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Abstract 

As the amount of information users interact with every day continue to grow, 

filtering it for useful information is increasingly important. One of the most 

useful tools for this task are recommender systems (RS). These look at past 

products the user has interacted with and recommends similar products. 

However, these suffer from a major issue, cold-start, in which there is 

difficulty in producing recommendations for new users. One of the suggested 

techniques for mitigating the cold-start issue is the use of trust data. By using 

the relationships between users such as friendships on social media or 

following reviewers of movies the recommender system can recommend 

products that the user’s friend would rate highly as well.  

We extend previous trust models by applying a One-Class Support Vector 

Machine model to the known trust relations and predicting distrust relations 

among users. This is shown to improve the predictions movie ratings in some 

circumstances.  
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Chapter 1: Introduction 

Recommender systems suggest content to users that they are likely to rate highly. 

They are built on data gathered from previous interactions with a user and suggest 

content similar to past content. Recommender systems can also use data on other 

users to find similar users and recommend content popular with those users. These 

two approaches are called content-based filtering and collaborative filtering, 

respectively. Recommender systems provide better results as more data are 

gathered on both the website overall as well as on the specific user. This leaves a 

gap in the ability to suggest content to new users, on wyhom little data has been 

collected. This is referred to as the cold-start problem and is our focus in this paper. 

Motivation 

While many consumers may not realize it, recommender systems have become a 

common part of everyday life. A large portion of the interactions between 

consumers and modern technology involve content shown by a recommender 

system. One example is Amazon.com, which offers products to users based on past 

products purchased, or even simply viewed [1]. Netflix recommends movies similar 

to those that the users have already watched, especially those which a user has 

“thumbed up” (the thumb system replaces the previous one-to-five-star rating 

system). The company gained a large amount of attention with regards to 

recommender systems when they held a contest in which participants could create 

a recommender system to predict what ratings users would give to various movie 

titles in the Netflix catalogue [2]. By creating more powerful recommender 
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systems, owners of large catalogues can more accurately suggest content to users 

which results in a more streamlined user experience and more user engagement 

with the system. There are numerous challenges in making these predictions which, 

if addressed, can lead to more accurate content suggestions.  

Problem Definition 

Recent advances have begun to leverage the large amounts of data which modern 

sensors and websites are able to collect. These models can improve the predictive 

power as the amount of data provided to them increases. This has the potential to 

help users navigate the increasingly large catalogues of content and products 

offered by modern services. However, recommender systems do not always 

produce relevant recommendations.  

One of the most prevalent issues in creating recommender systems is the “cold-

start” problem, which results in poor recommendation performance [3]. The cold-

start problem refers to the situation in which there is very little information on a 

new user, such as when a customer of an online retailer has only made a single 

purchase. One proposed solution to this problem is to use the concept of “trust” in 

the recommendation systems. Many social websites allow users to be connected to 

or follow other users. These users presumably have similar interests, so they can 

build trust relationship with other users. By including this data in the model, cold-

start users, if they trust any users who have rated products, can be assumed to 

behave similar to more established users. Trust data could prove beneficial in both 

improving the accuracy of a model overall, as well as improving predictions for 

new users on which very little is known, and therefore improve their retention rates. 
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Ratings data, especially for use cases with many items, tend to be incredibly sparse. 

This is because each individual user is unlikely to review a large portion of the 

items available. For example, Netflix has a catalogue that is too large for the 

average consumer to watch most of it. Additionally, if a user consumes content or 

makes a purchase, they are not obligated to leave a review, which leads to even 

greater data sparsity. In order to overcome these challenges, several methods have 

been developed, including trust-aware recommender systems.  

Objectives 

In this study, we aim to identify sparse trust relationships among users using a 

predictive model. We do this rather than determining them directly by the human 

expert which is a tedious task and may be subjective to error or bias.  We will 

demonstrate the use of one-class support vector machines (OC-SVM) in the 

identification of sparse trust data which represents the trust relationships between 

users. We hypothesize that the use of OC-SVM model for trust mining would 

improve the performance of recommender systems which predict the ratings of 

movies by users. In addition, because only positive relationship (trust rather than 

distrust) data are provided, OC-SVM can be used effectively to identify the trust 

relationships with similar sparse attributes to those with known social trust, so the 

trust relationships will be labeled as inliers, while distrust relationships will be 

flagged as outliers.  

Research Contributions 

Our work is inspired by Hu et al. (2020) which proposed a semi-supervised 

learning–based sparse trust recommendation (SSL-SVD) method [4]. Instead, our 
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method employs an unsupervised algorithm to predict sparse trust and improve 

recommendations. We create a model which can generate sparse trust data more 

easily. Our contribution is to employ OC-SVM to automatically learn the sparse 

trust rather than by using cutoffs (or thresholds) set by human experts, as in SSL-

SVD [4]. Setting these thresholds is not easy and might be prone to bias or error. 

To our knowledge, there is no study that applies an outlier-detection algorithm in 

order to predict sparse trust among users. Our trust-aware recommendation system 

is equipped with an automated trust mining model using OC-SVM, an improvement 

over the SSL-SVD model which predicted trust using expert-guided manual cutoffs 

for the values of the similarity measures.   

