
 
 

UNIVERSITY OF OKLAHOMA 

GRADUATE COLLEGE 

 

 

 

 

 

IN SITU AND SATELLITE-BASED ESTIMATES OF AEROSOL-CLOUD INTERACTIONS BETWEEN 

BIOMASS BURNING AEROSOLS AND MARINE STRATOCUMULUS CLOUDS OVER THE SOUTHEAST 

ATLANTIC OCEAN 

 

 

 

 

A DISSERTATION 

SUBMITTED TO THE GRADUATE FACULTY 

in partial fulfillment of the requirements for the 

Degree of 

DOCTOR OF PHILOSOPHY 

 

 

 

 

 

 

 

 

By 

Siddhant Gupta 

Norman, Oklahoma 

2021 



 
 

IN SITU AND SATELLITE-BASED ESTIMATES OF AEROSOL-CLOUD INTERACTIONS BETWEEN 

BIOMASS BURNING AEROSOLS AND MARINE STRATOCUMULUS CLOUDS OVER THE SOUTHEAST 

ATLANTIC OCEAN 

 

 

 

 

A DISSERTATION APPROVED FOR THE 

SCHOOL OF METEOROLOGY 

 

 

 

 

 

 

 

 

BY THE COMMITTEE CONSISTING OF 

 

 

 

 

 

 

 

 

 

 

 

Dr. Greg McFarquhar, Chair 

 

Dr. Jens Redemann 

 

Dr. Evgeni Fedorovich 

 

Dr. Cameron Homeyer 

 

Dr. Jay McDaniel 



 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

© Copyright by Siddhant Gupta 2021 

All Rights Reserved.



iv 
 

ABSTRACT 

Ubiquitous low-level, marine stratocumulus clouds provide the largest contribution of all 

cloud types to the shortwave cloud radiative forcing. A cooling effect from small changes in low-

level cloud properties due to aerosol-cloud interactions (ACIs) could partially offset the global 

warming due to increasing greenhouse gas concentrations in the atmosphere. A large marine 

stratocumulus cloud deck exists over the southeast Atlantic Ocean where the clouds are overlaid 

by biomass burning aerosols with instances of contact and separation between the aerosol and 

cloud layers. Biases in satellite retrievals of aerosol and cloud properties and the vertical distance 

between the aerosol and cloud layers have led to uncertainties in the regional estimates of ACIs 

and the effective radiative forcing due to ACIs (ERFaci). ERFaci remains the largest source of 

uncertainty in climate model estimates of Earth’s energy budget in future climate scenarios. 

In this study, in situ data are used to quantify aerosol-induced changes in stratocumulus 

cloud properties and to evaluate satellite-based estimates of the aerosol-induced changes. Size 

distributions of aerosols and cloud droplets were sampled during the three phases of the NASA 

ObseRvations of Aerosols above CLouds and their intEractionS (ORACLES) field campaign using in 

situ probes onboard the NASA P-3B aircraft. Size distributions from vertical profiles of aerosol 

and cloud layers over the southeast Atlantic were used to estimate aerosol concentration (Na) 

along with cloud microphysical properties like droplet concentration (Nc), effective radius (Re), 

and liquid water content (LWC), optical properties like cloud optical thickness (), and 

macrophysical properties like liquid water path (LWP), cloud geometric thickness (H) and 

precipitation rate (Rp). 
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Across the ORACLES campaigns in September 2016, August 2017, and October 2018, 173 

“contact” profiles had Na > 500 cm-3 within 100 m above cloud tops and 156 “separated” profiles 

had Na < 500 cm-3 up to 100 m above cloud tops. The average Nc, LWC, and  for contact profiles 

were 87 cm-3, 0.02 g m-3, and 1.8 higher and Re was 1.5 m lower compared to separated profiles. 

These differences were associated with higher below-cloud Na and weaker droplet evaporation 

near cloud top in the presence of high Na immediately above cloud tops. Larger differences were 

observed between Nc and Re for contact and separated profiles in high Na boundary layers (108 

cm-3 and 1.8 m) compared to low Na boundary layers (31 cm-3 and 0.5 m). A smaller decrease 

in humidity across cloud top during contact profiles led to a smaller decrease in median Nc and 

LWC near cloud top (25% and 12%) compared to separated profiles (33% and 18%).  

Higher Nc and lower Re for contact profiles resulted in precipitation suppression with 50% 

lower Rp compared to separated profiles along with 20% lower precipitation susceptibility to 

aerosols (So). So depends on both Nc and Rp, and differences between So for contact and separated 

profiles varied with H due to the co-variability between changes in Nc and Rp due to droplet 

growth with height and increasing Na. Based on reanalysis data, contact and separated profiles 

had statistically similar meteorological conditions like surface temperature (To), lower 

tropospheric stability (LTS), and estimated inversion strength (EIS), on average.  

For 67 contact and 82 separated profiles, in situ data were co-located with a retrieval 

from the Moderate Resolution Imaging Spectroradiometer (MODIS) onboard the Terra or Aqua 

satellite with a time gap of less than 1 hour. On average, the MODIS Re, , and Nc (11.4 m, 11.7, 

and 150.3 cm-3) were 1.7 m, 2.4, and less than 1 cm-3 higher than the in situ Re, , and Nc with 

Pearson’s correlation coefficient (R) = 0.78, 0.72, and 0.90, respectively. The 67 contact profiles 
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had 103 cm-3 and 2.8 higher in situ Nc and  with 2.2 m lower in situ Re compared to the 82 

separated profiles. MODIS estimates of the differences in Re, , and Nc between contact and 

separated profiles were within 0.5 m, 0.7, and 5 cm-3 of the in situ estimates when profiles with 

MODIS Re > 15 m and MODIS  > 25 were removed. Agreement between MODIS and in situ 

estimates of Re, , and Nc and the aerosol-induced changes in Re, , and Nc was observed due to 

low biases in MODIS retrievals which were consistent for contact and separated profiles.  

The aerosol-induced changes in cloud properties quantified in this study could impact the 

stratocumulus-to-cumulus or closed-to-open cell transitions in the region. Future work should 

examine in-cloud aerosol samples from the counterflow virtual impactor inlet to examine the 

extent of entrainment mixing of aerosols into the cloud layer. Modeling studies should examine 

the impact of precipitation suppression on cloud lifetime and boundary layer dynamics. Model 

parameterizations of Rp should be adjusted to account for changes in the relationship between 

Nc, Rp, and H under different aerosol conditions. Future work should also be aimed at improving 

satellite-based estimates of the vertical displacement between the aerosol and cloud layers. 

Combined with MODIS retrievals, this would allow studies of ACIs in marine stratocumulus over 

longer timescales and larger domains than possible using in situ data alone. 
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1 INTRODUCTION 

1.1. Marine Stratocumulus Clouds (MSC) 

Clouds cover about two-thirds of the Earth’s surface (Stubenrauch et al., 2013) and exert 

a net cloud radiative forcing (CRF) of - 17.1 Wm-2 on Earth’s energy budget (Loeb et al., 2009). 

The net CRF includes reflection of shortwave solar radiation to space, which cools the Earth, and 

the absorption (emission) of longwave radiation, which warms (cools) the Earth. Small changes 

in low-level cloud properties can modulate global climate. For example, the radiative forcing due 

to well-mixed greenhouse gases (+ 2.83 W m-2) (Myhre et al., 2013) could be offset by the 

radiative forcing from a 15 to 20% decrease in droplet sizes for low-level clouds (Slingo, 1990).  

MSC are the most common type of low-level clouds with an annual mean coverage of 

over 20% of the ocean surface (Eastman et al., 2011). These low-level, boundary layer clouds 

exist over subtropical oceans in regions with large-scale subsidence (Klein and Hartmann, 1993). 

Cloud cover in these regions depends on sea surface temperature (SST) (Eastman et al., 2011). 

CRF is thus sensitive to changes in SST but there is a large spread in model estimates of the CRF 

sensitivity (Bony and Dufresne, 2005). MSC have higher albedo than the ocean surface and a 

strong shortwave CRF. From 35 ˚S to 35 ˚N, the MSC CRF is between -150 and -200 Wm-2 with a 

10 - 20% contribution to the CRF (Oreopoulos and Rossow, 2011). 

1.2. Aerosol-Cloud Interactions (ACIs) 

Among other factors, CRF for MSC depends on the horizontal and vertical distribution of 

cloud droplets and their size distribution. Cloud droplet size distributions depend on the number, 

size, composition, and vertical distribution of aerosols. An increase in aerosols acting as cloud 
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condensation nuclei can increase cloud droplet concentration (Nc) and decrease effective radius 

(Re). This increases the cloud optical thickness () and shortwave CRF if liquid water content (LWC) 

remains constant (Twomey, 1974, 1977). The presence of smaller droplets can also inhibit droplet 

growth and lead to lower precipitation rate (Rp), higher LWC and liquid water path (LWP), and 

longer cloud lifetime (Albrecht, 1989). Neglecting cloud adjustments in LWP can lead to 

underestimates of the aerosol effect on cloud albedo because  has a stronger dependence on 

LWP than Nc (Platnick and Twomey, 1994; Brenguier et al., 2000).  

Precipitation susceptibility to aerosols (So) relates the change in Rp due to aerosol-induced 

changes in Nc as a function of LWP or H (Feingold and Seibert, 2009). So depends on processes 

like collision-coalescence which are parameterized in models (Morrison and Gettelman, 2008; 

Geoffroy et al., 2010). Estimating the changes in So and the aerosol effects on Nc and Rp can help 

constrain biases associated with climate model parameterizations of Nc and Rp (Geoffroy et al., 

2008). The effective radiative forcing due to ACIs (ERFaci) provides the largest source of 

uncertainty in climate model estimates of Earth’s energy budget (Boucher et al., 2013). ERFaci 

includes the radiative forcing due to aerosol effect on cloud albedo (RFaci) and subsequent cloud 

adjustments in LWC or LWP (Gryspeerdt et al., 2020). 

1.3. Factors that influence ACIs 

ACIs depend on thermodynamic parameters like humidity, buoyancy, and inversion 

strength. For example, enhanced dry-air entrainment can lead to droplet evaporation and 

decrease the LWC in clouds affected by increasing aerosol concentration (Na). This can weaken 

the increase in  associated with ACIs (Coakley and Walsh, 2002; Rosenfeld et al., 2014). 

Evaporative cooling from mixing between cloudy air and free-tropospheric air leads to cloud-top 
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instability which is the dominant source of turbulence in MSC (Mellado, 2017). Smaller droplets 

evaporate more easily leading to cloud-top evaporative cooling and the evaporation-

entrainment feedback (Ackerman et al., 2004; Xue and Feingold, 2006; Hill et al., 2008). 

LWP can have a positive or negative response to increasing Nc due to aerosols (Toll et al., 

2019). The LWP response varies with lower tropospheric stability (LTS), boundary layer depth 

(HBL), or relative humidity, droplet size distribution, Rp, and by Nc and LWP themselves (Chen et 

al., 2014; Gryspeerdt et al., 2019; Toll et al., 2019; Possner et al., 2020). The changes in LWP due 

to increasing Na must be quantified to estimate the ERFaci (Douglas and L’Ecuyer, 2019; 2020). 

The difference between process scales for ACIs and the resolution of climate models or satellite 

retrievals is a major source of uncertainties in RFaci estimates (McComiskey and Feingold, 2012). 

This can be addressed by combining satellite retrievals with in situ data for specific regimes. 

1.4. The Southeast Atlantic Ocean (SEAO) 

An important regime for ACIs exists over the SEAO where a large deck of MSC is overlaid 

by biomass burning aerosols (BBAs) (Haywood et al., 2004). Between July and October, extensive 

BBA plumes are lofted into the free troposphere over southern Africa (van der Werf et al., 2010; 

Gui et al., 2021). The BBA plumes are transported by the African easterly jet (Adebiyi and 

Zuidema, 2016) and overlay MSC with cloud fractions above 60% over the SEAO (Devasthale and 

Thomas, 2011). Rajapakshe et al. (2017) found the BBA layer was located within 360 m above the 

MSC for about 60 % of the lidar nighttime scenes over the SEAO.  The BBAs are associated with 

elevated water vapor content (Pistone at al., 2021) and their location can influence cloud-top 

dynamics (Ackerman et al., 2004) and lead to ACIs (Costantino and Breon, 2010).  
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Satellite retrievals indicate the SEAO provides the largest contribution to the global RFaci 

(Douglas and L’Ecuyer, 2020). However, the vertical overlap between BBAs and MSC can impact 

satellite retrievals of cloud and aerosol properties (Coddington et al., 2010; Meyer et al., 2015). 

Climate models struggle to estimate the aerosol radiative forcing and the altitude of the BBA 

layer which has led to biases in climate model estimates of cloud feedbacks and ACIs over the 

SEAO (Das et al., 2020; Mallet et al., 2021). Recent field campaigns have thus focused on the 

SEAO due to the unique meteorological conditions present in the region (Zuidema et al., 2016; 

Redemann et al., 2021). 

1.5. ACIs over the southeast Atlantic 

In situ observations were made over the SEAO during the NASA ObseRvations of Aerosols 

above CLouds and their intEractionS (ORACLES) field campaign in September 2016, August 2017, 

and October 2018 (Redemann et al., 2021). Based on observations from ORACLES, BBAs over the 

SEAO had 500 nm single scattering albedo between 0.83 and 0.89 which indicates a significant 

absorbing component (Pistone et al., 2019). However, the sign of the radiative forcing due to 

shortwave absorption by BBAs depends on the albedo of the underlying MSC (Cochrane et al., 

2019). Aerosols above a reflective cloud layer absorb more radiation than aerosols below or 

within cloud, which can also affect cloud formation (Haywood and Shine, 1997). Warming aloft 

due to shortwave absorption by BBAs can strengthen the temperature inversion, decrease dry 

air entrainment, increase LWP, and decrease the shortwave CRF (Wilcox, 2010).  

The warming effect of shortwave absorption by BBAs is amplified by droplet evaporation 

due to the semidirect effect (Hansen et al., 1997; Ackerman et al., 2000). Large-eddy simulations 

indicate the location of the aerosol layer can impact both the magnitude and sign of the semi-
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direct forcing (Johnson et al., 2004; McFarquhar and Wang, 2006). Satellite retrievals have been 

used to quantify ACIs and RFaci over the SEAO (Painemal et al., 2014; Douglas and L’Ecuyer, 2020). 

However, such studies can have uncertainties depending on the biases in satellite retrievals 

(Painemal and Zuidema, 2011) and uncertainties in the vertical placement of the aerosol layer 

(Rajapakshe et al., 2017).  

Sinks of Nc, LWC, and LWP like precipitation and entrainment lead to uncertainties in 

satellite retrievals of Nc which poses a challenge for satellite estimation of RFaci (Quaas et al., 

2020). Retrievals from the Moderate Resolution Imaging Spectroradiometer (MODIS) can have 

biases relative to in situ Nc, Re, and  depending on the occurrence of drizzle (Zinner et al., 2010), 

width and shape of droplet size distributions (Chang and Li, 2002; Brenguier et al., 2011), vertical 

profile of Re (McFarquhar and Heymsfield, 1998; Platnick, 2000), or cloud adiabaticity (Min et al., 

2012; Braun et al., 2018). Based on a review of Nc from satellite retrievals, Grosvenor et al. (2018) 

concluded airborne datasets were under-utilized for satellite retrieval evaluation.  

Observational studies of ACIs are thus needed to quantify Nc and LWP in different aerosol 

regimes and complement satellite observations (McComiskey and Feingold, 2012). During 

ORACLES, Na, Nc, Re, and  were sampled using in situ aerosol and cloud probes at locations where 

the base of the BBA layer was in contact or separated from the stratocumulus cloud tops. This 

study quantifies the aerosol-induced changes in cloud and precipitation properties and evaluates 

MODIS retrievals of Nc, Re, and  over the SEAO. The dissertation is organized as follows: 

Chapter 2 quantifies aerosol effects on Nc, Re, and  using a case study from September 6, 

2016. A statistical analysis of six research flights from the 2016 ORACLES campaign quantified the 

differences between Nc, Re, and LWC for clouds with variable above- and below-cloud Na. Chapter 
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3 examines cloud adjustments associated with the aerosol effects on Nc, Re, and . A statistical 

analysis of data from 24 research flights from all three ORACLES campaigns was used to quantify 

aerosol-induced changes in Rp and So as a function of H for different aerosol regimes. Chapter 4 

quantifies biases in satellite retrievals of Nc, Re,  and the aerosol perturbations in Nc, Re, and  

relative to in situ estimates. The results are used to determine the conditions under which MODIS 

retrievals can be used to study ACIs over the SEAO. Appendix A describes data comparisons 

conducted to estimate uncertainties associated with the in situ cloud probes used during 

ORACLES. Appendix B describes the codes and data processing algorithms developed to process 

data collected by the 2-Dimensional Stereo Probe (2D-S) and the High Volume Precipitation 

Sampler (HVPS-3). 
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2 Impact of the variability in vertical separation between biomass burning 

aerosols and marine stratocumulus on cloud microphysical properties 

over the Southeast Atlantic 

2.1. Introduction 

Clouds cover about two-thirds of the Earth's surface (Stubenrauch et al., 2013) and exert 

a global net cloud radiative effect (CRE) of about – 17.1 W m−2 on Earth's energy budget (Loeb 

et al., 2009). In comparison, the estimated radiative forcing from 1750 to 2011 due to well-mixed 

greenhouse gases is +2.83 W m−2 (Myhre et al., 2013). The net CRE includes reflection of 

shortwave solar radiation to space, which cools the Earth, and the absorption (emission) of 

longwave radiation, which warms (cools) the Earth. Marine stratocumulus is a common cloud 

type that is observed over oceans off western continental coasts where sea-surface 

temperatures are low and the boundary layer is capped by a strong inversion (Klein and 

Hartmann, 1993). From 35∘ S to 35∘ N, stratocumulus clouds have a shortwave-plus-longwave 

top-of-the-atmosphere CRE between −150 and −200 W m−2 with a 10 to 20 % contribution to the 

net CRE (Oreopoulos and Rossow, 2011). General circulation models have large uncertainties and 

inter-model spread in estimates of the net CRE (Boucher et al., 2013). This is partly due to strong 

underestimation of the subtropical marine stratocumulus cloud cover and the associated CRE 

(Wang and Su, 2013). 

The radiative impact of stratocumulus depends on many factors, including the horizontal 

and vertical distribution of cloud droplets, their size distribution, and their number 

concentration. Stratocumulus properties depend on the number, size, composition, and vertical 
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distribution of aerosols, and meteorological parameters such as boundary layer height, air mass 

history, and cloud-top instability, all of which can modulate the aerosol loading and influence 

aerosol–cloud interactions. Increases in aerosols acting as cloud condensation nuclei can increase 

cloud droplet concentration (Nc) and decrease effective radius (Re), which increases the cloud 

optical thickness and shortwave reflectance under conditions of constant liquid water content 

(LWC) (Twomey, 1974, 1977). Cloud adjustments in response to this aerosol indirect effect can 

modulate LWC. For example, precipitation suppression in clouds with smaller droplets increases 

LWC and cloud lifetime, which increases the CRE (Albrecht, 1989). The indirect effect and rapid 

adjustments in clouds contribute to the effective radiative forcing due to aerosol–cloud 

interactions (Boucher et al., 2013). Estimates of the effective radiative forcing (−1.2 to 0.0 W m−2) 

have uncertainties that contribute to the total aerosol radiative forcing, which is “the dominant 

contributor to overall net Industrial Era forcing uncertainty” (Myhre et al., 2013). 

The impact of the indirect effect can depend on above-cloud thermodynamic parameters 

such as humidity, buoyancy, and inversion strength. Depending on the free-tropospheric 

humidity, dry-air entrainment can decrease the LWC in clouds with higher Nc due to the indirect 

effect (Ackerman et al., 2004; Coakley and Walsh, 2002). Enhanced dry-air entrainment can 

weaken the increase in cloud optical thickness associated with smaller droplets (Small et al., 

2009; Rosenfeld et al., 2014). A weak inversion can lead to increased cloud-top entrainment and 

initiate a stratocumulus-to-cumulus transition by deepening and decoupling the boundary layer, 

and cutting off the surface moisture source (Wood, 2012). Evaporative cooling from mixing 

cloudy air with the warm and dry free-tropospheric air entraining into clouds leads to cloud-top 

instability, which is the dominant source of turbulence in stratocumulus (Mellado, 2017). 
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One of the largest stratocumulus cloud decks on Earth exists off the coast of Namibia over 

the Southeast Atlantic Ocean with a cloud fraction of over 60 % between July and October 

(Devasthale and Thomas, 2011; Zuidema et al., 2016). Biomass burning aerosols (BBAs) that 

originate from fires in southern Africa (van der Werf et al., 2010) are transported over the 

stratocumulus by the southern branch of the African easterly jet and overlay the clouds (Adebiyi 

and Zuidema, 2016). The aerosol layer over time descends and mixes with clouds, affecting cloud 

microphysical properties and their satellite retrievals (Haywood et al., 2004; Costantino and 

Breon, 2010). Rajapakshe et al. (2017) found the aerosol layer was located within 360 m above 

the cloud layer for about 60 % of the Cloud-Aerosol Transport System (CATS) lidar nighttime 

scenes over the Southeast Atlantic. Observations from the NASA ObseRvations of Aerosols above 

CLouds and their intEractionS (ORACLES) field campaign found the vertical gap between the 

aerosol layer and cloud tops changed with longitude, having a maximum separation near 7∘ E, 

and had a wide range of values (0 to 2000 m) with near-zero gap for 48 % of the scenes (LeBlanc 

et al., 2020). The Southeast Atlantic thus serves as a natural laboratory to examine the effects of 

varying vertical profiles of above-cloud aerosols on cloud microphysics due to instances of both 

separation and contact between the BBA layer and the stratocumulus. 

BBAs over the Southeast Atlantic have 500 nm single-scattering albedo ranging between 

0.83 and 0.89 (Pistone et al., 2019), which indicates a significant absorbing component to the 

BBA layer. The warming associated with shortwave absorption by BBAs over the Southeast 

Atlantic can be amplified by the evaporation of cloud droplets, the semi-direct effect (Hansen 

et al., 1997; Ackerman et al., 2000). Aerosols above a reflective cloud layer absorb more solar 

radiation than aerosols below or within cloud, which affects cloud formation (Haywood and 
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Shine, 1997) and the region's aerosol direct radiative effect (Keil and Haywood, 2003; Cochrane 

et al., 2019). Shortwave absorption by above-cloud aerosols can increase the buoyancy above 

cloud tops, inhibit cloud-top entrainment, and increase liquid water path (Wilcox, 2010). Large-

eddy simulations indicate that the location of the aerosol layer impacts both the magnitude and 

sign of the semi-direct forcing (Johnson et al., 2004; McFarquhar and Wang, 2006). For example, 

aerosols above the boundary layer lead to a stronger inversion and decrease entrainment. 

Additionally, aerosols within the boundary layer cause cloud evaporation and boundary layer 

decoupling. 

The treatment of aerosol effects results in inter-model differences in climate simulations, 

along with biases in satellite retrievals of clouds and aerosols (Haywood et al., 2004; Brioude 

et al., 2009; Chand et al., 2009; Coddington et al., 2010; Painemal and Zuidema, 2011). Many 

large-scale models do not adequately consider cloud microphysical responses to the vertical 

separation of aerosols when evaluating aerosol–cloud interactions (Hill et al., 2008). The 

ORACLES field campaign provides a unique dataset of in situ observations of cloud and aerosol 

properties over the Southeast Atlantic (Redemann et al., 2021). The impact of above-cloud BBAs 

on stratocumulus properties is quantified by comparing in situ cloud measurements from 

instances with layer separation to instances of contact between the aerosol layer and the clouds. 

The remainder of the chapter is organized as follows. The instrumentation used in the 

analysis is described in Sect. 2.2 along with the procedures for processing the data. A case study 

of the 6 September 2016 research flight is presented in Sect. 2.3. The meteorological and aerosol 

conditions present are examined, and profiles of Nc, Re, and LWC are compared for four sawtooth 

maneuvers flown at locations where clouds were in contact with and separated from above-cloud 
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BBAs. In Sect. 2.4, measurements from six research flights are analyzed to investigate buoyancy 

associated with cloud-top evaporative cooling, and profiles of Nc, Re, and LWC are compared for 

boundary layers with similar and varying aerosol loading. Finally, the conclusions and their impact 

on the understanding of aerosol–cloud interactions are discussed in Sect. 2.5 and 2.6. 

2.2. Instrumentation 

This study presents in situ measurements of cloud and aerosol properties acquired during 

the first intensive observation period (IOP) of ORACLES based at Walvis Bay, Namibia (23∘ S, 

14.6∘ E). The NASA P-3B aircraft conducted research flights west of Africa over the Southeast 

Atlantic Ocean between 1∘ W to 15∘ E and 5∘ S to 25∘ S from 27 August to 27 September 2016. 

The aircraft typically flew 50 m to 7 km above the ocean surface and was equipped with in situ 

probes for sampling aerosols, clouds, and meteorological conditions (Table 1), among other 

instrumentation. The Passive Cavity Aerosol Spectrometer Probe (PCASP) measured aerosol from 

approximately 0.1 to 3.0 µm using three voltage amplifiers: high-, middle-, and low-gain stages 

(Cai et al., 2013). Laboratory sampling of ammonium sulfate particles conducted after the IOP 

with the PCASP and a scanning mobility particle size spectrometer (SMPS) adjusted the PCASP 

concentration within each amplification stage to match the measured SMPS concentration. 

Thereby, a low bias within the middle- and high-gain stages was corrected to calculate the total 

aerosol concentration (Na). 

A high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS, or AMS) is used 

to derive the aerosol mass (Ma) and chemistry, including organic aerosols (OAs) (Table 1). A time- 

and composition-dependent collection efficiency (CE) was applied to AMS data. The molar ratio 

of ammonium to sulfate (NH4 / (2 × SO4)) was calculated to assess the acidity of liquid aerosol, 
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which is collected more efficiently compared to neutralized aerosol. Thus, CE was determined as 

the maximum between 0.5 and (1 − NH4 / (2 × SO4)), with a value of 0.5 serving as the lower limit, 

consistent with estimates from most previous field campaigns (Middlebrook et al., 2012). A 

Single Particle Soot Photometer (SP2) measured refractory black carbon (rBC) concentration, and 

a CO/CO2/H2O gas analyzer measured carbon monoxide (CO) concentration. The Spectrometer 

for Sky-Scanning, Sun-Tracking Atmospheric Research (4STAR) was used to measure column 

aerosol optical depth (AOD) and retrieve trace gas concentrations above the aircraft (Dunagan 

et al., 2013; LeBlanc et al., 2020). 

The suite of in situ cloud probes included the Cloud and Aerosol Spectrometer (CAS) on 

the Cloud, Aerosol, and Precipitation Spectrometer (CAPS); Cloud Droplet Probe (CDP); Phase 

Doppler Interferometer; Two-Dimensional Stereo Probe (2D-S); Cloud Imaging Probe (CIP) on the 

CAPS; High Volume Precipitation Sampler (HVPS-3); and the CAPS and King hot wires. These 

instruments sampled the droplet number distribution function (n(D)) for droplets with diameters 

ranging from 0.5 to 19 200 µm. The CAPS and King hot wires measured the bulk LWC. 

Baumgardner et al. (2017) discuss the general operating characteristics and measurement 

uncertainties of the in situ cloud probes, and McFarquhar et al. (2017) summarize data 

processing algorithms. Therefore, only aspects of instrument performance unique to ORACLES 

2016 are summarized herein. The in situ probes used here (CAS, 2D-S, HVPS-3, and PCASP) were 

calibrated by the manufacturers prior to and shortly after the deployment. During the 

deployment, performance checks according to the instrument manuals were completed to 

determine any change in instrument performance. This included monitoring the CAS and 2D-S 

voltages and temperatures during flights and passing calibration particles through the CAS 
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sample volume to determine any change in the relationship between particle size and peak signal 

voltage. 

CDP data were unusable for the entire 2016 IOP due to an optical misalignment issue. 

Data from the components of CAPS (CAS, CIP, and CAPS hot wire) were not available before 

6 September 2016 because of improper seating of the analog-to-digital interface board, which 

resulted in no measurements of droplets less than 50 µm in diameter prior to this flight. The 

optical lenses were cleaned with isopropyl before each flight, which was especially important 

during ORACLES since the aircraft frequently flew through aerosol layers that deposited soot on 

optical lenses of the cloud probes. Stuck bits (photodiodes continuously occluded due to soot 

deposition) on the optical array probes (2D-S and HVPS-3) were masked during each flight to 

reduce the presence of artifacts in particle images. The 2D-S vertical channel consistently had 

photodiode voltages below 1.0 V due to soot deposition on the inside of the receive-side mirror. 

Therefore, only data from the horizontal channel are used. 

The aircraft's true air speed (TAS) was about 15 % higher than the TAS measured by a Pitot 

tube alongside the CIP. Previous work has shown uncertainties with using the Pitot tube TAS to 

represent airflow near the probes (Lance et al., 2010; Johnson et al., 2012). Therefore, CAPS, 2D-

S, and HVPS-3 probes used the aircraft's TAS, in the absence of reliable TAS measured at these 

probes' locations. CAPS and PCASP data were processed using the Airborne Data Processing and 

Analysis processing package (Delene, 2011). 2D-S and HVPS-3 data were processed using the 

University of Illinois/Oklahoma Optical Array Probe Processing Software (McFarquhar et al., 

2018). Droplets measured by the 2D-S and HVPS-3 having aspect ratios greater than 4 or area 

ratios less than 0.5 were rejected as artifacts because this study focuses on warm clouds with 
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liquid drops sampled above 0 ∘C. Droplets with inter-arrival times less than 6 µs, indicative of 

intermittently stuck diodes or drizzle breakup, were removed (Field et al., 2006). Out-of-focus 

hollow particles were reconstructed following Korolev (2007). 

The droplet size distributions from the CAS and 2D-S were merged at 50 µm in diameter 

to create a combined 1 Hz size distribution, which was used to calculate Nc, Re, and LWC. While 

the HVPS-3 sampled droplets larger than 1280 µm in diameter, only three such 1 s samples, 

with N < 0.005 L−1, were sampled during the cloud profiles from the IOP. A threshold 

of Nc > 10 cm−3 and bulk LWC > 0.05 g m−3 for 1 Hz measurements was used to define cloud 

samples (cf. Lance et al., 2010; Bretherton et al., 2010). The cloud threshold eliminated the 

inclusion of optically thinner clouds that a lower LWC threshold of 0.01 g m−3 would have 

included (e.g., Heymsfield and McFarquhar, 2001). Water vapor mixing ratio (q) was determined 

using a chilled-mirror hygrometer as well as the Los Gatos Research CO/CO2/H2O gas analyzer. 

The hygrometer suffered from cold soaking during descents from higher elevation and measured 

lower q near cloud tops during descents compared to ascents into cloud. Measurements 

of q from the gas analyzer had to be masked for near- and in-cloud samples during both ascents 

and descents due to residual water in the inlet. Therefore, only hygrometer data collected during 

ascents are used for the analyses involving q. 

2.3. Observations on 6 September 2016 

2.3.1. Flight track and meteorological conditions 

ORACLES research flight tracks included in situ cloud sampling during individual ascents 

or descents through cloud or during a series of ascents and descents through cloud along a 

constant heading (sawtooth maneuvers). A case study of the fifth P-3 research flight (PRF5) flown 
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on 6 September 2016 was used to examine aerosol and cloud properties sampled under 

conditions of both contact and separation between the aerosol layer and cloud tops. PRF5 was 

selected because it had the highest cloud profiling time among the six PRFs with at least eight 

cloud profiles (Table 2). Four sawtooth maneuvers (S1–S4) were flown during PRF5 (Fig. 1) along 

with four individual cloud profiles (P1–P4). Each sawtooth maneuver consisted of four to six 

individual profiles (Table 2), which were numbered sequentially (S1-1, S1-2, etc.). South-

southeasterly winds (5–8 m s−1) were observed at the surface and at 925 mb (Fig. 2a and b). This 

wind field was associated with a surface low-pressure system east of the study region centered 

around 17∘ S, 13∘ E, which resulted in advection of low clouds toward the northwest. Open and 

closed cells of marine stratocumulus persisted along with pockets of open cells (POCs) (Fig. 1). 

S1, S2, and S3 were flown along 9∘ E in closed cells of marine stratocumulus. S4 was flown closer 

to the coast in a shallow boundary layer with thin closed-cell stratocumulus (Fig. 1) later in the 

day compared to S1–S3 (Fig. 3). Ambient temperature sampled by the aircraft sensor was 3 to 

6 ∘C higher during S2 and S3 compared to S1 because the 500 mb geopotential height and relative 

humidity (RH) were higher toward the north (Fig. 2b). Cloud-top height (ZT) is identified as the 

highest altitude satisfying the criteria used to define cloud (Nc > 10 cm−3 and bulk 

LWC > 0.05 g m−3). S1, S2, and S3 had higher ZT compared to S4 (Fig. 3) due to the advection of 

cold, dry continental air from the southeast and low RH (< 70 %) where S4 was flown, which 

resulted in cloud thinning and a shallower boundary layer (Fig. 2b and c). 

The aircraft intermittently entered and exited cumulus clouds below the stratocumulus 

layer during 33 of the 71 cloud profiles flown during the IOP (Table 2), which resulted in 

fluctuating values of Nc and Re, with bulk LWC < 0.05 g m−3. For example, during S1-3, Nc varied 
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between 10 and 240 cm−3, and Re varied between 3 and 12 µm up to 130 m below where the 

stratocumulus base was identified with bulk LWC > 0.05 g m−3. Images from a forward-facing 

camera on the aircraft contrast a boundary layer with multiple cloud layers (Fig. 4a; image taken 

at 08:53 UTC) during S1-3 and a shallow, well-mixed boundary layer capped by stratocumulus 

(Fig. 4b; image taken at 13:16 UTC) during S4-1. It is likely the stratocumulus layer was decoupled 

from the surface where S1-3 was flown because the boundary layer was deepened by the 

entrainment of free-tropospheric air. Subsequently, the sub-cloud layer was well-mixed with the 

surface and topped by shallow cumulus similar to observations by Wood (2012). The cloud base 

height (ZB) for the 33 profiles was determined as the lowest altitude with Nc > 10 cm−3 and bulk 

LWC > 0.05 g m−3 above which a continuous cloud layer was sampled. S4 had lower ZB (195–

249 m) compared to S1 (676–691 m), S2 (534–598 m), and S3 (501–775 m) (Fig. 3). 

2.3.2. Above- and below-cloud aerosol composition 

For each sawtooth maneuver, the above- and below-cloud air mass source region was 

identified using 5 d back trajectories computed using the NOAA Hybrid Single-Particle Lagrangian 

Integrated Trajectory model (Stein et al., 2015) applied to the National Centers for 

Environmental Prediction Global Data Assimilation System model (Fig. 5). The concentrations 

listed in Table 3 indicate measurements up to 100 m above and below the clouds averaged across 

the cloud profiles for each sawtooth maneuver. The variability in above-cloud Ma and Na for S1–

S4 was driven by the above-cloud air mass source region. The above-cloud air mass sampled near 

S1 and S4 originated from the boundary layer from the southeast, and the above-cloud air mass 

sampled near S2 and S3 descended from higher altitudes over the African continent (Fig. 5b 

and c). The above-cloud OA Ma and Na for S2 and S3 were over 5 times higher than the 
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corresponding values for S1 and S4 (Table 3). The below-cloud air mass sampled during S1–S4 

was advected from the boundary layer from the southeast (Fig. 5a and c). During S1 and S4, the 

above- and below-cloud rBC and CO concentrations were similar (Table 3) since the above-cloud 

air mass also originated from the southeast (Fig. 5b and c). During S2 and S3, the continental 

above-cloud air mass had much higher rBC and CO (over 500 cm−3 and 190 ppb) compared to the 

below-cloud air mass from the southeast (below 150 cm−3 and 120 ppb). Since OA, rBC, and CO 

are indicators of combustion, this suggests the continental above-cloud air mass had greater 

exposure to biomass burning products compared to the air masses from the southeast. S2 and 

S3 also had higher below-cloud rBC and CO compared to S1 and S4 (Table 3), which suggests the 

BBAs with high Na within 100 m above clouds could be mixing into the cloud layer and polluting 

the boundary layer. This is also likely to be associated with the history of entrainment mixing of 

polluted free-tropospheric air into the boundary layer prior to these observations (Diamond 

et al., 2018). 

