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C~APTERl 

INTRODUCTION 

1.1 Statement of the Problem 

Pollution of surface and ground water systems from agricultural activities has been 

reported to be a serious problem. One of the most convenient ways to study the impact of 

various agricultural activities on surface and ground water quality is the use of 

hydrology/water quality (H/WQ) models. During the last decade many models, such as 

AGNPS (Young et al., 1987), ANSWERS (Beasley et al., 1980), CREAMS/GLEAMS 

(Knisel, 1980), EPIC (Williams et al., 1984), WEPP (Lane et al., 1989), SWAT (Arnold et 

al., 1993), and SIMPLE (Sabbagh et al., 1995) have been developed for use in making 

environmental decisions on rural watersheds. These models require input parameters to 

describe specific situations. The actual processes occurring in the field are more complex 

and variable than can currently be represented even in the most sophisticated models. 

Algorithms included in a model that are designed to represent a particular process are forced 

to represent processes that are not included in the model precisely because there is no other 

representation of these processes in the model (Haan et al., 1995). 

Rainfall is a key input variable used in all H/WQ models. It activates flow and mass 

transport in hydrological systems. Modeling of hydrological processes in which the rainfall 

is the driving force has generated considerable interest with respect to possibilities of solving 
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increasing environmental problems. However, most of the hydrological calculation methods 

used in practical applications are still based on assumptions and simplifications from the 

early history of hydrology (Bemdtsson and Niemczynowicz, 1988). For example, it is no 

longer practical to maintain the assumption that rainfall is spatially homogeneous across a 

watershed area. Thus, one of the ways to improve the accuracy of calculated runoff and 

runoff driven pollutant transport is to truce spatial and dynamic properties of rainfall into 

consideration. 

The sensitivity of model outputs to the changes in input parameters has been of great 

interest to both model developers and model users. One parameter that has received little 

attention in modeling is the temporal and spatial distribution of rainfall. The storm rainfall 

is usually represented by an average precipitation uniformly distributed throughout the 

watershed, even though the storm events that cause the greatest movement of sediment and 

nutrients are rarely uniform (Young et al., 1992). This spatial variability in rainfall input 

may introduce significant errors in model parameters and subsequently in the model outputs. 

1.2 Objectives 

The overall goal of this research was to study the· variability induced in H/WQ model 

parameters and model outputs solely due to the spatial variability in the rainfall. This will 

help isolate the variability in the model parameters/outputs caused by a spatially variabl.e 

rainfall which is otherwise thought to be uniform and is usually assumed not to contribute 

towards the model parameter/output uncertainty. The specific objectives of this research are: 
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1. To combine rain gauge and radar data to capture.spatial variability of rainfall. 

2. To estimate parameter uncertainty in H/WQ models solely due to the spatial variability 

of rainfall. 

3. To study the impact of spatial variability of rainfall ori model outputs, i.e. runoff, 

sediment and imtrientlosses. 

Research Hypothesis. Rainfall input as required by most H/WQ models is spatially variable 

and introduces significant uncertainty in modeling H/WQ processes. 

1.3 Scope of the Study 

This research was conducted using data from the Little Washita basin, a tributary of 

the Washita River in Southwest Oklahoma. Two subwatersheds known as Cyril and Cement 

watersheds were delineated and used in this study. Rainfall spatial variability was captured 

using data from Micronet stations and NEXRAD radar data. Further details are given in 

Chapter 4. 

Most H/WQ models that use rainfall as an input, assume spatial homogeneity of 

rainfall across the watershed. The results obtained in.this study can be used as a guideline 

to . estimate the errors in the model parameters/outputs induced by the rainfall spatial 

variability. Very few studies have been conducted in the past to assess the effect of rainfall 

spatial variability on model outputs. Most of these studies concentrated on hydrologic 

components of the model such as runoff volume, peak runoff rate and time to peak. No 
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study has been conducted to estimate the uncertainty in the model parameters induced by 

rainfall spatial variability. All of these studies were limited by the smaller size of the 

watersheds, and a small number of raingauges available to capture the rainfall spatial 

variability. This study was conducted on two watersheds. The rainfall spatial variability was 

captured using a dense network of raingauges and radar data. The following steps were taken 

to accomplish the objectives of this study: 

I. Rainfall Spatial variability was captured using Micronet raingauges and radar. Radar 

data were calibrated using the Micronet data. 

2. AGNPS .model was modified to input a grid-based rainfall and energy intensity. 

3. AGNPS was calibrated using true rainfall pattern and runoff data. Calibrated 

parameters and the true rainfall pattern were used to obtain the 'observed' model 

outputs. 

4. Model parameter uncertainty solely due to rainfall spatial variability was obtained 

by estimating the model parameters using observed outputs and rainfall observed at 

each gauge location assuming the spatial homogeneity of rainfall. 

5. Model output uncertainty resulting solely from the spatial variation in rainfall was 

estimated by running the model using calibrated parameters and rainfall observed at 
. . 

each gauge location, one at a time, assuming that the rainfall was spatially 

homogeneous across the watershed. 
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1.4 Significance of the Study 

Historically, in the application of H/WQ models, rainfall has been assumed to be :a . 
. 

uniform process and it is assumed not to contribute to parameter uncertainty. Consequently, 

a single rainfall depth is input in the models. Several studies have shown that rainfall is 

spatially variable andjtmay cause a variability in the model outputs. Rudra et al. (1993) 

observed that: "failqre to take these variations into account during calibration could lead to 

highly distorted estimates of model parameters; and failure to consider the detailed variations 

during model application could lead to serious inaccuracies in predicted results". 

In recent years, a rapid increase in both the number and size of various kinds of 
. . 

pollutant releases and the spread of pollu~ts has been observed. In pace with the increasing 

environmental problems the need for a~curate hydrological estimation methods is also · 

increasing. For the identification and estimation of pollution management technologies, it 

is very important to calculate pollutant release and pollutant transport· with accurate temporal 

and spatial resolution. Since rainfall is a driving force behind many.kinds of pollutant 

release and subsequent transport and spread mechanisms, an accurate description of temporal 

and spatial rainfall variability should be used for these calculations (Bemdtsson an~ 

Niemczynowicz, 1988). O'Connell and Todini (1996) stressed that the u~e of radar and 
. 

dense raingauge data should be the type of experiment needed to gain a better understanding 

of the hydrological importance of spatial variability in rainfall. 
. . 

With the advent of modem precipitation measurement techniques it is now possible 

to measure spatial variability of rainfall easily and more accurately. Spatial variability of 

rainfall was captured by the use of raingauge and radar measured rainfall. This spatially 
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variable rainfall was applied to AGricultural Non-Point Source Pollution (AGNPS) model. 

The results of this study give an insight about parameter uncertainty that was caused solely 

by the spatial variability of rainfall. Also, it gives information about how much variability 

in the model output can result when rainfall is assumed uniform. The results of this study 

can be applied to other WWQ models that use rainfall as an input. 
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CHAPTER2 

REVIEW OF LITERATURE 

Haan (1989) has mentioned that in any modeling effort there are at least three types 
. ,· . '. .-· 

of uncertainty involved - parameter uncertainty, model uncertainty,· and uncertainty in the 

true state of nature. Parameter uncertainty reflects incomplete models, incomplete 

information and inadequate parameter estimation techniques; · Parameter uncertainty arises 

. because parameters are random variables and one can never be sure of the proper value of 

the parameters. Uncertainty in the model parameters results from the approximate nature of 

the model containing the parameters. Model uncertainty arises because any model is a 

simplification of processes occurring in the nature and it does not represent the true system. 

Because many simplifying assumptions are made while modeling hydrologic processes on 

a watershed scale, algorithms included in the model do not represent all the processes that 

are actually occurring on a watershed. ·. Uncertainty in the true state of nature refers to the 

variability in space and time of meteorologic factors such as rainfall, temperature, solar 

' 
radiation, stream flow, etc. This work is mainly focused on the parameter uncertainty an4 

the uncertainty due to the true state of nature. 

Traditionally, the distribution of rainfall depth has been assumed to be homogenous 

and consequently very few attempts have been made to model the spatial variability of 

rainfall. As rainfall is measured conventionally at a finite (and Sometimes sparse) set of 
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points, the resulting estimate of average rainfall in space is subject to error (1) because the 

spatial variability of rainfall has been averaged out and (2) because the accuracy of the 

resulting average will depend on the density of the raingauge network (Shah et al., 1996). 

When a particular process such as rainfall variability is not modeled or is incompletely 

modeled, other components of the model are forced to compensate for this model 

shortcoming. Consequently, physically-based parameters may lose their strict physical 

interpretation. These parameters then reflect processes they were not originally intended to 

represent. 

2.1 Spatially Distributed Rainfall Models 

In seeking to characterize the behavior of rainfall in time and in space, Rhenals

F egueredo et al. (1974) have classified various stochastic modeling approaches as follows: 

(1). Point Rainfall Models: These models are based on observations of rainfall from a· 

single raingauge taken over a relevant time interval ( e.g., hourly, daily) and thus characterize 

a time series of rainfall at a single point. 

(2). Multivariate Rainfall Models: In these models the correlation structure of the 

historical poiritrainfalls for the relevant time is preserved by considering several raingauges 

simultaneously. When using such models for Monte Carlo simulations, rainfall depths can 

only be generated at the given gauge locations. 

(3). Multidimensional Rainfall Field Models: Such models seek to characterize the 

statistical structure of the rainfall at any point in the area of interest, and not just the locations 

of the raingauges. These type of models can be used to assess the impact of spatial 
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variability in rainfall on watershed response, as they can be used to simulate a fully 

distributed true rainfall input to a distributed model to obtain a corresponding true response. 

The concept of simulating a spatial rainfall distribution is riot new. Amorocho and 

Brandstetter (1967), Grayman and Eagleson (1969), and Cole and Sheriff (1972) were among 

the pioneers in presenting the mathematical descriptions of rainfall distribution in space. 

Mejia and Rodriguez-Iturbe (1974) developed an 'areal-multidimensional' rainfall model that 

uses stochastic concepts for simulating storm total rainfall depth atany point. Later, Bras 
. . 

and Rodriguez-Iturbe (1976) expanded this work to develop a 'non-stationarytime-varying 

multidimensional' rainfall generator. 

Felgate and Read (1975) adopted the correlation analysis technique developed by 

Briggs et al. (1950) to qualitatively describe the structure of stationary rainstorms. They 

assumed that spatial properties of rainfall patterns could be described by a two-dimensional 

Lagrangian spatial correlation function. Amorocho at1d Wu (1977) developed a modelin~ 

framework to generate precipitation sequences for any sampling time interval and at any 

ground location in the path of a storm. Their model uses a randomization process to produce 

clusters of short duration rain cells within a storm band. 

In 1978, Eagleson presented a rainfall model .that described th~ changes in sto~ 

intensity through time as a Poisson process. Such storms haye random and independent total 

depths. Later, he developed a rainfall model to simulate spatial storm properties (Eagleson, 

1984 ). He .modeled the occurrence of wetted rainstorm area within a catchment as a Poisson 

process in which each storm was composed of stationary, non-overlapping, independent 

random cell clusters whose centers were Poisson-distributed in space and whose areas were 
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fractals. He used this model to estimate spatial properties of tropical air mass thunderstorms 

on six tropical catchments in Sudan. 

Rodriguez-Iturbe, Gupta, Waldez and Waymire published several articles on concepts 

in modeling temporal and spatial occurrences of :,torms (Waymire and Gupta, 1981 a, 1981 b; 

Waymire et al., 1984; Rodriguez-Iturbe et aL, 1984; Valdes a~d Rodriguez-Iturbe, 198$; 

Waymire, 1985). Like Eagleson (1984), they also described storm occurrences as a Poisson 

process. In their approach, the storm is composed of rain cells that are Poisson-distributed 

in space. The number of rain cells for a storm is a random variable. Rain intensity for a cell 
. . 

is assumed to follow a decay function that is spatially symmetric around the center of the cell 

. . '. ' . ' 

where the maxiri:mrn intensity occurs. Rodriguez-Iturbe et al. (1987) offered detailed 

description of several decay functions, and studied their characteristics. 

Meadows et al. (1994) used rainfall records to develop a dimensionless rainfall 

distribution pattern. They found the rainfall distribution pattern to be unimodal and elliptical 

which can be described by a second degree polynomial equation with two independen,t 

variables. The relationship between a spatially variable rainfall and watershed performance 

was examined by performing storm water simulations using this spatially variant pattern and 

comparing· the results to those generat~d using a uniform rainfall depth. Based on thi~ 

comparison the authors illustrated that by using a spatially uniform rainfall depth over the 

watershed, runoff peaks and volumes were generally overestimated. This rainfall distribution 

pattern can be applied as a :forensic tool to only those watersheds which have sufficient 

information (historical data) to establish the spatial scale. 
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Loukas and Quick (1996) analyzed 175 storms in a mountainous watershed in the 

southwestern British Columbia. The precipitation was found to increase up to the mid-

distance of the watershed, and then decreased and/or leveled off or increased with the 

elevation again, depending on the type of event. The average storm intensity at the mid-

distance, on average, was found to be 90% larger than the average storm intensity at zero 

elevation. 

2.2 Radar Meas.urement of Rainfall 

A rain. gauge is the most direct and accurate way to measure the rainfall at a point 

where the gauge is located. The watershed physiographic factors, especially topography and 

the local topography surrounding the gauge strongly affect the gauge measured precipitatiori. 

Hovind (1965) showed that a deficiency of up to 70% was possible on the windward side and 

an excess of up to 100% was possible on the lee slope as compared to the measurements 

taken at a summit. Also, rain gauges only measure rainfall at a point. There is usually little 

interest in point rainfall measurements except to determine the relative accuracies of various 

gauges. 

Because·there may be large errors in the rain depth at any one gauge representing th~ 

areal average, hydrologists have resorted to a network ofrain gauges and to radar to improve 

areal average rainfall estimates. There is no doubt that a sufficiently dense network of 

gauges can measure rainfall better than a radar. In fact, gauge measurements are accepted 
·' 

as the standard against which other measurement techniques are compared. However, 
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operational raingauge networks are usually too sparse to capture the spatial variability of 

rainfall. 

Although the accuracy of the radar measured rainfall is highly suspect, radar has the 

decided advantage of being able to remotely survey large areas and to make millions of 

measurements in minutes. Radars (e.g., dual polarization or Doppler) capable of measuring 

more than one parameter ( e.g., vertical and horizontal reflectivities or spectrum of termin~l 

velocities) in each resolution volume offer improved estimates of critically important 

parameters of the drop size distributions so that high-resolution measurements of spatial 

distribution of rainfall can be made (Doviak and Zrnic, 1984). In the U.S., a network of 

more than 120 highly sophisticated and state of the art the Next Generation Weather Radar 

System (NEXRAD) is expected to provide high-quality, high-resolution precipitation data 

that meet a wide range of hydrometeorological applications. The first NEXRAD unit began 

operating in 1991 near Oklahoma City, OK. The NEXRAD systems are termed as WSR~ 

88D (Weather Surveillance Radar-88 Doppler). The basic principles of radar meteorology 

are well described in textbooks such as Battan (1973), Doviak andZmic (1984) and Atlas 

(1990). Only a brief review of the principles of rainfall measurement by a radar will be 

given here as more detailed discussion is available in these textbooks. 

Although indirect, radar estimates of rainfall are continuous in space and provide 

information on the spatial variability of rainfall. Radar transmits a radio energy and 

measures the returned energy after reflection and scattering by raindrops, hailstones or 

snowflakes. Rainfall rate R is estimated from the measurement of the returned energy (rad~ 

reflectivity), Z. Unfortunately, there is no universal relationship connecting these two 
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parameters, although it is a common experience that larger rainfall rates produce more 

intense echoes (Doviak and Zrnic, 1984). Rainfall rate is dependent on drop size 

distribution. A real drop size distribution requires an indefinite number of parameters to 

characterize it, and thus the radar..:determined value of Z alone can not provide a unique 

measurement of R. Due to the uncertain Z-R relationship, miscalibration of electronic 

components and many other factors, radar rainfall is estimated to have both systematic and 

random errors of 100% or more (Wilson and Brandes, 1979). Even with the modern radar 

technology (WSR".88D), Smith et al. (1996), and Pereira and Crawford (1995) reported that 

radar underestimated rainfall at all ranges. The underestimation of the rainfall by radar was 

found to be range dependent and the underestimation was most severe for far and close 

ranges. 

The radar reflectivity factor (Zin units ofmm6/m3) is proportional to the summation 

of the sixth power of particle diameters in a unit volume illuminated by the radar beam and 

is defined as 

(2.1) 

where Ni is number ofdrops per unit volume of air with diameter Di and N(D) is the number 

of drops with diameters between D and D+dD in a unit volume of air. The desired 

parameter, rainfall rate (R), is related to D through the following equation assuming that 

there is no vertical air motion present. 

R = 1t {"" N(D)D 3 V(D)dD 
6 lo 1 

(2.2) • 
I 
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where Vi(D) is the drop terminal velocity of a drop of diameter D that is approximated, in 

units of cm/s, by V1 = 1400 D 112 (Wilson and Brandes, 1979). 

Measurement of drop size distribution around the globe has been made under 

different climate conditions. Battan (1973) lists more than 69 different R-Z relations. In 

general a R-Z relation is described using the empirical relationsltlp, 

Z. = aR b 

i 
i 

(2.3): 

where a and b are coristants. For stratiform rains the relation Z = 200 R 1.6 was given by 

Marshall et al. (1955).artd is known as the Marshall-Palmer formula, with R in mm/hr and. 

It is quite difficult to calibrate radars to within a decibel, and there could be a 

systematic bias in the radar measured reflectivity. Some of these errors can be compensated 

by choosing an appropriate R-Z relation. According to Cain and Smith (1976), the relation 

Z = 1.55R1.ss removes any pervasive bias in the radar estimated rainfall (RER) in North 

Dakota; whereas in Miami, Florida; Woodley et al. (1975) reported that the relation Z = 

300Ru worked better. Filho (1996) used the same relationship in North-Central Oklahoma 

as suggested by Woodley et al. (1975) .. In a recent study using data from Tulsa and Twin 

Lakes, Oklahoma, Smith et al. (1996) suggested the parameter values to be a=0.017 and 

b=0.714 fot the Oklahoma conditions. 

Liu and Krajewski (1996) compared advection methods and a space-time kriging 

interpolation method to calculate hourly accumulation of radar-rainfall. The space-time 

evolution of rainfall fields was generated from a stochastic model. The generated fields were 
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. sampled following typical radar scanning strategies. Based on the statistical results and :a 

visual analysis of the graphical images, the authors suggested to use an interpolation scheme 

for radar observations even when storm velocity was not high. The space-time kriging 

method was found to provide the smallest mean error. The advection method gave the 

smallest standard error when advection velocity was high. The kriging method provided the 

best results for a low wind velocity. 

Wilson and Brandes (1979).have discussed the factors that produce errors in radar 

rainfall measurement. These sources can be categorized as: 

1. errors in estimating radar reflectivity factor;. 

2. variations in the Z-R relation; and 

3. gauge and radar sampling differences. 

Brandes (1975) has suggested a technique whereby gauges can be used to adjust the 

RER. Atlas et al. (1984) suggested that improvements in the accuracy of radar rainfall 

measurements can be achieved by measuring radar parameters in addition to reflectivity to 

overcome the ambiguity in drop size distribution. Goddard and Cherry (1984) suggested 

measurements of path-integrated microwave attenuation and also dual polarization methods 

to improve accuracy. ·. 

Smith et al. (1996) analyzed more than one year of data from two WSR-88D radars 

located in Oklahoma to characterize the systematic biases in the. hourly precipitation 

accumulation estimates. The authors analyzed the biases in three contexts: (1) biases th~.t 

. ! 
arise from the range dependent sampling of the radar, (2) systematic differences betwee:µ 

radar rainfall estimates when two radars are observing the same area, and (3) systematic 
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differences between radar and gauge measured rainfall values. A significant underestimation 

of rainfall was observed to occur within a 40 km range of the radar due to bias in reflectivity 

observations at the higher elevation angles used for rainfall estimation close to the radar. 

Bright band and anomalous propagation lead to systematic overestimation of rainfall at 

intermediate ranges. Beyond 150 km in spring-summer and beyond 100 km in winter-fall, 

underestimation of precipitation was pronounced due to incomplete beam filling and 

overshooting of precipitation. Radar-radar intercomparison analyses indicated that radar 

calibration was a significant problem at some sites. 

2.3 Comparisons of Rain Gauge Data With Radar Scanned Data 

Numerous articles have been published over the years comparing accuracy ofradar 

scanned rainfall against rain gauge measured rainfall. There has been considerable debate 

in recent years about accuracy of different rainfall measurement techniques and whether 

measurement techniques based upon remote sensing technology, using radar and/or satellite 

systems, can replace or complement rain gauge measurements. Several researchers have 

suggested that radar estimated rainfall (RER) when calibrated with rain gauges can give a 

rainfall estimate with the point accuracy of gauges and the spatial resolution and coverage 

of a radar. 

Wilson and Brandes (1979) compared the radar and gauge measurements for 14 

Oklahoma storms observed by the NSSL WSR-57 radar. The average ratio of gauge and 

radar measured depth varied from 0.41 (radar overestimate) to 2.41 (radar underestimater 

The average difference between radar and gauge point measurements for all 14 storms wa~ 
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found to be 63%. But by removing the mean storm bias, the average difference was reduced 

to 24%. Much of the radar error results were attributed to storm-to-storm differences in the 

Z-R relationship caused by microphysical and kinematic processes that affect the drop-size 

distribution and drop-fall speeds. The authors suggested that the combined radar-gauge 
. . 

estimates were usually better than the gauge only for gauge densities< 1 per 300-400 km2, 

whereas, radar-gauge estimates were no longer better than the gauge-only estimates wheh 

the density increased to about 1 per250-300 km2• 

Legates and Willmott (1990) found that the mean standard error for a particular 

network and rain field was a function of the number of gauges in the network, the raining 

fraction of the area and the ratio ofthe standard deviation to the mean of the non~zero portion 

of the rain field.· The authors found that the raingauge errors were directly proportional to 

total precipitation and amount to nearly 11 % of the global catch. 

Collier (1986) compared the bias and random errors iri rainfall measured by a 

telemetering gauge network alone, and from a radar calibrated by using data from only a few 
gauges. He suggested that a very dense gauge network was needed to measure point rainfall 

very accurately. However, a less dense gauge network with a radar system calibrated using 

the data from a few of the telemetering gauges was capable of producing measurements 

which had the same or better accuracy as a sparse gauge network over a large area. The 

calibrated radar estimates were more accurate within 75 km of the radar site than those using 

the telemetric raingauge network alone. Based on the comparison of WSR-88D and 

Oklahoma Mesonet data, Pereira and Crawford (1995) concluded that the statistical 
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integration of radar estimates and Mesonet measurements produced a more accurate final 

analysis than using either of the two parameter fields alone. 

Bellon and Austin (1984) analyzed a total of 3 7 weather sequences which passed over 

the City of Montreal, Canada, and found that the radar measured accumulations had an 

inherent error of the order of 25%, 0.5 hr forecasts had an error of 50% and 3 hr forecasts had 

an error of about 60%. The authors found that the introduction of the radar calibration factor 

did not improve forecasts much. ln the studies of Wilson (1970) and Brandes (1975), the 

gauge-radar mean rainfall estimates were more accurate than the estimates obtained using 

only gauges for large area (29,0000.km2), low gauge density (no more than one gauge per 

700 km2), and long duration rainfall events. Brandes (1975) showed that radar-measured 

rainfall corrected by gauge data improved the accuracy from 24% for measurements by 

gauge alone to 14% for combined radar-gauge measurements with a gauge density of one 

gauge per 1600 km2• He suggested thatevaporation below the radar beam, wind velocity 

fluctuations, and sampling were factors contributing to large spatial variations among 

calibration factors. 

Although considerable research has been done to compare the accuracy of raingauge 

and radar measured rainfall, very limited information is available which compares the 

measurement ofNEXRAD with rain gauges. The research conducted by the National Severe 

Storms Laboratory in Norman, Oklahoma, has been mostly based on a point comparison in 

the accuracy of rainfall between NEXRAD and selected rain gauges in central Oklahoma 

(NSSL, 1992). Also no information is available in terms of examining the relationship 

between the spatial distribution of runoff and spatial structure of rainfall at the pixel level. 
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Spatial distribution of runoff within a watershed is extremely important for flood prediction 

and water resource management, as well as basin planning. 

Ma (1993) applied NEXRAD rainfall data, rain gauge network precipitation data, and 

designed~storm data to compare spatial variation inrainfall depths. The rain gauge network 

and NEXRAD were found to give a different center of storm. Also, the raingauge 

measurements over predicted the rainfall.in some parts of the watershed and under predicted 

in other parts as compared to the NEXRAD measured rainfall. Approximately half of the 

total pixels in the watershed were found to have different runoff values between NEXRAD 

data and rain gauge network data. The difference between NEXRAD data and the design 

uniform storm data was found to be less than the difference between NEXRAD and rain 

gauge data. The author concluded that the spatial distribution of surface runoff was strongly 

affected by the spatial pattern of precipitation. 

Smith et al. (1996) used raingauges and the NEXRAD system ofWSR-88D radar 

located in Twin Lakes and Tulsa, Oklahoma to characterize biases of radar-estimated rainfall 

compared to the actual rainfall. The intercomparisons were based on WSR-88D hourly 

rainfall accumulation products and hourly raingauge data. The authors concluded that radar 

underestimated rainfall at most sites. Underestimation was most severe at far range and close 

range, but at most sites, underestimation occurred at all ranges. The raingauge observations 

were found to be 48% larger than WSR-88D rainfall estimates in the range 0-40 km, 18% 

in the range 40-160 km, and 40% in the range greater than 160 km for the warm season. For 

the cold season the corresponding values were found to be 30%, 14%, and 100%. However, 

accurate delineation of the no-rain area was found to be a particular strength of the radar 
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estimates. For sites within 200 km of the radar location, radar accumulations were found to 
I. 

be zero for more than 98% of the zero raingauge accumulations. Analyses of spati~l 

coverage of heavy rainfall was also found to be a fundamental advantage of radar over 
. ' 

raingauge networks for rainfall estimates. 

2.4 Effects of Spatial Variability of Rainfall on H/WQ Model Outputs 

Although it is acknowledged that, in general, catchments have an integrating or 

smoothing effect on rainfall both in time ~d in space, the complex relationship between the 

degree of spatial variability. of rainfall, catchment characteristics (topography, channd 

network, soils, etc.), antecedent soil moisture conditions and catchment response is poorly 

understood (Shah et al:, 1996). A very few studies have been conducted to investigate the 

significance of spatial variability of rainfall in H/WQ processes. Dawdy and Bergmap. 

(1969) studied the effect of rainfall variability on stream flow simulation in a small basin in 

Southern California. They concluded that predicting peak discharge based on a single rain 

gage observation resulted in a standard error on the magnitude of 20%. Similarly, Troutman. 

(1983) suggested that spatial variability of precipitation inflates mean squared errors of 

prediction ·in· precipitation-runoff modeling. One component of these larger errors was 

observed to be bias which often takes. the form of overprediction for large events an~ 

underprediction for small events. He examined this problem assuming stochastic structure 

· for the spatial behavior of rainfall together with a· form of the Green-Ampt infiltratioh 

equation for prediction of storm runoff volume. In similar studies, Wilson et al. (1979) an~ 

other researchers (Beven and Hornberger, 1982; Seliga et al., 1992; Corradini and Singh, 
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1985; Krajewski et al., 1991; Obied et al., 1994) have concluded that storm runoff 

hydrographs are sensitive to the spatial distribution and accuracy of the precipitation inputs. 

Young et al. (1992) attempted to assess the impact of spatial variability of rainfall 

on model performance by getting aJirst approximation of the deviations of runoff volume 

and sediment load caused by varying the spatial distribution of rainfall input to AGNP~. 

They generated event rainfall amounts by distributing a known volume of water by a 

. ' 

bivariate normal distribution function. The parameters of the distribution were adjusted for 

the purpose of centering the peak over different locations on the watershed and to adjust the 

spread of the distribution. The authors found that in one case total N loss was four times 

more and the total P and sediment yield were five times greater than the estimates obtained 

from an average uniform rainfall. In a similar study, Luzio and Lenzi (1995) applied 

AGNPS to a watershed in northern Italy. The authors applied spatially variable rainfall inpu,t 

using the spline method of interpolation. Rainfall erosion index and sediment yield were 

increased by more than 20% and total N and total P loads were increased by more than 17% 

when spatially variable rainfall was used. The authors speculated that coupling of radar data 

to model input data would significantly improve mod.el results. 

Shah et al. (1996a)investigated the relationship between the spatial variability of 

rainfall and catchment response by conducting experiments with a stochastic rainfall field 

model and a physically distributed Systeme Hydrologique Europeen (SHE) model. They 
' • ' I 

. . 

used Turning Bands Method (TBM} incorporating a fractionally differenced line process to 

generate Gaussian random fields with a specified space-time correlation structure to develo~ 

the rainfall field model. A transformation was then applied to the Gaussian field to 
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reproduce the non-stationary temporal · structure and skewed marginal distribution of 

observed rainfall and this transformed field was then propagated in space with the required 

velocity. Comparisons of the means, variances, skewness, cross- and auto-correlation 

functions of the observed and simulated ·storms at the sampling points showed a good 

agreement. Later, the authors applied the spatially-variable rainfall to the SHE model to 

assess the interaction between spatial variability of rainfall, antecedent catchment conditio~ 

and runoff production to isolate the component of error in runoff simulations associated with 

incomplete sampling of the rainfall inputto distributed catchment models. Percent errors in 

peak discharge and in total. volume ranged from 1-39% and 1-16%, respectively. The 

percentage errors were observed to be larger· for dry catchment conditions than for wet 

conditions. The errors increased with decreasing correlatfon as the rainfall became more 

spatially variable. Based on the results the authors suggested that under wet conditions, good 

. . 

predictions of runoff could be obtained with a spatially averaged rainfall input, provided that 

at least one gauge was available in the 10.55 km2 catchment. But the interpretation of this 

work was limited by the small catchment size, a few number of storms simulated and a few 

raingauges used for the conditional simulation. 