This thesis is structured as follows: in Chapter 2, we will discuss the state-of-the-

art recommender system methods, particularly for trust-based recommendation 

systems. Furthermore, we will introduce four sparse trust relationship measures 

used in our model. In Chapter 3, the OC-SVM and trust-aware recommendation 

system methodologies are described along with the performance evaluation 

measures. In Chapter 4 we will describe how we carried out our experiments and 

compare our results to other methods. In Chapter 5 we will conclude and summarize 

our work and recommend future research directions. 

Chapter 2: Literature Review 

Matrix Factorization 

Matrix factorization (MF) is a broad category of mathematical techniques which 

allows a large matrix, for example a matrix of size users by items, to be represented 
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by two much smaller matrices of sizes users by r and r by items, where r is smaller 

than either users or items. The interpretation of these new matrices depends on the 

technique used to perform the factorization. These new matrices can create denser 

representations of otherwise sparse data such as ratings matrices [5]. Early 

recommender systems often used a form matrix factorization to make predictions.  

This new representation is known as a latent factor (LF) representation of the data. 

The latent factors represent underlying characteristics in the items represented. In 

the case of movies, the LFs could have a broad range of interpretations. For 

example, LFs could represent genre, movies with a strong female lead, a slow or 

fast soundtrack, or any other characteristic of the movie, including a combination 

of these. The LFs are not set manually but are instead the result of factoring a matrix 

into two or three (depending on the type of factorization) matrices. The 

interpretation of these latent variables is a topic of much study, but their 

interpretation is not important to the task of suggesting new content to users.  

SVD++ 

SVD++ is a model proposed by Koren [6] which is built on the mathematical 

concept of singular value decomposition (SVD). This technique has been used for 

decades to factor a single large matrix into two long, thin matrices as well as a 

central diagonal matrix with the dimensions of the original matrix. This can 

decrease the sparsity of the data. One improvement is the use of implicit data. For 

this model, that consists of combining the ratings data with data on which movies 

the users rated. This is achieved by one-hot-encoding the data as either rated or 

not rated, 1 or 0. Koren then uses a neighborhood-based model which considers 
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whether other users rated a given movie higher or lower than their average and 

adjusts the predicted rating accordingly. The final equation used as the prediction 

function for SVD++ is given below. 

𝑟𝑢�̂� = 𝜇 + 𝑏𝑢 + 𝑏𝑖 + 𝑞𝑖
𝑇 (𝑝𝑢 + |𝑁(𝑢)|−

1

2 ∑ 𝑦𝑗𝑗∈𝑁(𝑢) )         Equation 1 

+|𝑅𝑘(𝑖; 𝑢)|−
1

2 ∑ (𝑟𝑢𝑗 − 𝑏𝑢𝑗)𝑤𝑖𝑗 + |𝑁𝑘(𝑖; 𝑢)|−
1

2 ∑ 𝑐𝑖𝑗𝑗∈𝑁𝑘(𝑖;𝑢)𝑗∈𝑅𝑘(𝑖;𝑢)   

Equation 1 is described as having three parts. The first is 𝜇 + 𝑏𝑢 + 𝑏𝑖, where 𝜇 is 

the overall mean of all movies, 𝑏𝑢 is the tendency of the user to rate higher or 

lower than the mean, and 𝑏𝑖 is the same for the given movie. The next portion is  

𝑞𝑖
𝑇 (𝑝𝑢 + |𝑁(𝑢)|−

1

2 ∑ 𝑦𝑗𝑗∈𝑁(𝑢) ), where 𝑞𝑖
𝑇 is the items-factors vector, 𝑝𝑢 is the 

items-factors vector, and 𝑦𝑗 is a factor vector.  𝑁(𝑢) is the number of items where 

the user provided implicit preference. The remaining portion is the neighborhood 

portion of the model. This is where for each of the nearest k neighbors, the model 

considers the difference between the users rating and their bias for the movie. 

This difference is weighted by  𝑤𝑖𝑗 , which is theorized to weight movies that are 

similar to movie m. 𝑐𝑖𝑗 also is theorized to be higher in items j that are similar to i 

for all movies user u has provided implicit feedback on.  

While the use of matrix factorization allows for the creation of recommender 

systems, it struggles in creating predictions for new users; this issue is known as 

the cold-start problem. In the next section, trust-aware recommender systems are 

introduced in order to address the issue of cold-start.  
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Trust-aware Recommender Systems 

Trust-aware recommender systems (Trust-aware RS) were originally proposed by 

Massa and Avesani in 2007 in order to overcome the cold-start problem [7]. The 

recommender system they presented takes advantage of additional data collected 

on the trust between users. If users trust or “friend” other users, then those users are 

assumed to have similar tastes. This helps resolve the cold-start problem as those 

users who have limited reviews can be recommended products that are rated highly 

by the users they trust.  

Trust data are not always available. Many services simply have not created a system 

that allows users to suggest trust relations. When such a system does exist, it is not 

always able to gather large amounts of trust data for each user. However, trust data 

are still quite useful as the trust-aware models are an extension on previous, ratings-

only models. Therefore, when a user does not have any trust relations the 

recommender can fall back on traditional ratings-based recommendations.  