2.3.3. Cloud profile classification 

Every sawtooth maneuver was preceded by a 5–10 min constant-altitude flight leg about 

100 m above the cloud layer to retrieve the above-cloud AOD using 4STAR. Average above-cloud 

AOD at 550 nm within 50 km of the sampling locations for S1–S4 ranged between 0.33 and 0.49, 

indicating a BBA layer was located at some altitude above the clouds sampled during S1–S4. 

During S1, above-cloud Na < 500 cm−3 was sampled up to 200 m above cloud tops (Fig. 3), which 

indicates the BBA layer was separated from cloud tops. During S4, the level of above-

cloud Na > 500 cm−3 was identified over 200 m above cloud tops, indicating a similar separation. 

Therefore, cloud profiles flown during S1 and S4 were classified as separated profiles. During S2 
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and S3, the level of above-cloud Na > 500 cm−3 was located within 100 m above cloud tops, and 

the BBA layer was likely in contact with the cloud tops. Therefore, cloud profiles flown during S2 

and S3 were classified as contact profiles. In a previous study, a significantly higher threshold 

(PCASP Na = 1000 cm−3) was used to identify the BBA layer above stratocumulus clouds off the 

coast of California (Mardi et al., 2018). The sensitivity of the threshold chosen in this study is 

examined in Appendix 2.1, and using a threshold of 1000 cm−3 would have no significant impact 

on the results presented in this study. 

2.3.4. Vertical profiles of Nc, Re, and LWC 

Since ZB and cloud thickness (H) varied between profiles, Nc, Re, and LWC were examined 

as a function of normalized height above cloud base (ZN), where ZN = (Z−ZB)/(ZT−ZB) and varied 

from 0 (cloud base) to 1 (cloud top). Measurements from the four sawtooth maneuvers were 

compared following McFarquhar et al. (2007) and divided into 10 ZN bins, where each bin 

represented 10 % of the cloud layer (Fig. 6). For example, the bin with 0 < ZN < 0.1 (represented 

by the midpoint, ZN = 0.05) included data collected over the bottom 10 % of the cloud layer. For 

separated profiles, droplet nucleation occurred near cloud base with the median Nc increasing 

up to ZN = 0.25 (S1: 132 to 179 cm−3; S4: 23 to 85 cm−3). The impact of droplet nucleation 

decreased above cloud base (ZN = 0.25 to 0.75), and median Nc increased by up to 30 cm−3 for S1 

and decreased by up to 15 cm−3 for S4 (Fig. 6a). Condensational growth occurred over these 

levels as the median Re increased with ZN (Fig. 6b). The median Nc decreased near cloud top 

(ZN = 0.75 to 0.95) due to droplet evaporation resulting from cloud-top entrainment mixing 

between cloudy and non-cloudy air. Contact profiles (S2 and S3) had higher median Nc at cloud 

base compared to separated profiles, which decreased with height up to ZN = 0.25 (S2: 190 to 
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169 cm−3, S3: 180 to 131 cm−3). The median Nc for S2 and S3 increased by up to 

43 cm−3 over ZN = 0.25 to 0.75 and decreased near cloud top due to droplet evaporation. S4 had 

the lowest Nc at cloud base because the below-cloud Ma and Na for S4 were over a factor of 3 

lower than the corresponding values for S1–S3 (Table 3). 

Consistent with condensational growth and collision–coalescence, median Re increased 

with ZN from cloud base to top, from 6.0 to 6.7 µm, 4.6 to 6.9 µm, 4.9 to 8.3 µm, and 8.7 to 

9.9 µm for S1–S4, respectively (Fig. 6b). S1 and S4 had higher median Re at cloud base due to 

higher drizzle (droplets with diameters larger than 50 µm) concentrations (41 and 31 L−1) 

compared to S2 and S3 (14 and 18 L−1). For S4, drizzle concentration decreased from ZN = 0.05 to 

0.25, which led to the decrease in median Re over these heights. The median LWC increased with 

height up to at least ZN = 0.75 and decreased near cloud tops due to droplet evaporation (Fig. 6c). 

The LWC for each sawtooth maneuver was lower than the adiabatic LWC (aLWC) due to cloud-

top entrainment mixing, and the ratio of LWC to aLWC was used to quantify the degree of mixing. 

Lower LWC / aLWC (averaged over the cloud layer) for S2 and S3 (0.37 and 0.41) compared to S1 

and S4 (0.51 and 0.55) indicated that contact profiles had greater mixing between cloudy and 

non-cloudy air in the cloud layer, on average. The boundary layer was capped by an inversion 

with warmer, drier air above the clouds. During S1–S4, the temperature increased above cloud 

top by 10.3, 9.3, 8.9, and 1.5 ∘C, and the total water mixing ratio decreased by 6.2, 5.4, 2.3, and 

0.4 g kg−1, respectively (Fig. 7). The decreases in Nc and LWC near stratocumulus tops have been 

attributed to cloud-top entrainment of the overlying warm and sub-saturated air (Wood, 2012). 

Droplet evaporation due to the entrainment mixing resulted in decreases of 14, 28, 12, and 26 % 

in the median Nc near cloud tops during S1–S4, respectively. 
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2.3.5. Evidence of the aerosol indirect effect 

Nc and Re were compared between sawtooth maneuvers, and the differences reported 

hereafter refer to 95 % confidence intervals for the difference in the variable means (based on a 

two-sample t test, p < 0.02). Between the contact profiles, S2 had significantly 

higher Nc (differences of 37 to 56 cm−3) compared to S3. This was despite having statistically 

insignificant differences in below-cloud Na, a greater fractional decrease in median Nc near cloud 

top compared to S3, and greater entrainment mixing (lower LWC / aLWC). S2 had significantly 

higher above-cloud Na compared to S3 and the mixing of above-cloud air with high Na likely 

resulted in droplet nucleation above cloud base, where the median Nc for S2 increased from 169 

to 220 cm−3 over ZN = 0.25 to 0.75. Between the separated profiles, S1 had significantly 

higher Nc (differences of 108 to 126 cm−3), which could be attributed to significantly higher 

above-cloud Na and greater entrainment mixing during S1 compared to S4. However, these 

differences could also be due to the meteorological differences at their sampling locations (lower 

boundary layer height, RH, and 500 mb geopotential height for S4 along with a smaller decrease 

in T and qT across cloud tops) or the significantly higher below-cloud Na for S1 compared to S4. 

Contact profiles had significantly higher Nc (differences of 45 to 61 cm−3) and 

lower Re (differences of 1.4 to 2.0 µm) compared to separated profiles. Contact profiles also had 

significantly higher above-cloud Na and greater entrainment mixing in the cloud layer (lower 

LWC / aLWC). These microphysical changes would also impact cloud reflectance (Twomey, 1991) 

as seen by the significantly higher cloud optical thickness (τ) of contact profiles compared to 

separated profiles (differences of 2.5 to 8.2). The increase in τ and the cloud reflectance provides 
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observational evidence of the aerosol indirect effect over the Southeast Atlantic due to contact 

between above-cloud BBAs and the stratocumulus clouds. 

However, contact profiles also had significantly higher below-cloud Na (differences of 145 

to 190 cm−3), which contribute to the higher Nc relative to separated profiles. Therefore, a 

statistical analysis was conducted with a larger number of profiles in an attempt to attribute 

these differences in Nc and Re to the vertical distance between the above-cloud BBA layer and 

cloud tops. Building on this case study, 71 cloud profiles flown on six flights between 6 and 

25 September 2016 were examined, and the impact of above-cloud BBAs on the free-

tropospheric humidity and buoyancy across cloud tops was explored. Sixty-one contact and 

separated profiles were further classified as low-Na or high-Na profiles based on the below-

cloud Na. This was done to quantify the differences in Nc and Re between contact and separated 

profiles within boundary layers with similar below-cloud Na. 

2.4. Statistical Analysis 

2.4.1. Meteorological conditions and above-cloud aerosols 

Six flights (including PRF5) are included in the statistical analysis. On 10, 12, and 

25 September, the P-3 took off from Walvis Bay, Namibia (23∘ S, 14.6∘ E), and flew northwest 

from 23∘ S, 13.5∘ E toward 10∘ S, 0∘ E, returning along the same track (Fig. 8). Different tracks were 

followed on 6, 14, and 20 September, which included meridional legs along 9, 7.5 and 9∘ E, and 9 

and 10.5∘ E, respectively. Meteorological conditions on 10, 12, and 14 September were similar to 

the conditions described for the case study. South-southeasterly surface winds were associated 

with a surface low-pressure system over Africa. The surface wind speeds varied between 5 and 

10 m s−1 depending on the pressure gradient between the continental low and a surface high 
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toward the southwest. A region of 925 mb RH < 60 % persisted along the coast due to dry-air 

advection from Africa. A different meteorological setup on 20 September had westerly surface 

winds and easterly winds at 925 mb. The aerosol plume was sampled immediately above the 

boundary layer (600 m) as warm surface air was overlaid by drier, polluted air from the continent. 

The continental surface low was located farther south on 25 September compared to other flight 

days with the region of low 925 mb RH to the south of the flight track. The study region had 

RH > 60 % with south-southeasterly surface winds and southerly 925 mb winds. The BBA layer 

with above-cloud Na > 500 cm−3 was sampled during each flight with variability in its vertical 

location (Table 4). Only separated profiles were flown on 10 and 14 September (Table 2), when 

the BBA layer and cloud tops were separated by over 600 and 1500 m, respectively (Table 4). On 

12 September, profile 1 (P1) had Na > 500 cm−3 within 75 above cloud tops and was classified as 

a contact profile, while P2 and S1 were classified as separated profiles. On 20 September, each 

profile had above-cloud AOD > 0.4 and was classified as a contact profile. On 25 September, the 

profiles had above-cloud AOD > 0.27, and each profile (except from a sawtooth near 11∘ S, 1∘ E) 

was classified as a contact profile. 

2.4.2. Nc, Re, and LWC for contact and separated profiles 

Since clouds sampled on different flight days had variable ZB and ZT (Fig. 9), vertical 

profiles of Nc, Re, and LWC from the contact and separated profiles were compared as a function 

of ZN. The frequency distributions of Nc, Re, and LWC as a function of ZN are examined in Fig. 10 

using violin plots (Hintze and Nelson, 1998; Wang et al., 2020), where the width of the shaded 

area represents the proportion of data there. The average Nc for contact profiles was significantly 

higher than the average Nc for separated profiles (differences of 60 to 68 cm−3). During separated 
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profiles, the median Nc had little variability up to ZN = 0.75 (114 to 122 cm−3) and decreased 

thereafter with ZN to 73 cm−3 due to droplet evaporation (Fig. 10a). During contact profiles, the 

median Nc decreased slightly up to ZN = 0.25 (183 to 174 cm−3), increased to 

214 cm−3 at ZN = 0.75, and decreased near cloud top to 157 cm−3 due to droplet evaporation. 

Contact profiles had significantly lower Re than the separated profiles (differences of 1.1 to 

1.3 µm), and the median Re increased with ZN from 4.9 to 7.0 µm for contact and from 6.6 to 

8.6 µm for separated profiles (Fig. 10b). The differences in Re were likely due to the significantly 

lower drizzle concentrations for contact profiles (differences of 5 to 20 L−1). 

The average LWC for contact and separated profiles were within 0.01 g m−3, and the 

median LWC increased with ZN to 0.23 g m−3 at ZN = 0.85 for contact and 0.21 g m−3 at ZN = 0.75 

for separated profiles (Fig. 10c). Contact profiles had lower LWC / aLWC in the cloud layer (0.45) 

compared to separated profiles (0.57), which suggests there was greater entrainment mixing 

during contact profiles, on average. However, droplet evaporation near cloud top had a stronger 

impact on separated profiles as the median LWC decreased to 0.16 g m−3 for separated and 

0.20 g m−3 for contact profiles (Fig. 10c). Separated profiles had a greater decrease in LWC / aLWC 

near cloud top (0.41 to 0.26) compared to contact profiles (0.38 to 0.30) and greater fractional 

decreases in median Nc and LWC (40 and 16 %) compared to contact profiles (25 and 9 %). The 

stronger impact of droplet evaporation during separated profiles contributed to the differences 

between Nc for contact and separated profiles. 

2.4.3. Cloud-top evaporative cooling 

Buoyancy and humidity across cloud tops were determined to explore the cloud-top 

entrainment mechanisms resulting in the differential impact of droplet evaporation for these 
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profiles. Cloud-top instability is the dominant source of turbulence in stratocumulus, with 

evaporative cooling being a key driver of instability (Mellado, 2017). Recent studies have shown 

there is strong correlation between above-cloud AOD and water vapor within air masses 

originating from the African continent (Deaconu et al., 2019; Pistone et al., 2021). Longwave 

cooling by water vapor within the BBA layer leads to decreased cloud-top cooling, and cloud-top 

dynamics are influenced by distinct radiative contributions from water vapor and absorbing 

aerosols. Evaporative cooling in a mixture of dry and cloudy air near cloud top generates 

negatively buoyant air mixtures, which further enhances mixing and leads to an entrainment 

feedback called cloud top entrainment instability, or CTEI (Kuo and Schubert, 1988). Under such 

conditions, negative buoyancy leads to an unstable feedback, unlike the conventional association 

of negative buoyancy with atmospheric stability. The critical condition for cloud-top stability is 

given by Kuo and Schubert (1988) as 

𝛥𝜃𝑒  >  𝑘 (
𝐿𝑣

𝐶𝑝
) 𝛥𝑞𝑇 ,         (1) 

where k is the CTEI parameter, e is the equivalent potential temperature, Lv is the latent 

heat of vaporization, and Cp is the specific heat capacity of air at constant pressure. 

The Δ operator represents gradients across the cloud top, defined here as the difference 

between e (or qT) measured 100 m above cloud top and the vertical average of e (or qT) over 

the top 100 m of the cloud profile. Following Eq. (13) from Kuo and Schubert (1988), k > 0.23 

indicates negative buoyancy across cloud tops. Water vapor mixing ratio measured by the chilled-

mirror hygrometer was used to calculate e and qT. Since lower ΔqT was sampled during descents 

into cloud due to condensation on the hygrometer, k values for descents were determined to be 

measurement artifacts and not usable here. 
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All separated profiles (except PRF5 S1-3 and S4-1, S4-3, and S4-5) laid within the region 

of cloud-top instability (k > 0.23) on a Δθe–ΔqT plane (Fig. 11) and showed negative buoyancy 

across cloud tops. During PRF5 S1-3, low Δθe was sampled due to higher above-cloud humidity 

associated with the presence of Na > 100 cm−3 within 50 m above cloud tops. During PRF5 S4, a 

weak cloud-top inversion led to positive Δθe and ΔqT < −2 g kg−1 (Fig. 7). For the remaining 

separated profiles, negative buoyancy across cloud tops led to forced descent of dry free-

tropospheric air into the clouds. Since the free-tropospheric air was warmer and drier than the 

cloudy air, droplet evaporation led to the decreases in median Nc and LWC near cloud top. The 

positive evaporative cooling feedback and greater ΔqT compared to contact profiles (Fig. 11) 

explain the stronger impact of droplet evaporation on median Nc and LWC for separated profiles. 

While evaporative cooling triggered the CTEI feedback, the clouds persisted, consistent with 

cloud-top radiative cooling or surface evaporation leading to boundary layer moistening (Lock, 

2009; Mellado, 2017). 

All contact profiles (except PRF13 S1-3) laid within the region of cloud-top stability and 

showed positive buoyancy across cloud tops. Entrainment mixing for these profiles likely 

occurred when the clouds penetrated the inversion. This is consistent with significantly higher 

average H (267 m) for contact profiles compared to separated profiles (213 m). Braun et al. 

(2018) found a negative correlation between H and adiabaticity (ratio of the measured and the 

adiabatic liquid water path), which is consistent with contact profiles having lower LWC / aLWC 

and higher H compared to separated profiles. In the presence of above-cloud BBAs, the above-

cloud air was more humid, and the above-cloud Na was significantly higher compared to 

separated profiles (differences of 768 to 831 cm−3). Contact profiles had greater entrainment 
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mixing compared to separated profiles, and the median Nc increased with height over ZN = 0.25 

to 0.75. It is likely the entrainment of BBAs into clouds resulted in additional droplet nucleation 

over these ZN levels. Therefore, weaker droplet evaporation near cloud top and additional 

droplet nucleation above cloud base in the presence of above-cloud BBAs likely contributed to 

the differences between Nc for contact and separated profiles. 

2.4.4. Nc, Re, and LWC in boundary layers with similar Na 

Contact profiles had significantly higher below-cloud Na (differences of 93 to 115 cm−3) 

and below-cloud CO (differences of 13 to 16 ppb) in addition to higher above-

cloud Na (differences of 768 to 831 cm−3) compared to separated profiles. Enhanced aerosol 

loading within the boundary layer is consistent with BBAs immediately above cloud tops 

entraining into the cloud layer and polluting the boundary layer. This is consistent with higher 

above-cloud CO (240 ppb) sampled for contact profiles with below-cloud CO > 100 ppb compared 

to above-cloud CO (104 ppb) for profiles with below-cloud CO < 100 ppb. The correlations 

between above- and below-cloud aerosols could be partly due to the history of entrainment 

mixing between free-tropospheric and boundary layer air masses (Diamond et al., 2018). To 

investigate the contribution of below-cloud Na relative to the impact of above-cloud BBAs on 

cloud properties, 28 contact and 33 separated profiles were classified into four new regimes 

defined as follows: contact high Na (C-H), separated high Na (S-H), contact low Na (C-L), and 

separated low Na (S-L), where high- and low-Na boundary layers were separated using a threshold 

concentration of 350 cm−3. Cloud microphysical properties and above- and below-cloud Na were 

compared between 20 C-H and 11 S-H profiles and between 8 C-L and 22 S-L profiles (Table 5) to 

compare contact and separated profiles with minor differences in below-cloud Na. 
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Within low-Na boundary layers, C-L and S-L profiles had insignificant differences in below-

cloud Na despite significantly higher above-cloud Na for C-L profiles (differences of 592 to 

669 cm−3), higher Nc (differences of 22.8 to 34.9 cm−3), and lower Re (differences of 0.5 to 1.0 µm) 

compared to S-L profiles. Within high-Na boundary layers, C-H profiles had significantly higher 

below-cloud Na compared to S-H profiles (differences of 39.1 to 70.5 cm−3), but the differences 

were much smaller than those in the above-cloud Na (differences of 738 to 884 cm−3). Further, 

the C-H profiles had significantly higher Nc (differences of 75.5 to 88.5 cm−3) and 

lower Re (differences of 1.1 to 1.3 µm) than the S-H profiles. Previous studies have argued the 

changes in Nc due to the impact of BBAs are more strongly correlated with below-

cloud Na compared to above-cloud Na (Diamond et al., 2018; Mardi et al., 2019). However, these 

results suggest that, although the differences in Nc were lower than the differences in above-

cloud Na, significant changes in Nc and Re were associated with contact with above-cloud BBAs, 

and these changes were independent of the below-cloud aerosol loading. 

Vertical profiles of Nc, Re, and LWC are examined (Fig. 12) to further investigate the 

microphysical changes due to contact with above-cloud BBAs. Within low-Na boundary layers, 

there were minor deviations in Nc with ZN up to ZN = 0.75 (Fig. 12a). Over the top 20 % of the 

cloud layer, S-L profiles had a decrease in median Nc (32 cm−3), with a smaller change for C-L 

profiles (8 cm−3) over the same levels. There was also a weaker decrease in water vapor mixing 

ratio across cloud tops for contact profiles. Thus, cloud-top entrainment of more humid air likely 

occurred for the C-L profiles. This is consistent with higher median Re and LWC over ZN = 0.75 to 

0.95 for C-L profiles compared to S-L profiles despite having lower Re and LWC closer to cloud 

base (Fig. 12b and c). Thus, the microphysical differences between contact and separated profiles 
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within low-Na boundary layers (where most separated profiles were sampled) are consistent with 

the processes of cloud-top entrainment and droplet evaporation. 

The differences between below-cloud Na for C-H profiles and that for S-H profiles (39.1 to 

70.5 cm−3) were lower than the corresponding differences in Nc (75.5 to 88.4 cm−3). C-H profiles 

had significantly higher Nc and lower Re compared to S-H profiles throughout the cloud layer 

(Fig. 12a and b). There was a significant increase in median Nc for C-H profiles over ZN = 0.25 to 

0.75, which was accompanied by higher median LWC for C-H profiles in the top half of the cloud 

layer. This is consistent with additional droplet nucleation above cloud base during C-H profiles. 

Additionally, there was a stronger decrease in Nc near cloud top for S-H profiles (Nc decreased by 

66 cm−3) compared to C-H profiles (Nc decreased by 29 cm−3) likely due to cloud-top entrainment. 

It is difficult to separate the impact of changes in droplet nucleation on differences in Nc between 

C-H and S-H profiles from the impact of changes in droplet evaporation due to cloud-top 

entrainment. Therefore, it is speculated the microphysical changes within high-Na boundary 

layers were likely driven by the combination of higher below-cloud Na, potential droplet 

nucleation above cloud base, and weaker droplet evaporation near cloud tops in the presence of 

above-cloud BBAs. The sensitivity of these results to using different thresholds to locate BBAs 

(other than 500 cm−3), to define “separation” between the aerosol and cloud layers (other than 

100 m), and to define a “high-Na boundary layer” (other than 350 cm−3) is discussed in 

Appendix 2.1 but does not affect the qualitative findings. 

2.5. Discussion 

The presence of water vapor and absorbing aerosols within the BBA layer can have 

distinct impacts on cloud-top cooling and cloud-top dynamics (Deaconu et al., 2019; Herbert 
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et al., 2020; Kuo and Schubert, 1988). In the presence of above-cloud BBAs during ORACLES, the 

above-cloud air was more humid than in its absence, and cloud-top entrainment of free-

tropospheric air with a higher water vapor mixing ratio likely contributed to the microphysical 

differences between contact and separated profiles, consistent with previous observations 

(Ackerman et al., 2004). Further, C-H profiles had significantly lower drizzle concentration 

compared to S-H profiles (differences of 4 to 21 L−1), but C-L and S-L profiles had similar drizzle 

concentrations (61 and 62 L−1). Research is ongoing to examine the changes in cloud and 

precipitation properties in different aerosol regimes since precipitation suppression could also 

impact below-cloud Na through reduced aerosol scavenging by drizzle (Pennypacker et al., 2020). 

Within polluted boundary layers, the below-cloud Na was larger for instances of contact 

between above-cloud BBAs and cloud tops. It is speculated the increase in below-cloud Na alone 

would be insufficient to cause the microphysical differences between contact and separated 

profiles, and this is particularly true for polluted boundary layers. The Nc also depends on other 

factors, including updraft strength and aerosol composition and hygroscopicity (Fuchs et al., 

2018; Kacarab et al., 2020; Mardi et al., 2019). High-resolution modeling studies with bin-

resolved microphysics are needed to examine cloud-top entrainment processes and investigate 

the relative impact of semidirect and indirect effects of BBAs on marine stratocumulus over the 

Southeast Atlantic. Additionally, aerosol–cloud–precipitation interactions must be examined 

under different aerosol and meteorological regimes to investigate the buffering effects of local 

meteorology and thermodynamic profiles associated with the absorbing aerosols (Deaconu et al., 

2019; Diamond et al., 2018; Fuchs et al., 2018; Herbert et al., 2020; Sakaeda et al., 2011; Stevens 

and Feingold, 2009). 
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The changes in Nc, Re, and drizzle concentration presented here could lead to aerosol-

induced precipitation suppression and impact stratocumulus-to-cumulus transitions over the 

Southeast Atlantic (Yamaguchi et al., 2015; Zhou et al., 2017). Subsequently, changes in 

precipitation rate could affect the balance between aerosol scavenging and entrainment and 

modulate the reversible open–closed-cell transitions (Abel et al., 2020; Feingold et al., 2015). 

These processes would affect the cloud radiative forcing and the direct aerosol radiative forcing, 

which depends on the albedo of the underlying cloud layer (Cochrane et al., 2019). Research is 

ongoing to quantify precipitation susceptibility as a function of the vertical displacement of 

above-cloud absorbing aerosols from cloud tops. A larger dataset including additional ORACLES 

observations from August 2017 and October 2018 will allow evaluation of cloud and precipitation 

retrievals (Dzambo et al., 2019; Painemal et al., 2020) and investigations of aerosol–cloud–

precipitation interactions over a broader range of environmental conditions. Better 

understanding of these processes will help reduce uncertainties in the estimates of cloud 

radiative effects due to changes in cloud cover and cloud reflectance (Albrecht, 1989; Twomey, 

1974, 1991). 

2.6. Conclusions 

This study provides observational evidence of the aerosol indirect effect on marine 

stratocumulus cloud properties due to contact between above-cloud biomass burning aerosols 

and stratocumulus cloud tops over the Southeast Atlantic Ocean. Biomass burning aerosols 

overlay marine stratocumulus clouds there with variability in the vertical separation (0 to 2000 m) 

between the aerosol layer and cloud tops. In situ measurements of cloud and aerosol properties 

from six research flights during the NASA ORACLES field campaign in September 2016 are 
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presented. These observations suggest the presence of biomass burning aerosols immediately 

above cloud tops was associated with changes in vertical profiles of Nc, Re, and LWC due to cloud-

top entrainment and increases in the free-tropospheric temperature and humidity. 

Meteorological conditions and the vertical profiles of Nc, Re, LWC, and above- and below-

cloud Na are examined for a case study of 6 September 2016. Thinner clouds with lower cloud 

base and top heights were sampled closer to the coast due to lower relative humidity and 

boundary layer height compared to clouds sampled along 9∘ E. For 33 cloud profiles, cloud-top 

entrainment deepened the boundary layer, decoupled the stratocumulus layer from the surface, 

and resulted in cumulus formation below the stratocumulus. The vertical profiles of cloud (Nc, Re, 

and LWC) and thermodynamic (qT and T) properties sampled on 6 September 2016 were 

consistent with observations of stratocumulus-topped boundary layers capped by an inversion 

with warm, dry free-tropospheric air above the clouds (Wood, 2012). 

Above-cloud air masses originating from Africa were composed of biomass burning 

products (OA, rBC, and CO) with higher Na compared to above-cloud air masses originating from 

the boundary layer over the Southeast Atlantic Ocean. Thirty contact profiles were flown, where 

the level of Na > 500 cm−3 was within 100 m above cloud tops, and 41 separated profiles were 

flown, where Na > 500 cm−3 was sampled at least 100 m above cloud tops. For contact profiles, 

the average Nc in the cloud layer was up to 68 cm−3 higher, the average Re was up to 

1.3 µm lower, and the average LWC was within 0.01 g m−3 compared to separated profiles. During 

the contact profiles, qT decreased across cloud tops by up to 6 g kg−1. With positive buoyancy 

across cloud tops, mixing between free-tropospheric and cloudy air occurred when clouds 

penetrated the inversion and median Nc and LWC decreased by 25 and 9 % near cloud tops due 
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to droplet evaporation. The entrainment mixing of free-tropospheric air with Na > 500 cm−3 likely 

resulted in droplet nucleation above cloud base, and the median Nc for contact profiles increased 

within the middle of the cloud layer. During separated profiles, qT decreased across cloud tops 

by up to 9 g kg−1. With negative buoyancy across cloud tops, forced descent of drier free-

tropospheric air into the clouds resulted in a positive feedback of evaporative cooling, and 

median Nc and LWC decreased by 30 and 16 % due to droplet evaporation. The median Nc during 

separated profiles had little variability with height above cloud base before decreasing near cloud 

top due to droplet evaporation. Therefore, contact profiles had higher Nc due to a combination 

of weaker droplet evaporation near cloud tops and additional droplet nucleation above cloud 

base in the presence of above-cloud biomass burning aerosols. 

Biomass burning aerosols located immediately above cloud top mixed into the cloud and 

polluted the boundary layer. During the case study, sawtooth maneuvers with contact profiles 

had higher below-cloud rBC and CO concentrations (by up to 60 cm−3 and 30 ppb) compared to 

maneuvers with separated profiles. Among the 71 profiles across six research flights, contact 

profiles had significantly higher below-cloud CO and Na compared to separated profiles due to 

the contact between biomass burning aerosols and cloud tops. Twenty-eight contact and 

33 separated profiles were further classified as contact high Na (C-H), contact low Na (C-L), 

separated high Na (S-H), and separated low Na (S-L) to represent contact or separated profiles 

within high-Na (> 350 cm−3) or low-Na (< 350 cm−3) boundary layers. C-L profiles had up to 

34.9 cm−3 higher average Nc and up to 0.9 µm lower average Re compared to S-L profiles despite 

statistically insignificant differences between the below-cloud Na. C-H profiles had up to 

70.5 cm−3 higher below-cloud Na, up to 88.4 cm−3 higher Nc, and up to 1.6 µm lower Re compared 
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to S-H profiles. The differences between contact and separated profiles in low-Na boundary layers 

were likely driven by weaker droplet evaporation in the presence of above-cloud biomass burning 

aerosols. Within high-Na boundary layers, the median Nc increased with height in the middle of 

the cloud layer, potentially due to droplet nucleation above cloud base. The differences between 

contact and separated profiles within high-Na boundary layers were likely driven by a 

combination of higher below-cloud Na, droplet nucleation above cloud base, and weaker droplet 

evaporation in the presence of biomass burning aerosols above cloud tops. 

Appendix 2.1 

Cloud profiles were classified as contact or separated according to whether above-

cloud Na greater than 500 cm−3 was measured at a level within 100 m above cloud tops. The 

classification of cloud profiles remained unchanged when Na = 400 cm−3 instead 

of Na = 500 cm−3 was used to locate the aerosol layer. When the level of Na = 300 cm−3 was used, 

3 of the 26 separated profiles (PRF5 S1, PRF5 P2, and PRF7 P6) switched to the contact regime. 

The qualitative results were unchanged as contact profiles had higher Nc (differences of 63 to 

71 cm−3) and lower Re (differences of 1.1 to 1.3 µm) compared to separated profiles. When a level 

of Na = 600 cm−3 was used, 2 of the 15 contact profiles (PRF5 P1 and P3) switched to the 

separated regime and contact profiles had higher Nc (differences of 59 to 67 cm−3) and 

lower Re (differences of 1.0 to 1.2 µm). No additional changes were observed upon changing the 

definition of the BBA layer. Thus, the results obtained were robust as relates to this threshold. 

A gap of 100 m was used to define separation between the BBAs and the clouds. When 

this gap was decreased to 50 m, 4 of the 15 contact profiles (PRF5 P4, PRF8 P1, and PRF11 S1 and 

P6) switched to the separated regime and the contact regime had higher Nc (differences of 50 to 
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59 cm−3) and lower Re (differences of 0.67 to 0.92 µm). There was no change in the profile 

classification when increasing the gap from 100 m to 200 m. On increasing the gap to 300 m, PRF5 

S4 switched to the contact regime and contact profiles had higher Nc (differences of 36 to 

45 cm−3) and lower Re (differences of 0.4 to 0.6 µm). The same profile switches were observed 

when the definition of the gap was varied between 50 and 300 m for a threshold of above-

cloud Na = 400 cm−3 to locate the BBA layer. Thus, the findings were robust as relates to the 

choice of these thresholds. 

There were no profiles with maximum below-cloud Na < 100 cm−3, and only three contact 

profiles (with 139 1 Hz measurements) had maximum below-cloud Na < 200 cm−3. A threshold of 

300 cm−3 used to define a “high-Na boundary layer”, and cloud microphysical properties and 

above- and below-cloud Na were compared between 22 C-H and 13 S-H profiles and between 

6 C-L and 20 S-L profiles (Table 5). Within low-Na boundary layers, C-L profiles had slightly lower 

below-cloud Na (differences of 1.3 to 26.5 cm−3) and similar Nc (insignificant differences) 

compared to S-L profiles. All other comparisons between the four regimes were consistent with 

the discussion in Sect. 4.3, where a threshold of below-cloud Na = 350 cm−3 was used to define a 

“high-Na boundary layer”. When the threshold was increased to 400 cm−3 and 450 cm−3, the 

qualitative results were unchanged, and C-H (and C-L) profiles had significantly higher Nc and 

lower Re compared to S-H (and S-L) profiles. Additionally, there were minor differences between 

C-H and C-L profiles and between S-H and S-L profiles for these thresholds. Thus, the findings are 

robust as relates to the choice of this threshold. 

 

 



35 
 

TABLES AND FIGURES 

Table 1: The main parameter used, sampling frequency, and measurement range for in situ 
instruments installed on the P-3 research aircraft and used within this study. 

Instrument Parameter used Sampling 
Frequency 

Measurement 
Range 

Reference 

Rosemount 102 Temperature 1 Hz Nominally -
50° to 50°C 

Rosemount, 
Incorporated 

Rosemount 
MADT 2014 

Pressure 1 Hz Nominally 30 - 
1300 mb 

Rosemount, 
Incorporated 

EdgeTech 137 
Chilled-Mirror 
Hygrometer 

Dew Point 
Temperature 

1 Hz Nominally -
40° to 60°C 

EdgeTech 
Instruments 

Global 
Positioning 
System 

Latitude, 
Longitude, Altitude 

1 Hz -90 to 90° 
-180 to 180° 

 

CO/CO2/H2O 
Analyzer 

CO, H2O (v) 1 Hz 5 to 50,000 
ppb, 100 ppm 
to 100% 
humidity 

Los Gatos 
Research 

CAS  Droplet n(D) 10 Hz 0.5 - 50 µm Baumgardner et 
al. (2001) 

2D-S Droplet Images, 
asynchronous n(D) 

 Nominally 10 - 
1,280 µm 

Lawson et al. 
(2006) 

HVPS-3 Droplet Images, 
asynchronous n(D) 

 Nominally 150 
- 19,200 µm 

Lawson et al. 
(1998) 

King Hot-wire Bulk LWC 25 Hz 0.05 - 3 g m-3 King et al. (1978) 
PCASP Aerosol n(D) 10 Hz 0.1 - 3 µm Strapp et al. 

(1992) 
SP2 Aerosol Absorption 1 Hz 55 - 524 nm Stephens et al. 

(2003) 
HR-ToF-AMS Aerosol Mass 0.2 Hz 50 - 700 nm Drewnick et al. 

(2005) 
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Table 2: List of research flights analyzed with the number of cloud profiles flown and total time 
spent profiling clouds during each flight. The number of profiles during sawtooth maneuvers 
are reported within parentheses. The number of profiles and the corresponding sampling time 
are reported for contact and separated profiles during each flight. 

Flight Sawtooth + 
Individual 

Profiles 

Cloud 
Time 

Contact 
Profiles 

Separated 
Profiles 

PRF5: September 06 4 (4, 5, 4, 6) + 5 1327 s 13 (857 s) 11 (470 s) 
PRF7: September 10 1 (2) + 7 461 s 0 (0 s) 9 (461 s) 
PRF8: September 12 1 (6) + 2 504 s 1 (32 s) 7 (472 s) 
PRF9: September 14 0 (0) + 8 574 s 0 (0 s) 8 (574 s) 

PRF11: September 20 1 (7) + 6 669 s 13 (669 s) 0 (0 s) 
PRF13: September 25 2 (2, 3) + 4 511 s 3 (148 s) 6 (363 s) 

Total 9 (39) + 32 1h 7m 26s 30 (1706 s) 41 (2340 s) 

 
Table 3: The total (OA + SO4

2+ + NH4 + NO3
-) and OA Ma, PCASP Na, and rBC and CO 

concentrations sampled up to 100 m below cloud base and 100 m above cloud top during four 
sawtooth maneuvers (S1–S4) flown on 6 September 2016. These values correspond to averages 
across the individual profiles flown during S1–S4. AOD was sampled during constant altitude 
flight legs and corresponds to the atmospheric column above the aircraft (N/A : not available). 

Parameter Location S1 S2 S3 S4 

Total Ma (µg m-3) 

 
Above-cloud 
Below-cloud 

3.4 
4.5 

22.9 
5.9 

21.7 
5.7 

0.8 
1.4 

OA Ma (µg m-3) 
 

Above-cloud 
Below-cloud 

2.0 
1.9 

16.9 
3.5 

13.2 
3.4 

0.4 
1.0 

PCASP Na (cm-3) 
 

Above-cloud 
Below-cloud 

241 
354 

1515 
327 

1334 
390 

16 
72 

rBC (cm-3) 
 

Above-cloud 
Below-cloud 

66 
72 

516 
111 

700 
130 

10 
N/A 

CO (ppb) 
 

Above-cloud 
Below-cloud 

95 
93 

196 
103 

230 
117 

96 
88 

AOD Above-cloud 0.33 0.37 0.49 0.39 
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Table 4: The range of time, latitude, longitude, above-cloud AOD, and cloud-top height (ZT) for 
cloud profiles flown during the six flights. The lowest altitude where above-cloud Na > 500 cm-3 
occurred during the flight (Z500) is in the far-right column. 

