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Abstract 

Mitigation planning in many disaster-prone areas has shown success in helping the 

community to withstand hazardous events, reducing the recovery time and costs, and 

preventing life losses. This research proposes a multi-objective optimization framework to 

enhance decision-making to mitigate risk from potential hazards in an integrated and 

quantitative manner.  

First, this study introduces an optimization framework that can integrate different 

dimensions of community resilience in one model as competing objectives to measure the 

potential impacts and damage from hazard events. To the best of our knowledge, this 

framework is the only framework that can provide flexibility on some major components. 

The decision makers can apply the proposed framework to various hazards without 

changing the mathematical formulation. The framework's objectives can be determined by 

the people who are involved in decision-making. Moreover, the number of objectives also 

can vary according to the actual needs of decision makers.  

Second, the proposed framework is applied to tornado mitigation in the city of 

Joplin, Missouri, USA, to demonstrate how the retrofitting strategies reduce the potential 

impacts of direct economic loss (economic dimension), population dislocation (social 

dimension), and building functionality (physical infrastructure). The results analyses 

illustrate how the decision makers can utilize the information from the optimal solutions to 

determine the appropriate retrofitting solution for the community. 

Finally, a machine learning (ML) model is developed to predict potential economic 

damage on domestic supply, employment, migration, and household income by using input 
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data of the computable general equilibrium (CGE) model. This ML model can act as a 

surrogate model to help the non-CGE expert to interpret the relationship between the 

capital shock by sector and economic impact from hazards shock on capitals. The predicted 

impact on domestical supply, employment, migration, and household income from this ML 

model can act as coefficients of objectives functions (domestical supply, employment, 

migration, and household income) of the proposed multi-objective optimization model.  



 

 

1 

1 Introduction 

1.1 Background 

The increasing number of natural disasters constantly test the resilience of 

communities every year. Most recently, in 2020 alone, there were 22 weather/climate 

related disasters with losses exceeding $1 billion each, and the combined cost for these 22 

events exceeds $95 billion. Most of the areas that endured the disaster events are well-

populated, but the communities in those areas are not resilient to the high frequency of 

hazards. In 2017, after hurricane Maria, some of the residents in Puerto Rico lost their 

power for over a year. Over 200,000 Puerto Ricans left the mainland. Katrina displaced 

770,000 residents and left $250 billion in damaged to the local community. Fourteen years 

later, some residents were still rebuilding their homes. Scientists and researchers have 

reached consensus that effective mitigation can reduce the potential impact from future 

hazards to the communities. However, to date, there is no generalized and hazard agnostic 

multi-objective optimization framework to guide the decision makers to determine and 

evaluate mitigation strategies in a quantitative and integrated manner. 

Future hazards are inevitable, yet the frequency and magnitude of the hazard events 

are growing. As cities and communities continue to expand, the hazards might cause more 

damage. Fortunately, pre-hazard mitigation is a proactive measure to prepare in advance 

for future hazards. Mitigation measures can reduce the impact, help the communities 

bounce back faster, and lower the recovery cost. The ongoing efforts in the National 

Institute of Standards and Technology (NIST) funded the multi-university Center of 

Excellence for Risk-based Community Resilience Planning (CoE) are developing the 
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measurement science to support community resilience assessment. The major work of the 

CoE is to develop a comprehensive computational platform with a fully integrated 

supporting database called IN-CORE (Interdependent Networked Community Resilience 

Modeling Environment) that models the impact and recovery of natural hazards on 

communities, evaluates community resilience goals, and optimizes resilience 

enhancement/planning strategies. This dissertation provides an essential component of IN-

CORE modules on optimization analysis.  

           The optimization framework plays a vital role in mitigation planning. The goal of 

the optimization framework is not only to prioritize the mitigation strategies but also to 

help the communities allocate limited resources. Ultimately, the framework is used as a 

risk-informed decision tool for the decision makers, who should determine the mitigation 

plan among all solutions. However, the components (e.g., objectives functions, the 

granularity of decision-making, type of hazards) of the existing frameworks were missing 

decision makers’ perspective, and the mitigation solutions produced by these frameworks 

might not be practical to improve the resilience of the communities. 

To facilitate decision-making on mitigating the risk and vulnerability from potential 

hazards, the framework of multi-objective optimization should allow the decision makers 

to have a certain degree of freedom to determine the framework components related to the 

decision-making. This framework must act as a framework to allow decision-making to 

define the factors that help the communities to make better decisions according to the needs 

of the communities.  
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1.2 Research Scope 

The scope of this dissertation includes three parts: (1) to design an integrated multi-

objective optimization framework that optimizes community resilience goals to obtain 

retrofitting strategies for communities to mitigate potential risk and vulnerability, and to 

facilitate the decision-making by analyzing the results provided from the model; (2) to 

demonstrate the implementation of the optimization model through a case study; and (3) to 

develop a surrogate model to predict overall economic impact using the information from 

a CGE model and use the predicted results to connect the CGE model with optimization 

model.  

The dissertation will focus on the following tasks: 

• Develop a hazard agnostic framework to produce optimal retrofitting strategies 

to mitigate the risk from potential hazards considering multiple community 

resilience goals. 

• Provide a complete analysis procedure by applying the framework to tornado 

hazard in the city of Joplin, MO, by optimizing the three community resilience 

goals: direct economic loss, population dislocation, and building functionality.  

• Develop machine learning models to estimate economic impact based on the 

economic sector inputs and output results from CEG model and connect the 

CGE model with an optimization model to showcase the generalization of the 

framework of the first task.  

This dissertation has meaningful academic contributions and implications in the 

optimization of community resilience and mitigation planning. The proposed framework 

can be applied to many hazard preventions without limitation on the type of community 
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resilience goals, type of hazards, and the decision level. With the further development of 

the open-source platform, this framework will have a practical influence on the real-world 

mitigation problems of community resilience.   

 

1.3 Structure of Dissertation 

In Chapter 2, a multi-objective optimization model is proposed for providing 

retrofitting plans based on the measurement of community resilience goals defined by 

decision makers. The methodology of decision-making support provides the methods for 

evaluating the mitigation strategies among all optimal solutions and identifying the 

vulnerable areas in the communities. Chapter 3 demonstrates the application of the 

framework proposed in Chapter 2 in the city of Joplin, Missouri, on tornado mitigation that 

has fewer studies and attention from scientists and researchers compared with other types 

of hazards. In Chapter 4, a linear machine learning model is developed as a surrogate model 

to estimate the overall economic impact based on the input data and output results from the 

CGE model for designed hazards. The results analysis suggests the linear regression 

models (OLS, Ridge, Elastic Net, LASSO) all can perform well on adequate prediction on 

economic impacts (i.e., Domestic Supply, Employment, Migration, Household Income). 

Additionally, an optimization model is designed to apply the building retrofit strategies on 

economic sectors. Chapter 5 summarizes the major contribution of this dissertation and 

suggests future research.  
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2 Multi-objective optimization model of community resilience 

on mitigation planning 

2.1 Introduction 

The challenges of current resilience frameworks are generalization on hazard types, 

correlation between social and economic attributes, and optimization and prioritization of 

retrofit solutions (Koliou, et al., 2018). To enhance the resilience of a community in an 

integrated manner, a framework should have flexibility and the ability to adjust the 

essential components to fit specific needs from decision makers. First, the objectives of the 

optimization framework should reflect the primary interest of the decision makers. The 

number of objectives and the determination of objectives should be defined by the people 

involved in the decision-making, not those who design the framework. If decision makers 

select economic loss and recovery time as objectives, the optimization model is a bi-

objective optimization problem. Second, a generic framework should not only target one 

specific hazard. The characteristics of a hazard should be provided though the input data 

to the model, not the model itself. Third, a framework should have the ability to integrate 

different systems to measure the potential impact on these systems. The primary potential 

impact from hazard events typically includes the evaluation of the damage to social, 

economic and physical infrastructure systems. Many metrics have been derived for each 

system, for example, direct economic loss (Zhang and Nicholson, 2016), indirect economic 

loss (Fujimi and Tatano, 2012), population dislocation (Rosenheim, et al., 2021), 

household well-being loss (Markhvida, et al., 2020), and building functionality (Koliou 

and van de Lindt, 2020). The decision makers of the community should determine 
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appropriate metrics for the framework. Finally, one rising challenge is how to determine 

the retrofitting planning among all optimal solutions. Decision-making support should be 

provided to explore the options for decision makers to target vulnerability reduction and to 

provide criteria on prioritizing those options.  

 

2.2 Highlights 

This chapter proposes an optimization framework to mitigate potential impacts 

from hazard events for the community. This model is designed with flexibility that allows 

the decision makers to define what community resilience goals should be included and 

which type of hazard is considered if the requirements for the input data are met. The 

decision makers can choose the community resilience goals that are appropriate to the 

needs and interests of the community at a considered hazard. To increase the scalability of 

the framework, three considerations are in place for this purpose. First, a set of pre-defined 

combination of allowable retrofit strategies reduces the size of input data, which is one of 

factors can impact the run-time of the model. Second, in comparison to a non-linear model, 

a linear design of the mathematical model allows problem to be solved in efficient way. 

Third, while the epsilon constraints approach, would take exponential number of steps if 

number of objectives were increased, but epsilon constraint method can solve problems 

more efficiently comparing with some metaheuristic algorithms and genetic algorithm. The 

decision-making support from the analysis of the results provides arrays of options for 

decision makers to select the appropriate retrofitting planning for the community. The 

upcoming analysis section illustrates how the results can be utilized to facilitate the process 

of decision-making.   
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2.3  Multiple dimensions of community resilience  

The US National Institute of Standards and Technology (NIST) defines community 

resilience as a community’s ability “to prepare for anticipated hazards, adapt to changing 

conditions, and withstand and recover rapidly from disruptions” (NIST, 2015). Given the 

observed increasing intensity, impact, and frequency of significant hazards, enhancing 

community resilience is a critical mission. However, communities are complex entities 

with many facets and the resilience goals and effective strategies should reflect the multiple 

and important aspects of the communities. Researchers have worked to identify the most 

salient dimensions. Bruneau, et al. (2003) conceptualized resilience from four interrelated 

dimensions: technical, organization, social, and economic. Renschler, et al. (2010) 

introduced seven dimensions for assessing community resilience: population and 

demographics, environment/ecosystem, organized governmental service, physical 

infrastructure, lifestyle and community competence, economic development, and social-

cultural capital. Miles and Chang (2011) demonstrated that damage associated with a 

hazard event impacted three critical elements of community resilience: physical 

infrastructure functionality, financial and economic performance, and individual well-

being. Alshehri, et al. (2014) focused on six resilience attributes: social, economic, physical 

and environmental, governance, health and well-being, and information and 

communication. The NIST Community Resilience Planning Guide provided a framework 

that included setting goals for three distinct community elements: physical (i.e., built 

environment), social, and economic systems (NIST, 2015). These various studies 

underscore the significance of addressing community resilience from a multidimensional 

perspective. Achieving resilience objectives along different dimensions may be further 
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complicated if the objectives are conflicting and/or the necessary interventions are 

competing for the same set of limited resources, e.g., budget, time, labor resources.   

Various decision frameworks and mathematical models can help provide decision-

support for the complex issues associated with enhancing community resilience. For 

example, Zhang and Nicholson (2016) developed a multiple objective optimization 

mathematical program that integrated direct economic damage (economic dimension) and 

population dislocation (social dimension) measures to improve community resilience.  

Ellingwood, et al. (2016) demonstrated the possibility of fully integrating physical, social, 

and economic infrastructure systems. In particular, this study investigated the interaction 

between physical infrastructure systems and socio-economic systems within a community.  

Both Zhang and Nicholson (2016) and Ellingwood et al. (2016) demonstrated their work 

on Centerville – a virtual community, designed specifically to evaluate multiple 

disciplinary approaches to resilience (for additional analyses on Centerville see Cutler, et 

al. (2016b), Guidotti, et al. (2016), Unnikrishnan and van de Lindt (2016)). Sutley, et al. 

(2017a) developed a multiple objective optimization problem that coupled various socio-

economic characteristics and built environment factors to support decision making for 

seismic retrofit strategies at a community level. Üstün and Anagün (2015), Tapia and 

Padgett (2016), and Sadeghi, et al. (2017) demonstrated the potential impact of multiple 

objective optimization modeling coupled with the multifaceted attributes of communities 

to enhance resilience. 
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2.4 Multi-objective optimization  

Multi-objective optimization (MOO) problems have two or more objectives that 

typically compete for the same resources (e.g., budget, labor, time, etc.) and are conflicting, 

i.e., no single solution optimizes all objectives. Figure 2-1 depicts an objective space for a 

bi-objective minimization problem with two competing objectives, +'(/) and +((/), where 

/ denotes a decision variable for the problem. Solution /(  dominates solution /'  since 

+'(/() < +'(/')	and +((/() < 	+'(/').	However, both /' and /( are dominated by /) and 

/*. The solutions /) and /* are said to be non-dominated since for both solutions, one 

objective cannot be improved without degrading the other. The set of all non-dominated 

solutions form the Pareto frontier (shown in Figure 2-1 as the solid dots). All solutions 

along the Pareto frontier are considered equally good from a mathematical perspective and 

it is up to a decision-maker to determine the tradeoff appropriate for the problem at-hand. 

 

 

Figure 2-1. Objective space of bi-objective optimization problem 
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Various studies have employed MOO techniques for community resilience. Zhang 

and Nicholson (2016) proposed a multi-objective optimization model to provide a retrofit 

plan to mitigate social (i.e., population dislocation) and economic impacts (i.e., immediate 

cost from structural damage) in communities to seismic events in a built environment. The 

case study was applied to a virtual city, Centerville, comprised of over 15,000 buildings. 

Calle (2019) extended this effort by integrating an enhanced, non-linear method to estimate 

population dislocation. The case study was implemented on a community with over 

300,000 buildings including 11 distinct structural types. Sutley, et al. (2017a) studied a 

community-level mitigation problem coupling socio-economic and engineering systems 

for seismic retrofit planning. The authors incorporated four resilience metrics—initial loss, 

economic loss, morbidities, and recovery time. In the companion paper, Sutley, et al. 

(2017b) presented the multi-objective optimization formulation and results exemplified on 

100,000 wood frame buildings in Los Angeles County, CA. However, the studies from 

Sutley, et al. (2017a) and Sutley, et al. (2017b) were only designed for seismic mitigation. 

Moreover, the objectives that represent the resilience metrics in the studies above only 

measured specific aspects of systems, such as population dislocation and morbidities 

measuring the social system, economic impact measuring the monetary loss of community. 

Neither these objectives nor the number of objectives can be altered per the actual needs 

of the problems. Therefore, none of these studies can act as a framework to be applied to 

the different types of problems (e.g., tornado mitigation considering economic and social 

impacts, flooding mitigation considering economic, social and physical systems, tsunami 

mitigation only considering economic impact, etc.). 
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2.5 Building inventory as an interface between the built 

environment and human welfare 

The built environment includes residential, commercial, and governmental buildings; 

utility networks providing water  power, and gas; and, the network of roads, rails, and 

bridges that contribute to the transportation system, among others. Often the various 

elements of a community’s built environment are depicted as interdependent layers. These 

relationships are often complex, and many researchers have investigated how the 

functionality of the physical system as a whole is impacted by disruptions in the subsystems 

(Masoomi and van de Lindt, 2018; Wang, et al., 2018; Zhang, et al., 2018; Wang, et al., 

2021). For instance, the water network may be affected by power outages disrupting pumps 

or treatment centers (Adachi and Ellingwood, 2008); disruptions in the transportation 

system may impact the recoverability of other systems by impeding access of repair and 

construction crews (Liu, et al., 2020). The functionality of the building inventory, i.e., the 

ability of the buildings in a community to be used for their intended purpose, is dependent 

both on the building’s structural integrity and of the availability of the critical utilities 

(Almufti and Willford, 2013; Lin and Wang, 2017). 

Fundamentally, the built environment exists to support the socio-economic well-

being of the community. That is, at least two additional conceptual layers should be added 

to the community depiction, i.e., layers representing societal welfare and the economic 

systems. These two layers, while somewhat abstract, are certainly multi-faceted, 

interdependent, and complex, but also highly dependent on the proper functionality of the 

built environment. Disruptions anywhere within the built environment may have negative 
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impacts on the economic systems (e.g., Cutler et al., 2016a; Masoomi et al., 2018) and/or 

the social systems (Cutter, et al., 2003; Zahran, et al., 2008; Van Zandt, et al., 2012; 

Karakoc, et al., 2019; Rosenheim, et al., 2021). However, we propose that building 

inventory as a “layer” within the community depiction plays a distinct and critical role as 

a principal interface between the built environment and the socio-economic layers (see 

Figure 2-2). For instance, power, water, and gas utilities are primarily distributed to 

buildings such as residential units; the transportation system largely serves as a mechanism 

to convey people and goods from one building to another such as raw materials to 

manufacturers or finished goods to warehouses. A building is said to be functional if it can 

support its original purpose (Lin and Wang, 2017). Dysfunctionality then may be due to 

direct damage to a building or indirect effects. For instance, if the supporting utility 

services are damaged the effects will be experienced at the building level. Such effects 

impact human activity, e.g., damaged school buildings impact education services, 

disrupted power or water services affect local businesses, and gas leaks may cause residents 

to evacuate homes. While “buildings as an interface” is not entirely a comprehensive 

depiction (e.g., telecommunication services are less and less tied to buildings and more to 

mobile devices), it does provide a useful modeling abstraction that both captures important 

dependencies and reduces problem complexity. Given this role, and the fact that functional 

buildings are fundamental to life safety, shelter, health, and social stability, our modeling 

perspective focuses on this interface. 
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Figure 2-2. Buildings as interface layer within a community  

 

2.6 Research gap and contribution  

Hazard mitigation in the past studies of community resilience have focused on the 

essential individual system. Each field has conducted rich research, for example, hazard 

impact on the economic system (West, 1995; van der Veen, 2004; Chang and Rose, 2012; 

Xiao and Nilawar, 2013; Martinelli, et al., 2014; Zhou and Chen, 2020), on the social 

system (Maguire and Hagan, 2007; Magis, 2010; Wind, et al., 2011), and  on the physical 

system (Gordon, et al., 2004; Adachi and Ellingwood, 2008; Chang, et al., 2008; Zhang 

and Miller-Hooks, 2014; Lin and Wang, 2016; Unnikrishnan and van de Lindt, 2016; 

Masoomi, et al., 2018a; Rosenheim, et al., 2021). However, in the past decade, the 

increasing number of collaborative studies between different systems (Guha, 2011; Gilbert, 
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et al., 2015; Sutley, et al., 2017a; Wang, et al., 2021) showed more robust assessment and 

mitigation on community resilience. To identify the research need, several research studies 

and the research components of their studies have been summarized in Table 2-1. Out of 

the studies listed in the table, 13 studies conducted a multi-objective optimization model 

on hazard mitigation. Sutley, et al. (2017b)  conducted an integrated model to measure the 

economic, social, and physical system in one framework. However, the model from Sutley, 

et al. (2017b) only targeted seismic mitigation. Thus, the gap in the current research is an 

integrated model measures multiple dimensions of community resilience while further 

being acceptable to a variety of hazards.  

Based on the research gap identified from the studies presented in Table 2-1, the 

study in Chapter 2 can fill the research gap and contribute to community resilience from 

the following aspects: (1) the framework can apply to various hazards, (2) the granularity 

of decision level is determined by needs of decision-making, and (3) the number of 

objective and objectives are defined by the decision makers.    