Trust-SVD 

Based on singular value decomposition (SVD), Trust-SVD was proposed as an 

algorithm which explores the concept of implicit trust. Implicit trust is mined by 

comparing the rating patterns of one user to another. This is contrasted with explicit 

trust which is obtained from users actively trusting another user. Implicit trust is 

less reliable than explicit trust, but it has the advantage of being more abundant, as 

it does not require additional action by the users, it is simply calculated from the 

ratings data.  The final loss function that Trust-SVD attempts to minimize is given 

in Equation 2 [8]. 
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𝑙𝑜𝑠𝑠 =  
1

2
∑ ∑ (�̂�𝑢,𝑗 − 𝑟𝑢,𝑗)

2
+ 

λ𝑡

2𝑗∈𝐼𝑢𝑢 ∑ ∑ (�̂�𝑢,𝑣 − 𝑡𝑢,𝑣)
2

𝑣∈𝑇𝑢𝑢 +       Equation 2 

Λ

2
∑ |𝑈𝑗|

−
1

2𝑏𝑗
2 + ∑ (

λ

2
|𝐼𝑢|−

1

2 +
λ𝑡

2
|𝑇𝑢|

−
1

2)‖𝑝𝑢‖𝐹
2 +

λ

2𝑢 ∑ |𝑈𝑗|
−

1

2‖𝑞𝑗‖𝐹

2
𝑗 +𝑗   

∑ |𝑈𝑖|
−

1

2‖𝑦𝑗‖𝐹

2
+

λ

2
|𝑇𝑣

+|−
1

2‖𝑤𝑣‖𝐹
2

𝑗 + 
λ

2
∑ |𝐼𝑢|

−
1

2𝑏𝑢
2

𝑢   

In Equation 2, �̂�𝑢,𝑗 − 𝑟𝑢,𝑗 and  �̂�𝑢,𝑣 − 𝑡𝑢,𝑣 are the errors in rating prediction for every 

user-movie combination and the trust error for every user-user combination. Λ and 

λ𝑡 are regularization parameters which adjust the level of a role which trust plays 

vs the latent model. |𝐼𝑢|
−

1

2𝑏𝑢
2 regulates the size of bias terms for each user while 

|𝑈𝑗|
−

1

2𝑏𝑗
2 plays the same role for movies. Each of the following terms controls for 

model complexity as well. ‖ . ‖𝐹  represents the Frobenius norm and grows as the 

members of the vector grow; therefore, it is useful in measuring complexity. 𝑇𝑢 is 

the set of users trusted by u, U is the set of users who rated the item represented by 

the subscript while I is the set of items rated by the user in the subscript. The 

variables b, p, q, y, and w are latent matrices which are trained by gradient descent. 

This is hypothesized to create a model which accurately predicts ratings and trusts 

while minimizing the size of parameters to limit overfitting.  

RoleTS 

A model based on “Role-based Trust Strength” (RoleTS) [9] is an extension of 

Trust-SVD. The authors improve the predictive power of Trust-SVD by 

separating trust into two “roles.” This is done by adding a second trust matrix T- 

which represents the trustors in addition to the original trust matrix T which 

represents the trustees.  
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Pan et al. (2020) also improved the model by adding two regularizations. This is 

accomplished by the following Equations 3 and 4. 

𝛽

2
∑ ∑ 𝑔(𝑋𝑢,𝑣)‖𝑃𝑢 − 𝑊𝑣‖𝐹

2
𝑣∈𝑇𝑢 +

λ

2
∑ ∑ 𝑋𝑢,𝑣

2
𝑣∈𝑇𝑢𝑢 +𝑢    Equation 3 

 
𝛾𝑀

2
∑ ∑ (𝑋𝑢,𝑣 − 𝑔(𝑤𝑚𝑃𝑢𝑊𝑣

𝑇 + 𝑏𝑚))2𝑣∈𝑇𝑢
+𝑢  

𝛾𝑆

2
∑ ∑ (𝑋𝑢,𝑣 − 𝑔(𝑤𝑠𝑆𝑖𝑚(𝑢, 𝑣) + 𝑏𝑠))

2
𝑣∈𝑇𝑢𝑢   

𝑔(𝑋𝑢,𝑣) =
1

1+𝑒−𝑋𝑢,𝑣
       Equation 4 

𝛽 is a hyperparameter that would balance the importance of trust for 

recommendations. 𝑋𝑢,𝑣 is the latent trust between users u and v. 𝑃𝑢 − 𝑊𝑣 is the 

difference between the latent trustor and trustee vectors. 𝛾𝑀 and 𝛾𝑆 are 

hyperparameters which weight the importance of each of the two parts of the 

regularization.  The second term attempts to limit the values of 𝑃𝑢𝑊𝑣
𝑇 which gives 

back the latent trust matrix 𝑋𝑢,𝑣 . The final term utilizes the Pearson correlation 

coefficient to train the parameter 𝑤𝑠.  This recommender achieves improved 

results over Trust-SVD; however, it is outperformed by the algorithm described in 

the following section. 

SSL-SVD 

A model based on semi-supervised learning is SSL-SVD [4], which extends other 

trust models by increasing the density of trust by using “sparse trust.” Sparse trust 

is specific type of implicit trust. Sparse trust is considered weaker than social trust, 

however, any added trust relations discovered have the potential to improve 

predictive power. This type of trust is also mutually exclusive to social trust; It 
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displaces relations that would be considered unknown or distrust in other models. 

