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Abstract

As wireless technologies continue to become more ubiquitous in a variety of

different applications, the electromagnetic spectrum will become increasingly sat-

urated. Billions of wireless devices that utilize the spectrum are already in use, and

it seems that the production and sale of these devices will not subside in the near

future. As the number of these devices increases and the spectrum becomes more

crowded, applications that apply the technique of spectrum sharing become even

more important. The work in this thesis is specifically focused on cognitive radar

applications, but the techniques and concepts used in this hardware implementation

could be applied to other devices and applications that employ spectrum sharing.

The contribution of this work is a Verilog implementation of a weighted sum

multiobjective optimization (WSMO) algorithm for use in spectrum sharing appli-

cations. In a cognitive radar, this algorithm is used to choose the optimal transmit

band by balancing the competing objectives of low interference and large band-

width. In typical cognitive radars, this analysis is performed by the host PC. Data

transmission to the host PC and computation times on the CPU make this a non-

realistic procedure for algorithms with high computational complexity if real-time

operation is desired. Migrating this work to a field programmable gate array (FPGA)

located in the radar itself allows the computation of WSMO in real time through

parallelization of the algorithm and elimination of the unnecessary transmission of

spectrum data to the host PC for processing.
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Chapter 1

Introduction

Cognitive radars operate in a cycle of three phases referred to here as “sense,”

“learn and decide,” and “adapt” [3]. The sense phase collects data about the sur-

rounding spectrum to undergo analysis in the learn and decide phase. The learn and

decide phase performs analysis on this spectrum data through some logical process

or algorithm and returns a result that identifies which band the radar should use next

based on the current conditions. Finally, the adapt phase uses the results of the learn

and decide phase to switch the active transmission band to the newly determined

optimal open band, ideally containing no signals from other users. Multiobjective

optimization can be used to balance the two fundamentally conflicting objectives

of bandwidth and interference in a cognitive radar. Multiobjective optimization has

been the focus of a large body of research, and many different multiobjective op-

timization routines exist [4]. One of the most common methods of multiobjective

optimization, weighted sum multiobjective optimization (WSMO), is used in this

work [4] [5].

WSMO is used in the “learn and decide” portion of the cognitive radar process

to analyze the sensed spectrum data and determine the optimal transmit band based

on interference and presence of other users. The implementation of a WSMO al-

gorithm on an FPGA provides multiple benefits for a cognitive radar application by

1



helping overcome some significant technical challenges present in modern cogni-

tive radars. Typically, data must be streamed from the radio hardware to the host

PC for processing and analysis. Transfer rates to the host PC, as well as the com-

putational complexity of the algorithm that must be computed sequentially on the

CPU, cause a significant bottleneck in the operation of the radar. Development of

a Verilog implementation of this algorithm to be run on the field programmable

gate array (FPGA) of a cognitive radar would eliminate these bottlenecks and allow

for more complex algorithms to be computed in real time by utilizing the paral-

lelization that is available when using an FPGA. Transferring this workload to the

FPGA also has the benefit of eliminating slow communication of data to the host

PC. When using an FPGA in the radar itself, there will no longer be a need to trans-

fer data out of the radio hardware, to the host PC, then back into the radio hardware

post analysis. Data transfer to the host PC and sequential processing becomes more

time consuming and impractical for real-time applications as the complexity of the

spectrum analysis algorithm increases.

1.1 Thesis Outline

This thesis is divided into several chapters, outlined here. Chapter 2 contains

general background information on the functionality of cognitive radars, as well

as a brief introduction to the original version of the WSMO algorithm to be im-

plemented on the FPGA. The algorithm description is followed by a section de-

tailing the changes made to the algorithm to support a fast hardware implemen-

tation. Lastly, the development platform used for the hardware implementation is

discussed.

In Chapter 3, the details of the Verilog Hardware Description Language (HDL)
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implementation are presented. The implementation description includes several

topics corresponding to the calculation steps of the algorithm. In the first section,

the methods to construct the objective functions are given. Next, the process of

normalization of the objective functions using bit shifting is described. This section

also includes a discussion of error introduced using this normalization method, as

well as a proposed technique to mitigate the effects of this error. The next two

sections of this chapter discuss the creation of the full weighted sum equation and

the process to determine the maximum of this function, respectively. Finally, a

timing diagram obtained using HDL simulation software is shown to verify the

number of clock cycles necessary to calculate the final output of the algorithm.

Chapter 4 presents results of the algorithm for various frames of spectrum data

and various weighting parameter changes. Results are presented for normal condi-

tions, reduced signal-to-noise ratio (SNR) scenarios, and for changes in the weight-

ing parameter.

Finally, Chapter 5 presents a conclusion and several topics for future work.

3



Chapter 2

Background

The algorithm used as the baseline for this work is described in [1]. The goal

of that research was to reduce the computational complexity of the spectrum anal-

ysis to allow sequential processing methods, such as MATLAB or other programs

running on the host CPU, to process the spectrum data in real time. This was ac-

complished by refining the spectrum data to reduce the input to an optimization

routine such as WSMO.

The goal of the work in this thesis is to migrate the spectrum analysis work-

load entirely into the hardware of the radio using the onboard FPGA. Performing

the work in the FPGA will prevent unnecessary, slow communication of spectrum

data between the radio hardware and the host CPU without any pre-processing to

reduce the input data to the WSMO algorithm. This work utilizes the high level

of parallelization available on an FPGA to eliminate the need to reduce inputs to

WSMO while also keeping the spectrum analysis workload directly inline with the

radio hardware, greatly reducing the communication traffic to the host CPU which

often acts as a bottleneck in cognitive radar applications.
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2.1 Original Algorithm

Before detailing the final version of the WSMO algorithm that was implemented

in hardware, a brief introduction of the source paper for this algorithm is necessary

[1]. This section describes the WSMO algorithm exactly as it is presented in the

source paper, while future sections in this chapter discuss the changes made to the

algorithm to facilitate a fast, efficient FPGA implementation. Original figures and

equations from the source material are shown here to provide a clear and accurate

representation of the background information presented in that paper.

The radar technique used in the source material is referred to as spectrum sens-

ing multiobjective optimization (SS-MO) [1]. A high level block diagram of the

SS-MO technique is shown in Figure 2.1.

Figure 2.1: SS-MO technique for radar [1].

The SS-MO technique begins by sensing the spectrum to obtain an estimate of

the interference surrounding the radar. This power spectrum estimate is the input to

the WSMO algorithm. Using this power spectrum data, an interference estimate can

be calculated for every possible bandwidth that could be selected by the algorithm.
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This results in a triangular structure as shown in Figure 2.2, described by Equation

2.1.

Figure 2.2: Structure of the interference estimate Γ(βi, fj) containing 15 subband
combinations available for processing. The subband size increases as the samples

are merged together. The start frequency is depicted above each cell [1].

Γ(βi, fj) =


θj, i = 1, j = 1, ..., N

Γ(β1, fj) + Γ(β1, f1+j) i = 2, j = 1, ..., N − 1

Γ(βi−1, fj) + Γ(β1, fi+j−1) i = 3, ...N, j = 1, ..., N − i+ 1

(2.1)

The top row of the interference estimate is simply the power spectrum estimate

of each subband directly from the FFT. The bandwidth for each sample on that row

is ∆r, the change in frequency per spectrum sample, which is equivalent to the

resolution of the FFT. This quantity is defined as the total bandwidth B divided by
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the number of FFT samples n, shown in Equation 2.2.

∆r = B/n (2.2)

The elements of each subsequent row of the interference estimate is an addition

of spectrum samples, making the bandwidth of each row equal to the number of

added samples times the change in frequency per sample ∆r, shown in Equation

2.3.

βi = i∆r (2.3)

This interference estimate and the radar receive power Pr are used to form the

signal-to-interference ratio (SINR) equation. The radar receive power is defined in

Equation 2.4.

Pr = PtG
2λ2σNP/[(4π)

3R4] (2.4)

The parameters in Equation 2.4 are Pt, the radar peak transmit power; G, the

transmit and receive antenna gain; λ, the wavelength of the carrier frequency; NP ,

the number of pulses within a CPI; R, the arbitrary range to target; and σ, the target

radar cross section [1]. The SINR equation, the first objective function for the

WSMO algorithm, can now be defined in Equation 2.5 using Equations 2.4 and 2.1.

Z1(βi, fj) = Prτβi/Γ(βi, fj) (2.5)

The second objective function is the subband size, defined in Equation 2.6 [1].

Z2(β) = βi (2.6)

The optimization goal is to maximize both SINR and bandwidth. As discussed

7



in the source material, these two functions present a fundamental conflict. This

conflict is intuitive, because it is expected that larger bandwidths will naturally con-

tain more interference, thus reducing SINR. Therefore, a weighted sum is used to

achieve multiobjective optimization to find an optimized solution considering both

competing functions. The full WSMO equation is defined in Equation 2.9, where

Ź1 and Ź2 are the normalized objective functions defined in Equations 2.7 and 2.8.

Ź1(βi, fj) = Z1(βi, fj)/max[Z1(βi, fj)] (2.7)

Ź2(βi) = Z2(βi)/max[Z2(βi)] (2.8)

Z(βi, fj) = αŹ1(βi, fj) + (1− α)Ź2(βi) (2.9)

The final step in the algorithm is finding the maximum value of Z and returning

the indices of the location of that element. These indices represent the final product

of the algorithm, the subband width β∗
i and the starting frequency f ∗

j . These two

numbers are sufficient to completely and uniquely describe any subband of the full

bandwidth, starting at any frequency with a granularity corresponding to the reso-

lution of the FFT. The equation used in the source paper to obtain the optimized

solution is given in Equation 2.10 [1].

