated by the dashed blue line, while green shading represents 
the general area of q’>0. Light blue dots above shallower convective clouds represent moistening 
via detrainment, while gray dots below stratiform cloud types represent ice crystal fallout and 
moistening. Convective precipitation is indicated by darker blue rain shafts, and stratiform 
precipitation is light blue and slightly transparent. (figure & caption credit: Benedict & Randall, 
2007). 

Different cloud types have inherent properties that allow for unique interactions with 

radiation. Coupled with a strong variation in cloud types and moisture throughout the MJO 

lifetime, its cloud-radiative feedback also evolves and becomes a complicated and crucial factor 

to consider (Riley and Mapes et al., 2011, Feng and McFarlane et al., 2014, Ciesielski et al., 

2017). Figure 1.1 shows the cloud and moisture evolution of the MJO at a fixed location over the 

Indian Ocean. Clouds begin shallow during the suppressed phase (negative lag days in Fig. 1), 

but as the moist layer deepens through a variety of processes such as large-scale horizontal 

moisture transport (Zhu and Hendon, 2015) and vertical moisture advection from the clouds 

themselves, clouds can grow deeper and convection can grow upscale (Benedict and Randall, 

2007). During the enhanced phase of the MJO when precipitation rate is maximized (zero lag 

days in Fig. 1), organized convective systems such as meso-scale convective systems (MCSs) 

dominate the local region, spreading large swaths of anvil and cirrus clouds (Powell and Houze, 

2013). The transition from shallow and scattered convection to more organized forms of 

convection alter cloud type fractions (i.e., stratiform cloud types) when transitioning to the 
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enhanced phase of the MJO (Riley and Mapes et al., 2011). These upper-level clouds take up a 

large area and have the tendency to reflect incoming solar shortwave (SW) radiation (secondary 

importance), while trapping outgoing terrestrial longwave (LW) radiation (primary importance), 

ultimately resulting in less radiative cooling to occur (anomalous warming) throughout the 

tropospheric column (Ciesielski et al., 2017). After the enhanced phase has passed and the 

vertical moisture profile becomes top heavy, high precipitating and non-precipitating cloud types 

continue to persist (Riley and Mapes et al., 2011). 

 
 

Figure 1.2: Shading shows the distribution of wave-filtered TMPA 3B42 rainfall (P) and OLR 
anomalies for 0.02 mm hr-1 and 2 W m-1 bins. The rainfall on the horizontal axis is multiplied 
with the latent heat of vaporization (Lv). Black line shows the regression coefficients of OLR 
onto rainfall, which represents the cloud-radiative feedback parameter. The regression 
coefficients and its 95% confidence interval are shown in the legend of each panel (figure & 
caption credit: Sakaeda et al., 2020). 

Previous studies have used the slope between precipitation rate and OLR to quantify the 

strength of cloud-radiative feedback, which will be referred to as “cloud-radiative feedback 

parameter”. An example of such slope for the MJO and Kelvin waves is shown in Fig. 1.2. As 
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convective clouds intensify into deep convection and/or organize into MCSs, both precipitation 

rate and vertical moisture transport increase. The production of high stratiform cloud types from 

increased deep and organized convection traps OLR (decrease in OLR). The stronger this 

relationship, the more efficient the equatorial wave mode is in supporting high cloud types that 

trap OLR, supplying stronger anomalous radiative warming that can act to maintain or amplify 

the wave. Recent studies have found that this relationship depends on wave number frequency of 

convective disturbances (Adames and Kim, 2016, Inoue et al., 2020, Sakaeda et al., 2020). These 

studies found that higher frequency and wavenumber wave modes (i.e., convectively coupled 

Kelvin and Westward Inertial Gravity waves) have weaker cloud-radiative feedback parameter 

compared to a wave mode with a lower-frequency and wavenumber such as the MJO (Fig. 1.2). 

Adames and Kim (2016) suggested that the enhanced horizontal spreading of anvil type clouds 

for longer wavelength waves could be responsible for the increase in their measured cloud-

radiative feedback parameter when related to wavenumber. Lin and Mapes (2004) also suggested 

that high sheared environments within a deep tropospheric layer (150-700hPa) produced higher 

cloud total fractions, higher cloud tops, and lower OLR. Building on the finding that the strength 

of cloud-radiative feedbacks varies between wavenumbers, Inoue et al. (2020) and Sakaeda et al. 

(2020) both showed that the MJO has the strongest cloud-radiative feedback parameter compared 

to other wave modes. Under the assumption of WTG, vertical velocity profile is closely related 

to diabatic heating. Therefore, a wave mode with a top-heavier vertical velocity profile produces 

more upper-level clouds, leading to increased trapping of OLR when compared to a bottom-

heavy profile where more mid-level clouds exist under this regime (Inoue et al., 2020). While the 

MJO produced the most top-heavy vertical velocities compared to other wave modes, Sakaeda et 

al. (2020) did not find a clear one-to-one relationship between the strength of cloud-radiative 

feedback and top heaviness of vertical velocities among all the waves. This unclear relationship 

between vertical velocity profiles and cloud-radiative feedback parameter emphasizes the need to 

understand the cause(s) of why exactly cloud-radiative feedback parameter strengthens with 

decreasing frequency and wavenumber and if upper-level clouds are the primary reason why the 

MJO has the strongest cloud-radiative feedback parameter. 

While some studies have examined the cloud-radiation interaction within the MJO (Genio 

and Chen 2015, Ciesielski et al. 2017), there has not been a study that answers why the MJO has 

a uniquely strong cloud-radiative evolution than other wave modes. This gap in knowledge is 
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problematic as the aforementioned moisture mode theory relies on cloud-radiative interactions as 

a part of its core framework. Therefore, further investigating the MJO cloud-radiative 

interactions from observations is a critical step to properly apply the important cloud-radiation 

interaction in numerical model simulations. This aids in assigning a theoretical framework to the 

MJO, leading to a concrete understanding of the MJO itself that can be used to improve mid-to-

long-term forecasting as well as GCMs. 

By utilizing data during the Dynamics of the MJO/Atmospheric Radiation Measurement 

(ARM) MJO Investigation Experiment (DYNAMO/AMIE) field campaign, we will answer two 

questions: 1) How does the evolution of cloud-radiative forcing depend on wave mode and 2) 

What mechanism(s) drives the MJO to have a unique cloud-radiative forcing evolution. 

DYNAMO/AMIE was conducted over a region that is largely free from any major topographical 

features, resulting in data collection over open-ocean-like environments, important in isolating 

the dynamics that drive the MJO to answer the listed questions above.  
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Chapter 2 
 
The Evolution of Cloud-Radiative Forcing and Cloud Types Between Wave Modes 
 

In this chapter we will discuss the data sets and methods that set the groundwork for this 

research. We then will analyze cloud type and moisture evolution within varying wave modes. 

Cloud-radiative forcing measurements are then analyzed for each wave mode, giving us insight 

on which cloud type(s) could be responsible for the strong and unique cloud-radiative forcing 

evolution that only the MJO experiences. 

 
2.1 Data utilized during DYNAMO/AMIE 
 

We utilize data sets that were collected during the Dynamics of the MJO/Atmospheric 

Radiation Measurement (ARM) MJO Investigation Experiment (DYNAMO/AMIE) field 

campaign. This field campaign aimed to address two main problems: low MJO simulation skill, 

especially during the initiation phase over the Indian Ocean, and the low subseasonal-to-seasonal 

and climate forecasting skill from state-of-the-art global models. During this field campaign, 

well-coordinated instrumentation across the Indian Ocean was able to capture three MJO signals. 

The intensive observation period of the field campaign which provides higher resolution data 

from 1 October 2011 to 9 February 2012 will be utilized. The observational instruments used in 

this study were deployed over an atoll over the Indian Ocean, which provide a close to open 

ocean environment during this analysis. 

National Center for Atmospheric Research (NCAR) dual-wavelength Doppler polarimetric 

S-band and Ka-band (S-Polka) radar was deployed at Addu City, Maldives on Gan Island (0.63S, 

73.10E) during the intensive observational period of the field campaign. Utilizing Steiner et al. 

(1995) algorithm updated by Powell et al. (2016), S-PolKa radar retrievals categorized 

precipitating clouds into convective, stratiform, mixed (mix of convective and stratiform), 

shallow, isolated, and weak precipitating types. This radar-derived product provides 15-minute 

1-km horizontal gridded precipitating cloud type retrievals over a 150-km radius, providing us 

with a time series of rain rate evolution over the DYNAMO/AMIE intensive observation period. 