 First, the framework proposed from this study is the first framework among the 

existing frameworks that integrates all essential systems (i.e., economic, social, and 

physical) into one framework and is able to be applied to various hazards. It can be applied 

to various hazards because the hazard characteristics are not designed into the 

mathematical model but are reflected through the input data, as long as the required data 

are available and meet the requirements of the framework. Moreover, the primary systems 

of a community are integrated into the framework in a competitive way that allows decision 

makers to allocate mitigation resources with a more comprehensive perspective. 
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 Secondly, none of existing studies have the flexibility that allows decision makers 

to define the granularity of decision level. Sutley, et al. (2017a) introduced four objectives 

(i.e., initial cost, number of morbidities, economic loss, and recovery time) at building 

archetype level, which was not able to be changed to any other decision level. In the 

framework introduced in this study, the granularity of decision level is not designed into 

the mathematical model, but it is incorporated into the model via the input data.  

 Third, the frameworks introduced by Zhang and Nicholson (2016) and Sutley, et al. 

(2017b) did not have ability to allow decision makers to determine the objectives.  

Furthermore, neither of the frameworks allowed decision-maker to define the number of 

objectives needed for the decision-making. If a framework cannot reflect the needs/input 

from the end-user, the framework is limited and may only be applied to a very specific 

problem. The framework developed here enables decision makers to choose appropriate 

objectives and number of objectives, which is the first framework of mitigation plan to 

have flexibility on the model design.    

To conclude, the framework introduced in Chapter 2 can enhance the community 

resilience in a consolidated manner that can engage decision makers to define the 

objectives, and granularity of decision level. The three aforementioned aspects were not 

introduced in any existing studies but are all included in the framework introduced in this 

study. 
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Table 2-1. Reference related to the research gap 

Reference Hazard 
agnostic 

Optimization 
Model 

Multi-
objective 

Physical 
system 

Social 
system 

Economic 
system 

User defined 
granularity 

level 

Flexibility 
of objective 

Dodo, et al. (2005) Earthquake ✅ ❌ ❌ ❌ ✅ ❌ ❌ 

Dueñas-Osorio, et al. (2007) Earthquake ❌ ❌ ✅ ❌ ❌ ❌ ❌ 

Dong, et al. (2014) Earthquake ✅ ✅ ✅ ❌ ✅ ❌ ❌ 

Sadeghi, et al. (2017) Earthquake ✅	 ✅ ❌ ✅ ✅ ❌ ❌ 

Sutley, et al. (2017b) Earthquake ✅ ✅ ✅ ✅ ✅ ❌ ❌ 

Park, et al. (2012) Flood ✅ ✅ ✅ ❌ ❌ ❌ ❌ 

Woodward, et al. (2014) Flood ✅ ✅ ❌ ✅ ✅ ❌ ❌ 

Arca, et al. (2015) Wildfire ✅ ✅ ❌ ❌ ✅ ❌ ❌ 

Wang, et al. (2018) Tornado ✅ ✅ ✅ ❌ ❌ ❌ ❌ 

Wang, et al. (2021) Tornado ❌ ❌ ✅ ✅ ✅ ❌ ❌ 

Legg, et al. (2013) Hurricane ✅ ❌ ✅ ❌ ❌ ❌ ❌ 

Dahal and Dahal (2017) Hurricane ✅ ❌ ✅ ❌ ✅ ❌ ❌ 

Faturechi and Miller-Hooks (2013) ✅ ✅ ❌ ✅ ❌ ❌ ❌ ❌ 

González, et al. (2016) ✅ ✅ ❌ ✅ ❌ ❌ ❌ ❌ 

Zhang and Nicholson (2016) ✅ ✅ ✅ ❌ ✅ ✅ ❌ ❌ 

Tapia and Padgett (2016) ✅ ✅ ✅ ❌ ✅ ✅ ❌ ❌ 

Ellingwood, et al. (2016) ✅ ❌ ❌ ✅ ✅ ❌ ❌ ❌ 

Zhang, et al. (2018) ✅ ✅ ✅ ✅ ❌ ❌ ❌ ❌ 

Fang and Zio (2019) ✅ ✅ ❌ ❌ ❌ ❌ ❌ ❌ 

Karakoc, et al. (2019) ✅ ✅ ✅ ✅ ✅ ❌ ❌ ❌ 

RO1 ✅ ✅ ✅ ✅ ✅ ✅ ✅ ✅ 

(Note: ✅ indicates the research component is discussed in the reference; ❌ indicates the research component is not include in the 
reference) 
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2.7 The Interdependent Networked Community Resilience 

Modeling Environment  

The Interdependent Networked Community Resilience Modeling Environment (IN-

CORE) is an open-source research tool to provide novel and comprehensive modeling to 

support research on the interconnection of physical, social, and economic systems (Gardoni, 

et al., 2018; van de Lindt, et al., 2018). IN-CORE was designed by the Center for Risk-

Based Community Resilience Planning (http://resilience.colostate.edu/) to model the 

impact and recovery of natural hazards on communities in a computational environment 

with fully integrated databases. The fundamental process flow of IN-CORE is illustrated 

in Figure 2-3: (1) a community description is provided to the platform that represents the 

built environment and the social and economic systems, (2) a hazard such as a tornado, 

earthquake, or flood is simulated within the system and the resulting physical damage are 

estimated, (3) the impacts on the  social, economic, and physical system functionality are 

computed based on the current state of the system at a given time !, and (4) recovery models 

allow a user to advance through time steps ! = 0,… ,& to evaluate the effects of restoration 

models on the community. Additionally, IN-CORE provides detailed decision support to 

optimize mitigation or recovery interventions with respect to community defined goals 

(step 5) to identify a suite of Pareto optimal solutions (in steps 6,7,8) that respect the 

community defined resource availability and constraints. Finally, IN-CORE provides a 

suite of solution visualizations to support decision-making.      

 The mathematical optimization modeling approach and general framework 

presented in this study is designed for implementation in IN-CORE to provide the 
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aforementioned detailed decision support for enhancing or retrofitting buildings prior to a 

hazard event. The model can function as either standalone or as an integral element of IN-

CORE leveraging the hazard simulation, damage estimates, and expected intervention 

effects on building-level vulnerability to support any number of community defined 

objectives. Section 2.7 describes the modeling framework and its relationship to IN-CORE 

analyses.  

 

Figure 2-3. The structure of IN-CORE (Ellingwood, et al., 2019)  

 

 

2.8 Multi-objective mitigation optimization framework 

Figure 2-4 provides a graphical overview of the modeling framework and its three 

primary components, i.e., the (1) required input data and granularity specification, (2) the 

multi-objective approach and mathematical model specification, and (3) the detailed output 

that supports a variety of visualization and solution analysis. Each of these components are 

detailed in the subsequent subsections.    
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Figure 2-4. Flowchart of the framework 
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2.8.1 Model input 

Communities are geographically defined areas of local jurisdiction such as a 

counties, cities, or towns. Based on the availability of data, decision-maker needs, scope of 

intervention authority, the size of the community (specifically, the size of the building 

inventory), and system computational capabilities, the granularity of the intervention 

decision support should be defined. For example, a community might desire decision-

support at a building-specific level to determine exactly which school buildings, 

commercial businesses, and/or residential units should be retrofit. However, if the building 

inventory is large or the decision makers are not interested in such detail, it is typically 

computationally easier to provide modeling support if the buildings are assigned to logical 

groups. These groups can be defined as sets of buildings at various levels of detail, e.g., 

blocks, block groups, census tracts, or public use microdata areas (PUMAs), etc. 

Additionally, the groups need not be contiguous. For example, the groupings can be based 

on topographical elevation – a key building characteristic when considering flood hazards 

– with buildings across the community within a certain elevation range grouped together. 

The proposed model permits any level of granularity that a user desires, requiring only that 

each building in the analysis is assigned to exactly one group. Typically speaking, the 

tradeoff is that more specific granularity provides more detail at the expense of increased 

computational burden. Let ' denote the set of building groups. 

A building’s vulnerability to a hazard is often modeled based on a fragility curve 

that provides probabilistic information regarding the resulting damage state of the structure 

after experiencing a hazard of some given magnitude. The fragility curves are specific to 

classes of buildings. For example, a single-story wood frame residential home will likely 
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have a distinct fragility from a steel framed high rise for most hazards. The optimization 

model permits flexibility relating to the structural vulnerabilities of the building inventory 

(either at an individual building level or a group of buildings with identical fragility 

functions for a hazard scenario.)  That is, a given subset of buildings ( ∈ '	may be further 

classified into distinct building taxonomies. The optimization model is agnostic as to how 

the building types are defined (e.g., commercial vs. residential, wood frame vs. steel frame, 

archetype 1 vs. archetype 2, etc.). Typically, these identifiers are associated with unique 

fragility functions for a specified hazard. Let +  denote the set of building types for a 

community. 

Appropriate building-specific mitigation interventions should reflect the building 

type, material, occupational use, and specific hazard vulnerabilities. Strategies may include 

various building retrofits, code enforcement, or even building relocation, among others. 

For instance, depending on the building type, seismic mitigation may include reinforcing 

buildings with cross bracing, reinforcing buildings using shear walls, or installing shear 

anchors, etc. For a tsunami, building relocation may be the only suitable intervention due 

to the severe risk within the inundation zone. For a tornado, different types of roof covering, 

roof sheathing nailing patterns, and/or roof-to-wall connections might represent different 

strategies. Let  , denote the set of mitigation strategies. The set , includes the current 

status quo level or building code of the existing building inventory. Data are required on 

the cost and expected benefit for each strategy - ∈ , that is applicable to buildings in 

group ( ∈ ' of type ! ∈ +. The cost may be expressed in dollars, as time, or as some other 

community resource. The benefit of strategy - ∈ ,  must be computable in terms of 
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reduced vulnerability to a building, e.g., the shape of the fragility curve describes a lower 

probability of greater levels of damage for a specified hazard intensity level. 

 The sets ' , + , and ,  define the granularity of the optimization model and 

subsequent decision-support. All input data must be specified at least at this level of detail.  

This includes the baseline building inventory prior to any mitigation efforts. Specifically, 

let the parameter .!"# denote the total number of buildings in group ( ∈ ' of type ! ∈ + at 

the baseline (pre-intervention) at level -	 ∈ 	,. Table 2-2	provides an example of baseline 

building inventory data. Here, in group 1, there are five multi-family buildings with 

strategy - = 0 implemented, ten multi-family buildings using strategy 2, 40 single family 

homes where - = 2 , and two schools with strategy 4 in place prior to mitigation 

intervention. All values in the sets ', +, and , are categorical, i.e., no order is implied in 

the numbering of groups or strategies. The sum of the building count column represents 

the total number of buildings for which mitigation decision support is sought.   

The cost to implement a mitigation strategy on a single building (e.g., retrofitting 

the building to higher code level, modifying the roof sheathing nail pattern, etc.) is denoted 

as 01!"##! and represents the average cost of enhancing a building of type ! ∈ + located in 

group ( ∈ ' from the baseline strategy -	 ∈ 	,  to enhanced level -′ 	 ∈ 	,. The costs may 

be estimated in terms of dollars, time, labor resources, etc. and may be function of 

appraised value, building square footage, available labor, and/or material costs, among 

other factors. Table 2-3 provides an example input data file for the strategy implementation 

costs, 01!"##!, in terms of dollars. A “do nothing” plan for a building in which - = -$	has 

no associated intervention costs and is always possible. Otherwise, all pairwise allowable 



 

 

23 

modifications within a group and for a building type must be listed. For example, in Table 

2-3, it is possible to change multi-family homes in group 1 from strategy 1 to 2, from 1 to 

3, and from 2 to 3. However, it is impossible (or not worth modeling) to allow those same 

residential structures to move from strategy 2 to 1, 3 to 1, or 3 to 2. The cost column 

represents the average cost per building for the associated implementation. For example, 

from Table 2-3, there are five multi-family buildings in group 1 with a baseline level of 

- = 1 and the average cost to modify one of these buildings to - = 2 is estimated at 

$30,000. Regardless of the units of the strategy implementation cost (e.g., money, time, 

laborers, etc.), the assumption is that resource is limited. Let 3 denote the value of the input 

parameter for the community budget of the associated limited resource available during the 

mitigation intervention time frame.   

Communities may have multiple resilience related objectives that they would like 

to optimize. For any intervention to be worthwhile, it must have a computable benefit 

relevant to one or more of these objectives. If there 4  objectives are identified (e.g., 

minimize population dislocation, minimize direct economic loss, minimize negative 

impacts on employment, etc.), let 5!"#
%  denote the conditional expected impact on objective 

6 ∈ {1,… ,4} given the hazard scenario’s effect on the buildings in group ( ∈ 9, of type 

! ∈ 0 , at possible strategy -	 ∈ 	, . For instance,  5!"#
%  may reflect the expected direct 

economic loss (objective 6) due to damage to single story wood frame single-family homes 

(building type !) located in the inundation zone (group () of a 500-year return period 

tsunami hazard. Table 2-4 provides the example file for 5!"#
%  in which objective 6 = 1 is 

associated with direct economic loss. The objective coefficient 5!"#
%  of $150,000 is the 
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expected value loss of multi-family homes in group 1 which have strategy - = 1 

implemented at time of hazard.  

 

Table 2-2. Building inventory data file example 

Group 
 (	 ∈ ' 

Building type 
 ! ∈ + 

Strategy  
- ∈ , 

Building count 
.!"# 

1  Multi-family 1 5 
1  Multi-family  2 10 
1  Single-family 2 40 
1 School 4 2 
2 Single-family 1 10 
3 Church 2 2 
3 Single-family 1 60 
3 Shopping mall 1 1 
3 Office building 2 5 

 

 

Table 2-3. Strategy cost example data 

Group 
 :	 ∈ ; 

Building 
type 

 < ∈ = 

Baseline 
strategy  
> ∈ ? 

Enhanced 
strategy  

>′ ∈ ? 

Strategy implementation 
cost ($) 
@A&'((′ 

1 Multi-family 1 1 0 
1  Multi-family  1 2 30,000 
1  Multi-family  1 3 45,000 
1  Multi-family  2 3 20,000 
1 Single-family 2 2 0 
1 Single-family 2 3 10,000 
1 School 4 4 0 
1 School 4 5 500,000 
1 School 4 6 1,150,000 
2 Single-family 1 1 0 
2 Single-family 1 2 15,000 
2 Single-family 3 3 0 
2 Single-family 3 7 22,000 
3 Church 2 2 0 
3 Church 2 3 100,000 
… … … … … 
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Table 2-4. Objective coefficient example data file 

Objective 
B ∈ {C,… ,D} 

Group 
 :	 ∈ ; 

Building type 
 < ∈ = 

Strategy  
> ∈ ? 

Objective coefficient 
E&'(
)  

1 1  Multi-family 1 150,000 
1 1  Multi-family  2 100,000 
1 1 Multi-family 3 25,000 
1 1  Single-family 2 30,000 
1 1  Single-family 3 10,000 
1 1 School 4 225,000 
1 1 School 5 95,000 
1 1 School 6 110,000 
1 2 Single-family 1 10,000 
1 2 Single-family 2 2,000 
1 2 Single-family 3 15,000 
1 2 Single-family 7 9,000 
… … … … … 

 

 

Input data sources 

The input data can be either created externally or be accessed and/or computed via 

IN-CORE. The current version of IN-CORE contains multiple community descriptions 

(i.e., inclusive of building inventory data and building types), which can be used to 

construct the data reflected in Table 2-2. The building group definitions can be customized 

based on decision-maker goals or otherwise can be modeled directly in IN-CORE at parcel, 

block, or block group levels. The costs for interventions can be computed based on building 

inventory details such as percent of appraised value and/or content value. Using fragility 

functions for building types, IN-CORE can estimate the impacts from earthquake, tornado, 

hurricane, tsunami, and flood hazard scenarios on physical, social, and economic systems. 



 

 

26 

In particular, for physical damage to buildings, IN-CORE computes expected damage and 

probabilistic damage states; for social systems, population dislocation is estimated; and, 

for economic impact, the impact on the capital stock due to direct damage and indirect, 

longer-term effects such as household income and employment rates. To generate the type 

of data depicted in Table 2-4, the buildings in the community can be set to different 

interventions strategies and hazard simulations run multiple times as a Monte Carlo 

simulation to calculate expected impacts.  

 

2.8.2 Mathematical model 

Decision variables 

Let F!"# be the decision variable indicating the total number of buildings in group 

( ∈ ' of building type ! ∈ + set at strategy -	 ∈ 	, after optimal mitigation intervention. 

The difference between F!"# and .!"# implies the overall change from baseline to optimal 

policy. More specifically, let G!"##! 	denote the number of buildings in group ( ∈ ' of type 

! ∈ + that are enhanced from level - ∈ 	,  to -$ ∈ 	,. The decision variables are logically 

integer. However, for larger building groupings, the decision variables can be modeled as 

continuous to greatly improve computational speed. In particular, when the scale of the 

solution values (hundreds or thousands) is large and the relative error is small, continuous 

valued solution policies will be rounded to integer feasible retrofit actions.  

Objectives 

The objective coefficients 5!"#
%  for objectives 6 ∈ {1,… ,4}  and the decision 

variable F!"#  are used to create the set of linear objective functions presented in  
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min L 5!"#
% F!"#

(!,",#)	∈	/"
											∀6 ∈ {1,2, … , 4}  

. 
   (2-1) 

Let the set N% denote the 3-tuple((, !, -) associated with allowable interventions in group 

( ∈ '  for building type  !	 ∈ 0  at strategy -	 ∈ ,  for 6 ∈ {1,… ,4}  in which 5!"#
%  is 

defined (see Table 2-4). Without loss of generality, any maximization objective can be 

converted to a minimization problem by changing the sign of the objective coefficient. For 

instance, maximizing post hazard expected building functionality is mathematically 

equivalent to minimizing the negative of the same building functionality. The decision 

vector Q must include all possible post-optimization states whether or not a coefficient is 

defined for some objective 6 ∈ {1,… ,4}. Let the 3-tuple N denote the set all possible post-

optimization states defined as follows: 

N = ⋃ N%%∈{1,…,3} . 

 

Constraints 

The constraint defined in Equation (2-2) ensures that the costs associated with all 

mitigation interventions are within the allowable budget 3, 

L 01!"##!G!"##! ≤ 3

(!,",#,#!)∈	5
 (2-2) 

where the set T  is the 4-tuple ((, !, -, -$) associated with allowable interventions from 

strategy - to -$ in group ( ∈ ' for building type	! ∈ +. The set T is derived from the levels 

defined in Table 2-3.  

  The constraint in Equation (2-3) provides the logical relationship between the Q 

and U decision vectors such that the number of building at final state after intervention 
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equal to the number of building before the intervention. That is, the number of buildings in 

group ( ∈ ' of type	! ∈ + that are at strategy - ∈ , after the optimization (i.e., F!"#) is 

determined by the number of those same buildings originally at that level (i.e., .!"#) plus 

the number of buildings newly enhanced to strategy - (i.e., G!"#!#) minus the number of 

buildings enhanced from - to another strategy -$ (i.e., G!"##!),   

F!"# =	 L G!"#!#
#!:	(!,",#!,#)∈	5

+	.!"# −	 L G!"##!
#!:	(!,",#,#!)∈	5

	 

∀((, !, -) 	∈ 	N. 

(2-3) 

The constraint in Equation (2-4) ensures the total number of buildings in every group and 

for each type are the same before and after the mitigation intervention,   

L F!"#
#:	(!,",#)	∈	/

=	 L .!"#
#:	(!,",#)	∈	/

				∀( ∈ ', ∀! ∈ +. (2-4) 

Finally, each decision variable can only take non-negative values: 

F!"# ≥ 0				∀((, !, -) ∈ 	N , and (2-5) 

G!"##! ≥ 0			∀	((, !, -, -$) ∈ 	T. (2-6) 

 

Solution approach 

The multiple objective optimization problem described in Equations (2-1) - (2-6) is 

solved using the epsilon-constraint method (Laumanns, et al., 2006; Mavrotas, 2009). In 

this method, one objective function is selected to be optimized, while the remaining 

objective functions are reformulated as constraints. Without loss of generality, let objective 
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4  be selected for optimization, then, using the vector notation, the problem can be 

reformulated as: 

min	 Y3(Q),    (2-7) 

 

subject to all constraints (2-2) – (2-6) and additionally the newly formed constraints:  

Y%(Q) ≤ Z%  ∀6 ∈ {1,2, … , 4 − 1}.    (2-8) 

Let [7 denote the epsilon-constrained multiple objective problem defined by the objective 

in Equation (2-7), constraints (2-2) – (2-6), and Equation (2-8).  