{β∗
i , f

∗
j } = arg max[Z(βi, fj)] (2.10)

2.2 Changes made for hardware implementation

While many aspects of the WSMO calculation remain the same, some changes

were made to the algorithm to support a parallel implementation of WSMO in an

FPGA. The most significant change occurs in the first objective function, previously

8



set as the SINR equation defined in Equation 2.5. In the hardware implementation,

the first objective function is defined as solely the interference estimate described

by Equation 2.1 and does not include information about the radar signal power. The

reason this change was made is twofold. First, this change eliminates the costly di-

vision operation from the calculation of the objective function. Performing division

for each element of the interference estimate would demand large amounts of logic

elements and quickly result in excessive hardware requirements that are not feasi-

ble to maintain, especially for larger FFT lengths. Second, including information

about the radar transmit and receive power would constrain the result of WSMO

using specific radar parameters. In practical cognitive radar applications where this

information is necessary, extra logic can be added into a separate stage of the algo-

rithm without requiring division of every element. The inclusion of specific radar

parameters could be accomplished by adding an additional stage in the algorithm

to scale one or both objective functions in a manner that reflects how the use of

pulse compression waveforms affects the performance of the radar. This topic is

not deeply explored in this work in favor of achieving a fast implementation of

the core functionality of the algorithm to select the widest open band for a general

spectrum input without any specific radar constraints. The new objective function

is defined in Equation 2.11.

Z1(βi, fj) = Γ(βi, fj) (2.11)

This change in the first objective function clearly also requires a change in the

total weighted sum Z to maintain the relationship between the interference and the

final sum. Recalling Equation 2.5, it can be seen that increasing the interference

estimate in the denominator will cause that element of Z to be smaller. Naturally,

the new weighted sum must follow the same behavior. The simplest solution to

9



this is to subtract the interference estimate from the subband width function. This

maintains the same relationship between interference and the total sum. The new

weighted sum is defined in Equation 2.12 where Ź1 and Ź2 are the normalized

objective functions.

Z(βi, fj) = (1− α)Ź2(β)− αŹ1(βi, fj) (2.12)

Clearly this function is no longer bounded between 0 and 1 and has the potential

for negative results. This does not present any issues, however, since the particular

values of Z do not matter so long as the maximum value remains at the same index

in Z.

In summary, two major changes were made to the original algorithm. Objec-

tive function normalization and the use of radar power in the calculations were re-

moved because both operations require division. Objective function normalization

is critical to the performance of the algorithm, so the division operation required to

achieve normalization was replaced by bit shifting, an operation that can be easily

synthesized in FPGA hardware.

2.3 Development Platform

All non-simulation development was done on an Ettus USRP X310 radio [6]

[7] using the on-board Xilinx Kintex®7410T FPGA. The USRP Hardware Driver

(UHD) is a software library maintained by Ettus Research that is used to control

the radio hardware [8]. GNURadio is another open source software tool used to

aid development by allowing a graphical definition of the program through its use

of flowgraphs [9]. GNURadio flowgraphs are composed of data processing blocks

that are interconnected as defined by the developer. To aid specifically in the FPGA

10



development on the X310, the RF Network-on-Chip (RFNoC) framework is used

[2]. FPGA development can be a daunting task, so RFNoC helps make this leap

by standardizing the communication between blocks, greatly reducing the amount

of work required by the developer to ensure proper data flow through the FPGA

or data transfer compatibility with other blocks in the FPGA. For a more thorough

description of the hardware, software, and FPGA framework and their capabilities,

please reference [10]. A very brief introduction to the RFNoC datapath and the

signals relevant to this design are presented in the next section.

2.4 RFNoC Data Communication

In RFNoC, data is transmitted using a stripped-down version of the standard

Xilinx AXI bus interface called AXI-Stream (AXIS) [11]. As can be seen in Figure

2.3, there are several different communication datapaths within the RFNoC frame-

work that are based on the AXIS communication protocol.

Figure 2.3: A simple RFNoC flowgraph showing internal signals and how they are
routed in the RFNoC framework [2].

The RFNoC “NoC Core” is a predefined structure that handles communica-

11



tion between NoC Blocks using the AXIS Compressed Hierarchical Datagram for

RFNoC (AXIS CHDR) bus and the control (AXIS Ctrl) bus. Data communicated

over these busses is packetized, each containing some header information and a pay-

load. While this format is appropriate for streaming data to and from NoC Blocks

and the host PC, it would be a burdensome format for FPGA developers if the user

logic in each NoC Block was required to parse these packets into more organized

and easily accessible signals. Fortunately, the RFNoC framework provides the NoC

Shell module to split the AXIS CHDR and AXIS Ctrl busses into their component

parts as individual signals that are readily accessible to the FPGA developer. The

relevant signals used in this work are shown in Table 2.1.

Name Function

axis data clk System clock for data signals

m in payload tdata Spectrum sample data (32-bits)

m in payload tlast Asserted when the data on the bus is
the last sample in a packet

m in payload tvalid Asserted when the data on the bus is
valid

Table 2.1: Signals used in the RFNoC AXIS interface.

This information about RFNoC is important for this work because the data com-

munication protocol is packet based, so input data into the WSMO module will ar-

rive at a rate of one sample per clock cycle. So, for an FFT length of 256 samples,

it will take 256 clock cycles to obtain the entire frame of spectrum data. While

partial calculations can be computed as the samples come in, this imposes a limi-

tation on the speed of the algorithm given the number of cycles spent waiting for

12



the spectrum data. This would seem to imply that the algorithm would have a cal-

culation time of 256 + 9 = 265 cycles instead of the claimed 9 cycle computation

time in Chapter 3, however, this is a misleading interpretation since the calculations

cannot fully begin without first obtaining all the data. If it were possible to obtain

all 256 samples at once, the algorithm completion time of 9 cycles would not be

significantly increased, so the performance of the algorithm is maintained at an ap-

proximately 9 cycle delay from the time all of the data is received. Any calculations

done while the data comes in serially over the data bus could be easily parallelized

if the data were available in a single cycle. For more information about the RFNoC

architecture, please refer to the RFNoC Specification and other RFNoC resources

available online [2] [10].
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Chapter 3

FPGA Implementation

This chapter describes a proposed implementation of the WSMO algorithm in

Verilog. The input data to the algorithm consists of “frames” of frequency domain

samples from an FFT block. The FFT data represents the most recent state of the

frequency spectrum as seen by the spectrum sensing and signal detection compo-

nents of the cognitive radar.

3.1 FFT Input Data Collection

The primary input to the WSMO block is a serialized stream of frequency do-

main samples from a standard FFT block. Since the rate of data arriving from the

FFT block is limited to one sample per clock cycle, it is necessary to collect and

store the samples until the entire FFT frame is collected for analysis. Sample stor-

age is accomplished using two register files and a demultiplexer. This implementa-

tion serves two purposes. First, new data samples are constantly arriving over the

input data bus, so data collection must never cease, even as calculations are being

done on the previous frame of data. Second, using a demultiplexer to direct incom-

ing samples to two separate register files prevents the need to copy previous frames

of data from a single register file to a temporary storage location where analysis can

14



be performed. Using two separate register files allows one file to hold the previous

frame’s collected data for analysis while the other register file is free to accept the

incoming samples. Once the final sample in a frame of data has been collected,

signified by the assertion of the m in payload tlast signal from the RFNoC payload

stream, the demultiplexer is switched to begin delivering the new samples of the

next frame to the second register file. This implementation ensures that one of the

register files is always available to collect new samples and eliminates the need for

transmission of data to temporary storage for analysis.

3.2 Calculation of the objective functions

Once a full frame of data has been collected, the next step in the WSMO algo-

rithm is to calculate both objective functions.

3.2.1 Interference Estimate Calculation

The first objective function to be optimized is the interference estimate, defined

by Equation 2.11. The number of elements in the interference estimate objective

function is defined as the nth triangular number Tn [12], where n is the length of a

single frame of FFT data in samples.

Tn =

(
n+ 1

2

)
=

n(n+ 1)

2
= O(n2) (3.1)

It follows from Equation 3.1 that increasing the FFT length will have a signif-

icant effect on the number of elements required for the interference estimate. It is

also apparent from Equation 3.1 that the increase in elements is not linear with the

increase in FFT length, but rather will increase on the order of n2, requiring a pro-

portionately large increase in FPGA logic elements. In addition to this, two parallel
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interference estimate register files must be maintained to facilitate constant data

consumption by the WSMO block, doubling the required logic. Table 3.1 provides

register requirements for various common FFT lengths.

FFT length Tn Registers for Interference Estimate
32 528 1,056
64 2,080 4,160
128 8,256 16,512
256 32,896 65,792
512 131,328 262,656

1024 524,800 1,049,600

Table 3.1: Number of registers required to maintain two parallel interference
estimate register files.

Since the input data to the WSMO module is serialized, the FFT length will also

affect the number of clock cycles required to calculate the interference estimate. As

stated in [1], the computational complexity to form the interference estimate is (n2−

n)/2 summations. Using sequential processing methods on the host CPU would

require very large loops that increase in size on the order of n2. On the FPGA, this

calculation can be parallelized to reduce the execution time to O(n) as opposed to

the sequential execution time of O(n2). This is especially significant because the

input data arrives to the WSMO block at a rate of one sample per cycle, making the

time needed to collect a full frame of data also O(n). The faster computation time

provided by an FPGA allows the interference estimate to be completely calculated

at only a two-cycle delay from the collection of the last sample for a given frame of

input data.
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3.2.2 Subband Size Calculation

The second objective function to be optimized is the subband size, defined by

Equation 3.2.