A notable limitation within this product is the inability to accurately detect rain rates during 

suppressed conditions, specifically after January (Powell and Houze, 2013). More in-depth 

information on the radar derived products is provided in Powell et al. (2016).  
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The Pacific Northwest National Laboratory (PNNL) Combined Remote Sensor retrieval 

algorithm (CombRet) is utilized in this study to provide a vertically resolved and integrated view 

of shortwave and longwave radiative heating profiles in both clear and all-sky conditions. Cloud-

radiative forcing (CRF) is then calculated by taking the difference between the all and clear-sky 

radiative heating rates, providing us information on the cloud-radiative impacts. This data set 

combines retrievals from the Active Remote Sensing of Clouds (ARSCL) product using Ka-band 

ARM Zenith Radars (KAZR) as well as S-PolKa retrievals located on Gan Island (Feng et al., 

2014). The S-Polka and KAZR reflectivity’s were merged to capture both deep convection and 

non-precipitating high-clouds. This algorithm also provides microphysical retrievals 

(temperature and moisture) and computed radiative fluxes and heating rate profiles at a 90 m 

vertical resolution every 30-seconds from 10 October to 31 December, 2011. These retrievals 

have a high temporal and vertical resolution at a singular point over Gan Island, providing a local 

vertically resolved view of CRF and microphysical evolution. 

The Clouds and Earth’s Radiant Energy System (CERES) Edition 3A provides a global 1-by-

1 degree gridded 3-hourly averaged integrated top-of-atmosphere (TOA) and surface radiative 

fluxes under clear and all-sky conditions between the dates of 1 March 2000 to present day 

(Wielicki et al., 1996). CRF is calculated using CERES data, providing an averaged view of CRF 

compared to CombRets singular point view of CRF. This study specifically focuses on 

atmospheric CRF that is calculated through the CRF at TOA and surface. A 3-by-3-degree grid 

box centered over Gan Island is used to average atmospheric CRF at each 3-hourly time step. 

The time-average and diurnal cycle during 10 October 2011 to 31 December 2011 was removed 

for both CERES and CombRet data to create comparable anomalous atmospheric CRF over Gan 

Island without the diurnal influence. 

 
2.2 CombRet Cloud Type Classification  
 

CombRet data also provides estimated heights of cloud base and top, which can be used to 

examine a distribution of cloud layer frequency over Gan Island. Figure 2.1 shows this cloud 

type frequency by cloud base and top heights. Following Riley and Mapes (2009) classification 

of cloud types, 6 cloud types were classified: (A) cumulus humilis (shallow), (B) cumulus 

congestus (congestus), (C) cumulonimbus (deep), (D) altostratus and altocumulus (mid), (E) 

detached anvil (anvil), and (F) cirrus (cirrus). Shallow, congestus, and deep clouds are classified 
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as precipitating cloud types while mid, anvil, and cirrus cloud are classified as non-precipitating 

cloud types. These cloud types are separated by 2 levels in both cloud top (at 4.5 km and 10 km) 

and cloud base (3 km and 7 km) heights. Riley and Mapes (2009) classified these cloud types by 

using the natural delineations of cloud type frequencies that were measured through a satellite-

based radar (CloudSat) which also appears in the CombRet data (Fig. 2.1). A caveat to be aware 

of when using this method of classifying cloud types is that the deep and congestus cloud types 

are not exclusively convective because precipitating stratiform clouds are lumped in this 

category as well. This is because CombRet detects precipitation reaching the ground as a low 

cloud base, ~0 km, meaning precipitating anvil and mid clouds are categorized into deep and 

congestus cloud types respectively. Alongside CombRets and CERES CRF measurements, this 

cloud type data allows the comparison of atmospheric CRF and the observed cloud types 

detected overhead. This provides a direct observation of cloud type’s impact on the vertical and 

integrated structure of radiative heating in the atmosphere between varying wave modes. 

 
 

Figure 2.1: Binned CombRet estimated cloud base and top height frequency [30 sec-1] retrievals 
from Oct 10-Dec 31 are plotted as a function of frequency in black and white bins. Solid blue 
line indicates the separation of impossible from possible measurements, meaning cloud base < 
cloud top always. Vertical red lines are natural delineations that separate classified cloud types: 
(A) Cumulus Humilis (Shallow), (B) Cumulus Congestus (Congestus), (C) Cumulonimbus 
(Deep), (D) Altostratus and Altocumulus (Mid), (E) Detached Anvil (Anvil), (F) Cirrus (Cirrus). 
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2.3 Wave Mode Identification 
 

The aforementioned datasets provide variables that are critical in understanding how cloud 

type and CRF evolve, however, a method is required to compare these variables between varying 

wave modes. There are various ways of defining the phase of a wave mode, but because the 

measurements in this study are mainly over a specific region over the Indian Ocean, defining 

phases of wave modes through locally based indices provides a more accurate representation 

instead of using well-known EOF (Empirical Orthogonal Function) based indices such as RMM 

(Real-time Multivariate MJO) index (Wheeler & Hendon, 2004). EOF-based indices identify the 

amplitude and state of the MJO based on the projections of global patterns, which do not 

necessarily identify the local state of the MJO accurately. We use the Tropical Rainfall 

Measurement Mission (TRMM)  version 3B42 v7a rain rates to define a local index of each 

wave mode. This data set provides 3-hourly precipitation rates at 0.25-by-0.25-degree resolution 

globally between 50°S–50°N from 1998–2019, however spatial resolution is regridded to 2.5-by-

2.5-degree resolution for this study (Huffman et al., 2007). Firstly, three wave modes will be 

analyzed in this study: the MJO (zonal wavenumber 0 to 10, periods 20 to 100 days), the Kelvin 

wave (zonal wavenumber 1 to 15, periods 2.5 to 17 days, equivalent depth 8 to 90 m), and the 

Westward inertia gravity (WIG) wave (zonal wavenumber −15 to −1, periods 1.25 to 3.33 days, 

equivalent depth 8 to 90 m). TRMM rainfall anomalies are filtered for these waves by 

performing the inverse of Fourier transform coefficients of specified wavenumber and frequency, 

following the method of Wheeler and Kiladis (1999). A 7.5-by-7.5 degree area centered over 

Gan Island is located and precipitation rates are spatially averaged. Following Riley et al. (2011) 

method, we then standardize the wave-filtered precipitation rate anomaly and its time tendency 

using their climatological standard deviations from 15ºS–15ºN over the whole equatorial belt. 

We specifically chose the Kelvin and WIG wave modes to compare with the MJO because our 

region of study resides near the equator (0.63S, 73.10E), where other wave modes with off-

equatorial centered convection will not be well-captured (Wheeler and Kiladis, 1999). 
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Figure 2.2: Locally based indices derived through TRMM 3-hourly standardized (15ºS–15ºN) 
precipitation data shows a pinwheel-like plot of precipitation and change in precipitation for the 
MJO (a), Kelvin wave (b), and WIG wave (c). Each color/wedge represents a phase of the wave 
modes, with 1 and 5 being the suppressed and enhanced phases respectfully. The inner solid 
circle represents standard deviation threshold set (> 0.5 std). N value at the top right indicates # 
of 3-hourly timesteps that passed said threshold. 

By plotting these two variables against each other, a “pinwheel” for each wave mode is 

constructed (Fig. 2.2). We can split the wheel into 8 phases and this results to phase 1 

representing the suppressed phase, phases 2-4 represent the suppressed-to-enhanced transition, 

phase 5 represents the enhanced phase, and phases 6-8 represents the enhanced-to-suppressed 

transition. Lastly, to remove weak wave mode signals, an amplitude threshold is set (> 0.5 std) 

for each time-step to pass. The amplitude is defined as the combined precipitation rate and 

change in precipitation rate, which is simply the distance from the point on the pinwheel to the 

center. This threshold results in all 664 MJO 3-hourly time steps retained, 610 Kelvin wave time 

steps retained, and 544 WIG wave time steps retained. The amount of time steps retained is 

important to note as it will create differences in spreads when applying significance tests. 

Roughly, 3 MJO, 11 Kelvin wave, and 38 WIG wave events occurred between 10 October and 

December 31, 2011. The obvious limitation here is the limited wave mode data we have over this 

time period. While statistical significance testing suggests some of our results are significant to 

the 95th percentile, having a short temporal resolution is a limitation since an argument can be 

made that these events are outliers. We plan to expand the datasets we use well outside of the 

temporal bound in future work to provide more statistically stable results. Otherwise, these 

locally based indices allow for an intercomparison between varying wave modes unlike EOF 

based indices since interpreting effects locally between wave modes would be near impossible 

using EOF based indices. The MJO shows strong signals that easily pass the threshold while 
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higher frequency wave modes have time-steps that do not pass the threshold, which are excluded 

from the analysis. 

