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Abstract

Stochastic gravitational waves are features of many new physics models that

introduce additional interactions to the Standard Model of Particle Physics. These

interactions typically occur in the very early universe which poses a challenge

for current detectors. The detection of gravitational waves at ground based or

future space based detectors will offer a unique insight into the early universe

and allow for a complementarity with particle physics detectors to discover new

interactions. Gravitational waves can be generated from several sources such as

the merging of Bose-Einstein Condensates, phase transitions, and inflation while

providing a unique test for baryogenesis mechanisms. In this work we show that

accurately predicting the gravitational wave signals and placing precise constraints

on parameter spaces of particle physics models is essential for discovering new

physics and mapping out the cosmological history of the early universe.
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Chapter 1

Introduction

Since the first direct detection of gravitational waves (GWs) by the LIGO and

Virgo collaborations [18], a new interface has arrived in particle physics – its

intersection with GW astronomy. While ground based GW detectors have their

best sensitivity at frequencies ∼ O(100) Hertz and their main targets are black hole

and neutron star binaries, there is now growing interest in building space-based

interferometer detectors for milli-Hertz or deci-Hertz frequencies. Many detectors

have been proposed, such as the Laser Interferometer Space Antenna (LISA) [19],

the Big Bang Observer (BBO), the DECi-hertz Interferometer Gravitational wave

Observatory (DECIGO) [20], Taiji [21] and Tianqin [22]. The physical sources

of GWs in this frequency band include supermassive black hole binaries [23],

extreme mass ratio inspirals [24] and the stochastic background of primordial

GWs produced during first order cosmological phase transitions [25].

This offers tremendous opportunities for theorists, as a new window to the

early Universe opens up. Aspects of dark sector physics and baryon asymmetry

can now be framed fruitfully in a language that lends itself to data from the GW

frontier. The key connection is phase transitions, which on the one hand are a

primary target of future GW experiments, and on the other are important features

of scalar potentials and hence have historically been the target of collider physics.

Primordial stochastic gravitational waves from first order cosmological phase

transitions have become a new cosmic frontier to probe particle physics beyond

1



the standard model [25, 26, 27, 28, 10, 29]. Alongside extensive studies on the

theory side, direct searches for stochastic gravitational waves at LIGO and Virgo

have also been performed using their O1 and O2 data sets [30, 31]. They will

come online within the next decade or so and can probe lower frequencies coming

from an electroweak scale phase transition [32, 33, 34, 35, 36, 37, 38, 39, 40,

41, 42, 43, 44, 45, 46, 47].1 Precise calculations of the gravitational wave power

spectrum are required to have any hope of inferring parameters of the underlying

particle physics model. There have been significant advances in this direction in

recent years. In particular, it is now generally accepted that the dominant source

for gravitational wave production in a thermal plasma is the sound waves [67],

although a more precise understanding of the onset of the turbulence is still needed

to settle this issue. For the acoustic production of gravitational waves, many large

scale numerical simulations have been performed [68, 69], with the result that

standard spectral formulae are now available for general use. These results have

also been understood reasonably well for relatively weak transitions, through the

theoretical modeling of the hydrodynamics [70] and with the recently proposed

sound shell model [71, 3].

Even the very early Universe is transparent to gravitational waves, making

searches for the gravitational wave background of the Universe a unique probe of

the cosmos before big bang nucleosynthesis. Ubiquitous in the literature is the

generation of a gravitational wave background from an inhomogeneous transition

1Note that they are also poised to probe hidden sector transitions [48, 49, 50, 51, 52, 53, 54,
55, 56, 57, 58, 59, 60, 61, 62] and transitions from multi-step GUT breaking [63, 64, 65, 66]
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of the ground state (for a review see [26, 27, 10]). In the standard model of particle

physics, there is no mechanism for such a gravitational wave background to be

produced. Specifically, both the QCD and electroweak transitions are predicted

to be smooth [72, 73, 74, 75, 76, 77]. This implies that any gravitational wave

background resulting from a strong first order phase transition is proof that the

standard model is incomplete.

The electroweak transition can be made strongly first order through the

introduction of new states at around the electroweak scale [78, 32, 37, 79, 80, 81,

82, 83, 84, 85, 33, 86, 34, 87, 88, 89, 90, 38, 41, 91, 35, 92, 93, 94, 39, 95, 96, 97,

98, 99, 100, 101, 102, 103]. The QCD transition can be catalyzed by changing

the number of light fermions [104] or having a very large lepton asymmetry

[105, 106, 107]. Additionally there are strong motivations to believe that the

standard model is incomplete and additions to the standard model can also leave

cosmic fingerprints. For instance, baryonic matter can only explain a fraction of

the matter observed and the missing dark matter can be a part of a hidden sector

that undergoes a phase transition [48, 52, 55, 59, 108, 109, 110, 111, 57, 112, 113,

60, 114, 115, 116, 117, 118, 119]. Second, the near unification of gauge coupling

constants along with conspiracy of gauge anomaly cancellation motivates grand

unification which can sequentially break into the standard model gauge group

and leave a gravitational wave background [120, 63, 121, 64, 66, 122, 65]. Finally,

the generation of neutrino masses can arise through a B − L breaking transition

[123, 42, 121, 61, 124, 125]. In each case, an observed signal not only sheds light

on our cosmic history, but on a range of energy scales spanning from sub-GeV to
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the PeV scale [126] (even higher scales have been proposed, though technology

needs to improve to make the sensitivity cosmologically relevant [127] with the

possible exception of NEMO [128]).

In the last few years, there has been increasing interest in ultra-light bosonic

dark matter (DM) candidates such as the axion. While the QCD axion was

originally motivated by the strong CP problem [129, 130], string theory predicts

a vast landscape of axion-like particles (ALPs) [131, 132, 133, 134] with masses

across several orders of magnitude and a rich phenomenology. Studies of sub-eV

(pseudo-) scalars as DM candidates have yielded interesting signals and novel

proposals for direct detection experiments [135, 136, 137, 138, 139], to name a

few.

In particular, due to its bosonic nature, ultra-light bosonic DM can exhibit

collective behaviors at the macroscopic level that are not obvious at the Lagrangian

level. It has been observed and well understood in condensed matter physics

that for bosons there exists a unique phase, the Bose-Einstein Condensate (BEC)

phase, once the ensemble is cooled down below the critical temperature. Given the

abundance of the DM population, this translates the requirement of the occupancy

number n > (mv)3 to an upper bound of the scalar mass, m < eV [140]. The

maximal mass of the BEC object can be crudely estimated as M .M2
Pl/m [141].

This singles out two scales of particular interest to the community: galactic scale

BEC with m ∼ 10−22 eV, and stellar scale BEC with m ∼ 10−10 eV.

On galactic scales, condensates of ultralight bosons have been shown to produce

core like halos by quantum pressure [142, 143, 144, 145, 146, 147], with various
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studies on its constraints [148, 149, 150, 151, 6]. A good understanding of the

theoretical mass profile of such a BEC system not only provides insights on the

particle nature of DM, but could also have implications for quasar lensing time

delay and the recent Hubble tension [152]. On smaller scales, such BEC systems

can form stellar scale structures dubbed boson stars [153, 154], with scalars free

from interaction [155], with attractive φ4 interaction [156, 157, 158, 159, 160, 161,

162, 163, 164], repulsive φ4 interaction [141, 165, 166], and repulsive cos(φ/f)

potential [140, 167]. A few variations such as multistate boson stars from generic

scalars have also been explored, in an attempt to reproduce realistic models of DM

halos [168]. BEC states with angular momentum is studied in a recent work [169].

New ways of probing BEC systems at different scales include using Big Bang

Nucleosynthesis (BBN) [170], galaxy rotation curves [171, 151], gravitational wave

(GW) from binary boson star mergers [172, 167], GW from BEC collisions [173],

speed of GWs passing through BEC [174], electromagnetic emission [175, 176, 177],

GW from extreme mass ratio inspiral systems [178], and optical lensing [179].

The slight asymmetry between matter and anti-matter is one of the cornerstone

puzzles of modern particle cosmology, as the Standard Model fails to provide

an explanation [180, 181, 182]. An elegant paradigm for explaining the slight

asymmetry is the Affleck-Dine mechanism [183, 184, 182, 185]. Supersymmetric

theories generically have flat directions [186, 184], which have non-zero baryon or

lepton number. During inflation, a scalar condensate generically develops in these

directions, whose non-zero vacuum expectation value (VEV) spontaneously breaks

C and CP. At the end of inflation, a baryon and/or lepton asymmetry is generated
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as the VEV coherently evolves and the condensate fragments [187]. These resulting

clumps may be long-lived non-topological solitons (Q-balls) [188, 189, 190, 191],

carrying either lepton or baryon number [192]. This global charge is transferred

to Standard Model particles when the Q-balls decay.

However, the Affleck-Dine mechanism is generically a high-scale phenomenon,

making it difficult to confirm observationally. In this paper, we argue that a broad

class of Affleck-Dine models significantly enhance the primordial gravitational

wave power spectrum. This provides a novel mechanism to test or constrain these

models.

The following chapters are organized as follows. Chapter 3 provides an

introduction to gravitational waves in the context of Electroweak Phase Transitions

originating in the Higg’s sector where a complementarity with collider experiments

is studied in the Singlet Extended Standard Model (xSM). Phase transitions may

occur at any scale, not neccessarily at the electroweak scale, and thus a proper

treatment of the scale factor at the time of the phase transition is important

for estimating the size of the peak spectrum observed today. In chapter 4, we

study phase transitions in an expanding universe and derive a suppression factor

of the spectrum which is the result of the finite lifetime of the source inducing

the gravitational waves. We continue the discussion of gravitational waves in

an expanding universe in chapter 5 while looking at three common models and

compare the different levels of diligence used in the literature to understand

the impact precision has on estimating the graviational wave spectrum. We

change direction in chapter 6 to study the mass and compactness profiles of BEC
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systems composed of two ultralight scalars on both stellar and galactic scales with

implications of gravitational wave signals at LIGO for binary mergers of two boson

stars. In chapter 7, we show that the sudden decay of Q-balls into fermions can

result in a rapid transition from matter to radiation domination which enhances

the primordial gravitational wave signal. This signal is detectable by future space

based detectors, providing a mechanism to test Affleck-Dine baryogenesis.
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Chapter 2

Phase Transition in the Standard Model

Gravitational waves produced by phase transitions in the early universe are pre-

dicted by many theories beyond the Standard Model and allow for an out of

equilibrium environment which is essential for theories like electroweak baryoge-

nesis. This out of equilibrium environment, along with the gravitational wave

generation, is only achievable with a first order phase transition. The Standard

Model has the ability to produce a first order phase transition through the Higgs

mechanism and the evolution of the electroweak vacuum but the experimental

value of the Higgs mass forces the phase transition to be a smooth cross over

transition [73]. The following sections will introduce the Standard Model, its cross

over transition, and how we can deform the Higgs sector effective potential with

new interactions to allow for a first order phase transition.

2.1 Standard Model

A potential of a scalar field φ with spin zero has the form

V (φ) = µ2φ†φ+ λ
(
φ†φ
)2
, (2.1)

which takes on a ”Mexican hat” shape when µ2 < 0 and λ > 0. The minimum

of the potential can be found to be located at ∂V (φ)
∂φ

= v = |µ|√
λ
. In the Standard

Model, the scalar field can be regarded as the Higgs field which is a weak isospin
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doublet of 4 components

φ =
1√
2

φ1 + iφ2

φ3 + iφ4

 . (2.2)

The Higgs potential is symmetric in rotations in φ space but if we choose a

direction of fluctuation,

φ0 =
1√
2

0

v

 , (2.3)

we spontaneously break the symmetry. A fluctuation of the field around the

minimum, φ→ φ0 + h, will result in

φ =
1√
2

 0

v + h

 , (2.4)

where we associate h with the Standard Model Higgs Boson. The minimum v has

been experimentally measured to be v = 246 GeV.

In addition to the scalar Higgs Boson, the Standard Model contains six spin

1/2 quarks (up, down, charm, strange, top, and bottom), six spin 1/2 leptons

(electron, muon, tau electron, neutrino, muon neutrino, and tau neutrino), and

four spin 1 vector bosons (gluon, photon, Z, W). The fermions such as the quarks

and leptons couple to the Higgs field through interactions like

−yf
(
f̄LφfR + f̄RφfR

)
, (2.5)

where f is the (left, right) fermion field and yf is the coupling to the Higgs field.

The spontaneous symmetry breaking of Higgs results in the generation of the

masses for the fermions

mf =
yfv√

2
. (2.6)
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The interaction term of the vector bosons to the Higgs is

g2φ†VµV
µφ, (2.7)

where V is a vector boson and g is the gauge charge of the vector boson in the

covariant derivative. This term will generate a mass for the vector bosons after

symmetry breaking as well. The masses of the W and Z bosons are

MW =
vg

2
, MZ =

v
√
g2 + g′2

2
. (2.8)

The mass terms for the fermions and vector bosons are not explicitly allowed

because of chiral symmetry and gauge invariance respectively. These terms only

arise due to the field dependence of the scalar field in the interaction terms and

the spontaneous symmetry braking by expanding about fluctuations near the

minimum of the Higgs potential.

2.2 Phase Transition

The theory of phase transitions can be understood from the thermodynamic

properties of a free gas consiting of bosonic and fermionic fields. A simple effective

potential can be derived to trace the phase structure at finite temperature and

analyze the dynamics of the phase transition such as in Sec. 4.3. The effective

potential was originally used as a high temperature approximation for the standard

model (see, e.g., Ref. [17]). In the Standard Model, the origin of the electroweak

symmetry breaking is predicted to be that of a second order phase transition.

When the universe was very hot, symmetry was restored and the expectation

10



value of the Higgs sat at origin where < φ >= 0. As the universe began to cool,

the universe smoothly transitioned from < φ(T ) >= 0 to < φ(0) >= v = 246

GeV. This smooth cross over transition is not an out of equilibrium process and

thus will not produce gravitational waves or baryeogensis. If the transition was

first order, where at some critical temperature a new minimum at < φ(Tc) >= 0

became degenerate with < φ(Tc) >= v(Tc) seperated by a potential barrier, the

universe can tunnel from the symmetric phase to the broken phase providing the

out of equilibrium environment and generate gravitational waves through bubble

nucleation of the new phase. This out of equilibrium environment can prevent

the baryon asymmetry from being washed out depending on the strength of the

transition. This section is devoted to deriving the effective potential at finite

temperature and discuss the phase transition structure of the Standard Model.

The free energy density of a gas at temperature T in a volume V is given by

fB = V0,B + T

∫
d3k

(2π)3
ln
(
1− exp−βω~k

)
, (2.9)

where V0,B is a constant representing the zero-temperature ground state, and

β = 1/T and ω~k is the angular frequency for each momentum mode |~k|. The free

energy density can be derived from the partition function of a bosonic harmonic

oscillator. Similarly, the free energy density for a fermionic field is

fF = −V0,F − T
∫

d3k

(2π)3
ln
(
1 + exp−βω~k

)
. (2.10)

The free energy densities can be written as

fB,F = T 4JB,F

(m
T

)
, (2.11)
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where T is the temeperature that sets the dimensions of the free energy and JB,F

is a dimensionless function. The free energy density is purely a function of mass

and temperature.

The free energy density of the Standard Model Higgs boson can be written

as the combination of tree level potential defined in Eq. 2.1 and the free energy

density in Eq. 2.11:

f(φ, T ) = V0φ+ T 4

(∑
B

JB

(
MB

T

)
+
∑
F

(
MF

T

))
, (2.12)

where we sum over all the bosons and fermions at temperature T. At finite tem-

perature, the vacuum expectation value of the Higgs boson becomes temperature

dependent and we aim to minimize f(φ, T ). The masses of the fermions and

bosons are no longer constant but now depend on the temperature dependent

vacuum expectation value. The masses of particles will evolve as

MB,F (φ) = cB,Fφ, (2.13)

where B,F runs over the bosons and fermions of the theory and c is a constant

that depends on the coupling in the interaction term. Calculating the integral in

Eq. 2.11 is numerically expensive but we can expand the integral using the large

temperature approximation to yield

f =− geff
π2

90
T 4 + V0(φ)

+
T 2

24

(∑
S

M2
S(φ) + 3

∑
V

M2
V (φ) + 2

∑
F

M2
F (φ)

)

− T

2π

((
M2

S(φ)
)3/2

+
∑
V

(
M2

V

)3/2

)
,

(2.14)
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where we sum over the scalars, vectors bosons, and fermions of the theory. The

constants in front of the summations are the degrees of freedom. The effective

number of relativistic degrees of freedom geff is

geff =
7

8
4NF + 3NV + 2NV 0 +NS, (2.15)

where NF is the number of fermions, NS is the number of scalar bosons, and NV

and NV0 are the number of massive and massless vector bosons respectively. The

effective degrees of freedom is temperature dependent and can be assumed to

be 106.75 for the Standard Model at large temperatures T & 100 GeV. Above

this temperature, all Standard Model particles are assumed to be relativistic and

coupled to the plasma. The field dependent effective potential of the full free

energy density in Eq. 2.14 in the high temperature expansion can be generically

written as

VT (φ) = D
(
T 2 − T 2

0

)
φ2 − ETφ3 +

λT
4
φ4, (2.16)

where in the Standard Model, the parameters E, D, λT , and T0 will depend on

masses and couplings in Eq. 2.13. Here D > 0, E > 0, λ > 0 and λ has a weak

dependence on T . The first term has a positive coefficient when T > T0 to restore

the symmetry. The third, the cubic term, when is sufficiently smaller, helps create

a barrier together with the first term, and creates another minimum. In the

Standard Model, the main contributions to Eq. 2.16 are the mass of the Higgs

MH , mass of W boson MW , the mass of the Z boson mZ , and the mass of the
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top quark MT which give

E =
1

4πv3

(
2M3

W +M3
Z

)
(2.17)

D =
1

8v2

(
2M2

W +M2
Z + 2M2

t

)
(2.18)

λT = λ+ ... (2.19)

T0 =

√
1

4D
M2

H + ... (2.20)

(2.21)

where MH = 126 GeV, v = 246 GeV, MW = 80.38 GeV, MZ = 91.19 GeV,

and Mt = 172.76 GeV. We note that the temperature dependent potential

should depend on all of the Standard Model particles that acquire mass at finite

temperature. However, we only keep the heavier particles as they are the dominate

species in Eq.2.21. For simplicity, we drop the one-loop order terms that are

proportional to φ4 ln(φ/v2) and m4 ln(m2/T ).

In Fig. 2.1, we plot the phase structure of the generic effective potential

in Eq. 2.16 for two sets of benchmark points in (E,D, λT , T0). The left panel

represents a second order phase transition while the right panel shows a first

order phase transition. Both panels show the evolution of the effective potential

as the minimum of φ varies with temperature. At large T , both figures have

symmetry restored and the minimum sits at the origin. As the universe begins to

cool, the left panel shows that the minimum smoothly crosses over to a non-zero

value and evolves to the zero temperature minimum. The right panel shows that

a new minimum begins to form as the universe cools and eventually become

degenerate with the symmetric minimum at some critical temperature. Below
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Figure 2.1: Left panel: the temperature dependent effective potential

as a function of the minimum of φ for a second order phase transition.

Right panel: the temperature dependent effective potential as a func-

tion of the minimum of φ for a first order phase transition.

the critical temperature, the new phase becomes more energetically favorable and

the universe tunnels to the new phase and breaks the symmetry. Both panels

have D = 0.1, λT = 0.2, and T0 = 75. In the left panel, we set E = 0 to eliminate

the barrier. We choose E = 0.1 in the right panel to introduce a barrier. The

benchmarks in Fig. 2.1 were choosen at random but by varying the barrier term

in the effective potential, we were able drastically change the behavior of the

phase transition. In the Standard Model, the Higgs mass is too large to allow for

a first order phase transition. A first order phase transition can occur, however, if

we deform the Higgs potential with new interactions through the introduction of

new particles which can modify the parameters (E,D, λT , T0). This can lead to

a symmetry breaking pattern such as the right panel of Fig. 2.1 or if there are

additional scalars, there can be more complicated phase structures with multi-step
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transitions.
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Chapter 3

Electroweak Phase Transitions

3.1 Introduction

The purpose of our work is to explore the complementarity of future GW detectors

and future particle colliders in probing phase transitions in the early Universe –

in the simplest particle physics setting possible, but also with great attention

to detail within such a setting. The natural choice is the electroweak phase

transition (EWPT) [32] with the simplest extension of the Higgs sector: the

singlet scalar augmented Standard Model or the xSM1. This model is capable

of providing a strongly first order EWPT through a tree level barrier and is the

simplest model in Class IIA of the tree level renormalizable operators described

in [198] (see Ref. [199, 63, 200, 201, 202, 203, 54, 204, 205, 206, 207, 208, 209, 210,

120, 211, 90, 212, 213, 214, 36, 215, 216, 123, 217, 218] for related studies). It

has been extensively investigated in phenomenological studies [219, 84, 220, 221],

studies of EWPT [84, 219, 222, 223, 224] and di-Higgs analyses [225] guided by

the requirements of EWPT [220], and electroweak baryogenesis (EWBG).

We perform a detailed scan of this model, shedding light on the following

issues: (i) the EWPT patterns admitted by the model, and the proportion of

parameter space for each pattern; (ii) the regions of parameter space that give

detectable GWs at future space-based detectors; (iii) the current and future

1Hidden sector phase transitions are also being actively investigated [48, 193, 112, 194, 195],
and exploring complementarity in such settings is an interesting future direction. We refer to
Ref. [25, 196, 26, 197, 27] for recent work on these topics.
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collider measurements of di-Higgs production, as well as searches for a heavy weak

diboson resonance, and how these searches interplay with regions of parameter

space that exhibit strong GW signals; and (iv) the complementarity of collider

and GW searches in probing this model.

We first carefully work out and incorporate all phenomenological constraints:

boundedness of the Higgs potential from below, electroweak vacuum stability at

zero temperature, perturbativity, perturbative unitarity, Higgs signal strength

measurements and electroweak precision observables. Then, we identify the re-

gions of parameter space which give large signal-to-noise-ratio (SNR) at LISA. We

carefully address subtle issues pertaining to the bubble wall velocity vw, making

a distinction between vw, which enters GW calculations, and the velocity v+

that is used in EWBG calculations. The relation between these two velocities

is determined from a hydrodynamic analysis by solving the velocity profile sur-

rounding the bubble wall. We provide a description of different fluid velocity

profiles and investigate the behavior of the normalized energy released during the

phase transition, α, which primarily determines the SNR, as a function of the

model parameters. On the collider side, we identify the subset of points with large

SNR at LISA that are most promising in terms of di-Higgs and weak diboson

production studies, setting the stage for future benchmark points.

Much remains to be understood about the Higgs sector. On the collider side,

measuring the Higgs cubic and quartic couplings through double or triple Higgs

production, both non-resonant as well as resonant, is an extremely difficult but

central goal of future experiments (see e.g., [226, 227, 1, 228, 229, 230, 2]). While
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any deviation of the shape of the Higgs potential from what is expected within

the Standard Model (SM) would hint to new physics, the sensitivities of such

collider studies are found to be rather low. The detection of GWs from EWPT in

future experiments can offer a complementary method of probing the currently

largely unknown Higgs potential. Our work is a step in that direction.

The paper is structured as follows. In Sec. 3.2, we define the Higgs potential

and set the notations. The standard phenomenological analysis is discussed in the

following Sec. 3.3. The next Sec. 3.4 discuss the details of the EWPT and GW

calculations, after which the results and discussions from the full scan is presented

in Sec. 3.5 and we summarize in Sec. 3.6.

3.2 The Model

In this section, we fix our notation by defining the potential for the gauge singlet

extended SM, known as the“xSM”. This model is defined with the following

potential setup [219, 84, 220]:

V (H,S) = −µ2H†H + λ(H†H)2 +
a1

2
H†HS

+
a2

2
H†HS2 +

b2

2
S2 +

b3

3
S3 +

b4

4
S4, (3.1)

where HT = (G+, (vEW + h+ iG0)/
√

2) is the SM Higgs doublet and S = vs + s

the real scalar gauge singlet. All the model parameters in the above equation are

real. The parameters µ and b2 can be solved from the two minimization conditions
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around the EW vacuum(≡ (vEW, vs)),

µ2 = λv2
EW +

1

2
vs(a1 + a2vs),

b2 = − 1

4vs
[v2

EW(a1 + 2a2vs) + 4v2
s(b3 + b4vs)], (3.2)

and λ, a1, a2 can be replaced by physical parameters θ, mh1 and mh2 from the

mass matrix diagonalization 2:

λ =
m2
h1
c2
θ +m2

h2
s2
θ

2v2
EW

,

a1 =
2vs
v2

EW

[2v2
s(2b4 + b̃3)−m2

h1
−m2

h2
+ c2θ(m

2
h1
−m2

h2
)],

a2 =
−1

2v2
EWvs

[−2vs(m
2
h1

+m2
h2
− 4b4v

2
s)

+(m2
h1
−m2

h2
)(2c2θvs − vEWs2θ) + 4b̃3v

3
s ], (3.3)

where b̃3 ≡ b3/vs and we have defined the physical fields h1 and h2 as

h1 = cθh+ sθs, h2 = −sθh+ cθs, (3.4)

with a mixing angle θ. We note that h1 is identified as the SM Higgs while h2 is

a heavier scalar. The coupling of h1 with the SM particles is reduced by a factor

of cθ while the coupling of h2 with SM particles is (−sθ) times the corresponding

SM couplings and vanishes in the case of zero mixing angle.

With choices of parameter transformations described above, the potential is

fully specified by the following five parameters:

vs, mh2 , θ, b3, b4. (3.5)

The model defined here has several variants in the literature. For example, since

the potential can be defined with a translation in the S direction S → S ′ = S−vs,
2Here sθ ≡ sin θ and cθ ≡ cos θ.
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such that 〈S〉 = 0, the resulting potential will take the same form as Eq. 3.1 but

with the addition of a non-zero tadpole term b1S [225]. The potential and physics

remain the same but the parameters in the potential will transform accordingly.

The transformation rules to and from this basis are given in Appendix F. There

is also a variant where there is a spontaneously broken Z2 symmetry S → −S;

this corresponds to a subset of the parameter space here where a1 = b3 = 0.

We further note that we do not include CP-violation in this study since the

magnitude of the CP-violation is typically very constrained by current electric

dipole moment searches (e.g., [231, 232, 90] or the included CP-violation may be

large but has little effect on EWPT [233].

3.3 Phenomenological Constraints

In this section, we briefly discuss the phenomenological constraints used in our

analysis, following the standard treatments given in Refs. [234, 221, 225]. The phe-

nomenological discussion includes boundedness of the Higgs potential from below,

EW vacuum stability at zero temperature, perturbativity, perturbative unitarity,

Higgs signal strength measurements and electroweak precision observables.

First, the potential needs to be bounded from below. Requiring this for

arbitrary field directions gives us the condition [225],

λ > 0, b4 > 0, a2 > −2
√
λb4. (3.6)

Next, the EW vaccum also needs to be stable at zero temperature. Using physical

parameters as input will automatically guarantee that the EW vacuum is a
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minimum. To ensure that the above EW vacuum is stable, one should require

that no deeper minimum exists in the potential. In our analysis, we find all

the minima by firstly solving ∂V/∂φi = 0(φ1 ≡ h, φ2 ≡ s) and subsequently

calculating eigenvalues of the Hessian matrix {∂2V/∂φi∂φj} to determine the

nature of the extrema for each set of parameter input.

Next, Higgs signal strength measurements in various channels require the

couplings of h1 to be not far from the SM Higgs couplings. In the xSM, the

couplings of h1 to SM particles are reduced by a factor of cos θ, therefore the

Higgs signal strength is given by µH = cos2 θ. Experimentally, the most recent

ATLAS and CMS combined fit of this value is µH = 1.09+0.11
−0.10 [235] and a χ2

analysis shows that | sin θ| > 0.33 are excluded at 95% CL [236].

Moreover, unitarity puts constraints on the high energy behavior of particle

scatterings. Requiring further the perturbativity of these scatterings at high energy

will lead to constraints on the model. This tree level perturbativity requirement

is quantified as the condition that the partial wave amplitude al(s) for all 2→ 2

processes satisfies |Re al(s)| . 1/2 for
√
s → ∞. We consider all channels of

scalar/vector boson 2 → 2 scatterings at the leading order in the high energy

expansion, with details of the S-matrix given in Appendix. E.

Electroweak precision measurements, which mainly include the W boson

mass measurement [237] and the oblique EW corrections [238, 239], put further

constraints on the model. The W boson mass mW can be calculated given

experimentally measured values of GF , mZ and the fine structure constant at

zero momentum transfer α(0) [237]. The function relating mW and these three
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parameters depends on the loop corrections of the vector boson self-energies.

Comparing this calculated mW with the experimental measurement mexp
W =

80.385± 0.015GeV [240, 241, 242] highly constrains the modification of the loop

corrections by new physics effects. In this model, the modified loop corrections

result from reduced Higgs couplings and from the presence of the heavier scalar

h2 and are only dependent on (θ,mh2) at one-loop level. The same parameter

dependence enters the oblique S, T, U parameters and it turns out that the W -mass

constraint is much more stringent than that from the oblique corrections [237, 221].

To give the reader a flavor of the above phenomenological constraints, we fix

mh2 = 300 GeV, θ = 0.2, b4 = 4 and show the various bounds on the remaining

two parameters (vs/vEW, b3/vEW) in Fig. 3.1. This choice of mh2 and θ evades the

constraints from the W -mass as well as the oblique EW corrections and regions

outside the color-shaded regions are excluded by the remaining constraints. It

can be seen from this figure that the least constraining condition comes from

the perturbative unitarity requirement for this parameter choice. The bounded-

from-below condition is more restrictive and also separates the plane into two

disconnected regions while the stability of the EW vacuum at zero temperature

shrinks the allowed parameter space even more. We also overlaid on this plot

the points which pass the various EWPT requirements and give GW signals with

varying SNR. More details are given in the caption and in the following section.
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Figure 3.1: An illustrative plot showing various phenomenological

constraints. The shaded regions are allowed by requirements of uni-

tarity, boundedness of the potential from below, and stability of EW

vacuum at zero temperature. Points are also overlapped on this plot

where various EWPT criteria are fulfilled and with SNR > 50 (red),

50 > SNR > 10 (green) and SNR < 10 (blue). The diamond-shaped

points give two-step EWPT.

3.4 EWPT and Gravitational Waves

3.4.1 Effective Potential

EWPT is an essential step in generating the observed baryon asymmetry in the

universe by providing an out-of-equilibrium environment, one of the three Sakharov

conditions [180], in the framework of electroweak baryogenesis (see [243] for a

recent review). Augmented with the rapid baryon number violating Sphaleron
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process outside the electroweak bubbles and the CP-violating particle scatterings

on the bubble walls, a net baryon number can be produced inside the bubbles.

Aside from the particle interactions, which are used in EWBG calculations,

the cosmological context that characterizes the dynamics of the EWPT can be

calculated from the finite temperature effective potential. The standard procedure

of calculating it includes adding the tree level effective potential, the Coleman-

Weinberg term [244] and its finite temperature counterpart [245] as well as the

daisy resummation [246, 247]. Since the EWPT in this model is mainly driven

by the cubic terms in the potential and out of concern of a gauge parameter

dependence [248] of the effective potential calculated in the above standard

procedure, we take here the high temperature expansion approximation, which is

gauge invariant, in line with previous analyses of this model [219, 84, 222, 220, 249].

This effective potential is then given by 3

V (h, s, T ) = −1

2
[µ2 − Πh(T )]h2 − 1

2
[−b2 − Πs(T )]s2

+
1

4
λh4 +

1

4
a1h

2s+
1

4
a2h

2s2 +
b3

3
s3 +

b4

4
s4, (3.7)

where Πh(T ) and Πs are the thermal masses of the fields,

Πh(T ) =

(
2m2

W +m2
Z + 2m2

t

4v2
+
λ

2
+
a2

24

)
T 2,

Πs(T ) =

(
a2

6
+
b4

4

)
T 2, (3.8)

3We also note that we have neglected a tadpole term proportional to T 2s, which originates
from the a1 and b3 terms in the potential in Eq. 3.1, since it comes with a factor vs/vEW

and is suppressed for most of the parameter space giving detectable GWs, to be presented
in later sections. Indeed its effect has been found to be numerically negligible from previous
studies [219, 84].
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where the gauge and Yukawa couplings have been written in terms of the physical

masses of W , Z and the t-quark. With this effective potential, the thermal history

of the EW symmetry breaking can be analyzed. It depends mainly on the following

key parameters:

Tc, Tn, α, β, vw. (3.9)

Here Tc is the critical temperature at which the metastable vacuum and the

stable one are degenerate. Below Tc, the phase at the origin in the field space

becomes metastable and the new phase becomes energetically preferable. The

rate at which the tunneling happens is given by [250]

Γ ∼ A(T )e−S3/T , (3.10)

where S3 is the 3-dimensional Euclidean action of the critical bubble, which

minimizes the action

S3(~φ, T ) = 4π

∫
r2dr

1

2

(
d~φ(r)

dr

)2

+ V (~φ, T )

 , (3.11)

and satisfies the bounce boundary conditions

d~φ(r)

dr

∣∣∣
r=0

= 0, ~φ(r =∞) = ~φout. (3.12)

Here ~φout denotes the two components vev of the fields outside the bubble, which

is not necessarily the origin for two-step EWPT. The prefactor A(T ) ∝ T 4 on

dimensional grounds. Its precise determination needs integrating out fluctuations

around the above static bounce solution (see e.g., [251, 252] for detailed calculations

or [253] for a pedagogical introduction). For the EWPT to complete, a sufficiently

large bubble nucleation rate is required to overcome the expansion rate. This is
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quantified as the condition that the probability for a single bubble to be nucleated

within one horizon volume is O(1) at a certain temperature [52]:

∫ tn

0

ΓVH(t)dt =

∫ ∞
Tn

dT

T

(
2ζMPl

T

)4

e−S3/T = O(1), (3.13)

where VH(t) is the Horizon volume, MPl is the Planck mass and ζ ∼ 3 × 10−2.

From this equation, it follows that S3(T )/T ≈ 140 [254] and the temperature

thus solved is defined as the nucleation temperature Tn. Expanding the rate at

Tn, one can define the duration of the EWPT in terms of the inverse of the third

parameter β [254]:

β ≡ HnTn
d(S3/T )

dT

∣∣∣∣
Tn

, (3.14)

where Hn is the Hubble rate at Tn.

Next, α is the vacuum energy released from the EWPT normalized by the

total radiation energy density (≡ ρR) at Tn [255]:

α =
∆ρ

ρR
=

1

ρR

[
−V (~φb, T ) + T

∂V (~φb, T )

∂T

] ∣∣∣∣∣
T=Tn

, (3.15)

where ρR = g∗π
2T 4

n/30 with g∗ ≈ 100 and ~φb denotes the two components vev of

the broken phase. In this expression, the first term is the free energy from the

effective potential and the second term denotes the entropy production. Finally,

vw is the bubble wall velocity.

Given that a first order EWPT can proceed and complete, the baryon asym-

metry is generated outside the bubbles and then captured by the expanding

bubble walls. When the EWPT finishes, the universe would be in the EW broken

phase with non-zero baryon asymmetry. To ensure that these baryons would not
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be washed out, the Sphaleron rate needs to be sufficiently quenched inside the

bubbles. This condition is known as the strongly first order EWPT (SFOEWPT)

criterion [256, 243]:

vH(T )

T

∣∣∣
T=Tn

& 1. (3.16)

The conventional choice of the temperature at which the above condition is

evaluated is Tc, but a more precise timing is the nucleation temperature Tn, which

we use here. Since generally Tn < Tc and vh(Tn) > vh(Tc), it might seem at

first glance that the above condition is weaker when implemented at Tn than

at Tc. However the implicit assumption associated with the former requires the

capability of the EWPT to successfully nucleate, i.e., the condition Eq. 3.13 should

be satisfied in the first place, which is typically a more stringent requirement of

the potential.

The presence of two scalar fields gives a richer pattern of EWPT and makes it

possible to complete the EWPT with more than one step [257, 258, 52]. One can

immediately imagine mainly the following EWPT types:

(A): (0, 0)→ (vH 6= 0, vS 6= 0)

(B): (0, 0)→ (vH = 0, vS 6= 0)→ (vH 6= 0, vS 6= 0)

(C): (0, 0)→ (vH 6= 0, vS = 0)→ (vH 6= 0, vS 6= 0)

where the last vacuum configuration (vH 6= 0, vS 6= 0) in each case would eventually

evolve to the EW vacuum at T = 0 4. Here pattern (A) is a one step EWPT

from the origin in field space to the EW symmetry breaking vacuum directly,

4More exotic patterns might appear but should be of negligible phase space.
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due mainly to the negative cubic term in the effective potential. This one step

phase transition results in a typical GW spectrum as shown in the left panel of

Fig. 3.3. Quite differently, patterns (B) and (C) are two-step EWPT, which differ

only in how the vacuum transits for these two steps. For example, in case (B),

the universe first goes to a vacuum which has non-zero vev for the singlet field

and then transits to the would-be EW vacuum at high temperature. Case (C)

is different in that it breaks the EW vacuum first and then further goes to the

would-be vacuum in a subsequent step of phase transition. For each transit of the

vacuum, it can be either first or second order, depending on whether there is a

barrier separating the two vacua. We note that for case (C), baryon production

generally needs to occur in the first step, otherwise, the exponentially reduced

Sphaleron rate would greatly suppress the baryon number violating process in the

second step as the EW symmetry is already broken outside the bubbles. Therefore

the SFOEWPT criterion is imposed in the first step for this case.

We note that with the aid of the analytical methods presented in Ref. [223, 52],

it is possible to locate the region of the parameter space that gives exactly one

specific type of EWPT by imposing various conditions on the input parameters.

However, our task here is to reveal the overall behavior of the parameter space

concerning EWPT and GW. Therefore we adopt here a scan-based analysis which

covers the entire parameter space and for each scanned parameter space point,

we determine its pattern of EWPT and calculate GW properties. This way, we

can determine the most probable pattern of EWPT admitted by this model.
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3.4.2 Hydrodynamics

Successful EWBG usually requires a subsonic vw to give sufficient time for chiral

asymmetry propagation ahead of the wall and for conversion to baryon asymmetry

through the Sphaleron process. On the other hand, a larger vw is better for

GW production. Therefore a tension may arise between successful EWBG and

a loud GW signal production. This problem can potentially be solved when the

hydrodynamic properties of the fluid are taken into account [259]. This is because

the expanding wall stirs the fluid surrounding the bubble wall and a non-zero

velocity profile exists for the plasma ahead of the wall (see Ref. [70] for a recent

combined analysis). In the bubble wall frame, this means the plasma outside

the bubble will head towards the bubble wall with a velocity (≡ v+) that can be

different from vw. Therefore it is v+ rather than vw that should be used in EWBG

calculations. While the above argument still needs to be scrutinized taking into

account the particle transport behavior around the bubble wall in the process of

EWBG, we assume tentatively that this is true in this work.

This hydrodynamic treatment hinges on solving the fluid velocity profile v(r, t)

around the bubble wall given inputs of (α, vw), where r is the distance from

the bubble center and t is counted from the onset of the EWPT. Due to the

properties of the problem here, v is a function solely of r/t ≡ ξ. The differential

equation governing the velocity profile is derived from the conservation of the

energy momentum tensor describing the fluid and scalar field [70]:

2
v

ξ
=

1− vξ
1− v2

[
µ2

c2
s

− 1

]
∂ξv, (3.17)
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Figure 3.2: A set of fluid velocity profiles obtained when vw is increased

from small to large values(from left to right), for α = 0.1. Three modes

of profiles are obtained, deflagration (blue dashed), supersonic defla-

gration (aka hybrid, magenta solid) and detonation (brown dotted).

where cs = 1/
√

3 is the speed of sound in the plasma and µ(ξ, v) = (ξ−v)/(1−ξv)

is a Lorentz boost transformation. Far outside the bubble and deep inside the

bubble, the plasma will not be stirred, that is v → 0 serves as the boundary

condition. At the phase boundary, the velocity of the plasma inside and outside

the bubble wall are denoted as v− and v+ in the bubble wall frame, both heading

towards the bubble center. The same energy momentum conservation, when

applied across the bubble wall, gives a continuity equation connecting v− with

v+. Therefore the whole fluid velocity profile can be solved from the center of the

bubble to far outside the bubble where the plasma is unstirred.

The solutions of the fluid profiles can be classified into three modes depending
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on the value of vw. A set of profiles v(ξ) are shown in Fig. 3.2 for α = 0.1. For

vw < cs, a deflagration mode is obtained, in which case, the plasma ahead of the

bubble wall flows outward while it remains static inside the bubble, corresponding

to the profiles with blue-dashed lines. It can also be seen from this figure that as

vw increases in this mode, a discontinuity in v(ξ) appears outside the bubble and

v(ξ) jumps to zero. This is the location of the shock front, and beyond this point

the solution of Eq. 3.17 is invalid and a shock front develops such that v(ξ) goes

to zero consistently. When vw surpasses cs but is less than a certain threshold

ξJ(α), a supersonic deflagration mode [260] appears (magenta solid profiles) where

the plasma inside the bubble has a non-zero profile, while still taking the form of

deflagration outside the bubble. Here ξJ(α), as a function of α, corresponds to

the Jouguet detonation [261], used in earlier studies. It is also evident that in this

mode, as vw increases, the shock front becomes closer to the bubble wall until it

coincides with the bubble wall, where vw = ξJ(α) and the fluid enters the third,

detonation mode (brown dotted profiles). In this mode, the plasma outside the

bubble has zero velocity and therefore v+ = vw. If a subsonic velocity is required

in EWBG, we conclude that the deflagration mode will not work for EWBG. On

the contrary, v+ < vw in the deflagration and supersonic deflagration modes and

a solution for the tension between EWBG and GW might be achieved.

Therefore, instead of treating vw as a free parameter in the GW calculations,

we require, given a certain input of α, the corresponding v+ to have subsonic

value, taken to be 0.05 here, a choice usually used in EWBG calculations [262,

263, 264, 265, 233]). The procedure of achieving the above goal is as follows: for
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each given α we iterate over vw and solve the whole fluid profile until v+ = 0.05 is

reached. The resulting vw is used in GW calculations 5.

With v(ξ) obtained, one can also calculate the bulk kinetic energy normalized

by the vacuum energy released during the EWPT [70]:

κv =
3

∆ρ v3
w

∫
ω(ξ)

v2

1− v2
ξ2dξ, (3.18)

where ω(ξ) is the enthalpy density, varying as function of ξ, and can be solved

once v(ξ) is found. The remaining part 1 − κv ≡ κT gives the fraction of the

vacuum energy going to heat the plasma. Therefore a reheating temperature can

be defined as

T∗ = Tn(1 + κTα)1/4. (3.19)

This leads to an increase in entropy density and thus a dilution of the generated

baryon asymmetry [257]. Typically in EWBG calculations, the wall curvature

is neglected and the transport equations depend on a single coordinate z̄ in the

bubble wall rest frame, where z̄ > 0 (< 0) corresponds to broken (unbroken) phase.

The solved baryon asymmetry density nB is a constant inside the bubbles(see,

e.g., [266]):

nB =
3Γws

Dqλ+

∫ −∞
0

nL(z̄)e−λ−z̄dz̄ , (3.20)

where s(T ) = 2g∗π
2T 3/45 is the entropy density, Γws ≈ 120α5

wT is the weak

Sphaleron rate in the EW symmetric phase [267], λ± = (v+±
√
v2

+ + 15ΓwsDq)/(2Dq)

with Dq the diffusion constant for quarks [267] and nL is the chiral asymmetry

5For two-step EWPT, a small v+ is not necessarily required for both steps of EWPT. However
since vw is otherwise an almost free parameter, we stick to the choice v+ = 0.05 for both steps.
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of left-handed doublet fields which serves as a source term in baryon asymmetry

generation. The determination of nL is a key part in EWBG calculations and

is decoupled from the analysis of EWPT dynamics here. In above expression,

we have replaced vw by v+, to take into account the distinction between these

two velocities. If the temperature at which nB is calculated is Tn, then after

the bubbles have collided, the temperature of the plasma is given, to a good

approximation, by T∗ rather than Tn or Tc, which are conventionally used. The

diluted baryon asymmetry is then given by

nB
s
|T=T∗ = ξD

nB
s
|T=Tn , (3.21)

where ξD ≡ (1 + κTα)−3/4 captures the dilution effect of the generated baryon

asymmetry by reheating of the plasma. We then need to make sure that ξD does

not become too small, since otherwise a stronger CP-violation will be needed,

which might be excluded by the stringent limits from electric dipole moment

searches [268, 269].