Date Time (UTC) Latitude (°S) Longitude (°E) AOD ZT (m) Z500 
(m) 

Sept 6 08:46 - 12:35 10.2 - 19.7 9.0 - 11.9 0.27 - 0.49 359 - 1002 680 
Sept 10 09:09 - 12:36 14.1 - 18.7 4.0 - 8.6 0.21 - 0.29 990 - 1201 1800 
Sept 12 11:16 - 12:26 9.7 - 12.9 -0.3 - 3.0 0.25 - 0.29 1146 - 1226 1200 
Sept 14 09:36 - 14:16 16.4 - 18.1 7.5 - 9.0 0.31 - 0.32 635 - 824 2350 
Sept 20 08:44 - 13:11 15.7 - 17.3 8.9 - 10.5 0.42 - 0.56 432 - 636 600 
Sept 25 10:59 - 13:51 10.9 - 14.3 0.8 - 4.3 0.27 - 0.38 729 - 1124 1170 

 
Table 5: Aerosol and cloud properties were averaged across all contact and separated profiles 
flown in low-Na and high-Na boundary layers. These averages were compared between contact 
and separated profiles. The values listed below represent the 95% confidence intervals (from a 
two-sample t test) when the differences were statistically significant. Positive values indicate 
the average for contact profiles was higher, and “insig” denotes the differences were 
statistically insignificant. 

Maximum below-
cloud Na (cm-3) 

Below-cloud 
Na (cm-3) 

Above-cloud 
Na (cm-3) 

Nc (cm-3) Re (m) LWC 
(g m-3) 

Low Na (< 300 cm-3) -1.3 - -26.5 498.0 - 565.5 insig -0.1 - -0.6 insig 
High Na (> 300 cm-3) 48.3 - 78.2 746.7 - 884.3 80.8 - 92.8 -1.1 - -1.3 0.0 – 0.02 
Low Na (< 350 cm-3) insig 592.7 - 669.4 22.8 - 34.9 -0.3 - -0.9 insig 
High Na (> 350 cm-3) 39.1 - 70.5 737.8 - 884.4 75.5 - 88.4 -1.2 - -1.6 0.0 - 0.02 
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Figure 1: Visible image from the Spinning Enhanced Visible and Infrared Imager at 14:00 UTC on 
6 September 2016 (PRF5), overlaid by the PRF5 flight track and colored by flight altitude. Circles 
indicate sawtooth maneuver (S) and individual cloud profile (P) locations 
(https://bocachica.arc.nasa.gov/ORACLES/, last access: 22 March 2021). 
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Figure 2: Zero-hour European Centre for Medium-Range Weather Forecasts reanalysis at 12:00 
UTC on 6 September 2016 for (a) mean sea level pressure, 500 mb geopotential height, and 
surface wind; (b) 925 mb relative humidity, geopotential height, and wind; and (c) boundary 
layer height and 900 mb wind (https://bocachica.arc.nasa.gov/ORACLES/, last access: 22 March 
2021). 
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Figure 3: P-3 aircraft altitude as a function of time, colored by PCASP accumulation mode (0.1 < 
D < 3 μm) Na for four sawtooth maneuvers flown on 6 September 2016. In-cloud Na are masked 
due to potential for droplet shattering on the PCASP probe inlet. 
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Figure 4: Snapshots of the boundary layer sampled below (a) S1 showing shallow cumulus and 
stratocumulus layers with varying bases, and (b) S4 showing stratocumulus clouds with a 
uniform base (NSRC/NASA Airborne Science Program). 

 

 

Figure 5: Five-day back trajectories from the Hybrid Single-Particle Lagrangian Integrated 
Trajectory model for sawtooth maneuvers flown on 6 September 2016 (a) ending at 10:00 UTC 
for S1–S3 at 500 m a.m.s.l.; (b) ending at 10:00UTC for S1–S3 at 1000m a.m.s.l; and (c) ending at 
13:00 UTC for S4 at 200, 500, and 2500 m a.m.s.l. 
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Figure 6: Vertical profiles of (a) Nc, (b) Re, and (c) LWC and aLWC as a function of ZN for the four 
sawtooth maneuvers. Maneuvers with contact (separation) between the biomass burning 
aerosol layer and cloud tops shown in blue (red). 
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Figure 7: Vertical profiles of (a) T and (b) qT as a function of distance from cloud top. Each line 
corresponds to an individual ascent through cloud during a sawtooth. The profiles flown during 
S2 and S3 (S1 and S4) had contact (separation) between the above-cloud biomass burning 
aerosol layer and cloud tops. 
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Figure 8: Flight tracks from PRFs 5, 7, 8, 9, 11, and 12 flown on 6, 10, 12, 14, 20, and 
25 September 2016 with green segments indicating location of cloud profiles (flight tracks from 
PRFs 7 and 8 coincide with PRF13 and hence are not visible). 

 

Figure 9: Cloud base and top heights for contact (blue) and separated (red) profiles flown 
during the six PRFs. 
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Figure 10: Kernel density estimates (indicated by the width of shaded area) and boxplots 
showing the 25th (Q1), 50th (white point), and 75th (Q3) percentile for (a) Nc, (b) Re, 
and (c) LWC as a function of ZN for contact (blue) and separated (red) profiles. 
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Figure 11: Difference between equivalent potential temperature (e) and total water mixing 
ratio (qT) measured within cloud and 100 m above cloud top for contact (blue) and separated 
(red) profiles (only ascents through cloud shown). 
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Figure 12: Boxplots representing vertical profiles of (a) Nc, (b) Re, and (c) LWC as a function 
of ZN for contact (blue) and separated (red) profiles within boundary layers with 
high Na (> 350 cm−3) (darker) or low Na (< 350 cm−3) (lighter). The number of 1 Hz measurements 
within each regime is listed within parentheses. 

 

 

 

 

 

 

 

 



48 
 

3 Factors Affecting Precipitation Susceptibility of Marine Stratocumulus 

with Variable Above and Below-Cloud Aerosol Concentrations over the 

Southeast Atlantic 

3.1. Introduction 

Clouds drive the global hydrological cycle with an annual average precipitation rate of 3 

mm day-1 over the oceans (Behrangi et al., 2014). Marine stratocumulus (MSC) is the most 

common cloud type with an annual coverage of 22 % over the ocean surface (Eastman et al., 

2011). These low-level, boundary layer clouds typically exist over subtropical oceans in regions 

with large-scale subsidence such as the southeast Atlantic Ocean (Klein and Hartmann, 1993). 

MSC have higher reflectivity (albedo) than the ocean surface which results in a strong, negative 

shortwave cloud radiative forcing (CRF) with a weak and positive longwave CRF (Oreopoulos and 

Rossow, 2011).  

Low-cloud cover in the subsidence regions is negatively correlated with sea surface 

temperature (SST) (Eastman et al., 2011; Wood and Hartmann, 2006). CRF is thus sensitive to 

changes in SST but there is a large spread in model estimates of CRF sensitivity (Bony and 

Dufresne, 2005). This provides uncertainty in the model estimates of Earth’s energy budget in 

future climate scenarios (Trenberth and Fasullo, 2009). Uncertainty in parameterization of 

boundary layer aerosol, cloud, and precipitation processes contributes to model uncertainties 

(Ahlgrimm and Forbes, 2014; Stephens et al., 2010).  

MSC CRF is regulated by cloud processes that depend on cloud microphysical properties, 

like droplet concentration (Nc), effective radius (Re), and liquid water content (LWC), and 
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macrophysical properties, like cloud thickness (H) and liquid water path (LWP). These cloud 

properties can depend on the concentration, composition, and size distributions of aerosols 

which act as cloud condensation nuclei. Under conditions of constant LWC, increases in aerosol 

concentration (Na) can increase Nc and decrease Re, strengthening the shortwave CRF (Twomey, 

1974, 1977). A decrease in droplet sizes in polluted clouds can inhibit droplet growth from 

collision-coalescence and suppress precipitation intensity, resulting in lower precipitation rate 

(Rp), higher LWP, and increased cloud lifetime (Albrecht, 1989). In combination, these aerosol-

cloud-precipitation interactions (ACIs) and the resulting cloud adjustments lead to an effective 

radiative forcing termed ERFaci (Boucher et al., 2013).  

Satellite retrievals of Re and cloud optical thickness () can be used to estimate Nc and 

LWP using the adiabatic assumption (Boers et al., 2006; Wood and Hartmann, 2006; Bennartz, 

2007). LWC increases linearly with height in adiabatic clouds and  is parameterized as a function 

of Nc and LWP (  Nc
1/3 LWP5/6) (Brenguier et al., 2000). Since  has greater sensitivity to LWP 

compared to Nc, assuming constant LWP under different aerosol conditions can lead to 

underestimation of the cloud albedo susceptibility to aerosol perturbations (Platnick and 

Twomey, 1994; McComiskey and Feingold, 2012). 

LWP can have a positive or negative response to increasing Nc due to aerosols (Toll et al., 

2019). The LWP response is regulated by environmental conditions (e.g., lower tropospheric 

stability (LTS), boundary layer depth (HBL), and relative humidity), cloud particle sizes (e.g., 

represented by Re), Rp, and by Nc and LWP themselves (Chen et al., 2014; Gryspeerdt et al., 2019; 

Toll et al., 2019; Possner et al., 2020). Accurate estimation of the LWP response to aerosol 
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perturbations is important for regional and global estimates of ERFaci (Douglas and L’Ecuyer, 

2019; 2020). 

Droplet evaporation associated with cloud-top entrainment and precipitation are the two 

major sinks of LWC in MSC. Smaller droplets associated with higher Nc or Na evaporate more 

readily which leads to greater cloud-top evaporative cooling and a negative LWP response (Hill 

et al., 2008). The LWP response to the evaporation-entrainment feedback (Xue and Feingold, 

2006; Small et al., 2009) also depends on above-cloud humidity (Ackerman et al., 2004). 

Precipitation susceptibility (So) to aerosol-induced changes in cloud properties relates the change 

in Rp due to aerosol-induced changes in Nc and is a function of LWP or H (Feingold and Seibert, 

2009).  

The magnitude of So depends on precipitation formation processes like collision-

coalescence which are parameterized in models using mass transfer rates, such as the 

autoconversion rate (SAUTO) and the accretion rate (SACC) (Morrison and Gettelman, 2008; 

Geoffroy et al., 2010). Autoconversion describes the process of collisions between cloud droplets 

that coalesce to form drizzle drops which initiate precipitation. Accretion refers to collisions 

between cloud droplets and drizzle drops which lead to larger drizzle drops and greater 

precipitation intensity. The variability in So as a function of LWP or H depends on the cloud type 

and the ratio of SACC versus SAUTO (Wood et al., 2009; Jiang et al., 2010; Sorooshian et al., 2010). 

Recent field campaigns focused on studying ACIs over the southeast Atlantic Ocean because 

unique meteorological conditions are present in the region (Zuidema et al., 2016; Redemann et al., 

2021). Biomass-burning aerosols from southern Africa are lofted into the free troposphere (Gui 

et al., 2021) and transported over the southeast Atlantic by mid-tropospheric winds where the 
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aerosols overlay an extensive MSC deck that exists off the coast of Namibia and Angola (Adebiyi 

and Zuidema, 2016; Devasthale and Thomas, 2011). In situ observations of cloud and aerosol 

properties were collected over the southeast Atlantic during the NASA ObseRvations of Aerosols 

above CLouds and their intEractionS (ORACLES) field campaign during three Intensive 

Observation Periods (IOPs) in September 2016, August 2017, and October 2018 (Redemann et 

al., 2021). The above-cloud aerosol plume was associated with elevated water vapor content 

(Pistone at al., 2021) which influenced cloud-top humidity and dynamics following the 

mechanisms discussed by Ackerman et al. (2004). 

During ORACLES, the aerosol layer was comprised of shortwave-absorbing aerosols (500 

nm single-scattering albedo of about 0.83) with above-cloud aerosol optical depth up to 0.42 

(Pistone et al., 2019; LeBlanc et al., 2020). The sign of the forcing due to shortwave absorption 

by the aerosol layer depends on the location of aerosols in the vertical column and the albedo of 

the underlying clouds (Cochrane et al., 2019). Warming aloft due to aerosol absorption of solar 

radiation strengthens the temperature inversion which decreases dry air entrainment into 

clouds, increases LWP and cloud albedo, and decreases the shortwave CRF (Wilcox, 2010). The 

net radiative forcing due to the aerosol and cloud layers thus depends on aerosol-induced 

changes in Nc, Re, and LWP and the resulting changes in . Sinks of Nc and LWP like precipitation 

and entrainment mixing lead to uncertainties in satellite retrievals of Nc which pose the biggest 

challenge in the use of satellite retrievals to study the aerosol impact on Nc (Quaas et al., 2020). 

This motivates observational studies of ACIs that examine Nc and LWP under different aerosol 

and meteorological conditions. 
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During the 2016 IOP, variable vertical displacement (0 to 2000 m) was observed between 

above-cloud aerosols and the MSC (see Chapter 2). Instances of contact and separation between 

the aerosol and cloud layers were associated with differences in the above- and below-cloud Na, 

water vapor mixing ratio (wv), and cloud-top entrainment processes. These differences led to 

changes in Nc, Re, and LWC, and their vertical profiles (Chapter 2). In this study, the response of 

the MSC to above- and below-cloud aerosols is further examined using data from all three 

ORACLES IOPs, and precipitation formation and So are evaluated as a function of H.  

The chapter is organized as follows. In Section 3.2, the ORACLES observations are 

discussed along with the data quality assurance procedures (additional details are in the 

appendix). In Section 3.3, the calculation of cloud properties is described. In Section 3.4, the 

influence of aerosols on Nc, Re, and LWC is examined by comparing the parameters for MSC in 

contact or separated from the above-cloud aerosol layer. In Section 3.5, the changes in 

precipitation formation due to aerosol-induced microphysical changes are examined. In Section 

3.6, Nc, Rp, and So are examined as a function of H and the above- and below-cloud Na. In Section 

3.7, the meteorological conditions are examined using reanalysis data. In Section 3.8, the 

conclusions are summarized with directions for future work. 

3.2. Observations 

The ORACLES IOPs were based at Walvis Bay, Namibia (23° S, 14.6° E) in September 2016, 

and at São Tomé and Príncipe (0.3° N, 6.7° E) in August 2017 and October 2018. The data analyzed 

in this study were collected during the three IOPs (Table 6 and Fig. 13): six P-3 research flights 

(PRFs) from 6 to 25 September 2016 with cloud sampling conducted between 1° W to 12° E and 

9° S to 20° S; seven PRFs from 12 to 28 August 2017 with cloud sampling conducted between 8° 
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W to 6° E and 2° S to 15° S; and 11 PRFs from 27 September to 23 October 2018 with cloud 

sampling conducted between 3° W to 9° E and 1° N to 15° S. These PRFs were selected because 

in situ cloud sampling was conducted during at least three vertical profiles through the cloud 

layer (Table 6).  

Three PRFs from the 2016 IOP had overlapping tracks when the P-3B aircraft flew north-

west from 23˚ S, 13.5˚ E toward 10˚ S, 0˚ E, and returned along the same track (Fig. 13). The 2017 

and 2018 IOPs had 10 PRFs with overlapping flight tracks when the aircraft flew south from 0˚ N, 

5˚ E toward 15˚ S, 5˚ E, and returned along the same track. PRFs with overlapping tracks acquired 

statistics for model evaluation (Doherty et al., 2021) while the other PRFs targeted specific 

locations based on meteorological conditions (Redemann et al., 2021). 

During ORACLES, the NASA P-3B aircraft was equipped with in situ probes. The data 

analyzed in this study were collected using Cloud Droplet Probes (CDPs) (Lance et al., 2010), a 

Cloud and Aerosol Spectrometer (CAS) on the Cloud, Aerosol and Precipitation Spectrometer 

(Baumgardner et al., 2001), a Phase Doppler Interferometer (PDI) (Chuang et al., 2008), a Two-

Dimensional Stereo Probe (2D-S) (Lawson et al., 2006), a High Volume Precipitation Sampler 

(HVPS-3) (Lawson et al., 1998), a King hot-wire (King et al., 1978), and a Passive Cavity Aerosol 

Spectrometer Probe (PCASP) (Cai et al., 2013). A single CDP was used during the 2016 IOP 

(hereafter CDP-A), a second CDP (hereafter CDP-B) was added for the 2017 and 2018 IOPs, and 

CDP-A was replaced by a different CDP (hereafter CDP-C) for the 2018 IOP.  

The CAS, CDP, King hot-wire, and PCASP data were processed at the University of North 

Dakota using the Airborne Data Processing and Analysis processing package (Delene, 2011). The 

PDI data were processed at the University of Hawaii. The 2D-S and HVPS-3 data were processed 
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using the University of Illinois/Oklahoma Optical Array Probe Processing Software (McFarquhar 

et al., 2018). The data processing procedures followed to reject artifacts were summarized in 

Chapter 2. Comparisons between the cloud probe data sets are described in the appendix. 

The King hot-wire was used to sample LWC (hereafter King LWC). The PCASP was used to 

sample the accumulation-mode aerosols sized from 0.1 to 3.0 μm. The CAS, CDP, PDI, 2D-S, and 

HVPS-3 collectively sampled the number distribution function N(D) for particles with diameter D 

from 0.5 to 19200 μm. The size distribution covering the complete droplet size range was 

determined by merging the N(D) for 3 < D < 50 µm with the N(D) for 50 < D < 1050 µm from the 

2D-S and the N(D) for 1050 < D < 19200 µm from the HVPS-3. The HVPS-3 sampled droplets with 

D > 1050 µm for a single 1 Hz data sample across the PRFs analyzed in this study. Measurement 

uncertainties in droplet sizes were expected to be within 20 % for droplets with D > 5 m from 

the CAS and the CDP, D > 50 m from the 2D-S, and D > 750 m from the HVPS-3 (Baumgardner 

et al., 2017). 

During each PRF, at least two independent measurements of N(D) were made for 3 < D < 

50 μm using the CAS, the PDI or a CDP (Table 6). The differences between the Nc and LWC derived 

from the CAS, PDI and CDP N(D) were quantified to determine if these differences were within 

measurement uncertainties. The LWC estimates from the CAS, PDI, and CDP were compared with 

the adiabatic LWC (LWCad) which represents the theoretical maximum for LWC (Brenguier et al., 

2000). The N(D) for droplets with D < 50 μm was determined using the probe which consistently 

had the LWC with better agreement with the LWCad during each IOP (see appendix). LWCad can 

be used to compare LWC from different probes since it is derived using environmental conditions 

and does not depend on the cloud probe datasets. The relative differences between the LWCad 
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and the LWC estimates from cloud probes provide a measure of the uncertainty associated with 

using one probe over the other for data analysis. 

The differences between in-cloud data sets from different instruments were determined 

using a two-sample t-test. The 95 % confidence intervals (CIs) between parameter means were 

reported if the differences were statistically significant. During the 2017 IOP, the CAS and the 

CDP-B sampled droplets with D < 50 μm. The CDP-B LWC was higher than the CAS LWC (95 % CIs: 

0.11 to 0.12 g m-3 higher), and the average CDP-B LWC (0.18 g m-3) had better agreement with 

the average LWCad (0.24 g m-3) compared to the average CAS LWC (0.08 g m-3). Thus, the CDP-B 

N(D) was used to represent the N(D) for droplets with D < 50 μm for the 2017 IOP.  

Similar results were obtained when the CAS LWC and the CDP-B LWC were compared with 

the LWCad for the 2018 IOP. During the 2018 IOP, the CDP-C was mounted at a different location 

relative to the aircraft wing compared to the CAS and CDP-B, and the positions of CDP-B and CDP-

C were switched after 10 October 2018. O’Brien et al. (2021, in prep) found the CDP mounting 

positions had only a 6 % impact on the calculation of Nc and the average CDP-B LWC and CDP-C 

LWC were within 0.02 g m-3. To maintain consistency with the 2017 IOP, data from the CDP 

mounted next to the CAS were used for droplets with D < 50 μm for the 2018 IOP (except on 15 

October 2018 when the CDP-C had a voltage issue). 

During the 2016 IOP, measurements from the CDP-A were unusable for all PRFs due to an 

optical misalignment issue. Nevertheless, the CAS and the PDI sampled droplets with 3 < D < 50 

μm. On average, the PDI LWC was higher than the CAS LWC (95 % CIs: 0.20 to 0.21 g m-3 higher). 

Since the PDI LWC was greater than the LWCad (95 % CIs: 0.04 to 0.06 g m-3 higher), it was 



56 
 

hypothesized that the PDI LWC was an overestimate of the actual LWC. Thus, the CAS N(D) was 

used to represent the N(D) for droplets with D < 50 μm for the 2016 IOP. 

The 2D-S has two channels which concurrently sample the cloud volume. Nc and LWC 

were derived using data from the horizontal channel (NH and LWCH) and the vertical channel (NV 

and LWCV). NH and LWCH were used for the 2016 IOP because NV and LWCV were not available 

due to soot deposition on the inside of the receive-side mirror of the vertical channel. NH and NV 

as well as LWCH and LWCV were strongly correlated for the 2017 and 2018 IOPs with Pearson’s 

correlation coefficient R ≥ 0.92 and the best-fit slope ≥ 0.90. The high correlation values suggest 

that little difference would have resulted from using the average of the two 2D-S channels. To 

maintain consistency with the 2016 IOP, NH and LWCH were used for all three IOPs. 

3.3. Cloud properties 

The N(D) from the merged droplet size distribution was integrated to calculate Nc. The 1 

Hz data samples with Nc > 10 cm-3 and King LWC > 0.05 g m-3 were defined as in-cloud 

measurements (Chapter 2). The PCASP N(D) was used to determine the out-of-cloud Na. In situ 

cloud sampling during ORACLES included flight legs when the P-3B aircraft ascended or 

descended through the cloud layer (hereafter cloud profiles). Data from 329 cloud profiles with 

just under four hours of cloud sampling were examined (Table 6). 

For every cloud profile, the cloud top height (ZT) was defined as the highest altitude with 

Nc > 10 cm-3 and King LWC > 0.05 g m-3 (Table 7). The average ZT during ORACLES was 1038 ± 270 

m, where the uncertainty estimate refers to the standard deviation. The cloud base height (ZB) 

was defined as the lowest altitude with Nc > 10 cm-3 and King LWC > 0.05 g m-3. In decoupled 

boundary layers, a layer of cumulus can be present below the stratocumulus layer with a gap 
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between the cloud layers (Wood, 2012). Measurements from stratocumulus were used in this 

study and ZB for the stratocumulus layer was identified as the altitude above which the King LWC 

increased without gaps greater than 25 m in the cloud sampling up to ZT. 

The difference between ZT and ZB was defined as H. Due to aerosol-induced changes in 

entrainment and boundary layer stability, the aerosol impact on H and ZT can have the strongest 

influence on LWP adjustments associated with ACIs (Toll et al., 2019). Thus, the influence of ACIs 

on precipitation formation and So was examined as a function of H. Data collected during 

incomplete profiles of the stratocumulus or while sampling open-cell clouds (for example, on 2nd 

October 2018) were excluded because of difficulties with estimating H for such profiles. 

For each 1 Hz in-cloud data sample, the droplet size distribution was used to calculate Re 

following Hansen and Travis (1974), where,  

𝑅𝑒 (ℎ) = ∫ 𝐷3 𝑁(𝐷, ℎ) 𝑑𝐷
∞

3
∫ 2 𝐷2 𝑁(𝐷, ℎ) 𝑑𝐷

∞

3
⁄  .        (1) 

Based on the aircraft speed, 1 Hz data samples corresponded to roughly 5 m intervals in 

the vertical direction. LWC was calculated as 

𝐿𝑊𝐶 (ℎ) =  𝜋 𝜌𝑤 6⁄ ∫ 𝐷3 𝑁(𝐷, ℎ) 𝑑𝐷
∞

3
 ,         (2) 

where w is the density of liquid water and h is height in cloud above cloud base. LWC and King 

LWC were integrated over h from ZB to ZT to calculate LWP and King LWP, respectively.  was 

calculated as 

𝛽𝑒𝑥𝑡 (ℎ) =  ∫ 𝑄𝑒𝑥𝑡 𝜋/4 𝐷2 𝑁(𝐷, ℎ) 𝑑𝐷
∞ 

3
, 𝜏 = ∫ 𝛽𝑒𝑥𝑡

𝑍𝑇

𝑍𝐵
(ℎ) 𝑑ℎ ,      (3) 

where ext is the cloud extinction and Qext is the extinction coefficient (approximately 2 for cloud 

droplets assuming geometric optics apply for visible wavelengths) (Hansen and Travis, 1974). The 
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integrals in Eq. (1) to (3) were converted to discrete sums for D > 3 m to consider the 

contributions of cloud drops, and not aerosols.  

According to the adiabatic model (Brenguier et al., 2000), LWCad and LWPad are functions 

of H (the subscript ‘ad’ added to represent the adiabatic equivalents). These relationships help 

parameterize ad as 

𝐿𝑊𝐶𝑎𝑑(ℎ) ∝  ℎ , 𝐿𝑊𝑃𝑎𝑑 ∝  𝐻2 ,  𝜏𝑎𝑑 ∝ (𝑁𝑐)1/3 𝐿𝑊𝑃5/6 ,     (4) 

3.4. Aerosol Influence on cloud microphysics 

The MSC over the southeast Atlantic were overlaid by biomass-burning aerosols from 

southern Africa (Adebiyi and Zuidema, 2016; Redemann et al., 2021) with instances of contact 

and separation between the MSC cloud tops and the base of the biomass burning aerosol layer 

(Chapter 2). Across the three IOPs, 173 profiles were conducted at locations where an extensive 

aerosol plume with Na > 500 cm-3 was located within 100 m above ZT (hereafter, contact profiles) 

(Table 6). 156 profiles were conducted at locations where the level of Na > 500 cm-3 was located 

at least 100 m above ZT (hereafter, separated profiles). About 50 % of the in situ cloud sampling 

across the three IOPs was conducted during contact profiles (Table 6). Due to inter-annual 

variability, contact profiles accounted for about 42 %, 91 %, and 39 % of the in situ cloud sampling 

during the 2016, 2017, and 2018 IOPs, respectively. 

The average Nc and Re for all cloud profiles across the three IOPs were 157 ± 96 cm-3 and 

8.2 ± 2.7 m, respectively (Table 8). The high proportion of contact profiles during the 2017 IOP 

was associated with higher average Nc and lower average Re (229 cm-3 and 6.9 m) compared to 

the 2016 IOP (150 cm-3 and 7.0 m) and the 2018 IOP (132 cm-3 and 9.8 m). It is possible that 

the use of CDP-B data for the 2017 IOP contributed to the increase in average Nc relative to the 
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2016 IOP. However, the difference between the average CAS Nc and the average CDP-B Nc for the 

2017 IOP (12 cm-3) was lower than the difference between the average Nc for the 2016 and 2017 

IOPs (79 cm-3). The difference between the Nc for these IOPs were thus primarily due to the 

conditions at the cloud sampling locations.  The microphysical differences between the 2016 and 

2017 IOPs were associated with differences in surface precipitation. Based on the W-band 

retrievals from the Jet Propulsion Laboratory Airborne Precipitation Radar Version 3 (APR-3), the 

2017 IOP had fewer profiles with precipitation reaching the surface (13 %) compared to the 2016 

IOP (34 %) (Dzambo et al., 2019). 

On average, contact profiles had significantly higher Nc (95 % CIs: 84 to 90 cm-3 higher) 

and lower Re (95 % CIs: 1.4 to 1.6 m lower) compared to separated profiles (throughout the 

study, the term “significant” is exclusively used to represent statistical significance). The 

significant differences in Nc and Re were associated with significantly higher  (95 % CIs: 0.04 to 

3.06 higher) for contact profiles, in accordance with the Twomey effect (Twomey, 1974; 1977). 

These results were consistent with the 2016 IOP when the contact profiles had higher Nc (95 % 

CIs: 60 to 68 cm-3 higher), lower Re (95 % CIs: 1.1 to 1.3 m lower), and higher  (95 % CIs: 1.1 to 

4.3 higher) (Chapter 2). 

Figure 14 shows violin plots for cloud properties as a function of normalized height (ZN), 

defined as ZN = Z – ZB / ZT – ZB. The violin plots include box plots and illustrate the distribution of 

the data (Hintze and Nelson, 1998). The median Nc increased with ZN for ZN ≤ 0.25, consistent 

with droplet nucleation (Fig. 14a). The median Nc decreased near cloud top for ZN ≥ 0.75 from 

204 to 154 cm-3 for contact and from 104 to 69 cm-3 for separated profiles. This is consistent with 

droplet evaporation associated with cloud-top entrainment (Chapter 2). The median Re increased 
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with ZN consistent with condensational growth (Fig. 14b). There was a greater increase in the 

median Re from cloud base to cloud top for separated profiles (from 7.1 to 9.5 m) compared to 

contact profiles (from 6.1 to 7.9 m). This is consistent with previous observations of stronger 

droplet growth in cleaner conditions as a function of ZN (Braun et al., 2018; Chapter 2) and LWP 

(Rao et al., 2020). Statistically insignificant differences between the average H for contact and 

separated profiles suggest that the differential droplet growth was associated with differences in 

cloud processes like collision-coalescence (further discussed in Section 5). 

The LWC and LWP responses to changes in aerosol conditions were examined because 

the adiabatic model suggests   LWP5/6 (Eq. 4) (Brenguier et al., 2000). Contact profiles had 

significantly higher LWC, but the relative increase was less than 10 % (Table 9). LWC was divided 

into rainwater content (RWC) and cloud water content (CWC) based on droplet size. Droplets 

with D > 50 µm were defined as drizzle (Abel and Boutle, 2012; Boutle et al., 2014) and the total 

drizzle mass was defined as RWC. The droplet mass for D < 50 m was defined as CWC. RWP and 

CWP were defined as the vertical integrals of RWC and CWC, respectively. The median CWC 

increased with ZN but decreased over the top 10 % of the cloud layer for contact profiles and over 

the top 20 % of the cloud layer for separated profiles consistent with cloud-top entrainment (Fig. 

14c). For contact profiles, the median RWC increased with ZN before decreasing for ZN ≥ 0.75. The 

median RWC for separated profiles varied with ZN. The bottom half of the cloud layer had higher 

median values (up to 8.7 x 10-3 g m-3) compared to the top half (up to 7.0 x 10-3 g m-3) (Fig. 14d). 

For contact profiles, there was a significant increase in the average CWC (10 %) and a 

significant decrease in the average RWC (60 %) compared to separated profiles (Table 9). Contact 

profiles also had significantly lower average RWP with insignificant differences for average CWP 
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(Table 9). Contact profiles were located in deeper boundary layers with significantly higher ZB and 

ZT compared to separated profiles. However, the decrease in RWC cannot be attributed to 

differences in H or LWP (Kubar et al., 2009) because of statistically similar H and LWP for contact 

and separated profiles, on average (Table 9). These results show that instances of contact 

between above-cloud aerosols and the MSC were associated with more numerous and smaller 

cloud droplets and weaker droplet growth compared to instances of separation between the 

above-cloud aerosols and the MSC. 

3.5. Precipitation formation and H 

Precipitation rate Rp was calculated using the drizzle water content and fall velocity u(D) 

following Abel and Boutle (2012), 

𝑅𝑝 = 𝜋 6⁄  ∫ 𝑛(𝐷)𝐷3𝑢(𝐷)𝑑𝐷
∞

50 µ𝑚
        (5) 

with fall velocity relationships from Rogers and Yau (1989) used in the computation. 

Contact profiles had significantly lower Rp compared to separated profiles (95 % CIs: 0.03 

to 0.05 mm h-1 lower). This suggests contact between the MSC and above-cloud biomass burning 

aerosols was associated with precipitation suppression. LWP and H impact the sign and 

magnitude of the precipitation changes in response to changes in aerosol conditions (Kubar et 

al., 2009; Christensen and Stephens, 2012). Thus, cloud and precipitation properties were 

evaluated as a function of H to examine the aerosol-induced changes in precipitation formation. 

The 95th percentile was used to represent the maximum value of a variable. For example, 

the 95th percentile of Rp (denoted by Rp95) represents the maximum Rp during a cloud profile. 

Although more numerous contact profiles were drizzling compared to separated profiles, the 

latter had more numerous profiles with high precipitation intensity. For instance, 114 out of 173 
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contact and 95 out of 156 separated profiles were drizzling with Rp95 > 0.01 mm h-1, out of which 

36 contact and 40 separated profiles had Rp95 > 0.1 mm h-1, and only 1 contact and 9 separated 

profiles had Rp95 > 1 mm h-1 (Fig. 15a). This is consistent with radar retrievals of surface Rp < 1 mm 

h-1 for over 93 % of the radar profiles from 2016 and 2017 (Dzambo et al., 2019). 

3.5.1. Microphysical properties 

On average, separated profiles had greater Rp95 (0.22 mm h-1) compared to contact 

profiles (0.07 mm h-1). Rp95 was positively correlated with H as thicker profiles had higher 

precipitation intensity (Fig. 15a). The average Rp95 increased from thin (H < 175 m) to thick clouds 

(H > 175 m) from 0.04 to 0.10 mm h-1 for contact and 0.13 to 0.29 mm h-1 for separated profiles. 

Precipitation intensity thus decreased from separated to contact profiles for both thin and thick 

profiles. The average Rp95 for thin and thick contact profiles were 32 % and 37 % of the average 

Rp95 for thin and thick separated profiles, respectively.  

CWC95 was positively correlated with H as thicker clouds had higher droplet mass (Fig. 

15b). This was consistent with condensational and collision-coalescence growth continuing to 

occur with greater height above cloud base (Fig. 14b, c), and greater cloud depth allowing for 

greater droplet growth. Nc95 and Re95 were negatively and positively correlated with H, 

respectively (Fig. 15c, d). The trends in Nc and Re versus H were consistent with the process of 

collision-coalescence resulting in fewer and larger droplets.  

On average, contact profiles had higher Nc95 and lower Re95 (311 cm-3 and 8.6 m) 

compared to separated profiles (166 cm-3 and 10.8 m). It can be inferred that the presence of 

more numerous and smaller droplets during contact profiles decreased the efficiency of collision-

coalescence. Alternatively, there may not have been sufficient time for the updraft to produce 
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the few large droplets needed to broaden the size distribution and initiate collision-coalescence. 

Since contact and separated profiles had statistically similar H (Table 9), the following discussion 

examines the link between precipitation suppression and the aerosol-induced changes in Nc, Re, 

and LWC and their impact on precipitation. 

3.5.2. Precipitation properties 

Precipitation formation process rates were estimated using equations used in numerical 

models to compare precipitation formation between contact and separated profiles. 

Precipitation development in models is parameterized using bulk microphysical schemes. GCMs 

or LES models parameterize precipitation formation using SAUTO and SACC (e.g., Penner et al., 2006; 

Morrison and Gettelman, 2008; Gordon et al., 2018). The most commonly used 

parameterizations were used to estimate equivalent rates of precipitation formation from 

models. SAUTO and SACC were calculated following Khairoutdinov and Kogan (2000), 

𝑆𝐴𝑈𝑇𝑂 =  (𝑑𝑤𝑟)𝐴𝑈𝑇𝑂 𝑑𝑡⁄ = 1350 𝑤𝑐
2.47𝑁𝑐

−1.79      (6) 

and 

𝑆𝐴𝐶𝐶 =  (𝑑𝑤𝑟)𝐴𝐶𝐶 𝑑𝑡⁄    = 67 (𝑤𝑐𝑤𝑟)1.15         (7) 

where wc and wr are cloud water and rainwater mixing ratios, respectively, and equal to the CWC 

and RWC divided by the density of air (a). 

Contact profiles had significantly lower SAUTO and SACC compared to separated profiles (Table 9). 

This is consistent with significantly lower RWC and Rp for contact profiles and the association of 

SAUTO and SACC with precipitation onset and precipitation intensity, respectively. SAUTO95 and SACC95 

were positively correlated with H (Fig. 16a, b). Separated profiles had higher SAUTO95 and SACC95 

(9.6 x 10-10 s-1 and 2.2 x 10-8 s-1) compared to contact profiles (2.9 x 10-10 s-1 and 1.2 x 10-8 s-1) 
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associated with the inverse relationship between SAUTO and Nc (Eq. 6). Faster autoconversion 

resulted in higher drizzle water content and greater accretion of droplets on drizzle drops. 