The authors proport to have increased the trust density of each dataset by at least 

sixty-five percent.  

Hu et al. (2020) have introduced four sparse trust relationship measures which can 

be calculated from the ratings dataset. These measures are similarity, consistency, 

credibility, and objectivity, which are granular representations of the preferences 

and behavior of users. Each measure is described below: 

𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦(𝑢, 𝑣): 
|𝐼𝑢  ⋂ 𝐼𝑣|

|𝐼𝑢  ⋃ 𝐼𝑣|
         Equation 5 

𝐶𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑦(𝑢, 𝑣): 
∑ (𝑟𝑢,𝑖−𝑟𝑢̅̅ ̅)(𝑟𝑣,𝑖−𝑟𝑣̅̅ ̅)𝑖∈𝐼𝑢,𝑣

√∑𝑖∈𝐼𝑢,𝑣(𝑟𝑢,𝑖−𝑟𝑢̅̅ ̅)2√∑𝑖∈𝐼𝑢,𝑣(𝑟𝑣,𝑖−𝑟𝑣̅̅ ̅)
2
    Equation 6  

𝐶𝑟𝑒𝑑𝑖𝑏𝑖𝑙𝑖𝑡𝑦(𝑣):= 𝑙 (𝐶1 +
1

𝐶2
),                    Equation 7 

   𝐶1 =  
∑ (𝑟𝑣,𝑖−𝑟𝑣̅̅ ̅)

2
𝑖∈𝐼𝑣

𝑁
, 𝐶2 = 

∑ (𝑟𝑣,𝑖−𝑟�̅�)
2

𝑖∈𝐼𝑣

𝑁
,      Equations 8, 9 

𝑙 =  {
𝑁

𝑁𝑢   𝑁 < 𝑁𝑢

1 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
          Equation 10 

𝑂𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦(𝑣): 
∑ (𝑟𝑣,𝑖−𝑟𝑣̅̅ ̅)(𝑟𝑖−�̅�)𝑖∈𝐼𝑣

√∑𝑖∈𝐼𝑣(𝑟𝑣,𝑖−𝑟𝑣̅̅ ̅)2√∑𝑖∈𝐼𝑢,𝑣(𝑟�̅�−�̅�)2
      Equation 11 

In Equations 5-11, 𝐼𝑢   and 𝐼𝑣   are the sets of movies users u and v have rated, 

respectively. 𝑟𝑢,𝑖  and 𝑟𝑣,𝑖  are the rating of item i by user u and v respectively. 𝑟�̅� 

and 𝑟�̅� is the mean ratings of user u and v respectively, 𝑟�̅� is the average rating on 

movie i, and �̅� is the average rating across all ratings. 𝑁 is the number of items 
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rated by user u and 𝑁𝑢 is the minimum number of items a user needs to rate to be 

considered fully “lively.” 

Similarity is the ratio of movies rated by both users to the number of movies rated, 

by either user; it does not consider the ratings given. It is hypothesized that users 

who have a high similarity would be more likely to trust each other. Consistency is 

used to find users who have similar “grade inflations” which is the idea that some 

users may rate a liked movie 2-stars and a disliked movie 4-stars, being reluctant to 

give out 1- or 5- star ratings; while other may more freely give 1-star and 5-star 

rating to movies they find equally as good or bad as the first user. Credibility is 

predicted to be low in users who are being dishonest. This is predicted by finding 

users who rate many items significantly different than their own mean rating and 

different than the items mean rating, a behavior that is not expected to be found in 

honest users. It is also higher in users who have rated at least a minimum number 

of items. Objectivity is similar to credibility; however, it does not take into account 

how many items a user has rated, their liveliness, and it is not based on volatility, 

or whether a user rates items similar to their own mean. We adopt these same 

measures in the model used for this experiment. After the measures are calculated 

for each user-user pair they are used to predict the sparse trust between those two 

users.  

Hu et al. (2020) then used each of these measures to find distrust among users by 

applying the transductive support vector machine (TSVM) to the data. However, 

before applying the TSVM the authors label relations below a certain threshold as 
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distrust. These predictions are then combined with the know social trust relations 

for use in predicting ratings.  

𝑙𝑜𝑠𝑠 =  
1

2
∑ ∑ (�̂�𝑢,𝑖 − 𝑟𝑢,𝑖)

2 +𝑖∈𝐼𝑢𝑢
λ𝑡

2
∑ ∑ (�̂�𝑢,𝑣 − 𝑡𝑢,𝑣)

2
𝑣∈𝑇𝑢𝑢       Equation 12 

+
λ𝑠

2
∑ ∑ (�̂�𝑢,𝑧 − 𝑠𝑢,𝑧)

2
𝑧∈𝑆𝑢𝑢 +

λ

2
∑ |𝐼𝑢|

−
1

2𝑏𝑢
2

𝑢 +
λ

2
∑ |𝑈𝑖|

−
1

2𝑏𝑖
2

𝑖   

+∑ (
λ

2
|𝐼𝑢|

−
1

2 +
λ𝑡𝛼

2
|𝑇𝑢|

−
1

2 +
λ𝑠(1−𝛼)