Z2(β) = βi (3.2)

In Verilog, the subband function translates to a one dimensional n-length array

containing every possible subband bandwidth that could be selected by the algo-

rithm. Each element is a product of its own index i and the change in frequency per

spectrum sample, ∆r, as shown in Equation 2.3. Since Equation 3.2 does not rely

on the spectrum data, the calculation can begin in the instant the total bandwidth

and FFT length are known and initialized. The entire array of values can be calcu-

lated in as little as one cycle after initializing the system, depending on the latency

of the hardware multipliers inferred by the synthesis tool and the frequency of the

clock.

3.3 Interference Estimate and Subband Size Normalization

In the original WSMO algorithm [1], the objective functions Z1 and Z2 are

normalized before being weighted and added together to form the full weighted

sum function. This is accomplished by dividing each element of Z1 and Z2 by

their maximum values, respectively. Hardware division is a costly operation in

both computation time and FPGA resources, so other normalization options were

explored.

To determine a faster, less resource intensive alternative to division, the goal of

normalization was considered. Dividing each objective function by its maximum
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serves to constrain the elements of both functions to a common scale, namely the

scale of real numbers from 0 to 1. Though 0 to 1 is perhaps the most commonly

used normalization scale, it is not strictly necessary to use this scale to accomplish

the goal of normalization for the purpose of this algorithm. The purpose of nor-

malization in this instance is simply to scale the objective functions such that their

weights are not inherently skewed by their relative difference in magnitude [13].

It is proposed that this task can be accomplished with a simple bit shift, a very

fast and inexpensive operation to perform in hardware. The end goal of the shift

operation is to produce two objective functions whose maximum magnitudes are as

close to equal as can be achieved through multiplication by powers of two. This

is accomplished by calculating the number of leading zeros in both function maxi-

mum values, then left shifting the function with the smaller maximum until the lead-

ing ones in both maximums occupy the same bit position. Clearly, this technique

cannot always achieve accurate normalization results, and significant error may be

introduced. The causes and magnitude of the error introduced by the shifting nor-

malization technique is discussed in Section 3.3.3, and a solution is presented in

Section 3.3.4.

3.3.1 Find the number of leading zeros

To determine the shift amount, the number of leading zeros for each function

maximum must be calculated. Counting the number of leading zeros, also known

as leading one detection, is a critical component of floating point operations. As

such, there has been much research into designs that minimize latency and size of

the circuitry required to perform the operation [14] [15] [16]. For the purposes

of this work, a simpler approach will comfortably meet the requirements of the
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design. However, the modular structure of Verilog allows for easy replacement of

the module functionality if a faster, smaller, more advanced design is required for

other applications [17] [18].

Leading one detection can be accomplished in Verilog using a series of com-

parators and multiplexers with the results stored in registers in a single cycle. This

functionality is implemented in the calculate leading zeros (CLZ) module. The

module works by splitting the input into two halves, the most significant bits and

the least significant bits. The most significant bits are then compared with zero. If

the decimal value of the most significant bits is equal to zero, this implies that each

individual bit is also equal to zero, so that number of bits must be added to the final

output result of the module. It is expected that inputs to this module have a standard

bit length corresponding to a power of two. If this is the case, the number of bits

of the most and least significant halves will also be a power of two. Given these

facts, it becomes apparent that incrementing the output by the number of bits of the

most significant half reduces to simply storing the result of the comparator into the

log2(k) bit position of the output, where k is the number of bits being compared.

For example, consider the eight bit input 00000101 with most significant bits 0000.

The comparison 0000 = 0 is true, therefore the comparator result is 1. This value

is then stored in the log2(4) = 2 bit position of the final output. Without comput-

ing the remaining tiers of comparison, the partial result would now be 0100 = 4,

indicating that four bits have been recorded in the result, as expected. If the most

significant bits are equal to zero, the least significant bits are then processed as the

new input and the process begins again. In the case where the most significant bits

are not equal to zero, this indicates that the input’s leading one is in the most signif-

icant half of the bits, making it unnecessary to process the least significant half any

further. As such, the most significant half is passed as the new input instead. This
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process is repeated until the input is only two bits wide and single bits are com-

pared. The flowgraph in Figure 3.1 illustrates this process, generalized to calculate

the number of leading zeros for any n-bit input given n is a power of two.

Figure 3.1: Flowgraph of CLZ module behavior

The corresponding hardware for the first two comparison tiers of a 32-bit input

are illustrated in Figure 3.2. This figure demonstrates why it is possible to complete

this calculation in a single cycle. As seen in Figure 3.2, the bit output bit 3 does not

depend on the registered bit output bit 4, and by extension does not depend on the
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clock for its value to be calculated. This pattern will continue as the inputs to be

compared are split in two, concluding with the final comparison of a single bit. The

results of this system are then simultaneously loaded into the result registers in the

same clock cycle.

Figure 3.2: CLZ module component diagram

The hardware diagram created by the Quartus Prime synthesis tool shown in

Figure 3.3 verifies that the Verilog code synthesizes to the hardware described in

Figure 3.2.

Figure 3.3: CLZ module synthesized hardware diagram
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3.3.2 Normalization by shifting

Once the number of leading zeros has been found for both function maximums,

the shift amount to normalize the functions can be determined. To reiterate, the goal

of this shift is to shift the smaller objective function such that the leading ones in

the function maximums are aligned. This is equivalent to multiplying the smaller

function by the power of two that will result in both function maximums being

as close in magnitude as possible. This ensures that both functions are of similar

weights before being added to the full weighted sum function.

Consider the following example with only 3 spectrum samples and a total band-

width of 500 to illustrate this process. Assume the elements of two objective func-

tions A and B are defined as in Table Figure 3.4.

Figure 3.4: Normalization example elements

In Figure 3.4, it can be seen that the objective functions are not the same size.

This arises from the fact that each row of the interference estimate corresponds

to a single bandwidth βi, and thus to a single element of the subband size. For

illustration purposes, Figure 3.5 has been provided to clarify how each element

from A will interact with the elements of B. When the weighted sum is performed,

each element from A is summed with the element from B that occupies the same

row and column in Figure 3.5.
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Figure 3.5: Normalization example elements

First, it will be useful to calculate the results using division as a reference. The

normalized objective functions and remaining calculations are shown in Figure 3.6.
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Figure 3.6: Calculation using division

The results of the WSMO algorithm using division to normalize the functions

show that the optimal transmit bandwidth for these inputs has a subband width of

250 and a total interference of 7. Now the shifting approach can be compared.

Figures 3.7 and 3.8 show the same calculation process as Figure 3.6, changing only

the method of normalization.

Figure 3.7: Normalization example elements
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Figure 3.8: Calculation using shift

As shown in Figure 3.8, the same results have been achieved using normaliza-

tion by shifting. Since the scale of the numbers in Z is irrelevant and only the

maximum value must be considered, different methods of normalization can be

used to produce the same final result.

In Verilog, the << operator is used to perform the shift. This operation can

occur in one clock cycle because the synthesis tool is able to infer a barrel shifter

as a series of multiplexers for each element in the objective function. A very fast

clock or an excessively large number of bits to shift could cause the barrel shifter

latency to exceed the clock period and cause multi-cycle shifts. However, assuming

the clock rate of 200MHz used by the X310, shifts of the 32-bit objective function

elements should fit comfortably within the 5 nanosecond clock period. According

to [19], even operands of 128 bits are not estimated to exceed 2 nanoseconds of

delay using any of the four barrel shifter implementations discussed in the paper.

From this it can be concluded that each element of the entire objective function can

be easily shifted in a single clock cycle.
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3.3.3 Normalization error introduced by Shifting

To understand the cause and possible magnitude of the error introduced by using

shifting rather than division, it will be useful to begin by revisiting the example

from Section 3.3.2 with different data input for the interference estimate function,

provided in Figure 3.9.

Figure 3.9: Error causing example elements

Again, the WSMO result is first calculated using division as a reference, shown

in Figure 3.10.
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Figure 3.10: Calculation using division

From this calculation it can be seen that the optimized bandwidth and interfer-

ence are the same as the previous example in Section 3.3.2. However, this set of

data will create a discrepancy between the division and shifting methods. Binary

representation of the elements are provided in Figure 3.11, and calculations for

normalization by shifting are shown in Figure 3.12.
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Figure 3.11: Error causing example elements
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Figure 3.12: Calculation using shift

As shown in Figure 3.12, the results for the optimal bandwidth and interference

are now in error with the reference results in Figure 3.10. In this example, it is ap-

parent by the large difference in the maximum values of 500 and 256 that significant

error has occurred. This error is caused by the difference in significant bits follow-

ing the leading 1 of each maximum. The numbers 500 and 8 are perfect examples

for the possible magnitude of error because they exhibit nearly the maximum error
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that can be introduced by using this method. Consider the following example of

how shifting affects several different maximum values, shown in Figure 3.13.

Figure 3.13: Example showing how pre-shift differences of just one decimal digit
can result in large errors of the shifted maximum

It is interesting to note that a difference of even one decimal digit can cause

nearly 50% difference in the amount of error introduced by the shift. Figure Figure

3.13 demonstrates that both best and worst case scenarios for a given maximum

weight range can often be just one digit apart, with the transition occurring where

a binary string of ones carries over to the next digit and the lower bits roll over

to zeros. However, this also largely depends on the values of the significant bits

in the unshifted reference maximum. For example, if the reference maximum was

260 instead of 500, then Max 2 and Max 4 from Figure 3.13 would now be very

accurate normalizations while Max 1 and Max 3 would introduce significant error.

