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Abstract 
 

Total ice water content (IWC) derived from an isokinetic evaporator probe and ice crystal 

size distributions measured by a two-dimensional stereo probe and precipitation imaging probe 

installed on the French Falcon aircraft during the collaborative European High Altitude Ice 

Crystals – North American High IWC field campaign (HAIC-HIWC) based out of Darwin, 

Australia in 2014 are used to characterize high IWC regions (areas with IWC greater than 1.5 g 

m−3 and median mass dimension (MMD) less than 0.5 mm, hereafter HIWC regions; areas with 

IWC greater than 1.5 g m−3 with any MMD are hereafter high IWC regions). A fitting routing 

that automatically determines whether a unimodal, bimodal, or trimodal gamma distribution best 

fits an observed size distribution was developed and used to determine the characteristics of the 

size distributions (e.g., presence of unimodal/bimodal/trimodal distributions, fit parameters 

characterized by volume of equally realizable parameters to account for variability and 

uncertainty, etc.). The variation of these characteristics and bulk properties (median mass 

diameter, IWC) were determined as a function of temperature, IWC, and vertical velocity. HIWC 

regions were most pronounced in updraft cores. The three modes of the size distribution give 

information on different processes contributing to ice growth: nucleation for crystals with 

maximum dimension D < 150 μm, diffusion (150 μm < D < 1000 μm), and aggregation (D > 

1000 μm). The occurrence frequency of trimodal distributions increased with temperature. The 

volumes of equally plausible parameters derived in the phase space of gamma fit parameters 

increased with temperature for unimodal distributions. For multimodal distributions, the volumes 

increased with temperature for temperatures less than −27°C. Bimodal distributions with a 
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nucleation mode were most common in updraft cores and HIWC regions, whereas bimodal 

distributions with an aggregation mode were least common in updraft and downdraft cores. 
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1. Introduction 
 

In recent years, some aircraft have experienced engine events or ice accumulations in 

pitot tubes when flying in the vicinity of convection in regions with radar reflectivity less than 20 

dBZ (e.g., Lawson et al. 1998; Mason et al. 2006; Bravin et al. 2015). Since supercooled water 

during such events has mainly been absent (Mason et al. 2006), these regions are likely 

dominated by high ice water contents contained mainly in small ice crystals. Given the potential 

commercial aircraft hazard, the multi-agency High-Altitude Ice Crystals/High Ice Water Content 

(HAIC/HIWC) field campaign was organized (Dezitter et al. 2013; Strapp et al. 2016a). The first 

phase was based out of Darwin, Australia in January and February 2014 with the purpose to 

better characterize the statistical properties of cloud particles in such regions. As a consequence, 

particle size distributions, bulk properties, and environmental conditions in regions of mesoscale 

convective systems with high ice water content (HIWC) were measured. These data considerably 

extended data collected in tropical cirrus outflows and convection from prior experiments that 

either did not focus on regions close to convective cores where IWCs are typically higher (e.g., 

McFarquhar and Heymsfield 1996; Heymsfield et al. 2002; Bouniol et al. 2010; Diao et al. 

2013), potentially underestimated IWCs because of saturation of common bulk probes in high 

IWC environments (Davison et al. 2016; Strapp et al. 2016b), or that estimated IWCs from 

observed SDs without a reference bulk mass content (e.g. Heymsfield et al. 2004; Lawson et al. 

2010; Fontaine et al. 2014). 

These data expand data from previous studies that have shown HIWC regions dominated 

by large numbers of small ice crystals indeed exist. For example, Fridlind et al. (2015) used in-

situ measurements obtained by Airbus to show that HIWC regions had median area-equivalent 



2 
 

diameters of 200 to 300 μm. Leroy et al. (2017) found that ice crystals from 250 to 500 μm 

dominated the mass size distribution in most MCSs using the HAIC/HIWC data, suggesting that 

smaller size crystals dominate both the mass and area size distributions. However, in two MCSs, 

Leroy et al. (2017) conversely found that ice crystals from 400 to 800 μm dominated the mass 

size distribution. Thus, the meteorological context of the observations must be examined to 

determine what conditions are conducive to the occurrence of HIWCs dominated by small ice 

crystals. 

To aid in process understanding and for use in numerical model and remote sensing 

parameterization schemes, observed particle size distributions (PSDs) are typically fit to analytic 

functions such as gamma functions (e.g. Dudhia 1989; Kosarev and Mazin 1991; Mitchell 1991; 

Rotstayn 1997; Reisner et al. 1998; Gilmore et al. 2004; Ferrier 1994; Walko et al. 1995; Meyers 

et al. 1997; Straka and Mansell 2005; Milbrandt and Yau 2005; McFarquhar et al. 2015; Jackson 

et al. 2015; Leroy et al. 2017), lognormal functions (McFarquhar and Heymsfield 1997), power 

law functions (Heymsfield and Platt 1984), and exponential functions (McFarquhar and Black 

2004). Parameterizations using gamma functions, represented by  

 ( ) ( )0N expD N D D = − , (1.1) 

where D is the maximum ice crystal dimension, λ is the slope, μ is the shape parameter, and N0 

the intercept, require information about how the fit parameters vary with environmental 

conditions for their application. Power law and exponential functions are special cases of gamma 

functions with λ = 0 and μ = 0, respectively. Figure 1 visualizes how the values of N0, μ, and λ 

affect the shape of a PSD. It is seen that increasing N0 increases the number distribution function 

N(D) of all sized particles equally. Increasing μ reduces the N(D) of particles with small D more 
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than those with large D, increasing the median particle size. Increasing λ reduces the N(D) of 

particles with large D more than those with small D, decreasing the median particle size. 

Properties of the PSD, such as total number concentration Nt, extinction β, ice water content 

IWC, mass-weighted terminal velocity vm, and effective radius Re, can be determined by 

integrating the gamma function, since it is easily integrable.  

Although gamma distributions have been frequently found to well characterize some ice 

crystal PSDs since 1963 (Borovikov et al. 1963), in some instances they do not well represent the 

observations. In such cases, a sum of different functions is needed to characterize the PSD as 

shown for studies of rain (Willis 1984; McFarquhar and List 1991) and of ice crystals 

(McFarquhar and Heymsfield 1997). Recently, Jackson et al. (2015) showed that ice crystal 

PSDs observed over the United States Southern Great Plains can be bimodal, with peaks in N(D) 

occurring at D of around 50 and 300 μm under some conditions. Since a single gamma 

distribution function cannot characterize a bimodal distribution, Jackson et al. (2015) represented 

each mode as a gamma distribution, determining the parameters of each mode by extending 

McFarquhar et al. (2015)’s fitting technique to represent each mode using a separate incomplete 

gamma distribution. In this study, this technique is extended further to parameterize PSDs as 

sums of up to three complete gamma distributions. Further, an enhancement makes the new 

technique easier to implement in models: each mode is fit so that it covers all possible sizes of 

ice crystals, rather than having separate modes represent only specific parts of the PSD as 

assumed by Jackson et al. (2015). This permits easier implementation in models. Gamma 

distributions are assumed in model parameterization schemes such as the Weather Research and 

Forecasting (WRF) Single-Moment 6-class (WSM6) and WRF Double-Moment 6-class 

(WDM6) schemes (Morrison et al. 2009).  
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This paper uses data obtained from the first HAIC/HIWC campaign conducted in the 

vicinity of Darwin, Australia to examine how the characteristics of PSDs vary with 

environmental conditions such as temperature and vertical velocity and microphysical properties 

such as ice water content and median mass diameter. The remainder of the paper is organized as 

follows. Section 2 describes the instruments used and conditions sampled during HAIC/HIWC, 

as well as the methodology used to process the data. Key results of this paper are shown in 

section 3 and summarized in section 4. Section 4 also offers direction for future work. 

 

2. HAIC/HIWC Data 
 

The First Phase of the HAIC/HIWC campaign was based out of Darwin, Australia 

between 16 January and 18 February 2014. Instruments were installed on the French Falcon 

aircraft to measure ice crystal properties in-situ, with flights conducted primarily at four different 

temperature levels (−53°C to −43°C, hereafter T43-53; −43°C to −33°C (T33-43); −33°C to −21°C 

(T21-33); and −5°C to −21°C (T5-21)) in order to get statistics to better characterize the HIWC 

environment. The PSDs of ice crystals were measured using a two-dimensional stereo (2DS) 

probe and a precipitation imaging probe (PIP). The 2DS probe has a pair of orthogonal laser 

beams which cross in the center of the sample volume. These beams illuminate two linear 128-

photodiode arrays, each of which has a resolution of 10 μm (Lawson et al. 2006), so that the 2DS 

probe nominally measures particles with D between 10 μm and 1.28 mm. To process the data for 

the HAIC-HIWC project, the two photodiode arrays were treated as separate arrays, and the 

PSDs from the horizontal and vertical arrays were averaged to create a PSD. 
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The PIP probe has 64 photodiodes and a photodiode resolution of 100 μm. Thus, it 

nominally measures particles with D between 100 μm and 6.4 mm. Following Leroy et al. 