Faures et al, (1995) examined the effect of various rainfall measurement technique~ 
. ; • ' ·. I 

. i 

and spatial rainfall variability on runoff modeling of a small watershed ( 4.4 ha). The author~ 

demonstrated that the uncertainty in runoff estimation was strongly related to the number of 

gauges available to measure input rainfall. The spatial variability of rainfall was observed 

to cause a large variation in modeled runoff. When five model runs were conducted using 

input from one of the five recording raingauges, one at a time, the coefficient of variation fot 
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peak rate and runoff volume ranged from 9 to 76%, and from 2 to 65%, respectively, over 

eight observed storm events. By using four well distributed gauges the v~iation in modeldi 

runoff volume was reported to approach the sampling resolution of the raingauges as well 

as the estimated accuracy of runoff volume and peak rate observations. The authors 

concluded that if distributed catchment modeling was to be conducted at the 5 ha scale in an 

environment dominated by convective air-mass thunderstorm rainfall, knowledge of spatial 
' ' . ' 

variability on the same scale was 1'.equired. A single raingauge with the standard uniform 

rainfall assumption could lead to large uncertainties in runoff estimation. In a similar study 

conducted on a relatively larger watershed (83 km2) Hamlin (1983) observed that a rainfall 

obtained from a single gauge resulted in underestimation of peak and the errors in the peak 

. flow estimation exceeded 200%. With the inclusion of an additional gauge the magnitude 

of error was sharply reduced to 100%. Use of three gauges gave a significantly better result. 

Most of the studies conducted to examine the effect of spatial variability of rainfall 

on H/WQ process have focused primarily on runoff volume, time to peak runoff, and peak 

runoff rate predictions. Very few attempts have been made to study the effect of input 

rainfall spatial variability on the transport of sediment and nutrients. Young et al. (1992) 

studied the effect of rainfall ~patial variability on N, P and sediment transport using th~ 

AGNPS model. The rainfall spatial variability was captured using a synthetic storm. 

Hamlin (1983) mentioned that the use of synthetic rainfalls raises problems which must be 

recognized. The results of the gauge density as it affects flow prediction depends notonlr ··. 

on the catchmentand number of gauges used but also on the rainfall pattern and choice of 

model. Synthetic rainfall data may not model the patterns and amount of real rainfall 
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adequately. In addition, because of local configuration and site measurement problems of 

raingauges, there may be causal relationships between rainfall and stream flow which ma¥ 

not be modeled in the synthetic situation. With the availability of radar scanned rainfall data, . 

it is now possible to study the spatial characterization of rainfall and to incorporate this 

· rainfall · variability in H/WQ models in order to improve the accuracy of the mod¢1 

predictions. 

It is clear from th~ above discussion that most of the studies conducted to date using 

spatially variable rainfall were based on relatively smaller watersheds ( 4 ha - 77 km2) where 

only a few raingauges were available to capture the rainfall pattern. Since rainfall spatial 

variability can be expected to increase with an increase in the watershed size, the results 

reported in the literature may not be applied to a larger watershed. The knowledge of 

uncertainty in the estimated parameters due to rainfall spatial variability is also very limited. 

. . 
Only one study conducted by Troutman (1983) attempted to assess the effect of rainfall 

spatial pattern on estimated model parameters. In that study, the model considered was a 

rainfall-runoff model. The parameters that affect the transport of sediment, and sediment-

· attached nutrients were not discussed. The author used a synthetic rainfall to simulate the 

spatial correlation pattern ofan actual rainfall. Because of the simplicity of the stochasti~ 

rainfall model ·used in the study, .the results reported may not be expected to define th~ 

variability in actual rainfall-runoff modeling applica~ons. The simulation was based on an 

imaginary watershed and raingauge configuration. The results obtained were not verified 

using the observed data from a watershed. 
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In summary, a very few studies have been conducted using rainfall spatial variability 

to assess model output uncertainty. Most of the studies were focused on runoff volume ancl. 

peak runoff rate and very limited information exists on the effect of rainfall spatial variation 

on sediment and nutrient transport. Most of the studies were conducted on a relatively 

smaller watershed using a few number of raingauges to capture rainfall spatial patterns. Th~ 

results obtained could not be transferr~d to the larger watersheds where a large number of 

gauges may be available to measure rainfall patterns. No study has been conducted to 
. . 

estimate the effect of rainfall· spatial variability on estimated model parameters using 

observed rainfall and output data. Also no attempt has been made to use radar scanne4 

rainfall as an input to assess the effect of rainfall spatial variation on model 

parameters/outputs. 
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CHAPTER3 

THEORY 

3.1 Interpolation of Rainfall Data 

In the application of hydrologic modeling, rainfall often needs to be estimated at a 

given site because either data are missing or the sit~ is ungauged. Various methods are 

available to spatially interpolate rainfall at a point based on data available at other sites. A 

number of techniques for spatial interpolation of rainfall with varying degree of complexity 

have been suggested in the literature. These techniques can be grouped into the followin:t 

categories (Tabios and Salas, 1985). 

1. Theissen Polygon Method 

. 2. Polynomial Interpolation 

3. Inverse Distance Interpolation 

4. Multiquadratic interpolation 

5. Optimal interpolation, and 

6. Kriging 

Most of the proposed·interpolation techniques are based on a weighted average of 

surrounding stations. Let xj and yj denote the coordinates of a point j in two dimensional 
' 

space and pj, a function of~ and yj, denotes the observed precipitation depth at n sampling 
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points, j= 1,2,....... n. An estimate of the precipitation depth p0 at any point with coordinate·s 

x0 and Yo can be represented as a weighted linear combination of the observed values. 

(3.1). 

where wj = weight of sampling point j. Equation (3 .1) is the general form of the interpolation 

function. The different interpolation techniques differ only in eva,luating the weights wj. In 

some cases weights are only dependent on distance; in other cases the weights are optimized 

on the basis of a . correlation function. All of the above methods are described in the 

following sections. The discussion is primarily based on the work reported by Tabios and 

Salas (1985). 

1. Theissen Polygon Method 

This method is based on proximal mapping (i.e., nearest distance neighbor). The 

estimate of the rainfallamount p0 at any point ofinterest is equal to the observed value of the 

nearest sampling point in the area. Let 

(3.2). 

for j=l,2,3, ....... n and doi ~ min(d0i, •.•••.• , do0 ). The subscript i is determined by searchin~ 

for the minimum point-station distance, so that . 

and 
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2. Polynomial Interpolation 

Polynomial interpolation requires fitting of a global equation in the rainfall fiel;d 

using either an algebraic or trigonometric polynomial function. The global form of the 

polynomial function can be written as 

(3.3) 

where Po is the interpolated value at any point (x0,y 0), ak is the kthpolynomial coefficient, 

cpk(X:0,y0) the kth monomial in terms ofx0 and y0 coordinates and mis the total number of 

monomials determined from the degree of polynomial function fitted in Equation (3.3). 

Since the interpolation function (3 .1) is in terms ofweights, it is convenient to express the 

polynomial equation (3.3) in the form of (3.1). Two approaches available for this purpose 

are discussed in the following sections. 

a. Least Square Approach 

This approach provides an estimate of p0 for processes having a trend surface 

characteristic. Let pj be the measured quantity of the rainfall pat sampling stationj=l,2,3, ... 

n and p" be the estimate of the same process based on a model in Equation (3.3). Then 

P' = . r,m a cp (x y ) 
k=l k k j' j (3.4): 

where cpixj,Yj) is the kth monomial in terms of the coordinates xj and yj of station f 
Parameter set ak, k= 1,2,. .... , m is estimated by minimizing the sum of square errors given 

by 
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(3.5)' 

b. Lagrange Approach 

This approach is an exact interpolation technique. In this case, the coefficients ak ar~ 

evaluated so that the process p will pass through all the observed values. Thus, this approach 

requires that the number ofmonomials be equal to.the number of gaging stations (m=n). The 

equation for the interpolation estimation is · 

(3.6): 

where ~kj is ari element of the inverse of the n ·x n matrix with elements cpixj,yj) for 

k=l,2, ... ,n stations. 

3. Inverse Distance Interpolation 

This type of interpolation scheme belongs to a family of distance weighting 

techniques. The weights of the interpolation function (3.1) are solely a function of the 

distance between the point of interest (Xo,Yo) and the sampling points (xj,yj) for j=l,2, ... ,n.: 
. . . . :-· . . ·.. . i 

Considering the disiance··<loj as in Equation (3.2); the weight of a sampling poitjt 

(~,yj) is given in general by 

f(d01 ) · 

y:,n !( d ) 
i=l oi 

(3.7f 

where f(d0j) represents a given function of the distance d0j. A commonly used form of the 
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function f(.) is 

f(d .) 
OJ (3.8) 

where b is an appropriate constant. Here the weight Wj approaches zero as the distance d 
i 

and/or the parameter b increases. When the parameter b is given the value one or two, the 
. . . 

interpolation technique is known as reciprocal distance interpolation and inverse square 

distance interpolation, respectively. 

4. Multiquadratic Interpolation 

In multiquadratic interpolation, the influence of each sampling point is represented 

by quadratic cones as a function of the coordinates of these points. Tlie estimate for a giveh 

' . . . . ·, . . : i 

point (Xo,Yo) is thus obtained by the sum of the contributions from all those quadratic cone$. 
i 

This is mathematically represented as 

(3.9), 

where ci = 1inultiquadratic coefficient of sampling point ("1.Yi) and c\,i is the distance betwee~ 

5. Optimal Interpolation 

. I 

Let p0 be the rainfall depth to be determined and Equation (3 .1) is used to estima~e 

p0• Let p be the estimate ofp0 • Then in the optimal·interpolation technique, the weights ar;e 
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determined by minimizing the variance of the error of interpolation ae2 which is given by 

a2 = var [p - ft ] = var [p - L~ 1 w .P. ] 
e o o o 1= J J (3.lOY 

Expanding the above equation. gives 

(3.11), 

where a 2 is the variance of the process p0 and .cov(pi,Pj) represents the covariance between 

6. Kriging Interpolation 

In hydrologic applications several forms of kriging have been proposed and used. 
' 

Kriging is similar to the optimal interpolation except that the spatial correlation function is 

replaced by a variogram. As in optimal interpolation, kriging interpolation requires that th¢ 

observed process is second order stationary. Essentially, it assumes homogeneity in the 

means, variances and covariances. In addition, an isotropic spatial covariance structure is . 

assumed. The homogeneous and isotropic semivariogram is defined as 

(3.12) 

for ij = 1,2, ..... ,n and y(dij) isthe semhrariogram as a fun~tion of the distance dij between 
' .. . . 

points i and j. Therefore, rewritin~ equation (3.11) by substituting equation (3.12) for 
I 
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a2 = a2 - 2 'i/ w.[a2 - "((d .)] + r/ rt w.w.[a2 - y(d .. )] 
e J =l J OJ J =l I =l I J IJ (3.13), 

Any of the above six methods can be employed to interpolate rainfall at the grid 

points. But before interpolation is dorie two issues need to be addressed: (1) how many 

observed data points will be considered when estimating rainfall at a point and; (2) which 

interpolation technique should be selected. Several reports exist in the literature describing 

the spatial correlation pattern of rainfall. Correlation of rainfall decreases with distance and 

rain gauges situated very far from the reference point may be very weakly correlated or 

independent (for example Tabios and Salas, 1985; Kruizinga and Yperlaan, 1978). Wilson 

and Brandes (1979) mentioned that the maximum useful range of a single adjustment gauge 

varies from storm to storm. Brandes (1975) defined maximum useful range as the distance 

at which storm total·rainfalls become essentially uncorrelated. For Oklahoma convective 

storms, he found this distance to be approximately 90 km. Kruizingaand Yperlaan(197~) 

reported on the number of surrounding rain gauges and the. calculation of interpolatio~ 

weights. The authors compared interpolation errors derived from considering seven 

surrounding stations to errors when all the surrounding stations were considered. When all 
. : . . : 

of the stations were considered, a weight proportional to exp(-,r/r0 ) was given to each station 

and stations with weights less than 0:001 were·omitted. Here r was the distance to the 
. . ' 

reference point and r0 a constant chosen in the order of the mean distance between station~. 

Based on the results obtained the authors reported that the two methods did not giv~ 

significantly different results. Thus for Oklahoma rainfalls, either seven surrounding 
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raingauges or all raingauges within a radius of 90 km may be used for interpolation at th.e 

grid points. 

Selection of the interpolation technique depends on the ability of the technique tb 

estimate rainfall at the grid cell with the maximum ·possible accuracy. Tabios and Salas 

(1985) evaluated six techniques by comparing interpolated values with the observed values 

at the reference point. They suggested 4 different criteria for comparison as follows. 

1. Comparison of the mean and variance of the interpolated and observed values. 

2. The sum of square errors between the observed and interpolated values; 

3. The proportion of the variance of the observed values accounted for by the interpolation, 

called the coefficient of efficiency 

E = 1 - S 
s 

0 

(3.14) 

where S~ is the sum of the square differences between the observed values and the mean at 

point (x0 ,y0 ) and is given by· 

s 
0 

- Ln [p ( t) - m ]2 
t=l ·O . 0. . 

(3.15): 

4. Coefficient of determination obtained by regressing observed and interpolated values! 

Based on the:results obtained from their study; Tabios and Salas (1985) conclude1 

that polynomial interpolation gave inferior results. The inverse square distance method was 

' 

found to be somewhat better than the reciprocal distance technique and significantly bettei" 

than the Theissen polygon method. Based on the criteria of the sum of square errors and th¢ 

33 



coefficient of efficiency, the Theissen and reciprocal distance methods gaye inferior results .. 

Bas.ed on the coefficient of determination only the Theissen method was significantly inferidr 

to the others. 

Seed and Austin (1990) mentioned that the distance weighting schemes suffer from 

a certain arbitrariness in the selection of the parameters and the interpolated surface is not 

always smooth in the neighborhood of the data points. In order for the interpolated surface 

to be smooth, the derivative of the weighting function must tend to zero as the distance to 

the point tends to zero and the function should decay at a rate faster than the inverse squar~ 

of the distance. Distance weighting schemes also do not cope well with clustered data. 

In the inverse distance interpolation, the distance dependence of chosen weights is 

not very important when the distances are of the same order; in the other case a distance 

dependence of l/r2 will give a better estimate (Kruizinga and Yperlaan, 1978). Orie major 
' 

. . . 

drawback of the inverse distance interpolation approach is that when two or more samplin? 

points are close to · each other, the redundant information from these stations is not 

discriminated against (Tabios and Salas, 1985). 

Optimal interpolation and kriging require that the observed process is second-order 

stationaryi · Essentially this assumes homogeneity in the means, variances and covariances!. 
' ' . • j 

! 

· m addition, anisotropic spatial covariance structure is assumed. If these assumptions are not 

met, the accuracy of the interpolation may be questionable. 

Seed and Austin (1990) stated that rainfall and cloud fields are extremely intermitte°'t 

and variable as compared to some other variables like temperature, pressure and wind. Th¢ 

underlying cause for this extreme variance is drastic non-linearity involved in cloud and rain 
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formation. The response from a hydrological point of view is to exercise extreme cautiori 

about the likely accuracy of any interpolation scheme, including those of great mathematical 

complexity. 

In general, it can be expected that as the level of sophistication of an interpolation 

technique increases, the expected accuracy will also increase. But very sophisticated 

. ' 
., ' 

techniques are more difficult to implement as compared to the relatively simpler schemes. 

Probably, that is the reason why the Theissen polygon method which is the simplest method 

and was developed in 1911 is still widely used in hydrology (Seed and Austin, 1990). 

3.2 Calibration of NEXRAD Data 

Among the rainfall measuring sensors, raingauges and land-based radar are probably 

the two most important in rainfall estimation. Radar measured rainfall can have both 

systematic and random errors of 100% or more (Seo et al., 1990). Estimates of precipitation 

can be improved when raingauge observations are used to calibrate quantitative radar .data 

as well as to estimate precipitation in areas without radar data. Several researchers have 

suggested that radar estimated rainfall calibrated with raingauges can give a rainfall estimate 

with the point accuracy of gauges and spatial resolution and coverage of a radar. However, · 

there are several errors associated with radar m~asured rainfall depth because radar estimates 

rainfall amount indirectly. Error sources reside in the measurement of radar reflectivity 

factor, evaporation and advection of precipitation before reaching the ground, arid variations 

in the drop-size distribution and vertical air motions (Wilson and Brandes, 1979). 

Seo et al. (1990) grouped the radar calibration techniques into two classe~: 
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deterministic and statistical. The deterministic approach involves calibration of radar rainfall 

I 

against raingauge measurements or the deterministic interpolation of gauge to radar ratio. 

The statistical approach ranges from multivariate analysis to cokriging. 

Radar estimated rainfall depth would be an ideal source to obtain rainfall at grid 

points but before radar data can be used, they need to be calibrated because of the associate~ 

errors. Brandes (197 5) suggested the following steps to derive a calibrated rainfall field fronii 

radar measurements. 

1. First of all ah uncalibrated radar rainfall field is obtained. This can be obtained from 

· NEXRAD which is available to the researchers. 

2. The radar rainfield is then calibrated with raingauge observations by determining a 

multiplicative calibration factor at each raingauge site. Jia (1995) used a calibration factor 

(CF) for NEXRAD data defined as follows. 

CF -
Gauge Rainfall 

Radar Rainfall 
= 

R 
g 

R 
re 

For several raingauge sites, he defined the calibration factor as 

.CF _!_ k~ ( R g. ·l· n ,=l. R ·. 
·re . 

' .. I 

(3.16) 1 

(3.17): 

Where Ilg is the raingauge measured rainfall and Rrc is the radar estimated rainfall. Gauge~ 

recording very small rainfall should not be used because they can lead to very small or very 

large calibration factors. The calibration factor obtained using Equations (3 .16) and (3 .17) 
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can be applied uniformly to rainfall fields. He suggested that either one pixel value or ail 

average of 9 pixels surrounding the raingauge site could be used as the radar measurement 

(R} 

Brandes (1975) used an objective analysis scheme to move corrected factors from 

raingauge sites onto the grid point field. The weight (WtJ each gauge calibration (G.)i 

receives at a particular grid point is 

Wt; - exp( .:_d 2 I EP) (3.18) 

where d is the distance between gauge and grid point (km). EP controls the degree of 

smoothing and is kept as· small as possible to preserve the detail in input observations. · 

Brandes (1975) suggested EP to be 300 km2 for a gauge density of 1 gauge per 900 km2; To 

ensure consideration of more than one gauge-radar comparison at each grid point for rainfall~ 

in Oklahoma, an influence radius of70 km can be selected for individual calibration factors. 

Brandes (1975) suggested two passes through the objective analysis grid with the 

input data to produce the radar calibration field. On the first pass, a first-guess grid point 

calibration (F 1) is computed as 

r.;=I Wt1 G; 

rn w 
i=l t, 

(3.19) ! 

where n is the number of gauges. Differences (Di) are calculated at each grid location fro~ 

D = G - F 
i i 1 
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where the first-guess estimate (F1) is taken at the grid point nearest the raingauge rather than 

at the gauge itself. 

The second pass uses equation (3 .18) with EP reduced by 50% and analyzes the 

difference at each observation site by the same method. Difference values (corrections) 

calculated at each grid point are added to the first-guess field and the final grid point 

calibration is given by 

L~ l Wt. D. 
= F + 1= I. I 

1 (3.21). 

When this calibrated field is multiplied with the radar field, the calibrated radar rainfall field 

is obtained. 

In the areas where quality radar data are not available or where radar data are missing, 

it can be treated as if data from raingauges are available. The rainfall depth at grid points can 

be obtained by interpolating the raingauge data as outlined in the previous sections. 

Corrected radar and gauge derived rainfall distributions can be combined with the 

emphasis placed on the calibrated radar field. Several researchers have shown that a gauge 

derived rainfall field is a better estimate of rainfall than.either of the two individual method~; 

Pereira and Crawford (1995} used a statistical objective analysis scheme to show that 

NEXRAD and Oklahoma Mesonet data could be combined to produce a better estimate cjf 

the precipitation than by using either of the two alone. 

Brandes (1975) estimated that areal precipitation depth errors for nine rainfalls over 

a 3000 km2 watershed averaged 13 and 14% (1.5 and 1.6 mm) when the radar was calibrated 
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by networks of raingauges having densities of one gauge per 900 and 1600 km2, respective!~. 

Areal precipitation estimates derived from rainfalls observed at the gauges alone produced 

errors of 21 and 24%, respectively. Adjusting the radar data by a single. calibration factor 

resulted in error reduction to 18%. Radar data added to gauge observations also increased 

the explained variance in point rainfall estimates above that from gauges alone. 

Collier (1986). compared the bias and random errors in rainfall measured by ~ 

telemetering gauge network alone, and from a riidar calibrated by using data from only a fe"Y 

gauges. He suggested that a very dense gauge network was needed to measure point rainfall 

very accurately, However, a less dense gauge network with a radar system calibrated using . 

the data from a few of the telemetering gauges was. capable of producing measurements 
. I 

which had the same or better accuracy as a sparse gauge network over a large area and the 

calibrated radar estimates were more accurate within 7 5 km of the radar site than those using 

the telemetric raingauge network alone .. A presence of bright band was found to increase the 

radar estimated rainfall bias. 

Several statistical methods have been suggested.in the literature to combine the radar 

and raingauge data to improve· the rainfall field estimates. Pereira and Crawford (1995) 
'. . . 

. . 

developed a Statistical Objective Analysis (SOA) to estimate rainfall accumulations usin~ 

radar and raingauge estimates of rainfall. Based on the comparisons with the observed data, 

the authors concluded that the expected error variance of the combined data was less than 

that obtained from either the error variance of radar estimates or raingauge measurements 

alone. 
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Seo et al. (1990) and Krajewski (1987) have discussed the use of various cokriging 

methods, e.g. ordinary, universal, and disjunctive, to utilize both raingauge and radar rainfall 

data in rainfall estimation. The authors concluded that if the bias in the radar measurement 

was removed and the error in the radar measured rainfall was low, combining raingauge data 

with the radar data may not alter rainfall fields significantly. However, if the error in the 

radar rainfall is high, a substantial improvement could be expected. 

It is clear from the above discussion that when both raingauge and NEXRAD.data 

are available, NEXRAD can be calibrated using the raingauge data. Once this calibrated 

radar rainfall field is obtained, it can be used directly to get rainfall at the grid points. One 

problem with the estimation of rainfall using NEXRAD is the grid cell size. NEXRAD 

estimates rainfall at a grid resolution of 4 km x 4 km. The rainfall variability at any finer 

resolution will be very difficult to obtain using the NEXRAD data. 

3.3 Description of NEXRAD Rainfall Algorithms and Techniques 

The most basic element common to all the geometric computations is the grid 

coordinate system used to identify the location of stations and geographical boundaries, such 

as river basins. The grid used by the NEXRAD rainfall product is the Hydrologic Rainfall 

Analysis Project or HRAP grid. The primary purpose of HRAP was to develop the objective 

techniques for preprocessing, quality controlling, and optimally merging rainfall data from 

multi-radars, raingauges, and satellites for use in various hydrometeorological applications 

(Greene and Hudlow, 1982). The grid is based on a polar stereographic map projection with 

a standard longitude of 105 West. The mesh length at 60 North latitude is 4.7625 km. The 
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mesh length varies between 3.5 and 4.5 km, depending upon latitude, for latitudes of the 

contiguous United States. The grid is positioned such that the HRAP coordinates at the 

North Pole are (401, 1601). All grid coordinates are positive over the United States. The 

mesh lengths for other latitudes can be computed from: 

z = 
·. 4.7625 

( 1 + sin60°)/( 1 + sincp) 

where Z is the mesh length at latitudecp (km). 

The coordinates of a point P(x,y) are computed as follows 

RE 
= I EARTHR * ( 1 + sin( 60°)) I 

ZMESH 

R = . RE * cos(XLAT) 
( 1 + sin(XLAT)) 

WLONG = XLON + 75° 

X = R * sin(WLONG) + 401 

Y = R * cos(WLONG) t 1601 

(3.22): 

(3.23): 

(3.24): 

(3.25): 
I 

(3.26): 

i 
(3.27): 

where EARTHR is the radius of the. earth (637L2 km), ZMESH is.the mesh length at 60° 

latitude (4.7625 km), XLAT is the latitude of the point to be converted (decimal degrees}, 

and XLON is the longitude of the point to be converted (decimal degrees). 
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The orientation and mesh length of the grid was selected such that it contains the 

National Meteorological Center (NMC) Limited Fine Mesh I (LFM) and the National 

Weather Service (NWS) Manually Digitized Radar (MDR) grids as subsets. The HRAP grid 

mesh length is 1140th and 1/10th the size of the LFM I and MDR mesh lengths, respectively. 

3.4 Bias in Parameter Estimation 

Haan (1989) gave a generic representation of hydro logic models as 

0 = [(I, !!_, t) + e (3.28) 

where O is an n x k matrix of hydtologic responses to be modeled, f is a collection oH 

functional relationships, I is an n x m matrix of inputs, £ is a vector of p parameters, t is time, 

~· is an n x m matrix of errors, n is the number of data points, k is the number of responses, 

and m is the number of inputs. 

Generally I represents inputs some of which are time varying such as rainfall, 

temperature, etc., while £ represents coefficients particular to a watershed which remain 

constant. The values of the most of the model parameters are seldom known. They must be 

estimated by calibration before themodel can be applied to make predictions. The errorterm 

e represents the difference between what actually occurs, 0, and what the model predicts, 6. 

6 = [(!., f_, t) (3.29) • 

0 - 6 (3.30), 
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If we denote fas the error free true input and r_• as the true parameter value for the model, 

putting these values in Equation (3.28) will give the relation between actual and predicted 

output. Here in Equation (3.28), I is the erroneous input. An erroneous input will influence 

the value off and the estimated parameter values may not be the true parameter values (f*). 

Troutman (1983) classified the modeling errors into two components: (1) model error 

with correct input I* and r_•; and (2) error due to erroneous input. The input of interest in tWs 

research is rainfall depth. The outputs considered are runoff volume, total sediment, 

sediment-attached N, and sediment-attached P transport at the watershed outlet. Correqt 

input means that the true rainfall pattern is known as every point in the watershed. Input 

error is present when measurements from only a small number of gauges are used when a 

more extensive network might be necessary to give an adequate representation of 

precipitation over the watershed of interest. Troutman (1983) suggested that even if 

measured rainfall at the small number of gauges is equal in expected value to areal average 

rainfall, the variance of watershed average precipitation is always less than that of point 

rainfall and this difference in variability could result in serious biases.in runoff prediction. 

Even when using this correct input, there would be some error in the predicted results arising 

from the fact that the model itself is only a simplified approximation of the processes 
. . 

occurring in the nature. This type of error is known as model error or model uncertainty and 

is not considered in this study. It is only the input error, component (2) above, that is of 

interest here. 

The problem in using an erroneous input in a H/WQ model is that the predict~d 

output is no longer equal to the actual output. Evaluating a model with erroneous input I 
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introduces a biasin the output given by the Equation (3.29). On the other hand, if the corre~t 

output is known, using an erroneous input· in estimating model parameters will result in 
' 

erroneous model parameters (f). The bias in model parameters ~P can be given as 

e = p * - p 
-p (3.31) 

where f is parameter estimated using correct input value r. · Several parameter estiinati9n · 
. ! 

techniques such as method of moments, least squares, Bayesian estimation criteria.or any 

other arbitrary objective function defined by the u~er can be used to estimate. the mod~l 

parameters. 
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CHAPTER4 

METHODOLOGY 

4.1 Description of the Study Area 

The study was conducted using data from the Little Washita basin in Southwe$t 

Oklahoma. This basin covers 610 krn.2 and is a tributary of the Washita river in Southwest 

Oklahoma (ARS, 1991). Figure 4.1 shows the location of the watershed in Oklahoma. The 

watershed is primarily a rural basin. The reasons for selecting the watershed were (1) DEM, 

soil, and land use data were available in digital form for this watershed; (2) a dense recording 

raingauge network has been operated by USDA-ARS for a long time; and (3) NEXRAD 

weather radar is located in Twin Lakes, OK and covers the study area. Moreover, several 

stream gauges are operated by the USGS within the watershed and a subwatershed of the 

desired size could be delineated for the purpose of this research. 

Climate 

The watershed has a typical continental climate. The climate is characterized as moist 

and subhumid with average annual precipitation of747 mm (29.42 inches). Approximately 

98% of the annual precipitation in the basin is rain and the remainder is snow and sleet (Ma, 

1993). 
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• Little Wa5hita watershed 

Figure 4.1. Location of the Little Washita basin in Oklahoma 
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Summers are typically hot and relatively dry. The average high temperature for July 

is 34° C and the average rainfall accumulation for July is 56 mm. Winters are typically short, 

temperate, and dry but are usually very cold for a few weeks. The average daily low 

temperature for January is -4° C and the average accumulative precipitation for January is 

27 mm. Much of the annual precipitation and most of the large floods occur in the spring and 

fall (ARS, 1991). 

Geology 

The primary geological survey of the area was conducted by Davis (1955). The 

bedrock exposed in the watershed consists of Permian age sedimentary rocks. The surface 

drainage is generally to the east although the formation dips generally to the southwest. The 

oldest formation in the watershed is the Chickasha formation which outcrops in the eastern 

or outlet side of the watershed and comprises 4.65% of the total watershed area. The 

Chickasha formation is several hundred feet thick, is relatively impermeable and consists of 

a heterogeneous mixture of sandstones, shales, and silt stones. The Marlow formation 

comprises 14.2%·ofthe watershed and consists mostly of even-bedded, brick-red sandy shale 

that is gypsiferous. The predominant formation in the catchment is Rush Springs formation 

which overlies the Marlow formation, and comprises 45.6% ofthe watershed area. The Rush 

Springs formation consists offine-grained sand stone and silt stone strata that are evenly ~o 

highly cross-bedded. The Cloud Chief formation overlies the Rush Springs formation and 

consists of irregular, impure gypsum beds interbedded with gypsiferous shales. This 

formation comprises 16.6% of the watershed. It outcrops the watershed as outliers, so only 
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its lower parts can be seen. 

