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Abstract

In this thesis I present an automated framework for segmentation of bone
structures from dual modality PET/CT scans and further extraction of SUV
measurements. The first stage of this framework consists of a variant of the
3D U-Net architecture for segmentation of three bone structures: vertebral
body, pelvis, and sternum. The dataset for this model consists of annotated
slices from the CT scans retrieved from the study of post-HCST patients and
the 18F-FLT radiotracer, which are undersampled volumes due to the low-dose
radiation used during the scanning. The mean Dice scores obtained by the
proposed model are 0.9162, 0.9163, and 0.8721 for the vertebral body, pelvis,
and sternum class respectively. The next step of the proposed framework
consists of identifying the individual vertebrae, which is a particularly difficult
task due to the low resolution of the CT scans in the axial dimension. To
address this issue, I present an iterative algorithm for instance segmentation
of vertebral bodies, based on anatomical priors of the spine for detecting the
starting point of a vertebra. The spatial information contained in the CT and
PET scans is used to translate the resulting masks to the PET image space and
extract SUV measurements. I then present a CNN model based on the
DenseNet architecture that, for the first time, classifies the spatial distribution
of SUV within the marrow cavities of the vertebral bodies as normal
engraftment or possible relapse. With an AUC of 0.931 and an accuracy of 92%
obtained on real patient data, this method shows good potential as a future

automated tool to assist in monitoring the recovery process of HSCT patients.
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Chapter 1. Introduction

Medical imaging provides non-invasive means for expert physicians to
evaluate and diagnose disease [1]. In this context, image processing is used to
facilitate the evaluation process. In recent years, and especially in view of the
explosive growth in machine-learning research, convolutional neural networks
(CNNs) have been shown effective in a variety of image processing tasks
including important medical applications such as segmentation [2]-[6].
Motivated by this fact and by the study performed by Williams et al. on
hematopoietic stem-cell transplant (HSCT) patients [7], [8], in this thesis I
present a CNN-based framework for automated segmentation of three bone
structures: vertebral body, pelvis, and sternum, from dual modality PET/CT
scans. Based on these segmentations, I then present an automated SUV
extraction method which can be used for monitoring the patient status during
the recovery process and for detecting a proper recuperation versus a possible

relapse.

1.1. Problem Description

This work is mostly based on the research by Dr. Williams et al. on HSCT
patients [7], [8]. In their study, eligible patients presenting leukemia and
myelodysplastic syndrome underwent radiation and chemotherapy in order to
eradicate the cancerous cells located in the bone marrow. Then, patients
received a venous infusion of haemopoietic stem cells to recover normal
hemopoiesis on the host. Their study also establishes that the first 28 days
post-HSCT are crucial to the patient for achieving a proper recovery and
growth of blood cells (viz. engraftment). If the transplantation is rejected, a

graft failure takes place [9]; even worse, if cancer is recurrent after the



transplant, a relapse occurs. During this stage, the general procedure for
examination of the patient evolution consists of a bone marrow biopsy, which
is an invasive process that can cause pain and discomfort to the patient [10].
As an alternative, dual modality PET/CT imaging has been proposed for
monitoring the patients, which consists of a two-stage procedure: CT imaging
followed by PET scanning. The SUV measurements obtained from the PET
scan are used as an indicator of the metabolic activity within the bone marrow

of the vertebral bodies and other organs.

In the study of post-HSCT patients presented in [7], [8], 18F-FLT was used
as a radiotracer for the PET scans and scanning was performed on different
instances: the day before the transplant (with the bone marrow ablated),
between 5 and 9 days post-transplant, and 28 days post-transplant. Since
patients are particularly vulnerable after the myeloablative process, the CT
scanning was performed using low-dose radiation (120 kVp). As consequence,
the obtained CT volumes comprise anisotropic voxels (approx. size 1.17 mm X
1.17 mm x 5 mm) having a low resolution in the axial dimension, which makes
the task of identifying each individual vertebra particularly hard, even
visually, due to the CT axial slice thickness being on the same order as or even
thicker than the thickness of intervertebral discs of the cervical region [11]. On
the other hand, the voxels in the obtained PET volumes are isotropic (approx.
size of 4 mm X 4 mm X 4 mm), exhibiting a slightly better axial resolution than

the CT scans.