(2017), an integrated size distribution was constructed by using the 2DS data for D smaller than 

0.8 mm, the PIP data for D larger than 1.2 mm, and for 0.8 < D < 1.2 mm, a weighted average of 

the size distributions from each instrument according to 

 ( ) ( ) ( ) ( ) ( )2DS 2DS PIP PIPN W N W ND D D D D= + , (2.1) 

where 

 ( )2DS

1.2mm
W

1.2mm 0.8mm

D
D

−
=

−
 (2.2) 

and 

 ( )PIP

0.8mm
W

1.2mm 0.8mm

D
D

−
=

−
 (2.3) 

Due to the reduction in the depth of field of the 2DS for small D and the potential impact of 

shattered particles (Field et al. 2003, 2006), only particles with D > 50 μm were used to 

determine N(D). Corrections were made for out of focus particles (Korolev 2007) and shattered 

particles (Field et al. 2003, 2006), and particle reconstruction was used to extend the size range 

of measured particles following Heymsfield and Parrish (1979).  

While uncertainties in relationships between environmental conditions and microphysical 

properties are typically dominated by the variability in PSDs (e.g., McFarquhar et al. 2015; 

Finlon et al. 2019), knowledge of statistical sampling errors is important for the automatic 

algorithm developed here to classify distributions as having one, two, or three modes. Each 5-

second averaged PSD is classified as unimodal, bimodal, or trimodal according to the smallest 
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number of modes that can be used to fit the distribution within the statistical uncertainty of the 

measured PSD. Even if an observed PSD can be described by a multi-modal distribution, it 

would still be represented as a unimodal distribution if it was adequately characterized by such 

within the statistical sampling error. Appendix A describes the algorithm developed to determine 

the number of modes as well as to determine the parameters describing each gamma function.  

An isokinetic evaporator (IKP2) probe measured the ice water content (IWC) for all 

cloud penetrations, providing unique data near the convective cores in HIWC conditions 

(Davison et al., 2016; Strapp et al., 2016b). The IKP2 probe was designed to make measurements 

up to at least 10 g m−3 at 200 m s−1 with 20 percent target accuracy (Davison et al. 2008). 

Development of the IKP2 probe and uncertainties in total water content (TWC) measurements 

are described in Davison et al. (2016) and Strapp et al. (2016b). Processes used to subtract 

supercooled liquid water from the TWC measurements are described in Leroy et al. (2017). 

A multi-beam 95GHz Doppler cloud radar (Radar SysTem Airborne, RASTA) provided 

vertical velocity measurements (Protat et al., 2009; Leroy et al., 2016). A deiced Rosemount 

sensor was used to measure air temperature. 

 

3. Results 
 

SDs measured during the HAIC/HIWC field campaign were fit to sums of one to three 

gamma distributions using the methodology approach described in Section 2 and developed in 

more detail in Appendix A. Frequencies of occurrence of different types of distributions 
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(unimodal, bimodal1, bimodal2, trimodal) are discussed in Section 3a while most likely gamma 

fit parameters and their plausible ranges are discussed in Section 3b. 

Examples of SDs for each type of distribution (unimodal, bimodal1, bimodal2, trimodal) 

identified using the methodology described in Appendix A are shown in figure 2 with the 

unimodal and, if applicable, multimodal fit. Bimodal1 and bimodal2 are differentiated by Dcutoff, 

the value of D where N(D) from each mode is equal. Values of Dcutoff are clustered around 0.15 

mm and 1.0 mm. Bimodal1 distributions have Dcutoff ≈ 0.15 mm, while bimodal2 distributions 

have Dcutoff ≈ 1.0 mm. The use of up to three modes to characterize size distributions was found 

to reduce fitting errors in estimates of bulk parameters such as Z and MMD, as shown in Table 1. 

The mean fitting error in Z for unimodal distributions was −0.04 dB (−0.9%), with a standard 

deviation of 0.22 dB (5.0%). For bimodal1 distributions, the mean fitting error was −0.01 dB 

(−0.1%) for a bimodal fit and −0.08 dB (−1.9%) for a unimodal fit, with standard deviations of 

0.12 dB (2.8%) for a bimodal fit and 0.74 dB (17%) for a unimodal fit. For bimodal2 

distributions, the mean fitting error was −0.13 dB (−2.9%) for a bimodal fit and −0.66 dB 

(−14%) for a unimodal fit, with standard deviations of 0.22 dB (5.1%) and 0.99 dB (23%) 

respectively. For trimodal distributions, the mean fitting error was −0.06 dB (−1.4%) for a 

trimodal fit and −0.25 dB (−5.6%) for a unimodal fit, with standard deviations of 0.19 dB (4.4%) 

and 1.40 dB (32%) respectively. The mean fitting error in MMD for unimodal distributions was 

32 μm (7.1%), with a standard deviation of 31 μm (7.0%). The mean fitting error in MMD for 

bimodal1 distributions was 27 μm (5.1%) for bimodal fits as opposed to 9 μm (1.6%) for 

unimodal fits, with standard deviations of 25 μm (4.8%) and 44 μm (8.3%), respectively. The 

mean fitting error in MMD for bimodal2 distributions was −2 μm (−0.3%) for bimodal fits 

versus 92 μm (13%) for unimodal fits, with standard deviations of 17 μm (2.3%) and 110 μm 
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(15%), respectively. Finally, the mean fitting error in MMD for trimodal distributions was 8 μm 

(1.5%) for trimodal fits against 99 μm (19%) for unimodal fits, with standard deviations of 14 

μm (2.7%) and 90 μm (17%) respectively. In general, the errors in fitting the moments for the 

unimodal distribution are lower when it is one of the moments that was minimized in the fitting 

procedure. In this study, the difference between the 0th, 2nd, and 4th moments between the 

observed and fit distributions were minimized. Thus, the mean percentage errors in IWC for the 

unimodal fits were smaller and less dependent on modality compared to those for Z or MMD 

because IWC is roughly proportional to the second moment, which is the middle moment used in 

fitting gamma distributions. The high percentage errors in Z, which is roughly proportional to the 

fourth moment, and MMD, which is roughly proportional to the ratio between the third and 

second moments, for unimodal fits compared to the errors for bimodal2 and trimodal 

distributions show the importance of the large D mode in affecting the third and fourth moments 

and their related quantities like MMD and Z. 

a. Modality Fraction 

Figure 4 shows how the fractions of observed PSDs classified as unimodal, bimodal1, 

bimodal2, and trimodal vary as a function of T. For T43-53, 48% of distributions were unimodal, 

10% bimodal1, 41% bimodal2, and 1% trimodal. For T33-43, 36% of distributions were unimodal, 

17% bimodal1, 43% bimodal2, and 5% were trimodal. For T21-33, 28% of distributions were 

unimodal, 15% bimodal1, 42% bimodal2, and 15% trimodal. For T5-21, 16% of distributions were 

unimodal, 11% bimodal1, 52% bimodal2, and 21% trimodal. 

The relationship, illustrated in Figure 4, between T and occurrence of different types of 

multimodal distributions, shows that a large crystal mode centered at D around 2 mm (present in 

bimodal2 and trimodal distributions) is more common at higher T near −13°C (73%) compared 
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to lower T near −48°C (42%) and that its fractional importance monotonically increases with 

increasing temperature. This trend is consistent with the aggregation of smaller particles as they 

fall in the anvil producing the large mode. Further evidence of aggregation is illustrated in Figure 

5, which shows the presence of many aggregates and irregular particles in images of particles 

with 4 mm < D < 6 mm from 3:34:33 UTC to 3:34:38 UTC on 8 February 2014, when the 

bimodal2 PSD in Figure 2c was observed. A small crystal mode centered at D around 0.08 mm 

(present in bimodal1 and trimodal distributions) is also more common at T near −13°C (32%) 

compared to T near −48°C (11%). This is consistent with findings from previous studies (e.g., 

Zhao et al. 2010; Jackson et al. 2015) that showed bimodal conditions with D ≈ 0.1 mm 

separating modes were more common at higher T. The previous studies hypothesized that 

bimodality, and by extension the small crystal mode, results from heterogeneous nucleation in 

the presence of sedimentation. Although there has been some concern that the presence of the 

smaller crystal mode may be associated with the correction factors applied for out of focus 

particles, the fact that the peak does not always occur and has variable height suggests that its 

presence is indeed caused by the variability in the concentration of the smaller ice crystals. 