The sampling of lower Nc95 and higher Re95 compared to thinner profiles suggests that 

collision-coalescence was more effective in profiles with higher H (Fig. 15c, d). Thin contact 

profiles had the lowest SAUTO95 (1.4 x 10-10 s-1) followed by thick contact (4.5 x 10-10 s-1), thin 

separated (4.7 x 10-10 s-1), and thick separated profiles (1.4 x 10-9 s-1). High Nc and low CWC for 

thin contact profiles (Fig. 15b, c) are consistent with increased competition for cloud water 

leading to weaker autoconversion. It is hypothesized that these microphysical differences 

resulted in the lower SAUTO95 and Rp95 for thin contact profiles compared to other profiles. The 

differences between Rp for contact and separated profiles thus varied with H in addition to Nc, 

Re, and CWC. Nc, Re, and CWC varied with Na (Section 4) and ACIs were examined in Sections 6 

and 7. 

3.6. Aerosol influence on precipitation 

3.6.1. Below-cloud Na 

Polluted boundary layers in the southeast Atlantic are associated with entrainment 

mixing between the free troposphere and the boundary layer (Diamond et al., 2018). Ground-

based observations from Ascension Island have shown clean boundary layers can have elevated 

biomass burning trace gas concentrations during the burning season (Pennypacker et al., 2020). 

This suggests boundary layers could be clean in terms of Na despite the entrainment of biomass-

burning aerosols into the boundary layer due to precipitation scavenging of below-cloud 

aerosols. Carbon monoxide (CO) concentrations were examined since CO acts as a biomass 

burning tracer that is unaffected by precipitation scavenging (Pennypacker et al., 2020). For the 
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2016 IOP, contact profiles were located in boundary layers with significantly higher Na (95 % CIs: 

93 to 115 cm-3 higher) and CO (95 % CIs: 13 to 16 ppb higher) compared to separated profiles 

(Chapter 2). This is consistent with data from all three IOPs when contact profiles were located 

in boundary layers with higher Na (95 % CIs: 231 to 249 cm-3 higher) and CO (95 % CIs: 27 to 29 

ppb higher). 

Following Chapter 2, 171 contact and 148 separated profiles from the IOPs were classified 

into four regimes, Contact, high Na (C-H), Contact, low Na (C-L), Separated, high Na (S-H), and 

Separated, low Na (S-L), where “low Na” meant the profile was in a boundary layer with Na < 350 

cm-3 up to 100 m below cloud base. Boundary layer CO concentration above 100 ppb was 

sampled during 107 contact and 31 separated profiles, respectively. Contact profiles were more 

often located in high Na boundary layers (131 out of 171 profiles classified as C-H) while separated 

profiles were more often located in low Na boundary layers (108 out of 148 profiles classified as 

S-L). This suggests contact between MSC cloud tops and above-cloud biomass burning aerosols 

was associated with the entrainment of biomass-burning aerosols into the boundary layer. It is 

possible the aerosol layer was entrained into the boundary layer before cloud formation.  

Contact profiles had significantly higher Nc and significantly lower Re relative to separated 

profiles in both high Na (C-H relative to S-H) and low Na (C-L relative to S-L) boundary layers (Fig. 

17, Table 10). This was associated with significantly higher above- and below-cloud Na for the 

contact profiles. The differences in Nc and Re were higher in high Na boundary layers where the 

differences in above- and below-cloud Na were also higher compared to low Na boundary layers 

(Table 10). This is consistent with previous observations of MSC cloud properties (Diamond et al., 

2018; Mardi et al., 2019) and similar analysis for data from the 2016 IOP (Chapter 2). 
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C-L profiles had significantly higher Nc (95 % CIs: 5 to 14 cm-3 higher) compared to S-H 

profiles despite having significantly lower below-cloud Na (95 % CIs: 69 to 85 cm-3 lower). 

Significantly higher above-cloud Na for C-L profiles (95 % CIs: 321 to 361 cm-3 higher) suggests 

that this was associated with the influence of above-cloud Na on Nc. However, the smaller 

difference in Nc compared to the differences between C-H and S-H or C-L and S-L profiles suggests 

the combined impact of above- and below-cloud Na was stronger than the impact of above-cloud 

Na alone. These comparisons were qualitatively consistent when thresholds of 300 cm-3 or 400 

cm-3 were used to define a low Na boundary layer. 

3.6.2. Nc and Rp versus H 

The cloud profiles were divided into four populations based on H to compare Nc and Rp 

between different aerosols conditions while H was constrained. The populations were divided at 

H = 129, 175, and 256 m to ensure similar sample sizes (Table 11). For each population, contact 

profiles had higher Nc and lower Rp (Fig. 18a, b) consistent with comparisons averaged over all 

profiles (Table 9). Due to collision-coalescence, the average Nc decreased and the average Rp 

increased with H (Fig. 18a, b). For contact profiles, the average Nc decreased with H from 221 to 

191 cm-3 and the average Rp increased from 0.03 to 0.07 mm h-1. For separated profiles, the 

average Nc decreased from 149 to 92 cm-3 and the average Rp increased from 0.06 to 0.21 mm h-

1 over the same range of H. C-H profiles had the highest average Nc and the lowest average Rp 

among the four regimes due to high above- and below-cloud Na (Fig. 18c, d). C-H profiles had the 

smallest increase in the average Rp with H (0.02 to 0.04 mm h-1). Conversely, low above- and 

below-cloud Na for S-L profiles were associated with the lowest average Nc, the highest average 



67 
 

Rp, and the highest increase in the average Rp with H (0.12 to 0.29 mm h-1). For each regime, the 

average Nc decreased with H (except C-L) and the average Rp increased with H (Fig. 18c, d). 

3.6.3. Precipitation susceptibility So 

So was used to evaluate the dependence of Rp on Nc under the different aerosol 

conditions. So, defined as the negative slope between the natural logarithms of Rp and Nc 

(Feingold and Seibert, 2009), is given by  

𝑆𝑜 = − 𝑑 ln(𝑅𝑝) 𝑑 ln(𝑁𝑐)⁄  ,         (8) 

where a positive value indicates decreasing Rp with increasing Nc, in accordance with the “lifetime 

effect” (Albrecht, 1989). The average So across all profiles was 0.88 ± 0.03 with lower So for 

contact profiles (0.87 ± 0.04) compared to separated profiles (1.08 ± 0.04) (Table 11). This is 

consistent with the hypothesis of lower values for So analogues (where Nc in Eq. (8) is replaced 

by Na) in the presence of above-cloud aerosols (Duong et al., 2011). So depends on the ratio of 

SACC to SAUTO because SACC is independent of Nc and higher SACC/SAUTO represents weaker 

dependence of Rp on Nc (Wood et al., 2009; Jiang et al., 2010). Lower So for contact profiles was 

associated with higher SACC/SAUTO compared to separated profiles (Table 9).  

So was calculated as a function of H using Nc and Rp for the four populations of cloud 

profiles (Fig. 19). The sensitivity of So to the number of populations is discussed in Appendix 3.1.  

Averaged over all profiles, So had minor variations with H (e.g., 0.67, 0.68, and 0.54 as H 

increased) before increasing to 1.13 for H > 256 m (Table 11). This trend in So versus H is 

consistent with previous analyses of So (Sorooshian et al., 2009; Jung et al., 2016). However, 

different trends emerged when So was calculated for contact and separated profiles. 
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The largest difference between So for contact and separated profiles was observed for 

thin clouds with H < 129 m. The 30 separated profiles with H < 129 m had the highest So (1.47 ± 

0.10) because of strong dependence of Rp on Nc. For these profiles, measurements with low Nc 

(< 100 cm-3) had higher Rp (0.18 mm h-1) compared to measurements with higher Nc (0.01 mm h-

1) (Fig. 20a). In contrast, the 52 contact profiles with H < 129 m had a low and statistically 

insignificant value for So (-0.06 ± 0.11) due to poor (and statistically insignificant) correlation (R = 

-0.03). Poor correlation between Nc and Rp for contact profiles was associated with precipitation 

suppression and weaker droplet growth (Section 5). These factors resulted in Rp < 0.03 mm h-1 

independent of the Nc measurement (Fig. 20a).  

For separated profiles, So decreased with H from 1.47 ± 0.10 for H < 129 m to 0.53 ± 0.09 

for 129 < H < 175 m and to 0.34 ± 0.07 for 175 < H < 256 m (Fig. 19a). This was due to the increase 

in average Rp for high Nc measurements as a function of H from 0.01 mm h-1 to 0.05 and 0.04 mm 

h-1, respectively. Rp increased with H due to stronger collision-coalescence as droplet mass 

increased with H. Separated profiles with H > 256 m had lower Nc and higher Rp compared to the 

populations with lower H (Fig. 18a, b). For measurements with low Nc, collision-coalescence and 

stronger autoconversion (following Eq. 6) resulted in higher Rp (0.26 mm h-1) compared to 

measurements with higher Nc (0.13 mm h-1). This led to a strong gradient Rp as a function of Nc 

(Fig. 20d) and So increased to 1.45 ± 0.07 for separated profiles with H > 256 m. 

For contact profiles with H > 129 m, the average Rp increased with H with a larger increase 

for measurements with low Nc (0.028 to 0.12 mm h-1) compared to measurements with high Nc 

(0.03 to 0.06 mm h-1). It is hypothesized collision-coalescence was hindered by the presence of 

more numerous droplets for the latter. With droplet growth and collision-coalescence for higher 
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H, the limiting factor for Rp changed from H to Nc. The dependence of Rp on Nc thus increased 

with H and, as a result, So increased with H from 0.88 ± 0.06 to 1.15 ± 0.06 (Fig. 19a).  

Among the four regimes defined based on the above- and below-cloud Na, S-L profiles 

had the highest So (1.12) (Table 12). This was associated with S-L profiles having the lowest Nc 

and the highest Rp among the regimes (Fig. 18c, d). In descending order of So, S-L profiles were 

followed by C-L (0.86), S-H (0.50), and C-H profiles (0.33). Profiles in low Na boundary layers (S-L 

and C-L) had higher So compared to profiles in high Na boundary layers (S-H and C-H) consistent 

with wet scavenging of below-cloud aerosols (Duong et al., 2011; Jung et al., 2016).  

C-L and C-H profiles had similar trends in So except for profiles with H < 129 m (Fig. 19b). 

C-L profiles had an insignificant value for So due to low sample size (4) and C-H profiles had 

negative So. These were thin profiles with little cloud water (Fig. 16b), high Nc (Fig. 18c), and low 

Rp (Fig. 18d). It is hypothesized that increasing Nc would provide the cloud water required for 

precipitation initiation and aid collision-coalescence. 107 out of 148 separated profiles were 

classified as S-L profiles. As a result, separated and S-L profiles had similar trends in So versus H 

(Fig. 19). On average, S-L profiles had higher So than S-H profiles which could be associated with 

wet scavenging resulting in the lower below-cloud Na for S-L profiles. For S-H profiles, So was 

constant with H at about 0.45 (except 175 < H < 256 m when the value for So was insignificant).  

The sensitivity of So to removal of clouds based on Rp was examined in Appendix 3.2. The 

removal of clouds with low Rp and high Nc or with high Rp and low Nc resulted in lower average 

So consistent with previous work (Duong et al., 2011). The So comparisons between profiles 

located in high Na or low Na boundary layers varied with the sample sizes of the populations. The 
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sample sizes varied based on the threshold used to define a low Na boundary layer which is 

discussed in Appendix 3.3. 

3.6.4. So discussion 

Figure 21 shows how So varied with perturbations () in Nc or Rp. Previous studies 

hypothesized that increasing above-cloud Na or precipitation scavenging of below-cloud Na 

would lead to changes in So (Fig. 4, Duong et al., 2011; Fig. 11, Jung et al., 2016). Thus, Nc and 

Rp for clouds with variable above- and below-cloud Na were quantified in this study (Table 10). 

Higher Nc and lower Re for contact profiles led to precipitation suppression along with lower SAUTO, 

SACC, and Rp which were associated with lower So compared to separated profiles. As a result, 

polluted clouds were 20 % less susceptible to precipitation suppression than cleaner clouds. 

Figure 21 shows the impact of Nc or Rp on So depends on the original values for Nc and Rp as 

the same Nc or Rp would have an opposing effect on So at point 1 compared to point 2. 

 Both average and maximum Nc and Rp varied with H due to increasing aerosols (Section 

4) and droplet growth due to collision-coalescence, autoconversion, and accretion (Section 5). 

Further, co-variability between droplet growth processes and ACIs meant aerosol-induced Nc 

and Rp varied with H (Section 6.2). Consequently, the differences between So for clean and 

polluted clouds varied with H. The change in So was highest for thin polluted clouds due to poor 

correlation between Nc and Rp as limited droplet growth led to low Rp regardless of the Nc. Future 

work must examine the co-variability between Nc or Rp from cloud processes such as droplet 

growth, entrainment, invigoration, precipitation, and Nc or Rp due to ACIs. Model 

parameterizations with power-law relationships between Rp, Nc, and H (Geoffroy et al., 2008) 

must account for changes in the dependence of Rp on Nc/H due to increasing aerosols or H. 
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The trends in So were only compared with studies analyzing airborne data due to the 

variability in So depending on whether aircraft, remote sensing, or modeling data were examined 

(Sorooshian et al., 2019). Consistent with Terai et al. (2012), So decreased with H for separated 

profiles with H < 256 m. The results from Section 5 suggest droplet growth with H decreased the 

susceptibility to aerosols because Rp was limited by droplet growth instead of Na or Nc. In 

comparison, So increased with H for contact profiles consistent with Jung et al. (2016). The low So 

for thin contact profiles was consistent with the low So (0.06) for thin MSC over the southeast 

Pacific (Jung et al., 2016). This was attributed to insufficient cloud water for precipitation 

initiation (as noted in Section 5). 

Jung et al. (2016) analyzed MSC sampled farther east and away from South America 

compared to Terai et al. (2012). They argued a westward increase in precipitation frequency and 

intensity, along with a decrease in aerosols and Nc, led to the differences between the two 

studies. This same attribution on the role of aerosols can be made for the ORACLES data as there 

were differences between contact and separated profiles because the MSC sampled during these 

profiles were located in similar geographical locations with different aerosol conditions. 

Modeling studies (e.g., Wood et al., 2009; Gettelman et al., 2013) have shown that So increases 

with H when SAUTO dominates SACC (typically for Re < 14 m, the critical radius for precipitation 

initiation). Maximum Re < 14 m was sampled during all but 23 separated and 3 contact profiles 

(Fig. 16d). This would explain the increase in So with H for both contact (for H > 129 m) and 

separated profiles (for H > 256 m). 
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3.7. Meteorological Influence on LWP 

The relationships between LWP or H and Nc, Re, and LWC depend on meteorological 

conditions in addition to aerosol properties. The MSC LWP and cloud cover can vary with LTS 

(Klein and Hartmann, 1993; Mauger and Norris, 2007), estimated inversion strength (EIS) (Wood 

and Bretherton, 2006), and SST (Wilcox, 2010; Sakaeda et al., 2011). The correlations between 

LWP/H and these parameters are examined using the European Centre for Medium-Range 

Weather Forecasts (ECMWF) atmospheric reanalysis (ERA5) (Hersbach et al., 2020) to define the 

meteorological conditions. 

ERA5 provides hourly output with a horizontal resolution of 0.25° x 0.25° for 37 pressure 

(p) levels (up to 1 hPa). The cloud sampling for most flights was conducted within three hours of 

12:00 UTC (Table 7). ERA5 data at 12:00 UTC were thus used for the grid box nearest to the profile 

(Dzambo et al., 2019). The low cloud cover (LCC), SST, HBL, total column liquid water (ERA5 LWP) 

and rainwater (ERA5 RWP), mean sea level pressure (po), 2 m temperature (To), and 2 m dew 

point temperature (Td) were examined (Table 13). 

The difference between potential temperatures at 700 hPa and the surface was defined 

as LTS (Klein and Hartmann, 1993). EIS was calculated following Wood and Bretherton (2006),  

𝐸𝐼𝑆 = 𝐿𝑇𝑆 − Γ𝑚
850(𝑧700 − 𝐿𝐶𝐿), 𝐿𝐶𝐿 = 125 (𝑇𝑜 − 𝑇𝑑) ,    (9) 

where m is the moist adiabatic potential temperature gradient, z700 is the height at 700 mb, and 

LCL is the lifting condensation level (Lawrence, 2005). m
850 is m for 850 hPa and calculated 

following Wood and Bretherton (2006). 

LCC refers to cloud fraction for p > 0.8 po, corresponding to p > 810 hPa, where most 

profiles were sampled (Table 7). The ECMWF model used a threshold of EIS > 7 K to distinguish 
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between well-mixed boundary layers topped by stratocumulus and decoupled boundary layers 

with cumulus clouds (ECMWF IFS Documentation, 2016). This distinction improved the 

agreement between the model LCC and LWP and observations (Köhler et al., 2011). LCC was 

proportional to EIS/LTS, and LCC < 0.8 was mostly observed for EIS < 7 K (Fig. 22a). Decoupled 

boundary layers can be topped by MSC (Chapter 2; Wood, 2012). Profiles with EIS < 7 K were 

included in the analysis if ERA5 had LCC > 0.95. This included 64 contact and 88 separated profiles 

from the three IOPs. For the 2016, 2017, and 2018 IOPs, 50, 20, and 76 profiles, respectively, had 

LCC > 0.95 out of which, 0, 4, and 44 profiles, respectively, had EIS < 7 K. The average ERA5 HBL 

(599 ± 144 m) was lower than the average ZT (932 ± 196 m). This underestimation of HBL by ERA5 

has been observed for stratocumulus over the southeast and northeast Pacific (Ahlgrimm et al., 

2009; Hannay et al., 2009). 

On average, the ERA5 LWP (51 ± 21 g m-2) was slightly greater than LWP (46 ± 41 g m-2), 

but the differences were statistically insignificant. There was a significant but weak correlation 

between LWP and ERA5 LWP (R = 0.18) (Fig. 22b). On average, the ERA5 RWP (0.48 ± 1.07 g m-2) 

was lower than RWP (1.19 ± 2.76 g m-2). There were insignificant differences between ERA5 

LWP/LWP for contact and separated profiles with LCC > 0.95 (Table 13). Contact profiles with LCC 

> 0.95 had significantly higher ERA5 RWP (Table 13). While this is counter-intuitive, given the 

precipitation suppression, it was due to selection of profiles with LCC > 0.95. Contact profiles with 

LCC > 0.95 also had higher in situ RWP (95 % CIs: 0.32 to 2.08 g m-2 higher) compared to separated 

profiles with LCC > 0.95. 

LWP was positively correlated with SST and To and negatively correlated with LTS and EIS 

with weak but statistically significant correlations (Fig. 23). On average, separated profiles had 
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significantly higher SST (95 % CIs: 0.01 to 1.48 K higher) compared to contact profiles with 

insignificant differences between the average To, EIS, and LTS. Since the correlation between 

LWP/H and SST was weak, it is unlikely the differences between contact and separated profiles 

were driven by SST differences alone. When all profiles (irrespective of LCC) were considered, 

there were insignificant differences between the average ERA5 RWP, SST, To, EIS, and LTS for 

contact and separated profiles. This suggests the differences between contact and separated 

profiles found during the ORACLES IOPs were primarily associated with ACIs instead of 

meteorological effects. 

3.8. Conclusions 

In situ measurements of stratocumulus over the southeast Atlantic Ocean were collected 

during the NASA ORACLES field campaign. The microphysical (Nc and Re), macrophysical (LWP and 

H), and precipitation properties (Rp and So) of the stratocumulus were analyzed. 173 “contact” 

profiles with Na > 500 cm-3 within 100 m above cloud tops were compared with 156 “separated” 

profiles with Na < 500 cm-3 up to at least 100 m above cloud tops. Contact between above-cloud 

aerosols and the stratocumulus was associated with, 

1. More numerous and smaller droplets with weaker droplet growth with height. 

Contact profiles had significantly higher Nc (84 to 90 cm-3 higher) and lower Re (1.4 to 1.6 

m lower) compared to separated profiles. The median Re had a smaller increase from cloud base 

to cloud top for contact (6.1 to 7.9 m) compared to separated profiles (7.1 to 9.5 m). The 

profiles had similar LWP and H, and it is hypothesized the differences in droplet growth were 

associated with collision-coalescence. 
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2. Aerosol-induced cloud microphysical changes in both clean and polluted boundary layers. 

Contact profiles had 25 to 31 cm-3 higher Nc and 0.2 to 0.5 m lower Re in clean and 98 to 

108 cm-3 higher Nc and 1.6 to 1.8 m lower Re in polluted boundary layers compared to separated 

profiles. Contact profiles were more often located in polluted boundary layers and had higher 

below-cloud CO concentration (27 to 29 ppb higher) which suggests more frequent entrainment 

of biomass-burning aerosols into the boundary layer compared to separated profiles or pre-

existing polluted boundary layers. 

3. Precipitation suppression with significantly lower precipitation intensity and precipitation 

formation process rates. 

Separated profiles had Rp up to 0.22 mm h-1 while contact profiles had Rp up to 0.07 mm 

h-1. SAUTO and SACC had higher maxima for separated (up to 9.6 x 10-10 s-1 and 2.2 x 10-8 s-1) 

compared to contact profiles (up to 2.9 x 10-10 s-1 and 1.2 x 10-8 s-1). 

4. Lower precipitation susceptibility with the strongest impact in thin clouds (H < 129 m). 

Contact profiles had lower So (0.87 ± 0.04) compared to separated profiles (1.08 ± 0.04). 

Thin clouds had the highest difference in So (-0.06 ± 0.11 for contact and 1.47 ± 0.10 for 

separated). Lower So for thin contact profiles was associated with poor correlation between Nc 

and Rp (R = -0.03). For separated profiles, So decreased with H before increasing for H > 256 m. In 

comparison, So increased with H for contact profiles for H > 129 m. 

5. Statistically insignificant differences in meteorological parameters that influence LWP/H. 

Based on ERA5 reanalysis data, LWP was correlated with SST (R = 0.22), To (R = 0.27), LTS 

(R = - 0.29), and EIS (R = - 0.31). Contact profiles with ERA5 LCC > 0.95 had lower SST (0.01 to 1.48 
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K lower) with similar To, LTS, and EIS compared to separated profiles. The SST differences were 

insignificant when profiles with LCC < 0.95 were included in the comparison. 

The ORACLES dataset addresses the “lack of long-term data sets needed to provide 

statistical significance for a sufficiently large range of aerosol variability influencing specific cloud 

regimes over a range of macrophysical conditions” (Sorooshian et al., 2010). Three important 

factors affecting So were discussed (Sorooshian et al., 2019): above-cloud Na, below-cloud Na, and 

meteorological conditions. This study analyzed ORACLES data from all three IOPs and the first 

two conclusions were consistent with the analysis of ORACLES 2016 (Chapter 2). Future work will 

compare in situ data with Rp retrievals from APR-3 (Dzambo et al., 2021) to evaluate the 

sensitivity of So to the use of satellite retrievals of Rp (Bai et al., 2018). Vertical profiles of MSC 

cloud properties will be used to evaluate satellite retrievals (Painemal and Zuidema, 2011; Zhang 

and Platnick, 2011) to address the uncertainties associated with satellite-based estimates of ACIs 

(Quaas et al., 2020). 

Appendix 3.1 – Sensitivity studies on dependence of So on H 

The base analysis examined how cloud properties varied with H by separating cloud 

profiles into four populations of H using the following endpoints: 28, 129, 175, 256, and 700 m. 

Two sensitivity studies determine if trends describing the variation of Nc, Rp, and So with H were 

sensitive to the endpoints used to sort cloud profiles into different populations. 

First, cloud profiles were classified into two populations using the median H (175 m) to 

divide the populations (Table 14). The average Nc decreased and the average Rp increased with 

H for both contact (211 to 186 cm-3 and 0.03 to 0.07 mm h-1) and separated profiles (129 to 104 

cm-3 and 0.07 to 0.15 mm h-1). So increased with H for contact profiles from 0.53 to 1.06 and 
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slightly decreased with H for separated profiles from 1.05 to 1.02 (Table 14). The difference 

between So for contact and separated profiles was greater for thin profiles (H < 175 m) compared 

to thick profiles (H > 175 m). These results are consistent with trends using four populations but 

provide less detail about how So varies with H (Fig. 24). 

Second, cloud profiles were classified into three populations using the terciles of H (145 

and 224 m) (Table 14). The average Nc decreased and the average Rp increased from the lowest 

to the highest H for contact (231 to 187 cm-3 and 0.03 to 0.07 mm h-1) and separated profiles (138 

to 95 cm-3 and 0.06 to 0.18 mm h-1). For separated profiles, So first decreased with H from 1.15 

to 0.25 before increasing to 1.45 for the highest H (Fig. 24). Contact profiles had insignificant So 

for the lowest H followed by So increasing from 0.95 to 1.08 with H. The results presented here 

are robust as relates to the number of populations used. 

Appendix 3.2 – Sensitivity studies on dependence of So on Rp 

Another sensitivity study examined the Rp threshold used for cloud profiles included while 

calculating So. The average So decreased if weakly precipitating clouds with low Rp were excluded 

(Fig. 25, Table 15). It is possible that this was due to the higher Na and Nc associated with weakly 

precipitating clouds. The exclusion of weakly-precipitating clouds provides biased trends in So 

since these clouds could have undergone precipitation suppression already. Conversely, strongly 

precipitating clouds were associated with cleaner conditions and lower Na and Nc. The exclusion 

of strongly precipitating clouds also leads to a decrease in the average So (Fig. 26, Table 15).  

The occurrence of wet scavenging below strongly precipitating clouds (Duong et al., 2011) 

results in lower below-cloud Na (and subsequently Nc). Higher susceptibility to precipitation 

suppression for cleaner, strongly precipitating clouds would explain the increase in the average 
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So. This is consistent with observations of So using different Rp thresholds (c.f. Fig 11, Jung et al., 

2016) and hypotheses regarding the impact of different Na on So (Duong et al., 2011; Fig. 11, Jung 

et al., 2016). 

Appendix 3.3 – Dependence of So on the definition of clean and polluted boundary 

layers 

The number of cloud profiles classified into the S-L, C-L, S-H, and C-H regimes varied 

depending on the below-cloud Na threshold used to define a low Na or clean boundary layer. For 

the threshold used in the base analysis (350 cm-3), contact profiles were more often located in 

polluted boundary layers (131 out of 171 profiles classified as C-H) while separated profiles were 

more often located in clean boundary layers (108 out of 148 profiles classified as S-L). The 

comparisons between So in clean and polluted boundary layers varied with the threshold used. 

As a sensitivity study, a lower threshold was used to define a clean boundary layer (300 

cm-3). For this case, the C-L regime had no profiles in the population with the lowest H (H < 129 

m) when four populations of profiles were used to examine the dependence of So on H. Two out 

of the other three populations had an insignificant value for So due to poor and statistically 

insignificant correlations between Nc and Rp (Table 16). This was associated with a low sample 

size for the populations (6 each). A second sensitivity study used a higher threshold to define a 

clean boundary layer (400 cm-3). For this case, the S-H regime has insignificant So for three out of 

the four populations of H and the remaining population had a small sample size (3 profiles) (Table 

16). The base analysis using a threshold of 350 cm-3 to define a clean boundary layer was used to 

compare So values that represent a larger number of cloud profiles. 
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TABLES AND FIGURES 

Table 6: The number of cloud profiles (n) for P-3 research flights (PRFs) analyzed in the study, 
number of contact and separated profiles with sampling time in parentheses, and instruments 
that provided valid samples of droplets with D < 50 µm (instrument used for analysis is in bold). 

PRF number and date n Contact Separated Instruments 

PRF05Y16: Sep. 06 24 13 (857 s) 11 (470 s) CAS, PDI 
PRF07Y16: Sep. 10 9 0 (0 s) 9 (461 s) CAS, PDI 
PRF08Y16: Sep. 12 8 1 (32 s) 7 (472 s) CAS, PDI 
PRF09Y16: Sep. 14 8 0 (0 s) 8 (574 s) CAS, PDI 
PRF11Y16: Sep. 20 13 13 (669 s) 0 (0 s) CAS, PDI 
PRF13Y16: Sep. 25 9 3 (148 s) 6 (363 s) CAS, PDI 
PRF01Y17: Aug. 12 15 14 (499 s) 1 (25 s) CAS, CDP-B 
PRF02Y17: Aug. 13 17 17 (754 s) 0 (0 s) CAS, CDP-B 
PRF03Y17: Aug. 15 12 12 (272 s) 0 (0 s) CAS, CDP-B 
PRF04Y17: Aug. 17 7 7 (127 s) 0 (0 s) CAS, CDP-B 
PRF07Y17: Aug. 21 13 9 (188 s) 4 (76 s) CAS, CDP-B 
PRF08Y17: Aug. 24 9 9 (324 s) 0 (0 s) CAS, CDP-B 
PRF10Y17: Aug. 28 11 7 (496 s) 4 (168 s) CAS, CDP-B 
PRF01Y18: Sep. 27 21 0 (0 s) 21 (933 s) CAS, CDP-B, CDP-C 
PRF02Y18: Sep. 30 13 7 (337 s) 6 (183 s) CAS, CDP-B, CDP-C 
PRF04Y18: Oct. 03 5 0 (0 s) 5 (137 s) CAS, CDP-B, CDP-C 
PRF05Y18: Oct. 05 4 4 (109 s) 0 (0 s) CAS, CDP-B, CDP-C 
PRF06Y18: Oct. 07 10 10 (337 s) 0 (0 s) CAS, CDP-B, CDP-C 
PRF07Y18: Oct. 10 13 11 (472 s) 2 (153 s) CDP-B, CDP-C 
PRF08Y18: Oct. 12 19 0 (0 s) 19 (773 s) CDP-B, CDP-C 
PRF09Y18: Oct. 15 30 17 (766 s) 13 (365 s) CDP-B, CDP-C 
PRF11Y18: Oct. 19 12 0 (0 s) 12 (731 s) CDP-B, CDP-C 
PRF12Y18: Oct. 21 18 0 (0 s) 18 (833 s) CDP-B, CDP-C 
PRF13Y18: Oct. 23 29 19 (777 s) 10 (366 s) CDP-B, CDP-C 

Total (2016) 71 30 (1,706 s) 41 (2,340 s)  
Total (2017) 84 75 (2,660 s) 9 (269 s)  
Total (2018) 174 68 (2,798 s) 106 (4,474 s)  

Total 329 173 (7,164 s) 156 (7,083 s)  
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Table 7: Range of time, latitude, longitude, ZT and cloud top pressure (PT) for PRFs in Table 6. 

PRF Time (UTC) Latitude 
(°S) 

Longitude 
(°E) 

ZT (m) PT (mb) 

PRF05Y16: Sep. 06 08:46 - 12:35 10.2 - 19.7 9.00 - 11.9 359 - 1002 904 - 976 
PRF07Y16: Sep. 10 09:09 - 12:36 14.1 - 18.7 4.00 - 8.60 990 - 1201 885 - 908 
PRF08Y16: Sep. 12 11:16 - 12:26 9.70 - 12.9 -0.30 - 3.00 1146 - 1226 881 - 890 
PRF09Y16: Sep. 14 09:36 - 14:16 16.4 - 18.1 7.50 - 9.00 635 - 824 922 - 945 
PRF11Y16: Sep. 20 08:44 - 13:11 15.7 - 17.3 8.90 - 10.5 432 - 636 941 - 966 
PRF13Y16: Sep. 25 10:59 - 13:51 10.9 - 14.3 0.80 - 4.30 729 - 1124 890 - 934 
PRF01Y17: Aug. 12 11:30 - 15:01 2.41 - 13.0 4.84 - 5.13 748 - 1379 866 - 933 
PRF02Y17: Aug. 13 10:15 - 13:07 7.20 - 9.00 4.50 - 5.00 779 - 1384 865 - 928 
PRF03Y17: Aug. 15 11:26 - 13.32 9.08 - 15.0 4.96 - 5.00 536 - 1148 887 - 954 
PRF04Y17: Aug. 17 12:03 - 16:14 7.99 - 9.43 -7.0 - -12.8 1547 - 1782 827 - 848 
PRF07Y17: Aug. 21 13:20 - 16:37 7.96 - 8.05 -8.16 - 3.32 1061 - 1491 855 - 897 
PRF08Y17: Aug. 24 11:28 - 14:58 4.90 - 14.8 4.97 - 5.15 911 - 2015 801 - 916 
PRF10Y17: Aug. 28 11:46 - 13:18 7.84 - 11.0 4.89 - 5.01 1070 - 1216 881 - 897 
PRF01Y18: Sep. 27 10:07 - 13:11 5.66 - 12.1 4.87 - 5.03 819 - 1169 885 - 922 
PRF02Y18: Sep. 30 09:50 - 12:24 6.85 - 8.18 4.94 - 5.13 747 - 840 920 - 930 
PRF04Y18: Oct. 03 13:17 - 14:41 -1.05 - 4.61 5.00 - 5.06 1137 - 2151 790 - 888 
PRF05Y18: Oct. 05 07:22 - 10:09 9.50 - 9.63 5.79 - 6.66 780 - 892 915 - 928 
PRF06Y18: Oct. 07 11:04 - 11:29 10.1 - 11.8 5.00 - 5.00 863 - 928 913 - 918 
PRF07Y18: Oct. 10 10:16 - 13:31 4.46 - 13.1 4.88 - 5.09 926 - 1329 866 - 912 
PRF08Y18: Oct. 12 13:02 - 16:19 1.02 - 4.58 5.50 - 6.96 1073 - 1905 813 - 895 
PRF09Y18: Oct. 15 10:27 - 13:09 5.25 - 14.1 4.91 - 5.00 693 - 1547 849 - 937 
PRF11Y18: Oct. 19 11:58 - 13:00 6.50 - 7.70 8.00 - 9.06 701 - 1276 873 - 932 
PRF12Y18: Oct. 21 10:21 - 13:07 4.91 - 13.5 4.88 - 5.00 675 - 983 902 - 936 
PRF13Y18: Oct. 23 10:28 - 13:38 3.07 - 5.00 -2.65 - 5.00 873 - 1281 873 - 915 

 
Table 8: Average values for cloud properties measured during cloud profiles from the PRFs 
listed in Table 6 for each IOP. Error estimates represent one standard deviation. R between 
LWP  estimates and H in parentheses. 

Parameter 2016 2017 2018 All 

Profile count 71 84 174 329 

Nc (cm-3) 150 ± 73 229 ± 108 132 ± 87 157 ± 96 

Re (m) 7.0 ± 1.9 6.9 ± 1.6 9.8 ± 3.3 8.2 ± 2.7 

LWC (g m-3) 0.15 ± 0.09 0.21 ± 0.15 0.26 ± 0.17 0.22 ± 0.16 

King LWC (g m-3) 0.29 ± 0.15 0.23 ± 0.17 0.24 ± 0.14 0.25 ± 0.15 

 7.2 ± 3.6 7.2 ± 8.9 9.0 ± 7.7 8.8 ± 7.7 

H (m) 244 ± 83  148 ± 92 212 ± 116 201 ± 108 

LWP (g m-2) 34 ± 17 (0.75) 37 ± 43 (0.88) 59 ± 54 (0.83) 48 ± 47 (0.78) 

King LWP (g m-2) 68 ± 30 (0.80) 37 ± 35 (0.84) 52 ± 40 (0.89) 52 ± 38 (0.87) 

LWPad (g m-2) 77 ± 57 (0.97) 51 ± 55 (0.96) 93 ± 97 (0.94) 79 ± 82 (0.93) 
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Rp (mm h-1) 0.02 ± 0.05 0.02 ± 0.08 0.10 ± 0.33 0.06 ± 0.25 

Table 9: Average and standard deviation for cloud properties measured during contact and 
separated profiles with 95 % confidence intervals (CIs) from a two-sample t-test applied to 
contact and separated profile data. Positive CIs indicate higher average for contact profiles and 
“insignificant” indicates statistically similar averages for contact and separated profiles. 