Both 500 and 260 have a leading 1 in the 8th bit position, yet the difference between

the two numbers is large enough to heavily influence which shifted maximums will

be accurate and which will contain large amounts of error. The maximum possible

magnitude of error due to shifting is described by Equation 3.3, where m is the bit

position of the leading 1 in the larger, unshifted number. Error of this significance

can greatly influence the output of the WSMO algorithm, so a solution to mitigate

the impact on the final result is discussed in the following section.
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max ϵ = 2m−1 − 1 (3.3)

3.3.4 Adjustment of the function weighting parameter

In general, the maximums of either function are not known until the algorithm

is applied using specific hardware and radar parameters. From this it can be con-

cluded that finding a general solution for all cases would likely be both time and

resource intensive, given the highly unpredictable source of the error. Consequently,

an active correction strategy is implemented on an individual frame-by-frame basis

based on the observed error in each case. The solution presented here adds a 3 cycle

latency to the algorithm, but greatly increases the accuracy of the final results.

The approach used to correct this error does not directly address the normal-

ization technique, but rather measures the error resulting from normalization and

compensates accordingly in the calculation of the final weighted sum. Since the

purpose of normalization in this algorithm is to prevent large weight differentials

in the objective functions, it follows that errors in normalization can be compen-

sated for with adaptive weighting. It is proposed that based on the magnitude of

the observed error, an adjustment factor λ can be added to the weighting parameter

α to compensate for weighting errors introduced by shift normalization while also

preserving the weighting capability of α as a user defined value.

3.3.4.1 Calculation of the adjustment factor

To begin the calculation of the adjustment factor λ, recall the weighted sum de-

fined in Equation 2.12. To rectify weighting errors caused by shifting, a new weight

described by Equation 3.4 must be applied to Equation 2.12 to more accurately bal-

ance the two objective functions, forming Equation 3.5.

32



x = α + λ (3.4)

Z(βi, fj) = (1− x)Z2(βi, fj)− xZ1(βi, fj) (3.5)

For each frame of data, one objective function maximum will be larger than the

other objective function maximum. The larger maximum will remain fixed, while

the smaller maximum is shifted. Let these two values be denoted fMax and sMax

for “fixed” and “shifted” maximum respectively. After the shift has occurred, the

error in normalization ϵ is described by the remaining difference between fMax

and sMax.

ϵ = fMax− sMax (3.6)

In the case where fMax and sMax are exactly equal, then clearly the error

would be zero. Although the theoretical minimum error of zero is possible, this

occurrence would be exceedingly rare and cannot be assumed when calculating

the final results. The maximum amount of error is defined in Equation 3.7 using

Equations 3.3 and 3.6.

max ϵ = fMax− sMax = 2m−1 − 1 (3.7)

With error values ranging from 0 to 2m−1−1, it would be ineffective to adjust the

weight parameter x based on the maximum error, the minimum error, or any other

fixed value within the range of possible error values. Clearly, it is necessary to

adaptively scale the weight parameter to match the observed error for any particular

frame of data.

The range of possible error values can be divided into groups using the CLZ

module. Determining the difference between the leading 1 of fMax and the lead-

33



ing 1 of the error ϵ divides the range into more refined groups of possible error,

making the correction estimates more accurate. Table 3.2 shows the minimum and

maximum error given that the difference between objective function maximums has

a leading 1 within four bit positions of fMax. As in Equation 3.3, m is defined as

the bit position of the leading 1 in fMax. The difference in bit position between

leading ones is defined as D. Leading 1 differences of more than four bits have a

negligible impact on the final result and are ignored.

D Maximum error Minimum error

1 2m−1 − 1 2m−2

2 2m−2 − 1 2m−3

3 2m−3 − 1 2m−4

4 2m−4 − 1 2m−5

Table 3.2: Ranges for different magnitudes of error

Table 3.2 can be generalized into a single inequality, defined in Equation 3.8.

2m−(D+1) ⩽ ϵ ⩽ 2m−D − 1 (3.8)

Now that the amount of error is established, the strategy to calculate the adjust-

ment factor λ can be discussed. To begin this process, recall the original weighted

sum in Equation 2.12. Now imagine this equation rewritten for only two elements,

the two function maximums, as shown in Equation 3.9.

Z = (1− α)maxZ2 − α ∗maxZ1 (3.9)

Recall also that, using the division normalization method, both function maxi-

mums are always divided by themselves and will thus always be equal to 1. Given
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an equal weighting parameter α = 0.5, Equation 3.9 will always evaluate to 0 for

any two function maximums. This is the relationship that will be applied to Equa-

tion 3.5 to solve for the minimum and maximum values of the adjustment factor λ.

Using this fact, the following can be derived:

Z = (1− x)fMax− x ∗ sMax = 0

Therefore,

(1− x)fMax = x ∗ sMax (3.10)

Recalling 3.4,

max ϵ =fMax− sMax = 2m−1 − 1

sMax = fMax− (2m−1 − 1)

Substituting into 3.10,

(1− x)fMax = x ∗ (fMax− (2m−1 − 1))

fMax− x ∗ fMax = x ∗ (fMax− (2m−1 − 1))

fMax = x ∗ (fMax− (2m−1 − 1)) + x ∗ fMax

fMax = x ∗ (2fMax− (2m−1 − 1))

And finally,

x =
fMax

(2fMax− 2m−1 + 1)
(3.11)
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Equation 3.11 represents the the new weight to be used in the case that fMax

and sMax create the largest possible error. However, this occurrence will be just as

rare as the case where there is zero error, so the new weight must also be calculated

for every case, shown in Table 3.2.

D Maximum weight Minimum weight

1 x = fMax
2fMax−(2m−1−1)

x = fMax
2fMax−(2m−2)

2 x = fMax
2fMax−(2m−2−1)

x = fMax
2fMax−(2m−3)

3 x = fMax
2fMax−(2m−3−1)

x = fMax
2fMax−(2m−4)

4 x = fMax
2fMax−(2m−4−1)

x = fMax
2fMax−(2m−5)

Table 3.3: New adjusted weights for varying differences in leading ones

As with Table 3.2, Table 3.3 can be generalized to an inequality, defining the

upper and lower bounds of the new weight.

fMax

2fMax− (2m−(D+1))
⩽ x ⩽

fMax

2fMax− (2m−D − 1)
(3.12)

Fortunately, fMax is available long before the new weight is needed, so cal-

culation of these bounds is possible in real time. However, the bounds in Equation

3.12 still only describe the maximum and minimum amount of error and say nothing

of where the error will fall between these bounds for any given frame of spectrum

data. To accurately adjust the weight for each incoming frame, the actual error must

be observed for each individual case. This has the unfortunate effect of relying on

the calculation of the interference estimate maximum sMax, which completely
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negates any benefit provided by the early knowledge of fMax. Therefore, if the

new weight is to be calculated precisely, the latency of the division in Equation 3.12

would be added to the critical path. As discussed previously, avoiding division is

a top priority to preserve the speed of the calculation and reduce unnecessary re-

source usage. To meet these goals, an estimate of the error must be made quickly

and with minimal resource consumption.

Before applying this information in an example, one more implementation detail

must be discussed. In Verilog and in hardware in general, it is often easier and

more effective to deal in only integers for any calculations performed. This is also

true in the case of the weighting parameter α. In the original implementation, α is

constrained to values between 0 and 1, consistent with normalization using division.

However, as with normalization, using this scale is not strictly necessary. In the

Verilog implementation, alpha is defined as an integer between 0 and 255 with

a default value of 128, declared in Verilog as an 8-bit wire. Equation 2.12 then

becomes

Z(βi, fj) = (255− α)Z2(βi, fj)− αZ1(βi, fj) (3.13)

which is functionally equivalent to Equation 2.12. With a default value of 128,

the functions are multiplied by 127 and 128 respectively. This simulates an even

weight value of α = 0.5. The value 255 was chosen as the maximum weight be-

cause it is the largest number that can be represented with an 8-bit number. Making

255 the largest weight value and the largest value capable of being represented by

the 8-bit wire α in the Verilog code prevents users from entering values of α over

the allowed maximum.

As discussed previously, the scale of Z is irrelevant and does not affect the

outcome of the algorithm. Scaling Z up by 255 will not change the maximum
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element in the function, and thus the indices of the maximum element representing

the subband width bi and starting frequency fj remain unchanged.

As expected, the only effect this has on Table 3.3 and Equation 3.12 is an addi-

tional scaling factor of 255, as shown in Table 3.4 and Equation 3.14.

D Maximum weight Minimum weight

1 x = 255fMax
2fMax−(2m−1−1)

x = 255fMax
2fMax−(2m−2)

2 x = 255fMax
2fMax−(2m−2−1)

x = 255fMax
2fMax−(2m−3)

3 x = 255fMax
2fMax−(2m−3−1)

x = 255fMax
2fMax−(2m−4)

4 x = 255fMax
2fMax−(2m−4−1)

x = 255fMax
2fMax−(2m−5)

Table 3.4: New adjusted weights for varying differences in leading ones

255fMax

2fMax− (2m−(D+1))
⩽ x ⩽

255fMax

2fMax− (2m−D − 1)
(3.14)

Now consider an example based on collected sample data with a total bandwidth

of 100MHz, making fMax = 100 ∗ 106. One hundred million has a leading one

in the 27th bit position, so m = 27. Applying these values to Table 3.4, Table 3.5

shows the resulting weight values corresponding to maximum and minimum error

conditions.