Considering that the rate of heterogeneous nucleation decreases with T (e.g., Cooper 1986; 

Morrison and Gettelman 2008), more research on PSDs for D < 0.1 mm is warranted for stronger 

understanding of ice microphysics at these maximum dimensions, including stronger 

understanding of what may cause the small D mode to increase in frequency with T. One 

possibility is that as T increases, aggregation of crystals with D < 0.1 mm increases, resulting in 

a peak in N(D) near D = 0.3 mm in addition to the peak in N(D) near or below D = 0.05 mm that 

is observed at all ranges of T. If this is the case, the small D mode may represent heterogeneous 
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nucleation in PSDs where aggregation of small ice crystals increases the shape parameter of the 

medium D mode. 

Figure 6 shows how the fraction of observed PSDs classified as unimodal, bimodal1, 

bimodal2, and trimodal change as a function of vertical velocity (w). The fraction of observed 

PSDs classified as unimodal changed from 49% of PSDs for downdrafts to 29% of PSDs for 

stratiform to 40% of PSDs for updrafts. The fraction of observed PSDs classified as bimodal1 

changed from 22% of PSDs for downdrafts to 11% of PSDs for stratiform to 31% of PSDs for 

updrafts. The fraction of observed PSDs classified as bimodal2 changed from 26% of PSDs for 

downdrafts to 52% of PSDs for stratiform to 17% of PSDs for updrafts. The fraction of observed 

PSDs classified as trimodal changed from 4% for downdrafts to 9% for stratiform to 12% for 

updrafts. 

The small crystal mode occurs more frequently in updrafts (43%) than in downdrafts 

(26%) or stratiform conditions (20%), consistent with heterogeneous nucleation occurring in 

updrafts. This is further evidence that the small crystal mode is real rather than an instrument 

artifact. Conversely, a large crystal mode occurs more frequently in stratiform conditions (61%) 

than in updrafts (30%) or downdrafts (29%). When particles are detrained from convective 

updrafts, they can aggregate and grow in the stratiform regions behind the updrafts (e.g., 

McFarquhar et al. 2007). The smaller vertical velocities in stratiform conditions also allow 

particles in these conditions more time to grow and accumulate. 

Figure 7 shows how the fractions of observed PSDs classified as unimodal, bimodal1, 

bimodal2, and trimodal change as a function of IWC. The fraction of unimodal distributions 

grows from 30% for IWC < 1.0 g m-3 to 50% for IWC ≈ 1.6 g m-3 before decreasing to 21% for 

IWC ≈ 2.7 g m-3. The fraction of bimodal1 distributions grows from 12% for IWC < 1.0 g m-3 to 
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22% for IWC ≈ 1.6 g m-3 to 52% for IWC ≈ 2.7 g m-3. The fraction of bimodal2 distributions 

drops from 50% for IWC < 1.0 g m-3 to 20% at IWC ≈ 1.6 g m-3 to 1% at IWC ≈ 2.7 g m-3. The 

fraction of trimodal distributions grows from 8% for IWC < 1.0 g m-3 to 9% for IWC ≈ 1.6 g m-3 

to 25% for IWC ≈ 2.7 g m-3. 

The small crystal mode occurs most frequently at IWC ≈ 2.7 g m-3 (77%, compared to 

31% for IWC ≈ 1.6 g m-3 and 20% for IWC < 1.0 g m-3). Conversely, a large crystal mode occurs 

most frequently at IWC < 1.0 g m-3 (58%, compared to 29% for IWC ≈ 1.6 g m-3 and 26% for 

IWC ≈ 2.7 g m-3). The fact that the small crystal mode is occurring more frequently for the 

higher IWCs is indicative that clouds with large IWCs and large amounts of small ice crystals 

were indeed sampled during the HAIC/HIWC Darwin campaign, and hence these data can be 

used to develop representations of what the SDs look like in these conditions. The relationship 

between IWC and modality type seems to parallel the relationship between vertical velocity and 

modality type, with higher IWC having modality fractions near those for updrafts and lower 

IWC having modality fractions near those for stratiform. Figure 8 confirms that IWC is higher in 

updrafts with w ≥ 1.0 m s−1 (1.2 g m-3) and downdrafts with w ≤ −1.0 m s−1 (1.0 g m-3) than in 

stratiform regions with −0.2 m s−1 ≤ w ≤ 0.2 m s−1 (0.6 g m-3). The relationship between vertical 

velocity and IWC forms a V-shape with a minimum somewhere in −0.2 m s−1 ≤ w ≤ 0.0 m s−1. 

Figure 9 shows that HIWC conditions were observed more frequently in updrafts (37%) and 

downdrafts (32%) than in stratiform regions (9%). While this can be inferred from Figure 8 for 

all regions with high IWC, Figure 9 shows that this applies even with the added constraint of 

MMD < 0.5 mm. 

Figure 10 shows how the fraction of observed PSDs classified as unimodal, bimodal1, 

bimodal2, and trimodal change as a function of MMD. The fraction of unimodal distributions 
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decreases from 65% for MMD < 0.4 mm to 7% for MMD ≥ 0.7 mm. As the aggregation of small 

ice crystals in bimodal1 PSDs occurs mainly at higher T, at which PSDs tend to have large 

MMD, most PSDs with small MMD have neither a small crystal mode nor a large crystal mode 

and therefore are unimodal. The fraction of bimodal1 distributions averages 17% for MMD < 0.4 

mm and 16% for 0.4 mm ≤ MMD < 0.7 mm, decreasing for MMD ≥ 0.7 mm to 1% for MMD ≥ 

1.5 mm. The fraction of bimodal2 distributions increases from 10% for MMD < 0.4 mm to 79% 

for MMD ≥ 0.7 mm, consistent with the largest MMDs resulting from aggregation of smaller 

crystals. The fraction of trimodal distributions averages 8% for MMD < 0.4 mm, 11% for 0.4 

mm ≤ MMD < 0.7 mm, and 5% for MMD ≥ 0.7 mm. In HIWC conditions, 52% of PSDs are 

unimodal, 28% are bimodal1, 7% are bimodal2, and 13% are trimodal. The high percentage of 

unimodal PSDs and relatively high percentage of bimodal1 PSDs are consistent with the high 

IWC, high w, and small MMD that characterize these conditions. A better characterization of 

these multimodal PSDs in HIWC and other conditions is needed for development of improved 

parameterizations for cloud resolving models that would more accurately represent 

microphysical processes occurring in such conditions. The next Section examines how the 

multimodal gamma distributions can be characterized in such conditions.  

b. Means and Plausible Ranges of Parameters 

To develop parameterizations of HIWC and other conditions, it is important to know the 

values of the parameters describing the gamma distributions as well as the modality of the 

distributions. As discussed in Section 2, the approach of McFarquhar et al. (2015) is followed to 

give ranges of fit parameters describing the gamma distributions to represent the uncertainty and 

variability in such parameters. Volumes of equally realizable solutions are computed using the 

covariance matrices and form spaces enclosing all points less than 3.368 standard deviations 
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from the most likely solution. The factor of 3.368 was chosen because the chi-squared test with 3 

degrees of freedom has a p-value of 0.01 at 3.3682, ensuring a 99% probability that a random 

solution will fall within the enclosed space. Figure 11 shows the plausible range of gamma fit 

parameters for unimodal distributions characterizing all conditions, conditions with MMD < 0.5 

mm, and conditions when HIWCs are present (i.e., MMD < 0.5 mm and IWC > 1.5 g m-3). The 

maximum values of all the parameters are seen to increase with temperature in Figure 11. The 

plausible range of parameters is smaller for unimodal distributions in HIWC conditions than for 

unimodal conditions in general. The mean values of μ and N0 increase with temperature while the 

mean value of λ shows little dependence on temperature. However, as these trends are hard to 

visualize in three-dimensional volume plots, projections of these volumes are examined in two-

dimensional phase space of the different fit parameters, as shown in figure 12, to more clearly 

show these trends. To more easily see how the most likely (N0,μ,λ) and three-dimensional 

ellipsoids of equally realizable solutions vary with T, projections are shown in two-dimensional 

log10(N0)−μ (Fig. 12a-d), log10(N0)−λ (Fig. 12e-h), and μ-λ (Fig. 12i-l) phase space. 