Parameter Contact Separated 95 % CIs 

Nc (cm-3) 200 ± 103 113 ± 63 84 to 90 

Re (m) 7.5 ± 2.1 9 ± 3 -1.6 to -1.4 

 8.8 ± 8.3 7 ± 5 0.04 to 3.06 
LWC (g m-3) 0.23 ± 0.17 0.21 ± 0.14 0.01 to 0.02 
CWC (g m-3) 0.22 ± 0.16 0.20 ± 0.14 0.01 to 0.02 

RWC (x 10-3 g m-3) 11 ± 15 18 ± 31 -8 to -6 
H (m) 194 ± 109 208 ± 106 insignificant 

LWP (g m-2) 46 ± 49 46 ± 41 insignificant 
CWP (g m-2) 45 ± 50 46 ± 44 Insignificant 
RWP (g m-2) 1.8 ± 3.3 3.0 ± 7.1 -2.4 to -0.01 

ZT (m) 1069 ± 267 1004 ± 271 6 to 123 
ZB (m) 874 ± 294 796 ± 274 16 to 140 

Rp (mm h-1) 0.04 ± 0.09 0.08 ± 0.33 -0.05 to -0.03 
SAUTO (x 10-10

 s-1) 1.6 ± 3.0 4.9 ± 12.6 -3.6 to -3.1 
SACC (x 10-8

 s-1) 0.8 ± 1.6 1.7 ± 4.3 -1.1 to -0.8 
SACC/SAUTO (x 102) 0.7 ± 1.1 0.5 ± 0.9 0.2 to 0.3 

 
Table 10: 95 % CIs from statistical comparisons between cloud regimes defined in text. 

Parameter C-H relative to S-H C-L relative to S-L 

Above-cloud Na (cm-3) 852 to 948 387 to 413 
Below-cloud Na (cm-3) 194 to 226 45 to 53 

Nc (cm-3) 98 to 108 25 to 31 

Re (m) -1.6 to -1.8 -0.2 to -0.5 

Rp (mm h-1) -0.03 to -0.04 0 to -0.04 
 
Table 11: So ± standard error for contact, separated, and all profiles, with sample size and R in 
parentheses. So is statistically insignificant if underlined. 

H Contact  Separated All Profiles 

All 0.87 ± 0.04 (173, 0.30) 1.08 ± 0.04 (156, 0.36) 0.88 ± 0.03 (329, 0.33) 
28 to 129 m -0.06 ± 0.11 (52, -0.03) 1.47 ± 0.10 (30, 0.55) 0.67 ± 0.07 (82, 0.28) 

129 to 175 m 0.88 ± 0.06 (38, 0.42) 0.53 ± 0.09 (42, 0.20) 0.68 ± 0.05 (80, 0.32) 
175 to 256 m 0.92 ± 0.08 (41, 0.27) 0.34 ± 0.07 (44, 0.13) 0.54 ± 0.05 (85, 0.20) 
256 to 700 m 1.15 ± 0.06 (42, 0.36) 1.45 ± 0.07 (40, 0.41) 1.13 ± 0.04 (82, 0.40) 
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Table 12: So ± standard error with sample size and R in parenthesis for cloud regimes defined in 
text. So is statistically insignificant if underlined. 

H S-L S-H 

All 1.29 ± 0.06 (107, 0.40) 0.50 ± 0.06 (41, 0.19) 
28 to 129 m 1.12 ± 0.15 (21, 0.42) 0.43 ± 0.14 (8, 0.27) 

129 to 175 m 0.66 ± 0.12 (25, 0.25) 0.48 ± 0.18 (11, 0.17) 
175 to 256 m 0.66 ± 0.09 (34, 0.22) 0.07 ± 0.10 (9, 0.03) 
256 to 700 m 1.89 ± 0.09 (27, 0.52) 0.45 ± 0.11 (13, 0.14) 

 
H C-L C-H 

All 0.86 ± 0.07 (40, 0.30) 0.33 ± 0.05 (131, 0.11) 
28 to 129 m 0.04 ± 0.42 (4, 0.01) -0.33 ± 0.11 (48, -0.14) 

129 to 175 m 0.50 ± 0.12 (9, 0.25) 0.26 ± 0.08 (27, 0.13) 
175 to 256 m 1.06 ± 0.13 (14, 0.34) 0.61 ± 0.11 (27, 0.17) 
256 to 700 m 0.72 ± 0.11 (13, 0.24) 0.59 ± 0.09 (29, 0.17) 

 
Table 13: Meteorological and cloud properties from ERA5 reanalysis for contact and separated 
profiles with LCC > 0.95 (LCC is reported for all profiles), 95 % CIs from a two-sample t-test 
applied to contact and separated profile data, and R between each parameter and LWP (RLWP) 
or H (RH) with statistically significant RH and RLWP in bold. 

Parameter Contact Separated 95 % CIs RH, RLWP 

LCC 0.75 ± 0.29 0.83 ± 0.26 -0.14 to -0.02 0.24, 0.04 

SST (K) 293 ± 2 294 ± 3 -1.5 to -0 0.16, 0.22 

HBL (m) 566 ± 164 624 ± 124 -103 to -11 -0.05, -0.11 

ERA5 LWP (g m-2) 53 ± 18 51 ± 23 insignificant 0.31, 0.18 

ERA5 RWP (g m-2) 0.71 ± 1.56 0.32 ± 0.40 0.05 to 0.73 0.19, -0.01 

Po (mb) 1015 ± 1 1014 ± 2 1 to 2 -0.09, -0.07 

To (K) 293 ± 2 293 ± 3 insignificant 0.16, 0.27 

LTS (K) 23 ± 2 22 ± 3 insignificant -0.10, -0.29 

EIS (K) 8.1 ± 1.9 7.8 ± 3.1 insignificant -0.13, -0.31 

 
Table 14: So ± standard error with sample size and R in parentheses for contact, separated, and 
all profiles classified into a different number of populations.  

H Bin Contact  Separated All Profiles 

2 populations    
28 to 175 m 0.53 ± 0.05 (90, 0.24) 1.05 ± 0.07 (72, 0.39) 0.69 ± 0.04 (162, 0.30) 

175 to 700 m 1.06 ± 0.05 (83, 0.33) 1.02 ± 0.05 (84, 0.33) 0.93 ± 0.03 (167, 0.33) 
3 populations    
28 to 145 m 0.08 ± 0.08 (67, 0.04) 1.15 ± 0.09 (41, 0.45) 0.60 ± 0.05 (108, 0.26) 

145 to 224 m 0.95 ± 0.07 (51, 0.34) 0.25 ± 0.06 (60, 0.11) 0.60 ± 0.04 (111, 0.25) 
224 to 700 m 1.08 ± 0.05 (55, 0.34) 1.45 ± 0.06 (55, 0.41) 1.05 ± 0.04 (110, 0.37) 
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Table 15: So ± standard error with sample size and R in parentheses for contact, separated, and 
all profiles with Rp above a certain threshold. 

H Bin Contact  Separated All Profiles 

Rp > 10-3 mm h-1    
All 0.88 ± 0.03 (173, 0.34) 0.95 ± 0.04 (156, 0.36) 0.84 ± 0.02 (329, 0.37) 

28 to 129 m 0.03 ± 0.10 (52, 0.02) 1.41 ± 0.09 (30, 0.61) 0.71 ± 0.07 (82, 0.33) 
129 to 175 m 0.94 ± 0.05 (38, 0.49) 0.64 ± 0.09 (42, 0.27) 0.78 ± 0.04 (80, 0.40) 
175 to 256 m 0.78 ± 0.07 (41, 0.30) 0.21 ± 0.06 (44, 0.10) 0.38 ± 0.04 (85, 0.18) 
256 to 700 m 1.11 ± 0.06 (42, 0.38) 1.18 ± 0.07 (40, 0.39) 1.06 ± 0.04 (82, 0.42) 

Rp > 10-2 mm h-1    
All 0.49 ± 0.03 (173, 0.27) 0.76 ± 0.03 (156, 0.38) 0.61 ± 0.02 (329, 0.35) 

28 to 129 m 0.01 ± 0.08 (52, 0.01) 0.97 ± 0.10 (30, 0.57) 0.48 ± 0.06 (82, 0.36) 
129 to 175 m 0.70 ± 0.04 (38, 0.53) 0.53 ± 0.08 (42, 0.29) 0.66 ± 0.04 (80, 0.44) 
175 to 256 m 0.62 ± 0.06 (41, 0.31) 0.48 ± 0.05 (44, 0.31) 0.47 ± 0.04 (85, 0.28) 
256 to 700 m 0.37 ± 0.05 (42, 0.19) 0.78 ± 0.06 (40, 0.33) 0.60 ± 0.03 (82, 0.32) 

 
 
 
 
 
 
 
 
 
Table 16: So ± standard error with sample size and R in parenthesis for regimes defined in text 
and different thresholds to define a low Na boundary layer (300 cm-3 or 400 cm-3). So is 
statistically insignificant if underlined. H1 represents 28 < H < 129 m, H2 represents 129 < H < 
175 m, H3 represents 175 < H < 256 m, and H4 represents 256 < H < 700 m. 

H S-L S-H 

300 cm-3   
All 1.37 ± 0.06 (96, 0.42) 0.45 ± 0.06 (52, 0.17) 
H1 1.20 ± 0.16 (19, 0.44) 0.38 ± 0.13 (10, 0.25) 
H2 0.68 ± 0.13 (21, 0.26) 0.56 ± 0.16 (15, 0.20) 
H3 0.70 ± 0.10 (31, 0.24) 0.07 ± 0.10 (12, 0.03) 
H4 2.03 ± 0.10 (25, 0.55) 0.40 ± 0.10 (15, 0.12) 

400 cm-3   
All 1.12 ± 0.05 (125, 0.36) 0.37 ± 0.09 (23, 0.16) 
H1 1.04 ± 0.13 (23, 0.43) -0.20 ± 0.21 (6, -0.11) 
H2 0.81 ± 0.11 (30, 0.30) 0.02 ± 0.19 (6, 0.01) 
H3 0.53 ± 0.09 (35, 0.19) 0.12 ± 0.12 (8, 0.06) 
H4 1.42 ± 0.07 (37, 0.41) 1.10 ± 0.42 (3, 0.25) 

 



84 
 

H C-L C-H 

300 cm-3   
All 0.29 ± 0.10 (21, 0.10) 0.84 ± 0.04 (150, 0.29) 
H1 NaN (0, NaN) -0.06 ± 0.11 (52, -0.03) 
H2 0.02 ± 0.15 (6, 0.01) 0.86 ± 0.07 (30, 0.41) 
H3 0.44 ± 0.17 (9, 0.15) 1.04 ± 0.10 (32, 0.30) 
H4 -0.09 ± 0.17 (6, -0.03) 1.13 ± 0.07 (36, 0.36) 

400 cm-3   
All 1.11 ± 0.05 (64, 0.39) 0.25 ± 0.06 (107, 0.08) 
H1 0.51 ± 0.22 (11, 0.21) -0.33 ± 0.13 (41, -0.14) 
H2 0.90 ± 0.10 (12, 0.43) 0.22 ± 0.09 (24, 0.10) 
H3 0.84 ± 0.09 (24, 0.30) 0.53 ± 0.19 (17, 0.12) 
H4 1.52 ± 0.08 (17, 0.50) 0.47 ± 0.09 (25, 0.13) 

 
 
 

 

Figure 13: PRF tracks from ORACLES IOPs with base of operations and cloud sampling locations 
(tracks for multiple 2017 and 2018 PRFs overlap along 5° E). 
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Figure 14: Kernel density estimates (indicated by the width of shaded area) and boxplots 
showing the 25th, 50th (white circle), and 75th percentiles for (a) Nc, (b) Re, (c) CWC, and (d) 
RWC as a function of ZN for contact and separated profiles. 
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Figure 15: The 95th percentile for (a) Rp, (b) CWC, (c) Nc, and (d) Re as a function of H. Each dot 
represents the 95th percentile from the 1 Hz measurements for a single cloud profile. Pearson’s 
correlation coefficient (R) and p-value for the correlation indicated in legend. 

 

Figure 16: The 95th percentile for (a) SAUTO and (b) SACC as a function of H. Each dot represents 
the 95th percentile from the 1 Hz measurements for a single cloud profile. R and p-value for the 
correlation indicated in legend. 
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Figure 17: Average Nc (error bars extend to 95 % CIs) as a function of ZN. Number of 1 Hz data 
points and corresponding regimes indicated in legend.  
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Figure 18: The average (a, c) Nc and (b, d) Rp as a function of H for (a, b) contact and separated 
profiles, and (c, d) the regimes indicated in legend. 
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Figure 19: So as a function of H (error bars extend to standard error from the regression model) 
for (a) contact, separated, and all profiles, and (b) the regimes indicated in legend. So was 
statistically insignificant when marked with a cross. 
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Figure 20: Scatter plots of Rp and Nc for 1 Hz data points from contact and separated profiles 
with (a) 28 < H < 129 m, (b) 129 < H < 175 m, (c) 175 < H < 256 m, and (d) 256 < H < 700 m. 
 

 

Figure 21: An illustration of the dependence of So on Nc, Rp, and perturbations () in Nc or Rp. 
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Figure 22: (a) LTS versus EIS with regression coefficients in legend (R = 0.98) and (b) LWP from 
size-resolved probes versus LWP from the ERA5 reanalysis (R = 0.18) where each dot represents 
a single cloud profile. LTS, EIS, ERA5 LWP, and LCC for each cloud profile taken from the nearest 
ERA5 grid box (within 0.25˚ of latitude and longitude) at 12:00 UTC. Panel (a) shows all cloud 
profiles and panel (b) shows cloud profiles with LCC > 0.95. 
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Figure 23: LWP from size-resolved probes as a function of (a) SST, (b) 2 m T, (c) LTS, and (d) EIS. 
Each dot represents a single cloud profile with LCC > 0.95 and SST, 2 m T, LTS, and EIS taken 
from the nearest ERA5 grid box (within 0.25˚ of latitude and longitude) at 12:00 UTC. 

 

Figure 24: So as a function of H for contact and separated profiles classified into different 
populations using the end points indicated in legend. So was statistically insignificant when 
marked with a cross. 
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Figure 25: So as a function of H for contact and separated profiles with Rp greater than the 
thresholds indicated in legend. So was statistically insignificant when marked with a cross. 

 

Figure 26: So as a function of H for contact and separated profiles with Rp less than the 
thresholds indicated in legend. So was statistically insignificant when marked with a cross. 
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4  In Situ and MODIS Estimates of Cloud Microphysical Properties and 

Aerosol-Cloud Interactions over the Southeast Atlantic Ocean 

4.1. Introduction 

Uncertainties in the effective radiative forcing due to aerosol-cloud interactions (ACI) lead 

to variability in climate model estimates of Earth’s energy budget in future climate scenarios (e.g., 

Boucher et al., 2013). The ACI for warm, low-level clouds are particularly important due to their 

dominating impact on the aerosol indirect forcing (Christensen et al., 2016). Further, the 

shortwave cloud radiative forcing of - 17.1 W m-2 (Loeb et al., 2009) is largely driven by the 

ubiquitous low-level clouds (Hartmann et al., 1992). Marine stratocumulus is the most common 

type of low-level cloud with an annual mean coverage of 23 % of Earth’s ocean surface (Wood, 

2012). The radiative forcing due to well-mixed greenhouse gases (+ 2.83 W m-2) (Myhre et al., 

2013) or the doubling of CO2 concentration (about + 2.5 W m-2) could be offset by the radiative 

forcing from just a 15 to 20 % reduction in droplet sizes for low clouds (Slingo, 1990). Low-level 

clouds are thus strong modulators of planetary albedo and global climate. 

ACI lead to changes in the cloud radiative forcing through processes that impact cloud 

extinction () and optical thickness () which are closely related to microphysical properties like 

cloud droplet concentration (Nc), effective radius (Re), and liquid water content (LWC). Cloud 

reflectance is a strong function of Re, which represents the mean droplet size retrieved from 

radiative transfer calculations for the measured cloud reflectance (Hansen and Travis, 1974). An 

increase in aerosol concentration (Na) can increase the number of cloud condensation nuclei and 

lead to higher Nc and lower Re when LWC remains constant. These aerosol-induced changes in Nc 
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and Re lead to clouds with higher reflectance or  (Twomey, 1974; 1977). However, ACI are often 

masked by meteorological conditions (Mauger and Norris, 2007), other cloud responses to 

increasing Na like invigoration (Douglas and L’Ecuyer, 2021), or changes in cloud properties due 

to the vertical profile of radiative heating (Johnson et al., 2004; McFarquhar and Wang, 2006). 

Uncertainties in estimating the impact of ACI on cloud albedo are driven by differences 

between process scales for ACI and the resolution of climate models or satellite retrievals 

(McComiskey and Feingold, 2012). This inconsistency is addressed by combining satellite 

retrievals with airborne observations for specific regimes. A regime of interest for ACI exists over 

the southeast Atlantic Ocean where an extensive stratocumulus deck is overlaid by biomass 

burning aerosols from southern Africa (Haywood et al., 2004; Adebiyi and Zuidema, 2016). 

Climate models struggle to simulate the aerosol radiative forcing and the altitude of the above-

cloud aerosol layer over the southeast Atlantic leading to biases in model estimates of low-cloud 

feedbacks and ACI (Das et al., 2020; Mallet et al., 2021). Multiple airborne campaigns have been 

conducted over the southeast Atlantic since 2016 to understand the ACI in this region and their 

impact on global climate (Zuidema et al., 2016; Formenti et al., 2019; Haywood et al., 2021).  

During the NASA ObseRvations of Aerosols above CLouds and their intEractionS 

(ORACLES) field campaign (Redemann et al., 2021), in situ measurements of cloud droplet size 

distributions, from which Nc, Re, and  can be estimated, were collected over the southeast 

Atlantic at locations with contact or separation between the base of the aerosol layer and 

stratocumulus cloud tops. Variable vertical separation between the aerosol and cloud layers was 

associated with aerosol-induced changes in Nc, Re, and  (Chapter 2) and precipitation 

suppression (Chapter 3). Accurate satellite retrievals of Nc, Re, and , and the aerosol-induced 
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changes in Nc, Re, and  could enable such investigations over a larger domain and longer 

timescales than possible using in situ measurements alone.  

The Earth Observing System Terra and Aqua satellites provide global coverage of cloud 

microphysical properties using the Moderate Resolution Imaging Spectroradiometer (MODIS). 

MODIS acquires solar reflectance for 36 atmospheric bands including a non-absorbing band (0.86 

m) which provides information on  and a water absorbing band (1.6, 2.1, or 3.7 m) which 

provides information on Re (Platnick et al., 2003). The reflectance pair from these bands allows 

simultaneous retrievals of Re and  (Nakajima and King, 1990). In the absence of direct retrievals, 

MODIS Nc is estimated assuming adiabatic LWC (Brenguier et al., 2000; Szczodrak et al., 2001).  

MODIS retrievals can have biases relative to in situ Nc, Re, and  depending on the 

occurrence of drizzle (Zinner et al., 2010), width and shape of droplet size distributions (Chang 

and Li, 2002; Brenguier et al., 2011), vertical profile of Re (McFarquhar and Heymsfield, 1998; 

Platnick, 2000), and cloud adiabaticity (Min et al., 2012; Braun et al., 2018). Results from 

comparisons of MODIS retrievals with in situ data also depend on the cloud probes used for in 

situ measurements (King et al., 2013; Witte et al., 2018) and the spatiotemporal co-location of 

MODIS retrievals with in situ measurements (Painemal and Zuidema, 2011, hereafter PZ11). 

Based on a review of Nc from satellite retrievals, Grosvenor et al. (2018) concluded 

airborne datasets were under-utilized for satellite retrieval evaluation. This study compares in 

situ Nc, Re, and  from ORACLES with MODIS retrievals of Re and  (Platnick et al., 2017) and the 

MODIS derived Nc based on the adiabatic assumption. Previous work comparing MODIS retrievals 

with in situ observations of marine stratocumulus (PZ11; Min et al., 2012; Noble and Hudson, 

2015; Braun et al., 2018; Witte et al., 2018) is extended by using a larger in situ dataset from 
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different aerosol-cloud conditions. Biases in MODIS retrievals of cloud properties are quantified 

as a function of time gap between MODIS retrievals and in situ data. The biases in MODIS Aqua 

are compared with biases in MODIS Terra and MODIS estimates of aerosol-induced changes in 

Nc, Re, and  are compared against in situ estimates. 

The chapter is organized as follows. In situ observations and satellite retrievals used in 

the study are described in Section 4.2 along with the methodology for spatiotemporal co-location 

of the datasets. In Section 4.3, the MODIS Re, , and Nc are compared with in situ Re, , and Nc, 

potential sources of biases are discussed, and uncertainties and errors were quantified. In Section 

4.4, MODIS estimates of aerosol-induced changes in Re, , and Nc over the southeast Atlantic are 

compared with in situ estimates. Implications for studies of ACI over the southeast Atlantic are 

discussed in Section 4.5. Finally, the conclusions are presented in Section 4.6. 

4.2. Data and Methodology 

4.2.1. In situ observations 

In situ observations of marine stratocumulus clouds over the southeast Atlantic Ocean 

were collected during ORACLES using the NASA P-3B aircraft (Redemann et al., 2021). In situ cloud 

sampling was conducted during vertical profiles through the stratocumulus layer (hereafter, 

cloud profiles) between 10˚ W to 15˚ E and 5˚ N to 20˚ S in September 2016, August 2017, and 

October 2018 (Chapter 3). At least three cloud profiles were obtained during 24 of the research 

flights, of which all but three (12 September 2016, 17 August 2017, and 5 October 2018) had at 

least one cloud profile with a co-located satellite retrieval (Table 17) based on the criteria 

described in Section 2.3. 
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Data from in situ cloud probes were used to derive the number distribution function (n(D)) 

for droplets with diameter (D) between 3 to 19200 m. The cloud probes used included a Cloud 

and Aerosol Spectrometer (CAS) (Baumgardner et al., 2001), Cloud Droplet Probes (CDP) (Lance 

et al., 2010), a Two-Dimensional Stereo probe (2D-S) (Lawson et al., 2006), a Phase Doppler 

Interferometer (PDI) (Chuang et al., 2008), and a High Volume Precipitation Sampler (HVPS-3) 

(Lawson et al., 1998). A King hot-wire probe (King et al., 1978) was used to measure LWC 

(hereafter, King LWC). A Passive Cavity Aerosol Spectrometer Probe (PCASP) (Cai et al., 2013) 

measured n(D) for accumulation-mode aerosols (0.1 < D < 3 m). The Airborne Data Processing 

and Analysis processing package (Delene, 2011) was used to process the CAS, CDP, King hot-wire, 

and PCASP data. The University of Illinois/Oklahoma Optical Array Probe Processing Software 

(McFarquhar et al., 2018) was used to process the 2D-S and HVPS-3 data. 

A merged droplet size distribution was calculated using the CAS or CDP dataset for 3 < D 

< 50 m, the 2D-S dataset for 50 < D < 1050 m, and the HVPS-3 dataset for D > 1050 m. Nc was 

calculated by integrating the droplet n(D) from the merged size distribution. Each 1 Hz data 

sample with Nc > 10 cm-3 and King LWC > 0.05 g m-3 was identified as in-cloud. Na was calculated 

by integrating the PCASP n(D) for out of cloud data samples. Due to overlapping measurement 

ranges, the CAS, the CDPs, and the PDI provided at least two independent measurements of n(D) 

for 3 < D < 50 m during each flight (Chapter 3). Data from one probe was chosen for inclusion 

in the merged size distribution based on availability of valid measurements from the CAS, CDP or 

PDI and through comparison of Nc and LWC from the CAS, CDP, and PDI datasets. The CAS was 

used to represent droplets with 3 < D < 50 m for research flights from ORACLES 2016 and the 

CDP for research flights from ORACLES 2017 and 2018 (see Chapter 3 for justification and more 
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details). The CAS n(D) for ORACLES 2016 was scaled using the King LWC due to a potential sizing 

bias in the CAS dataset based on the LWC comparisons. The methodology for scaling the 2016 

CAS n(D) using the King LWC is described in Appendix 4.1 along with its impact on the results 

from this study. 

For each profile, cloud top height (ZT) and cloud base height (ZB) were defined as the 

highest and the lowest altitude, respectively, with Nc > 10 cm-3 and King LWC > 0.05 g m-3 (Chapter 

2). Cloud thickness (H) was defined as the difference between ZT and ZB. Re and the effective 

variance (Ve) for the merged size distribution were calculated following Hansen and Travis (1974) 

as 

𝑅𝑒 (ℎ) = ∫ 𝐷3 𝑁(𝐷, ℎ) 𝑑𝐷
∞

0

∫ 2 𝐷2 𝑁(𝐷, ℎ) 𝑑𝐷
∞

0

⁄   

and  

𝑉𝑒(ℎ) =  ∫ (𝐷 − 2𝑅𝑒 (ℎ))2 𝐷2 𝑁(𝐷, ℎ) 𝑑𝐷
∞

0
(2𝑅𝑒(ℎ))2 ∫  𝐷2 𝑁(𝐷, ℎ) 𝑑𝐷

∞

0
⁄    (1) 

Re can also be defined in terms of Rv (mean volume radius) as 

𝑅𝑒  = 𝑘−1/3 𝑅𝑣 ,   𝑘 = (1 + 𝑑2)3 (𝑎𝑑3 + 1 + 3 𝑑2)2⁄  ,      (2) 

where k is the droplet spectral width which is a function of the skewness (a) and dispersion (d) 

of the droplet size distribution (Martin et al., 1994). Previous work has shown k varies with 

aerosol conditions, occurrence of drizzle, cloud adiabaticity, and height in cloud (McFarquhar and 

Heymsfield, 2001; Brenguier et al., 2011). LWC was calculated as 

𝐿𝑊𝐶 (ℎ) =  𝜋 𝜌𝑤 6⁄ ∫ 𝐷3 𝑁(𝐷, ℎ) 𝑑𝐷
∞

0
=  4 3⁄  𝜋 𝜌𝑤 𝑁𝑐(ℎ) 𝑅𝑣(ℎ)3     (3) 
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where h is height above ZB and pw is the liquid water density. At a height h in cloud, LWC 

is a function of the average Nc and Rv following Eq. (3). Liquid water path (LWP) and King LWP 

were calculated by integrating LWC and King LWC over h from ZB to ZT.  was calculated as 

𝛽𝑒𝑥𝑡 (ℎ) =  ∫ 𝑄𝑒𝑥𝑡 𝜋/4 𝐷2 𝑁(𝐷, ℎ) 𝑑𝐷
∞ 

0
, 𝜏 = ∫ 𝛽𝑒𝑥𝑡

𝑍𝑇

𝑍𝐵
(ℎ) 𝑑ℎ ,      (4) 

where ext is the cloud extinction and the extinction coefficient (Qext) for cloud droplets is 

assumed to be 2 (Hansen and Travis, 1974) in the limit of geometric optics. The integrals in Eq. 

(1), (3), and (4) were converted to discrete sums corresponding to the cloud probe size bins for 

D > 3 m with a maximum drop size of 19200 m. 

4.2.2. Satellite retrievals 

The MODIS instrument onboard Terra and Aqua acquired passive retrievals of the 

radiance at non-absorbing and liquid water absorbing spectral bands (Platnick et al., 2003). The 

bispectral retrieval method was used to calculate Re and  using the 0.86 m band paired with 

the 1.6, 2.1, or 3.7 m band (Nakajima and King, 1990). Re and  at 1 km resolution from the 

MODIS Collection 6/6.1 Level 2 product (C6) (Platnick et al., 2017) were used. The wavelength 

dependence of MODIS  was not examined since  is mainly determined by the reflectance from 

the non-absorbing band (King et al., 1998). The C6 product included three retrievals for Re, 

namely Re16, Re21, and Re37, which were made using the 1.6, 2.1, and 3.7 m band, respectively. 

Consistent with previous studies (e.g., PZ11), Re21 was used as the primary retrieval and MODIS 

Re hereafter refers to Re21.  

Re16, Re21, and Re37 represent Re at 2 to 4 optical depths below cloud top depending on 

liquid water absorption and a weighting function based on vertical penetration of photons into 

cloud (McFarquhar and Heymsfield, 1998; Platnick, 2000). Re37 corresponds to the level closest 
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to cloud top followed by Re21 and Re16 in order of increasing distance from cloud top. In an 

upgrade from the MODIS Collection 5.1 (C5) product which reported Re21, Re21 - Re16, and Re21 - 

Re37, the MODIS C6 product reports Re16, Re21, and Re37 separately. Thus, biases in Re16 and Re37 

associated with the condition of a successful Re21 retrieval are removed (Platnick et al., 2017) and 

Re16, Re21, and Re37 can be compared (Section 3). For the ORACLES sampling domain (10˚ W to 15˚ 

E and 5˚ N to 20˚ S; Fig. 27), Re16, Re21, and Re37 from the C6 product were up to 2 m lower than 

the corresponding retrievals from the C5 product (Rausch et al., 2017).  

The MODIS retrievals are integrated quantities which do not describe a cloud’s vertical 

structure. In the absence of in situ data, the vertical profile of LWC and Rv can be approximated 

using the adiabatic model (Brenguier et al., 2000). The adiabatic model was used to parameterize 

Nc and LWP as a function of  and Re (Szczodrak et al., 2001). The adiabatic LWC was defined as 

𝐿𝑊𝐶𝑎𝑑(ℎ) = 𝐶𝑤 ℎ =  4 3⁄  𝜋 𝜌𝑤 𝑁𝑎𝑑(ℎ) 𝑅𝑣𝑎𝑑(ℎ)3 ,       (5) 

where Cw is the condensation rate, and the subscript ‘ad’ represents the adiabatic 

equivalent of a variable. Equations (1) to (4) were combined with Eq. (5) to determine ad and 

LWPad following Brenguier et al. (2000) and Szczodrak et al. (2001), respectively, as 

𝜏𝑎𝑑 = 3 5⁄ 𝜋 𝑄𝑒𝑥𝑡 (3 𝐶𝑤/4 𝜋 𝜌𝑤)2/3 (𝑘𝑁𝑐)1/3 𝐻5/3 and  

𝐿𝑊𝑃𝑎𝑑 = 1 2⁄ 𝐶𝑤 𝐻2  = 5 9⁄ 𝜌𝑤 𝜏 𝑅𝑒 .       (6) 

Using Equation (5), Nc was parameterized in terms of  and Re (Szczodrak et al., 2001) as 

𝑁𝑐 = √10 4 𝜋 𝑘⁄  (𝛼 𝐶𝑤 𝜏 / 𝜌𝑤  𝑅𝑒
5 )1/2 ,       (7) 

where  is the adiabaticity defined as LWP divided by LWPad. The MODIS Nc was calculated using 

the MODIS Re and  in Eq. (7). 
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4.2.3. Co-location methodology 

MODIS data with valid retrievals within the ORACLES sampling domain (10˚ W to 15˚ E 

and 5˚ N to 20˚ S; Fig. 27) were used. The Terra and Aqua satellites pass over the Equator at about 

10:30 and 13:30 local time (+ 0 UTC), respectively. Most cloud profiles from ORACLES were flown 

within 1 to 2 hours of 12:00 UTC (Table 17). The time gap between the MODIS scan and the in 

situ sampling for a cloud profile was designated as T. The analysis was limited to cloud profiles 

with a co-located MODIS retrieval with T < 3600 s. This assumes the cloud layer did not undergo 

significant changes within one hour. This assumption was tested by comparing MODIS retrievals 

against in situ measurements for different upper bounds of T (Section 3). 

MODIS retrievals were co-located with in situ data following the criteria outlined by PZ11. 

The pixel closest to the cloud top latitude and longitude during a cloud profile was identified. The 

location of the selected pixel was adjusted to account for advection of the cloud field using the 

mean wind speed and direction from the Turbulent Air Motion Measurement System (Thornhill 

et al., 2003) on the P-3 aircraft. The wind speed was between 5 to 10 m s-1 which meant the pixel 

location was adjusted by a distance of up to 18 to 36 km, on average. The MODIS data were 

rejected if the corrected pixel was less than 3 pixels from the edge of the MODIS scan. The MODIS 

Re and  were averaged over a 5 km x 5 km domain centered on the corrected pixel to account 

for spatial inhomogeneity. The MODIS data were rejected if more than 10 % of the retrievals 

within the 5 km x 5 km domain, i.e., at least three out of the 25 pixels, were invalid. 

 There were 74 cloud profiles with co-located MODIS Terra retrievals and 75 cloud profiles 

with co-located MODIS Aqua retrievals with T < 3600 s (Table 18). The T for these profiles was 

evenly distributed with 10 to 15 cloud profiles within every 300 s bin from 0 to 3600 s (except 
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1500 to 1800 s) (Fig. 28a). For 101 out of the 149 cloud profiles, the distance between the cloud 

profile location and the MODIS pixel after adjusting for advection was below 12 km (Fig. 28b). 

The distance was greater than 36 km for three profiles. 

4.3. MODIS versus in situ 

4.3.1. Re comparisons 

MODIS Re was compared with the in situ Re averaged over the top 10 % of the cloud layer 

for 149 cloud profiles with a co-located MODIS retrieval with T < 3600 s (Fig. 29a). The difference 

between MODIS Re and in situ Re for a cloud profile was termed Re, with positive Re indicating 

MODIS Re was greater than in situ Re. The average MODIS Re (11.4 m) was 1.7 m higher than 

the average in situ Re (9.7 m) with Pearson’s correlation coefficient (R) = 0.78. The difference 

between the average MODIS Re and in situ Re was statistically significant. MODIS Re was greater 

than the in situ Re for all but 13 profiles. There were 106 profiles with Re less than ± 2 m and 

10 outliers had Re > 5 m (Fig. 30).  

The Re was well correlated with MODIS Re (R = 0.62) and poorly correlated with in situ 

Re (R = 0.02). There were 14 profiles with MODIS Re > 15 m with an average Re of 4.5 m and 

eight of the profiles had Re > 5 m (Fig. 30a). The MODIS Re retrieval uncertainty was between 

5 and 15 % and poorly correlated with Re (Fig. 30b). The average Re decreased and the 

correlation between MODIS Re and in situ Re was higher for profiles with lower T (Table 19). The 

43 cloud profiles with a co-located MODIS retrieval with T < 900 s had only three outliers with 

Re > 5 m (Fig. 29b). All three outliers were associated with MODIS Re > 15 m. These results 

were consistent with previous comparisons between aircraft measurements and MODIS 
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retrievals. For example, PZ11 compared MODIS Re and in situ Re for 20 profiles of marine 

stratocumulus over the southeast Pacific with co-located MODIS retrievals having T < 3600 s. 

They reported a higher average Re (2.1 m) with higher correlation between MODIS Re and in 

situ Re (R = 0.98). Painemal et al. (2021) compared MODIS Re and in situ Re for liquid clouds over 

the North Atlantic (T < 1500 s) with an average Re of 1.7 m. 

Retrievals from MODIS Aqua had higher average Re and weaker correlation with in situ 

Re compared to MODIS Terra (Table 19). The MODIS Re for seven out of the 10 outliers with Re 

> 5 m was retrieved from MODIS Aqua and resulted in higher average Re compared to MODIS 

Terra (Table 19). This was despite the MODIS Aqua retrievals having lower T (1630 s) compared 

to MODIS Terra retrievals (2020 s), on average. The impact of solar (o) and sensor () zenith 

angles on the relative performance of MODIS Aqua and MODIS Terra was examined. For co-

located MODIS retrievals with T < 3600 s, the average o and  were 26.9˚ and 41.5˚, 

respectively. The average o and  for MODIS Terra (24.0˚ and 43.0˚) were 5.7˚ lower and 3.0˚ 

higher than the average o and  for MODIS Aqua (29.7˚ and 40.0˚) (Fig. 31). The MODIS Re and 

Re had weak correlations with o (R = 0.18 and 0.16) and  (R = -0.05 and -0.09) which suggests 

o and  had little impact on the performance of MODIS Terra relative to MODIS Aqua.  

Re16, Re21, and Re37 were compared to determine if the average Re was dependent on the 

use of Re21 as the primary retrieval (Fig. 32). Co-located MODIS retrievals with T < 3600 s had an 

average Re16, Re21, and Re37 of 10.5, 11.4, and 11.6 m, respectively. The average Re16 and Re21 had 

statistically significant differences while the average Re21 and Re37 had statistically insignificant 

differences. The latter was consistent with global analyses that found Re37 minus Re21 depends on 



105 
 

cloud regime with positive values (0 to 0.6 m) for homogeneous marine stratocumulus (Zhang 

and Platnick, 2011; Fu et al., 2019). 