3.4.3 Stochastic Gravitational Waves

During the EWPT, bubbles of EW broken phase expand and collide with each

other, which destroys the spherical symmetry of a single bubble, thus leading

to the emission of gravitational waves [255]. Due to the nature of this process

and according to the central limit theorem, the generated gravitational wave

amplitude is a random variable which is isotropic, unpolarized and follows a

Gaussian distribution. This therefore allows the description of gravitational wave
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amplitude using its two-point correlation function and is parametrized by the

gravitational wave energy density spectrum ΩGW(f), as a function of frequency

f . A natural consequence is that the GWs produced during the EWPT, when

redshifted to the present, give a peak frequency at around the mili-Hertz range [32],

falling right within the band of future space-based gravitational wave detectors.

It is now well known that there are mainly three sources of gravitational

wave production in this process: bubble wall collisions [270, 271, 272, 273, 274,

275], sound waves in the plasma [67, 68] and magneto-hydrodynamic turbulence

(MHD) [67, 68]. The total energy density spectrum can be obtained approximately

by adding these contributions:

ΩGWh
2 ' Ωcolh

2 + Ωswh
2 + Ωturbh

2. (3.22)

Recent studies suggest that the energy deposited in the bubble walls is negli-

gible, despite the possibility that the bubble walls can run away in some cir-

cumstances [276]. Therefore while a bubble wall can reach relativistic speed, its

contribution to gravitational waves can generally be neglected [277]. We thus

include only the contribution of sound waves and turbulence in the gravitational

wave spectrum calculations.

The dominant contribution comes from sound waves. By evolving the scalar-

field and fluid model on 3-dimensional lattice, the gravitational wave energy

density spectrum can be extracted, with an analytical fit formula available [68]:

Ωswh
2 = 2.65× 10−6

(
H∗
β

)(
κvα

1 + α

)2(
100

g∗

)1/3

×vw
(
f

fsw

)3(
7

4 + 3(f/fsw)2

)7/2

. (3.23)
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Figure 3.3: Examples showing GW energy density spectra from one

step (left) and two-step (right) EWPT. For the left panel, the individual

contributions from sound waves and magnetohydrodynamic turbulence

are shown with their sum denoted by the green solid line. For the

right panel, the total contributions from both the first step and second

step are shown and with their sum denoted by the green solid line.

Here H∗ is the Hubble parameter at T∗ when the phase transition has completed.

It has a value close to that evaluated at the nucleation temperature Tn for

sufficiently short EWPT [25]. We take T∗ to be the reheating temperature, defined

earlier in Eq. 3.19. Moreover, fsw is the present peak frequency which is the

redshifted value of the peak frequency at the time of EWPT (= 2β/(
√

3vw)):

fsw = 1.9× 10−5 1

vw

(
β

H∗

)(
T∗

100GeV

)( g∗
100

)1/6

Hz, (3.24)

where κv is defined in Eq. 3.18 and can be calculated as a function of (α, vw) by

solving the velocity profiles described in Sec. 3.4 [70]. It should be noted that

a more recent numerical simulation by the same group [69, 71] shows a slightly
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enhanced Ωswh
2 and reduced peak frequency fsw. We also note that the results

from these simulations are currently limited to regions of small vw and α and

therefore their validity for ultra-relativistic vw and large α (say α & 1) remains

unknown. In the absence of numerical simulations for these choices of parameters

at present, we assume that the results shown here apply for these cases and remind

the reader to keep the above caveats in mind.

The fully ionized plasma at the time of EWPT can result in the formation of

MHD turbulence, which gives another source of gravitational waves. The resulting

contribution can also be modelled similarly with a fit formula [278, 279],

Ωturbh
2 = 3.35× 10−4

(
H∗
β

)(
κturbα

1 + α

)3/2(
100

g∗

)1/3

×vw
(f/fturb)3

[1 + (f/fturb)]11/3(1 + 8πf/h∗)
, (3.25)

where fturb is the peak frequency and is given by,

fturb = 2.7× 10−5 1

vw

(
β

H∗

)(
T∗

100GeV

)( g∗
100

)1/6

Hz. (3.26)

Here the factor κturb describes the fraction of energy transferred to the MHD

turbulence and is given roughly by κturb ≈ εκv with ε ≈ 5 ∼ 10% [68]. We take

ε = 0.1 in this study.

In both Eq. 3.23 and 3.25, the value of vw is found by requiring that v+ = 0.05

by solving the velocity profiles, as discussed in the previous section. For the

two-step EWPT, as discussed in last section, if both steps in case (B) and (C)

are first order, then there would be two subsequent GW generation at generally

different peak frequencies and amplitudes, corresponding to the example shown

in the right panel of Fig. 3.3.
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The detectability of the GWs is quantified by the signal-to-noise ratio (SNR),

whose definition is given in Ref. [25]:

SNR =

√
δ × T

∫ fmax

fmin

df

[
h2ΩGW(f)

h2Ωexp(f)

]2

. (3.27)

Here h2Ωexp(f) is the experimental sensitivity and corresponds to the lower

boundaries of the color-shaded regions in Fig. 3.3 for the shown detectors 6. T

is the mission duration in years for each experiment, assumed to be 5 here. The

factor δ comes from the number of independent channels for cross-correlated

detectors, which equals 2 for BBO as well as UDECIGO and 1 for the others [280].

In our numerical analysis, we stick to the most mature LISA detector with

the C1 configuration, defined in Ref. [25]. To qualify for detection, the SNR

needs to be larger than a threshold value, which depends on the details of the

detector configuration. For example, for a four-link LISA configuration, the

suggested value is 50 while for a six-link configuration, this value can be much

lower (SNR = 10), since in this case a special noise reduction technique is available

based on the correlations of outputs from the independent sets of interferometers

of one detector [25].

As an example, we scan over the EW vacuum stability regions in the plane

(vs/vEW, b3/vEW) of Fig. 3.1 and found the regions which can give successful bubble

nucleations, satisfy the SFOEWPT criterion and generate GWs. These regions

are plotted with blue (SNR < 10), green (50 > SNR > 10) and red (SNR > 50).

Here most of the points give type (A) EWPT with only several points for type

6There are possible astrophysical foregrounds coming from, e.g., the superposition of unre-
solved (i.e., low SNR) gravitational wave signals of the white dwarf binaries in our Galaxy [23].
Including these will slightly reduce the SNR calculated here.
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(B) or (C), denoted by diamond shapes.

3.5 Results and Discussions

In this section, we perform a full scan of the parameter space to address the

following questions:

(a) What kind of EWPT patterns can this model admit and in what proportion

of the parameter space for each pattern?

(b) What is the region of parameter space that can give strong detectable

gravitational waves at future space-based gravitational wave detectors?

(c) Do current collider measurements of double Higgs production and searches

for a heavy resonance decaying to weak boson pairs exclude the points

that give strong gravitational waves and could future high luminosity LHC

(HL-LHC) at 3ab−1 probe the parameter space giving strong gravitational

waves?

(d) How will a future space-based gravitational wave experiment complement

current and future searches for a heavy scalar resonance?

The full scan is performed using the input of the tadpole basis parameters

with the following ranges for parameters:

b4 ∈ [0.001, 5], b3/vEW ∈ [−10, 10],

a2 ∈ [−2
√
λb4, 25], θ ∈ [−0.35, 0.35],

mh2 ∈ [260, 1000], (3.28)
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Figure 3.4: The physical parameters characterizing the dynamics of

the EWPT: in the plane of (α, β/Hn) (left), (vw, Tn) (middle) and

(α,∆ρV /∆ρ) (right). In all these plots, the colors denote SNR > 50

(red), 50 > SNR > 10 and SNR < 10 (blue). Points depicted here pass

all phenomenological constraints and give successful bubble necleations.

where the lower range of a2 is determined by the requirement that the potential

is bounded from below. The scan takes into account the previously discussed

theoretical and phenomenological requirements. Points which pass these selection

criteria are fed into CosmoTransitions [281] for calculating the thermal history

and the parameters relevant for EWPT. Those which can give a successful EWPT

by meeting the bubble nucleation criteria are further scrutinized for the EWPT

type and SFOEWPT conditions. The final remaining points are used to calculate

the gravitational wave spectra, the SNR and collider observables.

3.5.1 EWPT and GW

We first give the answer to question (a): what kind of EWPT patterns can this

model admit and in what proportion of the parameter space for each pattern ?

We find, of the xSM parameter space where a successful EWPT can be
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obtained, about 99% gives type (A) EWPT and the remaining slightly less than

1% can give type (B) EWPT. We do not observe type (C) EWPT. For type

(A), 22% (19%) gives SNR larger than 10 (50). So there is a sufficiently large

parameter space which can give detectable GW production.

The strength of the stochastic GW background is mainly governed by the two

parameters α and β/Hn, where a larger α and a smaller β/Hn gives stronger GW

SNR, as shown in the left panel of Fig. 3.4, where the colors denote SNR < 10

(blue), 50 > SNR > 10 (green) and SNR > 50 (red). We observe that the points

which give detectable GWs lie in the bottom right region of the population.

Physically, α quantifies the amount of energy released during the EWPT and

therefore a larger α gives stronger GW signals. In addition, for fixed vw, a larger

α leads to a larger fraction of energy transformed into the plasma kinetic energy,

quantified by κv, and therefore a further gain in GW production. A further

enhancement for larger α comes from the fact that since we fixed v+ = 0.05,

increasing α also increases vw. It should be noted, even without an explicit

calculation, that for each fixed value of α, the allowed values of vw are limited to a

certain range (see e.g., Fig. 1 in Ref. [249]). This comes from two considerations:

(1) admitting consistent hydrodynamic solutions of the plasma imposes a lower

limit on vw; (2) vw larger than ξJ(α) gives a detonation mode of the velocity

profile, in which case vw = v+ > cs and therefore v+ is too large for EWBG to

work. We further note that for α & 1 and vw ∼ 1, the calculations of the GW

spectra may become unreliable for the following reasons: (i) While the study

of Ref. [277] suggests that the energy stored in the scalar field kinetic energy is
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Figure 3.5: Figures showing the dilution effect of the baryon asymmetry.

The left panel shows two different definitions of the dilution factor and

the right panel shows the dilution factor ξD defined in Eq. 3.21 versus

Tn.

negligible, a very large α might lead to a non-negligible contribution from the

bubble collisions. Therefore a better understanding of the energy budget for this

region is needed; (ii) the numerical simulations are all performed for relatively

small α as well as vw and thus the use of these results for large α and vw may not

be applicable; (iii) The universe is no longer radiation dominated at the EWPT

but rather vacuum energy dominated. This has the consequence that bubbles

might never meet to finish the EWPT and the universe would be trapped in the

metastable phase (see Ref. [282] for a recent analysis). Despite these issues, we

find 49% of points with SNR > 10 have α < 1 and removing the points with α > 1

does not change the main findings of our work.

We now turn to the parameter β/Hn, which roughly characterizes the inverse
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time duration of the EWPT. A smaller β/Hn or equivalently a longer EWPT

generates stronger GW signals. This is due to the particular feature of the GWs

coming from the sound waves in the plasma. As was found in the original papers on

the importance of sound waves in generating the GWs [67, 68], one enhancement

comes from 1/(β/Hn) compared with the conventional bubble collision contribu-

tion. As long as the mean square fluid velocity of the plasma is non-negligible,

GWs will continue being generated and the energy density of the GW is thus

proportional to the duration fo the EWPT. It should be noted that β/Hn also

determines the peak frequency of the GW spectra.

The bubble wall velocity vw also plays an important role here and the de-

pendence of the SNR on vw is shown in the middle panel of Fig. 3.4, where the

vertical axis is chosen to be Tn. It is clear that points with larger SNR have larger

vw since, for fixed v+, a larger α implies a larger vw. It can also be seen from this

plot that the SNR increases as Tn decreases. This is easily understood, since a

smaller Tn typically implies a larger amount of supercooling and therefore a larger

α. The supercooling can be quantified by the fraction of the first term(≡ ∆ρV ) of

Eq. 3.15 in the total released vacuum energy, which we plot in the right panel.

We can see from this figure that larger SNR indeed implies larger amount of

supercooling. However the amount of supercooling as quantified by ∆ρV /∆ρ is

less than 0.6 for most of the parameter space. The remaining part comes from

the second term of the definition of α.

The entropy production, if sizeable, can pose a problem for baryon asymmetry

generation, as it will effectively dilute the baryon asymmetry nB/s by increasing
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s. In Sec. 3.4.2, we encode this effect in a dilution factor ξD. Here since κT is a

function of vw and α while vw is also a function of α when v+ is fixed, we find ξD

is solely a function of α. This functional relation is shown as the magenta line in

the left panel of Fig. 3.5 and all points from the scan fall on this line. The message

from this figure is that most of the points have ξD & 0.65 and those with a smaller

α have a dilution factor closer to 1. In particular, the points with α . 1 for which

GW can be reliably calculated, the dilution effect is rather small as ξD & 0.8.

Given the current relatively large uncertainties in the EWBG calculations, the

dilution effect poses no real problem for the baryon asymmetry generation. Note

that previous studies [257] used a different quantification of the dilution factor,

with the definition:

ξ
(2)
D =

s

s+ ∆s
, (3.29)

where s is the entropy density at Tn and ∆s is calculated from the second term

in the definition of α in Eq. 3.15. To compare with the factor ξD, what we use

here, we show values of this factor in the same plot of ξD for every point that

gives detectable GWs. It is evident from this figure that these two factors are

roughly the same and both decrease linearly for α . 0.4. For α & 0.4, ξ
(2)
D gives

an overestimation of the dilution effect while ξD firstly increases a little bit before

slowly dropping. Since the dilution factor we use here is based on a faithful

hydrodynamic analysis, it gives a more precise description of the dilution effect.

We also show ξD calculated for all the points versus Tn as a scatter plot in the

right panel of Fig. 3.5, from which we find a larger dilution effect appears for
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Figure 3.6: Points depicted here pass all phenomenological constraints

and give successful bubble nucleations, along with detectable GWs

at LISA (SNR > 10). We show them in the planes of the input

parameters: in plane (b3, vs)/vEW (left) and (sin θ,mh2) (middle). We

distinguish those points which give SNR > 50 (red) with those of

50 > SNR > 10 (green) in these two plots. The right panel shows all

the points in the plane (α, β/Hn) with the colors denoting the values

of mh2 , as shown in the legend.

typically smaller Tn and those with α . 1 fall in the high Tn region.

The two-step EWPT, for which type (B) is the only observed here, constitutes

about one percent of all the surviving parameter space. Of this tiny parameter

space, more than half the points give detectable GWs.

3.5.2 Parameter Space Giving Detectable GWs

With a summary of the points described in previous section, we give in this

section the answer to question (b), which, we recall, was: What is the region

of parameter space that can give strong detectable gravitational waves at future

space-based gravitational wave detectors?
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The results are shown in terms of the three plots in Fig. 3.6. As was discussed

in the previous section, a large α and small β/Hn leads to loud GW signals. Even

though the relation between (α, β/Hn) and the physical input parameters is not

transparent as many numerical details are involved, it can still be revealed by the

plots in Fig. 3.6. From the left panel in Fig. 3.6, we can see that the majority of

the points are concentrated in two regions of parameter space where vs is rather

small. In particular, we find 20 GeV . |vs| . 50 GeV for most points, with a

peak distribution at around 20 GeV. The appearance of two regions comes from

the bounded-from-below requirement of the potential, similar to Fig.1. While

phenomenological constraints have the effect of shrinking both the regions, the

appearance of points far outside the two regions indeed shows that the main

cause of the narrow regions comes from the requirements of EWPT and GWs.

Therefore it is fair to say that the region that gives detectable GWs from a type

(A) EWPT mainly comes from the parameter space with smaller vs. On the other

hand, the regions which provide type (B) EWPT are dramatically different from

these regions, since most of the diamonds lie beyond the two narrow regions, as

can be seen from the figure.

The middle figure shows these regions in the (mh2 , sin θ) plane. It is clear that

the points are concentrated around the region with larger mh2 . For smaller mh2 ,

the density of points becomes much smaller. To have a better understanding of the

role of mh2 in GW production, we show in the right panel its role in determining

(α, β/Hn), denoted by the colors. In this figure, the points are separated into

different bands characterized by the value of mh2 . For fixed β/Hn, a larger mh2
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gives a larger α, thus larger SNR. This explains the concentration of the points

in the mh2 direction in the middle figure. In the sin θ direction, the value of θ

is more constrained for larger mh2 . The outer boundary comes mainly from the

W -mass constraint. The requirements from EWPT and larger GW signals also

show their effects in this plot. For example, very small values of θ give rarer points.

We also overlaid on this plot the various sensitivity projections from colliders

in probing the value of θ, which includes HL-LHC, ILC with two configurations

(ILC-1: 250GeV, 250fb−1, ILC-3: 1TeV,1ab−1) and future circular e+e− colliders

(240GeV, 1ab−1), all taken from Ref. [84]. We see that HL-LHC can barely probe

any points; ILC-1 can probe a fraction of the small mh2 points as well as a few

large mh2 points; ILC-3 can probe about a half of both light and heavy h2 points;

the future circular colliders can probe even more of the parameter space. We also

can see that most of the points coming from the two-step EWPT lie at the very

small θ region, even though a few do have larger θ. Therefore GW detections

serve as a complementary probe of this region. We also note that for very small

values of θ and mh2 , the search for long lived particles can be used to probe this

region (eg., the MATHUSLA detector) [283].

3.5.3 Correlation with Double Higgs Production Searches

Exploring possible deviations from the expected SM value of the cubic Higgs

coupling through di-Higgs production is an important target of the HL-LHC.

New physics scenarios, especially those designed for providing a SFOEWPT for

baryon asymmetry generation, typically modify this coupling. Therefore di-Higgs
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production is correlated with EWPT and thus GW production. Future GW and

collider experiments can then operate in a way that complement each other in

exploring new physics scenarios. With the parameter space giving detectable

GW identified in the previous section, we can find the correlation by calculating

the corresponding di-Higgs cross sections and compare it with present di-Higgs

measurements and with future projections.

g

g

h1

h1

t h2

g

g

h1

h1

t h1

g

g

h1

h1

t

Figure 3.7: Representative resonant (left) and non-resonant (middle

and right) Feynman diagrams contributing to di-Higgs production.

The leading order Feynman diagrams for double Higgs production occur at

one-loop and consist of both the resonant and non-resonant channels, as shown

in Fig. 3.7. The non-resonant channel includes the box diagrams and a triangle

diagram involving the vertex h1h1h1. The resonant channel is the production of a

on-shell h2 which subsequently decays into two Higgs, thus including the h2h1h1

vertex. The amplitude at leading order was given in the early papers [284, 285] with

the result expressed in terms of Passarino-Veltman scalar integrals. This result

has also been implemented into MadGraph [286] taking into account the presence

of a heavier SM-like scalar 7, which we use for calculating the corresponding cross

sections for each point shown here. This takes as input the modified Higgs top

Yukawa coupling, the Higgs trilinear coupling, the heavy scalar top coupling, the

7https://cp3.irmp.ucl.ac.be/projects/madgraph/wiki/HiggsPairProduction
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Figure 3.8: Resonant contribution to the cross section for di-Higgs

production, versus the total cross-section. The left plot shows the

correlation of the two cross sections, with the colors denoting values of

mh2 . The middle plot has the colors switched to the branching ratio

of h2 → h1h1. The right plot shows this branching ratio versus the

trilinear coupling h2h1h1, where the color denotes mh2 . In the left two

plots, the dashed line denotes the place where these two cross sections

are the same.

h2h1h1 coupling and the mass as well as the decay width of h2. Since h2 decays

into SM particles with reduced coupling (− sin θ) as compared with the SM Higgs

and also decays to a pair of h1, the total width is simply given by:

Γh2 = sin2 θ ΓSM(h2 → XSM) + Γ(h2 → h1h1), (3.30)

where ΓSM(h2 → XSM) denotes an exact SM Higgs-like h2 decaying into the SM

particles.

For the di-Higgs production, if the resonant production of h1h1 via the h2

resonance dominates the cross section, then the cross section can be written in

the narrow width approximation as
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Figure 3.9: The upper limits on di-Higgs resonant production cross

section from ATLAS and CMS combined searches, shown as solid green

and brown lines for ATLAS and CMS, respectively. The dashed lines

denote the corresponding future projections for 3ab−1 of data at the

HL-LHC (13TeV). As in the other plots, we distinguish those points

which give SNR > 50 (red) and those of 50 > SNR > 10 (green).

σ(pp→ h1h1) = σ(pp→ h2)BR(h2 → h1h1). (3.31)

In reality, interference effects between the resonant and non-resonant diagrams

may be important and lead to constructive or destructive effect on the final

full cross section [236]. We thus compare, for each scanned point, the obtained

cross section for both the full calculation and the above approximation from

the purely resonant production. This is shown in the left and middle plots of

Fig. 3.8 for σ(pp→ h1h1) versus σ(pp→ h2 → h1h1) for all the points which give
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detectable GW signals, that is, those with SNR > 10. These cross sections are

both calculated at leading order but we have added a common K-factor of 2.27 to

take into account of higher order corrections. The colors in the left panel denote

the values of mh2 and those in the middle denote BR(h2 → h1h1). It is clear from

these figures that the resonant cross section is always less than the full one-loop

result and drops sharply as mh2 is increased (left panel). Since, as we have seen in

previous sections, the points with large SNR are concentrated around the region

with larger mh2 , most of the points with detectable GWs turn out to give small

di-Higgs production and even negligible resonant production. The colors in the

left panels make it clear that most of the points which have larger mh2 (and larger

SNR) tend to give very small di-Higgs production, with a cross section of O(10)fb,

while smaller mh2 gives O(100)fb. Moreover, there is a sharp drop of the resonant

production cross section. From the middle panel, we can see that the color of

decreasing branching ratio h2 → h1h1 coincides partly with increasing mh2 for the

very large mh2 points. The small branching ratio is found for a majority of points

and is due to the smallness of λ211. This can be seen from the right panel, where

this correlation is shown with the color denoting mh2 . It is found that a majority

of points which have large mh2 give small branching ratio. This can partly explain

the cause of the drop of the resonant production.

On the experimental side, both the ATLAS and CMS collaborations have

recently published their search results for non-resonant and resonant di-Higgs

productions using the data collected in 2016 at 13 TeV, with nearly the same

integrated luminosity. The CMS search result is based on the 35.9fb−1 data,
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in the di-Higgs decay channels bb̄γγ [287], bb̄τ+τ− [288], bb̄bb̄ [289, 290, 291,

292] and bb̄WW/ZZ [293], with a recent combination given in [294]. ATLAS

used 36.1fb−1 data and searched in channels γγbb̄ [295], bb̄τ+τ− [296], bb̄bb̄ [297],

WW (∗)WW (∗) [298] and bb̄WW ∗ [299], with also a combination of the first three

channels [300]. We use the ATLAS and CMS combined limits in the resonant

production channels and show them with green and brown solid lines respectively

in Fig. 3.9. For the points giving detectable GWs, we calculate the resonant cross

sections from gluon fusion at NNLO+NNLL using the available result in Ref. [301].

We can see that none of the points with detectable GW gives cross section above

this limit. With the anticipation of HL-LHC at a luminosity of 3ab−1 (13TeV),

we can get the future projections of this limit by a simple rescaling and obtain the

two dashed lines. For this projection, the region with lower mh2 . 550GeV can be

partly explored by CMS and a little bit higher for ATLAS, while the high mass

region remains out of reach for di-Higgs searches. Yet, Some points of the scanned

parameters space with observable SNR show a promising di-Higgs production

cross section of 50 fb or more at the LHC which, in principle, can be probed

with 3 ab−1. Therefore GW measurements can complement collider searches by

revealing the high mh2 region of the xSM model.

3.5.4 Higgs Cubic and Quartic Couplings

Future precise measurements of the Higgs cubic and quartic self-couplings can

be used to reconstruct the Higgs potential to confirm ultimately the mechanism
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of EW symmetry breaking 8 and shed light on the nature of the EWPT. The

measurements of above double Higgs production can be used to determine the

cubic coupling and there have been extensive studies on this topic [1]. The

best sensitivities obtained for these future colliders is typically at O(1). Despite

the more formidable challenges with the quartic coupling measurement, there is

now growing interest in it. Several different methods have been proposed and

studied: through triple Higgs production measurement [228], through double

Higgs production at hadron colliders where the quartic coupling enters gg → hh

at two-loop [230] or renormalizes the cubic coupling, and at lepton colliders(via

Z-associated production e+e− → Zhh and VBF production e+e− → ννhh), where

the quartic coupling is involved in the V V hh coupling at one loop [2]. For example,

Ref. [2] found a precision of measurement of ∼ ±25 for (500GeV, 4ab−1 + 1 TeV,

2.5ab−1) and ∼ ±20 for (500GeV, 4ab−1 + 1 TeV, 8ab−1) at 1σC.L., when the

cubic coupling is marginalized in their χ2 analysis.

In the xSM, both the Higgs cubic and quartic couplings are modified compared

with their SM counterparts:

iλh1h1h1 = 6
[
λvc3

θ +
1

4
c2
θsθ (2a2vs + a1) +

1

2
a2vcθs

2
θ

+
1

3
s3
θ (3b4vs + b3)

]
, (3.32)

iλh1h1h1h1 = 6(λc4
θ + a2s

2
θc

2
θ + b4s

4
θ). (3.33)

In the absence of mixing of the scalars(θ = 0), these couplings reduce to the

corresponding SM values iλh1h1h1 = 3m2
h1
/v and iλh1h1h1h1 = 3m2

h1
/v2. When

8The Lorentz structure of hWW coupling already gave us some insight about the nature of
EW symmetry breaking at the leading order.

53



θ 6= 0, we parametrize the deviations of these couplings from the SM values as:

∆L = −1

2

m2
h1

v
(1 + δκ3)h3

1 −
1

8

m2
h1

v2
(1 + δκ4)h4

1, (3.34)

and show in Fig. 3.10 these values for the points that give detectable GWs. The

features that we can read from this figure are:(1) both δκ3 and δκ4 are positive; (2)

both variations are O(1) as δκ3 ∈ (0, 1) and δκ4 ∈ (0, 4). (3) a correlation exists

δκ4 ≡ ηδκ3, with η ≈ 2.8 for δκ3 . 0.4 and most points fall within η ∈ (2, 4). To

understand these, we note, since phenomenological constraints requires a small

θ, we expect the second feature to follow naturally. The other features can be

understood by Taylor expanding the couplings for small θ and we find:

δκ3 = θ2

[
−3

2
+

2m2
h2
− 2b3vs − 4b4v

2
s

m2
h1

]
+O(θ3),

δκ4 = θ2

[
−3 +

5m2
h2
− 4b3vs − 8b4v

2
s

m2
h1

]
+O(θ3). (3.35)

In the above square brackets, the terms proportional to m2
h2
/m2

h1
dominate for

the majority of the points since vs is concentrated at small values; b3 is at most

∼ 10vEW, b4 . 5 from the scan and mh2 & 500GeV generally holds. Then the

above approximations show positive δκ3 and δκ4 and give δκ4/δκ3 ≈ 2.5, which

is fairly close to η = 2.8. For relatively large θ, high order corrections need to be

taken into account and above linear correlation would be changed.

To compare with the direct measurements of these couplings at future e+e−

colliders and the HL-LHC, we added in Fig. 3.10 the precisions of these measure-

ments from studies in the literature. The two elliptical 68%CL closed contours

are taken from Ref. [2] which focuses on the quartic coupling, for two possible
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scenarios of the ILC. The bars are the precisions that can be reached from various

considerations of future colliders, labelled on the right of the figure, taken from

Ref. [1](for other studies, see e.g. [302, 230, 303, 304, 302, 305]). Here the inner

and outer bar regions denote the 68%CL and 95%CL results. We can see, it

is generically very hard for colliders to probe the cubic coupling at a precision

that can reveal the points giving detectable GWs with high confidence level(say

95%) 9. The most precise comes from the ILC when all possible runs at different

luminosities are combined and with the data of HL-ILC included, which gives

0.4 ∼ 0.5 uncertainty on the measurement of δκ3 at 95%CL. While the analysis

in Ref. [1] does not include the quartic coupling, the contours from Ref. [2] do

give a hint on its measurement and show that it is infeasible for the colliders to

probe the parameter space giving detectable GWs. For the trilinear and quartic

coupling deviations that we found, the impact on the triple Higgs cross section

is mild for hadron colliders even for a future pp collider at 100 TeV [228, 229],

however, resonant contributions in xSM might enhance the cross section up to a

factor of O(10) [306].

Therefore we expect future GW measurements can make a valuable com-

plementary role in determining the Higgs self-couplings, especially the quartic

coupling. While we do not have a statistical analysis here, Fig. 3.10 does tell us

9It should be noted that both studies used some versions of the effective field theory approach
to quantify the modification of the SM couplings due to possible new physics effects. Therefore
the precisions overlaid in Fig. 3.10 might not be what the colliders can achieve if the xSM model
was used in their studies. However we expect the two contours, taken from Ref. [2], to be largely
unaffected since the heavier scalar contribution in their framework is suppressed by extra powers
of sθ. We also expect that the bar regions, taken from Ref. [1], would get tighter since the set
of parameters used in their study are highly correlated here.
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that δκ4 is equally important as δκ3 on GW signal generation since η is at most 4.

Thus we expect a full statistical analysis would yield roughly the same precision

on the determination of δκ3 and δκ4, which is well improved compared with the

situation at colliders.

3.5.5 Diboson Resonance Search Limits at Colliders

The WW and ZZ branching ratios become sizeable in parts of the parameter

space where the trilinear coupling λ211 is relatively small, as one can see from

the rightmost panel of Fig. 3.8. In Fig. 3.11, we show the branching ratios of the

h2 → WW,ZZ and h2 → h1h1 channels. We see that the WW,ZZ channels can

be as big as 90% for a large range of h2 masses which could show up at searches

for weak diboson resonances. Combined, WW,ZZ and h1h1 correspond to nearly

all the decays of h2, which make them the best search channels for h2 resonances

at colliders.

Besides the di-Higgs production measurements, which can be used to extract

the Higgs cubic and quartic couplings, there also exist generic scalar resonance

searches at the LHC. In particular, ATLAS and CMS have performed extensive

analyses in the searches for a heavier SM-like scalar resonance in V V and V H decay

channels of the heavy scalar (V = W/Z). ATLAS gives a recent combination of all

previous analyses in bosonic and leptonic final states at
√
s = 13TeV with 36fb−1

data collected in 2015 and 2016 [307]. The limits are drawn for h2 production cross

section in gluon fusion and vector boson fusion production channels. These two

limits are shown in the left and right panels, respectively, in Fig. 3.12 with green
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solid lines, together with the detectable GW points. For cross section calculations,

we use the set of result calculated to NNLO precision for VBF and for gluon

fusion, we use NNLO+NNLL, as also used before in Fig. 3.9.

It is evident that the current limits from diboson searches are rather loose

as most points fall under this line, with gluon fusion limit being able to touch

a fraction of the lighter h2 point. For the HL-LHC with ∼ 3ab−1, we obtain

estimates of future projections by a simple scaling factor and obtain the dashed

lines for ∼ 3ab−1 at 13TeV (while HL-LHC would probably run at 14TeV). We

can see in all cases that the HL-LHC will probe a larger fraction of the parameter

space for both ggH and VBF channels. For ggH, this region covers a range from

low to high masses. For VBF, it can cover a region of relatively heavy h2. Both

channels are sensitive to h1h1 cross section times branching ratio down to ∼ 1 fb

in some favorable points of the parameters space. The points that can be probed

by HL-LHC serve as promising targets for both colliders and GW detectors but a

majority of the parameter space will probably be left to GW detectors.

3.6 Summary

In this paper, we embarked on a study of the singlet-extended SM Higgs sector. A

detailed scan of the parameter space of this model was performed, incorporating

all relevant phenomenological constraints, and regions with large SNR at LISA

were identified. Subtle issues pertaining to the bubble wall velocity were discussed,

and a range of velocity profiles described.
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Our main findings are the following. For the parameter space that satisfies

all phenomenological constraints, gives successful EWPT and generates GWs,

99% leads to a one-step EWPT with the remaining to two-step EWPT and

22% generates detectable GWs(SNR > 10) at LISA. The main features of the

parameter space that gives detectable GWs is: 20GeV . |vs| . 50GeV, where

vs is the vev of the singlet field; it is more concentrated in the large mh2 region,

where mh2 is the mass of the heavier scalar h2; θ . 0.2 for the majority of the

space. Di-Higgs searches at both ATLAS and CMS are currently unable to probe

this parameter space, but HL-LHC will be able to probe the lighter h2 region while

the heavier h2 region will remain elusive. Weak diboson resonance searches cannot

constrain xSM much either but the HL-LHC will be able to probe a large fraction

of its parameters space in this channel. The Higgs cubic and quartic couplings

are at O(1) deviations from the SM values and obey a relation δκ4 ≈ (2− 4)δκ3,

where δκ4 and δκ3 are the relative deviations of the quartic and cubic couplings

from their SM counterparts respectively.

Our results broadly indicate that high energy colliders and GW detectors

are going to play complementary roles in probing the parameter space of scalar

sectors. Several future directions can be contemplated. It would be interesting to

understand how this complementarity plays out in two Higgs doublet models, as

well as other scalar sector extensions classified in [198]. It would also be interesting

to investigate the complementarity of GW and collider probes for phase transitions

in the dark sector. We leave these questions for future study.
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Figure 3.10: The Higgs cubic and quartic couplings (∆κ3,∆κ4) for

parameter space points giving detectable GW. Here the green points

give SNR > 10 and the red gives SNR > 50. The bars denote the

sensitivity of ∆κ3 from a global analysis of future colliders in Ref. [1],

for various detector scenarios shown on the right side of the figures.

The brown solid and blue dashed lines are the 1σ contours for two

different ILC scenarios taken from Ref. [2]. The bottom panel is a

zoomed-in version of the top one.
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Figure 3.11: The branching ratios of h2 in h1h1 and V V final states,

where V V = WW,ZZ,WW + ZZ, with the color denoting the value

of mh2 .
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Figure 3.12: Combined limits from ATLAS (solid line) and future

HL-LHC projections (dashed line) for searches of a heavy SM-like

resonance in the WW/ZZ channel from gluon fusion (left) and vector

boson fusion production (right). As in the other plots, we distinguish

those points which give SNR > 50(red) and those of 50 > SNR >

10(green).
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Chapter 4

Phase Transitions in an Expanding Universe

4.1 Introduction

The first major goal of this paper is to undertake a careful analysis of the

gravitational wave power spectrum in a generic expanding universe. This is

necessary, since the standard result for the spectrum is obtained in Minkowski

spacetime where the effect of the expansion of the universe is neglected. In

the Minkowski spacetime, the spectrum is proportional to H∗τsw as derived in

Ref. [68], where the generalization to the expanding universe with radiation

domination was also carried out based on rescaling properties of the fluid. It was

concluded that the effective lifetime of the sound waves is a Hubble time when

comparing this spectrum with that derived in the Minkowski spacetime. The

reason that this conclusion was reached is due to the absence of the term H∗τsw

in the spectrum for radiation dominated universe and the otherwise very similar

form as in Minkowski spacetime (see Appendix B for a re-derivation of this result).

Later studies suggest that the lifetime generally is smaller than a Hubble time such

that H∗τsw < 1 [42, 282, 308, 10]. This, when combined with the Minkowski result

that the spectrum is proportional to H∗τsw, leads to the conclusion that there is a

suppression of the spectrum when compared with the case when H∗τsw = 1 is used.

We note in retrospect that the spectrum found in above radiation dominated

universe is obtained assuming actually an infinite lifetime of the source, i.e.,
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τsw →∞ and the correct dependence on τsw is a different one. It is the purpose

of this paper to provide an accurate τsw dependence for the spectrum and show

its implications. Moreover the role of the expansion in the process of the phase

transition and in the calculation of the spectrum has not been fully revealed. We

thus present a comprehensive and very careful analysis of the spectrum, clarifying

subtle issues when the calculation is generalized from Minkowski spacetime to an

expanding universe, and ultimately providing an accurate spectrum in a standard

radiation dominated universe and in other expansion scenarios. We also perform

a detailed calculation of the nucleation and growth of bubbles in an expanding

background, including tracking the shrinking volume available for new bubbles to

nucleate in as well as the total area of uncollided walls. Both are needed for an

accurate understanding of how the volume fraction and mean bubble separation

evolve throughout the phase transition. We then derive and solve the equations

governing the evolution of the fluid velocity field in an expanding Universe and

then proceed to a derivation of the spectrum for different expansion scenarios.

The second major goal of this paper is encapsulated in the title: after having

calculated the gravitational wave spectrum in an expanding universe, we want to

explore the extent to which the phase transition can distinguish between different

expansion histories. In other words, we would like to interrogate how well a phase

transition can serve as a cosmic witness. This is important, since growing evidence

suggests that the standard assumption of radiation domination prior to Big Bang

Nucleosynthesis may be too naive [309, 310]. An early matter dominated era, for

example, is motivated by the cosmological moduli problem [311, 312, 313, 314],
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hints from dark matter searches [315, 316, 317, 318, 319, 320, 321, 322, 323], and

perhaps even baryogenesis [324]. Another possibility of a non-standard expansion

history is kination, which we do not cover in this paper but can be explored

by our methods [325, 326, 327, 328, 329, 330, 331, 332, 333, 334]. We note that

gravitational waves have been previously employed to investigate early universe

cosmology [335, 336, 197, 337, 338, 339].

Our goal is to provide a general theoretical framework to calculate the grav-

itational wave spectrum in different cosmic expansion histories. This includes

scrutiny for changes in different aspects. The dynamics of the phase transition in

an expanding universe is studied in Sec. 4.3, the velocity field power spectrum is

calculated in Sec. 4.4 and the gravitational wave spectrum in Sec. 4.5. The main

findings of the first two aspects are as follows.

1. The mean bubble separation R∗ is related to β through a generalized relation

for the exponential nucleation (Eq. 4.77):

R∗(t) =
a(t)

a(tf )
(8π)1/3 vw

β(vw)
, (4.1)

where tf is the time when the false vacuum fraction is 1/e, at which β(vw)

is evaluated, and β(vw) can vary by ∼ 20% for different vw. This relation is

also confirmed by numerical calculations and is accurate up to an uncertainty

of 2%. If one uses the conformal version of R∗ and β, then they satisfy the

same relation as in Minkowski spacetime (see Eq. 4.73).

2. We derived the bubble lifetime distribution in a generic expanding universe

in Eq. 4.56, and the conformal lifetime ηlt rather than ordinary lifetime tlt
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should be used. It coincides with the distribution e−T̃ found in Minkowski

spacetime [3] for exponential nucleation.

3. We derived the full set of differential equations in an expanding universe for

the fluid and order parameter field model as used in numerical simulations.

We find that in the bubble expansion phase the full field equations do not

admit rescalings of the quantities that would reduce the expressions to their

counterparts in Minkowski spacetime; this rescaling does, however, work in

the bag equation of state model. This implies the velocity profile maintains

the same form when appropriate rescalings and variable substitutions are

used.

4. We generalized the sound shell model to an expanding universe and calcu-

lated the velocity field power spectrum [71, 3].

For the gravitational wave energy density spectrum, the main results are:

1. The peak amplitude of the gravitational wave spectrum visible today has

the form (see Eq. 4.172)

h2ΩGW = 8.5× 10−6

(
100

gs(Te)

)1/3

Γ2Ū4
f

[
Hs

β(vw)

]
vw ×Υ. (4.2)

Here Γ ∼ 4/3 is the adiabatic index, gs(Te) is the relativistic degrees of

freedom for entropy at Te when the gravitational wave production ends,

Ūf is the root mean square fluid velocity (see Fig. 4.18), vw is the wall

velocity, Hs is the Hubble rate when the source becomes active, and Υ is the

suppression factor arising from the finite lifetime, τsw, of the sound waves.
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For radiation domination, it is given by

Υ = 1− 1√
1 + 2τswHs

, (4.3)

where the standard spectrum generally used corresponds to the asymptotic

value Υ = 1 when τswHs → ∞. However the onset of non-linear shocks

and turbulence which can disrupt the sound wave source occurs at around

τswHs ∼ HsR∗/Ūf . This means the asymptotic value will not be reached

and there is a suppression to the standard spectrum. In Fig. 4.1 we compare

our result with the suppression factor recently proposed in [42] (see also

[282, 308]). Similarly, the spectrum for matter domination has also been

derived in our work and a similar suppression factor Υ is observed, which

has an asymptotic value of 2/3.

2. We find a change to the spectral form, depending upon whether the phase

transition occurs during a period of matter or radiation domination. The

change in the form is not leading order, due to the fact that the velocity

profiles remain largely unchanged and that the autocorrelation time of

the source is much smaller than the duration of the transition. This is in

contrast to gravitational waves generated from cosmic strings [339]. Even

then, the modification of the spectrum presents an enticing possibility that

the gravitational waves formed during a phase transition can bear witness

to an early matter dominated era. We leave a further detailed exploration

of the change of the spectral form for future work.

The remainder of this paper is organized as follows. We firstly lay out the
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Figure 4.1: The suppression factor (blue solid line) as a function of

the lifetime of the dominant source, the sound waves, in unit of the

Hubble time at ts, the time when the source becomes active. The

black dashed line denotes Min(τswHs, 1).
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theoretical framework for the stochastic gravitational wave calculation in the next

Sec. 4.2 and study the details of the phase transition dynamics in an expanding

universe in Sec. 4.3. After that, we summarize the full set of fluid equations

applicable in an expanding universe and study the velocity profile as well as

the velocity power spectrum using the sound shell model in Sec. 4.4. We then

analytically calculate the gravitational waves from sound waves in both radiation

dominated and matter dominated scenarios in Sec. 4.5. We summarize our results

in Sec. 4.6.

4.2 Theoretical Framework

In this section, we set up the framework for calculating the stochastic gravitational

waves in the presence of a source, which also serves to define our notation. The

power spectrum of the gravitational waves, as will be discussed, depends on the

unequal time correlator of the source. Therefore this correlator is of central

importance in this work and is discussed in the second subsection.

4.2.1 Gravitational Waves

The gravitational wave is the transverse traceless part of the perturbed metric.

Neglecting the non-relevant scalar and vector perturbations, the metric is defined

in the FLRW universe as:

ds2 = −dt2 + a(t)2(δij + hij(x))dx2, (4.4)
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where hij is only the transverse traceless part of the perturbed 3×3 metric matrix

(see, e.g., [340] for a detailed discussion). It is convenient, most often, to work in

Fourier space, with the following convention:

hij(t,x) =

∫
d3q

(2π)3
eiq·xhij(t,q), (4.5)

where q is the comoving wavenumber, in accordance with the comoving coordinate

x. The physical coordinate is ax and the physical wavenumber is q/a. The Fourier

component hij(t,q) is thus of dimension −3.

Gravitational waves are sourced by the similarly defined transverse traceless

part of the perturbed energy momentum tensor of the matter content, defined

by [340]

Tij = a2πTij + · · · , (4.6)

where “· · · ” denotes the neglected non-relevant parts. Its Fourier transform is

defined by

πTij(t,x) =

∫
d3q

(2π)3
qeiq·xπTij(t,q). (4.7)

Since πTij is of dimension 4, the dimension of its Fourier component πTij(t,q) is 1.

The Einstein equation leads to a master equation governing the time evolution of

each Fourier component of the gravitational waves, which is decoupled from the

scalar and vector perturbations,

h′′ij(t,q) + 2
a′

a
h′ij(t,q) + q2hij(t,q) = 16πGa2πTij(t,q) . (4.8)

Here ′ ≡ ∂/∂η, with η being the conformal time. Derivatives with respect to the

coordinate time will be denoted by a dot. The gravitational wave energy density,
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as denoted by ρGW here, is defined as

ρGW(t) =
1

32πG
〈ḣij(t,x)ḣij(t,x)〉, (4.9)

with the angle brackets, 〈· · · 〉, denoting both the spatial and ensemble average.

Due to the overall spatial homogeneity of the universe, we can define the power

spectrum of the derivative of the gravitational wave amplitude as:

〈ḣij(t,q1)ḣij(t,q2)〉 = (2π)3δ3(q1 + q2)Pḣ(q1, t). (4.10)

Then the gravitational wave energy density follows

ρGW(t) =
1

32πG

1

2π2

∫
dq q2Pḣ(t, q), (4.11)

and the gravitational wave energy density spectrum:

dρGW(t)

d ln q
=

1

64π3G
q3Pḣ(t, q). (4.12)

It is conventional to use the dimensionless energy density fraction of the gravi-

tational waves ΩGW(t) = ρGW(t)/ρc(t) where ρc is the critical energy density at

time t. The corresponding dimensionless version of the spectrum is 1

PGW(t, q) ≡ dΩGW(t)

d ln q
=

1

24π2H2
q3Pḣ(t, q) =

1

24π2H2a2
q3Ph′(t, q), (4.13)

where in the last step Ph′(t, q) is defined by replacing ḣ with h′ in Eq. 4.10.