2
|𝑆𝑢|

−
1

2) ‖𝑝𝑢‖𝐹
2

𝑢   

+
λ

2
∑ |𝑈𝑖|

−
1

2‖𝑞𝑖‖𝐹
2

𝑖 +
λ

2
∑ |𝑈𝑗|

−
1

2‖𝑦𝑗‖𝐹

2
𝑗 +

λ

2
|𝑇𝑣

+|−
1

2‖𝑤𝑣‖𝐹
2 +

λ

2
|𝑆𝑧

+|−
1

2‖𝑓𝑧‖𝐹
2   

Equation 12 is the loss function used by SSL-SVD. It will also be the loss function 

adopted by our model. The sparse trust mined by SSL-SVD will be replaced with 

the predicted sparse trust in our model. In equation 12, �̂�𝑢,𝑖 − 𝑟𝑢,𝑖 represents the 

error in rating prediction while �̂�𝑢,𝑣 − 𝑡𝑢,𝑣 and �̂�𝑢,𝑧 − 𝑠𝑢,𝑧 serve the same purpose 

for social and sparse trust, respectively. |𝐼𝑢|
−

1

2𝑏𝑢
2 and |𝑈𝑖|

−
1

2𝑏𝑖
2 serve as regulatory 

terms on the user and item vectors, respectively. 
𝜆

2
|𝐼𝑢|

−
1

2 +
λ𝑡𝛼

2
|𝑇𝑢|

−
1

2 +

λ𝑠(1−𝛼)

2
|𝑆𝑢|

−
1

2 provides a balance between social and sparse trust. If 𝛼 is set to one, 

only social trust is considered, only sparse trust is considered when 𝛼 is set to zero. 

Each of the remaining terms control for complexity. 𝑞𝑖 is the latent item matrix, 𝑦𝑗 

represents the predicted trust values, 𝑤𝑣 and 𝑓𝑧 are the latent user vector of the 

social and spares followees of u, respectively.  

While SSL-SVD was able to achieve better results than existing Trust-Aware RS, 

they rely on the use of expert guidance in setting the cutoffs for trust versus distrust 
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on each of the four sparse trust measures. In the next chapter we cover the 

methodology used to generate the predictions with our model. 

TT-SVD 

The authors of this paper utilize a two-pronged model based on two-way trust 

(TT-SVD) [10]. They run a separate gradient descent on using the data on both 

trustees and trustors. The authors then have a parameter 𝛽 which controls the ratio 

between the two predictions as seen in Equation 13 below. 

�̂�𝑢,𝑗 = 𝛽(𝑇𝑟𝑢𝑠𝑡𝑒𝑒𝑆𝑉𝐷) + (1 − 𝛽)(𝑇𝑟𝑢𝑠𝑡𝑒𝑟𝑆𝑉𝐷)       Equation 13 

In Equation 13 �̂�𝑢,𝑗 is the predicted rating, 𝛽 is a hyperparameter between 0 and 1, 

and TrusteeSVD and TrusterSVD are the rating prediction given by the trustee 

and truster models, respectively. This method resulted in improved results over 

previous methods which trained a single model using both the trustee and trustor 

information.  

DLMF 

Deep learning is a machine learning technique which has gained significant 

popularity recently. Deng et al. [11] apply deep learning to the problem of ratings 

prediction using trust data in a model they refer to as Deep Learning based Matrix 

Factorization (DLMF). They begin by pretraining an autoencoder in order to pick 

accurate starting values. This is intended to reduce the tendency of the algorithm 

to converge on local optima and achieve performance closer to the global 

optimum. The researchers used a Continuous Restricted Boltzmann Machine 

(CRBM) to create a latent representation of the user vectors into a lower 
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dimensional space. The latent vector is then decoded to attempt to reconstruct the 

original user matrix. The model is trained to minimize the error between the 

original user matrix and the reconstruction. 

The authors use trust propagation to increase the trust density. This method is 

based on the principle that if user 1 trusts User 2, and User 2 trusts User 3 then 

User 1 will tend to trust User 3 as well. They used a concept of “cliques” to 

predict which users would be most likely to share interests with each other. A 

clique is a subgraph of the whole trust graph in which the users all trust one 

another. The algorithm then attempts to minimize the difference in the users 

rating on an item from that of the cliques average rating. This is achieved by 

minimizing the regularization term given below.  

 ‖𝑃𝑢 −
1

|𝑁(𝑢)|
∑ 𝑇𝑢,𝑣𝑃𝑣𝑣∈𝑁(𝑢) ‖

𝐹

2
     Equation 14 

In Equation 14, 𝑃𝑢 is the latent matrix of user u, N(u) is the neighborhood of user 

u (those in the same clique) and 𝑇𝑢,𝑣 is the trust value between user u and v.  
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Chapter 3: Methodology 

Sparse Trust Mining 

Before OC-SVM could be performed, the data were mined for internal trust using 

Equations 6-11. This gives additional features to each relationship between every 

user in the dataset which allows for the prediction of the trust relation between 

users where no explicit trust is given. These features attempt to describe the rating 

behavior of each user and show how they compare. This is predicated on the 

assumption that the characteristics of the relations between users with social trust 

will be similar to those who have sparse trust. 