The difference in the resolution between the two imaging techniques
generates an issue for obtaining the desired SUV measurements, since the
data required for calculating the SUV is contained in the PET scans whereas
the relatively better resolution of the CT scans within the axial plane makes it

desirable to perform bone segmentation on the CT images. Indeed, the axial



slices in the PET modality do not capture the features of internal structures
such as bones and organs accurately, especially in early scanning after the
HSC transplant when the metabolic activity measured by the radiotracer
within the bone marrow cavities is generally low. Additionally, the initial
reference point varies when changing from CT to PET scanning, causing a
misalignment between the images. As a result, assessment of the obtained

data is a sensitive task even for specialists in the area.

In the next section I present an overview of my proposed solution for
automatic segmentation of individual vertebral bodies and SUV extraction

from the retrieved PET/CT scans, which I will explain thoroughly in this thesis.

1.2. Proposed Solution and Organization

Currently, the data obtained from the post-HSCT study is evaluated by
physicians in a time-consuming task where they need to manually identify,
locate, and draw multiple regions of interest on each scan using proprietary
medical imaging software [12]. To assist physicians in this task, I propose an
automated framework consisting of a CNN for segmentation of the bone
structures present in the CT scans and an iterative algorithm for identifying
individual vertebral bodies. The obtained segmentation masks are then
translated to the PET image space to extract the requested SUV
measurements and to calculate some statistics of interest for medical analysis.
Finally, a CNN-based classifier is used to classify the patterns generated by
the spatial distribution of the SUV within the bone marrow of the vertebral
bodies, which has been suggested could be used as an indicator of a successful
engraftment or relapse after the HSC transplant [12]. The proposed framework

consists of the following stages:

a) 3D U-Net for multiclass bone segmentation: motivated by the extended

usage of convolutional neural networks over the last years on image processing



tasks, and based on the work presented in [4], I trained a 3D variant of the U-
Net architecture [5], [6] for automated segmentation of three bone structures:
vertebral body, pelvis, and sternum. The CT scans obtained in the post-HCST
study presented in [7], [8] were used for training the network, with ground-
truth annotations provided by Nguyen [13]. To overcome the problem of the
small size of the dataset, I applied data augmentation during the network
training. The implementation details, along with a discussion of the network
performance and comparison with other similar works, is presented in Chapter

3.

b) Instance segmentation of vertebral bodies: using the segmentation mask
obtained by the 3D U-Net from the previous stage, I developed an iterative
algorithm for identifying and labeling each individual vertebra, starting from
C2 and moving downwards to L5. The criteria used for identifying the starting
point of a vertebra was based on two anatomical priors: the characteristic
curvature of the spine when viewed sagitally, and the presence of pedicles that
act as a bridge between the vertebral bodies and the transversal processes of
the vertebra. The implementation details and the obtained results are

discussed in Chapter 4.

¢) Conversion of CT masks to the PET image space: to extract the desired
SUV measurements from the PET scans, I translated the segmentation masks
obtained from the CT scans to the PET image space by using affine matrices
[14] containing the spatial information related to each imaging technique. I
then used the extracted values to calculate several statistics of interest,
including the mean, median, maximum value and standard deviation of the
SUV within the bone marrow of vertebral bodies. Section 4.4 covers the image
space conversion and a comparison of the obtained SUV statistics with the

SUV results presented by Carson [15] for the same HSCT dataset.



d) CNN-based classifier for post-HSCT evaluation: it has been suggested
that the patterns generated by the spatial distribution of the SUV within the
bone marrow cavities of the vertebral bodies could be used as an indicator of a
successful engraftment or relapse after the HSC transplant [12]. Based on this
statement, I trained a 3D CNN based on the DenseNet architecture [16] for
classifying the spatial distribution of the SUV obtained in Chapter 4 into two
categories: “normal” and “irregular” pattern. The implementation details and

network performance are presented in Chapter 5.

The rest of this thesis is organized as follows. In Chapter 2, I present
background material on medical imaging terminology used throughout the
document, along with a review of image segmentation techniques and
convolutional neural networks. I also include a literature review of published
works related to spine and vertebral body segmentation. In Chapter 3 I provide
the architecture and training details of the 3D U-Net model used for multiclass
bone segmentation, and a discussion of the network performance on the post-
HCST dataset. In Chapter 4, I introduce an iterative algorithm for instance
segmentation of vertebral bodies, which is based on anatomical priors of the
spine. I also included the methodology used for extracting the SUV
measurements from the PET scans using the segmented masks from the CT
volumes, and a comparison of the SUV statistics with the similar work
presented in [15] for the post-HCST dataset. In Chapter 5 I provide the
architecture and training details of the DenseNet model used for classifying
the patterns of the spatial distribution of the SUV within the bone marrow of
the vertebral bodies, along with a discussion of the network performance.
Chapter 6 serves as a conclusion for this thesis, where I list the original

contributions of this work along with recommendations for further research.