We thus need to solve for hij(η,q) by solving Eq. 4.8 together with equations

governing the evolution of the source. We will follow the conventional approach by

neglecting the back-reaction of the metric on the source and calculate the stress

1PGW is also denoted as ΩGW(t, q).
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tensor with a modelling of the phase transition process. Once πTij(t,q) is provided

in this way, then hij(t,q) can be solved from Eq. 4.8 with Green’s function and

with the following boundary conditions

G(η̃ 6 η̃0) = 0,
∂G(η̃, η̃0)

∂η̃
|η̃=η̃+0

= 1, (4.14)

where η̃ = qη, which is a dimensionless quantity and η̃0 is the time when the phase

transition starts. With the Green’s function, the solution of the inhomogeneous

Eq. 4.8 is given by

hij(t,q) = 16πG

∫ η̃

η̃0

dη̃′G(η̃, η̃′)
a2(η′)πTij(η

′,q)

q2
, (4.15)

and its derivative with respect to the conformal time follows simply:

h′ij(η,q) = 16πG

∫ η̃

η̃0

dη̃′
∂G(η̃, η̃′)

∂η̃

a2(η′)πTij(η
′,q)

q
. (4.16)

Then we can calculate the 2-point correlation function:

〈h′ij(η,q1)h′ij(η,q2)〉 = (16πG)2

∫ η̃

η̃0

dη̃1

∫ η̃

η̃0

dη̃2
∂G(η̃, η̃1)

∂η̃

∂G(η̃, η̃2)

∂η̃

×a
2(η1)a2(η2)

q2
〈πTij(η1,q1)πTij(η2,q2)〉. (4.17)

Supposing that the gravitational wave generation finishes at η̃f , the upper limits

for the integrals in the expression above will be η̃f . Subsequently, the energy

density of the gravitational waves for modes inside the horizon will be simply

diluted as 1/a4. We thus see that at the core of the gravitational wave energy

density spectrum calculation is the unequal time correlator (UETC) of πTij . It can

be parametrized in the following way due to the overall spatial homogeneity of

the universe [68]

〈πTij(η1,q1)πTij(η2,q2)〉 = Π2(q1, η1, η2)(2π)3δ3(q1 + q2). (4.18)
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It is obvious that the dimension of Π2(k, η1, η2) is 5.

4.2.2 Unequal Time Correlator of the Fluid Stress Energy Tensor

Let us first write down the energy momentum tensor of the matter content in the

universe. Here we keep the dominant contribution from the fluid and assume the

fluid velocities are non-relativistic following Ref. [3], then

Tij = a2
[
pδij + (p+ e)γ2vivj

]
,

Ti0 = a
[
−(p+ e)γ2vi

]
,

T00 = γ2(e+ pv2), (4.19)

where e is the energy density, p is the pressure and the velocity is defined w.r.t

the conformal time vi = dxi/dη. Then, comparing with Eq. 4.6 and neglecting

the non-relevant parts, we have

πij = (p+ e)γ2vivj, (4.20)

Here the scale factor dependent (p+ e), takes its homogeneous value (defined with

a bar) to leading order ē+ p̄ ≡ ω̄ which scales as 1/a4, and γ is the Lorentz factor.

The calculation of the correlator of πTij parallels that in Minkowski spacetime:

〈πTij(η1,k)πTij(η2,q)〉

= Λij,kl(k̂)
1

(2π)6

∫
d3x

∫
d3ye−ik·xe−iq·y〈πTkl(η1,x)πTij(η2,y)〉,

= Λij,kl(k̂)ω̄2 1

(2π)6

∫
d3x

∫
d3ye−ik·xe−iq·y〈vk(η1,x)vl(η1,x)vi(η2,y)vj(η2,y)〉,

= ω̄2Λij,kl(k̂)
1

(2π)12

∫
d3q1

∫
d3q3 〈ṽkq1

(η1)ṽl∗q1−k(η1)ṽiq3
(η2)ṽj∗q3−q(η2)〉︸ ︷︷ ︸

≡Xklij

. (4.21)
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Here Λij,kl is the standard projection operator and Λij,kl(k̂) = Pik(k̂)Pjl(k̂) −

1
2
Pij(k̂)Pkl(k̂) with Pij(k̂) = δij − k̂kk̂j . ṽiq is the Fourier transform of the velocity

field vi(x). Due to the nature of the first order phase transition process and

according to the central limit theorem, ṽiq(η) follows the Gaussian distribution to

a good approximation. Also as in Ref. [3], we neglect the rotational component,

then the two point correlator can be defined in the following way:

〈ṽiq(η1)ṽj∗k (η2)〉 = δ3(q− k)q̂ik̂jG(q, η1, η2), (4.22)

and higher order correlators can be reduced to the two point correlator. Defining

q̃1 ≡ q1 − k and q̃3 ≡ q3 − q, then

Xklij = 〈ṽkq1
(η1)ṽl∗q̃1

(η1)〉〈ṽiq3
(η2)ṽj∗q̃3

(η2)〉+ 〈ṽkq1
(η1)ṽiq3

(η2)〉〈ṽl∗q̃1
(η1)ṽj∗q̃3

(η2)〉

+〈ṽkq1
(η1)ṽj∗q̃3

(η2)〉〈ṽl∗q̃1
(η1)ṽiq3

(η2)〉. (4.23)

The first term contributes trivially to k = 0 and, collecting all other contributions,

we have

〈πTij(η1,k)πTij(η2,q)〉 = δ3(k + q)ω̄2 1

(2π)6

∫
d3q1G(q1, η1, η2)G(q̃1, η1, η2)(1− µ2)2 q

2
1

q̃2
1

.

(4.24)

Comparing with Eq. 4.18, it follows that

Π2(k, η1 − η2) = ω̄2

∫
d3q

(2π)3
G(q, η1, η2)G(q̃, η1, η2)

q2

q̃2
(1− µ2)2, (4.25)

where q̃ = |q− k| and µ = q̂ · k̂. Here Π2 depends on η1 − η2 rather than on η1

and η2 separately. This is because the source is largely stationary.
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We will later see that the fluid equations maintain the same form as in the

Minkowski spacetime once properly rescaled quantities and previously defined

vi(x) are used (see also Ref. [68]). In particular it means that we can define a

rescaled stress energy tensor (π̃Tij) for the fluid:

πTij(q, η) =
a4
s

a4(η)
π̃Tij(q, η), (4.26)

where as is a reference scale factor when the source becomes active. Similarly we

can define a rescaled and dimensionless two point correlator Π̃ following Ref. [68]

by

Π2(q, t1, t2) ≡ a8
s

a4(η1)a4(η2)

[(
¯̃e+ ¯̃p

)
Ū2
f

]2
L3
f Π̃

2(qLf , qη1, kη2), (4.27)

where ¯̃e and ¯̃p are the rescaled average energy density and pressure, which

correspond to the quantities measured at ts. The quantity Ūf describes the

magnitude of the fluid velocity and is dimensionless. The correlator, Π2, on the

left hand side of the equation has dimension 5. Therefore, the additional length

factor L3
f is inserted here to make Π̃ dimensionless. Since this length scale is free

from the effect of the expanding universe, it is a comoving length scale. It is found

from numerical simulations [68, 69] that the typical scale in the gravitational

wave production is the (comoving) mean bubble separation R∗c. So we will choose

Lf = R∗c.

The calculation of the UETC requires us to scrutinize the entire process

of the phase transition and the gravitational wave production. This task can

be separated into two parts. The first part is a study of the bulk parameters

characterizing the process of the phase transition, which we will perform in the
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next section. The second part is understanding the evolution of the source, which

we go on to perform in Sec. 4.4.

4.3 Dynamics of the Phase Transition

In this section, we study the changes to the dynamics of the phase transition in

an expanding universe. This includes parameters characterizing the behavior of

the bubble formation, expansion and percolation: the bubble nucleation rate, the

fraction of the false vacuum, the unbroken area of the walls at a certain time,

etc. These will eventually be incorporated in the calculation of the velocity power

spectrum in the sound shell model. Another set of important quantities charac-

terize the statistics of the bubbles ever formed: the bubble lifetime distribution,

as well as the bubble number density. These are also needed in the velocity power

spectrum calculation. Moreover, the timing of some important steps in the phase

transition are also included, like the nucleation temperature and the percolation

temperature. Other changes to the parameters entering the gravitational wave

power spectrum calculation are also included, with β/H a representative example.

We now proceed to a detailed discussion of these quantities.

4.3.1 Bubble Nucleation Rate

The first and most basic ingredient in the analysis of a first order cosmological

phase transition is the nucleation rate of the bubbles in the meta-stable vacuum

at finite temperature [341, 342]. The number of bubbles nucleated per time per
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physical volume is given by the following formula:

p = p0exp

[
−S3,b(T )

T

]
. (4.28)

Here S3 is the Euclidean action of the underlying scalar field ~φ that minimizes

the solution

S3(~φ, T ) = 4π

∫
drr2

1

2

(
d~φ(r)

dr

)2

+ V (~φ, T )

 , (4.29)

with the following bounce boundary conditions:

d~φ(r)

dr

∣∣∣
r=0

= 0, ~φ(r =∞) = ~φout, (4.30)

where ~φout are the components of the vacuum expectation value for the scalar

field outside the bubble. For the pre-factor, we see that p0 ∝ T 4 on dimensional

grounds, while its precise determination requires integrating out fluctuations

around the bounce solution (see e.g., [251, 252] for detailed calculations or [253]

for a pedagogical introduction).

The function S3(T )/T generally starts from infinity at Tc and drops sharply

as temperature decreases, with a typical profile shown in Fig. 4.2. Bubbles will be

nucleated within a short range of time, say at t∗, when this rate changes slowly,

which admits the following Taylor expansion:

p(t) = p0exp [−S∗ + β(t− t∗)] , (4.31)
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Figure 4.2: The representative profile of S3(T )/T for the example used

in Sec. 4.3. See Appendix. A for details on how to reproduce this.

where S∗ ≡ S3(T∗)/T∗ and β ≡ d ln p(t)/dt|t=t∗ 2. More explicitly, we have

S3

T
=
S3

T

∣∣∣∣
t∗

+
d(S3/T )

dT

dT

dt

∣∣∣∣
t=t∗︸ ︷︷ ︸

≡−β

(t− t∗), (4.33)

and thus

β

H∗
= − 1

H∗

dT

dt

d(S3/T )

dT

∣∣∣∣
t=t∗

. (4.34)

We will later see how t∗ should be chosen. For now, we provide a generic

expression for β during an expanding universe, which needs the relation between t

2If there exists a barrier at zero temperature, then S3(T )/T will reach a minimum, say at t∗.
The rate can be expanded around the minimum:

p(t) = p0exp

[
−S∗ −

1

2
β2
2(t− t∗)2

]
, (4.32)

with β2 ≡ S′′(t∗) and the first derivative vanishing. The bubble nucleation will happen mostly
around t∗, making it look like an instantaneous nucleation [71].
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and T . Suppose the universe is expanding as a = cat
n and the radiation sector is

expanding adiabatically such that entropy sR is conserved per comoving volume

for the radiation sector:

sR(T )a3 = const. (4.35)

Here sR ∝ T 3, giving then T ∝ 1/a ∝ t−n. This is the case for a radiation

dominated universe, and for a matter dominated universe where the non-relativistic

matter does not inject entropy to the radiation sector. However when the matter

decays into radiation, entropy injection into the radiation sector gives a different

dependence T ∝ a−3/8 [343]. Generically, we can assume 3

T ∝ a−γ , (4.36)

which then leads to T = cT t
−nγ, with cT being another constant. We thus have

dT

dt
= −cTnγ t−nγ−1. (4.37)

Moreover H = ȧ/a = n/t. Then

1

H

dT

dt
= −cTγ t−nγ = −γ T. (4.38)

Therefore β/H∗ reduces to the following form

β

H∗
= γ T

d(S3/T )

dT

∣∣∣∣
t=t∗

. (4.39)

It is obvious from this result that β/H∗ does not depend on n, i.e., it does not

depend on how the scale factor evolves with time but rather on how T decreases

3Not to be confused with the Lorentz factor.
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with the scale factor through γ. For both the standard radiation dominated

universe and an early matter dominated universe wherein the matter is decoupled

from the radiation, γ = 1. For the matter dominated universe wherein the matter

decays into radiation, γ = 3/8, which gives a smaller β/H∗ [335].

4.3.2 False Vacuum Fraction

The false vacuum fraction g(tc, t) at t > tc can be obtained following the derivation

in Ref. [344]

g(tc, t) = exp

[
−4π

3

∫ t

tc

dt′p(t′)a3(t′)r(t′, t)3

]
≡ exp[−I(t)]. (4.40)

Here I(t) corresponds to the volume of nucleated bubbles per comoving volume,

double counting the overlapped space between bubbles and virtual bubbles within

others. r(t′, t) is the comoving radius of the bubble nucleated at t′ and measured

at t,

r(t′, t) =

∫ t

t′
dt′′

vw
a(t′′)

. (4.41)

For Minkowski spacetime, r(t′, t) = vw(t− t′). For a FLRW spacetime r(t′, t) =

vw(η′ − η), which takes the same form as the Minkowski spacetime, irrespective

of the detailed expansion behavior, when conformal time is used. In obtaining

the above results, a constant bubble wall velocity vw has been assumed and the

initial size of the bubble has been neglected. This is justified as the initial size is

very small.

Eq. 4.40 can be recast in a form that is convenient for calculations, in terms

of the temperature. Suppose that the scale factor at the time of the critical
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temperature is ac and that the scale factor at a later time is related to it by

a

ac
≡
(
Tc
T

)1/γ

. (4.42)

The comoving bubble radius can be conveniently expressed with an integral over

temperature:

r(T ′, T ) =
vw
ac

∫ T ′

T

dT ′′

T ′′
1

γH(T ′′)

(
Tc
T ′′

)−1/γ

. (4.43)

Accordingly I(T ) can be written as

I(T ) =
4π

3

∫ Tc

T

dT ′

T ′
1

γH(T ′)
p̄0T

′4exp

[
−S3(T ′)

T ′

](
Tc
T ′

)3/γ

[acr(T
′, T )]3. (4.44)

Here the factor p̄0 is defined by p0 = p̄0T
4 and we choose p̄0 = 1 in the examples

of analysis as is usually done in the literature. A different choice of p̄0 would, of

course, affect the resulting false vacuum fraction and thus the relevant temperatures

defined [345]. Since the focus here is on the changes due to different expansion

histories, a fixed choice of p̄0 serves our purpose well. For the Hubble rate, we

need to be more precise with regard to the matter content. We consider a universe

consisting of both radiation and non-relativistic matter and define κM to be the

fraction of the total energy density at Tc that is non-relativistic matter:

κM =
ρMatter

ρTotal

∣∣∣∣
T=Tc

. (4.45)

We also neglect the vacuum energy for these examples, though it certainly exists

during a phase transition.

H = H(Tc)

√
κM
y3

+
1− κM
y4

, (4.46)
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where y = a/a(Tc). We show in Fig. 4.3 the false vacuum fraction during the phase

transition, for a purely radiation dominated universe with κM = 0 and a matter

dominated one with κM = 0.9, and for three choices of bubble wall velocities

vw = 0.3, 0.7, 0.9. For both choices of κM , it is clear from these FiguresPT that

increasing vw speeds up the process of phase transition. From κM = 0 to κM = 0.9,

a larger energy density and thus a larger Hubble rate is obtained, which decreases

the function r(T ′, T ) and I(I) and thus slows down the drop of g(Tc, T ).

One often encounters the percolation temperature, which is defined such that

the fraction in true vacuum is about 30% of the total volume [282], i.e., when

g(Tc, Tp) ≈ 0.7, or I(Tp) ≈ 0.34, (4.47)

and corresponds to the intersection points of the horizontal line with the curves

in Fig. 4.3. Since different choices of vw and κM lead to different g(Tc, T ), the

corresponding values of Tp are also different.

4.3.3 Unbroken Bubble Wall Area

With the false vacuum fraction in Eq. 4.40, the unbroken bubble wall area during

the phase transition can be derived [3] and will be used in the derivation of

the bubble lifetime distribution. Consider a comoving volume of size Vc and

a sub-volume occupied by false vacuum Vc,False. Then the comoving unbroken

bubble wall area Ac(t) at t satisfies the following relation:

dg(t0, t) =
dVc,False

Vc
= −Ac(t)

vwdt

a(t)
= −Ac(t)vwdη. (4.48)
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Then Ac is given by

Ac(t) = − 1

vw

dg(t0, t)

dη
= a(η)

H(T )γT

vw

dg(Tc, T )

dT
. (4.49)

One can also define the proper area per proper volume

A =
Proper Area

Proper Volume
=

a2 × Comoving Area

a3 × Comoving Volume
=

1

a
Ac. (4.50)

Since Ac(t) and A are the area per volume, they are of dimension 1, and can

be presented in units of m−1 or GeV. A more meaningful representation can be

obtained by comparing it with the typical scale at the corresponding temperature.

One such quantity is βc, to be defined later, which is the comoving version of the

β parameter and is related to the mean bubble separation (also to be defined

later). We show Ac/βc in Fig. 4.4 for different choices κM and vw, similar to

what are used in Fig. 4.3. We can see the area first increases as more bubbles

are formed and expanding. It decreases as bubbles collide with each other and

the remaining false vacuum volume is shrinking to zero. The different behaviors

when changing vw and the amount of non-relativistic matter contents coincide

with what we observe in Fig. 4.3.

4.3.4 Bubble Lifetime Distribution

The bubble lifetime distribution describes the distribution of bubble lifetime for

all the bubbles ever formed and destroyed during the entire process of the phase

transition. This can be obtained with the help of the unbroken bubble wall area

derived earlier, by generalizing the result derived in Ref. [3] to the expanding

universe. We start by considering the number of bubbles that are created at t′
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and are destroyed with comoving radius r. Here a bubble is defined as destroyed

when approximately half of its volume is occupied by the expanding true vacuum

space. These bubbles are therefore at a comoving distance of r at t′ from the part

of the unbroken bubble wall, assuming constant and universal bubble wall velocity

vw. The time t when this set of bubbles is destroyed is connected with t′ and r by

r =

∫ t

t′

vwdt
′′

a(t′′)
. (4.51)

Since only two quantities out of (r, t′, t) are independent, we denote Ac(t(t′, r)) as

Ac(t′, r) and define the number of bubbles per comoving volume as nb,c. We then

have (see an illustration and more details in Fig. 4.5):

d2nb,c = p(t′)
[
a3(t′)Ac(t′, r)dr

]
dt′. (4.52)

This implies that:

d

(
dnb,c
dr

)
≡ dnb,c(r) = p(t′)

[
a3(t′)Ac(t′, r)

]
dt′. (4.53)

Now, for fixed r, we consider all the bubbles ever formed before a time tf :

nb,c(r)|tftc =

∫ tf

tc

dt′p(t′)
[
a3(t′)Ac(t′, r)

]
, (4.54)

and nb,c(r) = 0 at tc for all r. Consider a time when all bubbles have disappeared,

when tf is large enough. Now nb,c(r)|tf becomes a constant ñb,c(r). We can then

relate r with the lifetime of the bubbles. For the bubble nucleated at t′ and

destroyed at t, we have

r =

∫ t

t′
dt′′

vwdt
′′

a(t′′)
= vwηlt, (4.55)
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where ηlt is the conformal lifetime of the bubble. Thus, r has the same relation

with the conformal lifetime as its relation with tlt in Minkowski spacetime. We

can therefore proceed to derive a conformal lifetime distribution for all bubbles

ever formed and destroyed:

ñb,c(ηlt) ≡
dnb,c
dηlt

= vwñb,c(r) = vw

∫ tf

tc

dt′p(t′)a3(t′)Ac(t′, vwηlt). (4.56)

Remember Ac(t′, vwηlt) = Ac(t(t′, vwηlt)) and it is evaluated at t, which should be

determined through Eq. 4.55 given t′ and ηlt. To present a numerically convenient

representation of the above result, we convert coordinate time t to conformal

time η and then to temperature. For the bubble formed at t′, the corresponding

conformal time is related to temperature by

η′ − ηc =

∫ t′

tc

dt′′

a(t′′)
=

1

ac

∫ Tc

T ′

dT ′′

T ′′
1

γH(T ′′)

(
Tc
T ′′

)−1/γ

≡ ∆η(T ′, Tc). (4.57)

Then for the bubble with conformal lifetime ηlt, the conformal time for its destruc-

tion is given by ηlt + (η′ − ηc), with the corresponding temperature T determined

through

ηlt + (η′ − ηc) = ∆η(T, Tc). (4.58)

This temperature, or time, is what should be used in Ac, rather than T ′. With

the relation between T and T ′ found, it is then straightforward to do the integral

in Eq. 4.56, which requires only converting t′ to temperature.
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4.3.5 Bubble Number Density

The evolution of the bubble number density per proper volume nb = Nb/V is

governed by the following equation

d[nba
3(t)]

dt
= p(t)g(tc, t)a

3(t), (4.59)

which can be integrated to give (noting that nb(tc) = 0):

nb(t) =
1

a3(t)

∫ t

tc

dt′p(t′)g(tc, t
′)a3(t′). (4.60)

This does not include the decrease of bubble number due to collisions and nb

thus includes all the bubbles ever formed. The result for nb(t) can be similarly

transformed into a function of temperature.

nb(T ) =

(
T

Tc

)3/γ ∫ Tc

T

dT ′

T ′
1

γH(T ′)
p̄0T

′4exp

[
−S3(T ′)

T ′

]
g(Tc, T

′)

(
Tc
T ′

)3/γ

.(4.61)

We show nb in units of m−3 in the left panel of Fig. 4.6 and the total bubble

number per Hubble volume nb/H
3(T ) in the right panel. We can see that the

bubble number density increases for a delayed false vacuum fraction, which is

consistent with physical intuition. From nb, we can define the mean bubble

separation, R∗, as

R∗(t) =

[
V (t)

Nb(t)

]1/3

=

[
1

nb(t)

]1/3

. (4.62)

This is shown in Fig. 4.7. For both nb and R∗, it appears they both reach an

asymptotic value after the bubbles have disappeared when the curves in these

FiguresPT become flat. This is misleading as after the time the bubbles have

disappeared, nb will be diluted as 1/a3 and accordingly R∗ increases as a. The flat
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curves in the FiguresPT are simply due to the very tiny change of temperature

plotted. From numerical simulations [69, 68], it is found that the peak frequency

of the gravitational wave spectrum is related to R∗. Therefore any change on

R∗ will translate into a shift of the peak frequency of the gravitational waves.

Since R∗ is of particular importance, it is convenient to use the comoving version

of it R∗c = (Vc/Nb)
1/3, which will reach an asymptotic value after the bubble

disappearance.

From the right panel of Fig. 4.6, we can easily read off the nucleation tempera-

ture Tn, which is defined such that at this temperature there is about one bubble

within a Hubble volume [254]. Note Tn obtained this way differs slightly from the

usually used, and a bit crude, criterion:∫ tn

tc

dt
p(t)

H(t)3
= 1, (4.63)

which for radiation dominated universe where H2 = 8πGρ/3 and ρ = π2

30
g∗(T )T 4

translates into the condition:∫ Tc

Tn

dT

T

(
90

8π3g∗

)2 (mPl

T

)4

exp

[
−S3(T )

T

]
= 1. (4.64)

Here mPl is the Planck mass. A further simplification says that Tn is determined

by S3(Tn)/Tn = 140 [254]. These determined Tn differs slightly from the more

accurate result obtained by solving directly for nb with Eq. 4.59.

4.3.6 Relation between β and Mean Bubble Separation (R∗)

It was found from numerical simulations that the peak of the gravitational wave

power spectrum is located at kR∗ ∼ 10 [69], where R∗ is the mean bubble
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separation defined earlier. However the standard spectrum people generally use is

expressed in terms of β (see, e.g., [25, 26]). So the relation between β and R∗

is needed. It can be derived analytically under reasonable assumptions as was

shown in Ref. [3], which says

R∗ =
(8π)1/3

β(vw)
vw. (4.65)

Here we emphasize that β varies when vw is changed. The question is then will

this relation still hold in an expanding universe. We will answer this question by

giving a detailed derivation here, which parallels and generalizes the derivation in

Ref. [3].

We rewrite Eq. 4.59 in terms of the conformal time (we still use the same

function labels though t is replaced by η)

d(nb,c)

dη
= p(η)g(ηc, η)a4(η), (4.66)

where nb,c = nba
3 and is the comoving bubble number density. Here the false

vacuum fraction g decreases sharply when its exponent I(T ) becomes of order 1.

Since p(η) increases exponentially, there is a peak for the r.h.s in above equation,

at which time the bubbles are mostly nucleated. As g decreases much more sharply

than p increases, the rate p only increases slowly during this time duration and

it can be Taylor expanded at around this time. This time can be conveniently

chosen to be η0 which satisfies I(η0) = 1. Then similarly to Eq. 4.31, we define a

Taylor expansion but w.r.t the conformal time:

p(η) = p0(η0)exp[−S0 + βc(η − η0)], (4.67)
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where we have neglected the very slow change of p0(η) and defined a comoving

version of η:

βc =
d ln p

dη

∣∣∣∣
η=η0

. (4.68)

Now lets see how nb,c in Eq. 4.66 can be solved in terms of βc. To do it, lets firstly

see how g or its exponent I can be expressed in terms of βc. From Eq. 4.40, we

can write I in the following way:

I(η) =
4π

3

∫ η

ηc

dη′a4(η′)p(η′)r(η′, η)3

=
4π

3
v3
w

∫ η

ηc

dη′p0(η0)e−S0+βc(η′−η0)(η − η′)3

= 8π
v3
w

β4
c

p0(η0)e−S0+βc(η−η0). (4.69)

Now define a time ηf such that

I(ηf ) = 1, (4.70)

then at a later time much simpler expressions can be obtained:

I(η) = eβc(η−ηf ), g(ηc, η) = e−I(η). (4.71)

As I(η) depends on the bubble wall velocity vw, the resulting tf and more

importantly βc is a function of vw. Plugging above expressions of g(ηc, η), p(η)

into Eq. 4.66, and integrating over η, we have

nb,c =
1

βc
p0(η0)e−S0+βc(ηf−η0) =

β3
c (vw)

8πv3
w

. (4.72)

Here the second equality comes from the relation in Eq. 4.70. As noted in

Ref. [3], the best choice of t0 is tf so that the Taylor expansion of p(η) converges
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more quickly. This result gives the relation between the comoving mean bubble

separation R∗c and ηc:

R∗c = (8π)1/3 vw
βc(vw)

. (4.73)

We can also write all results in terms of physical quantities. From Eq. 4.68 and

enforcing t0 = tf , we have

βc = a(ηf )β = a(ηf )

[
γH(T )T

d(S3/T )

dT

]∣∣∣∣
T=Tf

, (4.74)

and thus

nb,c = a3(ηf )
β3

8πv3
w

. (4.75)

Note nb,c becomes a constant number as Nb reaches its maximum and the comoving

volume is fixed. The physical number density after all the bubbles have vanished

will be diluted by the expansion. Suppose we consider the physical number density

nb at time η, then

nb(η) =

(
a(ηf )

a(η)

)3
β3

8πv3
w

. (4.76)

The corresponding physical mean bubble separation would be

R∗(η) =
a(η)

a(ηf )
(8π)1/3 vw

β(vw)
. (4.77)

Therefore the relation between R∗ and β is similar to that derived in Minkowski

spacetime and needs only additional attention on the scale factors. If one uses

R∗c and βc, then the relation is exactly the same as in Minkowski spacetime. We

emphasize again that β and βc are functions of vw. To see this, we plot R∗ at a
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time immediately after all the bubbles have disappeared, as a function of vw, in

the left panel of Fig. 4.8. For each vw, we find the corresponding β(vw) as implied

in above equation and compare with β(vw) directly calculated using Eq. 4.74. This

comparison is shown in the right panel and the two different determinations differ

by at most 2%, where the uncertainty can be attributed to the approximations

made.

4.4 Fluid Velocity Field and Power Spectrum

The dominant source of gravitational wave production is the sound waves in a

perturbed plasma due to the advancing bubble walls and their interaction with

the surrounding fluid. In the sound shell model [71, 3], the total velocity field

is modelled as a linear superposition of the individual contribution from each

bubble. The first step is then to understand the velocity profile of the fluid around

a single bubble. This topic has been extensively studied several decades ago and

is reviewed with a complete treatment in Ref. [70]. However the analysis is set in

Minkowski spacetime and it is not clear whether it needs changes in an expanding

universe. Ref. [346] studied the velocity profile in an expanding universe and

found that there is a significant change to the velocity profile and a reduction of

energy fraction going into the kinetic energy of the sound waves. But we will see

in this section the velocity profile actually remains unchanged. We first review

the full set of fluid and field equations and then analyze the fluid velocity profile

around a single bubble. Armed with this information, we then find the total
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velocity field from a population of bubbles in the sound shell model and calculate

the velocity field power spectrum.

4.4.1 Fluid and Field Equations

Numerical simulations that are performed to provide the widely adopted grav-

itational wave formulae are based on the fluid-order parameter field model [68,

347, 348] in Minkowski spacetime. Here we generalize the full set of equations

used in the simulations to the FLRW universe. Our purpose is to understand

whether simulations can be done in Minkowski spacetime and then generalized

to an expanding universe by simple rescalings of the physical quantities. This is

an important question as it is computationally very expensive to do a numerical

simulation.

The universe consists of: (1) the underlying scalar field(s) responsible for

the phase transition; (2) the relativistic plasma whose constituent particles can

interact with the scalar field(s); (3) magnetic field produced from the phase

transition; (4) other sectors which do not directly interact with either the scalar

field, the plasma or the magnetic field, though they do interact gravitationally.

We will neglect (3) by focusing on the dominant source for gravitational wave

production, and only consider (4) through its effect on the expansion. Given our

cosmological context, the total energy momentum tensor for (1) and (2) is given

by [68]

T µν = ∂µφ∂νφ− 1

2
gµν∂µφ∂

µφ+ (e+ p)UµUν + gµνp, (4.78)
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where Uµ = γ(1,v/a) with γ = 1/
√

1− v2 and v = dx/dη. The energy and

momentum densities are given by

e = aBT
4 + V (φ, T )− T ∂V

∂T
,

p =
1

3
aBT

4 − V (φ, T ), (4.79)

where aB = g∗π
2/30 and g∗ is the relativistic degrees of freedom. It is certainly

conserved, i.e., T µν ;µ = 0 4, and it is usually split into two parts by adding and

subtracting a friction term δν [347]:

T µν ;µ|field = (∂2φ)∂νφ+
1√
g

(∂µ
√
g)(∂µφ)(∂νφ)− ∂V

∂φ
∂νφ = δν ,

T µν ;µ|fluid = ∂µ [(e+ p)UµUν ] +

[
1√
g

(∂µ
√
g)gνλ + Γνµλ

]
(e+ p)UµUλ + gµν∂µp+

∂V

∂φ
∂νφ = −δν .

(4.80)

Note here the appearance of ∂µg and Γνµλ as we are using a generic metric. The

friction term δν is modelled by δν = ηUµ∂µφ∂
νφ. For high temperatures it can

be chosen as η = η̃φ2/T [69], which works well in that case [349] but may lead

to numerical singularities for small temperature. The numerical simulations on

sound waves adopted a constant value for the lower temperature case [5]. Note

the exact set of equations can also be derived from field theory [345, 350].

In an FLRW universe, the field energy momentum conservation leads to a

scalar equation:

−φ̈+
1

a2
O2φ− ∂V

∂φ
− 3

ȧ

a
φ̇ = ηγ(φ̇+

1

a
v · Oφ), (4.81)

4The subscript “;” denotes covariant derivative.
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which is just the Klein-Gordon equation for the scalar field when the friction

term is absent, i.e., when η = 0. The vector part of the fluid energy-momentum

conservation gives:

Żi +
1

a
O · (vZi) + 5

ȧ

a
Zi +

1

a2
∂ip+

1

a2

∂V

∂φ
∂iφ = − 1

a2
ηγ(φ̇+

1

a
v · Oφ)∂iφ,(4.82)

where Zi ≡ γ(e+ p)U i = γ2(e+ p)vi/a. The parallel projection along Uν for the

fluid gives another scalar equation:

Ė + p[γ̇ +
1

a
O · (γv)] +

1

a
O · (Ev)− γ ∂V

∂φ
(φ̇+

1

a
v · Oφ) + 3

ȧ

a
γ(e+ p)

= ηγ2(φ̇+
1

a
v · Oφ)2, (4.83)

where E ≡ eγ. While the above equations form a complete set, the velocity profile

is usually derived from a different scalar equation, the perpendicular projection

for the fluid along the direction Ūν , which is defined by

ŪµUµ = 0, ŪµŪµ = 1, (4.84)

and takes the explicit form Ūµ = γ(v, v̂i/a). This gives[
ȧ

a
v + γ2

(
v̇ +

1

2a
v̂ · Ov2

)]
(e+ p) + vṗ+

1

a
v̂ · Op+

∂V

∂φ
(vφ̇+

1

a
v̂ · Oφ)

= −ηγ(vφ̇+
1

a
v̂ · Oφ)(φ̇+

1

a
v · Oφ).(4.85)

These equations are direct generalizations of those in Ref. [68] to an FLRW

universe. It is not possible, however, to express the above equations in a form

used in Minkowski spacetime and the problem lies with the scalar field. Despite

this, the effect on the bubble and fluid motions should be minor, since the bubble

collision process is fast compared with the long duration of the ensuing sound

waves.
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The process of the phase transition can thus be divided into two stages. The

first stage is the bubble collision and disappearance of the symmetric phase, and

the second is the propagation of sound waves. The difference between them is

that the first stage takes a much shorter time, while the second is long-lasting.

This is indeed what is observed from numerical simulations and should well justify

simply neglecting the change of the scale factor during the first stage [68]. In this

sense, the numerical simulations as performed in Ref. [68, 69] still give a faithful

account of the first step for an expanding universe. However we will see in the

next subsection that the analytical modelling of this first stage still admits simple

rescaling properties and takes the same form as its Minkowski counterpart.

During the second stage gravitational waves are dominantly produced due to

the long-lasting sound waves. Therefore the change of the scale factor can not

be ignored. The question is: can we still solely perform numerical simulations

in Minkowski spacetime. Fortunately, during this stage, the scalar field plays no

dynamical role and we can consider only the fluid. The corresponding equations

can indeed be reduced to the Minkowski form. This is achieved by using the

conformal time, neglecting the scalar field as well as the friction terms and using

p = e/3 for the plasma. Then Eq. 4.82, Eq. 4.83 and Eq. 4.85 reduce to (again,

′ ≡ ∂/∂η):

(a4Si)′ + O · (a4Siv) + ∂i(a
4p) = 0,

(a4eγ)′ + [γ′ + O · (γv)](a4p) + O · (a4eγv) = 0,

γ2(v′ +
1

2
v̂ · Ov2)[a4(e+ p)] + v(a4p)′ + v̂ · O(a4p) = 0, (4.86)
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where Si = aZi = γ2(e + p)vi. The Minkowski counterpart of these equations

can be obtained by setting a = 1. This suggests that we can define rescaled

quantities ẽ = a4e/a4
s and p̃ = a4p/a4

s, where as is the scale factor when the source

becomes active. They are free from the dilution due to the expansion, and that

the equations governing ẽ, p̃ and v take exactly the same form as their Minkowski

counterparts, as long as the time t is interpreted as the conformal time η. We will

see how these rescaled quantities can be used to derive the modified gravitational

wave spectrum in later sections.

We note here that these equations were derived earlier in Ref. [351, 352] when

also considering electromagnetism and it was shown that the above rescaling

works not only for the purely fluid system but also for a system containing both

fluid and electromagnetism. Including electromagnetism will add additional terms

to the right hand side of the above equations.

4.4.2 Velocity Profile around a Single Bubble

Solving the velocity profile for a single expanding bubble depends on analyzing

the behavior of the system consisting of both the fluid and the scalar field. This

is usually done in the so called bag equation of state model, as summarized in

Ref. [70]. The energy momentum tensor for the fluid plus scalar field system

is assumed to take the following form (“+” for outside the bubble and “−” for

inside):

T µν± = p±g
µν + (p± + ρ±)UµUν , (4.87)
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with the bag equation of state:

p+ =
1

3
a+T

4
+ − ε, e+ = a+T

4
+ + ε,

p− =
1

3
a−T

4
−, e− = a−T

4
−, (4.88)

where ε is the vacuum energy difference between the false and true vacua. One

can also find the enthalpy ω = e+ p. Here v, T and thus e, p, ω all vary from the

bubble center to the region far outside the bubble where there is no perturbation.

The task is to solve for these fields at regions both inside and outside the bubbles

and smoothly match these two sets of solutions through the junction conditions

across the bubble wall.

Inside the bubble, we drop all terms related to φ including the vacuum energy

from ε, and we also apply the relation p = e/3 5. The resulting equations

are already given in Eq. 4.86 and the equations are exactly the same as the

Minkowski counterpart when the rescaled quantities are used. Now, assuming a

spherically symmetric profile and denoting the comoving bubble radius with r

and the conformal time elapsed since its nucleation as ∆η, the solution should

be a self-similar one which depends solely on the ratio ξ ≡ r/∆η. Then we can

obtain the same equations as in Minkowski spacetime:

(ξ − v)∂ξẽ = w̃

[
2
v

ξ
+ γ2(1− ξv)∂ξv

]
,

(1− vξ)∂ξp̃ = w̃γ2(ξ − v)∂ξv, (4.89)

5Of course, we are assuming a constant value of the speed of sound, i.e., cs = 1/
√

3. Without
doing so, the equations cannot be put into the form in Eq. 4.86. We also dropped any spatial
variation of the scalar field and its time variation following the conventional analysis, which
amounts to assuming a thin wall.
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which can then be combined to give an equation for the velocity field:

2
v

ξ
= γ2(1− vξ)

[
µ2

c2
s

− 1

]
∂ξv. (4.90)

Here µ(ξ, v) = (ξ − v)/(1− ξv), which is the Lorentz boost transformation. This

equation can be directly solved given a boundary condition at the wall, to be

specified later.

Outside the bubble, the presence of the constant vacuum energy term ε

seemingly does not allow us to reach Eq. 4.86 for two possible reasons: (1) we

can not apply p = e/3 since p = −e for vacuum energy; (2) ε does not scale

like radiation with the behavior 1/a4 and the rescaled quantity a4e still contains

the expansion effect. Let us look more closely at the equations. The parallel

projection in Eq. 4.83, when the friction and scalar gradient terms are neglected,

becomes

[
(γe)′ + 3

a′

a
γ(e+ p)

]
+ p[γ′ + O · (γv)] + O · (γev) = 0. (4.91)

Correspondingly, the perpendicular projection in Eq. 4.85 reduces to

[
a′

a
v(e+ p) + vp′

]
+ γ2(v′ +

1

2
v̂ · Ov2)(e+ p) + v̂ · Op = 0. (4.92)

In the absence of the vacuum energy inside e and p, both of above equations

can be put into the form in Eq. 4.86, by combining the terms in [· · · ] and using

e = 3p. The resulting equations for the rescaled quantities are the same as in

Minkowski spacetime. The presence of ε makes this impossible. In Ref. [346], the

self-similar velocity profile is assumed anyway. But the existence of an explicit

time dependence from a′ makes it impossible to solve, except in corners of the
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parameter space where it vanishes numerically. It is also in doubt if there exists a

self-similar solution at all for these equations and we refrain from going in that

direction.

Despite this dilemma, we can still cast above equations in the form 4.86 under

the assumption that ε is a constant of time during this very short period of time.

Then the first equation can be reorganized in the following way:[
γ′ + O · (γv) + 3

a′

a
γ

]
(e+ p) + γe′ + γv · Oe = 0. (4.93)

Then ε cancels out in (e + p) and drops out in e′, and of course also in Oe. So

above e and p can include only the fluid part. Then one can put it back into the

previous form 4.91 and define the rescaled quantities: ẽ, p̃, which obey exactly the

same equation as in the Minkowski spacetime. Therefore we obtain the second

equation in Eq. 4.86 and the first in Eq. 4.89. Similarly for Eq. 4.92, ε drops out

in all terms and one can safely define the rescaled quantities, and obtain the third

equation in Eq. 4.86 and the second in Eq. 4.89. Combining these two equations

again gives the same Eq. 4.90 for the velocity field.

The equation 4.90 for both regions needs the junction conditions at the wall

to connect them. They are derived by integrating the conservation of energy

momentum tensor across the bubble wall, which gives in the wall frame (note

+,− denote quantities at positions immediately outside and inside the wall) 6

T rη+ = T rη− , (4.94)

T rr+ = T rr− , (4.95)

6Also we follow the conventional procedure by neglecting the time dependence of the various
quantities.
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where v− and v+ are both at wall frame. These two equations imply

(e+ + p+)v+γ
2
+ = (e− + p−)v−γ

2
−, (4.96)

(e+ + p+)v2
+γ

2
+ + p+ = (e− + p−)v2

−γ
2
− + p−. (4.97)

Here both e± and p± are the ordinary energy density and pressure and include

the vacuum energy ε. The reason is while they can be neglected away from

the bubble wall due to the vanishing spatial gradient, they jump across the

bubble wall and give non-negligible contributions to the above equations. The

junction equations can be solved by making the change of variables v± = tanh(ϑ±)

and γ2
± = cosh2(ϑ±) which, after simplifying, will yield two linear equations in

cosh2(ϑ+) and cosh2(ϑ−). The solution will give

v+ =

√
(p− − p+)(e− + p+)

(e− − e+)(e+ + p−)
,

v− =

√
(p+ − p−)(e+ + p−)

(e+ − e−)(e− + p+)
. (4.98)

The product and ratio of v+ and v− can further be found,

v+v− =
p+ − p−
e+ − e−

,
v+

v−
=
e− + p+

e+ + p−
. (4.99)

Plugging e±, p± as specified by the bag equation of state in Eq. 4.88 leads to

v+v− =
1− (1− 3α+)σ

3− 3(1 + α+)σ
, (4.100)

v+

v−
=

3 + (1− 3α+)σ

1 + 3(1 + α+)σ
, (4.101)

where α+ and σ are defined by

α+ =
ε

a+T 4
+

∣∣∣∣
wall

, σ =
a+T

4
+

a−T 4
−

∣∣∣∣
wall

. (4.102)
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α+ characterizes the amount of vacuum energy released from the phase transition

normalized by the total radiation energy density immediately outside the bubble

(as denoted by the subscript “wall”). It is not the α usually used in phase transition

analyses. Rather, its value should be solved from the requirement that far from

the bubble where the plasma is not perturbed (denote by ∞), the corresponding

α+ at ∞ matches α. The two equations in Eq. 4.101 can be solved for both r and

v+ to give two branch solutions for the velocity in the symmetric phase,

v+ =
1

1 + α+

(v−
2

+
1

6v−

)
±
√(

v−
2

+
1

6v−

)2

+ α2
+ +

2

3
α+ −

1

3

 . (4.103)

Up to this point, the results for the velocity profile are exactly the same as

in Minkowski spacetime, but with the understanding that the time t is replaced

by the conformal time η, v = dx/dη and (e, p) are replaced by (ẽ, p̃). We will

not go into the details of the physics of above results but only summarize the

main features of the velocity profile relevant for this study and refer the reader to

Ref. [70] for a more detailed analysis.

The fluid admits three modes of motion: deflagration, detonation and super-

sonic deflagration (also called hybrid) [260], with representative velocity profiles

shown in Fig. 4.9. For deflagration, the velocity inside the bubble vanishes and is

only non-zero outside. Detonation is the opposite, with non-zero velocity inside

the bubble. Supersonic deflagration has non-zero velocity both inside and outside

the bubble. Therefore for deflagration, v− = vw which should be used in Eq. 4.103

to find v+, choosing a value of α+. This v+ is Lorentz transformed to the plasma
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static frame to find v(vw) immediately outside the wall, which is then used as the

boundary condition to solve for v(ξ) outside the wall. It might not consistently

drop to zero, in which case a shock front is encountered and should be determined.

Beyond the shock v(ξ) = 0. This gives a complete profile, but not yet the correct

one, since a specific value of α+ is used in above determination of the profile. This

value needs to be tuned such that α+ = α far outside the bubble. For detonation,

v+ = vw and v− can be determined from Eq. 4.103 with α+ = α as outside the

bubble the plasma is not perturbed. Then one can Lorentz transform v− to v(vw)

immediately inside the wall and use it as a boundary condition to determine the

full profile. No inconsistency or shock front will be encountered in this case. For

supersonic deflagration, the condition v− = cs is the boundary condition used.

Shock front can exist in this case and should be treated similarly. We refer the

reader for more details in Ref. [70].

4.4.3 Velocity Field in the Sound Shell Model

With the velocity profile surrounding a single bubble determined, we can now

find the total velocity field, as needed in Eq. 4.22. As we have already seen, in an

expanding universe the equations of motion of the fluid are exactly the same as

those in non-expanding Minkowski spacetime. This means that the equation of

motion for the sound waves remain the same as its Minkowski counterpart, as

long as we replace t by η and interpret the velocity as obtained by differentiation

with respect to the conformal time. So the procedure parallels that in Ref. [3].

