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Abstract

There are significant concerns regarding the stability of weak power grids due to feed-

ers of high impedance. This thesis investigates the stability domain of Squirrel Cage

Induction Generator - Wind Turbines (SCIG-WTs) with series compensation and weak

interconnections to the power grid. Detailed time-domain and state-space modeling have

revealed new bifurcations and oscillatory modes for a SCIG-WT connected radially or

non-radially to a weak grid through a series compensated line. The stability domain anal-

yses are carried out by computing bifurcations in the system by analyzing eigenvalues of

the linearized system.

A Static Var Compensator (SVC) with an improved voltage regulator design has been

proposed to improve the stability domain of the radial system with respect to series com-

pensation. The analyses demonstrate for the first time how the degree of compensation

at which the Hopf bifurcation occurs depends on the X/R ratio of the line, operating slip

of the induction generator, and voltage regulator parameters as well as the time delays

in measurements. A damping controller design is proposed which greatly improves the

dynamic stability of the WT-SCIG and eliminates destructive Hopf bifurcations in weak

grids for a wide range of series compensation. This allows for a much larger percentage

series compensation than what is usually possible while avoiding instabilities and thereby

maximizing power transfer capability.

In addition to analyzing the stability of SCIG-WTs with radial and non-radial intercon-

nections, the stability domains of induction motor loads fed through series compensated

feeders have been analyzed. The presence of subcritical Hopf bifurcations resulting in

motor stalling and reversal in the rotation of the induction motor has been shown for

the first time. The influence of Automatic Voltage Regulator (AVR) parameters on the

stability domain of the system with respect to series compensation has been studied.

xiv



The influence of AVR gain and time constant along with the time constant of the voltage

measurement transducer has been analyzed for the first time. The applications of this

would help system planners to implement an appropriate level of series compensation so

that safe, secure and reliable operation of the system can be achieved.
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CHAPTER 1

INTRODUCTION

Economical growth in the recent years has led to a huge increase in the demand of

electric power from the existing power system. New transmission infrastructure maybe

needed between generating stations and load centers as existing lines are likely to become

overloaded due to the increase in the amount of power transmitted to meet the system

demand. With the ever increasing growth in the population, getting the right of way to

install new transmission lines is a huge problem in addition to this being a very expensive

solution. A low cost alternative would be to increase the existing power transmission

capacity of the network by compensating a percentage of reactance of the lines using

series capacitors which has been done for decades [1], [2], [3]. The transient stability

limit of the system is improved due to reduction of voltage fluctuations and angular

swing of the rotor of synchronous machines [4].

In addition to an increasing demand for energy, there is a huge need for clean forms of

energy resulting in the deployment of more renewable energy sources from namely wind

and solar. The installed capacity of off-shore wind farms is expected to reach 100 GW in

the European Union by the year 2030 [5]. Wind turbines are placed at remote locations

especially off-shore wind plants resulting in longer cables of high impedance. This greatly

limits the power which can be transmitted to the grid due to higher voltage drops and

increasing power losses [6]. Due to the constraints of the power transmission network,

wind turbines are unable to operate at higher wind speeds resulting in under-utilization

of the capacity of the electrical generators. This has been illustrated in Fig. 1.1 for a

Type A wind farm connected to the grid through a feeder of high impedance.
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Fig. 1.1: Steady state torque versus slip of SCIG and wind turbine characteristics

In Fig. 1.1, characteristics of the wind turbine along with the characteristics of a Squirrel

Cage Induction Generator (SCIG) connected to the grid with and without series capacitor

compensation are shown. The wind turbine characteristics show the torque developed

by the wind turbine with respect to the slip for a high wind velocity of 17 m/s. It can

be seen from the figure that the system without series compensation, operation of the

wind turbine at this speed as the wind turbine characteristics do not intersect with the

characteristics of the SCIG. However, operation of the system was possible when the

system is compensated using series capacitors.

Power systems which are weak and operating under heavily stressed conditions are vul-

nerable to bifurcations which result in a change in the structural and stability properties

of a dynamical system. Bifurcations are classified into local and global types and the ex-

istence of both types in power systems have been shown in a number of published works.

2



Local bifurcations can be detected by analyzing eigenvalues of the Jacobian matrix ob-

tained by linearizing the non-linear dynamical equations of the system. Most common

local bifurcations in power systems and their characteristics have been summarized in

Table 1.1.

1.1 Motivation

Series capacitors have been utilized to improve the power transfer capability of the existing

network for a long time. However, series capacitors result in adverse effects on the stability

of power systems when the compensation exceeds a critical value. Instability is due to

subsynchronous resonance (SSR) which result in self-excited oscillations ([27], [28], [29])

commonly known as the Induction Generator Effect (IGE) or Torsional Interactions (TI)

which may result in shaft fatigues and even shaft failure [30], [31], [32].

Series compensation has known to cause subsynchronous oscillations in wind farms as

well [33], [34]. SSR is a well-documented phenomenon in Type - C wind turbines which

make use of a Doubly Fed Induction Generators (DFIGs). Detailed modeling and anal-

ysis of SSR in DFIG based wind farms has been documented in [35], [36], [37], [38].

Also, mitigation of SSR in DFIG based wind farms has been studied in [39], [40], [41],

[42]. However, DFIG based wind turbines may be expensive due to the power electronic

converters employed on the rotor side and the grid side. A low cost alternative to DFIG

based wind turbines is the Type - A wind turbines based on Squirrel Cage Induction

Generators (SCIGs) which are still in use in developing countries. SCIG based wind tur-

bines operate at fixed speed and are usually coupled to the grid. Therefore, these operate

in a narrow slip range. SCIGs require reactive power for its operation which is usually

supplied by shunt capacitor banks at the stator terminals.

It was shown earlier in Fig. 1.1 that operation at high wind speeds may not be possible if

3



BIFURCATION CHARACTERISTICS

Saddle-node bifurcation Power-flow Jacobian becomes singular
Characterized by a zero eigenvalue
Results in voltage instability and collapse [7],
[8], [9], [10]

Hopf bifurcation Characterized by a pair of complex eigenvalues
crossing over to the right half of the complex
plane resulting in a limit cycle [11], [12]
Require higher order models to be detected [13],
[14], [15]
Classified into subcritical or supercritical based
on the stability of oscillations [16], [17], [18]

Singularity induced bifurcation Characteristic of systems modeled using differ-
ential and algebraic equations
Results in an eigenvalue of the reduced system
matrix diverging to infinity [19], [20]

Limit induced bifurcation Occurs when certain system variables reach
their limit resulting in a sudden change in sta-
bility
Characterized by discrete changes in eigenvalue
trajectories when limits are reached [21], [22],
[23]

Node-Focus bifurcation Occurs when a pair of complex eigenvalues
transform into 2 real eigenvalues moving in op-
posite directions or 2 real eigenvalues collide
and transform into a pair of complex eigenval-
ues [24]
May not cause a change in the stability but may
be a indicate the occurrence of a critical bifur-
cation like a Hopf bifurcation [23], [25], [26]

Table 1.1: Local bifurcations in power systems and their characteristics
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the interconnection to the grid is weak unless series compensation is utilized. However, as

a result of series compensation, SCIG based wind turbines may also experience SSR and

this has been analyzed in [43], [44], [45] and [46]. In [47], a detailed eigenvalue analysis

is presented for a Type-1 wind turbine to study the influences of series compensation

and mechanical parameter variations. It has been shown that the SSR due to Induction

Generator Effect (IGE) occurs at very high levels of series compensation. However, in this

study, IGE is observed for realistic smaller series compensation levels close to 62% for a

weak interconnection. In references [43] and [44], the mitigation of SSR is achieved using a

supplementary damping controller which was analyzed through time domain simulations.

However, the detailed eigenvalue analysis has not been presented.

Traditionally, studies on SSR are performed on systems consisting of a generator or a set

of generators feeding power to an infinite bus through a series compensated network by

applying bifurcation theory to the IEEE First Benchmark Model ([48], [49], [50], [51]).

Bifurcation theory has been applied to study SSR in the IEEE Second Benchmark Model

in [52] where the influence on exciter gain on SSR has been analyzed. However, the time

constant of the exciter is assumed to be fixed, and its influence on SSR has not been

addressed. Global bifurcations have been studied in the IEEE First Benchmark Model

due to variations in damping and mechanical power of the synchronous generator ([53],

[54]). Few studies have also been performed on induction motor loads fed through a

series compensated feeder from a substation which is modeled as an infinite bus ([55],

[56], [57]). In these references that have been stated, there is an assumption of a stiff

voltage source namely the infinite bus which maybe equivalent to a substation in real

time. However, the impact of generator voltage controller parameters on loads supplied

from the substation has not been studied so far.
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1.2 Objectives and scope of this thesis

This dissertation deals with analyzing stability domains and bifurcations of series com-

pensated power systems with weak interconnections and various network configurations.

The main emphasis of this work is to explore how the stability domain of series compen-

sated systems are affected due to varying grid strengths. The following are the objectives

and scope of this thesis:

[1] To develop dynamic models of weak power grids of various topologies.

[2] To perform eigenvalue analysis on the linearized system models to identify local bi-

furcations due to parameter variations which may affect the stability of the system.

[3] To design a voltage regulator for an SVC to enhance the stability domain of the

system with respect to series compensation in a radially interconnected weak sys-

tem.

[4] To present the results of time domain simulations which show the evolution of

various system states with respect to time as the system is subject to different

types of disturbances and also help identify global bifurcations.

This dissertation is organized as follows: Dynamic models of synchronous and induction

machines and wind turbines have been presented in Chapter 2. Chapter 3 deals with the

dynamic analysis of an SCIG-WT using fixed shunt capacitors at the stator terminals

with a series compensated radial interconnection to the grid. Analysis of a radially in-

terconnected, series compensated system with an SCIG-WT using an SVC at the stator

terminals has been presented in Chapter 4. Enhancement of stability domains with re-

spect to series compensation by means of a new damping controller which mitigates Hopf

bifurcations causing instability due to SSR has been studied in Chapter 5 for the radially
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interconnected, series compensated system with an SCIG-WT and SVC. The dynamic

performance of induction motor loads supplied through series compensated networks has

been studied in Chapters 6 and 7 where the influence of network and generator control

parameters on the stability domain with respect to series compensation is analyzed.

1.3 Publications

A portion of the results presented in this dissertation have been published in 2 journals,

the details of which are listed below. Parts of results presented in Chapters 3, 4 and 5 in

this dissertation have been published in [2]. Chapter 7 describes the results presented in

[1].

[1] J. Devadason, P.S. Moses, M.A.S. Masoum, "Multiparameter Stability Analysis

of Systems with Induction Motor Loads, Weak Interconnections and Series Com-

pensation," WSEAS Transactions on Circuits and Systems, vol. 20, pp. 128-138,

2021.

[2] J. Devadason, P.S. Moses, M.A.S. Masoum, "Stability Domain Analysis and En-

hancement of Squirrel Cage Induction Generator Wind Turbines in Weak Grids,"

Energies, MDPI, Open Access Journal, vol. 14(16), pages 1-17, August 2021.

Other results not directly related to this dissertation that have been published during the

PhD program can be found in papers listed below:

[1] J. Devadason, P.S. Moses and W. Fei, "Bifurcation Analysis of Weak Electrical

Grids Considering Different Load Representations," 2019 IEEE 7th International

Conference on Smart Energy Grid Engineering (SEGE), 2019.
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[2] J. Devadason and P.S. Moses, "Analysis of Free Acceleration and Steady State Char-

acteristics of Line-Started Induction Motors with Shunt Capacitor Compensation,"

2019 IEEE Power & Energy Society General Meeting (PESGM), 2019.

[3] J. Devadason and P.S. Moses, "Small Signal Stability of a Series Compensated Mi-

crogrid Operating in Islanded Mode," 2020 Intermountain Engineering, Technology

and Computing (IETC), 2020.

[4] D. Glover, J. Devadason and P.S. Moses, "Multi-Solar PV Allocation for Optimal

Sizing and Placement on Distribution Feeders," 2020 International Conference on

Smart Grids and Energy Systems (SGES), 2020.

[5] H. B. Sambo, J. Devadason and P.S. Moses, "Interactions of Rooftop Solar Photo-

voltaic Systems with Symmetrical and Unsymmetrical Faults in Distribution Feed-

ers," 2021 IEEE Kansas Power and Energy Conference (KPEC), 2021.
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CHAPTER 2

Dynamic Models of Rotating Machines and Wind Turbines

In this chapter, the dynamic models of synchronous machines, induction machines and

wind turbines are developed which would be used throughout this thesis to analyze dy-

namics of various topologies of power system networks with weak interconnections. These

mathematical models are derived based on references [58], [59] and [60]. Electromagnetic

and electromechanical transients are modeled using differential equations in this disserta-

tion to study stability issues in weak grids when series capacitors are utilized to enhance

power transfer and strengthen the interconnection between the generator and the grid

(Chapters 3 to 5) or the generator and load center (Chapters 6 and 7).

2.1 Dynamic modeling of synchronous machine

The two-axis model of a synchronous machine is developed in a reference frame fixed on

the rotor. The state variables for the synchronous machine are the d and q axis stator

currents, emfs induced in the rotor along the field and damper windings, speed and

instantaneous position of the rotor. This model is interfaced with the electrical network

in Chapter 7 to study interactions of synchronous generators with induction motor loads

in a series compensated system.

2.1.1 Modeling of electromagnetic transients

Dynamics of flux linkages in the stator winding along the d and q axis is given by:
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d

dt
{ψsg} = Ra[U ]{Isg}+ ω[N1]{ψsg}+ {Vsg} (2.1)

where the elements of matrices [U ] and [N1] are given by:

[U ] =

1 0

0 1

 (2.2)

[N1] =

 0 1

−1 0

 (2.3)

and the elements of the vectors {ψsg}, {Isg} and {Vsg} are given by:

{ψsg} = [ψd ψq]
T (2.4)

{Isg} = [Id Iq]
T (2.5)

{Vsg} = [Vd Vq]
T (2.6)

The stator flux linkage vector can be expressed as:

{ψsg} = [Xsg1]{Isg}+ [N1]{E ′sg} (2.7)

where the elements of the matrix [Xsg1] and vector {E ′sg} are given by:

[Xsg1] =

−X ′d 0

0 −X ′q

 (2.8)

{E ′sg} = [E ′d E ′q]
T (2.9)

On substituting (2.7) in (2.1), equation 2.10 is obtained which will be used to interface
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the synchronous machine with the network using the term {Vsg}.

[Xsg1]
d

dt
{Isg}+ [N1]

d

dt
{E ′sg} = [Zsg]{Isg}+ ω[N2

1 ]{E ′sg}+ {Vsg} (2.10)

where

[Zsg] = Ra[U ] + ω[N1Xsg1] (2.11)

Dynamics of the emfs induced in the rotor windings of the synchronous machine along

the d and q axis due to flux linkages in the damper and field windings respectively can

be expressed as:

[Mr]
d

dt
{E ′sg} = −[U ]{E ′sg}+ [Xsg2]{Isg}+ [N2]Efd (2.12)

where the elements of the matrices [Mr] and [Xsg2] can be written as:

[Mr] =

T ′qo 0

0 T ′do

 (2.13)

[Xsg2] =

 0 Xq −X ′q

−(Xd −X ′d) 0

 (2.14)

2.1.2 Modeling of electromechanical transients

The electromechanical transients of the synchronous machine in generator mode are de-

scribed by the swing equation given below:

2H
dω

dt
= Tm − Te (2.15)

dδ

dt
= ωs(ω − 1) (2.16)
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where the electrical torque Te of the synchronous machine is given by the following equa-

tion:

Te = E ′dId + E ′qIq + (X ′q −X ′d)IdIq (2.17)

In equation 2.16, the rotor angle δ is measured with respect to a synchronously rotating

reference and defines the instantaneous angular position of the rotor.

2.1.3 Linearization of synchronous machine model

In this section, the linearized equations corresponding to the nonlinear dynamic model of

the synchronous machine are presented. The linearized state variable around an operating

point is prefixed with a ∆ and the values of state variables under equilibrium conditions

is superscripted by ‘o’ in this dissertation. The linearized version of equation (2.10) is

presented below:

[Xsg1]
d

dt
{∆Isg}+ [N1]

d

dt
{∆E ′sg} = [Zsg]

o{∆Isg}+ (ω)o[N2
1 ]{∆E ′sg}+ [N1]{ψsg}o∆ω

+{∆Vsg} (2.18)

where [Zsg] is a function of the rotor speed of the generator at equilibrium which is

given by [Zsg]
o = Ra[U ] + (ω)o[N1Xsg1] and {ψsg}o is the vector of stator flux linkages

of the synchronous generator evaluated using equation (2.7) at the equilibrium point.

The linearized expression for the emfs induced in the field and damper windings of the

synchronous machine is given by the following equation:

[Mr]
d

dt
{∆E ′sg} = −[U ]{∆E ′sg}+ [Xsg2]{∆Isg}+ [N2]∆Efd (2.19)
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Equations (2.15) and (2.16) are linearized and are given below:

2H
d∆ω

dt
= ∆Tm − [Tsg1]∆{Isg} − [Tsg2]∆{E ′sg} (2.20)

d∆δ

dt
= (ωs)∆ω (2.21)

The elements of matrices [Tsg1] and [Tsg2] are given in equations (2.22) and (2.23) respec-

tively.