Chapter 2. Background

This chapter provides a general background on medical imaging and
anatomical definitions used during the development of the proposed
framework in addition to a review of image segmentation and deep learning in

the context of image processing for medical applications.

2.1. Medical Imaging and Anatomical Key Definitions

2.1.1. Computed Tomography

Computed tomography (CT) is an image acquisition method for clinical use
which consists in a patient being exposed to, depending on the configuration,
sequential X-ray radiation doses along the region of interest (multi-slice CT),
or a rotational beam moving around the subject (helical CT). CT imaging
provides additional depth information when compared to traditional
radiography, thus, resulting in a 3D volume [17]. The equipment for a CT
system consists primarily of the patient table, where the patient lies down
during the procedure, the X-ray tube emitting the radiation, and detectors,
which measure the radiation attenuation after traversing the patient [18]. The
actual image can be reconstructed using algebraic approaches (like
backprojection), statistical methods or Fourier-based techniques, giving

grayscale values expressed in Hounsfield units (HUs) defined by
HU(x,,7) = 1000 5522t )

where HU(x,y, z) represents the Hounsfield units at location (x,y, z), u(x,y,z)
1s the corresponding average linear attenuation coefficient at the same
location, and y,, is the linear attenuation coefficient for water at the specific

conditions used in the procedure [19].



The spatial resolution of the obtained image i1s determined by factors like
focal spot, motion, detector dimensions and sampling. The noise present will
depend on radiation dose, exposure time, slice thickness and reconstruction
method used. As a consequence, obtaining an isotropic volume (where each
voxel dimension is the same in the three spatial axes) with low noise requires
a larger exposure time, which could be impractical due to the breathing

movement of the patient [20], [21].

2.1.2. Positron Emission Tomography

Positron Emission Tomography (PET) is a nuclear-based imaging
technique. The patient receives a small dose (generally injected) of a
radioactive substance, called a radiotracer or radionuclide, which 1s used for
detecting the metabolic activity of the cells of body tissues [22]. The basic
principle for PET is the spontaneous positron emission by the nuclei of the
radiotracer. The positron annihilates with an electron and releases two gamma
particles in opposite directions. A detector ring will record when two opposite
gamma photons are sensed within a range of coincidence [23], and that

information will be used for reconstructing an image.

PET 1is used in cardiology, neuropsychiatry, and mostly in oncology for
identifying tumors, diagnosis of malignancy, response to treatment, and
detection of recurrences [24]. A metric for quantitative assessment of PET is

the standardized uptake value (SUV) [25], defined by

, . , s B
Radioactive concentration in tissue [#ﬂ

SUV =

(2)

Injected dose [Bq] / weight[Kg]

The resulting units for the SUV are density units, like [g/ml], indicating the
ratio between regional and whole-body concentration. These values play a
significant role in this thesis, since it has been suggested that SUV may

indicate the status of patients with leukemia after treatment [7], [8].
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Figure 1. Anatomy of the spine and vertebrae. Extracted from [26].

2.1.3. The Spine

The spine is a column of several stacked bones called vertebrae. It extends
from the base of the head to the pelvic zone and serves as support for the
human body. The very first group of vertebrae starting from the head are called
cervical vertebrae (named C1-C7), followed by the thoracic vertebrae (T1-T12)
and Jumbar vertebrae (L1-L5) [27]. The sacrum and the coccyx are located at
the tail of the spine, both being considered as fused vertebrae. The anatomy of
the vertebrae vary for each region, as indicated by Figure 1, the common factor
being the presence of a roughly cylindrical vertebral body with some salient
structure called the spinous process [28], and the exception being the first two

cervical vertebrae C1 (atlas) and C2 (axis).

For the present work, one of the major tasks is detecting and identifying

individual vertebrae from CT scans.



2.1.4. Haemopoietic Stem Cell Transplantation

Hematopoiesis or hemopoiesis is the biological process, originated by the
hematopoietic stem cells (HSC), in which blood cells are generated [29]. This
process occurs primarily in the bone marrow, which constitutes the soft tissue
of the bones, corresponding mainly to the interior of the vertebral body for the

spine [30].