Soils 

Figure 4.2 shows the main soil groups of the basin. The Natural Resources 

Conservation Service (NRCS) have extensively surveyed the soils in the watershed and have 

classified 64 different soil series. Withinthese soil series, 162 soil phases have been mapped 

to reflect differences in characteristics that affect land use. Several other soil characteristics 

are also defined for each soil group such as depth to bedrock, typical texture found at each 

depth, permeability, available water capacity, pH, shrink-swell potential, corrosivity, and 

suitability for use in construction projects such as road fills, pond embankments, building 

foundations, and septic tank filter fields. Hydrologic soil groups and average crop yield 

under irrigated and nonirrigated conditions are also listed. The watershed soils are grouped 

into the following nine associations: 

1. Grant-Pond- Creek-Lucien-Minco soils are deep and shallow, loamy and the slope ranges 

from nearly level to steep on uplands. 

2. Port-Pulaski-Gracemont soils are deep, loamy and sandy and the slope is nearly level on 

flood plains. 

3. Konawa-Dougherty-Eufala soils are deep, sandy, well drained to somewhat excessively 

drained in upland; slope ranges from nearly level to rolling. 

4. Cobb soils are prairie soils that are moderately deep, loamy and slope ranges from nearly 

level to greatly slopping. 
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Figure 4.2. Soil groups of the Little Washita Basin 
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5. Renfrow-Kirkland-Bethany soils are well drained, loamy and slope ranges from nearly 

level to gently sloping. 

6. Dale-Reinach-McLain soils are well drained or moderately well drained, loamy and slope 

nearly level. 

7. Stephenville-Eufala soils are well drained or somewhat excessively drained, loamy or 

sandy, and slope ranges from gently sloping to moderately steep. 

8. Stephenville-Noble-Darnell-Windthorst soils are deep or shallow, moderately well drained 

to well drained, loamy or sandy on uplands, and slope ranges from very gently sloping to 

hilly. 

9. Nash-Lucien-Stephenville soils are well drained, foamy or sandy, and slope ranges from 

very gently sloping to moderately steep. 

Land use and Cover 

Land use and cover is primarily rangeland, winter wheat and woodland. Vegetation 

is mainly influenced by the underlying Permian Age bedrock. Land use and cover data were 

obtained from the UDSA-ARS station at El Reno, Oklahoma. 
' ' ' 

Figure 4J sliows the land use·and cover ~ta for the watershed. Rangeland is tti.e 

dominant type of land cover accounting for 63 % of the total watershed area. Winter wheat, 

and woodland· share about 20, and 12% of the l;lrea, respectively.· Winter wheat is primarilJ 

distributed in the flat and fertile soil areas near flood plains. The next category is summer 
' ' 

crops occupying about 4% of the basin area. Quarry and impervious areas comprise le~s 

than one percent of the area mainly in the towns of Cyril and Cement. Water bodies are o~y 
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Figure 4.3. Land use and cover of the Little Washita basin 

51 



0.4% of the total area. 

Topography, 

The upland topography of the watershed is gently to moderately rolling, except for a 

few rocky, steep hills near Cement, OK. Maximum relief in the watershed is about 200 rn. 
Surface slopes are very gentle in most of the watershed. The channel system is very well 

. . 

developed throughout the watershed and extends practically to the drainage divide in most 

areas. Flatter upland soils are developed from the finer textured Dog Creek Shale and Blaine 

formation near the eastern part of the watershed, and the western part of the watershed is 

developed from the Cloud Chief formation (ARS, 1991). The topography of the watershed 

is shown in Figure 4.4. 

At the time of this study, land use and cover data for the entire watershed were not 

available. This was a major constraintin using the entire watershed for the study. Two 
I 

subwatersheds were delineated. The first watershed, known as Cyril, was delineated based 

on the stream gauge station located near Cyril. The stream gauge near Cement was used to 

delineate the second watershed. The locations of the Cyril and Cement watersheds within the 

Little Washita basin are shown in Figures 4.5 and 4.6, respectively. The characteristics of 

these watersheds are shown in Table4.L The total area of the Cyril watershed is 30.6 km2 

and of the Cement watershed is 159 km2• 
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Figure 4.4. DEM data of the Little Washita basin 
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Figure 4.5. Location of the Cyril watershed in the Little Washita basin 

54 



• 130 

151 • 

•• 131 

Cement watershed 

150 • 

152 

149 • 

e 153 • 

163 e 

Figure 4.6. Location of the Cement watershed in the Little Washita basin and the 

Micronet stations used 
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Table 4.1. Characteristics of the Cyril and Cement watersheds 

Characteristic 

. Total Area 
Average slope 
No. of Raingauges 

Cyril watershed 

30.6 km2 . 

.· 1.6% 
8 

Land use and Cover (% of the total area) 
Range 25 
Poor Range 23 
Winter Wheat 4 7 
Summer Crops 2 
Bare Soil · 0.01 
Water OJ3 
Woodland 3 
Quarry/Impervious 0.01 

4~2. Description of the Model 

Cement watershed 

159 km2 

3.7% 
17 

32 
26 
31 
2 
0.05 
0.4 
8 
0.25 

The hydrology/water quality (H/WQ) model used to assess the effect ofrainfall spatilµ 

variability was the Agricultural Non-Point Source Pollution model (AGNPS). It is an event-

based model that simulates surface runoff, sediment and nutrient transport primarily from 

agricultural water~heds (Young et al., 1989). The nutrients considered are nitrogen (N) and 

phosphorus (P). Basic model components include hydrology, erosion, and sediment and 

chemical transport .. In addition, point sources of water, sediment, nutrients, and chemic~ 
I 

oxygen demand (COD) from animal feedlots and springs are also considered. Water 

impoundments such as tite:.-outlet terraces,· are considered as depositional areas of sediment 

and sediment-bound nutrients. The model can output water quality characteristics ~t 

intermediate points throughout the watershed network. 
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The model operates on a geographic cell basis (Dirichlet tessellation) that is used to 

represent upland and channel conditions. Dirichlet tessellation is a process of splitting up an:d 

grouping a study area into cells or tiles, also known as Theissen or Boronoi polygons. Cells 

are uniform square areas subdividing.the watersheds, allowing analyses at any point within 

the watershed. Potential pollutants are routed through cells from the watershed divide to the 

outlet in a stepwise manner so that flow at any point between cells can be examined. All 
. : 

watershed characteristics and inputs are expressed at the cell level. Results from an AGNPS 

model simulation can be used to provide objective characterization of the water quality 

conditions in the watershed and to assess the effectiveness of alternative land management 

practices in enhancing watershed water quality (Young et al., 1989). 

The different components of the AGNPS model are discussed in the following 

paragraphs. More details may be found in Young et al. (1989). 

Hydrology 

The hydrologic component of the model estimates the runoff volume and peak flow 

rate. The volume of runoff is calculated using the SCS curve number method 

Q 
(P - o.2s)2 

P + 0.8S 
(4.1) 

where Q is the runoff volume, Pis the rainfall, and Sis a retention parameter, all express~d 

as the depth of water. The retention parameter in mm is defined in terms of a curve numb~r 

(CN) as follows 
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s 25400 
- 254 

CN 
(4.2): 

The CN depends upon land use, soil type, and hydrologic soil conditions (Young et al., 1989). 

The peak runoff rate for each cell is estimated using 

3.79A 0.7 C S0.16(Ro /25.4/0.903A ) L w(-0.19) (4.3) 

where QP is the peak flow rate (m3/s); A is the drainage area (km2 ); CS is the channel slope 

(m/km); RO is the runoff volume (mm); and L W is the watershed length-width ratio, 

calculated by L2/AwhereL is the watershed length. 

Erosion and Sediment Transport 

Erosion from a single storm at a cell level is calculated using a modified form of the 

universal soil loss equation (USLE) as follows. 

SL = (El) KLSCP (SSF) (4.4) 

where SL is the soil loss (kg), EI is the product of the storm total kinetic energy and 

maximum 30-minute rainfall intensity, K is the soil erodibility factor, LS is the topographic 

factor, C is the cover factor, Pis the supporting practices factor, and SSF is a factor to adjust 

for slope shape within the cell. Eroded soil and sediment yield are divided into five particle 

classes-clay, silt, small aggregates, large aggregates and sand. 

' 

AGNPS considers only three sources of sediment: (1) sheet and rill erosion from t4e 

in-cell processes; (2) channel scour from the in-stream processes; and (3) gullies from the in-
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cell processes. After runoff and upland erosion are calculated, detached sediment is routed 

from cell to cell through the watershed to the outlet. Sediment load for each of the fh,te 

particle classes leaving the cell is calculated from. 

[ 
2q(x) ·] [ · x w~x [ vu· . v.. ]] 

Q.(x) = 2q(x)+~xV .. Q,(o)+Q,,L--2- q(o) +{q.(o)-g,(o) - q(x/•(x)} (4.5) 

where Qs(x) is the sediment discharge at the downstream end of the channel reach (kg), Qs(o) 

is the sediment 4ischarge into the upstream end of the channel reach (kg), Q51 is the lateral 

sediment flow rate (kg/ha), xis the downstream distance (m), Lis the reach length (m), w is 

the channel width (m), q(x) is the discharge per unit width, and gs(x) is the effective transport 

capacity per unit width. 

Nutrient Transport 

The pollutant transport part of the model estimates transport ofN, P, chemical oxygen 

demand, and pesticides throughout the watershed. Pollutant transport is subdivided into 

soluble polhltants and sediment-attached pollutants. The following assumptions are made t() 

· calculate the nutrient transport: 

1. Surface runoff is assumed to interact with a 1 cm soil ~urface layer. 

2. Chemicals on the soil surface are assumed to be uniformly mixed within the surface layer. 

3. Infiltration must first pass through the surface layer. 

4. The initial abstraction is the first increment of rainfall prior to the surface runoff. 
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Sediment-bound nutrient yield is calculated based on the total sediment yield as 

follows. 

(4.6). 

where Nutsed is the nutrient transported in the sediment-bound form (kg/ha), Nut iSr the 

nutrient content of the field soil, and Er is the emichment ratio, calculated as 

-0.2T, 
E = 7.4 Q (x) u 

r s (4.7) 

where Tr is the correction factor for soil texture. 

Effects of nutrient levels in rainfall, fertilization, and leaching are considered while 

calculating the soluble nutrient transport as follows 

Nut = C Nut Q. 
sol nut ext (4.8) 

where NutsoI is the soluble nutrient concentration in the runoff (ppm), Cnut is the meah 

concentration of soluble N or P at the soil surface during runoff, Nutext is the extraction 

coefficient of nutrient by runoff, and Q is the total runoff (mm) . 

. The contributions of soluble N and P from each of the cells are calculated first and 

routed into the channel. Once soluble nutrients reach concentrated flow, they are assumed to 
' 

remain constant. 

Since its development, the AGNPS model has undergone several modification~. 

! 
Generally the model requires specification of 20 different input parameters for each grid cell, 

either manually or through a spreadsheet interface supplied with the program. A summary 
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of the. different input parameters required by the model is shown in Table 4.2. The primary 

input parameters for version 5.0 of the model consist of two user-supplied categorie~: 

program control file header or watershed-level input parameters; and cell-level information. 

Various output options available with the model are shown in Table 4.3. Preliminary 

output includes watershed area and cell size, storm precipitation and erosivity, estimates cif 
. I 

. ' 
I 

. . I 

runoff volume and peak flow rate at the watershed outlet, and area-weighted erosion, botµ 
. I 

I 

upland and channel. The model also .calculates· sediment delivery ratio, mean sediment 

concentration, and total sediment yield for each of five sediment particle size classes. In the 

nutrient analysis part, nutrient loss per unit area for the sediment bolllld and dissolved forms 

and nutrient concentration are calculated. · · 

4.3 Description of the GRASS-AGNPS Modeling Tool 

Preparation of the input parameters for AGNPS is very time intensive. For a relatively 

large watershed with fine grid cell size ( e.g. less than 1 ha), generating, organizing and 

managing the model input data and analyzing and displaying the model output data can be 

tedious, time-consuming and problematic. The WATERSHEDSS GRASS-AGNPS modeling 

tool developed by Osmond et al. (1997) was used to develop the input file. This modeling to~l 
. . i 

is based on the GRASS-AGNPS interface developed by Srinivasan and Engel (1994). It hals 

some added capabilities of inputting point source, pesticide and .channel information. 
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Table 4.2. Summary of AGNPS (version 5.0) input parameters 

1. Watershed level input parameters 

Watershed identification 
Description of the watershed 
Area of the watershed 
Number of cells 
Precipitation 
Nitrogen conc~ntration in rainfall 
Energy-intensity value 
Storm duration 
Storm type 
Peak flow calculation · 
Geomorphic calculation 

2. Cell Level input parameters 
Cell number 
Cell division 
Receiving cell number 
Aspect/flow direction 
SCS curve number 
Average land slope 
Slope shape 
Slope length 
Manning'sn 
USLE K factor 
USLE C factor 
USLE P factor 
Surface Condition 
Soil texture number 
Fertilizer indicator : 
Pesticide. indicator 
Point source indicator 
Additional erosion 
Impoundment indicator 
Channel Indicator 
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Table 4.3. Summary of AGNPS outputs 

1. Hydrology Outputs 
Runoff volume (inches or cm) 
Peak runoff rate (ft3/s or m3/s) 
Fraction of runoff generated in the grid cell 

2. Sediment Output 
Sediment yield (tons or kg) 
Sediment concentration (mg/L) 
Sediment particle size distribution• .. 
Upland erosion (tons/acre or kg/ha). 
Amount of deposition (percent) . 
Sediment generated within the cell (tons or Kg) 
Enrichment ratios by·particle size 
Sediment delivery ration by particle size · 

3. Chemical output 
Sediment boundN(lb/acre orkg/ha) 
Soluble N in cell runoff (lb/acre or kg/ha) 
Soluble N concentration (mg/L) 
Total Soluble N (lb/acre or kg/ha) 
Sediment bound P (lb/acre or kg/ha) 
Soluble P in cell runoff (lb/acre or kg/ha) 
Soluble P concentration (mg/L) · 
Total Soluble P (lb/acre or kg/ha) 
Sediment bound pesticide (lb/acre or kg/ha) 
Soluble pesticide in cell runoff (lb/acre or kg/ha) 
Cell chemical oxygen demand (lb/acre or kg/ha) 
Total soluble chemical oxygen demand (lb/acre or kg/ha) 
Soluble chemical oxygen demand concentration (mg/L) 

63 



In the W ATERSHEDSS modeling tool, AGNPS is loosely coupled with Geographic'l,l 

Resource Analysis Support System (GRASS) to generate, organize and display the model 

input and output data. GRASS is a raster-based GIS system (USACERL, 1993). Data 

generated from GRASS is organized as inputs to the model, while the output data from the 

model are subsequently transferred to the GIS for analysis and display. The data are 

transferred between the model and GRASS by simply formatting the output data generate~ 

by each system. 

The GRASS map layers required by the input file generator include the watershed 

boundary, topography, tillage, USLE C and K factors, nutrient/fertilizer application rate, land 

use, management practice, hydrologic soil group, percent sand, percent clay, and pesticide 
. i 

application rates. The following is a brief explanation of each map layer unit. 

Watershed Boundary: This layer should have a category value of 1 or greater within th¢ 

' 

watershed area and O outside the area. This layer defines the watershed or analysis boundary 

for all map layers. AHother input map layers must extend beyond the boundary of this layer. 

Topography: Elevation in meters must bea category value for each cell. For the calculation 

of slope and aspect, this layer must extend at least 2 cells beyond the watershed boundary all 

the way around. 

USLE K Factor: A raster map layer of the soil series map with K factors as a category value 

for each map unit is required. 

Hydrologic Soil Group: Each map unit should be assigned a category label of A, B, C, or 

D based on the hydro logic group of the soil. 
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Percent Sand: Percentage of sand sized soil particles is assigned as one of the category 

values for each map layer unit for this coverage. 

Percent Clay: For this layer, the category values should be the percentage of clay-size:d 
' 

particles in the soil for each map layer unit. 

Land Use: One of the following categories should be assigned to each map unit: fallow, row 

. . . I 

crop, small grain, rotation meadow, close-seeded legumes, pasture (poor), pasture (good), 
I 
! 

range, meadow, woods, hard surface, farmsteads, roads ( dirt), water, and marsh. The poor and 

good conditions are for the hydrologic conditions and ru;e used to determine the curve number. 

Fertilizer/nutrient Application Rate: Four fertilization rates are specified in this layer as 
. J 

follows: O==none, I =56 kg/ha N and 22 kg/ha P, 2~11.2 kg/ha N and 45 kg/ha P, and 3=224 

. . . . . . ' ! 

kg/ha N and 90 kg/ha P. The user can also enter custom fertilizer application rates ftjr 

individual cells, if desired. 

Tillage: Each map layer unit.should be.given one of the following category labels: large 

offset disk, moldboard plow, lister, chisel plow, disk, field cultivator, row cultivator, 

anhydrous applicator, rod weeder, planter, smooth, or no till. Urban, water, marsh, and 

farmstead land use areas can be no till or smooth. These values are used to determine the 

nutrient availability factor. 

Management Practice: One of the following management practices should be specified as 
, . . I 

the cell label in this layer: straight row, contoured, or contoured and terraced. 

USLE C Factor: This map layer should contain the value of USLE C factor as the category 

label for each cell. 
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Pesticide application rate: This map layer is optional and is needed only when the us~r 

wants to simulate pesticide transport. Up to three pesticide application scenarios can b¢ 

entered as the category values. A scenario contains a unique set of pesticide type, applicatioh 

rate, application timing, and application method. 

Channel Slope: This data layer is optional; The category values for each cell should be th¢ 
' 

channel slope in percent for each cell. The user also has the option of entering chann~l 
. . . ' 

' . . ' 

information for each cell individually in the interactive part of the input file generator. In the 

absence of the layer, the channel slope is assumed to be 50% of the overland slope for each 

cell unless the user changes the value of the cell. 

In addition to the maps, several general.watershed parameters must be known. Thes~ 
' 

include rainfall depth and duration, soil antecedent ino.isture condition, N concentration of 

rainfall, area of each cell, and a short watershed description. 

4.4. Modification of the AGNPS to input grid-based rainfall and energy-intensity ' 

values 

One of the limitations of the AGNPS model, like most of the H/WQ models, is th~t 

it allows only one valµe of rainfall assuming that it is homogeneous across the watershed qf · 
. ' 

interest. The model was modified to input grid-based rainfall and energy-intensity. The 

modifications were based on the work done by Grunwald and Freede (1996) at the ARS 
. . 

National Sedimentation Laboratory located at Purdue University, West Lafayette, Indiana. 

The energy-intensity for each cell was calculated from 
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R 
st 

a pf(D) 
I 

b. 
D 

(4.9) 

where ~tis the energy-intensity R factor; Pis the cell rainfall in inches corresponding to a 

duration Din hours, a1 and b1 are constants. f(D) was calculated as 

f(D) = 2.119Do.oos6 (4.10) 

Values of a1 and b1 were taken from Haan et al. (1994). For Oklahoma, 8i and q are 17.9 and 

0.4134, respectively. 

The modified AGNPS was verified to see if it produced the same results as the 

original AGNPS. The model was run using a homogeneous rainfall for all cells and the 

' 

outputs obtained were compared with the results from the original AGNPS. Under th~ 

assumption ofrainfall homogeneity, the outputs obtained from the two models were identical. 

4.5. Sensitivity Analysis of AGNPS 

Sensitivity analysis is the process of identifying model component processes and 

parameters that have the greatest impact on model output. Majkowski et al. (1981) suggestec.l 

that sensitivity analysis can be performed to examine the influence of input parameter errors 

on predictions made by the model. The acceptance level of output uncertainty depends on the 

system under consideration, the modeling objectives and the modeler's knowledge of the 
I 
I 

system. Therefore, sensitivity analysis provides a rational method of identifying addition41 

research needs and/or additional data collection to improve parameter estimates and to reduce 
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model uncertainty. 

A number of methods have been developed for the purpose of sensitivity analysis; 
I 

Haan et al. (1995) described a sensitivity coefficient as follows 

s 
a 

ao 
(4.11); 

i 
. I 

where Sa is the absolute sensitivity, 0 is the particular output, and Pis the particular input. 
. . - . . . . ! 

I 

One of the problems with the absolute sensitivity is that it has the units of the input and outpJt 

parameters. Par~eters can not be rariked on the basis qf sensitivity because they may hav.e 

different units .. To overcome this problem, a relative sensitivity index (Sr) can be used as 

follows 

s -
r 

ao P 

BP O 
(4.12) 

I. 
I 

• . . • I 

Relative sensitivity index can be used to rank model parameters in terms of their sensitivitids 
I 

I 

because Sr is dimensionless giving the change in O for a unit change in P. The parameteiis 
. ' 

with the highest Sr have the greatest impact on model output. This provides a basis fqr 

comparing various parameters and concentrating research and data collection on mor:e 

sensitive p~ameters. 

When applying this methodology- to a H/WQ model, it is impossible to solve aotap 

directly. Relative sensitivity can be nUlll~rically approximated as 

s = 
r 
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" ' 

where P and O are the base values of input and output. The base values are changed by a 

certain percentage to get P1, P2 and the corresponding 0 1, and 0 2• When applying Equatio~ 

I 

4.13 to calculate Sr, it is assumed that the model response is linear in the range of interest. 

A H/WQ ,model may be linear for certain processes and/or over limited ranges. When a 

H/WQ model is nonlinear, an extensive sensitivity analysis using this method can be done tp 

estimate relative sensitivity over a variety of conditions. 

The outputs considered were runoff volume, total sediment, sediment-bound N, and 

sediment-bound P. Sensitivity analysis of AGNPS was performed using 26 parameters. The 

base parameter values were changed by ±10% to estimate Sr The relative sensitivity value,s 

for these outputs are shown in Table 4.4. The relative sensitivity of total soluble N and totil 
. . .• . . ! 

soluble Pis not shown in Table 4.4. For these nutrients, the output obtained was zero and the 

relative sensitivity values could not be calculated. 

4.6. Description of the rainfall events and the data set 

There are 36 continuous recording gauges operating since 1962 and 12 additional 

gauges were installed and have been operational since May 1994. Figure 4. 7 shows the 

location of these Micronet sta,tions within the Little Washita watershed. The, characteristiqs 

of the Micronet stations are shown in Table 4.5. Also a NEXRAD (WSR-88D) radar ~s 

located northeast of the basin in Twin Lakes, near Oklahoma City, and covers the study area. 

Rainfall data for the Micronet stations were obtained from USDA-ARS. The 

I 

raingauges used in the Micronet are Belfort 5-780 series dual-traverse weighing buck~t 

raingauges. An automatic data loggeris used to measure the rainfall amounts. 
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Table 4.4. Relative sensitivity of the AGNPS parameters for the output considered. 

Output Parameter · Relative Sensitivity 
Runoff Volume CN 3.03 

Total Sediment CN 1.91 
Land Slope 0.31 
K factor 0.35 
C factor 0.35 
P factor 0.34 .· 

Sediment-N CN 1.53 
Land Slope 0.24 
Kfactor 0.36 
Cfactor 0.36 
P factor 0.36 
SoilN 1.07 

Sediment-P CN 1.53 
Land Slope 0.25 
Kfactor 0.28 
·c factor 0.28 
P factor 0.28 
Soil P 0.50 

For each gauge location, cumulative rainfall depths were available at 5 minut~ 

intervals. The rainfall data start at O GMThour and end at 2355 GMT hour. All the rainfall 

data were converted to CDT time. 

. , . . - I 

Stream flow data for the Cyril and Cement watersheds were obtained from the USGS. 

Daily discharge in cubic meter per second at both sites was available~ · USGS classifi~s 

stream flow data as excellent, good, fair, and poor. The. accuracy of the stream flow records 

depends primarily on two factors: (1) the stability of the stage-discharge relation or, ift~e 

control is unstable, the frequency of discharge measurements; and (2) the accuracy of 
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166 167 • 168 • • 

Figure 4.7. Location of the Micronet stations in the Little Washita basin 
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Table 4.5. Characteristics of the Micronet Stations 

Number Station m· Name City North Lat.* East Long.* 

501 AllO 110·· Norge 35.0144 -98.0096 
502 Alll 111 Chickasha 35.0158 -97.9517 
503 A121 121 Ninnekah. 34.9586 -97.8986 
504 A122 122 Ninnekah 34.9728 -97.9528 
505 A123 123 Norge 34.9711 -98.0056 
506 A124 124 Norge 34.9728. -98.0581 
507 A125 125 

,, 

Cement 34,9858 -98.1281 
508 A130 130 Stecker 34.9564 ~98.2847 

509 A131 131 Cyril 34.9503 .:982336 

510 A132 132 ··cement' 34.9428 -98.1819 

511 A133 133 Cement 34.9492 -98.1281 

512 A134 134 Cement 34.9367 -98;0753 

513 A13~ 135 Cement 34.9272 -98.0197 

514 A136 · 136 Ninnekah · 34.9278 -97.9656 

515 A.137 137 Ninnekah. 34.9450 -97.9231 

516 Al44 144 Agawam 34;8789 -97.9172 

517 A145 145 ·Agaw·am 34.8842 -97.9714 

518 A146. 146 Agawam 34.8853 -98.0231 

519 A147 147 Cement 34.9069 -98.0758 

520 A148 148 Cement 34.8992 -98.1281 

521 A149 149 Cyril 34.8983 -98.1808 

522 A150 150 Cyril 34.9061 -98.2511 

523 A151 151 Stecker 34.9133 -98.2928 

524 A152 152 Fletcher 34.8611 -98.2511 

525 A153 153 Cyril 34.8553 -982000 

526 A154 154 Cyril 34:8553 -98.1369 

527 A155 155 Agawam 34.8408 -98.0203 

528 A156 156 Agawam 34.8431 -97.9583 

529 A157 157 Rush Springs 34.8247 -97.9122 

530 A158 158 Rush Springs 34.7836 -97.9328 

531 A159 159 Rush Springs 34.7967 -97.9933 

532 A160 160 Rush Springs· 34.8003 -98.0369 

533 Al61 161 Sterling 34.7972 -98.0906 

534 A162 162 Sterling 34.8075 -98.1414 · 

535 A163 163. Fletcher 34.8100 -98.1981 

536 A164 164 Fletcher 34.8207 .. -98.2789 

537 A165 165 Sterling 34.7828 . -98.1456 

538 A166 166 Sterling · 34.7539 ·-98.0894 

539 A167 167 Rush Springs 34.7544 -98.0367 

540 A168 168 Rush Springs 34.7542 -97.9775 

541 A181 181 Apache 34.8697 -98.3014 

542 A182 182 Cement 34.8450 -98.0731 

* North Lat = North Lattitude; East Long = East Longitude 
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measurements of stage, measurements of discharge, and interpretation of records. A recorµ 

classified as "excellent", "good", and "fair" means that about 95% of the daily discharges are 
. I 

'i) 

· within 5, 10, and 15% of the true values, respectively. Records that do not meet this cdterfa 

are rated "poor". The USGS has not classified the data for the watersheds used in this study. 

A total of 12 rainfall dates were selected for the year 1996. For the Cyril watershed, 

' 
8 raingauges located within and around the watershed were used. For the Cement watershe4, 

i 

17 raingauges Were used for the analysis of the rainfall. The location of the 17 gauges used 

with the Cement watershed are shown iri Figure 4.6. The base flow was separated from th~ 

. . . 

total. flow to get the surface runoff: In the computation of the runoff, a horizontal line from 

the start of the rainfall event was drawn Ulltil it intersected the storm hydro graph. This wab 
. I I 

termed as the base flow line. Total volume above the base flow line was considered as the 
I 

I 

runoff volume. Often several days elapsed as this runoff volume was occurring. This metho~ 
i 
; 

of runoff computation minimized the effect of various, flood retardation structured present ih 

the watershed. For March 27 and 28, April 21 and 23, August 1 and 3, May 31 and June 1, 

and July 9 and 10, it was not possible to separate the base flow from the total flow for the 

rainfall on each day. The total rainfall for the two days was considered as one rainfall event 

, .· ·, . .··, . . . I 

and was used in the analysis. Thus, the total number of rainfall events considered was seve4. 

The events are indicated by the first day of the event. For.the Cement watershed, the rainfall 

observed at several gauges within the watershed was erroneous on 8/1/96. The rainfall on this 

date was discarded from the analysis for this watershed; The rainfall on 11/6/96 observed at 
I 

I 

the majority of the gauges was too small to run the AGNPS model. Since AGNPS wais 
. I 

i 

developed to predict the erosion losses, it does not work very well for the very small rainfall 
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events. This event was also not considered for the Cement watershed. The rainfall on 4/21/96 

was then included in the analysis to have at least five different rainfall events analyzeq. 

i 
Rainfall four days preceding the event date were also obtained to characterize the antecede4t 

moisture conditions used in CN calculations. 
·' 

The GRASS-AGNPS modeling tool (Osmond et al., 1997) was used to generate the 

input file for AGNPS. The GIS layers required were watershed boundary, topography, tilla~e 

' 

practices, USLE K factor, USLE C factor, hydrologic soil group, percent sand, percent clay, 

nutrient application rate, land use, and management practice map. Soil type, land use an4 

elevation data were obtained from the USDA-ARS station at El-Reno, Oklahoma. All the 

input layers required by the GRASS-AGNPS modeling tool were prepared in raster form~t 
I 

., l 

using a 30 m cell resolution. The input layers needed for the Cement watershed are showp. 
' i 

in Figures 4.8-4.17. Information about the tillage practices, nutrient application rate, an~ 
, . . I 

management practice were obtained from personnel at the USDA-ARS station at Chickasha, 

Oklahoma. Watershed boundary and topographic maps were prepared from the digital 

elevation model {DEM) data. USLE K factor, hydrologic soil group, percent sand, and 

percent clay coverages were prepared from the soil data of the watershed. USLE C factor was 

based on the watershed land use information; The cell size used in AGNPS modeling w$ 

200m x 200m. This cell size was used to insure the adequate representation of the watershed 

properties without increasing the complexity of the input file and the AGNPS run time. ln 

a study done on the Upper Little Washita basin which encompasses the two watersheds used 

in this study, Ma. (1993) concluded that spatial structure of the landscape complexity had la 

significant impact on the spatial scaling and high runoff-generating areas played an importaAi 
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role in surface runoff processing. The author concluded that a cell size less than 300 m X 300 

m should be used to preserve the presence of high runoff generating areas. 