[Tsg1] = [(Id)
o (Iq)

o] (2.22)

[Tsg2] = [(E ′d)
o + (X ′q −X ′d)(Iq)o (E ′q)

o + (X ′q −X ′d)(Iq)o] (2.23)

2.2 Dynamic model of induction machine

The dynamic model of an induction machine operating in motoring and generating modes

expressed in a reference frame rotating at synchronous speed is presented in this section.

The state variables considered in the induction machine are the d and q axis stator

currents, d and q axis rotor currents and slip of the machine. The induction generator

model is interfaced with the electrical network in Chapters 3, 4 and 5 to analyze stability

of systems with Squirrel Cage Induction Generator - Wind Turbines (SCIG-WTs) in series

compensated networks. The induction motor model presented is interfaced with the series

compensated network to compute stability domains with respect to series compensation

in systems with induction motor loads supplied through weak networks in Chapters 6

and 7.
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2.2.1 Modeling of electromagnetic transients

Dynamics of d and q axis stator and rotor currents for the induction machine operating

as a motor are expressed using the following differential equations:

Xs

ωs
[U ]

d

dt
{Is}+

Xm

ωs
[U ]

d

dt
{Ir} = [Zim1]{Is}+ [Zim2]{Ir}+ {Vs} (2.24)

Xm

ωs
[U ]

d

dt
{Is}+

Xr

ωs
[U ]

d

dt
{Ir} = [Zim3]{Is}+ [Zim4]{Ir} (2.25)

where

[Zim1] = −Rs[U ] +Xs[N1] (2.26)

[Zim2] = Xm[N1] (2.27)

[Zim3] = smXm[N1] (2.28)

[Zim4] = −Rr[U ] + smXr[N1] (2.29)

Similarly, the dynamics of d and q axis currents of an induction machine in generator

mode of operation are governed by equations given below:

−Xs

ωs
[U ]

d

dt
{Is}+

Xm

ωs
[U ]

d

dt
{Ir} = [Zig1]{Is}+ [Zig2]{Ir}+ {Vs} (2.30)

−Xm

ωs
[U ]

d

dt
{Is}+

Xr

ωs
[U ]

d

dt
{Ir} = [Zig3]{Is}+ [Zig4]{Ir} (2.31)

where

[Zig1] = Rs[U ]−Xs[N1] (2.32)

[Zig2] = Xm[N1] (2.33)
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[Zig3] = −sgXm[N1] (2.34)

[Zig4] = −Rr[U ] + sgXr[N1] (2.35)

In all the equations presented above, Xs = Xls +Xm and Xr = Xlr +Xm where Xls and

Xlr are the leakage reactances of the stator and rotor windings respectively and Xm is the

magnetizing reactance of the induction motor. The matrices [U ] and [N1] are the same

as defined in equations (2.2) and (2.3). In equations (2.24), (2.25), (2.30) and (2.31),

{Is} = [Ids Iqs]
T , {Ir} = [Idr Iqr]

T and {Vs} = [Vds Vqs]
T . Note that in equations

(2.25) and (2.31), the matrices [Zim3], [Zim4], [Zig3] and [Zig4] are a function of the slip of

the machine. Since these matrices are multiplied by vectors containing stator and rotor

currents which are also state variables, the resulting equations are nonlinear.

2.2.2 Modeling of electromechanical transients

The rotor speed of an induction motor is determined using the swing equation below:

2Him
dsm
dt

= Tm − Te (2.36)

where Tm is the mechanical torque demanded from the induction motor and Te is the

electrical torque output of the motor and is given by equation:

Te = Xm(IqsIdr − IdsIqr) (2.37)

Electromechanical dynamics of an induction generator are described using the swing

equation as shown below:

2Hig
dsg
dt

= Te − Tm (2.38)
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where Tm is the mechanical torque input to the induction generator. In this dissertation,

the mechanical torque of the induction generator is supplied by the wind and Te is the

same as that of equation (2.37).

2.2.3 Linearization of induction machine model

The linearized equations corresponding to the electromagnetic transients of the induction

motor are shown below:

Xs

ωs
[U ]

d

dt
{∆Is}+

Xm

ωs
[U ]

d

dt
{∆Ir} = [Zim1]{∆Is}+ [Zim2]{∆Ir}+ {∆Vs} (2.39)

Xm

ωs
[U ]

d

dt
{∆Is}+

Xr

ωs
[U ]

d

dt
{∆Ir} = [Zim3]

o{∆Is}+ [Zim4]
o{∆Ir}+ [N1]{λr}o∆sm

(2.40)

where

[Zim3]
o = (sm)oXm[N1] (2.41)

[Zim4]
o = −Rr[U ] + (sm)oXr[N1] (2.42)

{λr}o = Xm[U ]{Is}o +Xr[U ]{Ir}o (2.43)

Similarly, the linearized expressions corresponding to the electromagnetic transients of

an induction generator can be written as:

−Xs

ωs
[U ]

d

dt
{∆Is}+

Xm

ωs
[U ]

d

dt
{∆Ir} = [Zig1]{∆Is}+ [Zig2]{∆Ir}+ {∆Vs} (2.44)

−Xm

ωs
[U ]

d

dt
{∆Is}+

Xr

ωs
[U ]

d

dt
{∆Ir} = [Zig3]{∆Is}+ [Zig4]{∆Ir}+ [N1]{λr}o∆sg (2.45)

where

[Zig3]
o = −(sg)

oXm[N1] (2.46)
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[Zig4]
o = −Rr[U ] + (sg)

oXr[N1] (2.47)

{λr}o = −Xm[U ]{Is}o +Xr[U ]{Ir}o (2.48)

Equations (2.36) and (2.38) which describe the electromechanical dynamics of the in-

duction machine in motoring and generating mode are linearized and the corresponding

expressions are given below:

2Him
d∆sm
dt

= ∆Tm − [Tim1]∆{Is} − [Tim2]∆{Ir} (2.49)

2Hig
d∆sg
dt

= [Tim1]∆{Is}+ [Tim2]∆{Ir} −∆Tm (2.50)

where

[Tim1] = Xm[−(Iqr)
o (Idr)

o] (2.51)

[Tim2] = Xm[(Iqs)
o − (Ids)

o] (2.52)

2.3 Modeling of wind turbine

In this section, the expression for the mechanical power input (Pw) to the generator from

the wind turbine is presented as a function of slip of the generator. Figure 2.1 shows

a wind turbine coupled to an electrical generator through a gear box which is used to

translate the speed of rotation of the wind turbine blades to a value of rotor speed to

achieve a suitable steady state operating point based on the electrical characteristics of

the generator. The mechanical power developed by the wind turbine is a function of air

density, swept area of the turbine blades and the power coefficient and is given by:

Pw = (1/2)ρCp(λ)AV 3
w (2.53)
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Fig. 2.1: Wind Turbine

Tw = Pw/ωr (2.54)

where Cp is the power coefficient given by equation (2.55), A is the radius of swept area

by the wind turbine blades and ρ is the air density.

Cp(λ) = c1(c2/λi − c3θ − c4θc5 − c6)e−c7/λi (2.55)

where
1

λi
=

1

λ+ c8θ
− c9
θ3 + 1

(2.56)

where λ = ωrR/Vw. R is the rotor radius and λ is called ‘Tip Speed Ratio’ (TSR). If

Ns is the synchronous speed in rpm, ns is the speed of the wind turbine in rpm which is

given by ns = Ns

Gr
where Gr is the gear box ratio. The expression for TSR in terms of Ns

and slip sg as:

λ =
2πRNs

60Vw
(1− sg) (2.57)
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2.3.1 Linearization of wind turbine model

In this section, the linearized mathematical model of the wind turbine is presented. Before

deriving the linearized expressions, the equations for the mechanical power and torque

developed by the wind turbine in per unit are presented below:

Pw = (1/2)ρCp(λ)AV 3
w ∗ (10−6/Sb) (2.58)

Tw =
Pw
ωr

=
Pw

1− sg
(2.59)

In equation (2.58), the power coefficient Cp is a function of λ which is a function of the

generator slip and this is obvious from equation (2.57). Hence, Pw can be written as

Pw = KoCp(λ) where Ko = (1/2)ρAV 3
w ∗ (10−6/Sb) and Sb being the base MVA of the

system. The linearized expression for Tw can now be expressed as:

∆Tw =
Ko

1− (sg)o
∆Cp +

KoCp(λ
o)

(1− (sg)o)2
∆sg (2.60)

The expression for TSR at equilibrium can be written as λo = Lo(1 − (sg)
o) where

Lo = 2πRNs

60Vw
. The expression for Cp(λ) can be written as Cp = c1M(λ)N(λ) where

M(λ) = c2/λi − c3θ − c4θc5 − c6 (2.61)

N(λ) = e−c7/λi (2.62)

The linearized expression for Cp is now written as

∆Cp = Cw1Cw2∆sg (2.63)
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where

Cw1 =
c1N(λo)Lo
(λo + c8θ)2

(2.64)

Cw2 = c2 − c7M(λo) (2.65)

Hence, the linearized expression for the torque developed by the wind turbine can be

finally written as

∆Tw =

[
KoCw1Cw2
1− (sg)o

+
KoCp(λ

o)

(1− (sg)o)2

]
∆sg (2.66)

2.4 Conclusion

In this chapter, nonlinear dynamic models of a synchronous generator, induction ma-

chine operating as a motor and as a generator and a wind turbine are presented. The

synchronous machine model is developed in a reference frame fixed on the rotor of the

machine and the induction machine model is developed in a reference frame rotating

at synchronous speed. Linearized models of these components have been presented in

this chapter as well. These nonlinear dynamic models will be interfaced with networks

of different configurations in the forthcoming chapters to perform time domain simula-

tions to understand dynamic behavior of systems subject to various disturbances. The

linearized models developed in this chapter will be interfaced with linearized models of

various electrical networks to compute the Jacobian matrix which will be used to analyze

local bifurcations affecting the stability of the system.
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CHAPTER 3

Dynamic analysis of Squirrel Cage Induction Generator - Wind

Turbine with a Radial Interconnection to the Grid

In this chapter, the stability of SCIG-WTs connected to the grid through a radially

connected series compensated line is investigated through eigenvalue analysis and time

domain simulations. Previous research in this area claims that instability in the system

due to the induction-generator effect (IGE) of SSR happens only at very high levels of

series compensation (80% compensation) [61], [47]. Although this claim might be true in

some cases, it may not be true in cases where the system is weak, such as interconnections

involving long lines or feeders of high impedance. Eigenvalue analysis are presented for

the linearized system model to analyze bifurcations leading to instabilities in the system.

The influence of generator slip as well as the strength of the grid reflected as a function

of the X/R ratio of the network has been considered while investigating stability domains

with respect to series compensation. Time domain simulation of the non-linear dynamic

model of the system has been performed to observe system behavior when subjected to

a momentary disturbance in the grid voltage.

3.1 Mathematical modeling of network

The single line diagram of the system under study is shown in Fig.3.1. The terminal

of the generator is connected to the grid through a series compensated line to enhance

power transfer capability of the network. Reactive power support for the generator is

supplied through shunt capacitors connected at the stator terminals. The dynamics of

the fixed shunt capacitor connected at the stator terminals for reactive power support is

21



Gear box ~ ~𝑹𝑹𝒈𝒈 𝑿𝑿𝒄𝒄 𝑿𝑿𝒈𝒈

𝑿𝑿𝒔𝒔𝒔𝒔

𝑽𝑽𝒈𝒈∠𝟎𝟎𝟎𝟎𝑽𝑽𝒕𝒕∠α𝟎𝟎
SCIG Weak Grid

𝑻𝑻𝑾𝑾
High Impedance      Low SCR
𝑿𝑿𝒕𝒕

Fig. 3.1: Single line diagram of modified IEEE First Benchmark Model

described by the equation shown below:

1

ωs
[U ]

d

dt
{Vs} = [N1]Vs + [Zsh]{Is − In} (3.1)

where

[U ] =

1 0

0 1

 (3.2)

[N1] =

 0 1

−1 0

 (3.3)

[Zsh] = Xsh[U ] (3.4)

and the elements of the vectors {Is}, {In} and {Vs} are given by:

{Is} = [Ids Iqs]
T (3.5)

{In} = [Idn Iqn]T (3.6)

{Vs} = [Vds Vqs]
T (3.7)
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In the above equations, Idn and Iqn are d and q components of the network currents. The

dynamics of the voltage across the series capacitor along the d and q axis is expressed

using the following differential equation:

1

ωs
[U ]p{Vc} = [N1]{Vc}+ [Zse]{In} (3.8)

where

[Zse] = Xc[U ] (3.9)

and {Vc} = [Vdc Vqc]
T .

The differential equation which describes the dynamics of the d and q components of the

network currents is given below:

Xn

ωs
[U ]p{In} = [Znw]{In} − {Vc} − {Vg}+ {Vs} (3.10)

whereXn = Xt+Xg and {Vg} = [Vdg Vqg]
T where Vdg and Vqg are the d and q components

of the grid voltage. The elements of matrix [Znw] are given below:

[Znw] =

Rn −Xn

Xn Rn

 (3.11)

In this study, the resistance of the step-up transformer is assumed to be negligible, i.e

Rt = 0 pu. Hence, Rn = Rg.
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3.2 Linearization of mathematical model

The dynamic equations of the network presented in Section 3.1 are linearized and pre-

sented below:

1

ωs
[U ]p{∆Vs} = [N1]{∆Vs}+ [Zsh]{∆Is −∆In} (3.12)

1

ωs
[U ]p{∆Vc} = [N1]{∆Vc}+ [Zse]{∆In} (3.13)

Xn

ωs
[U ]p{∆In} = [Znw]{∆In} − {∆Vc} − {∆Vg}+ {∆Vs} (3.14)

In equation (3.14), {∆Vdqg} = 0 since the voltage of the grid is assumed to be fixed under

equilibrium conditions.

3.3 Eigenvalue analysis

The linearized mathematical model of the system consists of equations (2.44), (2.45),

(2.50), (3.12), (3.13) and (3.14), . The complete list of linearized state variables of the

system is given below:

∆X = {∆Ids,∆Iqs,∆Idr,∆Iqr,∆Idn,∆Iqn,∆Vds,∆Vqs,∆Vdc,∆Vqc,∆sg}T (3.15)

These equations are cast in state space form [M ]∆Ẋ = [A]∆X. The Jacobian matrix of

the system is obtained using [J ] = [M ]−1[A]. Eigenvalues of the Jacobian matrix give

very useful information regarding stability of the system and computing participation

factors using the left and right eigenvectors reveal the contribution of individual system

states. Presence of local bifurcations in the system could be detected by analyzing the

eigenvalues of the system as certain parameters are varied.
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Fig. 3.2: Steady state characteristics of SCIG and wind turbine for 60% series compensation

Eigenvalues of the system are computed for a wind speed Vw = 13.5 m/s which corre-

sponds to a rotor slip sg = −0.010724 pu obtained from the intersection of the steady

state characteristics of the induction generator and the wind turbine which is shown in

Fig. 3.2. In Table 3.1, eigenvalues of the system are listed for a series compensation

(Kc = Xc/Xn) of 60% when the X/R ratio (Xn/Rn) of the network is assumed to be 30.

There are 5 oscillatory modes (λ1 to λ5) and 1 non-oscillatory mode (λ6).

Among the oscillatory modes, λ1, λ2 and λ3 have frequencies greater than 60 Hz and are

designated as the supersynchronous modes which are found to have negative real parts

and hence, are stable. Modes λ4 and λ5 have frequency less than 60 Hz which are the

subsynchronous modes among which λ4 has a positive real part making it unstable. This

mode is a result of the participation of stator and rotor currents of the SCIG, line currents

and the series capacitor voltage which shows that the system is unstable due to SSR.
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Table 3.1: Eigenvalues of SCIG-WT for 60% series compensation and sg = 1%.

λi −σ ± jω Participating States

λ1 −27.323± j1466.5 Ids,Iqs,Idr,Iqr,Idn,Iqn,Vds,Vqs,Vdc,Vqc
λ2 −38.79± j712.55 Ids,Iqs,Idr,Iqr,Idn,Iqn,Vds,Vqs
λ3 −12.548± j627 Ids,Iqs,Idr,Iqr,Idn,Iqn,Vds,Vqs,Vdc,Vqc
λ4 0.584± j125.45 Ids,Iqs,Idr,Iqr,Idn,Iqn,Vdc,Vqc
λ5 −9.4524± j21.922 Ids,Iqs,Idr,Iqr,Idn,Iqn,Vds,Vqs,Vqc,sg
λ6 −15.979 Ids,Iqs,Idr,Iqr,sg

3.3.1 Eigenvalues for different generator slips

The eigenvalues of the system under study when the degree of compensation Kc is varied

from 0.005 to 0.98 are calculated and plotted on the complex plane for 2 different gen-

erator slips sg = 1% and sg = 3% which correspond to low and high values wind speeds

respectively as shown in Fig. 3.3. The X/R ratio of the network is assumed to be 30. The

variations in torque input from the wind is assumed to be slow and hence is neglected in

this analysis (∆Tw ≈ 0). This greatly simplifies the computations as the operating slip

sg does not have to be calculated for each level of series compensation.

It was observed from Fig. 3.3 that the supersynchronous modes are all stable for the

entire range of series compensation considered for sg of 1% and 3%. The damping of the

subsynchronous mode decreases with an increase in Kc and when Kc is between 0.575

and 0.58, a Hopf bifurcation occurs due to subsynchronous resonance when sg was 1%.