Some diseases like leukemia may affect the normal production of blood
cells, putting the life of the patient at risk. HSC transplantation (HSCT) is a
medical procedure in which HSC cells are transplanted to the patient after
ablating the immune system with chemotherapy and/or radiation [31]. An
engraftment takes place when the normal activity of the patient is restored,
and graft failure is when transplantation is rejected [9]. If cancer is recurrent
after the transplant, a relapse occurs. PET imaging is used for monitoring the
patient’s metabolism after the treatment. Although 8F-FDG is the common
radiotracer used for this purpose [32], 18F-FLT has been proposed as an
alternative because it seems to better capture the metabolism in the bone
marrow [7], [8], [33]. Williams et al. performed a study on 23 HSCT patients
and scanned the subjects using CT and PET imaging with 18F-FLT [7], [8].
Imaging was executed on multiple instances: one day before, between five and
nine days after, and 28 days after the transplant. The study of the obtained

scans constitutes the major basis for this thesis.

2.1.5. Anatomical, World and Image Coordinate Systems
The anatomical coordinate system is used for describing the patient’s

position. It consists of three planes [34] perpendicular to each other:

Sagittal plane: Divides the body into left and right sections. When the

body is split into two equal halves, it is called median sagittal plane.



Figure 2. From left to right, illustration of world, anatomical and image
coordinate systems, extracted from [35].

Coronal plane: Splits the body into front (anterior) and back (posterior).

Axial plane: Also known as traversal plane, divides the body into

superior (towards the head) and inferior (towards feet) sections.

The prior definitions are used for specifying the imaging reference planes:
Superior/Inferior (S-I), Anterior/Posterior (A-P), Left/Right (L-R). In
radiography, the reference point is the patient’s soles, resulting in an LPS+
system: positive values defined from right towards left, from anterior towards
posterior, and from inferior towards superior on the sagittal, coronal, and axial
planes respectively [14], [35]. Other medical applications may use different

reference systems.

The world coordinate system is a cartesian system relative to, as the name
suggests, a real-world reference point, and is expressed in measurable units
(like mm). The reference point may vary from fabricant to fabricant,

application, etc.

The image coordinate system 1is an index-based system, used for

representing the actual image data which is stored as an array. In 3D imaging

10



systems, each voxel (i,j, k) represents the intensity values, and the voxel
dimensions represent displacements on the real-world coordinates [35].

Figure 2 illustrates the world, anatomical, and image coordinate system.

2.1.6. Affine Transformation
The correspondence between the image and real-world coordinate systems
1s given by an affine transformation. On an R" space, an affine transformation

1s a map F: R™ - R" of the form

F(p) =Mp+q 3)

for all p € R", where q € R" is the translational part of F and M is a linear

transformation of R", also called the linear part of F [36].

The correspondence between an image voxel (i,j,k) and a real-world

coordinate is given by
P = M(l,], k)T + pO,: (4)

where p represents a real-world point (x, y, z), po 1s the origin (x,, yo, zo) and M
1s a 3 X 3 transformation matrix, originated by the product between the image

scaling (also known as spacing or zooming) S and rotations (R;, R;, Ry) applied

to the image around two axis according to

M=SRLR]Rk
S 0 0|1 o 0 cosd) O smqb cosy —siny 0
=10 §, O [0 cos@ —sinf ”smy cosy ] (5)
0 0 S,|l0 sin@ cosO —Sln¢ 0 cos¢p

where 6, ¢ and y are the rotational angles with respect to each image axis [36].
The translational part py from Eq. (4) can be included in the linear part by
using an augmented 4 X 4 matrix A, generating what is called homogeneous

coordinates [37], as indicated by the following expression:

11
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This reduces the conversion from real-world coordinates to the image space to

i
Il — -1V
| = A7 (7)
1
In case of switching between two different image spaces, the voxel coordinates

from image space B containing the same spatial position as the initial one can

be found by

(8)

2.1.7. DICOM Data Format

DICOM stands for “Digital Imaging and Communications in Medicine.”
DICOM is an international standard used in medical imaging, originated in
the 1980s by the American College of Radiology (ACR) and the National
Electrical Manufacturers Association (NEMA) for generating a unified format
shared between fabricants of different imaging devices (CT, PET, fluoroscopy,
angiography, etc.) [38]. The current standard is based on the third revision
from 1993, and updates are being released periodically. The standard defines
the structure for storing imaging and patient data and additionally a

communication protocol for exchanging information.