 
 

Figure 2.3: S-PolKa radar derived anomalous domain averaged rain rate [mm/hr] evolution 
during Oct-10 to Dec-31 are composited over 8 local phases for each wave mode (-Blue: MJO, --
Green: Kelvin, ···Red: WIG). Shading represents 95% significance. Phases 1/5 represents the 
suppressed/enhanced phase respectfully. 

S-PolKa rain rates are composited using the local wave phase for all wave modes and 95% 

significance test is conducted to examine the evolution of ground-based radar estimates of rain 

rate (Fig. 2.3). Significance is determined through 10,000-iterations of bootstrapping dates 

within each phase number with repetition and recalculating cloud type frequencies for each 

phase. 95% significance was found by sorting the 10,000 values for each phase number and 

taking the 2.5 and 97.5 percentile values as the lowest and highest bounds respectfully. This type 

of significance test will be used throughout this study unless specified otherwise. Figure 2.3 

shows that the estimated local rain rates from S-PolKa evolve differently for each wave mode. 

Recall that the locally defined wave indices follow rain rates to minimize at phase 1 and 

maximize at phase 5. The MJO follows this definition while the Kelvin wave experiences a 

double peak of rain rate at phase 4 and phase 6, and the WIG wave peaks at phase 4. S-Polka has 

much smaller domain area (~70,500km2) compared to TRMM (~692,500km2), which is a 

plausible cause for differences in rain rates and phase between the two data sets, hence why S-

PolKa domain averaged rain rate evolution does not follow TRMM’s for the higher frequency 

wave modes. These deviations may exist between the two instruments due to a variety of reasons 

(i.e. instrumentations, estimation algorithm, resolution, filter/unfiltered, etc.); however, S-PolKa 
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detects maximum rain rates to occur around the enhanced phase, providing another reliable rain 

rate measurement to utilize. Significance testing shows the error bars for each wave mode and 

how consecutive phases have overlapping error bars, suggesting that the wave-specific 

evolutions are not significantly different at the 95th percent threshold. 

 
2.4 The Evolution of Cloud Types 
 

With these methods, we first explore how cloud types evolve within each wave mode. 30-

second cloud type frequency measurements from CombRet are averaged into 3-hourly time steps 

to match the temporal frequency of the local phases of wave modes. Bins that correspond to each 

cloud type are summed to get 3-hourly cloud type frequency for all 6 cloud types. Utilizing the 

locally defined phases, we composite the 6 varying cloud type frequencies to determine the 

average evolution of each cloud type frequency within each wave with a significance test done 

through bootstrapping (Fig. 2.4). For the MJO (blue), congestus and deep cloud types maximize 

during the enhanced phase of the MJO when rain rate maximizes (phase 5), while mid, anvil and 

cirrus cloud types lag the enhanced phase, maximizing during the transition from enhanced to 

suppressed (phase 6 and 7). While shading (error bars) for each wave mode overlap frequently 

between phases, the evolution of cloud types is consistent with previous studies that looked at 

MJO cloud type evolution over a much longer period of time (Riley & Mapes, 2011). Generally, 

all cloud types exhibit similar evolutions between wave modes, however, while not significant, 

the MJO produces more frequent deep and anvil cloud types during their respective peaks in 

frequency.   
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Figure 2.4: CombRet derived cloud type frequencies [3 hour-1] composited over 8 local phases 
for each wave mode (-Blue: MJO, --Green: Kelvin, ···Red: WIG). Shading represents 95% 
significance. Top row (a, b, c) represents precipitating convective cloud type evolution, and the 
bottom row (d, e, f) represents non-precipitating stratiform like cloud type evolution. 

 To visualize where each cloud type maximizes for each wave mode, we examine the 

evolution of cloud frequencies defined by cloud height and top bins shown in Fig. 2.1 with wave 

phase and identify the wave phase at which the cloud frequency maximizes. This analysis shows 

what specific combination of cloud base and top heights maximize at which phase of a wave 

mode (left column, Fig. 2.5). Notice that the non-precipitating stratiform cloud types (mid, anvil, 

and cirrus) maximize at phases 6, 7, and 8, as shown in Fig. 2.4. The right column of Fig. 2.5 

shows the range (maximum minus minimum) of cloud frequency in each cloud type bin, where 

higher values indicate large fluctuation of cloud type frequencies during the lifecycle of the wave 

mode. 95% significance is tested for each bin by comparing the observed cloud frequency range 

between the 8 phases for each wave mode with a range that is calculated by randomizing and 

repeating cloud frequency at each phase using all timesteps from each wave mode. Since 

randomized range will be much smaller than the observed, if the observed range is larger than 

the top 95th percentile randomized range, it is considered significant indicated by a stipple. This 

figure provides an objective overview on what phase cloud types are most frequent for each 

wave mode without the need to set arbitrary bounds on cloud base and top heights. The MJO 

experiences predominant shallow clouds during the suppressed phase and congestus and some 

deep clouds during the transition towards the enhanced phase. The enhanced phase is comprised 
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of frequent deep, congestus and mid clouds while anvil and cirrus clouds are most frequent 

during the transition from enhanced to suppressed. Cloud frequency range indicates that the 

fluctuations in the evolution for all cloud types are significant for the MJO. However, the latter 

cannot be said for the higher frequency wave modes. While cloud types show high range in 

frequency for higher frequency wave modes (Kelvin and WIG), these waves do not exhibit a 

clear and organized pattern of cloud type evolution that is witnessed with the MJO. This result 

suggests that the MJO influences cloud type evolution within the larger scale envelope of 

convection, while this influence is weaker for the Kelvin and WIG waves. More specifically, 

both deep and anvil clouds simultaneously maximize at phases 5, 6, and parts of 7 for the MJO 

but this is not exhibited by the Kelvin and WIG waves. More research is needed to understand 

why this difference in cloud type evolution exists between the MJO and higher frequency wave 

modes, and if the cloud type evolution influences the MJO and not the other way around. 
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Figure 2.5: Left column (subplot a, c, e) represents bins of cloud base and top height that 
maximize at local phases for each wave mode. Frequency distributions were smoothed by a 
center weighted mean in both x and y-axes. Note that this is an objective view of what Fig. 2.4 
shows. Right column (subplot b, d, f) represents the range (maximum - minimum) of frequencies 
[30 sec-1] at each bin. Stippling represents 95% significance. 

 
2.5 The Evolution of Atmospheric Cloud-Radiative Forcing 
 

Since cloud type evolution differs between wave modes, we should expect CRF to also 

differ. After compositing vertically integrated CRF from both CombRet and CERES, we can 

now compare CRF evolution between wave modes (Fig. 2.6). Both datasets show a similar 
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evolution, where the MJO exhibits the largest CRF values compared to the higher frequency 

waves modes. Both CERES and CombRet data show that the MJOs maximum value in CRF is 

higher than both the Kelvin and WIG waves. While significant error bars overlap for both data 

sets and all wave modes, the MJOs CRF evolution follows CombRet CRF evolution in Ciesielski 

et al. (2017) study, adding to our confidence that the MJOs evolution is correct and has a larger 

atmospheric CRF maximum compared to higher frequency wave modes. A larger atmospheric 

CRF amplitude suggests that the MJO is associated with a greater absorption or trapping of 

longwave radiation from clouds and/or a weaker cloud albedo which increases the chance of 

shortwave radiation absorption within the atmosphere. In the previous section we noted that 

some cloud type frequencies have larger amplitudes for the MJO compared to the higher 

frequency wave modes. More frequent occurrences of cloud types lead to greater cloud-radiative 

effects, potentially leading to the larger CRF amplitudes that we see for the MJO in Fig. 2.6. 

 
 

Figure 2.6: Evolution of integrated anomalous atmospheric cloud-radiative forcing [W/m2] over 
8 phases of varying wave modes (-Blue: MJO, --Green: Kelvin, ···Red: WIG). Shading 
represents 95% significance. Subplot a) utilizes anomalies from the CERES data set while 
subplot b) utilizes the CombRet data set. 
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There also exists a lagged relationship of CRF from maximum precipitation rates that only 

occurs within the MJO, meaning CRF maximizes AFTER precipitation rates maximize. 