At a higher slip sg of 3%, the system is unstable for a compensation level Kc from 0.5%

due to the presence of a real eigenvalue on the right half of the complex plane resulting

in the system being unstable. The equilibrium is called a ‘saddle-focus’ characterized by

3 leading eigenvalues given by λ1,2 = −8.8894 ± j16.957 and λ3 = 3.5009. Participation

factors for these leading eigenvalues are presented in Table 3.3.
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Fig. 3.3: Eigenvalues for low and high generator slips

Table 3.2: Participation factors of critical eigenvalue pair for sg = 1% and 60% series compen-
sation.

λ = −σ ± jω Ids Iqs Idr Iqr Id Iq Vdc Vqc

0.584± j125.38 0.246 0.24 0.243 0.237 0.007 0.007 0.009 0.009

Table 3.3: Participation factors of leading eigenvalues for sg = 3% at a compensation of 0.5%.

λ = −σ ± jω Ids Iqs Iqs Iqs sg

3.5009 0.103 0.307 0.119 0.376 0.093

−8.8894± j16.957 0.250 0.181 0.310 0.223 0.033

As the compensation increased, the unstable eigenvalue moves to the left half of the

complex plane and when Kc > 31.5%, λcr mode crosses over from the right half to the

left half of the complex plane resulting in a bifurcation making the system stable. The

system remains stable as the compensation level increases to 60% beyond which a Hopf
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Fig. 3.4: Eigenvalues for different grid strengths

Table 3.4: Critical eigenvalues for different X/R ratios

X/R ratio Kcr λcr = −σ ± jω Participating states

15 72% 0.146± j101.19
Ids,Iqs,Idr,Iqr,Idn,Iqn,Vdc,Vqc20 65.5% 0.009± j114.05

25 61.5% 0.122± j122.25

bifurcation results making the system unstable due to subsynchronous resonance. The

critical series compensation level at which instability due to Hopf bifurcation is observed

is slightly larger for a higher operating slip of the induction generator.

3.3.2 Eigenvalues for different grid strengths

Increasing the X/R ratio of the line results in an increase in the line impedance for a given

value of line resistance. This decreases the Short Circuit Ratio (SCR) at the point of
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Fig. 3.5: Stability boundary with respect to X/R ratio of network.

interconnection (POI) as the Thevenin impedance of the system up to the POI increases

as the impedance of the line increases which results in a weaker interconnection to the grid.

The eigenvalues of the system for a generator slip of 1% are calculated forX/R ratios of 15,

20 and 25 and are plotted in Fig. 3.4. Supersynchronous modes and the non-oscillatory

mode is observed to be stable for the entire range of series compensation considered but

the subsynchronous mode becomes less damped as the series compensation level increases.

Subsynchronous resonance occurs at compensation levels of 72%, 65.5% and 61.5% for

X/R ratios of 15, 20 and 25 respectively which shows that as the grid becomes weaker,

there is a higher possibility of SSR at lower values of series compensation. This is further

evident in Fig. 3.5, where the critical value of series compensation is plotted as a function

of X/R ratio of the network, which gives the stability boundary with respect to series

compensation.
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Fig. 3.6: Stator voltage response to a disturbance in grid voltage

3.4 Time domain simulations

In this section, the results of time domain simulations performed on the system under

study are presented. The non-linear dynamic model of the system comprised of equations

(2.30), (2.31), (2.38), (3.1), (3.8) and (3.10) is simulated using SIMULINK and the traces

of various system state variables are observed. The series compensation level considered

is 60% which is a practical value of series compensation level for an X/R ratio of 30.

A disturbance in the grid voltage is applied at 0.5 s when the voltage magnitude of the grid

decreases from 1 pu to 0.8 pu and is restored to 1 pu again at 0.6 s. In a realistic system,

this may be equivalent to a three phase fault occurring at a bus causing a reduction in

bus voltages and the fault being cleared in 6 cycles (0.1 s) resulting in a restoration of

the bus voltages. The stator voltage at the terminals of the SCIG and the line current

magnitudes are shown in Figs. 3.6 and 3.7 respectively. The SCIG initially operates with

a terminal voltage of 1.18 pu under equilibrium conditions. When the reduction in the
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Fig. 3.8: Real power response to a disturbance in grid voltage

grid voltage takes place, there is a momentary decrease in the terminal voltage of the

SCIG. Beyond 0.8 s, the voltage starts increasing up to 9.44 s. There is a significant spike
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Fig. 3.9: Rotor speed response to a disturbance in grid voltage

in the voltage at 9.57 s where the magnitude almost becomes 3.8 pu and beyond this, the

voltage starts decreasing. The voltage finally settles into an oscillatory state where the

magnitude of voltage at the SCIG terminals oscillates between 1.5 and 2.1 pu.

The traces of real power generated by the SCIG and the speed of the induction generator

are shown in Figs. 3.8 and 3.9 respectively. The responses of stator voltage and real power

generated indicates that the system is unstable due to a Hopf bifurcation resulting from

SSR. The rotor speed of the induction generator shows oscillations around the steady

state value initially between 0.5 and 9.4 s. After this, the rotor speed drops rapidly

causing the generator to stall. The reason for this is that there are voltages and currents

induced at subsynchronous frequency which increase in magnitude as a result of self

excitation due to SSR. This produces a magnetic field rotating at subsynchronous speed

in the air gap which increases in strength beyond 9.4 s, as the magnitude of currents

and voltages increase rapidly. Hence, the magnetic field induced by the subsynchronous

currents dominates the main field and the rotor speed of the induction machine attempts
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Fig. 3.10: Phase plane trajectory of rotor speed in response to a grid voltage disturbance

to catch up with the speed of the magnetic field rotating at subsynchronous speed as a

result of which the speed starts decreasing beyond 9.4 s.

The phase-plane trajectory of the generator speed along with the limit cycle is shown

in Fig. 3.10. The system appears to have an oscillatory response of fixed amplitude

beyond 18 s as a result of a limit cycle generated due to the Hopf bifurcation. The

generator speed shows oscillations between 0.17 pu and 0.24 pu which is far away from the

equilibrium speed of 1.0103 pu. Hence, the nature of Hopf bifurcation can be concluded to

be subcritical as the trajectory has diverged away from the equilibrium value significantly.
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3.5 Conclusion

In this chapter, the dynamic analysis of an SCIG-WT supplying power to the grid through

a weak interconnection has been presented. Eigenvalue analysis and participation factors

reveal the main reason for instability in the system is the Hopf bifurcation which occurs

due to subsynchronous resonance for smaller values of generator slips as the series com-

pensation exceeds a certain critical percentage. However, for higher generator slip values,

there is a possibility of non-oscillatory instability for small values of series compensation

which is the characteristic of a saddle-focus equilibrium point. Series compensation has

to be above a lower threshold value for the system to operate in a stable manner, how-

ever, above a certain upper limit, the system exhibits SSR causing the system to become

unstable. From the time domain simulation results, it can be concluded that the nature

of the Hopf bifurcation due to SSR is subcritical as the limit cycle generated is far away

from the equilibrium point.
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CHAPTER 4

Stability Domain Enhancement in a Radially Interconnected

System with Squirrel Cage Induction Generator - Wind Turbines

In this chapter, stability domain enhancement in the modified IEEE First Benchmark

Models (FBM) with a Squirrel Cage Induction Generator - Wind Turbine (SCIG-WT)

has been explored. A Static Var Compensator (SVC) has been used in place of a fixed

shunt capacitor to provide the needed reactive power for excitation at the terminals of

the SCIG. The upper limit of percentage series compensation in practical systems is fixed

at a value around 50% in order to avoid instabilities due to SSR. However, using an SVC

with a Subsynchronous Damping Controller (SSDC) at the terminals of the SCIG in the

place of a fixed shunt capacitor bank, the upper limit of percentage series compensation

is enhanced to a value greater than 90%.

4.1 Design and mathematical model of SVC voltage regulator

The block diagram of voltage regulator for the SVC is presented in Fig. 4.1. The terminal

voltage magnitude of the generator (Vt) is sensed through a transducer which has a time

constant of T1 seconds and the measured value of voltage magnitude (Vm) is compared

with the reference voltage (Vref ). The voltage error is processed by a PI controller having

proportional and integral gains KP1 and KI1 respectively. The output of the PI controller

dictates the reactive power reference (Qref ) for the shunt capacitor. This is compared

with the actual value of reactive power injected by the shunt capacitor (Qsh = V 2
mBsh)

at the generator terminals which is measured (Qm) by a transducer with time constant

T2 seconds.
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Fig. 4.1: Block diagram of voltage regulator for the SCIG

The reactive power error is processed by a second PI controller with proportional and

integral gains KP2 and KI2 respectively. The susceptance of the SVC (Bsh) is determined

by the second PI controller based on the reactive power error signal. A supplementary

signal −Vsup which is the output of a Subsynchronous Damping Controller (SSDC) is

added to the signals Vref and −Vm at the first summing block of the voltage regulator

which is used to control critical bifurcations in the system mainly due to SSR. The

structure of the SSDC will be explained further in Section 4.2. The relationship between

the input and output signal of the voltage measurement block in the laplace domain is

given by equation (4.1).

Vm(s)

Vt(s)
=

1

1 + sT1
(4.1)

where s denotes a Laplace transform operation. Cross-multiplying and taking the inverse
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Laplace transform, the equation (4.2) which describes the dynamics of the measurement

block in the time domain is obtained.

T1
dVm
dt

= −Vm + Vt (4.2)

Using the same technique, equation (4.3) which describes the dynamics of the reactive

power measurement transducer in the time domain is obtained.

T2
dQm

dt
= −Qm +Qsh (4.3)

The input-output relationship of the first PI controller in the Laplace domain is expressed

using equation (4.4).

Qref (s)

Vref (s)− Vm(s)− Vsup(s)
= KP1 +

KI1

s
(4.4)

Cross-multiplying the denominator of the left hand side in equation (4.4) and introduc-

ing an intermediate state variable W1, equation (4.5) which defines the reactive power

reference in the Laplace domain is obtained.

Qref (s) = KP1(Vref (s)− Vm(s)− Vsup(s)) +W1(s) (4.5)

where

W1(s) =
KI1

s
(Vref (s)− Vm(s)− Vsup(s)) (4.6)

Finally, obtaining the inverse Laplace transform of equations (4.5) and (4.6), equations

(4.7) and (4.8) which describe the dynamics of the first PI controller are obtained.
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Fig. 4.2: Block diagram of the proposed SSDC

dW1

dt
= KI1(Vref − Vm − Vsup) (4.7)

Qref = KP1(Vref − Vm − Vsup) +W1 (4.8)

The same method is used to obtain equations (4.9) and (4.10) which are used to describe

the dynamics of the second PI controller which processes the reactive power error signal.

dW2

dt
= KI2(Qref −Qm) (4.9)

Bsh = KP2(Qref −Qm) +W2 (4.10)

The dynamic equations of the series capacitor and line currents are the same as that of

(3.8) and (3.10). However, in the equation describing the dynamics of the shunt capacitor

shown in (3.1), Xsh = B−1sh where Bsh is defined by equation (4.10).

4.2 Design and mathematical modeling of SSDC

The design of the subsynchronous damping controller (SSDC) consists of a washout block

in series with a compensator which provides a phase lead. The structure of the SSDC

is very similar to that of a power system stabilizer used in synchronous generators to

eliminate negative damping introduced by high gain exciters ([60, 62]). The signals Xsig

in Fig. 4.2 considered in this paper are the generator slip (sg) and the real power at

the stator terminals of the generator (Pe = VdsIds + VqsIqs). The relationship between
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the input and output signals of the washout block in the Laplace domain is given by the

following equation:

sTw
1 + sTw

=
Vint(s)

Xsig(s)
(4.11)

Cross-multiplying and taking the inverse Laplace transform and collecting the derivative

terms on the left, equation (4.12) is obtained.

Tw(
dXsig

dt
− dVint

dt
) = −Xsig (4.12)

Similarly, the dynamic equation corresponding to the lead-compensator block in the time

domain is obtained which is given below:

Td1
dVsup
dt
−KdTd2

dVint
dt

= KdVint − Vsup (4.13)

4.3 Eigenvalue analysis of the system with SVC

Eigenvalues of the system are computed for the Jacobian matrix [J ] for the linearized

system which has been cast in the form ∆Ẋ = [J ]∆X with the fixed capacitor replaced

by the SVC with the voltage regulator described in the previous section. In this section,

the SSDC is assumed to be absent. The vector of linearized state variables for this system

is given by equation (4.14) and the parameters of the voltage regulator of the SVC can

be found in Table 4.1.

∆X = {∆Ids,∆Iqs,∆Idr,∆Iqr,∆Idn,∆Iqn,∆Vds,∆Vqs,∆Vdc,∆Vqc,∆sg,

∆Vm,∆Qm,∆W1,∆W2}T (4.14)
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Fig. 4.3: Eigenvalue trajectories for Vw = 14 m/s and Vw = 18 m/s

Table 4.1: Parameters of SVC voltage regulator considered in Section 4.3.

Vref Tm1 Tm2 Kp1 Kp2 Ki1 Ki2

1.05 pu 1 ms 1 ms 0.1 0 40 40

4.3.1 Eigenvalues for different wind speeds

Eigenvalues of the system with an SVC at the SCIG terminal in the IEEE - FBM have

been plotted in Fig. 4.3 for wind speeds of 14 and 18 m/s as the series compensation

Kc is varied from 0.001 up to 0.98. Initially, X/R ratio of the system is assumed to be

20. These wind speeds are considered here as the slip at which the induction generator

operates is close to 1% and 3% for wind speeds of 14 and 18 m/s respectively and the
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performance can be compared with that of the system compensated with a fixed shunt

capacitor as described in 3.3.1. From the eigevalue plot, it is observed that there are

2 kinds of bifurcations which occur. One is the node-focus bifurcation which does not

result in a change in the stability of the system and hence is non-critical. However, Hopf

bifurcations are also observed in the system due to SSR making it highly critical as the

stability of the system is lost after the bifurcation occurs.

When the eigenvalues of the system for lower wind speed of 14 m/s are analyzed, 6

complex conjugate eigenvalue pairs (stable foci) and 3 stable nodes are observed. Among

the 6 complex conjugate pairs, 3 are low frequency modes: λ1 = −4.2745 ± j9.4714,

λ2 = −8.2775±j14.712 and λ3 = −18.917±j376.28. The 3 stable nodes are λ4 = −1021.3,

λ5 = −925.66 and λ6 = −46.858. As Kc is increased, λ1 moves further into the left half

of the complex plane and the frequency of oscillation decreases; at Kc = 0.559, λ1 =

−9.4476± j0.52247, which is a stable focus, changes into 2 stable nodes: λ11 = −9.6715

and λ12 = −9.2474, which is the result of a node-focus bifurcation. Eigenvalue λ2 moves

further into the left half of the complex plane as Kc increases. When Kc changes from

0.703 to 0.704, λ3 = −0.0259 ± j103.85 crosses over to the right half of the complex

plane and changes to λ2 = 0.0057± j103.66 as a result of a Hopf bifurcation due to SSR.

When Kc increases, λ4 and λ5 move toward each other; when Kc changes from 0.938 to

0.939, λ4 = −979.87 and λ5 = −968.33 collide and transform into a pair of complex-

conjugate eigenvalues λ45 = −974.14± j4.0936 as the result of a node-focus bifurcation.

It should be noted that the system is already unstable, due to the earlier Hopf bifurcation.

Additionally, λ6 starts moving along the real axis toward the right as Kc increases, but

it still remains in the left half of the complex plane.

When the wind speed is 18 m/s, the operating slip of the SCIG is 3.051%. For a small

value of compensation Kc = 0.001, 7 complex conjugate pairs of eigenvalues and one real

eigenvalue all on the left half of the complex plane are observed. Among the complex
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conjugate pairs of eigenvalues, 4 of them are of low frequency: λ1 = −974.04± j14.893,

λ2 = −12.633 ± j17.108, λ3 = −0.4911 ± j7.3045 and λ4 = −18.911 ± j376.28, which

follow different pathways on the complex plane as Kc is varied. As the series compen-

sation is increased, λ1 starts moving toward the right half of the complex plane, and

its frequency of oscillation decreases as well. When Kc changes from 0.074 to 0.075,

a node-focus bifurcation results from λ1 splitting into 2 real eigenvalues: λ11 = −975.15,

λ12 = −972.57, which then move in opposite directions as Kc is increased. However,

these eigenvalues remain in the left half of the complex plane as Kc is increased to 0.95.

As Kc changes from 0.697 to 0.698, a second node-focus bifurcation takes place where

λ3 = −7.3577±j0.51245 transforms into 2 real eigenvalues: λ31 = −7.6109, λ32 = −7.136,

and move in opposite directions. An increase in Kc also causes λ4 to move toward the

right half of the complex plane; a Hopf bifurcation occurs in the system when Kc changes

from 0.742 to 0.743 as λ4, which is now −0.0118± j97.353, changes to 0.02075± j97.166,

and the system becomes unstable due to SSR. The stability domain is slightly larger in

the system with SVC as the critical percentage series compensation Kcr changes from

0.655 corresponding to the system without SVC to 0.704 for the system which uses an

SVC for reactive power support at the SCIG terminals at a slip of approximately 1%.

Similarly, Kcr increases from 0.681 to 0.743 for a slip close to 3%.