Using these weight ranges as a basis, many approaches to choose an appro-

priate value within the ranges were attempted. Using the maximum or minimum

values directly did not yield results with a desired level of success. Averaging

the minimum ad maximum values produced slightly better results, but ultimately
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D Maximum weight x Minimum weight x Max λ Min λ

1 255∗100∗106
200∗106−(227−1−1)

= 191.9 255∗100∗106
200∗106−(227−2)

= 153.2 63.9 25.2

2 255∗100∗106
200∗106−(227−2−1)

= 153.2 255∗100∗106
200∗106−(227−3)

= 139.2 25.2 11.2

3 255∗100∗106
200∗106−(227−3−1)

= 139.2 255∗100∗106
200∗106−(227−4)

= 133.1 11.2 5.1

4 255∗100∗106
200∗106−(227−4−1)

= 133.1 255∗100∗106
200∗106−(227−5)

= 130.2 5.1 2.2

Table 3.5: Ranges of new weight at fMax = 100MHz

these were still unsatisfactory. After experimentation with different combinations

of adjustment factors, it was discovered that adjusting the weight by multiples of 8

produced highly effective results for the 100MHz data. This is a somewhat specific

solution, however when comparing the multiples of 8 to the ranges for λ it becomes

more obvious that this is a logical conclusion based on the computations done up to

this point. The Verilog statement “adjustment <= 8*(4 - diffLeading1s);” is used

to calculate λ and store the result in the register “adjustment.” This results in λ val-

ues of 8, 16, and 24 for bit differences of 3, 2, and 1 respectively. When comparing

these with Table 3.5, these values match remarkably well with the calculated ranges,

making it clear why the results improve significantly using this adjustment factor.

In the following section, results before and after weight adjustment are compared.

3.3.4.2 Result comparison

To test the effectiveness of the weight adjustment strategy, comparisons were

made on 100 frames of spectrum data with a bandwidth of 100MHz collected using

the X310 radio. Figures 3.14 and 3.15 show the results before weight adjustment

is applied, and Figures 3.16 and 3.17 show the results of the same spectrum frames
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after adjustment has been applied.

Figure 3.14: Comparison between division and shifted βi and fj values before
applying error correction adjustment factor
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Figure 3.15: Difference plots showing how much shifting deviates from division βi

and fj values before applying error correction adjustment factor

Figure 3.14 compares the output values βi and fj of the shift normalization

method with the reference results using division. The most easily observed occur-

rence of error occurs at frame 58 where a sharp decrease occurs when using divi-

sion, but shifting causes a sharp increase in bandwidth. This is the largest example

of the error due to shifting. Figure 3.15 provides plots of the difference between

the outputs to better visualize how different the plots in Figure 3.14 are from each

other. Notice the difference in vertical scale between Figure 3.15 and the weight

adjusted plot shown in the following figures. Before adjustment, βi exhibits a max-

imum error of nearly 125 and fj shows a maximum error of approximately -30 with

several other peaks showing errors near 20.
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Figure 3.16: Comparison between division and shifted βi and fj values after
applying error correction adjustment factor
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Figure 3.17: Difference plots showing how much shifting deviates from division βi

and fj values after applying error correction adjustment factor

As expected, Figures 3.16 and 3.17 show great improvement over the pre-

adjustment figures. The outputs βi and fj in Figure 3.16 follow the trends of the

division reference plots much more closely than the pre-adjustment results. This is

verified in Figure 3.17 which reveals that the difference compared to division has

been greatly decreased. The maximum error for βi is just over -15 while the smaller

peaks have been reduced even further to errors less than 5. This is nearly a 90%

reduction in error from the non-adjusted results. Likewise, the maximum error for

fj has been reduced to just over 15 with the smaller peaks being reduced to less

than 5, marking an error reduction of approximately 75%.
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3.4 Full weighted sum function Z

Calculation of the full weighted sum is straightforward. In Verilog, it is possible

to multiply each element of the objective functions by its corresponding weighting

parameter in parallel and assign the results to registers in a single cycle. Using gen-

erate statements that perform loop unrolling on for loops ensures that each element

can be multiplied and assigned independently of the other elements. Once each sep-

arate objective function is calculated, the interference estimate is subtracted from

the subband width to form the full weighted sum Z. Again, generate statements and

for loops provide the means to perform the subtraction of all elements in parallel,

taking only one cycle to complete. The intermediate results of the multiplication

and subtraction steps are not registered, so given that the latency of a multiplier and

adder/subtracter is not longer than the clock period, both operations can occur in a

single clock cycle.

3.5 Finding the maximum value of Z

Finding the maximum value of Z is also conceptually straightforward, but re-

quires a large amount of comparison logic. In Verilog, Z is essentially a 2D array.

In the hardware, this translates to a large matrix of registers where the values of

Z are stored. Verilog does not support passing memory (an array of registers) as

an input to a module. The comparisons could have been done directly in the top

module, but this is bad practice and would have made the code bloated and difficult

to understand [20]. So, the best solution to get the values from memory into the

comparison block was to concatenate all elements of a single row and assign them

to a wire which can be passed as an input to the module. The concatenated rows
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are then separated back into individual elements within the module. This approach

does, however, rely heavily on efficient routing by the synthesis software. For the

example of 256, 64-bit elements, the resulting concatenated wire would be 256x64

= 16,384 bits wide. In addition, these 16,384 bit wires would only carry the ele-

ments of a single row of Z, resulting in only the maximum value for that row. So,

for the 256x256 matrix of Z, a 16,384 bit wire would be necessary for each row,

resulting in 256 16,384-bit wires to route from memory to the comparison module.

This is quite a large task that is caused by Verilog constraints, however, if the mem-

ory were able to be directly routed to the module, the total number of bits would be

the same, so the concatenation likely causes little extra work than would ordinarily

need to be done. A brief discussion of the Verilog modules used to perform the

comparisons is considered in the following paragraph.

Two modules are used to complete this task, named greatest of N and com-

pare two. The compare two module is the lowest level of comparison, comparing

only two 64-bit signed elements. The behavior of this module is simple and straight-

forward. The module accepts 6 inputs: two element values of Z and their associated

indices in the Z matrix, representing βi and fj for that element. The two elements

are compared using a signed comparison, and the larger value and its associated

βi and fj are passed as the three module outputs. This synthesizes to hardware as

simple as one comparator and three multiplexers, pictured in Figure 3.18.
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Figure 3.18: compare two module synthesized hardware diagram

The second module, greatest of N, uses compare two as the basic building

block to compare every element of Z and ultimately find the maximum value. As

with the calculation of Z in Section 3.4, this module relies heavily on generate state-

ments and for loops to accomplish the thousands of module instantiations. Each

greatest of N module must create N − 1 instantiations of compare two to compare

every element of the row and determine the maximum. The module is designed to

be parameterized in N to allow for different FFT lengths to be used while still com-

paring an entire row of Z using one module instantiation. Upon receiving the con-

catenated array of elements, the elements are separated and passed in pairs into the

compare two module to determine which is larger. For rows of 256 elements, a gen-

erate statement and for loop are used to instantiate 128 compare two modules for

the first layer of comparisons. After the first layer which requires the concatenated
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array as an input to the compare two modules, the remaining layers of compare two

modules can be instantiated using nested for loops because the inputs come from

a previous layer and the indices used to index the previous comparison results are

uniform. After each comparison layer, half of the input elements are discarded and

the larger half of the elements are passed to the next layer of compare two modules.

The number of comparison layers will be equal to log2(N) where N is the number

of elements in a row of Z. The layers will continue until only one element remains.

The last remaining element is the largest element of that row, so it is passed along

with its corresponding βi and fj as the output to the module. This synthesizes to a

typical comparator tree structure, a section of which is pictured in Figure 3.19.

Figure 3.19: Partial greatest of N module synthesized hardware diagram

In the main module, the maximum of each row is stored, concatenated, and

passed into one final greatest of N module to produce the final maximum of Z. The

indices of this element are the final outputs of the WSMO algorithm and represent

the optimized subband width βi and starting frequency fj .
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3.6 Total timing diagram

The entirety of this algorithm can be completed in only 9 cycles after the last

spectrum sample becomes available. Figure 3.20 provides a screenshot of the Mod-

elsim FPGA simulation software showing many critical signals used in calculating

the final results, βi and fj . As can be seen in Figure 3.20, the last sample of spec-

trum data is available during the cycle that the signal m in payload tlast is asserted

high, and the final adjusted results of βi = 151 and fj = 32 are available 9 clock

cycles after this assertion.

Figure 3.20: WSMO timing diagram
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Chapter 4

Results

Results of the algorithm given varying spectrum data inputs are provided in

this chapter. Section 4.1 showcases the performance of the algorithm under good

conditions, Section 4.2 shows the limits of the algorithm when faced with low SNR

inputs, and Section 4.3 shows how the user defined weight parameter α can be

changed to cause the algorithm to select different bands.

4.1 Initial Results

The following figures present various frames of spectrum data to show the per-

formance of the WSMO algorithm for signals with acceptable SNR (≈13.1dB to

16.5dB) [21] and evenly weighted objective functions where α = 128, the integer

equivalent of α = 0.5. Each plot features the result obtained when normalizing us-

ing division for comparison with the shifted results. As can be seen in the figures,

the shifted results maintain a high level of accuracy to the division results, while

also providing the benefit of extremely fast computation.
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Figure 4.1: Frame 1, well-defined peaks, evenly weighted α

Figure 4.2: Frame 19, well-defined peaks, evenly weighted α
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Figure 4.3: Frame 58, well-defined peaks, evenly weighted α

Figure 4.4: Frame 59, well-defined peaks, evenly weighted α
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Figure 4.5: Frame 71, well-defined peaks, evenly weighted α

Figures 4.1-4.5 show that the results obtained by shifting are not identical to

the division results. As discussed at length in Chapter 3, this is due to the un-

predictability of the error caused by the shift. The weight adjustment correction

strategy presented in Section 3.3.4 significantly improves the results to the level

seen in Figures 4.1-4.5, however, a more robust solution would further improve the

accuracy of the shifted results.