Lets start with the contribution from one bubble. Before it collides with
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another bubble at ηfc (see Fig. 4.5), the velocity profile is governed by equations

given in previous sections. After the collision, the friction vanishes and the velocity

field starts freely propagating and becomes sound waves, with the speed of sound

cs. So we need to match the velocity profile surrounding this bubble with the

velocity field at the time when the friction vanishes. Before collision, we can

Fourier decompose the velocity field as

vi(η < ηfc,x) =
1

2

∫
d3q

(2π)3

[
ṽiq(η)eiq·x + ṽi∗q (η)e−iq·x

]
, (4.104)

with x being the comoving coordinate and q the comoving wavenumber. After

collision, the velocity field freely propagates as sound waves and admits the

following decomposition:

vi(η,x) =

∫
d3q

(2π)3

[
viqe
−iωη+iq·x + vi∗q e

iωη−iq·x] , (4.105)

where ω = qcs. Since the plasma consists of relativistic particles, cs = 1/
√

3. Here

viq is independent of η, different from ṽiq(η).

The task is then to find the contribution to viq from ṽiq(η) at ηfc. Since the

equation governing the sound waves is of second order, we need the following

initial conditions: ṽiq(η) and ṽi′q(η) at ηfc. While one can obtain ṽiq(η) directly

from the velocity profile in the previous section, one subtlety appears here for

ṽi′q(η). As demonstrated in Ref. [3], the equation governing ṽi′q(η) before the

collision relies on a force term from the scalar field, which disappears once the

collision occurs. So the value ṽi′q(η) calculated with this force (as was previously

used in Ref. [71]) is different from the corresponding value without it. It is the

latter one that should enter the initial conditions for the sound waves. In this
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case, rather than calculating ṽi′q(η) from the velocity profile ṽiq(η), we need to

calculate it directly from the energy fluctuation:

λ(x) =
ẽ(x)− ¯̃e

¯̃ω
, (4.106)

where a bar denotes averaged quantity and tilde denotes rescaled quantity. Sim-

ilarly its Fourier component λ̃q can be defined in analogy to Eq. 4.104. The

equations for sound waves then follow:

λ̃′q + iqj ṽjq = 0,

ṽj′q + c2
siq

jλ̃q = 0. (4.107)

Therefore ṽj′q = −c2
siq

jλ̃q, and one needs to calculate vi(η,x) and λ(η,x) from

the self-similar velocity profile for one bubble. In coordinate space, the velocity

profile for the n-th bubble can be written as

v(n)(η,x) = R̂(x)v(ξ), (4.108)

where R(x) ≡ x− x(n), ξ ≡ |R(n)|/T (n) and T (n)(η) ≡ η − η(n), with x(n) and η(n)

the coordinate of the bubble center and the conformal time when the bubble is

nucleated. Similarly for λ, as it is a scalar field, we can define λ(η,x) ≡ λ(ξ). With

the profile specified in coordinate space, the corresponding Fourier coefficients

can be obtained straightforwardly

ṽj(n)
q (ηfc) = e−iq·x

(n)

(T (n))3iẑjf ′(z)|η=ηfc ,

λ̃(n)
q (ηfc) = e−iq·x

(n)

(T (n))3l(z)|η=ηfc , (4.109)
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with z ≡ qT (n) and the two functions f(z) and l(z) given by

f(z) =
4π

z

∫ ∞
0

dξ v(ξ) sin(zξ),

l(z) =
4π

z

∫ ∞
0

dξ ξ λ(ξ) sin(zξ). (4.110)

Then the n-th bubble’s contribution to the Fourier coefficient of the sound waves

is

vj(n)
q =

1

2

[
ṽj(n)
q (ηfc) + csq̂

jλ̃(n)
q (ηfc)

]
eiωηfc , (4.111)

and after using the explicit expression of the bubble profile,

vj(n)
q = iẑj(T

(n)
fc )3eiωηfc−iq·x

(n)

A(zfc), (4.112)

where A(zfc) = [f ′(zfc)− icsl(zfc)]/2, with an example shown in Fig. 4.10. Thus

we have calculated the contribution to viq from one bubble that is nucleated

randomly. The randomness of this bubble is reflected in its formation time,

location, collision time and its radius. Since the radius at collision is fixed once

its formation and collision times are given, there are three independent random

variables.

The velocity field after all bubbles have disappeared, can be assumed to be

the linear addition of the contributions from all bubbles, which is the essence of

the sound shell model [71, 3]. Suppose the total number of bubbles nucleated

within a Hubble volume with comoving size Vc is Nb. Then the velocity field can

be assumed, according to the sound shell model, to be given by

viq =

Nb∑
n=1

vi(n)
q . (4.113)
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4.4.4 Velocity Power Spectrum

As these Nb bubbles are just one realization of the phase transition, the resulting

viq has a random nature with it and follows a Gaussian distribution to a good

approximation according to the central limit theorem 7. Randomness of this kind

can be removed by doing an ensemble average of the product: 〈viqvj∗q 〉, which is

all needed for a Gaussian distribution. Now let us see how this is achieved.

The Nb bubbles can be separated into groups with the bubbles within each

group sharing a common formation and collision time. Then the only variable

that is random across the bubbles of one group, e.g., group g with Ng bubbles, is

the spatial locations of the bubbles when they form. Now consider group g. Its

contribution to the correlator is

〈viq1
vj∗q2
〉g = q̂i1q̂

j
2[T

(g)
fc ]6A(z

(n)
fc )A(z

(m)
fc )∗ei(ω1−ω2)η

(g)
fc 〈

Ng∑
m,n=1

eiq2·x(m)−iq1·x(n)〉.(4.114)

Here the order of the ensemble average and the summation can be switched.

Since the ensemble average of each of these Ng terms gives the same result and

oscillatory cross terms vanish, we have

〈
Ng∑

m,n=1

eiq2·x(m)−iq1·x(n)〉 = Ngδmn〈eiq2·x(m)−iq1·x(n)〉

= Ng
1

Vc

∫
d3x(∗) ei(q2−q1)·x(∗)

= Ng
1

Vc
(2π)3δ3(q1 − q2). (4.115)

The constraint q1 = q2 removes the η
(g)
fc dependence, leading to a result solely

dependent on the conformal lifetime of the bubble T
(g)
fc ≡ ηlt but not their absolute

7If there is a sufficiently large population of bubbles within this single volume, the summation
of these contributions can also remove the randomness, equivalent to an ensemble average.
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formation or destruction time:

〈viq1
vj∗q2
〉g = q̂i1q̂

j
2η

6
lt|A(qηlt)|2

Ng

Vc
(2π)3δ3(q1 − q2). (4.116)

This result means that we can combine groups with the same ηlt, and of course,

different formation time, by solely enlarging the value of Ng. In the following we

will simply stick to the group label “g”, though its definition is changed and now

includes all bubbles with the same ηlt. Restricting to a sufficiently small region

centered at ηlt, the number Ng is an still an infinitesimally small fraction of Nb

and can be written as

Ng = NbP (ηlt)dηlt, (4.117)

where P (ηlt) is the probability density for bubbles to have conformal lifetime in

the range (ηlt, ηlt + dηlt), thus with dimension 1 and normalized by∫
dηltP (ηlt) = 1. (4.118)

Adding the contributions from all the groups and noting that cross terms vanish

due to the oscillatory behavior, we have

〈viq1
vj∗q2
〉 = q̂i1q̂

j
2(2π)3δ3(q1 − q2)

∫
dηlt

[
P (ηlt)

Nb

Vc

]
η6

lt|A(qηlt)|2. (4.119)

One can now identify the quantity in the square bracket as the conformal lifetime

distribution defined in Eq. 4.56:

P (ηlt)
Nb

Vc
= ñb,c(ηlt). (4.120)

Since P (ηlt) is of dimension 1, it is convenient to define a dimensionless version of

it: ν, with

P (ηlt) ≡ βcν(βcηlt), (4.121)
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and thus

ñb,c(ηlt) =
βc
R3
∗c
ν(βcηlt), (4.122)

where R∗c is the asymptotic comoving mean bubble separation. Then we have

〈viq1
vj∗q2
〉 = q̂i1q̂

j
2(2π)3δ3(q1 − q2)

1

R3
∗cβ

6
c

∫
dT̃ T̃ 6ν(T̃ )|A(

qT̃

βc
)|2,︸ ︷︷ ︸

≡Pv(q)

(4.123)

with here T̃ = βcηlt, and we have defined the spectral density Pv(q) for the plane

wave amplitude viq. Lets write down the explicit expression for ν(T̃ ). From

Eq. 4.122 and 4.56, we have

ν(T̃ ) = vwR
3
∗c

∫ tf

tc

dt′p(t′)a3(t′)
Ac(t′, vwT̃ /βc)

βc
, (4.124)

which can be directly used for numerical calculations once t′ is transformed to T ′

as demonstrated in previous sections. The numerically calculated distribution for

the examples we have been using is shown in Fig. 4.11. For all choices of κ, vw,

the distributions are almost indistinguishable, shown as the blue curve, and it

coincides with the gray dashed curve which denotes the distribution e−T̃ , derived

analytically in Ref. [3]. With ν(T̃ ) obtained, the spectral density Pv(T̃ ) can be

calculated straightforwardly from its definition in Eq. 4.123.

To calculate the velocity power spectrum, we need to evaluate the correlator

〈ṽiq(η1)ṽj∗k (η2)〉| = δ3(q− k)q̂ik̂jG(q, η1, η2), (4.125)

and it can be shown that

G(q, η1, η2) = 2Pv(q) cos[ω(η1 − η2)]. (4.126)
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Plugging it into Eq. 4.24 or 4.25 gives the stress energy correlator. Also the

velocity field power spectrum Pv follows naturally,

Pv =
q3

2π2
[2Pv(q)]

=
1

64π4v6
w

(qR∗c)
3

∫
dT̃ T̃ 6ν(T̃ )

∣∣∣∣∣A
(

(qR∗c)T̃

(8π)1/3vw

)∣∣∣∣∣
2

, (4.127)

and we have used βcR∗c = (8π)1/3vw. It is obvious to see that Pv is dimensionless,

as it is constructed with purely dimensionless quantities. A representative profile

for the velocity power spectrum is shown in Fig. 4.12 assuming an exponential

bubble nucleation rate, and more details about its properties can be found in

Ref. [71].

4.5 Gravitational Wave Power Spectrum

We can now go back to Eq. 4.17 and collect all the pieces to calculate the

gravitational power spectrum. It only remains to calculate the Green’s function,

and it requires to specify an expansion scenario. We will as usual focus on the

RD and MD scenarios as examples, but the method here is applicable to any

expansion history.

4.5.1 Solutions in Radiation and Matter Domination

First, we choose a parameter to measure the time of the cosmic history. It can

either be the actual time t, the conformal time η, the redshift z or the scale factor

a. To present a result independent of the origin of the time coordinate, we choose

the dimensionless scale factor ratio y ≡ a/as, giving then d/dt = ȧ/asd/dy. Here
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as is the time when the source, the sound waves, becomes active, so that y starts

from 1. The Friedmann equation gives the relation between y and the conformal

time

y =
κM
4

(asHs)
2(η − ηs)2 + asHs(η − ηs) + 1. (4.128)

It is obvious that when η = ηs, we have y = 1. Also it does not matter how

the origin of the conformal time is chosen as it only depends on ∆η ≡ η − ηs.

For RD, where κM ∼ 0, we have y = asHs(η − ηs) + 1. For MD, κM ≈ 1 and

y = [1
2
asHs(η − ηs) + 1]2. In the literature, it is usually approximated that a ∝ η

deep inside the radiation era or a ∝ η2 deep inside the matter era. However we

remain agnostic about when the phase transition happens and do not require it

to start deep inside the radiation or matter era. Also the duration of the phase

transition is very small compared with the conformal time, which makes such

approximation quite crude. But our choice using y is free from above limitations

and offers a more accurate description of phase transition process.

With y, the Hubble rate, when assuming the existence of both matter and

radiation components, takes the following form

H = Hs

√
κM
y3

+
1− κM
y4

, (4.129)

where κM is the matter fraction of the total energy density at ts. Note this κM is

defined differently from that in Eq. 4.46, which is defined at Tc. If the lifetime of

the sound waves is sufficiently long, we can neglect this difference.

Switching from the conformal time η to y in Eq. 4.8, the Einstein equation

109



becomes 8:

(κMy + 1− κM)
d2hq
dy2

+

[
5

2
κM +

2(1− κM)

y

]
dhq
dy

+ ˜̃q2
hq =

16πGa(y)2πTq (y)

(asHs)2
.(4.130)

Here ˜̃q ≡ q/(asHs), and characterizes the number of wavelengths contained

within a Hubble radius at ts. The Green’s function can be found by solving the

homogeneous version of this equation, together with a slightly modified boundary

conditions compared with Eq. 4.14:

G(y 6 y0) = 0,
∂G(y, y0)

∂y
|η̃=ỹ+0

=
1

κMy0 + 1− κM
. (4.131)

The solution to the homogeneous equation is a linear combination of the hyper-

geometric function and Bessel functions. For the case of radiation domination

κM � 1 and matter domination κM ≈ 1, the solutions take simpler forms that

can be expressed in terms of elementary functions. For RD, the equation becomes

simpler when expressed using the parameter ỹ, defined by

ỹ = y˜̃q = q(η − ηs) + ˜̃q = ∆η̃ + ˜̃q. (4.132)

Then the Einstein equation becomes

d2hq
dỹ2

+
2

ỹ

dhq
dỹ

+ hq =
16πGa(y)2πTq (y)

q2
. (4.133)

The corresponding Green’s function can be easily solved:

G(ỹ, ỹ0) =
ỹ0 sin(ỹ − ỹ0)

ỹ
. (4.134)

For MD, the wave equation can be similarly simplified with

ỹ = y˜̃q2
=

[
1

2
∆η̃ + ˜̃q]2

. (4.135)

8We are using a simplified notation for h and πT

110



Note this definition is different from that in the radiation dominated case. Then

the Einstein equation becomes

ỹ
d2hq
dỹ2

+
5

2

dhq
dỹ

+ hq =
16πGa(ỹ)2πTq (ỹ)

q2
. (4.136)

The homogeneous equation for hq can be transformed into the Bessel equation for

a different variable Z(λ) defined by hq = (λ/2)−3/2Z(λ) with λ = 2
√
ỹ:

λ2Z ′′(λ) + λZ ′(λ) +

[
λ2 −

(
3

2

)2
]
Z(λ) = 0. (4.137)

The two independent solutions are the first and second kind Bessel functions both

with order 3/2, which can all be expressed in elementary functions. Upon using

the boundary conditions, the Green’s function is found to be 9 :

G(ỹ, ỹ0) =
(λλ0 + 1) sin(λ− λ0)− (λ− λ0) cos(λ− λ0)

λ3/2
. (4.139)

Finally in both cases, the gravitational wave amplitude is given by

hij(ỹ,q) =

∫ ỹ

ỹs

dỹ′G(ỹ, ỹ′)
16πGa(ỹ′)2πTij(ỹ

′,q)

q2
. (4.140)

9Alternatively, one can express above Green’s functions using the conformal time. The
corresponding Green’s functions are defined to be zero for η 6 η0 and for η > η0,

G(η̃, η̃0) =

{
η̃0
η̃ sin(η̃ − η̃0), RD
η̃0
η̃3 [(η̃0 − η̃) cos(η̃ − η̃0) + (η̃0η̃ + 1) sin(η̃ − η̃0)] . MD

(4.138)

We note that there is a typo in the Green’s function for the matter dominated universe given in
Ref. [335], where instead of (η̃0 − η̃) cos(η̃ − η̃0), they have −(η̃0 − η̃) cos(η̃ − η̃0).
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4.5.2 Gravitational Wave Power Spectrum

The spectral density for h′, when using ỹ and the dimensionless stress energy

tensor correlator Π̃ defined in Eq. 4.27, becomes

Ph′ = [16πG
(
¯̃ε+ ¯̃p

)
Ū2
f ]2L3

f

∫ ỹ

ỹs

dỹ1

∫ ỹ

ỹs

dỹ2

(
∂ỹ

∂η̃

)2
∂G(ỹ, ỹ1)

∂ỹ

∂G(ỹ, ỹ2)

∂ỹ

× a8
s

a2(ỹ1)a2(ỹ2)

Π̃2(kLf , kη1, kη2)

k2
. (4.141)

From the explicit form of the Green’s functions derived earlier, we can see Ph′

has the correct behavior ∝ 1/a(ỹ)2 for the mode deep inside the horizon 10. The

dimensionless source correlator can be obtained from Eq. 4.25, 4.27, 4.126:

Π̃2 (kR∗c, βc |η1 − η2|) =
π

2

1

Ū4
f

∫
d3q̃Pv(q̃)Pv(˜̄q)(1− µ2)2

q̃˜̄q5

× cos

[
csq̃

βc(η1 − η2)

βcR∗c

]
cos

[
cs˜̄qβc(η1 − η2)

βcR∗c

]
.(4.142)

Here q̃ = qR∗c, a dimensionless quantity, and we use Lf = R∗c. In Fig. 4.13, we

show this auto-correlator of the source as a function of βc|η1 − η2|. We can see

the correlation is quickly lost as βc|η1 − η2| becomes larger than O(1). Since the

source correlator depends only on η1− η2, we can change the integration variables

from ỹ1,2 to a quantity proportional to (η1 − η2) and another independent linear

combination. For RD and MD, the relation between (η1 − η2) and y1,2 is given

from Eq. 4.132, 4.135:

βc(η1 − η2)

βcR∗c
=

1

R∗casHs


y1 − y2

2(
√
y1 −√y2)

, (4.143)

10For modes deep inside the horizon, ỹ � 1 and ỹ0 � 1. Then both Green’s functions take
a universal form a0

a sin(η̃ − η̃0). This implies that h′ ∝ 1/a, Ph′ ∝ 1/a2 and PGW ∝ 1/a4,
behaving like radiation which is true for massless gravitons.
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where the upper row applies to RD and lower one to MD. Then for RD, we can

make the following change of variables:
y1

y2

⇒


y1 − y2 ≡ y− ,

y1+y2
2
≡ y+ .

(4.144)

The integration range is 1 − 1
2
y− 6 y+ 6 y + 1

2
y− when 1 − y 6 y− 6 0, and

1 + 1
2
y− 6 y+ 6 y− 1

2
y− when 0 6 y− 6 y− 1. Similarly for MD, we can perform

the following transformations:
y1

y2

⇒


λ1 − λ2 ≡ y− ,

λ1+λ2
2
≡ y+ ,

(4.145)

where λi = 2
√
yi and the Jacobian is

√
y1y2. The range of integration is 2+ 1

2
y− 6

y+ 6 2
√
y− 1

2
y− when 0 6 y− 6 2(

√
y− 1) and 2− 1

2
y− 6 y+ 6 2

√
y+ 1

2
y− when

2(1−√y) 6 y− 6 0.

It turns out the relation y− � y+ generally holds, barring special parameter

space. This can be seen from Eq. 4.143 by noting that βcR∗c = (8π)1/3vw ≈ 3vw <

3, R∗casHs ∼ O(10−3) from Fig. 4.7, and thus y− ∼ O(10−3)/vw × βc(η1 − η2).

Except for extremely small vw, which gives highly suppressed gravitational waves,

we have y− � 1. On the contrary, y+ ∼ O(1). Then we have y− � y+. This

means in the integration over y+, we can keep the leading order in y−.

Now lets look in more detail at the integrand. For RD and MD, the factor

containing Green’s function can be written as

∂G(ỹ, ỹ1)

∂ỹ

∂G(ỹ, ỹ2)

∂ỹ
=


1
ỹ2

[
cR0 ỹ

0 + cR−1
1
ỹ

+ · · · ]
]

1
ỹ3

[
cM0 ỹ

0 + cM−1
1
ỹ

+ · · · ]
] ≡


1
ỹ2

1
ỹ3

× G2(ỹ, ỹ1, ỹ2).(4.146)
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Then

PGW(y, kR∗c) =
[16πG

(
¯̃ε+ ¯̃p

)
Ū2
f ]2

24π2H2H2
s

1

y4
(kR∗c)

3

×
∫
dy−Π̃2 (kR∗c, βc|η1 − η2|)

∫ dy+
G2(ỹ, ỹ1, ỹ2)˜̃

k
2


y−2

1 y−2
2

y
−3/2
1 y

−3/2
2


 .(4.147)

In the square bracket, y1,2 are understood to be functions of y± (note that ỹ is

defined differently for matter and radiation cases). The reason we associate a

factor of
˜̃
k
−2

with G2 is that G2 ∝ ˜̃k2

to a good approximation. For both RD and

MD, the integral over y+ leads to a result in the following form:

[∫
dy+ · · ·

]
=

1

2
Υ(y) cos

(˜̃
ky−

)
. (4.148)

The profile in a wide range of y is shown in Fig. 4.15. We can see Υ of RD is

slightly larger than MD. For both cases, Υ approaches an asymptotic value: 1 for

RD and 2/3 for MD, irrespective of how long the source lasts. This is due to the

dilution of the source over time, which makes the contribution from later time

increasingly suppressed. To have a better understanding of the behavior of Υ(y),

lets see how they can be obtained in a simpler analytical way.

First for RD, neglecting terms suppressed by (R∗casHs) or y−1, the dominant

contributions to the integrand of the power spectrum are

GRD
2 =

1

2y2
+

{
cos

[˜̃
ky−

]
+ cos

[
2
˜̃
k(y − y+)

]}
+ · · · . (4.149)

The second term is y− independent and is a highly oscillatory function of y+,

which averages to zero during the integration over y+ (see Fig. 4.14 for the non-

oscillatory and oscillatory contributions). On the other hand, the first term, a
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function of y−, when integrated, gives the dominant contribution:

ΥRD = 1− 1

y
. (4.150)

For y � 1, it approaches an asymptotic value of 1. Since this asymptotic value

can only be reached for a long enough source, a realistic phase transition might

not satisfy this. We will come to this point later.

Similarly for MD, we can perform analogous manipulations and keep only the

leading order and also non-oscillatory term:

GMD
2 =

8

y4
+

cos

[˜̃
ky−

]
+ · · · . (4.151)

Upon integration, it gives the dominant contribution:

ΥMD =
2

3

(
1− 1

y3/2

)
. (4.152)

For y � 1, it approaches the previously observed asymptotic value of 2/3. Thus

barring other differences for RD and MD, the different expansion behaviors lead

to a suppression of gravitational wave spectrum for MD, when compared with

RD.

With Υ(y) obtained, the power spectrum as a function of y can be written in

the following form

PGW(y, kR∗c) =
[16πG

(
¯̃ε+ ¯̃p

)
Ū2
f ]2

48π2H2H2
s

1

y4
(kR∗c)

3

×
[∫

dy− cos

(˜̃
ky−

)
Π̃2 (kR∗c, βc|η1 − η2|)

]
×Υ(y). (4.153)

Here note that using Eq. 4.143, we have
˜̃
ky− = k(η1 − η2). The integral over y−

is obtained by plugging the explicit expression of Π̃, which results in a three-fold
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integral. The integration of y− over the three trigonometric functions result in a

δ function, and makes the angle integration of q̃ in Eq. 4.142 trivial. We are left

eventually with a one fold integral over the magnitude of q̃, and the spectrum can

be put in the following standard form:

PGW(y, kR∗c) = 3Γ2 Ū4
f

H4
R,s

H2Hs

(asR∗c)
(kR∗c)

3

2π2
P̃gw(kR∗)×

1

y4
Υ(y),(4.154)

where Γ = ¯̃w/¯̃e ≈ 4/3, HR,s is defined to contain only the radiation energy density

at ts: HR,s = Hs

√
1− κM , and the integral is hidden inside P̃gw(kR∗):

P̃GW(kR∗) =
1

4πcskR∗

(
1− c2

s

c2
s

)2 ∫ z+

z−

dz

z

(z − z+)2(z − z−)2

z+ + z− − z
P̄v(z)P̄v(z+ + z− − z). (4.155)

Here z = qR∗c, z± = 1
2
kR∗c
cs

(1 ± cs) and P̄v(z) = π2

Ū2
f

Pv(z)
z3

. Using Eq. 4.127, the

explicit expression for P̄v is

P̄v(z) =
1

64π2v6
w

1

Ū2
f

∫
dT̃ T̃ 6ν(T̃ )

∣∣∣∣∣A
(

zT̃

(8π)1/3vw

)∣∣∣∣∣
2

. (4.156)

Plugging in the explicit expressions of H and HR,s, we have

PGW(y, kR∗c) = 3Γ2 Ū4
f (HsasR∗c)

(kR∗c)
3

2π2
P̃gw(kR∗)×


1

(1−κM )2

κMy+1−κM

×Υ(y).(4.157)

For both RD and MD, the shape of the spectra are the same to a good approx-

imation, and are the same as that derived in the sound shell model and thus

the properties of its shape [3] apply here for both cases. In particular, the peak

frequency of the spectrum is located at around kR∗c ≈ 10. This mean a larger or

smaller R∗ can red or blue shift the spectrum respectively. For example, as shown

in Fig. 4.7, increasing vw reduces R∗c and thus blue-shift the spectrum. For MD,

it has a larger R∗ and thus red-shift the spectrum.
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For RD, we recover the result found in Ref. [68], as long as Υ(y) = 1, which is

only true for y � 1. The reason only this asymptotic value is obtained in Ref. [68]

is due to the over-simplifying assumptions used (see Appendix B), in which case

the second terms in both Eq. 4.150 and 4.152 are missing. Whether or not the

asymptotic values can be reached depends on how long the source remains active,

and we continue in the next section on this question.

4.5.3 Lifetime of the Source

As we saw earlier, the presence of an asymptotic value for Υ for large y in both

cases is due to the dilution of the source energy density. This asymptotic value

was used in Ref. [68] to reach the conclusion that for RD the effective lifetime of

the source is a Hubble time H−1
s for RD, i.e., τsw = 1/Hs, which as we have seen

is only true if Υ = 1 for y � 1. The question is, however, whether this asymptotic

value can be reached in a realistic time frame. In Fig. 4.17, we show the time

elapsed since the reference time ts, in unit of the Hubble time H−1
s . For RD,

t− ts
1/Hs

=
y2 − 1

2
, (4.158)

and for MD

t− ts
1/Hs

=
2

3
(y3/2 − 1). (4.159)

At about a Hubble time, Υ ≈ 0.4 for both RD and MD, which is less than a

half of the asymptotic value for RD and 60% for MD. We need many Hubble

times for Υ to approach the asymptotic value. The problem is certain physical

processes might prohibit the sound waves from being active for such a long time,

117



and thus the asymptotic value might never be reached. One such process is the

possible formation of shocks and turbulence. Another is the existence of possible

dissipative processes, whose presence damps the sound waves. If either of these

processes quenches the sound waves, the asymptotic value will not be achieved.

In this case, the effective lifetime is shorter than the Hubble time for RD, and

the result obtained with an effective lifetime of a Hubble time overestimates the

gravitational wave production. The time scale for turbulence is roughly [353, 69]

τsw ∼
Lf
Ūf
∼ R∗
Ūf
. (4.160)

Therefore

τsw

1/Hs

∼ HsR∗
Ūf

. (4.161)

As we have seen in Fig. 4.7, HsRs ∼ 10−3 and different expansion histories lead to

larger or smaller values. To delay the appearance of turbulence and thus approach

the asymptotic value of Υ thus requires smaller fluid velocity Ūf or larger bubble

separation. While HsR∗ depends on specific expansion behavior adopted, the

value of Ūf is more or less universal, and its value is shown in Fig. 4.18 on the

plane of (vw, α). We show here two versions of it obtained using two different

methods: one by solving the velocity profile around a single bubble and the

other by integrating over the velocity power spectrum (see Ref. [3] for details).

Thus whether or not above ratio becomes large enough depends on the details

of the phase transition in a given cosmological context. Even in cases where the

turbulence is delayed or not present, i.e., for sufficiently strong or weak phase

transitions respectively, the damping of the sound waves caused by some weak
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processes could still shorten the lifetime in the form of shear viscosity [68]. It

seem unlikely for any scenario to be very close to the asymptotic value.

4.5.4 Spectrum Today

We will mainly consider the case of RD as it is the most frequently encountered

scenario. Denote the temperature after the gravitational wave production as Te

with the scale factor being ae. The amount of redshifting is described by the

scale factor ratio ae/a0. For radiation in thermal equilibrium and in adiabatic

expansion, the relation between ae and a0 is governed by entropy conservation:

gs(Te)a
3
eT

3
e = gs(Tγ0)a3

0T
3
γ0, (4.162)

where gs is the relativistic degrees of freedom for entropy; Tγ0 is the temperature

of the CMB photon with Tγ0 ≈ 2.73K. At the present time, the relativistic species

includes photons and decoupled neutrinos, thus gs = 2 + 7
8
× 2Neff( 4

11
)3/3 ≈ 3.94

for Neff = 3.046. Using these, the ratio of the scale factor can be put into the

following form:

ae
a0

= 1.65× 10−5

(
gs(Te)

100

)1/6(
Te

100GeV

)(
1Hz

He

)
. (4.163)

For the peak frequency at kR∗ = zp
11 where zp ≈ 10 [69], the frequency at te is

fp =
zp

2πR∗(te)
, (4.164)

where R∗(te) is evaluated at the end of the gravitational wave production and note

all previously generated gravitational waves at higer frequencies at kR∗c = zp have

11We use a notation where k in kR∗ is physical wavenumber, and k in kR∗c is a comoving
wavenumber.
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all redshifted to the frequency produced at te. Then the corresponding frequency

today is

fSW = 2.65× 10−5Hz

(
gs(Te)

100

)1/6(
Te

100GeV

)( zp
10

)( 1

HeR∗(te)

)
. (4.165)

We can express R∗ by β(vw) using Eq. 4.77, so that,

1

HeR∗(te)
= (8π)−1/3a(tf )

a(te)

1

vw

β(vw)

He

= (8π)−1/3 1

vw

β(vw)

He

× 1

y
. (4.166)

Here we neglect the very small difference between tf , the time when all the bubbles

have disappeared and ts, and we have shown explicitly the dependence of β on

vw. Also note β is evaluated at tf when I(tf) = 1. The factor y−1 is significant

when the lifetime of the source is long. Then the present peak frequency becomes

fSW = 8.97× 10−6Hz
1

vw

(
gs(Te)

100

)1/6(
Te

100GeV

)( zp
10

)[β(vw)/y

He

]
. (4.167)

For the energy fraction of gravitational waves, the dilution of gravitational waves

leads to the following connection:

h2ΩGW(t0, f) = h2

(
ae
a0

)4(
He

H0

)2

ΩGW(te, a0f/ae),

= 1.66× 10−5

(
100

gs(Te)

)1/3

ΩGW(te, a0f/ae). (4.168)

Here h ≈ 0.673, the Hubble parameter today in unit of 100km/s/Mpc. Then

plugging the explicit expression for PGW in Eq. 4.157, we have

h2ΩGW(f) = 4.98× 10−5

(
100

gs(Te)

)1/3

Γ2Ū4
f [HsR∗(ts)]A SSW(f)Υ(y). (4.169)

Here we have defined ASSW(f) to be (kR∗)
3P̃gw(kR∗)/(2π

2) with appropriate

redshifting factors included. One can either use the prediction from the sound
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shell model to determine ASSW(f), or use result from numerical simulations [69].

We choose the latter as it should give a more accurate result, in which case

A ≈ 0.058 and [26]

SSW(f) =

(
f

fSW

)3 [
7

4 + 3(f/fSW)2

]7/2

. (4.170)

For the term HsR∗(ts), similar to Eq. 4.166, we can write

HsR∗(ts) = (8π)1/3vw
Hs

β(vw)
. (4.171)

Therefore the final spectrum is 12

h2ΩGW(f) = 8.5× 10−6

(
100

gs(Te)

)1/3

Γ2Ū4
f

[
Hs

β(vw)

]
vwSSW(f)×Υ(y). (4.172)

For a long lifetime of the source, the main changes are the suppression factor

Υ(y). In Fig. 4.19, we show the spectra for several choices of H∗∆t, with zp = 10

(see caption for more details).

For MD, apparently the extra dominant matter content will decay to radiation

at some time later, which will inject entropy to the standard radiation sector.

This can be studied using two methods. In the first method, one can assume

a very quick and thus instantaneous decay of the matter, which then allows to

use energy conservation to get the new heated radiation temperature. In the

second method, a more precise account of the matter decay is provided, with

12Note current simulations only probe relatively weak transitions and this spectrum might
not be applicable for strong transitions α ∼ 1. As shown in a recent simulation [5], a deficit in
the gravitational wave production has been found for such strong transitions. This reduction is
more severe for small vw, and of course a large α, and would require extremely strong couplings
to the plasma which might be a rare case. We also note that a large α, such as the region when
α > 1 in Fig. 4.18, might leads to a temporary inflationary stage with exponential expansion
(see e.g., [282]) and contradicts the assumed radiation domination for this spectrum. In this
case, one should use the corresponding Green’s function and follow previous steps in deriving
this spectrum.
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the conclusion that there is no heating up of the radiation but one gets a slower

cooling of the radiation, as was firstly pointed out in Ref. [343]. Therefore one

needs to follow more closely the entropy evolution by taking into account finite

matter decay width, following the procedure of Ref. [343] or a more closely related

example studied in Ref. [336]. This however introduces extra model dependent

varieties and is beyond the scope of this work.

4.6 Summary

We studied in detail the cosmological first order phase transition and the calculation

of resulting stochastic gravitational waves in an expanding universe, with radiation

and matter dominated universe as two representative examples. Firstly we studied

the changes to process of bubble formation and collision, including important

observables such as the mean bubble separation and its relation with β. We also

derived the unbroken bubble wall area, the bubble conformal lifetime distribution

which are needed for the calculation of the gravitational wave spectrum. We then

derived the full set of differential equations as used in numerical simulations in an

expanding universe. We found that simple rescalings work such that the equations

governing the velocity profile around a single bubble maintains the same form as

in Minkowski spacetime in the bag model and that the velocity profile remains the

same when appropriate substitution of variables are used. We then generalized

the sound shell model to the expanding universe and derived the velocity power

spectrum. This result is used to derive analytically the gravitational wave power
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spectrum from the sound waves, the dominant source. We found that the standard

formula of the spectrum needs to include an additional suppression factor Υ, which

is a function of the lifetime of the source. For radiation domination, the asymptotic

value of Υ is 1 when the lifetime of the source is very long, and corresponds to the

usually adopted spectrum in the literature. This asymptotic value however can

not be reached as the onset of shocks and turbulence may disrupt the sound waves

and possible dissipative processes may further damp it. Therefore an additional

suppression factor needs to be taken into account when using the gravitational

wave spectrum from sound waves and we provided simple analytical expression

for Υ.
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Figure 4.3: The false vacuum fraction as defined Eq. 4.40 for different

fractions of matter energy density at Tc (κM = 0, 0.9, defined in

Eq. 4.45) and for several bubble wall velocities (vw = 0.3, 0.7, 0.9).

The case of κM = 0 corresponds to a radiation dominated universe

and κM = 0.9 for matter domination. The horizontal line at g = 0.7

is roughly the time when the bubbles percolate.
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Figure 4.4: The dimensionless comoving uncollided bubble wall area

as defined in Eq. 4.49 and Eq. 4.68 for different values of κM (defined

in Eq. 4.45) and vw.
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Figure 4.5: Illustration for the calculation of the bubble lifetime

distribution. At t′, there is a central blue blob composed of two

already collided bubbles depicting a region of true vacuum space

which is expanding into the surrounding false vacuum space, and

also a small red nucleus denoting a bubble starting to form. At this

time, the comoving distance between the red dot and the nearest blue

boundary is r. At tfc, the walls of the blue blob and the fledged red

bubble advance to the place denoted by blue and red dashed circles

respectively, where they make the first contact. At t, they reach the

place denoted by the solid blue and red circles, where half of the red

bubble is devoured by the blue one, and the red bubble is defined to

be destroyed with a final radius r.
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Figure 4.6: The number of bubbles (see Eq. 4.60) per m3(left) and

per Hubble volume(right) as a function of temperature for difference

fractions of non-relativistic matter content at the critical temperature

κM (defined in Eq. 4.45) and for different bubble wall velocities vw.
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Figure 4.7: Mean bubble separation R∗ (defined in Eq. 4.62) for

different fractions of the non-relativistic matter content at the critical

temperature κM and for different bubble wall velocities vw. The left

panel is in unit of meter and the right in unit of Hubble radius.
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Figure 4.8: The left panel shows the mean bubble separation R∗

immediately after all the bubbles have disappeared versus bubble wall

velocity vw for κM = 0 and κM = 0.9. The right panel shows β(vw)

calculated using Eq. 4.34 at tf , as compared with that calculated from

R∗ using Eq. 4.77 for κM = 0. The dotted line shows these differ by

roughly 2%. For κM = 0.9, it shows similar behavior.
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Figure 4.9: Representative velocity profiles surrounding the bubble walls.
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Figure 4.10: The real (blue dotted), imaginary (red dashed) parts and

absolute value (magenta solid) of A(z) (defined below Eq. 4.112) for

vw = 0.92 and α = 0.0046.
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Figure 4.11: The dimensionless bubble lifetime distribution ν(βcη)

defined in Eq. 4.122 and more explicitly in Eq. 4.124. All previously

used choices of κ, vw give the same blue line. The gray dashed line is

the analytically derived result e−βtlt in Ref. [3].
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Figure 4.12: Representative velocity power spectrum calculated in

the sound shell model for a weak phase transition with α = 0.0046

and vw = 0.92. The bubbles are assumed to nucleate exponentially.

The low and high frequency regimes follow the k5 and k−1 power law

fits respectively (black solid lines). See Ref. [3] for more details of its

properties.
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Figure 4.13: Autocorrelation of the source for kR∗c = 10, calculated

with the explicit expression in Eq. 4.142.
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Figure 4.14: The integrand of y+ integration, with y = 3. Left is RD

and right is MD. The blue is the dominant non-oscillatory part, the

magenta dashed is the oscillatory part(kR∗c chosen to be 0.04) and

the dark green is the total contribution.
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Figure 4.15: The function Υ for radiation domination(blue solid) and

matter domination(magenta dashed).
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Figure 4.16: The dimensionless gravitational wave power spectrum

computed in the sound shell model. The calculation was performed for

a weak phase transition with α = 0.0046, vw = 0.92, and exponential

bubble nucleation. The low and high frequency regimes follow the k9

and k−1 power law fits respectively (black solid lines). See Ref. [3] for

more details of its properties.
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Figure 4.17: Time elapsed since ts in unit of Hubble time H−1
s at t∗.
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Figure 4.18: Ūf on the plane of (vw, α). The left figure is Ūf of the fluid

around a single bubble. The right figure is Ūf of the fluid calculated

from the velocity power spectrum.
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Figure 4.19: The present day gravitational wave energy density spectra

for H∗∆t = 0.5, 1 and for H∗∆t � 1 when it takes the asymptotic

form. Here ∆t = t − ts and is the time elapsed since ts, the time

when the source becomes active. In all three cases, vw = 0.3, α = 0.1,

Te = 100GeV and β/(yH∗) = 100. The shaded regions at the top

are experimental sensitive regions for several proposed space-based

detectors.
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Chapter 5

Benefits of Diligence

5.1 Introduction

Any strong first order transition produces three contributions to a stochastic

background [26, 27, 10]. It is generally accepted that the acoustic contribution

dominates over bubble collisions and turbulence, therefore this is what we will

focus on here [67, 71, 69]. The acoustic contribution has been studied both in

simulations and a combination of analytic and numerical techniques and there

has been much recent progress.

Given the enormous opportunity to shed light on both cosmology and particle

physics, it is worth examining in detail the theoretical underpinnings of any given

model in order to enumerate both theoretical uncertainties in basic methods and

the degree of benefit in more accurate calculations or, equivalently the cost of

various approximations. Approximations can arise in two steps in predicting an

observable from a given model as shown in Fig. 5.1. First the calculation of

macroscopic thermal parameters, including the latent heat and the time scale

of the transition, are often calculated using perturbative techniques which can

introduce large errors [354] in particular when long wavelength modes are not

resummed carefully enough [355, 356, 4, 357].1 The second step, which we focus

on in this paper, converts macroscopic thermal parameters into a prediction for

1Other important problems in common calculations are gauge dependence [248] and the
inhomogeneous background [358, 359].
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the spectrum - in particular the peak frequency and amplitude. Ultimately, both

steps will likely require simulations to truly perform precision cosmology on a

future hypothetical observation.2 However, this is impractical for the analysis

of large numbers of parameter sets for large numbers of models. We therefore

examine several layers of improvement in the prediction of the peak amplitude

that have recently arisen in several models involving physics beyond the standard

model

• The finite lifetime of the source first estimated in Ref. [282] and derived in

the sound shell model in an expanding background in Ref. [361].

• Going beyond the bag model approximation in solving the hydrodynamic

equations [362, 363].

• Calculating the mean bubble separation from the evolution of the bubble

number density.

• Calculating the fraction of energy in the fluid from solving the hydrodynamic

equations rather than using a fit [5].

• Including fits for the energy lost to vorticity modes [5].

In this paper we will enumerate the error in a number of models in order

to get a broad understanding of the numerical importance of diligence. This

avoids model-specific effects where accidental cancellations between different

2Infrared divergences of the dynamical mode for instance remain even after NLO resummation.
As a result perturbation theory even at two loops disagrees substantially with montecarlo
simulations very close to the critical temperature [360].
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ℒ Macroscopic

Thermal parameters

Thermal evolution of the 
effective potential Observables

Figure 5.1: The uncertainty in linking a particular model with a set

of observables is conceptually presented above. The break down of

perturbation theory at finite temperature is the dominant error in the

prediction of the evolution of the effective potential and ultimately

non-perturbative methods might be required to predict macroscopic

thermal parameters. The macroscopic thermal parameters of interest

are often taken to be the latent heat, the time scale of the transition

(usually approximated), the bubble wall velocity and the temperature

of percolation, but if one desires to have an accurate prediction one

needs the fluid velocity, the wall velocity, the mean bubble separation,

the percolation temperature and the lifetime of the acoustic source

(see also Fig. 1 of [4]).
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improvements could in principle occur. The models we consider include a toy

model introduced for pedagogical purposes, the Standard Model Effective Field

Theory (SMEFT), a dark sector Higgs and a real scalar singlet extension (xSM)

of the Standard Model. For the benefit of the reader, a demonstration of the

importance of diligence is provided at the outset in Fig. 5.2. Here, the relative

error in the predicted peak amplitude is shown for SMEFT, the dark sector Higgs

model (which we label throughout as “Dark RG”) and xSM. Our paper will be

devoted to fully explaining Fig. 5.2; for now, we provide a feel for the comparative

importance of these errors. For the Dark RG, for example, the relative error

is far more manageable than what it is for SMEFT. However, even for that

model, the relative error is larger3 than the error from gauge dependence that is

introduced in SMEFT in some commonly used methods. Thus, even this case,

which may present an unrealistically optimistic picture, still motivates diligence

in the calculation.

The structure of this paper is as follows. In Section 5.2 we outline three

methods of various levels of diligence that we find used in the literature, including

a level of diligence motivated by its use in the recent review [10]. In Section 5.3

we define the models we will use to demonstrate increasing levels of diligence, and

in Section 5.4 we will present our results. We will end with our Conclusion.

3up to the caveat that the gauge parameter is varied by an amount allowed by perturbativity
considerations.
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Figure 5.2: The relative error when using the lowest and modest levels

of diligence, compared to the highest level of diligence (for which

∆Ω/Ω = 0). The vertical axis shows the peak (frequency-independent)

gravitational wave energy density for detonation. The precise definition

of ∆Ω/Ω is given in Eq. 5.62. The horizontal axis corresponds to the

final temperature Tf when the phase transition ends. Three models are

shown: SMEFT, a dark sector Higgs model (Dark RG) and the singlet-

extended Standard Model (xSM). The figures employ calculations

from Eq. (5.7, 5.15, 5.37) and Eq. 5.62. The temperatures are set to

Tn (5.4), Tp (5.11), and Tf (4.70) for the lowest, modest, and highest

diligence respectively. Both the modest and highest diligence contain

suppression factors due to the lifetime of the source. The highest

diligence contains the suppression factor due to vorticity effects in the

plasma.
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5.2 Phase Transition Dynamics

Gravitational waves produced from first order phase transitions is a finite tem-

perature tunneling process, from some false vacuum to the true vacuum. When

calculating this transition with perturbation theory, one needs to track the minima

of the effective potential from the temperature at which the energy in each vacuum

is degenerate - that is the critical temperature. Below the critical temperature,

bubbles of the true phase begin to form at some critical radius where the pressure

is strong enough to cause expansion. The probability of such bubbles forming

increases as the Universe cools, until the nucleation temperature at which there is

an average of one bubble per Hubble volume. Slightly below this temperature

is the percolation temperature at which bubble collisions are occurring and the

final temperature when the phase transition ends. There are simple analytical

expressions for these temperature scales which are the result of approximations

used in the equations. However, the gravitational wave spectrum is sensitive to

the level of diligence that goes into the computations and reducing the error is

paramount to probing phase transitions at future gravitational wave detectors. We

will now proceed to analyze the different level of diligence used in the literature.