4.3.2 Eigenvalues for various grid strengths

Eigenvalues are computed for various levels of series compensation for 3 different grid

strength which is indicated by the X/R ratio of the line and are traced on the complex

plane as given in Fig. 4.4. The system is analyzed for a lower wind speed of 14 m/s

because it is observed from the previous section that subsynchronous oscillations occurs

at low values of series compensation Kc when the power generated is low. The system

with X/R = 10 has a node-focus bifurcation as Kc changes from 0.563 to 0.564 as the
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Fig. 4.4: Eigenvalue trajectories for various grid strengths

Table 4.2: Critical series compensation for system with and without SVC

X/R ratio Kcr without SVC Kcr with SVC

10 0.809 0.858

15 0.717 0.768

20 0.655 0.704

25 0.611 0.658

30 0.579 0.623

stable focus λ = −9.5344 ± j0.4132 transforms into 2 stable nodes each moving in the

opposite direction as Kc is increased. When Kc changes from 0.857 to 0.858, the complex

conjugate eigenvalue pair λcr = −0.0528 ± j73.976 crosses over to the right half of the

complex plane and becomes λcr = 0.0069± j73.81 as a result of a Hopf bifurcation which

43



**

**

**

**

2

2

1

1

1

1

2

2

2

2

2

2

2

2

*

*

* Hopf bifurcation

Reverse Hopf bifurcation**
Supersynchronous modes
Subsynchronous modes
Node-Focus bifurcation

1
2
3

𝑻𝑻𝒎𝒎𝒎𝒎,𝑻𝑻𝒎𝒎𝒎𝒎 = 𝒎𝒎𝟏𝟏ms
𝑻𝑻𝒎𝒎𝒎𝒎,𝑻𝑻𝒎𝒎𝒎𝒎 = 𝒎𝒎 ms

𝑻𝑻𝒎𝒎𝒎𝒎,𝑻𝑻𝒎𝒎𝒎𝒎 = 𝒎𝒎𝟏𝟏𝟏𝟏ms……
…

2

2
3 3

Fig. 4.5: Eigenvalue trajectories for various measurement delays

gives rise to unstable oscillations at subsynchronous frequency.

Similar behavior is encountered in the system for higher X/R ratios but at lower values of

Kc. The node-focus bifurcation occurs when Kc changes from 0.558 to 0.559 and 0.557 to

0.558 for X/R ratios of 20 and 30 respectively. The system undergoes a Hopf bifurcation

whenKc is close to 0.704 and 0.623 with λcr = 0.0057±j103.66 and λcr = 0.0085±j120.02

for X/R ratios of 20 and 30 respectively. Table 4.2 shows the critical value of series

compensation for the systems with and without SVC for various X/R ratios. The system

with SVC has a slightly larger stability domain than the system without SVC. Also,

as the strength of the grid decreases, the compensation level at which Hopf bifurcation

occurs becomes smaller making it crucial to implement a damping controller in order to

be able to mitigate this phenomenon causing instability.

4.3.3 Eigenvalues for different measurement time delays

In control systems, the reference value of a quantity is compared against the actual

value which is measured using a transducer. Measurement transducers have finite time

constants which are usually ignored. However, these time constants have an effect on
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the stability domain of the system with respect to series compensation which would be

studied in this section. Time delays in measurement of voltage magnitude and reactive

power have been modeled using a first order transfer function. Eigenvalues of the system

are traced when Kc is varied from 0.001 to 0.95 and are plotted on the complex plane for

3 different measurement time delays in the voltage regulator. The system is analyzed for

higher wind speed Vw = 18 m/s because certain unique bifurcations occur in this system

for this wind speed. When the measurement time delay is 1 ms, the system undergoes

a node-focus bifurcation at Kc = 0.075 and Kc = 0.704 and a Hopf bifurcation due to

SSR at Kc = 0.743. With a measurement delay of 10 ms, the system undergoes a Hopf

bifurcation at Kc = 0.679 and a node-focus bifurcation at Kc = 0.691 as a stable focus

transforms into 2 stable nodes but the system is already unstable at Kc = 0.679.

As the measurement time delay is increased to 100 ms, for Kc = 0.001, there are 2 pairs

of complex conjugate eigenvalues λ1 = 1.4651 ± j19.368 and λ2 = 0.2911 ± j9.7375 on

the right half of the complex plane which results in the system being unstable. When

Kc increases, these two pairs move towards the left half of the complex plane and when

Kc = 0.038, λ1 = 1.1153 ± j19.34 and λ2 = −0.0075 ± j10.014. Though the real part

of λ2 is negative, the system still is unstable as λ1 has a positive real part. When Kc

approaches 0.172, λ1 changes to −0.0068±j19.208 which means all the eigenvalues of the

system have negative real parts indicating a stable system. Since the system changes from

an unstable state to a stable state because of the movement of a complex conjugate pair

of eigenvalues to the left half of the complex plane from the right, the system undergoes

a reverse Hopf bifurcation.

The reason for this phenomenon can be explained as follows: the system is unstable for

small values of series compensation due to increased time delays in measurement. When

the series compensation is increased, the system becomes more and more stable because

increasing the series capacitive reactance decreases the effective line reactance which
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decreases the time constant of the electrical circuit thus compensating for measurement

delays. Hence, the system can be stabilized by increasing the series compensation above

a certain threshold when instability due to large measurement delays are experienced.

The upper limit of Kc is determined by the Hopf bifurcation which occurs due to SSR at

Kc = 0.683 where λcr = 0.0223±j108.57. Finally, a node-focus bifurcation takes place at

Kc = 0.865 where a stable focus changes into 2 stable nodes but the system has already

become unstable due to SSR.

4.4 Eigenvalues of the system with SVC and SSDC

In this section, the performance of the designed damping controllers based on slip signal

(SSDC-A) and real power (SSDC-B) is analyzed through computing eigenvalue trajecto-

ries as Kc is varied from 0.001 to 0.95 for various X/R ratios, wind speeds and measure-

ment time delays. The controller gains of the SVC and SSDC are tuned for the various

scenarios considered to obtain a stable system characterized by all eigenvalues on the left

half of the complex plane up to a series compensation of 95%. The parameters of the

network and wind speeds are the same as those considered in Section 4.3.

4.4.1 Eigenvalues for low and high wind speeds

Eigenvalue trajectories of the system for an X/R ratio of 20 with SSDC-A are computed

for wind speeds Vw of 14 and 18 m/s and are presented in Figure 4.6 on the left. The

subsynchronous mode starts moving toward the right half of the complex plane but

even for a compensation of Kc = 0.95, the corresponding eigenvalue pairs are λsub =

−3.2013 ± j79.178 and λsub = −8.2223 ± j72.016 for wind speeds of 14 and 18 m/s,

respectively, which have negative real parts. The eigenvalue closest to the imaginary axis

is λ = −0.00276, which corresponds to Vw = 18 m/s.
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Fig. 4.6: Eigenvalues for low and high wind speeds with (a) SSDC - A (b) SSDC - B

Table 4.3: SVC control gains and SSDC considered in Section 4.4.1.

SSDC Kp1 Kp2 Ki1 Ki2 Kd Td1 Td2 Tw

A 0.5 0.1 1 1 450 10 ms 150 ms 10 s

B 0.1 0 100 100 0.1 10 ms 100 ms 10 s

Similarly, for the system with SSDC-B, eigenvalue trajectories are computed for wind

speeds of 14 and 18 m/s and are plotted in Figure 4.6 to the right. It is observed

that the damping of the subsynchronous mode starts reducing as the amount of series

compensation Kc is increased from 0.001 up to 0.793; beyond that, the damping starts

increasing as the compensation is increased. A similar phenomenon is observed for Vw =

18 m/s, except that the damping of the subsynchronous mode decreases for Kc up to

0.725; beyond this, the damping increases. However, all the eigenvalues of the system for

both low and high wind speeds lie on the left half of the complex plane, which shows that

the Hopf bifurcation is eliminated for the entire range of series compensation considered.

The parameters of the SVC voltage regulator and SSDC-A and B are listed in Table 4.3.
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Fig. 4.7: Eigenvalues for various grid strengths with (a) SSDC - A (b) SSDC - B

4.4.2 Eigenvalues for varying grid strengths

Eigenvalues of the system with SSDC-A and SSDC-B are traced on the complex plane

for varying grid strengths, which is a function of the X/R ratio. It was shown in Section

4.3.2 that as the strength of the grid decreases, the percentage series compensation at

which the system becomes unstable due to SSR becomes smaller. In Figure 4.7, it is

shown that with SSDC-A and SSDC-B, the eigenvalues of the system are all found to

lie on the left half of the complex plane, thus eliminating the Hopf bifurcation due to

SSR. In SSDC-B, with controller gains Kp1, Kp2 = 0.1 and Ki1, Ki2 = 50 and a stabilizer

gain KSS of 0.3, all the modes are found to be well damped for X/R ratios to about 15.

Beyond that, the stabilizer gain is increased to 0.7 and all the modes are found to be

well damped for X/R = {10, 20, 30}, and those are shown in Figure 4.7b. The values of

control gains of the SVC and SSDC are presented in Table 4.4. Re-tuning of the stabilizer

and PI controllers in the voltage regulator are not needed with SSDC-A for all the X/R

ratios considered here.
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Table 4.4: SVC control gains and SSDC parameters considered in Section 4.4.2.

SSDC Kp1 Kp2 Ki1 Ki2 Kd Td1 Td2 Tw

A 0.55 0.1 1 1 450 10 ms 150 ms 10 s

B 0.1 0 50 50 0.7 10 ms 100 ms 10 s

(a) (b)
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Fig. 4.8: Eigenvalues for different measurement delays with (a) SSDC - A (b) SSDC - B

4.4.2.1 Eigenvalue trajectories for varying measurement time delays in the

SVC

Eigenvalues of the system with SSDC for 3 values of measurement delays (1, 10 and 100

ms) are plotted on the complex plane and are presented in Figure 4.8. The parameters

of SSDC-A and -B and that of the SVC with SSDC-A are same as those presented in

Table 4.3. For the system with SSDC-A, all the modes are damped and no re-tuning of

the PI controls of the voltage controller is needed. However, with SSDC-B, the controller

gains of the SVC have to be re-tuned in order to obtain a stable system up to 95% series

compensation for each of the time delays considered here; those values are presented

in Table 4.5. Hence, it is shown that both SSDC-A and SSDC-B are able to mitigate

subsynchronous oscillations as well as the unstable low frequency modes, which appear

for a time delay of 100 ms in the system without the damping controller.
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Table 4.5: SVC control gains with SSDC-B considered in Section 4.4.2.1.

Tm1, Tm2 Kp1 Kp2 Ki1 Ki2

1 ms 0.1 0 200 100

10 ms 0.1 0.2 100 100

100 ms 0.1 0.3 300 10

Fig. 4.9: Disturbance simulation in grid frequency

4.5 Time domain simulations

The dynamic responses of the system are presented in this section to disturbances in

grid voltage and frequency. The disturbance with respect to the grid voltage involves a

reduction in the voltage magnitude by 15% for about 0.1 s and then the voltage is restored

to 1 pu. In real time, this may occur due to a three phase fault at a bus resulting in a

reduction in all the surrounding bus voltages and the fault is assumed to be cleared in 6
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Fig. 4.10: Stator voltage magnitude response to a (a) Grid voltage disturbance, and (b) Grid
frequency disturbance

cycles (0.1 seconds). A frequency disturbance is simulated using a mathematical function

given by

f(t) = fo − exp(−τt) sin(ωnt) (4.15)

where τ is the damping term and ωn is the frequency of the disturbance. Here, τ = 2.5 and

ωn = 2 rad/s which is of the order of frequency involving electromechanical oscillations

in the grid. This mimics the frequency changes in the grid due to the response of speed

governors to disturbances in the grid. As the frequency of the is perturbed, the d and q

components of the grid voltage change accordingly which are shown in Fig. 4.9.

The dynamic responses of the system with SVC are plotted in Figs. 4.10 to 4.12 for an

X/R ratio of 30 and a wind speed of 14 m/s and 60% series compensation. The controller

parameters of SVC are chosen as KP1 = 0.1, KP2 = 0, KI1 = KI2 = 40. In this system,

the damping controller is absent. The dynamic responses of the system without SVC

described in Chapter 3 are also plotted for comparison. It can be observed from the plots

that the system with SVC has a damped response to the disturbance in grid voltage and

frequency. However, the system with fixed capacitors at the SCIG terminals is unstable

as the dynamic responses show growing oscillations with respect to time.
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System with SVC
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Fig. 4.11: Line current magnitude response to a (a) Grid voltage disturbance, and (b) Grid
frequency disturbance

(a) (b)

System with FC
System with SVC

System with FC
System with SVC

Fig. 4.12: Rotor speed response to a (a) Grid voltage disturbance, and (b) Grid frequency
disturbance

The dynamic responses of the system with SVC but without the SSDC and the system

with the SVC equipped with an SSDC based on the induction generator slip and the

real power at the terminals of the SCIG are presented. The system is simulated for a

wind speed of 14 m/s and an X/R ratio of 20 with a series compensation level of 71%.

Responses of the voltage magnitude, real power and reactive power delivered at the stator

terminals of the SCIG show oscillations of increasing amplitude for the case with SVC

and without the SSDC due to SSR. The system equipped with the SSDC results in an
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SSDC based on slip 
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Fig. 4.13: Stator voltage magnitude response to a (a) Grid voltage disturbance, and (b) Grid
frequency disturbance

(a) (b)

Without SSDC
SSDC based on slip 
SSDC based on real power

Without SSDC
SSDC based on slip 
SSDC based on real power

Fig. 4.14: Real power delivered in response to a (a) Grid voltage disturbance, and (b) Grid
frequency disturbance

oscillatory response which is well-damped.

Oscillations in the stator and rotor currents result in growing oscillations in the electrical

torque produced which causes a mismatch in the mechanical torque input from the wind

and the electrical torque output of the generator which is manifested as oscillations of

increasing magnitude in the speed of the rotor. However, the system with SSDC returns

to the same operating point after a few cycles which can be observed from the phase-plane
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Without SSDC
SSDC based on slip 
SSDC based on real power

(b)

Without SSDC
SSDC based on slip 
SSDC based on real power

Fig. 4.15: Reactive power delivered in response to (a) Grid voltage disturbance, and (b) Grid
frequency disturbance

𝛚𝛚𝐫𝐫 (pu)

𝐝𝐝𝛚𝛚𝐫𝐫

𝐝𝐝𝐝𝐝

Without SSDC
SSDC based on slip 
SSDC based on real power

Oscillations of increasing magnitude

Fig. 4.16: Dynamic torque-speed characteristics in response to a grid voltage disturbance

trajectory with respect to rotor speed shown in Figs. 4.16 and 4.17 when the system is

subjected to a disturbance in the grid voltage and grid frequency respectively.
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Oscillations of increasing magnitude

Fig. 4.17: Dynamic torque-speed characteristics in response to a grid frequency disturbance

4.6 Conclusion

An SVC used in the place of a fixed capacitor is able to eliminate the unstable node

at small values of series compensation. In addition to a Hopf bifurcation, a node-focus

bifurcation is also introduced into the system which may not affect the stability of the

system. Also, the series compensation level at which SSR occurs is increased with the

SVC. The Hopf bifurcation point is affected by the strength of the grid in systems with

fixed capacitors as well as an SVC equipped with a voltage regulator. As the strength of

the grid decreases, the system becomes unstable for smaller values of series compensation

due to SSR due to a decrease in the resonant frequency as the X/R ratio of the line

increases. However, the Hopf bifurcation point can be shifted in the system with SVC by
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proper adjustment of controller parameters in the voltage regulator.

With higher time delays, there is a possibility of unstable low frequency oscillations which

are eliminated by higher levels of series compensation. Hence, stable operation of a system

with higher measurement delays might not be possible without a minimum level of series

compensation. A supplementary damping controller is needed for stable operation of the

system for high levels of series compensation. The proposed SVC voltage regulator with

the supplementary damping controller based on the generator slip signal as well as the

real power at the terminals is able to successfully damp subsynchronous oscillations when

tuned properly.
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CHAPTER 5

Dynamic analysis of Squirrel Cage Induction Generator - Wind

Turbine with a Non-Radial Interconnection to the Grid

In this chapter, the modeling and analysis of an SCIG - WT in the modified IEEE Second

Benchmark consisting of an induction generator coupled to the grid through a double

circuit line is presented. The previous chapter dealt with the analysis of bifurcations

in SCIG-WTs coupled to the grid through a series compensated radial interconnection.

The goal of this chapter is to examine the impact of network topology along with other

parameters on the stability domain with respect to series compensation in a weak grid.

Research presented in [63] claims that a double-cage induction generator based wind farm

may not experience instability due to subsynchronous resonance in the presence of a non-

radial interconnection to the grid. In this chapter, it has been shown through eigenvalue

calculations and time domain simulations that instability via Hopf bifurcations due to

subsynchronous resonance are inevitable in SCIG-WTs even in the absence of a radial

interconnection.

5.1 Modeling of network

The single line diagram of the modified IEEE second benchmark system is shown in

Fig. 5.1. It consists of a SCIG-WT connected to the grid through a step-up transformer

followed by a double circuit line which is then coupled to the grid through a short line.