Once the input file for AGNPS was prepared using the GRASS-AGNPS modeling 

tool, the cell-based rainfall values were added to the input file. For any rainfall event, if a 

i 
gauge had erroneous rainfall or did not seem to be functional; then the data from that gaug:e 

. . . . I 
r . . . . . I 

were completely discarded and it was assumed that the gauge was not present for the evenf. 
r 

Erroneous rainfall data were indicated by large negative numbers. A nonfunctional gauge wJs 

indicated by the rainfall of '"998. · 
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Figure 4.8. Boundary of the Cement watershed 
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Figure 4.9. Elevation map of the Cement watershed 
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Figure 4.10. USLE K factors for the Cement Watershed 
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Figure 4.11. Hydrologic groups of the Cement watershed 
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Figure 4.12. Percent sand for the Cement watershed 
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Figure 4.13 . Percent clay for the Cement watershed 
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Figure 4.14. Land use and cover of the Cement watershed 
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Figure 4.15. Fertilizer/nutrient application rates for the Cement watershed 
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Figure 4.16. Tillage practices for the Cement watershed 
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Figure 4.17. USLE C factors for the Cement watershed 
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4. 7 Description of the Radar Data 

NEXRAD products are available either in graphical format or in digital format with. 

polar coordinates. The NEXRAD rainfall.data were Digital Precipitation Array (DPA) data 

stored in a binary format. The coordinate system used with the DPA data is HRAP as 

. described in the previous chapter. Rainfall in the DP A data is available at five minute 

intervals with hourly cumulative rainfall preceding the time at which the rainfall was scanne4. 

For each date, the time specified is GMT. For example, the rainfall· at 1200 hours will give 
. . 

the cumulative rainfall that occurred over a one hour period preceding 1200 GMT. 

The DP A data are in a two dimensional array format with 131 rows· and 131 columns. 

· The radar rainfall was obtained for the rainfall on 7 /9/96 for the radar located at Twin Lakes, 

Oklahoma. This radar covers the Little Washita watershed .. The DPA data were convertecl 

to the corresponding rainfall values for each cell using the following equation. 

EXP 
(DPA value * 0.125 - 6) = 

10 
(4.14) 

Rainfall = 1 OEXP (4.15). 

The unit of rainfall obtained by Equation ( 4.15) is mm. 

The geographic location of each radar rainfall cell was not known directly. Instead 

the location of the radar was known and the location of each rainfall cell was determineµ 

indirectly from this information. The radar was located at the center of the rainfall area 

scanned. In the HRAP coordinate system, it captures the rainfall values that extend 65 cells 
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in all directions. The size of the cells varies with latitude in the HRAP coordinate system. 

Since all of the input layers were prepared in GRASS, it was not possible to use the rainfall. 

information in HRAP coordinate system directly because the GRASS requires a uniform cell 

size. The cell size was calculated at the Northeast and Southwest comer of the Little Washita 

watershed using Equation (3.22). The c~ll sizes at these comers were 3.95 and 4.05 km, 

respectively. This gives the minimum· and maximum cell size for the watershed. In thi;s 

research the average cell size ( 4 km) from these two values was calculated and used as the 

uniform cell size in all calculations. Although this is an approximation of the rainfall 

occurring in each grid, it was assumed that the error introduced was not significant. Hourly 

cumulative rainfall was added for the event to get _the daily total rainfall values for each cell. 

The cell size used in AGNPS was 200 m X 200 m. The rainfall information was 

available at a cell size 4000 m X 4000 m. Thus, 400 cells in the watershed were assigned 

rainfall value that occurred within one radar cell.· Rainfall at a resolution of 200 m X 200 m 

. was used for all analyses. 

4.8 Calibration of Radar Rainfall 

The calibration factor for radar rainfall values at each gauge location was determined 

using Equation (3.16). Rainfall observed at only one cell thatcontained the raingauge was 

used to determine the calibration factor. A calibration factor at each of the 13 gauges used 

to capture the rainfall pattern for the Cement watershed was calculated. The calibrated radar 

rainfall field was obtained using 
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R 
C 

CF. * R 
I (4.16) 

where Re is the calibrated radar-scanned rainfall value for any particular ceU, and Rr is the 

uncalibrated radar rainfall value for that cell, and CFiisthe appropriate calibration factor for 

the cell under consideration. 

An arbitrary lower and upper limit of 0.1 and 10.0 for the calibration factor was fixed 

to insure that a very small or large calibration factor was not used. The parameter and output 

uncertainty induced in the AGNPS model was estimated by using the data from the Cement 

watershed only. The rainfall event on 7/9/96 consisted of rainfall occurring on 7/9/96 and 

7 /10/96. The gauge measured rainfall was available for these two dates. The hourly rainfall 

on each date was added to get the total daily rainfall. Then the calibration factors for rainfall 

on these two dates were determined separately. Equation (4.16) was used to calibrate the 

radar rainfall values. The calibration factor corresponding to each gauge location was used 

for all cells falling within the area associated with that gauge as delineated by the Theissen 

polygon method. The calibrated rainfall for the two days at each grid was then added to get 

the total rainfall for the event. 

4.9 Estimation of parameter uncertainty due to spatial variability· of rainfall 

AGNPS requires 26 input parameters. The variability induced in all parameters due 

to the spatial variability of rainfall was not studied because it would have been very time 

intensive. Also the output of the model is not equally sensitive to all parameters. To reduce 

the time of the analysis, only the most sensitive parameters that affect runoff volume, total 
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sediment transport, sediment-N, and sedi)Jlent-P transport at the outlet of the watershed based 

on the sensitivity analysis of AGNPS were used. The most sensitive parameters were curve 

number (CN), USLE K, C, P factors, and land slope (S). For the AGNPS model, USLE K, 

C, and · P factors. always appear as the product KCP and thus can not be separated for 

parameter estimation. Therefore, for the parameter variability·analysis, only one of the thre,e 

parameters can be considered and the other two parameters will show the same variability. 
' 

The K factor was used for this study. Thus the three parameters considered were CN, S, and 

K. 
. . 

. . . . 

The only available observed data were tlie rainfall and runoff volume. No observed 

water quality or sediment data were available; Two steps were used to estimate the parameter 

uncertainty due to the spatial variability of rainfall. In the first step, grid-based rainfall 

depths, considered as the 'true' rainfall, were captured using the Theissen polygon method. 

. . . . : 

AGNPS was calibrated for CN using observed 'true' rainfall and runoff volume by adjusting 

the individual cell curve numbers either all upward or downward by a constant percentage 

until predicted runoff volume equaled observed runoff volume. The AMC was assumed to 

be II for CN throughout the parameter estimation process for all rainfall events. All other 

parameters were estimated bas~d on the observed watershed characteristics .. Runoff volume, 

total sediment, sediment-N, and .sediment-P were obtained by running the model using 

calibrated CN, and 'true' rainfall values for each event. These outputs were considered as the 

'observed' values for the further analysis. Characteristics of rainfall, runoff, sediment, an.d 

nutrient data for all events analyzed are shown in Table 4.6. 
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Table 4.6. "Observed" rainfall, runoff, sediment and nutrient values 

Rainfall Date Rainfall Runoff Total Sediment Sediment-N Sediment-P 
(mm) (mm) (Mg) (kg/ha) (kg/ha) 

Cyril Watershed 
3/27/96 31 0.3 13.6 0.02 0.01 

5/31/96 78 0.8 128 0.15 0.07 
7/9/96 112 3 401 0.36 0.18 

8/1/96 26 4.1 67.1 0.09 0.04 

10/27/96 12 0.3 5.44 0.01 0.01 

11/6/96 12 0.3 10.9 0.02 0.01 

Cement Watershed 
3/27/96 33 0;5 242. 0.07 0.03 

4/21/96 25 0.8. 443 0.1 0.06 

5/31/96 . 83 3 3395· 0.53 0.27 

7/9/96 64 1.5 2367 0.39 0.2 

10/27/96 23 0.3 68 0.02 0.01 

Radar (7 /9/96) 65 l.5 3338 0.53 0.26 
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In the second step, parameter uncertainty due to spatial variability of rainfall was 

estimated. It was assumed that each of the eight raingauges, considered one at a time, in the 

case of the Cyril watershed, and 1 7 gauges in the case of the Cement watershed, was the only 

gauge available for the rainfall measurement and the rainfall depth recorded by that gauge was 

spatially homogeneous across the watershed. Model parameters were estimated using the 

rainfall observed at each gauge location, one at a time, and the 'observed' runoff, total 

sediment, sediment-bound N, and sediment-bound P values. The objective function used in 

the parameter estimation was the sum of absolute value of relative errors for runoff, sediment 

and nutrients. The relative error was defined as 

Relative Error · = 
( Observ.ed value - Predicted value) 

Observed value 
(4.17) 

A two stage "brute force" optimization procedure described by Allred and Haan 

(1996) was used the find the optimum parameter values. In the first optimization stage, a 

rough estimate of the optimum parameter set was obtained by setting· a percentage by which 

each parameter was to be changed. The parameter values in each cell were increased or 

decreased by this percentage. Eight increments or decrements were performed for each 

parameter. Curve numbers were always increased or decreased by a whole number. For three 

parameters a total of 512model runs were performed and objective function values calculated 

for every possible permutation of the parameters. If the optimum values of any of the three 

parameters were obtained at the upper or lower boundary of the parameter values, the step 

sizes of the parameter values were increased and the same procedure was repeated to insure 
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that the optimum parameter estimates did not fall at the boundary values. Mathematically, 

the optimum parameter value can be represented as (P)j, where Pi is the average optimum 

value of parameter i obtained at step j G=l,2, .... 8). If j was equal to one or eight, then the 

range of the step size was increased, and the optimization procedure was repeated. The first 

estimate of the optimum parameter set was chosen that had the minimum objective function 

value. 

The second optimization was conducted in a similar manner as the first one by further 

refining the parameter values. Refinement was accomplished using a much narrower range 

of parameters obtained from the first optimization. If the optimum parameter obtained by the 

first approximation was (P)j, then the range of the parameters in the second optimization was 

(Pi)j-l to (Pi)j+l · At some instances, more than one set of parameter values, very close to each 

other, were obtained that minimized the objective function. In that case, the range was set 

such that all the parameters minimizing the objective. function were bracketed. In the second 

optimization, a step size in the form of a fraction for each parameter was calculated that 

divided the range of the parameter into 10 evenly distributed values. Each parameter at the 

cell level was then increased or decreased by this :fraction and model runs were performed. 

In this step also, the curve numbers were increased or decreased by a whole number. A total 

of 1000 model simulations were performed for each possible permutation of the parameter 

values. The set of parameters that minimized the objective function were considered as the 

final optimum parameter set. This "brute force" optimization procedure, although being 

computationally less efficient than other methods, has the advantage of not being affected.by 

local minimums in the objective function (Allred and Haan, 1996). 
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For the Cyril watershed, eight sets of parameters, one for each gauge-measured 

rainfall, that minimized the objective function were obtained for each rainfall event. For the 

Cement watershed, 17 sets of parameters were obtained. Since the parameter values were 

different at the cell level, the values shown in the subsequent sections represent the average 

parameter values for the watershed. 

The same procedure was repeated for the radar data. The calibrated radar rainfall was 

assumed to be the ''true" rainfall for the Cement watershed. The parameters were estimated 

using the two steps described in the previous paragraphs and the parameter uncertainty 

induced by the spatial variability ofrainfaUwas estimated.when the ''true" rainfall pattern was 

captured using the calibrated radar rainfall. The parameters · were estimated using the 

calibrated rainfall at the gauge locations only. This gave 17 sets of different parameters for 

the calibrated radar rainfall field. 

4.10 Estimation of output uncertainty due to spatial variability of rainfall 

AGNPS was run using the rainfall observed at each gauge location, one at a time, 

assuming that the rainfall depth was uniform across the watershed. Calibrated values of CN 
. . . 

using 'true' rainfall patterri and other best estimates of parameters for ~aclr event obtained 

from the previous section were used. .The parameters were fixed for each event. Eight and 17 

sets of outputs for the Cyril and Cement watersheds, respectively, ~ere obtained for each 

rainfall event. 

For the calibrated radar rainfall, two sets of the model output uncertainty were 

obtained. In the first set, the model was run using the rainfall value observed at each gauge 
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location as described in the previous paragraph and the output uncertainty was estimated 

using the 17 sets of outputs for the Cement watershed for rainfall on 7 /9/96. In the second set, 

the model was run using all of the different rainfall values from the calibrated radar rainfall 

field. This gave 43 sets of outputs for the watershed representing 43 different rainfall values. 

A summary flow chart of parameter/output uncertainty estimation is shown in Figure 4.18. 

The variability .in the model parameters and outputs induced by the spatial variability 

of rainfall is termed the parameter/output uncertainty. The uncertainty in the model 

parameters and outputs was quantitatively estimated using Average Error (AE), Relative Error 

(RE), Standard Error (SE), and Coefficient of Variation (C.V.). These error statistics can be 

defined as follows 

A E = _!_ !: (IP. - O I) 
n i I 

SE = 

RE= 
AE 

0 

CV 

1 n -2 
~:E (P: ~ 0) 
n . I 

I 

SE 

0 
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where Pi is the predicted value, 0 is an observed output or the parameter value, 0 is the mean 

of the observed data, and n (i=l,2,3, .... ,n) is the number of data pairs. In this case, since the 

observed value of parameter/output is fixed for each event, 0 is equal to 0. The average error 

quantifies parameter/output variability in the units ofO and P (e.g., kg, m/m, mg/L). In order 

to compare the parameters/outputs having different units, Average Error must be expressed 

in unitless terms. The relative error, RE, gives the percent deviation of the parameter/output 

value from the mean observed value. The standard error, SE, and the coefficient of variation, 

C.V., are numerical indicators of the variability in predicted data. 

The variability in the rainfall amounts observed at each location was quantified using 

Equations 4.18-4.21. Here Pi is the rainfall observed at the gauge i, 0 is the average rainfall 

for the area, and n is the number of gauges used to capture the rainfall spatial variability. 
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Figure 4.18. Summary flow chart of parameter/output uncertainty estimation 
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CHAPTERS 

RESULTS AND DISCUSSION 

5.1 Spatial Variability of Rainfall 

Consideration of spatial variability of rainfall is very important in studying the process 

of generation and transport of runoff, sediment, and nutrients from a watershed. In modeling 

the hydro logic behavior of watersheds, most of the models available to date assume spatial 

homogeneity of rainfall. Figure 5.1 shows the hourly distribution of rainfall that occurred on 

8/3/97 over the Little Washita watershed as recorded at 42 Micronet stations. Total area of 

the watershed is 610 km.2• A large variation in the cumulative rainfall depth over the area is 

evident. The event rainfall depth varied from almost zero to 43 mm. Traditionally, rainfall 

is measured at a few gauges (possibly only one) scattered throughout the basin and these point 

measured values are used to determine the average rainfall depth for use in hydrologic/water 

quality (H/WQ) models. In an ideal condition, where the density and distribution of gauges 

are adequate, rainfall depth can be estimated with sufficient accuracy at any point in the basin. 

by using a spatial interpolation technique. Unfortunately, this ideal condition rarely exists. 

In fact, it is not uncommon to have no rain gauge within the. basin of interest. If each of the 

42 gauges in the Figure 1 is assumed to be the representative gauge for the watershed, the 

result obtained using the rainfall recorded at each gauge location, one at a time, will have a 
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Figure 5.1. Hourly distribution of rainfall on 8/3/96 over Little Washita watershed 



large variability. A HIWQ model like AGNPS may not predict any significant output using 

t.he low rainfall values as compared to a larger rainfall depth (>30 mm) observed at sorrie 

other gauge locations. 

Eight gauges located within and around the Cyril watershed were used in the analysis 

of rainfall spatial variability. Figure 5.2 shows the location of these gauges. Tue 

characteristics of the rainfall observed by the eight gauges are shown in Table 5.1. Table 5.2 
' . • I 

. i 
shows the rainfall characteristics for tht;: five events analyzed for the Cement watershed. 

Spatial variability ofrainfall for the .Little Washita basin is shown in the Table 5.3. For the 

Cement watershed,.eight of the 17 gauges had erroneous rainfall amounts recorded on 8/1/96. 

Most of these gauges were located within the basin. This event was not considered for this 

watershed. However, this problem was not encountered with the Cyril watershed, becau~e 
' 

the watershed size was small, .and gauges considered for· this watershed did not have any 
. .·. 

problem. When analyzing the results with the Little Washita basin, all gauges which did not 

seem to be functional for any of the two days that made an event were discarded from the 

analysis. The number of gauges considered to capture the rainfall spatial variability ranged 

from 13 to 17 for the Cement watershed, and23 to 42 for the Little Washita basin. 

For the Cyril watershed, the six events analyzed varied in terms of the rainfall depth. 

The average rainfall varied from 11 mm to 84 mm. The range of the rainfall recorded by eight 

gauges, average error, relative error, standard error, and C.V. were calculated for all events. 

The C.V. ranged froin 0.07 to 0.7 for the five events.· The rainfall on 5/31/96 was most 

homogeneous in nature which is evident by the smallest C.V., standard error and relative errer 

(Table 5.1). The rainfall on 8/1/96 was the most heterogenous as shown by the largest C.V. · 
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Table 5.1. Spatial Variability of rainfall for the CyrHwatershed 

Stastistic Rainfall Date 
3/27/96 5/31/96 7/9/96 8/1/96 10/27/96 11/6/96 

Average (mm) 29.21 83.06 84.20 27.18 20.03 10.80 
A.W. Avg. (mm) 30.92 78.57 111 26.95 12.88 12.06 

Range (mm) 18.0-40.9 76.5-94.5 42.4-137 5.33-68.1 9.65-38.4 1.27-21.8 
Avg. Error (mm) 8.13 5.21 31.56 14.92 8.28 5.05 

Rel. Error 028 0.06 0.37 0.55 0.41 0.47 
Std. Error (mm) 8.90 5.91 34.7 19.0 9.33 6.00 

c.v. 0.30 0.07 · 0.41 0.70 0.47 0.56 
No. of Gauges 8 8 8 8 8 8 

Table 5.2. Spatial variability of rainfall for the Cement watershed 

Statistic Rainfall Date 
3/27/96 4/21/96 5/31/96 7/9/96 10/27/96 

Average (mm) 32.0 26.2 77.8 69.2 18.5 
A.W. Avg. (mm) 32.5 24.6 83.3 64.3 23.4 

Range (mm) 18.0-40.9 16.7-50.3 57.15-94.5 30.7-137 0-44.5 
Avg. Error (mm) 6.35 7.15 6.47 27.0 9.34 

Rel. Error 0.20 0.27 0.08 0.39 0.51 
Std. Error (mm) 7.95 9.08 8.87 31.6 11.7 

c.v. 0.25 0.35 0.11 0.46 0.64 
No. of Gauges 13 16 17 17 17 

AW. Average= area weighted average; Avg. Error= average error 

Rel. Error = relative error; Std. Error == standard error 
No. of Gauges = Number ofgauges used within and around the watershed 
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Table 5.3. Spatial Variability of rainfall for the Little Washita basin 

Statistic Rainfall Date 

3/27/96 4/21/96 5/31/96 7/9/96 8/1/96 10/27/96 11/6/96 

Average (mm) 27.8 30.3 74.1 . 66.2 · 38.0 15.8 16.0 
Range (mm) 1.02-40.9 0.76-57.7 0.25-103 14.7-137 1L7~59.9 0-44.5 0-44.7 

vg. Erro! (mm) 9.48 9.17 10.3 27.4 11.7 · 7.84 10.0 

Rel. Error 0.34 0.30 0.14 0.41 0.31 0.50 0.63 

Std. Error (mm) 10.9 11.8 15.5 31.7 14.0 · 102 12.4 

- c.v: 0.40 0.39 0.21 0.48·. 0.37 0.65 0.78 
0 
N · No. of Gauges 23 41 42 42 26 42 37 

A.W. Ayerage == area weighted average; Avg. Error= average error 
Rel. Error = relative error; Std. Error = standard error 
No. of Gauges = Number of gauges used within and around the watershed 



For the Cement watershed, the average rainfall ranged from 19 to 78 mm for the five 

events analyzed (Table 5.2). The C.V. ranged from 0.11 to 0.64. The smallest C.V. and 

relative error were associated with the rainfall on 5/31/96 and largest with the rainfall on 

·ro/27/96. The standard error was smallest fot the rainfall on 3/27/96. 

The average rainfall for the Little Washita basin ranged from 16 to 7 4 mm for the 

seven events (Table 5.3). The range of C.V. was 0.21 to 0.78. The smallest and large~t 

standard errors resulted on 10/27/96 and 7/1/96, respectively. The rainfall on 5/31/96 resulted 

in the smallest relative error, while the rainfall on 11/6/96 resulted in the largest relative error. 

For this watershed, the rainfall on 5/31/96 was also the most homogeneous in nature as shown 

by the smallest C.V. ( Table 5.3). 

For the Cyril watershed a true rainfall pattern was captured using four gauges and the 

Theissen polygon method. For the Cement watershed rainfall observed by 13 gauges wais 

usedto capture the true rainfall pattern. The area. weighted rainfall shown in Tables 5.1 and 

5.2 were obtained from the rainfall observed by these gauges and the Theissen polygon 

method. The average rainfall was obtained from the 8 gauges in Cyril watershed and 17 

gauges in Cement watershed. The average rainfall and the area-weighted average rainfall 

were not same for all events, except 8/1/96 for the Cyril watershed. For the Cement 

watershed, the area-weighted rainfall was different from the average rainfa.11 for all dates, 

except 3/27/96. Inclusion of additional gauges that were in the vicinity of the watershed 

introduced a bias in the average rainfall estimate. In actual conditions, it is not uncommon 

to have a raingauge located outside the watershed of interest. As the number of raingauges 
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available to estimate the area-weighted rainfall increases, this bias can be expected to 

decrease. 

The common events analyzed for the Cyril and Cement watersheds were 3/27/96, 

5/31/96, 7/9/96, and 10/27/96. For Cement watershed, C.V., relative error, and range of 

rainfall was larger for all dates except3/27/96. Standard error was larger for the events on 

5/31/96 and 10/27 /96. For the event on 3/27 /96, the range of rainfall observed by 8 gauges 

for Cyril watershed and 17 gauges for Cement watershed was same. The inclusion of 

additional gaugesthat had rainfall within the same range decreased the C.V., standard, and 

relative errors. 

For the Little Washita basin, when range and error statistics of rainfall are compared 

with the Cyril and Cement watersheds, a larger variation in the rainfall is evident. The range 

and C.V. of rainfall are larger for Little Washita basin as compared to the two small~r 

watersheds. As compared to the Cyril watershed, standard error was larger for all events, 

except 8/1/96. Average error was larger for 3/27 /96, 5/31/96, and 11 /6/96. When compared 

to the Cement watershed, standard error was larger for all events except on 7 /9/96, and 

10/27/96. The average rainfall was also different for the three watersheds. 

In general,therainfall spatial variability increased with an increase in the watershed 

size. This is evident from the fact that the rainfall range increased with the watershed area. 

The minimum rainfall observed by raingauges decreased as the size of the watershed 

increased. For the Little Washita basin, the minimum rainfall observed was very close to zero 

for five of the seven events analyzed. These rainfall data will not predict any significal).t 

output as compared to the output obtained when the maximum rainfall was used. This shows 
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that the use of a single gauge to measure rainfall for application in H/WQ models can 

introduce significant errors in model results. 

Contour maps of the rainfall depth for all the seven dates are shown in Figures 5.3-5.9. 

The contour map was made using inverse distance interpolation. The rainfall was interpolated 

at each point using seven surrounding gauges. Considerable variation in the rainfall depth is 

evident. Here for the area shown in these figures, the maximum distance in the East-West 

direction is 41 km and in the North-South direction is 25 km. The rainfall depth gradient and 

the direction of the rainfall depth gradient is different for each storm. 

For four of the six events analyzed for the Cyril watershed, rainfall observed by gauge 

150 was closest to the area-weighted rainfall. For rainfall on 11/6/96, gauge 131 recorded .a 

rainfall depth similar to the area-weighted rainfall. Figure 5.2 shows that gauge 150 is located 

near the center of the watershed. There are only two gauges, 131 and 150, located within the 

watershed (Figure 5.2). Together these two gauges observed a rainfall depth similar to the 

area-weighted rainfall for all events analyzed, except on 8/1/96. For the rainfall on 8/1/96, 

gauge 132 was the best representative gauge from the area-weighted rainfall point of view. 

For the Cement watershed, gauges 149 and 150 recorded a rainfall similar to the area

weighted rainfall on 3/27/96. For the rainfall on4/21/96 and 5/31/96, gauge 147 was the best 

representative gauge for the watershed. Gauge 154 on 4/21/96 and 152 and 154 on 5/31/96 

also observed rainfall depth similar to the area-weighted rainfall. Gauges 148 and 154 were 

the most representative gauge for the rainfall on 7/9/96 and 10/27/96, respectively. 
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Figure 5.3. Contour map of rainfall depth (mm) for storm on 3/27/96 
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Figure 5.4. Contour map of rainfall depth (mm) for storm on 4/21/96 
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Figure 5.5. Contour map of rainfall depth (mm) for storm on 5/31 /96 
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Figure 5.6. Contour map ofrainfall depth (mm) for storm on 7/9/96 
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Figure 5.7. Contour map ofrainfall depth (mm) for storm on 8/3/96 
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Figure 5.8. Contour map of rainfall depth (mm) for storm on 10/27/96 

111 



Figure 5.9. Contour map of rainfall depth (mm) for storm on 11/6/96 
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In general, for the Cyril watershed, the gauges located within the basin were the most 

representative gauges for the rainfall in the watershed for the most of the events. For the 

Cement watershed, although the gauges located near the center of the watershed had rainfall 

recorded that was a better representation of the area-weighted rainfall, the best representative 

gauge was not always located near the center of the watershed. Gauges 149 and 153 are 

located near the center of the watershed, however, gauge 149 was the most representati\\e 

gauge for only one ofthe five events analyzed. 

5.2 Calibration of Radar Rainfall Data 

Table 5.4 shows that for the rainfall on 7/9/96, the calibration factor ranged from 0.08 

to 7.45. Since the lower limit for the calibration factor was 0.1, the radar rainfall 

corresponding to the calibration factor 0.08 was not used. As compared to the gauge 

measured rainfall the radar over estimated the rainfall at six gauge locations and under 

estimated the rainfall at seven gauge locations. For the rainfall on 7 /10/96, the calibration 

factor ranged from 1.125 to 3.93 (Table 5.5). Radar underestimated the rainfall at all gauge 

locations for the rainfall on this date. For the rainfalls in Oklahoma, Smith et al. (1996) 

concluded that underestimation ofrainfall was pronounced beyond 150 km.in spring-summer 

and beyond 100 km in winter-fall due to incomplete beam filling and overshooting of 

precipitation. For the warm season the raingauge observations were found to be 48% larger 

than radar rainfall estimates in the range·0-40 km, 18%larger in the range 40-160 km, and 

' 

40% larger in the range greater than 160 km. The maximum and minimum distance between 

a raingauge and radar for the watershed Cement is 104 km and 85 km, respectively. The 
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Table 5.4. Radar rainfall calibration factors for rainfall on 7/9/96 

.. Gauge# Radar value Gauge value C.F. 
(mm) (mm) 

130 9 45 5 
131 11 82 7.45 
132 13 43 3.31 
133 12 36 3 
148 37. 26 0.7 
149 33 . 19 0.58 
150· 24 50 · 2.08 

151 13 57 4.38 
152 42.· 12 Q.29 
153 45 7 .. 0.16 
154. 38 5 0.13 
162 17 23 ... 1.35 
163 .· 49 4 .. ···. 0.08 
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Table 5.5. Radar rainfall calibration factors for rainfall on 7/10/96 

Gauge# Radar value Gauge value C.F. 

(mm) (mm) 

130 19 57 3 

131 14 55 3.93 

132 20 31 1.55 

133 23 42 1.83 

148 23 41 1.78 

149 19 28 1.47 

150 23 48 2.09 

151 19 . 69 3.63 

152 18 35 l.94 

151 24 36 1.5 

154 21 31 ·. 1.48 

162 13 23 1.77 

163 16 18 1.125 
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raingauges corresponding to the maximum and minimum distances were 151 and 134, 

respectively. The results obtained here were consistent with the results reported by Smith ~t 

al. (1996) except that the underestimation ofrainfall by radar was more pronounced for tHe 

events analyzed in this research. If the radar rainfall is not calibrated using the raingauge data, 
. . 

the calibration· factors show the error in the rainfall one may expect. For example, the 

' 
uncalibrated radar rainfall on 7/9/96 has a range of error from 0.08 to 7.45 factors. This 

rainfall should be corrected before it.can be used in any hydrologic applications. 

The average and range in the radar scanned rainfall over the watershed were 65 mm, 

and 21-189 mm, respectively. The area weighted rainfall using data from raingauges alone 

and the Theissen polygon method was 64 mm. This shows that the calibrated rainfall 

. .. . .. . . I 
produced an average rainfall over the Cement Watershed similar to the area-weighted rainfall 

obtained using 13 raingauges. The standard deviation and C.V. were 37.5, and 0.59:, 

respectively. The variability in the radar-scanned rainfall as indicated by range and C.V. is 

larger than the corresponding rainfall variability when the rainfall was captured using the 

raingauges alone. It shows that when only a limited number of raingauges are used to capture 

the rainfall, the variation in the rainfall may be lower than the true but unknown variation. 

A calibrated radar rainfall may give a better estimate of true rainfall pattern over ili,e 

watershed area 
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5.3 Effect of Rainfall Spatial Variability on Parameter Estimation 

5.3.1 Effect of Rainfall Spatial Variability on Model Parameter Uncertainty 

Parameter variability induced by spatial variability ofrainfall is shown in Table 5.6 

for the Cyril watershed. AGNPS is a distributed parameter model. The model parameteis 

vary from cell to cell. The parameter estimates discussed here represent the average 

parameter value .and all the statistics were based on the average parameter estimates for the 
• , 1 i 

watershed. In AGNPS, land slope i~ used to calculate the amount of sediment and nutrients 

eroded within each cell and the subsequent routing of the sediment and nutrients from each 

cell to the watershed outlet. The K factor is used in Universal Soil Loss Equation (USLE) to 

calculate the amooot of sediment and nutrients eroded at each cell. CN indicates the runoff 

potential of an area. Coefficient of variation (C.V.) in estimated CN ranged from 0.06 to 0.54 

I 

for the six events considered. The largest standard error (SE) in CN was produced by the 
! 

rainfall that had the largest standard error (7/9/96). The smallest C.V. and SE in CN were 

associated with the rainfall with the smallest C.V. and SE (5/31/96). Coefficient of variation 

and SE are numerical representations o( the variability in the data. It means that a rainfall 

with a large variation in observed depth will produce a higher variability in CN. This can be 

expected since for a fixed runoff there is a one-to~one correspondence between rainfall and 

CN. For a small observed rainfall value, CN must be higherto produce a volume of runoff 

equal to the measured runoff and vice-versa. 