It should also be noted that parts of the ellipses where μ ≤ −1 or λ ≤ 0 describing the 

equally realizable solutions at all temperatures are not physically plausible when the distributions 

cover the complete range of particle sizes. These parts of the ellipses are cutoff and not shown in 

Fig. 12. Although such values are realistic for incomplete gamma distributions that cover a finite 

range of particle sizes, they are unrealistic as μ ≤ −1 and λ ≤ 0 both mean that the zeroth moment 

of the complete gamma distribution is not integrable, and λ < 0 would give an exponential 

increase in number distribution function with D, which does not occur in nature. 

Figure 12 compares the most likely and plausible range of gamma fit parameters for 

unimodal distributions in all conditions, conditions with MMD < 0.5 mm, and conditions when 
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HIWCs are present (i.e., MMD < 0.5 mm and IWC > 1.5 g m-3) for four ranges of T. Figure 13 

compares the most likely and plausible range of gamma fit parameters for distributions identified 

as unimodal (red) to the most likely and plausible range of gamma fit parameters for unimodal 

fits to all distributions regardless of whether they were identified as unimodal, bimodal1, 

bimodal2, or trimodal (blue). Figure 14 compares the most likely and plausible range of gamma 

fit parameters for particles characterized by the mode with smaller maximum dimensions (red) to 

the most likely and plausible range of gamma fit parameters for particles characterized by the 

mode with larger maximum dimensions (blue) in bimodal1 distributions. For biomdal2 

distributions, Figure 15 compares the most likely and plausible range of gamma fit parameters 

for the gamma distribution characterizing particles with a smaller peak maximum dimension 

(red) to those for the gamma distribution characterizing particles with a larger peak maximum 

dimension (blue). Figure 16 compares the most likely and plausible range of gamma fit 

parameters for particles characterized by the modes with smaller maximum dimensions (red), 

medium maximum dimensions (green), and larger maximum dimensions (blue).  

Figures 12a-d show that for unimodal distributions in all conditions, the most likely value 

of μ increases with T from -0.3 for T43-53 to 2.1 for T5-21, while the most likely value of N0 

increases with T from 108.9 m−4 cm−μ for T43-53 to 1011.8 m−4 cm−μ for T5-21. For small-MMD 

conditions, the most likely value of μ increases with T from -0.3 for T43-53 to 2.6 for T5-21, while 

the most likely value of N0 increases with T from 109.0 m−4 cm−μ for T43-53 to 1013.5 m−4 cm−μ for 

T5-21. For HIWC conditions, the most likely value of μ increases with T from -0.4 for T43-53 to 0.9 

for T5-21, while the most likely value of N0 increases with T from 109.5 m−4 cm−μ for T43-53 to 

1011.3 m−4 cm−μ for T5-21. The red ellipses show an increase in the variances in log10(N0) and μ 

with T for unimodal distributions in all conditions with the volumes of the ellipsoids in the three-
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dimensional (log10(N0),μ,λ) phase space ranging from 41 mm−1 at T43-53 to 330 mm−1 at T5-21. The 

green ellipses show an increase in the variances in log10(N0) and μ with T for small-MMD 

conditions with the volumes of the ellipsoids in the three-dimensional (log10(N0),μ,λ) phase space 

ranging from 39 mm−1 at T43-53 to 250 mm−1 at T5-21. The blue ellipses show a weak increase in 

the variances in log10(N0) and μ with T for HIWC conditions with the volumes of the ellipsoids in 

the three-dimensional (log10(N0),μ,λ) phase space ranging from 1.5 mm−1 at T43-53 to 7.0 mm−1 at 

T21-33. 

Figures 12e-h show how the plausible range of N0 and λ change with T, and figures 12i-l 

show how the plausible range of μ and λ change with T. For unimodal distributions in all 

conditions, the most likely λ increases with T from 6.1 mm−1 for T43-53 to 7.7 mm−1 for T5-21. For 

small-MMD conditions, the most likely λ increases with T from 6.4 mm−1 for T43-53 to 12 mm−1 

for T5-21. For HIWC conditions, the most likely λ shows no relationship with T with values 

ranging from 6.3 mm−1 for T33-43 to 7.7 mm−1 for T5-21. 

There is less variability in the gamma distribution parameters that describe unimodal 

PSDs in HIWC conditions than there is in the gamma distribution parameters that describe 

unimodal PSDs in other conditions. There is less change with T in the gamma distribution 

parameters that describe unimodal PSDs in HIWC conditions as well. The most likely values of 

μ that describe unimodal PSDs in HIWC conditions are small, ranging from −0.4 to 0.9. 

Considering most PSDs in HIWC conditions are unimodal, in some models, it may suffice to 

model PSDs in HIWC conditions using a fixed exponential distribution. 

Figures 13a-d show that for unimodal fits to all distributions, the most likely value of μ 

increases with T from −0.5 for T43-53 to 0.6 for T21-33 before dropping to 0.5 for T5-21, while the 

most likely value of N0 increases with T from 108.5 m−4 cm−μ for T43-53 to 109.7 m−4 cm−μ for T21-33 
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before dropping to 109.1 m−4 cm−μ for T5-21. For unimodal fits to unimodal distributions, the most 

likely value of μ increases monotonically with T from −0.3 for T43-53 to 2.1 for T5-21, with a value 

of 1.0 for T21-33, while the most likely value of N0 also increases monotonically with T from 108.9 

m−4 cm−μ for T43-53 to 1011.8 m−4 cm−μ for T5-21, with a value of 1010.7 m−4 cm−μ for T21-33. The blue 

ellipses show an increase in the variances in log10(N0) and μ with T for the unimodal fits to all 

distributions with the volumes of the ellipsoids in the three-dimensional (log10(N0),μ,λ) phase 

space ranging from 32 mm−1 at T43-53 to 190 mm−1 at T5-21. With a volume of 150 mm−1 at T21-33, 

the volume increases most steeply at the lowest temperatures. The red ellipses also show an 

increase in the variances in log10(N0) and μ with T for the unimodal fits to unimodal distributions 

with the volumes of the ellipsoids in the three-dimensional (log10(N0),μ,λ) phase space ranging 

from 41 mm−1 at T43-53 to 330 mm−1 at T5-21. With a volume of 130 mm−1 at T21-33, the volume 

increases most steeply at higher temperatures. 

Figures 13e-h show how the plausible range of N0 and λ change with T, and figures 13i-l 

show how the plausible range of μ and λ change with T. For all distributions, the most likely λ 

increases with T from 5.1 mm−1 for T43-53 to 5.6 mm−1 for T21-33 before dropping to 4.3 mm−1 for 

T5-21, while for unimodal distributions, λ increases monotonically with T from 6.1 mm−1 for T43-53 

to 7.7 mm−1 for T5-21, with a value of 7.3 mm−1 for T21-33. Since aggregates are more prevalent in 

the multimodal distributions as shown in Figure 5, the decrease in λ between T21-33 and T5-21 and 

the smaller increase in λ between T43-53 and T21-33 for all distributions are associated with the 

presence of larger aggregates in the multimodal distributions included in the unimodal fits to all 

distributions. The presence of larger aggregates in multimodal distributions also explains why N0 

and μ decrease between T21-33 and T5-21 for all distributions and why the rate of increase in the 

variances of N0, μ, and λ slows with T for all distributions – larger aggregates increase the 
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median mass dimension, decreasing λ; the greater separation in maximum dimension between 

the largest aggregates and other crystals decreases μ and λ; and the strong positive codependence 

between N0, μ, and λ decreases N0. 