Reactive power needed by the SCIG is provided by shunt capacitor banks at the stator

terminals. The equations used to model the dynamics of the induction generator have

been derived in Chapter 2. The matrices given below are used to develop the dynamic
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Fig. 5.1: Single line diagram of modified IEEE Second Benchmark Model

model of the network:

[ZT ] =

Rt −Xt

Xt Rt

 , [ZG] =

Rg −Xg

Xg Rg

 , [Z1] =

R1 −X1

X1 R1

 , [Z2] =

R2 −X2

X2 R2



The following reactances are defined: Xn1 = Xt + Xg + X1, Xn2 = Xt + Xg, Xn3 =

Xt + Xg + X2. Also, define matrices: [ZN1] = [ZT + Z1 + ZG], [ZN2] = [ZT + ZG] and

[ZN3] = [ZT +Z2+ZG]. Using the quantities defined, the currents in the electrical network

are modeled using the following differential equations:

Xn1

ωs
[U ]

d

dt
{In1}+

Xn2

ωs
[U ]

d

dt
{In2} = −[ZN1]{In1} − [ZN2]{In2} − {Vc} − {Vg}+ {Vs}

(5.1)

Xn2

ωs
[U ]

d

dt
{In1}+

Xn3

ωs
[U ]

d

dt
{In2} = −[ZN2]{In1} − [ZN3]{In2} − {Vg}+ {Vs} (5.2)

The elements of vectors {In1}, {In2}, {Vs} and {Vc} are given by:

{In1} = [Id1 Iq1]
T (5.3)

{In2} = [Id2 Iq2]
T (5.4)
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{Vs} = [Vds Vqs]
T (5.5)

{Vc} = [Vdc Vqc]
T (5.6)

The voltage across the series capacitor in line 1 is modeled using equation given below:

1

ωs
[U ]

d

dt
{Vc} = [Zse]{In1}+ [N1]{Vc} (5.7)

where [Zse] = Xc[U ].

The dynamics of the shunt capacitor voltage at the terminals of the SCIG are described

by the following equation:

1

ωs
[U ]

d

dt
{Vs} = [Zsh]{Is − In1 − In2}+ [N1]{Vs} (5.8)

where [Zsh] = Xsh[U ].

5.2 Linearization of mathematical model

The dynamic equations of the network presented in Section 5.1 are linearized and pre-

sented in this section. Linearized versions of equations (5.1) and (5.2) are given below:

Xn1

ωs
[U ]

d

dt
{∆In1}+

Xn2

ωs
[U ]

d

dt
{∆In2} = −[ZN1]{∆In1} − [ZN2]{∆In2} − {∆Vc}+ {∆Vs}

(5.9)

Xn2

ωs
[U ]

d

dt
{∆In1}+

Xn3

ωs
[U ]

d

dt
{∆In2} = −[ZN2]{∆In1} − [ZN3]{∆In2}+ {∆Vs} (5.10)

Since the voltage of the grid is assumed to be fixed under equilibrium conditions, {∆Vdqg} =
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0 and hence, it does not appear in the linearized equations (5.9) and (5.10). Linearized

expressions for equations (5.7) and (5.8) can be found below:

1

ωs
[U ]p{∆Vc} = [Zse]{∆In1}+ [N1]{∆Vc} (5.11)

1

ωs
[U ]p{∆Vs} = [Zsh]{∆Is −∆In1 −∆In2}+ [N1]{∆Vs} (5.12)

The various vectors used in equations (5.9) to (5.12) are defined below:

{∆In1} = [∆Id1 ∆Iq1]
T (5.13)

{∆In2} = [∆Id2 ∆Iq2]
T (5.14)

{∆Vs} = [∆Vds ∆Vqs]
T (5.15)

{∆Vc} = [∆Vdc ∆Vqc]
T (5.16)

Table 5.1: Subset of parameters of the electrical network (all parameters are specified in per
unit on a common base).

Rt Xt Rg Xg Xsh Vg

0 0.05 0 0.05 1.2 1

5.3 Eigenvalue analysis of IEEE SBM with SCIG-WT

The linearized model of the system under study consists of equations (2.44), (2.45),

(2.50), (5.9), (5.10), (5.11) and (5.12). The complete list of linearized state variables of

the system is given below:

∆X = {∆Ids,∆Iqs,∆Idr,∆Iqr,∆Id1,∆Iq1,∆Id2,∆Iq2,∆Vds,∆Vqs,∆Vdc,∆Vqc,∆sg}T

(5.17)
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Table 5.2: Eigenvalues of modified IEEE-SBM with IG1 for 60% series compensation.

λi −σ ± jω Participating States

λ1 −30.963± j1835.9 Ids, Iqs, Idr, Iqr, Id1, Iq1, Id2, Iq2, Vds, Vqs
λ2 −39.772± j1082 Ids, Iqs, Idr, Iqr, Id1, Iq1, Id2, Iq2, Vds, Vqs
λ3 −12.999± j658.23 Ids, Iqs, Idr, Iqr, Id1, Iq1, Id2, Iq2, Vds, Vqs, Vdc, Vqc
λ4 −24.067± j376.67 Ids, Iqs, Idr, Iqr, Id2, Iq2
λ5 −7.5794± j94.595 Ids, Iqs, Idr, Iqr, Id1, Iq1, Id2, Iq2, Vdc, Vqc, sg
λ6 −5.8228± j17.499 Ids, Iqs, Idr, Iqr, Id1, Iq1, Vqc, sg
λ7 −11.297 Ids, Iqs, Idr, Iqr

Table 5.3: Eigenvalues of modified IEEE-SBM with IG2 for 60% series compensation.

λi −σ ± jω Participating States

λ1 −36.005± j1557.7 Ids, Iqs, Idr, Iqr, Id1, Iq1, Id2, Iq2, Vds, Vqs, Vdc, Vdc
λ2 −60.742± j802.89 Ids, Iqs, Idr, Iqr, Id1, Iq1, Id2, Iq2, Vds, Vqs
λ3 −14.089± j650.26 Ids, Iqs, Idr, Iqr, Id1, Iq1, Id2, Iq2, Vds, Vqs, Vdc, Vqc
λ4 −21.495± j375.84 Ids,Iqs,Idr,Iqr,Id2,Iq2
λ5 3.081 ± j105.54 Ids, Iqs, Idr, Iqr, Id1, Iq1, Id2, Iq2, Vds, Vqs, Vdc, Vdc, sg
λ6 −23.434± j25.302 Ids, Iqs, Idr, Iqr, Id1, Iq1, Vqc, sg
λ7 −39.378 Ids, Iqs, Idr, Iqr, Id1, Iq1, Vdc, Vqc, sg

The linearized equations were cast in the form [Mc][∆Ẋ = [Ac]∆X and the Jacobian

matrix [J ] is computed as [J ] = [Mc]−1[Ac]. Eigenvalues of the Jacobian matrix are

computed and plotted on the complex plane to observe the movement of eigenvalues of

the system when the degree of series compensation Kc given by equation (5.18) is chosen

as the bifurcation parameter.

Kc =
Xc

Xt +X1 +Xg

(5.18)

Two different induction generators are considered in this study. The first generator will be

denoted by IG1 which has the same parameters as that of the SCIG considered in Chapter

3. A second induction generator (which will be referred to as IG2) with a different set of
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Table 5.4: Participation factors of λcr with IG2 at 60% compensation.

Ids Iqs Idr Iqr Id1 Iq1 Vdc Vqc

0.229 0.212 0.227 0.208 0.026 0.026 0.032 0.032

parameters is also considered in this analysis. Parameters of IG1 and IG2 are listed in

Tables A.1 and A.2 respectively in A. Parameters of the electrical network except that

of the double circuit line can be found in Table 5.1. Eigenvalues of the system under

study with IG1 and IG2 for an X/R ratio of 15 for lines 1 and 2 in the double circuit

(X1/R1 = X2/R2 = 15) with R1 = R2 = 0.04 pu and a wind speed of 10 m/s have been

listed in Tables 5.2 and 5.3 respectively. The series compensation considered is 60% which

is realistic for a weak interconnection. From Table 5.2, it is obvious that the system is

stable with IG1 as all eigenvalues have negative real parts. However, in Table 5.3, λ5 is

found to have a real part which is positive resulting in an unstable system. This makes λ5

the critical mode λcr and the participation factors corresponding to the dominant states

for λcr are listed in Table 5.4.

Among the 13 eigenvalues of the system, there are 6 complex conjugate pairs (λ1 to λ6)

and 1 real eigenvalue (λ7). The frequencies of λ1 to λ3 are greater than system frequency

among which λ1 and λ2 correspond to the modes which arise due to the interaction

of induction generator currents with the shunt capacitor voltage. The other eigenvalue

pair which has a frequency greater than the system frequency (λ3) corresponds to the

modes produced due to interactions of generator currents with the series capacitor volt-

age. There is one mode which has a frequency very close to the system frequency (λ4)

which has highest participation from the generator currents and currents flowing in line

2 (uncompensated line) of the double circuit. There are 2 modes in the subsynchronous

frequency range (λ5,λ6) among which λ5 is the critical mode as it becomes unstable as the

compensation exceeds a certain limit. The other subsynchronous mode (λ6) is dominated

by the d-axis components of the generator currents and slip while the real eigenvalue (λ7)
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has highest participation from the q-axis components of the generator currents and slip

of the induction generator.

5.3.1 Eigenvalues of the system for low and high wind speeds

Table 5.5: Critical eigenvalues for different wind speeds

Vw Kcr λcr = −σ ± jω Participating States

9 82% 0.413± j45.958
Ids,Iqs,Idr,Iqr,Id1,Iq1,Vdc,Vqc,sg10 82% 0.3079± j45.832

11 82% 0.1695± j45.690
12 83% 0.8255± j43.600

Table 5.6: Critical eigenvalues for different wind speeds

Vw Kcr λcr = −σ ± jω Participating States

9 52% 0.2996± j123.37
Ids,Iqs,Idr,Iqr,Id1,Iq1,Id2,Iq2,Vdc,Vqc,sg10 52% 0.1147± j123.26

11 53% 0.2095± j120.82
12 54% 0.2212± j118.37

Critical eigenvalues of the system at wind speeds from 9 to 12 m/s for the system with

IG1 and IG2 are listed in Tables 5.5 and 5.6 respectively. The X/R ratio of the system for

both lines was chosen to be 15. The system with IG1 loses stability when compensation

exceeds 81% for Vw = 9, 10, 11 m/s and 82% for Vw = 12 m/s. However, for Vw = 9, 10

m/s, the system with IG2 loses stability when the compensation exceeds 51% which is

much smaller than the critical value of series compensation compensation of the system

with IG1 which means the stability domain of the system with IG2 is smaller. The

dominant states in the critical modes are the stator and rotor currents of the induction

generator. Since the critical mode arises due to the interaction of generator currents,

network currents and the series capacitor voltage, the reason for instability is identified

to be SSR. Hence, from the eigenvalue analysis for low and high wind speeds, it is inferred
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that the critical value of series compensation depends on the parameters of the generator

and in the system with non-radial interconnection to the grid whereas wind speed does

not have much influence over the critical value of series compensation.

5.3.2 Eigenvalue analysis for low, medium and high X/R ratios

Eigenvalues are computed for the system with IG1 and IG2 as the series compensation

is varied from 1% to 95% and are plotted on the complex plane as shown in Fig. 5.2

for various X/R ratios. The parameters of the network except for the double circuit line

are listed in Table 5.1. The resistance of lines 1 and 2 is assumed to be equal to 0.04 pu

and the wind speed considered here is 10 m/s. Here, it is assumed that the X/R ratios

of lines 1 and 2 are equal (X1/R1 = X2/R2). It can be seen from Fig. 5.2 that for an

X/R ratio of 5 which signifies a relatively strong grid, the system with IG1 loses stability

at 90% series compensation whereas the system with IG2 remains completely stable as

the percentage series compensation is increased from 1% to 95%. When the eigenvalue

trajectory of the system is computed for X/R ratio of 10 , the system with IG1 loses

stability through a Hopf bifurcation when the compensation exceeds 85%. Similarly, as

the X/R ratio of the system was changed to 15, the system with IG1 loses stability as

the percentage series compensation becomes greater than 82%.

When the same analysis was performed for the system with IG2, the system loses stability

when the compensation percentage exceeds 65% and 52% for X/R ratios of 10 and 15

respectively. Although the stability domain for the system with IG2 was slightly larger

than that of the system with IG1 for an X/R ratio of 5 for lines 1 and 2, the system

with IG1 has a larger stability domain as the X/R ratio was increased to 10 and then

to 15. It has been observed that in the system with an SCIG-WT with IG1 using non-

radial interconnection to the grid, a Hopf bifurcation due to SSR still occurs although

the stability domain with the non-radial interconnection is larger compared to the system

64



*

*

𝝀𝝀𝒄𝒄𝒄𝒄

𝝀𝝀𝒄𝒄𝒄𝒄

𝝀𝝀𝒄𝒄𝒄𝒄

𝝀𝝀𝒄𝒄𝒄𝒄𝝀𝝀𝟓𝟓

𝝀𝝀𝟓𝟓

* Hopf bifurcation

𝝀𝝀𝟑𝟑 𝝀𝝀𝟑𝟑 𝝀𝝀𝟑𝟑

𝝀𝝀𝟑𝟑

𝑿𝑿/𝑹𝑹 = 𝟓𝟓
𝑿𝑿/𝑹𝑹 = 𝟏𝟏𝟏𝟏…… 𝑿𝑿/𝑹𝑹 = 𝟏𝟏𝟓𝟓

…

𝝀𝝀𝟑𝟑 𝝀𝝀𝟑𝟑

𝝀𝝀𝟐𝟐

𝝀𝝀𝟐𝟐

Fig. 5.2: Eigenvalue trajectories for equal X/R ratios with IG2

Table 5.7: Critical eigenvalues of IG1 for equal X/R ratios

X/R ratio Kcr λcr = −σ ± jω Participating states

5 90% 0.325± j26.94 Ids,Iqs,Idr,Iqr,Id1,Iq1,Id2,Iq2,Vdc,Vqc,sg
10 85% 0.152± j39.256

Ids,Iqs,Idr,Iqr,Id1,Iq1,Vdc,Vqc,sg15 82% 0.308± j45.832

using a radial interconnection. It has also been observed that the stability domain with

respect to series compensation depends on the generator parameters as well since the

system with IG2 has a smaller stability domain compared to that of the system with IG1

when connected to the same network for X/R ratios of 10 and 15.
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Table 5.8: Critical eigenvalues of IG2 for equal X/R ratios

X/R ratio Kcr λcr = −σ ± jω Participating states

5 − − −

10 65% 0.388± j96.347
Ids,Iqs,Idr,Iqr,Id1,Iq1,Id2,Iq2,Vdc,Vqc,sg15 52% 0.115± j123.23

5.4 Time domain simulations

The non-linear dynamic model of the system described by equations (2.30), (2.31), (2.38)

and (5.1) to (5.8) is programmed using MATLAB-SIMULINK and the responses of various

system variables are observed when the system is subject to disturbances. Two kinds of

disturbances are considered here - the first one is a momentary decrease in the grid voltage

to 0.85 pu from 1 pu lasting for 0.1 seconds and the other disturbance is the loss of the

uncompensated line in the double circuit. A wind speed of 10 m/s is considered and

X1

R1
= X2

R2
= 15 for a line resistance R1 = R2 = 0.04 pu. The values of other parameters

of the network can be found in Table 5.1 and the parameters of IG2 listed in Table A.2

are considered for the SCIG. Series compensation Kc (defined in equation (5.18)) of 55%

is considered.

5.4.1 Response to a disturbance in the grid voltage

The responses of stator voltage magnitude, line current magnitude, real power at the

generator terminals and the rotor speed of the induction generator to a momentary de-

crease in the grid voltage are shown in Figs. 5.3 to 5.6. The system is observed to be

unstable as Kc is greater than the critical value for the given operating conditions which

confirms the findings from the eigenvalue analysis. Stator voltage magnitude plotted in

Fig. 5.3 shows a decrease between 1 and 1.1 seconds as the disturbance persists. As the

disturbance is removed at 1.1 seconds, the stator voltage gradually starts building up and

66



Limit cycle

Fig. 5.3: Stator voltage response to a disturbance in grid voltage

reaches a high value of almost 2.22 pu at 3.63 seconds followed by which the oscillations

start reducing in amplitude till 3.8 seconds. Beyond 3.8 seconds, there is a slight increase

in the magnitude of oscillations lasting for a few cycles as the system transitions to an

oscillatory state where the oscillations in the stator voltage are bounded between 0.6 pu

and 1.6 pu past 4.2 seconds. This is a result of the limit cycle as a consequence of the

Hopf bifurcation due to SSR. These bounded oscillations (between 1.38 pu and 3.08 pu)

are also observed in the magnitude of line current in Fig. 5.4. Bounded oscillations be-

tween −2.19 pu and 2.85 pu are observed in the real power transmitted from the stator

terminals to the grid which implies that power is continuously being transferred back and

forth between the stator terminals and the grid when the system enters an oscillatory

state.
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Fig. 5.4: Line current response to a disturbance in grid voltage

Rotor speed of the induction generator in Fig. 5.6 shows oscillations of small amplitude

around the equilibrium point (1.014 pu) intially. However, between 3.5 and 3.6 seconds,

the rotor speed of the induction generator reduces rapidly causing it to stall. Beyond

3.6 seconds, the speed of the generator recovers slightly before entering an oscillatory

state where generator speed oscillates between 0.57 pu and 0.63 pu beyond 4.2 seconds.