SVM 

Support vector machine (SVM) is an algorithm which divides data into two or 

more classes. SVM relies on the concept of a separating hyperplane to select the 

class for a given data point. This hyperplane is a function which takes as input all 

the dimensions provided about a point and returns the class to which the point 

belongs.  

However, for many datasets there would be many or no such hyperplanes that 

divide the data into the correct classes based on the input variables. Both have 

issues been addressed for SVM [12]. 

First, the issue of multiply separable data. When there are multiple hyperplanes 

that divide the data, the SVM algorithm attempts to select the maximum-margin 

hyperplane. This is the hyperplane where the distance between the hyperplane and 

the nearest points are minimized. This will theoretically reduce the number of 
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misclassified points that are predicted when those points lie between the known 

location of points in each class for the train data.   

The second issue is when the data are not linearly separable with the given 

dimensions. There are two solutions to this issue. One is the use of soft margins, 

which allow a small portion of the training points to be misclassified. By allowing 

a few outlying points to be misclassified the distance between the hyperplane and 

the next nearest points can be increased. The number of such points must be 

limited however, or else the hyperplane will no longer separate the classes 

sufficiently to be useful.  

When soft margins are not sufficient to make the data separable, the issue can be 

further treated using “kernels.” Kernels are transformations applied to the dataset 

which create different features than linear space which can therefore lead to 

separable data. It has been shown that any dataset can be made separable using 

kernels, however, it is not always clear which kernel is correct. In most cases 

researchers simply try several kernels and select the one which provides the 

highest separability of the data [13]. 

Equation 15 below describes the hyperplane created by an SVM model. 
1

2
‖𝜔‖2

2 is 

a term designed to limit overfitting of the model; larger coefficient values are 

discouraged. ξ𝑖  is the error for training point x⃑ 𝑖; the coefficients of the equation 

which describes the hyperplanes is given as �⃑⃑� , while the bias is given by b. C is a 

hyperparameter which balances the penalty between errors and overfitting 

prevention.   
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𝑚𝑖𝑛
�⃑⃑⃑� ,𝑏,ξ𝑖≥0

         
1

2
‖𝜔‖2

2 + 𝐶 ∑ ξ𝑖
𝑚
𝑖=1     𝑠. 𝑡.  y𝑖(�⃑⃑�  ·  x⃑ 𝑖  −  b)  + ξ𝑖  ≥  1  Equation 15. 

One-Class SVM 

One-class support vector machines (OC-SVM) are frequently used in the field of 

anomaly detection when many typical data have been collected. These models are 

a specific adaptation of the broader class of models described above known as 

SVM. The model attempts to estimate a density which contains most of the typical 

data. When new data are passed into the model, those which fall out of this density 

can be considered outliers and are often further tested to determine whether they 

are errors or defects. The largest benefit of OC-SVM is that it does not require any 

labeled data of the second class. 

{

min
1

2
‖𝜔‖2 +

1

𝑁𝑣
∑ 

𝑖
− 𝜌𝑁

𝑖=1

𝑠. 𝑡. (𝑤 ∗ 𝜙(𝑥𝑖)) ≥ 𝜌 − 𝜉𝑖 , 𝑖 … 𝑁

𝑤 ∈ 𝑍,  ∈ ℝ+
𝑁 , 𝜌 ∈ ℝ , 𝑣 ∈ (0, 1]

}                    Equation 16 

Equation 16 is used to define the boundary of the decision boundary for whether 

points are considered outliers [14]. 𝜔 𝑎𝑛𝑑 𝜌 fully define the boundary. 
1

2
‖𝜔‖2 is 

used as a regularization coefficient, N is the number of training samples (in the 

positive class),  
𝑖
 is used as a slack variable, 𝑣 controls the number of training 

samples allowed outside the boundary by raising or lowering the penalty on such 

point. Different kernels can be applied to achieve better separability of the data 

while minimizing errors. This is represented by transforming the input vector 

using 𝜙(𝑥𝑖).   
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OC-SVM is applied to trust data with known trusts, but no known distrusts, in order 

to predict the relationships that are distrustful. This is useful as most organizations 

that collect data on trust, for example using friending and following, do not collect 

data on unfriends or other such inverses of friendship. That means that researchers 

examining these data must attempt to find the cases most similar to the known trust 

relations and use them to contrast the rest of relations where trust is unknown. The 

OC-SVM applied to my recommender system was from the Sci-Kit Learn package.  

Performance Measures 

Performance measures serve two purposes in the experiment. The first is for 

hyperparameter tuning of both the OC-SVM algorithm and the recommender 

system and the second is for evaluation of final results. The metrics used are 

“mean absolute error” (MAE) and “root mean square error” (RMSE), which both 

increase as the number and scale of difference increase between the predicted 

ratings and the actual ratings.  