For 3D images, the DICOM format uses a slice-by-slice basis for storing
data, which means that for a single patient scan, multiple files are generated,

each representing an axial slice. Each file contains the image data, stored as a

12



row-column array, and a metadata dictionary, which includes the patient’s age,
weight, height, and procedure. The dictionary also stores the spatial
information of the image frame, such as rotation, pixel spacing, slice thickness
and position in millimeters, as well as binary-related information such as bit-

size, data type and number of channels [39].

Additional information is recorded depending on the procedure being used.
For CT imaging, this includes the current, voltage and exposure time; for PET
imaging, the additional information includes the radiotracer, dose, and decay

time.

2.1.8. NIfTT Image Format

The Neuroimaging Informatics Technology Initiative (NIfTI) was founded
in the 2000s by the National Institute of Mental Health (NIMH) and the
National Institute of Neurological Disorders and Stroke (NINDS). The NIfTI
format extension (.nii) was designed as a relatively simple storage format for
neuroimaging. The current revision NIfTI-2, approved in 2011, allows 64-bit

storage [40].

The image data in a NIfTI file is stored sequentially as a list, representing
a whole volume, or a time series volume for some procedures. The file header
stores the total dimension of the image, the data type, bits per pixel, and voxel

units. The spatial information is stored in the form of an affine matrix.

Although the NIfTI format was initially designed for working with
magnetic resonance imaging, radiological data such as that present in a

DICOM file for CT scan can also be stored with the proper considerations [41].

2.2. Image Segmentation
One of the common tasks in image processing is image segmentation, which

1s the process of partitioning an image into multiple segments or regions, each

13



one with homogeneous characteristic features such as texture, morphology,
brightness, etc. Each segment S; is associated with a label, and each pixel (or
voxel in 3D images) belonging to S; is assigned with the same label value [42].
If the segmentation goal is to identify non-countable or general regions or
classes (such as sky, car, people), it is referred as semantic segmentation.
Instead, when it is desired to identify individual objects or instances (like each
one of the cars captured by a CCTV cam), the term instance segmentation is
used. A combination of both semantic and instance segmentation is known as
panoptic segmentation [43]. Unless otherwise specified, I will use the term

segmentation when referring to semantic segmentation.

2.2.1. Segmentation Techniques

Multiple techniques have been studied and developed for image
segmentation. The most basic algorithm is thresholding, which consists of
converting a grayscale image to a binary image by clipping the values below or
above a reference level (or threshold). This method is useful when there is a
high contrast between background and foreground, or when the objects to be
segmented each present similar intensity values that are distinct from one
another [44]. Adaptive thresholding techniques are based on local thresholding
and they usually make use of the statistics of a subregion such as mean,

median, or peak values.

Edge-based techniques are used for detecting the edges or boundaries of an
object. An edge is considered to be a discontinuity in the intensity values
between two regions, which can be detected using discrete spatial filters based
on the first (gradient) and second order (Laplacian) derivatives. Common
filters include the Robert, Sobel, and Laplacian of Gaussian kernels and the

Canny operator [45].

14



Region based segmentation, as the name suggests, makes use of subregions

within the image. Some examples include:

- Region growing: a technique that groups pixels into larger regions by

using the criteria defined on the initial seed points.

- K-means clustering: splits the image into multiple clusters and runs

1teratively until the variance within clusters is minimized.

- Graph cut segmentation: represents the image as a graph, where the

nodes represent pixels which are connected by edges [45].

Model-based segmentation represents the shape and structure of an object
by some algebraic or geometrical model [42]. Template matching compares the
features of a target region with a pattern. This procedure was used in [46] for
tracking down markers on tumors and in [47] for segmentation of cells.
Parametric deformable models represent the contours as a parametrized curve
affected by internal and external forces that define the object boundary [42],
[48], [49].

In recent years, machine learning and, more specifically, deep-learning
methods have regained strength due to the increase in computational power

and GPU memory size. A more detailed discussion is presented in Section 2.3.

2.2.2. Metrics for Image Segmentation

Segmentation can be considered a classification task, in which each voxel or
pixel is assigned a label or value representing a class (background or
foreground in the case of binary segmentation) [45]. Thus, most of the following
concepts also apply to image classification. A fuzzy segmentation algorithm,
like deep-learning-based segmentation, assigns weights or probabilities in the

range [0,1], which are converted to discrete values by using some criteria [50],
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Table 1. Confusion Matrix.

Actual Positive Actual Negative
Assigned Positive | True Positive (TP) | False 