These bounded oscillations in the system states are manifested as a limit cycle in the

phase-plane of the rotor speed shown in Fig. 5.7 and in the characteristics of the voltage

plotted with respect to real power at the stator terminals of the SCIG which can be seen

in 5.3.
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Fig. 5.5: Real power response to a disturbance in grid voltage

5.4.2 Response to a loss of a line in the double circuit

The phase - plane trajectory of the rotor speed when the system is subjected to the loss

of the uncompensated line in the double circuit at 1 second is shown in 5.8. The response

is similar to that of the previous case where stalling of the SCIG occurs after undergoing

a few cycles of oscillations around the equilibrium point. The rotor speed goes slightly

below synchronous speed at 1.35 seconds beyond which it decreases rapidly. After about

3 seconds, the system enters an oscillatory state where the oscillations in the rotor speed

are bounded between 0.2 and 0.4 pu. On the phase plane, the trajectory starts spiraling

outwards from the equilibrium point and is pulled towards the limit cycle shown in Fig.

5.8.

The plot of the stator voltage at the SCIG terminals with respect to time (Fig. 5.9) reveal
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Stalling of induction generator

Fig. 5.6: Rotor speed response to a disturbance in grid voltage

a much larger overvoltage when the system enters the oscillatory state as the oscillations

in the voltage are bounded between 2.34 pu and 3.05 pu between 3.5 and 4 seconds. In

practice, the protection system would be triggered immediately within a few cycles when

the voltage oscillations start when the disturbance is encountered resulting in tripping

of the SCIG. The dynamic P-V characteristics reveal that the trajectory starting at the

equilibrium point diverges away from it, moving towards the limit cycle when the system

undergoes the loss of the uncompensated line which is shown in Fig. 5.10. The periodic

solutions of the stator voltage with respect to the reactive and real power at the stator

terminals are also shown in Figs. 5.9 and 5.10.

The instantaneous stator voltage of phase A along with it’s frequency spectrum is com-

puted for the case when the system is subjected to a momentary disturbance in the grid

voltage as well as when the system is subjected to the loss of the uncompensated line
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Fig. 5.7: Phase plane trajectory when subjected to a disturbance in grid voltage

in the double circuit. The waveforms are shown past 5 seconds which corresponds to

the time past which the system enters an oscillatory state due to the limit cycle. From

Fig. 5.11, 35 Hz component is observed to be dominant followed by a 60 Hz component

and the maximum amplitude of the voltage is found to be almost 1.7 pu. However, an

instantaneous voltage of approximately 3 pu can be observed when the system is sub-

jected to the loss of the uncompensated line. The frequency spectrum in this case shows

a dominant 18 Hz component. This is followed by small contributions from 25 Hz and

60 Hz components. Hence, in both cases, a subsynchronous frequency component dom-

inates the stator voltage when the system exhibits oscillatory behavior. The frequency

spectrum of the line current in phase A shown in Fig. 5.12 reveals a dominant 60 Hz

component for both types of disturbances considered followed by a 35 Hz component
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Fig. 5.8: Phase - plane trajectory with respect to rotor speed for the loss of a line

when the system undergoes a disturbance in the grid voltage momentarily and an 18 Hz

component when the uncompensated line is lost. The frequency components depend on

the type of disturbance which the system is subject to.

5.5 Conclusion

In this chapter, the dynamic modeling, eigenvalue analysis and detailed time domain sim-

ulation results for the IEEE second benchmark model has been presented. For systems

with non-radial interconnections as this, it was concluded that there is no possibility of

subsynchronous resonance in [63]. However, this cannot be generalized for systems with

non-radial interconnections as in this chapter, an SCIG-WT connected to the grid through

a double circuit line still experiences instabilities due to subsynchronous resonance. An

SCIG-WT with a non-radial interconnection may possess a larger stability domain with
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Limit cycle

Fig. 5.9: Stator voltage response when system experiences loss of a line

respect to series compensation compared to the same SCIG-WT in a radial interconnec-

tion to the grid. As the grid becomes weaker for higher X/R ratios, the system loses

stability through a Hopf bifurcation for smaller values of percentage series compensation.

The Hopf bifurcation point also depends on the parameters of the induction generator

but is not affected very much for different wind speeds. Time domain simulations are per-

formed using SIMULINK software considering a momentary reduction in the grid voltage

and loss of the uncompensated line in the double circuit. From the results of the time

domain simulation, the nature of the Hopf bifurcation is found to be sub-critical as the

system significantly diverges away from the equilibrium point. The frequency components

in the periodic solutions of various system variables depends on the type of disturbance

which the system undergoes. Hence, network topologies have a significant impact on the

stability domain of series compensated systems which makes detailed dynamic modeling
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Starting point

Limit cycle

Fig. 5.10: P-V characteristics when system experiences loss of a line

and stability studies highly important while planning a power system. In the next 2

chapters, the impact of series compensation on dynamic loads namely induction motors

will be explored.
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(a) (b)

Fig. 5.11: Instantaneous stator voltage of phase A with the corresponding frequency spectrum
for the system with (a) Grid voltage disturbance (b) Loss of uncompensated line

(a) (b)

Fig. 5.12: Instantaneous stator voltage of phase A with the corresponding frequency spectrum
for the system with (a) Grid voltage disturbance (b) Loss of uncompensated line
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CHAPTER 6

Stability Domain Analysis of Power Systems with Induction

Motor Loads supplied through Weak Interconnections

In this chapter, the dynamic modeling and stability domain analysis of a system consisting

of an induction motor load supplied supplied through a series compensated feeder has

been presented. The topology of the network is affected by the presence of dynamic loads

such as induction motors which impacts the stability of the system. Induction motors are

utilized in a wide variety of industrial applications like steel rolling mills, compressors,

elevators, etc due to it’s rugged construction, high efficiency and low maintenance ([64],

[65]). These motor loads are supplied using soft starters to minimize the effects like high

starting currents in the system leading to higher voltage drops. However, as the motor

picks up speed, the starter is bypassed and full line voltage appears across the motor

terminals under steady state. In this chapter, the stability of the system with induction

motor loads supplied through a series compensated network is studied when the motor

is perturbed from it’s steady state operating point.

It is very important to understand the impact of these loads on the performance of

the power system especially if the interconnection is weak. The steady state stable

operating region on the torque-slip characteristics of the induction motor is limited by

the impedance of the network in addition to the motor parameters. Series capacitors

can be used to enhance the stable operating range of the motor by compensating a part

of the reactance of the feeder, thus enabling the motor to operate at a higher slip to

supply greater load torques. However, series compensation impacts the dynamic stability

of the system when the motor is perturbed from its steady state operation leading to
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instabilities. The main goal of this work is to reveal bifurcations which arise in these

systems as a result of the weak interconnection between the source and load. The impact

of X/R ratio of the feeder and induction motor loading on the stability domain with

respect to series compensation has been examined through eigenvalue analysis.

6.1 Mathematical modeling of system

~ 𝑹𝑹𝒈𝒈 𝑿𝑿𝒄𝒄 𝑿𝑿𝒈𝒈

𝑿𝑿𝒔𝒔𝒔𝒔

~𝑿𝑿𝒕𝒕𝟐𝟐

�𝑉𝑉𝑆𝑆 �𝑉𝑉𝑀𝑀Substation IM load
𝑿𝑿𝒕𝒕𝒕𝒕

Fig. 6.1: Single line diagram of system

The single line diagram of system under study is shown in Fig. 6.1. The induction motor

load is fed from a substation directly through a series compensated feeder. The induction

motor also has a shunt capacitor at its terminals to provide reactive power compensation.

The dynamic equations of the d and q components of the network currents are given by:

Xnet

ωs

d

dt
{In} = −[ZN ]{In} − {Vc} − {Vs}+ {Vg} (6.1)

where [ZN ] = [ZT1 + ZG + ZT2], Xnet = Xt1 +Xg +Xt2 and

[ZT1] =

Rt1 −Xt1

Xt1 Rt1

 , [ZG] =

Rg −Xg

Xg Rg

 , [ZT2] =

Rt2 −Xt2

Xt2 Rt2
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.

The elements of vectors {In}, {Vs} and {Vc} are given by:

{In} = [Idn Iqn]T (6.2)

{Vs} = [Vds Vqs]
T (6.3)

{Vc} = [Vdc Vqc]
T (6.4)

{Vg} = [Vdg Vqg]
T (6.5)

The dynamics of the voltage across the series capacitor is modeled using the equation

given below:

1

ωs

d

dt
{Vc} = [Zse]{In}+ [N1]{Vc} (6.6)

where [Zse] = Xc[U ].

The dynamics of the shunt capacitor voltage at the terminals of the induction motor are

described by the following equation:

1

ωs

d

dt
{Vs} = [Zsh]{In − Is}+ [N1]{Vs} (6.7)

where [Zsh] = Xsh[U ] and {Is} = [Ids Iqs]
T are the d and q components of the stator

current of the induction motor.

6.2 Linearization of mathematical model

Linearized versions of dynamic equations (6.1), (6.6) and (6.7) are presented below:
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1

ωs
[U ]p{∆Vs} = [N1]∆Vs + [Zsh]{∆In −∆Is} (6.8)

1

ωs
[U ]p{∆Vc} = [N1]∆Vc + [Zse]{∆In} (6.9)

Xnet

ωs
[U ]p{∆In} = −[Znw]{∆In} − {∆Vc} − {∆Vs}+ {∆Vg} (6.10)

In equation (6.10), {∆Vg} = 0 since the voltage of the substation is assumed to be fixed

under equilibrium conditions.

6.3 Eigenvalue analysis of system

The complete linearized system model comprises of equations (6.8), (6.9), (6.10) along

with (2.39), (2.40) and (2.49). The state variables of the system under study are listed

below:

∆X = {∆Ids,∆Iqs,∆Idr,∆Iqr,∆Idn,∆Iqn,∆Vds,∆Vqs,∆Vdc,∆Vqc,∆sm}T (6.11)

In this section, eigenvalues of the linearized system are presented for various operating

conditions and system parameters as the percentage series compensation Kc = Xc/Xnet

is varied from 1% to 98% where network reactance Xnet = Xt1 +Xg +Xt2 and Xc is the

reactance of the series capacitor.

6.3.1 Eigenvalues for base case

For the system under study, eigenvalues are calculated for a slip of 1% for the induction

motor and for a feeder of X/R ratio of 15 and are plotted on the complex plane as the

percentage series compensation is increased from 1% to 98% which can be seen in Fig.
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Fig. 6.2: Eigenvalue trajectories for base case

6.2. From the figure, it is observed that there are 5 oscillatory modes (λ1, λ2, λ3, λ4

and λ6) characterized by complex conjugate eigenvalues and one non-oscillatory mode

(λ5) characterized by a real eigenvalue. Among the oscillatory modes, 3 modes (λ1, λ2,

λ3) have frequencies greater than 60 Hz and 2 modes (λ4, λ6) less than 60 Hz. For the

entire range of percentage series compensation considered, modes λ1, λ2, λ3, λ5 and λ6

are stable. However, mode λ4 starts moving towards the right half of the complex plane

as the percentage series compensation increases. The system loses stability due to a Hopf

bifurcation which occurs as a result of λ4 crossing over from the left to the right half of

the complex plane when the percentage series compensation is between 48% and 49%.

This makes λ4 the critical mode which will be referred to as λcr. Table 6.1 lists the
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Table 6.1: Eigenvalues of induction motor load for base case

λi −σ ± jω Participating States

λ1 −31.904± j2390.8 Idn,Iqn,Ids,Iqs,Idr,Iqr,Vds,Vqs
λ2 −38.527± j1636.7 Idn,Iqn,Ids,Iqs,Idr,Iqr,Vds,Vqs
λ3 −18.02± j583.89 Idn,Iqn,Ids,Iqs, Idr,Iqr,Vdc,Vqc
λ4 0.3674± j168.60 Idn,Iqn,Ids,Iqs,Idr,Iqr,Vdc,Vqc
λ5 −32.065 Ids,Iqs,Idr,Iqr
λ6 −18.042± j18.618 Ids,Iqs,Idr,Iqr,sm

Table 6.2: Participation factors of λcr 50% compensation

Ids Iqs Idr Iqr Idn Iqn Vdc Vqc

0.246 0.241 0.242 0.237 0.007 0.006 0.011 0.011

Table 6.3: Critical eigenvalues for different X/R ratios at 1% slip

X/R ratio Kcr λcr = −σ ± jω Participating states

10 54% 0.130± j170.2
Idn,Iqn,Ids,Iqs,Idr,Iqr,Vdc,Vqc20 46% 0.094± j170.26

30 42% 0.072± j170.29

eigenvalues of the system at 50% series compensation and the participation factors for

λcr have been listed in Table 6.2. Observing the participation factors corresponding to

the critical mode, it is obvious that the instability in the system is due to SSR as there

is participation from the stator and rotor currents of the motor and the series capacitor

voltage.

6.3.2 Eigenvalues at different X/R ratios of the radial feeder

An increase in X/R ratio for a given vaue of resistance reduces the short circuit capacity

of the system due to an increase in the impedance of the network as a result of which

the strength of the interconnection decreases. Presence of a series capacitor improves the
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Fig. 6.3: Eigenvalue trajectories at different X/R ratios

Table 6.4: Critical eigenvalues for different X/R ratios at 3% slip

X/R ratio Kcr λcr = −σ ± jω Participating states

10 52% 0.153± j174.19
Idn,Iqn,Ids,Iqs,Idr,Iqr,Vdc,Vqc20 44% 0.017± j174.9

30 41% 0.247± j172.91

short circuit ratio by increasing the short circuit capacity by reducing the net reactance

of the system thereby resulting in an increase in the system strength while simultaneously

extending the steady state stable operating range of the motor. However, the upper limit

of percentage series compensation is determined by the Hopf bifurcation point which

is influenced by the X/R ratio of the feeder. Eigenvalues of the linearized system are

calculated and plotted on the complex plane which is shown in Fig. 6.3 when the series
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Fig. 6.4: Hopf bifurcation points at different X/R ratios

compensation is varied forX/R ratios of 10, 20 and 30 with the induction motor operating

at a slip of 1%. The system with anX/R ratio of 30 becomes unstable at a smaller value of

Kc. This means the stability domain of the system with respect to series compensation

shrinks as the system becomes weaker due to high values of line impedance. Critical

eigenvalues of the system are listed in Table 6.3. When eigenvalue analysis was conducted

for a higher slip of 3%, the critical series compensation at which the system becomes

unstable is slightly lower for the same X/R ratios considered and this can be observed

from Table 6.4 and from Fig.6.4.
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(b)
(a) (b)

Fig. 6.5: Stator voltage response to a disturbance in grid frequency for (a) X/R ratio of 20 (b)
X/R ratio of 30

6.4 Time domain simulation results

The non-linear dynamic equations of the system ((6.1), (6.6), (6.7), (2.24), (2.25) and

(2.36)) are programmed in SIMULINK. responses of the system are plotted for a distur-

bance in the grid frequency injected in the same way as described in Chapter 4 using the

exponential function f(t) = fo − exp(−τt) sin(ωnt) where fo = 60 Hz, τ = 1.95, fn = 1.2

Hz and ωn = 2πfn rad/s. The series compensation of the system is set at 50% and a slip

of 1% is considered for the induction motor. The time responses of the system to a step

change in the grid voltage was very similar in shape and hence are not shown here.

The rotor speed of the induction motor is shown in Fig. 6.7 from which it can be observed

that when X/R ratio is 20, the rotor speed oscillates around 0.2 pu. However, as the grid

becomes weaker with a higher X/R ratio of 30, the rotor speed of the induction motor

oscillates at a negative speed of around −0.2 pu. The phase-plane trajectories for the

X/R ratios considered are shown in Fig. 6.8. Oscillations in electric torque produced by

the motor attain dangerously high values as the motor stalls as a result of subsynchronous

oscillations.
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(a) (b)

Fig. 6.6: Line current response to a disturbance in grid frequency for (a) X/R ratio of 20 (b)
X/R ratio of 30

Fig. 6.7: Induction motor speed response to a disturbance in grid frequency

When simulated for a longer period of time, the system was found to enter a state

of undamped oscillations which are bounded in magnitude which is the result of the

emergence of a limit cycle as a consequence of the Hopf bifurcation. The size of the limit

cycle is found to be a function of the X/R ratio of the feeder which is shown in Fig. 6.9.
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Fig. 6.8: Phase plane trajectory of motor speed in response to a disturbance in grid frequency
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Fig. 6.9: Periodic solutions of P,Q and V for a grid frequency disturbance

The limit cycle was the smallest for the system with X/R ratio of 30 which may be due

to a higher voltage drop owing to a greater value of feeder reactance.

The responses of line currents of the system for X/R ratios of 20 and 30 are shown in Fig.

6.6. For both loading conditions, an current magnitude of almost 16 pu has been observed

close to 1 second. For a smaller X/R ratio of 20, the line current undergoes oscillations

between 0 and 9 pu past 1 second. A double frequency component of the current is seen in

the line current waveform during the entire simulation. When the simulation was repeated
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Fig. 6.10: Rotor speed and electrical torque response to a load step change

for a higher X/R ratio of 30, the line current approaches a value of almost 14.2 pu close

to 1.45 seconds. The oscillations start decreasing in magnitude till around 6.8 seconds.