Table 5.7 shows the parameter variability induced by rainfall spatial variability for the 

Cement watershed. The C.V. in CN ranged from 0.11 to 0.51 for the five events consideree;l. 

The SE ranged from 4.85 to 16.85. Here again the largest SE in the rainfall was associated 
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with the largest SE in CN. In general, the standard error in CN decreased with a decrease in 

the SE for rainfall depth. 

The C.V. in the estimated slope ranged from 0.06 to 1.64 for the Cyril watershed and 

0.12 to 0.58 for the Cement watershed. The range of SE were 0.09 to 2.62 for the Cyril 

watershed and 0.46 to 2.15 for the Cement watershed, respectively. Out of the total six 

rainfall events analyzed, the rainfall on 7 /9/96 and 8/1/96 were the most heterogeneous in 

nature for the Cyril watershed. These two events produced the highest variation in the 

estimated slope for the Cyril watershed. For the Cement watershed, although the largest C.V. 

and SE in the estimated slope were not associated with the rainfall having largest C.V. and 

SE, in general a higher variability in rainfall resulted in a higher variability in estimated slope. 

The rainfall on 5/31/96 was the most homogeneous in nature. This resulted in the smallest 

C.V. in the slope estimates. 

For the Cyril watershed, C.V. and SE in the K factor ranged from 0.08 to 0.79, and 

0.03 to 0.27, respectively. Here again, the smallest C.V. and SE were associated with the 

rainfall event most uniform in nature (5/31/96). The variability in the estimated K factor 

increased with an increase in rainfall heterogeneity. For the Cement watershed, the C.V. 

ranged from 0.08 to 0.85 forK factor. The corresponding range in SE was 0.03 to 0.28. 

Coefficient of variation in retention parameter (S) ranged from 0.1 l to 0.81 for the 

Cyril watershed and 0.17 to 0.49 for the Cement watershed, respectively. The corresponding 

ranges in SE were 28.2 to 84;1 mm, and 46.7 to 251 mm, respectively. Similar to the CN, the 

smallest variation in S resulted from the rainfall most homogeneous in nature (5/31/96). 
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Table 5.6. · Parameter variability induced by spatial variability of rainfall 
for Cyril watershed 

Statistic Parameter values for rainfall dates 
3/27/96 ·5/31/96 7/9/96 8/1/96 10/27/96 11/6/96 

CN 
Average 62 36 46 73 68 77 
Range 52-71 32-38 32-62 46-90 52-77 66-82 
c.v. 0.15 0.06 0.54 0.19 0.14 0.08 
Std. Error 8.42 2.37 17.7 13.6 10.6 6.31 
Avg. Error 6.63 1.63 13.1 · 11.0 7.75 5.57 
Rel. Error 0.11 0.04 0.4 0.15 0.10 0.07 

Slope 
Average 1.69 1.50 2.52 2.44 1.14 1.54 
Range 0.93-2.75 1.2-1.87 1-4.05 0.4-8.2 0.55-1.8 1.44-1.6 
c.v. 0.45 0.16 0.92 1.64 0.43 0.06 
Std. Error 0.73 0.25 1.47 2.62 0.69 0.09 
Avg. Error 0.66 0.21 1.19 1.53 0.57 0.06 
Rel. Error 0.41 0.13 0.75 . 0.96 0.36 0.04 

Kfactor 
Average 0.41 0.33 0.50 0.30 0.25 0:23 
Range 0.32-0.58 0.29-0.36 0.28-0.79 0.09-0.87 0.05"'.0.48 0.19-0.38 
c.v. 0.40 0.08 0.72 0.79 0.50 0.37 
Std. Error 0.13 0.03 0.25 0.27 0.17 0.13 
Avg. Error 0.09 0.03 0.18 0.23 0.14 0.12 
Rel. Error 0.26 0.07 0.53 0.67 0.4 0.36 

Retention Parameter (S) 
Average 164 461 344 108 128 75.9 
Range 103-234 415-540 156-540 27.9-298 75.9-234 55.9-132 
c.v. 0.29 0.11 0.45, 0;81 0.73 ,0.33 
Std.Err.or 5.4.1 49.5 232 84.1 65.3 28.2 
Avg. Error 44.2 33.3 183 60.5 45.0 24.4 
Rel. Error 0.24 0.08 0.36 0.58 0.5 0.29 
Std.· Error =; stadard error; Avg. Ei:ror ~ average error 
Rel. Error = relative error 
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Table 5. 7. Parameter variability induced by spatial variability of rainfall 
for Cement watershed 

Statistic Parameter values for the rainfall dates 
3/27/96 4/21/96 5/31/96 7/9/96 10/27/96 

CN 
Average 58 65 43 44 66 
Range 51-70 47-72 36-52 23-64 47-76 
c.v. 0.12 0.11 0.12 0.51 0.26 
Std. Error 6.83 6.98 4.85 16.9 14.2 
Avg. Error 4.38 5.81 3.75 13.8 12.7 
Rel. Error 0.07 0.09 0.1 0.42 0.23 

Slope 
Average 3.96 5.69 3.93 4.12 3.62 
Range 3.11-5.24 3.33-6.79 3.32-5.14 2.07-6.22 2.1-5.54 
c.v. 0.20 0.58 0.12 0.33 0.26 
Std. Error 0.75 2.15 0.46 1.24 0.95 
Avg. Error 0.48 2.02 0.30 1.02 0.77 
Rel. Error 0.13 0.55 0.09 0.28 0.21 

K factor 
Average 0.35 0.44 0.32 0.51 0.36 
Range 0.23-0.58 . 0.25-0.68 0.28-0.38 0.27-0.87 0.14-0.59 
c.v. 0.38 0.54 0.08 0.85 0.50 
Std. Error 0.13 0.18 0.03 0.28 0.16 
Avg. Error 0.08 0.14 0.02 0.21 0.15 
Rel. Error 0.23 0.43 0.08 0.62 0.45 

Retention Parameter (S) 
Average 188 144 351 388 139 
Range 109-244 98.9-287 234-452 143-850 80.3-287 
c.v. 0.23 0.33 0.17 0.49 0.44 
Std. Error 46.7 48.5 67.1 251 92.2 
Avg. Error 31.2 37.6 54.9 223 84.6 
Rel. Error 0.16 0.25 0.14 0.43 0.41 
Std. Error = stadard error; Avg. Error = average error 
Rel. Error = relative error 
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In general, a wide range in estimated parameters resulted when the rainfall measured 

at each gauge location was used individually, one at a time. None of the parameters can be 

considered unlikely when viewed individually for each event. Together the sets of parameter 

values obtained illustrate the possible range depending upon the rainfall variability across the 

watershed. 

A larger range in the rainfall values within a single event resulted in a higher range ih 

all estimated parameters. When compared to the true parameter values, the variation was very 

large for all events. For slope, K, and S the range was several orders of magnitude for some 

events for both watersheds. Parameter uncertainty comes into play when developing and 

testing a model. One might have several observed events and use·each to estimate model 

parameters. The result may be quite inconsistent estimates. Usually the uncertainty in the 

model parameters is attributed to the structure of the model because the mathematical mode~s 

are simplified description of the processes occurring in the nature. Results of this study 

indicate that even in the case of physically-based distributed-parameter models, an uncertainty 

in the parameter estimates would be observed because of the input error coming from the 

spatial variability of rainfall. The input error is present when measurements from only one 

gauge or a s:mall nu:mber of gauges is used when a more extensive network might be 

necessary to give an adequate representation of the rainfall pattern over a basin. 
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5.3.2 Biases in the Estimated Parameters Due to Rainfall Spatial Variability 

Biases in the estimated parameters obtained are shown in Table 5.8. Here a bias is 
' 

defined as the difference between true and estimated average parameter value. A positive bias 

means the parameter was underestimated and a negative bias mean that the parameter was 

overestimated. The parameters were estimated using observed putput and rainfall measured 

at each gauge location, one at a time. The objective function used,to.estimate the parametets 

was the sum of absolute values ofrelative errors defined by Equation 4.17. For the Cyril 

watershed, the values shown in the .Table 5.8 represent the average of the 8 sets of parameters 

obtained for 8 different rainfall measurement for .each event. For the Cement watershed, the 

parameter values shown are the average of 17 different realizations of the parameters, each 

corresponding to one gauge location for each event. 

Here it should be noted that the true parameter values for slope and K factor were . 

obtained using the observed characteristics of the watershed. CN were obtained by using the 

true pattern of rainfall captured by 4 gauges using Theissen polygon method for Cyril 

watershed, and 13 gauges for Cement watershed. Retention parameter (S) was derived from 

CN. Here it was assumed that CN obtained using a spatially variable rainfall pattern for the 
' ' 

two watersheds gave the true CN and S estimates. .In the case of Slope and K, it was assumed 

that the observed watershed characteristics yielded.thetrue estimates of these parameters. 

For the Cyril watershed, for all events ,except on 8/1/96, area-weighted rainfall is 

different from the average rainfall obtained using 8 gauges. This bias in rainfall produced ;a 

bias in CN and S. For the Cement watershed, a bias is evident in average and area-

122 



Table 5.8. Biases in the estimated parameters induced by the rainfall 

spatial variablity 

Rainfall date CN S(mm) Slope(%) K 

Cyril Watershed 
3/27/96 -4 19.6 -0.09 -0.07 
5/31/96 1 -28.4 0.11 0.02 
7/9/96 -13 171 -0.92 -0.16 
8/1/96 -2 . -4.57 -0.84 0.04 

10/27/96 6 -29.3 0.46 0.09 
11/6/96 -2 8.64 0.06 0.11 

Cement Watershed 

3/27/963 -2 11.2 -0.25 -0.02 

4/21/96b -2 5.33 -1.98 -0.11 

5/31/96° '-3 46.0 -0.22 0.01 

7/9/96° -11 128 -0.41 -0.18 

10/27/96° -11 69.1 0.09 -0.03 

a = Average of 13 gauges 

b = Average of 16 gauges 
c = Average of 17 gauges 
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weighted rainfall for all rainfall events. This resulted in a biased average estimate of CN and 

S for all events. 

The true parameter values of slope and K did not depend on the true rainfall pattern. 

They were derived from the watershed characteristics. When the slope and K factors were 

estimated using the rainfall depth observed at each gauge location one at a time, the bias in 

the recorded rainfall at each gauge location was compensated for by adjusting the parameter 

. values to get the model predictions closer to the observed output values. In this case, a bias 

in the amount of recorded rainfall was translated to parameter bias and affected the resulting 

parameter estimates. As the number of rainfall observations for a watershed increases, the 

bias in the estimated parameters can be expectedto decrease. 

5.3.3 Relative Errors in Estimated Parameters Due to Rainfall Spatial Variability 

Relative errors for estimated parameters as compared to the calibrated parameter 

values were calculated for all events for the two watersheds. Table 5.9 shows the relative 

errors in estimated parameters as compared to the calibrated parameter values for the Cyril 

watershed. The corresponding parameter relative errors for the Cement watershed are shown 

in Table 5.10. The maximum and minimum relative errors as compared to the area-weighted 

average rainfall for all events analyzed are shown in Table 5.11. For each event, parameters 

were estimated using eight raingauges for the Cyril watershed and · 13 to 1 7 raingauges for 

Cement watershed. Rainfall observed at each gauge location gave a different set of 

parameters that minimized the objective function defined by Equation 4.17. 
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Table 5.9. Relative errors in estimated parameters for Cyril watershed 

Rainfall Date Parameter Relative Error 
Maximum Minimum 

3/27/96 CN 0.22 0 
s 0.44 0 

Slope 0.72 0.17 
K 0.71 0 

5/31/96 CN 0.14 0 

s 0.25 0 
Slope 0.25 0.03 

K 1.32 0 

7/9/96 CN 0.88 0.03 
s 0.7 0.05 

Slope 1.53 0.03 

K 1.32 0 

8/1/96 CN 0.35 0.04 

s 1.87 0.14 
Slope 4.13 0 

K 1.56 0.11 

10/27/96 CN 0.3 0 

s 1.63 0 
Slope 0.66 0.05 

K 0.85 0.03 

11/6/96 CN 0.12 0.01 

s 0.55 0.05 
Slope 0.1 0 

K 0.44 0.12 
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Table 5.10. Relative errors in estimated parameters for Cement watershed 

Rainfall Date Parameter Relative Error 
Maximum Minimum 

3/27/96 CN 0.23 0.02 

s 0.46 0.04 
Slope 0.41 0.01 

K 0.75 0 

4/21/96 CN . 0.25 0 

s 0.92 0 
Slope 0.83 0.1 
·K 1.06 0.03 

5/31/96 CN 0.33 0 
s 0.4 0 

Slope 0.39 0.02 
K 0.15 0.03 

7/9/96 CN 0.94 0.03 
s 0.72 0.04 

Slope 0.67 0.01 
K 1.63 0 

10/27/96 CN 0.38 0.03 
s 0.61 0.08 

Slope 0.49 0 

K 0.78 0.03 
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Table 5.11. Relative errors in rainfall values 

Rainfall Date Relative Error 

Cyril Watershed 
3/27/96 
5/31/96 
7/9/96 
8/1/96 

10/27/96 
11/6/96 

Cement Watershed 
3/27/96 
4/21/96 
5/31/96 ' 

7/9/96 
10/27/96 

Maximum 

0.42 
0.2 

0.62 
1.57 
2.08 
0.89 

0.45 
1.04 
0.31 

1.13 
0.9 
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Minimum 

0.01 
0 

0.09 
0.15 
0.02 
0.17 

0.01 
0 

0.02 

0.05 
0.13 



The minimum and maximum relative errors shown in the Table 5.9 for each parameter are the 

· minimum and maximum relative errors obtained from the eight sets of parameters for each 

event. For the Cement watershed (Table 5.10), the minimum and maximum relative errors 

for the parameters represent the minimum and maximum relative error values from 13 to 1 7 

sets of parameters for each event. For the Cyril watershed, the maximum relative error in CN, 

S~ Slope and Kfa?tor were 0.88, 1.87, 4J3, and 1.56, respectively, for all events considere4. 

The maximum relative error in CN occurred for rainfall observed at gauge location 153 o~ 

. . 

7 /9/96. The maximum relative error in the slope estimates resulted from the rainfall observed 

. ' 

at gauge 152 on 8/1/96. The minimum relative error for these parameters was zero. Table . 

5.9 shows that the minimum relati.ve error yvas very near to zero for all of the events for all 

parameters. The corresponding rainfall error observed at these gauge location was als~ 

relatively smaller. For the rainfall observed at gauge 151, the relative error in slope estimat~ 

. was zero although the relative error in rainfall at this gauge location was highest for the event. 

For the Cement watershed, the maximum relative error in CN, S, slope, and K factor 

were 0.94, 0.92, 0.83 and 1.63, respectively, for all events considered. Thecorresponding 

. rainfall relative errors were 0.52, 1.04, 0.32, and 0.52, respectively. Maximum relative error . 

in CN was obtained at the gauge 161 for rainfall on 7 /9/96. The rainfall obtained at this gauge 

location was minimum for this event. For S, the maximum relative error occurred at gauge 

163 on 4/21/96. For this ~vent, rainfall relative error was maximum at this gauge location. 
. . 

Also, the rainfall observed at this gauge was the maximum for the event. Maximum relative 

error in slope estimate was at the gauges 132 and 150 on 4/21/96. The rainfall observed by 

these gauges was the minimum for the event. The maximum relative error in estimated K 
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factor was associated with the minimum rainfall observed at the gauge 161 on 7/9/96. 

The minimum relative errors for CN, S, slope, and K factor for the Cement watershed 

were zero. The corresponding rainfall relative errors were 0.09, 0.26, 0.09, and 0.15, 

respectively. The minimum relative error was close to zero for all events for all parameters. 

Here it should be noted that the minimum relative errors were not associated with the rainfall 

minimum relative errors. For example, rainfall on 4/21/96 had the rainfall measured at the 

gauge 14 7 very similar to the area-weighted rainfall value. But the relative errors in the 

parameters were not minimum atthis gauge location. This might have come from the routing 

of the runoff from cell to cell, and subsequently to the watershed outlet. For a large 

watershed, if the center of the storm is located towards the watershed outlet, the spatially 

variable rainfall will produce larger runoff volume than a spatially homogeneous rainfall 

equal to the area-weighted rainfall depth. This was evident from the fact that the average CN 

for the watershed for rainfall at gauge · 14 7 was higher than the average true CN obtained using 

true rainfall pattern on 4/21/96, although the rainfall observed at this gauge was very close 

to the area-weighted mean rainfall. In other words, in order to produce the given amount of 

runoff with a given CN, rainfall observed at the gauge location should be higher than the area

weighted rainfall. It means that for large watersheds, an area-weighted average rainfall may 

not result in the true parameter estimates. However, a bias in the parameter using area

weighted rainfall will be smaller as compared to the parameter estimated using rainfall 

observed at only one gauge location. This bias can be expected to decrease with a decrease 

in the watershed size. Similar results were obtained for other events for this watershed. 
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Maximum relative errors in CN and S were associated with the minimum rainfall 

observed at a gauge location for all events, except on 4/21/96. For the rainfall on 4/21/96, the 

maximum rainfall observed at the gauge 163 produced the maximum relative error in CN, and 

S. For estimated slope and K factor, the maximum relative error resulted from the gauges that 

observed the minimum rainfall. This shows that if the rainfall is observed by several gauges, 

and the parameters of the model are estimated using rainfall one gauge at time, the maximmh 

relative error may result from the minimum rainfall recorded for the event. However, this 

result should be tested with other models before it can be extrapolated for all H/WQ models. 

Since AGNPS is designed to predict erosion events, not low flow events, the bias and relative 

errors in parameter estimates can be expected to be large for smaller rainfall events. 

5.3.4 Correlation Structure Among the Parameters 

The correlation among the parameters and the input rainfall was calculated for all 

events for the two watersheds. The results of the correlation analysis for the Cyril watershed 

are shown in Table 5.12. Table 5.13 shows the correlation among the input parameters for 

the Cement watershed. The correlation of S with other parameters is not shown in these 

Tables. S is derived from CN, and hence its correlation will be similar to that shown for CN. 

The correlation analysis shows that rainfall, CN, slope, and K factors are highly 

correlated. In the parameter estimation process, rainfall was the only input variable, and the 

values of CN, slope and K factor were adjusted to get the best estimates of parameters that 

met the objective function given by Equation 4.17. For the Cyril watershed, the maximmh 

and minimum correlation between CN-slope was -0.99, and -0.28, respectively. 
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Table 5.12. Correlation among the estimated parameters for Cyril watershed 

Rainfall Slope CN K 
3/27/96 

Rainfall 1 
Slope -0.99 1 
CN -1 0.99 1 
K -0.92 0.94 0.94 1 

5/31/96 
Rainfall 1 

Slope -0.9 1 
CN -0.99 0.92 1 
K -0.27* -0.12* 0.15* 1 

7/9/96 
Rainfall 1 

Slope -0.99 1 
CN -0.97 0.98 1 
K -0.95 0.96 0.98 1 

8/1/96 
Rainfall 1 
Slope -0.48* 1 

CN ...,1 0.47* 1 
K -0.68 0.91 0.68 1 

10/27/96 
Rainfall 1 
Slope -0.71 1 

CN -1 0.73 1 
K -0.73 0.81 0.7 1 

11/6/96 
Rainfall 1 

Slope 0.23* 1 
CN -0.99 -0.28* 1 

K 0.71 0.6* -0.76 1 
Overall 

Rainfall 1 
Slope -0.14* 1 
CN -0.93 0.25* 1 
K 0.71 0.8 0.06* 1 

* Not significant at a =0.05. 
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Table 5.13. Correlation among estimation parameters for Cement watershed 

Rainfall Slope CN K 

3/27/96 
Rainfall 1 

Slope -0.96 1 
,·, 

CN -1 ' 0.96 1 

K -0.99 0.97 0.99 1 
4/21/96. · 
Rainfall 1 

Slope -0.98 1 
CN -1 0.98 . 1 ' 

K -0.86 0.87 0.89 1 
5/31/96 
Rainfall 1 

Slope -0.98 1 
CN -1 0.98 1 

•· 
" 

K -0.91 · 0.86 ... 0.91 1 
7/9/96 

Rainfall 1 
Slope -0.97 1 
CN -0.97 · 0.98 .·· 1 
K -0.89 0.91 0.96 1 

10/27/96 
Rainfall 1 

Slope -0.94 1 

CN -1 0.95 1 
K -0.87 0.92 0.89 1 

Overall 
Rainfall 1 

Slope -0,54 1 

CN -0.97 0.64 1 
K -0.38 0.73 0.48 1 

Radar.· 
Rainfall 1 

Slope -0.94 1 
( 

CN -0.98 0.99 1 
K -0.92 0.92 0.95 1 
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The maximum correlation between CN-K, and CN-rainfall were found to be 0.98, and -1.0, 

respectively. The minimum correlation between these parameter pairs were 0.15, and -0.97, 

respectively. Although there is a one to one correlation between rainfall and CN for a fixed 

runoff, the relation between rainfall and CN is nonlinear. A high correlation between 

optimized CN and rainfall was expected. The maximum correlation between slope-rainfall 

and slope-K were -0.99, and 0.96, respectively. The minimum correlation between these 

parameter pairs were 0.23, and -0.12, respectively. The maximum and minimum correlation 

between rainfall-K factor were -0.95, and -0.27, respectively. 

At-test was performed to see if the correlation coefficients among the parameters were 

significantly different from zero. The t-test assumes the data to be normally distributed. 

Because some of the parameters may not have a normal distribution, the results obtained here 

are approximations of the true results. Nevertheless, it gives an idea about the associatim;i 

among different parameters. Table 5.12 shows that for the Cyril watershed, the correlation 

between K-rainfall, K-CN, and K-slope was not significantly different from zero (a.=0.05) for 

rainfall on 5/31/96. The correlation between slope-rainfall, and slope-CN was not significant 

(a.=0.05) for the rainfall on 8/1/97. Slope-rainfall, slope-CN, and K-CN were not significantly 

correlated (ci=0.05) for the rainfall event that occurred on 11/6/96. 

For the Cement watershed, the maximum correlation between CN-rainfall, CN-slope, 

and CN-K factor was, -1.0, 0.98, and 0.99, respectively. The corresponding minimum 

correlation between these parameters were -0.97, 0.95, and 0.88, respectively. Slope-rainfall 

and slope-K factor had a maximum correlation of -0.98, and 0.97, respectively. Th¢ 

minimum correlation between these parameters were -0.94, and 0.88, respectively. Rainfall-K 
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factor had a maximum and minimum correlation of -0.99, and -0.86, respectively. For .the 

Cement watershed, all correlation coefficients were significantly different from zero (a.=0.05) 

for all events analyzed (Table 5.13). 

In AGNPS, land slope is used to calculate the amount of sediment and nutrients 

eroded within each ceU and the subsequent routing of the sediment and nutrients from each 

cell to the watershed outlet. A high significant negative correlation between slope-rainfall 

means for a given amount of sediment and nutrient transported at the watershed outlet, if the 

rainfall is higher, slope should be lower, and vice-versa to predict the sediment/nutrient 

transport equal to the observed output. The K factor is used in the Universal Soil Loss 

Equation (USLE) to calculate the amount of sediment and nutrients eroded at each cell. A 

high correlation between slope-K factor was expected. 

The correlation among the parameters for th~ six events combined together for the· 
.· . . 

Cyril watershed and for five events . for the Cements watershed were calculated. Th~ 

correlation among parameters for all events in the Table 5.12 were based on 46 different 

estimates for each parameter. The correlations among parameters shown for all events 

together were derived from 77 parameter estimates. Tables 5.12 and 5.13 show that the 

correlations were less When the parameters for all events were combined together. For the 

CyrHwatershed only CN-rainfall, and slope-K were significantly correlated (a.=0.05). All 

parameters were significantly correlated (a.=0.05) for the Cement watershed (Table 5.11). 

In general, rainfall, CN, slope, and K factors were highly correlated for all events 

analyzed.for both watersheds. This correlation is a major contributor to the difficulty 0£ 
I 

estimating parameters for H/WQ models. A high correlation between two parameters means 
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that one parameter can not be estimated without adjusting the value of other. At the same 

time there can exist a large number of combinations that will give similar outputs. 

5.3.5 Probability structure of the estimated parameters 

Probability plots of estimated parameters for all events for the Cement watershed are 

shown in Figures 5.10-5.12. The assumption made in the probability plotting was that th~ 

individual observations are independent of each other and that the sample data obtained here 

are representative of the population. Figures 5 .10 and 5 .11 show that the estimates of the 

slopes and the K factors are not normally distributed. Retention parameter (S) is plotted on 

a lognormal scale (Figure 5 .12) because S is assumed to have a lognormal distribution. It 

· shows that the estimated S does not follow a lognormal distribution. The total number of data 

points available for all events ranged from 13 to 17. These numbers of data points are 

relatively small to show the probability distribution function of the parameters. 

In all figures, the probability on the Y-axis represents the percent cumulative 

probability that a value of the parameter obtained will be less than a given value. 

, Mathematically it can be represented as P(X~x). Here Xis the parameter for which the 

cumulative. probability is desired and xis the value of the parameter. The probability of 

getting the parameter estimate less than or equal to the true parameter value can be calculated. 

If this probability is less than 0.5, then it can be concluded that the parameter was 

overestimated using the rainfall observed at a majority of the gauges. On the other hand, if 

the probability is more than 0.50 then the parameter was underestimated for the majority of 

the gauge rainfall values. 
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Figure 5.10. Probability plot of estimated slopes for Cement watershed 
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Figure 5 .10 shows that the probability of estimating a slope less than the true slope 

(3.71%) is greater than 0.50 for the rainfalls onJ/27/96 and 10/27/96. It means that for a 

rainfall pattern like this slope will be underestimated using the rainfall observed at majority 

of the gauges. For the other events analyzed, Figure 5.10 shows that the probability of 

estimating a slope less than the true slope is less than 0.50 and the slope is overestimated 

using the rainfall observed at the majority of thy gauges. 

The true parameter value for the K factor was 0.33. Figure 5.11 shows that K factor 

is overestimated for the rainfalls on 4/21/96 and 7/9/96 using the rainfall at a majority of the 

gauges. For the other events, the K factor is underestimated. The base values for the 

retention parameter were 188, 144,351, 410, and 13'9 mm, respectively, for the rainfalls mi 

3/27 /96, 4/21/96, 5/31/96, 7 /9/96, and 10/27 /96. The retention parameter was overestimated 

for the rainfall on 3/27 /96, and underestimated for the rainfalls on the other events when the 

. rainfall at each gauge location was used, one at a time, to estimate the parameter. 

5.3.6 Model Parameter Uncertainty Obtained with Radar Rainfall Data 

For the rainfall on 7/9/96, the variability induced in estimated parameters due to 

rainfall spatial variability is shown in Table 5.14 when the true rainfall pattern was captured 

using radar. The results presented here are based on the J 7 sets of different parameter values 

each corresponding to the. calibrated rainfall at gauge locations. The average CN, S factor 

(mm), slope (%), and K factor obtained were 44, 390, 5.02, and 0.49, respectively. A 

comparison of the statistics of estimated parameters obtained from radar data and from 

raingauge data shows that the average, range, C.V., standard error, average error, and relative 
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error were larger for estimated CN and slope when the parameter estimates were obtained 

using the radar data (Tables 5.7 and 5.14). For retention factor (S), the average was less when 

radar rainfall was used. The range and C. V. in radar-scanned rainfall was higher than the 

corresponding values obtained when the rainfall variability was captured using raingauges 

alone. When compared with the error estimates from raingauge data, a higher variability in 

the radar-scanned rainfall resulted in a higher variation and errors in the estimated parameters. 

For the K factor, th~ average and range were larger when the radarfainfall was used. The 

C.V., standard error, average error, ~d relative error in·estimated K were very similar when 

the radar rainfall was used. 

Although the average rainfall for the watershed using the radar was very similar to the 

area-weighted rainfall obtained from gauges alone, the average CN, retention factor, and slope 

were different. The estimates of average CN, slope. and K factor were larger than the 

corresponding estimates obtained using data from gauges alone. Table 4.6 shows that the 

observed values of total sediment, sediment-attached N; and sediment-attached P were higher 

when the radar data was used. When the parameters were estimated using these higher 

observed values, the average parameter values had to be higher to minimize the objective 

function defined by Equation 4.17. A larger range in the rainfall resulted in a larger range in. 

the estimated parameters 

140 



Table 5 .14 Parameter variability induced by rainfall spatial variability 

with radar measurement of rainfall 

Statistic CN S factor·. Slope K factor 
(mm). (%) 

Average·. 44 390 5.02 0.49 

Range. 22-64 143-900 2:96-7.45 0.22-0.86 

c.v. 0.64 0.51 0.55 0.7 
Std. Error 19.15 303 2.03 0.23 
Avg.Error 15.65 268 1.59 0.18 

Rel. Error 0.52 0.45 0.43 0.56 
Std. Error= standard error; Avg. Error= average error 
Rel. Error = relative error 
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5.4 Effect of Rainfall Spatial Variability on Model Outputs 

5.4.1. Uncertainty in the Model Outputs due to Rainfall Spatial Variability 

The effect of rainfall spatial variability on model outputs for watersheds Cyril and 

Cement are shown in Tables 5.15 and 5.16, respectively. For all rainfall events, variability 

. . 

in the measured rainfall resulted in variability in the model outputs based on a fixed set of 

parameters. Table 5.15 shows that for the Cyril watershed, five of the six events considered 

had rainfall at some of the gauge locations too small to· produce any significant runoff, 

sediment, and nutrient transport at the watershed outlet. 

. . . . 

In case of the modeled runoff volume, the C.V. ranged from 0.52 to 1.82 for the six 

events. Ranges of C.V. for total_ sediment, sediment.;.attached N, and sediment-attached P 

were 0.34-1.64, 0.56-1.7, and 0.27-1.44, respectively. The smallest C.V. for all outputs was 

obtained with rainfall on 5/31/96. Rainfall on this date was most uniform in nature as 

·. indicated by the lowest C.V. (Table 5;1). For all events, the C.V. in output was larger than 

the C. V. in the rainfall. 