5.2.1 Lowest diligence

Here we will describe the level of lowest diligence in computing the gravitational

wave spectrum. At this stage, we will only introduce the various parameter

definitions and wait until the highest diligence section for a more in depth look at
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the numerical procedure. This level will involve computing all relevant parameters

at the nucleation temperature.

The tunneling rate per unit time per unit volume will have the general form

p(T ) = p̄0T
4e−S3/T , (5.1)

where p̄0 is a dimensionless number that we will assume is O(1) and S3 can be

found by solving the bounce solutions that minimize the action given by

S3(~φ, T ) = 4π

∫
drr2

1

2

(
d~φ(t)

dr

)2

+ Veff(~φ, T )

 . (5.2)

The nucleation temperature is defined as the temperature at which the probability

of a single bubble being nucleated within a Hubble volume is O(1):∫ tn

0

pVH(t)dt =

∫ ∞
Tn

dT

T

(
2ξMpl

T

)4

exp−S3/T ∼ O(1), (5.3)

where Mpl is the Planck mass, ξ ∼ 3 × 10−2, and VH(t) is the horizon volume.

This equation will lead to the simple definition of the nucleation temperature

[245, 281, 364, 10]

S3(Tn)

Tn
≈ 140. (5.4)

It is important to note that the above calculation assumes that the phase transition

occurs in a radiation dominated era which is not guaranteed.

The strength of the gravitational wave spectrum will depend on hydrodynamic

parameters such as the amount of vacuum energy released during the phase

transitions, the inverse time duration of the phase transition, and the fraction

of latent heat that goes into the bulk motion of the plasma (referred to as the

kinetic efficiency coefficient). We discuss each of these quantities in turn.
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The strength of the phase transition is characterized as

α(Tn) =
1

ρrad

(
∆Veff −

1

4

d∆Veff

dT

)∣∣∣∣
Tn

, (5.5)

where Veff is the finite temperature effective potential and the symbol ∆ signifies

the difference in the symmetric phase (false vacuum) and the broken phase (true

vacuum). The energy density of radiation is given by ρrad = π2/30 g∗T
4
n where g∗

is the number of effective degrees of freedom at Tn.

The inverse time duration of the phase transition evaluated at the nucleation

temperature can be approximated as

β = HnTn
d(S3/T )

dT
, (5.6)

where H2
n = 8πGρrad(Tn)/3 is the Hubble parameter at the nucleation temperature.

A smaller β/H and larger α will result in stronger gravitational waves.

The gravitational wave spectrum observed today has a simple broken power

law fit [69] in terms of the aforementioned parameters given by

h2ΩGW(f) = 8.5× 10−6

(
100

gn

)1/3(
κα

1 + α

)2(
Hn

β

)
vwSSW(f), (5.7)

where gn is the number of degrees of freedom at the nucleation temperature and κ

is the efficiency coefficient that represents the fraction of the bulk kinetic energy

in the plasma relative to the available vacuum energy. The numerical fits for

the kinetic efficiency coefficient, κ, were derived in [70] for the different velocity

profile types which we give in Appendix C. The spectral shape, SSW, and the

peak frequency, fSW are given by

SSW(f) =

(
f

fSW

)3 [
7

4 + 3(f/fSW)2

]7/2

, (5.8)
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fSW = 1.9× 10−5 1

vw

(
β

Hn

)(
Tn

100 GeV

)( gn
100

)1/6

Hz. (5.9)

The gravitational wave spectrum may be rewritten in terms of the R.M.S velocity,

U2
f = 3

4
κα, with the replacement

(
κα

1 + α

)
→ ΓU2

f , (5.10)

where Γ ∼ 3/4 is the adiabatic index which is defined as the ratio of the enthalpy

and energy density in the symmetric phase. The term in the denominator on the

left hand side, (1 + α), is the result of the energy density in the symmetric phase.

5.2.2 Moderate diligence

The level of modest diligence is the approach most frequently used in the recent

literature (including the recent LISA review [10]). It closely resembles the lowest

diligence with the exception that the thermal parameters are defined at the

percolation temperature rather than the nucleation temperature and the finite

lifetime of the source is taken into account with an ansatz correction to the peak

amplitude. The percolation temperature is here approximated by solving the

equation

S3(Tp)

Tp
= 131− log(A/T 4)− 4 log

(
T

100 GeV

)
− 4 log

(
β(T )/H

100

)
+ 3 log(vw),

(5.11)

where log(A/T 4) ∼ 14 for an electroweak phase transition. Note that the derivative

of the left hand side in Eq. 5.11 appears on the right hand side, as can be seen from

Eq. 5.6. The percolation temperature is always below the nucleation temperature
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and hence closer to the final temperature when the phase transition ends. This

makes using the percolation temperature a better approximation to estimate the

thermal parameters. However, if the percolation temperature is significantly far

away from the nucleation temperature, one should check if the phase transition

can even reach completion at all for cases of strong supercooling, since the universe

may become vacuum dominated. The strength of the phase transition and the

inverse time duration of the phase transition take on the same form as in Eq 5.5-5.6

but with the replacement Tn → Tp such that

α(Tp) =
1

ρrad

(
∆Veff −

1

4

d∆Veff

dT

)∣∣∣∣
Tp

, (5.12)

and

β = HpTp
d(S3/T )

dT
, (5.13)

where Hp is now the value of the Hubble parameter at the percolation temperature.

The gravitational wave spectrum in Eq. 5.7 assumed that the lifetime of the

source is approximately one Hubble time, Hτsw = 1 [365]. It was later pointed

out in [42], that a better approximation to the lifetime of the source is

tsw = min

[
1

Hp

,
R∗
Uf

]
, (5.14)

where R∗ is the mean bubble separation and Uf is the root mean squared velocity

defined at α(Tp). The mean bubble separation is related to the inverse time

duration using R∗ = (8π)1/3vw/β. We then take into account the finite lifetime of

the source in the gravitational wave spectrum through

Ωsw → ΩswtswH, (5.15)
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and calculate all temperature dependent quantities at the percolation temperature

Tp defined in Eq. 5.11.

5.2.3 High diligence

The highest diligence with which one can calculate the gravitational wave spectrum

involves a number of improvements to the predictions of the peak frequency and

amplitude:

1 Improving on the bag model approximation for the fluid velocity and fraction

of energy that is in gravitational waves;

2 Calculating the fluid velocity and efficiency from solving the hydrodynamic

equations rather than using fits (related to the first);

3 Calculating the mean bubble separation from the number density of the

bubbles;

4 Taking into account the finite lifetime of the soundwave source, derived in

an expanding universe [361];

5 Calculating the suppression due to reheated droplets creating friction that

slows collisions.

Note that Ref. [366] used the bag model in their simulations, so we assume that

the suppression factor arising from kinetic energy lost in the fluid is independent

of the change in the amplitude from improving on the bag model. Also in the

last case, and only the last case, we use fits to estimate this degree of suppression
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as it relies on a full numerical simulation - methods to approximate this effect

we leave to future work. In this section we outline in detail each of the other

improvements.

The free energy density f of a model with g∗ degrees of freedom consists of

a zero temperature scalar potential and a thermal potential that involves the

summation over all relativistic species that interact with the scalar φ. In the

Standard Model, this involves the standard electroweak Higgs field and degrees of

freedom gSM = 106.75. The free energy density gives

f = V0(φ) + T 4

[∑
B

JB

(
MB

T

)
+
∑
F

JF

(
MF

T

)]
, (5.16)

where the summations run over all relativistic bosons B and fermions F at

temperature T . In the high temperature expansion, the free energy density can

be written as

f = −1

3

π2

30
g∗T

4 + VT (φ), (5.17)

where VT (φ) is the thermal effective Higgs potential and we explicitly separate out

the scalar independent terms that go as T 4. The hydrodynamics of the plasma

can be described as a perfect fluid in terms of the energy density e, pressure p,

and enthalpy ω. These thermodynamic quantities can be explicitly calculated

from the free energy density through the relation p = −f(φ, T ) for the pressure.

The energy density and enthalpy are then related to the pressure through

e = T
∂p

∂T
− p, ω = e+ p = T

∂p

∂T
. (5.18)

These quantities together, along with the velocity of the fluid v, will give the
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energy momentum tensor of the plasma

T µν = uµuνω + gµνp, (5.19)

where gµν is the inverse Minkowski spacetime metric and uµ(v) is the four velocity

of the fluid.

During the period of gravitational wave production, bubbles of the new phase

will collide and generate sound waves in the perturbed plasma. The velocity profile

around a single bubble is determined by the hydrodynamic quantities and the

junction conditions across the bubble wall. We will denote the broken phase inside

the bubbles by subscripts ”b,−” and the symmetric phase outside the bubbles

as ”s,+”. The signs ”−,+” are used to describe quantities behind and in front

of the bubble wall. The continuity equations ∂µT
µν = 0 can be integrated in the

wall frame across the bubble wall to give the junction conditions

v+

v−
= eb(T−)+ps(T+)

es(T+)+pb(T−)
, (5.20)

v+v− = ps(T+)−pb(T−)
es(T+)−eb(T−)

, (5.21)

where v± and T± corresponds to the velocity and temperature of the fluid behind

and in front of the bubble wall. We may assume that T+ ≈ T− and expand

the thermodynamic quantities about the symmetric phase so that the ratio of

velocities about the junction give

v+

v−
'

(
v+v−/c

2
s,b − 1

)
+ 3αθ̄+(

v+v−/c2
s,b − 1

)
+ 3v+v−αθ̄+

, (5.22)

where cs,b is the speed of sound in the broken phase and αθ̄+ is the phase transition

strength [363]. The speed of sound can be calculated in both the symmetric and
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broken phase and is defined in terms of the pressure as

c2
s =

dp/dT

de/dT
=

p′(T )

Tp′′(T )
, (5.23)

where (...)′ denotes derivatives with respect to temperature. In terms of the

free energy density, the pressure in the symmetric phase is φ independent with

ps = −f(0, T ) and the pressure in the broken phase is pb = −f(φmin, T ) which

is evaluated at true vacuum φmin. It is important to keep every term in the free

energy density when calculating the speed of sound in order to properly account

for the full temperature dependence of the model. This includes keeping all light

degrees of freedom that do not acquire field dependent masses that affect the

Higgs effective potential. The new phase transition strength parameter αθ̄+ is

dependent on the speed of sound in the broken phase and has a similar form to

the bag parameter built up from the trace anomaly,

αθ̄+ =
θ̄s(T+)− θ̄b(T+)

3ωs(T+)
, with θ̄ = e− p/c2

s (5.24)

[363]. Going back to the free energy density, we can define the phase transition

strength as a function of temperature

αθ̄(T ) =
1

3ωs

(
(1 + c−2

s )∆VT − T
d∆VT
dT

)
, (5.25)

where VT is the Higgs effective potential defined in Eq. 5.16-5.17 and ∆ denotes

the difference between the symmetric and broken phase. The phase transition

strength has the same form as the bag model αθ defined in Eq. 5.5 when c2
s = 1/3

and ωs = 4/3ρrad. The junction conditions to obtain v± will serve as boundary

conditions for solving the velocity profile obtained from projecting the continuity
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equations into the parallel and perpendicular motions of the fluid flow. The

hydrodynamic equations become

(ξ − v)∂ξe = ω

[
2
v

ξ
+ γ2(1− ξv)∂ξv

]
, (5.26)

(1− vξ)∂ξp = ωγ2(ξ − v)∂ξv, (5.27)

where ξ = R/t is a self similar coordinate defined as the ratio between the distance

to the bubble center and the time since nucleation. These hydrodynamic equations

may be combined to give the enthalpy profile and the velocity profile:

2
v

ξ
= γ2(1− vξ)

[
µ2

c2s
− 1
]
∂ξv, (5.28)

∂ξω = ω
(

1 + 1
c2s

)
γ2µ(ξ, v)∂ξv, (5.29)

where ∂ξ = ∂ξe + ∂ξp and c2
s = dp/de are used to connect the equations. The

Lorentz boost transformation used in the equations is defined in terms of the self

similar coordinate µ(ξ, v) = (ξ − v) / (1− ξv). In detonations, the fluid velocity

ahead of the bubble wall is always zero so that the hydrodynamic profiles are

independent of the speed of sound in the symmetric phase. Deflagrations have a

non-zero bubble wall velocity ahead of the bubble wall and the equations will then

depend on the speed of sound in the symmetric phase. Both profile types will

always depend on the speed of sound in the broken phase through the junction

conditions. In detonation, it is sufficient to use αθ̄+ = αθ̄(T ) with T usually taken

as the nucleation temperature or the percolation temperature. Deflagrations and

hybrid modes take αθ̄ as input and require a shooting method by varying αθ̄ until

αθ̄ is reached far away from the bubble.
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The quantity of interest for the peak gravitational wave energy density is the

kinetic energy fraction K which can be solved by the hydrodynamic equations:

K =
ρfl
es
, (5.30)

where ρfl = 3/v3
w

∫
dξξ2v2γ2ω is the fluid’s kinetic energy. We use the publicly

available code in [363] to numerically compute the kinetic energy efficiency κθ̄ for

a given set of c2
s and αθ̄ when comparing to calculations in the bag model. The

kinetic energy fraction is related to the efficiency parameter through

K =

(
θ̄s − θ̄b

4es

)
κ
(
αθ̄, c

2
s,s, c

2
s,b

)
, (5.31)

where

κ =
4ρfl

3αθ̄ωs
(5.32)

[363]. The quantities cs,s, cs,b, es,ωs, αθ̄, and κ in determining the kinetic energy

fraction K are all calculated at the final temperature Tf when the phase transition

ends. The enthalpy-weight root-mean-square fluid velocity around a single bubble

may be found from the kinetic energy fraction,

Ū2
f =

es
ωs
K, (5.33)

which is evaluated at Tf .

The first numerical simulations of strong first order phase transitions for α & 0.1

were undertaken in [5] which showed that previous results overestimated the

gravitational wave energy density. The rotational component of the fluid velocity,

particularly for deflagrations, increases in relative size as the transition strength
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Figure 5.3: Suppression factor with respect to the strength of the

phase transition due to vorticity and reheating effects in the plasma.

Ω̄ is the reduced peak gravitational wave energy density and Ωexp

is the expected peak gravitational wave energy density. The data is

taken from [5].
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grows. This reduces the amount of available kinetic energy that can be transferred

to the fluid. The rotational component for detonations, however, remains small

and constant. The probable explanation for this effect is the formation of reheated

droplets of the metastable phase that are produced during the collisions of the

bubble walls. These droplets can then slow down the bubble walls and reheat the

surrounding regions. The simulations considered a simple bag equation of state

where the results only depend on input parameters of vw and α. For a given vw,

we use an interpolation of their results to estimate the corresponding suppression

factor to the ΩGWh
2 as a function of α. We show the suppression factor in Fig. 5.3

for two representative bubble wall velocities. We utilize extrapolation for when

α is out of range. Although the results were performed using a bag equation of

state, we numerically compute α in the beyond the bag model and assume that

the suppression from vorticity and reheating derived with a bag model applies

without modification. We will test this assumption in future work. Furthermore,

the simulations suggest that the RMS fluid velocity Ūf reaches a maximum that

is under-approximated by calculating the expected Ūf around a single bubble.

We use the results of Ūf,max/Ūf,exp to estimate the maximum fluid velocity in the

highest diligence after calculating Ūf in the beyond the bag model.

A careful calculation of the gravitational wave production in an expanding

universe will result in a suppression factor of the form

ΥRD = 1− 1

y
, (5.34)

for a radiation dominated era where y = a/as is a dimensionless scale factor ratio
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normalized by when the source of production becomes active. For a radiation

dominated era, the time elapsed since some reference time, ts, is

(t− ts)Hs =
y2 − 1

2
. (5.35)

Due to the presence of shocks and turbulence in the plasma, the time elapsed is

unlikely to last an arbitrarily long time. The effective lifetime of the source is

then given by the timescale of turbulence, τsw = R∗/Ūf . This was the basis of the

suppression factor used in Eq. 5.14-5.15. We use the estimated maximum of the

fluid velocity in the beyond the bag model when calculating the lifetime of the

source. The gravitational wave energy density will then be suppressed by

Υ = 1− 1√
1− 2τswHs

, (5.36)

which approaches the asymptotic value Υ = 1, the lowest diligence, when τswHs →

∞. When τswHs � 1, the suppression factor is approximately Υ = τswHs, the

modest diligence.

The peak gravitational wave energy density after taking into consideration the

suppressions arising from vorticity and reheating effects in the plasma as well as

the lifetime of source becomes

h2ΩGW = 8.5× 10−6

(
100

g∗

)1/3

K2

(
H∗
β

)
vwΥ

(
Ūf,max, R∗

)( Ω̄(vw, α)

Ω̄exp(vw, α)

)
,

(5.37)

where K is calculated in the beyond the bag, β/H∗ is calculated from the mean

bubble separation, and the last factor arises from the vorticity and reheating

effects in the plasma.
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5.3 Test models

In this section we examine the numerical difference in predictions arising from

different levels of diligence in several models

1 The Standard Model Effective Field Theory (SMEFT), itself close to a toy

model when it comes to cosmological phase transitions [97], but which allows

for a comparison to the uncertainties arising from gauge dependence and

the breakdown of perturbation theory as outlined in [354].

2 Dark Higgs models [55], the simplest phase transition that can occur in a

dark sector and has only three free parameters.

3 A real scalar singlet extension to the standard model (xSM) [367]. A model

that allows a tree level barrier, like SMEFT, but is on firmer footing as a

physical theory.

Using a spectrum of models gives a realistic account of the size of the relative

errors for different level of diligence without being overly sensitive to model

specific effects. We will also present a toy model in the appendix D, that has the

convenient property that much of the analysis can be done analytically.

5.3.1 SMEFT

SMEFT is a model independent method of examining many extensions of the

Standard Model by augmenting it with a tower of high dimensional operators,

each suppressed by higher and higher powers of the cutoff scale corresponding
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to the scale of new physics. Unfortunately, the Standard Model requires such a

large change to its potential that the scale of new physics needs to be quite low to

augment a strong first order phase transition [97]. In such a case the SMEFT only

provides a qualitative description of the UV complete scalar sector, and then only

in special circumstances [97]. In the SMEFT the tree level potential is augmented

by a single higher dimensional operator

Vtree = µ2
hφ
†φ+ λ

(
φ†φ
)2

+
1

M2
(φ†φ)3 + ∆V, (5.38)

where M characterizes the cut off scale, φ is the SM Higgs doublet and ∆Vh is

chosen such that the zero-temperature minimum is shifted to the origin. We will

consider the full free energy density at one-loop given by

f(φ, T ) = Vtree + VCW + VCT + VT , (5.39)

where VCW is the Coleman-Weinberg contribution and VT is the finite-temperature

correction. These are given by

VCW(h, µ) =
1

64π2

∑
α

NαM
4
α(h)

[
log

M2
α(h)

µ2
− Cα

]
, (5.40)

and

VT (h, T ) =
T 4

2π2

∑
α

Nα

∫ ∞
0

dx x2 log
[
1± e−

√
x2+M2

α(h)/T 2
]

(5.41)

+
T

12π

∑
bosonsα

Nα

[
M3

α(h)−M3
T,α(h, T )

]
, (5.42)

where Nα counts the number of degrees of freedom of each particle and Cα is a

constant that is 5/6 for gauge bosons and 3/2 for all others. We note that the

daisy terms in Eq. 5.42 are the result of a high temperature expansion which
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may cause an IR-divergence in the speed of sound for low temperatures [363]. We

explicitly check this by including a Boltzmann suppression term when Mα . 2.2T

. The sums run over the top quark, W and Z bosons, and the Higgs boson h. The

total degrees of freedom in SMEFT is the Standard Model value gSM = 106.75.

The calculation of the speed of sound requires including all the relativistic particle

species in the free energy density. We will account for the remaining light particles

that were neglected in VT by including the term:

δVT (h) = −π
2

90
g′∗T

4, (5.43)

to the free energy density where g′∗ = 345/4. However, in the bag model, the

speed of sound is taken to be c2
s = 1/3 and the light species can be ignored as they

do not affect the phase transition dynamics. The last term in VT corresponds to

the resummation of the daisy terms of the scalar bosons. To calculate the effective

potential and the counter-terms at zero-temperature, we fix the zero-temperature

MS-parameters by matching the physical observables at the Z boson pole mass

mZ using the full self energies. To go beyond the bag model, we need the absolute

pressure in each phase, and not just the relative pressure. We therefore add an

overall constant in the potential such that the pressure in the broken phase at zero

temperature vanishes at one loop. The scale of the Coleman-Weinberg potential

is taken to be at µ ∼ T for the dynamics of the phase transition and we run the

parameters to this scale.
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5.3.2 Dark Renormalizable Models

Here we will consider a dark Higgs model [48, 117, 55, 116] of the type SU(N)/SU(N−

1) with renormalizable operators following the conventions in [55]. The overall

scale Λ and the zero temperature vacuum expectation value v are the only inputs

of the model. We can then define the zero temperature parameters such as the

tachyonic mass and self coupling as

−µ2(0) = −Λ4

v2
, (5.44)

λ(0) =
Λ4

v4
, (5.45)

where factors of v/Λ will control the thermal parameters. The tree level potential

is then defined as

V (H) = Λ4

[
−1

2

(
hD
v

)2

+
1

4

(
hD
v

)4
]

+ ∆V, (5.46)

where hD is the dark Higgs of the doublet H and ∆V shifts that potential at the

minimum to zero. The degrees of freedom of the full dark sector in consideration

are

nH = 1, nG = 2N − 1, nGB = 3× (2N − 1), nf = 2×N ×Nf , (5.47)

where nG is the number of Goldstone bosons, nGB are the gauge bosons, Nf is

the number of fermions,and N is the rank of the group.

The free energy density in consideration is

f(hD, T ) = Vtree + VCW + VCT + VT + δVT , (5.48)

where VCW and VT are defined in Eq. (5.40-5.42). Here the summations now only

run over the dark sector particles. This requires us to add on the additional
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relativistic particles not included in the sum which now include the full degrees of

freedom of the Standard Model:

δVT = −π
2

90
g∗T

4, (5.49)

where g∗ = 106.75. We add the term ∆V so that the minimum of the tree-level

potential is shifted to zero. We choose the scale of the one-loop potential to be at

Λ.

The inclusion of the CW-term will shift the zero-temperature vacuum expec-

tation value away from v. We add the counter-term potential

VCT(hD) = −δµ
2

2
h2
D +

δλ

4
h4
D + δ∆Vh, (5.50)

where δµ2, δλ, and δ∆Vh are chosen such that

∂f(hD, 0)

∂hD

∣∣∣
v

= 0, (5.51)

∂2f(hD, 0)

∂h2
D

∣∣∣
v

= m2(0) ≡ 2
Λ4

v2
, (5.52)

f(v, 0) = 0, (5.53)

to maintain the tree-level structure of the potential. We work in the Landau

gauge where the Goldstone bosons have zero mass at the hD = v which causes an

IR-divergence in the one-loop potential. This causes an issue in the evaluation

of the counter-terms. One prescription is to remove the Goldstone bosons from

the sum in the CW potential. For the purpose of this work, we will follow the

procedure in [368] to evaluate the counterterms. This shifts the Goldstone mass

by its mass at the one-loop level, i.e

mG(hD)→ mG(hD) +
1

hD

∂V (1)

∂hD
, (5.54)
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where

mG(hD) = Λ4

(
h2
D

v4
− 1

v2

)
, (5.55)

is the field dependent mass of the Goldstone bosons.

5.3.3 xSM

The singlet extended SM, known as ”xSM”, consists of the standard SM Higgs

doublet HT =
(
G+, (vEW + h+ iG0) /

√
2
)

and a real gauge singlet S = vs + s

where the electroweak vacuum is (vEW, vs) [369, 219, 98, 40, 41, 249, 370, 371, 372].

The tree level potential in this setup is defined as

V (H,S) =− µ2H†H + λ
(
H†H

)2
+
a1

2
H†HS

+
a2

2
H†HS2 +

b2

2
S2 +

b3

3
S3 +

b4

4
S4 + ∆V, (5.56)

where ∆V shifts the minimum of the potential to zero. The mass parameters

µ2 and b2 are related to the other model parameters through the minimization

conditions around the electroweak vacuum,

µ2 = λv2
EW +

1

2
vs (a1 + a2vs) ,

b2 =
1

4vs

[
v2

EW (a1 + 2a2vs) + 4v2
s (b3 + b4vs)

]
. (5.57)
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The parameters λ, a1, and a2 are related to the physical parameters θ, mh1 , and

mh2 through the mass matrix diagonalization as

λ =
m2
h1
c2
θ +mh2s

2
θ

2v2
EW

,

a1 =
2vs
v2

EW

[
2v2

s

(
2b4 + b̃3

)
−m2

h1
−mh2 + c2θ

(
m2
h1
−m2

h2

)]
,

a2 = − 1

2v2
EWvs

[
−2vs

(
m2
h1

+m2
h2
− 4b4v

2
s

)
+
(
m2
h1
−m2

h2

) (
2c2θvs − vEWs2θ + 4b̃3v

3
s

)]
,

(5.58)

where b̃3 ≡ b3/vs and θ is the mixing angle of the physical fields h1 and h2 defined

as

h1 = cθh+ sθs, h2 = −sθh+ cθs, (5.59)

with sθ ≡ sin(θ) and cθ ≡ cos(θ). Here we associate h1 as the SM Higgs and h2 is

some heavier scalar.

The free energy density we consider in the xSM presented here contains only

the high temperature expansion approximation of the full finite temperature one

loop effective potential since the phase transition is primarily driven by the cubic

terms. The free energy is then

f(h, s, T ) =− 1

2

[
µ2 − Πh(T )

]
h2 − 1

2
[−b2 − Πs(T )] s2

+
1

4
λh4 +

1

4
a1h

2s+
1

4
a2h

2s2 +
b3

3
s3 +

b4

4
s4

− 1

3

π2

30
g∗T

4, (5.60)

where we take g∗ = 106.75. The field dependent thermal mass Πh(T ) and Πs(T )
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are

Πh(T ) =

(
2m2

w +m2
z + 2m2

t

4v2
+
λ

2
+
a2

24

)
T 2,

Πs(T ) =

(
a2

6
+
b4

4

)
T 2, (5.61)

where the physical masses of the W , Z, and t-quark are used to define the gauge

and Yukawa couplings to h.

5.4 Results

The resulting gravitational wave spectrum is dependent on the level of precision

of the thermal parameters. Until recently, the bag model was assumed to compute

the phase transition strength and the kinetic energy of the fluid. Going beyond the

bag model will require the calculation of the speed of sound in the plasma for both

the symmetric and broken phase which should result in a more accurate treatment

of the thermal parameters. These quantities are temperature dependent and will

change depending on the temperature at which they are computed. Furthermore,

the temperature scales of the phase transition such as the nucleation and percola-

tion temperature are also sensitive to level of diligence in the calculations. We

use the publicly available codes CosmoTransitions [281] and BubbleProfiler [373]

to compute the actions in order to find the relevant transition temperatures.

The lowest diligence level will compute the thermal parameters at the estimated

nucleation temperature defined in Eq. 5.4. The strength of the phase transition

is calculated using Eq. 5.5, the inverse time duration of the phase transition

is calculated using Eq.5.6, and the peak gravitational wave energy density is

164



calculated using Eq. 5.7.

The modest diligence level will compute the thermal parameters at the esti-

mated percolation temperature in Eq. 5.11. We will use Eq. 5.12, Eq. 5.13, and

Eq. 5.15 to estimate the strength of the phase transition, inverse time duration,

and peak gravitational wave spectrum respectively. The lifetime of the source is es-

timated using Eq. 5.14. There is an ambiguity as to which temperature to employ

in the calculation of the thermal parameters: the nucleation temperature or the

percolation temperature. The true percolation temperature Tp, Eq. 4.47, should lie

close to the temperature at which the phase transition ends Tf . The inverse time

duration should be computed from the mean bubble separation, Eq. 4.62, which is

evaluated at Tf . The highest diligence will evaluate all thermal parameters at Tf

to ensure that all quantities are evaluated at the same temperature as the inverse

time duration. From here on out, we will associate Tp with Eq. 5.11 when referring

to modest diligence. The highest diligence will also utilize the beyond the bag

model to calculate the strength of the phase transition Eq. 5.25 and the kinetic

energy fraction Eq. 5.31 which requires the numerically calculated speed of sound

in Eq. 5.23. The lowest and modest diligence calculations will assume c2
s = 1/3

as is done in the bag model. The peak gravitational wave spectrum is found

from Eq. 5.37 which accounts from the lifetime of the source, Eq. 5.36, as well as

vorticity and reheating effects in the plasma. We note that the suppression factor

due to the finite lifetime used in Eq. 5.14 is a valid approximation of Eq. 5.36

only when τSWH � 1.

In the following sections, we will compare the different levels of diligence
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Figure 5.4: SMEFT: The top left panel shows the speed of sound

calculated in the symmetric and broken phase using Eq. 5.23 at the

different levels of diligence. The gray dashed line corresponds to the

bag model with c2
s = 1/3. The symmetric phase (solid magenta) is only

shown at highest diligence. The top right panel shows the strength of

the phase transition at the different levels of diligence using Eq. (5.5,

5.12, 5.25). The bottom panel shows the kinetic energy fraction at

the different levels of diligence where the lowest and modest diligence

use fits for κ to get K and the highest diligence uses Eq. 5.31. The

temperatures are set to Tn (5.4), Tp (5.11), and Tf (4.70) for the lowest,

modest, and highest diligence respectively. The numerical calculation

of the speed of sound only enters in the highest diligence of α.

166



580 600 620 640 660 680 700

M

102

103

β
/H

vw = 0.92

SMEFT

lowest

modest

highest

580 600 620 640 660 680 700

M

0.08

0.10

0.12

0.14

0.16

0.18

Υ

vw = 0.92

SMEFT

modest

highest

Figure 5.5: SMEFT: The left panel shows the inverse time duration

of the phase transition at the different levels of diligence using Eq. (5.6,

5.13, 4.77). The lowest and modest diligences are estimated using

the first derivative of the action dS/dT and the highest diligence

is computed directly from the mean bubble separation, Eq. 4.62.

The right panel shows the suppression factor due to the lifetime

of the source using Eq. 5.14 and Eq. 5.36 for modest and highest

diligence respectively. The lowest diligence corresponds to Υ → 1.

The temperatures are set to Tn (5.4), Tp (5.11), and Tf (4.70) for the

lowest, modest, and highest diligence respectively.

in SMEFT, the dark renormalizable model, and xSM. The error in the peak

gravitational wave energy density,

∆Ω

Ω
=
|Ωjh2 − Ωhighh2|

min [Ωjh2,Ωhighh2]
, (5.62)

where j = (low,mod) refers to lowest, modest, and highest diligence respectively,

will be used to compare the different levels of diligence.
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5.4.1 SMEFT

The SMEFT model we consider has the scale of the zero-temperature one loop

potential set to µ = T as well as temperature dependence in the running of the

couplings. This will contribute additional temperature dependence to the speed

of sound calculations in the broken phase. We note that Ref. [374] also considered

the beyond the bag model in SMEFT using a high temperature expansion of

the effective potential. The speed of sound will never reach the bag model with

c2
s = 1/3 as seen in the top figure left of Fig. 5.4. The green curves show the

different levels of diligence for the speed of sound in the broken phase and the

dashed gray curve represents c2
s = 1/3. The magenta curve is the speed of sound

calculated in symmetric phase which is approximately the same in each level and

does not deviate far from the bag model. We do not consider any additional

relativistic degrees of freedom and thus expect little deviations between the speed

of sound in the symmetric phase. As the scale M grows large, the speed of

sound in the broken phase approaches a constant value of c2
s ∼ 0.32. There is

noticeable disagreement between the different levels below M = 600 where there

is mild supercooling. For a given M , the speed of sound is only a function of

temperature. The differences in c2
s in the broken phase is the result of these

different temperatures at which the speed of sound is set to when calculating the

strength of the phase transition αθ̄(c
2
s). The large difference in Tp and Tf is due

to the approximations of Tp in Eq. 5.11 which is less accurate when S3/T acquires

a minimum for smaller M .
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On the top right panel of Fig. 5.4 we show the strength of the phase transition

computed at the different levels of diligence. Both the lowest and modest diligence

curves have c2
s = 1/3 whereas the highest diligence curve corresponds to the beyond

the bag calculation with c2
s shown in the top left panel. Although each level is

computed at different temperatures, the lowest diligence is a better approximation

of the strength of the phase transition compared to level 2 which over approximates

α. This is a result of Tp computed in the modest diligence placing far below Tf

which results in a higher estimated α. The difference between the different levels

on the strength of the phase transition is negligible for large M as a result of

the asymptotic behavior observed in c2
s and the better approximation of Tp when

there is no barrier present. There is also a dependence on the bubble wall velocity

in both c2
s and α for the modest and highest diligence curves in computing Tp and

Tf but we only show detonation with vw = 0.92 because the difference is minor.

The kinetic energy fraction is shown in the bottom panel of Fig. 5.4 and should

depend on the speed of sound and phase transition strength. Similar to what was

seen in α, the lowest and highest diligence curves are closer together for large M

while the modest diligence curve is the least accurate. For each of the levels, the

largest error in both α and K occurs for smaller M where the speed of sound is

significantly lower than c2
s = 1/3 and Tp is far from Tf .

In the left panel of Fig. 5.5, we show the inverse time duration β/H of the

phase transition for detonation. The largest difference between modest diligence

and highest diligence occurs for small M and is due to the following reason: the

minimum formed in the action where Tp calculated in Eq. 5.11 along with β/H
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Figure 5.6: SMEFT: The relative error when using the lowest and

modest levels of diligence, compared to the highest level of diligence

(for which ∆Ω/Ω = 0). The vertical axis shows the peak (frequency-

independent) gravitational wave energy density for detonation. The

precise definition of ∆Ω/Ω is given in Eq. 5.62. The horizontal axis

corresponds to the cutoff scale M . ∆Ω/Ω is displayed for deflagration

and detonation at different levels of diligence using Eq. (5.7, 5.15, 5.37)

and Eq. 5.62. The temperatures are set to Tn (5.4), Tp (5.11), and

Tf (4.70) for the lowest, modest, and highest diligence respectively.

Both the modest and highest diligence contains suppression factors

due to the lifetime of the source. The highest diligence contains the

suppression factor due to vorticity effects in the plasma.
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in Eq. 5.13 are inaccurate when there is a minimum present. The lowest diligence

is a better approximation than the modest diligence in this regime. The modest

and the highest diligence become indistinguishable for large M when there is no

minimum in the action. For small M , the lowest diligence curve appears to be

a good approximation for modest diligence. Although β/H estimated from the

action is not accurate when there is a minimum, the error using Tn appears to

do better than using the approximation of Tp. Contrary to the α and K, β in

the lowest diligence never approaches the highest diligence for large M where the

error appears to get worse. This is due to the inaccuracy in using the approximate

Tn. In this regime, Tp is a better approximation of the inverse time duration as

there is no minimum present in the action. The right panel of Fig. 5.5 shows the

suppression factor due to the lifetime of the source in the modest and highest

diligence. The error between the two levels gets worse for small M which is the

result of the error in Tp. The error approaches a constant as M gets large.

In Fig. 5.6 we show the relative error in the peak gravitational wave spectrum

for both deflagration and detonation. The error with respect to the highest

diligence is estimated using Eq. 5.62. For both deflagration and detonation, the

modest diligence spikes to an error of ∆Ω/Ω ∼ 102 for small M. This is correlated

with the large error observed in α, K, β, and Υ seen in Fig. 5.4 and Fig. 5.5. The

modest diligence error for both profile types slowly approach a constant value as

M grows large which is the result of the minimal error in α, β/H, K. The error in

Υ appears to become a constant for large M . The suppression factors due to the

lifetime of the source grow to zero as M grows large which results in the increasing
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Figure 5.7: Dark RG: The left panel shows the speed of sound

calculated in the symmetric and broken phase using Eq. 5.23 at the

different levels of diligence. The gray dashed line corresponds to the

bag model with c2
s = 1/3. The symmetric phase (solid magenta) is

only shown at highest diligence. The right panel shows the strength of

the phase transition at the different levels of diligence using Eq. (5.5,

5.12, 5.25). The temperatures are set to Tn (5.4), Tp (5.11), and Tf

(4.70) for the lowest, modest, and highest diligence respectively. The

numerical calculation of the speed of sound only enters in the highest

diligence of α.

behavior of the peak error in the lowest diligence which does not include any

suppression factors. Overall we notice an error in the peak gravitational wave

energy density of 101− 102 for lowest diligence and 100− 102 for modest diligence.

5.4.2 Dark Renormalizable Models

The dark renormalizable model considered in the analysis does not couple to the

Standard Model and will consist of a N = 10 group, and 2N − 1 gauge bosons

with charge gD = 0.8. The scale of the one-loop potential is also T independent.
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These will result in a speed of sound in the symmetric phase that differs from the

one seen in SMEFT.

We show the speed of sound calculated using Eq. 5.23 on the left panel of

Fig. 5.7 for the different levels of diligence. The differences between the levels

of diligence in the speed of sound are only minor. We show only the highest

diligence curve for the speed of sound in the symmetric phase. For small v/Λ,

the speed of sound in the symmetric phase remains constant with a value slightly

above the one given in the bag model. This is attributed to the additional degrees

of freedom arising from the dark sector. The speed of sound above v/Λ = 2.6

begins to decrease until it reaches a discontinuity near v/Λ = 2.8. It then jumps

to c2
s = 0.336 where it begins to monotonically increase. This discontinuity is

a result of the daisy terms in the effective potential. With out the daisy terms,

the speed of sound in the symmetric phase would be smoothly connected and

monotonically increasing.

The strength of the phase transition is plotted on the right panel Fig. 5.7. The

different levels appear to agree very well with each other with the lowest diligence

becoming slightly worse at high v/Λ. For most of the parameter space, the highest

diligence has the greatest α because it is computed at the numerically calculated

values for c2
s in the broken phase which results in a amplification compared to the

other two levels. This is due to the factor (1 + c−2
s ) in αθ̄. The error between

the modest and highest diligence begins to decrease as v/Λ increases which is

related to the speed of sound approaching c2
s = 1/3. Despite the differences

between the different levels, the speed of sound in the broken phase lies between
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Figure 5.8: Dark RG: The inverse time duration of the phase transi-

tion at the different levels of diligence using Eq. (5.6, 5.13, 4.77). The

lowest and modest diligences are estimated using the first derivative of

the action dS/dT and the highest diligence is computed directly from

the mean bubble separation. The right panel shows the suppression

factor due to the lifetime of the source using Eq. 5.14 and Eq. 5.36

for modest and highest diligence respectively. The lowest diligence

corresponds to Υ → 1. The temperatures are set to Tn (5.4), Tp

(5.11), and Tf (4.70) for the lowest, modest, and highest diligence

respectively.

c2
s ∼ 0.325 − 0.330 and does not contribute a significant source of error to the

strength of the phase transition.

The inverse duration of the phase transition is plotted in the left panel of

Fig. 5.8 for detonation. The lowest diligence calculated using Eq. 5.6 consistently

over approximates β/H while modest diligence calculated using Eq. 5.13 agrees

well with the highest diligence found from the mean bubble separation. There

were no minima found in the action for any of the parameters in consideration

so the difference between Tp calculated using Eq. 5.11 in the modest diligence
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and Tf calculated using Eq. 4.70 in the highest diligence is only minor. The dips

near v/Λ > 2.8 in β/H are the result of the shape of S(T )/T which causes the

highest error between the modest and highest diligence. This dip also effects the

suppression factor due to the lifetime of the source as seen in the right panel of

Fig. 5.8. The modest diligence over-approximates the suppression factor up until

v/Λ ∼ 2.8 where they eventually become approximately equal in magnitude. The

large v/Λ regime has a small β/H and large α which results in a small lifetime of

the source τsw. The modest diligence suppression factor is then an appropriate

approximation in this regime.

The error in the gravitational wave spectrum is shown in Fig. 5.9 for defla-

gration and detonation. For both the lowest and modest diligence, the error

remains roughly constant until v/Λ ∼ 2.8 where it exhibits some oscillations. This

behavior is related to the dips in Fig. 5.8. Past v/Λ ∼ 2.8, both the lowest and

modest diligence begin to increase. The error in the lowest diligence past this

point is dominated by the lack of suppression factor due to the lifetime of the

source. The suppression factor remains roughly constant until v/Λ ∼ 2.8 where

it begins to approach zero and as a result increases the error. The increasing

behavior in the modest diligence is likely due to the separation in β/H between

the modest and highest diligence in Fig. 5.8 and the suppression factor from

vorticity and reheating effects in the plasma which are stronger for larger α. The

values of the speed of sound in the symmetric and broken phase calculated at Tf

are not far from the bag model of c2
s = 1/3 and we do not consider it a strong

source of error in the peak gravitational wave energy density spectrum. Overall
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Figure 5.9: Dark RG: The relative error when using the lowest and

modest levels of diligence, compared to the highest level of diligence

(for which ∆Ω/Ω = 0). The vertical axis shows the peak (frequency-

independent) gravitational wave energy density for detonation. The

precise definition of ∆Ω/Ω is given in Eq. 5.62. The horizontal axis

corresponds to the ratio of the tree level v.e.v to the cut off scale v/Λ.

∆Ω/Ω is displayed for deflagration and detonation at different levels

of diligence using Eq. (5.7, 5.15, 5.37) and Eq. 5.62. The temperatures

are set to Tn (5.4), Tp (5.11), and Tf (4.70) for the lowest, modest, and

highest diligence respectively. Both the modest and highest diligence

contains suppression factors due to the lifetime of the source. The

highest diligence contains the suppression factor due to vorticity effects

in the plasma.
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we notice an error in the peak gravitational wave energy density of 101 − 103 for

lowest diligence and 10−1 − 101 for modest diligence.

5.4.3 xSM

We show in the top left panel of Fig. 5.10 the speed of sound in the symmetric

and broken phase for a scan over the heavy singlet mass in the xSM model while

holding all other parameters constant. The speed of sound in the symmetric phase

is approximately c2
s = 1/3 as in the bag model. The speed of sound in broken

phase deviates far from the bag model where it approaches zero as mh2 → 0. The

speed of is strongly correlated with the cubic term that arises from the extra scalar

who also acquires a tree level vacuum expectation value. The speed of sound can

then be suppressed by increasing the b3 parameter. This strong suppression in

the broken phase speed of sound will lead to an amplification in the strength of

the phase transition as seen in the top right panel of Fig. 5.10. The strength of

the phase transition in the highest diligence grows larger compared to the other

levels as the singlet gets heavier. This is directly related to the suppression in

the speed of sound in the broken phase. There is a minor difference in the lower

singlet mass range. The kinetic energy fraction is shown in the bottom panel of

Fig. 5.10. The lowest and modest diligence both overestimate K for the entire

range of the parameter space which is not observed in α. This can be attributed

to the approximations used in the kinetic energy fraction pre-factor α/(1 + α)

used in the peak gravitational wave energy density in Eq. 5.7 and the speed of

sound dependence in solving the beyond the bag model hydrodynamic equations.
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Figure 5.10: xSM: The top left panel shows the speed of sound

calculated in the symmetric and broken phase using Eq. 5.23 at the

different levels of diligence. The gray dashed line corresponds to the

bag model with c2
s = 1/3. The symmetric phase (solid magenta) is only

shown at highest diligence. The top right panel shows the strength of

the phase transition at the different levels of diligence using Eq. (5.5,

5.12, 5.25). The bottom panel shows the kinetic energy fraction at

the different levels of diligence where the lowest and modest diligence

use fits for κ to get K and the highest diligence uses Eq. 5.31. The

temperatures are set to Tn (5.4), Tp (5.11), and Tf (4.70) for the lowest,

modest, and highest diligence respectively. The numerical calculation

of the speed of sound only enters in the highest diligence of α.
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Figure 5.11: xSM: The inverse time duration of the phase transition

at the different levels of diligence using Eq. (5.6, 5.13, 4.77). The

lowest and modest diligences are estimated using the first derivative of

the action dS/dT and the highest diligence is computed directly from

the mean bubble separation. The temperatures are set to Tn (5.4),

Tp (5.11), and Tf (4.70) for the lowest, modest, and highest diligence

respectively.
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The inverse time duration of the phase transition is plotted in Fig. 5.11 for

the different levels of diligence. The modest diligence is a better approximation

than that of the first level for β/H but slightly under-approximates the spectrum

for lower mass ranges. The lowest diligence is a poor approximation for β/H for

the entire parameter space.