Between 6.8 and 10.9 seconds, the oscillations appear to have disappeared, however,

beyond 10.96 seconds, they reappear and start increasing in magnitude gradually. Beyond

15 seconds, the oscillations are bounded in magnitude between 1.5 and 4 pu and this

can be attributed to a limit cycle. Also, it should be noted that the double frequency

component in the line current exists only till about 6 seconds beyond which it disappears.

The system was also subjected to a step change in the load torque for an X/R ratio of

20, operating slip of 1% and series compensation of 60% and the dynamic responses of

the variables were observed. The system variables followed the same wave shape as those

corresponding to a frequency disturbance in the system with X/R ratio of 20 for a load
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Fig. 6.11: Limit cycles with respect to real and reactive power and motor terminal voltage for
a load step change

step change of 20% on the induction motor. However, when the load torque disturbance

was increased to 40%, the time responses of the variables are very similar to the case when

the system with X/R ratio of 30 was subjected to a frequency disturbance. The rotor

speed, torque with respect to time and the limit cycle with respect to rotor speed and

torque are shown in Fig. 6.10. The limit cycles with respect to real power and voltage

magnitude and reactive power and voltage magnitude are shown in Fig. 6.11. The

reason for the reversal of induction motor may be explained as follows: when the system

is subjected to a disturbance, there are self-excited oscillations of increasing magnitudes

as a result of induction generator effect of SSR. This results in voltages and currents

at subsynchronous frequencies induced in the stator winding of the induction motor in

addition to the applied voltage at supply frequency. The resultant emfs induced in the

stator winding may result in an opposite phase sequence resulting in a magnetic field

rotating in the opposite direction and the induction motor follows the direction of the

resultant magnetic field and starts rotating in the opposite direction.
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6.5 Conclusions

Eigenvalue analysis of an induction motor load fed from the substation through a series

compensated weak network exhibits Hopf bifurcations which can be attributed to sub-

synchronous resonance. As the load on the induction motor increases, the operating slip

increases. This has little influence on the percentage series compensation level at which

the Hopf bifurcation occurs. However, for decreasing grid strengths due to increase in

the impedance of the feeder, the stability domain with respect to series compensation

decreases as SSR occurs at lower levels of percentage series compensation. Size of limit

cycles generated as a result of Hopf bifurcation due to SSR depends on the grid strength.

Limit cycles are smallest when the interconnection is the weakest. Motor stalling is ob-

served as a result of SSR. However, the direction of rotation of the motor during the

limit cycle is dependent on the grid strength as well as the magnitude of disturbance.

There is a possibility of reversal in the direction of rotation for lower grid strengths and

disturbances of higher magnitudes. In this analysis, the substation voltage is assumed to

be at a constant value which in practice is possible only if there is a voltage regulating

device like a STATCOM or SVC installed. Hence, to mitigate harmful oscillations in the

system due to Hopf bifurcations, a supplementary damping controller is needed.

89



CHAPTER 7

Dynamic Interactions of Synchronous Generators with Induction

Motor Loads in Series Compensated Systems

Dynamic modeling and stability domain analysis of a system consisting of a synchronous

generator supplying an induction motor load through a series compensated weak network

has been carried out in this chapter. In the previous chapter, the induction motor load is

supplied from a stiff voltage source at the substation. However, the assumption of a stiff

voltage source is eliminated by considering the complete dynamic model of the generator

and it’s control system. The impact of X/R ratio of the feeder and generation control

system parameters on the stability domain with respect to series compensation has been

examined through eigenvalue calculations and time domain simulations to reveal new

bifurcations in the system.

7.1 Mathematical modeling of system

𝑹𝑹𝒏𝒏𝒏𝒏 𝑿𝑿𝒄𝒄 𝑿𝑿𝒏𝒏𝒏𝒏

𝑿𝑿𝒔𝒔𝒔𝒔
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~
�𝑉𝑉𝑡𝑡
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𝑹𝑹𝒏𝒏𝒏𝒏 𝑿𝑿𝒏𝒏𝒏𝒏𝑿𝑿𝒕𝒕𝒏𝒏

SS

Fig. 7.1: Single line diagram of system under study

The single line diagram of the system under study is shown in Fig. 7.1. It consists of a

Synchronous Generator (SG) supplying power to a substation (SS) through a transformer
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and a short line. The substation is connected to an induction motor load through a series

compensated long feeder. Traditionally, studies related to subsynchronous resonance have

been performed in system consisting of a generator connected to an infinite bus through

a series compensated line. Here, this study is extended to study the effect of series

compensation on an induction motor load supplied through a series compensated feeder

from the substation. This is a more realistic study as the effect of series compensation on

the network beyond the substation is studied in very little detail in the past. The influence

of large dynamic loads on power system stability has been studied in [66]. Although the

exciter gain and direct axis time constant of the induction motor has been found to impact

stability of the system, the influence of time constants of the measurement transducer

and the exciter has not been modeled. In this paper, the exciter and measurement

transducers have been modeled using first order transfer functions in order to study the

influence of these time constants on the stability domain of the system with respect to

series compensation.

7.1.1 Modeling of network

The dynamics of the terminal voltage of the synchronous machine is given by the following

equation:

{Vt} =
1

ωs
Xnw[U ]

d

dt
{In}+ [Znw]{In}+ {Vc}+ {Vm} (7.1)

where [Znw] = [ZT1 + ZL1 + ZT2 + ZL2 + ZT3], Xnw = Xt1 +Xn1 +Xt2 +Xn2 +Xt3 and

[ZT1] =

Rt1 −Xt1

Xt1 Rt1

 , [ZL1] =

Rn1 −Xn1

Xn1 Rn1

 , [ZT2] =

Rt2 −Xt2

Xt2 Rt2

 ,
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[ZL2] =

Rn2 −Xn2

Xn2 Rn2

 , [ZT3] =

Rt3 −Xt3

Xt3 Rt3

 , (7.2)

The elements of vectors {In}, {Vm}, {Vc} and {Vt} are given by:

{In} = [Idn Iqn]T (7.3)

{Vm} = [Vdm Vqm]T (7.4)

{Vc} = [Vdc Vqc]
T (7.5)

{Vt} = [Vdt Vqt]
T (7.6)

The voltage across the series capacitor is modeled using equation (7.7) given below:

1

ωs

d

dt
{Vc} = [Zse]{In}+ [N1]{Vc} (7.7)

where [Zse] = Xc[U ].

The dynamics of the shunt capacitor voltage at the terminals of the induction motor are

described by the following equation:

1

ωs

d

dt
{Vm} = [Zsh]{In − Is}+ [N1]{Vm} (7.8)

where [Zsh] = Xsh[U ] and {Is} = [Ids Iqs]
T are the d and q components of the stator

current of the induction motor.
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7.1.2 Integration of SG and Network Models

The dynamic model of the synchronous generator is expressed in a reference frame fixed

on it’s rotor to eliminate time varying inductances. However, when the synchronous

machine is interfaced with the rest of the network, the terminal voltage of the generator

in the rotor reference frame (Vd, Vq) can be expressed in a synchronously rotating reference

frame (Vdt, Vqt) using equation (7.9) shown below:

Vdt
Vqt

 =

 sin δ cos δ

− cos δ sin δ


︸ ︷︷ ︸

Tr

Vd
Vq

 (7.9)

where [Tr] is the transformation matrix. The inverse transformation is accomplished

through matrix [Q] = [Tr]
−1. In this system, the synchronous machine is directly con-

nected to the network which means the stator currents of the generator are the same as

those of the network currents. The transformation of the generator stator currents in

the rotor reference frame to the synchronously rotating reference frame is achieved using

equation (7.10).

Idn
Iqn

 =

 sin δ cos δ

− cos δ sin δ


︸ ︷︷ ︸

Tr

Id
Iq

 (7.10)

Using equations (7.9), (7.10) and (7.1) in (2.10), the final equation used to interface the

synchronous generator with electrical network and load is obtained which is given by

equation (7.11).
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Fig. 7.2: Block diagram of AVR

1

ωs
[Xsg1Q−QXnw]

d

dt
In +

1

ωs
[N2

1 ]
d

dt
E ′sg +

1

ωs
[Xsg1QdIn]

d

dt
δ = [ZsgQ+QZnw]In+

ω[N2
1 ]E ′sg + [Q]Vc + [Q]Vm (7.11)

where, in (7.11), the matrix [Qd] is the derivative of matrix [Q] with respect to the rotor

position δ. The elements of matrices [Q] and [Qd] are given below:

[Q] =

sin δ − cos δ

cos δ sin δ

 (7.12)

[Qd] =

 cos δ sin δ

− sin δ cos δ

 (7.13)

7.2 Modeling of AVR and Governor

The block diagram of the Automatic Voltage Regulator (AVR) of the SG is shown in

Fig. 7.2. The terminal voltage magnitude (Vt) of the SG is measured by a transducer of

time constant Tx seconds and is compared with the reference voltage Vref . The AVR is

represented using a first order transfer function consisting of a gain Ka and time constant
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Ta seconds. The speed governor dynamics are modeled using a first order differential

equation which determines the mechanical torque input (Tm) to the rotor of the SG. The

differential equations which govern the dynamics of the AVR and the speed governor are

given below:

Tx
dVx
dt

= −Vx + Vt (7.14)

Ta
dEfd
dt

= −Efd +Ka(Vref − Vx) (7.15)

Tg
dTm
dt

= −Tm + Pc − (1/Rd)(ω − 1) (7.16)

In equations (7.14) to (7.16), Vx is the output of the measurement transducer, Efd is the

input voltage applied to the field winding on the rotor of the SG, Pc is the control input

which is fixed and Rd is the droop of the speed governor. The values of Tg and Rd are

assumed to be 50 ms and 5% respectively.

7.3 Eigenvalue analysis

The complete state-space model of the system is developed and is linearized and cast in

the form ∆Ẋ = [J ]∆X where X is the vector of system state variables and ∆X is the

linearized state variable vector. The state variables considered in this system are the d and

q axis components of stator and rotor currents, terminal voltage and slip of the induction

motor, field and damper winding emfs, mechanical torque, rotor angle and speed of the

synchronous generator, d and q axis components of the line current and series capacitor

voltage and variables Vx and Efd associated with the AVR as explained in Section 7.2.

The eigenvalues of the linearized mathematical model of the system are calculated and

analyzed for various values of system parameters and the results are presented in the

following sections:
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Fig. 7.3: Eigenvalue trajectory for base case

7.3.1 Eigenvalues of base case

Eigenvalues of the system under study are computed for the following operating condi-

tions: the induction motor slip is at 2% and the X/R ratio of the line is assumed to be

20, exciter of the SG has a gain and time constant of 500 and 25 ms respectively and the

measurement transducer time constant of the AVR is 10 ms. The series compensation

level of the system (Kc = Xc/Xnw) is varied from 1% to 95%.

The eigenvalues of the system along with the corresponding dominant state variables for

each mode are presented in Table 7.1. for a series compensation of 60%. There are 6

oscillatory modes (λ1 to λ6) and 5 non-oscillatory modes (λ7 to λ11). The system starts

out to be stable as the series compensation is at 1% and remains stable up to 62%. As
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Table 7.1: Eigenvalues for base case

λi −σ ± jω Participating States

λ1 −40.188± j2086.8 Idn, Iqn, Ids, Iqs, Idr, Iqr, Vdm, Vqm
λ2 −51.454± j1330 Idn, Iqn, Ids, Iqs, Idr, Iqr, Vdm, Vqm
λ3 −7.4056± j557.92 Idn, Iqn, Ids, Iqs, Idr, Iqr, Vdc, Vqc
λ4 −0.2358± j194.8 Idn, Iqn, Ids, Iqs, Idr, Iqr, Vdc, Vqc
λ5 −7.1786± j28.759 Ids, Iqs, Idr, Iqr, E ′q, Vx, Efd
λ6 −10.157± j20.166 Ids, Iqs, Idr, Iqr, E ′q, sm
λ7 −106.99 Ids, Iqs, Idr, Iqr, E ′q, Vx, Efd
λ8 −24.485 Ids, Iqs, Idr, Iqr, Efd
λ9 −17.112 Ids, Iqs, Idr, Iqr, Tm, ω

λ10 −2.7822 Tm, ω

λ11 −1.4834 Ids, Iqs, Idr, Iqr, E ′d

Table 7.2: Critical eigenvalues for different X/R ratios

X/R ratio Kcr λcr = −σ ± jω Participating states

10 74% 0.0522± j192.07
Idn,Iqn,Ids,Iqs,Idr,Iqr,Vdc,Vqc30 56% 0.0792± j189.43

the compensation is increased beyond 62%, the system becomes unstable due to SSR as

the oscillatory mode λ4 crosses over to the right half of the complex plane resulting in an

unstable system. The same analysis when repeated for a lower X/R ratio of the system

(X/R = 10) revealed a Hopf bifurcation due to SSR at a higher value of critical series

compensation (Kcr = 74%, λcr = 0.0522± j192.07) and for a higher X/R ratio of 30, the

critical value of series compensation is Kcr = 56% with λcr = 0.0792± j189.43.

7.3.2 Influence of AVR parameters on stability domain

The influence of exciter parameters on the stability domain of the system with respect

to series compensation level is explored in this section through eigenvalue analysis. The
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Fig. 7.4: Eigenvalue trajectory for Ka = 2000

parameters under study are the gain of the exciter and the time constants of the AVR

and measurement transducer.

7.3.2.1 Influence of exciter gain

Eigenvalues of the system are computed for the system under study for the following

operating conditions: the induction motor slip is at 2% and the X/R ratio of the feeder

(Xn2/Rn2) is assumed to be 25, exciter of the SG has a gain and time constant of 2000 and

25 ms respectively and the measurement transducer time constant of the AVR of the SG

is 10 ms. The eigenvalue trajectory of the system are presented in Fig. 7.4 as the degree

of series compensation Kc is varied from 1% to 98%. The non-oscillatory modes are stable

98



0 200 400 600 800 1000 1200 1400 1600 1800
Exciter gain

40

45

50

55

60

65

70

75

80

85

90
C

ri
ti

ca
l s

er
ie

s 
co

m
pe

ns
at

io
n 

(%
)

X/R = 10
X/R = 30

Fig. 7.5: Hopf bifurcation points for varying exciter gains

for the entire range of series compensation considered. When Kc is at 1%, there is an

oscillatory mode on the right half of the complex plane (λc1 = 2.2759± j76.585) making

the system unstable. As the compensation increases, λc1 moves toward the left half of

the complex plane and when Kc exceeds 24%, λc1 moves into the left half of the complex

plane which results in a stable system as a consequence of a reverse Hopf bifurcation.

As Kc further increases, the system becomes unstable once again as another oscillatory

mode moves to the right half of the complex plane when Kc exceeds 49%. The critical

eigenvalues at this point are λc2 = 0.1471± j205.38. Instability in this case is a result of

a Hopf bifurcation occurring due to SSR. Critical eigenvalues and participation factors

of the system for 2 different series compensation levels of 15% and 50% are presented in

Table 7.1.
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Table 7.3: Critical eigenvalues for AVR gain of 2000

Kcr λcr = −σ ± jω Participating states

15% 0.9597± j75.013 Ids,Iqs,Idr,Iqr,E ′q,Vx,Efd
50% 0.094± j170.26 Idn,Iqn,Ids,Iqs,Idr,Iqr,Vdc,Vqc

The eigenvalues of the system were further computed for various exciter gains for X/R

ratios of 10 and 30. In Fig. 7.5, the variation of Hopf bifurcation points with respect

to exciter gain and series compensation levels are shown. For an AVR gain of 100, the

system with X/R ratios of 10 and 30 loses stability through a Hopf bifurcation due to

SSR when the series compensation level is 80% and 60% respectively. As the AVR gain

increases, the percentage series compensation at which SSR occurs decreases resulting in

smaller stability domains.

As the AVR gain was increased to 1600 for an X/R ratio of 30, the system was unstable

for Kc of 1% to 3% and when Kc is increased beyond 4%, the system becomes stable

causing a reverse Hopf bifurcation. The system remains stable for values of Kc up to 47%

and as Kc ≥ 48%, the system loses stability due to SSR. As the AVR gain is increased to

1800, the system experiences a reverse Hopf bifurcation (RHB) and a Hopf bifurcation

(HB) at Kc values of 16% and 47% respectively. Similar phenomenon was observed for

the system with X/R ratio of 10, however the stability domains were found to be much

higher. For example, for an AVR gain of 1800 in the system withX/R = 10, the RHB and

HB points correspond to Kc values of 5% and 62% respectively. Hence, from this it can

be inferred that for higher AVR gains, value of Kc at which the reverse Hopf bifurcation

occurs increases which further reduces the size of the stability domain. Overall, the size

of the stability domain with respect to Kc is much smaller for a weaker system especially

for high AVR gains.
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7.3.3 Influence of exciter time constant

The time constant of the AVR has a significant impact on the stability domain of the

system with respect to series compensation which would be described in this section.

Eigenvalues of the system were analyzed as the series compensation is varied from 1%

to 98% for various values of exciter time constant. This was done for systems with X/R

ratios of 10 and 30. This analysis was performed for AVR gains of 500 and 1000 and the

results are presented in Tables 7.4 and 7.5 respectively. Stability domain of the system

with respect to Kc is increased as the AVR time constant is increased from 1 ms to 40 ms

as the Hopf bifurcation point due to SSR is moved from Kc = 51% to Kc = 77% for the

system with X/R = 10. When the time constant is increased to 42 ms, instability due to

a Hopf bifurcation occurs due to a mode corresponding to the exciter at Kc = 75%. As

the time constant increases further to 70 ms, the stability domain shrinks further as the

Hopf bifurcation point due to the exciter is shifted to Kc = 6%. When Ta ≥ 80 ms, the

stable operation of the system is not possible for any level of Kc as the system is unstable

for Kc starting at 1%.