The parameter values Z%	∀6 ∈ {1,2, … , 4 − 1} enforce quality restrictions on the 

objectives. For instance, if Z% is set infinitely large for all 6 ∈ {1,2, … , 4 − 1}, then the 

constraints in Equation (2-8) are not restrictive and the solution provides the minimum 

possible value for Y3. Whereas, for instance, if Z1 is reduced into a meaningful range, then 

all feasible solutions to [7 ensure a performance requirement on objective Y1. An optimal 

solution to the reformulated problem provides a point along the Pareto frontier. By iterating 

over many values of Z%	∀6 ∈ {1,2, … , 4 − 1}, the Pareto frontier can be estimated. To 

accomplish this, an upper and lower bound is established for each Z%  with 6 ∈

{1,2, … , 4 − 1} based on the minimums and maximums of objective function Y% with 6 ∈

{1,2, … , 4 − 1}. The minimum values are obtained through single objective optimization 

of Y%	∀6 ∈ {1,2, … , 4 − 1} . The maximums are obtained based on computing the 

objective function values assuming no mitigation interventions are permitted. Let Z8!%
%  and 

	Z89:%  denote the lower and upper bound of Y% for 6 ∈ {1,2, … , 4 − 1}. Problem [7 will be 

solved many times using different combinations of the epsilon values. Let ℰ% denote a set 
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of values for Z%  ranging from Z8!%
%  to 	Z89:%  for 6 ∈ {1,2, … , 4 − 1} . For instance, to 

create a set with ] + 1  values, one could define ℰ% =

^Z8!%	
% +	

8
; (Z8!%

% − Z89:% )_	& = {0,1, … ,]}`. Increasing the cardinality of ℰ%  provides 

for more detail along the Pareto frontier, but also increases the computational burden. The 

number of optimization problems to be solved is a function of the number of objectives 4 

and the cardinality of each set ℰ%	6 ∈ {1,2, … , 4 − 1}, i.e., ∏ |ℰ%|3<1
%=1 . The algorithm is 

provided in Figure 2-5. 

 

2.8.3 Outputs of the model 

The algorithm in Figure 2-5 generates Pareto optimal solution(s) for the decision 

variables.  For 4 > 1, there will be multiple solutions. Each solution is associated with 

multiple objectives. Table 2-5 provides an example of an optimal solution of decision 

variable F!"# .	The	first column is used to differentiate solutions if the total number of Pareto 

optimal solution is more than one. For example, there are a total of 100 optimal solutions 

produced by the model. The solution with Solution Id = 1 is different with the solution with 

Solution Id = 100. Additionally, the “Solution Id” does not indicate that the solution with 

Solution Id = 1 is better or worse than the solution with Solution Id = 100. The column 

“Group (	 ∈ '” is the decision level for mitigation planning. For example, if the group is 

defined as individual building, the retrofit planning can be executed at the building level. 

The column “Building type ! ∈ +” indicates the type of buildings considered in the model. 

The “Final Strategy - ∈ ,” column provides the final state to which the buildings are 

retrofitted. For instance, there are two school buildings in Table 2-5. One of schools is 
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retrofitted to strategy 4 and another one is enhanced to strategy 5. The last column of the 

table, “Decision variable F!"#” is the number of buildings that are retrofitted to strategy 

- ∈ , with building type ! ∈ + at group level (	 ∈ ', which reflects the final retrofit plans. 

For example, the solution with Solution Id = 1, shows that 30 single-family buildings are 

retrofitted to strategy 2 and 10 single-family buildings are enhanced to strategy 3 in group 

1. Table 2-6 contains the same information for columns “Solution Id”, “Group (	 ∈ '”, and 

“Building type ! ∈ +” as in Table 2-5 does. However, the meaningful purpose of Table 2-6 

is to provide the retrofitting details on starting and final strategies. The column “Initial 

Strategy - ∈ ,” indicates the strategy prior to the retrofitting effort and the column “Final 

Strategy - ∈ ,” is the final state of retrofitting. The column “Decision variable G!"##!” is 

the number of buildings retrofitted from -′ ∈ , to strategy - ∈ , with building type ! ∈

+ at group level (	 ∈ ' and implies the final retrofit plan. Following the previous example 

of Table 2-5, Table 2-6 explicitly shows the initial strategy for 30 single-family building is 

strategy 2 and the final strategy is also strategy 2, which indicates there is no retrofitting 

effort implemented on these 30 single-family buildings. In addition, 20 single-family 

buildings are retrofitted from strategy 2 to strategy 3. This detailed retrofitting plan 

provided through decision variable G!"##! is one of the main contributions and benefits of 

this framework.  

Finally, the example objective function output is provided in Table 2-7. Given that 

each solution is associated with multiple objectives, if there is more than one Pareto optimal 

solution that exists, the column “Solution Id” correspond with the column “Solution Id” in 

Table 2-5 and Table 2-6. For instance, the Solution Id = 1 matches the solution with 

Solution Id = 1 in Table 2-5 and Table 2-6. The “Objective 6 ∈ {1,… ,4}” column 
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indicates the number of objectives in this solution. The details provided in Table 2-7 shows 

there are 3 objectives in this model. The value 1 mean the first objective of the model (6 =

1) and the value 2 is for the second objective (6 = 2). The column “Objective Value” 

provides the optimal values for each objective. Decision support analysis using the details 

provided from Table 2-5 to Table 2-7 will be discussed in Section 2.9. 

Algorithm Multi-Objective Optimization Epsilon-Constraint Method 
Input:  Problem !! and ℰ" ∀$ ∈ {1,2, … ,+ − 1} 
for	/# ∈ ℰ# 

      for /$ ∈ ℰ$ 

            ⋯ 

               for /%&# ∈ ℰ%&#                             

                    solve Problem	!! 

                           if feasible return   8"  ∀$ ∈ {1,2, … ,+ − 1} , 9'() 	∀(;, <, =) ∈ 	? , 

@'())! 	∀	(;, <, =, =*) ∈ 	A 

Output: A set of Pareto optimal objective values and corresponding decision variables values  

Figure 2-5. Multi-Objective Optimization Epsilon-Constraint Algorithm 

 

Table 2-5. Pareto optimal solution (F!"#) data file example 

Solution 
Id 

Group 
:	 ∈ ; 

Building type 
< ∈ = 

Final 
Strategy  
> ∈ ? 

Decision 
variable 
F!"# 

1 1 Multi-family 1 0 
1 1 Multi-family  2 13 
1 1 Multi-family  3 2 
1 1 Single-family 2 30 
1 1 Single-family 3 10 
1 1 School 4 1 
1 1 School 5 1 
1 2 Single-family 1 2 
1 2 Single-family 2 8 
… … … … … 
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Table 2-6. Pareto optimal solution (G!"##!) data file example 

Solution 
Id 

Group 
:	 ∈ ; 

Building type 
< ∈ = 

Initial 
Strategy  
> ∈ ? 

Final 
Strategy  
> ∈ ? 

Decision 
variable 
G!"##! 

1 1 Multi-family 1 1 0 
1 1 Multi-family  1 2 4 
1 1 Multi-family  1 3 1 
1 1 Multi-family  2 2 9 
1 1 Multi-family 2 3 2 
1 1 Single-family 2 2 30 
1 1 Single-family 2 3 10 
1 1 School 4 4 1 
1 1 School 4 5 1 
1 1 School 4 6 0 

… … … …  … 
 

 

 

Table 2-7. Pareto optimal objective (Y%)	data file example 

Solution Id Objective 
B ∈ {C,… ,D} 

Objective Value 

1 1 $700,000 
1 2 1,600  
1 3 0.879  
2 1 $2,000,000 
2 2 700  
2 3 0.910  
… … … 
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2.9 Model context 

In the context of pre-hazard planning, models are fundamentally an abstraction of 

reality regardless of the model's complexity and scope. The implication from how models 

are developed, applied, evaluated, and interpreted can ultimately influence decision-

making. Therefore, it is crucial to understand the fundamental assumptions and limitations 

of the modeling framework proposed in this research effort. 

First, we assume that hazard characteristics are independent of the mitigation 

efforts. For instance, tornado paths and windspeeds, earthquake peak ground acceleration, 

and tsunami-induced storm surges are not affected by building codes and enhancements. 

Secondly, we assume the mitigation interventions are independent in terms of resources 

and benefits. For instance, enhancing two equivalent buildings to a given improvement 

level costs twice as much as enhancing just one. The contribution of the mitigation 

interventions is similarly independent, i.e., there is no efficiency gained nor diminishing 

returns based on the number of interventions. Third, we consider the only first-order effect 

of hazard events. That is, the model does not specifically address effects from potentially 

cascading events (i.e., direct damage to one infrastructure element causes damage or 

dysfunctionality to cascade to one or more different infrastructure elements even if the 

hazard did not directly impact these elements). That said, some elements of cascading 

events may be addressed by the framework if these effects are captured in the objective 

coefficient values. For instance, a computable general equilibrium (CGE) model 

effectually estimates the indirect effects of hazard damage on the economy, such as 

increased unemployment and lower household wages. If a CGE model is used to determine 

objective coefficients for such outcomes, the decision framework implicitly addresses 
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these indirect outcomes. Finally, all coefficients associated with objectives and costs and 

the available budget are assumed to be valid and certain. The objective coefficients may be 

generated through Monte Carlo simulations or other means to reflect expected conditional 

values with respect to a hazard scenario. The existing approaches to model the uncertainty 

are Monte Carlo simulation (Smith and Matthews, 2015; Attary et al., 2018; Younesi et al., 

2020), scenario-based analysis (Klibi and Martel, 2012; Lv et al., 2013; Zhang et al., 

2018b), Bayesian update (Chen et al., 2010; Wang et al., 2013; Rahman, 2019). However, 

given that the mathematical modeling framework is based on linear programming, these 

objective values are not considered stochastically.  

The downside to this certainty assumption is that there is substantial uncertainty in 

any real-world scenario: uncertainty concerning the hazard type, severity, and impact 

region, as well as uncertainty to the cost and effectiveness of any mitigation strategy. As 

such, assuming certainty is a significant simplification to the resilience problem. We posit 

that in the present problem space, such a simplification is likely necessary. While methods 

such as robust optimization and stochastic programming are algorithmically possible, 

given the size of the typical community instance and the number of potentially uncertain 

parameters, such techniques have limited practical value due to the computational burden. 

The framework we propose benefits from the ability to address relatively large problems 

in a reasonable time (seconds to hours) under various user-defined scenarios (e.g., hazard 

specifications or budget considerations) and to generate many possible scenario-based 

solutions for decision makers and subject matter expert analysis. Indeed, given the 

complexity of the problems at hand, the uncertainty of the input parameters, and the critical 

nature of the decisions and outcomes the framework is designed to evaluate, it is essential 
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to remember that any such system exists in a role of support tool providing one quantitative 

perspective on the resilience problem. 

 

2.10  Post-optimization solution analysis 

2.10.1  Tradeoff analysis 

With multiple objectives, i.e., 4 > 1, there are 4 potentially competing objectives. 

If two objectives are competing, then a solution that minimizes one objective does not 

simultaneously minimize the other. This means that along the Pareto frontier, a decision-

maker must make a choice in terms of a tradeoff, i.e., how much should objective Y! be 

deteriorated to support objective Y", for ( ≠ !. Figure 2-6 provides an example assuming 

two objectives: direct economic loss and population dislocation. It is reasonable to assume 

that these objectives are competing. In particular, damage to residential homes may be the 

most significant driver of immediate population dislocation, yet damage to the commercial 

sector buildings is likely to cause the most economic loss due to direct impact to capital 

stock. A solution, e.g., point A in Figure 2-6 most likely allocates mitigation efforts toward 

commercial buildings as a priority relative to residential building allocation resulting in a 

low economic loss value, but suboptimal expected population dislocation. The solution 

associated with point B is likely allocates more mitigation investment toward residential 

areas resulting in reduced population dislocation at the expense of direct economic impact.  

Point C provides a solution that forfeits some of both objectives to provide a more balanced 

outcome. The solution output from the optimization model provides sufficient detail to 

quantitatively evaluate such tradeoffs. Consider the possible numerical outcomes 
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demonstrated in Table 2-8 and Table 2-9. Shifting from the solution associated with point 

A to that of the solution associated with B, the economic loss increases by $1,300,000 

(185.7% increase) but the population dislocation decreases by 900 (56.3% decrease). This 

is a ratio of $1,444 of increased economic loss per individual not dislocated. When 

comparing solutions A and C, solution C increases the expected economic loss by only 

$200,000 (28.6% increase) but reduces the expected dislocation by 800 individuals (50% 

decrease), a ratio of $250 of loss per individual. Solution B is an extreme solution in that 

it successfully minimizes population dislocation. However, when compared to solution C, 

solution B only reduces population dislocation by an additional 100 individuals (12.5% 

decrease) but incurs $1,100,000 (122.2% increase) in economic loss, i.e., $11,000 per 

individual not dislocated. Such detail provides decision makers information to help 

quantitatively evaluate tradeoffs. 

 

 

Figure 2-6. Illustration of bi-objective space and tradeoffs 
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Table 2-8. Numerical example of potential tradeoff values 

Solution Economic loss  Population 
dislocation 

A $700,000 1,600 
B $2,000,000 700 
C $900,000 800 

 

 

 

Table 2-9. Quantitative tradeoff example 

Tradeoff Analysis: 
					i economic loss 
					i pop dislocation To 

  Point B Point C 
From  Point A 

 
$1,300,000 

-900 
$200,000 

-800 
Point B  -

$1,100,000 
100 

 

 

2.10.2  Resource analysis 

Increasing or decreasing mitigation resources (e.g., time, money, labor, etc.), 

impacts the quantity of feasible mitigation interventions. A larger budget leads to more 

options which may improve one, more, all even all objective functions, whereas a smaller 

budget likely shifts the Pareto tradeoff surface towards poorer performance. Figure 2-7 

depicts two Pareto curves for a bi-objective problem with different budgets. Points A and 

B are on the curve associated with budget 31 , and points A′ and B′ are on the curve 
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associated with a smaller budget, 3>. Changing the value of input parameter 3 in Equation 

(2-2) allows for optimization assuming a different value of resource budget. Not only does 

the Pareto surface of a smaller budget solution set shift towards the suboptimal region of 

the larger budget solution set, the shape of the curve also changes impacting the evaluation 

of the corresponding tradeoffs. By exploring different budget options, decision makers can 

determine resource investment levels necessary to achieve community resilience goals. 

 

 

 
 

Figure 2-7. Illustration of Pareto curves with two different budgets inputs 
 

 

2.10.3  Priority analysis 

To estimate the Pareto frontier and, potentially, to evaluate options at varying 

budget levels, the proposed framework generates numerous, distinct solutions. One 
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valuable analysis is to identify buildings (or groups of buildings or group of buildings of a 

given type) that are invested in most frequently across the solution sets. If significant 

resources are allocated to a specific building set for many combinations of epsilon values 

in Equation (2-8), then this set is important for all the community defined objectives. This 

may be due to inherent vulnerability of the buildings and/or its value within the community 

with respect to the various objective functions. Additionally, if a building set is selected 

for enhancement across many budget levels, from the most restrictive to the least, then the 

particular set again is deemed as vital with respect to the mathematical model. One possible 

investment analysis is depicted in Table 2-10 where the relative frequency of retrofitted 

group across all objective priorities is computed for multiple budgets. In the example, 

group 4 stands out because the values relative frequency indicate Group 4 is retrofitted 

more often than other groups across all optimal solutions and for all resource budgets. 

Other groups, e.g., group 3, may have much less investment allocations from the 

mathematical framework indicating that potentially these buildings play a little role in 

improving objective performance, the mitigation interventions in such areas are not cost-

effective, and/or the buildings are not vulnerable to the hazard scenario, etc. Evaluating the 

optimization solution sets with this level of detail allows decision makers a unique 

quantitative perspective on the community and can identify vulnerable areas to be 

prioritized. Figure 2-8 provides an example to prioritize the vulnerable areas with the 

retrofit budget $9 Million dollars, and total 55 optimal solutions in Joplin, MO. The groups 

with dark red color (relative frequency of unique groups from 0.8 – 1) imply high 

retrofitting frequency across all 55 solutions, which mean these groups (dark red color) 
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have appear in 44 solutions in the worst cases. On the contrary, the groups in light yellow 

are not retrofitted on any solutions.  

Table 2-10.Example solution priority analysis with different budget levels 
 

Relative frequency of retrofitted groups across all 
objective priorities 

Group Budget j? Budget j@  Budget jA All Budgets 
1 5.0% 7.9% 7.5% 6.1% 
2 2.2% 0.1% 0.0% 1.3% 
3 0.2% 0.0% 0.0% 0.1% 
4 8.1% 11.7% 15.3% 10.0% 
5 2.1% 1.4% 0.0% 1.6% 
… … … … … 

 

 

 

Figure 2-8. Using optimal solution to prioritize vulnerable areas 
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2.11  Summary 

The decision support framework introduced in this chapter features a multi-

objective optimization mathematical model designed to work at any level of decision 

granularity from high level groups of buildings such as PUMAs, census tracts, or block 

groups, down to the parcel or building level of detail. Building groupings do not have to 

be spatially contiguous but can be created based on relevant characteristics of the analysis, 

e.g., digital elevation models could be used to create spatially disparate groups of buildings 

in elevation ranges with different vulnerability to flooding. Decision granularity for groups 

of buildings is further refined based on a set of types which may be associated with 

structural features (e.g., wood frame vs. reinforced masonry, etc.), occupational type (e.g., 

residential vs. commercial, etc.), or any other category that the decision-maker prefers to 

define. The specification of type is useful for computing distinct hazard fragilities, related 

outcomes from a hazard scenario (e.g., population dislocation, school closure, etc.), or to 

define appropriate mitigation options. For each combination of a building group and type, 

any number of distinct mitigation interventions are permitted. The interventions should 

each have an estimated cost (in terms of available resources, such as dollars, time, labor, 

etc.) and one or more benefits associated with the various community-defined resilience 

objective functions. The underlying mathematical model is solved using the Z-constraint 

method such that, in the case of competing objectives, a set of Pareto optimal solutions is 

returned. This set of solutions allows community leaders and researchers to evaluate a 

spectrum of outcomes and quantitatively evaluate tradeoffs among solutions. Finally, the 

model itself is hazard agnostic. If the correct objective coefficients are provided (and 

assuming the validity of the other inputs), the approach produces solutions that are 
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guaranteed to be optimal for a given set of epsilon values regardless of the hazard intensity 

or type. The framework is designed to work either as a stand-alone component or as an 

integral module within the IN-CORE platform. IN-CORE can estimate the impact of 

numerous hazard types on multiple resilience metrics.   