The differences between Re16, Re21, and Re37 were associated with differences in the 

vertical penetration of photons into the cloud. The penetration depth decreases from Re16 to Re21 

to Re37 (Platnick, 2000) and an increase in Re with height in cloud (Chapter 3) resulted in Re16 < 

Re21 < Re37. Although Re21 minus Re37 depends on o, the average o for ORACLES (24.0˚) was lower 

than the range of o (65 to 70˚) for which Re37 minus Re21 exceeds 1 m (Grosvenor and Wood, 

2014). Consistent with Zhang and Platnick (2011), the correlation between Re21 and Re16 or Re37 

decreased for values above 15 m (Fig. 32). For values below 15 m, Re16, Re21, and Re37 had an 

average of 9.7, 10.6, and 11.0 m, respectively, and improved correlation between Re16 and Re21 

(R = 0.92) and Re21 and Re37 (R = 0.95). MODIS Re would have a positive bias regardless of the 

retrieval chosen. On average, Re21 had lower retrieval uncertainty (0.9 m) compared to Re16 (1.9 

m) and Re37 (1.1 m) which suggests Re21 gives a robust estimate of the average Re. 

Since each MODIS Re retrieval penetrated a certain optical depth into cloud, the altitude 

and in situ Re at the level of 2 optical depths below cloud top (Z2 and Re2) were compared with 

the altitude and in situ Re averaged over the top 10 % of the cloud (Re10 and Z10). For profiles with 

a co-located MODIS retrieval with T < 3600 s, Re2 and Re10 were strongly correlated (R = 0.86) 

with average values of 9.5 and 9.7 m, respectively (Fig. 33a). Re2 was less than Re10 because Z2 

was 18 m lower than Z10, on average (Fig. 33b), and Re increased with height (Chapter 3). When 

seven outliers with Re > 15 m were removed, Re2 and Re10 had average values of 9.3 and 9.4 

m, respectively, with improved correlation (R = 0.95). The average difference between Re2 and 

Re10 (0.1 to 0.2 m) was lower than the average Re between MODIS Re and Re10 (1.7 m). Thus, 
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the choice of Re10 did not have a large impact on the average Re. In fact, MODIS Re had weaker 

correlation with Re2 (R = 0.67) compared to Re10 (R = 0.78). 

4.3.2.  comparisons 

For profiles with a co-located MODIS retrieval with T < 3600 s, the average MODIS  

(11.7) was 2.4 optical depths greater than the average in situ  (R = 0.72) (Fig. 34a).  was 

defined as the difference between MODIS  and in situ  for a profile with positive  indicating 

that MODIS  was higher. The biases in MODIS  can be associated with spatial heterogeneity of 

the cloud field or retrieval uncertainties associated with MODIS . The average 5 km x 5 km 

MODIS  standard deviation (()) was 2.2 and the average MODIS  retrieval uncertainty 

(reported in C6 product) was 0.6. () was correlated with MODIS  (R = 0.72) and  (R = 0.66). 

There were 84 profiles with  > 2, 18 profiles with  < -2, 32 profiles with  > 5 and six profiles 

with  < -5. An increase in the magnitude of  with MODIS  (Fig. 35a) was due to higher 

retrieval uncertainty at higher MODIS  (Fig. 35b). The latter was expected given the sensitivity 

of MODIS  to the non-absorbing reflectance decreases as  increases (King et al., 1998).  

The nine profiles with MODIS  > 25 had an average  of 8.1. Seven of these profiles had 

 > 5 and one profile had  < -5. The average  decreased and the correlation between MODIS 

 and in situ  improved for profiles with lower T (Table 19). This was consistent with the time-

dependent improvement in correlations between  from the MODIS C6 product and the airborne 

Solar Spectral Flux Radiometer used during ORACLES (Chang et al., 2021). Profiles with a co-

located MODIS retrieval with T < 900 s had an average  of 1.5 with () = 2.1 and the average 

MODIS  uncertainty = 0.6. About 60 % of the profiles with a co-located MODIS retrieval with T 
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< 900 s had  > ± 2 (Fig. 34b). A single profile with T < 900 s and MODIS  > 25 had  = - 14.6. 

MODIS Terra  had lower  and better correlation with in situ  compared to MODIS Aqua  

(Table 19). The closest agreement between MODIS  and in situ  was observed for the 20 profiles 

with a co-located MODIS Terra retrieval with T < 900 s (Table 19). 

4.3.3. Nc comparisons 

Nc calculated using MODIS Re and  in Eq. (7) (hereafter, MODIS Nc) was compared with 

in situ Nc. Figure 36 shows cloud properties as a function of normalized height above cloud base 

(ZN) where ZN = Z – ZB divided by ZT – ZB. The in situ Nc was averaged over the top half of the cloud 

layer since entrainment mixing led to lower Nc over the top 10 % of the cloud height (Fig. 36a). 

Cloud-top entrainment did not affect the Re near cloud top (Fig. 36b), indicative of 

inhomogeneous mixing, and did not affect the Re comparisons. Nine profiles with MODIS  < 5 

were removed from the Nc comparisons to avoid the impact of higher variability in MODIS 

retrievals for optically thin clouds (Zhang and Platnick, 2011). The exclusion of these profiles did 

not lead to significant changes in the Re or  comparisons.  

Nc was defined as the difference between MODIS Nc and in situ Nc for a profile with 

positive Nc indicating that MODIS Nc was higher. For 140 profiles with a co-located MODIS 

retrieval with T < 3600 s and MODIS  > 5, there was good agreement between the average 

MODIS Nc (150.3 cm-3) and the average in situ Nc (150.2 cm-3) with R = 0.90 (Fig. 37). This was 

consistent with an average Nc of - 4 cm-3 (R = 0.94) for stratocumulus over the southeast Pacific 

(PZ11). For 50 % of the profiles, Nc was below ± 20 cm-3 which highlights the validity of the 

adiabatic assumption (Brenguier et al., 2000; Szczodrak et al., 2001) and the precision of the in 

situ estimates of k, Cw, and  (0.76, 2.94 g m-3 km-1, and 0.74, respectively). 
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For 17 profiles, Nc was greater than ± 50 cm-3. This was due to higher variability in the in 

situ Nc for these profiles with an average standard deviation of 64 cm-3. The average Nc for these 

profiles was low (about 2 cm-3) because nine profiles had Nc > 0 and eight profiles had Nc < 0. 

For three outliers with Nc > ± 100 cm-3, the in situ Nc had an average standard deviation of 86 

cm-3. When the three outliers were removed, profiles with T < 3600 s and MODIS  > 5 had an 

average Nc of 1 cm-3 (R = 0.93). Unlike the Re or  comparisons, lower T was not associated 

with lower Nc or better correlation between MODIS and in situ Nc. Further, MODIS Aqua Nc and 

MODIS Terra Nc had similar performance relative to in situ Nc (Table 19). The high level of 

agreement between MODIS Nc and in situ Nc was driven by compensating uncertainties 

associated with the parameters used in Eq. (7). These uncertainties were examined along with 

their impact on MODIS Nc. 

4.3.3.1. Uncertainties with k, Cw, and  

MODIS does not retrieve the vertical profile of LWC, and the estimated rate of 

condensation with height in cloud (Cw) and the ratio of the vertical integrals of LWC and LWCad 

() provide the largest sources of error in MODIS Nc (Janssen et al., 2011; Min et al., 2012). Based 

on the range of estimates in the existing literature, Cw and  contribute a factor ranging from 0.9 

to 1.5 in Eq. (7) (Merk et al., 2016, and references therein). For example, PZ11 assumed Cw = 2 g 

m-3 km-1 and  = 1 with Cw and  contributing a factor of 1.41.  was negatively correlated with 

H (Fig. 38) (Min et al., 2012; Braun et al., 2018) and Cw was a function of cloud base pressure and 

temperature (Brenguier et al., 2000). For 142 profiles with a co-located MODIS retrieval with T 

< 3600 s and LWPad > 5 g m-2, the average Cw and  were 2.94 ± 0.21 g m-3 km-1 and 0.74 ± 0.26, 

respectively, contributing a factor of 1.47 in Eq. (7). The uncertainty estimates represent one 
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standard deviation. The use of Cw = 2 and  = 1 in Eq. (7) would lead to lower MODIS Nc and the 

average Nc for profiles with T < 3600 s and MODIS  > 5 would change to - 6 cm-3 (from 0.1 cm-

3 when Cw = 2.94 and  = 0.74 were used). 

k represents spectral width which decreases when droplet size distributions get narrower. 

Consistent with PZ11, k averaged over the top 10 % of the cloud layer (0.76 ± 0.12) was higher 

than k averaged over the entire cloud layer (0.70 ± 0.15) (Fig. 39). The uncertainty estimates 

represent one standard deviation. Since MODIS Re and  correspond to values near cloud top, k 

= 0.76 was used in Eq. (7). Using k = 0.70 would increase MODIS Nc and the average Nc for 

profiles with T < 3600 s and MODIS  > 5 would change to 13 cm-3 (from 0.1 cm-3 when k = 0.76 

was used). The value of cloud top k (0.76) was consistent with that calculated by Brenguier et al. 

(2011) for marine clouds with entrainment mixing where k decreased when  decreased. In 

contrast, Martin et al. (1994) examined marine clouds without entrainment mixing with higher k 

(0.8). The decrease in Nc and LWC near cloud top with increasing Re was indicative of 

inhomogeneous mixing (Fig. 36) and spectral broadening due to entrainment or drizzle (Sinclair 

et al., 2021) would explain the higher values for k near cloud top (Fig. 39). 

4.3.3.2. Uncertainties with MODIS Re and  retrievals 

The MODIS algorithm assumes vertically homogeneous Re and LWC (King et al., 1998) but 

Re and LWC increased almost linearly with height (LWC decreased near cloud top due to 

entrainment mixing) (Fig. 36b, c). The impact of this inconsistency was examined by quantifying 

the Nc for profiles with large MODIS biases in Re or . The average Nc for nine profiles with 

MODIS  > 25 (average  = 5.3) and 14 profiles with MODIS Re > 15 m (average Re = 4.5 m) 

was 8 and 29 cm-3, respectively. The magnitude of Nc was greater than 50 cm-3 for only two 
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profiles with MODIS  > 25 and one profile with MODIS Re > 15 m. This suggests a large bias in 

MODIS Re or  did not necessarily result in a large bias in MODIS Nc. 

The MODIS algorithm used a modified gamma distribution function to represent the 

droplet spectrum assuming Ve (Eq. 1) to be 10 % (Platnick et al., 2017). For such size distributions, 

k is related to Ve as k = (1-Ve) x (1-2Ve) and Ve = 10 % corresponds to k = 0.72 (Grosvenor et al., 

2018). For ORACLES, Ve decreased with height (Fig. 36d) with a median cloud top Ve of 8.4 % 

corresponding to k = 0.76. The a priori assumption of Ve = 10 % could lead to biases of up to 1 m 

for MODIS Re (Chang and Li, 2002). Radiative transfer simulations to quantify the MODIS Re bias 

associated with Ve were beyond the scope of this study. Further, it is assumed the uncertainties 

associated with instrument error and atmospheric corrections were included in the retrieval 

uncertainties in the MODIS C6 product. 

The occurrence of drizzle could introduce biases in MODIS Re or Nc due to lower k 

associated with spectral broadening (Sinclair et al., 2021), higher Ve for a bimodal size distribution 

(Nakajima et al., 2010), or lower  due to cloud water removal through precipitation (Braun et 

al., 2018). However, the average rain rate for ORACLES was too low (0.06 mm h-1) (Chapter 3) for 

drizzle to have a major impact on the Re retrievals (Zinner et al., 2010; PZ11). This was supported 

by the positive values for Re37 minus Re21 which represent size distributions without a significant 

drizzle mode (Nakajima et al., 2010). The impact of cloud water removal through precipitation 

was included by using the in situ  (0.74) in Eq. (7). 

4.3.3.3. MODIS Nc error analysis 

The total error for MODIS Nc from Eq. (7) was quantified using propagation of 

measurement uncertainties associated with k, Cw, and  and retrieval uncertainties associated 
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with MODIS Re and . Assuming the covariances were normally distributed and random, the total 

error can be calculated using Gaussian error propagation as 

(
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where  represents the error for each variable. 

For MODIS Re and , the error was defined as the average retrieval uncertainty from the 

MODIS C6 product (7.5 and 5 %, respectively). For k, Cw, and , the error was defined as one 

standard deviation (16, 7.1, and 35 % of the respective averages). Based on Eq. (8), MODIS Nc had 

an error of 30.5 %. This was smaller than previous estimates of 38 % (Janssen et al., 2011) and 78 

% (Grosvenor et al., 2018). Consistent with Grosvenor et al. (2018), uncertainties in Re had the 

largest contribution to the total error (since Nc α Re
-5/2) followed by  and k. Profiles with MODIS 

Re > 15 m and average Re = 4.5 m had an average Nc of 28 cm-3 which shows the impact of 

the Re uncertainty was compensated by the uncertainties for other parameters in Eq. (7).  

MODIS Nc calculated using in situ estimates of k, Cw, and  from ORACLES was higher than 

MODIS Nc calculated using a priori assumptions for k, Cw, and . For example, using Cw = 2 g m-3 

km-1 and  = 1 (PZ11) and k = 0.8 (Martin et al., 1994) introduced a factor of 0.91 in Eq. (7) relative 

to using Cw = 2.94 g m-3 km-1,  = 0.74, and k = 0.76. The MODIS Nc based on the a priori 

assumptions had an average Nc of -14, 6, and 5 cm-3 for profiles with a co-located MODIS 

retrieval with MODIS  > 5 and T < 3600, 1800, and 900 s, respectively. 

4.4. Aerosol-cloud interactions 

During the ORACLES research flights, variable vertical separation was observed between 

biomass burning aerosols from southern Africa and marine stratocumulus over the southeast 



112 
 

Atlantic (Redemann et al., 2021). Cloud profiles were conducted at locations of both contact and 

separation between the base of the aerosol layer and the top of the cloud layer. The cloud 

profiles with aerosol concentration (Na) greater than 500 cm-3 within 100 m above cloud tops 

were termed “contact profiles” and cloud profiles with Na < 500 cm-3 up to 100 m above cloud 

tops were termed “separated profiles” (see Chapter 2). 

Across the ORACLES campaigns, 173 contact profiles were conducted with 84 to 90 cm-3 

higher in situ Nc, 1.4 to 1.6 m lower in situ Re, and 0.04 to 3.06 higher in situ  compared to 156 

separated profiles (Chapter 3). These differences were attributed to ACI given the similar sea 

surface temperature, lower tropospheric stability, and estimated inversion strength at the 

locations of contact and separated profiles, on average (Chapter 3). The differences in the in situ 

Nc, Re, and  for contact and separated profiles were statistically significant (p < 0.02) unless 

otherwise stated. The differences were reported using the 95 % confidence intervals from a two-

sample t-test which represent the range of the difference between the average values for two 

parameters determined with 95 % confidence.  

Differences in the in situ Nc, Re, and  for contact and separated profiles were compared 

with the corresponding differences in MODIS Nc, Re, and . A co-located MODIS retrieval with T 

less than 3600 s was available for 67 contact and 82 separated profiles (Table 17). These contact 

profiles had 85 to 92 cm-3 higher in situ Nc, 1.5 to 1.7 m lower in situ Re, and 0.67 to 4.82 higher 

in situ  compared to the separated profiles. When the in situ Nc and Re were averaged over the 

top 50 % and top 10 % of the cloud, respectively, contact profiles had 88 to 98 cm-3 higher in situ 

Nc and 1.5 to 2.2 m lower in situ Re compared to separated profiles. 
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The average MODIS Re for contact profiles (9.9 m) was 1.4 m larger than the average 

in situ Re (R = 0.76) (Fig. 40). In comparison, for separated profiles, the average MODIS Re (12.7 

m) was 2 m larger than the average in situ Re (R = 0.72). Separated profiles had a larger positive 

bias in MODIS Re compared to contact profiles because 13 out of the 14 profiles with MODIS Re > 

15 m, with high average Re (4.5 m) (Fig. 29a), were classified as separated profiles. The MODIS 

Re estimate (2.8 m) for the aerosol-induced increase in Re from contact to separated profiles 

was thus greater than the in situ Re estimate (2.2 m). If profiles with MODIS Re > 15 m were 

removed, the estimates from MODIS Re (1.8 m) and in situ Re (1.6 m) were closer. This was 

because MODIS Re had a similar positive bias for contact and separated profiles with MODIS Re < 

15 m (1.3 and 1.6 m, respectively). The number of profiles with MODIS Re > 15 m was lower 

for MODIS Terra compared to MODIS Aqua. Thus, closer agreement was observed between the 

in situ Re and MODIS Re estimates of the aerosol-induced change in Re for MODIS Terra compared 

to MODIS Aqua (Table 20). 

The average MODIS  for contact profiles (13.3) was 2.5 optical depths greater than the 

average in situ  (R = 0.75) (Fig. 41). For separated profiles, the average MODIS  (10.3) was 2.3 

optical depths greater than the average in situ  (R = 0.60). As a result, there was good agreement 

between the MODIS  estimate (3.0) and the in situ  estimate (2.8) for the aerosol-induced 

increase in  from separated to contact profiles. Contact profiles with co-located MODIS Aqua 

retrievals had lower in situ  compared to separated profiles. The MODIS Aqua  reproduced the 

sign and magnitude of this change (Table 20). The MODIS Terra  underestimated the in situ 

 increase from separated to contact profiles (Table 20) due to the profile with MODIS  > 25 and 

  = - 14.6 (Fig. 41). The estimate for the aerosol-induced change in  was underestimated by 
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MODIS  compared to in situ  (Table 20). All nine profiles with MODIS  > 25 were classified as 

contact profiles (Fig. 41). These profiles were removed given the large average  (8.1) for these 

profiles. For the remaining 58 contact profiles, MODIS  (10.8) was 1.6 optical depths greater 

than in situ  (R = 0.74), on average. The MODIS  estimate (0.5) for the aerosol-induced increase 

in  from separated to contact profiles was less than the in situ  estimate (1.2). However, for 

lower T, the estimates showed better agreement with average values within 0.4 optical depths. 

The average MODIS Nc for contact profiles (203 cm-3) was 2 cm-3 lower than the average 

in situ Nc (R = 0.86) (Fig. 42). For separated profiles, the average MODIS Nc (104 cm-3) was 2 cm-3 

greater than the average in situ Nc (R = 0.81). The estimate for the aerosol-induced increase in Nc 

(from separated to contact profiles) from MODIS Nc (99 cm-3) was similar to the estimate from in 

situ Nc (103 cm-3). The three outliers with Nc > ± 100 cm-3 were classified as contact profiles. 

When these outliers were removed, the MODIS Nc estimate (95 cm-3) and the in situ Nc estimate 

(95 cm-3) for the aerosol-induced increase in Nc from separated to contact profiles were similar. 

For MODIS Terra retrievals, underestimation of the increase in in situ Nc from separated to 

contact profiles (Table 20) was driven by the profile with   = - 14.6 and MODIS  > 25 (Fig. 41). 

When this profile was removed, the MODIS Nc and in situ Nc estimates were within 5 cm-3. The 

MODIS Nc calculated using a priori assumptions for k, Cw, and  underestimated the in situ Nc for 

contact profiles (by 20 cm-3) and separated profiles (by 8 cm-3). The a priori MODIS Nc estimate 

(91 cm-3) for the increase in Nc from separated to contact profiles was slightly lower than the in 

situ Nc estimate (103 cm-3). 
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4.5. Discussion 

Differences between climate model and observational estimates of the effective radiative 

forcing due to ACI are largely driven by uncertainties in observational estimates of the radiative 

forcing due to aerosol effects on cloud albedo (RFaci) (Gryspeerdt et al., 2020). Issues with satellite 

estimates of RFaci persist due to biases in satellite retrievals of Nc (Grosvenor et al., 2018), above-

cloud aerosol properties (Painemal et al., 2020; Chang et al., 2021), and aerosol perturbations of 

Nc (Quaas et al., 2020). Factors that frequently result in biases in MODIS retrievals of cloud 

properties include subpixel heterogeneity (Zhang and Platnick, 2011), solar and satellite viewing 

geometry (Grosvenor and Wood, 2014; Painemal et al., 2021), and cloud thermodynamic phase 

(Ahn et al., 2018). The impact of these factors on MODIS retrievals over the southeast Atlantic 

was limited given the low latitude and observations of homogeneous, warm, closed cell marine 

stratocumulus with low precipitation rates (Chapter 2, 3). 

Results from Sections 3 and 4 suggest satellite estimates of Nc and aerosol perturbations 

of Nc over the southeast Atlantic have low biases (below 10 %) relative to in situ estimates. Good 

agreement between the MODIS and in situ estimates of aerosol-induced changes in Nc, Re, and   

was also associated with similar biases in MODIS retrievals of clouds in different aerosol regimes. 

Differences between the estimates were lowered by removing profiles with large biases in MODIS 

retrievals (i.e., when MODIS Re > 15 m or MODIS  > 25). This retrieval-based screening led to 

MODIS estimates of aerosol-induced changes in Nc, Re, and  within 5 cm-3, 0.5 m, and 0.7 of the 

in situ estimates. Such agreement suggests ACI for horizontally homogeneous, warm, closed cell 

marine stratocumulus can be studied using MODIS retrievals in the absence of in situ datasets.  
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Future work will evaluate attenuation-corrected retrievals of marine stratocumulus 

(Meyer et al., 2015) using polarimetric retrievals that operate without the assumptions required 

for passive satellite retrievals (Alexandrov et al., 2012). Polarimetric retrievals will help address 

the biases and errors in satellite retrievals of low-level clouds with stronger precipitation and 

bimodal size distributions (Sinclair et al., 2021) or complicated solar and viewing geometry (e.g., 

Painemal et al., 2021). It must be noted that improved estimates of both cloud and aerosol 

properties are needed for reducing the uncertainties in satellite estimates of RFaci over the 

southeast Atlantic (Douglas and L’Ecuyer, 2020). Issues associated with satellite estimates of the 

placement or optical and microphysical properties of above-cloud aerosols must be addressed 

(e.g., Rajapakshe et al., 2017; Painemal et al., 2020; Chang et al., 2021; Peers et al., 2021). 

4.6. Conclusions 

In situ measurements of Nc, Re, and  for marine stratocumulus over the southeast 

Atlantic were collected during the NASA ORACLES field campaign. In situ data from 149 cloud 

profiles were co-located with MODIS retrievals from the Terra and Aqua satellites with a time 

gap (T) below 1 hour. On average, MODIS Re and  (11.4 m and 11.7) were 1.7 m and 2.4 

optical depths higher than in situ Re and  (R = 0.78 and 0.72). For over 70 % of the profiles, the 

biases in MODIS Re and  relative to in situ Re and  were below 2 m and 5, respectively. The 

biases in MODIS retrievals decreased for lower T and for retrievals from MODIS Terra compared 

to MODIS Aqua. Profiles with MODIS Re > 15 m had larger biases in MODIS Re (average bias = 

4.5 m) and profiles with MODIS  > 25 had larger biases in MODIS  (average bias = 8.1). MODIS 

Nc (150.3 cm-3) showed good agreement with in situ Nc (150.2 cm-3) (R = 0.90) despite an error of 

30.5 %. The retrieval uncertainty for MODIS Re provided the largest source of error in calculating 
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MODIS Nc but compensating uncertainties for , k, Cw, and  resulted in the agreement between 

MODIS Nc and in situ Nc. For 50 % of the profiles, the bias in MODIS Nc was below 20 cm-3. Profiles 

with biases above 50 cm-3 were associated with higher variability in the in situ Nc. 

Changes in Nc, Re, and  for marine stratocumulus due to variable vertical separation with 

overlying biomass burning aerosols were estimated. For 67 “contact” profiles with Na > 500 cm-3 

within 100 m above cloud tops, in situ Nc and  were 103 cm-3 and 2.8 higher and in situ Re was 

2.2 m lower compared to 82 “separated” profiles with Na < 500 cm-3 up to 100 m above cloud 

tops. In comparison, contact profiles had 99 cm-3 and 3.0 higher MODIS Nc and , and 2.8 m 

lower MODIS Re compared to separated profiles. The MODIS retrievals estimated the sign of the 

aerosol-induced changes in Nc, Re, and  with small differences in the magnitude of these changes 

compared to in situ estimates. The MODIS estimates were within 5 cm-3, 0.5 m, and 0.7 of the 

in situ estimates when profiles with larger biases (MODIS Re > 15 m or MODIS  > 25) were 

removed. When k, Cw, and a from on a priori assumptions were used, the MODIS Nc decreased 

by 9 % and the MODIS estimate for change in Nc was within 12 cm-3 of the in situ estimate.  

Good agreement between MODIS estimates and in situ estimates of aerosol-induced 

changes in cloud properties over the southeast Atlantic was associated with similar biases in 

MODIS retrievals relative to in situ data for clean and polluted clouds. MODIS retrievals can thus 

be used to study ACI for homogeneous and warm marine stratocumulus over the southeast 

Atlantic. Combined with lidar estimates of the vertical separation between aerosol and cloud 

layers and underlying cloud properties (Zeng et al., 2014; Rajapakshe et al., 2017; Painemal et al., 

2020), MODIS retrievals with low biases will enable investigations of ACI over a larger domain of 

the southeast Atlantic over longer timescales than is possible using in situ data. 
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Appendix 4.1 – Scaling the CAS/CDP n(D) based on King LWC 

For ORACLES 2016, CAS data were used in the study since CDP measurements were invalid 

due to an instrument misalignment issue. Chapter 3 showed there were statistically significant 

differences between the average CAS LWC of 0.15 ± 0.09 g m-3 (± one standard deviation) and 

the average King LWC of 0.28 ± 0.15 g m-3 (R = 0.80). The LWC comparison provides an estimate 

of the uncertainties in the CAS data due to known issues like droplet co-incidence in the CAS 

sample volume (Lance et al., 2012). For the six flights selected for data analysis, the King LWC and 

CAS LWC had a best fit slope (a) between 0.46 and 0.63 and R = 0.71 to 0.93 (Table 21). Based on 

the LWC differences, it was hypothesized the CAS was under-sizing the droplets passing through 

the CAS sample volume. The methodology outlined by PZ11 was used to account for the sizing 

bias wherein the CAS n(D) was scaled by adjusting the CAS size bins using the King LWC as 

𝐶𝐴𝑆 𝐿𝑊𝐶 = 𝑎 𝑥 𝐾𝑖𝑛𝑔 𝐿𝑊𝐶,   𝐷𝑖
∗ = 𝑎−1/3 𝐷𝑖  ,      (A1) 

where Di is the midpoint diameter for the ith size bin and Di* is the scaled midpoint 

diameter for the ith size bin. The Di used to calculate LWC using Eq. 2 was replaced by Di
*. The CAS 

size bin midpoints were increased by up to 30 % since Ri
* > Ri for a < 1 and each flight had a < 1. 

The average in situ Re for the 34 profiles from ORACLES 2016 with a co-located MODIS retrieval 

(Table 17) increased from 8.6 m for unscaled CAS n(D) to 10.6 m for CAS n(D) scaled using Eq. 

(A1).  

The average MODIS Re (12.4 m) overestimated the average in situ Re from both the 

unscaled and scaled CAS n(D). When the CAS n(D) was scaled, the number of profiles having in 

situ Re > MODIS Re increased from 0 to 2 and the average Re decreased from 3.8 m (R = 0.83) 

to 1.8 m (R = 0.86), relative to using the unscaled CAS n(D). These changes were consistent with 
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the hypothesis of CAS under sizing the droplets passing through the CAS sample volume. Since 

the average Re for scaled CAS n(D) was consistent with previous studies (PZ11; Painemal et al., 

2021), the scaled CAS n(D) was used in the study. 

Valid CDP measurements were available for ORACLES 2017 and 2018. For the research 

flights from ORACLES 2017 and 2018, the average CDP LWC was 0.18 ± 0.16 g m-3 and 0.21 ± 0.14 

g m-3, the average King LWC was 0.21 ± 0.15 g m-3 and 0.20 ± 0.12 g m-3, and the average CAS 

LWC was 0.09 ± 0.07 g m-3 and 0.10 ± 0.07 g m-3, respectively (Chapter 3). These differences are 

within the typical uncertainties of these in situ cloud probes (Baumgardner et al., 2017). Given 

the closer agreement between CDP LWC and King LWC, it is unlikely the CDP had a sizing bias like 

the CAS and thus, the CDP measurements were used. In the absence of a sizing bias, the unscaled 

CDP n(D) was used in the study. Nevertheless, CDP n(D) was scaled using Eq. (A1) to determine if 

this would lead to qualitative changes in the results presented in the study. 

For 14 out of 18 flights from ORACLES 2017 and 2018, the King LWC and CDP LWC had 0.7 

< a < 1.4 and the CDP size bin midpoints were adjusted by less than 13 % using Eq. (A1). When 

the CDP n(D) was scaled for the 42 profiles from ORACLES 2017 (Table 17), the average CDP Re 

increased from 7.6 m to 8.7 m, the number of profiles having in situ Re > MODIS Re increased 

from 2 to 21, and the average Re decreased from 1.4 m (R = 0.57) to 0.3 m (R = 0.43), relative 

to using the unscaled CDP n(D). Scaling the CDP n(D) led to a decrease in the best fit slope for 

MODIS Re as a function of in situ Re (0.73 to 0.50) along with an increase in the intercept (3.5 to 

4.7 m). These changes suggest the in situ Re might be overestimated when the CDP n(D) is 

scaled, and the unscaled CDP n(D) was thus used in the study for ORACLES 2017. 
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When the CDP n(D) was scaled for the 73 profiles from ORACLES 2018 (Table 17), the 

average CDP Re increased from 10.5 m to 10.8 m, the number of profiles having in situ Re > 

MODIS Re increased from 9 to 15, and the average Re decreased from 1.9 m (R = 0.68) to 1.6 

m (R = 0.62), relative to using the unscaled CDP n(D). The use of scaled CDP n(D) led to small 

changes in the best fit slope for MODIS Re as a function of in situ Re (0.77 to 0.73) and the intercept 

(4.3 to 4.5 m). Scaling the CDP n(D) for ORACLES 2018 did not have a major impact on the CDP 

dataset. To remain consistent with the use of unscaled CDP data for ORACLES 2017, unscaled CDP 

data were used in the study for ORACLES 2018, as well. 

When MODIS Re was compared with in situ Re calculated using unscaled n(D) for all three 

campaigns, the average Re was 2.2 m with R = 0.72 and a best-fit slope and intercept of 0.86 

and 3.5 m, respectively (Fig. 43a). In comparison, when MODIS Re was compared with in situ Re 

calculated using scaled n(D) for all three campaigns, the average Re was 1.3 m with R = 0.70 

and a best-fit slope and intercept of 0.90 and 2.4 m, respectively (Fig. 43b). Comparing Fig. 43 

with Fig. 29a shows the use of either scaled or unscaled n(D) for all three campaigns did not lead 

to qualitative changes in the results presented in the study. MODIS Re always had a positive bias 

greater than 1 m relative to in situ Re. It must be noted that the quantitative changes highlight 

the uncertainties associated with in situ data which must be considered when validating satellite 

retrievals using airborne datasets (Witte et al., 2018). 
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TABLES AND FIGURES 

Table 17: List of research flights analyzed and the time range, number, sampling duration, and 

cloud top height (ZT) for profiles with a co-located MODIS retrieval with time gap (T) less than 
3600 s. Number and duration listed for profiles classified by above-cloud aerosol location. 

Flight Date Time (UTC) Separated Contact ZT (m) 

06 Sep 2016 09:36 – 12:35 6 (256 s) 9 (606 s) 509 - 1002 
10 Sep 2016 10:08 – 12:36 5 (255 s) 0 (0 s) 1151 - 1201 
14 Sep 2016 09:36 – 13:02 3 (148 s) 0 (0 s) 635 - 814 
20 Sep 2016 12:57 – 13:11 0 (0 s) 2 (61 s) 580 - 583 
25 Sep 2016 11:00 – 13:51 6 (363 s) 3 (148 s) 729 - 1124 
12 Aug 2017 11:53 – 13:46 0 (0 s) 8 (327 s) 1148 - 1193 
13 Aug 2017 10:15 – 11:33 0 (0 s) 15 (718 s) 1334 - 1384 
15 Aug 2017 12:55 – 13:27 0 (0 s) 6 (169 s) 1108 - 1148 
21 Aug 2017 13:34 – 13:35 1 (18 s) 0 (0 s) 1447 
24 Aug 2017 12:39 – 12:40 0 (0 s) 1 (10 s) 1099 
28 Aug 2017 11:46 – 13:18 4 (168 s) 7 (496 s) 1070 - 1230 
27 Sep 2018 10:07 – 13:11 10 (366 s) 0 (0 s) 819 - 1169 
30 Sep 2018 09:50 – 12:24 6 (183 s) 7 (337 s) 747 - 840 
03 Oct 2018 13:30 – 14:41 2 (45 s) 0 (0 s) 1157 - 2151 
07 Oct 2018 11:03 – 11:14 0 (0 s) 3 (136 s) 845 - 928 
10 Oct 2018 10:16 – 13:31 2 (153 s) 1 (42 s) 991 - 1329 
12 Oct 2018 13:02 – 14:19 6 (165 s) 0 (0 s) 1431 - 1905 
15 Oct 2018 10:28 – 13:09 4 (125 s) 0 (0 s) 693 - 1547 
19 Oct 2018 12:36 – 13:00 9 (661 s) 0 (0 s) 959 - 1276 
21 Oct 2018 10:21 – 12.25 10 (504 s) 0 (0 s) 675 - 812 
23 Oct 2018 10:28 – 13:08 8 (286 s) 5 (317 s) 873 - 1281 
Total (2016)  20 (1,022 s) 14 (815 s)  
Total (2017)  5 (186 s) 37 (1,720 s)  
Total (2018)  57 (2,488 s) 16 (832 s)  

Total  82 (3,696 s) 67 (3,367 s)  

 
 
Table 18: Number of cloud profiles during ORACLES deployments with a co-located MODIS 

Terra or Aqua retrieval for T less than 3600, 1800, or 900 s. 

T Terra (2016, 2017, 2018) Aqua (2016, 2017, 2018) Total 

3600 s 20, 15, 39 14, 27, 34 149 
1800 s 9, 3, 17 12, 13, 15 69 
900 s 9, 1, 10 8, 7, 8 43 
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Table 19: Pearson’s correlation coefficient (R) and average bias () in MODIS (Terra, Aqua, and 

combined) retrievals relative to in situ measurements of Re, , and Nc for different T. 

Parameter T (s) Terra  (R) Aqua  (R) Combined  (R) 

 

Re (m) 

3600 1.5 (0.82) 1.9 (0.76) 1.7 (0.78) 
1800 1.4 (0.95) 2.1 (0.80) 1.8 (0.83) 
900 1.3 (0.91) 1.7 (0.81) 1.5 (0.83) 

 

  

3600 2.8 (0.70) 2.1 (0.71) 2.4 (0.72) 
1800 1.7 (0.90) 2.1 (0.70) 2.0 (0.84) 
900 1.3 (0.91) 1.6 (0.54) 1.5 (0.86) 

 
Nc (cm-3) 

3600 0.5 (0.87) 0.6 (0.93) 0.1 (0.90) 
1800 11 (0.82) 6.1 (0.95) 8.1 (0.90) 
900 9.1 (0.74) 10 (0.96) 9.6 (0.87) 

 
 

Table 20: Differences between the average Re, , and Nc for contact and separated profiles 
based on MODIS retrievals (Terra, Aqua, and combined) and in situ measurements. Positive 
values indicate contact profiles had a higher value. 

Parameter T (s) Terra (In situ) Aqua (In situ) Terra & Aqua (In situ) 

 

Re (m) 

3600 -1.7 (-1.4) -3.7 (-2.9) -2.8 (-2.2) 
1800 -0.9 (-0.7) -5.8 (-3.8) -3.6 (-2.5) 
900 -0.3 (-0.4) -5.6 (-3.4) -3.0 (-2.0) 

 

  

3600 6.0 (6.1) -0.9 (-1.1) 3.0 (2.8) 
1800 7.1 (10.1) -0.1 (-0.5) 2.4 (3.3) 
900 7.3 (10.5) -2.2 (-2.5) 1.7 (2.9) 

 
Nc (cm-3) 

3600 83 (87) 115 (118) 99 (103) 
1800 80 (91) 161 (151) 115 (115) 
900 43 (77) 159 (131) 99 (101) 

 
 
 
Table 21: ORACLES 2016 flight dates with the best fit slope (a) and intercept (c) between the 
average CAS LWC and King LWC from the flight. 