The ranges of SE and RE for runoff volume, tota1·sediment, sediment-attached N, and 

sediment-attached Pare shown in Table 5.15. In general, a larger SE in rainfall resulted in 

a larger SE in outputs, except for rainfall on 3/27 /96. A larger RE in output was associated 

with a larger RE in input rainfall. 

For the Cementwatershed, range in C.V. in estimated runoff volume, total sediment, 

Sediment-attached N, and sediment-atta~hed P was 0.5-2.29, 0.43-2.4, 0.36-2.15, and 0.37~ 

2.17, respectively (Table 5.16). For modeled outputs, the smallest C.V. was obtained for 

rainfall on 5/31/96 which had.the smallest C.V. and was most uniform in nature (Table 5.2). 
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The largest C.V. in output occurred on 10/27/96. Table 5.2 shows that this event had the 

largest rainfall C.V. The range of SE for runoff volume, total sediment, sediment-attached 

N, and sediment attached P was 0.51-2.54 mm, 211-3930 Mg, 0.04-0.48 kg/ha, and 0.02-0.25 

kg/ha, respectively. For all outputs the smallest·SE in rainfall resulted in the smallest SE in 

outputs. The SE in estimated output increased with an increase in rainfall SE. The same 

result is evident with the relative error .. The smallest RE in outpu! occurred on 5/31/96 and 

was associated with the rainfall with the smallest RE. 

Coefficient of variation and RE. in estimat~d · outputs were larger than the 

corresponding C. V. and RE in rainfall for all events; This shows that the uncertainty in 

estimated runoff, total-sediment, sediment-attached N, and sediment-attached P using a single 

raingauge as measured by C. V. and RE can be expected to exceed the input rainfall 

uncertainty. A similar result was reported by Faures et al. (1995) on a small watershed (<5 

. ha). This has an important implication for parameter estimation during model calibration if 

a single raingauge is used to measure input rainfall. If the spatial homogeneity of rainfall is 

assumed during the parameter estimation process, the variation in the modeled outputs could 

be mistakenly attributed to the model shortcomings. 
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Table 5.15. Output uncertainty induced by the spatial variability of rainfall in Cyril watershed 
'Output Statistic Output values (or rainfall dates 

3/27/96 5/31/96 7/9/96 8/1/96 10/27/96 11/6/96 
Runoff Volume Observed 0.33 0.76 3.05 4.06 0.15 0.30 

(mm) Average 0.51 1.27 2.03 · 4.06 1.78 0.25 
Range 0-1.27 0.51-2.29 0-7.37 0-19.8 0-7.62 0-2.03 
c.v~ 1.13 0.52 1.42 1.65 . ··l.42 1.82 

Std. Error 0.51 0.76 2.8 6.35 2.79 ', 0.76 

Rel. Error 1.04 · 0.65 0.85 1.1 13.0 1.41 

Total Sediment pbserved 13.9 128 401 67.0 · 4.99 10.4 
(Mg) Average 16.2 169 233 72.7 34.9 9.43 

Range 0-44.2 110-271 0-732 0~317 1.81-124 0-44.8 
c.v. 1.05. 0.34 1.23 l.46 1.24 l.64 

Std. Error 17.8 73.3 350 110 55.5 16.0 
Rel. Error 1.01 0.39 0.68 1.03 7.14 1.06 -~ 

~ 
Sediment-N Observed 0.02 0.15, 0.36 · 0.09 0.01 0.02 

(kg/ha) Average. 0.02 0.18 0.20 0.08 0.04 0.01 
Range. 0-0.07 0.12-0.26·· 0-0.58 · 0-0.30 0-0.15 0-0.67 
c.v. 1.03 0.26 1.16 1.24 1.12 1.7 

Std. Error 0.02 0.06 0.27 0.09 0.06 0.02 
Rel. Error 0.89 0.28 0;63 0.8 3.9 0.83 

Sedin:ient-P Observed 0.01 0.07 0.18 0.04 0.01 0.01 
(kg/ha) Average 0.01 0.09 0.10 0.04 0.02 0.01 

Range· 0-0.03 0.07~0.13 0-0.29 0-0.15 0-0.07 0-0.03 
C.V, 0.99 0.27 1.16 1.25 1.06 1.44 

Std. Error 0.01 0.02 0.13 0.04 0.03 0.01 
Rel. Error 0.82 0.29 0.62 0.81 3.96 0:87 

Std. Error = standard error; Rel. Error = relative error 



Table 5.16. Output uncertainty induced by the spatial variability ofrainfall in Cement watershed 

Output Statistic output values for rainfall dates 
3/27/96 4/21/96 5/31/96 7/9/96 10/27/96 

Runoff Volume Observed 0.51 0.76 3.05 1.52 0.25 
,(mm) Average 0.51 1.02 2.03 1.52 0.25 

Range 0-1.27 0~6JO 0.25-4.32 0-9.14 0-1.52 
c.v. · :0.75 1.56 0.5 1.84 2.29 

Std. Error, 0.51 1.52 1.52 2.54 0.51 
Rel. Error 0.67 1.15 0.41 1.27 1.09 

Total Sediment Observed 242 443 3390 2370 68.0 
(Mg) Average 282 267 2760 2450 93.4 

Range 0-621 9-1610 398-5240 0-13580 0-802 
c.v. 0.76 1.54 0.4~. i.65 2.4 

Std. Error 211 436 1320 3930 219 
Rel. Error 0.75 0.82 0.3 1.23 1.82 

Sediment-N Observed 0.07 0.10 0.53 0.39 0.02 
(kg/ha) .Average 0.07 0.06 0.44 0.34 0.02 

Range 0-0.13 0-0.29 O.i0~0.75 0-1.60 0-0.17 
c.v.· 0.71 1.29 0.36 1.47 2.15 

Std. Error 0.04 0.09 OJ8 0.48 0.04 
Rel. Error 0.59 0.73 0.25 1.01 1.4 

Sediment-P Observed 0.03 0;06 0.27· 0.20 . 0.01 
(kg/ha) Average 0.03 0;03 0.22 0.17 0.01 

Range· 0-0.07 0-0.15 0.04-0.37 0-0.81 0-0.08 
c.v. 0.7 1.24 0.37 1.47 2.17 

Std. Error .· 0.02 0.04 0.09 0.25 0.02 

Rel. Error 0.61 0.72 0.26 1 1.36 

Std. Error = standard error; Rel. Error = relative error 
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The SE in modeled outputs were less than the SE in rainfall values. It shows that if the 

uncertainty in the input rainfall value is quantified in terms of SE, this uncertainty will be 

damped out in the modeled runoff volume, total sediment, sediment-attached N, and 

sediment-attached P. 

In general, a larger range in input rainfall values in a single event resulted in a larger 
. . 

range in modeled runoff volume, total sediment, sediment-attached N, and sediment-attache4 

P transport. When compared with the observed output values, a large variability in the 

estimated output is evident for all events for both watersheds. All of the events, except on 

5/31/96, had rainfall<measured by at least one gauge ~hich was too small to produce any 

significant output. ·· Rainfall input error measured as C. V. and RE resulted in magnified output 

errors with a fixed set of parameters. Estimated output varied from one to several orders of 

magnitude when compared with the observed outputs. 

Faures et al. (1995) demonstrated that the use of the data from the non-recording 

gauges could improve the results of the modeled runoff when only one recording gauge was 

available for the rainfall measurement. The authors suggested that if several gauges were 

available, their measurements could help reduce the uncertainties resulting from measurement 

error and spatial variability of rainfall. 

5.4.2 Bias in Model~d Output due to Rainfall Spatial Variability 

Biases in modeled runoff volume, total sediment,· sediment-attached N, and sediment-

attached P are shown in Table 5 .17. The bias was obtained by taking the difference between 

the observed output and the average modeled output. For the Cyril watershed,·the modeled 
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average outputs represented are the average of 8 model runs, using rainfall observed at each 

gauge location one at a time. For the Cement watershed, the modeled average outputs are the 

average of 17 model outputs, each corresponding to one rainfall at a time. The positive values 

of bias represent the underestimation and negative values represent the overestimation of the 

modeled outputs as compared to the observed outputs. 

In general, a bias in input rainfall resulted in a bias in model outputs. For both 

watersheds, the runoff bias was very small for.allevents·analyzed. For the Cyril watershed, 

the minimum and maximum bias in total sediment was 1.81 Mg and 168 Mg, respectively. 

The minimum and maximum bias in modeled sediment-attached N was O and 0.16 kg/ha, 

respectively. The corresponding values for sediment-attached P were 0, and 0.08 kg/ha, 

respectively. For the Cement watershed, the biases in modeled runoff volume, sediment

attached N, and sediment-attached P were also very small. For the sediment transport 

prediction, the minimum and maximum bias was -25.4 Mg and 632 Mg, respectively. These 

biases can be compared to the observed outputs shown in Tables 5.15 and 5.16to assess their 

importance. The bias in predicted results can be expected to decrease with an increase in the 

number of raingauges to capture the rainfall pattern. 
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Table 5 .17. Bias in modeled output due to rainfall spatial variability 

Rainfall Date Runoff Total Sediment Sediment-N Sediment-P 
(mm) (Mg) (kg/ha) (kg/ha) 

Cyril Watershed 

3/27/96 0 -2.72 0 0 

5/31/96 -0.51 -40.8 .. o.03 -0.02 
.. 

0.08 7/9/96 1.02 168 0.16 

8/1/96 0 -5.44 0.01 0 

10/27/96 -1.52 -29.9 -0.03 0.02 

11/6/96 O· 1.81 0.01 0 

Cement Watershed 

3/27/96 0 -39.9 0 0 

4/21/96 -0.25 176 0.04 0.02 

5/31/96 1.02 · 632 0.09 0.04 

7/9/96 0 -84.4 0.06, 0.03 

10/27/96 0 -25.4 0 0 

.i1,• 
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5.4.3 Relative Errors in Modeled outputs due to Rainfall Spatial Variability 

Relative errors in modeled runoff volume, total sediment, sediment-attached N, and 

sediment-attached Pare shown in Table 5.18 for the Cyril watershed. Outputs were obtained 

by running the AGNPS model with the calibrated parameter values and rainfall observed at 

each gauge location, one at a time. For the Cyril watershed, for each rainfall event eight sets 

of outputs were obtained, each corresponding to the rainfall observed at one gauge locatio~. 

Thirteen to 17 sets of outputs were obtained for the Cement watershed for each rainfall event. 

The maximum and minimum relative errors shown in Table 5.18 represent the maximum and 

minimum relative error from the eight sets of outputs. for each rainfall event. Table 5.19 

represent the maximum and minimum error obtained from 13 to 17 different sets of output 

for each rainfall event. The maximum relative errors in runoff volume, total sediment, 

sediment-attached N, and sediment-attached P were 49.1, 24.1, 12, and 12.1, respectively. 

; . 

All of these values were obtained on 10/27/96 at the gauge 153. Area-weighted average 

rainfall for this event was 12.4 mm. Rainfall depth recorded at gauge 153 was 38.4 mm. This 

represents more than 300% more rain than the area-weighted average rainfall depth. The 

relative error in the rainfall depth at this gauge location was the highest for all the rainfall 

events analyzed,. The largest relative error in rainfall resulted iii the largest output error. For 

other events, the maximum relative error was cons1d~rably smaller than the relative error on 

10/27 /97. When no rainfall was recorded at a gauge location, the relative error at that location 

was one. 
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Table 5.18. Relative errors in modeled outputs due to rainfall spatial 

variability for the Cyril watershed 

Rainfall Date Output Relative Error 
Maximum Minimum 

3/27/96 Runoff Volume 2.54 0.03 
Total Sediment 2.17 0.14 

Sediment-N 2 0 
Sedi.nient-P 1.52 0.11 

5/31/96 Runoff Volume . 2.07 0 
Total Sediment 1.11 0.01 

Sediment-N 0.77 0 
Sediment-P 0.82 0 

7/9/96 Runoff Volume 1.42· 0.45 
· Total Sediment 1 0.28 

Sediment-N 1 0.22 
Sediment-P 1 0.23 

8/1/96 Runoff Volume 3.87 0.33 
Total Sediment 3.73 0.11 

Sediment-N 2.38 0.13 
Sediment-P 2.46 0.09 

10/27/96 · Runoff Volume 49.2 0.05 

Total Sediment 24~1 0.04 
. Sediment-N 12 ·O 
Sediment-P 12.1 0.04 

J 1/6/96 Runoff Volume 5.53 0.45 

Total Sediment 3.28 0.3 
Sediment-N · 1 0 
Sediment-P 2.2 0.23 
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Table 5.19. Relative errors in modeled outputs due to rainfall spatial 

variability for the Cement watershed 

Rainfall Date Output Relative EITor 

Maximum Minimum 

3/27/96 Runoff Volume 1.42 0.16 

Total Sediment 1.57 0.15 . 

Sediment-N 1 0.17 

Sediment-P 1.13 0.12 

4/21/96 Runoff Volume .· 6.74 .· 0;04 

Total Sediment 2.64 0.07 

Sedinient-N 1.89 0 

S~diment:.P 1.81 0.06 

5/31/96 Runoff Volume 0.91 0.03 

Total Sediment 0.88 0.07 

Sediinent-N 0,81 0.04 

Sediment-P 0.82 · 0.05 

7/9/96 Runoff Volume 5.39 0.16 

Total Sediment 4.73 0.17 

Sediment-N 3.09 0.14 

· Sediment-P 3.05 0.13 

10/27/96. .Runoff Volume 3.47 0.38 

Total Sediment 10.74 0.29 

. Sediment-N 6.5 0 

Sedinient-P 6.16 0.24 
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The minimum relative errors in runoff volume, total sediment, sediment-attached N, 

and sediment-attached P were 0, 0.01, 0, and 0, respectively. The relative error in rainfall at 

these gauge locations was very close to zero. In other words, the rainfall depths observed at 

the gauge locations corresponding to the minimum output error were very similar to the area

weighted average rainfall value. 

For the Cement watershed, the relative errors in predicted outputs due to the rainfall 

spatial variability are shown in Table 5.19. The maximum relative errors in predicted runoff 

volume, total sediment, sediment"'attached N, and sediment-attached P were 6.74, 10.74, 6.5, 

and 6.16, respectively, for all events analyzed. The maximum relative error in runoff volume 

occurred at gauge location 163 on 4/21/96. The rainfall relative error in total sediment, 

sediment-attached N, and sediment-attached P occurred at the gauge 133 on 10/27/96. This 

gauge also observed the maximum rainfall relative error and the maximum rainfall depth for 

the event. 

The smallest relative errors in runoff volume, total sediment, sediment-attached N, and 

sediment-attached P were 0.03, 0.07, 0, and 0.05, respectively. The corresponding rainfall 

relative errors were 0.03, 0.29, 0.29, and 0.29, respectively. The minimum relative error in 

runoff volume occurred on 5/31/96 at gauge 153. The rainfall relative error at this gauge 

location was not minimum for the event. The smallest.relative ·error .in total sediment, 

sediment-attached N, and sediment-attached P occurred at gauge 155 on4/21/96. Here again 

the rainfall relative error at this gauge location was not minimum. For the Cement watershed, 

the rainfall minimum relative error did not result in the output minimum relative error. For 

example, a rainfall relative error very close to zero was observed at gauge 154 on 4/21/96. 
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However, this rainfall did not produce the minimum output relative error. A gauge-observed 

rainfall higher than the area-weighted rainfall was needed to get the minimum output relative 

error. This may have been due to the routing of the output from cell to cell, and subsequently 

to the watershed outlet. . When the model was run using the correct parameter values and true 

rainfall pattern, the output observed was termed as the observed output in the case of total 

sediment, sediment.;attached N, and sediment-attached P. The area~weighted average rainfall. · 

was obtained froni the true rainfall pattern. When the model was run, assuming the rainfall 

to be spatially homogeneous and using area-weighted rainfall depth, the run:off volume, total 
. .• . . ' ,· . . 

sediment, sediment-attached N, and sediment-attached P were lower than the observed values. 

It may be because (1) weighted average rainfall averages out the spatial variability of rainfall, 

and (2) a watershed responds to a spatially distributed input of rainfall rather than a spatially 

averaged input. This may also come, from the. non-linearity of the model under consideration:. 

Assuming that the output modeled by Equation (3 .28) is non-linear in terms of input I, and 

parameters P, the average response of the non linear systems will not be equal to the average 

of the responses evaluated at aven1ge input parameter values. Mathematically it can be 

. represented as 

.-
0 * [(!_, P, t) 

where O is the modeled average output, I is the. average input values and :e: is the average 

parameter values. In other words, the expected value of the output is not equal to the 

functional relationship of the expected values of the input variables. 
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This shows if the spatial homogeneity of the rainfall is assumed, a rainfall greater than 

the area-weighted rainfall is needed to produce the output similar to the observed output for 

a fixed set of parameters. However, when the sum ofrelative errors in runoff volume, total 

sediment, sediment-attached N, and sediment-attached P was considered, rainfall similar to 

the area-weight~d rainfall produced the minimum total relative error in two of the five events 

analyzed for the Cement watershed. For other events also it gave arelatively better result. 

However, the same result was not true for the Cyril watershed. A gauge-measured 

rainfall very similar to the area-weighted average rainfall produced the minimum relative error 

in all of the predicted outputs. The sum of the relative errors in the predicted outputs was also 

minimum for the gauge-observed rainfall values similar to the area-weighted rainfall depth. 

This shows that with an increase in the size of the watershed, a rainfall higher than the area

weighted average rainfall is needed to produce a given output for a fixed set of parameters. 

A similar result was evident in the case of the estimated parameters. For the Cement 

watershed, for a given output a rainfall higher than the area-weighted rainfall was needed to 

produce the parameter estimates similar to the true parameter values. 

Similar relative errors in the model outputs are reported in a limited number of studies 

conducted using spatially variable rainfall inputs. Faures et al. (1995)reported that even for 

a very small watershed ( <5 ha), spatial variability in input rainfall could translate into a large 

variation in the modeled runoff. The C.V. in runoff rate was found to range from 2 to 65% 

when five model outputs were obtained using input from one of the five recording gauges, one 

at a time. Goodrich (1995) reported a relative variation in modeled runoff volume up to 0.43 
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when two gauges were used independently as input for a runoff model in three small 

catchments 0.4 to 4.4 ha in size. 

Young et al. (1992) applied a spatially variable synthetic storm on a 6475 ha 

watershed. The maximum relative errors in runoff volume, sediment yield,total N, and total 

P transport predicted byAGNPS were found to be 0.85, 3.26, 3.29, and 5.15, respectively. 

Luzio and Lenzi (1995) applied grid-based rainfall values on a 77 km2 watershed. The true 

rainfall pattern was captured using five raingauges and a spline method of interpolation. The 

authors reported maximum relative errors in predicted runoff volume, total sediment, total N, 

and total Pas 0.84, 0.17, 0.21, and 0.19, respectively, using the AGNPS model. The main 

difference between this study and the research reported by Young et al. (1992) and Luzio and 

Lenzi (1995) is the size of the watershed and number of gauges available to capture the 

rainfall spatial variability. The results reported by Young et al. (1992) were based on the 

synthetic rainfall data. Synthetic rainfall data may not model the patterns and amounts of real 

rainfall adequately. In addition, because of the local configuration and site measurement 

problems of real gauges, there is a causal relationship between rainfall and stream flow which 

may not be modeled in the synthetic situation (Hamlin, 1983). The study ofLuzio and Lenzi 

was based on a small watershed with a small number ofgauges available to measure the true 

. rainfall pattern. In this study a larger number of raingauges were available to measure the true 

rainfall pattern. The results of this study indicate that the rainfall spatial variability increases 

with an increase in the watershed size. Since the errors in the modeled outputs are magnified 

when an erroneous rainfall from observation made at a single gauge location is input, the 

results obtained by Luzio and Lenzi (1995) may not be generalized for larger watersheds. 
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The variability in the modeled runoff volume, total sediment, sediment-attached N, 

and sediment-attached P was significantly larger than the variability reported by Faures et al. 

(1995) and Luzio and Lenzi (1995). This could be a better representation of the relative errors 

in the predicted output for a watershed size studied in this research. This variability can be 

expected to increase with an increase in the watershed size because the rainfall variability 

increases with watershed size and the rainfajl input error is magnified in the modeled outputs. 

5.4.4. Impact of Gauge Location on Output Uncertainty 

Troutman (1983) reported that one source of uncertainty in the model outputs may be 

the lack of information .about the location of storm center. When the rainfall information at 

only a single gauge is ·available, it is not known whether the. overall storm magnitude was 

small or whether the storm was large with a center located at some distance from the gauge. 

The author speculated that this coulci result in considerable error in predicted runoff, 

especially if the gauge was not centrally located. Based on the simulation results from a 25 .1 

km2 watershed, Dawdy and Bergman (1969) reported that the most representative gauge was 

that closest to the center of the basin; the least representative was on the perimeter and at the· 

highest elevation of'the·basin. 

In this research, the effect of gauge location on modelpredictions was analyzed for 

the Cyril and the Cement watersheds. The sum of relative errors in predicted runoff volume, 
. ' . . . 

total sediment, sediment-attached N, and sediment-attached P was considered. The sum of 

the relative errors was termed the total error. 
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For the Cyril watershed, the minimum total error was obtained for the gauge 149 on 

3/27/96. Figure 5.2 shows that this gauge is not centrally located within the watershed. For 

the rainfall on 5/31/96 the minimum total error occurred at gauge 150. The total errors at 

gauges 131, 150, and 151 were considerably less than the total errors at other gauge locations. 

For rainfall on 7/9/96, relatively lower total errors were obtained at gauges 130, 150, and 151. 

Gauge 130 had the minimum total error for this event. Gauges 130 and 131 on 8/9/96 and 

gauge 150 on 10/27/96 had the minimum total error, respectively. For the rainfall on 11/6/96, 

gauge 131 hadthe minimum total error. The centrally located gauge (151) had the minimum 

total error for only two of the six events analyzed. 

For the Cement watershed,the gauges located within the watershed are 131, 148, 149, 

150, 153, and 154 (Figure 4.6). For rainfall on 3/21/96 the minimum total error was observed 

at gauge 154. Gauges 149 and 153 also had relatively lower total errors. The maximum total 

error was observed at gauge 130. The minimum and maximum total error on 4/21/96 

occurred at gauges 155 and 163, respectively. Figure 4.6 shows that neither of these two 

gauges is located within the watershed. In fact gauge 155 is the farthest gauge from the center 

of the watershed. Gauges 147 and 152 observed the minimum total error on 5/31/96. These 

gauges are also not located within the watershed, although for this event, gauge 153 also had 

relatively lower total error. For the rainfall on 7 /9/96~ gauge 134 had the lowest total output 

error. Gauge 149 showed the minimum total error on l 0/27 /96. 

In general for the two watersheds, the gauges located within the watershed had 

relatively smaller total error in predicted outputs. The minimum total error did not always 

occur at the gauge located at the center of the watershed. At least for one event, a gauge 
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located outside the watershed area had a better predicted output than the gauges located within 

the basin. The representativeness of the gauge will depend upon the size of the watershed as 

well as on the size and orientation of the storm event. Based on the results of this study no 
1. 

definite conclusion can be made regarding the best location of a gauge if the rainfall is 

measured using only one gauge. In the midst of the rainfall spatial variability, it will be better 

to capture the rainfall spatial variability using more than one gauge. If several gauges are 

available to measure rainfall, and model outputs are obtained using the rainfall observed at 

each gauge location, one at a time, the average of the multiple realizations of the outputs for 

each event will aiso improv~ the accuracy of the predicted results. 

5.4.5 Model-Output Uncertainty Obtained with Radar Rainfall Data 

The effect of rainfall spatial variability on modeled outputs is shown in Table 5 .20 

when the true rainfall pattern was captured by radar. The third column represents the results 

of the model simulation when the rainfall data at the 17 gauge locations were used, one at a 

time. The calibrated radar rainfall had 43 different rainfall values. Some of these values were 

observed at the cells where no gauge was available. The last column in Table 5.20 shows the 

model results when all differ~nt rainfall values from the calibrated radar were used to predict 

output, one at a time. Here the outputs were obtained by running the model using rainfall 

observed at each gauge location, one at a time. The parameters used were the true parameter . . 

values. The true estimate of CN was obtained by calibrating the model for CN using 

calibrated radar rainfall and observed runoff volume. True values of slopes and K factors 

were obtained from the observed watershed characteristics. 
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Table 5.20 Output uncertainty induced by spatial variability of rainfall when 

radar data was used 

Output Statistic Estimated outputs using·. 
17 gauges Radar rainfall 

Runoff Volume Observed 1.52 1.52 
(mm) Average. 1.02 1.78 

Range 0-6.60 0-18.8 
c.v. 2.01 2.22 

Std. Error 1.78 4.06 

Rel. Error 1.06 0.04 

Total Sediment Observed 3340 .. · 3340 
(Mg) Average·.· 2050 3570 

Range 0-12760 0-31230 

c.v. 1.84 2.03 
Std. Error 3890 7150 

Rel. Error 1.01 0.11 

Sediment-N Observed 0.53 0.53 

(kg/ha) Average 0.28. 0.43 
Range 0-1.52 0-3.13 

c.v. 1.65 1.85 

Std. Error 0.52 0.77 

Rel. Error 0.89 0.22 

Sedin;ierit~P Observed 0.26 026 
(kg/ha) Average 0.15 0.21 

Range . 0-0.76 0-1.57 

c.v. 1.65 1.85 

. Std. Error 0.26 0.39 

Rel. Error 0.89 0.11 

Std. Error = standard error; Rel. Error = Relative error 
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The minimum estimates of runoff volume, total sediment, sediment-attached N, and 

sediment-attached P were zero. At least 15 of the 43 different rainfall values from the 

. calibrated radar rainfall were too small to predict any significant output with AGNPS. Six 

of these rainfall values were observed at different gauge locations. Average, range, C.V., and 

standard error for all the outputs were larger when all the different rainfall values were used 

to estimate the outputs. Output uncertainty, when measured in terms of the relative error, was 

less for all of the outputs when all different rainfall values were used. The variability in the 

rainfall as measured by C.V. and range was larger when all 43 different rainfall values were 

used. This larger variability in the rainfall field resulted in larger average, range, and C. V. 

in all estimated outputs. 

Table 5.21 shows the bias in the modeled runoff volume, total sediment, sediment

attached N, and sediment-attached P when using the calibrated radar data. In general the bias 

in the modeled outputs decreased when the outputs were obtained by running the model using 

all the different rainfall values. This shows that as the number of gauges available to capture 

the rainfall pattern increases, the bias in the modeled outputs decreases. 
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Table 5.21. Bias in estimated parameters with calibrated radar data 

Output 

Runoff Volume (mm) 

Total Sediment (Mg) 

Sediment-N (kg/ha) 
Sediment-P (kg/ha) 

Bias obtained using 

1 7 gauges Radar rainfall 

0.51 

1280 
0.25 
0.11 
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The maximum relative errors in runoff volume, total sediment, sediment-attached N, 

and sediment-attached P were 12.1, 8.4, 4.9, and 5.1, respectively. All of these errors 

occurred at one location where the rainfall observed was maximum for the event. The relative 

error in rainfall at this location was 1.93. The corresponding minimum errors for these 

outputs were 0.08, 0.07, 0.06, and 0.04, respectively. The rainfall errors at these locations 

were 0.52, 0.46, 0.46, and 0.46, respectively. The minimum output errors were not associated 

with the minimum rainfall errors for all outputs. . 

The output uncertainty due to rainfall spatial variability is shown in Table 5.16 when 

the true rainfall pattern was captured using the rainfall observed at 13 gauges and Theissen 

polygon method. The comparison of the outputs obtained using the two estimates of true 

rainfall pattern shows that a larger variability in the outputs, as indicated by C.V., is obtained 

when calibrated radar rainfall is used. This may have resulted from the fact that the range and 

C.V. of the true rainfall pattern were larger whenthe rainfall variability was captured using 

calibrated radar data. This difference can be expected to decrease with an increase in the 

number of gauges available to capture the rainfall. For example, in the case of radar scanned 

rainfall, if the raingauges were located at each cell in the rainfall field where a different 

rainfall value was observed, the results obtained from the raingauge data would be similar to 

the results from the calibrated radar data. However, installation and maintenance of such a 

high density of raingauge network would be cost prohibitive. In that case, the radar-scanned 

rainfall field calibrated with the raingauge data would be an ideal resort to capture the true 

rainfall pattern for application in H/WQ models. 
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CHAPTER6 

SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS 

6.1 Summary 

Impact of various agricultural activities on surf~ce water quality has been reported to· 

be a serious problem. One of the most convenient ways to study the pollution of surface 

water from agricultural activities is the use of hydrol~gic/water quality (H/WQ) models. 

Historically, in the application ofH/WQ models, rainfall is assl.ll11ed to be a homogeneous 

process and is assumed not to contribute to parameter and output uncertainty. Consequently, 

a single rainfall depth is input in the models. With the advent of modem precipitation 

measur.ement techniques like radar and dense networks of raingauges, it is now known that 

rainfall is not spatially uniform, but it varies from place to place. This spatial variability in 

the rainfall may introduce significant errors in model parameters and outputs when the. spatial 

homogeneity of rainfall is assumed in the. application of H/WQ models. 

The overall goal ofthis study was to assess the variability induced in H/WQ model 

parameters and 01,1tputs solely due to the spatial variability of rainfall. This will help isolate 

the variability in the model· parameters/outputs ca.used by the spatial variability. of rainfall 

which is otherwise · assumed to be a homogeneous process and is usually assumed not to 

contribute to the model parameter/output uncertainty. 
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This study was conducted on the Little Washita basin. Two subwatersheds of area 

30.6 km2 and 159 k.m2, known as Cyril and Cement watersheds, were delineated and used. 

A dense network of 42 raingauges, known as a Micronet, is operated within the Little Washita 

basin. In addition, the stream flow data were obtained from the USGS. The H/WQ model 

used was the Agricultural Non-Point Source Pollution (AGNPS) model. It is an event-based, 

distributed parameter model that simulates surface runoff, sediment and nutrient transport 

primarily from a~icultural watersheds. The'niodel was modified to input grid-based rainfall 

and energy intensity values. The WATERSHEDSS GRASS-AGNPS modeling tool was used 

to generate the input file for the model. 