Significance test of CERES data shows this lagged relationship is significant, with CombRet data 

depicting a similar lagged evolution, both of which is not witnessed with either the Kelvin or 

WIG waves. This unique lagged relationship indicates that the MJO cloud type evolution is 

influencing the atmospheric CRF to lag compared to higher frequency wave modes. Previous 

studies have found the MJO to exhibit a similar lagged CRF relationship (Ciesielski et al., 2017) 

while others have documented a leading relationship (Genio & Chen, 2015) where CRF 

maximizes before precipitation rates maximize. We hypothesize these opposing results may stem 

from differences in the data utilized. Studies that depict a leading relationship of CRF within the 

MJO utilized sun-synchronized twice-daily polar orbiting satellite data (CloudSat). A caveat in 

utilizing these data sets is its inability to document the full, uninterrupted cloud type evolution 

within a wave mode, allowing for an unintentional diurnal CRF bias to exist within the analysis 

itself. Studies that have witnessed a lagged relationship utilized continuous data streams which 

inherently include the diurnal evolution of CRF, avoiding the diurnal bias present in twice-daily 

satellite data. However, it is important to note that CombRet’s short data collection period and 

singular point retrievals are a caveat since long-term satellite data produce more statistically 

stable results from their larger dataset. The difference in span of data collected could suggest that 

the three MJO signals during the DYNAMO/AMIE period were outliers in terms of the lagged 

CRF relationship. Since the datasets utilized in this study are continuous, it can capture the 

diurnal evolution of CRF alongside the evolution on cloud types, which cannot be captured 

through satellite based CRF measurements. Therefore, at least within DYNAMO/AMIE period 

and domain, we hypothesize this unique lagged relationship of high-cloud type frequency and 

CRF are related. 

Prior studies that investigated the cloud-radiative feedback parameter found the MJO to have 

a higher parameter compared to higher frequency wave modes shown in Fig 1.2 (Adames and 

Kim, 2016, Inoue et al., 2020, Sakaeda et al., 2020). To confirm prior findings, we utilize rain 

rates from S-PolKa and plot the relationship between atmospheric CRF and rain rate anomalies 

for each wave mode (Fig. 2.7). While this analysis is different from previous studies that 

calculated cloud-radiative feedback parameter as the relationship between OLR and rain rate, 

utilizing atmospheric CRF instead of OLR provides a more direct relationship between 
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atmospheric warming and precipitation. Figure 2.7a utilizes domain averaged S-PolKa rain rates 

and CERES CRF values while Fig. 2.7b utilizes single point CombRet rain rates and CRF 

values. Therefore, Fig. 2.7a represents an averaged cloud-radiative feedback relationship, while 

Fig. 2.7b represents a localized relationship where influence from isolated storms over Gan 

Island can occur, resulting in the inability to characterize the larger scale cloud-radiative 

feedback relationship well. For this reason, we will focus on Fig. 2.7a, where the MJO has a 

higher cloud-radiative feedback parameter, decreasing in parameter as wavenumber increases to 

Kelvin and WIG waves. Notice that the 95% significance tested slopes (m values in legend) 

overlap, however error bars do show a decreasing trend as wavenumber increases. Higher 

frequency wave modes indicate a smaller/weaker slope between rain rate and atmospheric CRF 

compared to the MJO, increasing in value as wavenumber decreases. This is in line with 

previous studies that also suggested a similar relationship with rain rate and OLR anomalies. As 

mentioned in Chapter 1, previous studies suggested that the enhanced horizontal spreading of 

anvil type clouds occur at greater frequencies for equatorial waves of longer wavelengths. 

However, here we suggest that the reason for the larger cloud-radiative feedback parameter for 

the MJO is due to the lagged CRF relationship. Precipitation rate decreases after the enhanced 

phase, but CRF still continues to increase. This leads to values with low precipitation rates and 

high CRF values, ultimately leading to a steeper slope. We suggest that the lagged CRF is driven 

by a compounding effect from various cloud type effects on atmospheric CRF. The left column 

of Fig. 2.5 showed that a great majority of cloud types maximize at phase 6 for the MJO 

compared to higher frequency wave modes, resulting in a compounding effect on atmospheric 

CRF. While we are not disproving previous hypotheses on the wavenumber-cloud-radiative 

feedback parameter relationship, we argue that the deep and high cloud types maximizing 

simultaneously at phase 6 are important to increasing the cloud-radiative feedback parameter. 
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Figure 2.7: Composited S-PolKa rain rates anomalies [mm/hr] and CERES atmospheric CRF 
anomalies [W/m2] from each wave mode and phase are plotted against each other a) while 
CombRet rain rates and atmospheric CRF anomalies are plotted on b). A linear regression line is 
fit for all wave modes (-Blue: MJO, --Green: Kelvin, ···Red: WIG). The slope of this line 
represents the cloud-radiative feedback parameter. Legend labels each wave modes linear 
equation (𝑦 = 𝑚𝑥 + 𝑏) where y is the diagnosed CRF anomaly, m is the slope/cloud-radiative 
feedback parameter, x is the rain rate anomaly, and b is the y-intercept. 95% significance test is 
shown by the thresholds of slope m in the legend. 

We also utilize vertically resolved radiative retrievals from CombRet to composite the 

evolution of CRF between varying wave modes to get a better sense of the vertical structure of 

CRF evolution (Fig. 2.8). Areas with stipples indicates areas of significant anomalous heating or 

cooling. The MJO (Fig. 2.8a-c) experiences a lagged relationship of CRF to enhanced 

precipitation throughout the entire tropospheric column, matching the evolution of column-

integrated CRF from CERES and CombRet from Fig. 2.6. The longwave anomalous warming 

during phase 5 (enhanced phase) and 6 (enhanced-to-suppressed transition) in the mid-to-low 

levels and shortwave anomalous warming during phase 5 and 6 in the upper-levels from the MJO 

are consistent with previous studies that looked at CombRet data during DYNAMO (Ciesielski 

et al. 2017). Both longwave and shortwave CRF warming increase in the vertical from phase 5 to 

6, leading to maximum warming throughout the troposphere at phase 6. There is also a 

substantial upper-level cooling effect that occurs in the longwave during phase 5 due to high 

cloud tops which emit at much cooler temperatures, leading to a negative total CRF response. To 

our knowledge, what has not been previously observed are the evolution of vertical CRF profiles 

for the Kelvin (Fig. 2.8, d-f) and WIG (Fig. 2.8, g-i) waves, which show some deviation from the 
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MJO’s evolution. The Kelvin wave experiences increased heating rates early on during phase 3, 

and then again at phase 5 and 6. This bimodal peak in CRF is witnessed in the CombRet 

integrated atmospheric CRF plot (Fig. 2.6 b) but was not witnessed with the CERES CRF 

dataset. The WIG wave experiences a somewhat similar total CRF evolution as the MJO, 

however measurements are shifted towards earlier phases than the MJO. These unique evolutions 

of observed CRF within varying wave modes are inherently affected by cloud types and their 

evolution. The next chapter will analyze this cloud type and CRF relationship to understand what 

is causing the unique evolutions of CRF that is witnessed within wave modes. 

 
 

Figure 2.8: CombRet vertically resolved CRF anomalies [Kday-1] in the longwave (left column), 
shortwave (middle column), and total 𝐿𝑊 + 𝑆𝑊, right column) are composited for each wave 
mode (MJO, a-c; Kelvin wave, d-f; WIG; g-i). Black stippling represents areas of 
positive/negative significance to the 95%. Solid black line represents the zero line. 
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Chapter 3 
 
Quantifying Contribution to CRF by Cloud Type 
 
 The previous chapter suggested that the cloud type evolution of the MJO could be 

influencing the unique CRF evolution. To test this hypothesis, we devise a simple linear 

regression model to capture the relationship between cloud type frequency and CRF. This model 

will be compared to observed results to check the model’s ability to construct CRF and more 

importantly, analyze individual cloud type contribution to CRF to determine which cloud type(s) 

is responsible for the unique CRF evolution of the MJO. 

 
3.1 Linear Model Specifications 
 

A linear regression model is devised to decompose the contribution of atmospheric CRF 

evolution by each cloud type at Gan-Island during 10 October to 31 December 31 2011. 

CombRet provides net atmospheric CRF which provides CRF values from all existing cloud 

types since multiple cloud types can exist during a 3-hour timestep. Our analysis will attempt to 

diagnose how each cloud type contributes to the net atmospheric CRF. 3-hourly cloud type 

frequencies and integrated 3-hourly total atmospheric CRF anomalies from both CERES and 

CombRet (after averaging 30-sec retrievals into 3-hourly bins) will be utilized in our simple 

linear model. A linear regression is applied between cloud type frequency and net atmospheric 

CRF measurements for all 6 cloud types individually, where cloud type frequency is the 

independent variable (x) and CRF is the dependent variable (y). This equation is an example of 

the analysis, 

𝑄′- "#(𝑡) = 𝑚𝐹"#(𝑡) + 𝑄$					𝐸𝑞. 1 

where 𝑄7′"#(𝑡) is the column-integrated anomalous atmospheric CRF contributed from deep 

clouds at each time step, 𝑚 is the slope representing heating rate frequency per deep cloud type 

frequency, 𝐹%&(𝑡) is the deep cloud type frequency at each time step, and 𝑄$ is the CRF when 

deep cloud type frequency is zero. This equation is applied to all 6 cloud types where 𝑄7′'(, 𝑄7′)*, 

𝑄7′+", 𝑄7′,-, 𝑄7′). represent anomalous atmospheric CRF associated with shallow, congestus, mid-

level, anvil, and cirrus clouds, respectively. This allows us to find a linear relationship between 

net atmospheric CRF and the cloud type frequency overhead during that measurement. This 
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means that all scatter points in Fig. 3.1a-f all have the same atmospheric CRF values (y-axis) but 

differing cloud type frequency. 