Using linear programming as the mathematical paradigm enhances the practical 

computational efficiency of the framework and supports multiple investigations in hazard 

mitigation. The level of detailed decision support from the model, the use of the iterative 

Z-constraint method for multi-objective optimization, and the evaluation of multiple hazard 

or budget scenarios, result in a considerable quantity of solution data that can be analyzed 

to further enrich evidence-based decision making. In particular, Pareto solutions sets can 

be computed for multiple resource budgets to analyze how the location and shape of the 

tradeoff surface changes. Solving under different budget levels also allows investigators to 

pinpoint the amount of investment necessary to meet different resilience goals. Solution 

set analysis can also identify vulnerability vulnerable areas or within the community which 

may need to be prioritized regardless of the particular resilience objective emphasis. Each 

of these analyses are explored in detail in the Chapter 3 in a case study for Joplin, Missouri 

under threat of a severe tornado.  
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3 Multi-objective optimization application: tornado mitigation 

3.1 Introduction 

A tornado is considered a minor threat with less damage and low occurrence 

comparing other hazards (e.g., earthquake, hurricane, flooding). However, in U.S. history, 

damage from the tornadoes to the local communities is tremendously severe in some events. 

On May 20, 2013, a mile wide EF5 tornado passed through Newcastle, Moore, and 

southern Oklahoma City. The post-disaster estimation reported 24 fatalities and $2 billion 

in damage. On April 25-28, 2011, an estimated 349 tornadoes tore through the South and 

East of the U.S., with 321 people dead in the event and $11.9 billion in damage. According 

to NOAA (National Oceanic and Atmospheric Administration), an average of 1,253 

tornadoes occur in the United States each year.  

Mitigation planning on tornadoes (Smith, et al., 2012; Walsh and Tezak, 2012; 

Harrison, et al., 2015; Ripberger, et al., 2018) is not studied extensively compared to 

earthquakes (Berke and Beatley, 1992; Kanamori, et al., 1997; Gupta and Shah, 1998; 

Dodo, et al., 2007; Xu, et al., 2007; Li, 2012; Oettle and Bray, 2013; Pollyea, et al., 2018), 

floods (Cuny, 1991; Brody, et al., 2009; Brody and Highfield, 2013; Kousky and Walls, 

2014; Yazdi and Salehi Neyshabouri, 2014; Xie, et al., 2017; Tasseff, et al., 2019), and 

hurricanes (Berke and Stubbs, 1989; Jamieson and Drury, 1997; Peacock, 2003; 

Leatherman, et al., 2007; Deyle, et al., 2008; Chowdhury, et al., 2009; Pinelli, et al., 2009; 

Kopp, et al., 2010; Ge, et al., 2011; Legg, et al., 2013; Gatzlaff, et al., 2018). Two reasons 

are likely in play here. First, tornado mitigation planning and risk reduction are often 

complex for the public to engage in because there are no immediate threats and dangers to 
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the community. Even with the advanced technology of tornado prediction and tracking, it 

is still difficult to predict where and when the tornadoes will occur. Secondly, mitigation 

planning is designed based on what-if scenarios, which are not immediate concerns for the 

community. Tornado mitigation measures are enhancement of building structural 

components such as sheathing, roof covering, and the connection between wall and roof. 

With the relatively inexpensive enhancement of building codes, the damage imposed from 

tornadoes can be reduced by 30%, but only one city of the United States has adopted 

enhancement of building codes against tornado hazard (Ripberger, et al., 2018). 

A large body of tornado mitigation studies focused on the improvement of building 

codes, structural enhancement, structural design to prevent physical building damage for 

future events (Prevatt, et al., 2012a; Smith, et al., 2012; Simmons, et al., 2015; Ramseyer, 

et al., 2016; Masoomi, et al., 2018a; Ripberger, et al., 2018; Farokhnia, et al., 2020). 

Mitigation planning typically restricts limited resources (e.g., budget, time, labors). For the 

community decision makers, the challenge to prepare the community against future hazards 

is how to allocate limited resources most effectively. Studies of building structural 

enhancement are essential for mitigation planning. However, the questions to be asked next 

are how we can conduct such structural retrofitting through the whole community with a 

restricted budget and how we can determine appropriate retrofit planning for the 

communities.  

 

3.2 Research gap and contribution 

The challenges of tornado mitigation have drawn research attention from different 

fields, such as the studies from civil engineering (Prevatt, et al., 2012a; Ramseyer, et al., 
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2016; Wang, et al., 2018; Farokhnia, et al., 2020; Koliou and van de Lindt, 2020), 

economics (Cutler, et al., 2016b), social science (Zahran, et al., 2008; Houston, et al., 2017), 

and computing science (Strader, et al., 2016; Wang, et al., 2020). But none of studies have 

conducted tornado mitigation using multi-objective optimization model at a granule level 

decision support. A research gap is identified by evaluating the research components that 

were conducted in the studies listed Table 3-1. First, majority of studies of tornado 

mitigation focused on structural design of individual building and enhancement (Prevatt, 

et al., 2012a; Amini and van de Lindt, 2014; Kantamaneni, et al., 2017; Farokhnia, et al., 

2020). The influence from social and economic aspects of a community was overlooked 

by these studies. Most recent study from Wang, et al. (2021) discussed that different 

building strategies impacted the measurement from social, economic, and physical 

infrastructure (i.e., electrical power network, buildings) using Joplin Tornado as the case 

study through IN-CORE, but the authors did not apply the multi-objective optimization 

method to provide strategical retrofitting throughout the city of Joplin. The multi-objective 

optimization framework proposed by Zhang and Nicholson (2016) did not consider the 

impact from physical system on mitigation plan. The study conducted in this Chapter is 

able to fill the research gap identified and contribute on tornado mitigation on the three 

aspects. 

First, this study showcases the application of the framework introduced in Chapter 

2. By introducing three essential systems as the competing objectives for the optimization 

model, this study is the first multi-objective optimization model integrating multi-facet of 

a community on tornado mitigation. Secondly, this study demonstrates the how to use and 

adapt the existing models from other fields (i.e., Civil engineering, social science, and 
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economics) to obtain the required data for the model. For example, by modifying a logistic 

regression model of the population dislocation to a linear model, we introduced the social 

objective to the optimization model. Third, the rich information produced from the model 

provides an array of decision support options to mitigate the risk from the tornado hazard 

for the city of Joplin, MO, at the block groups level. Lastly, we conduct case study through 

IN-CORE with 66 simulated tornado events, the results further evaluate the individual 

optimal retrofit plan.  
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Table 3-1. Reference list related to research gap 

Reference Tornado 
Mitigation 

Structural 
design or 

enhancement 

Physical 
system 

Social 
system 

Economic 
system 

Integrated 
multi-objective 

optimization 
Farokhnia, et al. (2020) ✅ ✅ ✅ ❌ ✅ ❌ 

Smith, et al. (2012) ✅ ✅ ✅ ❌ ❌ ❌ 

Prevatt, et al. (2012a) ✅ ✅ ✅ ❌ ❌ ❌ 

Koliou and van de Lindt (2020) ✅ ✅ ✅ ❌ ❌ ❌ 

Masoomi, et al. (2018a) ✅ ✅ ✅ ❌ ❌ ❌ 

Wang, et al. (2018) ✅ ✅ ✅ ❌ ❌ ❌ 

Prevatt, et al. (2012b) ✅ ✅ ✅ ❌ ❌ ❌ 

Masoomi, et al. (2018b) ✅ ❌ ✅ ✅ ❌ ❌ 

Ellingwood (2007) ❌ ✅ ❌ ❌ ❌ ❌ 

Masoomi and van de Lindt (2016) ✅ ✅ ❌ ❌ ❌ ❌ 

Liu and Turner (1990) ✅ ✅ ❌ ❌ ❌ ❌ 

van de Lindt, et al. (2013) ✅ ✅ ❌ ✅ ❌ ❌ 

Simmons, et al. (2015) ✅ ❌ ❌ ❌ ✅ ❌ 

Ripberger, et al. (2018) ✅ ❌ ❌ ❌ ❌ ❌ 

Kantamaneni, et al. (2017) ✅ ✅ ❌ ❌ ❌ ❌ 

Zhang and Nicholson (2016) ✅ ✅ ❌ ✅ ✅ ✅ 

Ramseyer, et al. (2016) ✅ ✅ ✅ ❌ ❌ ❌ 

Wang, et al. (2020) ✅ ❌ ✅ ✅ ✅ ❌ 

RO2 ✅ ✅ ✅ ✅ ✅ ✅ 

Note: ✅ indicates the research component is discussed in the reference; ❌ indicates the research component 
is not included in the reference 
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3.3 Highlights 

This chapter conducts a case study to apply the framework introduced in Chapter 2 

on tornado mitigation. The optimization model is designed with three competing objectives 

to represent potential impacts on economic, social, and physical systems, respectively. The 

model optimizes the retrofitting strategies on residential buildings in the city of Joplin, 

Missouri. The study demonstrates how the decision makers can utilize the rich information 

from the optimal solutions to prioritize the appropriate retrofit planning for the community. 

Such decision-making support analyses include tradeoff analysis, priority analysis, and 

resources analysis.  

 

3.4 Application of the optimization model 

3.4.1 Community resilience goals  

In Chapter 2, the community goals are introduced in the multi-objective 

optimization model as objectives that can be used to measure the performance of the 

systems (e.g., economic, social, physical, etc.). Three community goals are designed for 

this study: direct economic loss, population dislocation, and building functionality. These 

three community goals are selected based on the recent studies from different fields and 

the principle of optimization model introduced from Chapter 2. First, the direct economic 

loss is linked to direct physical damage to a building and expressed as a percentage of the 

appraisal values of the building (Zhang and Nicholson, 2016). A recent study from 

Rosenheim, et al. (2021) demonstrated that population stability is strongly tied with the 

physical integrity of buildings in a community. Lastly, the physical system is the primary 
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driver of social and economic systems. The results from Wang, et al. (2021) supported that 

enhancing critical infrastructures reduced the potential impact on social and economic 

systems. Therefore, building functionality is selected as the third objective to represent the 

physical system. Building functionality of an individual building can be described as the 

availability of a building to be used for its intended purpose, and it is a function of its 

structural integrity and availability of utilities (Almufti and Willford, 2013; Lin and Wang, 

2017; Zhang, et al., 2018). Building functionality, !(#) can be expressed as a percentage 

of a building’s functionality	at any time # during the restoration period (Koliou and van de 

Lindt, 2020). Building functionality and recovery depend on various factors such as the 

amount of structural damage, damage to the utility network, and available labor, etc. 

(Filiatrault and Sullivan, 2014; Zhang, et al., 2018; Kim and Reed, 2020).  

 

3.4.2 Case study: Joplin, MO 

 
Figure 3-1. Geographic location of Joplin, MO 
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Joplin is a city located in the southwestern corner of the U.S. state of Missouri 

(Figure 3-1). As of the 2010 census, the population of Joplin was 50,150. Joplin is also 

located in an area where consistently experiences a high frequency of tornadoes each year. 

This area is called Tornado Alley (Concannon, et al., 2000) and refers to the southern plains 

of the central United States. On May 22 of 2011, an EF-5 rated tornado stroke in Joplin 

and caused 161 fatalities (out of the total 553 deaths of U.S. tornado deaths in 2011) and 

over 1,000 injuries, making it a record tornado in 2011. The resulting damage from the 

built environment and economic loss was recorded as the costliest tornado. The data 

provided by the Missouri Department of Insurance, Financial Institutions, and Professional 

Registration reported that insured commercial property losses were $1.228 billion, and 

residential property losses were $0.552 billion (Kuligowski, et al., 2014). One of the major 

findings from Kuligowski, et al. (2014) was that 83.8 percent of fatalities were related to 

building failure, and over 50 percent of building failure-related deaths occurred in 

residential buildings. Of the buildings damaged in the storm, 7,411 were residential, and 

553 were non-residential. 3,069 residential buildings and all 553 non-residential buildings 

were categorized as heavy or demolished damage degrees. Figure 3-2 shows an example 

of structural failure observed among residential buildings involving disconnection of 

components structural systems (roof-to-wall and wall-to-foundation connections) of a 

single-family wood-frame building that sustained demolished damage during the Joplin 

tornado.  

Although EF0 and EF1 tornadoes occur more frequently, once up to EF2 level, the 

damage is significantly increased compared with EF1 and EF0 tornadoes. An EF2 tornado 

can result considerable damage, such as roof torn off frame houses, demolishing of 
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weakening buildings, trailer housed destroyed, cars being blown off the highway, etc. 

(McDonald, et al., 2009). Statistically, about 95% of all United States tornadoes are below 

EF3 intensity, and around 77% are considered weak (EF0 or EF1). To calculate the 

potential impact from a tornado event, wind speed is necessary to calculate input 

parameters: direct economic loss and population dislocation. We define wind speed 135 

mph in this study as a baseline. For all the buildings in Joplin, the physical damage of a 

building is computed based on the maximum wind speed of 135 mph, which is the upper 

bound of wind speed defined for an EF2 tornado. With well-enforced retrofitting strategies, 

one can still expect numerous broken windows in an EF2 tornado, but the residential 

structures should remain intact (Simmons, et al., 2015). Table 3-2 provides the detail on 

Enhanced Fujita Scale for the tornado damage.  

 

Table 3-2. Enhanced Fujita Scales for Tornado damage (Ripberger, et al., 2018) 

EF Scale Wind Speed 
(MPH) Characteristic damage to residential wood-frame houses 

0 65-85 

Threshold of visible damage; loss of roof-covering material 
(less than 20%), gutters and/or awning; loss of vinyl or metal 
siding.  
 

1 86-110 

Broken glass in doors and windows; uplift of roof deck and 
loss of significant roof-covering material (20% or more); 
collapse of chimney; garage doors collapse inward; failure 
of porch or carport.  
 

2 111-135 

Entire house shifts off foundation; large sections of roof 
structure removed; most walls remain standing; exterior 
walls collapsed  
 

3 136-165 Most walls collapsed, except small interior rooms 
 

4 166-200 All walls collapsed 
 

5 Over 200 Destruction of engineered and/or well-constructed 
residence; slab swept clean  
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Figure 3-2. Residential buildings damage example in Joplin Tornado on May 22, 2011 

(Kuligowski, et al., 2014) 
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3.4.3 Inputs of the framework 

Model context 

This chapter inherits the assumptions from the framework introduced in the Chapter 

2 that interdependencies between different types of buildings are excluded in this paper, 

and we only consider the first-order effects of the events. It is impossible to predict the 

exact location, timing, and size of a tornado event compared with other hazards. Also, there 

is no evidence that tornadoes would occur in one exact location repeatedly. Therefore, 

retrofitting planning on tornado hazards cannot only consider the areas tornadoes struck in 

the past within a community. If the historical data show that some areas of the community 

were exposed to tornado events in the past, then mitigation measures should be applied to 

all the areas of whole community because one cannot be certain that other areas are safer 

than the areas where the tornadoes had struck. For example, Moore, the city in Oklahoma, 

had implemented hurricane clips, which are mental straps often used in construction along 

the Gulf Coast to keep a roof attached to the walls during the hurricanes, as part of the 

city’s building codes. The city of Moore adopted retrofitting on residential buildings codes 

that are strong enough to survive EF2 tornadoes after an EF5 tornado devasted the 

community on May 20, 2013. To model the uncertainty from the input data, we consider 

each block in Joplin with equal probability to experience tornado events in the future. 

Therefore, our goal is to compute the conditional expected value of a building’s economic, 

social, and physical systems given an impact by a tornado (i.e., conditioned on experienced 

windspeed.). 
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Building stock 

In this study, parameter &  in the model is designed by using the census blocks that 

are geographically defined areas. Census blocks are the smallest geographic unit used by 

United States Census Bureau, and  “statistical area bounded by visible features, such as 

streets, roads, streams, and railroad tracks, and by nonvisible boundaries, such as selected 

property lines and city, township, school district, and county limits and short line-of-sight 

extensions of streets and road.” (U.S. Census Bureau, 2011). The unique identifier for each 

block follows the block codes defined by U.S. Census Bureau. For example, block 

“290970101001018” from the building stock contains the information described by Figure 

3-3. The identifier for state Missouri remains the same for all blocks, the rest identifiers 

(County, Census Track, Census Block) differentiate the uniqueness of each block. In Joplin, 

there are 1,565 blocks (set	&) containing residential buildings, two residential structural 

types (set ') (i.e., single-family, multi-family) and three retrofitting strategies (set (  ) 

above the status quo for residential wood-frame buildings.  

 

 

Figure 3-3. Joplin block group identifiers 
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Retrofitting strategies cost:	)*!"##! 

Retrofitting a building is making changes to an existing building to reduce the 

vulnerability of and damage to buildings from hazardous events, such as hurricanes, floods, 

earthquakes, high winds, etc. Many buildings existing today were built at a time when little 

was known about where and how regularly hazard events would happen, and how buildings 

ought to be protected (Federal Emergency Management Agency (FEMA), 2014). In this 

study, three retrofitting strategies (Table 3-3) are selected from the study proposed by 

Masoomi, et al. (2018a) that were introduced to enhance residential wood-frame buildings 

from high wind-related hazards, such as tornadoes, hurricanes.  

The cost for hazard mitigation is difficult to be accurately estimated because it 

depends on many factors such as current design/code, construction practices, structural 

configuration, local labor costs, and availability of retrofit materials. In this case study, we 

assume there are no mitigation actions on the buildings before the retrofitting, meaning that 

the initial retrofitting level (+) for all buildings is 0. Table 3-4 provides the retrofit cost on 

each strategy of single-family and multi-family wood frame buildings. The retrofit cost for 

each strategy of each building type is calculated as the percentage of the appraisal value of 

each building. The retrofit cost information of residential buildings in Joplin is provided 

by the Civil engineering department from Colorado State University. 

Table 3-3. Retrofitting strategies (Masoomi, et al., 2018) 

Structural elements Selection 
Retrofit 

strategy 1 
Retrofit 

strategy 2 
Retrofit 

strategy 3 

Roof covering Asphalt shingles X X − 
Clay tiles − − X 

Roof sheathing 
nailing pattern 

8d C6/12 X − − 
8d C6/6 − X X 

Roof-to-wall 
connection type 

Two 16d toe nails X − − 
Two H2.5 clips − X X 
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Table 3-4. Retrofit cost estimates of residential buildings in Joplin 

Retrofit 
strategies Archetype Retrofit cost percentage (%) 

1 Single-family 11.41 
Multi-family 8.26 

2 Single-family 17.33 
Multi-family 14.34 

3 Single-family 35.33 
Multi-family 25.74 

 

 

Direct economic loss: ,!"#$  

The parameter -%&'
( is the coefficient of the objective function of expected direct economic 

loss with conditional wind speed 135 mph for the buildings in block . ∈ & of archetype 0 ∈

', which at the strategy +	 ∈ 	(. There are three required inputs to estimate the values of 

-%&'
( 	 in this study. The first input is the damage states for each retrofitting strategy 

considering designated hazard and building type. Damage states are essential information 

to estimate building damage for structural and non-structural systems of a building. 

Practically, damage states do not have a continuous scale and describe the building's 

physical condition. Table 3-5 provides an example of building damage states (Bai, et al., 

2009). Another term also is used to describe the building damage states, namely: DS0 (no 

damage), DS1 (insignificant damage), DS2 (moderate damage), DS3 (heavy damage), and 

DS4 (destroyed damage state). Masoomi, et al. (2018a)  specified four damage states 

(Table 3-6) for wood-frame buildings under extreme windstorms such as tornadoes and 

hurricanes. The authors used structural components (i.e., roof covering, window/door, roof 

sheathing, roof-to-wall connection) to indicate the damage states of wood-frame buildings. 
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The second input is the corresponding damage factor for each damage state that is essential 

to assess the cost of structural repairs as a percentage of replacing the structural portion. 

Table 3-7 provides proposed damage states and the corresponding damage factor for 

economic loss estimation on tornado hazard based on the approach used in the Hazus 

Earthquake Model for estimating recovery/reconstruction time as a function of the building 

damage state (Federal Emergency Management Agency (FEMA), 1999).  