Six rainfall events in 1996 were selected and used with the Cyril watershed. The total 

number of rainfall events used with the Cement watershedwas five. ·The outputs considered 

were runoff volume, total sediment transport, sediment-attached N, and sediment-attached P. 

Curve Number (CN), land slope, andllSLE K factor w~re the model parameters selected for 

the.study based on the sensitivity analysis of the model. 

The only observed data were the rainfall and runoff volume. The uncertainty induced 

in the model parameters/outputs was estimated in two steps. In the first step, grid-based 

rainfall depths, considered as the true rainfall pattern, were captured using the Theissen 

polygon method .. AGNPS w~ calibrated for CN based cm observed runoff and true rainfall 

pattern. All other model parameters were estimated using observed watershed characteristics. 

The outputs obtained using the true rainfall pattern and calibrated parameters were termed as 

'observed' outputs. 
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In the second step, parameter and output uncertainty due to spatial variability of 

rainfall was estimated. It was assumed that each of the raingauges was the only raingauge. 

available and the rainfall depth was homogeneous across the watersheds. Model parameters 

were estimated using the rainfall .observed at each gauge location, one at a time, and the 

'observed' outputs. For each rainfall event, eight sets of parameters for the Cyril watershed 

and 17 sets of parameters for the Cement watershed were obtained. 

Uncertainty in the model output was estimated by running the model using rainfall 

observed at each gauge location, one at a time, assuming that the rainfall was homogenous 

across the watershed. The calibrated values ofparameters·for each rainfall were used. For 

each rainfall event,. eight. sets of outputs for the Cyril watershed and 17 sets of outputs for th~ 

Cement watershed were obtained. The variability obse),"Ved in the model parameters and 

outputs was termed the parameter/output uncertainty. 

NEXRAD rainfall data were obtained for the rainfall on 7 /9/96 and 7 /10/96 from the 

WSR-88D radar located at Twin Lakes, Oklahoma. This rainfall ':Vas calibrated using the 

data from the Micronet stations. Calibrated radar rainfall data were then used as the input in 

the AGNPS model and the model parameter/output uncertainty due to rainfall spatial 

variability was estimated when the true rairtf~ll pattern was captured using the Tadat: data. The 

methods·outlined in the previous sections·were used. 

A summary o(the findings,r~lated to each objective of this study are discussed in the 

following sections. 

165 



Objective 1. To combine raingauge and radar data to capture spatial variability of 

rainfall. 

The calibration factor of radar rainfall at each gauge location was determined. The 

calibration factor ranged from 0.08 to 7.45. For the rainfall on 7/9/96, the radar 

underestimated the rainfall at seven gauge locations and overestimated it at six gauge 

locations. For the rainfall on 7/10/96, the radar underestimated the rainfall at all gauge 

locations. The results from the comparison, of raingauge data to the radar data indicate the 

need for the calibration of radar...;scanned rainfall before it can be applied in H/WQ models. 

However, after the radar rainfall was calibrated, the area weighted rainfall from the radar data 

was very similar to the area weighted rainfall obtained using a network of 13 raingauges and 

the Theissen polygon method. The variability in the radar rainfall was larger than the 

corresponding variability when the rainfall was captured using the raingauges alone. It shows 

that when only a limited number of raingauges are used to capture the rainfall, the obs.erved 

variation in the rainfall niay be lower-thari the true variation. 

Objective 2. To estimate parameter uncertainty in H/WQ models solely due to the 

spatial variability of rainfall. 

In general, a wide range in estimated parameters .resulted when the rainfall measured 

at each gauge location was used individually, one at a time, to estimate the model parameters. 

A larger range in the rainfall values within a single event resulted in a higher range in all 

estimated parameters. The smallest parameter uncertainty resulted from the rainfall that was 

most spatially homogeneous in nature. The variations were very large when compared to the 
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true parameter values. For slope, K, and retention parameter the range was several orders of 

magnitude for some events for both watersheds. Traditionally, variability in the estimated 

parameters is considered as the model uncertainty because the models are simplified 

descriptions of the processes occurring in the field. Results of this study indicate that even 

in the case of physically-based distributed parameter models, uncertainty in the parameter 

estimates would be observed because of the input error coming from the spatial variability of 

rainfall. To eliminate this input error, a "true" rainfall pattern should be captured and used 

in H/WQ models. 

For the Cyrl.l watershed, the true rainfall pattern was captured using four raingauges. 

However, the parameter uncertainty was estimated by using the rainfall from eight gauges 

located within and around the watershed. For the Cement watershed, 13 raingauges were used 

to capture the true rainfall pattern and 1 7 raingauges. were used to estimate the parameter 

uncertainty. A bias in the average and area-weighted rainfall resulted in a bias in the 

estimated parameters. As the number of raingauges used to capture the rainfall increases in 

a watershed, the bias in the estimated parameters can be expected to decrease. 

Relative errors for estimated parameters as compared to the calibrated parameter 

values were calculated forthe two watersheds. For the Cyril watershed, the minimum relative 

errors were observed at the gauges which recorded a rainfall very similar to the area-weighted 

rainfall. This result was not true for the Cement watershed. A rainfall larger than the area

weighted rainfall was needed to best estimate the parameters. In general, a gauge located at 

or near the center of the watershed resulted in a lower total relative error in the parameter 

estimates. 
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The correlation analysis among input rainfall and parameters showed that rainfall, CN, · 

slope, K factors were highly correlated. For the Cyril watershed CN-rainfall, and slope-K 

were found to.· be significantly correlated when the correlation was estimated for all the 

parameter estimates combined together for the six events. For the Cement watershed all of 

the parameters were significantly correlated. This correlation is a major contributor to the 

difficulty of estimating parameters in H/WQ models. A high correlation between two 

parameters means that one parameter cannot be estimated without adjusting the value of the 

other. 

When the model parameters were estimated using the calibrated radar rainfall, the 

variability in the estimated parameters was larger as compared to the parameter variability 

obtained when the true rainfall pattern was captured using gauge data alone. The estimated 

average CN, slope, and K factor were larger than the corresponding estimates obtained using 

data from gauges alone. The observed values of the runoff volume, total sediment, sediment

attached N, and sediment-attached P were also higher when the true rainfall pattern was 

captured by calibrated radar rainfall field. 

Objective 3. To study the impact of spatial variability of rainfall on model outputs i.e., . 

runoff, sediment and nutrient losses. 

For all events, variability in the measured rainfall resulted in variability in the model 

outputs based on a fixed set of parameters. Five of the six events considered for the Cyril 

watershed and four of the five events considered for the Cement watershed had rainfall at 

some of the gauge locations too small to produce any significant output. Rainfall error 
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measured as C.V. and relative error resulted in magnified output errors. Estimated.output 

varied from one to several orders of magnitude when compared with the observed outputs. 

In general, a bias in the input rainfall resulted in a bias in the model outputs. This bias can 

be expected to decrease with an increase in the number of raingauges to capture the rainfall 

pattern. 

For the Cyril watershed, raingauges that resulted in the minimum output relative error 

had a rainfall very .similar to the area-weighted rainfall value. But for the Cement watershed, 

. . 
a rainfall larger than the area-weighted rainfall was needed to produce the minimum output 

relative error. The maximum relative error in rainfall measurement was associated with the 

maximum relative errors in model outputs. 

In general for the two watersheds, the gauges located within the watershed area had 

relatively smaller total error in predicted results. The minimum total error did not always 

occur at the gauge located at the center of the watershed. Based on the results of this study, 

no definite conclusion could be drawn regarding the best location of a gauge if the rainfall 

was measured using only one gauge. If several gauges are available to measure rainfall, and 

the model outputs are obtained using the rainfall observed at each gauge location, one at a 

time, the average of all the outputs for each event will improve the accuracy of the predicted 

results. 

A larger variability in the outputs as indicated by C.V. was obtained when the true 

rainfall pattern was captured using calibrated radar data. In general, the bias in the modeled 

outputs decreased when the outputs were obtained by running the model using all the different 

rainfall values with the calibrated radar rainfall field. This shows that as the number of 
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gauges available to capture the rainfall pattern increases, the bias in the modeled outputs 

decreases. 

6.2 Conclusions 

The following conclusions were drawn from this study: ·· 

1 In the application of H/WQ models, the assumption of the spatial homogeneity of the 

rainfall may not be valid. The rainfall spatial variation increases with an increase in 

the size of the watershed. lfonly one gauge is used to measure the rainfall, the gauge 

located at the center of the watershed is not always the best representative gauge, 

although a gauge located ator near the center of :the watershed.gives a relatively better 

representation of the area-weighted rainfall. 

. 2 The radar-scanned rainfall may be in error by up to a factor of ten as compared to 

raingauge rainfall. These data should be calibrated using raingauge data before it is 

used in H/WQ models. 

3 Rainfall data error produces two types of errors in the results. The first is the error in . 

the estimation of an optimum set of parameters. The second type of error introduced 

is output error .. 

4 A large uncertainty in the estimated parameters results from the spatial variability of 

the rainfall. An input rainfall. error results in an erroneous estimate of the model 

parameters. 

5 The uncertainty in the estimated parameters using a single gauge, as measured by C.V. 

and relative error, exceeds the measurement uncertainty. Even in the case of 
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physically-based distributed parameter models, the rainfall uncertainty will result in 

parameter uncertainty. 

6 Spatial variability of rainfall.introduces uncertainty into model outputs when rainfall 

measured at a single gauge is used. A larger range in the input rainfall values in a 

single event results in a larger range in model outputs. 

7 Rainfall variability, when measured in terms of C.V. and relative error, results in 

larger output errors with a fixed set of parameters. 

8 For individual events, a gauge located at the center of the watershed does not always 

result in the minimum output error. 

9 Since the installation and maintenance of a dense network of raingauges may be cost 

prohibitive, a radar-scanned rainfall field calibrated with the raingauge data should be 

used to capture the true rainfall pattern for application in H/WQ models. 

10 Spatial variability ofrainfall should be captured and used in H/WQ models in order 

to accurately assess the release and transport of pollutants. Since rainfall is a driving 

force behind many kinds of pollutant release and subsequent transport and spread 

mechanisms, ignoring this property of rainfall in the application of H/WQ models will 

put a limiton the accuracy of the model results. 
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6.3 Recommendations for Future Research 

The directions for recommended future research include: 

1. The effect of rainfall spatial variability on model parameters/outputs was estimated 

using the data from the two subwatershedsfrom the Little Washita basin. Since the 

rainfall spatial variability increases with the size of the watershed, the data from the 

entire Little Washita basin should be used. Comparison with similar studies shows 

that the errors introduced in model parameters and outputs increase with the size of 

the watershed. The results of this study shou;ld be tested with larger watersheds. 

2. Application of radar data to capture the rainfall variability is a problem if the radar 

data is not calibrated. Research should be done to see how many gauges are needed 

to calibrate the radar data before it can be applied to H/WQ models. 

3. Rainfall spatial variability was captured using the Theissen polygon method. A study 

should be done to assess the effect of rainfall spatial variability on model 

parameters/outputs by using a better method like kriging or inverse distance method 

to interpolate the rainfall data at the grid level. 

4. The only observed data available in this study was rainfall volume. The sediment and 

nutrient data were simulated using best estimate of parameters and were assumed as 

the observed outputs. Research shoul4 be conducted using data from a watershed 

where measured water quality data are available. 

5. Only a few outputs and parameters were considered in this research. The effect of 

rainfall spatial variability on other parameters and outputs should be assessed. 
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180 



Table A1.1 Rainfall observed by micronet stations for the rainfall dates analyzed 

STID 3/27/96 3/28/96 Event total 4/21/96 4/22/96 Event total 
(mm) (mm) 

110 16.36 7.05 23.41 5.83 21.51 27.34 
111 30.01 -33.87 -3.86 -0.25 31.28 31.03 
121 17.78 5.84 23.62 2.68 36.81 39.49 
122 0.76 0.2 0.96 6.24 · 17.62 23.86 
123 28.65 7.15 35.8 4.47 19.99 24.46 
124 28 7.77 35.77 4.62 12.96 17.58 
125 23.91 9.68 33:59 4.03 28.45 32.48 
130 31.92 8.89 40.81 14.49 13.31 27.8 
131 27.75 7.25 . 35 11.58 8.39 19.97 
132 9.91 8.65 .. 18.56 6;2 10.57 16.77 
133 24.74 11.03 35.77 5.98 15.65 21.63 
134 26.87 -27.2 . .;:0.33 -0.37 22.54 22.17 
135 29.53 -33.53 -4 4.37 13.89 18.26 
136 3.62 4.92 8.54 2.72 25.31 28.03 
137 12.91 5.93 18.84 2.34 34.97 37.31 
144 38.24 -39.96 .-1.72 2.18 42.67 44.85 
145 29:27 -:26.9 2.37 -0.21 27.85 27.64 
146 30.09 -31.95 -1.86 3.2 23.81 . 27.01 
147 33.42 -34.15 -0.73 9.57 15.53 25.1 
148 28.34 9.78 38.12 8.43 18.55. 26.98 
149 23.87 8.24 32.11 7.97 11.52 19.49 
150 24.96 6.59 31.55 11.05 5.8 16.85 
151 10.56 7.37 17.93 5.58 11.7 17.28 
152 10.99 7.56 18.55 11.85 8.66 20.51 
153 29.14 . 10.09 39.23 13.01 21.71 34.72 
154 23.49 9.3 32.79 3.01 21.78 24.79 
155 23.04 -23.39 -0.35 -0.45 32.27 31.82 
156 24.79 -24.72 0.07 4.8 36.48 41.28 
157 23.67 -23.43 0.24 10.92 42.8 53.72 
158 38.88 -39.37 -0.49 8 33.83 41.83 
159 32.51 -33 .. 34 -0.83 2.85 27.26 30.11 
160 34.76 -34.32 0.44 . 6.02 47.68 53.7. 
161 · -998 -998 -1996 -998 -998 -1996 
162 31.95 7.82 ·. 39.77 9.59 27.05 36.64 
163 26.57 8.81 35.38 15.62 34,78 50.4 
164 2fJ.06 6.61 32.67 11.55 18.41 29.96 
165 23.24 · -23.6 -0.36 4.64 45.57 50.21 
166 32.54 -32:81 -0.27 9·_94 47.63 57.57 
167 33.68 -34.12 -0.44 8.72 24.61 33.33 
168 15.42 -15.45 -0.03 7.49 17.35 24.84 
181 2.32 8.56 10.88 -0.19 0.7 0.51 
182 23.67 -23.51 0.16 5.48 26.86 32.34 

Numbers in the bold represent the gauges used in this study. 
Negative numbers represent an erroneous rainfall. 
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Table A1.1 Cont 

STID 5/31/96 6/1/96 Event total 7/9/96 7/10/96 Event total 
(mm) (mm) 

110 11.64 56.14 67.78 48.34 49.22 97.56 
111 13.2 54.48 67.68 52.28 55.7 107.98. 
121 15.23 53.38 68.61 76.05 28.48 104 .. 53 
122 12.53 49.48 62,01 55.38 .39.64 95.02 
123 19.49 49.93 69.42 41.22 52.91 94.13 
124 18.13 57.12 75.25 32.57 49.76 82.33 
125 19.27 61.8 81.07 32.82 34.71 67.53 
130 31.84 44.61 76.45 44.71 57.22 101.93 
131 28.39 50.88 79.27 82.45 54.57 137;02 
132 24.47 64.96 89.43 43.04 30.77 73.81 
133 20.59 60.56 81.15 36.13 42.07 78.2 
134 22.18 46.28 68.46 37.57 49.24 86.81 
135 19;58 53,24 72.82 50.23 37.26 . 87.49 
136 13.9 50.31 64.21 77.38 36.76 114.14 
137 16.2 47.49 63.69 80.26 35.32 115.58 
144 34.6 58.49 . 93.09 56.34 14.15 70.49 
145 12.77 48.04 60.81 49.32 18.68 68 
146 25.63·· 41.24 66.87 ' 48.6 15.96 64.56 
147 29.08 52.31 81.39 35.29 45.14 80.43 
148 35.12 44.63 79.75 26.46 41.34 67.8 
149 39.87 54.72 94.59 19.1 27;59 46.69 
150 37.75 40.65 78.4 50.41 47.83 98.24 
151 38.52 40.5 79.02 57.22 68.94 126.16 
152 34.61 46.65 81.26 12.4 35.28 47.68 
153 36.29 49.85 86.14 6.89 35.6 42.49 
154 27.05 53.54 80.59 4.71 30.82 35.53 
155 17.85 45.45 63.3 27.43. 13.7 41.13 
156 44.62 58.67 103.29 25.97 13.36 39.33 
157 25.4 66.18 91.58 32.46 14.28 46:74 
158 15.14 60.36 75.5 27.59 7.44 35.03 
159 21.98 · 68.17 90.15 14,77 11.95 26.72 
160 •, 24.38 60.8 85.18 .20.24 10.11 30.35 
161 18.62 38.47 57.09 15.42 15.38 30.8 
162 19.34 49.62 68.96 23.02 17.52 40.54 
163 23;05 54.44 77.49 3.64 36.85 40.49 
164 16.29 45.37 61.66. 10.61 36.81 47.42 
165 0.26 0.03 0.29 5.66 20.76 ·. 26.42 
166 · 17.54 55~53 73.07 7.13 7.56 14.69 
167 19.86 54.44 74.3 15.25 6.09 21.34 

· 168 12.53 67.93 80.46 23.15 5.15 28.3 
181 13.36 47.51 60.87 . 17.1 58.93 76.03 
182 31.86 46.54 78.4 18.91 22.53 41.44 

182 



Table A 1.1 Cont. 

STID 8/1/96 8/3/96 Event total 10/27/96 11/6/96 
(mm) (mm) (mm) 

110 4.26 33.66 37.92 14.34 9.04 
111 8.51 27.3. · 35.81 24.52 14.53 
121 14.84 .. 33.15 47.99 8.14 11.19 
122 15.44 38.11 53.55 27.43 13.21 
123 17.56 41 .. 24 58.8 8;86 6.19 
124 20.84 39 59.84 11.74 11.09 
125 -39.78 37.77 -2.01 40.76 14.67 
130 -12.87 21.62 8.75 9.56 21.72 
131 -19.12 30.5 11.38 14.39 14.27 
132 -33.33 30;22 .;3_11 26.7 6.96 

. 133 19.91 31.85 . 51.76 44.51 9 
13.4 22 30.06 52.06 • 11.25 7.31 
135 10.75 23.55 . 34.3 10.6 -6.21 
136 18.2 25.52 43.72 30.57 4.62 
137 10.06 36.6 46,66 16.02 5.6 
144 15.93 29.88 · 45.61. 6.01 34.28 
145 11.14 20.19 31.33 11.17 29;88 
146 11.12 15.98 27.1 7.86 -2.1 
147 15.95 34.57 50.52 13.72 -6.23 
148 19.07 15.17 34.24 30.39 7.9 
149 21.4 18.4 39.8 28.11 8.5 
150 -12.89 12.65 -0.24 12.8. 8.28 
151 29.33 13.42 42.75 10.47 16.55 
152 -21.5 7.99 -13.51 17.28 8.94 
153 .:.19.58 5.24 ,.;14.34 38.25 1.14 
154 13.1 8.66 21.76 20.21 -0.65 
155 0.16 11.57 11,73 -0.61 28.8 
156 23.33 28.83 52.16 9.99 44.72 
157 11.82 27.32 39.14 10.69 24.08 

. 158 -37.17 13.36 -23.81 7.23 18.62 
159 10.74 8.17 18.91 1i65 43.46 .. 

160 '-33.15 12:34 ..:20.81. 17.89 42.28 
161 . -26.15 10.21 -15.94 -0.21 18.8 
162 10.39 7.5 1.7.89 .. 15.81 7.68 
163 -24.43 8.03 -16.4 20.13 2.98 
164 -19.66 -0.12 -19.78 18.31 5.93 
165 . -32.95. 0.02 -32 .. 93 · 10.43 4.35 
H36 -36.66 0.13 -36.53 9.13 39.32 
167 -24.12 2.09 -22.03 16.39 30.37 
168 -21.1 2.4 -18.7 9.28 17.5 
181 -3.09 -0.05 -3.14 3.06 -0.11 
182 8.35 11.11 19.46 7.08 -1.66 
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Table A2.l Optimum parameter estimates for the rainfall event on 3/27/96 

using the individual gauge rainfall values for the Cyril watershed 

Gauge# Rainfall Slope CN S parameter K factor 

(mm) (%) (mm) 

130 40.9 0.93 52 234 0.34 

131 35.1 1.16 56 200 0.32 

132 18.5 2.53 71 104 0.58 

149 32.0 1.33 58 184 0.32 

150 31.5 1.33 60 169 0.34 

151 18.0 2.75 71 104 0.51 

152 18.5 2.53 71 104 0.58 

153 39.1 0.97 54 216 0.32 

Base 31.0 1.6 58 184 0.34 

Table A2.2 . Optimum parameter estimates for the rainfall event on 5/31/96 

using the individual gauge rainfall values for the Cyril watershed 

Gauge# Rainfall Slope CN S parameter K factor 

(mm) (%) (mm) 

130 76.5 1.87 38 414 0.3 

131 79.2 1.65 37 432 0.32 

132 89.4 l.2 34 493 0.31 

149 94.5 1.24 32 540 0.29 

150 78.5 1.65 37 432 0.34 

151 79.0 1.65 37 432 0.32 

152 81.3 1.4 36 452 0.36 

153 86.1 1.3 34 493 0.36 

Base 78.5 1.6 37 432 0.34 

Table A2.3 Optimum parameter estimates for the rainfall event on 7/9/96 

using the individual gauge rainfall values for the Cyril watersh.ed 

Gauge# Rainfall Slope CN S parameter K 

(mm) (%). (mm) 

130 102 1.65 36 452 0.41 

131 137 32 540 0.28 

132 73.7 2.7 46 298 0.48 

149 46.7 3.7 61 162 0.72 

150 98.0 2.15 37 432 0.34 

151 126 1.1 32 540 0.33 

152 47.8 3.8 59 177 0.67 

153 42.4 4.05 62 156 0.79 

base 112 1.6 33 516 0.34 
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Table A2.4 Optimum parameter estimates for the rainfall event on 8/1/96 

using the individual gauge rainfall values for the Cyril watershed 

Gauge# Rainfall Slope CN S parameter K 

(mm) (%) (mm) 

130 21.6 2.7 78 71.6 0.38 

131 30.5 0.4 74 89.2 0.09 

132 30.5 0.4 74 89.2 0.09 

149 39.6 2.2 65 137 0.09 

150 14.2 · 1.6 85 44.8 0.43 

151 68.1 1.6 46 298 0.15 

152 7.87 8.2 90 28.2 0.87 

153 . 5.33 

Base 26.4 1.6 71 104 0.34 

Table A2.5 Optimum parameter estimates for the rainfall event on 11/6/96 

using the individual gauge rainfall values for the Cyril watershed 

Gauge# Rainfall Slope CN S parameter K 

(mm) (%) (mm) 

130 9.65 1.8 77 75.9 0.38 

131 14.5 0.77 72 98.8 0.17 

132 26.7 0.55 62 156 0.05 

149 28.2 1.2 59 177 0.26 

150 12.7 1.69 74 89.2 0.48 

151 10.4 1.74 77 75.9 0.28 

152 17.3 0.8 69 114 0.33 

153 38.4 0.55 52 234 0.05 

Base 12.4 1.6 74 89.2 0.34 

Table A2.6 Optimum parameter estimates for the rainfall event on 11/6/96 

using the individual gauge rainfall values for the Cyril watershed 

Gauge# Rainfall . Slope CN S parameter K 

(mm) (%) (mm) 

130 21.8 1.6 66 131 0.38 

131 14.2 1.44 74 89.2 0.23 

132 6.86 1.6 82 55.8 0.2 

149 8.38 1.58 82 55.8 0.19 

150 8.38 1.58 82 55.8 0.19 

151 16.5 1.44 74 89.2 0.19 

152 8.89 1.55 82 55.8 0.23 

153 1.27 

Base 12.1 1.6 75 84.7 0.34 
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Table A2. 7 Optimum parameter estimates for the rainfall event on 3/27 /96 

.using the individual gauge rainfall values for the Cement watershed 

Gauge# Rainfall Slope CN S parameter K 

(mm) {%) (mm) 

151 18.0 5.24 70 109 0.55 

132 18.5 5.21 69 114 0.58 

152 18.5 5.21 .69 114 0.58 

150 31.5 3.9 58 184 0.32 

149 32.0 3.69 58 184 0.32 

154 .32;8 3.69 57 192 0.33 

131 35.1 3.63 55 208 0.31 

163 35.3 3.61 55 208 0.3 

133 35.8 3.57 55 208 0.27 

148 38.1 3.i 1 54 216 0.28 

153 39.1 3.60 52 234 026 

162 39.9 3.43 52 234 0.24 

130 40.9 3.57 51 244 0.23 

Base 32.5 . '3.71 56 200 0.33 

Tab.le A2.8 Optimum parameter estimates for the rainfall event on 4/21/96 

using the individual gauge rainfall values for the Cement watershed 

Gauge# Rainfall· Slope CN S parameter K 

(mm) (%) (mm) 

132 16,8 6.79 72 .· 98.8 0.68 

151 17.3 6.78 72 98.8 0.59 

149 19.6 6.11 70 109 0.56 

131 20.1 6.11 69 114 0.56 

152 20.6 6.05 69 114 0.5 

133 21.8 5.94 68 120 0.46 

134 22.1 5.89 68 120 0.44 

154 24.6 .5.67 . . 65 137 0.39 

147 25.1 5.78 65 137 0.36 

148 26.9 5.37 63 149 0.38 

130 27.7 5.36 63 149 0.34 

155 31.8 5.31 59 177 0.28. 

153 34.8 5.0 57 192 0.25 

162 36.6 4.7 56 200 0.25 

163 50.3 3.33 47 286 0.25 

150 16.8 6.79 72 98.8 0.68 

Base 24.6 3.71 63 149 0.33 

187 



Table A2.9 Optimum parameter estimates for the rainfall event on 5/31/96 

using the individual gauge rainfall values for the Cement watershed 

Gauge# Rainfall Slope CN S parameter K 

(mm) (%) (mm) 

161 57.2 5.14 52 234 0.38 

134 68.6 4.32 47 286 0.35 

162 68.8 4.26 46 298 0.36 

130 76.5 4.17 43 337 0.3 

163 77.5 4.02 43 337 0.3 

150 78.5 3.91 42 351 0.32 

151 79.0 3.91 42 351 0.31 

131 79.2 3.83 42 351 0.31 

148 79.8 3.82 42 351 0.31 

154 80.5 3.80 41 366 0.32 

133 81.3 3.79 41 366 0.31 

153 86.1 3.55 39 397 0.31 

132 89.4 ·. 3.48 38 414 0.29 

149 94.5 3.32 36 452 0.28 

147 81.3 3.79 41 366 0.31 

152 81.3 3.79 41 366 0.31 

Base 83.3 3:71 39 397 0.33 

Table A2.10 Optimum parameter estimates for the rainfall event on 7 /9/96 

using the individual gauge rainfall value.s for the Cement watershed 

Gauge# Rainfall Slope CN S parameter K 

(mm) (%) (mm) 

161 30.7 6.22 64 143 0.87 

154 35.6 6 60 169 0.7 

163 40.4 5.02 57 192 0.74 

162 40.6 5.02 56 200 0.77 

155 41.1 4.94 56 200 0.76 

153 42.4 4.94 55 208 0.71 

149 46.7 4.66 52 234 0.66 

152 47.8 4.61 51 244 0.66 

148 67.8 3.97 41 366 0.4 

132 73.9 3.88 39 397 0.33 

133 78;2 3.67 37 432 0.33 

147 80.5 3.61 36 452 0.32 

134 86.9 3.33 34 493 0.31 

150 98.3 2.98 30 593 0.3 

130 102 2.76 29 622 0.31 

151 126 2.31 24 804 0.27 

131 137 2.07 23 850 0.28 

Base 64.3. 3.71 33 516 0.33 

188 



Table A2.l l Optimum parameter estimates for the rainfall event on I 0/27 /96 

using the individual gauge rainfall values for the Cement watershed 

Gauge# Rainfall Slope CN S parameter K 

(mm) (%) (mm) 

130 9.65 5.54 76 80.2 0.59 

131 14.5 3.94 72 98.8 0.37 

132 26.7 3.01 60 169 0.2 

133 44.5 2.1 47 286 0.14 

134 ll.2 4.47 75 84.7 0.52 

148 30.5 2.54 57 192 0.2 

149 28.2 2.71 59 177 0.19 

150 12.7 4.36 73 93.9 0.59 

151 10.4 4.45 76 80.2 0.52 

152 17.3 3.7 69 114 0.32 

153 38.4 2.15 51 244 0.18 

154 20.3 3.44 66 131 0.25 

162 15.7 3.91 70 109 0.46 

163 20.1 3.57 66 131 0.25 

147 11.9 4.41 74 89.2 0.56 

Base . 23.4 3.71. 55 208 0.33 

Table A2, 12 Optimum parameter estimates for the rainfall event on 7/9/96 using the 

individual gauge rainfall values from calibrated rainfall for the Cement watershed 

Gauge# Rainfall .slope CN S parameter K 

(mm) (%) (mm) 

130 102 7.45 64 143 0.86 

131 137 2.96 22 901 0.22 

132 73.9 4.06 39 397 0.43 

133 78.0 4.06 37 432 0.39 

134 86.9 3.5 34 493 0.4 

147 80.5 3.64 36 452 0.45 

148 67.8 4.49 41 366 0.45 

149 46:7 6.22 53 225 0.5 

150 98.3 3.32 30 593 0.35 

151 126 . 3.02 24 804 0.25 

152 47.8 5.96 52 234 0.53 

153 42.4 6.3 55 208 0.63 

154 35.6 6.86 60 169 0.76 

155 41.1 6.7 56 200 0.59 

161 30.7 7.45 64 143 0.86 

162 . 40.6 6.61 57 192 0.59 

163 40.4 6.68 57 192 0.59 

Base 64.5 3.71 30 593 0.33 
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AGNPS outputs obtained using .optimum parameters and rainfall observed at each gauge • 
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Table A3.l Model outputs estimated for the rainfall event on 3/27/96 using the individual 

gauge rainfall and optimum parameter values for the Cyril watershed 

Gauge# Rainfall Runoff volume Total Sediment Sediment-N Sediment-P 

(mm) (mm) (Mg) (kg/ha) (kg/ha) 