Flight date a + c (R) 

September 06 0.51 + 0.01 (0.71) 
September 10 0.63 - 0.02 (0.93) 
September 12 0.47 + 0.00 (0.88) 
September 14 0.55 - 0.04 (0.85) 
September 20 0.60 + 0.01 (0.88) 
September 25 0.46 + 0.04 (0.74) 
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Figure 27: ORACLES flight tracks, base of operations, and sampling locations for profiles with a 

MODIS retrieval co-located with in situ data for T less than 3600 s. 
 

 

Figure 28: Histograms of (a) time gap between profiles and the co-located MODIS scan (T) and 
(b) distance between profiles and the co-located MODIS pixel after adjusting for advection. 
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Figure 29: MODIS Re versus in situ Re for profiles with a MODIS retrieval co-located with in situ 

data for T (a) less than 3600 s and (b) less than 900 s colored by ORACLES deployment year. 
Each point represents a cloud profile with the in situ Re averaged over the top 10 % of the cloud 
and MODIS Re averaged over a 5 km x 5 km domain centered at the cloud profile’s location. 
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Figure 30: Magnitude of the difference between MODIS Re and in situ Re (Re) for profiles with a 

MODIS retrieval co-located with in situ data for T less than 3600 s as a function of (a) MODIS 
Re and (b) MODIS Re uncertainty. Each point represents average values over a 5 km x 5 km 
domain centered at the corresponding cloud profile’s location. 

 

Figure 31: Histograms of (a) solar zenith angle (o) and (b) sensor zenith angle ()for MODIS 

retrievals co-located with in situ data for T less than 3600 s. 
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Figure 32: (a) Re16 and (b) Re37 as a function of Re21 for MODIS retrievals co-located with in situ 

data for T less than 3600 s. Each point represents average values over a 5 km x 5 km domain 
centered at the corresponding cloud profile’s location. 
 

 

Figure 33: (a) Re and (b) Z at two optical depths below cloud top (Re2 and Ze2) against those 
averaged over top 10 % of cloud layer (Re10 and Z10) for profiles with a MODIS retrieval co-

located with in situ data for T less than 3600 s. 
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Figure 34: MODIS  versus in situ  for profiles with a MODIS retrieval co-located with in situ 

data for T (a) less than 3600 s and (b) less than 900 s colored by ORACLES deployment year. 

Each point represents a cloud profile with the MODIS  averaged over a 5 km x 5 km domain 
centered at the cloud profile’s location. 
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Figure 35: MODIS  versus (a) magnitude of the difference between MODIS  and in situ  () 

and (b) MODIS  retrieval uncertainty for profiles with a MODIS retrieval co-located with in situ 

data for T less than 3600 s. Each point represents average values over a 5 km x 5 km domain 
centered at the corresponding cloud profile’s location. 
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Figure 36: Kernel density estimates (indicated by width of shaded area) and boxplots showing 
mean (vertical line) and median (white circle) for (a) Nc, (b) Re, (c) LWC, and (d) Ve versus 
normalized height in cloud (ZN) for profiles with a MODIS retrieval co-located with in situ data 

for T less than 3600 s. 



130 
 

 

Figure 37: MODIS Nc versus in situ Nc for with a MODIS retrieval co-located with in situ data for 

T less than 3600 s colored by ORACLES deployment year. Each point represents a cloud profile 
with the in situ Nc averaged over the top half of the cloud and MODIS Nc calculated using 

MODIS Re and  averaged over a 5 km x 5 km domain centered at the cloud profile’s location. 

 

Figure 38: Cloud adiabaticity () versus cloud thickness (H) colored by liquid water path (LWP) 

for with a MODIS retrieval co-located with in situ data for T less than 3600 s. 
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Figure 39: Probability density function for k averaged over entire cloud layer (blue) or top 10 % 

of cloud (red) for profiles with a MODIS retrieval co-located with in situ data for T less than 
3600 s. 

 

Figure 40: Same as Fig. 29a with cloud profiles colored based on regime classification. 
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Figure 41: Same as Fig. 34a with cloud profiles colored based on regime classification. 
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Figure 42: Same as Fig. 37 with cloud profiles colored based on regime classification. 
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Figure 43: Same as Fig. 29a with in situ Re calculated (a) unscaled CAS and CDP n(D) and (b) CAS 
and CDP n(D) scaled based on King LWC. 
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5 CONCLUSIONS  

Biomass burning aerosols from southern Africa overlay marine stratocumulus clouds over 

the southeast Atlantic Ocean with variable vertical separation (0 to 2000 m) from the cloud tops. 

In this dissertation, aerosol-cloud interactions between aerosol and clouds over the southeast 

Atlantic were studied. In situ data from the NASA ORACLES field campaign were used to estimate 

cloud microphysical (Nc, Re, and LWC), macrophysical (LWP and H), and precipitation properties 

(Rp and So) for regimes defined based on Na. In situ estimates of Nc, Re, and , and aerosol-induced 

changes in Nc, Re, and  were compared with MODIS retrievals co-located with in situ data. During 

173 “contact” profiles, the biomass burning aerosol layer with Na > 500 cm-3 was located within 

100 m above cloud tops. The level of Na > 500 cm-3 was vertically separated from cloud tops by 

at least 100 m during 156 “separated” profiles. Relative to separated profiles, the presence of 

biomass burning aerosols near cloud tops during contact profiles was associated with, 

1. More numerous and smaller cloud droplets and weaker droplet growth with height. 

Contact profiles had significantly higher Nc and  (87 cm-3 and 1.8 higher) and lower Re 

(1.5 m lower) than separated profiles. There was a smaller increase in median Re from ZB to ZT 

for contact profiles (6.1 to 7.9 m) compared to separated profiles (7.1 to 9.5 m). 

2. A smaller decrease in qT and positive buoyancy across cloud tops. 

Free-tropospheric humidity was higher in the presence of biomass burning aerosols. For 

contact profiles, this led to a smaller decrease in median Nc and LWC near cloud top (25% and 

12%) compared to separated profiles (33% and 18%). The latter had negative buoyancy across 

cloud tops which led to forced descent of drier free-tropospheric air into the clouds. 
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3. Changes in Nc and Re within both clean and polluted boundary layers. 

Contact profiles were more often located in high Na boundary layers with higher CO 

concentration (28 ppb higher) which suggests biomass burning aerosols were more frequently 

entrained into the boundary layer at these locations. There were larger differences between Nc 

and Re for contact and separated profiles in high Na boundary layers (108 cm-3 and 1.8 m) 

compared to low Na boundary layers (31 cm-3 and 0.5 m). 

4. Lower precipitation intensity and precipitation formation process rates. 

Changes in Nc and Re for contact profiles led to precipitation suppression with 50% lower 

Rp compared to separated profiles, on average. Lower values of Rp, SAUTO, and SACC were observed 

during contact profiles (up to 0.07 mm h-1, 2.9 x 10-10 s-1, and 1.2 x 10-8 s-1) compared to separated 

profiles (up to 0.22 mm h-1, 9.6 x 10-10 s-1, and 2.2 x 10-8 s-1). 

5. Lower precipitation susceptibility with the strongest impact in thin clouds (H < 129 m). 

Contact profiles had lower average So (0.87) than separated profiles (1.08). So depends on 

Nc and Rp, both of which varied with H due to droplet growth. The differences between So for 

contact and separated profiles varied with H due to the co-variability between changes in Nc and 

Rp due to droplet growth and increasing Na. Thin clouds had the highest difference in So (-0.06 

versus 1.47) as poor correlation between Nc and Rp for thin contact profiles led to lower So. 

6. Statistically insignificant differences in meteorological parameters affecting LWP or H. 

Based on ERA5 reanalysis data, LWP was correlated with SST (R = 0.22), To (R = 0.27), LTS 

(R = - 0.29), and EIS (R = - 0.31). Contact profiles with ERA5 low-cloud cover > 0.95 had lower SST 
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(0.01 to 1.48 K lower) and statistically similar To, LTS, and EIS compared to separated profiles. The 

SST differences were insignificant when profiles with ERA5 low-cloud cover < 0.95 were included. 

In situ data from 67 contact and 82 separated profiles were co-located with a MODIS 

retrieval from Terra or Aqua with a time gap (T) below 1 hour. On average, the MODIS Re, , and 

Nc (11.4 m, 11.7, and 150.3 cm-3) were 1.7 m, 2.4, and less than 1 cm-3 higher than the in situ 

Re, , and Nc with R = 0.78, 0.72, and 0.90, respectively. For the contact profiles, in situ Nc and  

were 103 cm-3 and 2.8 higher and in situ Re was 2.2 m lower compared to the separated profiles. 

In comparison, contact profiles had 99 cm-3 and 3.0 higher MODIS Nc and , and 2.8 m lower 

MODIS Re compared to separated profiles. The MODIS retrievals estimated the sign of the 

aerosol-induced changes in Nc, Re, and  with small biases in the magnitude relative to in situ 

estimates. The MODIS estimates were within 5 cm-3, 0.5 m, and 0.7 of the in situ estimates when 

profiles with larger biases (MODIS Re > 15 m or MODIS  > 25) were removed.  

Uncertainties in ERFaci exist due to the inconsistency between process scales and analysis 

scales (McComiskey and Feingold, 2012). This can be addressed using airborne and satellite 

observations on a regional basis. The ORACLES dataset allows such analyses for the southeast 

Atlantic region by addressing the “lack of long-term data sets needed to provide statistical 

significance for a sufficiently large range of aerosol variability influencing specific cloud regimes 

over a range of macrophysical conditions” (Sorooshian et al., 2010). 

Future work should be aimed at improved understanding of ACIs at both the process scale 

and the analysis scale. At the process scale, in-cloud aerosol samples collected using the 

counterflow virtual impactor inlet should be analyzed to examine the extent of entrainment 

mixing of biomass-burning aerosols into stratocumulus clouds. Case studies of cloud profiles can 
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be used to investigate cloud-top entrainment and evaporative cooling using water isotope 

measurements. Data from constant altitude in-cloud flight legs can be used to study the scales at 

which droplet clustering can occur and the horizontal heterogeneity of stratocumulus clouds 

affected by ACIs. Modeling studies should examine the impact of precipitation suppression on 

cloud lifetime and boundary layer dynamics. Model parameterizations of Rp should be adjusted 

to account for changes in relationships between Nc, Rp, and H under different aerosol conditions. 

At the analysis scale, the in situ LWC and Rp can be compared with W-band radar retrievals 

from APR-3 (Dzambo et al., 2021) and the sensitivity of So estimates based on remote sensing 

retrievals could be quantified (Bai et al., 2018). Based on the agreement between MODIS and in 

situ estimates of ACIs, MODIS retrievals can be used to study ACIs for warm, homogeneous 

marine stratocumulus over the southeast Atlantic. Combined with lidar estimates of the vertical 

separation between aerosol and cloud layers and underlying cloud properties (Zeng et al., 2014; 

Rajapakshe et al., 2017; Painemal et al., 2020), MODIS retrievals with low biases could enable 

studies of ACI over a larger domain of the southeast Atlantic and over longer timescales than 

possible using in situ data alone. For example, the High Spectral Resolution LIDAR used during 

ORACLES could be used to estimate the vertical separation between the aerosol and cloud layers 

and ACIs could be estimated using co-located MODIS retrievals. 
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APPENDIX A – Intercomparisons between datasets from in situ cloud 

probes  

The NASA P-3B aircraft was equipped with in situ probes during the NASA ObseRvations 

of Aerosols above CLouds and their intEractionS (ORACLES) field campaign. The probes included 

a Cloud and Aerosol Spectrometer (CAS), Cloud Droplet Probes (CDP), a Phase Doppler 

Interferometer (PDI, serial number 0491), a 2-Dimensional Stereo Probe (2D-S, serial number 

012), and a King hot-wire probe (model KLWC-5, serial number SN-PMI-1058-0704-86). The CAS 

was a part of the Cloud, Aerosol, and Precipitation Spectrometer (CAPS, model AAA-0009, serial 

number 5). The P-3 carried a single CDP (CDP-A, serial number 0901-48) during the 2016 Intensive 

Observation Period (IOP). A second CDP (CDP-B) was added to the P-3 for the 2017 and 2018 

(serial number 1206-070) IOPs. CDP-A was replaced by a different CDP (CDP-C, serial number 

0604-006) for the 2018 IOP. 

The probes were calibrated by the manufacturers before and after each ORACLES IOP. 

Instrument performance was monitored during the IOPs using calibration tests and auxiliary data, 

such as temperature and sensor voltages, were monitored during the research flights. Flight legs 

through aerosol plumes with high (greater than 1000 cm-3) aerosol concentration (Na) were 

conducted during ORACLES. These plumes contained soot particles that could adversely affect 

the quality of measurements, especially for the 2D-S. This was addressed by cleaning the optical 

lenses of the probes with isopropyl before each flight. In Chapter 2, the 2D-S measurements and 

data processing techniques used to identify and remove data artefacts were discussed. 



140 
 

The objective of this appendix was to compare data sets created using measurements 

from different cloud probes used during ORACLES. The focus was on droplets with diameter (D) 

between 3 and 50 m since the CAS, CDP, and PDI measured droplets over this size range. The 

differences between droplet concentration (Nc) and liquid water content (LWC) from the CAS, 

CDP, and PDI data sets were determined. While they may, or may not, be within the uncertainties 

(Baumgardner et al., 2017), the differences between the data sets were quantified to illustrate 

that using one instrument versus another could affect the data analysis. 

The CAS, CDP, and PDI measurements were compared for each IOP when measurements 

were available (Table 22). The CAS measurements were invalid before 6 September 2016 and 

after 7 October 2018 due to an electronics issue. The CDP-A measurements were invalid for the 

2016 and 2017 IOPs due to a misalignment of the optical system. The PDI measurements were 

invalid for the 2017 and 2018 IOPs due to electrical interference on the aircraft, which affected 

data transfer between the instrument and onboard computers. Hence, the following sections 

present analyses comparing measurements from the CAS and the PDI for the 2016 IOP, the CAS 

and the CDP-B for the 2017 and 2018 IOPs, and the CDP-B and the CDP-C for the 2018 IOP. The 

measurements collected by the horizontal and vertical channels of the 2D-S, which concurrently 

sample the cloud volume, were compared for the 2017 and 2018 IOPs. 

2016 IOP - CAS versus PDI 

Nine research flights between 6 and 27 September 2016 were used to create data sets 

for comparing measurements from the CAS and the PDI (Table 22). Nc and LWC were calculated 

for in-cloud measurements, defined as 1 Hz samples with CAS Nc > 10 cm-3, PDI Nc > 10 cm-3, and 

King LWC > 0.05 g m-3. The range of the difference between the CAS and PDI data set parameters 
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was defined using the 95 % confidence intervals (CIs) from a two-sample t-test (Table 23 and 

Table 24). For example, the difference between Nc for in-cloud CAS and PDI data sets was 

determined to be between 9 to 12 cm-3 with 95 % confidence. The average PDI Nc was 164 ± 90 

cm-3 and the average CAS Nc was 153 ± 72 cm-3, where the error estimates represent the standard 

deviation. The PDI Nc and the CAS Nc were well correlated with Pearson’s correlation coefficient 

(R) = 0.88 but their averages had statistically significant differences (Table 23). The PDI more 

frequently sampled Nc > 300 cm-3 and LWC > 0.5 g m-3 (1,353 and 3158 1 Hz measurements) 

compared to the CAS (302 and 25 1 Hz measurements) (Fig. 44).  

The average PDI LWC was 0.35 ± 0.19 g m-3, and the average CAS LWC was 0.15 ± 0.09 g 

m-3. The CAS LWC and PDI LWC were well correlated with R = 0.84 but their averages had 

statistically significant differences (Table 24). The King LWC had an average of 0.28 ± 0.15 g m-3 

for the in-cloud data. The average PDI LWC was higher than the average King LWC (95 % CIs: 0.06 

to 0.07 g m-3 higher, R = 0.78) while the average CAS LWC was lower than the average King LWC 

(95 % CIs: 0.13 to 0.14 g m-3 lower, R = 0.80). 

Vertical profiles of CAS LWC, PDI LWC, and King LWC were compared against the adiabatic 

LWC (hereafter LWCad) (Fig. 45) for in-cloud measurements from cloud profiles flown on the six 

2016 research flights used for data analysis (Table 22). The average CAS LWC and King LWC were 

lower than the average LWCad (95 % CIs: 0.16 to 0.17 g m-3 lower for CAS LWC and 0.01 to 0.03 g 

m-3 lower for King LWC). However, the average PDI LWC was higher than the average LWCad (95 

% CIs: 0.04 to 0.06 g m-3 higher). The PDI LWC exceeded LWCad over the entire cloud layer except 

the top 10 %, the CAS LWC exceeded LWCad for the bottom 10 %, and the King LWC exceeded 

LWCad for the bottom 40 % of the cloud layer. Marine stratocumulus are typically sub-adiabatic 
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due to cloud-top entrainment and droplet evaporation (Chapter 2) or cloud water removal by 

precipitation. Since the LWCad represents the theoretical maximum for LWC based on the 

adiabatic model (Section 3), these results suggest the PDI LWC was an overestimate. 

The CAS Nc and the PDI Nc had larger differences (with lower R) when the CAS Nc and PDI 

Nc both exceeded 200 cm-3 (Table 23). On the other hand, for about 65 % of the measurements 

with CAS Nc and PDI Nc < 200 cm-3, the CAS Nc and PDI Nc had insignificant differences while the 

CAS LWC and PDI LWC had significant differences for the measurements (Table 24). No obvious 

trends were observed for these differences as a function of altitude or pitch angle (not shown).  

The skewness () and mean radius (r1) were calculated for the CAS and PDI in-cloud 

measurements. r1 and  were negatively correlated for each probe with R = - 0.59 for the CAS 

and R = - 0.65 for the PDI (Fig. 46). Over 60 % of the samples had PDI < 2, CAS Nc < 200 cm-3, and 

PDI Nc < 200 cm-3 (Table 23). For these samples, there were insignificant differences between the 

average CAS Nc and PDI Nc (Table 24), but the PDI LWC was significantly higher than CAS LWC 

(Table 24). This was because the average PDI r1 was 2.1 m higher than the average CAS r1. The 

data samples with PDI Nc > 200 cm-3 were associated with r1 < 10 m and PDI > 1 (Fig. 46). Higher 

PDI LWC compared to the CAS LWC, King LWC, and LWCad with statistically significant differences 

suggests the PDI could be oversampling droplets with D > r1 since LWC is dominated by the 

contribution of larger droplets. This would explain the statistically significant differences 

between the CAS LWC and the PDI LWC despite smaller or statistically insignificant differences 

between the CAS Nc and the PDI Nc. Based on these comparisons, measurements from the CAS 

were used to characterize droplets with 3 < D < 50 m for the 2016 IOP in the absence of 

measurements from the CDP-A. 
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2017 IOP - CAS versus CDP-B 

The CAS and the CDP-B data sets were created using in-cloud measurements defined as 1 

Hz samples with CAS Nc > 10 cm-3, CDP-B Nc > 10 cm-3, and King LWC > 0.05 g m-3. For in-cloud 

measurements collected over 12 research flights during the 2017 IOP, the average CDP-B Nc (192 

± 123 cm-3) and CDP-B LWC (0.18 ± 0.16 g m-3) were greater than the average CAS Nc (181 ± 96 

cm-3) and CAS LWC (0.09 ± 0.07 g m-3) (Fig. 47). The average King LWC (0.21 ± 0.15 g m-3) was 

higher than the average CDP-B LWC (95 % CIs: 0.01 to 0.02 g m-3 higher, R = 0.68) and the average 

CAS LWC (95 % CIs: 0.10 to 0.11 g m-3 higher, R = 0.78).  

For the research flights flown on 30 and 31 August 2017, the average CDP-B Nc (109 ± 39 

cm-3) and CDP-B LWC (0.05 ± 0.04 g m-3) were 96 cm-3 and 0.16 g m-3 lower than the CDP-B Nc 

and CDP-B LWC averaged over the other flights. The average CAS Nc (146 ± 46 cm-3) and CAS LWC 

(0.11 ± 0.05 g m-3) for these two flights were 41 cm-3 lower and 0.02 g m-3 higher than their 

corresponding averages. The average King LWC for these flights (0.18 ± 0.10 g m-3) was 0.03 g m-

3 lower than the average King LWC for other flights. Since the relative changes in King LWC and 

CAS LWC compared to other flights were much smaller, it is unlikely the CDP-B measurements 

from 30 and 31 August 2017 were accurate. The CDP-B measurements from 30 and 31 August 

did not impact the results presented in this study since these flights were not included in the data 

analysis (Table 22) because few cloud profiles were conducted during these flights. However, the 

data from these flights were excluded from data sets created for comparing the in-cloud CAS and 

CDP-B measurements for the 2017 IOP. 

The 10 research flights between 12 August and 2 September 2017 were used to create 

data sets for comparing Nc and LWC from the CAS and the CDP-B in-cloud measurements (Fig. 
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47). 95 % CIs between the Nc and LWC from the CAS and the CDP-B are listed in Table 25 and 

Table 26, respectively. The CDP-B more frequently sampled Nc > 300 cm-3 (2536 1 Hz 

measurements) than the CAS (1623 1 Hz measurements). The average CDP-B Nc was higher than 

the average CAS Nc with R = 0.91 (Table 25). For 75 % of the samples with CDP-B Nc < 300 cm-3, 

CAS Nc and CDP-B Nc had small differences (95 % CIs: 1 to 5 cm-3) but the average CDP-B LWC and 

CAS LWC had statistically significant differences (Table 26). This was because the average CDP-B 

r1 was higher than the average CAS r1 (95 % CIs: 1.4 to 1.5 m higher).  

The average King LWC (0.19 ± 0.13 g m-3) was comparable to the average CDP-B LWC (0.18 

± 0.13 g m-3) while the average CAS LWC (0.08 ± 0.06 g m-3) was lower than CDP-B LWC and King 

LWC. The CAS LWC, CDP-B LWC, and King LWC were compared against LWCad (Fig. 48) for in-cloud 

measurements from cloud profiles flown on the seven research flights from the 2017 IOP used 

for data analysis (Table 22). The average LWCad was greater than each LWC estimate but the 

differences with CAS LWC (95 % CIs: 0.17 to 0.19 g m-3 higher) were higher than with CDP-B LWC 

(95 % CIs: 0.05 to 0.07 g m-3 higher). Thus, measurements from the CDP-B were used to 

characterize droplets with 3 < D < 50 m for the 2017 IOP. 

2018 IOP - CAS versus CDP-B 

For the 2018 IOP, Nc and LWC from the CAS and the CDP-B were compared using data sets 

created from the in-cloud measurements on six research flights until the CAS was operational 

(Table 22). These comparisons were consistent with the CAS versus CDP-B comparisons for the 

2017 IOP. The average CDP-B Nc (125 ± 92 cm-3) was higher than the average CAS Nc (106 ± 67 

cm-3) with statistically significant differences (95 % CIs: 15 to 21 cm-3 higher, R = 0.88) (Fig. 49). 

The average CDP-B LWC (0.21 ± 0.14 g m-3) was closer to the average King LWC (0.20 ± 0.12 g m-
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3) compared to the average CAS LWC (0.10 ± 0.07 g m-3). The average LWCad was closer to the 

average CDP-B LWC (95 % CIs: 0.04 to 0.06 g m-3 higher) and the average King LWC (95 % CIs: 0.07 

to 0.08 g m-3 higher) compared to the average CAS LWC (95 % CI: 0.18 to 0.19 g m-3 higher). It 

was hypothesized that the CDP-B provided better estimates of N(D) for droplets with 3 < D < 50 

m compared to the CAS for the first six research flights from the 2018 IOP. 

Based on these comparisons, the CAS could be under-sizing droplets or under-sampling 

certain droplets during the 2017 and 2018 IOPs. The differences between the data sets from the 

CAS and the other instruments could be due to droplet co-incidence in the CAS sample volume. 

It is possible the air flow into the CAS inlet tube could have affected the droplets entering the 

CAS sample volume compared to the CDP-B sample volume (which had a more open path for 

droplets). The differences between the estimates of Nc and LWC from the CAS and CDP-B for the 

2017 IOP increased slightly when the absolute value of pitch angle exceeded 0.5˚ (Table 25 and 

Table 26). However, this was not observed for data collected during the 2018 IOP. No obvious 

trends were observed for these differences as a function of altitude or the skewness from the 

CAS and the CDP-B N(D) (not shown). 

2018 IOP - CDP-B versus CDP-C 

During the 2016 IOP, cloud probes were installed on newly designed pylons that placed 

the instruments directly underneath the wing rather than slightly ahead of its leading edge as 

commonly regarded as best practice (McFarquhar et al. 2007; Afchine et al. 2018). There was 

concern that the air flow into a probe sample volume could have been affected by airflow 

perturbations induced by the wing (Weigel et al. 2016), potentially affecting the size distributions 

and the calculation of Nc, LWC, and other microphysical parameters. To investigate this, a new 
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pylon was designed at the NASA Wallops Flight Facility and installed on one wing for the 2017 

and 2018 IOPs. This pylon placed the CAS and the CDP-B slightly lower and ahead of the leading 

edge of the aircraft wing, compared to other probes. Therefore, the CDP-B and CDP-C were 

mounted at different locations relative to the aircraft wing.  

The mounting locations of the CDP-B and CDP-C were switched halfway through the 2018 

IOP to isolate instrument differences caused by the pylons from those caused by the CDP probes. 

O’Brien et al. (2021, in prep.) compared the in-cloud measurements from CDP-B and CDP-C and 

found the mounting position of the probes had only a 6 % impact on the calculation of Nc with 

the average CDP-B LWC and CDP-C LWC being within 0.02 g m-3. To maintain consistency with 

the 2017 IOP, in-cloud measurements from the CDP mounted on the new pylon (next to the CAS) 

were used for data analysis (Table 22) except for 15 October 2018 when the CDP-C, placed on 

the new pylon, erroneously sampled large Nc due to a qualifier voltage issue. However, the use 

of measurements from the CDP mounted on the old pylon is unlikely to have a significant impact 

on the data analysis.  

2017 and 2018 IOPs - 2D-S horizontal and vertical channel 

Nc and LWC were derived using the in-cloud measurements from the horizontal (NH and 

LWCH) and vertical (NV and LWCV) channels of the 2D-S. NH, NV, LWCH, and LWCV were computed 

for 3,966 and 7,612 1 Hz in-cloud measurements with LWCH and LWCV between 0.001 to 1 g m-3 

collected during 7 and 12 research flights from the 2017 and 2018 IOPs, respectively. Based on a 

linear regression model, NH and NV (Fig. 50) as well as LWCH and LWCV (Fig. 51) were highly 

correlated for the 2017 and 2018 IOPs. Only NH and LWCH were available for the 2016 IOP because 

of soot deposition on the inside of the receive-side mirror of the 2D-S vertical channel. To 
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maintain consistency between the three IOPs, NH and LWCH were used in this study despite the 

availability of Nv and LWCV for the 2017 and 2018 IOPs. The high correlations suggest little 

difference would have resulted in the data analysis from using the average of the 2D-S channels. 

 

TABLES AND FIGURES: 

Table 22: P-3 research flights (PRFs) from ORACLES used for data analysis along with 

instruments that provided valid samples of droplets with 3 < D < 50 m during the PRF (primary 
instrument for data analysis in bold).  

PRF date PRF used Instruments 

Aug 30 2016 No Aborted flight 
Aug 31 2016 No PDI 
Sept 02 2016 No PDI 
Sept 04 2016 No PDI 
Sept 06 2016 Yes CAS, PDI 
Sept 08 2016 No CAS, PDI 
Sept 10 2016 Yes CAS, PDI 
Sept 12 2016 Yes CAS, PDI 
Sept 14 2016 Yes CAS, PDI 
Sept 18 2016 No CAS, PDI 
Sept 20 2016 Yes CAS, PDI 
Sept 24 2016 No CAS, PDI 
Sept 25 2016 Yes CAS, PDI 
Aug 12 2017 Yes CAS, CDP-B 
Aug 13 2017 Yes CAS, CDP-B 
Aug 15 2017 Yes CAS, CDP-B 
Aug 17 2017 Yes CAS, CDP-B 
Aug 18 2017 No CAS, CDP-B 
Aug 19 2017 No Aborted flight 
Aug 21 2017 Yes CAS, CDP-B 
Aug 24 2017 Yes CAS, CDP-B 
Aug 26 2017 No CAS, CDP-B 
Aug 28 2017 No CAS, CDP-B 
Aug 30 2017 No CAS, CDP-B 
Aug 31 2017 No CAS, CDP-B 
Sept 02 2017 No CAS, CDP-B 
Sept 27 2018 Yes CAS, CDP-B, CDP-C 
Sept 30 2018 Yes CAS, CDP-B, CDP-C 
Oct 02 2018 No CAS, CDP-B, CDP-C 
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Oct 03 2018 Yes CAS, CDP-B, CDP-C 
Oct 05 2018 Yes CAS, CDP-B, CDP-C 
Oct 07 2018 Yes CAS, CDP-B, CDP-C 
Oct 10 2018 Yes          CDP-B, CDP-C 
Oct 12 2018 Yes          CDP-B, CDP-C 
Oct 15 2018 Yes          CDP-B, CDP-C 
Oct 17 2018 No          CDP-B, CDP-C 
Oct 19 2018 Yes          CDP-B, CDP-C 
Oct 21 2018 Yes          CDP-B, CDP-C 
Oct 23 2018 Yes          CDP-B, CDP-C 

 

Table 23: 95 % confidence intervals (CIs) for differences between CAS and PDI Nc (positive when 
average PDI Nc higher) determined using a two-sample t-test. Number of 1 Hz measurements 
(n), correlation co-efficient (R) and p-value (p) listed for various criteria applied to the CAS and 

the CDP N(D), where  refers to skewness. Best-fit slope (Mo) and intercept (Co) were 
determined using linear regression for CAS data as a function of PDI data. 

Criteria n CIs (cm-3) R p Mo Co (cm-3) 

All data 16559 9 to 12 0.88 0 0.70 38 
CAS and PDI Nc > 300 cm-3 243 67 to 90 0.46 0 0.12 273 
CAS and PDI Nc < 300 cm-3 15147 2 to 5 0.88 0 0.81 24 
CAS and PDI Nc > 200 cm-3 4076 32 to 37 0.64 0 0.32 156 
CAS and PDI Nc < 200 cm-3 10832 -2 to 1 0.83 0.32 0.82 21 

PDI < 2 14311 4 to 7 0.89 0 0.76 31 

PDI > 2 2248 37 to 48 0.85 0 0.58 60 

PDI < 2, 
CAS & PDI Nc < 200 cm-3 

10066 -3 to 0 0.83 0.06 0.82 21 

 

Table 24: Same as Table 23, but the parameters correspond to comparisons between CAS and 
PDI LWC. The CIs were positive when the average PDI LWC was higher. 

Criteria n CIs (g m-3) R p Mo Co (g m-3) 

All data 16559 0.20 to 0.20 0.84 0 0.40 0.01 
CAS and PDI Nc > 300 cm-3 243 0.25 to 0.31 0.92 0 0.36 0.02 
CAS and PDI Nc < 300 cm-3 15147 0.19 to 0.20 0.84 0 0.42 0.01 
CAS and PDI Nc > 200 cm-3 4076 0.23 to 0.25 0.93 0 0.38 0.01 
CAS and PDI Nc < 200 cm-3 10832 0.19 to 0.19 0.81 0 0.41 0.01 

PDI < 2 14311 0.21 to 0.21 0.83 0 0.40 0.01 

PDI > 2 2248 0.15 to 0.16 0.92 0 0.35 0.01 

PDI < 2, 
CAS & PDI Nc < 200 cm-3 

10066 0.19 to 0.20 0.79 0 0.41 0.01 
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Table 25: Same as Table 23, but the parameters correspond to comparisons between CAS Nc 
and CDP-B Nc from 10 research flights during 2017 IOP (positive CIs when the average CDP Nc 
was higher and linear regression coefficients listed for CAS data as function of CDP-B data). 

Criteria n CIs (cm-3) R p Mo Co (cm-3) 

All data (excluding 08/30, 31) 11438 16 to 22 0.91 0 0.73 37 
CDP Nc > 300 cm-3 2536 73 to 80 0.62 0 0.54 102 
CDP Nc < 300 cm-3 8902 1 to 5 0.87 0.01 0.84 20 

pitch < - 0.5° or pitch > 0.5° 8445 18 to 25 0.90 0 0.70 42 
- 0.5° < pitch < 0.5° 2961 8 to 20 0.91 0 0.80 23 

 

Table 26: Same as Table 25, but parameters correspond to comparisons between CAS LWC and 
CDP-B LWC. 

Criteria n CI (g m-3) R p Mo Co (g m-3) 

All data (excluding 08/30, 31) 11438 0.11 to 0.12 0.82 0 0.37 0.01 
CDP Nc > 300 cm-3 2536 0.17 to 0.19 0.85 0 0.40 0.00 
CDP Nc < 300 cm-3 8902 0.09 to 0.10 0.80 0 0.37 0.02 

pitch < - 0.5° or pitch > 0.5° 8445 0.12 to 0.12 0.83 0 0.37 0.01 
- 0.5° < pitch < 0.5° 2961 0.10 to 0.11 0.79 0 0.39 0.02 
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Figure 44: (a) Nc and (b) LWC measured by CAS against that measured by PDI during 2016 IOP. 
Each dot represents a 1 Hz data sample colored by King LWC. Linear regression coefficients 
indicated in legend. 
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Figure 45: Boxplots representing profiles of (a) CAS LWC, (b) PDI LWC, and (c) King LWC with 
adiabatic LWC (LWCad) as function of normalized height above cloud base (ZN). These data 
represent cloud samples from cloud profiles flown during the six research flights from 2016 IOP 
used for data analysis. 

 

Figure 46: Mean radius (r1) versus skewness () for (a) CAS and (b) PDI droplet size 
distributions. Each dot represents a 1 Hz sample colored by the corresponding droplet 
concentration. 
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Figure 47: Scatter plots comparing (a) Nc and (b) LWC measured by CAS and CDP-B during 2017 
IOP excluding data from 30 and 31 August 2017. Each dot represents a 1 Hz data sample 
colored by King LWC. Linear regression coefficients indicated in legend. 
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Figure 48: Boxplots representing the vertical profiles of (a) CAS LWC, (b) CDP-B LWC, and (c) 
King LWC with LWCad as function of ZN. These data represent cloud samples from cloud profiles 
flown during the seven research flights from 2017 IOP used for data analysis. 
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Figure 49: Scatter plots comparing (a) Nc and (b) LWC measured by CAS and CDP-B during 2018 
IOP for six research flights when CAS was operational. Each dot represents a 1 Hz data sample 
colored by King LWC. Linear regression coefficients indicated in legend. 
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Figure 50: Droplet concentration measured by vertical array of 2D-S (NV) as function of droplet 
concentration measured by horizontal array of 2D-S (NH) for (a) 2017 and (b) 2018 IOP. Each 
data point represents a 1 Hz sample colored by Re for cloud profiles flown during the research 
flights from 2017 and 2018 IOP used for data analysis. Linear regression coefficients indicated in 
legend. 
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Figure 51: Same as Fig. 50, comparing LWCH and LWCV for (a) 2017 and (b) 2018 IOP. 
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APPENDIX B – Data processing codes and tools developed 

The University of Illinois/Oklahoma Optical Array Probe Processing Software (UIOOPS) 

(McFarquhar et al., 2018) was used to process the 2D-S and HVPS-3 data. The software was 

modified to address data quality issues due to soot deposition on the optical lenses (Fig. 52) 

during flight legs through aerosol plumes. In this section, the modifications are described, and 

scripts developed for the modifications are provided. The scripts previously available online 

before the conduct of this research and used without modifications are not provided here. 

UIOOPS includes three processing steps: file decompression, image processing, and final 

product creation (Fig. 53). Step 1 converts different types of raw data files into the NetCDF 

format. Step 2 processes images for individual particles, determines the inter-arrival time for the 

particles, and retrieves morphological properties like maximum dimension, area ratio, and aspect 

ratio from the binary images. Step 3 sorts the particles into size bins for each unit of time in order 

to calculate the particle size distributions. Particle rejection based on inter-arrival time (shatter 

removal) or image shape (aspect ratio, area ratio, etc.) is also done during step 3. No changes 

were made to Step 1. Two changes were made to Step 2: 

1. Modification of the inter-arrival time analysis. 

The inter-arrival time analysis is done before step 3 to determine the threshold for 

particle rejection. For the 2-DS data files, particles with inter-arrival time < 6 µs, indicative of 

intermittently stuck diodes, were rejected. The threshold was determined using the peaks of a 

bimodal distribution of inter-arrival times (Field et al., 2006). For the HVPS-3 data files, a wide 

range of thresholds were determined for different flights. Thus, a dynamic threshold was used. 
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The analysis was conducted using the script “IntArrAnalysis_time.m”. This script provided 

histograms of inter-arrival times for populations of particles sampled within a specific time period 

(Fig. 54). The script was written by Wei Wu, modified by Joe Finlon, and modified again for 

ORACLES. The final version is provided along with “IntArr_time.m” which specifies the inputs. 