 
 

Figure 3.1: Scatter plot of CERES total (𝐿𝑊 + 𝑆𝑊) atmospheric CRF anomalies [W/m2] with 
the respective cloud type frequency [3 hour-1]. The red line is the best fit line with the equation 
𝑦 = 𝑚𝑥 + 𝑏, where m is the slope, b is the y-intercept, y is the total atmospheric CRF anomaly, 
x is the cloud type frequency, that best describes the linear relationship at the middle-top of the 
inner subplot. 

Figure 3.1 shows the scatter plot of each cloud type frequency’s relationship to CRF with a 

best fit line. This analysis was executed using both CERES and CombRet (not shown) integrated 

total atmospheric CRF measurements. Both models agreed that deep and anvil cloud types are 

the most influential in increasing CRF (large slope/m). We suspect this because these two cloud 

type trap more longwave terrestrial radiation than any other cloud type. While the shortwave 

component does interact with these cloud types and does contribute to warming, most of the 

warming from shortwave interactions is confined in the upper-atmosphere, and the cooling effect 

is weak in the lower atmosphere. Note that deep and anvil cloud types are related to one another 

since deep convection produces anvil clouds, meaning anvil clouds are dependent on deep 

clouds. However, this relationship is checked by applying a lag correlation test on cloud type 
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frequency evolution after a deep cloud type detection (not shown). The analysis showed anvil 

cloud types are significantly more frequent 3 hours before and after deep cloud type detection, 

backing the claim that anvil cloud types exist during times of deep convection, suggesting that 

CRF measurements of deep and anvil cloud types will somewhat be related. While these two 

specific cloud types are somewhat related, the lag correlation analysis did not show similar 

significant relationships existing with other cloud types during times of congestus and shallow 

cloud type detection, suggesting CRF measurements associated with other cloud types are more 

independent. Note that these relationships cannot all be perfectly linear (𝑅/ = 1) since if one 

cloud type frequency is a perfect linear match with CRF, then the other five cloud types would 

explain 0% of the variations, showing a poor linear fit (𝑅/ = 0). Therefore, it is by design that 

the linear relationships between individual cloud type frequencies and CRF are not perfectly 

linear. Also note that there are non-zero values of atmospheric CRF when some cloud 

frequencies are zero. While at that 3-hour timestep the cloud frequency of a cloud type is zero, 

other cloud frequencies can be greater than zero during that timestep which can lead to non-zero 

values of atmospheric CRF. To test which cloud types most contribute to CRF and how well 

these cloud types collectively predict CRF the 6 individual cloud type regression equations in 

Fig. 3.1 are summed together to get the “all” cloud type contribution to CRF (i.e., 𝑄7′,00 = 𝑄7′'( +

𝑄7′)* + 𝑄7′"# + 𝑄7′+" + 𝑄7′,- + 𝑄7′).). This method of summing the regressed equations ensures 

that each cloud type’s unique CRF relationship is retained, rather than a method where a single 

regression is done over the sum of all 6 cloud type frequencies, which would simply capture the 

average CRF response from a cloud, regardless of the type.  
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Figure 3.2: Diagnosed relative anomalous total (𝐿𝑊 + 𝑆𝑊) integrated atmospheric CRF 
contribution by cloud type compared to all cloud type contribution. Local CombRet CRF 
measurements are used to diagnose the model, and error bars represent variation of contribution 
per cloud type when applied 95% significance test. 

This allows the ability to isolate each cloud type’s relative contribution to integrated 

atmospheric CRF (Fig. 3.2). Percentage contribution refers to the ratio of CRF contribution from 

a cloud type compared to all cloud type contribution. Error bars represent 95% significance 

through bootstrapping, where overlapping error bars represents cloud type contribution that are 

not significantly different from one another. CombRet CRF data is used in this case since 

relating localized cloud type measurements to local CRF measurements is a direct comparison 

rather than using CERES CRF measurements that are averaged over a 3-by-3-degree area which 

would include CRF influences from various other cloud types that are not being detected by 

CombRet. These results validate the suggestion that deep and anvil cloud types are the most 

influential cloud types since they contribute the majority of all diagnosed CRF. While the 
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deconstructed cloud type relationships with integrated CRF appears weakly correlated (Fig. 3.1), 

when you combine the 6 cloud type contributions to CRF (all cloud type contribution), the 

relationship between observed and diagnosed CombRet measured CRF shows a close 1-to-1 

relationship (Fig. 3.3). This indicates a strong correlation with an R2 value of 0.78 using CERES 

and 0.68 using CombRet (not shown) observed and diagnosed CRF. 

 
 

Figure 3.3: Scatter of observed CERES total (𝐿𝑊 + 𝑆𝑊) component of integrated atmospheric 
CRF anomalies [W/m2] and its diagnosed value via linear model based on cloud type frequency. 
Linear regression line is plotted in solid blue, and a one-to-one relationship is shown for 
comparison in black dashed. Legend includes linear equation in form of 𝑦 = 𝑚𝑥 + 𝑏, and R2 
value indicating strength of correlation. 

Furthermore, we can utilize the vertically resolved anomalous total CRF measurements from 

CombRet and apply the same method we used with the integrated CRF measurements. A set of 

linear regression for each cloud type, like in Fig. 3.1, is applied at each vertical layer, where the 

slope, or heating rate frequency, at each vertical layer is plotted on the horizontal axis (Fig. 3.4). 

Shading represents 95% significance through bootstrapping which depict areas of significant 

heating/cooling when shading does not overlap the vertical solid zero line. This figure provides 
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insight on the effect individual cloud types have on CRF vertical profile. The 6 cloud type 

vertical heating rate frequency profiles are unique, suggesting that each cloud type induces 

independent CRF effect. Notably, precipitating convective cloud types (Fig. 3.4 a-c) show 

significant positive heating rate frequencies below and/or within the cloud, with deep cloud types 

significantly heating the atmosphere below 10 km. Nonprecipitating stratiform cloud types (Fig. 

3.4 d-f) act somewhat differently. Mid clouds tend to show weak but significant heating below 4 

km, while anvil clouds show significant and strong heating below 10 km, with maximum heating 

occurring between 6-8 km as well as significant cooling occurring between 12-16 km. Cirrus 

cloud types show weak but significant heating between 7-13 km. Generally, the longwave 

component is the dominating factor when it comes to cloud-radiative heating, however the 

shortwave CRF component does play a role in warming the mid-to-upper levels. 
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Figure 3.4: CombRet vertically resolved anomalous total (𝐿𝑊 + 𝑆𝑊) CRF values are linearly 
regressed against the respective cloud type frequencies. The slope (m) of the linear regression at 
each vertical height is plotted indicating heating rate frequency in Kday-1/hour. Shading 
represents 95% significance, where significant positive/negative heating occurs when shading 
does not overlap the vertical solid x=0 line. 
 

 If we sum together the six-cloud type contributions to cloud-radiative heating, we can 

diagnose the net CRF influence from all cloud types during the DYNAMO field campaign (Fig. 

3.5). As mentioned before, the longwave component (Fig. 3.5a) is the dominate feature here (i.e., 
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from the context of the mass-weighted column integral), however, the shortwave component 

(Fig. 3.5b) contributes positive CRF heating at the 7-15 km heights. This leads to total CRF 

heating between 11-13 km where it would not be the case if it was not for the shortwave 

component (Fig. 3.5c). While significance tests do not show substantial significant CRF 

heating/cooling at any height interval, the raw values do suggest that cloud-radiative interactions 

act to heat much of the troposphere (0-13 km) as total heating is positive below the 13 km height. 

Given these results, we move to apply this diagnostic linear model with observed cloud types to 

test how well it captures CRF evolution within varying wave modes. 