The last input for -%&'
(  estimation resulting from building damage is the fragility 

curve that is typically developed to evaluate the performance of a building under extreme 

loads by considering uncertainties in load calculation and resistance estimation. Table 3-8 

provides parameters to construct fragility curves used for single-family and multi-family 

buildings for tornado mitigation when the three retrofit strategies are applied. Figure 3-4, 

Figure 3-5, and Figure 3-6 represent the fragility curves of a single-family building at 

strategy 1, strategy 2, and strategy 3 respectively. For a multi-family building, Figure 3-7, 

Figure 3-8, and Figure 3-9 are the fragility curves for strategy 1, strategy 2, and strategy 3 

respectively. Figure 3-10 illustrates the statistical relationship of building damage 

probability with exceedance probability at damage state DS4 that is associated with the 

most damage compared with DS1, DS2 and DS3. When the intensity measure (IM) of a 

hazard is selected, exceedance probabilities associated with different damage states are 

known from the fragility curve: 1)*( ,  1)*+ , 	1)*, , and 	1)*- . The expected damage 

probability of a building can be estimated by the summation of damage probability (i.e., 

1)*.|01 , 1)*(|01 , 1)*+|01 , 1)*,|01 , 1)*-|01  ) multiplying damage factor (i.e., 

2)*.,	2)2(,	2)*+,	2)*,, 2)*-) associated with corresponding damage state. Let parameter 

3%&'  denote the total appraised value of associated buildings. The expected loss is a 
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function of the appraised value of the structure and expected percent of house value loss 

with the given damage state from the fragility curve of given building archetypes and wind 

speed. Therefore, the expected repair cost is expressed as: 

 

-%&'
( = 	3%&' 	 5 132|01 ∗

)*-

324)*.

232	. 	 
(3-1) 

 

 

 

 

 

Table 3-5. Building damage description associated with damage state (Bai, et al., 2009) 
Damage States Description 

No damage (N) None. No damage is visible, either structural or non-structural. 
 

Insignificant (I) 

Damage required no more than cosmetic repair. No structural repairs are 
necessary. For non-structural elements, repairs could include spackling, 
partition. Cracks, picking up spilled contents, putting backing fallen ceiling tiles, 
and righting equipment. 
 

Moderate (M) 

Repairable structural damage has occurred. The existing elements can be 
repaired essentially in place, without substantial demolition or replacement of 
elements. For non-structural elements, repairs would include minor replacement 
of damaged partitions, ceilings, contents, and equipment or their anchorages. 
 

Heavy (H) 

While the damage is significant, the structure is still standing, and Structural 
damage would require major repairs, including substantial demolition or 
replacement of elements. For non-structural elements, repairs would include 
major replacement of damaged partitions, ceilings, contents, equipment, or their 
anchorages. 
 

Complete (C) 
Damage is so extensive that repair of most structural elements is not feasible. 
The structure is destroyed, or most of the structural members have reached their 
ultimate capacities. 
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Table 3-6. Damage states for the wood-frame building (Masoomi, et al., 2018a) 
Damage 
state 

Damage indicators 
Roof covering 

failure 
Window/door 

failure 
Roof sheathing 

failure 
Roof-to-wall connection 

failure 
DS1 >2% and ≤15%a 1a No No 
DS2 >15% and ≤15%a 2a or 3a 1−3a No 
DS3 >50%a >3a >3% and ≤35%a No 
DS4 Typically > 50% Typically > 3 >35%a Yes" 

Note: Each damage state is defined as the occurrence of any of the damage indicators in a given 
row marked with a. 
 
 
 
 

Table 3-7. Percentage of replacement/repair cost for Damage States (FEMA, 1999) 

Damage state Damage factor (%) 
None (8567) 0 
Slight (856$) 2 

Moderate (8568) 10 
Extensive (8569) 50 
Complete (856:) 100 

 
 
 

Table 3-8. Building-level tornado fragility curves parameters for residential retrofitting 

levels (Masoomi, et al., 2018) 

Damage state Retrofitting 
Strategy  

Single-family Multi-family 
μ σ μ σ 

DS1 1 4.49 0.13 4.56 0.13 
 2 4.49 0.14 4.56 0.13 
 3 4.74 0.12 4.76 0.12 

DS2 1 4.37 0.14 4.46 0.13 
 2 4.66 0.12 4.69 0.12 
 3 4.80 0.11 4.83 0.11 

DS3 1 4.44 0.13 4.51 0.13 
 2 4.79 0.11 4.79 0.11 
 3 4.88 0.10 4.92 0.10 

DS4 1 4.49 0.14 4.45 0.15 
 2 4.97 0.13 4.87 0.14 
 3 5.10 0.12 5.05 0.13 

Note: μ refers to logarithmic mean of curves and σ refers to logarithmic standard deviation of curves, and the 
unit is mph. 
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Figure 3-4. Fragility curve of a single-family building at strategy 1 
 
 
 
 
 
 

 
 

Figure 3-5. Fragility curve of a single-family building at strategy 2 
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Figure 3-6. Fragility curve of a single-family building at strategy 3 
 
 
 
 
 
 

 
 

Figure 3-7. Fragility curve for a multi-family building at strategy 1 
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Figure 3-8. Fragility curve of a multi-family building at strategy 2 
 
 
 
 
 

 

Figure 3-9. Fragility curve of a multi-family building at strategy 3 
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Figure 3-10. Illustration of expected damage probability with different damage state 

 

 
Figure 3-11 illustrates that enhancement to a single-family building retrofit levels 

can reduce the probability of the building reaching the damage state DS4. The 

repair/replacement cost for the building at DS4 damage state is 100% of appraisal value of 

the building (Table 3-7). One can observe that the probability of exceedance of DS4 for 

the building with strategy 1 is 100% when wind speed is 135 mph, meaning that the 

building mitigated with strategy 1 has 100% probability with DS4 damage if the wind 

speed reaches 135 mph. However, if strategy 2 is implemented on the building, the 

probability of exceedance of DS4 drops to approximately 30%, and approximately to 5% 

for strategy 3. For a multi-family building (Figure 3-12) at a wind speed 135 mph, the 

probability for the building exceeding DS4 is 100% with strategy 1. Strategy 2 improves 
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the probability of exceedance by approximately 40%, and strategy 3 reduces the probability 

of the building reaching DS4 to 5%. Figure 3-11 and Figure 3-12 explain the motivation 

behind the hazard mitigation is to reduce the probability of exceedance of all damage states, 

and therefore, to reduce the expected damage probability that leads to less direct economic 

loss ultimately.   

 

 
 

Figure 3-11. Fragility curves of a single-family building with strategy 1, strategy 2, and 
strategy 3 on damage state DS4 

 
 

 
Figure 3-12. Fragility curves of a multi-family building with strategy 1, strategy 2, and 

strategy 3 on damage state DS4 
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Population Dislocation: ,!"#8  

The coefficient of population dislocation parameter -%&'
+  in this framework was 

adapted from the work proposed by Lin (2009). The author designed population dislocation 

(2.9:)  as a logistic regression model: a dislocation factor was calculated from probability 

of dislocation (1;3%2 ) by the following operation: 2.9:  = 1 if 1;3%2 ≥  0.5; 2.9:  = 0 

otherwise. 2.9: calculated of the probability of dislocation that is the first term in Equation 

(3-2). To apply a linear design of the framework introduced in Chapter 2, the dislocation 

factor is replaced by the probability of dislocation that is associated with four features (i.e., 

=%&'
;<=22, 2>&, ?%, @%). The first feature is the percentage of building value loss due to damage, 

denoted here as =%&'
;<=22. The second feature is a binary value  2>& for archetype 0 ∈ ' to 

represent whether the building is a single-family dwelling unit (2>& = 1)	or if it is a multi-

family dwelling unit (2>& = 0). Thirdly, ?% denotes the percentage of the Black population 

in block . ∈ &. Lastly. @% represents the percentage of the Hispanic population in block 

. ∈ &. The coefficients C., … , C- are -0.42523, 0.02480, -0.50166, -0.01826, and -0.01198 

that are extracted from Lin, et al. (2008). -%&'
+  is expressed as:  

 

-%&'
+ =	

1

1 +	G>?@#A	@$C%&'
()*++A	@,)*&A@-D%A@.E%F

	× I2J%& × ℎ2JLLLL% 

(3-2) 

where I2J%& is the average number of dwelling units of archetype 0 ∈ ' in block . ∈ &, 

and ℎ2JLLLL% represents the average number of households per dwelling unit in block . ∈ &.  

The value =%&'
;<=22 in Equation (3-2) is the only factor that is affected by the decision variable 

in the model, and it is computed as:  
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=%&'
;<=22 =	

M%&'
>G

3%&
× 100 

 

. 

(3-3) 

where M%&'
>G  is the direct economic loss of a building (excluding content loss) for block . ∈

& and archetype 0 ∈ ' that is at strategy  +	 ∈ 	(. The parameter 3%& indicates the average 

appraised value for buildings of archetype 0 ∈ ' in block . ∈ &. 

 

Building functionality parameter: ,!"#9  

 -%&'
,  is designed as the coefficient of the objective building functionality that 

measures the performance of the physical system. -%&'
,  is defined as average building 

functionality across all buildings in the community and expressed as: 

-%&'
, =	

!%&'
H

∑ ∑ ∑ O%&''	∈	J&∈K%∈L
 

(3-4) 

where !%&'
H  is adapted from the study introduced by Koliou and van de Lindt (2020), and 

is defined as:  

!%&'
H =

1

1 + P 1
!%&'
. − 1R G>M%&'H

	 
 

. 

(3-5) 

The definition of !%&'
H  is the average functionality at time # (#	 ≥ 0) for all the buildings in 

block . ∈ & and archetype 0 ∈ ' that are at strategy +	 ∈ 	(. When #	 = 0,  !%&'
H  can be 

represented as !%&'
.  that is defined as a starting building functionality right after the 

immediate tornado event. ;%&' is computed based on  !%&'
. , and recovery time # needed to 

achieve 100% building functionality and is expressed as:  
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;%&' =	−
1
#
ln

1
!%&'
H − 1

1
!%&'
. − 1

 

 

. 

(3-6) 

 

If !%&'
.  and !%&'

H  are given, ;%&' is a function of recovery time #. However, if !%&'
H  is 100%, 

the ln 0 is mathematically undefined. If  !%&'
.  equals 0, meaning the building in block . ∈

& and archetype 0 ∈ ' that are at strategy +	 ∈ 	( is completely destroyed, Equation (3-6) 

is undefined as well. To verify the impact from different values of !%&'
.  on the 

determination of values of ;%&', four sets of values of !%&'
.  and !%&'

H  are provided in Table 

3-9 and are used as parameters in Equation (3-6). The relationship between ;%&'  and 

recovery time # is depicted through Figure 3-13. To compute the value of ;%&', recovery 

time #  for the building to reach 100% functionality is the deciding factor. To choose 

appropriate value of recovery time # in Equation (3-6), two aspects are considered. First, 

the Equation (3-5) from Koliou and van de Lindt (2020) was developed to account for a 

slower repair rate immediately after the disaster event, and higher rate in the following 

days as shown in Figure 3-14. The authors additionally pointed out that for residential 

buildings (multi-family building) associated with structural and non-structural extensive 

damage, there is a 50% probability that 180 days are needed for the buildings to reach 

100% building functionality. Using #=180 days in Equation (3-6) and four sets values of 

!%&'
.  and !%&'

H , the values of ;%&'  are achieved as shown in Table 3-9 (column “;%&'”). 

Secondly, if we consider !%&'
H  unknown, using the values of !%&'

.  and ;%&' in Table 3-9, and 

recovery time # = 180 days, the recovery trajectory of building functionality is described 
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in Figure 3-15. Comparing the shape of !%&'
H  with parameters provides from Set 2 – Set 4, 

the building functionality trajectory with parameters from Set 1 has the slower repair rate 

and higher rate in the later recovery stage. Therefore, the values of parameters !%&'
.  and 

;%&' are defined by the values of Set 1 in Table 3-9.  

If a building is destroyed, !%&'
.  can be practically defined as 0, meaning that 

Equation (3-5) is mathematically undefined. Additionally, the starting functionality 

!%&'
. 	can determine the value of ;%&'. Based on these two considerations, the final equation 

to compute the building functionality is proposed as: 

 

!%&'
H =	

⎩
⎪
⎪
⎨

⎪
⎪
⎧

1

1 + P 1
!%&'
. − 1RG>M%&'H

												.Y!%&'
. > 0	

	
	

1

1 + [1\ − 1] G
>M%&'H

												.Y	!%&'
. = 0

 

, and (3-7) 

 

 

where \ is defined as a starting parameter if !%&'
. = 0. # is the user-defined parameter and 

defined as the recovery time (unit: days) after the immediate tornado event.  

 

 

Table 3-9. ;%&' values change according to !%&'
. 	and !%&'H  at recovery time # = 180 days 

 !%&'
.  !%&'

H  ;%&' 

Set 1 10>N 0.9999999 0.1790 
Set 2 10>O 0.9999999 0.1535 
Set 3 10>, 0.9999999 0.1279 
Set 4 10>( 0.9999999 0.0890 
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Figure 3-13. ;%&' 	values vary according to different !%&'

. values when !%&'
H = 0.9999999 

 

 

 
Figure 3-14. Repair time function for quantifying multiple levels of building functionality 

based on predefine/starting damage levels (Koliou and van de Lindt, 2020) 
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Figure 3-15. Building functionality !%&'

H 	recovery trajectory Considering different values 
of  !%&'

.  and ;%&'  
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3.4.4 Optimization model 

We can formulate the optimization problem by following form. The model is coded 

with Python using Gurobi solver.  

Description Equations Eq.No. 

Input Parameter 

Set of locations & ∈ 	) 
Set of building types * ∈ 	+ 
Set of retrofitting strategy ,	 ∈ 	- 
Coefficient of direct economic loss: ./012  
Coefficient of population dislocation: ./013  
Coefficient of building functionality: ./014  
Retrofitting cost: /0/011! 
Retrofitting budget: 1 
 

 
 
 
(3-1) 
(3-2) 
(3-4) 

Decision 
Variable 

The total number of buildings after the mitigation: 2567 
the total number of buildings retrofitted from strategy , to ,′: 456778 

 

Objective 1 
Minimize direct 
economic loss 

min 8 ./012 9/01
(/,0,1)	∈	>"

								: = 1		 

 

(2-7) 

Objective 2 
Minimize 
population 
dislocation 

min 8 ./013 9/01
(/,0,1)	∈	>#

											: = 2 

 
 

(2-7) 

Objective 3 
Minimize the 
building 
functionality 
 

min 8 −./014 9/01
(/,0,1)	∈	>$

											: = 3 (2-7) 

Constraint 1 
Retrofitting 
budget constraint 
 

8 /0/011!>/011! ≤ 1
(/,0,1,1!)∈	?

 

 

(2-2) 

Constraint 2 
Building 
constraint of final 
state after 
intervention 

9/01 =	 8 >/01!1
1!:	(/,0,1!,1)∈	?

+	A/01 −	 8 >/011!
1!:	(/,0,1,1!)∈	?

	 

∀(&, *, ,) 	∈ 	F. 

(2-3) 

Constraint 3 
Building number 
balance constraint 

8 9/01
1:	(/,0,1)	∈	>

=	 8 A/01
1:	(/,0,1)	∈	>

				∀& ∈ H, ∀* ∈ +. 

 

(2-4) 

Constraint 4 
Non-negative 
constraint 

 
9/01 ≥ 0				∀(&, *, ,) ∈ 	F 

(2-5) 

Constraint 5 
Non-negative 
constraint 

 
>/011! ≥ 0			∀	(&, *, ,, ,8) ∈ 	K. 

(2-6) 
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Table 3-10 summarizes the notation used in the model.  

Table 3-10. Notation for the optimization model 

 Description 
Set 

) A set of unique block groups & ∈ H	 
L A set of residential building types * ∈ + 
M A set of intervention strategy associated with tornado mitigation 
NA A set of combination of 3-tuple (&, *, ,) 
N Union of  NA  : ∈ {1,… ,Q} 

S A set of combination of 4-tuple (&, *, ,, ,′) associated with allowable interventions from 
strategy , to ,8 in group & ∈ H for building type	* ∈ + 

Parameters 

T567B  Coefficient of the objective function for direct economic loss in block  & ∈ H  of 
structure type * ∈ +, which are at strategy	,	 ∈ 	-	

T567C  Coefficient of the objective function for population dislocation in block  & ∈ H  of 
structure type * ∈ +, which are at strategy ,	 ∈ 	- 

T567D  Coefficient of the objective function for building functionality in block  & ∈ H  of 
structure type * ∈ +, which are at strategy	,	 ∈ 	- 

U5 Percentage of the Black population in block & ∈ H 
U The total budget available for retrofit efforts 

VW6 
Dummy variable for a residential structure. 
 X/0 = 1	if the archetype is Single-Family Dwelling 
 X/0 = 0 if the archetype is Multi-Family Dwelling 

YVZ56 The average number of dwelling units  

[567 Corresponding quantity of building before any mitigation efforts in block & ∈ H of 
structure type * ∈ +, which are at strategy ,	 ∈ 	- 

\5 Percentage of the Hispanic population in block & ∈ H 
]VZ^̂^̂^5 The average number of households per dwelling unit for block & 
_567EF  The direct economic loss of a building excluding content loss in block & ∈ H  of 

structure type * ∈ +, which are at code/strategy ,	 ∈ 	- 

`567 The total appraised value of associated buildings in block  & ∈ H of structure type * ∈
+, which are at strategy ,	 ∈ 	- 

`56 
The average appraised value per building for the building group in block & ∈ H of 
structure type * ∈ + 

a Total number of objectives 

b567GHIJJ 
Percentage value loss of a building in block & ∈ H of structure type * ∈ +, which are at 
strategy ,	 ∈ 	- 

c567K  The functionality of building in block & ∈ H  of structure type * ∈ + , which are at 
strategy ,	 ∈ 	- at immediate disruption 

c567L  The functionality of building in block & ∈ H  of structure type * ∈ + , which are at 
strategy ,	 ∈ 	- at time t 

d567 Parameter related to building functionality 
We5677! Strategy cost for strategy ,	 ∈ 	-  on building type * ∈ + in block & ∈ H  

Decision Variables 

2567 Decision variable, the total number of buildings of structural type * ∈ + in block &	 ∈
H  at strategy	,	 ∈ 	- after mitigation 

4
567′7

 Decision variable, the total number of buildings retrofitted from (,′, , ) ∈ ℒ in block 
& ∈ H of structure type * ∈ + after mitigation 
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3.4.5 Outputs of the Optimization model 

Optimal solutions 

Two decision variables ^%&' and _%&''!, imply the retrofitting plans. The optimal 

solutions of ^%&' encompass the following 5 pieces of information as shown in Table 3-11: 

(1) unique I.D. of each solution (column Solution Id); (2) unique I.D. of blocks where 

buildings are located (column &); (3) structural type (column '); (4) final retrofitting 

strategies for the buildings (column (); (5) the number of buildings in block . ∈ & of 

archetype 0 ∈ ', which are at the strategy +	 ∈ 	( (column ^%&'). The rows with the same 

“Solution Id” in Table 3-11 are unique Pareto optimal solution that is a retrofit plan. The 

column &  is defined as the unique census block groups in Joplin, MO, which are the 

granularity of decision-making for the mitigation planning. Using the information provided 

from Table 3-11, we can interpret the implementation of this solution as a retrofit plan in 

Joplin as: (1) 20 single-family buildings are enhanced to strategy 3 in block 

“290970101001018”; (2) 3 multi-family buildings are enhanced to strategy 2 in block 

“290970101001018”; (3) 214 single-family buildings are enhanced to strategy 3 in block 

“290970103002015”; (4) 8 multi-family buildings are enhanced to strategy 3 in block 

“290970110002039”; (5) There is no retrofit action on 33 single-family buildings in block 

“290970101001003”.  