𝑀𝐴𝐸 = ∑
|𝑟𝑖−𝑦𝑖|

𝑛

𝑛
𝑖=1                        Equations 17 

𝑅𝑀𝑆𝐸 =  √∑
(𝑟𝑖−𝑦𝑖)2

𝑛
𝑛
𝑖=1                     Equations 18 

Equations 17 and 18 describe how to calculate MAE and RMSE respectively. For 

both equations 𝑟𝑖 represents the actual rating of a movie by a user, 𝑦𝑖 represents 

the rating predicted by the recommender, and n is the number of ratings in the 

relevant dataset. RMSE penalizes larger errors significantly more than small 

errors, while MAE penalizes errors directly proportional to their size.  
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The OC-SVM and the recommender were tuned separately. OC-SVM is difficult 

to evaluate using traditional methods as all the labeled data belong to the train set; 

there is no test set available. To overcome this, we tuned the OC-SVM by running 

the entire model including the recommender and selecting the OC-SVM 

hyperparameters which achieved the lowest test RMSE on the ratings data.  

To select hyperparameters, grid search was used. We tested all combinations of 

kernel, degree, and 𝜈 (not all of these parameters apply to each kernel). This is an 

improvement over tuning each individually as hyperparameters can interact with 

each other and should not be assumed to be independent of each other [15]. The 

recommender was then tuned in a similar way while holding the OC-SVM 

hyperparameters fixed. The values tuned for the recommender were the values for 

learning rate and 𝛼, the ratio of the weight of sparse versus social trust.  

Recommender System 

We applied OC-SVM to estimate trust relationship recommendation system 

techniques used in Hu et al. (2020) [4] including SVD++ [6], PMF [16], SoRec 

[17], RSTE [18], SocialMF [19], TrustMF [20], TrustSVD [3]. In addition, we 

have vectorized many of the components of the model in order to significantly 

improve the speed of the implementation. Algorithms 1 and 2 below demonstrate 

the pseudo-code of our model.  
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Pseudocode 

 

Algorithm 1 shows the steps used to first generate the similarity measures which 

are then used as the features to train the OC-SVM model on the trust relations 

labeled as trust. It then outputs the sparse trust predictions which are used in 
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Algorithm 2 as inputs to produce predictions used to determine the performance 

of the model.  

In chapters 4 and 5 we describe the results of our implementation using the 

performance metrics described and compare them to the results found in previous 

work.    
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Chapter 4: Results 

Data 

We first describe the dataset and cross validation used to test the model. Table 1 

describes the characteristics of both datasets tested in this study, CiaoDVD and 

FilmTrust [21].  

Table 1. Summary statistics of each dataset examined. 

Data Set Users Movies Ratings Ratings 
Density 

Trusts 
Relations 

Trust 
Density 

% Cold 
Users 

CiaoDVD 7,375 99,746 278,483 0.0379% 111,781 0.23% 18.63 

FilmTrust 1,508 2,071 35,497 1.14% 1,853 0.42% 0.08 

 

Table 1 shows that the FilmTrust dataset has fewer ratings and users than the 

CiaoDVD dataset, but it has higher ratings and trust densities. Trust density is 

defined as the number of trust relationships divided by the possible trust relations. 

We describe the best hyperparameters experimentally determined, and finally we 

compare the model to other state-of-the-art techniques. 

CiaoDVD has significantly more trust relations; however, it has a much lower 

percentage of cold-start users. This could explain the better performance of our 

model, as there are more non-cold-start users on which to train the model and 

improve the predictions on the cold-start users. To train the model, an 80/20 

train/test split is used alongside 5-fold cross-validation. 

OC-SVM Results 

Below we present the results of the performance of different OC-SVM 

hyperparameters. We judge the optimal value for each hyperparameter by 
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evaluating the performance of the overall recommender. We determine the 

optimal hyperparameters for our model and then compare the results of our model 

to the state-of-the-art techniques based on RMSE and MAE. 

FilmTrust 

Table 2. The best performing hyperparameters for each kernel on FilmTrust dataset. 

Kernel Degree 𝝂 Train RMSE Train MAE Test RMSE Test MAE 

Polynomial 3 0.125 0.5558 0.5751 0.7893 0.6731 

Linear - 1 0.5555 0.5748 0.7925 0.6739 

RBF - 0.05 0.5554 0.5752 0.7926 0.6748 

CiaoDVD 

Table 3. The best performing hyperparameters for each kernel on CiaoDVD dataset. 

Kernel Degree 𝝂 Train RMSE Train MAE Test RMSE Test MAE 

Polynomial 3 0.05 0.6842 0.5005 0.9811 0.7298 

Linear - 0.01 0.6873 0.5030 0.9817 0.7306 

RBF - 0.1 0.6864 0.5018 0.9831 0.7306 

 

Next, we use the results shown in Tables 2 and 3 which show the hyperparameter 

combinations that give the lowest test RMSE for each kernel tested. We use the 

recommender system hyperparameters suggested in the Hu et al. study [4] while 

adjusting the OC-SVM hyperparameters. Finally, for each dataset, the best 

performing of the related hyperparameters are then used by the recommendation 

system as shown in Table 4.   
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Table 4. Hyperparameters used by each method. 