4.2 Decreased SNR Results

The figures in the previous section showcase the performance of the algorithm

under normal conditions, so this section will examine the performance as the signal

peaks are reduced closer to the noise floor. The first frame of collected data, shown

in Figure 4.1, is used for this example and is shown again below for reference.
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Figure 4.6: Natural signal power

Figure 4.7: Peaks reduced to ≈ 26dB
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Figure 4.8: Peaks reduced to ≈ 23dB

Figure 4.9: Peaks reduced to ≈ 21dB
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The algorithm continues to pick the appropriate band, even when the signal

peaks have been reduced so much that they appear nearly indistinguishable from

the noise.

By examining Figures 4.6-4.9 more closely, a pattern can be observed between

the division and shift selections. As the peaks are reduced, both results begin to

move to a more conservative bandwidth, just at slightly different rates. This behav-

ior is expected because reducing the peaks is equivalent to amplifying the noise.

Naturally, the weighted sum will begin to shift to smaller bandwidths that reduce

the amplified interference. Both methods exhibit the same bandwidth reducing be-

havior, but the shift method begins at a more conservative estimate to begin with,

causing it to lag behind the division results as the peaks are reduced. But what does

this mean? In this particular case, the difference in results shows simply that the

weights are not exactly equivalent. For example, in frame 1, α is set to 128 for the

shift method and 0.5 for the division method. This would appear to weight the func-

tions evenly, as has often been done in this paper. However, the resulting difference

in selected bandwidths shows that this is not quite the case. Again, this stems from

the fact that shifting does not produce exactly equivalent objective function maxi-

mums, and that the method to correct this skewed weight is also an approximation

and does not provide a precisely accurate correction. To demonstrate this, Figures

4.10-4.13 are provided to show the results for the same frame of data when α is set

to 126 for the shift method and 0.5 for the division method.
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Figure 4.10: Non-equivalent alphas, natural signal strength

Figure 4.11: Non-equivalent alphas, signal peaks ≈ 26dB
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Figure 4.12: Non-equivalent alphas, signal peaks ≈ 23dB

Figure 4.13: Non-equivalent alphas, signal peaks ≈ 21dB
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The shift band selections now align much more closely with the division selec-

tions as a result of only a slight weight adjustment. This discovery is what prompted

the investigation into the weight adjustment correction strategy presented in Section

3.3.4.

It is also interesting to note that this weight adjustment to slightly favor band-

width over interference also causes the shift method in Figure 4.13 to choose a

slightly larger band than the division method, without overtaking the valid signal.

Depending on the radar application, this could be seen as a positive change over the

division method. This demonstrates that not every difference between the results of

each method has to be considered in terms of a “right” or “wrong” selection. Dif-

ferent radar applications will have different preferred band selections, prompting

the increase or reduction of α to meet the specific application requirements. When

this algorithm is running, a second “correct” reference method will not be available

to compare to, so the only reference that matters will be the performance of the

radar. If performance is poor because the selected band is too small, then α can be

decreased to favor bandwidth. It will not matter that the change in α would have

been larger or smaller using division to achieve this result, only that the result is

achievable with some change in α. However, it should be noted that this variance

in α is not constant across all frames of input data. Rather, the variation in α could

change from frame to frame, resulting in a closely matching band selection as the

division method for some frames, but causing increased difference in band selection

for other frames. A more advanced method to determine the adaptive weighting pa-

rameter would effectively reduce the variance in α between the shift and division

methods by ensuring that both objective functions are perfectly weighted to begin

with. A few examples of using α to select different bands are shown in the next

section.
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4.3 Changing α

The user defined parameter α is responsible for changing the priority of the

weighted sum to favor increasing bandwidth or minimizing interference. An in-

crease in α will weight the interference estimate function more heavily causing a

tendency for the algorithm to select smaller bandwidths with less interference. In-

versely, decreasing α will more heavily weight the bandwidth function causing a

tendency to select larger bandwidths that contain more interference. Figures 4.14

and 4.15 show the bandwidth selection for two similar frames of data using an

evenly weighed α, while Figures 4.16 and 4.17 show the same frames when alpha

is changed to select a smaller bandwidth. The ability to change the preferred se-

lected bandwidth using α has obvious benefits when considering that different radar

applications often perform better under different conditions. However, the figures

below also showcase another benefit changing α can have for a cognitive radar. In

Figures 4.14 and 4.15, it can be seen that one signal clearly dominates the spec-

trum, causing the algorithm to select a bandwidth containing some possibly valid

signals at approximately 40dB. If it is desired to avoid transmission over these sig-

nals, changing α can help the algorithm recognize smaller peaks as valid signals

and select a smaller bandwidth around those points.
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Figure 4.14: Frame 76, evenly weighted α

Figure 4.15: Frame 87, evenly weighted α

60



Figure 4.16: Frame 76, increased α selects smaller band without interfering with
40dB signals
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Figure 4.17: Frame 87, increased α selects smaller band without interfering with
40dB signal

Again, Figure 4.17 shows that the α for each method is not perfectly equivalent,

so Figure 4.18 shows that the exact division result can be achieved by the shift

method with an α of 198.
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Figure 4.18: The shift method is able to achieve the same results as the division
method with a slightly different α
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Chapter 5

Conclusion and Future Work

The purpose of this work is to develop a fast implementation of the WSMO

algorithm for deployment on an FPGA. Such an implementation can provide bene-

fits to devices that employ spectrum sharing and contain an FPGA with free space

available for custom user logic. Several implementation strategies and changes to

the original WSMO algorithm contributed to the speed-up achieved by this FPGA

implementation.

To help facilitate the high-speed design, the original weighted sum equation was

rearranged to use subtraction to replace division in the first objective function. As

one of the most expensive basic mathematical operations, eliminating the need for

division is critical to save computation time and reduce FPGA resource usage.

Eliminating division is also the impetus for using bit-shift operations for nor-

malization of the objective functions. Since the particular values of the weighted

sum are immaterial in producing a valid result, using division to achieve a tradi-

tional normalization scale is not necessary. Replacing division with a shift operation

provides a significant reduction in the number of clock cycles required to compute

the final result.

While the use of shift operations to replace division provides a sizable speed

increase, the introduction of error due to the fundamental difference between the
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operations is inevitable. A method to reduce the impact of this error was developed.

The use of adaptive weighting of the objective functions allows error caused by shift

normalization to be actively reduced on a frame-by-frame basis.

The result of the listed implementation changes is a new algorithm that closely

matches the performance of the original algorithm while significantly increasing the

speed. While the computation time and complexity of the original sequential imple-

mentation increases at an exponential rate as the number of FFT samples increases,

a total computation time of only nine clock cycles is achieved with the parallelized

FPGA implementation.

Many improvements could be made to this implementation in future work. To

enable practical use in cognitive radar applications, reintroduction of the radar spe-

cific parameters used in the original algorithm is necessary. Techniques such as

inverse scaling of the opposite objective function should be explored, as this could

produce the same end result without reintroducing division operations into the cal-

culations.

To increase the reliability and consistency of the algorithm, a formal analysis

of the shift error should be performed. If the error can be modeled by a statisti-

cal distribution or approximated as additive noise, similar to quantization error in

analog-to-digital converters, then a more rigorous, random signals-based approach

to determine the adaptive weighting parameter could be developed. A more robust

method to set the value of the adaptive weight would help reduce the difference

between the shift and division normalization methods, improving the accuracy of

shift normalization when using division as the standard.

An investigation into increasing the scalability of the algorithm should be con-

ducted. As the FFT length increases, the amount of required logic increases at an

alarming rate that would render most modern FPGAs incompatible with this im-
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plementation. Further examination of more efficient logic structures that enable

reduction of FPGA resource utilization would result in greater practicality in the

application of this algorithm and allow for larger FFT frames to be used.
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Appendix A

compare two Module

module compare_two ( //Returns the maximum value, row
index, and column index of two signed 64-bit
numbers

input wire [63:0] sample_1,
input wire [7:0] bi_1,
input wire [7:0] fj_1,
input wire [63:0] sample_2,
input wire [7:0] bi_2,
input wire [7:0] fj_2,

output wire [63:0] result,
output wire [7:0] bi_result,
output wire [7:0] fj_result
);

assign result = ($signed(sample_1) > $signed(sample_2)
) ? sample_1 : sample_2;

assign bi_result = ($signed(sample_1) > $signed(
sample_2)) ? bi_1 : bi_2;

assign fj_result = ($signed(sample_1) > $signed(
sample_2)) ? fj_1 : fj_2;

endmodule

Listing A.1: Verilog code for compare two module
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Appendix B

greatest of N Module

// Compare N 64-bit elements at a time
module greatest_of_N (array, row, max_row, max_col,

max_val);

parameter N = 256; //Must be a power of 2
parameter NUM_LEVELS = 8; //Should be log2(N) can use

$clog2(N) to calculate this outside this module

input wire [(N*64)-1:0] array; // Data array.
Comprised of N 64-bit numbers concatenated into a
single array of bits

input wire [7:0] row;

output wire [7:0] max_row, max_col;
output wire [63:0] max_val;

genvar i,j;

generate
for (i = 0; i < NUM_LEVELS; i = i + 1) begin :

wire_loop //Access these wires like so: wire_loop
[0].values

wire [63:0] values [0:((N>>(i+1))-1)]; //Results from
the comparison levels. Ex. for 256 valuess there
will be 128 results

wire [7:0] rows [0:((N>>(i+1))-1)]; //bi indices for
the comparison results

wire [7:0] cols [0:((N>>(i+1))-1)]; //fj indices for
the comparison results

end
endgenerate
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generate
for (j=0;j<N;j=j+2) begin :level1_comparators //Level