The optimal solutions for decision variable _%&''!  contain the same information 

comparing to the optimal solution of ^%&', except for the allowable retrofit strategy pair 

(+′, + ) in Table 3-12. The column _%&''! represents the number of buildings for strategy 

+ ∈ 	( retrofitted to strategy +P ∈ 	(  on archetype 0 ∈ ' in block . ∈ &. The information 
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from _%&''! shows the methodology of how the final retrofitting strategies are achieved. 

For example, in Table 3-11, the final strategy of 214 single-family buildings in block 

“290970103002015” is strategy 3. In Table 3-12, the initial retrofitting strategy for these 

214 single-family buildings is revealed at strategy 0, which means there is no prior 

retrofitting effort on these 214 buildings. The detailed implementation associated with 

decision variable _%&''! is valuable information for decision makers. In this example, the 

decision-making level is at the block group, and it is possible that not all buildings in the 

same block are retrofitted. The initial strategy information from _%&''!  can differentiate 

buildings groups if the buildings with same building type are retrofitted to the same final 

strategy with different starting strategies.  

It is possible that there may be more than one optimal solution. For example, using 

$181M budget for the retrofitting effort and 20 number of epsilon steps, there are a total of 

109 unique Pareto optimal solutions produced by the optimization model and these 

solutions are equally optimal to achieve the same mitigation effect. Each solution is 

associated with three objectives (i.e., direct economic loss, population dislocation, building 

functionality). Table 3-13 shows an example of the optimal values of these objectives. The 

number of objectives I ∈ {1,… ,a} is defined in the mathematical model formulation in 

Section 3.3.4. For example, for solution with Solution Id = 1, the objective values are 

explained as: (1) the value of the first objective (direct economic loss) is $1.414M; (2) the 

value of the second objective (population dislocation) is 22; and (3) the value of the third 

objective (building functionality) is 0.69.  
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Table 3-11. ^%&' 	optimal solution example 

Solution Id & ' ( ^%&' 
1 290970101001018 Single-family 3 20 
1 290970101001003 Single-family 0 33 
1 290970101001081 Multi-family 2 3 
1 290970103002015 Single-family 3 214 
1 290970110002039 Multi-family 3 8 
… … … … … 

 

 

 

Table 3-12. _%&''! optimal solution example 

Solution Id & ' ( (P _%&''! 
1 290970101001018 Single-family 0 3 20 
1 290970101001003 Single-family 0 0 33 
1 290970101001081 Multi-family 1 2 3 
1 290970103002015 Single-family 0 3 214 
1 290970110002039 Multi-family 0 3 8 
… … … … … … 

 

 

Table 3-13. Pareto optimal objectives data consider all residential blocks 

Solution Id Objective 
I ∈ {1,… ,a} 

Objective Value 

1 1 $ 1.414M 
1 2 22 
1 3 0.69  
2 1 $ 1.378M 
2 2 28 
2 3 0.56  
… … … 
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Tradeoff analysis 

The outputs of the model include the optimal solutions and the optimal values of 

three competing objective functions: direct economic loss, population dislocation, and 

building functionality. Each optimal solution is associated with one set of optimal values 

for the three objectives. Improving any of these three objectives will reduce the other two 

objectives. In the previous example, there were a total of 109 unique Pareto optimal 

solutions using the parameter of a $181M budget for the retrofitting effort, and 20 number 

of epsilon steps. A Pareto surface can be drawn using the set 109 of optimal objective 

values (Table 3-13) to describe the tradeoff relationship of these three objectives, which 

are shown in Figure 3-16. Figure 3-17 provides Pareto curves between average population 

dislocation per block and average community building functionality. The points with same 

color scale (the color scale bar) indicate that the direct economic losses of these solutions 

are at the same level.   

To illustrate the tradeoff analysis using the outputs from the model, three solutions 

were selected from a total of 109 Pareto solutions in Figure 3-16 and Figure 3-17, which 

are marked as Plan 1, Plan 2, and Plan 3. Table 3-14 provides the objective function values 

associated with the three solutions. The values of direct economic loss and population 

dislocation are calculated as average values at the block group level, and the building 

functionality is shown as the average building functionality across the whole community. 

Given such information, if decision-maker prefers Plan 2 over Plan 1, the impact on direct 

economic loss is reduced by $36,000 ($1.414M versus $1.378M) with an 8% improvement 

(0.69 versus 0.56) on building functionality, but the number of dislocated population is 

changed from 22 to 23 people. This example demonstrates the tradeoff analysis between 
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the competing objectives. By improving direct economic loss and building functionality, 

the population is degraded by such a choice. It can additionally be interpreted that one 

dislocated population on each block costs $36,000 on direct economics loss and 8% on 

building functionality. Similarly, if Plan 3 is chosen over Plan 1, direct economic loss is 

improved by $29,000 ($1.414M versus $1.385M), and building functionality is improved 

by 13% (0.69 versus 0.56) with increasing one dislocated population. Plan 1 is associated 

with the highest direct economic loss and the lowest building functionality but leads to the 

least population dislocated compared to Plan 2 and Plan 3. If Plan 2 is chosen over Plan 3, 

the building function is improved by 5% while losing $7,000 on direct economic loss. In 

conclusion, decision makers can use tradeoff information to evaluate different solutions to 

facilitate the decision-making process on determination of retrofit plans from the available 

solutions.  

Table 3-15 summarizes the tradeoff analysis on the three selected solutions and the 

negative sign indicates the degradation on the corresponding objectives. Table 3-16 shows 

the details of the three plans. In Plan 1, there are a total of 14,794 buildings (approximately 

60% of total buildings) retrofitted to higher strategy from the initial strategy (strategy 0). 

In Plan 2, 17,417 single-family buildings (70% of total single-family buildings) are 

retrofitted to strategy 2, and all 67 multi-family building are retrofitted to strategy 3. 

However, Plan 3 retrofits the most single-family buildings compared with Plan 1 and Plan 

2. Out of a total of 18,760 retrofitted single-family buildings, 1,357 single-family buildings 

and 21 multi-family buildings are enhanced to strategy 3. Recalling the objective values 

associated with these three plans (Table 3-14), Plan 3 is associated with higher building 

functionality than Plan 1 or Plan 2 because Plan 3 retrofitted more buildings (a total of 
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18,760) than Plan 1 or Plan 2. Figure 3-18 geographically explains such a difference. Each 

point on the map represents a building, and each layer (buildings with same color) 

represents a retrofit Plan. Because of the overlapping between the different plans, the 

majority of retrofitted buildings across the three plans are same; however, Plan 3 (bottom 

layer in green) covers more areas than Plan 2 (layer in blue) or Plan 1(layer in rosybrown), 

which validates the fact Plan 3 enhanced the most buildings out of the three plans. 

Moreover, in Plan 2, the budget spent on retrofitting multi-family buildings is 

approximately 12% of the total budget of $181M on a total of 67 buildings due to the fact 

appraisal values of a multi-family building are more expensive than a single-family in most 

cases. With allocating a higher budget on multi-family buildings, Plan 2 has the least direct 

economic loss compared with Plan 1 or Plan 3. 

The tradeoff analysis illustrates how the information provided from the optimal 

solutions are utilized to evaluate the differences between retrofit plans. However, the 

decision-making on selecting the retrofitting plans is determined by decision makers who 

need to balance the decision factors such as local policies, budget, resources, etc.  

 
 

 

Table 3-14. Objective function values of selected three retrofit plans 

Retrofit 
Plan 

Average Direct economic 
loss/block (Million $) 

Average Population 
dislocation/block 

Average community 
building functionality 

1 1.414 22 0.56 
2 1.378 23 0.64 
3 1.385 23 0.69 
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Table 3-15. Tradeoff analysis on selected retrofit plans 

Tradeoff Analysis: 
c economic loss 
c pop dislocation 

c Building functionality To 
  Plan 2 Plan 3 

From  Plan 1 
 

$36,000 
-1 

8% 

$29,000 
-1 

13% 
Plan 2  -$7,000 

0 
5% 

 
 
 
 

 

 

Table 3-16. Details of three selected retrofit plans 

Retrofit Plans Archetype Retrofit 
strategy 

Number of 
buildings 

Budget allocation 
($M) 

Plan 1 Single-family 0 10,000 0 
Single-family 2 6,344 72.4 
Single-family 3 8,412 105.9 
Multi-family 0 29 0 
Multi-family 3 38 3.1 

Plan 2 Single-family 0 7,339 0 
Single-family 2 17,417 159.9 
Multi-family 0 0 0 
Multi-family 3 67 21.5 

Plan 3 Single-family 0 5,996 0 
Single-family 2 17,403 171.3 
Single-family 3 1,357 9.4 
Multi-family 0 46 0 

 Multi-family 3 21 0.6 
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Figure 3-16. Pareto surface from the solutions with $181M budget and recovery time 30 

days  
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Figure 3-17. Pareto solutions of three competing objectives–direct economic loss, 

population dislocation, and building functionality with $181M budget and building 
recovery time 30 days in Joplin 

 
 

 
Figure 3-18. Geographic building mapping of three retrofit plans 
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3.5 Strategies on decision Support  

3.5.1 Priority analysis 

The priority analysis provided by this study furthers the decision-making on 

mitigating the potential loss and improve the community resilience. The optimal solutions 

from Table 3-11 and Table 3-12 include the following information: Block (&), building 

structure ('),  retrofitting level ((	and  (P), and the retrofit plans from decision variables 

(^%&' and _%&''!). If the number of solutions is produced at a budget level, the frequency of 

a block appearing in all retrofitting solutions can be used as an indicator to measure if this 

block is more vulnerable than others. For instance, there are a total of 1,565 blocks with 

residential structures in Joplin. At a budget level $181M, 109 Pareto optimal solutions are 

available for retrofitting the residential buildings. Block “290970101002040” appears in 

59 of 109 solutions. However, Block “290970106003009” is only shown in 1 of 109 

solutions. Therefore, we can suggest that block “290970101002040”, which is retrofitted 

more often than block “290970106003009”, can be prioritized before block 

“290970106003009”.  

Figure 3-19 describes the relative frequency of the residential blocks in Joplin that 

are retrofitted in 55 unique Pareto optimal solutions with a budget of $9M. The blocks in 

dark red indicate these blocks appear in 44 out of 55 solutions in the worst cases (80% of 

55 solutions). The blocks in yellow (relative frequency is approximately 0) means there is 

no retrofitting across all optimal solutions. If the budget is increased up to $90M, it is 

evident that more blocks are retrofitted (Figure 3-20). The frequency of the blocks in dark 

red in the Figure 3-20 is over 80% of total solutions, meaning with $90M budget, 87 out 
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of 109 retrofitting solutions retrofitted the blocks in dark red. By applying the restrictive 

budget, the most vulnerable blocks are pinpointed in the community. By increasing the 

priority of retrofitting interventions on these blocks, potentially, less direct economic loss, 

less household dislocation, and higher building functionality would happen after tornado 

hazard.  

Priority analysis expands the options on decision-making by using geographical 

technique and information. The prerequisite of priority analysis is that the geographic 

feature associated with decision level much be available to allow decision makers to 

explore the options. 
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Figure 3-19. Identify vulnerable areas with $9M retrofitting budget 
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Figure 3-20. Identify vulnerable areas with $90M retrofitting budget
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3.5.2 Decision-making on different budget  

Budget ! is the constraint that provides the threshold for retrofitting efforts. By 

adjusting the budget, we broaden the options for decision-making. Table 3-17 provides 

optimal values of three objective functions with three budgets: $9M, $90M, $181M for a 

recovery time of 30 days. The range for each objective function is minimum and maximum 

values of the objective’s values across all solutions. For instance, at budget level $9M, 

there are a total of 55 solutions associated with 55 direct economic loss values, 55 

population dislocation values, and 55 building functionality values. $1.640M and $1.643M 

are the smallest and the largest values out of the 55 direct economic loss values. Figure 

3-21 depicts three Pareto curves between direct economic loss and population dislocation 

with $9M, $90M, and $181M as budgets. The curve in blue located in the upper right corner 

of Figure 3-21 is the Pareto curve with $9M budget, the curve in red is the Pareto curve 

with a $90M budget, and the curve in green located in the lower left corner of the figure is 

the Pareto curve with a $181M budget. It is observed that increasing the availability of 

retrofit budget can reduce the potential damage on direct economic loss and population 

dislocation. Figure 3-22 describes the Pareto curves between population dislocation and 

building functionality with three different budget levels. Increasing the retrofit budget 

improves building functionality as expected because if more buildings are retrofitted to 

higher strategies, the probability of damage of buildings after a tornado event will be less, 

which improves the building functionality in general. 

 The information provided on Table 3-17 can support decision-making on the 

following aspects: determination of availability of budget and the restricted budget. First, 

a decision-maker can use the range of each objective function to determine the availability 
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of funding. For instance, the goal of the mitigation effort for a community is to reduce the 

potential direct economic to $1.4M per block. Because $1.4M falls into the range with a 

budget of $181M ($1.378M to $1.414M), the retrofitting budget for the community can be 

defined as $181M. Similarly, such implications can apply to the other objectives in the 

model. Secondly, by decreasing the budget to a certain level, the range of the objectives 

will eventually become 0. We can call this budge level as the most restricted budget, which 

is the lower bound for the budget !. Using the most restricted budget, the decision-maker 

can identify the least investment for the community and the potential impacts on the 

primary community resilience goals given this budget. 

 The analysis based on different budgets add another layer of information to the 

array of options for decision-making. The decision makers can use such information on 

allocation the mitigation budget to target the desired performance of primary systems. 

 

 

Table 3-17. Optimal values of three competing objectives with different budget levels 
Budget Objectives  Minimum Maximum Range 
$9M $Average direct economic loss per block($Million) 

Average population dislocation per block  
Average community building functionality (%) 

 

1.640 
26 
8.8 

1.643 
27 
0.2 

0.003 
1 

8.6 
 

$90M $Average direct economic loss per block($Million) 
Average population dislocation per block  

Average community building functionality (%) 
 

1.514 
23 
37 

1.534 
25 
47 

0.02 
2 
10 
 

$181M $Average direct economic loss per block($Million) 
Average population dislocation per block  

Average community building functionality (%) 

1.378 
21 
56 

1.414 
23 
69 

0.036 
2 
13 
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Figure 3-21. Pareto curves between direct economic loss and population dislocation with 

three different budgets 

 

 
Figure 3-22. Pareto curves between population dislocation and building functionality 

with three different budgets 
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3.6 Case study through IN-CORE  

To provide further analysis based on the results from the model, we can additionally 

utilized the computational platform, the Interdependent Networked Community Resilience 

Modeling Environment (IN-CORE) (Gardoni, et al., 2018), to simulate tornado scenarios 

and evaluate the effectiveness of the selected retrofit solutions. The optimal retrofitting 

solutions consider the wind speed 135 mph on all residential wood frame buildings without 

prior knowledge on where and when the tornado hazard will strike. In this section, we 

simulated several tornado scenarios through IN-CORE and provided the measurement for 

three competing objectives of the optimization model to evaluate the selected retrofit plans 

on all simulated tornado events.  

This study is designed to mitigate the moderate to severe tornadoes in the Joplin 

area. The tornado scenarios are simulated from IN-CORE ranging from EF3 to EF5. We 

designed 66 scenarios including 20 EF3 tornadoes, 25 EF4 tornadoes, and 21 EF5 

tornadoes. The current IN-CORE version allows modeling the building damage probability 

and population dislocation (Rosenheim, et al., 2021) while considering the designated 

hazard. The calculation of direct economic loss (Equation (3-1)) and buildings 

functionality (Equation (3-4)) will follow the methodology from Section 3.3.3. As we 

discussed in Section 3.3.5, there might be more than one optimal solution produced from 

the optimization model. Three retrofit plans were selected (Table 3-14) to incorporate with 

the tornado scenarios for further analysis.  

To validate the selected retrofit plans from the model, we use the improvement on 

three objectives to evaluate the selected plans. Figure 3-23 reveals the process of 

computing the values of three objectives (i.e., direct economic loss, population dislocation, 
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building functionality right after the disruption). First, we applied 66 tornado events 

individually to the building inventory without any retrofit effort. Each tornado event 

resulted in building damage within the tornado path. Using the building damage analysis 

from IN-CORE, we computed direct economic loss, population dislocation, and building 

functionality after each tornado. The results included 66 values of direct economic loss that 

is denoted as "#$$!", ℎ ∈ {1,2, … ,66}, 66 values of population dislocation that is denoted as 

./$"!", ℎ ∈ {1,2, … ,66}, and 66 values of building functionality that is denoted as 0123!", 

ℎ ∈ {1,2, … ,66}. Second, we implemented Plan 1 on Joplin building inventory. Then we 

applied the tornado events on the new buildings inventory that is retrofitted according to 

Plan 1. Through IN-CORE building damage analysis on all tornado events, we computed 

the corresponding direct economic loss, population dislocation, and building functionality 

after each tornado event. Similarly, we have results for each objective. Let "#$$!# denote 

direct economic loss of Plan 1, ./$"!#  denote population dislocation of Plan 1, and 0123!# 

as building functionality of Plan 1 for ℎ ∈ {1,2, … ,66}. The same process was applied to 

Plan 2 and Plan 3. Three variables were created to represent the difference between before 

and after the retrofitting effort: Δ$%&&, 	Δ'(&$., and Δ*+,-.  Table 3-18 describes the process 

to achieve the data used for the case study analysis. Table 3-19 provides expected values 

of three objectives across all tornado events on different retrofit plans. The percentage of 

the improvement was calculated as:  

 

Averge	values	of	objective	without	retrofit − Average	values	of		objective	of	retrofit	plan	
Averge	values	of	objective	without	retrofit 	. 
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The results from Table 3-19 revealed that the three retrofit plans reduced the potential 

damage from all tornado events. The average direct economic loss was reduced by 

approximately 12% on all three plans. The average population dislocation was reduced by 

approximately 17%. Average functionality was improved over 80%, which was be 

considered significant improvement. However, the average values of each objective had 

small difference across three retrofit plans, which was verified by the boxplot (Figure 3-24, 

Figure 3-26, Figure 3-28) and density plots (Figure 3-25, Figure 3-27, Figure 3-29) of  

Δ$%&&, 	Δ'(&$., and Δ*+,-. 

Figure 3-24 is a boxplot that describes the distribution of each plan on the 

improvement of direct economic loss (Δ$%&&). Figure 3-25 is the density plot that describes 

how the data is distributed. Plan 1 and Plan 3 had similar distributions on the reduction in 

term of direct economic loss. We observed similar improvement of population dislocation 

(	Δ'(&$.) and for building functionality difference (Δ*+,-.). Three one-way ANOVA tests 

were conducted on the results from each objective across three retrofit plans. The 7-value 

from the ANOVA on direct economic loss across the three plans is 0.78, which suggested 

the means of improvement of direct economic loss between three retrofit plans were the 

same. The 7-value from ANOVA on improvement of population dislocation was 0.86, 

which suggested there was no significant statistical difference in term of improvement of 

population dislocation across three retrofit plans. Similarly, the ANOVA test of 

improvement building functionality of three plan also suggested that the three retrofit plans 

had same impact on improving building functionality ( 7-value = 0.95%).  

To conclude, the three selected retrofit plans showed the ability to reduce the 

potential impacts from all tornado events on the potential impact of physical, social, and 
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economic systems. Despite there was no significant difference between different plans, the 

analysis conducted on this section illustrate to evaluation of the retrofit plans from the 

statistical aspect.   

 

Table 3-18. Relationship of the results from data computing for case study 

Retrofit 
Plan Metrics Results 

ℎ ∈ {1,2, … ,66} 
Data for evaluating retrofit 
plans (∆)  ℎ ∈ {1,2, … ,66} 

No retrofit Direct economic loss: "#$$!" 
Population dislocation:./$"!" 
Building functionality:0123!" 