The error in the gravitational wave spectrum compared to the highest diligence

for deflagration and detonation is given in Fig. 5.12. The largest error in the

spectrum occurs for the lowest diligence and this is due to the lack of suppression

factor for the finite lifetime of the source and the larger uncertainty in β/H. The

suppression factor for the modest diligence case is an under-approximation to

the finite lifetime of the source particularly in the higher singlet mass regions.

Both the lowest and modest diligence receive significant errors from neglecting

the beyond the bag contributions to the kinetic energy which over estimates the

peak spectrum which also gets worse for higher singlet masses. Overall the range

of error in the peak gravitational wave energy density is between [102 ∼ 103]

and [100 ∼ 102] for the different levels of diligence. All of the points above the

range in mh2 shown are certainly viable points and may even reach higher levels

of error. However, this range in mh2 is chosen such that all the points remain in

either deflagration or detonation for both consistency and the lack of numerical

simulations for hybrids.
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5.4.4 Mean Bubble Separation vs Inverse Time Duration

The gravitational wave energy density is dependent on determining the mean

bubble separation when the phase transition ends at temperature Tf . An ap-

proximation to the mean bubble separation can be determined by calculating

the inverse time duration, β/H, from the first derivative of the action. This

calculation is typically only valid when there is a negligible barrier at zero tem-

perature. However, if there is a barrier at tree level, a minimum in the action will

develop near Tf and the second derivative, β2 will become relevant while the first

derivative will vanish. The bubble nucleation rate can then take on the form

p = p0 exp

[
−S∗ −

1

2
β2

2(t− t∗)2

]
, (5.63)

where t∗ is the time when the temperature is near Tf and S∗ = S3(T∗)/T∗. The

above result will ultimately lead to a new relation between the mean bubble

separation R∗ and the inverse time duration of the phase transition β.

This subtlety is not usually taken into account and the relation between R∗

and β that is useful for gravitational wave calculations is simply given by the

approximate formula

HR∗ = (8π)1/3vw

(
H∗
β

)
, with β = HTdS/dT, (5.64)

where β is related to the first derivative of the action regardless of the presence of

a barrier. Out of the models we consider, SMEFT and xSM can acquire tree level

barriers that result in a minimum in the action. The lowest and modest diligence

results presented here assume Eq. 5.64 always hold which can result in significant
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Figure 5.12: Dark RG: The relative error when using the lowest and

modest levels of diligence, compared to the highest level of diligence

(for which ∆Ω/Ω = 0). The vertical axis shows the peak (frequency-

independent) gravitational wave energy density for detonation. The

precise definition of ∆Ω/Ω is given in Eq. 5.62. The horizontal axis

corresponds to the heavy singlet mass mh2 . ∆Ω/Ω is displayed for de-

flagration and detonation at different levels of diligence using Eq. (5.7,

5.15, 5.37) and Eq. 5.62. The temperatures are set to Tn (5.4), Tp

(5.11), and Tf (4.70) for the lowest, modest, and highest diligence

respectively. Both the modest and highest diligence contains suppres-

sion factors due to the lifetime of the source. The highest diligence

contains the suppression factor due to vorticity effects in the plasma.
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errors for these two models. Furthermore, the percolation temperature at which

β/H is estimated is a function of β/H, Eq. 5.13, which can also acquire error

if the barrier is not sufficiently taken care of. The highest diligence results can

side-step these issues by numerically calculating the mean bubble separation from

the number bubble density which is independent of any assumptions about the

curvature of the action, i.e

HR∗ =
( nb
H3

)−1/3

, (5.65)

evaluated at the final temperature Tf . The final temperature as well does not

depend on any underlying assumptions about the curvature of the action because

it is numerically calculated from the false vacuum fraction. For comparisons

between the inverse time durations with respect to the highest diligence, we first

calculate HR∗ and use Eq. 5.64 to determine an effective β/H.

The comparison between HR∗ using Eq. 5.64 and Eq. 5.65 is shown in Fig. 5.13

where the left figure corresponds to SMEFT and right figure corresponds to xSM.

The solid lines represent the proper mean bubble separation calculated at Tf . The

dotted and dashed lines correspond to the mean bubble separation calculated first

from β at Tf and Tp respectively. We denote Tp to refer to the estimation given

in Eq. 5.11. Below M = 600 GeV in SMEFT, the action acquires a minimum

as a result of the tree level barrier at zero temperature which causes β(Tp) to

significantly over-approximate HR∗. As mentioned previously, this is a result of

the underlying assumptions in approximating both Tp and β which ignore the

barrier. The mean bubble separation calculated from β(Tf ) performs better than
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Figure 5.13: The mean bubble separation times the Hubble parameter

for SMEFT (left ) and xSM (right). The solid line corresponds to

the numerically calculated value defined in Eq. 5.65 evaluated at Tf

(4.70). The dashed and dotted lines correspond to the estimated value

using Eq. 5.64 evaluated at Tf (4.70) and Tp(5.11) respectively.

β(Tp) in this regime with nearly identical HR∗ predictions compared to n
−1/3
b .

This is largely due to Tf being independent of any assumptions on the action.

The xSM model consists of a second scalar and several parameters which when

varied may induce either first step or second step phase transitions. The bench

marks chosen involve scanning of the heavy singlet mass while holding the other

model parameters fixed. All of the points resulted in a one step phase transition

along with no minimum in the action. On the right of Fig. 5.13, we see that

all three methods resulted in a roughly consistent approximation of HR∗ with

slightly better performance from β(Tp) for large mh2 . This can be attributed to

the lack of minimum in the action observed in the parameter space. We reserve a

further analysis of the mean bubble separation in xSM for future work.
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Effect Range of error (medium) Range of error (low) Type of error

Transition temperature O(10−4 − 101) O(10−1 − 100) Random

Mean bubble separation O(0− 10−1) O(10−1 − 100) Suppression

Fluid velocity O(10−2 − 100) O(10−2 − 100) Random

Finite lifetime O(10−3 − 10−1) O(101 − 103) Enhancement

Vorticity effects O(10−1 − 100) − Random

Table 5.1: Full range of error of ∆Ω/Ω for each individual effect

comparing the medium diligence and low diligence approaches to the

high diligence approach.

5.5 Summary of Results

The previous results involved fixing certain characteristics associated with each of

the outlined levels of diligence. In this section, we will fix all of the quantities as

high diligence while varying the level of a single quantity to determine its impact

on the error of ∆Ω/Ω. Table 5.1 shows the range of error we observe associated

with varying the level of diligence in the calculation of the transition temperature,

mean bubble separation, fluid velocity, finite lifetime of the source, and vorticity

effects. The base level of comparison will use ΩGW calculated using Eq. 5.37 which

assumes the transition temperature is at Tf and includes beyond the bag effects

and the suppression factors due to the finite lifetime of the source and reheating

effects in the plasma. We will now proceed to describe how the range of errors

are calculated.

The transition temperatures used for the different levels were Tn (5.4) and
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Tp (5.11. The frequency independent ΩGW is now calculated at high diligence

using Eq. 5.37 for both the lowest and modest diligence. This is to show how

ΩGW can change purely by the temperature at which the transition is assumed to

take place. The lowest diligence will use Tn to calculate ∆Ω/Ω while the modest

diligence will use Tp. The base level comparison is ΩGW at Tf which corresponds

to the previously defined high diligence. Varying the transition temperature leads

to an error of (10−1 − 100) and (10−4 − 101) for lowest and modest diligence

respectively. The modest diligence can experience a larger error than the lowest

diligence and this is due to the result of the strong super-cooling observed in

SMEFT when M ' 600. The approximations used in calculating Tp break down

when a minimum develops in the action and results in the 101 peak in the error

for modest diligence. The error in the lowest diligence results in an enhancement

in the spectrum which is attributed to Tn > Tf . The modest diligence experienced

both enhancement and suppression which is due to Tp being much closer to

Tf . The lowest diligence primarily had Ωlow
GW < Ωhigh

GW and modest diligence had

Ωmed
GW > Ωhigh

GW . For these reasons, we conclude that the type of error due to the

transition temperature is random and dependent on the underlying model.

The estimation of the error due to the mean bubble separation will involve

calculating R∗H from the β/H at Tn for the lowest diligence and R∗H from nb

at Tf for modest diligence. We use Tf for the modest diligence in determining

the relevant quantities in ΩGW in this case to minimize error which may arise

from using the Tp approximation. All quantities in ΩGW are calculated in high

diligence at Tn and Tf for lowest and modest diligence respectively. The lowest
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diligence exhibits the largest error with a range of (10−1 − 100) while modest

diligence has the range (10−3 − 10−1). The error in modest diligence observed in

the table is only due to the approximation of the mean bubble separation from

the inverse time duration but it is expected to be higher if Tp is used as opposed

to Tf which helps to correct the error. Both the lowest and modest diligence had

mostly Ωlow,med
GW < Ωhigh

GW with modest diligence having a couple benchmarks with

Ωmed
GW > Ωhigh

GW . We denote this type of error as predominately suppression.

The error estimate from the fluid velocity involves comparing the fits for

kappa given in Appendix C to solving the hydrodynamic profiles numerically. The

fluid velocity is related to the kappa through the kinetic energy fraction K in

Eq. (5.10,5.31,5.33). The lowest diligence calculates ΩGW at Tf in the highest

diligence with the replacement that K and Uf are now calculated using the fits to

κ and the bag calculation for α. The modest diligence is the same as the lowest

diligence except that κ is calculated using the hydrodynamic profiles with c2
s = 1/3

in the bag model. The error associated with the different treatments of the fluid

velocity is (10−2 − 100) for lowest diligence and (10−3 − 100) for modest diligence.

This represents the amount of error that one might expect in these models when

performing precise calculations of ΩGW but without taking into consideration the

beyond the bag treatment of the speed of sound in the plasma. The type of error

we observe for the fluid velocity is random.

To determine the impact of the suppression factor due to the finite lifetime

of the source has on the error, we compare ΩGW calculated in Eq. 5.37 with out

Υ for the lowest diligence and with the replacement Υ → τSWH corresponding
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to Eq. 5.14 for the modest diligence. All quantities are evaluated at Tf . Modest

diligence will also contain the suppression to Uf due to vorticity and reheating

effects in the plasma. Note that this suppression is less dramatic than what one

might naively expect from ref [5], as the suppression in the fluid velocity results

in a longer lifetime for the soundwaves. For the range of models we consider, the

error for modest diligence is in the range (10−3− 10−1) and represents the validity

of the approximation used in Υ. The error in the lowest diligence experiences the

highest error with a range of (101 − 103). For all of the models, Ωlow,med
GW > Ωhigh

GW .

This type of error is an enhancement.

The last row in Table 5.1 corresponds to the error in ΩGW calculated using

Eq. 5.37 without suppression factors arising from vorticity and reheating effects

in the plasma. This is compared to the full suppression in highest diligence which

uses Uf,max in the lifetime of the source as well. The range of error we observe

is in the range of 10−1 − 101. Neglecting Uf,max in the suppression factor will

contribute at most an error of 0.62. The lowest diligence experienced Ωlow
GW < Ωhigh

GW

for the all of the models. The modest diligence experienced mostly random error.

The primary focus should be on modest diligence so we denote this type of error

as random.

5.6 Conclusion

In this work we have examined the cost of various short-cuts and approximations

used in the literature when predicting the gravitational wave spectrum generated
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by a cosmological first order phase transition. Even in the case where some

modest diligence has been used in the calculation, we found the cost to often be

comparable to problems in finite temperature QFT such as the scale dependence

that arises from the break down of perturbation theory as well as the gauge

dependence. Assuming detonations, the dominant cost in cases where there is a

fair amount of super-cooling is from poor estimates of the percolation temperature

in Eq. 5.11. The poor estimate of the percolation temperature has a knock on

effect in enhancing the errors that arise from using the bag model and an estimate

for the suppression factor. In the case where there is no tree-level barrier delaying

the nucleation of the phase transition, the dominant error is due to the bag model

approximation.

Although the errors are often as large as finite temperature QFT errors, they

are arguably easier to reduce. At present, all of these errors can be handled except

for the reheating and vorticity effects where we had to rely on interpolations. High

diligence calculations for multiple models were considerably more tractable than

the two loop calculations required to bring scale dependence at finite temperature

under control [354]. We recommend future phenomenological calculations of

gravitational wave signals from primordial phase transitions at the very least take

the level of theoretical uncertainties into consideration.
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Chapter 6

Bose-Einstein Conensate

Many studies have been dedicated to understanding the map between properties

at the Lagrangian level and the behavior of the BEC system such as its mass and

density profile [156, 6, 161, 162, 163, 164, 167, 140, 375, 165, 376, 157, 158, 377].

In [378], hydrodynamic approach is used and confirms the results from field space

analysis. In [379], formation of boson stars inside DM halo is simulated. On the

other hand, the effect of extra scalars in a BEC system with both gravitational

and possibly non-gravitational interactions among the scalars remains largely

under-explored. In particular, due to numerical challenges, most previous studies

have focused on single scalar BEC systems, with a few exceptions: multiple scalar

BEC systems with negligible non-gravitational interactions were explored in [380];

analytical approximations for multi-scalar BEC systems with self-interactions

were explored in [381]; a Newtonian analysis on multi-scalar BEC in the limit

of large quartic coupling [382]. Existence of solutions in the presence of a few

types of interactions are studied in [383, 384, 385]. In contrast, we undertake a

full General Relativity (GR) numerical study of the properties of BECs made

of two interacting scalars, including both non-gravitational self-interactions and

interactions between the scalars, followed by simple analytical understanding, and

its phenomenological implications. Given that feeble repulsive self-interactions can

lead to drastic changes in the mass profile at the macroscopic level [141, 167], it

can be expected that interactions between different scalars will have an important
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impact and leave unique imprints on the BEC system mass profile. The purpose

of our paper is to carefully investigate such imprints, and ask whether they can be

utilized to predict unique observational signatures or help address long-standing

puzzles.

Our study proceeds along two directions. At the stellar scale, a light scalar

of mass m ∼ 10−10 eV allows the formation of solar mass stellar structures. The

formation and compactness can be greatly enhanced due to the presence of a

repulsive self-interaction in the scalar potential, or compromised by an attractive

self-interaction [153, 156, 167]. The strength and form of the non-gravitational

interactions leave imprints on the GW signal. With the presence of extra scalars

and interactions between multiple scalars, the features in GW are richer, with

the maximal compactness of a stable BEC system being ∼ O(0.2). In particular,

we show the important role the interaction between the species (±φ2
1φ

2
2) plays in

either stabilizing or destabilizing the self-gravitating two scalar BEC system. It

could also have implications for the recent GW190521 event. With this perspective

in mind, we explore the mass versus compactness parameter space of a stellar

BEC consisting of two ultralight scalars.

The second major focus of our paper is the behavior of the BEC at galactic

scales. In the case of BEC DM composed of a single scalar field, the mass profile

has a unique scaling behavior controlled by a single parameter: the central value

of the wave function (∝ (central density)1/2 of the BEC.) As shown in [151, 6], this

scaling behavior is in tension with observational data [7]. This can be understood

from the scaling behavior of the scalar’s equation of motion, either from the
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Schrödinger-Newton equation, or from the relativistic EKG equation: in the single

scalar case, the scaling is parametrized as M [φ(0)], R[φ(0)], with φ(0) being the

central value of the classical wave function. This means that dynamics does not

play any role in determining the mass-radius relation, M(R), which is fixed once a

scalar potential is chosen. With the presence of a second scalar, the theory space

is enlarged from one dimensional {φ(0)} to two dimensional {φ1(0), φ2(0)}. As we

will show in subsequent sections, the ratio of the two BEC structures plays a role in

the mass-radius relation of the total BEC structure, meanwhile the system is stable

against radial perturbation even the fraction of each component varies. This holds

out the possibility of accommodating observational data with BEC DM composed

of multiple scalars while maintaining stability against radial perturbation; we

show that this is indeed the case. We stress that, we are not claiming to provide

a mass-radius relation of the BEC, as that requires accounting for the dynamics

of the scalars that determines the mass ratio of the two components, which is

beyond the scope of this work. Instead, we study the stability of the BEC against

radial perturbations, when a ratio of the two components is given. Under this

assumption, we show that there is parameter space to accommodate the galactic

data [7] and address the problem raised by [6]. As the first part of a study series,

we lay out the ground work and justifies the necessities of studying multi-scalar

ultralight dark matter dynamics.

Our results rely on numerically integrating the complete relativistic Einstein-

Klein-Gordon (EKG) equations. We do so by implementing an efficient algorithm

not common in boson star studies to solve the set of equation of motion for
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arbitrary parameters. Our algorithm employs the Relaxation Method described in

[386] which can solve a system of differential equations subjected to their boundary

conditions as opposed to the initial value shooting method typically used in these

type of equations. This approach can be easily extended to N-scalar systems.1

The results are verified by comparing against the usual shooting method in the

single scalar case [167, 178]. Besides the exact numerical solutions, we also provide

analysis adopting a simple ansatz and write out the non-relativistic Hamiltonian.

The scaling behavior in the linear regime is affected mainly by the mass ratio

(m1/m2) of the two scalars, while that in the nonlinear regime is affected more

by the non-gravitational interactions between the two scalars. In particular, we

demonstrate that with mild repulsive interactions between the two scalars λ12φ
2
1φ

2
2,

the system can be stabilized up to very large denstiy, a behavior that was only

known to exist in the case of repulsive self-interaction λφ4 [141, 165, 156, 167].

We show that such a repulsive interaction can be realized in a realistic particle

model with collective symmetry breaking [387].

To summarize, we highlight the following points in this work:

• At the galactic scale, we show that the presence of a second scalar renders the

theory capable of accommodating the mass profile indicated by observational

data while maintaining its radial stability, which cannot be done in a system

of a single scalar [6].

• At the stellar scale, we show that a repulsive interaction between two

1We note that the relaxation method avoids the problem of multi-dimension shooting, yet it
still suffers from the stiffness issue if the separation of scales is large. That means, in the case of
N -scalars, the separation between the lightest one and the heaviest one cannot be too large.
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scalars, λφ2
1φ

2
2, can stabilize the system up to high density, which was only

known to exist in a single scalar system with repulsive self-interactions

[141, 165, 167, 178]. We provide a particle model realization as a proof of

concept.

• We have developed complete and fast code that utilizes the Relaxation

Method to solve the BEC system with two scalars, and is easy to generalize

to multiple scalars. The code has been made public.2

This paper is organized as follows. We will begin by defining the phenomeno-

logical model of two scalars in Section 6.1. We set up the stage for numerical com-

putations of the Einstein-Klein-Gordon system. We then take the non-relativistic

limit to simplify the system and perform analytical investigations of the behavior,

including both the transition from one scalar dominating to the other, and the

effect of the non-gravitational interactions between the two scalars. We then

verify the static solutions numerically, as well as perform time evolution of the

system to ensure that the solution is indeed stable against radial perturbations.

In Section 6.2 we apply our analysis toolkit to the galactic scale BEC system

and show that this can address the scaling problem of ultralight dark matter

while maintaining radial stability. In Section 6.3 we focus on the stellar scale

and show the effect of non-gravitational interactions in the context of two scalar

system. In Section 6.4 we discuss a possible particle model construction. We then

conclude in Section 6.5. We provide details for computing the equation of motion

2The code can be downloaded at https://github.com/vagiedd/BosonStars .
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in Appendix G, outline the numerical recipe we use for the code in Appendix H,

and verify that it can reproduce the single scalar limit in Appendix I.

6.1 Bose-Einstein Condensate with Multiple Scalars

6.1.1 Phenomenological Model

The Lagrangian for a complex scalar system consisting of N particles reads

L =
N∑
n

−1

2
gµν∂µφ

∗
i∂νφi − V (|φ1|2, |φ2|2, ...) (6.1)

where gµν is the space-time metric inverse with the signature (−,+,+,+), and φn

is the n-th scalar field. The potential V characterizes the interactions between the

scalar fields and is a function of the coupling strengths and the modulus squared

of φ. In this work we only consider the case of two complex scalars in the ground

state, which can be easily generalized to compute BEC of more scalar fields in

our numerical framework. The Lagrangian for 2 complex scalars with generic

interactions reads

L =− 1

2
gµν∂µφ

∗
1∂νφ1 −

1

2
m2

1|φ1|2 −
1

4
c1|φ1|4

− 1

2
gµν∂µφ

∗
2∂νφ2 −

1

2
m2

2|φ2|2 −
1

4
c2|φ2|4 −

1

4
c12|φ1|2|φ2|2, (6.2)

where c′s are the coupling constants that can be either positive or negative. We

note that stability of the potential is ensured by some higher order operators and

this is taken as a truncation of the full potential. The scalar fields interact with
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gravity through the the minimal gravitational coupling

S =

∫ (
1

16πG
R + L

)√−gd4x, (6.3)

where R is the Ricci scalar determined by the metric g and L is given in Eq. 6.2.

Variation of the action with respect to the metric gives rise to Einstein equations

Rµν −
1

2
R = 8πGTµν , (6.4)

where Rµν is the Ricci tensor, and Tµν the energy-momentum tensor given by

T νµ =
∑
i

(
δL

δ(∂νφi)
∂µφi +

δL
δ(∂νφ∗i )

∂µφ
∗
i

)
− δνµL

=− 1

2
gνν

′
∂ν′φ

∗
1∂µφ−

1

2
gνν

′
∂ν′φ1∂µφ

∗
1 −

1

2
gνν

′
∂ν′φ

∗
2∂µφ2

− 1

2
gνν

′
∂ν′φ2∂µφ

∗
2 + δνµ

(
1

2
gµν∂µφ

∗
1∂νφ1 +

1

2
m2

1|φ1|2 +
1

4
c1|φ1|4

+
1

2
gµν∂µφ

∗
2∂νφ2 +

1

2
m2

2|φ2|2 +
1

4
c2|φ2|4 +

1

4
c12|φ1|2|φ2|2

)
. (6.5)

Note that since gauge fields are not the focus here, the simpler definition of T νµ is

equivalent to the one using variation with respect to the metric. If we vary the

action with respect to the scalar field we get the Klein-Gordon equation

gµν∇µ∇νφi =
dV

dφ∗i
, (6.6)

where ∇ is the covariant derivative that contains the Christoffel symbols.

6.1.2 Metric parametrization

Assuming spherical symmetry of the metric, we parametrize the metric as

ds2 = −B(r)dt2 + A(r)dr2 + r2dθ2 + r2 sin2 θdφ2. (6.7)
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Solving the t
t and r

r components of the Einstein equation, we have

4πGN

B(r)
∂tφ1∂tφ

∗
1 +

4πGN

A(r)
∂rφ∂rφ

∗
1 +

4πGN

B(r)
∂tφ2∂tφ

∗
2 +

4πGN

A(r)
∂rφ2∂rφ

∗
2

+ 4πGNm
2
1|φ1|2 + 4πGNm

2
2|φ2|2 + 2πGNc1|φ1|4 + 2πGNc2|φ2|4 + 2πGNc12φ1|2|φ2|2

− A′(r)

rA(r)2
+

1

r2A(r)
− 1

r2
= 0,

4πGN

B(r)
∂tφ1∂tφ

∗
1 +

4πGN

A(r)
∂rφ1∂rφ

∗
1 +

4πGN

B(r)
∂tφ2∂tφ

∗
2 +

4πGN

A(r)
∂rφ2∂rφ

∗
2

− 4πGNm
2
1|φ1|2 − 4πGNm

2
2|φ2|2 − 2πGNc1|φ1|4 − 2πGNc2|φ2|4 − 2πGNc12|φ1|2|φ2|2

− B′(r)

rA(r)B(r)
− 1

r2A(r)
+

1

r2
= 0.

(6.8)

Two extra constraints come from the Klein-Gordon equations of motion. Plugging

in the covariant derivative, we get

1

A
∂2
rφ1 −

1

B
∂2
t φ1 + ∂rφ1

(
B′(r)

2A(r)B(r)
− A′(r)

2A(r)2
+

2

A(r)r

)
−m2

1φ1 − c1|φ1|2φ1 −
1

2
c12|φ2|2φ1 = 0,

1

A
∂2
rφ2 −

1

B
∂2
t φ2 + ∂rφ2

(
B′(r)

2A(r)B(r)
− A′(r)

2A(r)2
+

2

A(r)r

)
−m2

2φ2 − c2|φ2|2φ2 −
1

2
c12|φ1|2φ2 = 0. (6.9)

6.1.3 Rescaling to Dimensionless Variables

We take the harmonic ansatz with energy eigenstates φi(t, r) = Φi(r)e
−iµit. Plug-

ging it into the equation of motion we can separate the time evolution part of φi.
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In order to solve it numerically, we perform the following rescaling of variables:

Φ1 = Φ̃1 (4πGN)−1/2, Φ2 = Φ̃2 (4πGN)−1/2,

µ1 = µ̃1 m1, µ2 = µ̃2 m1,

c1 = λ̃1 4πGNm
2
1, c2 = λ̃2 4πGNm

2
1,

c12 = λ̃12 4πGNm
2
1, m2 = m̃rm1,

r = r̃/m1, (6.10)

where the variable with a tilde is dimensionless.3 If one parametrizes ci in the

notation usually adapted in the axion literature using the Peccei-Quinn symmetry

breaking scale, ci = m2
i /f

2
i , it reads

λ̃1 =
1

4π

(
MPl

f1

)2

,

λ̃2 =
1

4π

(
MPl

f2

)2

m̃2
r. (6.11)

The strength of the interaction terms can be parameterized by the size of fi. In

other words, λ̃ ∼ 1 parametrizes a self-interaction whose strength is comparable

to gravity with f ∼MPl. The dimensionless variables will be used for numerically

solving the system. In what follows, we assume m1, m2 close to each other, so

are f1 and f2. Therefore, we parametrize the coupling strength c’s in the unit of

m2
1/f

2 with f chosen at 1017 GeV. In other words, we have

c1 = λ1
m2

1

f 2
,

c2 = λ2
m2

1

f 2
,

c12 = λ12
m2

1

f 2
. (6.12)

3For comparison, in Ref. [141], r̃, Φ̃, µ̃, λ̃ are denoted as x, σ,Ω,Λ respectively.
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We will parametrize the three physical couplings with order one numbers in a

tuple, (λ1, λ2, λ12) in the rest of the paper. In terms of the dimensionless variables,

we can write the equations of motion as(
µ̃2

1

B
+ 1

)
Φ̃2

1 +
1

A
Φ̃′21 +

1

2
λ̃1Φ̃4

1 +

(
µ̃2

2

B
+ m̃2

r

)
Φ̃2

2 +
1

A
Φ̃′22 +

1

2
λ̃2Φ̃4

2 +
1

2
λ̃12Φ̃2

1Φ2
2

− A′

r̃A2
+

1

r̃2A
− 1

r̃2
= 0,(

µ̃2
1

B
− 1

)
Φ̃2

1 +
1

A
Φ̃′21 −

1

2
λ̃1Φ̃4

1 +

(
µ̃2

2

B
− m̃2

r

)
Φ̃2

2 +
1

A
Φ̃′22 −

1

2
λ̃2Φ̃4

2 −
1

2
λ̃12Φ̃2

1Φ2
2

− B′

r̃AB
− 1

r̃2A
+

1

r̃2
= 0,

1

A
Φ̃′′1 +

(
µ̃2

1

B
− 1

)
Φ̃1 + Φ̃′1

(
B′

2AB
− A′

2A2
+

2

Ar̃

)
− λ̃1Φ̃3

1 −
1

2
λ̃12Φ̃2

2Φ1 = 0,

1

A
Φ̃′′2 +

(
µ̃2

2

B
− m̃2

r

)
Φ̃2 + Φ̃′2

(
B′

2AB
− A′

2A2
+

2

Ar̃

)
− λ̃2Φ̃3

2 −
1

2
λ̃12Φ̃2

1Φ2 = 0.

(6.13)

This concludes our setup of the problem, and we can solve Eq. (6.13) numerically.

For details of the numerical algorithm, one can refer to Appendix H. Before we

proceed to discuss the results and physical implications, we take a small detour

to discuss the stability of solutions to Eq. (6.13).

6.1.4 Time Evolution

To verify that the solution is indeed stable against radial perturbations, we perform

the time evolution using a finite difference method. This way, we can verify the

temporal harmonic ansatz Φi(r, t) = Φi(r)e
−iµit. The detailed procedure can be

found in Appendix H.3. We outline this procedure here briefly.

First, one solves the static equations (6.13). This will serve as the initial

condition for the numerical time evolution. To check if it is a stable system,
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we perform a radial perturbation by Φ → Φ(1 + ε), and use Φ(1 + ε) as the

initial condition instead. Here ε represents how far we perturb away from the

static solution. In the stable case, the system can evolve for a long time with

small oscillations, while in the unstable case the wave function quickly collapses

or blows up depending on the sign of ε. We show a sample stable solution in

Fig. 6.1 for λ1 = λ2 = λ12 = −1 and initial central densities of Φ̃1(0) = 10−4

and Φ̃2(0) = 5 × 10−5, together with an unstable solution of Φ̃1(0) = 10−4 and

Φ̃2(0) = 10−2. On top of the quasi-normal mode, there is no sign of decay after

∼ 100m−1 in the stable scenario while the field with the unstable configuration

decays considerably.

6.1.5 Mass Profile of the BEC Structure

With the solution to Eq. (6.13) in hand, one can derive the physical properties of

the BEC system. The total mass of the BEC system is found by integrating the

T 0
0 component of the energy momentum tensor

MBS ≡ 4π

∫ ∞
0

drr2T 0
0

= 4π

∫ ∞
0

drr2

(
µ2

1

2B
Φ2

1 +
1

2
m2

1Φ2
1 +

1

2A
∂rΦ

2
1 +

1

4
λ1Φ4

1+

µ2
2

2B
Φ2

2 +
1

2
m2

2Φ2
2 +

1

2A
∂rΦ

2
2 +

1

4
λ2Φ4

2 +
1

4
λ12Φ2

1Φ2
2

)
.(6.14)

In the linear regime, i.e. non-relativistic limit, this reduces to the sum of the rest

mass from the two scalars: MBS ≈M1+M2 = m1N1+m2N2+O(B−1)+O(1−A),

with the subscript BS standing for BEC system. The compactness of the BEC
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Figure 6.1: From top left clockwise: 1) time snapshots of the wave

function of a stable configuration being radially perturbed ψ → ψ(1+ε),

with the vertical axis showing the sum of the modulus squared of the

wave functions for Φ1 and Φ2 for λ1 = λ2 = λ12 = −1. 2) Same plot for

an unstable configuration by increasing the central density controlled by

Φ1(0) and Φ2(0). The wave function diverges quickly after a short time.

3) Unstable configuration in time domain shows the BEC collapsing

within a short time period. 4) Stable configuration in time domain

shows the system having small oscillation but maintaining a stable

configuration. All the radial perturbations are done with ε ∼ 2%. The

stable configuration is chosen as Φ̃1(0) = 10−4 and Φ̃2(0) = 5× 10−5;

the unstable configuration Φ̃1(0) = 10−4 and Φ̃2(0) = 10−2.
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system is defined as the mass-radius ratio in natural units

CBS =
GNMBS

R90

(6.15)

where R90 is the radius that contains 90% of the total mass. Similar to the mass

components, in the limit of small interaction between Φ1 and Φ2, we can also define

C1 and C2 as the compactness of the BEC component corresponding to Φ1 and

Φ2, respectively. For a given set of model parameters, (λ,m), in the single scalar

scenario, the mass and compactness are solely determined by a single variable,

Φ(r = 0), which is related to the central density of the BEC system. As a result,

the compactness is a function of mass. In the case of two scalar BEC, this is no

longer true. One can find solutions with different combinations of Φ1(0),Φ2(0),

which essentially enlarges the parameter space to being 2-dimensional. The mass

profile in the CBS −MBS plane is no longer a curve, but a 2D region. A detailed

analysis for various BEC mass profiles will be given in the results section of

Section 6.2 and 6.3 respectively.

6.1.6 Non-Relativistic Limit

Although we solve the system in the full relativistic regime, expanding in the

weak gravity limit can bring insights to various properties of the system. The

waveforms of Φ1 and Φ2 should decay to zero as r →∞. We also expect that the
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metric becomes non-relativistic for large r such that

A(r) = 1− 2V (r)

B(r) = 1 + 2V (r)

V (r) = −GM(r)

r
= −G(M1(r) +M2(r))

r
. (6.16)

We adopt the following ansatz for the wave function, which is verified by the

numerical computation to hold well enough at sufficiently large radius.

Φi =

√
Ni

πmiR3
i

e−r/Ri (6.17)

where Ni is the total number of particles for either Φ1 or Φ2 and Ri is characteristic

size of each BEC clump. Using this non-relativistic ansatz, we may integrate

each term individually in Eq. 6.14 and combine terms to give the non-relativistic

Hamiltonian. In the weak gravity limit, one can parametrize the eigenvalues as

µi = mi (1− αV (r)) . (6.18)

Matching to the non-relativistic results in the leading terms, we found α = 5/4

reproduces the self-gravity term as in the single scalar case [167]. We can then

write out the Hamiltonian as

Hkin = +
N1

2m1R2
1

+
N2

2m2R2
2

Hint = +
λ1N

2
1

32πf 2R3
1

+
λ2N

2
2

32πf 2R3
2

+
λ12N1N2

4πf 2 (R1 +R2) 3

Hgrav =− 5Gm2
1N

2
1

16R1

− 5Gm2
2N

2
2

16R2

− Gm1m2N1N2

Reff

Hmetric =− 5GN2
1

16R3
1

− 5GN2
2

16R3
2

− GN1N2

R̃3
eff

(6.19)
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with

1

Reff

=
5

8R1

+
5

8R2

− 1

R1 +R2

− R1R2

(R1 +R2)3
,

1

R̃3
eff

=
m1(4R1 +R2)

m2(R1 +R2)4
+
m2(R1 + 4R2)

m1(R1 +R2)4
.

We can immediately recognize the familiar form of kinetic terms, self-interaction

terms, self-gravity terms, and the first two terms in Hmetric, which are due to

the kinetic term in the curved space-time consistent with the result in [167, 178].

However, the Hamiltonian also contains a term proportional to λ12N1N2 that is

due to the non-gravitational interaction between the two scalars. In addition,

there are terms proportional to GNM1M2 due to the gravitational interaction

between the two scalars which are not present in the single scalar case. One

recovers the one scalar result if either N1 or N2 is set to zero. In the limit of

λ12 → 0 and R1, R2 ∼ R, 1/Reff reduces to (5/8R), which is consistent with the

result of [381] up to the Hgrav term.

A discussion based on the Hamiltonian is in order. In the linear regime, one

can safely neglect the terms in Hint and Hmetric. Without loss of generality, when

N1 � N2, the gradient term will balance the gravity term Eq. 6.19 to give

N ≈ N1 ∝
M2

Pl

m3
1R1

. (6.20)

Whether Φ1 or Φ2 dominates is solely determined by the central value, Φ1(0) and

Φ2(0). Therefore, we have

MBS ∼


M2
Pl

m1

√
C, N1 � N2

M2
Pl

m2

√
C, N2 � N1

(6.21)
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It is expected that when one goes from the Φ1-dominating regime to Φ2-dominating

regime, the M −C relation will smoothly transition from one to the other. This is

verified by the numerical computation and shown in Fig. 6.2. This has interesting

implications for the solitonic core, in the context of galactic scale BEC. We will

discuss this feature in more detail in Section 6.2. Note that we only show the

result with m2/m1 = 1/2 due to the numerical complexity, but in principle the

result should hold for much larger scalar ratios. This means that by adjusting

the central densities of the two BEC components, Φ1(0) and Φ2(0), one can have

non-trivial mass profiles that cannot be mimicked by a single scalar BEC system.

In the nonlinear regime, the non-gravitational interactions are important. In

contrast to the single scalar case, we have three non-gravitational interaction

terms proportional to λ1, λ2, and λ12 respectively. It is known that a repulsive

self-interaction +Φ4 stabilizes the system [141, 165, 156, 167, 178], while the

attractive −Φ4 renders the system unstable once it goes to the nonlinear regime

[164, 156, 167]. In the two scalar system, we observe that a repulsive non-

gravitational interaction +Φ2
1Φ2

2 also stabilizes the system. This can be understood

by looking into the Hamiltonian of the system. In the nonlinear regime, the

important terms are the gravity potential and the nonlinear terms. We assume

Φ2 dominates the system, N2 > N1:

H̃(R2) ≈ λ̃2Ñ
2
2

8R̃3
2

+
λ̃12Ñ2Ñ1

8R̃3
2

− 5Ñ2
2

16R̃2

, (6.22)

where H = H̃m∆2, N = Ñ(m/MPl)
2∆, with ∆ being some large number for

normalization. If we start with λ̃1 < 0, λ̃2 < 0, λ̃12 > 0 (λ̃1 > 0, λ̃2 > 0, λ̃12 < 0),
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we observe that the BEC system can be stabilized (destabilized), respectively,

when the following condition is met:

Ñ1

Ñ2

>

∣∣∣∣∣ λ̃2

λ̃12

∣∣∣∣∣ . (6.23)

We demonstrate this both analytically and numerically in Fig. 6.3. This has some

interesting implications for boson stars. Contrary to the common understanding

that BECs resulting from −φ4 or Λ4(1− cos(φ)) potentials (e.g. axion stars) are

dilute, they can be stabilized up to high density if there are multiple of them and

different species interact with each other through a repulsive interaction.

In other combinations of λ’s, the presence of the coupling between the two

scalars can also offer unique features in the CBS −MBS curves in the non-linear

regime that are not possible in the single scalar limit. This has interesting

implications for the stellar scale BEC structure. We will discuss this application

in more detail in Section 6.3 and show the results for how the nonlinear regime is

changed by varying the model parameters, λ1, λ2, λ12, and m1,m2.

6.2 Galactic Scale BEC Structure

Having discussed the behavior of the two scalar BEC system, we now turn to

applications: the first being the implications at galactic scales. We first briefly

review the problem of using single scalar BEC to fit galaxy data. For details

one can refer to e.g. [6]. We then show that with the second scalar and the

transitioning behavior demonstrated in Section 6.1.6, both the best fit and the

data points themselves can be accommodated in the two scalar scenario.
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6.2.1 The Problem with a Single Scalar BEC

While the NFW profile describes dark matter halo density to good precision at

radii larger than ∼ kpc, it is known that at sub-kpc distances the densities of

typical galaxies approach constant values. Measurements of galaxy rotation curves

yield the profile of the core density and core size across galaxies of different sizes

[388, 389, 7, 6]. One can parametrize the density by

ρ(r) =
ρc

1 + r2/R2
c

, (6.24)

where Rc is the radius where the density drops to half of the central density. By

comparing with the measurement in [7], one can see the core size and core density

can be fitted by ρc ∝ 1/Rβ
c , with β ≈ 1.3 [6]. On the other hand, in a single

scalar system, the scaling behavior is completely fixed by the scalar potential and

dynamics can not change the mass-radius relation. For example, in the linear

regime, it is Hkin balancing with Hgrav, which gives the scaling shown in Eq. (6.20).

This translates to ρ ∼ 1/R4. Similarly, one can try different polynomial potentials,

and they result in different β’s, but none of them falls into 1 . β . 1.3 even

if one takes into account the scattering of the data. The values of the scaling

index β are summarized in Table 6.1. This poses a challenge to using ultralight

dark matter to address the core-cusp problem [6], which was one of the main

motivations of ultralight dark matter [390, 142]. As we have briefly discussed,

this problem can be understood as follows. When the system is composed of one
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Hkin φ4 φ6

Hgrav β = 4 β =∞ β = −2

−φ4 (β = 2) n/a β = 0

Table 6.1: The scaling index β for one scalar BEC with different

scalar potentials. In any given regime, the system is balanced by two

dominating terms, one in the top row and one from the left column.

Note that −φ4 balancing Hkin is not stable.

scalar, the Hamiltonian can be written as

H ≈ N1

2m1R2
1

+
λ1N

2
1

32πf 2R3
1

− 5Gm2
1N

2
1

16R1

− 5GN2
1

16R3
1

, (6.25)

which leads to a fixed M(R) relation. There is no room for the scalar dynamics

to alter this relation, as both mass and radius are parametrized by the φ(0).

6.2.2 Two-Scalar BEC to the Rescue

In this section, we first allow Φ1(0) and Φ2(0) to vary freely, and show that, while

maintaining radial stability, there is parameter space that can accommodate the

galactic data. We then comment on the implication for the dynamics of the two

scalars.

We note that in the case of a two scalar system with m1 6= m2, the curve in

the C −M plane is a smooth interpolation of the mass profile of each scalar as

shown in Fig. 6.2. Scanning over the Φ1(0)− Φ2(0) space gives us a region in the

C −M plane, with one-to-one correspondence of each (Φ1(0),Φ2(0)) point to a
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(C,M) point. On the other hand, galactic data points can be fit with a curve of

M ∼ C2.4, i.e. ρ ∼ 1/R1.3. Therefore, by looking at the (Φ1(0),Φ2(0)) to (C,M)

correspondence, one can find the one-dimensional curve that reproduces the best

fit of the data. We show this explicitly in Fig. 6.4. We observe that a curve

in Φ1(0),Φ2(0) space can accommodate the best fit. In particular, we observe

the mass profile of the total BEC is mostly dominated by one component if the

component weighs more than 75% percent of the total mass. This indeed is a

useful criteria in determining the dominant BEC component, as starting from this

point the compactness is mainly determined by the dominant species. We show

this in the right plot of Fig. 6.4.

As we discussed in Section 6.2.1, with two scalars one can accommodate the

galactic data points even after taking into account the scattering of the data set,

instead of just the ρ ∼ 1/R1.3 curve that best fits the data points. This can be

done with the following procedure: we overlay the galactic data points with the

numerical scan in the C −M space (or equivalently in the ρ− R space.) Then

for each data point we can find a numerical point that is identical up to the scan

resolution. We can then go back to the Φ1(0),Φ2(0) space and identify the value

for the Φ1(0),Φ2(0) pair needed to reproduce this data point. The result is shown

in Fig. 6.5.

We emphasize that, however, this does not mean the two scalar BEC can

accommodate any galactic data, or lacks predictability. While our approach

only considers radial stability and existence of solutions of the BEC system, this

exercise translates the galactic data to a requirement of the field value in the
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classical field configuration space. This requirement, shown in the right panels

of Figs. (6.4-6.5), can be further constrained after the two scalar dynamics is

taken into account. In addition, because of the extra scalar, there could be new

constraints specific to the two scalar system, such as that related to the relaxation

time scale. Since in this work we focus on the radial stability of the BEC system,

we leave the study dedicated for constraining the two scalar BEC with galactic

data for the future.

Lastly, we can extrapolate the numerical scan to the scenario where two scalars

have a larger mass ratio. Given that we know the BEC system behaves like a

single scalar when Φ1(0)� Φ2(0) or vice versa, we can estimate how big a mass

ratio is needed to accommodate all the data points. The extrapolation result is

shown in Fig. 6.6 with m1 = 2× 10−24 eV and m2 = 2× 10−21 eV. This can be

further used to constrain the two scalar model. At its face value, it seems that

Lyman-alpha [391, 392] and subhalo mass function[150] might heavily constrain

the lighter of the two scalar. However, it is known that the nonlinear interaction

terms could play an important role in the evolution of cosmic perturbation and

structure formation [132, 393, 140]. The extrapolation shown in Fig. 6.6 is in

m1/m2 ∼ O(10−3). If one fixes the radius, the BEC ratio M1/M2 needs to change

three orders of magnitudes to go from φ1 dominating the system to φ2 dominating

the system. More specifically, one needs that at Rc ∼ 10 kpc, scalar one dominates,

and at Rc ∼ 0.5 kpc scalar two dominates.

To summarize, we stress three points that distinguish two scalar BEC from

the single scalar BEC at the galactic scale: 1) With a single scalar, the mass and
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radius of the BEC is fixed by the scalar potential instead of scalar dynamics. As

a result, it is highly nontrivial to find a potential that reproduces β ≈ 1.3. This

is verified by checking different combinations of potentials. This is no longer the

case with two scalar BEC as we have a two-dimensional parameter space. In

this case, both the scalar potential and the ratio of the two components (hence

scalar dynamics) affect the BEC’s mass-radius relation. 2) In the single scalar

BEC, it is even harder to accommodate the scattering of the points, even if one

manages to find a potential that reproduces ρ ∼ 1/R1.3, other than attributing it

to observational errors. In the two scalar scenario, it is natural to have a scattering

due to dynamics that leads to a fluctuation of Φ1(0)/Φ2(0) from the best fit curve.

6.3 Stellar Scale BEC Structure

Having discussed galactic scale BEC, we now turn to the properties of two-scalar

stellar scale BECs.

Whether it is possible to stabilize a BEC system determines how dense the

system can become before it is destroyed by self-gravity. In the single scalar

scenario, there is only one way to support gravity to form C ∼ O(0.1) dense

objects: by using repulsive +φ2n potentials, whose model realizations have been

shown to be non-trivial but possible [140]. Because of the presence of a second

scalar, and non-gravitational interactions for both scalars and between them, we

show that there are two new ways to support such systems to become dense
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enough. This could be relevant for gravitational wave signals from their binary

mergers at LIGO-Virgo and LISA.