1 of comparisons
compare_two cl1 (array[(j*64)+63:j*64],
row, //bi is the row of the matrix
j, //fj is the column of the matrix, given by j
array[(j+1)*64+63:(j+1)*64],
row,
(j+1),
wire_loop[0].values[j/2],
wire_loop[0].rows[j/2],
wire_loop[0].cols[j/2]
);
end
endgenerate

generate
for (i = 1; i < NUM_LEVELS; i = i + 1) begin :

levelx_comparators //The rest of the comparison
levels

for (j = 0; j < (N >> i); j = j + 2) begin :
inner_loop //N shifted right by i divides by 2 each
iteration. This is because each comparison level
yields half as many outputs as inputs

compare_two clx (wire_loop[i-1].values[j],
wire_loop[i-1].rows[j], //bi is the row of the matrix
wire_loop[i-1].cols[j], //fj is the column of the

matrix, given by i
wire_loop[i-1].values[j+1],
wire_loop[i-1].rows[j+1],
wire_loop[i-1].cols[j+1],
wire_loop[i].values[j/2],
wire_loop[i].rows[j/2],
wire_loop[i].cols[j/2]
);
end
end
endgenerate

assign max_row = wire_loop[NUM_LEVELS-1].rows[0];
assign max_col = wire_loop[NUM_LEVELS-1].cols[0];
assign max_val = wire_loop[NUM_LEVELS-1].values[0];

endmodule

Listing B.1: Verilog code for greatest of N module
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Appendix C

CLZ Module

//Calculate leading 0s module
module clz(clk, data_in, reg_numZeros, valid);

input clk;
input [31:0] data_in;

wire [4:0] numZeros;

output wire valid;
output reg [4:0] reg_numZeros;

assign valid = 1;

genvar i;

generate
for (i = 0; i < 4; i = i + 1) begin : muxout_loop
wire [(2 << (i + 1)) - 1:0] muxout;
end
endgenerate

assign muxout_loop[3].muxout = data_in;

generate
for (i = 0; i < 3; i = i + 1) begin :

assign_muxout_loop
assign muxout_loop[i].muxout = numZeros[i + 2] ?

muxout_loop[i + 1].muxout[(2 << (i + 1)) - 1:0] :
muxout_loop[i + 1].muxout[(2 << (i + 2)) - 1:(2 <<
(i + 1))];

end
endgenerate
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assign numZeros[0] = numZeros[1] ? ˜muxout_loop[0].
muxout[1] : ˜muxout_loop[0].muxout[3];

generate
for (i = 1; i < 5; i = i + 1) begin : clz_loop
assign numZeros[i] = (muxout_loop[i - 1].muxout[((2 <<

i) - 1):(2 << (i - 1))] == 0);
end
endgenerate

always @(posedge clk) begin

reg_numZeros = numZeros; //Synchronize output of this
module with clock edges

end //End always

endmodule

Listing C.1: Verilog code for calculate leading zeros (CLZ) module
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Appendix D

WSMO Module

module WSMO(
input axis_data_clk,
input axis_data_rst,
input [31:0] m_in_payload_tdata,
input m_in_payload_tlast,
input m_in_payload_tvalid
);

////////////////////////////////////////////////////
//Begin user logic in NoC Block

//This code is currently only capable of recieveing a
fixed packet size of 256 samples per packet (SPP)

localparam BANDWIDTH = 100000000; //Full bandwidth in
Hz, currently 100MHz

localparam DELTA_R = 390625; //Change in frequency per
sample. DELTA_R = BANDWIDTH/FFT_LENGTH If either
of these parameters are variable, DELTA_R needs to
also be variable

localparam FFT_LENGTH = 256; //Incoming FFT length in
samples

localparam COUNTER_SIZE = 8; //The sample counter
width in bits. This should be at least log2(
FFT_LENGTH) or overflow will occurr. Ex: A 256
point FFT would be log2(256) = 8 bits

localparam SAMP_COUNT_DEFAULT = 0;
localparam REG_FILE_SEL_DEFAULT = 0;

reg reg_file_select = REG_FILE_SEL_DEFAULT; //Selects
between filling register files A and B. Select 0
for A and 1 for B
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reg [COUNTER_SIZE-1:0] samp_count = 8'b0; //The number
of samples (for a given frame of data) that have
been collected and stored in one of the register
files

reg [31:0] samples_in_a [0:FFT_LENGTH-1]; //reg file A
. Currently a 256 element array of 32 bit values

reg [31:0] samples_in_b [0:FFT_LENGTH-1]; //reg file B
. Currently a 256 element array of 32 bit values

reg [31:0] interference_estimate_a [0:FFT_LENGTH-1][0:
FFT_LENGTH-1]; //2D array rows=256 cols=256, 32
bits each

reg [31:0] interference_estimate_b [0:FFT_LENGTH-1][0:
FFT_LENGTH-1]; //2D array rows=256 cols=256, 32
bits each

always @(posedge axis_data_clk) begin //Data
collection always block. Fills the register files
with incoming samples

if (axis_data_rst) begin
reg_file_select <= REG_FILE_SEL_DEFAULT;
samp_count <= SAMP_COUNT_DEFAULT;
end
else begin //Else #0
if (m_in_payload_tlast) begin //If we reach the end of

a packet (256 samples), begin filling the other
register file with the next frame of data

reg_file_select <= ˜reg_file_select;
samp_count <= SAMP_COUNT_DEFAULT; //Reached the end of

a packet (and end of FFT frame with the current
implementation) so reset the sample counter

end //End if

if (m_in_payload_tvalid) begin
case (reg_file_select)
1'b0 : samples_in_a[samp_count] <= m_in_payload_tdata;
1'b1 : samples_in_b[samp_count] <= m_in_payload_tdata;
endcase
samp_count <= samp_count + 1;
end //End if
end //End else #0
end //End data collection always

/////// Split into real and imaginary data
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// SC16 -> i is real part, upper 16 bits [31:16]
// SC16 -> q is imag part, lower 16 bits [15: 0]

wire [15:0] samples_in_a_real [0:FFT_LENGTH-1];
wire [15:0] samples_in_b_real [0:FFT_LENGTH-1];

wire [15:0] samples_in_a_imag [0:FFT_LENGTH-1];
wire [15:0] samples_in_b_imag [0:FFT_LENGTH-1];

genvar x,y;

generate
for (x = 0; x < FFT_LENGTH; x = x + 1) begin :

real_loop
assign samples_in_a_real[x] = samples_in_a[x][31:16];
assign samples_in_b_real[x] = samples_in_b[x][31:16];
end
for (y = 0; y < FFT_LENGTH; y = y + 1) begin :

imag_loop
assign samples_in_a_imag[y] = samples_in_a[y][15:0];
assign samples_in_b_imag[y] = samples_in_b[y][15:0];
end
endgenerate

/////// Interference estimate calculation section

integer o,p,q;

always @(posedge axis_data_clk) begin //Interference
calculation always block. Stores the result in the
interference_estimate 2D array

for (o = 0; o < FFT_LENGTH; o = o + 1) begin
interference_estimate_a[0][o] <= samples_in_a_real[o];

//Load in spectrum samples to the "top" row of the
adder hierarchy

interference_estimate_b[0][o] <= samples_in_b_real[o];
end

for (p = 1; p < FFT_LENGTH; p = p + 1) begin
for (q = 0; q < FFT_LENGTH - p; q = q + 1) begin
interference_estimate_a[p][q] <=

interference_estimate_a[p-1][q] +
interference_estimate_a[0][p+q]; //Interference
estimate is valid after 2 cycles into the next
frame.
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interference_estimate_b[p][q] <=
interference_estimate_b[p-1][q] +
interference_estimate_b[0][p+q];

end
end
end //End interference estimate calculation always

/////// Subband size calculation section
genvar g;
wire [31:0] subband_size [0:FFT_LENGTH-1]; //The

second equation in the WSMO algorithm

generate
for (g = 0; g < FFT_LENGTH; g = g + 1) begin :

subband_size_loop
assign subband_size[g] = (g+1) * DELTA_R;
end
endgenerate

/////// Interference estimate max and leading 1
section

wire [31:0] max_int_est_a;
assign max_int_est_a = interference_estimate_a[

FFT_LENGTH-1][0];

wire est_valid_a;
wire [4:0] leading_0s_est_a; //Contains the number of

leading 0s for the interference estimate maximum
wire [4:0] leading_1_pos_est_a; //Bit position of the

leading 1 in the interference estimate maximum

assign leading_1_pos_est_a = 31 - leading_0s_est_a;

clz est_lz_counter_a (
.clk (axis_data_clk),
.data_in (max_int_est_a),
.reg_numZeros (leading_0s_est_a),
.valid (est_valid_a)
);

wire [31:0] max_int_est_b;
assign max_int_est_b = interference_estimate_b[

FFT_LENGTH-1][0];

77



wire est_valid_b;
wire [4:0] leading_0s_est_b; //Contains the number of

leading 0s for the interference estimate maximum
wire [4:0] leading_1_pos_est_b; //Bit position of the

leading 1 in the interference estimate maximum

assign leading_1_pos_est_b = 31 - leading_0s_est_b;

clz est_lz_counter_b (
.clk (axis_data_clk),
.data_in (max_int_est_b),
.reg_numZeros (leading_0s_est_b),
.valid (est_valid_b)
);