Plan 1 Direct economic 
loss 

"#$$!# "#$$!" −	"#$$!# 
Δ$%&& Plan 2 "#$$!. "#$$!" −	"#$$!. 

Plan 3 "#$$!/ "#$$!" −	"#$$!/ 
Plan 1 Population 

dislocation 
./$"!#  ./$"!" − ./$"!#  

	Δ'(&$. Plan 2 ./$"!. ./$"!" − ./$"!. 
Plan 3 ./$"!/ ./$"!" − ./$"!/ 
Plan 1 Building 

functionality 
0123!# 0123!" −	0123!# 

Δ*+,-. Plan 2 0123!. 0123!" −	0123!. 
Plan 3 0123!/ 0123!" −	0123!/ 

 

Table 3-19. Expected values of three objectives of different retrofit plan 

Retrofit 
Plan Metrics Average result  

across all tornadoes 
Percentage of improvement 
 

No 
retrofit 

Average direct economic loss across all events: $27,107,750 
Average population dislocation across all events: 1,988 
Average building functionality across all events: 20.6% 

Plan 1 
Direct economic loss 

$23,722,944 12.5% 
Plan 2 $23,904,574 11.8% 
Plan 3 $23,647,699 12.8% 
Plan 1 Population 

dislocation 

1,633 17.9% 
Plan 2 1,654 16.8% 
Plan 3 1,635 17.7% 
Plan 1 Building 

functionality 

37.2% 81.1% 
Plan 2 37.5% 82.6% 
Plan 3 37.7% 83.2% 
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Figure 3-23. Flow chart of using IN-CORE to compute the improvement of three objectives between building inventory without 

retrofit plans and building inventory with retrofit plans across all tornado scenarios
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Figure 3-24. Boxplots of !!"##	for three retrofit plans   

 

Figure 3-25. Density plots of !!"##	for three retrofit plans 
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Figure 3-26. Boxplots of	!$%#!. for three retrofit plans 

 
 

 
Figure 3-27. Density plots of 	!$%#!. for three retrofit plans	 
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Figure 3-28. Boxplots of !'()*.	for three retrofit plans 

 
 

 
Figure 3-29. Density plots of !'()*. for three retrofit plans  
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3.7 Summary 

This chapter presents a study that an optimization model is implemented to provide 

mitigation plans on tornado mitigation at block levels considering the measurement of 

economic, social, and physical systems. The retrofit solutions are produced under the 

constraint of a limited budget that can be determined either by the actual needs or 

experimental purpose to evaluate the optimal solutions. The results analyses from this study 

can facilitate the decision-making from the following aspects: 

• The tradeoff analysis allows comparing the retrofitting solutions with respect 

to the measurement of three competing objectives: economic, social, and 

physical systems of the community.  

• By analyzing the granularity of retrofitting plans, we can identify the areas 

where can be considered most vulnerable in the community and to be mitigated 

with priority.  

• The analysis based on the different budget levels allows the decision makers 

to allocate the budget on defined community resilience goals.   

• Using the computational platform IN-CORE, we can apply simulated tornado 

events to the building inventory with the selected retrofit plan and evaluate the 

effectiveness of retrofit plans by comparing the values of three objectives 

before and after the retrofitting efforts.  
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4 A Hybrid Machine Learning and Optimization Modeling 

Application for Economic Analysis 

4.1 Introduction 

The occurrence of hazardous events, such as earthquakes, hurricanes, and tornadoes, 

is inevitable. The capacity of a country, state, city, or town to withstand and recover from 

such events is not: some communities are more resilient than others. The reasons, however, 

are not always easy to discern. Nor is it a trivial matter to determine how best to improve 

one's resilience to significant disruptive events. A community is a complex system of 

systems composed of a vast array of physical infrastructures (e.g., building portfolio, 

transportation systems, electric power networks, etc.) and the socio-economic systems they 

support. Due to this complexity, immediate impact from hazard events (e.g., initial damage 

to structures), may have indirect effects that propagate through the community (e.g., an 

important business sector may be negatively impacted causing job losses, population 

migration, and loss of tax revenue). Community resilience modeling and analysis is a 

highly interdisciplinary field of study.  

 Economic resilience refers to how well an economy responds to exogenous shocks. 

In the case of major hazard events, these shocks come in many forms, including an 

immediate loss of capital stock (e.g., capital goods, real capital, capital assets) due to 

building damage and /or their content losses. Input-Output (IO) economic models have 

been used by economists to study the indirect economic losses from disasters (Boisvert, 

1992; Okuyama, et al., 2004; Wang, et al., 2017). However, to capture the realistic 

complexity in economic systems, researchers turn to more sophisticated modeling, 
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including the computable general equilibrium (CGE) model (West, 1995; Rose and Guha, 

2004; Rose and Liao, 2005; Cutler and Davies, 2010).  

 The CGE approach provides a framework that allows for modeling price sensitivity 

and substitution possibilities for markets and economic agents, the importance of 

intermediate inputs, factors demand, tax payments, and imports, etc. Furthermore, the CGE 

model can provide estimates on the impact to various economic indicators such as domestic 

supply, employment levels, household income, and population migration due to hazard 

events (Cutler, et al., 2016a).  

 One method to mitigate such effects is developing and implementing a pre-disaster 

plan to protect the critical assets that support a community's economic well-being. The 

protection can be accomplished by retrofitting existing structures (e.g., buildings) 

associated with various economic sectors. Improving a structure’s building code can 

improve its ability to withstand the effects of a hazard event, therefore reduce the expected 

loss of capital stock measured as direct damage and content loss. Such interventions may 

be costly in terms of time and money. An optimal allocation of a community’s limited 

resources to best enhance its economic resiliency is desirable. Zhang and Nicholson (2016) 

considered a closely related problem. Their work determined an optimal allocation of 

resources to retrofit buildings to higher building code levels using mathematical program 

to minimize two competing objectives of expected direct loss due to damage and 

population dislocation. However, a critically important element is missing. That is, the 

direct damage is only one component of the economic impact. Given the nature of a 

community, one damage profile across the building portfolio may have an entirely different 

effect on total domestic supply than another damage distribution of equal magnitude. 
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Additionally, the long-term indirect effects, such as the loss of commerce, industry, and 

employment, must be considered. This complexity can be captured using a CGE model. 

 Mathematically, a CGE model is expressed as a simultaneous system of nonlinear 

equations. Unfortunately, the size of the model in terms of variables and equation, as well 

as the various critical parameters values that must be estimated (e.g., elasticities of 

substitution), can make the approach appear as a “black box” to researchers less familiar 

with the technique (Wing, 2004). Ideally, an optimal mitigation allocation of resources 

would directly minimize the effects of the key economic indicators available from the CGE 

model. However, due to the intractability of the approach, it cannot be easily incorporated 

into a traditional mathematical program. 

 

4.2 Highlights 

This study introduces a surrogate CGE model to effectively bridge this gap between 

the CGE outputs and a mathematical program optimization modeling paradigm (Figure 

4-1). We discuss desirable characteristics of such a surrogate model and use a case study 

on Joplin, MO. We evaluate multiple machine learning approaches to construct surrogates 

based on CGE data that predict the hazard impacts on domestic supply, employment, 

migration, and household income. A selected ML model is used to predict the economic 

impact with a conditional wind speed 135 mph in the city of Joplin. A multi-objective 

optimization model is designed to demonstrate the possibility to connect CGE model with 

linear programming   to link the economic impact with the retrofitting decision-making. 
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Figure 4-1. Flow chart of relationship between the CGE model and Surrogate mode 
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4.3 Approach 

The CGE surrogate of interest is one that would be amenable to an optimization 

model for the building retrofits in a similar fashion to the work in Zhang and Nicholson 

(2016) to minimize the negative impact on community domestic supply. In this case, 

several factors should be considered, which are model-based form, input and decision 

variable consistency, functional form, and meaningfulness.  

 

4.3.1 Model-based form 

There are various machine learning (ML) approaches to choose from to estimate 

the economic value generated by the CGE model. However, certain approaches are not 

appropriate in light of the stated goal to build a surrogate model and incorporate it into a 

mathematical program.  

Supervised learning techniques that produce a model with functional forms may be 

preferable. Lazy learning methods, such as the !-nearest neighbors algorithm (Altman, 

1992) and local weighted regression (Cleveland and Devlin, 1988), do not produce 

functions that generalize inputs to expected outcomes but defer generalization of the 

training data until an explicit request for information is received. This results in potentially 

a large amount of memory required to store the training data (Bhatia, 2010). Additionally, 

unlike most eager learners (e.g., ordinary least squares regression, decision trees, neural 

networks, etc.), more effort is required for prediction than is required for training.   
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4.3.2 Input and decision variable consistency 

There must be a consistency between the CGE model inputs, input features for the 

ML surrogate model, and decision variables in the optimization model. For example, if the 

CGE model considers shocks to capital stock at the sector level, then the input features for 

the surrogate model cannot be more granular than this. The decision variables in the 

optimization model must also ultimately affect these shock values. Retrofitting buildings 

can be an appropriate decision variable if the buildings are known to contribute to a given 

economic sector, and the retrofit actions will reduce (or at least probabilistically reduce) 

the impact of the capital shock. 

Additionally, the scales of input features must be consistent with their usage in the 

optimization model. If the features are range-scaled prior to supervised learning, then the 

decision variables in the optimization model must be operated on the same scale. 

 

4.3.3 Functional form 

Besides desiring an accurate, model-based ML approach with consistent input 

features, the specific form of the model is also an important consideration. A linear model 

based on the ordinary least squares (OLS) regression could support a linear or integer 

programming model. This is also conditional on the feature construction and 

transformations used. For instance, to be consistent with linear programming, products and 

ratios of features and box-cox transformations cannot be used in order to keep the 

consistency between CGE mode, surrogate model, and optimization model. 

 Highly nonlinear techniques such as neural networks or support vector machines 

with a radial basis function kernel, would produce surrogate models that could only be 
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incorporated into nonlinear programs (unless they themselves were approximated) or 

require the use of advanced metaheuristics to produce near-optimal solutions. Other 

nonlinear approaches, such as decision trees, random forests, and gradient boosted trees, 

require the implementation of rule-based logic and would like to rely on metaheuristics 

approaches on the optimization side. 

 

4.3.4 Meaningfulness 

Since the functional form of the surrogate model will be used directly in an 

optimization model, it is important that the model is not simply predictive but also 

meaningful for this purpose. For instance, an Ordinary Least Squares (OLS) model with 

highly correlated input features relating to capital shock loss of economic sectors may have 

excellent predictive ability. However, due to the inflated variance, the parameter estimates 

themselves will be nearly meaningless. It is important to ensure that in such cases, the 

parameter estimates are directionally correct, and their relative magnitude is valid. 

Otherwise, the optimization model could be incentivized irrationally to increase expected 

damage to a given economic sector.  

 Additionally, in a method such as the least absolute shrinkage and selection 

operator (LASSO), one of two highly correlated variables might be included in the final 

model and other excluded. While the predictive accuracy could still be high, this is 

problematic from the perspective of the optimization model. There would be no reason to 

allocate resources to the economic sector eliminated from the surrogate model, even if 

doing so would produce nearly identical results in a more cost-effective manner. 
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4.4 Application 

4.4.1 Joplin, MO 

Joplin, MO, is located in Jasper and Newton counties in the Southwestern corner 

of state Missouri. The city's population is 50,073, according to the 2018 census. The largest 

industries in Joplin are health care & social assistance, manufacturing, and retail trade. 

Approximately 24,100 people are employed, and the median household income is $45,449 

(Data USA).  

For the CGE model used in this analysis, there are three household groups (i.e., 

HS1, HS2, HS3) distinguished by income levels who demand goods and services. The 

economic sectors are partitioned into Goods, Trade, and Other. The natural hazard shocks 

to the economy are represented as percent losses of the capital stocks at the sector level. 

Based on these six inputs, the CGE model computes the expected impact of Joplin’s 

domestic supply, employment, migration, and household income. 

 

4.4.2 Data Preparation 

To train the ML surrogate models. 233 instances of potential tornado damage to 

Joplin, MO, are generated. The instances are designed based on likely tornado scenarios. 

These instances were randomized to some extent to provide variability for supervised 

learning methods. Using these 233 instances as input data that are percent losses of the 

capital stocks on Goods, Trade, Other, HS1, HS2, and HS3, CGE model provides the 

results on potential impact on domestic supply, employment, migration, and household 

income as output.  
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 Figure 4-2 provides the analysis of the multicollinearity between the input features. 

The correlation between different features is not high. Therefore, OLS regression can be 

an option. Besides OLS, other techniques such as ridge regression that, LASSO, and elastic 

net regression that combines L1 and L2 regularization penalties to the loss function, can be 

considered as candidate models in the case that multicollinearity exists among the input 

features. Moreover, with the regularization method applied to the ML models, the 

complexity of the model can be reduced by coefficients shrinkage.  

 
Figure 4-2. Correlation between input features 

 

4.4.3 Model analysis  

OLS is a type of linear least squares method to form a linear relationship between 

the observed independent variables and dependent variables. If the relationship is linear, a 

hyperplane can be drawn to model their relationship. The independent variables in this 

study encompass six economic sectors for Joplin, MO, including Goods ("!""#$), Trades 
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("%&'#($), Other (")*+(&), HS1 (",-.), HS2 (",-/), HS3 (",-0). The goal is to model the 

linear relationship to predict the economic impact on domestic supply (##($), employment 

(#(12), migration (#134), and household income (#++356) from potential tornado hazard, 

which will be used as the coefficient for the objectives in the optimization model. The 

relationship can be is expressed as:  

 

#$(6*"& =	&$(6*"& +	(."!""#$ +	(/"%&'#($ +	(0")*+(& +	(7",-. +

	(8",-/ + (9",-0 . 

 (4-1) 

 

Ridge, LASSO, and elastic net regression are forms of penalized regression and can 

be explained by discussing the objective shown as:  

)*+*)*,-	.(#3 −	#13)/
5

3:.
+ 	3	 45.6(;6 + (1 − 5)

1
2	.(;/	

2

;:.

2

;:.
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. 

 

(4-2) 

 

Assuming there are + observations and : input features, the left-most term in Equation (4-

2) corresponds to the OLS objective of minimizing the sum of the squared difference 

between the actual outcome values # and the predicted values #1. The next terms are penalty 

is computed based on two parameters: the regularization parameter, 3	 ≥ 0, and the mixing 

parameter, 0 ≤ 	5	 ≤ 1.  If 5  is set to 1, Equation (4-2) is equivalent to the LASSO 

regression objective. If 5 is set to 0, then the result is the ridge regression objective. For 

any other value of 5, the result is elastic net regression that effectively blends ridge and 

LASSO regression. As the value of 3 increases, the coefficients will be smaller than then 
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ought to be in order to get the best predictive results, in LASSO, the coefficients will shrink 

to 0, but for ridge, the coefficients will not shrink to 0.  

The dataset is partitioned into training and test data with split rate 75% (training set) 

and 25% (test set). Using 10-fold cross-validation and 1-SE rule on training data, we find 

the best values of 3 for ridge regression, elastic net regression, and LASSO to build final 

models to predict the potential damage for domestic supply, employment, migration, and 

household income, respectively. The 5 values for elastic net regression are found through 

10-fold cross-validation. The hyperparameter setting for ridge regression, elastic net 

regression, and LASSO is provided in Table 4-1. The results described in Table 4-2 are the 

prediction of test data. Overall, the predicted results on domestic supply and employment 

are highly closed to the actual values (Adjusted ?/	aprroximately 99%), and the adjusted  

?/  on migration and household income are over 80%. The performance from OLS 

regression surpasses the performance from the Ridge, Elastic net regression, and LASSO 

on prediction of Domestic Supply, Employment, and Household Income. However, 

LASSO outperforms on prediction of migration. Figure 4-3 – Figure 4-6 visually provide 

results on all four models. Predicted domestic supply and employment are very close to the 

actual values.  

Table 4-3 provides the coefficients of the ML models. For most of the features, the 

coefficients across all four models have the same sign and similar magnitude. With 

regularization techniques, the input feature Other sector shows less importance for 

prediction on migration damage. Moreover, the coefficient of Other and HS3 sectors are 

shrinking from the Elastic Net and LASSO model to predict the damage on household 

income. All four models reveal that the damage estimates on domestic supply, employment, 
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migration, and household income should be revised downward if the economic area is 

severely damaged. 

A subject-matter expert in CGE modeling should be engaged to help determine if 

one model is more intuitive than the others. The evaluation based on adjusted ?/  and 

RMSE reflects subtle differences from all four models. The linear model with 

regularization technique can be a better candidate for the dataset containing 

multicollinearity and providing the importance of input features.
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Table 4-1. Model hyperparameter choice 

 Ridge Elastic Net LASSO 
Domestic Supply ! = 7.861414 

upper.limits = 0 
Cross-validation fold =10 

" = 0.0246 
! = 0.0285 
upper.limits = 0 
Cross-validation fold =10 

! = 0.2457 
upper.limits = 0 
Cross-validation fold =10 
 

Employment ! = 69.25332 
upper.limits = 0 
Cross-validation fold =10 

" = 0.0368 
! = 0.397 
upper. limits = 0 
Cross-validation fold =10 

! = 2.375714 
upper. limits = 0 
Cross-validation fold =10 

Migration ! = 23.65865 
upper.limits = 0 
Cross-validation fold =10 

! = 3.73 
" = 0.569 
upper.limits = 0 
Cross-validation fold =10 

! = 4.753574 
upper. limits = 0 
Cross-validation fold =10 

Household Income ! = 1.369627 
upper. limits = 0 
Cross-validation fold =10 

! = 0.0285 
" = 0.0246 
upper. limits = 0 
Cross-validation fold =10 

! = 0.5277898 
upper. limits = 0 
Cross-validation fold =10 

 

Table 4-2. Linear models evaluation 

 
 

 

 

 

 OLS Regression Ridge Elastic Net LASSO 
 Adjusted 

#! 
RMSE Adjusted 

#! 
RMSE Adjusted 

#! 
RMSE Adjusted 

#! 
RMSE 

Domestic Supply 0.9946 6.1641 0.9908 8.0050 0.9943 6.2665 0.9943 6.3012 
Employment 0.9902 78.0178 0.9869 90.3332 0.9900 78.8284 0.9899 79.1826 
Migration 0.8875 87.4624 0.8772 91.3516 0.8884 87.4101 0.8881 87.16170 
Household Income 0.8054 7.2156 0.8015 7.2880 0.8053 7.3364 0.8001 7.3246 
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Table 4-3. Coefficients from ML model candidates 

 

 

 

 

 

 

Dependent 
variables Sector 

Regression Model Coefficients 
OLS 
Regression 

Ridge Elastic Net LASSO 

Domestic 
Supply 

(Intercept) 1161.490 1102.25343 1102.00985 1162.31507 
Goods -110.021 -100.88081 -102.50165 -111.37803 
Trades -39.774 -32.47595 -31.36060 -37.35812 
Other -100.562 -94.17968 -94.38244 -101.58747 
HS1 -378.452 -348.65907 -351.05286 -371.31835 
HS2 -497.933  -474.19279 -472.52047 -508.05297 
HS3 -40.466  -32.47595 -36.57416 -39.04256 

Employment 

(Intercept) 9483.13 9009.8727 9407.3737 9400.1688 
Goods -197.70 -176.1048 -181.9786 -177.6828 
Trades -155.14 -127.1396 -137.1121 -132.3264 
Other -404.02 -364.9699 -390.7885 -387.9615 
HS1 -4118.97 -3869.2068 -4098.8287 -4101.4132 
HS2 -4237.20 -3980.8549 -4220.2826 -4224.1646 
HS3 -462.77 -426.2697 -445.6315 -441.4221 

Migration 

(Intercept) 2464.203 2342.75796 2339.11150 2352.00454 
Goods -58.593 -53.40886 -30.87602 -29.05218 
Trades 8.245 . . . 
Other -143.732 -135.72206 -113.59959 -111.82292 
HS1 -1627.725 -1506.26080 -1576.61756 -1597.38501 
HS2 -549.580 -531.57981 -520.69134 -520.98200 
HS3 -123.671 -107.11697 -87.24081 -86.86515 

Household 
Income 

(Intercept) 187.684 178.963803 173.34545 173.133374 
Goods -13.772 -12.755443 -10.54442 -9.963842 
Trades -2.029 -1.432725 . . 
Other -18.258 -17.057216 -15.25856 -14.743473 
HS1 -86.820 -81.809047 -82.58124 -83.294189 
HS2 -65.315 -62.013338 -62.05967 -62.165685 
HS3 -3.360 -2.875389 . . 
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Figure 4-3. Predicted vs. Actual domestic 

supply damage 

 
Figure 4-4. Predicted vs. Actual 

Employment Damage 

  
 
 
 

 
Figure 4-5. Predicted vs. Actual 

Household Income Damage 

 
Figure 4-6. Predicted vs. Actual Migration 

damage 
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4.5 Connection to optimization models 

The main contribution of this study is to reverse-engineer of CGE model to produce 

a linear relationship between the CGE inputs and outputs. If we know !! = "($!) is a linear 

function relating the expected damage to a set of decision variables $!, the objective is 

complete as described in Figure 4-7. One of the benefits of this connection is that we can 

efficiently predict the appropriate coefficients of the objective functions of the optimization 

model with different hazard scenarios. Another benefit of utilizing this connection is that 

the decision-making of the optimization model can be traced back to different economic 

sectors, which provides multi-layer decision analysis. 