The blue and red ellipses overlap less at high T compared to low T with the overlap 

fraction for log10(N0)−μ being 81% at T43-53 compared to 55% at T5-21., the overlap fraction for 

log10(N0)− λ being 78% at T43-53 compared to 57% at T5-21, and the overlap fraction for μ − λ 

being 79% at T43-53 compared to 53% at T5-21. This is consistent with a larger fraction of 

multimodal distributions occurring at high T as shown in Fig. 4, and the presence of aggregates 

at high T as shown in Fig. 5. Comparing the most likely (N0,μ,λ) for the true unimodal 

distributions against those obtained for unimodal fits to all distributions shows that 

(log10(N0),μ,λ) are (0.4,0.2,1.0 mm-1) greater for T43-53, but the differences increase to (2.7,1.6,3.4 

mm-1) at T5-21. The smaller values for the unimodal fits to all distributions is associated with the 

presence of larger aggregates in the large mode of the distribution. The difference in fit 

parameters between true unimodal distributions and unimodal distributions fit to all distributions 

at higher temperatures, combined with the reduced overlap between ellipses describing the 

equally realizable solutions at the higher temperatures, shows that although unimodal fits 

produce an adequate representation of the size distributions at lower temperatures, the same is 

not likely true at the higher temperatures. 

Figures 14a-d show that for particles with larger maximum dimension, the most likely 

value of μ increases with T from 1.2 for T43-53 to 3.3 for T5-21, while the most likely value of N0 

increases with T from 1012.2 m−4 cm−μ for T43-53 to 1013.8 m−4 cm−μ for T5-21. For particles with 

smaller maximum dimension, the most likely value of μ increases with T from 0.6 for T43-53 to 

1.1 for T5-21 while the most likely value of N0 has no dependence on T with values between 1011.9 
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m−4 cm−μ and 1012.2 m−4 cm−μ for all T. The blue ellipses show an increase in the variances in 

log10(N0) and μ with T for particles with larger maximum dimension with the volumes of the 

ellipsoids in the three-dimensional (log10(N0),μ,λ) phase space ranging from 26 mm−1 at T43-53 to 

270 mm−1 at T5-21. The red ellipses also show an increase in the variances in log10(N0) and μ with 

T for particles with smaller maximum dimension with the volumes of the ellipsoids in the three-

dimensional (log10(N0),μ,λ) phase space ranging from 510 mm−1 at T43-53 to 4000 mm−1 at T5-21. 

Figures 14e-h show how the plausible range of N0 and λ change with T, and figures 14i-l 

show how the plausible range of μ and λ change with T. For particles with larger maximum 

dimension, the most likely λ stays the same with T, ranging from 9.0 mm−1 for T5-21 to 11 mm−1 

for T21-33. For particles with smaller maximum dimension, the most likely λ increases with T 

from 40 mm−1 for T43-53 to 67 mm−1 for T5-21. 

Overlap between the blue and red ellipses depends little on T with the overlap fraction for 

log10(N0)−μ being 24.5% at T43-53 compared to 29.6% at T5-21, the overlap fraction for log10(N0)−λ 

being 3.96% at T43-53 compared to 3.28% at T5-21, and the overlap fraction for μ−λ being 4.77% at 

T43-53 compared to 5.49% at T5-21. 

Figures 15a-d show that for particles with larger maximum dimensions, the most likely 

value of μ increases slightly with T from 1.3 for T43-53 to 1.9 for T5-21, while the most likely value 

of N0 varies little with T, ranging between 109.2 m−4 cm−μ for T21-33 and 109.7 m−4 cm−μ for T33-43. 

For particles characterized by the smaller peak, the most likely value of μ increases with T from 

0.3 for T43-53 to 1.8 for T5-21 while the most likely value of N0 also increases with T from 109.9 

m−4 cm−μ for T43-53 to 1011.8 m−4 cm−μ for T5-21. The blue ellipses show a small increase in the 

variances in log10(N0) and μ with T for particles characterized by the larger peak with the 

volumes of the ellipsoids in the three-dimensional (log10(N0),μ,λ) phase space ranging from 28 
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mm−1 at T43-53 to 41 mm−1 at T5-21. The red ellipses show a larger increase in the variances in 

log10(N0) and μ with T for particles in the smaller peak with the volumes of the ellipsoids in the 

three-dimensional (log10(N0),μ,λ) phase space ranging from 19 mm−1 at T43-53 to 100 mm−1 at T5-

21. 

Figures 15e-h show how the plausible range of N0 and λ change with T, and figures 15i-l 

show how the plausible range of μ and λ change with T. For particles characterized by the larger 

peak, the most likely λ decreases with T from 3.7 mm−1 for T43-53 to 2.6 mm−1 for T5-21. For 

particles in the smaller peak, the most likely λ varies little with T, increasing from 8.3 mm−1 for 

T43-53 to 9.5 mm−1 for T33-43, before decreasing back to 8.3 mm−1 for T5-21. Since particles with 

larger maximum dimensions in bimodal2 distributions tend to be aggregates, as shown in Figure 

5, the decrease in λ with T for the larger peak is associated with the maximum dimension of the 

largest aggregates increasing with temperature. 

The blue and red ellipses overlap more at high T compared to low T with the overlap 

fraction for log10(N0)−μ being 9.1% at T43-53 compared to 10.1% at T5-21, the overlap fraction for 

log10(N0)−λ being 10.3% at T43-53 compared to 20.1% at T5-21, and the overlap fraction for μ−λ 

being 7.6% at T43-53 compared to 14.5% at T5-21. This is related to the increase in the fraction of 

the volume of the ellipsoid for the smaller peak with λ ≤ 0 with T. As T increases, the shape of 

the mode for the smaller peak becomes less consistent between SDs at the same T, with the mode 

sometimes representing clusters of particles with approximately the same maximum dimension 

and other times representing particles with widely varying maximum dimension. Where the 

mode for the smaller peak represents the latter, it can have gamma parameters close to those for 

the mode characterizing the larger peak.  
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Figures 16a-d show that for particles with smaller maximum dimension, the most likely 

value of μ stays the same with T, ranging from 0.9 for T43-53 to 1.2 for T33-43, while the most 

likely value of N0 decreases with T from 1013.6 m−4 cm−μ for T43-53 to 1012.2 m−4 cm−μ for T5-21. For 

particles with medium maximum dimension, the most likely value of μ increases with T from 2.0 

for T43-53 to 4.9 for T5-21, while the most likely value of N0 increases with T from 1014.1 m−4 cm−μ 

for T43-53 to 1017.8 m−4 cm−μ for T5-21. For particles with larger maximum dimension, the most 

likely value of μ increases with T from 2.8 for T43-53 to 5.1 for T5-21, while the most likely value 

of N0 increases with T from 1011.5 m−4 cm−μ for T43-53 to 1014.2 m−4 cm−μ for T5-21. The red ellipses 

show an increase in the variances in log10(N0) and μ with T for particles with smaller maximum 

dimension with the volumes of the ellipsoids in the three-dimensional (log10(N0),μ,λ) phase space 

ranging from 390 mm−1 at T43-53 to 1800 mm−1 at T5-21. The green ellipses show an increase in the 

variances in log10(N0) and μ with T for particles with medium maximum dimension with the 

volumes of the ellipsoids in the three-dimensional (log10(N0),μ,λ) phase space ranging from 110 

mm−1 at T43-53 to 400 mm−1 at T5-21. The blue ellipses show an increase in the variances in 

log10(N0) and μ with T for particles with larger maximum dimension with the volumes of the 

ellipsoids in the three-dimensional (log10(N0),μ,λ) phase space ranging from 27 mm−1 at T43-53 to 

110 mm−1 at T5-21. 

Figures 16e-h show how the plausible range of N0 and λ change with T, and figures 16i-l 

show how the plausible range of μ and λ change with T. For particles with smaller maximum 

dimension, the most likely λ stays the same with T, ranging from 52 mm−1 for T43-53 to 67 mm−1 

for T21-33. For particles with medium maximum dimension, the most likely λ stays the same with 

T, ranging from 16 mm−1 for T43-53 to 18 mm−1 for T21-33. For particles with larger maximum 
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dimension, the most likely λ stays the same with T, ranging from 5.3 mm−1 for T43-53 to 7.5 mm−1 

for T21-33. 

 

4. Conclusion and Discussion 
 

Multiple occurrences of HIWC regions in areas of low reflectivity have previously been 

observed over tropical oceans, suggesting large concentrations of small ice crystals are present. 