 
 

Figure 3.5: CombRet vertically resolved anomalous longwave (a), shortwave (b), total (𝐿𝑊 +
𝑆𝑊, c) CRF values are linearly regressed against ‘all’ cloud types. All cloud type contribution to 
CRF is calculated by a sum of the 6 individual cloud type regressions. The diagnosed CRF 
anomaly (y) of the linear regression at each vertical height is plotted indicating heating rate by 
CRF in K/day. Shading represents 95% significance, where significant positive/negative heating 
occurs when shading does not overlap the vertical solid x=0 line. 
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3.2 Diagnosing CRF Evolution 
 
 These sets of linear equations (𝑦 = 𝑚𝑥 + 𝑏) can be leveraged to diagnose the integrated 

atmospheric CRF values (y) by inputting the respective cloud type frequencies at each 3-hourly 

timestep (x). The diagnosing of CRF is confined to just the DYNAMO period as this model’s 

purpose is to diagnose the cloud type-CRF relationship rather than to be used as a predictive 

model. To get all cloud type contribution, the CRF is diagnosed for the six cloud types using the 

linear regression models and then is summed together and composited for each wave mode (Fig. 

3.6). This analysis is done with the linear model based on CERES (Fig. 3.6 a) and CombRet (Fig. 

3.6 b) anomalous column-integrated total atmospheric CRF values, where significance test 

follows the method used in Fig. 2.6. The diagnosed atmospheric CRF evolution for the MJO 

maximizes at phase 6 for both CERES and CombRet CRF initiated models, after the enhanced 

phase has passed, consistent with observational results shown in Fig. 2.6. The MJO also 

continues to show a higher CRF maximum compared to the Kelvin and WIG wave modes, also 

consistent with observational results. While phase 6 is not the significant maximum for the MJO, 

these diagnostic results share similarities with observed results, suggesting that the MJOs lagged 

CRF relationship with precipitation can be diagnosed by simply knowing the cloud type 

overhead. 
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Figure 3.6: Same as Fig. 2.6 but diagnosed with a set of linear equation. 

 We can utilize the sets of linear equations from CombRet’s vertically resolved CRF data set 

to diagnose how the vertically resolved anomalous CRF evolves with varying wave modes given 

only cloud type frequencies (Fig. 3.7). The reconstructed CRF through linear regression models 

for MJO (Fig. 3.7 a-c) shows a very close comparison of CRF evolution in longwave, shortwave, 

and total columns compared to the observed. One small exception is that the longwave CRF 

cooling maximum around 15 km was diagnosed to be at phase 6, while observations indicate it 

minimizes during phase 5. Otherwise, the linear model reconstructed the MJOs total CRF 

maximum at phase 6 and overall evolution quite well. The higher frequency wave modes 

generally depict the observed CRF evolution well, however they are not captured as well as the 

MJO. This is either due to the less data points higher frequency wave modes had to work with 

because of weak wave mode signals not passing the threshold set as seen in Fig. 2.2b-c, or it 

could be that higher frequency wave modes simply do not have as high of a CRF variation as the 
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MJO (Fig. 3.7 d-i). The model does not capture the observed mid-to-upper-level longwave 

warming the Kelvin wave experienced during phase 3 and 5 and the observed upper-level 

longwave cooling at phase 4 of the WIG wave seems to have stretched from phase 3-to-6 in the 

diagnosed evolution. These exceptions occur near the height that all cloud shortwave and 

longwave heating rate frequencies are of equal but opposite magnitudes, leading to cancelations 

and insignificant heating/cooling at those heights (not shown). However, even given the 

shortcomings, the linear model captures the general vertically resolved CRF evolution well 

enough. The performance in diagnosing both integrated and vertically resolved CRF emphasizes 

the importance of cloud types to accurately diagnose CRF evolution within these wave modes. 

Being able to diagnose CRF evolution is important since this added diabatic heating into the 

system leads to moistening through vertical motions through adiabatic lifting under WTG 

approximation, as described next. This moistening process is fundamental within the moisture 

mode framework which is often used to describe the dynamics of the MJO. 

 
 

Figure 3.7: Same as Fig. 2.8 but diagnosed with a set of linear equation.  
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Chapter 4 
 
Quantifying the Cloud-Radiative Contribution to Moistening 
 
 This study so far has investigated the cloud-radiative interactions of the MJO, Kelvin, and 

WIG waves. These interactions are of importance as they are a source of added diabatic heating. 

Under the WTG approximation, this added diabatic heating is brought to equilibrium through 

vertical motions to cool, in turn resulting in moistening the atmosphere within wave modes. The 

magnitude and evolution of this moistening that is driven by cloud-radiative process has 

implications on the fundamental characteristics such as propagation speed and intensity of wave 

modes. This chapter will investigate the contribution of moistening through cloud-radiative 

effects within the MJO, attempting to better understand the potential affects it would have on 

wave mode characteristics. We only examine the MJO in this section since the WTG assumption 

we invoke, which enables a direct link between heating and moistening, is less applicable to the 

higher frequency wave modes. 

 
4.1 Assumptions and Conceptualization 
 
 The MJO is often described as a moisture mode, where fundamental dynamics are 

determined by the processes that control the moisture field. Weak temperature gradient (WTG) 

approximation is necessary in this framework. This approximation utilizes the inherent weak 

Coriolis force over the tropics, translating into weak geopotential (pressure) fluctuations within 

the momentum equation, suggesting weak temperature gradients can be applied over tropical 

regions. When applied to the thermodynamic equation, diabatic heating/cooling is balanced by 

adiabatic cooling/heating respectively. Consider how the dry static energy (𝑠) budget would 

change when this approximation is applied, 

𝜕𝑠
𝜕𝑡 + �⃗�( ∙ ∇𝑠 + 𝜔

𝜕𝑠
𝜕𝑝 = 𝑄1					𝐸𝑞. 2 

𝑠 = 𝑐#𝑇 + 𝑔𝑧 

where 𝑐# is the specific heat capacity of dry air (𝑐# = 1004	( 2
3*4

)), 𝑇 is temperature, 𝑔 is 

gravitational acceleration, and 𝑧 is geopotential height. Without WTG applied, the time tendency 

of 𝑠 is dependent on the horizontal and vertical advection of 𝑠 and 𝑄1, which is the apparent 

heating (Yanai et al., 1973). Under the WTG approximation, the above equation simplifies to, 
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𝜔
𝜕𝑠
𝜕𝑝 = 𝑄1 = 𝑄! + 𝑄5 					𝐸𝑞. 3 

where 𝑄! represents the radiative heating component and 𝑄5  is the latent heating from 

condensation and vertical heat flux associated with the convective process. Assuming 6'
6#

 does not 

change, vertical velocity (𝜔) is only influenced by two processes: radiative heating and latent 

heating. Therefore, 𝜔 can be split into 𝜔! and 𝜔5 , where each 𝜔 corresponds to the vertical 

velocity contributed by their respective diabatic heat sources which act to balance adiabatic 

cooling:	

𝜔 = 𝜔5 + 𝜔! 						𝐸𝑞. 4 

𝜔! = 𝑄! I
1

𝜕𝑠 𝜕𝑝⁄ K 					𝐸𝑞. 5 

𝜔5 = 𝑄5 I
1

𝜕𝑠 𝜕𝑝⁄ K 					𝐸𝑞. 6 

This breakdown allows us to quantify contributions of radiatively-driven moistening (−𝜔!
67
6#

) in 

the column-integrated anomalous specific humidity tendency equation (Eq. 7). 

〈
𝜕𝑞′
𝜕𝑡
〉 = −〈𝑣( ∙ ∇𝑞〉′ − 〈(𝜔5 + 𝜔!)

𝜕𝑞
𝜕𝑝
〉 ′ + (𝐸 − 𝑃)′					𝐸𝑞. 7 

〈𝐴〉 =
1
𝑔S 𝐴	𝑑𝑝

&!

&"
 

〈−𝜔!
𝜕𝑞
𝜕𝑝
〉8 = 〈−𝑄! U

𝜕𝑞 𝜕𝑝⁄
𝜕𝑠 𝜕𝑝⁄ V〉8 					𝐸𝑞. 8 

Brackets indicate vertical integration between 𝑃9 of 1000 hPa and 𝑃: of 200 hPa and primes 

indicate anomalies from time-mean during DYNAMO period. From the left-hand side to the 

right-hand side of Eq. 7; 〈𝜕𝑞′/𝜕𝑡〉 represents the vertically integrated local moisture tendency, 

〈�⃗�( ∙ ∇𝑞〉′ represents the vertically integrated horizontal advection of moisture, 〈(𝜔5 +

𝜔!)	𝜕𝑞/𝜕𝑝〉′ represents the vertically integrated vertical advection of moisture through 

convective and radiative processes, and 𝐸 − 𝑃 represents moisture source through evaporation 

(𝐸) minus moisture sink through precipitation (𝑃). We will focus on 〈(𝜔!)𝜕𝑞/𝜕𝑝〉′ calculated as 

Eq. 8 and how it contributes to 〈𝜕𝑞/𝜕𝑡〉. 