6.3.1 Non-gravitational Interaction between Two Scalars

In Section 6.1.6, we have already seen that the BEC structure can be drastically

affected by the interaction +φ2
1φ

2
2 term. This has significance for exotic compact

searches at stellar scale, such as binary mergers at LIGO and LISA. In this

section, we show more details on the effect of non-gravitational interactions in

the nonlinear regime, with different combinations of λ1, λ2, λ12. Among them, the

most interesting case is λ1 < 0, λ2 < 0, λ12 > 0. Without the non-gravitational

interaction proportional to λ12, neither φ1 or φ2 can form a BEC system that

is compact enough to be detectable say at LIGO through gravitational wave

radiated by the binary mergers. However, +φ2
1φ

2
2 provides pressure to support the

gravitational collapse such that the system can be much denser as demonstrated

in Fig. 6.7. This is consistent with the analysis in Eq. (6.22).

In the case of −φ2
1φ

2
2, we note that just as the non-gravitational self-interaction

counterpart−φ4, it renders the system unstable once this term becomes important.

This can also be understood using Eq. (6.22). The effect is observed in the

numerical solutions shown in Fig. 6.8.

We now comment on the difference between φ2
1φ

2
2 and φ4 types of interactions,

and their impact on the resulted boson stars. One might think that if φ1 ∝ φ2

everywhere, this two types of interactions are quite similar. However, this is

rarely the case. At stellar scale, the formation history of BEC is highly nontrivial.
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In lack of a simulation, there is no reason to believe φ1, φ2 populate in every

place proportionally. In the case of V ∼ −φ4
1 − φ4

2 + φ2
1φ

2
2, for example, there

could exist boson stars consisting mainly φ1 and those consisting mostly φ2 due

to their separate fragmentation history [379]. Neither of the two types would be

detectable because of the −φ4 potential. However, when the two stars merge, the

interaction between the species now can support the self-gravity and allow the

star to acquire more material to become denser, up to a point that it is detectable

at LIGO/Virgo. In the case of V ∼ +φ4
1 + φ4

2 − φ2
1φ

2
2, on the other hand, the

stars consisting mostly φ1 or φ2 could be very dense. However, unlike the single

scalar BEC, the maximal compactness of either type is not capped by the metric

fluctuation, but the term −φ2
1φ

2
2. When two boson stars of kinds merge, it is more

likely to result in an unstable BEC due to the −φ2
1φ

2
2 term. In this case, one would

not expect there remains a final boson star, but instead a phenomena dubbed

Bosenova [132] could happen. Even before the two finishes merging, the resulted

BEC system goes beyond the critical maximal mass, due to −φ2
1φ

2
2. This could

lead to gravitational wave different from those from single scalar φ4 BEC mergers

[167, 173]. As described in [379], attractive self-interaction leads to fragmentation,

it is only natural to expect an attractive interaction between the two scalars could

also lead to fragmentation, but only when BEC’s of different types encounter.

This could lead to novel nonlinear behaviors in boson star formations. In both

scenarios above, we see the difference between φ2
1φ

2
2 and φ4 boson stars related to

their formation history.

On the aspect of observation, φ2
1φ

2
2 boson stars are also quite distinct from φ4
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boson stars. From Eq. (6.22), one can see that when φ4
2 term balances self-gravity,

it leads to the usual mass curve, M ∝ C. However, when φ2
2φ

2
1 balances self-gravity

with φ1 being a sub-component, the mass curve is

M ∝M
1/3
1 C2/3. (6.26)

When the sub-component M1 is fixed, the mass curve is different from a +φ4 BEC

system. On the other hand, due to the non-linear effect of gravity at small scales,

one naturally expect the φ1 component, M1 to vary from star to star. As a result,

we expect some scattering around this mass curve, which is another feature that

φ4 mass curve does not have.

On the aspect of model building, as we will show in the following sections,

ultralight scalars with interaction between multiple species can be achieved natu-

rally. It is shown in [140] that it is nontrivial to build a +φ4 theory. Given that

axions/ALPs all have a −φ4 interaction, we show that they can indeed lead to

compact BEC structures if there are extra interactions - such as +φ2
1φ

2
2 - that

arises naturally from collective symmetry breaking and stabilizes the system, it

could lead to dense axion stars. This hints for a different class of models compared

to those that lead to a +φ4 theory.

6.3.2 Implication for Gravitational Wave Detection

In the past, LIGO-Virgo have observed numerous binary black hole mergers and

a few neutron star mergers. Besides the tests of GR, there have been studies on

probing new physics by detecting binary mergers consisting of exotic compact
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objects [153, 167, 375, 178, 195] to name a few. While axions are well studied

and motivated in particle physics, the compactness of axion stars is far below

LIGO sensitivity, which renders a direct detection of axion star binary mergers

impossible4. This changes when one takes into account extra scalars with non-

gravitational interactions between them. As we have shown in Section 6.3.1,

a repulsive +φ2
1φ

2
2 can support the system made of two axions up to O(0.2)

compactness, a behavior that was only known to exist in repulsive self-interaction

system [167].

For a generic binary system, the gravitational wave during its inspiral phase is

fGW =

√
M1 +M2

π2`3
, (6.27)

where M1,M2 are the masses of each inspiral object, ` the major semi-axis.

Assuming equal mass system, the innermost stable circular orbit (ISCO) happens

at ` = 6R, with R being the radius of the star. The gravitational wave frequency

at ISCO can be expressed as

fISCO =

√
2M

π2(6R)3
=

C3/2M2
Pl

2π · 33/2M
≈ 50 Hz

(
M�
M

)(
C

0.04

)3/2

. (6.28)

From the ISCO frequency one can extract the size of each object. The signal

strength in frequency space is given as [395]

h̃(f) =

(√
5/24G

5/6
N

π2/3c3/2

)
M

5/6
c

f
7/6
GWDL

ISCO≈ 7.2× 10−24Hz−1

(
M

M�

)2(
C

0.04

)−7/4(
DL

100 Mpc

)−1

, (6.29)

4It is noted that [394] argues that there exist a dense branch for axion stars, yet [159] shows
the lifetime of the dense branch is too short.
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where the second line is estimated at fGW = fISCO. The signal-to-noise ratio

(SNR) is computed as

ρ2 = 4

∫ fISCO

0

|h̃(f)|2
Sn(f)

df, (6.30)

where Sn(f) is the detecor noise power spectral density [396]. We require ρ > 8

for a possible detection. The LIGO sensitivity band is shown in Fig. 6.9, together

with the mass-compactness profile of the BEC objects. It is observed that with

a single axion-like particle (−φ4 self-interaction) the BEC structure is far from

LIGO sensitivity band, while a repulsive interaction between the two scalars

supports the system to O(0.2) region that is relevant at LIGO.

With gravitational wave detectors LIGO-Virgo finishing O3 and being upgraded

for higher sensitivity, KAGRA [397] started the observation run, and LIGO-India

planned to join the network in the near future, we emphasize that this serves as

an example that the interferometry facilities have potential to probe fundamental

particles and interesting interactions beyond gravity.

Intriguingly, LIGO-Virgo have recently detected a compact binary merger

event (GW190521) with a total mass of 150 M� [398, 399], with the primary mass

85+21
−14 M� falling in the mass gap predicted by pair-instability supernova theory,

65 − 120 M�. In Fig. 6.9, we show that a BEC system made of two scalars of

mass ∼ 10−11 eV can produce compact structures in the range of 100 M�. While

a dedicated analysis is needed to investigate its GW signals in our model, it is

shown that certain types of boson stars could potentially reproduce the event

[400].
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6.3.3 Comparison with previous work

Before we move on to the particle model, we briefly discuss the relation and

differences with previous studies on multiple species BEC [381] and [380]. In

[381] the scenario of multiple axions are discussed in details. We list the main

differences between this work and [381] and comment on them in more details.

• the analysis of [381] is performed in the non-relativistic limit, while we solve

the full EKG system;

• between different species [381] assume they only interact gravitationally,

while we allow interactions ∝ |φ1|2|φ2|2;

• analytical approximation to the solution of Schödinger-Newton equation is

carefully studied by [381] while we solve the EKG system both numerically

and analytically.

We note that the first two points are relevant when the field value is large. In

particular, the first point captures the GR effect so that it allows us to apply the

method to both the galactic scale BEC and the stellar scale. We also observe that

in Eq. (6.19) our Hamiltonian precisely reproduces the result of [381] (Eq. 2.15

therein) in the limit R1 ≈ R2. When R1 6= R2, we have O(1) difference due to the

choice of our anzats. We stress that we contain higher order terms Hmetric ∝ G/R3,

which have the origin of metric perturbation beyond Newtonian gravity, hence

only shows up when one solves the EKG system. This is discussed in [167] with a

single species.
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Astrophysical implications of multiple axions are discussed in [380]. We note

a few differences compared to this work.

• The work of [380] uses the so-called independent approximation, which

treats solitons of different sizes separately. This allows them to go in to a

regime where the mass of the heaviest one is four orders of magnitude larger

than the lightest one.

• Similar to [381], [380] uses the Newtonian limit.

• [380] assumes the scalars only interact gravitationally.

• The observational data include the Fornax Galaxy, central Milky Way; Ultra

Faint Galaxies; and globular cluster 47 Tuc. In this work our fit at galaxy

scale is motivated by [7].

• [380] also performs a Bayesian analysis to fit with the scalar mass, with the

presence of extra nuisance parameters from the astrophysical environment.

6.4 Model Realization

In this section we discuss how multiple light scalars with repulsive interactions

between them can be realized from the point of view of particle physics model

building. It is well known that light scalars can be generated by identifying them as

pseudo-Nambu-Goldstone bosons (pNGB) after the spontaneous breaking of some

approximate global symmetry. Applications of this idea related to addressing the

electroweak hierarchy include leveraging breaking patterns such as SU(5)→ SO(5)

218



[401], SU(3)× SU(3)→ SU(3) [402], SU(6)→ Sp(6) [387], and SO(6)→ SO(5)

[403], to name a few. It was shown in [140] that similar collective symmetry

breaking mechanisms can be used to generate repulsive self-interaction in the

context of ultra-light dark matter, and potentially a large separation between

the scalar mass and the symmetry breaking scale, which is needed to ensure the

interaction between the scalars remains weak. We show that this can be extended

to the two scalar scenario, which leads to a repulsive interaction between the two

light scalars while being technically natural.

After spontaneous symmetry breaking of a global symmetry, such as SU(6) to

Sp(6) in [387], one could end up with the following effective potential

c1f
2

∣∣∣∣s+
i

2f
[φ†2φ1]

∣∣∣∣2 + c2f
2

∣∣∣∣s− i

2f
[φ†2φ1]

∣∣∣∣2 , (6.31)

where s, φ1, φ2 are pNGB living in the quotient group, SU(6)/Sp(6) in this

example, and c1,2 dimensionless coefficients that can be naturally small yet positive.

s is a singlet under gauge transformations, while both φ1 and φ2 are gauge

multiplets, doublets of two SU(2)’s in the specific case. [φφ] indicates a proper

contraction with the gauge indices. One can see that each of the two terms in

Eq. (6.31) preserves a direction of the infinitesimal global transformation:

φ1 → φ1 + ε1,

φ2 → φ2 + ε2,

s→ s− i

2f
([ε†2φ1] + [φ†2ε1]) (6.32)
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for the first term, and

φ1 → φ1 + ε1,

φ2 → φ2 + ε2,

s→ s+
i

2f
([ε†2φ1] + [φ†2ε1]) (6.33)

for the second term. Equation (6.31) generates a mass for the singlet s to be

m2
s ∼ f 2(c1 + c2). Integrating out the scalar s, we have a interaction between φ1

and φ2 at tree level

Vint(φ1, φ2) ∼ c1c2

c1 + c2

|[φ†2φ1]|2. (6.34)

Mass terms for φ1 and φ2 are generated at one loop level,

Vm(φ1, φ2) ∼ m2
1|φ1|2 +m2

2|φ2|2 +m2
12([φ†1φ2] + h.c.), (6.35)

where

m2
1 ∼ m2

2 ∼
c1c2

16π2
f 2, (6.36)

where we neglect the logarithmic part that is ∼ O(1). Choosing a small c1,2 leads

to a large separation between the symmetry breaking scale and the scalar mass.

The low energy potential is V = Vm + Vint. When m12 → 0, the system has a

total of four complex scalars that enjoy two separate U(1)’s, with generator θ1

and θ2:

φ1 → e+iθ1 φ1,

φ2 → e+iθ2 φ2. (6.37)
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We hasten to add that the model we have proposed, which falls under the genre

of “Little Dark Matter” models introduced in [140], is a proof-of-principle model

construct of two-scalar ultralight scalar system with a repulsive interaction.

6.5 Conclusion

In this paper, we have demonstrated interesting features in a two scalar BEC

system with spherical symmetry. We have developed numerical code to solve

the system exactly. We first verified its stability against radial perturbations by

performing numerical time evolution. We then went on to show two main features

of the system:

1) Galactic Scale: The difference of the mass of the two scalars allows us to

extend the BEC mass profile in the C −M plane from a curve to a region, hence

open up new parameter space. This is due to the fact that, with a fixed set of

theory parameters, [MBS(Φ1(0)), CBS(Φ1(0))] is extended to [MBS(Φ1(0),Φ2(0)),

CBS(Φ1(0),Φ2(0))]. We show that this has interesting indications to the problem

[6] that one scalar BEC cannot fit the dark matter core profile at the galactic

scale.

2) Stellar Scale: At the stellar scale with m ∼ 10−10 eV, we show that

the non-gravitational interactions between the two scalars Φ2
1Φ

2
2 can play an

important role in stabilizing the system up to high compactness. This is similar to

the fact that +φ4 self-interaction stabilizes the system and achieves compactness

C ∼ O(0.2). This has important implications for possible detections at LIGO-
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Virgo. In addition, with m1 6= m2, we show that the transitioning from Φ1

dominating to Φ2 dominating holds for different choices of λ′s. In particular,

in the case of λ1 · λ2 < 0, the stability is determined by the dominating scalar

with highest occupation number. This also hints at interesting phenomenology at

gravitational detectors such as LIGO-Virgo and LISA.

Based on our results, there are several interesting future directions. For

example: how does the presence of extra scalar(s) affect the cosmological evolution

compared to the single scalar scenario? Given that it is known non-gravitational

self-interaction can lead to an altered structure formation history as demonstrated

in [140, 393], the non-gravitational interaction between the two scalars will likely

also change the structure formation process. This might change the bounds on

ultra-light dark matter bounds derived from Lyman-alpha [391, 392] and subhalo

mass function [150].

In addition, with two scalars the BEC spans a region in the mass-compactness

plane instead of forming a curve. One could ask if all points in that region are

equally possible to form. The answer is likely negative as galactic scale dynamics

might affect the relation among the central density of each scalar. However,

addressing this issue is beyond the scope of this work, where our focus is on the

mass profile of stable BEC systems. Indeed, the two questions described above

may be related, and addressing them requires dedicated simulations. We leave

this for future work.
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Figure 6.2: The total mass vs compactness for various values of Φ1(0)

and Φ2(0) with λ1 = 1, λ2 = 1, and λ12 = 1. We scan Φ1(0) and

Φ2(0) to show the existence of stable solutions. The solid magenta

line corresponds to the single scalar limit with m = 5× 10−11 eV and

the dashed magenta line is the single scalar limit with m = 10−10

eV. The solid lines in between corresponds to m1 = 10−10 eV and

m2 = 5 × 10−11 with each curve corresponding to a different fixed

Φ1(0) and scanning over Φ2(0). We let Φ1 dominate first, and Φ2

starts to dominate the system at different places due to Φ1(0) fixed at

different values in blue, orange, green, and red curves. One can see

that the moment Φ2 starts to dominate, the curve transition from the

dashed to solid magenta as expected.
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Figure 6.3: Left: the rescaled Hamiltonian as a function of the BEC

radius R̃ in the nonlinear regime, and N2 > N1. In particular, we

observe that when there is no interaction between Φ1 and Φ2, it

behaves the same as the single scalar case where −Φ4
2 destroys the

local minimum so the system is not stable (blue curve). When (a)

there is a repulsive interaction λ12 > 0, and (b) the sub-dominant

scalar number, N1, is large enough, one can see the local minimum

is restored (green curve). This happens only when both conditions

are fulfilled. With only (a), the system still lacks local minimum

(orange curve). Right: The numerical solutions verifies the previous

analysis. As an example, we choose λ̃1 = 1, λ̃2 = −1, λ̃12 = 1. All

curves are generated by scanning over Φ2(0). The magenta curve is

with only Φ2 field. One can see the there are no more solutions beyond

CBS & 8 × 10−4 due to −Φ4
2 self-interaction. In the colored curves

we add a sub-component Φ1 with Φ1(0) fixed to the labeled value,

and again scan over Φ2(0). When the subdominant scalar Φ1 number

is large enough (green, red, purple), the system can becomes stable

again and one can find solutions at CBS > 10−3, consistent with our

analytical approximation. We scan Φ2(0) to show the existence of

stable solutions.
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Figure 6.4: Left and middle: this is one example numerical scan

over Φ1(0), Φ2(0) (blue points). Each blue point in the middle plot

gives a unique mass profile, i.e. a blue point in the left panel in

the C − M space. The orange line is the best fit taken from [6].

From the numerical data cloud we pick the points to reconstruct the

orange curve. These are shown as the red points in both panels. This

particular scan is conducted with m1 = 10−22 eV,m2 = 2× 10−22 eV,

and λ1 = λ2 = λ12 = 0. We scan Φ1(0) and Φ2(0) to show the

existence of stable solutions. Right: we show the transition region

from Φ1 dominating to Φ2 dominating by taking one slice of the scan

with fixed Φ1(0). One can see that indeed when one component mass

is more than 75% the total mass, the compactness of the system is

mostly determined by this mass component. We define the region

between the grey dotted region to be the transition region.
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Figure 6.5: We show the numerical scan (blue) in both C −M space

(left) and Φ1(0),Φ2(0) space (right). The red points are a few data

points taken from [7]. This particular scan is conducted with m1 =

10−22 eV,m2 = 2× 10−22 eV, and λ1 = λ2 = λ12 = 0. See the main

text for more details. We scan Φ1(0) and Φ2(0) to show solutions exist

while the system maintains radial stability.
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Figure 6.6: We extrapolate the numerical results to a larger mass

separation, m1 = 2 × 10−24 eV and m2 = 2 × 10−21 eV. The grey

region is what the two scalar BEC system covers with varying central

density determined by Φ1(0), Φ2(0). One can see that it not only

contains the best fit curve (orange) that represents ρc ≈ 1/R1.3
c , it also

incorporates the scattering of the data. The data points are from [7],

and fit adopted from [6]. We extrapolate the scalar mass gap m1/m2,

while use a range in the BEC fraction, M1/M2, comparable to our

numerical computations with smaller m1/m2 to show the existence of

stable solutions.
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Figure 6.7: The mass vs compactness for a scan over Φ2(0) for various

fixed Φ1(0). λ̃12 = 1 (left) is the same as right panel of Fig. 6.3, for

comparison with λ̃12 = 5 (right). The magenta curve corresponds

to the single scalar limit. All curves are generated by scanning over

Φ2(0). Different colors correspond to fixing Φ1(0) to different values.
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Figure 6.8: When λ̃12 = −5 (left) and λ̃12 = −10 (right). One can see

the extra interaction term can dominate over the kinetic term earlier.

Once it happens, the Hamiltonian loses its local minimum and the

system becomes unstable. All curves are generated by scanning over

Φ2(0). Different colors correspond to fixing Φ1(0) to different values.
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Figure 6.9: The orange bands correspond to the required C − M

region that can give SNR ρ > 8 needed for detection, given different

luminosity distances. The grey band corresponds to the region that

fISCO is in the LIGO sensitivity band, 50 Hz ∼ 1000 Hz. The red

curve is the mass-compactness profile of a single axion with attractive

φ4
1 with λ1 = −0.5. The blue curve is achieved by adding a second

axion to the red curve while fixing φ1(0) and varying φ2(0). The

interactions are λ1 = λ2 = −0.5, λ12 = +5. We only show part of the

curve due to computational complexity related to the stiffness in the

equations. The black and green curves are achieved by varying both

φ1(0) and φ2(0), with the same interactions as the blue curve. The

red and blue have mass set to 10−10 eV, the black 3× 10−10 eV, and

green 10−11 eV. The grey dashed line is a guide for the eye, to show

M ∝ C, the mass relation one expects from a single scalar +φ4 BEC.

One can see that indeed, when φ1(0) is fixed, the mass curve has a

slow smaller than one, as discussed in Eq. (214).
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Chapter 7

Testing Affleck Dine Baryogensis

7.1 Introduction

Generically, the Q-balls produced through the fragmentation of the Affleck-Dine

condensate are large and long-lived. Consequently, they may evolve as non-

relativistic matter, and eventually come to dominate the energy density of the

Universe. If the Q-balls decay rapidly, there is a sudden change in the equation

of state for the Universe. This results in rapidly oscillating scalar perturbations,

which enhances the primordial gravitational wave spectrum from inflation. This

is analogous to the so-called poltergeist mechanism, in which the sudden decay of

black holes also enhances the gravitational wave spectrum [404]. This is in contrast

to the case where gravitational waves are produced during the fragmentation of

the condensate, as it is typical that the condensate is a small fraction of the initial

total energy [405, 406]. Our proposed test is also potentially complimentary to

tests that consider predictions on the ratio of scalar to isocurvature perturbations

in D-term inflation [407] and the backreaction of the Affleck-Dine potential onto

the inflaton potential which can conflict with cosmic microwave background

constraints [408].

In this letter, we first argue that Affleck-Dine scenarios generically have

this epoch of early matter domination, and secondly, the Q-ball decay rate is

sufficiently fast to enhance the gravitational wave spectrum. In particular, the
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sudden transition avoids the suppression that occurs in a gradual transition

like Moduli decay [409]. The conditions for a fast transition are easily satisfied.

Analytical arguments and simulations show that the Q-ball mass distribution

is sharply peaked [187, 410, 411, 412]. Secondly, the charge quanta inside the

Q-balls decay to fermions. Q-balls decay when the decay rate per unit charge

is larger than the Hubble parameter. We show below that this is suppressed by

a surface area to volume factor, and therefore the decay rate per unit charge

accelerates as the Q-ball decays, similar to black hole decay.

Furthermore, avoiding an overabundance of gravitinos results in a gravitational

wave spectrum that is at sufficiently low frequencies to be observed. Finally,

although in this work we make no statistical claims, we present a variety of points

in parameter space where the Q-balls are sufficiently long lived to dominate the

energy density and produce a detectable gravitational wave signal. Thus, if such

a signal is observed, we can narrow the cause down to two known scenarios - an

early period of Q-ball domination, which is likely a consequence of Affleck-Dine

baryogenesis, or an early period of light primordial black hole domination [404].

7.2 Q-ball Induced Early Matter Domination

During inflation, the field Φ acquires a vacuum expectation value when averaged

over super-horizon scales [413, 414, 183, 415, 416]. At the end of inflation, it relaxes

towards its equilibrium value as the field fragments to form Q-balls [187, 182].

During the relaxation process, a charge excess is produced as the field VEV follows
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a curving path in field space, which is biased either clockwise or counter-clockwise

by the small CP-violating operator. However, as a higher dimensional operator,

it will also be sensitive to the initial post-inflationary VEV, which is subject to

random fluctuations during inflation. Consequently, some Hubble patches will

have an excess of Q charge while other have an excess of Q̄ charge. Therefore,

there are symmetric and asymmetric components to the initial Q-ball density.

After fragmentation, most of the condensate’s initial energy is contained in

Q-balls rather than individual particles, particularly if the couplings between

the scalar field and fermions is small [187, 410]. If the asymmetric component is

small (as is expected due to the smallness of the observed baryon asymmetry),

the symmetric component must then be large. We parameterize the asymmetric

component of the Q-ball energy density

r =
nQ̄ − nQ
nQ̄ + nQ

, (7.1)

and we expect r to be within an order of magnitude of the baryon asymmetry.

(This can also be understood as a consequence of a highly elliptical orbit during

relaxation, which simulations connect to a large symmetric component [412].)

In the thin wall regime, the vacuum expectation value inside the Q-ball can

be found by minimizing V (Φ2)/Φ2 where Φ parameterizes the flat direction in the

Affleck-Dine potential. The energy per unit charge of a single Q-ball is given by

ω =

√
2V (v)

v2
, (7.2)

where v is the VEV inside the Q-ball. (We discuss specific potentials in Ap-

232



pendix K.) The total initial energy in Q-balls after fragmentation is then

ρQ = Q0ωn0 (7.3)

where n0 ∼ NQH
3
0 is the initial number density of the Q-balls and Q0 is their initial

charge. Simulations suggest NQ ∼ 1000 for gravity-mediated SUSY scenarios and

NQ ∼ O(1) for most gauge-mediated scenarios, if higher dimensional operators

are negligible. However, in this scenario the resulting Q-balls are in the thick wall

(as opposed to thin wall) regime [411]. Although we focus on thin wall Q-balls in

this work, we note that scaling arguments suggest thick wall Q-balls are longer

lived and thus also can induce early matter dominated epochs (see Appendix K).

It is straightforward to derive a condition for the initial charge of the Q-balls

in terms of the initial baryon asymmetry YB0, r, and the reheating temperature

T0,

Q0 =
3YB0M

3
Pl

800
√

5π5/2g∗rT 3
0

. (7.4)

The initial Q-balls produced after fragmentation are typically quite large; in

our benchmark scenarios, the initial charges are above 1029. Consequently, they

will travel at non-relativistic speeds in the post-inflationary plasma. Then, if the

Q-balls live long enough, they dominate the energy density of the universe. We

can approximate the temperature of matter-radiation equality in the limit where

Q-ball decay is negligible as

Teq ∼
4YB0ω

3r
. (7.5)

Although long-lived, the Q-balls produced by the fragmentation of the Affleck-

Dine condensate are not absolutely stable; indeed, they cannot be since their
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conserved charge must be transferred to Standard Model particles. The sfermions

carrying the charge can decay to a quark (or lepton) and neutralino or chargino.

Expressions for the relevant coupling can be found in Ref. [417], although we will

parameterize the vertex in terms of an effective Yukawa coupling yeff .

This decay happens only at the surface of the Q-ball, for one of two reasons.

First, if the VEV of the squark or slepton fields inside the Q-ball (which carry

the charge) is significantly larger then the energy per unit charge ω, then the

large induced fermion masses can forbid the decay inside the Q-ball. The induced

masses of the Standard Model fermions have magnitude gv, where g = g3 for

quarks if the Q-ball is made of squarks and g = g2 for leptons if the Q-balls is

made of sleptons [418]. Therefore, if gv & ω, then the decay occurs only at the

surface of the Q-ball, where the VEV drops to zero.

Alternatively, if the decay is not forbidden, then decays in the interior of the

Q-ball rapidly fill up the Fermi sea. Thereafter, the Q-ball quanta decay only at

the surface as long as the diffusion time, tD ∼ 3R2/λ, is sufficiently long. The

mean free path is λ ∼ 1/σψφn, where number density n = 3Q0/(4πR
3) refers to

the density of scalar quanta inside the Q-ball. The diffusion time is shortest for

the highest momentum, which is ∼ ω/2 when the decay is energetically forbidden.

The diffusion time can then be approximated using the scattering cross section

σψφ ∼ g4
i /(ω/2)2, where gi ∈ (gY , g2, g3) depending on the Standard Model fermion

and sfermion involved.

For the benchmark points presented below, decays inside the Q-ball are

suppressed for the first reason. Regardless of the reason, the Q-ball evaporation
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rate is suppressed by the ratio of the surface area to the volume. Specifically, the

radius scales as Q1/3, so when the decay occurs only at the surface the decay rate

scales as Q2/3 instead of as Q. A Q-ball decays once the decay per unit charge

is larger than the Hubble parameter. We see that when decays occur only on

the surface, ΓQ−ball/Q ∝ Q−1/3, which means that it accelerates as the Q-ball

shrinks. Therefore, Q-ball decay is an effectively instantaneous decay, similar to

black holes [419, 404].

The charge depletion per unit time per unit area of a Q ball obeys the equation

[420]

dQ

dt dA
=
yeffvω

2

64π
(7.6)

where v is the field value of the condensate and yeff is the effective Yukawa coupling,

accounting for mixing angles. In the thin wall limit,

R =

(
3Q

4πωv2

)1/3

, (7.7)

which gives

ΓQ−ball

Q
=
yeffvω

2Q−1/3

16

(
3

4πωv2

)2/3

. (7.8)

For the Q-balls to decay after dominating the energy density, we must therefore

require ΓQ−ball/HQ
∣∣
T=Teq

� 1. Approximating the left side at Q = Q0, we find

the condition

0.178yeffr
7/3T0

Y
7/3
B0 ω

2/3(g∗v)1/3

(
1000

NQ

)1/3

� 1 . (7.9)

The large symmetric component r ∼ YB0 is vital due to the Y
−7/3
B0 factor, which

would otherwise make this condition difficult to satisfy. As expected, this prefers

small Yukawa couplings, which result in long-lived Q-balls.
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We emphasize that for our numerical analysis, we solved the differential

equation dQ/dt = −ΓQ−Ball(Q, T ). We also note that the initial baryon asymmetry

will be larger than it is today because the decay of the Q-ball dilutes the charge

asymmetry. The final asymmetry is given by

YB = YB0

(
1 +

4YB0

3r
Tdec

)−3/4

, (7.10)

where Tdec is the temperature at which the Q-balls decay and YB = 8.59× 10−11

as given by Planck [421].

Because the Q-ball mass fraction is sharply peaked at a single value and the

decay is effectively instantaneous, the scale factor and Hubble approximately obey

step function solutions

a(η)

a(ηR)
=


(

η
ηR

)2

2 η
ηR
− 1

, H(η) =


2
η

(η ≤ ηR)

1
η−ηR/2

(η > ηR)

(7.11)

where η is the conformal time; ηR is specifically the conformal time at which

radiation domination recommences.

7.3 Gravitational waves

We assume inflation generates a primordial scalar power spectrum of the form

Pζ(k) = Θ(kinf − k)As

(
k

k∗

)ns−1

(7.12)

for some cutoff scale kinf with ns being the spectral tilt, k∗ being the pivot

scale and As being the amplitude at the pivot scale. We take typical values of

As = 2.1× 10−9, ns = 0.97, k∗ = 0.05 Mpc−1 [421].
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Scalar perturbations grow with the scale factor during any matter domination

epoch, including the Q-ball dominated epoch mentioned above, which can in turn

induce gravitational waves [419, 409]. Our analysis of the induced gravitational

wave signal follows [409] and therefore we similarly work within the conformal

Newtonian gauge and assume Gaussian curvature perturbations.

If matter domination is sufficiently long, then perturbations at small scales

can enter the non-linear regime where a linear analysis is insufficient. Such non-

linearities become important at scales kNL ∼ 470/ηR, where ηR is the conformal

time at which the Q-ball-caused matter domination era abruptly ended. In this

work, we neglect the non-linear regime and therefore we restrict ourselves to

points in parameter space at which the maximum comoving mode enhanced by

early matter domination satisfies kmax . 470/ηR. We note that there may still

be detectable gravitational wave signals in the parameter space where this is not

satisfied, although we leave the analysis of the non-linear regime to future work.

Using the step function approximations given above, the power spectrum of

gravitational waves at conformal time η is [422]

ΩGW(η, k) =
1

24

(
k

a(η)H(η)

)2

Ph(η, k) (7.13)

where the time averaged power spectrum of the induced gravitational waves is

related to the scalar (curvature) power spectrum as

Ph(η, k) = 4

∫ ∞
0

dv

∫ 1+v

|1−v|
du

(
4v2 − (1 + v2 − u2)2

4vu

)2

×I2(u, v, k, η, ηRPζ(uk)Pζ(vk) . (7.14)
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In the above the time dependence of the gravitational waves is

I(u, v, k, η, ηR) =

∫ kη

0

d(kη)
a(η̄)

a(η)
kGk(η, η̄)f(u, v, kη, kηR) (7.15)

where the Greens function is the solution of the equation

∂2G(η, η̄)

∂η2
+

(
k2 − 1

a

∂2a

∂η2

)
G(η, η̄) = δ(η − η̄) (7.16)

and the source function has the form

f(u, v, kη, kηR) =
3

25(1 + w)

(
2(5 + 3w)Φ(ukη)Φ(vkη)

+4H−1 ∂

∂η

(
Φ(ukη)Φ(vkη)

)
+4H−2 ∂

∂η
Φ(ukη)

∂

∂η
Φ(vkη)

)
. (7.17)

In these equations w is the equation of state parameter and Φ is the transfer

function of the gravitational potential, which obeys the evolution equation [423]

∂2Φ

∂η2
+ 3(1 + w)H

∂Φ

∂η
+ wk2Φ = 0 . (7.18)

For a sufficiently quick transition from matter to radiation domination, we can

use the analytic formulae for the gravitational wave power spectrum in Ref. [419]

which we give in the supplementary material.

This rapid transition is necessary to produce the sharp peak through the

“poltergeist” mechanism [404]. During the early matter domination epoch, density

perturbations in non-relativistic Q-ball modes grow and form overdensities. The

Q-ball decay, which is rapid as compared to the Hubble time, converts these

overdensities into relativistically moving sound waves, which serve as sources of

gravitational waves. Gravitational waves exhibit a rapidly growing resonance
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mode which is amplified by interactions with a sound wave comoving at a certain

angle [424, 419, 404]. This resonance results in a dramatic enhancement at a

certain frequency, as can be seen in our Fig. 7.1. It is important that the transition

to radiation domination is rapid, because otherwise the overdensities dissolve

gradually and do not result in any relativistically moving modes.

7.4 Results

We present the gravitational wave signal for three sample points in parameter

space in Fig. 7.1. These were chosen to have Yukawa couplings similar in size

to those in the Standard Model; the precise values of the parameters are given

in Table 7.1. To retain generality, we specify the VEV v and energy density per

charge ω of the Q-balls, instead of specializing to a particular potential. Gravity

and gauge-mediation models which produce Q-balls with these properties are

discussed in Appendix K.

Calculated quantities, such as the equality and decay temperatures, for these

benchmark points are given in Table 7.2. We note that since ω is within one

order of magnitude of T0, the temperature at which Q-balls are produced, it is

self-consistent to neglect finite temperature corrections to ω, which are induced

via loop corrections.

The observable range is controlled by the proposed frequency sensitivity of

future gravitational wave detectors with high temperature probed by higher

frequencies. At present the highest frequency gravitational wave detectors with
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Figure 7.1: The gravitational wave signal for three benchmark scenar-

ios, which have effective Yukawa couplings similar to the Standard

Model bottom quark (red, dotted), up quark (olive, dot-dashed), and

electron (black, dashed). These clearly produce signals within the

reach of future experiments, which were taken from Ref. [8, 9] for

DECIGO with 3 units and an observation time of 1 year, Ref. [10] for

LISA with an observation time of 4 years, ref. [11, 12] for THEIA with

an observation time of 20 years, Ref. [13, 8, 14] for Einstein Telescope

with an observation time of one year, Ref. [15] for the Cosmic Explorer

and ref. [16] for SKA.
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ω (GeV) v (GeV) YB̄ r T0 (GeV) NQ yeff

6.66× 105 3.80× 1010 1.11× 10−8 1.56× 10−8 4.59× 106 1000 0.024

8.45× 105 1.92× 109 1.36× 10−8 2.76× 10−7 8.04× 106 1000 1.4× 10−5

9.95× 105 7.21× 109 2.10× 10−8 1.38× 10−6 3.56× 106 1000 2.9× 10−6

Table 7.1: Parameters used in our three benchmark points in Fig. 7.1.

In addition to the Q-ball parameters ω and v, YB is the initial charge

asymmetry after fragmentation which occurs at temperature T0, NQ

is the average initial number of Q-balls per Hubble volume after

fragmentation, and r ∼ YB is the ratio of the asymmetric component.

Note that the Yukawa couplings are equal to that of the Standard

Model bottom quark, up quark, and electron in the top, middle, and

bottom rows. Additionally, we have taken g∗ = 106 in our analysis.

enough sensitivity are the Cosmic Explorer [15] and the Einstein Telescope [425]

although higher frequency proposals are a promising work in progress [127]. We

see that DECIGO has particularly good coverage of our expected signal.

There is a modest trend for points with smaller Yukawa couplings to decay

later and therefore to have lower frequency peaks. For the signal to be observable,

the Q-balls must decay when the temperature falls in the range 20 GeV <

Tdec < 2 × 107 GeV. The upper bound is frequently satisfied even for large

reheating temperatures, although a low reheating temperature is often preferred

to avoid overproduction of gravitinos, though the exact bound on the reheating

temperature depends on the mass of the gravitino [426, 427, 428, 429]. We have

imposed TR < 107 GeV for all benchmarks.
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Q0 Teq (GeV) Tdec (GeV)

1.14× 1031 6.34× 105 1368

1.47× 1029 55520 138

5.18× 1029 20050 458

Table 7.2: Calculated quantities for the three benchmark points in

7.1. Teq is the temperature of Q-ball-radiation equality and Tdec is the

temperature of Q-ball decay.

7.5 Conclusions

As a high-scale phenomenon, it is difficult to observationally confirm Affleck-Dine

baryogenesis. We have shown here that broad class of Affleck-Dine models produce

a detectable gravitational wave signal within the range of the Einstein Telescope

and/or Decigo. Such signals are a consequence of the sudden end of an early

matter-domination epoch, which occurs if the Q-balls from the fragmentation of

the Affleck-Dine condensate are sufficiently long-lived. A low reheating tempera-

ture, motivated by the gravitino problem, ensures a signal within the observable

frequency range, but we find that this is not a requirement. Thus, if a signal

is indeed observed, we can narrow the cause down to two known scenarios- an

early period of Q-ball domination, which is a natural outcome of Affleck-Dine

baryogenesis, or an early period of light primordial black hole domination [404].
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Appendix A

The Example Effective Potential

Here we provide details of the example effective potential used in Sec. 4.3, so

that those results can be reproduced more easily. The effective potential was

originally used as a high temperature approximation for the standard model (see,

e.g., Ref. [17]), given by

V (φ, T ) = D(T 2 − T 2
0 )φ2 − ETφ3 +

λ

4
φ4. (A.1)

Here D > 0, E > 0, λ > 0 and λ has a weak dependence on T . The first term has

a positive coefficient when T > T0 to restore the symmetry. The third, the cubic

term, when is sufficiently smaller, helps create a barrier together with the first

term, and creates another minimum. Since this example is only used to provide a

simple benchmark effective potential to show the effects of the expansion of the

universe, we will take these parameters to be T independent. It should be noted

that an effective potential of this form can characterize features of a wide class of

beyond the standard model scenarios in the high temperature approximation. We

will use this effective potential to calculate bounce solutions and corresponding

parameters relevant for the phase transition.

Though there are four free parameters for this simple effective potential, a

rescaling of both the coordinates and the scalar fields allows to reduce to only

one dynamical parameter [17]. The rescaled fields and coordinates are defined as
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Figure A.1: Left panel: the bounce solutions for the example effective

potential with rescaled fields and coordinates used in this work for

different choices of σ, with the color-map denoting values of σ. Right

panel: comparison of the corresponding S3(T )/T obtained with differ-

ent packages and the analytical fit provided in Ref. [17].

Φ = 2ETφ/M2 and X = Mx. The Lagrangian then becomes

L =
M6

4E2T 2

[
1

2
(∂XΦ)2 − 1

2
Φ2 +

1

2
Φ3 − 1

8
σΦ4

]
, (A.2)

where σ ≡ λM2/(2E2T 2) 1. The behavior of the effective potential for the rescaled

fields during the phase transition is solely controlled by σ. When σ < 9/8, a

second minimum develops at the temperature

T =

√
T 2

0

1− 9E2

8λD

. (A.3)

When σ = 1, this minimum is degenerate with the one at the origin, which

corresponds to a critical temperature of

Tc =

√
T 2

0

1− E2

λD

. (A.4)

Therefore for the rescaled field Φ and coordinate X, there is essentially one

parameter σ that determines the shape of the potential. Calculating the bounce

1This is of course different from the σ defined in Eq. 4.102
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solution and S3 for all choices of σ is sufficient to cover the full parameter space

of the original four parameters. Define the S3 action for the rescaled fields and

coordinates as S̃3(σ), then the action S3(T ) for the original four parameter theory

can be obtained directly as

S3(T )

T
=

M3

4E2T 3
S̃3(σ). (A.5)

The bounce solutions for various choices of σ are shown in the left panel of

Fig. A.1 and the corresponding S3(σ) shown as red dotted and green dashed

lines for solutions solved from CosmoTransitions [281] and BubbleProfiler [373]

respectively. In this plot, there is also a purple curve, corresponding to the

analytical fit in Ref. [17]:

S̃3(σ) = 4× 4.85×
{

1 +
σ

4

[
1 +

2.4

1− σ +
0.26

(1− σ)2

]}
. (A.6)

We can see in the whole region plotted, the three results agree very well with

each other. So our results in previous sections can be followed by simply choosing

above analytical fit. For the example used in Sec. 4.3, T0 = 75GeV, E = D = 0.1

and λ = 0.2, which gives Tc = 106.066GeV.
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Appendix B

The Previously Derived Effective Lifetime of the

Source

Here we revisit the deviation that led to the conclusion that the effective lifetime of

the source is one Hubble time in a radiation dominated universe, as was originally

obtained in Ref. [68]. We will follow closely their notations, using the conformal

time η as variable instead of y, and using a∗ rather than as. Also we study both

RD and MD, though only RD is studied in Ref. [68].

We start with Eq. 4.17 and do the integrals over η̃1 and η̃2. We can keep only

the leading contribution by neglecting the highly oscillatory part in the Green’s

functions. This means for the trigonometric function, we keep only the parts with

argument (η̃1 − η̃2) and find

∂G(η̃, η̃1)

∂η̃

∂G(η̃, η̃2)

∂η̃

=
η̃1η̃2

2
×


η̃−2(1 + η̃−2) cos(η̃1 − η̃2),

η̃−4(1 + 3η̃−2 + 9η̃−4)[(η̃1 − η̃2) sin(η̃1 − η̃2) + (1 + η̃1η̃2) cos(η̃1 − η̃2)],

(B.1)

where the upper and lower row applies to radiation and matter dominated universe

respectively. Now switch integration variables from η̃1 and η̃2 to x ≡ (η̃1 + η̃2)/2

and z = η̃1 − η̃2. This results in the relation η̃1η̃2 = x2 − z2

4
. Under these
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manipulations, the power spectral density of h′ becomes:

Ph′ = [16πG
(
¯̃ε+ ¯̃p

)
Ū2
f ]2L3

f


η̃−2(1 + η̃−2)

η̃−4(1 + 3η̃−2 + 9η̃−4)


∫
dx

∫
dz

1

k2

η̃1η̃2a
8
∗

a2(η1)a2(η2)

×1

2


cos z

z sin z + (1 + x2 − z2

4
) cos z

 Π̃2(L̃f , η̃1, η̃2). (B.2)

Here L̃f ≡ kLf . The expression can be reorganized to show the correct dependence

on a(η) and we have for the correlator of ḣ:

Pḣ =
a6
∗

a4(η)

1

k2
[16πG

(
¯̃ε+ ¯̃p

)
Ū2
f ]2L3

f


1 + η̃−2

1 + 3η̃−2 + 9η̃−4


∫ η̃

η̃∗

dx

∫
dz

×1

2


η̃2∗

x2−z2/4

η̃4∗
(x2−z2/4)3




cos z

z sin z + (1 + x2 − z2

4
) cos z

 Π̃2(L̃f , η̃1, η̃2).(B.3)

As we have seen the source is largely stationary, that is, the correlator Π̃2(L̃f , η̃1, η̃2)

depends only on z but not on x. Then it can be written as Π̃2(L̃f , z). Also the

autocorrelation time z is very small compared with the Hubble time, so we can

neglect the z dependence on the denominators in the first curly bracket and keep

only the x2 term for MD in the second curly bracket, which then allows the

integration over x, giving

∫ η̃

η̃∗

dx
1

x2
=

1

η̃∗
− 1

η̃
,

∫ η̃

η̃∗

dx
1

x4
=

1

3
(

1

η̃3
∗
− 1

η̃3
). (B.4)

Here is where things become subtle. The second term for RD is neglected in

Ref. [68]. This leads to a result that corresponds to the asymptotic value Υ = 1

for RD, and as we have seen the short duration of the source does not allow to
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neglect this term. Lets continue to reproduce the result of Ref. [68] by keeping

only the first term. This gives

Pḣ =
a6
∗

a4(η)

1

k2
[16πG

(
¯̃ε+ ¯̃p

)
Ū2
f ]2L3

f


1 + η̃−2

(1 + 3η̃−2 + 9η̃−4)/3

 η̃∗

×
∫
dz

cos(z)

2
Π̃2(L̃f , z)

=
a4
∗

a4(η)
[16πG

(
¯̃ε+ ¯̃p

)
Ū2
f ]2L3

f


1 + η̃−2

(1 + 3η̃−2 + 9η̃−4)/3

 (a∗η∗)(a∗Lf )P̃GW(kLf ).