The causes of these large concentrations of small ice crystals are poorly known. The HAIC-

HIWC field campaign was conducted to research the environmental and meteorological 

conditions and microphysical processes associated with HIWC regions. Insight into these 

conditions is gained through comparison of this study with prior studies, examining how the use 

of a new fitting technique yields information on multimodal SDs in Section 4a, hypothesizing 

how environmental and microphysical conditions and processes affect gamma fit parameters in 

Section 4b, and discussing environmental and microphysical conditions and processes present in 

HIWC regions are discussed in Section 4c. 

a. Multimodality in SDs 

Ice crystal PSDs in HIWC and other regions were fit to unimodal and multimodal gamma 

distributions to aid in process understanding and to develop parameterizations for use in remote 

sensing and numerical modeling schemes. Since some PSDs cannot be represented well by 

gamma distributions, a method of representing observed PSDs as sums of gamma functions that 

is compatible with parameterization schemes used in current modeling and remote sensing 

schemes was developed. The fitting technique developed by McFarquhar et al. (2015) was 
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extended to parameterize PSDs as sums of up to three complete gamma distributions. The use of 

three gamma distributions allows more precise fitting of the data as shown in Table 1 and Fig. 2. 

The large mode characterizing particles with D greater than 1 mm was not identified in previous 

studies examining multimodal PSDs (e.g., Zhao et al. 2010, Jackson et al. 2015) because it is not 

typically associated with a distinct peak in number distribution function. Thus, the gamma 

functions characterizing this mode cannot be directly compared against distributions from 

previous studies. However, the identification and inclusion of the large mode in the multimodal 

distributions was shown in Table 1 to increase the accuracy and precision of fit-derived estimates 

of Z and MMD more than the identification and inclusion of the small mode characterizing 

particles with D less than 0.1 mm. Analysis of the properties of multimodal distributions and 

how the likelihood of a distribution being bimodal1, bimodal2, or trimodal varies with 

environmental and microphysical conditions provides insight into what processes occur in HIWC 

regions and other regions of tropical MCSs. 

The prevalence of unimodal, bimodal, and trimodal distributions is a function of 

environmental conditions such as temperature, vertical velocity, and ice water content, as well as 

of microphysical conditions such as median mass diameter. The likelihood of a small mode 

increases with T (Fig. 4), with w  (Fig. 6), and with IWC (Fig. 7) which itself increases with w  

(Fig. 8). The increase in the likelihood of a small mode with T was also observed by Jackson et 

al. (2015) and Zhao et al. (2010), with the latter hypothesizing that this was caused by 

heterogeneous nucleation in the presence of sedimentation. The large mode is most common in 

stratiform regions of convective outflow (Fig. 6), and its likelihood increases with temperature 

(Fig. 4) and MMD (Fig. 10), suggesting the large mode results from aggregation of smaller 

particles as illustrated in Fig. 5. Aggregation of smaller particles is known to increase with T for 
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T < −15°C (Connolly et al. 2012), and the change in likelihood of small D and large D modes 

with T is consistent with the presence of aggregation of small D and medium D particles (Fig. 4). 

As the difference in saturation vapor pressure over water and ice increases, the diffusional 

growth rate increases (e.g., Hoffmann 2020). However, the likelihood of a PSD being unimodal 

decreases with T, suggesting that a single gamma distribution may fit ice particles that form from 

homogeneous nucleation, heterogeneous nucleation, or diffusional growth wherever aggregation 

is lacking. 

b. SD parameters 

The use of up to three gamma distributions to characterize size distributions affects the 

most likely values of N0, μ, and λ for PSDs fit to a single gamma distribution, as well as the 

dependence of these most likely values on environmental conditions. For unimodal PSDs, the 

scale parameter N0, shape parameter μ, and slope parameter λ all increase with T, with μ 

decreasing with IWC. While an increase in μ with T was also found in Jackson et al. (2015), that 

study found a decrease in λ and no change in N0 with T. Not only could varying PSDs associated 

with differences in meteorological conditions sampled cause this difference, but also the 

recognition of a large D mode in the multimodal distributions identified could limit the number 

of unimodal distributions with large MMD. When all PSDs in this study are fit using a single 

mode, λ decreases with T at warmer T in agreement with Jackson et al. (2015) (Fig. 13), showing 

that the large D mode does indeed decrease λ in single mode gamma fits. This is expected 

because the presence of the large mode increases the sizes of the largest ice particles in the PSD. 

In this study, volumes of equally realizable solutions are computed using the covariance 

matrices and form spaces enclosing all points less than 3.368 standard deviations from the most 

likely solution. The factor of 3.368 was chosen because the chi-squared test with 3 degrees of 
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freedom has a p-value of 0.01 at 3.3682, ensuring a 99% probability that a random solution will 

fall within the enclosed space. Previous studies (e.g., Jackson et al. 2015) constructed volumes of 

equally realizable solutions using the methodology described in McFarquhar et al. (2015), which 

considers all possible solutions with moments between their minimum and maximum estimates 

and typically produces larger volumes than those produced using covariance matrices for 

individual PSDs, though not necessarily for families or large sets of PSDs. Solutions in Jackson 

et al. (2015), which analyzed data acquired in stratiform regions behind mid-latitude MCSs with 

T < −20°C, had N0 ranging from 109 and 1019 m−4 cm−μ, μ ranging from −2 to 4 (Jackson et al. 

2015 allowed −2 < μ), and λ ranging from 0.1 to 100 mm−1, while solutions in this study over a 

similar range of temperatures have N0 ranging from 103.5 and 1017.9 m−4 cm−μ, μ ranging from 

−1.0 to 5.1, and λ ranging from 0.0 to 18 mm−1. Compared to the Jackson et al. (2015) study, this 

study has significantly lower values of λ, suggesting large crystals were more common in the 

HAIC/HIWC dataset than in the SPARTICUS dataset. 

Typical averages and ranges of N0, μ, and λ for each mode in multimodal distributions 

were computed. For the small mode, μ does not vary with temperature. In the presence but not in 

the absence of the large mode, N0 decreases with temperature. In the absence but not in the 

presence of the large mode, λ increases with temperature. The standard deviations of N0 and μ 

increase with temperature. For the large mode, N0 and μ are independent of temperature while λ 

decreases with temperature. The standard deviations of N0 and λ increase with temperature when 

a significant small mode is absent. For the medium mode, N0 and μ increase with temperature 

while λ is independent of temperature. The standard deviations of N0, μ, and λ all increase with 

temperature. The average value of μ for the medium mode is higher when a significant small 

mode is present than when a significant small mode is absent. 
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The procedure used for fitting multimodal distributions assumes that μ and λ are no larger 

and smaller, respectively, for the small mode and no smaller and larger, respectively, for the 

large mode than for the medium mode. While this ensures that large D bins have minimal effect 

on small mode parameters and small D bins have minimal effect on large mode parameters when 

optimizing fits, the assumption may not always be true. For example, the assumption may be 

violated for μ between the medium and large modes in trimodal distributions at temperatures 

warmer than −40°C some unknown fraction of the time that increases with T. In PSDs where the 

assumption is violated, the true mean value of μ2 may exceed 5 at temperatures warmer than 

−40°C while the true mean value of μ3 may be closer to the true mean value of μ2 for bimodal2 

distributions. Since the fitting procedure underestimates μ2 and overestimates μ3 when μ3 < μ2, 

this limitation of the fitting procedure must be considered when analyzing the relationship of 

each mode’s parameters with temperature and other environmental conditions. 

c. HIWC conditions 

As updraft and downdraft strength increase, IWC increases, making high ice mass more 

likely (Fig. 8). Indeed, PSDs with high ice masses and small median mass dimensions are more 

common in updrafts and downdrafts than in stratiform regions (Fig. 9). These findings are 

consistent with the locations of reports of high IWC. “Extremely high IWC (1 g m-3) near the 

convection” was reported in McFarquhar and Heymsfield (1996), while during spiral descents 

performed in convectively generated cirrus anvils, Heymsfield et al. (2004) documented 

“exceptionally large IWCs of nearly 1 g m-3…near the tops of the layers” (Leroy et al. 2017). 

Compared to PSDs in other regions with high ice mass, PSDs in HIWC regions are less 

likely to have a small mode. This may be due to MMD increasing with aggregation of small ice 

particles and to a single mode well representing the smaller ice crystals where aggregation of 
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small ice particles is lacking. Compared to PSDs in conditions with IWC < 1.5 g m−3, PSDs in 

HIWC regions are more likely to have a small mode and less likely to have a large mode. This is 

consistent with the reflectivity values of Z < 30 dBZ observed in HIWC regions. 

This study examined the nature of PSDs in HIWC conditions, extending knowledge 

learned from data collected in prior experiments in tropical cirrus outflows and convection. 

Previous experiments and studies either did not focus on regions close to convective cores where 

IWCs are typically higher (e.g., McFarquhar and Heymsfield 1996; Heymsfield et al. 2002; 

Bouniol et al. 2010; Diao et al. 2013), potentially underestimated IWCs because of saturation of 

common bulk probes in high IWC environments (Davison et al. 2016; Strapp et al. 2016b), or 

estimated IWCs from observed SDs without a reference bulk mass content (e.g. Heymsfield et al. 