 We note that the WTG approximation is not a valid approximation for all wave modes in the 

tropics. Wolding et al. (2016) suggests that the MJO is governed by different dynamics than 



 

 35 

convectively coupled equatorial waves. Their study found that where the WTG approximation is 

most relevant is limited to wave modes with planetary eastward-propagating wavenumber and 

intraseasonal timescales that applies to the MJO, therefore WTG approximation is not applicable 

for WIG waves and for high frequency Kelvin waves. Since the MJO is the only wave mode that 

fits the WTG approximation in this study, this chapter will focus solely on how moisture 

tendency evolves within the MJO. 

 
4.2 Moisture Evolution 
 
 First, 𝜔! is calculated from Eq. 5 using CombRet 30-second vertically resolved 

microphysical measurements of temperature and specific humidity and anomalous total (𝐿𝑊 +

𝑆𝑊) CRF as 𝑄!, averaged into 3-hourly to match the temporal resolution of local wave phase. 

To calculate 𝜔!, 𝑄! is divided by 𝜕𝑠 𝜕𝑝⁄ , but there are some values of 𝜕𝑠 𝜕𝑝⁄  extremely close to 

zero which, when divided by said small value, results in extremely large 𝜔! value that are 

physically unrealistic. To remove these outliers, the bottom and top .1% of 𝜔! values are 

removed, allowing for the removal of extremely strong negative and positive vertical wind 

speeds but also retaining 99.8% of the data. Once calculated, 𝜔! and the vertical gradient of 

specific humidity (𝜕𝑞 𝜕𝑝⁄ ) is substituted into Eq. 8, resulting in a 3-hourly time-series of 

vertically integrated radiatively-driven moisture tendency. A 2-day running average is applied 

onto the vertically integrated results to better capture the general evolution. This 2-day running is 

a short enough time where it has little to no effect on an intraseasonal wave mode like the MJO. 

These values are then composited to their respective local phases of the MJO, and 95% 

significance is calculated through bootstrapping for each phase. 

 Figure 4.1 shows the vertically integrated radiatively-driven moisture tendency evolution in 

solid blue, 〈−𝜔!𝜕𝑞/𝜕𝑝〉′, and the dashed red line represents the vertically integrated anomalous 

moisture evolution 〈𝑞〉′. The moisture evolution of the MJO significantly maximizes during the 

enhanced phase while radiatively-driven moisture tendency continues to increase after the 

enhanced phase, with a significant maximum at phase 6 and a continuation of positive moisture 

tendency into phase 7. This suggests that the radiatively-driven moistening continues to moisten 

after peak total moisture which occurs at phase 5, during the enhanced phase. 
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Figure 4.1: Vertically integrated, radiatively-driven moisture tendency, 〈−𝜔!𝜕𝑞/𝜕𝑝〉′ (blue, -, 
left y-axis) and moisture,	〈𝑞〉′ (red, --, right y-axis) are composited for the MJO, where local 
phases 1 and 5 represent the suppressed and enhanced phase respectively. Shading represents 
95% significance. 

 Figure 4.2 further elaborates on this point where the same vertically integrated radiatively-

driven moisture tendency is shown alongside the actual total moisture tendency, 〈𝜕𝑞/𝜕𝑡〉′, in 

dashed orange. Total moisture tendency maximizes during the transition from the suppressed to 

enhanced phases to build up moisture ahead of the MJO. As total moisture tendency reaches 

anomalously negative values in phases 6 and 7, radiatively-driven moisture tendency maximizes 

and continues to stay positive. The negative contribution from radiatively-driven moisture 

tendency during phases 1 and 8 are mainly due to the lack of radiative heating through water 

vapor as Fig. 4.3a shows 𝑄)0;,< to be significantly negative in during these phases. Radiatively-

driven moisture tendency contributes to a relatively small amount of negative total moistening 

during maximum total moisture tendency at phase 2, while a relatively large and positive 

contribution to total moistening exists during before total moistening minimizes at phases 6 and 

7 based on Fig. 4.2. This suggests that radiatively-driven moisture tendency has the largest 

impact on the moisture field around the enhanced phase compared to the suppressed phase. 

Furthermore, without this radiatively-driven moistening, the negative total moisture tendency 

would be larger, suggesting a much more abrupt enhanced to suppressed transition. Therefore, as 

cloud-radiative feedbacks continue to moisten the MJO, it works against the general pattern of 
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decreasing moisture suggesting that cloud-radiative interactions prolong/maintain the enhanced 

phase of the MJO, consistent with what moisture mode theory suggests the cloud-radiative 

interaction aids in. While this analysis addresses the observed moisture tendency evolution, we 

will now apply our diagnosed 𝑄! values from our linear model in chapter 3 to further validate its 

performance and our results. 

 
 

Figure 4.2: Vertically integrated, radiatively-driven moisture tendency, 〈−𝜔!𝜕𝑞/𝜕𝑝〉′ (blue, -, 
left y-axis) and total moisture tendency, 〈𝜕𝑞/𝜕𝑡〉′ (orange, --, right y-axis) are composited for the 
MJO, where local phases 1 and 5 represent the suppressed and enhanced phase respectively. 
Shading represents 95% significance. 

 
4.3 Diagnosed Cloud-Radiative Moistening 
 
 The same analysis will be performed from the previous subsection (section 4.2), however, 

diagnosed 𝑄! values from our linear model developed in chapter 3 will be substituted instead of 

our observed 𝑄! values, where the linear model diagnoses CRF from cloud type frequency. The 

use of this linear model allows us to quantify each cloud type’s contribution to the radiatively-

driven moisture tendency, indicating which cloud types are most influential in the radiatively-

driven moistening process. We can first assume that the radiatively-driven moistening is mostly 

driven by the anomalous radiative heating (𝑄′!) as shown in Eq. 9: 
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〈−𝑄! U
𝜕𝑞 𝜕𝑝⁄
𝜕𝑠 𝜕𝑝⁄ V〉8 ≈ 〈−𝑄8! U

𝜕𝑞Z 𝜕𝑝⁄
𝜕�̅� 𝜕𝑝⁄ V〉 					𝐸𝑞. 9 

Using the linear model from chapter 3, anomalous radiative heating can be decomposed as the 

sum of clear-sky radiative heating (𝑄8)0;,<) and diagnosed cloud-radiative forcing associated 

with each type of clouds (𝑄7′'(, 𝑄7′)*, etc.). This allows us to quantify contribution of each cloud 

type to the net radiatively-driven moistening (Eq. 10) 

〈−𝑄8! U
𝜕𝑞Z 𝜕𝑝⁄
𝜕�̅� 𝜕𝑝⁄ V〉

≈ 〈−]𝑄8)0;,< + 𝑄7′'( + 𝑄7′)* + 𝑄7′"# + 𝑄7′+" + 𝑄7′,- + 𝑄7′).^ U
𝜕𝑞Z 𝜕𝑝⁄
𝜕�̅� 𝜕𝑝⁄ V〉 					𝐸𝑞. 10 

 Figure 4.3a again shows the observed vertically integrated radiative moisture tendency 

evolution in the solid blue line alongside the diagnosed vertically integrated all cloud type 

radiative moisture tendency in the black dashed line (right hand side of Eq. 10). The diagnosed 

radiatively-driven moisture tendency follows the observed evolution quite well, both maximizing 

at phase 6. This suggests that cloud type frequency can suitably diagnose the radiatively-driven 

moisture tendency, assuring us that the individual cloud type contributions to the radiatively-

driven moisture tendency is valid to first order. 
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Figure 4.3: a) Vertically integrated, observed radiatively-driven moisture tendency, 
〈−𝜔!𝜕𝑞/𝜕𝑝〉′ (blue, -), diagnosed (black, --) and the clear-sky radiative contribution (red, ···) are 
composited for the MJO. Precipitating cloud type (b) and non-precipitating cloud type (c) 
components of the diagnosed radiative moisture tendency evolution is plotted. Shading 
represents 95% significance. 
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 Figures 4.3b–c break down the diagnosed evolution seen in the black dashed line in Fig. 4.3a 

into their respective precipitating and non-precipitating cloud type contributions. Cloud type 

contribution during the suppressed phase is low other than shallow and cirrus cloud type 

contributions indicating that most of the contribution is from 𝑄8)0;,<. As the transition to the 

enhanced phase occurs, all 6-cloud type contribution to radiatively-driven moistening increases. 