 

4.5.1 Mathematical model 

Model input 

This model is the second application of the framework introduced in Chapter 2. The 

goal of this model is to minimize the potential economic impact of the economy of Joplin 

on tornado threat. The set & in the model is defined as the economic sectors: Goods, Trade, 

Other, HS1, HS2, and HS3. Building type and retrofit strategy use the same input data from 

Chapter 3, which are residential building type ' (single-family and multi-family building), 

and three retrofitting strategies (Table 3-3). After missing values were removed from the 

dataset that provides the mapping between the individual building and each sector, the final 

input data are as shown in Table 4-4. We assume that there is no prior retrofitting on the 

buildings in Joplin, which explains that all the values in the column “Strategy (	 ∈ +” set 

to	( = 0. The column “Building Counts /"!#” provides the total number with building type 
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0	 ∈ 	'  at each sector 1 ∈ & with strategy (	 ∈ +. For example, there are a total of 17,157 

single family buildings in sector HS1 that indicate that majority of single-family buildings 

are accounted in lower income house service.  

Retrofitting strategies cost 23"!##!  is computed by using the input data from 

Chapter 3. However, the data provided on Chapter 3 are calculated on block group level. 

To computer the retrofitting cost on sector level, we aggregated all buildings in the same 

building type 0	 ∈ 	' for block group levels to each sector, which is as shown in Table 4-5. 

The column “Strategies Cost 23"!##!” is the expected retrofit cost for a building enhanced 

from the initial strategy (	 ∈ + to the final strategy ($ ∈ + in the sector Goods and Trade. 

For instance, the average cost to retrofit a single-family building from the strategy 0 to the 

strategy 3 is $35,301. To compute total retrofit costs of all single-family buildings 

retrofitted from the strategy 0 to the strategy 3 is $4,447,926 that is the product of $35,301 

and 126 (from Table 4-4).  

 

Table 4-4. Building stock input data file 

Sector 
1 ∈ & 

Building type 
0	 ∈ 	' 

Strategy 
(	 ∈ + 

Building Counts 
/"!# 

Goods Single-family 0 126 
Goods Multi-family 0 11 
Trade Single-family 0 19 
Trade Multi-family 0 2 
Other Single-family 0 83 
Other Multi-family 0 4 
HS1 Single-family 0 17,157 
HS1 Multi-family 0 6 
HS2 Single-family 0 3,470 
HS2 Multi-family 0 27 
HS3 Single-family 0 135 
HS3 Multi-family 0 28 
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Table 4-5. Strategy cost 23"!##! data example file 

Sector 
1 ∈ & 

Building type 
0	 ∈ 	' 

Initial Strategy 
(	 ∈ + 

Final Strategy 
($ ∈ + 

Strategies Cost 
23"!##! ($) 

Goods Single-family 0 0 0 
Goods Single-family 0 1 11,401 
Goods Single-family 0 2 17,316 
Goods Single-family 0 3 35,301 
Goods Multi-family 0 0 0 
Goods Multi-family 0 1 22,483 
Goods Multi-family 0 2 39,033 
Goods Multi-family 0 3 70,063 
Trade Single-family 0 0 0 
Trade Single-family 0 1 7,269 
Trade Single-family 0 2 11,040 
Trade Single-family 0 3 22,508 

… … … .. … 
 

The coefficients of the mathematical model are defined by the mathematical form 

provided from the ML models. If we select the LASSO model as the final model to predict 

the potential damage on domestical supply (4"!#% ), employment (4"!#& ), migration (4"!#' ), 

and household income (4"!#( ), the parameters can be expressed as: 

 

4"!#% = 1162 − 111ℎ)**+, − 	37ℎ-./+0, −	101ℎ1230.−	371ℎ45% −

	508ℎ45& − 39ℎ45' , 

(4-3) 

4"!#& = 9400 − 178ℎ)**+, − 	132ℎ-./+0, −	388ℎ1230.−	4101ℎ45% −

	4224ℎ45& − 441ℎ45' , 

(4-4) 

4"!#' = 2352 − 29ℎ)**+, − 	0ℎ-./+0, −	112ℎ1230.−	15971ℎ45% −

521ℎ45& − 87ℎ45' , 

(4-5) 
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4"!#( = 173 − 10ℎ)**+, − 0ℎ-./+0, −	15ℎ1230.−	83ℎ45% − 	62ℎ45& − 0ℎ45'.  (4-6) 

 

In this study, we applied the same assumption stated in Chapter 3, which is that we 

assume that tornado events could occur any sector with the equal probability. We applied 

wind speed 135 mph on all buildings in the city Joplin to calculate the damage on domestic 

supply, employment, migration, and household income. First, wind speed 135 mph load 

was applied on all buildings without any retrofit effort, which is ( = 0. Through IN-CORE, 

we calculated the building damage and ran CGE analysis according to the building damage 

caused by 135 mph wind speed. CGE module produced the capital remaining on six sectors 

after the shock from 135 mph wind speed on all buildings with strategy ( = 0. Given the 

capital remaining on six sectors, which are ℎ)**+,, ℎ-./+0,, ℎ1230., ℎ45%,	ℎ45&, and ℎ45' 

in Equation (4-3) – (4-6), we predicted the economic loss on domestical supply (4"!#% ), 

employment (4"!#& ), migration (4"!#' ), and household income (4"!#( ) at strategy ( = 0. We 

computed these four coefficients using the same method at strategy 1, strategy 2, and 

strategy 3. The example of final data file is presented in Table 4-6.  

Table 4-6. Example data file of coefficients of objects 

Sector 
1 ∈ & 

Building type 
0	 ∈ 	' 

Strategy 
(	 ∈ + 

Building Counts 
/"!# 4"!#%  4"!#&  4"!#'  4"!#(  

Goods Single-family 0 126 892 7,529 1,829 136 
Goods Single-family 1 0 892 7,529 1,829 136 
Goods Single-family 2 0 652 5,300 1,331 99 
Goods Single-family 3 0 649 5,265 1,326 99 
HS1 Single-family 0 17,157 892 7,529 1,829 136 
HS1 Single-family 1 0 892 7,529 1,829 136 
HS1 Single-family 2 0 652 5,300 1,331 99 
HS1 Single-family 3 0 649 5,265 1,326 99 
… … … … … … … … 
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The mathematical formulation of the model is presented in Table 4-7.  

Table 4-7. Mathematical formulation of the model 
Description Equations Eq.No. 

Input Parameter 

Set of unique economic sector ! ∈ 	$ 
Set of building types % ∈ 	& 
Set of retrofitting strategies '	 ∈ 	( 
Domestic supply coefficient: )"#$%  
Employment coefficient: )"#$&  
Migration coefficient: )"#$'  
Household Income coefficient: )"#$(  
Retrofitting cost: *+"#$$! 
Retrofitting budget: , 
 

 
 
 
(4-3) 
(4-4) 
(4-5) 
(4-6) 

Decision Variable 
The total number of buildings after the mitigation: -)*+ 
the total number of buildings retrofitted from strategy ' to '′: /)*++, 

 

Objective 1 
Minimize domestic 
supply loss 

min 3 )"#$% 4"#$
(",#,$)	∈	2"

								5 = 1 
(2-7) 

Objective 2 
Minimize employment 
loss 

min 3 )"#$& 4"#$
(",#,$)	∈	2#

											5 = 2 
(2-7) 

Objective 3 
Minimize migration 
 

min 3 )"#$' 4"#$
(",#,$)	∈	2$

											5 = 3 
(2-7) 

Objective 4 
Minimize household 
income loss 
 

min 3 )"#$( 4"#$
(",#,$)	∈	2%

											5 = 4 
(2-7) 

Constraint 1 
Retrofitting budget 
constraint 
 

3 *+"#$$!;"#$$! ≤ ,
(",#,$,$!)∈	3

 

 

(2-2) 

Constraint 2 
Building constraint of 
final state after 
intervention 

4"#$ =	 3 ;"#$!$
$!:	(",#,$!,$)∈	3

+	>"#$ −	 3 ;"#$$!
$!:	(",#,$,$!)∈	3

 

∀(!, %, ') 	∈ 	D. 

(2-3) 

Constraint 3 
Building number 
balance constraint 

3 4"#$
$:	(",#,$)	∈	2

=	 3 >"#$
$:	(",#,$)	∈	2

				∀! ∈ F, ∀% ∈ &. 

 

(2-4) 

Constraint 4 
Non-negative 
constraint 

 
4"#$ ≥ 0				∀(!, %, ') ∈ 	D 

(2-5) 

Constraint 5 
Non-negative 
constraint 

;"#$$! ≥ 0			∀	(!, %, ', ',) ∈ 	I. 
(2-6) 
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Figure 4-7. Flow chart of connection between surrogate model and optimization model 
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Model output 

The mathematical model is coded in Python using Gurobi solver. Budget ! 

represents the available fund for retrofitting plan. In this study, we calculated the maximum 

budget by retrofitting all the buildings to the highest strategy (Strategy 3) and apply fracture 

of the maximum budget as the retrofitting budget constraint (Equation (2-2)). However, 

from the most restrict budget (0.5% of maximum budget) to the maximum budget (100% 

of maximum budget), the results from the model showed that the four objective functions 

didn’t have the competing relationship as we expected from multi-objective optimization 

model.  

 

4.6 Summary 

The potential for the CGE model to inform economic resilience decision-making is 

essential. One issue, however, is that the models can be hard to interpret and accommodate 

in traditional optimization paradigms such as integer linear programming. To circumvent 

this obstacle, we propose supervised learning to develop surrogate models that are 

amenable to optimization approaches. We discuss several characteristics of potential 

surrogate models that should be addressed if they are to be incorporated into mathematical 

program.  

 Using a case study based on a high fidelity CGE model developed by experts, we 

devise four appropriate machine learning models to act as a surrogate. All four models 

perform at a highly accurate level, and any of them could be chosen for optimization 

purposes: each has a linear functional form with meaningful parameter values and produces 
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reasonable accurate predictions for realistic tornado damage scenarios and expected 

impacts to domestic supply, employment, migration, and household income. Furthermore, 

the input features are logically aligned with the mitigation intervention strategy to be 

implemented. That is, building retrofits directly relate to protecting capital impact across 

economic sectors. Using the case study of Joplin, MO, we demonstrate that how to use the 

predicted results of ML model to design an optimization model from the proposed 

framework in Chapter 2. This model validates that the proposed framework can be adjusted 

by the actual need from the user. For example, in the case study, the granularity of decision 

level is the economic sectors in Joplin, and there is a total of four objective functions in the 

model. Despite the result from the case study did not show the competing effect of the four 

objectives, we demonstrate the process of developing an optimization model based on the 

research needs from the framework introduced in Chapter 2. 

 The ML modeling approach provides an effective way to intelligently use data to 

adjust this trend based on the complex nuances from the CGE model. We fully expect the 

integration of CGE surrogate models with optimization modeling to drive higher quality 

decision-making for community resilience.
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5 Conclusions and future work 

5.1 Contribution 

This dissertation aims to develop a generic and hazard agnostic multi-objective 

optimization model to produce mitigation strategies to reduce potential impact from natural 

hazards and provide decision-making support for decision makers of the communities. The 

research goals listed in Chapter 1.2 are accomplished by developing a generalized 

optimization model that integrates multi-facet systems of a community in one framework, 

implementing the proposed framework on tornado mitigation, and developing a surrogate 

model to reverse engineer the CGE model and connect the CGE model with optimization 

model. 

  First, the newly introduced optimization framework is a well-defined framework 

that allows flexibility that is defined by decision makers. Such flexibility includes: (1) 

Level of decision granularity can be defined according to needs of the decision makers, 

ranging from PUMAs, census blocks to parcel, economic sectors, and building level. (2) 

The community-defined resilience objective functions are not bounded by the number of 

the objective or the type of objective. The decision makers can determine the objectives 

that fit the interests of the community. (3) The set of solutions returned from the model, 

including Pareto optimal solutions and objective functions, provides rich information to 

evaluate the solutions and facilitate the decision-making quantitively. (4) The framework 

is not limited to a specific type of hazard. If the input of the framework meets the 

requirement, the model can be applied to any hazard type. The allowed flexibility in this 

framework is not reflected in any existing multi-objective optimization framework of 
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community resilience. Furthermore, the availability of mitigation funds can be adjusted to 

facilitate decision-making and resource allocation. 

Second, the city of Joplin, MO, is used as a testbed to illustrate the methodology 

by using three competing objectives to measure the impact on social, economic, and 

physical systems on tornado mitigation. Three objectives (i.e., direct economic loss, 

population dislocation, building functionality) are computed as the conditional expected 

value of a building given an impact with 135 mph wind speed. The resulting analysis 

reveals that: (1) Priority analysis can help identify the vulnerable areas of the community 

that can be prioritized. (2) Tradeoff analysis allows evaluating selected objectives between 

different retrofit plans quantitatively. (3) Resources analysis increases the array of options 

of decision-making by exploring different budget options. 66 tornado events simulated 

through IN-CORE are applied to three selected retrofitting plans. The impact on three 

objectives shows reduction from all retrofitting plans. By implementing selected retrofit 

plans, the community will expect less damage to economic, social, and physical systems 

from tornado threats. 

Finally, ML models are designed as surrogate model of the CGE model to predict 

potential damage on the economic system of a community from a disruptive event. The 

surrogate model uses the input data from the CGE model as the input features and predicts 

the output of the CGE model. By producing a mathematical formation between the CGE 

inputs and outputs, the ML models allow the non-CGE expert to interpret the correlation 

between economic sectors and economic damage from a hazard. The potential candidates 

of surrogate models are selected among the linear regression models such as OLS 

regression, Ridge, Elastics Net, LASSO. The results show that all candidate models can 
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produce the highly accurate results of economic damage on domestic supply and 

employment (approximately 0.99), and reasonable accuracy on migration ( >0.88), and on 

household income ( >0.80). The models with regularization technique can shrink the 

coefficient of features that have less influence on the prediction, such as LASSO, Ridge, 

and Elastics Net regression. Moreover, we demonstrate how to connect the output from the 

surrogate model to an optimization model. In the case study, a multi-objective optimization 

model is designed using the framework from Chapter 2. This optimization model further 

showcases the flexibility and generalization of the proposed framework.  

 

5.2 Limitation and future work 

The modeling of mitigation planning on community resilience covers a broad 

spectrum of research areas, and this study only discusses some components. The limitations 

of this study require further research on the following aspects.  

First, the flexibility and generalization of the proposed framework come from the 

design of the input data, where decision makers are responsible for using the correct data 

and data sources. Such a design brings an underlying issue that the data provided by the 

decision makers might introduce biases into the final decision-making. For instance, the 

model introduced to calculate population dislocation in Chapter 3 only considered the black 

and Hispanic population in the city Joplin, MO, because Black (3.2% of total population) 

and Hispanic population (5.1% of total population) are ranked as top two  ethnic minorities 

as compared with American Indian & Alaska Native (1.8%), Asian (2.3%), and Native 

Hawaiian and Other Pacific Island (0.1%) (Data USA). The Decision makers should be 

aware of such disparity introduced from the input data and any ethical implication resulted 
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from the decision-making. To address such an issue, there are two suggestions when using 

the proposed framework. First, the metrics selected as the coefficients of objectives are 

determined by the decision makers, who have the responsibility to ensure if the data are 

intuitively closed to the background of the community. Secondly, the related 

scientist/experts should involve into the design of appropriate method to calculate the 

metric representing the specific aspect of the community. For example, with the method 

used to calculate population dislocation in Chapter 3, the decision makers can involve 

social scientists/experts into the selection of an appropriate model to determine which 

ethnic groups should be included in the model according to the demographic structure of 

the city of Joplin.   

Secondly, this application in Chapter 3 demonstrates how to apply the framework 

in Chapter 2 to the city of Joplin, MO. The coefficient associated with building 

functionality only considers the structural integrity of the buildings, which only provides 

the perspective of the structural damage on the buildings. However, the primary purpose 

of the buildings is to serve people in the community such as delivering essential services, 

supporting the social and economic interest, and providing shelters. The building 

functionality defined from Almufti and Willford (2013) considered the structural integrity 

and availability of utilities (e.g., water, power, etc.) of a building. In future work, two 

suggestions can be considered to address this limitation. The first suggestion is that the 

input data can include the functionalities of critical utilities as the coefficients of the 

objectives of the model. For example, the functionality of the power network can be 

designed as one of the objectives. Such a method does not provide an overall building 

functionality, but it allows the decision makers to include the factors that are appropriate 
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for the community. The second suggestion is that building functionality provided in the 

input data should include the building functionality calculated from damage on both 

structural and non-structural components of a building. Zhang, et al. (2018) demonstrated 

the possibility to estimate the building functionality loss affected by both the structural 

integrity and availability of the critical utilities.  

Lastly, the framework proposed in this study only illustrates a case study with a 

single hazard in Chapter 3. However, a hazard triggered by other hazards is not uncommon. 

For example, the earthquakes with magnitude between 7.6 and 7.8 might produce 

destructive tsunamis, landslides that are frequently triggered by earthquakes, or floods can 

be a consequence of tropical cyclones (e.g., hurricane, typhoon, tropical storm). Future 

studies can consider the multiple hazards in one framework, but an in-depth discussion is 

recommended to consider three suggestions: (1) the relationship between the first and 

secondary hazard, (2) a method to determine the building’s structural damage because of 

fragility curves associated with specific hazards, and (3) a method to combine the retrofit 

strategies from different hazards in one building type.  

The novel design of the framework of multi-objective optimization from this study 

allows input data to reflect the characteristics of the hazards and the community resilience 

goals determined by the decision makers; however, if the input data could introduce the 

social bias into the model, future studies should identify the bias and reduce the influence 

on the decision-making. Moreover, in this study, the functionality of critical infrastructures 

can be introduced from input data but should not be limited by the availability of data. 

Future studies should expand the ability of the framework to include the interdependency 
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between critical systems (e.g., water, gas, power) and buildings into the framework. Lastly, 

the future works can consider applying the framework to multiple hazard events. 
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