2004; Lawson et al. 2010; Fontaine et al. 2014), leaving scientists and pilots without an 

understanding of how high IWC can get in regions close to convective cores with Z < 30 dBZ or 

of what causes HIWC conditions to occur. This study revealed that PSDs in HIWC conditions 

have high concentrations of small ice crystals, with IWC > 1.5 g m−3 and MMD < 0.5 mm, with 

these HIWC conditions occurring in updrafts and downdrafts near convective cores where 

accumulation of small ice crystals is minimal. 

More research is necessary to reduce uncertainty in number concentration at small crystal 

sizes and study links between multimodality, PSD fit parameters, microphysical properties such 

as ice crystal habits, and other environmental conditions such as aerosol amount and strength of, 

age of, and proximity to convection. Also, the results of this study apply only to conditions 

measured off the coast of Darwin and represent a very limited set of data, so more data in HIWC 

conditions is necessary to determine how representative conditions measured during 

HAIC/HIWC Darwin are. 
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Appendix A – Methodology for Finding Multiple Modes in Distributions 
 

Previous algorithms used to represent an observed size distribution as a single gamma 

function (McFarquhar et al. 2015) or as the sum of two gamma functions (Jackson et al. 2015) 

were modified in order to represent a size distribution as the sum of up to three gamma functions. 

Rather than using an incomplete gamma function as in the previous studies, a complete gamma 

function was used to that the parameterization can be more easily implemented in a model. 

Further, each gamma function in a sum was evaluated from 0 to infinity, rather than evaluating 

the modes over a limited size range with a cutoff between them as in Jackson et al. (2015). 

Many PSDs observed in Darwin have shoulders, meaning that for some range of D, N(D) 

decreases less steeply than would be predicted by a single gamma distribution best matching the 

observed shape. Some PSDs also exhibit distinct peaks, as observed by Jackson et al. (2015). 

Thus, even though the observed and fit moments are matched well using the incomplete gamma 

fit (IGF) routine of McFarquhar et al. (2015), the IGF fit distribution still overestimates N(D) for 

certain sizes, making it necessary to represent shoulders and peaks in size distributions using 

separate gamma modes for a more precise fit.  

The new methodology represents PSDs as sums of up to three gamma distributions – a 

small mode to represent the peaks at D < 0.2 mm observed by Jackson et al. (2015), a medium 

mode to represent shoulders or peaks at 0.2 mm < D < 1.0 mm, close to the median mass 

diameter, and a large mode to represent shoulders or peaks at D > 1.0 mm. The fitting 

methodology used here requires information about the statistical uncertainty in the measured 
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N(D), which following McFarquhar and Heymsfield (1997) and McFarquhar et al. (2015) is 

assumed to be equal to the square root of the number of crystals counted in a size bin over the 

averaging time interval (5 s here) divided by the probe sample volume and bin width. Since the 

size distributions measured by the 2DS and PIP probes were processed and combined into one 

distribution before being made available for this research, the raw counts of ice crystals used to 

calculate the statistical error was estimated using the processed distributions and knowledge of 

the sample volumes of each instrument. 

For a feature in an observed PSD to be represented as a separate mode, three criteria need 

to be met: 1) it must be possible to fit all modes precisely from 0 to infinity; 2) the mode must 

represent a peak or shoulder; and 3) the mode must have a distinct shape. To determine whether 

each criterion is met, a test is performed. Each test returns a significance s for its criterion. Note 

that s is not the probability that a peak or shoulder exists, but rather a measure of how 

pronounced a possible peak or shoulder appears to be with respect to the criterion tested. The 

criterion is met if the significance returned by the test exceeds a predefined significance 

threshold. The significance threshold used here is 0.4. A smaller significance threshold would 

result in more trimodal fits, while a larger significance threshold would result in more unimodal 

fits. The threshold of 0.4 used here ensures that the set of distributions classified as bimodal or 

trimodal would be representative for conditions producing the most distinct modes in size 

distributions.  

Thresholds of 0.333 and 0.5 were also tested. At a threshold of 0.333, only about 20% of 

distributions were classified as unimodal as opposed to 33% when using a threshold of 0.4. 

Further, little difference existed between median multimodal distributions and median unimodal 

distributions, especially for small D. At a threshold of 0.5, only about 14% of distributions were 
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classified as having a small mode (trimodal or bimodal small), and only about 4% of 

distributions were classified as trimodal as opposed to 24% of distributions having a small mode 

and 9% being trimodal for a threshold of 0.4. About 51% of distributions were classified as 

unimodal at a threshold of 0.5. However, at a threshold of 0.4, noticeable differences exist 

between median multimodal distributions and median unimodal distributions.  

The tests, which assume the presence of the medium mode and check for the presence of 

a small or large mode with s ≥ 0.4, are performed assuming cutoffD , the unknown diameter where 

N(D) from the medium mode is equal to N(D) from the small or large mode. cutoffD is a member 

of a set of arbitrary predefined values. When testing for the presence of a small mode, tests are 

performed in descending order assuming 

 0.20,0.19,0.18,0.17,0.16,0.15,0.14,0.13, 0.12,0.11,0.10,0.09,0.08cutoffD = mm. 

When testing for the presence of a large mode, tests are performed in ascending order assuming 

 0.5,0.6,0.7,0.8,0.9,1.0,1.1,1.2,1.3,1.4,1.5,1.6,1.7cutoffD = mm. 

Testing is done for the large mode first, then for the small mode, then a second time for the large 

mode. The tests are as follows: 

• For the small mode, 

o If tests for the large mode revealed a large mode with s ≥ 0.4 from all three tests 

exists, let lD  be the value of cutoffD maximizing the large mode’s s from the third 

test. Otherwise, let lD =  . 

o Fit the observed N(D) for cutoff lD D D   to a unimodal gamma fit, hereafter 

represented as ( )fit_1N D , using the IGF routine of McFarquhar et al (2015). 
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o Fit the observed N(D) for lD D  to a unimodal gamma fit, hereafter represented 

as ( )fit_ 2N D , using the IGF routine of McFarquhar et al (2015). 

o Test for criterion #1: The observed N(D) for cutoffD D exceeds by a factor of at 

least 
1

s

s−
 that predicted by extrapolating ( )fit_1N D  with 95 percent probability, 

as determined using a chi-squared test. 

o Test for criterion #2: The ratio between the first and zeroth moments of the 

observed N(D) for cutoffD D is less than 1 s−  times that predicted by 

extrapolating ( )fit_1N D  with 95 percent probability. 

o Test for criterion #3: Denote the observed number concentration with 

( ) ( )1 1

1

1 1

2 2

cutoff cutoffD a D a
D

a

+ +
   as B, the observed number concentration with  

( )1

1

1

2

cutoffD a
D

a

+
  as A, and the observed number concentration with 

( )11

2

cutoffD a
D

+
  as C, where 

1

0.5

cutoff

mm
a

D
= . (The arbitrary value 1a  is an estimate 

of the ratio s

m




, where m  is the unknown slope for the medium mode and s  is 

the unknown slope for the small mode.) The value of 
2

AC

B
 exceeds by a factor of 

at least 
1

s

s−
 what it would be if the data perfectly fit ( )fit_ 2N D with 95 percent 

probability. 

• For the large mode, 
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o If tests for the small mode revealed a small mode with s ≥ 0.4 from all three tests 

exists, let sD  be the value of cutoffD maximizing the small mode’s s from the third 

test. Otherwise, let 0sD = . 

o Fit the observed N(D) for s cutoffD D D   to a unimodal gamma fit, hereafter 

represented as ( )fit_3N D , using the IGF routine of McFarquhar et al (2015). 

o Fit the observed N(D) for sD D  to a unimodal gamma fit, hereafter represented 

as ( )fit_ 4N D , using the IGF routine of McFarquhar et al (2015). 

o Test for criterion #1: The observed N(D) for cutoffD D exceeds by a factor of at 

least 
1

s

s−
 that predicted by extrapolating ( )fit_3N D  with 95 percent probability. 

o Test for criterion #2: The ratio between the third and second moments of the 

observed N(D) for cutoffD D is greater than 
1

1 s−
 times that predicted by 

extrapolating ( )fit_3N D  with 95 percent probability. 

o Test for criterion #3: Denote the observed number concentration with 

( ) ( )2 2

2

1 1

2 2

cutoff cutoffD a D a
D

a

+ +
   as B, the observed number concentration with 

( )21

2

cutoffD a
D

+
  as A, and the observed number concentration with 

( )2

2

1

2

cutoffD a
D

a

+
  as C, where 2 0.4a = . (The arbitrary value 2a  is an estimate of 

the ratio l

m




, where m  is the unknown slope for the medium mode and l  is the 
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unknown slope for the large mode.) The value of 
2

AC

B
 exceeds by a factor of at 

least 
1

s

s−
 what it would be if the data perfectly fit ( )fit_ 4N D  with 95 percent 

probability. 