The same phenomenon occurs for the system with X/R = 30, however, the stability

domain starts decreasing when Ta ≥ 59 ms which is higher compared to the previous case

with X/R = 10. Stable operation of the system is impossible for Ta ≥ 100 ms which is

also higher compared to the previous case. Also, when the time constant Ta = 59 ms,

as Kc changes from 58% to 59%, 2 pairs of complex eigenvalues (λc1 = 0.0277 ± j184.7,

λc2 = 0.0194 ± j23.495 at Kc = 59%) crossover from the left to the right half of the

complex plane resulting in a Hopf-Hopf bifurcation.

The exciter gain is increased to 1000 and the same analysis was performed on the systems

with X/R ratios of 10 and 30 and the results are presented in Table 7.5. The stability

domain with respect to Kc is greater for the system with X/R = 10 up to a value of Ta
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Ta (ms) X/R = 10 X/R = 30
Kcr (%) λcr = −σ ± jω Kcr (%) λcr = −σ ± jω

1 51 0.0203± j224.79 38 0.0609± j223.53

5 57 0.0423± j214.73 43 0.0962± j212.61

10 65 0.0473± j203.49 49 0.0689± j201.35

20 72 0.0279± j194.52 54 0.0034± j192.75

30 75 0.027± j190.88 57 0.0831± j187.81

40 77 0.0644± j188.5 58 0.0547± j186.24

50 54 0.0019± j24.798 59 0.0783± j184.65

60 30 0.0292± j23.87 58 0.0428± j23.408

70 6 0.0012± j23.116 45 0.0469± j22.703

80 1 0.4935± j22.09 32 0.0189± j22.111

Table 7.4: Critical eigenvalues for various AVR time constants at an AVR gain of 500

Ta (ms) X/R = 10 X/R = 30
Kcr (%) λcr = −σ ± jω Kcr (%) λcr = −σ ± jω

1 37 0.1122± j247.35 27 0.1024± j247.53

10 56 0.0463± j215.27 42 0.0250± j213.76

20 66 0.0725± j201.77 50 0.1073± j199.22

30 70 0.0172± j196.79 53 0.0520± j194.2

40 73 0.0694± j193.13 55 0.0609± j190.94

50 36 0.0147± j36.324 56 0.032± j189.36

Table 7.5: Critical eigenvalues for various AVR time constants at an AVR gain of 1000

close to 40 ms compared to the system with X/R = 30. When Ta = 50 ms, the system

with X/R = 10 has a much smaller stability domain as the system loses stability due

to a Hopf bifurcation with the exciter mode causing instability at Kc = 36%. This is

much smaller compared to the Hopf bifurcation point which corresponds to Kc = 56%

due to SSR for the system with X/R = 30. Also note that as Ta varies from 1 to 40

ms, the stability domain increases as the critical value of Kc causing a Hopf bifurcation
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Tx (ms) X/R = 10 X/R = 30
Kcr (%) λcr = −σ ± jω Kcr (%) λcr = −σ ± jω

1 64 0.052± j205.81 48 0.0699± j204

5 69 0.0862± j198.52 52 0.0973± j196.32

10 74 0.0522± j192.07 56 0.0792± j189.43

15 77 0.0866± j188.41 58 0.0713± j186.17

20 78 0.0426± j187.26 59 0.0583± j184.59

25 56 0.014± j26.955 60 0.0919± j183.01

30 30 0.0039± j26.951 60 0.0459± j183.06

35 1 0.0933± j27.902 47 0.0412± j26.127

Table 7.6: Critical eigenvalues for various measurement time constants at an AVR gain of 500

Tx (ms) X/R = 10 X/R = 30
Kcr (%) λcr = −σ ± jω Kcr (%) λcr = −σ ± jω

1 53 0.0661± j221.22 39 0.004± j221

5 61 0.1190± j208.75 46 0.0354± j206.65

10 68 0.0008± j199.28 52 0.1094± j195.83

15 73 0.1027± j192.97 55 0.084± j190.8

Table 7.7: Critical eigenvalues for various measurement time constants at an AVR gain of 1000

due to SSR increases for each of the systems with X/R ratios of 10 and 30 respectively.

Furthermore, the system also undergoes a reverse Hopf bifurcation for Ta ≥ 64 ms at

smaller values of Kc in addition to the Hopf bifurcation which occurs due to SSR as Kc is

increased. This shows that for it may be impossible to operate a weak system in a stable

manner without a minimum level of series compensation.

7.3.4 Influence of time constant of measurement transducer

Eigenvalue analysis was conducted for the system with X/R ratios of 10 and 30 for

various values of time constant of the measurement transducer. Just as it was described
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in the previous section with respect to Ta, here, the stability domain increases for both

the systems with X/R ratios of 10 and 30 as Tx increases up to 20 ms. Beyond that,

as Tx ≥ 25, the system with X/R = 10 becomes unstable at lower values of Kc due to

the exciter mode. This phenomenon is observed in the system with X/R = 30 as well,

however, at a higher value of Tx at 35 ms. Hence, up to a certain value of Tx, the stability

domain of the stronger system is bigger than that of the weaker system. However, beyond

a certain value of Tx, the weaker system has a larger stability domain. As the AVR gain

is increased to 1000, the system shows similar behavior. In addition to Hopf bifurcations

due to SSR and exciter mode destabilization, reverse Hopf bifurcations occur as well at

small values of Kc. Hence, systems using AVRs with high gains need a minimum level of

Kc in order to have stable operation. Depending on the values of Tx and Ta, the upper

limit of Kc is determined either by SSR or exciter mode destabilization.

7.4 Time domain simulation results

The nonlinear dynamic model of the system is programmed in SIMULINK and the results

generated are presented in this section. The responses of the system with respect to time

are studied for AVR gain Ka of 500 and different values of time constants of the AVR

control system. The series compensation level for the system is at 50% which is realistic

for a weak system with an X/R ratio of 30.

7.4.1 Exciter time constant Ta = 10 ms

The responses of induction motor speed and terminal voltage are shown in Fig.7.6 for a

disturbance in the form of a 20% increase in the load torque on the induction motor. In

this case, the AVR limits have not been modeled as a result of which, oscillations in the

voltage increase with time. This is a consequence of a subcritical Hopf bifurcation as a
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(a) Induction motor speed

(b) Motor terminal voltage

Fig. 7.6: Time responses for the system without AVR limits

result of SSR which causes excessive voltages and currents.

Limits on the excitation system have been imposed and the simulations were repeated

and the time responses are presented in Fig. 7.7. Exciter limits impose an upper and

lower limit on the field voltage applied to the rotor winding of the synchronous machine

resulting in an arrest on the growth of oscillations in the system states. The system now

behaves as if the nature of the bifurcation is supercritical resulting in sustained oscillations
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(a) Induction motor speed

(b) Motor terminal voltage

Fig. 7.7: Time responses for the system with AVR limits

of fixed amplitude with respect to time. Phase plane trajectory of the induction motor

speed in Fig. 7.8 reveal an unstable system with growing oscillations if the AVR limits

are neglected and a system with oscillations bounded in magnitude if the AVR limits are

taken into account.
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Fig. 7.8: Phase plane trajectory of induction motor speed for Ta = 10 ms

7.4.2 Exciter time constant Ta = 70 ms

Time traces of induction motor speed and terminal voltage are presented in Fig. 7.9

when the AVR limits of the synchronous machine are neglected. The system shows an

oscillatory response bounded in magnitude characterizing a supercritical Hopf bifurca-

tion. The amplitude of oscillations appear to continually change within a bound for the

quantities presented. However, with the AVR limits included, the oscillations appear to

be bounded with fixed amplitude characterizing a supercritical bifurcation in this case as

well. These are evident from the time responses of induction motor speed and terminal

voltage as shown in Fig. 7.10.

Phase-plane trajectories of induction motor speed when the AVR time constant is set at

70 ms are presented in Fig. 7.11. In the case where the AVR limits are neglected, a su-

percritical Hopf bifurcation is observed in the system which appears to undergo repeated

period doublings. This is evident in the one to the left in Fig. 7.11. The amplitude

of oscillations although bounded appear to change continuously in a random manner

which is the characteristic of ’quasi-chaos’. However, with the AVR limits modeled, the

phase-plane trajectory of induction motor speed shows a well-defined limit cycle and the

absence of a period doubling bifurcation. This is due to the fact that with AVR limits
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(a) Induction motor speed

(b) Motor terminal voltage

Fig. 7.9: Time responses for the system without AVR limits

modeled, the voltage applied to the field winding is allowed to vary only between ±3

pu. This limit is much lower than the minimum amplitude of oscillations in Efd when

it varies in a random manner when AVR limits are neglected. This imposes a bound on

the variations in the generator terminal voltage which is reflected at the motor terminal

voltage and impacts the speed of the motor which varies only within a limit.

Further investigations were carried out with regards to the period-doubling bifurcation

observed in the system when AVR limits were neglected. The system was subject to
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(a) Induction motor speed

(b) Motor terminal voltage

Fig. 7.10: Time responses for the system with AVR limits

different step increases in the induction motor load torque and phase-plane trajectories

of the induction motor speed are plotted and are shown in Fig. 7.12. With the system

subject to a 25% increase in the load torque, the number of period doublings are hard

to count as the trajectories are so close to each other. As the step change was increased

to 30%, 2 period doublings can be observed. The number of period doublings reduced

to 1 when the load torque disturbance was increased to 35% and finally, the period

doubling bifurcation is found to be absent when the load torque disturbance magnitude

was increased to 45%.
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Fig. 7.11: Phase plane trajectory of induction motor speed for Ta = 70 ms

7.5 Conclusion

In this chapter, the dynamic analysis of induction motor loads fed through weak inter-

connections was performed through analyzing eigenvalues of the system and time domain

simulations. Control system parameters of the AVR have a significant impact on the

stability domain with respect to series compensation. The AVR gain, time constants

of AVR and measurement transducers have to be taken into account while determining

percentage series compensation to avoid instability due to subsynchronous resonance or

exciter mode destabilization. Depending upon the speed of response of the AVR and mea-

surement transducer, the stability domain of the weaker system may be bigger or smaller

than that of a relatively stronger system. This shows that a supplementary controller is

needed to operate the system in a stable manner.
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Fig. 7.12: Period doublings for various step changes in load torque
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CHAPTER 8

Conclusions and Future Research Direction

Dynamic modeling, stability studies through eigenvalue analysis and time domain simu-

lations of series compensated power systems with weak interconnections have been con-

ducted to analyze bifurcations and stability domains with respect to series compensation.

The results of these studies have been presented for various network topologies and the

following conclusions are presented in the following section.

8.1 Conclusions

[1] Systems with SCIG-WTs integrated with the grid through series compensated radial

feeder lose stability through a Hopf bifurcation due to SSR. Stability domains with

respect to series compensation become smaller as the interconnection grows weak

due to feeders of high impedance. A saddle-focus equilibrium is possible at high

wind speeds in systems where the generator terminal voltage is unregulated due to

the usage of only fixed shunt capacitors for reactive power compensation.

[2] Systems with SCIG-WTs integrated to the grid by means of non-radial intercon-

nections may have a bigger stability domain. This is due to the fact that in a

non-radial interconnection, the X/R ratio of the network may smaller resulting in a

higher stability domain with respect to series compensation. However, the critical

series compensation level which determines the size of the stability domain depends

on the parameters of the SCIG and the X/R ratio of the interconnection. Wind

speed may not play a big role in determining the critical series compensation level

at which SSR occurs.
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[3] A Static Var Compensator (SVC) used in the place of a fixed shunt capacitor

to provide reactive power compensation is able to improve the stability domain

of the radially connected system by a small margin. However, delays introduced

due to the constants of measurement transducers used in the voltage regulator

has an adverse effect on the stability domain. When the SVC is further equipped

with a supplementary damping controller using generator slip or real power as it’s

input signals, the stability domain becomes bigger by a wide margin under various

operating conditions.

[4] Induction motors interconnected to substations by series compensated feeders may

experience instability through subcritical Hopf bifurcations due to SSR resulting

in motor stalling and excessive voltage and current. This is exacerbated by higher

feeder impedances resulting in a weaker system. Stability domains due to series

compensation also decrease by a small margin under higher loading conditions in

the motor. Systems with high X/R ratios may experience a reversal in the direction

of rotation of the induction motors in addition to stalling causing excessive voltages

and currents.

[5] As the dynamics of synchronous generators connected to substations which supply

induction motor loads are taken into account, the stability domain with respect to

series compensation is affected by the generator voltage control system parameters

in addition to the strength of the grid and the load on the motor. Systems with

generators using AVRs of high gains have smaller stability domains. The system

may be susceptible to reverse Hopf bifurcations when high gain AVRs are used.

[6] Values of time constants of the AVR and measurement transducer determines if the

system may become unstable due to a subcritical Hopf bifurcation due to SSR or

a supercritical Hopf bifurcation due to the exciter mode destabilization. Stability
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domain of the relatively stronger system is larger if the upper limit of series com-

pensation is determined by the level at which SSR occurs. However, the weaker

system has a larger stability domain if the upper limit of series compensation is

determined by the critical level at which the exciter mode becomes unstable due to

a Hopf bifurcation.

8.2 Future research direction

Stability domain analysis enhancement of weak power systems can be explored in the

context of systems with multiple generators of the same type or different types. Utilization

of energy storage systems to mitigate SSR is another area of research which can be an

offshoot of this work. Using other signals in the system in the supplementary damping

controller to eliminate SSR is another potential area of research. Identifying optimal

locations of controllers to provide maximum improvement in system stability could be

another extension of this research. With regards to the impact of dynamic loads on the

stability of series compensated systems, modifying the already existing voltage controller

and power system stabilizer design to achieve stability domain enhancement is a way to

extend the work done in this dissertation.
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List of Abbreviations

AVR Automatic Voltage Regulator

SCIG-WT Squirrel Cage Induction Generator - Wind Turbine

FBM First Benchmark Model

SBM Second Benchmark Model

SG Synchronous Generator

IM Induction Motor

SVC Static Var Compensator

SSR Subsynchronous Resonance

HB Hopf Bifurcation

RHB Reverse Hopf Bifurcation
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List of Key Symbols

Kc Degree of series compensation

Vw Wind speed

Ids, Iqs d and q axis component of stator current of induction machine

Idr, Iqr d and q axis component of rotor current of induction machine

Idn, Iqn d and q axis component of network current

Id1, Iq1 d and q axis component of current through line 1 of the double

circuit

Id2, Iq2 d and q axis component of current through line 2 of the double

circuit

Vds, Vqs d and q axis component of stator voltage of induction generator

Vdm, Vqm d and q axis component of stator voltage of induction motor

Vdc, Vqc d and q axis component of series capacitor voltage

Vdt, Vqt d and q axis component of stator voltage of synchronous gen-

erator

E ′d Induced emf due to flux linkage in the damper winding of syn-

chronous generator

E ′q Induced emf due to flux linkage in the field winding of syn-

chronous generator

sg Slip of induction generator

sm Slip of induction motor

ωm Speed of induction motor

ω Rotor speed of synchronous generator

δ Rotor position of synchronous generator
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Vx Output voltage from measurement transducer in AVR

Efd Voltage applied to the field winding of synchronous machine

Tm Mechanical torque input to the generator (Induction or syn-

chronous generator)
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APPENDIX A

Parameters of the induction generators IG1, IG2 and the wind turbine considered in this

dissertation are presented in this Tables A.1 and A.2 respectively.

Table A.1: Parameters of IG1

Parameter Value

Stator resistance (Rs) 0.01105 pu

Rotor resistance (Rr) 0.01102 pu

Stator leakage reactance (Xls) 0.0507 pu

Rotor leakage reactance (Xlr) 0.0507 pu

Magnetizing reactance (Xm) 3.0729 pu

Inertia constant (Hig) 2 s

Table A.2: Parameters of IG2

Parameter Value

Stator resistance (Rs) 0.01 pu

Rotor resistance (Rr) 0.05 pu

Stator leakage reactance (Xls) 0.10 pu

Rotor leakage reactance (Xlr) 0.08 pu

Magnetizing reactance (Xm) 3 pu

Inertia constant (Hig) 0.5 s
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APPENDIX B

The parameters of the induction motor and the synchronous generator considered in this

dissertation are presented below:

Table B.1: Parameters of induction motor load

Parameter Value

Stator resistance (Rs) 0.02 pu

Rotor resistance (Rr) 0.025 pu

Stator leakage reactance (Xls) 0.08 pu

Rotor leakage reactance (Xlr) 0.08 pu

Magnetizing reactance (Xm) 4 pu

Inertia constant (Him) 1 s

Table B.2: Parameters of synchronous generator

Parameter Value

Armature resistance (Ra) 0.001 pu

Steady state reactance (Xd) 1.75 pu

Steady state reactance (Xq) 1.65 pu

Transient reactance (X ′d) 0.3 pu

Transient reactance (X ′q) 0.75 pu

Transient time constant (T ′do) 5 s

Transient time constant (T ′qo) 1 s

Inertia constant (H) 4 s
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