Shallow cloud contribution maximizes during phases 1 and 6, while both congestus and deep 

cloud types maximize at phase 5 and maintain their amplitude into phase 6 (Fig. 4.3b). The 

feature of radiatively-driven moistening maximizing or being maintained after the enhanced 

phase into phase 6 for convective cloud types is a major contributor to the maximizing of 

radiatively-driven moisture tendency after the enhanced phase has passed. This is somewhat also 

witnessed with non-precipitating cloud types, specifically anvil cloud types that contribute a 

significant amount to moistening at phase 6 and staying positive into phase 7, along with cirrus 

cloud contribution maximizing at phase 7 (Fig. 4.3c). While we show precipitating cloud types 

altogether contribute more than non-precipitating cloud types in radiatively-driven moistening, 

note that precipitation is a moisture sink in Eq. 7, something the non-precipitating cloud types do 

not have. Therefore, although non-precipitating cloud types have a smaller contribution of 

radiatively-driven moistening than precipitating cloud types, the net contribution to moistening 

could be higher for non-precipitating cloud types when moisture sink through precipitation is 

considered. Collectively, we suggest that not one or two cloud types are responsible for the 

radiatively-driven moistening evolution, but rather the combination of all cloud types 

maximizing/maintaining their positive moisture tendency leads to the maximizing of radiatively-

driven moistening after the enhanced phase. More so, this lagged relationship of radiatively-

driven moistening maximizing after the enhanced phase of the MJO has implications on the 

moisture mode/MJO characteristics, acting to prolong/maintain the enhanced phase.  
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Chapter 5: Summary and Conclusions 
 
 Previous studies have proved theoretically and with observational results that cloud-radiative 

effects are stronger with low wavenumber waves modes such as the MJO (Adames and Kim, 

2016, Inoue et al., 2020, Sakaeda et al., 2020). It has been suggested that the cloud-radiative 

effects are important to consider in predictive models as it has effects on wave mode 

characteristics such as propagation, amplitude, and its destabilization mechanism (Lin et al., 

2007, Kim et al., 2015, Bony and Emanuel, 2005, Benedict et al., 2020). Cloud-radiative effects 

are also a key component in some theories attempting to explain the MJO dynamics like 

moisture mode theory (Yu and Neelin, 1994, Raymond, 2001). This theory suggests that the 

fundamental dynamics of a moisture mode like the MJO are determined by the processes that 

control the moisture field. The weak-temperature gradient approximation is assumed under this 

theory, meaning diabatic heating/cooling is balanced by adiabatic cooling/heating, therefore, 

cloud-radiative heating can result in vertical motions that advect moisture upwards and moistens 

the column (Chikira, 2014; Harrop and Hartmann, 2016). Depending on when this moistening 

maximizes within the wave mode is important as it has implications on wave mode 

characteristics. More so, determining which cloud types are most contributing to the moistening 

is important as previous studies have suggested the further spreading of high-clouds to be 

responsible for the enhanced cloud-radiative effects that are exhibited for low wavenumber wave 

modes (Lin and Mapes, 2004, Adames and Kim, 2016). The impact of specific cloud types in the 

MJO moisture budget through their radiative feedback is unknown from an observational 

standpoint, which is a key gap that this study addresses. 

 To begin, we utilized data over Addu City, Maldives on Gan Island (0.63S, 73.10E) during 

the DYNAMO/AMIE field campaign as it provided a diverse set of measurements with multiple 

MJO, Kelvin, and Westward Inertio Gravity (WIG) events occurring during the campaign. 

Utilizing filtered precipitation rates for the aforementioned wave modes over Gan Island, 

provided by the Tropical Rainfall Measuring Mission (TRMM), we produced a local phase 

definition that tracks wave mode evolution relative to precipitation rates and change in 

precipitation rates. This allowed for the foundation of an objective intercomparison of measured 

variables between wave modes, where phase 1 (suppressed) and 5 (enhanced) indicated the times 

of minimum and maximum local precipitation respectively for each wave mode.  
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 The Pacific Northwest National Laboratory (PNNL) Combined Remote Sensor retrieval 

algorithm (CombRet) provided cloud base and top heights over Gan Island. After assigning 

cloud types (i.e., shallow, congestus, deep, mid, anvil, cirrus) to the distribution of top and base 

heights, it provided a time series of cloud type evolution that can be composited for each wave 

mode to visualize the evolution of cloud types within wave modes. This analysis suggested that 

the MJO is characterized by a clear pattern of shallow-to-deep-to-stratiform cloud type evolution 

with a majority of cloud types maximizing in frequency during phase 6 of the MJO, after the 

enhanced phase has passed. This does not occur for the Kelvin and WIG waves. 

 The differences in cloud type evolution between wave modes have implications on cloud-

radiative forcing (CRF) evolution, and by utilizing Clouds and Earth’s Radiant Energy System 

(CERES) and CombRet atmospheric CRF measurements, it was found that CRF is stronger as 

well as lagged with respect to peak rainfall for the MJO compared to the Kelvin and WIG waves. 

Similar results were also found by utilizing vertically resolved CRF measurements from 

CombRet. Since this lagged relationship exists for both cloud type and CRF, a linear model was 

devised to diagnose this relationship further. Linear regressions were constructed for each cloud 

type where cloud type frequency is used as a diagnostic variable to diagnose CRF. The linear 

model was able to accurately diagnose column-integrated CRF compared to observational results 

(𝑅/ = 0.78). Since a linear model was constructed for each cloud type, we were also able to 

diagnose each cloud type’s contribution to CRF. Results showed deep and anvil cloud types to be 

the largest contributors to CRF within the linear model, suggesting these two cloud types are the 

most important out of the six to diagnose CRF. Composited diagnosed CRF values also 

witnessed the lagged CRF evolution that observed measurements saw for the MJO but not for the 

Kelvin and WIG waves, further validating the cloud type relationship with CRF and the 

performance of the linear model.  

 Since the MJO is often described to be a moisture mode, it was important to relate the cloud-

radiative heating to quantifying the contribution to total moistening. Interestingly, vertically 

integrated radiatively-driven moisture tendency maximized after vertically integrated moisture 

maximized, and continued to contribute positive moistening as moisture decreased, acting 

against the total moisture tendency. This result suggests that cloud-radiative effects act to 

prolong/maintain the MJO enhanced phase. Furthermore, applying diagnosed CRF 

measurements from the linear model to diagnose radiatively-driven moisture tendency per cloud 



 

 43 

type followed observed results, further validating the model’s performance. Cloud type 

contribution to the diagnosed radiative moistening showed that the combination of cloud types 

maximizing and maintaining their contribution after the enhanced phase resulted in the 

radiatively-driven moisture tendency lag rather than just because of high-clouds or deep and 

anvil clouds. 

 To summarize, this observational study found that the MJO exhibits a clear pattern of cloud 

type evolution, where clouds begin shallow early on and deepen and stratiform during the 

transition to enhanced, unlike the Kelvin and WIG waves. Also, only the MJO witnesses most 

cloud types maximizing in frequency after the enhanced phase of the MJO. It was also shown 

that the MJO CRF is larger and lags precipitation compared to the Kelvin and WIG waves. This 

relationship was tested through a linear model and was shown to replicate observed CRF 

evolutions by simply knowing cloud type frequencies. The added diabatic heating through 

radiative processes translates to moistening under WTG approximation. The radiatively-driven 

moisture tendency maximized after the enhanced phase when total moisture tendency was 

negative, and continued to stay positive, suggesting cloud-radiative effects contribute to the 

prolonging/maintaining of the enhanced phase of the MJO. After quantifying each cloud types 

contribution to the radiatively-driven moistening, it was shown that the combination of cloud 

types is responsible for the maximizing of observed and diagnosed radiative driven moistening 

after the enhanced phase, not solely because of high clouds or deep and anvil clouds. 

 We would like to quantify all terms in the moisture tendency equation (Eq. 7) for future work 

to get a complete understanding on how moistening through cloud-radiative effects compares 

with the other terms. It would also be worthwhile to analyze data sets on a larger temporal and 

spatial scale to examine this relationship outside of the local region of Gan Island and to add 

more significance since it was difficult to achieve throughout this study. 

 This study is one of the first to exist that we know of that compares observed CRF evolution 

between various wave modes. The method used allowed us to pursue the relationship between 

cloud-radiative effects and wavenumber, which provided observational results that support 

theoretical and observational claims that were made about the decreasing cloud-radiative 

feedback parameter with increasing wavenumber relationship. A slightly different approach on 

why this relationship exists was suggested however, stating that a combination of cloud types is 

responsible for the relationship existing, not just high clouds or deep and anvil clouds, furthering 
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our understanding of why this unique relationship exists. This study also provided observational 

analysis on how radiatively-driven moistening can act to prolong/maintain the enhanced phase of 

the MJO under moisture mode theory, reinforcing previous modeling-based studies that have 

witnessed similar results. All of this furthers our understanding of the MJOs dynamics, putting 

more emphasis on the importance of understanding cloud-radiative effects within the MJO. 
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