Approaches Parameter Settings 

PMF 𝜆 = 0.001 

SVD++ Recommended in Reference [6] 

SoRec Recommended in Reference [17] 

RSTE 𝛼 = 1.0,𝜆 = 0.001, 𝜆𝑇  = 1 

SocialMF 𝜆 = 0.001, 𝜆𝑇  = 1 

TrustMF  𝜆 = 0.001, 𝜆𝑇  = 1 

TrustSVD  𝜆 = 0.001, 𝜆𝑇  = 1 

SSL-SVD 𝛼 = 0.3, 𝜆 = 0.001, 𝜆𝑇  = 1 

Our Approach 𝛼 = 0.0, 𝜆 = 0.001, 𝜆𝑇  = 1, 𝜈 = 0.05 

 

Recommender Results 

In this section we present figures which show the performance of the 

recommender with different hyperparameter configurations. We then describe the 

process used to select the best hyperparameters. For each hyperparameter we 

show the results for both RMSE and MAE as well as all users and cold-start users 

only. 

FilmTrust 

Alpha 

Below we present the tuning results for 𝛼. 𝛼 is the hyperparameter which controls 

the ratio between the sparse trust and social trust in the loss function (Equation 

12). The learning rate affects how quickly the gradient descent changes with each 

iteration. Too large of a learning rate can cause the descent to overshoot the 

minimum, while too small of a learning rate may cause the algorithm to be stuck 

in a local minimum that is higher than the global minimum, or to fail to converge. 
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Figure 1. MAE vs 𝛼 All   Figure 2. RMSE vs 𝛼 All 

 

Figure 3.  MAE vs 𝛼 Cold  Figure 4. RMSE vs 𝛼 Cold 

Learning Rate 

 

Figure 5. MAE vs Learning Rate All           Figure 6. RMSE vs Learning Rate All  
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Figure 7. MAE vs Learning Rate Cold    Figure 8. RMSE vs Learning Rate Cold  

Based on Figures 1-4 we selected 0 as the optimal value for 𝛼 because the lowest 

error was universally found with this value. This suggests that the sparse trust 

predictions made by the OC-SVM model were the most predictive. Our learning 

rate was set to 0.001 based on the results on all users, however the cold-start users 

performed better with a higher learning rate as seen in figures 5-8. 

CiaoDVD 

Alpha 

 

Figure 9. MAE vs Alpha All   Figure 10. RMSE vs Alpha All  
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Figure 11. MAE vs Alpha Cold  Figure 12. RMSE vs Alpha Cold  

Learning Rate 

 

Figure 13. MAE vs Learning Rate All       Figure 14. RMSE vs Learning Rate All 

 

Figure 15. MAE vs Learning Rate Cold.      Figure 16. RMSE vs Learning Rate Cold 

 

The results for CiaoDVD seen in figures 9-16 showed similar best-performing 

hyperparameters, also suggesting that an 𝛼 of zero performed best.  
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Based on Table 4, the best performance is achieved by using almost entirely 

sparse trust. This suggests that the use of OC-SVM for prediction of sparse trust is 

effective at improving predictions, when compared to the use of social trust alone.  

Model Comparisons 

Table 5. The performance of each model on both datasets for all users. 

 

Table 6 The performance of each model on both datasets for cold-start users. 

 

Based on Tables 5 and 6 we show that the model improved performance on the 

CiaoDVD dataset significantly, while underperforming the most recent state-of-

the-art-models on the FilmTrust dataset. Our method stood out in its ability to 

predict ratings for the cold-start users on the CiaoDVD. This is especially 

important as cold-start users are the primary target for trust-based recommenders. 

While the model was not able to outperform every model on both datasets, the 

large increase in performance on the CiaoDVD dataset cold-start users suggests 

that our model could be very useful for providing recommendations for cold-start 

users.  
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Chapter 5: Discussion 

Our proposed algorithm performed significantly better on one of the two datasets. 

Based on this, we believe that OC-SVM has the potential to improve 

recommendations where trust data is available. We believe these results will 

improve what can be achieved using trust-based recommenders and will be useful 

in providing predictions, especially for cold-start users. We think that the 

application of OC-SVM has improved the predictions obtained by penalizing 

those relations identified as distrust.  

The recommender system was programmed in Python. Python was chosen due to 

its wide variety of packages which support machine learning and vectorized 

programming. Numpy was used primarily for its Array object and vectorized 

methods. Pandas was also used to represent the tabular data as data frames. These 

packages can significantly speed up the calculations compared to native python 

lists and dictionaries. For the CiaoDVD dataset the recommendation took  

26,548 ±7527s and FilmTrust took 778.8 ±24.6s.   
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Chapter 6: Conclusion and Future Work 

Future work to expand on this project could include testing alternatives to OC-SVM 

as a one class classification algorithm. There are other promising alternatives which 

employ neural networks, which are becoming increasingly powerful and popular as 

computing speed continuously improves. The neural networks can address the 

weaknesses of OC-SVM as datasets become increasingly large. Chalapathy et. al 

found these to be quite effective in comparison with OC-SVM  [22]. The separation 

of the model into two algorithms will allow future practitioners to apply new 

algorithms to replace OC-SVM without needing to modify Algorithm 2.  

Further improvements could also be sought by attempting to incorporate additional 

data into the model as was done with trust, for example labels of genre or lead 

actors. These types of data are often used in content-based recommenders [23]. 

Another widely discussed extension of trust data is a temporal component. It has 

been theorized that trust between parties evolves over time and therefore trust can 

be made or broken as time goes on. This could be studied by including the time a 

trust relation was formed into the relative weight given to it.   
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