151 18.0 0.003 0.01 0 0 

132 18.5 0.003 0.01 0 0 

152 18.5 0.003 O.Ql 0 0 

150 31.5 0.185 9.87 0.02 0.01 

149 32.0 0.340 15.8 0.02 0.01 

131 35.1 0.554 24.4 0.03 0.02 

153 39.1 0.831 35.4 0.06 0.03 

130 40.9 1.17 44.2 0.07 0.03 

Base 31.0 0.330 13.9 0.02 0.01 

Table A3.2 Model outputs estimated forthe rainfall event on 5/31/96 using the individual 

gauge rainfall and optimum parameter values for the Cyril watershed 

Gauge# Rainfall Runoff volume Total Sediment Sediment-N Sediment-P 

(mm) (mm) (Mg) (kg/ha) (kg/ha) 

130 76.5 0.60 110 0.12 0.06 

150 78.5 0.76 129 0.15 0.07 

151 79.0 0.76 131 0.15 0.07 

131 79.2 0.76 132 0.15 0.07 

152 81.3 0.96 153 0.17 0.08 

153 86.1 1.43 198 0.20 0.10 

132 89.4 1.71 224 0.22 0.11 

149 94.5 2.34 271 0.26 0.13 

Base 78.5 0.76 128 0.15 0.07 

Table A3.3 Model outputs estimated for the rainfall event on 7/9/96 using the individual 

gauge rainfall and optimum parameter values for the Cyril watershed 

Gauge# Rainfall Runoff volume Total Sediment Sediment-N Sediment-P 

(mm) (mm) (Mg) (kg/ha) (kg/ha) 

153 42.4 0 0 0 0 

149 46.7 0 O.Ql 0 0 

152 47.8 0 0.01 0 0 

132 73.7 0.11 .13.6 0.02 0.01 

150 98.0 1.43 256 0.25 0.13 

130 102 1.68 290 0.28 0.14 

151 126 5.36 577 0.48 0.24 

131 137 7.38 732 0.58 0.29 

Base 112 3.05 401 0.36 0.18 
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Table A3.4 Model outputs estimated for the rainfall event on 8/1/96 using the individual 

gauge rainfall and optimum parameter values for the Cyril watershed 

Gauge# Rainfall Runoff volume Total Sediment Sediment-N Sediment-P 

(mm) (mm) (Mg) (kg/ha) (kg/ha) 

152 7.87 0 0.02 0 0 

150 14.2 0.12 4.38 O.Ql 0.00 

130 21.6 0.97 26.17 0.04 0.02 

131 30.5 2.74 59.83 0.08 0.04 

132 30.5 2.74 59.83 0.08 0.04 

149 39.6 6.18 114 0.13 0.07 

151 68.1 19.8 317 0.30 0.15 

153 5.33 0 0 0 0 

Base 26.4 4.06 67.1 0.09 0.04 

Table A3.5 Model outputs estimated for the rainfall event on 10/27/96 using the individual 

gauge rainfall and optimum parameter values for the Cyril watershed 

Gauge# Rainfall Runoff volume Total Sediment Sediment-N Sediment-P 

(mm) (mm) (Mg) (kg/ha) (kg/ha) 

130 9.65 0.05 1.80 0 0.00 

151 10.4 0.05 1.80 0 0.00 

150 12.7 0.13 4.74 O.Ql 0.01 

131 14.5 0.33 10.74 0.02 0.01 

152 17.3 0.66 18.89 0.03 0.02 

132 26.7 2.36 52.35 0.07 0.04 

149 28.2 3.14 64.97 0.08 0.04 

153 38.4 7.01 124 0.15 0.07 

Base 12.4 0.14 4.94 0.01 0.01 

Table A3;6 Model outputs .estimated for the rainfall event on 11/6/96 using the individual 

gauge rainfall and optimum parameter values for the Cyril watershed 

Gauge# Rainfall Runoff volume Total Sediment Sediment-N Sediment-P 

(mm) (mm) (Mg) (kg/ha) (kg/ha) 

149 8.38 0.03 0.79 0 0 

150 8.38 0.03 0.79 0 0 

152 8.89 0.03 0.79 0 0 

131 14.2 0.44 13.6 0.02 0.01 

151 16.5 0.44 13.8 0.02 0.01 

130 21.8 1.99 44.8 0.07 0.03 

132 6.86 0.03 0.78 0 0 

153 1.27 0 0 0 0 

Base 12.1 0.30 10.5 0.02 O.Ql 
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Table A3. 7 Model outputs estimated for the rainfall event on 3/27/96 using the individual 

gauge rainfall and optimum parameter values for the Cement watershed 

Gauge# Rainfall Runoff volume Total Sediment Sediment-N Sediment-P 

(mm) (mm) (Mg) (kg/ha) (kg/ha) 

151 18.0 0.01 1.12 0 0 

132 18.5 0.01 1.47 0 0 

152 18.5 0.01 L47 0 0 

150 31.5 0.36 153 0.04 0.02 

149 32.0 0.39 174 0.04 0.02 

154 32.8 0.45 205 0.06 0.03 

131 35.1 0.64 306 0.08 0.04 

163 35.3 0.67 319 0.08 0.04 

133 35.8 0.72 343 0.09 0.04 

148 38.1 0.98 461 0.11 0.05 

153 39.l 1.10 517 0.11 0.06 

162 39.9 1.20 561 0.12 0.06 

130 40.9 1.34 622 0.13 0.07 

Base 32.5 0.56 242 0.D7 0.03 

Table A3.8 Model outputs estimated for the rainfall event on 4/21/96 using the individual 

gauge rainfall and optimum parameter values for the Cement watershed 

Gauge# Rainfall Runoff volume Total Sediment Sediment-N Sediment-P 

(mm) (mm) (Mg) (kg/ha) (kg/ha) 

132 16.8 0.06 8.71 0 0 

151 17.3 0.07 10.6 0 0 

149 19.6 0.14 31.6 0.01 O.Dl 
131 20.1 0.17 37.8 0.01 0.01 

152 20.6 0.19 44.9 O.Dl 0.01 

133 21.8 0.26 65.8 0.02 0.01 

134 22.1 0.28 70.6 0.02 O.Dl 
154 24.6 0.48 136 0.04 0.02 

147 25.1 0.53 152 0.04 0.02 

148 26.9 0.72 212 0.06 0.03 

130 27.7 0.82 240 0.07 0.03 

155 31.8 1.42 411 0.10 0.05 

153 34.8 1.98 563 0.12 0.06 

162 36.6 2.35 659 0.15 0.07 

163 50.3 6.03 1611 0.29 0.15 

150 16.8 0.06 8.71 0 0 

Base 24.6 0.78 443 0.10 0.05 
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Table A3.9 Model outputs estimated for the rainfall event on 5/31/96 using the individual 

gauge rainfall and optimum parameter values for the Cement watershed 

Gauge# Rainfall Runoff volume Total Sediment Sediment-N Sediment-P 

(rrim) (mm) (Mg) (kg/ha) (kg/ha) 

161 57.2 0.29 398 0.10 0.05 

134 68.6 0.96 1509 0.28 0.14 

162 68.8 0.98 1539 0.28 0.14 

130 76.5 1.74 2493 0.41 0.21 

163 77.5 1.86 2629 0.44 0.22 

150 78.5 1.99 2766 0.45 0.22 

151 79.Q 2.05 2836 0.46 0.23 

131 79.2 2.08 2871 0.46 0.23 

148 . 79.8 2.15 2941 0.47 0.24 

154 80:.s 2.25 3052 0.48 0.24 

133 81.3 2J5 3165 0.50 0.25 

153 86.1 3.04 3887 0.59 0.30. 

132 89.4 3.56 4403 . 0.65 0.33 

149 94.5 4.43 5240 · 0.75 0.37 

147 81.3 2.35 3165 0.50 0.25 

152 81.3 2.35 3165 0.50 0.25 

155 63.2 0.58 898 0.18 0.09 

Base 83.3 3.13 3395 0.53 0.27 

Table A3 .10 Model outputs estimated for the rainfall event on 7 /9/96 .µsing the individual 

gauge rainfall and optimum parameter vallies fpr the Cement watershed 

Gauge# ,Rainfall Runoff volume Total Sediment Sediment~N Sediment-P 

(mm) (mm) (Mg) (kg/ha) (kg/ha) 

161 30.7 0 0.13 0 0 

154 35.6 0 0.54 0 0 

163 40.4 0 1.18 0 0 

162 40.6 0 1.22 0 0 

155 41.1 0 l.31 0 0 

153 42.4 ·o l.55 0 .o 
149 46;7 0.01 3.07 0 0 

152 47.8 0.01 3.93 0 0 

148 67.8 0.21 402 0.10 0.05 

132 73.9 0.41 924 0.19 0.09 

133 78.2 0.61 1388 0.26 0.13 

147 80 .. 5 0.73 1728 0.31 0.15 

134 86.9 1.18 2769 0.45 0.23 

150 98.3 2.32 4735 0.70 0.35 

130 102 2.76 5395 0.76 0.38 

151 126 6.74 10727 l.33 0.67 

131 137 9.02 13585 1.60 0.80 

Base 64.3 1.41 2367 0.39 0.20 
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Table A3.11 Model outputs estimated for the rainfall event on 10/27/96 using the individual 

gauge rainfall and optimum parameter values for the Cement watershed 

Gauge# Rainfall Runoff volume Total Sediment · Sediment~N Sediment-P 

(mm) (mm) (Mg) (kg/ha) (kg/ha) 

130 9.65 0 0.02 0 0 

131 14.5 0 0.24 0 0 

132 26.7 0.09 . 26.35 0.01 0.01 

133 44.5 1.65 802 0.17 0.08 

134 11.2 0 0.06 0 o.oo 
148 , 30.5 0.23 95.4 0.03 0.02 

149 28.2 0.14 48.2 0.02 0.01 

150 12.7 0 0.14 0 0 

151 10.4 0 0.04 0 0 

152 17.3 0 0.51 0 0 

153 38.4 0.84 429 0.10 0.05 

154 20.3 0.02 2.24 0 0 

162 15.7 · 0 0.34 0 0 

163 20.1 · 0.02 2.00 0 0 

147 11.9 0 ·0;10 0 0 

Base 23.4 0.37 · 68.3 0.02 0.01 
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Table A3.12 Model outputs estimated for the rainfall event on 7/9/96 using the individual 

calibrated radar rainfall and optimum parameter values for the Cement watershed 

Rainfall Runoffvolume Total Sediment Sediment-N Sediment-P 

(mm) (mm) (Mg) (kg/ha) (kg/ha) 

21.3 0 0 0 0 

22.6 0 0 0 0 

30.0 0 0 0 0 

30.2 0 0 0 0 

30.7 0 0 0 0 

31.0 0 0 0 0 

31.8 0 0 0 0 

32.5 0 0 0 0 

33.8 0 0.10 0 0 

36.1 0 0.27 0 0 

37.1 0 0.36 0 0 

38.9 0 0.56 0 0 

41.4 0 0.89 0 0 

42.7 0 1.07 0 0 

43.2 0 1.15 0 0 

44.7 0 1.41 0 0 

46.0 0 1.64 0 0 

47.0 0 1.86 0 0 

49.5 0 2.51 0 0 

51.6 0.01 3.29 0 0 

55.4 0.01 7.57 0 0 

56.9 0.02 10.6 0 0 

57.7 0.02 12.5 0.01 0 

59.9 0.03 19.5. 0.01 0 

61.5 0.04 25.4 0.01 O.Dl 
62.5 0.05 30.1 0.01 O.Dl 
66.8 0.08 59.8 0.02 0.01 

67.1 0.09 62.2 0.02 0.01 

69.6 0.11 88.7 0.03 0.01 

71.1 0.13 139 0.04 0.02 

94.5 1.06 3100 0.49 0.25 

98.0 1.32 3777 0.57 0.29 

102 1.67 · 4566 0.67 0.34 

107 2.18 5587 0.78 0.39 

112 2.66 6491 0.89 0.45 

112 2.69 6546 · 0.90 0.45 

122 4.04 8859 1.14 0.57 

126 4.66 9855 1.24 0.62 

137 6.50 12695 1.52 0.76 

142 7.41 14047 1.65 0.83 

167 13.0 22367 2.40 1.20 

171 14.1 24002 2.53 1.27 

189 18.7 31226 3.13 1.56 

Base 64.5 1.43 3337 0.53 0.26 
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APPENDIX-4 

.Computer program to estiinate the AGNPS parameters · 
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I********************************************************************* 
This program is used to estimate the parameter uncertainty induced in the AGNPS parameters 
due to spatial variability of rainfall. It is also used to estimate the output uncertainty due to 
rainfall spatial variability. This program estimates the parameters 
using the following steps 

1. Read the rainfall depth and observed output values from a data file "rainfall.dat". 
2. Calculate the slope, K and CN for the specified step size, 
3. Update the AGNPS input file for each permutation of slope and K, and CN for the 

number of increments specified. It runs the modified AGNPS using the updated input 
information for each events. 

4. Record the predicted output values and then. calculate the relative error for each output 

5. This method is known as the "brute force;' method and is described by Allred and Haan 
(1994) .. ·.· 

User of this program is expected t~ be familiar with the AGNPS input file format 
and description. 

Indrajeet Chaubey 
. . ; . - . . 

************************~*~************~**************************** *I 

I************************************************************ 
* 
* 
* 
* 
* 
* 

·* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 

List of Variables 
ncell = Number of cells in the watershed 
N = Number of rainfall values used to estimate parameters 
deltas = Slope increment (fraction) 
deltaCN = CN increment 
deltaK = USLE K factor increment (fraction) 
S _incr = Number of slope increments used 
CN _incr = Number of CN increment used 
K incr = Number ofK factor increments used 
amc = Antecedent moisture condition 
slength = Slope length 
sed = Observed sediment transport at the watershed outlet 
runoff= Observed runoffvolume·at the watershed outlet 
sedmntN = Observed sediment-attached Nat the watershed outlet (kg) 
sedmntP = Observed sediment-attached Pat the watershed outlet (kg) 
tot_sol_N = Observed total soluble Nat the watershed outlet(kg) 
tot_sol_P = Observed total soluble Pat the watershed outlet (kg) 
energy = Energy intensity value for the rainfall 
cfact = USLE C factor 
kfact = USLE K factor 
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* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 

pfact = USLE P factor 
sec = Surface conditioning constant 
n = Manning's roughness constant 
eng = Energy intensity value calculated by AGNPS 
duration = Rainfall duration 
rainfall= Total event rainfall volume (inches) 
nitro = N concentration in rainfall (ppm) 
rv = Runoff volume predicted by ANPS at the watershed outlet (inches) 
area= Area of the watershed (acres) 
areac = Area of each cell (acres) 
ropk = Runoff rate at the outlet cell ( cfs) · 
tss = Total sediment yield at the watershed outlet (tons) 
sederr = Relative error in total sediment prediction 
rverr = Relative error in runoff volume prediction 
sedNerr = Relative error in sediment.:.N prediction 
sedPerr = Relative error in sediment-P prediciton 
TSNerr = Relative error in soluble N.prediction 
TSPerr = Relative error in soluble P prediction 
sumerr = Total relative errors in outputs considered 
CellRain = Grid-based rainfall value for each AGNPS cell (inches) 

* ************************************************************ */ 

#include <stdio.h> 
#include <stdlib.h> 
#include <process.h> 
#include <math.h> 
#include <io.h> 
#include <string.h> 

!* This is total number of cells in the watershed. It should be changed to 
a watershed-specific number from AGNPS before the program is run. * I 

#define ncell 4027 
#define N 3 
#define deltas 1.0 
#define deltaCN 1 
#define deltaK 1.0 

#define S incr I 
#define CN incr I 
#define K incr I 
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int main() 
{ 

inti, j, k, m, curve,check; 
int amc[N],CN, OM, COD; 
int slength; 
float rain[N], sed[N], runoff{N]; 
float sedmntN[N], sedmntP[N], tot_sol_N[N], tot_sol_P[N]; 
float energy[N]; 

float cfact, kfact, pfact, sec, n; 
char soil[lO]; 
float BaseN, BaseP, poreN, poreP; 
float runoffN, runoffP, leachN, leachP; 
float sedN, TSN, sedP, TSP; 

float eng, duration, rainfall, nitro; 
float rv, area, areac; 
float ropk, tss; 
float sederr, rverr, sum.err; 
float sedNerr, sedPerr, TSNerr, TSPerr; 
chartype[3], string[81], string1[81]; 
int a, b, c, d, f, g; 
int al, a2, a3, a4, a5, a6, a7; 
float CellRain, e; 
chartemp1[80], *pl, *p4; 
int pO, p2, p3, p5, p6, x, xl; 
int pr 1, pr2, pr3; /* used to increment K, C, and P factors * I 

long sum.CN, avgCN; 
float sum_slope, avg_slope; 
float suni _kfact, avg_ kfact; 

· FILE *ifp; 
FILE *temp, *ofp; 

I* "rainfalLtxt" file contains·observed raifall and outputs*/ 
if( (ifp = fopen("rainfall.txt'', "r'')) == NULL) 
{ 

} 

printf("\n Error: Cannot open rainfall.txt file"); 
exit (1); 
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I* Initiate all arrays to zero * I 

for(i=O; i<N; i++) 
{ 

} 

amc[i]=O; 
rain[i]=O.O; 
sed[i]=O.O; 
runoffli]=O.O; 
energy[i]=O.O; 
sedmntN[i]=O.O; 
se~tP[i]=O.O; 
tot_:sol_N[i]=O.O; 
tot_sol_P[i]=O.O; 

/* Initiate all error values to zero*/ 
seden=O.O; 

fclose(ifp ); 

rverr=O.O; 
sedNerr = 0.0; 

· sedPerr ~· 0.0; . 

TSNerr = 0.0; 
TSPerr = 0.0; 
sumerr=O.O; 

for(i=O;i<N;i++) 
{ 

} 

fscanf(ifp, "%d %f %f %f %f %f %f%f', 
· &amc[i],&rain[i],&runoff[i],&sed[i], &sedmntN[i], 

&sedmntP[i], &toCsol_N[i], &tot_sol_P[i] ); 
fgets( string 1,80,ifp ); 

/* ---------·--: ---·-·-----·- ------------------------
Calculate the rainfall energy for each rainfall 

------------------------------------------------------ */ 
energy[i] = 17.90 * pow(rain[i]~ 2.0619); 
energy[i] = ei1ergy[i] I pow(24.0, 0.4134); 
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/* ------------------ ·---. ---------------------------------------------------------------. -------
The following part of the program updates the data file for AGNPS (input.dat) 
for every rainfall value. It runs the AGNPS model for every possible combination 
of slope, K factor, and CN and records sediment yield and runoff volume loading 
for each run 

--------------- .----------------- .---- --------------------------------------------------------- */ 

ofp = fopen("cnslp.txt", "wt"); 
fprintf(ofp," Slppe CN K rain RV TSS SedN TSN SedP TSP rverr Sederr 
SedNerr SedPerr TSNerr TSPerr Sumerr\n\n"); 
fclose( ofp ); 

for(k=O; k<N; k++) 
{ 
for(i:=;;O; i<S_incr; i++) 
{ 
for(prl=O; prl<K_incr;'prl++) 
{ 
forG=O; j<CN_ incr; j++) 
{ 
sumCN=O; 
avgCN=O; 
sum_ kfact = 0.0; 
avg_kfact = 0.0; 
sum_slope = 0.0; 
avg_slope = 0.0; 

/* "input.dat" is the input file for AGNPS. "temp.dat" is the "input.dat" file 
modified by this program. This file is used by this program to run the AGNPS 

*/ 
ifp = fopen("input.dat", "r"); 
temp= fopen("temp.dat", "w"); 

for(m=O; m<S;m++) 
{ 

} 

fgets(string, 80, ifp); 
fputs(string, temp);. 

I* update the file input.dat * I 
fscanf(ifp, "%s%f0/of0/of0/of\n", type, &eng, &duration, &rainfall, &nitro); 
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/* update energy value and rainfall value*/ 

fprintf( temp, "% 16s%8 .2f>/o8 .1 f%8 .2±%8 .2f\n", 
type,energy[k],dw·ation,rain[k],nitro); 

for(m = O; m < ncell; m++) 
{ 

fscanf(ifp, "%d %d %d %d %d %d %f %d", 
&a,&f,&b,&g,&c,&CN,&e,&d); 

I* The following one line is used to get to the grid point of optimum CN. 
It must be commented out when estimating the parameter * I 

/* CN=CN -40· 
- . . ' ' */ 

I* Change the CN by the specified step size * I 
.· CN = CN+ j*deltaCN~ 
if(CN >= 100) 

CN = 100; 
/* I think it is a bug in the AGNPS program. If the curve number 

for any of the cells is zero, the program terminates with an 
error message that 'floating point error detected and could 
not be handled.' I have put this condition to make CN a non 
zero positive number. -Indrajeet */ 

if(CN <= 0) 
CN=5; 

/* The following orie line is used only to get the starting 
values for the parameter estjmation. It should be commented 
otit when actually estimating the parameters. * I · 

/* . e = e * 1.0; 

e += e*i*deltaS; 
if(e <= 0.0) 

e= 0.0; 

. *I 

fpriiltf(temp,"%8d%8d%8d%8d%8d%8d%8.2f%8d\n", 
a,f,b,g,c,CN,e,d); 

sumCN+=CN; 
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sum_ slope += e; 

/* The following lines reads the grid rainfall value and 
modifies it from the input rainfall file * I 

fgets(string, 65, ifp); 
/* USLE Parameter are·extracted here*/ 

fscanf(ifp, "%d %f%f%f%f%f%dlf,&slength, &n, &kfact, 
· &cfact, &pfact, &sec, &COD); .. 

/* The following one line is used to get the starting point for K * I 
I* kfact = kfact * 1.0; */ 

kfact += kfact*prl *deltaK; 
I* Check for the boundary conditions (0~ K ~ 1.0) 

if(kfact >= 1.0) 
kfact = 1.0· 

. '·' 
if(kfact<= 0.0) 

kfact = 0.0; · 

sum_ kfact += kfact; 

fprintf(temp, "%16d %8.3f%8.3f%8Af%8.2f%8.2f%8d\n"; 
slength, n, kfact, cfact, pfact, sec, COD); 

fscanf(ifp, "%d%d%d%d%d%d%d%f', 
&al ,&a2,&a3,&a4,&a5,&a6,&a7 ,&CellRain); 

fprintf(temp, "% 16d%8d%8d%8d%8d%8d%8d%8.2f\n", 
al,a2,a3,a4,a5,a6,a7,rain[k]); /* change to rain[k] */ 

/* 2 lines of soil information is read here * I 
fscanf(ifp, "%s %f %f %f %f', 

soil, &BaseN, &BaseP, &poreN, &poreP); 
. fprintf(temp, "%4s %8.4f %8.4f %8.2f%82f\n", 

soil, BaseN~ BaseP, poreN, poreP); 
·fscanf(ifp, "%f%f%f%f%d", 

&runoflN, &runoffP, &leachN, &leachP, &OM); 
fprintf(temp, "%16.3f%8.3f %83f%8.3f %8d\n", 

· runoffN, runoffP, leachN,JeaqhP, OM); 

fgets(string, 80, ifp); 

fgets(string, 80, ifp); 
strcpy( temp 1, string); 
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pl = strtok(templ, " "); 

pO = strcmp(pl, "Pert:"); 
p2 = strcmp(pl, "Pest:"); 
p3 = strcrrip(pl, "Channel:"); 

if(pO == 0) 
{ 

} 

fputs(string, temp); 
fgets(string, 80, ifp); 
strcpy( temp 1, string); 
p4 = strtok(templ, " "); 
p5 = strcmp(p4, !'Pest:"); 
p6 = strcmp(p4, ''Channel:"); 

if(p5=0) 
{ 

.fputs(string, temp); 
· for(xl=O;x1<7; xl++) 

{ 

} 

fgets(string, 80, ifp); ·· 
fputs(string, temp); 

} 
if(p6=0) · 
{ 

} . 

fputs(string, temp); 
for(xl=O; x1<3; xl++) 

{ 
fgets(string, 80, ifp ); 
fputs(string, temp); 

} 

if(p2~0) 
{ 

fputs(string, temp); .. 
for(xl =0; xl <7; xl ++) 

{ 

} 

fgets(string, 80, ifp); 
fputs(string, temp); 
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} 

} 

if((p2!=0) && (p3=0)) 
{ 

} 

fputs(string, temp); 
for(xl=O; xl<3; xl++) 

{ 

} 

fgets(string, 80, ifp); 
fputs(string, temp); · 

fclose(ifp ); 
fclose( temp); 

I* AGNPS is run here using the input file ''temp.dat" * I 
/* Note that the agrain·fa the modified AGNPS that uses grid-based rainfall and. 

energy intensity values * I 
check=system("agrain temp.dat () 0 0"); 
printf("%d\n" ,check); 

I* Get the relevent results from the outputfile 
and write it to the CNSLP.OUT file */ 

ifp = fopen("temp.nps", "r"); 

for(m = O; m<4; m++) 
{ 

fgets(string, 80, ifp); 
} 

fscanf(ifp, "%f%1fU/ofU/ofO/od%s%fU/ofU/of', &area, &areac, &rainfall, &eng, 
&a, &g, &rv, &ropk, &tss); 

fscanf(ifp, ''%f%f%tf%f%f%*f%*f%*f', 
&sedN, &TSN, &sedP, &TSP); 

I* Absolute relative errors for each output is calculated here * I 
/* Here the residual is de:fi,ned · as 

"Measured value - simulated value " * I 

sederr = fabs((sed[k] - tss)/sed[k]); 

206 



} 

} 
} 

return O; 
} 

rverr = fabs((runoff[kJ- rv)/runoff[k]); 
if(sedmntN[k] != 0.0) 

sedNerr = fabs((sedmntN[k] - sedN)/sedmntN[k]); 
if(sedmntN[k] == 0.0) 

sedNerr = 0.0; 
if(sedmntP[k] != 0.0) 

sedPerr = fabs((sedmntP[k] ~ sedP)/sedmntP[k]); 
if(sedmntP[k] = 0.0) 

sedPerr = 0.0; 
if(tot_sol_:__N[k] != 0) 

TSNerr = fabs((tot_sol_N[k] -TSN)/tot_sol_N[k]); 
if(tot_sol_N[k] = 0.0) 

TSNerr = 0.0; 
if(tot_sol_P[k] != 0.0) 

TSPerr = fabs((tot_sol_P[k] - TSP)/tot~sol_P[k]); 
if(tot_sol_P[k] = 0.0) 

TSPerr = 0.0; 
sum.err = sederr+rverr+sedNerr+sedPerr+ TSNerr+ TSPerr; 

fclose(ifp); 

/* Here the average parameter estimates for the watershed is calculated * I 
avgCN = (long) sumCN/ncell; 
avg_ slope = sum -'slope/ncell; 
. avg_ kfact = sum_ kfact/ncell; 

I* The error statistics and the output and parameter estimates are written 
in the "cnslp.txt" file for each permutation of slope, K, andCN. */ 

ofp = fopen("cnslp.txt", "at"); 

fprintf(ofp,"%4.2f%4ld o/o4.2f%4.2f%5.4f%5.2f%5.2f%7.4f%7.4f%7.4f 
%5.4f %5 .4f%5 .4f %5 .4f %5.4f %5.4f %5.4f\n", 

avg_slope, avgCN, avg_kfact, rairi[k], rv, tss, sedN, TSN, sedP, TSP, 
rverr, sederr, sedNerr, sedPerr, TSNerr, TSPerr, sum.err); 

fclose( ofp ); 

} 

207 



APPENDIX-5 

· Computer program to process DP A rainfall data 
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/* ********************************************************************* 
This program is used to read the NEXRAD rainfall file stored in DP A format. 
It reads the binary rainfall data, converts that to the hourly total rainfall (mm) and 
stores that to another file that can be imported into a GIS as an ascii file. 

Indrajeet Chaubey 
********************************************************************** */ 

#include <stdio.h> 
#include <math.h> 

#define min value -6 
#define increment 0; 125 

main(int argc, char *argv[]) 
{ 

int precip~array[131][131]; 
char buffer[146]; 

unsigned char row[1024]; 
short num _ bytes; 
short value; 
short nurn _ cells; 

char file_name[1024]; 
inti, j, k; 

int row_ total; 
float expl, valuel; 
int value_mm; 

{ 

} 

FILE *ip, *fp; 

ip = fopen(argv[l], "rb"); 
if(!ip) 

printf("\nCannot opellthe file"); 
exit(l); 

fp = fopen(argv[2],"w"); 

I* This is the header file to display the rainfall data into ARC/INFO or ARCNIEW. 
To display it into another GIS package, the header information must be changed 

accordingly. */ 
fprintf(fp, "ncols 131 \n"); 
fprintf(fp, "nrows 131 \n"); 
fprintf(fp, "xllcomer 396507 .61933\n"); 
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} 

fprintf(fp, "yllcomer 3651134.3594\n"); 

fprintf(fp, "cellsize 4000\n"); 
/* End of the header information. * I 

/* Read the header of the DP A file and ignore it. * I 
fread(buffer, sizeof(char), 146, ip); · 
for(i=O;i<131;i++) . 

. . { 

} 

row_total = O; 
fread(&num_bytes, sizeof(short),1,ip); 
printf("\nNum _ bytes = %d", num _bytes); 
.fread(row, sizeof( char),num_ bytes,ip ); 
forG=O; j< num_bytes/2; j++) 

{ 
num_cells = row[2*j]; 
value=row[2*j+l]; · 
printf("\nvalue = %d", value); 
if( value =O ) 

value mm=O·· - ' 
else if((value =255) II (value= -1)) 

else 
{ 

} 

value_ mm = 999; 

expl =(value* increment+ min_ value)/10.0; 
valuel::;: pow(lO.O, expl); 
value_mm = (int)(valuel +0.5); 

for(k=O; k<num_cells;k++) 
{ 

precip_array[i][(row_total- 1) +k]::;: value_mm; 
fprintf(fp, "%d ",value_mm); 

. - } 

row_total += num_cells; · · 
printf(I! Row total::;: «rod", row_total); 

} 
fprintf(fp,lt\n"); 
printf("\nColumn. total = %d", i); 

fclose(ip ); 
fclose(fp ); 
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