(B.5)

In the second line, the following definition is used:

P̃GW(kLf ) =
1

kLf

∫
dz

cos z

2
Π̃2(L̃f , z). (B.6)

The variables appearing in above equations can further be reorganized so that we

have a result similar to Eq.(A10) in Ref. [68]:

PGW(t, k) = 3Γ2Ū4
f

(
a4
∗
a4

H4
∗R

H2H2
∗

)
1 + η̃−2

(1 + 3η̃−2 + 9η̃−4)/3


×(H∗a∗η∗)(H∗a∗Lf )

(kLf )
3

2π2
P̃GW(kLf ). (B.7)

For RD, H∗a∗η∗ = 1 and a∗Lf is the physical length scale (L∗f in Ref. [68]). If we

also neglect the variation of the Hubble rate from H∗ to H, and since in this case

H∗R = H∗, and also neglect the terms suppressed by 1/η̃ in the curly bracket due

to the assumed relation η̃ � η̃∗, then the result for RD reduces to Eq.(A11) in

Ref. [68]. Because H∗a∗η∗ = 1 and also because the power spectrum in Minkowski

spacetime is proportional to H∗τsw, it is concluded in Ref. [68] that the effective
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lifetime is a Hubble time. This is true if indeed η̃ � η̃∗, but as we have seen it

requires many Hubble times for the asymptotic value to be reached. The sound

wave, however, is likely to be disrupted by the onset of shocks or turbulence or

damped by other dissipative processes, which certainly do not allow the sound

wave to remain active that long for the asymptotic value to be reached. So the

main point is we can not assume η̃ � η̃∗ and neglect the second term in the first

equation of Eq. B.4.

While non-relevant here for MD, we can still compare its asymptotic value

with what we already find in previous sections. From above equation we can

see the quantity in the curly bracket is 1/3 for MD and 1 for RD. But for MD,

H∗a∗η∗ = 2, then the asymptotic value of Υ is 2/3 for MD, which is consistent

with our previous result.
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Appendix C

Kinetic Energy Efficiency Coefficient

The kinetic energy efficiency coefficient may be solved by integrating over the

enthalpy and velocity profiles around a single bubble,

κ =
3

εv3
w

∫ ξmax

0

dξξ2ωγ2v2, (C.1)

where ε is the bag constant and ξ = r/t is a self similar coordinate in terms of

the distance form the bubble center r and the time since nucleation t. The fits to

κ are provided in [70] and are valid in the range 10−3 < α < 10 to a precision of

10%. The fits are found by splitting the parameter space of vw into three regions

and four boundary conditions. The boundary conditions are

κA ' v6/5
w

6.9α

1.36− 0.037
√
α + α

, for vw � cs, (C.2)

κB '
α2/5

0.017 + (0.997 + α)2/5
, for vw = cs, (C.3)

κC '
√
α

0.135 +
√

0.98 + α
, for vw = vJ =

√
2
3
α + α2 +

√
1/3

1 + α
, (C.4)

κD '
α

0.73 + 0.083
√
α + α

, for vw → 1, (C.5)

where vJ is the Jouguet velocity and cs is the speed of sound. Subsonic deflagrations

in the region vw . cs have a kinetic energy cofficient approximated by

κ ' c
11/5
s κAκB(

c
11/5
s − v11/5

w

)
κB + vwc

6/5
s κA

, (C.6)

and detonations in the region vw > vJ by

κ ' (vJ − 1)3 v
5/2
J v

−5/2
w κCκD[

(vJ − 1)3 − (vw − 1)3] v5/2
J κC + (vw − 1)3 κD

, (C.7)
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Supersonic deflagrations, hybrid, in the region cs . vw . vJ can be approximated

by

κ ' κB + (vw − cs) δκ+
(vw − cs)3

(vJ − cs)
[κC − κB − (vJ − cs) δκ] , (C.8)

where

δκ ' −0.9 log

√
α

1 +
√
α
. (C.9)
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Appendix D

Toy Model

D.1 Toy Effective Potential

A general free energy density of a single scalar field, φ, under a high temperature

expansion can be written in the form

f(φ, T ) = D(T 2 − T 2
0 )φ2 − ETφ3 +

1

4
λφ4 + ∆V − 1

3
aT 4, (D.1)

where ∆V is added to the potential to cancel out the zero temperature minimum

such that f(φmin, 0) = 0. The Standard Model effective potential was considered

in Ref. [17]. We require D > 0, E > 0, λ > 0 to ensure symmetry is broken at low

temperature and generate a barrier between the symmetric and broken phase. The

vacuum terms are not necessary for determining the phase transition structure

of the model, however, they are necessary for determining the temperature

dependence of the speed of sound.

The structure of the potential along with the constraints on the parameters

allows for simple analytical forms for the minima as a function of temperature.

The minimum is found by minimizing Eq. D.1 with respect to the scalar field

which results in

φmin =
3ET ±

√
9E2T 2 − 8Dλ(T 2

0 − T 2)

2λ
, (D.2)

where the ’+’ sign gives the local minimum. When T is large, the global minimum

will sit at the origin with φmin = 0. As T decreases, a second minimum will
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develop at

T =

√
T 2

0

1− 9
8
E2

λD

. (D.3)

This minimum will eventually become degenerate with minimum at the origin at

the critical temperature when

TC =

√
T 2

0

1− E2

λD

. (D.4)

The Euclidean action of a bounce configuration, S3, will start from infinity at

T = Tc and decrease with temperature. There is an analytical form for the action

given by

S3(T )

T
=

M3

4E2T 3
S̃3(σ), (D.5)

S̃3(σ) = 4× 4.85×
[
1 +

σ

4

(
1 +

2.4

1− σ +
0.26

(1− σ)2

)]
, (D.6)

where σ = λM2/(2E2T 2) controls the overall shape of the potential [17]. The

critical temperature and the action are necessary to determine the dynamics of

the phase transition and calculate the relevant transition temperatures such as

Tn,Tp, and Tf and the mean bubble separation R∗(vw, β).

The hydrodynamics of the phase transition are determined by the pressure

and energy density in the symmetric and broken phase where ps = −f(0, T ) and

pb = −f(φmin, T ). The energy density can be computed from the transformation

of pressure

e = T
∂p

∂T
− p, (D.7)

which can be evaluated in both the symmetric and the broken phase. From
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Figure D.1: Speed of sound computed in the different levels of diligence.

Eq. D.1, the pressure in the symmetric and broken phases are

ps = −f(0, T ) =
1

3
aT 4 −∆V, (D.8)

pb = −f(Φmin, T ), (D.9)

where the pressure in the broken phase has additional dependence on temperature

arising from φmin. The speed of sound may be found from the pressure using

Eq. 5.23 in both the symmetric and broken phase. The temperature dependence

from the minimum of the scalar field will result in a speed sound that is function

of the model parameters and its form will depend on the overall shape of the

potential.

D.2 Results for toy model

Here we show the different levels of diligence in calculating the thermal parameters

and the gravitation wave spectrum in the toy model. The analysis involves
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individual scans over the different model parameters (E,D, λ, T0) while holding

the others fixed. A full analysis of the toy model should involve a randomized

scan over all of the parameters but we perform the scan this way in hopes to see

any trends in varying the different model parameters. In Eq. D.4, the critical

temperature is a function of all four model parameters. For this reason, TC will

be used as a basis for each scan. The first step in the beyond the bag calculations

is to compute the speed of sound in the symmetric and broken phase. For the

toy model, we only consider detonation, vw = 0.92, where the speed of sound

in the symmetric phase is set to c2
s = 1/3 and the degrees of freedom consist of

only the standard model sector. The speed of sound in the broken phase may be

found through Eq. 5.23. The transition temperatures for the different levels of

diligence are Tn (5.4), Tp (5.11), and Tf (4.70). Example calculations for various

phase transition quantities used in the high diligence calculations such as the false

vacuum fraction, mean bubble separation, lifetime of the source, and Tf in the

toy model may be found in Ref. [361].

In Fig. D.1, we calculate the speed of sound in the broken phase for each

level of diligence. The gray dashed line corresponds to c2
s = 1/3. This involves

first calculating the speed of sound as a function temperature using Eq. 5.23

and then evaluating it at (Tn, Tp, Tf ) computed in the different levels of diligence.

We note that in computing the strength of the phase transition only the highest

diligence level will involve this calculation. This is merely to show the level of

variance in computing the speed of sound at different temperature stages. For

specific values and range chosen, there is only minor change to the speed of sound
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computed in the different levels however how much variance is present is strongly

model dependent. We do notice that the speed of sound can have a significant

deviation away from c2
s = 1/3 in the bag model. The strongest deviation is caused

by varying the barrier term, E, and the quadratic multiplicity term, D as seen

in the green and purple curves. The speed of sound can go as low as c2
s ∼ 0.22

and as high as c2
s ∼ 0.36. Varying the zero temperature mass term, T0, did not

have any noticeable impact on the speed of sound while the quartic coupling

term, λ, had a mild impact on the speed of sound. This is likely due to the

temperature independence of the terms that involve T0 and λ. The parameters

D and E on the other hand, multiply T 2 and T respectively and will result in a

change in the temperature dependence. The speed of sound in the broken phase

is related to the temperature derivatives of the pressure which is evaluated at

pb(T ) = Veff(φmin(T ), T ) and hence D and E will impact the minimum at finite

temperature. The smallest speed of sound in the broken phase corresponds to

small E and large D.

We show in Fig. D.2 the phase transition strength computed in the different

level of diligence (left) and the comparison between αθ computed in the bag model

versus αθ̄ computed in the beyond the bag model at Tf for both quantities (right).

We see in the left figure that going higher in the level of diligence results in an

increase in the phase transition strength compared to lowest diligence. This can

be attributed to more vacuum energy being released at Tp compared to Tn. On the

right, to better compare the difference between the bag model and the beyond the

bag model, we compute the ratio of αθ and αθ̄ computed at the same temperature,

256



100 150 200 250 300 350 400
TC

10−1

100

α

E

D

λ
T0

Level

1

2

3

Level

1

2

3

100 150 200 250 300 350 400
TC

0.96

0.98

1.00

1.02

1.04

α
θ
/α

θ̄

E

D

λ
T0

E

D

λ
T0

Figure D.2: Left: The strength of phase transition computed at the

different levels of diligence. Right: The ratio of strength of the phase

transition computed at Tf for the bag model αθ and the beyond the

bag model αθ̄.

Tf . For Tc < 100, αθ is less than αθ̄ which is the result of c2
s < 1/3 as seen in

Fig. D.1. This has to do with the (1 + c−2
s ) factor in αθ̄. When Tc > 100, we see

that the opposite is true when c2
s > 1/3. Similarly, the largest deviations are due

to the parameters D and E.

The error in the gravitational wave spectrum of the toy model for different

scans in the model parameters is shown in the left of Fig. D.3. The lowest and

modest diligence peak gravitational wave energy density ΩGW is calculated using

Eq. 5.7 and Eq. 5.15 respectively. The comparison in error is computed with

respect to the highest diligence in Eq. 5.37. The lowest diligence level has error

in the range ∆Ω/Ω ∼ [101, 103] for all parameter scans. The modest diligence

level is closest to the highest diligence with error in the range ∆Ω/Ω ∼ [100, 101]

for the different scans. The highest error occurs for TC ∼ 100. This is related to

beyond the bag effects which exhibited suppression for the scans in (E,D).
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Figure D.3: Error of the gravitational spectrum computed at the

different levels of diligence.
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Appendix E

Perturbative Unitarity S Matrix

We consider a total of eleven 2 → 2 channels of scalars and longitudinal gauge

bosons scatterings. These are grouped into seven charge neutral channels (h1h1, h2h2, h1h2, h1Z, h2Z,ZZ,W
+W−),

three charge-1 channels (h1W
+, h2W

+, ZW+) and one charge-2 channel (W+W−).

The leading partial wave amplitudes of these scatterings are given collectively by

a symmetric matrix, which itself is a direct sum of the matrices from these three

groups: S = S0

⊕S1

⊕S2. The tree level perturbative unitarity requires that

the absolute value of each eigenvalue of this matrix is less than (1/2× 16π). The

non-zero elements of the 7× 7 matrix S0 is listed as follows(see e.g., Ref. [430] for
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a detailed calculation):

S11 = −3
(
a2c

2
θs

2
θ + b4s

4
θ + λc4

θ

)
,

S12 =
1

8
(3 cos(4θ) (−a2 + b4 + λ)− a2 − 3b4 − 3λ) ,

S13 =
3 sin(2θ) (cos(2θ) (−a2 + b4 + λ)− b4 + λ)

2
√

2
,

S16 = −1

2
a2s

2
θ − λc2

θ,

S17 = −a2s
2
θ + 2λc2

θ√
2

,

S22 = −3
(
a2c

2
θs

2
θ + b4c

4
θ + λs4

θ

)
,

S23 = −3 sin(2θ) (cos(2θ) (−a2 + b4 + λ) + b4 − λ)

2
√

2
,

S26 = −1

2
a2c

2
θ − λs2

θ,

S27 = −a2c
2
θ + 2λs2

θ√
2

,

S33 =
1

4
(3 cos(4θ) (−a2 + b4 + λ)− a2 − 3b4 − 3λ) ,

S36 =
(2λ− a2) cθsθ√

2
,

S37 = (2λ− a2) cθsθ,

S44 = −a2s
2
θ − 2λc2

θ,

S45 = (2λ− a2) cθsθ,

S55 = −a2c
2
θ − 2λs2

θ,

S66 = −3λ,

S67 = −
√

2λ,

S77 = −4λ. (E.1)
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For charge-1 channels, we have:

S1 =


−2λc2

θ − a2s
2
θ (2λ− a2) cθsθ 0

(2λ− a2) cθsθ −a2c
2
θ − 2λs2

θ 0

0 0 −2λ

 .

For the charge-2 channel with only one process, the matrix is simply given by

S2 = (−2λ).
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Appendix F

Connection with Potential where vs = 0

The potential in Eq. 3.1 can be written into a different form by translating the

coordinate system of (H,S) such that the EW vacuum has 〈S〉 = 0 (see e.g., [225]).

In this basis, there will generally be an additional tadpole term (b1S). Making

this translation of field variables leads to the same potential being represented

with different potential parameters, without changing the physics [223]. So the

scalar couplings as well as their masses and mixing angles wont be affected by this

translation. For easy comparison between these two representations, we show here

the transformation rules between these two bases. Given potential parameters in

the non-tadpole basis in Eq. 3.1, the parameters in the basis where b1 6= 0(denoted

with a prime) can be obtained:

b′1 = vs(b2 + vs(b3 + b4vs)),

b′2 = b2 + vs(2b3 + 3b4vs),

b′3 = b3 + 3b4vs,

µ2′ = µ2 − 1

2
vs(a1 + a2vs),

a′1 = a1 + 2a2vs, (F.1)

while a2, λ, b4 remains unchanged. On the other hand, given parameters in the

tadpole basis where vs = 0 and b1 6= 0, the parameter set in the basis used in this
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work can be found:

vs = x,

b2 = b′2 − x(2b′3 − 3b′4x),

b3 = b′3 − 3b′4x,

µ2 = µ2′ +
1

2
x(a′1 − a′2x),

a1 = a′1 − 2a′2x, (F.2)

where x is to be solved from the cubic equation

b′1 − b′2x+ b′3x
2 − b′4x3 = 0, (F.3)

which might give more than one solutions. In the basis vs = 0, the degree of

freedom carried by vs in the basis vs 6= 0 is transformed to a different parameter.

For example, one can choose it to be a2 and then the full set of independent

parameters can be chosen as

a2, mh2 , θ, b3, b4. (F.4)

We note further there are also studies of this model where a Z2 symmetry in the

S fields are imposed and are spontaneously broken [234, 221, 236]. This specific

model correspond to a special limit of the potential here.
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Appendix G

Einstein Tensor

We start with the metric as follows,

gµν =



−B(r) 0 0 0

0 A(r) 0 0

0 0 r2 0

0 0 0 r2 sin2 θ


. (G.1)

We can then write out the non-zero Christoffel symbol components as

Γttr =
B′(r)

2B(r)
, Γrtt =

B′(r)

2A(r)
,

Γrrr =
A′(r)

2A(r)
, Γrθθ = − r

A(r)
, Γrφφ = −r sin2(θ)

A(r)
,

Γθrθ =
1

r
, Γθφφ = − cos(θ) sin(θ),

Γφrφ =
1

r
, Γφθφ = cot(θ), (G.2)

from which the Einstein tensor Gν
µ can be calculated

Gt
t = − A′(r)

rA(r)2
+

1

r2A(r)
− 1

r2
,

Gr
r =

B′(r)

rA(r)B(r)
+

1

r2A(r)
− 1

r2
,

Gθ
θ = − A′(r)B′(r)

4A(r)2B(r)
− A′(r)

2rA(r)2
+

B′′(r)

2A(r)B(r)
− B′(r)2

4A(r)B(r)2
+

B′(r)

2rA(r)B(r)
,

Gφ
φ = − A′(r)B′(r)

4A(r)2B(r)
− A′(r)

2rA(r)2
+

B′′(r)

2A(r)B(r)
− B′(r)2

4A(r)B(r)2
+

B′(r)

2rA(r)B(r)
.(G.3)
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Appendix H

Numerical Procedure

Typically the equations of motion are solved using the shooting method which

is successful in the one scalar case where the solution can easily converge to

the ground state configuration. The equations get numerically difficult to solve

when extra scalars are introduced, particularly in the nonlinear regime where λ

can have significant contribution to the total mass. A workaround was found

by implementing a relaxation algorithm into our personal code which proved

successful in solving the differential equations.

H.1 Relaxation Method

To find numerical solutions, we use the relaxation algorithm described in chapter

18 of Numerical Recipes [386]. We first write the system in the standard form

y′(t) = g(t,y). (H.1)

. We want to solve this system over the interval [a, b]. We start with a trial

solution ȳ that satisfies all boundary conditions. Then we choose a set of evenly

spaced points {tk}M−1
k=0 spanning the interval. At each point except for t0, we form

the difference equations

Ek = ȳ(tk)− ȳ(tk−1)− (tk − tk−1)g(tav, ȳav), (H.2)
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where tav and ȳav are the averages of tk and tk−1, and ȳ(tk) and ȳ(tk−1) respectively.

We want to adjust our trial solution so that each Ek vanishes. Let ∆ȳ(t) represent

the adjustments we need to make to the trial solutions at each of the grid points

so that

Ek

(
ȳ(tk−1) + ∆ȳ(tk−1), ȳ(tk) + ∆ȳ(tk)

)
= 0. (H.3)

We can approximate ∆ȳ(t) at each of the grid points by expanding Ek as a

first-order Taylor series in ∆ȳ. Then we have

0 = Ek

(
ȳ(tk−1) + ∆ȳ(tk−1), ȳ(tk) + ∆ȳ(tk)

)
≈ Ek

(
ȳ(tk−1), ȳ(tk)

)
+

N−1∑
n=0

∂Ek

∂ȳn(tk−1)
∆ȳn(tk−1) +

N−1∑
n=0

∂Ek

∂ȳn(tk)
∆ȳn(tk),(H.4)

where N is the dimension of y and ȳn(tk) is the nth component of ȳ(tk). Since we

already know Ek

(
ȳ(tk−1), ȳ(tk)

)
, this gives us N · (M − 1) equations for N ·M

unknowns. The remaining N equations come from the boundary conditions.

These equations, together with the boundary conditions, allow us to solve

for the first-order corrections ∆ȳ(tk). By adding these corrections to ȳ(t), we

obtain a new trial solution. We then iteratively repeat this process with the new

trial solution until the trial solutions converge. We determine convergence by

measuring the average size of the components of the correction vectors ∆ȳ(tk).

Once the average size of the corrections becomes small enough, we assume that

the trial solutions have converged to the correct solution.
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Figure H.1: The left figure includes the wave forms for Φ1 and Φ2.

The right figure fixes Φ1(0) = 0.001 and shows the effect of changing

Φ2(0). For Φ2(0)� Φ1(0) the profiles behave like the one scalar case

with Φc = 0.001. When Φ1(0) < Φ2,1 we see a difference compared to

the single boson case. Calculations were performed with λ1 = λ2 =

λ12 = 1, m1 = 10−10 GeV, and m̃r = 0.5.

H.2 Static Case

The profiles for A,B,Φ1,Φ2,Φ
′
1,and Φ′2 are found by solving the equations of

motion using the relaxation method. The boundary conditions at the origin and
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at infinity are given by

Φn(0) = Φc,n (H.5)

Φ′n(0) = 0 (H.6)

A(0) = 0 (H.7)

B(0) = B0 (H.8)

lim
r→∞

Φn(r) = 0 (H.9)

lim
r→∞

Φ′n(r) = 0 (H.10)

lim
r→∞

B(r) =
1

A(r)
. (H.11)

For appropriate choices of the eigenvalues µ1,2 we can find the ground state

configurations for Φ1,2. Although Φ1,2 must satisfy all of the boundaries conditions

above, we can introduce constant differential equations to the equation of motion

for the parameters of the problem without changing the physics of the system.

This allows us to exploit the iterative process of the relaxation method to guess

the values for µ1,2 until they converge to correct values as r →∞. We do this by

including the following differential equations for µ1,2 into the relaxation method

dµn
dr

= 0, n =1,2 (H.12)

which allows in total 6 differential equations and 13 boundary conditions to be

met. The numerical procedure to solve the equations of motion is as follows:

1. Choose an initial guess for A,B,Φ1,2,Φ
′
1,2 that satisfies the boundary condi-

tions.

2. Run relaxation method on an interval [0, rout]
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3. If the error begins to diverge, recursively try a smaller interval and use that

as an initial guess until it finds a solution.

4. If Φ1,2 < 0 or Φ′1,2 > 0, try again on a smaller interval with more grid points

because an excited state was found.

5. Check if Φ1,2(rout) < ε where ε is a percentage of the initial central density.

If true, Φ1,2 has decayed to its asymptotic value at rout =∞ and the ground

state has been found.

6. If condition 5 is not met increase rout and start from 2.

Once the ground state solutions are found for Φ1 and Φ2, the initial value

of B0 and the eigenvalues, µ1 and µ2 will be found to guarantee the boundary

values are met. A sample plot of Φ1,2 is included in Fig. H.1. The left figure

is a representative plot of the wave profiles for Φ1 and Φ2. The equations of

motion couple both scalars together. We can see from the right figure the impact

the second scalar has on Φ1 by varying its central density. For m1 = 10−10 eV

and m̃r = 0.5, the equation of motions look like the single scalar case when

Φ2(0) � Φ1(0). However, when Φ2(0) ∼ Φ1(0), the wave profile of Φ1 deviates

from the single scalar case as expected.

H.3 Time Evolution

To ensure the stability of the equations of motion, we must first check how the

equations of motion evolve under small radial perturbations. We first approximate
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the partial derivatives in the equations motion as central finite differences :

∂f

∂r
=
f ij+1(r, t)− f ij−1(r, t)

2∆r
, (H.13)

∂f

∂t
=
f i+1
j (r, t)− f ij(r, t)

∆t
, (H.14)

∂2f

∂r2
=
f ij+1(r, t)− 2f ij(r, t) + f ij−1(r, t)

∆r2
, (H.15)

∂2f

∂t2
=
f i+1
j (r, t)− 2f ij(r, t) + f i−1

j (r, t)

∆t2
, (H.16)

where i and j correspond to steps in space and time respectively. The step

sizes are given by ∆r and ∆t. We note that these expressions are only valid for

i ∈ [1, Nt − 1] and j ∈ [1, Nr − 1] where i = 0, ..., Nt and j = 0, ..., Nr. For the

endpoints we use either backwards or forward difference. Using finite differences

we see that the two Klein-Gordon equations of motion give

Φi+1
j,(1,2) = 2Φi

j,(1,2) − Φi−1
j,(1,2) + ∆t2F (r, A,B,Φ1,Φ2, , A

′, B′,Φ′1,Φ
′
2) . (H.17)

To find the time evolution of the system we perform the following steps:

1. Solve the static equations of motion.

2. Perturb Φ1,2 by a factor of (1 + ε).

3. Perform the first time step in the Klein-Gordon equations for Φ1,2 using

Eq H.17 where the static solution is Φi−1
j,(1,2) and the perturbed solution is

Φi
j,(1,2).

4. Perturb Φ1,2 by a factor of (1 + ε).
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5. Solve the remaining two differential equations using the Relaxation Method

to get Ai+1
j and Bi+1

j .

6. Repeat.

Sufficient time steps were performed following the above procedure to ensure the

stability of the time evolution equations for sample benchmark points.

The physical time, t, used in the equations of motion is in units of m−1 with

the corresponding dimensionless time, t̃, given by

t =
1

m
t̃. (H.18)

The time evolution of the single scalar case was previously studied in [156] for

both the stable and unstable branch with different re-scaled quantities. To match

with the notation there, we compare our dimensionless variable with the ones

used in [156]. The potential used in the analysis considers the non-relativistic

interaction term

Vnr =
ψ∗2ψ2

16f 2
(H.19)

with the following ansatz for the scalar field

Φ =
1√
m

Ψ(r) =

√
N

πmR3
e−r/R (H.20)

where R is the decay length scale and N is the total number of particles. The

re-scaled quantities are

R =
MPl

mf
R̂

N =
MPlf

m2
N̂

Ψ =

√
mf 2

MPl

Ψ̂,
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where X̂ is the dimensionless counterpart of variable X used in [156]. The

corresponding time evolution equation of the scalar field in dimensionless units is

i
∂Ψ̂

∂t̂
= − 1

2r̂

∂2

∂r̂2

(
r̂Ψ̂
)

+ φ̂NΨ̂− 1

8
|Ψ̂|2Ψ̂ (H.21)

where φ̂N is the newtonian potential. If we restore the physical parameters in the

above equation, the physical time will become

t =
M2

Pl

mf 2
t̂. (H.22)

This allows for simple comparison by setting the physical times equal to each

other. The scalar field is related by

Φ̃ =

√
4πf 2

M2
Pl

Ψ̂. (H.23)
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Appendix I

Single Scalar Limit

In this section we verify that in the limit of m1 = m2, and λ1 ∼ λ2, one recovers

the single scalar limit as expected. In the non-relativistic section it was stated

that the scalar limit occurs when one of the number densities dominates over the

other. The number density in the non-relativistic limit is given by

Ni = 4π

∫
drr2mi|Φi(r)|2 (I.1)

where the index i = 1, 2 corresponds to each scalar, and the integral is over the

scalars central density. This is related to the mass of the star for the two scalar

system as

M = m1N1 +m2N2. (I.2)

The single scalar limit is taken for when Φ2(0)� Φ1(0) and vice versa. In Fig. I.1

we show that the single scalar limit can be recovered when Φ1(0) is chosen to be

small. In Fig. I.2, we show C2 versus M2 for the second scalar’s contribution to the

BEC system mass and compactness where we scan over Φ2(0) for different values

of fixed Φ1(0). The curves represent scans over the two central densities. Each

curve for the two scalar scans begin with Φ2(0)� Φ1(0) on the far left points. The

curves all begin with masses much below the single scalar limit which means that

the second scalar contribuion to the total mass of the star is subdominate and we

can safely assume N2 � N1. Each one of the curves eventually lead towards the

single scalar limit when Φ2(0) grows larger. This behavior confirms the analytical
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approximationa of the single scalar limits to determine the nonlinear and linear

regimes done in section 6.1.6.
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Figure I.1: BEC structure obtained with equal mass for the two scalars

and different fixed central density of one scalar, Φ1,c, and different

coupling choices. Left: the total mass vs compactness for various Φ1(0)

and Φ2(0) for λ1 = 1, λ2 = 1, and λ12 = 1. The solid lines correspond

to fixed Φ1(0) while scanning over Φ2(0). The solid magenta curve

corresponds to the single scalar limit by setting Φ1(0) = 0 and scanning

over Φ2(0). The solid and dashed black lines represent the linear and

nonlinear scaling cases when MBS is derived from Eq. 6.19. Right:

the compactness versus Φ2(0) for different values of Φ1(0). It plateaus

to a fixed value of CBS when Φ2(0) is small and the star is dominated

by Φ1.The turning point occurs when Φ2(0) ≈ Φ1(0)
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Figure I.2: The changes to a single scalar BEC profile due to the

existence of another scalar with varying central density. The mass

versus compactness only taking into consideration the contribution

from Φ2. The single scalar limit is given by the blue curve. The other

curves at scanning over Φ2(0) at different fixed values of Φ1(0).
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Appendix J

Transitioning from Φ1 to Φ2 in the Nonlinear

Regime

We numerically verify that in the nonlinear regime, the transition between φ1

dominating to φ2 dominating still happens as expected. As seen in Section 6.1.6,

a two scalar hierarchy m1 < m2 interpolates two scenarios where Φ1 dominates

the system (N1 � N2,) and that where Φ2 dominates (N2 � N1.) We verify that

this transitioning behavior still persists in the nonlinear regime.

One observes that when one scalar has a stable nonlinear self-interaction

(e.g. +φ4,) and the other unstable self-interaction (e.g. −φ4,) once the system

transitions from the unstable scalar dominating to the stable scalar dominating,

it is then stabilized, and vice versa. This can be see in Fig. J.1. Another way of

seeing this transitioning effect is through a less drastic setup, with λ1, λ2 > 0 but

have different values. The C−M curve has different shape if Φ1 or Φ2 forms BEC

alone. In the two scalar system, by arranging Φ1(0) and Φ2(0) carefully, one can

get any point in between the two curves shown as the shaded region in Fig. J.2.
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Figure J.1: The total mass vs compactness for various values of Φ1(0)

and Φ2(0), with λ1 = −1, λ2 = 1 (left) and λ1 = 1, λ2 = −1 (right).

All solid curves are generated by scanning over Φ2(0) and fixing Φ1(0)

at labeled values, while the dashed curve is setting Φ2(0) to zero and

scanning over Φ1(0).
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Figure J.2: The mass profile of the BEC with λ1 = 0.1, λ2 = 1, and

λ12 = 1. The mass ratio between the two scalars is m̃r = 1 in the

left figure and m̃r = 1/2 in the right figure. The shaded region is the

region a stable BEC system can form.

278



Appendix K

Explicit Potentials

To keep the discussion as general as possible, we have avoided specifying a potential.

In this appendix, we discuss Q-balls in both gauge-mediated and gravity-mediated

scenarios.

In the gauge-mediated supersymmetric scenario the potential is

V (Φ) = m4 log

(
1 +
|Φ|2
m2

)
+

1

Λ2
|Φ|6, (K.1)

plus a small CP-violating term. When the second term is negligible, the result-

ing Q-balls are thick wall Q-ball [411], for which the analysis presented here

is inapplicable. However, scaling arguments favor a Q-ball domination epoch.

Fragmentation tends to produce one large Q-ball in each Hubble volume [410],

resulting in a sharply peaked mass distribution at large masses, which tend to

be long-lived. Furthermore, the radius now scales as Q1/4, and after accounting

to the scalings of the VEV and energy per unit charge with Q, we expect the

Q-ball decay rate to scale as Q1/4. This is suppressed compared to the thin-wall

rate, and therefore, the Q-balls will tend to be longer-lived. ΓQ−ball/HQ then

scales as Q−3/4, which increases as the charge decreases, leading to the rapid

matter-to-radiation transition. We plan to address this scenario more fully in

future work.

When the second term in (K.1) is not negligible, then the resulting Q-balls

are in the thin wall regime, although since the energy per charge ω is independent

of the charge Q, the equilibrium state is not one Q-ball per Hubble volume.
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Alternatively, one can consider gravity-mediated SUSY breaking, in which

case the Affleck-Dine condensate has the potential

V (Φ) = m2|Φ|2
(

1 +K log

( |Φ|2
m2

))
+

1

Λ2
|Φ|6, (K.2)

where Λ is an effective scale for the higher-dimensional operator, m is the mass of

the scalar field, and K ≈ −0.01 to −0.1 is a one-loop correction. Since K < 0,

Q-balls can be formed, and in the thin wall limit, the VEV inside the Q-ball is

given by [190]

v ≈
(

ΛMPl

√
|K|
2

)1/2

, (K.3)

from which an expression for ω can be found.

In Table K.1 we show one choice of parameters for the gauge-mediated potential

(left) and gravity-mediated potential (right) for each benchmark set of parameters

discussed in the text. That is, in each row the Q-balls produced have the same

VEV v and energy-per-unit-charge ω as in corresponding row in Table 7.1. For

the gauge-mediated scenario, we have ensured that the sixth order term is relevant

so that we are in the thin-wall regime. We see that in all cases the scale of the

effective operator, Λ, is well above the reheating temperature.
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Gauge-Mediated Gravity-Mediated

m (GeV) Λ (GeV) m (GeV) Λ (GeV)

6.07× 107 4.54× 1015 2.16× 106 4.23× 1015

1.76× 107 1.10× 1013 1.13× 106 2.07× 1013

3.61× 107 1.35× 1014 1.63× 106 2.01× 1014

Table K.1: Parameters for the potentials (K.1) and (K.2) which pro-

duce Q-balls corresponding to our three benchmark points. The first

row corresponds to our first benchmark in Table 7.1, the second row

corresponds the second benchmark, and the third corresponds to the

third. For the gravity-mediated scenario, we have fixed k = −0.05.
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Appendix L

Supplementary material

We here outline the gravitational wave spectrum from an instantaneous transition

from matter to radiation domination, following Ref [419]. We define the following

functions:

s0(x, xmax) =

(
Θ

[
2xmax

1 +
√

3
− x
]

+
(

2
xmax

x
−
√

3
)

Θ

[
x− 2

xmax

1 +
√

3

]
Θ

[
2
xmax√

3
− x
])
×Θ

[
2
xmax√

3
− x
]
, (L.1)

along with

Si(x) =

∫ x

0

dz
sin z

z
, Ci(x) = −

∫ ∞
x

dz
cos z

z
. (L.2)

The gravitational wave spectrum involves a resonant contribution, Ωres, an

infrared contribution, ΩIR, and a non-resonant UV contribution, ΩUV, such that

the total spectrum is given by

ΩGW(x, xmax) = Ωres+

3A2
sx

8
max

4Ci[
x
2
]2 + (π − 2Si[

x
2
])2

217+2ns625(3 + 2ns)

(
2xmax

x
− 1

)2ns

×
(
x

x∗

)2(ns−1)

(ΩIRΘ[xmax − x] + ΩUVΘ [x− xmax]) ,

(L.3)
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where we define X ≡ x/xmax to write

ΩIR =
1

(2 + ns)(3 + ns)(4 + ns)(5 + 2ns)(7 + 2ns)

×
(
1536− 6144X + (7168− 1920ns − 256n2

s)X
2

+(5760ns + 768n2
s)X

3

+(1328ns + 3056n2
s + 832n3

s + 64n4
s)X

4

− (7168 + 12256ns + 7392n2
s + 1664n3

s + 128n4
s)X

5

+ (7392 + 10992ns + 5784n2
s + 1248n3

s + 96n4
s)X

6

− (2784 + 3904ns + 1960n2
s + 416n3

s + 32n4
s)X

7

+ (370 + 503ns + 247n2
s + 52n3

s + 4n4
s)X

8

− 256 (1−X)6 [(6 + 6(2 + ns)X

+(2 + ns)(5 + 2ns)X
2
](

1− X

2−X

)2ns
)
, (L.4)

and

ΩUV = 2 (2−X)4 Γ[4 + 2ns]

×
(

X4

Γ[5 + 2ns]
− 4X2 (2−X)2

Γ[7 + 2ns]
+

24 (2−X)4

Γ[9 + 2ns]

)
,

Ωres =
2.3
√

33ns

625× 213+2ns
x7X2(ns−1)A2

ss0(x, xmax)

×
(

42F1[
1

2
, 1− ns,

3

2
,
s0(x, xmax)2

3
]

− 32F1[
1

2
,−ns,

3

2
,
s0(x, xmax)2

3
]

−s0(x, xmax)2
2F1[

3

2
,−ns,

5

2
,
s0(x, xmax)2

3
]

)
(L.5)
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where 2F1 is the hypergeometric function. To convert to a frequency spectrum,

simply take x∗ = 1/k∗ηr and

ΩGW(f)h2 = 0.39h2Ωr

× ΩGW

[
4.1× 10−24

( ηr
GeV−1

)
f,
Teq

Tdec

]
. (L.6)
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[220] T. Huang, J. M. No, L. Pernié, M. Ramsey-Musolf, A. Safonov, M. Span-
nowsky, and P. Winslow, Phys. Rev. D96, 035007 (2017).

[221] T. Robens and T. Stefaniak, Eur. Phys. J. C75, 104 (2015).

[222] A. V. Kotwal, M. J. Ramsey-Musolf, J. M. No, and P. Winslow, Phys. Rev.
D94, 035022 (2016).

[223] J. R. Espinosa, T. Konstandin, and F. Riva, Nucl. Phys. B854, 592 (2012).

[224] J. Kozaczuk, JHEP 10, 135 (2015).

[225] I. M. Lewis and M. Sullivan, Phys. Rev. D96, 035037 (2017).

[226] A. Azatov, R. Contino, G. Panico, and M. Son, Phys. Rev. D92, 035001
(2015).

[227] A. Alves, T. Ghosh, and K. Sinha, Phys. Rev. D96, 035022 (2017).

[228] T. Plehn and M. Rauch, Phys. Rev. D72, 053008 (2005).

294



[229] T. Binoth, S. Karg, N. Kauer, and R. Ruckl, Phys. Rev. D74, 113008
(2006).
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[237] D. López-Val and T. Robens, Phys. Rev. D90, 114018 (2014).

[238] M. E. Peskin and T. Takeuchi, Phys. Rev. D46, 381 (1992).

[239] K. Hagiwara, S. Matsumoto, D. Haidt, and C. S. Kim, Z. Phys. C64, 559
(1994), [Erratum: Z. Phys.C68,352(1995)].

[240] J. Alcaraz et al., (2006).

[241] T. Aaltonen et al., Phys. Rev. Lett. 108, 151803 (2012).

[242] V. M. Abazov et al., Phys. Rev. D89, 012005 (2014).

[243] D. E. Morrissey and M. J. Ramsey-Musolf, New J. Phys. 14, 125003 (2012).

[244] S. R. Coleman and E. J. Weinberg, Phys. Rev. D7, 1888 (1973).

[245] M. Quiros, in Proceedings, Summer School in High-energy physics and
cosmology: Trieste, Italy, June 29-July 17, 1998 (PUBLISHER, ADDRESS,
1999), pp. 187–259.

[246] R. R. Parwani, Phys. Rev. D45, 4695 (1992), [Erratum: Phys.
Rev.D48,5965(1993)].

[247] D. J. Gross, R. D. Pisarski, and L. G. Yaffe, Rev. Mod. Phys. 53, 43 (1981).

[248] H. H. Patel and M. J. Ramsey-Musolf, JHEP 07, 029 (2011).

[249] A. Alves, T. Ghosh, H.-K. Guo, and K. Sinha, (2018).

[250] M. S. Turner, E. J. Weinberg, and L. M. Widrow, Phys. Rev. D46, 2384
(1992).

295



[251] G. V. Dunne and H. Min, Phys. Rev. D72, 125004 (2005).

[252] A. Andreassen, D. Farhi, W. Frost, and M. D. Schwartz, Phys. Rev. D95,
085011 (2017).

[253] S. Weinberg, The quantum theory of fields. Vol. 2: Modern applications
(Cambridge University Press, ADDRESS, 2013).

[254] R. Apreda, M. Maggiore, A. Nicolis, and A. Riotto, Nucl. Phys. B631, 342
(2002).

[255] M. Kamionkowski, A. Kosowsky, and M. S. Turner, Phys. Rev. D49, 2837
(1994).

[256] J. M. Cline, in Les Houches Summer School - Session 86: Particle Physics
and Cosmology: The Fabric of Spacetime Les Houches, France, July 31-
August 25, 2006 (PUBLISHER, ADDRESS, 2006).

[257] H. H. Patel and M. J. Ramsey-Musolf, Phys. Rev. D88, 035013 (2013).

[258] M. J. Ramsey-Musolf, P. Winslow, and G. White, Phys. Rev. D97, 123509
(2018).

[259] J. M. No, Phys. Rev. D84, 124025 (2011).

[260] H. Kurki-Suonio and M. Laine, Phys. Rev. D51, 5431 (1995).

[261] P. J. Steinhardt, Phys. Rev. D25, 2074 (1982).

[262] P. John and M. G. Schmidt, Nucl. Phys. B598, 291 (2001), [Erratum: Nucl.
Phys.B648,449(2003)].

[263] V. Cirigliano, S. Profumo, and M. J. Ramsey-Musolf, JHEP 07, 002 (2006).

[264] D. J. H. Chung, B. Garbrecht, M. Ramsey-Musolf, and S. Tulin, JHEP 12,
067 (2009).

[265] W. Chao and M. J. Ramsey-Musolf, JHEP 10, 180 (2014).

[266] C. Lee, V. Cirigliano, and M. J. Ramsey-Musolf, Phys. Rev. D71, 075010
(2005).

[267] D. Bodeker, G. D. Moore, and K. Rummukainen, Phys. Rev. D61, 056003
(2000).

[268] J. Engel, M. J. Ramsey-Musolf, and U. van Kolck, Prog. Part. Nucl. Phys.
71, 21 (2013).

[269] T. Chupp, P. Fierlinger, M. Ramsey-Musolf, and J. Singh, (2017).

[270] A. Kosowsky, M. S. Turner, and R. Watkins, Phys. Rev. D45, 4514 (1992).

296



[271] A. Kosowsky, M. S. Turner, and R. Watkins, Phys. Rev. Lett. 69, 2026
(1992).

[272] A. Kosowsky and M. S. Turner, Phys. Rev. D47, 4372 (1993).

[273] S. J. Huber and T. Konstandin, JCAP 0809, 022 (2008).

[274] R. Jinno and M. Takimoto, Phys. Rev. D95, 024009 (2017).

[275] R. Jinno and M. Takimoto, (2017).

[276] D. Bodeker and G. D. Moore, JCAP 0905, 009 (2009).

[277] D. Bodeker and G. D. Moore, JCAP 1705, 025 (2017).

[278] C. Caprini, R. Durrer, and G. Servant, JCAP 0912, 024 (2009).

[279] P. Binetruy, A. Bohe, C. Caprini, and J.-F. Dufaux, JCAP 1206, 027 (2012).

[280] E. Thrane and J. D. Romano, Phys. Rev. D88, 124032 (2013).

[281] C. L. Wainwright, Comput. Phys. Commun. 183, 2006 (2012).

[282] J. Ellis, M. Lewicki, and J. M. No, Submitted to: JCAP (2018).

[283] D. Curtin et al., (2018).

[284] O. J. P. Eboli, G. C. Marques, S. F. Novaes, and A. A. Natale, Phys. Lett.
B197, 269 (1987).

[285] T. Plehn, M. Spira, and P. M. Zerwas, Nucl. Phys. B479, 46 (1996),
[Erratum: Nucl. Phys.B531,655(1998)].

[286] J. Alwall, R. Frederix, S. Frixione, V. Hirschi, F. Maltoni, O. Mattelaer,
H. S. Shao, T. Stelzer, P. Torrielli, and M. Zaro, JHEP 07, 079 (2014).

[287] A. M. Sirunyan et al., Phys. Lett. B788, 7 (2019).

[288] A. M. Sirunyan et al., Phys. Lett. B778, 101 (2018).

[289] A. M. Sirunyan et al., Phys. Lett. B781, 244 (2018).

[290] A. M. Sirunyan et al., JHEP 08, 152 (2018).

[291] A. M. Sirunyan et al., (2018).

[292] A. M. Sirunyan et al., Submitted to: JHEP (2018).

[293] A. M. Sirunyan et al., JHEP 01, 054 (2018).

[294] A. M. Sirunyan et al., Submitted to: Phys. Rev. Lett. (2018).

[295] M. Aaboud et al., JHEP 11, 040 (2018).

297



[296] M. Aaboud et al., Phys. Rev. Lett. 121, 191801 (2018).

[297] M. Aaboud et al., (2018).

[298] M. Aaboud et al., Submitted to: JHEP (2018).

[299] M. Aaboud et al., (2018).

[300] T. A. collaboration, (2018).

[301] D. de Florian et al., (2016).

[302] S. Borowka, C. Duhr, F. Maltoni, D. Pagani, A. Shivaji, and X. Zhao,
Submitted to: JHEP (2018).

[303] W. Kilian, S. Sun, Q.-S. Yan, X. Zhao, and Z. Zhao, (2018).
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