For both small and large modes, the mode is established if all three tests are passed for some 

cutoffD . If all three tests are passed at multiple values of cutoffD , the value of cutoffD  maximizing s 

from the third test is assumed to be the true cutoff diameter until the final multimodal fit is 

produced. 

 



33 
 

Tables and Figures 

 

Figure 1: Illustration of how change in a) N0, b) μ, and c) λ affect N(D). Base unimodal gamma 

distribution represented by black line corresponds to N0 = 109 m-4 cm−μ, μ = 0, and λ = 5 mm-1. a) 

green line shows gamma function with N0′= 10*N0. b) red line shows gamma function with μ′ = 

μ+1. c) blue line shows gamma function with λ′ = 2*λ. Gold arrows show change in median 

diameter for change in gamma distribution. 
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Figure 2: N(D) versus D for PSDs measured at a) 21:28:05 UTC on 2 Feb 2014 representing 

unimodal distribution, b) 4:54:01 UTC on 3 Feb 2014 representing bimodal1 distribution, c) 

3:34:34 UTC on 8 Feb 2014 representing bimodal2 distribution, and a) 22:50:01 UTC on 16 Jan 

2014 representing trimodal distribution. Fits to small modes plotted in magenta, medium modes 

in thin light blue, and large modes in green. Sums of modes representing multimodal fits plotted 

in gold, and best unimodal fits to each observed PSD plotted in thick light blue. Observed N(D) 

plotted in thick black, with error bars plotted in thin black corresponding to statistical uncertainty 

in observed N(D). 
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Figure 3: Histogram of observed PSDs at each temperature between -60°C and -5°C. Peaks in 

the histogram are observed near the four temperature levels flown at: -48°C, -38°C, -27°C, and -

13°C. 



36 
 

 

Figure 4: Fraction of observed PSDs classified as unimodal (light blue), bimodal1 (magenta), 

bimodal2 (green), and trimodal (gold) as a function of temperature. 
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Figure 5: Selected images of ice crystals with sizes between 4 and 6 mm from 3:34:33 UTC to 

3:34:38 UTC on 8 Feb 2014. (Image copyright University Corporation for Atmospheric 

Research.) 
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Figure 6: Fraction of observed PSDs classified as unimodal (light blue), bimodal1 (magenta), 

bimodal2 (green), and trimodal (gold) as a function of vertical velocity. “Downdrafts” are 

regions where w ≤ −1 m s−1. “Weak Downdrafts” are regions where −1 m s−1 < w ≤ −0.5 m s−1. 

“Stratiform Desc” refers to regions where −0.5 m s−1 < w ≤ −0.2 m s−1. “Stratiform” refers to 

regions where −0.2 m s−1 < w < 0.2 m s−1. “Stratiform Asc” refers to regions where 0.2 m s−1 ≤ w 

< 0.5 m s−1. “Weak Updrafts” are regions where 0.5 m s−1 ≤ w < 1 m s−1. “Updrafts” are regions 

where w ≥ 1 m s−1. Sample sizes for each region are indicated at the top of each bar. 
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Figure 7: Fraction of PSDs that are unimodal (light blue), bimodal1 (magenta), bimodal2 (green), 

and trimodal (gold) as a function of ice water content. 
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Figure 8: Mean IWC observed by the IKP2 probe as a function of vertical velocity showing IWC 

increases as updraft and downdraft strength increases. 
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Figure 9: Fraction of PSDs measured at each vertical velocity with IWC ≥ 1.5 g m-3 (blue) and 

with IWC < 1.5 g m-3 (orange). 
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Figure 10: Fraction of PSDs that are unimodal (light blue), bimodal1 (magenta), bimodal2 

(green), and trimodal (gold) as a function of median mass diameter. 
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Figure 11: Three-dimensional ellipses of possible N0, μ, λ values for unimodal distributions in all 

conditions (top row), small-MMD conditions (middle row), and HIWC conditions (bottom row) 

near T = -48°C (far left column), T = -38°C (middle left column), T = -27°C (middle right 

column), and T = -13°C (far right column). 
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Figure 12: Two-dimensional ellipses of possible (N0, μ) values (top row), (N0, λ) values (middle 

row), and (μ, λ) values (bottom row) for unimodal distributions in all conditions (red), conditions 

with MMD < 0.5 mm (green), and conditions when HIWCs are present (i.e., MMD < 0.5 mm 

and IWC > 1.5 g m-3) (blue) near T = -48°C (far left column), T = -38°C (middle left column), T 

= -27°C (middle right column), and T = -13°C (far right column). 
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Figure 13: Two-dimensional ellipses of possible (N0, μ) values (top row), (N0, λ) values (middle 

row), and (μ, λ) values (bottom row) for unimodal distributions (red) and for unimodal fits to all 

distributions (blue) near T = -48°C (far left column), T = -38°C (middle left column), T = -27°C 

(middle right column), and T = -13°C (far right column). 
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Figure 14: Two-dimensional ellipses of possible (N0, μ) values (top row), (N0, λ) values (middle 

row), and (μ, λ) values (bottom row) for each mode of bimodal1 distributions near T = -48°C (far 

left), T = -38°C (middle left), T = -27°C (middle right), and T = -13°C (far right). Small mode 

(red) and middle mode (blue). 



47 
 

 

Figure 15: Two-dimensional ellipses of possible (N0, μ) values (top row), (N0, λ) values (middle 

row), and (μ, λ) values (bottom row) for each mode of bimodal2 distributions near T = -48°C (far 

left), T = -38°C (middle left), T = -27°C (middle right), and T = -13°C (far right). Middle mode 

(red) and large mode (blue). 
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Figure 16: Two-dimensional ellipses of possible (N0, μ) values (top row), (N0, λ) values (middle 

row), and (μ, λ) values (bottom row) for each mode of trimodal distributions near T = -48°C (far 

left), T = -38°C (middle left), T = -27°C (middle right), and T = -13°C (far right). Small mode 

(red), middle mode (green), and large mode (blue). 
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Property Bias 

Mean in 

dBZ 

(dB) 

Bias 

Standard 

Deviation in 

dBZ (dB) 

Bias 

Mean in 

IWC (g 

m-3) 

Bias 

Standard 

Deviation in 

IWC (g m-3) 

Bias 

Mean in 

MMD 

(μm) 

Bias 

Standard 

Deviation in 

MMD (μm) 

Unimodal Fit for 

Unimodal SDs 

-0.04 0.22 -0.006 

(−0.7%) 

0.012 

(1.5%) 

32 

(7.1%) 

31 (7.0%) 

Bimodal1 Fit -0.01 0.12 -0.006 

(−0.6%) 

0.013 

(1.2%) 

27 

(5.1%) 

25 (4.8%) 

Unimodal Fit for 

Bimodal1 SDs 

-0.08 0.74 -0.006 

(−0.6%) 

0.013 

(1.2%) 

9 

(1.6%) 

44 (8.3%) 

Bimodal2 Fit -0.13 0.22 -0.004 

(−0.6%) 

0.006 

(1.1%) 

−2 

(−0.3%) 

17 (2.3%) 

Unimodal Fit for 

Bimodal2 SDs 

-0.66 0.99 0.007 

(1.2%)  

0.016 

(2.7%) 

92 

(13%) 

110 (15%) 

Trimodal Fit -0.06 0.19 -0.006 

(−0.6%) 

0.017 

(1.9%) 

8 

(1.5%) 

14 (2.7%) 

Unimodal Fit for 

Trimodal SDs 

-0.25 1.40 -0.004 

(−0.4%) 

0.032 

(3.5%) 

99 

(19%) 

90 (17%) 

 

Table 1: Table of mean and standard deviation of fitting errors in dBZ, IWC, and MMD. 

Parameters estimated using conversion from concentration to mass used in Leroy et al. (2017). 
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