/////// Subband max and leading 1 section

//This is equal to the full bandwidth, defined by the
parameter BANDWIDTH declared above. Max BW for 32
bit number is 2ˆ32 ˜= 4.295GHz

wire [31:0] max_sub_size;
assign max_sub_size = FFT_LENGTH * DELTA_R;

wire sub_valid;
wire [4:0] leading_0s_sub; //Contains the number of

leading 0s for the subband maximum
wire [4:0] leading_1_pos_sub; //Bit position of the

leading 1 in the subband maximum

assign leading_1_pos_sub = 31 - leading_0s_sub;

clz sub_lz_counter (
.clk (axis_data_clk),
.data_in (max_sub_size),
.reg_numZeros (leading_0s_sub),
.valid (sub_valid)
);

///////Shifting section
integer i,j,k,l,m,n,r,s;
reg [4:0] shamt = 0; //Shift amount to make the two

WSMO exquations of the same order
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reg [31:0] norm_subband_size [0:FFT_LENGTH-1]; //
Shifted to normalize with interference estimate

reg [31:0] norm_interference_estimate [0:FFT_LENGTH
-1][0:FFT_LENGTH-1]; //Shifted to normalize with
subband size

always @(posedge axis_data_clk) begin
case (reg_file_select)
1'b0 : begin //Filling A now. Data on B is valid

if (leading_1_pos_sub < leading_1_pos_est_b) begin //
Subband is smaller, shift suband

shamt <= leading_1_pos_est_b - leading_1_pos_sub;
if (sub_valid && est_valid_b) begin
for (i = 0; i < FFT_LENGTH; i = i + 1) begin
norm_subband_size[i] <= subband_size[i] << shamt; //

Shift subband data left by shamt and store in a
normalized array

for (r = 0; r < FFT_LENGTH; r = r + 1) begin
norm_interference_estimate[i][r] <=

interference_estimate_b[i][r]; //Store unshifted
estimate in the normalized array

end
end
end
end
else begin //Estimate is smaller, shift estimate
shamt <= leading_1_pos_sub - leading_1_pos_est_b;
if (sub_valid && est_valid_b) begin
for (j = 0; j < FFT_LENGTH; j = j + 1) begin
norm_subband_size[j] <= subband_size[j]; //Store

unshifted subband in the normalized array
for (k = 0; k < FFT_LENGTH; k = k + 1) begin
norm_interference_estimate[j][k] <=

interference_estimate_b[j][k] << shamt; //Shift
estimate data left and store in a normalized array

end
end
end
end

end //End case 0
1'b1 : begin //Filling B now. Data on A is valid

if (leading_1_pos_sub < leading_1_pos_est_a) begin //

79



Subband is smaller, shift suband
shamt <= leading_1_pos_est_a - leading_1_pos_sub;
if (sub_valid && est_valid_a) begin
for (l = 0; l < FFT_LENGTH; l = l + 1) begin
norm_subband_size[l] <= subband_size[l] << shamt; //

Shift subband data left by shamt and store in a
normalized array

for (s = 0; s < FFT_LENGTH; s = s + 1) begin
norm_interference_estimate[l][s] <=

interference_estimate_a[l][s]; //Store unshifted
estimate in the normalized array

end
end
end
end
else begin //Estimate is smaller, shift estimate
shamt <= leading_1_pos_sub - leading_1_pos_est_a;
if (sub_valid && est_valid_a) begin
for (m = 0; m < FFT_LENGTH; m = m + 1) begin
norm_subband_size[m] <= subband_size[m]; //Store

unshifted subband in the normalized array
for (n = 0; n < FFT_LENGTH; n = n + 1) begin
norm_interference_estimate[m][n] <=

interference_estimate_a[m][n] << shamt; //Shift
estimate data left and store in a normalized array

end
end
end
end

end //End case 1
endcase
end

///////Adjustment section
reg signed [7:0] adjustment = 8'b0;
reg signed [63:0] diffMax = 64'b0;

wire [63:0] normIntMax;
assign normIntMax = norm_interference_estimate[

FFT_LENGTH-1][0];
wire [63:0] normSubMax;
assign normSubMax = norm_subband_size[FFT_LENGTH-1];

always @(posedge axis_data_clk) begin //set diffMax,
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the difference between the shifted maximums
if(normIntMax > normSubMax) begin //unusual case,

interference > bandwidth
diffMax <= normIntMax - normSubMax;
end
else begin //usual case, bandwidth > interference
diffMax <= normSubMax - normIntMax;
end
end

wire normInt_valid;
wire [4:0] leading_0s_normInt; //Contains the number

of leading 0s for the normalized interference
estimate

wire [4:0] leading_1_pos_normInt; //Bit position of
the leading 1 in the normalized interference
estimate

assign leading_1_pos_normInt = 31 - leading_0s_normInt
;

clz normInt_lz_counter (
.clk (axis_data_clk),
.data_in (normIntMax),
.reg_numZeros (leading_0s_normInt),
.valid (normInt_valid)
);

wire diffMax_valid;
wire [4:0] leading_0s_diffMax; //Contains the number

of leading 0s for the difference in the shifted
maximums

wire [4:0] leading_1_pos_diffMax; //Bit position of
the leading 1 in the difference in the shifted
maximums

assign leading_1_pos_diffMax = 31 - leading_0s_diffMax
;

clz diffMax_lz_counter (
.clk (axis_data_clk),
.data_in (diffMax),
.reg_numZeros (leading_0s_diffMax),
.valid (diffMax_valid)
);
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wire [4:0] diffLeading1s = leading_1_pos_normInt -
leading_1_pos_diffMax;

always @(posedge axis_data_clk) begin
if(diffLeading1s < 4) begin //difference in maximums

is large
if(normIntMax > normSubMax) begin //unusual case Z1 (

interference) > Z2 (bandwidth)
adjustment <= -8*(4 - diffLeading1s);
end
else begin //usual case, Z2 (bandwidth) > Z1 (

interference)
adjustment <= 8*(4 - diffLeading1s);
end
end
else begin
adjustment <= 0;
end
end

wire [7:0] adjustedAlpha;
wire [7:0] adjustedAlpha_c;

assign adjustedAlpha = alpha + adjustment;
assign adjustedAlpha_c = 255 - adjustedAlpha;

///////Multiplication by alpha and addition to create
the full weighted sum function

wire [63:0] Z1 [0:FFT_LENGTH-1][0:FFT_LENGTH-1];
wire [63:0] Z2 [0:FFT_LENGTH-1];

wire [7:0] alpha;
wire [7:0] alpha_c;

//In a practical application using RFNoC, alpha would
be defined by a user register

assign alpha = 8'd128; //This is equivalent to alpha =
0.5 The scale for alpha is 0 to 255 instead of 0
to 1

assign alpha_c = 255 - alpha; //This is equivalent to
1 - alpha

genvar a, b, c;
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generate
for (b = 0; b < FFT_LENGTH; b = b + 1) begin :

Z1_outer_loop
for (c = 0; c < FFT_LENGTH; c = c + 1) begin :

Z1_inner_loop
assign Z1[b][c] = adjustedAlpha*

norm_interference_estimate[b][c];
end
end
for (a = 0; a < FFT_LENGTH; a = a + 1) begin : Z2_loop
assign Z2[a] = adjustedAlpha_c*norm_subband_size[a];
end
endgenerate

localparam MIN_64_BIT = 64'h8000000000000000; //Most
negative possible number for a 64-bit value

wire [63:0] Z [0:FFT_LENGTH-1][0:FFT_LENGTH-1]; //Full
weighted sum function

genvar d, e;

generate
for (d = 0; d < FFT_LENGTH; d = d + 1) begin :

Z_outer_loop
for (e = 0; e < FFT_LENGTH - d; e = e + 1) begin :

Z_inner_loop
assign Z[d][e] = Z2[d] - Z1[d][e];
end
end
endgenerate

generate
for (d = 1; d < FFT_LENGTH; d = d + 1) begin :

Z_pad_outer_loop
for (e = 255; e > FFT_LENGTH - d - 1; e = e - 1) begin

: Z_pad_inner_loop
assign Z[d][e] = MIN_64_BIT; //Set the unused entries

to the most negative possible number for a 64-bit
value

end
end
endgenerate

///////Find the max of Z
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wire [7:0] max_rows [0:FFT_LENGTH-1];
wire [7:0] max_cols [0:FFT_LENGTH-1];
wire [63:0] max_vals [0:FFT_LENGTH-1];
wire [(FFT_LENGTH*64)-1:0] final_array;
wire [(FFT_LENGTH*64)-1:0] array [0:FFT_LENGTH-1];

generate //Build concatenated arrays
for (d = 0; d < FFT_LENGTH; d = d + 1) begin :

array_row_loop
for (e = 0; e < FFT_LENGTH; e = e + 1) begin :

array_column_loop
assign array[d][(e*64)+63:e*64] = Z[d][e];
end
end
endgenerate

generate
for(d = 0; d < FFT_LENGTH; d = d + 1) begin :

find_max_loop
greatest_of_N #(.N(FFT_LENGTH), .NUM_LEVELS($clog2(

FFT_LENGTH))) row(
.array(array[d]),
.row(d),
.max_row(max_rows[d]),
.max_col(max_cols[d]),
.max_val(max_vals[d])
);
end
endgenerate

generate
for (e = 0; e < FFT_LENGTH; e = e + 1) begin :

array_column_loop
assign final_array[(e*64)+63:e*64] = max_vals[e]; //

Array containing the max value from each row
end
endgenerate

wire [7:0] index, bi, fj;
wire [63:0] final_max_val;

greatest_of_N #(.N(FFT_LENGTH), .NUM_LEVELS($clog2(
FFT_LENGTH))) final_comparison(

.array(final_array),

.row(8'b0),
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.max_row(), //This is meaningless for the final
comparison

.max_col(index),

.max_val(final_max_val)
);

//Final results
assign bi = max_rows[index];
assign fj = max_cols[index];

endmodule // rfnoc_block_WSMO

Listing D.1: Verilog code for the main WSMO module
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