2. “Shadow diode” analysis to identify diodes affected by soot deposition. 

A diode that is stuck or occluded by soot deposition would be “shadowed” for a longer 

duration compared to diodes shadowed by particles crossing the probe sample volume. The 

impact of soot deposition on the particles imaged by the photodiode array was examined by 

comparing the illumination counts across the photodiode array. Diodes shadowed for more than 

20% of the average count across the array were identified as “shadow diodes” (Fig. 55). Step 2 

was then re-run by forcibly illuminating the shadow diodes. The script “find_shadow_diodes.m” 

was written to conduct this analysis. This script provides a list of the shadow diodes for the data 

file which is used as an input to re-run Step 2.  

The thresholds used for particle rejection in Step 3 were changed according to the 

artifacts observed within particle images from ORACLES (Fig. 56). Particles with aspect ratio > 4 

or area ratio < 0.5 were rejected and hollow particles were accepted. 

In addition to the scripts mentioned above, the following scripts are provided:  

1. Retrieving the true air speed from 2D-S or HVPS-3 data files: “loadTASinfo_2DS.m” 

2. Running all three steps for either HVPS-3 or 2D-S data files: “steps_script_1.m” 

3. Combining the output files from Step 2: “combine_pbp.m” (originally written by Joe 

Finlon and modified for ORACLES). 
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4. Combining the output files from Step 3 and adding a time sync with ORACLES data 

files: “combine_sizedist.m” 

5. Step 2 script: “imgProc_sm.m” (written and modified by various group members). 

6. Step 3 script: “sizeDist.m” (written and modified by various group members). 

7. Another script required for the inter-arrival time analysis is available here: 

https://svn.oss.deltares.nl/repos/openearthtools/tags/xbeach_release_02Nov2011/

_externals/general/time_fun/time2datenum.m  

The following naming convention was followed:  

baseYYmmDDhhMMss.2DS or baseYYmmDDhhMMss.HVPS (raw data file),  

baseYYmmDDhhMMss.H.cdf and BaseYYmmDDhhMMss.V.cdf  (step 1 output),  

baseYYmmDDhhMMss.H_1.cdf and BaseYYmmDDhhMMss.V_1.cdf (step 2 output), and  

baseYYmmDDhhMMss.H.2DS.cdf and BaseYYmmDDhhMMss.H.2DS.cdf (step 3 output). 

 

TABLES AND FIGURES: 

 

Figure 52: Aerosol deposition on the inside of the receive side mirror for 2D-S vertical channel 
with the cleaned mirror on the right. (courtesy: Joe O’Brien). 

https://svn.oss.deltares.nl/repos/openearthtools/tags/xbeach_release_02Nov2011/_externals/general/time_fun/time2datenum.m
https://svn.oss.deltares.nl/repos/openearthtools/tags/xbeach_release_02Nov2011/_externals/general/time_fun/time2datenum.m
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Figure 53: UIOOPS software structure and processing steps (courtesy: Wei Wu). 

 

Figure 54: Inter-arrival time distribution for particles sampled by 2D-S between 10:50:20 and 
10:50:46 UTC on 6 September 2016. The lines indicate values at different points of interest 
from the peaks of the bimodal distribution (minima between modes from fit/histogram, etc.) 
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Figure 55: Illumination counts for the 2D-S photodiode array from 10 September 2016. The 
black line is average illumination count with diode #77 identified as a shadow diode. 

 

Figure 56: (a-c) Different types of data artifacts and (d) hollow particles from the 2D-S during 
ORACLES. The vertical dotted lines (blue) separate individual particles. 
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LOADTASINFO_2DS.M 

function [timehhmmss,tas] = loadTASinfo_2DS(filename, startRow, endRow) 
%IMPORTFILE Import numeric data from a text file as column vectors. 
%   [VARNAME1,VARNAME2] = IMPORTFILE(FILENAME) Reads data from text file 
%   FILENAME for the default selection. 
% 
%   [VARNAME1,VARNAME2] = IMPORTFILE(FILENAME, STARTROW, ENDROW) Reads data 
%   from rows STARTROW through ENDROW of text file FILENAME. 
% 
% Example: 
%   [VarName1,VarName2] = importfile('base160906075333.tas.csv',1, 2799); 
% 
%    See also TEXTSCAN. 
 
% Auto-generated by MATLAB on 2016/11/09 23:51:10 
 
%% Initialize variables. 
delimiter = ','; 
if nargin<=2 
    startRow = 1; 
    endRow = inf; 
end 
 
%% Format string for each line of text: 
%   column1: double (%f) 
% column2: double (%f) 
% For more information, see the TEXTSCAN documentation. 
formatSpec = '%f%f%*s%*s%*s%*s%*s%*s%*s%[^\n\r]'; 
 
%% Open the text file. 
fileID = fopen(filename,'r'); 
 
%% Read columns of data according to format string. 
% This call is based on the structure of the file used to generate this 
% code. If an error occurs for a different file, try regenerating the code 
% from the Import Tool. 
dataArray = textscan(fileID, formatSpec, endRow(1)-startRow(1)+1, 'Delimiter', delimiter, 'EmptyValue' ,NaN,'HeaderLines', 
startRow(1)-1, 'ReturnOnError', false); 
for block=2:length(startRow) 
    frewind(fileID); 
    dataArrayBlock = textscan(fileID, formatSpec, endRow(block)-startRow(block)+1, 'Delimiter', delimiter, 'EmptyValue' 
,NaN,'HeaderLines', startRow(block)-1, 'ReturnOnError', false); 
    for col=1:length(dataArray) 
        dataArray{col} = [dataArray{col};dataArrayBlock{col}]; 
    end 
end 
 
%% Close the text file. 
fclose(fileID); 
 
%% Post processing for unimportable data. 
% No unimportable data rules were applied during the import, so no post 
% processing code is included. To generate code which works for 
% unimportable data, select unimportable cells in a file and regenerate the 
% script. 
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%% Allocate imported array to column variable names 
timehhmmss = dataArray{:, 1}; 
tas = dataArray{:, 2}; 
 

STEPS_SCR_1.M 

% Run all steps at once 
 
flight='181017'; 
file='064304'; 
probe='2DS'; 
diodes=0; % 0 unless diode re-analysis being performed 
 
% path=['/scratch/sid/oracles/oracles_20' flight]; 
path=['/condo/mcfarq/sid/b/oracles/oracles_20' flight]; 
filename=[path '/base' flight file]; 
orientation1='H'; 
orientation2='V'; 
campaign='ORACLES'; 
 
switch probe 
    case '2DS' 
% 2DS Step 1 
if diodes==0 
read_binary_SPEC([filename '.' probe],filename) 
else 
end 
 
% 2DS Step 2 - H 
nChucks=1; % 48;          % Number of chucks (seperate files) 
nEvery =1000000;          % Size of every chucks. 
numb=11:10+nChucks;       % Start from 11 to avoid sigle numbers in file name for later convinience 
for iii=1:nChucks %3:4    % iiith chuck will be processed 
    infile  = [filename '.' orientation1 '.cdf'];  % Input file 
    if diodes==0 
    outfile = [filename '.' orientation1 '_1.cdf'];                      % Output image autoanalysis file 
    else 
    outfile = [filename '.' orientation1 '_2.cdf'];                      % Output image autoanalysis file         
    end 
    imgProc_sm(infile,outfile, probe, iii, nEvery,campaign,path,flight,file);  % See imgprocdm documentation for more information 
end 
 
% 2DS Step 2 - V 
nChucks=1; % 48;          % Number of chucks (seperate files) 
nEvery =1000000;          % Size of every chucks. 
numb=11:10+nChucks;       % Start from 11 to avoid sigle numbers in file name for later convinience 
for iii=1:nChucks %3:4    % iiith chuck will be processed 
    infile  = [filename '.' orientation2 '.cdf'];  % Input file 
    if diodes==0 
    outfile = [filename '.' orientation2 '_1.cdf'];                      % Output image autoanalysis file 
    else 
    outfile = [filename '.' orientation2 '_2.cdf'];                      % Output image autoanalysis file         
    end 
    imgProc_sm(infile,outfile, probe, iii, nEvery,campaign,path,flight,file);  % See imgprocdm documentation for more information 
end 
 
% 2DS Step 3 - H 
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[timehhmmss,tas]=loadTASinfo_2DS([filename '.tas.csv']); 
pres=tas; 
pres(:)=9e5; 
temp=tas; 
temp(:)=15; 
if diodes==0 
inFile =  [filename '.' orientation1 '_1.cdf']; 
outFile = [filename '.' orientation1 '.' probe '.cdf']; 
else 
inFile =  [filename '.' orientation1 '_2.cdf']; 
outFile = [filename '.' orientation1 '.' probe '_2.cdf']; 
end 
ds=0.010; 
IntArrFile=[probe '_intArrThreshold_base' flight file '.' orientation1 '_1.cdf']; 
sizeDist(inFile,outFile, tas, floor(timehhmmss),probe, 6, 0,pres,temp,campaign,['20' flight ' ' file],IntArrFile); 
 
%sizeDist(inFile,outFile, tas, floor(timehhmmss),probe, 6, 0,pres,temp,campaign,0); 
 
% 2DS Step 3 - V 
[timehhmmss,tas]=loadTASinfo_2DS([filename '.tas.csv']); 
pres=tas; 
pres(:)=9e5; 
temp=tas; 
temp(:)=15; 
outFile = [filename '.' orientation2 '.' probe '.cdf']; 
if diodes==0 
inFile =  [filename '.' orientation2 '_1.cdf']; 
outFile = [filename '.' orientation2 '.' probe '.cdf']; 
else 
inFile =  [filename '.' orientation2 '_2.cdf']; 
outFile = [filename '.' orientation2 '.' probe '_2.cdf']; 
end 
ds=0.010; 
IntArrFile=[probe '_intArrThreshold_base' flight file '.' orientation2 '_1.cdf']; 
sizeDist(inFile,outFile, tas, floor(timehhmmss),probe, 6, 0,pres,temp,campaign,['20' flight ' ' file],IntArrFile); 
 
%sizeDist(inFile,outFile, tas, floor(timehhmmss),probe, 6, 0,pres,temp,campaign,0); 
 
    case 'HVPS' 
% HVPS Step 1 
if diodes==0 
read_binary_hvps([filename '.' probe],filename) 
else 
end 
 
% HVPS Step 2 
nChucks=1; % 48;          % Number of chucks (seperate files) 
nEvery =1000000;          % Size of every chucks. 
numb=11:10+nChucks;       % Start from 11 to avoid sigle numbers in file name for later convinience 
for iii=1:nChucks %3:4    % iiith chuck will be processed 
    infile  = [filename '.' orientation2 '.cdf'];  % Input file 
    if diodes==0 
    outfile = [filename '.' orientation2 '_1.cdf'];                      % Output image autoanalysis file 
    else 
    outfile = [filename '.' orientation2 '_1.cdf'];                      % Output image autoanalysis file     
    end 
    imgProc_sm(infile,outfile, probe, iii, nEvery,campaign,path,flight,file);  % See imgprocdm documentation for more information 
end 
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% HVPS Step 3 
[timehhmmss,tas]=loadTASinfo_2DS([filename '.tas.csv']); 
pres=tas; 
pres(:)=9e5; 
temp=tas; 
temp(:)=15; 
if diodes==0 
outFile = [filename '.' orientation2 '.' probe '.cdf']; 
inFile =  [filename '.' orientation2 '_1.cdf']; 
else 
outFile = [filename '.' orientation2 '.' probe '.cdf']; 
inFile =  [filename '.' orientation2 '_1.cdf']; 
end 
ds=0.150; 
IntArrFile=[probe '_intArrThreshold_base' flight file '.' orientation2 '_1.cdf']; 
sizeDist(inFile,outFile, tas, floor(timehhmmss),probe, 6, 0,pres,temp,campaign,['20' flight ' ' file],IntArrFile); 
 
%sizeDist(inFile,outFile, tas, floor(timehhmmss),probe, 6, 0,pres,temp,campaign,0); 
 
    case 'CIP' 
% CIP Step 1 
filename=[path '/' flight(1:2) '_' flight(3:4) '_' flight(5:6) '_' file(1:2) '_' file(3:4) '_' file(5:6) '.sea']; 
read_binary_SEA(filename,[path '/base' flight file]) 
filename=[path '/base' flight file]; 
 
% CIP Step 2 
nChucks=1; % 48;          % Number of chucks (seperate files) 
nEvery =1000000;          % Size of every chucks. 
numb=11:10+nChucks;       % Start from 11 to avoid sigle numbers in file name for later convinience 
for iii=1:nChucks %3:4    % iiith chuck will be processed 
    infile  = [filename '.' probe '.cdf'];  % Input file 
    outfile = [filename '.' probe '_1.cdf'];   % Output image autoanalysis file 
    imgProc_sm(infile,outfile, probe, iii, nEvery,campaign,path,flight,file);  % See imgprocdm documentation for more information 
end 
 
% CIP Step 3 
loadTASinfo_CIP; 
%clearvars -except flight file path timehhmmss tas 
pres=tas; 
pres(:)=9e5; 
temp=tas; 
temp(:)=15; 
outFile = [filename '.' orientation2 '.' probe '.cdf']; 
inFile =  [filename '.' probe '_1.cdf']; 
ds=0.025; 
IntArrFile=[probe '_intArrThreshold_base' flight file '.' orientation2 '_1.cdf']; 
sizeDist(inFile,outFile, tas, floor(timehhmmss),probe, 6, 0,pres,temp,campaign,['20' flight ' ' file],IntArrFile); 
 
%sizeDist(inFile,outFile, tas, floor(timehhmmss),probe, 6, 0,pres,temp,campaign,0); 
 
End 

 

COMBINE_PBP.M 

% function combine_pbp(campaign, inputDate) 
campaign='oracles'; 
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inputDate='20181003'; 
orientation='V'; 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%% 
% This code is property of Joseph Finlon. Univ of Illinois. Copyright 2016. 
% Modified for ORACLES: Siddhant Gupta - 10/03/2017 
%  
% This script combines processed particle data into 1 file if more than one 
% data file exists for that day. 
%  
% Inputs: 
%   campaign - 'olympex', 'gcpex', 'mc3e' 
%   inputDate - date to process in 'yyyymmdd' format 
%   probeType - '2DC', '2DP', '2DS', 'HVPS' 
%  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%% 
%% Grab processed file names for the input date 
 
% path = '/scratch/sid/'; 
 
 
path = sprintf('/condo/mcfarq/sid/b/%s/%s_%s/', campaign,campaign,inputDate); 
% path = sprintf('/scratch/sid/%s/%s_%s/', campaign,campaign,inputDate); 
% path = [pwd '/']; 
addpath(path); 
infile = dir(fullfile(path,sprintf('base%s*.%s_1.cdf', inputDate(3:8),orientation))); % grab files to process 
 
%% Loop through each file to append data for each variable 
 
if size(infile,1)>1    
    %% Load data from each processed file into a structure array 
     
    for i=1:size(infile,1) 
        disp(['Combining file ', num2str(i), ' of ', num2str(size(infile,1))]) 
        infilename = sprintf('%s%s',path,infile(i).name); 
         
        data(i).Time = ncread(infilename,'Time'); 
        data(i).Date = ncread(infilename,'Date'); 
        data(i).msec = ncread(infilename,'msec'); 
        data(i).Time_in_seconds = ncread(infilename,'Time_in_seconds'); 
        data(i).SliceCount = ncread(infilename,'SliceCount'); 
        data(i).DMT_DOF_SPEC_OVERLOAD = ncread(infilename,'DMT_DOF_SPEC_OVERLOAD'); 
        data(i).Particle_number_all = ncread(infilename,'Particle_number_all'); 
        data(i).position = ncread(infilename,'position'); 
        data(i).particle_time = ncread(infilename,'particle_time'); 
        data(i).particle_millisec = ncread(infilename,'particle_millisec'); 
        data(i).particle_microsec = ncread(infilename,'particle_microsec'); 
        data(i).parent_rec_num = ncread(infilename,'parent_rec_num'); 
        data(i).particle_num = ncread(infilename,'particle_num'); 
        data(i).image_length = ncread(infilename,'image_length'); 
        data(i).image_width = ncread(infilename,'image_width'); 
        data(i).image_area = ncread(infilename,'image_area'); 
        data(i).image_longest_y = ncread(infilename,'image_longest_y'); 
        data(i).image_diam_minR = ncread(infilename,'image_diam_minR'); 
        data(i).image_diam_AreaR = ncread(infilename,'image_diam_AreaR'); 
        data(i).image_perimeter = ncread(infilename,'image_perimeter'); 
%        data(i).image_RectangleL = ncread(infilename,'image_RectangleL'); 
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%        data(i).image_RectangleW = ncread(infilename,'image_RectangleW'); 
%        data(i).image_RectangleAngle = ncread(infilename,'image_RectangleAngle'); 
%        data(i).image_EllipseL = ncread(infilename,'image_EllipseL'); 
%        data(i).image_EllipseW = ncread(infilename,'image_EllipseW'); 
%        data(i).image_EllipseAngle = ncread(infilename,'image_EllipseAngle'); 
        data(i).percent_shadow_area = ncread(infilename,'percent_shadow_area'); 
        data(i).edge_at_max_hole = ncread(infilename,'edge_at_max_hole'); 
        data(i).max_hole_diameter = ncread(infilename,'max_hole_diameter'); 
        data(i).part_z = ncread(infilename,'part_z'); 
        data(i).size_factor = ncread(infilename,'size_factor'); 
        data(i).holroyd_habit = ncread(infilename,'holroyd_habit'); 
        data(i).area_hole_ratio = ncread(infilename,'area_hole_ratio'); 
        data(i).inter_arrival = ncread(infilename,'inter_arrival'); 
        data(i).bin_stats = ncread(infilename,'bin_stats'); 
    end 
     
    %% Combine structures into 1 array 
     
    arrayIndex = 0; 
     
    for i=1:size(infile,1) 
        Date(arrayIndex+1:arrayIndex+length(data(i).Date),1) = data(i).Date; 
        Time(arrayIndex+1:arrayIndex+length(data(i).Time),1) = data(i).Time; 
        msec(arrayIndex+1:arrayIndex+length(data(i).msec),1) = data(i).msec; 
        Time_in_seconds(arrayIndex+1:arrayIndex+length(data(i).Time_in_seconds),1) = data(i).Time_in_seconds; 
        SliceCount(arrayIndex+1:arrayIndex+length(data(i).SliceCount),1) = data(i).SliceCount; 
        DMT_DOF_SPEC_OVERLOAD(arrayIndex+1:arrayIndex+length(data(i).DMT_DOF_SPEC_OVERLOAD),1) = 
data(i).DMT_DOF_SPEC_OVERLOAD; 
        Particle_number_all(arrayIndex+1:arrayIndex+length(data(i).Particle_number_all),1) = data(i).Particle_number_all; 
        position(:,arrayIndex+1:arrayIndex+length(data(i).position)) = data(i).position; 
        particle_time(arrayIndex+1:arrayIndex+length(data(i).particle_time),1) = data(i).particle_time; 
        particle_millisec(arrayIndex+1:arrayIndex+length(data(i).particle_millisec),1) = data(i).particle_millisec; 
        particle_microsec(arrayIndex+1:arrayIndex+length(data(i).particle_microsec),1) = data(i).particle_microsec; 
        parent_rec_num(arrayIndex+1:arrayIndex+length(data(i).parent_rec_num),1) = data(i).parent_rec_num; 
        particle_num(arrayIndex+1:arrayIndex+length(data(i).particle_num),1) = data(i).particle_num; 
        image_length(arrayIndex+1:arrayIndex+length(data(i).image_length),1) = data(i).image_length; 
        image_width(arrayIndex+1:arrayIndex+length(data(i).image_width),1) = data(i).image_width; 
        image_area(arrayIndex+1:arrayIndex+length(data(i).image_area),1) = data(i).image_area; 
        image_longest_y(arrayIndex+1:arrayIndex+length(data(i).image_longest_y),1) = data(i).image_longest_y; 
        image_diam_minR(arrayIndex+1:arrayIndex+length(data(i).image_diam_minR),1) = data(i).image_diam_minR; 
        image_diam_AreaR(arrayIndex+1:arrayIndex+length(data(i).image_diam_AreaR),1) = data(i).image_diam_AreaR; 
        image_perimeter(arrayIndex+1:arrayIndex+length(data(i).image_perimeter),1) = data(i).image_perimeter; 
%        image_RectangleL(arrayIndex+1:arrayIndex+length(data(i).image_RectangleL),1) = data(i).image_RectangleL; 
%        image_RectangleW(arrayIndex+1:arrayIndex+length(data(i).image_RectangleW),1) = data(i).image_RectangleW; 
%        image_RectangleAngle(arrayIndex+1:arrayIndex+length(data(i).image_RectangleAngle),1) = data(i).image_RectangleAngle; 
%        image_EllipseL(arrayIndex+1:arrayIndex+length(data(i).image_EllipseL),1) = data(i).image_EllipseL; 
%        image_EllipseW(arrayIndex+1:arrayIndex+length(data(i).image_EllipseW),1) = data(i).image_EllipseW; 
%        image_EllipseAngle(arrayIndex+1:arrayIndex+length(data(i).image_EllipseAngle),1) = data(i).image_EllipseAngle; 
        percent_shadow_area(arrayIndex+1:arrayIndex+length(data(i).percent_shadow_area),1) = data(i).percent_shadow_area; 
        edge_at_max_hole(arrayIndex+1:arrayIndex+length(data(i).edge_at_max_hole),1) = data(i).edge_at_max_hole; 
        max_hole_diameter(arrayIndex+1:arrayIndex+length(data(i).max_hole_diameter),1) = data(i).max_hole_diameter; 
        part_z(arrayIndex+1:arrayIndex+length(data(i).part_z),1) = data(i).part_z; 
        size_factor(arrayIndex+1:arrayIndex+length(data(i).size_factor),1) = data(i).size_factor; 
        holroyd_habit(arrayIndex+1:arrayIndex+length(data(i).holroyd_habit),1) = data(i).holroyd_habit; 
        area_hole_ratio(arrayIndex+1:arrayIndex+length(data(i).area_hole_ratio),1) = data(i).area_hole_ratio; 
        inter_arrival(arrayIndex+1:arrayIndex+length(data(i).inter_arrival),1) = data(i).inter_arrival; 
        bin_stats(:,i) = data(i).bin_stats; 
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        arrayIndex = length(Date); 
    end 
     
    %% Create variables for new output file 
     
    disp(['Saving ', num2str(arrayIndex), ' particles to file']) 
     
%     outfile = sprintf('%sbase1609%s%s.H_1.cdf', path, inputDate(7:8), infile(1).name(end-13:end-8)); 
%     outpath = sprintf('/data/pecan/a/sgupta92/%s/%s_%s/IntArrAnalysis/', campaign,campaign,inputDate); 
     outpath = path; 
%   outpath = [pwd '/']; 
    outfile = sprintf('%sbase%s%s.combined.%s_1.cdf', outpath, inputDate(3:8), infile(1).name(end-13:end-8),orientation); 
%         path, inputDate(7:8)); % define combined file name 
    f = netcdf.create(outfile, '64BIT_OFFSET'); 
%     dimid0 = netcdf.defDim(f,'time',netcdf.getConstant('NC_UNLIMITED')); 
    dimid0 = netcdf.defDim(f,'time',arrayIndex); 
    dimid1 = netcdf.defDim(f,'pos_count',2); 
    dimid2 = netcdf.defDim(f,'bin_count',size(bin_stats, 1)); 
    dimid3 = netcdf.defDim(f,'files_stitched',size(infile,1)); 
 
    varid0  = netcdf.defVar(f,'Time','double',dimid0); 
    varid1 = netcdf.defVar(f,'Date','double',dimid0); 
    varid2  = netcdf.defVar(f,'msec','double',dimid0); 
    varid101 = netcdf.defVar(f,'Time_in_seconds','double',dimid0); 
    varid102 = netcdf.defVar(f,'SliceCount','double',dimid0); 
    varid103 = netcdf.defVar(f,'DMT_DOF_SPEC_OVERLOAD','double',dimid0); 
    varid104 = netcdf.defVar(f,'Particle_number_all','double',dimid0); 
    varid4  = netcdf.defVar(f,'position','double',[dimid1 dimid0]); 
    varid5  = netcdf.defVar(f,'particle_time','double',dimid0); 
    varid6  = netcdf.defVar(f,'particle_millisec','double',dimid0); 
    varid7  = netcdf.defVar(f,'particle_microsec','double',dimid0); 
    varid8  = netcdf.defVar(f,'parent_rec_num','double',dimid0); 
    varid9  = netcdf.defVar(f,'particle_num','double',dimid0); 
    varid10 = netcdf.defVar(f,'image_length','double',dimid0);                                 
    varid11 = netcdf.defVar(f,'image_width','double',dimid0);                                  
    varid12 = netcdf.defVar(f,'image_area','double',dimid0);                                   
    varid13 = netcdf.defVar(f,'image_longest_y','double',dimid0);                              
    varid26 = netcdf.defVar(f,'image_diam_minR','double',dimid0);                        
    varid27 = netcdf.defVar(f,'image_diam_AreaR','double',dimid0);      
    varid45 = netcdf.defVar(f,'image_perimeter','double',dimid0);                        
%    varid46 = netcdf.defVar(f,'image_RectangleL','double',dimid0);                        
%    varid47 = netcdf.defVar(f,'image_RectangleW','double',dimid0);                          
%    varid67 = netcdf.defVar(f,'image_RectangleAngle','double',dimid0);                          
%    varid48 = netcdf.defVar(f,'image_EllipseL','double',dimid0);                          
%    varid49 = netcdf.defVar(f,'image_EllipseW','double',dimid0);                             
%    varid69 = netcdf.defVar(f,'image_EllipseAngle','double',dimid0);                             
    varid28 = netcdf.defVar(f,'percent_shadow_area','double',dimid0);                          
    varid29 = netcdf.defVar(f,'edge_at_max_hole','double',dimid0);                             
    varid30 = netcdf.defVar(f,'max_hole_diameter','double',dimid0);                            
    varid31 = netcdf.defVar(f,'part_z','double',dimid0);                                       
    varid32 = netcdf.defVar(f,'size_factor','double',dimid0);                                  
    varid33 = netcdf.defVar(f,'holroyd_habit','double',dimid0);                                
    varid34 = netcdf.defVar(f,'area_hole_ratio','double',dimid0);                              
    varid35 = netcdf.defVar(f,'inter_arrival','double',dimid0);                                
    varid36 = netcdf.defVar(f,'bin_stats','double',[dimid2 dimid3]);                                    
    netcdf.endDef(f) 
     
    %% Save the combined variables 
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    netcdf.putVar ( f, varid0, Time ); 
    netcdf.putVar ( f, varid1, Date ); 
    netcdf.putVar ( f, varid2, msec ); 
    netcdf.putVar ( f, varid101,  Time_in_seconds ); 
    netcdf.putVar ( f, varid102,  SliceCount ); 
    netcdf.putVar ( f, varid103,  DMT_DOF_SPEC_OVERLOAD ); 
    netcdf.putVar ( f, varid104,  Particle_number_all ); 
    netcdf.putVar ( f, varid4, position' ); 
    netcdf.putVar ( f, varid5, particle_time ); 
    netcdf.putVar ( f, varid6, particle_millisec ); 
    netcdf.putVar ( f, varid7, particle_microsec ); 
    netcdf.putVar ( f, varid8, parent_rec_num );     
    netcdf.putVar ( f, varid9, particle_num ); 
    netcdf.putVar ( f, varid10, image_length);                          
    netcdf.putVar ( f, varid11, image_width);                           
    netcdf.putVar ( f, varid12, image_area);                            
    netcdf.putVar ( f, varid13, image_longest_y);              
    netcdf.putVar ( f, varid26, image_diam_minR);                       
    netcdf.putVar ( f, varid27, image_diam_AreaR);        
    netcdf.putVar ( f, varid45, image_perimeter);          
%    netcdf.putVar ( f, varid46, image_RectangleL);                       
%    netcdf.putVar ( f, varid47, image_RectangleW);          
%    netcdf.putVar ( f, varid67, image_RectangleAngle);          
%    netcdf.putVar ( f, varid48, image_EllipseL);                       
%    netcdf.putVar ( f, varid49, image_EllipseW);  
%    netcdf.putVar ( f, varid69, image_EllipseAngle);  
    netcdf.putVar ( f, varid28, percent_shadow_area);                        
    netcdf.putVar ( f, varid29, edge_at_max_hole);                     
    netcdf.putVar ( f, varid30, max_hole_diameter);                      
    netcdf.putVar ( f, varid31, part_z);                                
    netcdf.putVar ( f, varid32, size_factor);                                    
    netcdf.putVar ( f, varid33, holroyd_habit);                 
    netcdf.putVar ( f, varid34, area_hole_ratio);                       
    netcdf.putVar ( f, varid35, inter_arrival);                           
    netcdf.putVar ( f, varid36, bin_stats); 
    netcdf.close(f); 
end 
% end 

 

COMBINE_SIZEDIST.M 

%-----Script to combine multiple size distribution files from one flight-----% 
%-----Remove duplicate time steps, append for breaks and time sync with .campaign file-----% 
 
%-----Written by Siddhant Gupta - 10/01/2017-----% 
%-----MODIFIED: Removed input of file #, faster time vector conversion - 10/05/2017-----% 
%-----MODIFIED: Sync with summary file even if it starts after 2DS file - 06/11/2018-----% 
%-----MODIFIED: If time ends with '60', e.g. 155060, it is corrected to 155100 - 06/25/2018-----% 
 
flightdate='20181017'; 
campaign='oracles'; 
orientation='V'; 
current_year='21'; % 20 is for 2020 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%     Input: 
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%        1. Size distribution files: baseYYMMDDHHMMSS.H.2DS.cdf 
%        2. .campaign summary file (in same directory) 
%        Flight date: 'YYMMDD' 
%        Campaign:    'oracles' 
% 
%     Output:  
%        baseYYMMDDHHMMSS.combined.H.2DS.cdf 
%        'conc_dmax' saved as 'twods_Nd' in cm-3   
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
path = sprintf('/condo/mcfarq/sid/b/%s/%s_%s/', campaign,campaign,flightdate); 
% path = sprintf('/scratch/sid/%s/%s_%s/', campaign,campaign,flightdate); 
% path = [pwd '/']; 
 
addpath(path); 
infile = dir(fullfile(path,sprintf('base%s*.%s.2DS.cdf', flightdate(3:8),orientation))); % grab files to process 
summaryfile = dir(fullfile(path,sprintf('%s_%s_%s*.%s',flightdate(3:4),flightdate(5:6),flightdate(7:8),campaign))); 
summary=summaryfile(1).name; 
 
%-----Create variables with input file data-----% 
 
for k=1:size(infile,1); 
disp(['Reading file ', num2str(k), ' of ', num2str(size(infile,1))]) 
eval(sprintf('filename_%d=infile(%d).name;',k,k));     
eval(sprintf('ncid_%d=netcdf.open(filename_%d);',k,k)); 
eval(sprintf('time_%d=netcdf.getVar(ncid_%d,0);',k,k)); 
eval(sprintf('bin_min_%d=netcdf.getVar(ncid_%d,1);',k,k)); 
eval(sprintf('bin_max_%d=netcdf.getVar(ncid_%d,2);',k,k)); 
eval(sprintf('bin_mid_%d=netcdf.getVar(ncid_%d,3);',k,k)); 
eval(sprintf('bin_dD_%d=netcdf.getVar(ncid_%d,4);',k,k)); 
eval(sprintf('bin_dD__%d=repmat(bin_dD_%d'',length(time_%d),1);',k,k,k)); 
eval(sprintf('conc_dmax_%d=netcdf.getVar(ncid_%d,5)''/10^1;',k,k)); % cm-3 um-1 
eval(sprintf('conc_dmax_%d=conc_dmax_%d.*bin_dD__%d;',k,k,k)); % cm-3 
eval(sprintf('conc_darea_%d=netcdf.getVar(ncid_%d,7)''/10^4;',k,k)); % cm-3 um-1 
eval(sprintf('conc_darea_%d=conc_darea_%d.*bin_dD__%d;',k,k,k)); % cm-3 
eval(sprintf('twods_Nt_%d=netcdf.getVar(ncid_%d,8);',k,k)); 
eval(sprintf('count_%d=netcdf.getVar(ncid_%d,20);',k,k)); 
eval(sprintf('mean_area_ratio_%d=netcdf.getVar(ncid_%d,21);',k,k)); 
eval(sprintf('reject_ratio_%d=netcdf.getVar(ncid_%d,15);',k,k)); 
end 
 
%-----Combine variable data from multiple files into one big variable-----% 
 
arrayindex=0; 
 
for i=1:size(infile,1); 
bin_min=bin_min_1; 
bin_mid=bin_mid_1; 
bin_max=bin_max_1; 
bin_dD=bin_dD_1; 
eval(sprintf('time(arrayindex+1:arrayindex+length(time_%d),1) = time_%d;',i,i)); 
eval(sprintf('twods_Nd(arrayindex+1:arrayindex+length(conc_dmax_%d),:) = conc_dmax_%d;',i,i)); 
eval(sprintf('conc_darea(arrayindex+1:arrayindex+length(conc_darea_%d),:) = conc_darea_%d;',i,i)); 
eval(sprintf('twods_Nt(arrayindex+1:arrayindex+length(twods_Nt_%d),1) = twods_Nt_%d;',i,i)); 
eval(sprintf('count(arrayindex+1:arrayindex+length(count_%d),:) = count_%d'';',i,i)); 
eval(sprintf('mean_area_ratio(arrayindex+1:arrayindex+length(mean_area_ratio_%d),:)=mean_area_ratio_%d'';',i,i)); 
eval(sprintf('reject_ratio(arrayindex+1:arrayindex+length(reject_ratio_%d),1)=reject_ratio_%d;',i,i)); 
arrayindex=length(time); 
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end 
 
%-----Remove extra variables with data from each file-----% 
 
for k=1:size(infile,1); 
eval(sprintf('clearvars *_%d',k)); 
end 
 
%-----Remove duplicate time steps-----% 
 
k_1=find(diff(time)==0); 
time(k_1+1)=[]; 
twods_Nd(k_1+1,:)=[]; 
count(k_1+1,:)=[]; 
mean_area_ratio(k_1+1,:)=[]; 
reject_ratio(k_1+1)=[]; 
twods_Nt(k_1+1)=[]; 
conc_darea(k_1+1,:)=[]; 
 
%-----Convert time to time vector-----% 
 
if time(end)<100000 
time_1=num2str(time,'%06.f'); 
else 
time_1=num2str(time); 
end 
time_mod=zeros(1,1); 
for k=1:length(time_1) 
if time_1(k,5:6)=='60' 
    time_mod(end+1)=k; 
    time_1(k,5:6)='00'; 
else 
end 
end 
% timevec=zeros(length(time_1),1); 
timevec=datenum(str2double(flightdate(3:4)),str2double(flightdate(5:6)),... 
        str2double(flightdate(7:8)))+datenum(time_1,'HHMMSS')-datenum(str2double(current_year),0,1,0,0,0); 
% for k=1:length(time); 
%     timevec(k)=datenum(str2double(flightdate(1:2)),str2double(flightdate(3:4)),... 
%         str2double(flightdate(5:6)))+datenum(time_1(k,:),'HHMMSS')-datenum(17,0,1,0,0,0); 
% end 
for k=1:length(time_1) 
    if ismember(k,time_mod)==1 
        timevec(k)=timevec(k)+datenum(0,0,0,0,1,0); 
    else 
    end 
end 
 
%-----Append missing time steps-----% 
 
timevec_new=(timevec(1):datenum(0,0,0,0,0,1):timevec(end))'; 
time_new=NaN(length(timevec_new),1); 
twods_Nt_new=NaN(length(timevec_new),1); 
twods_Nd_new=NaN(length(timevec_new),length(bin_mid)); 
count_new=NaN(length(timevec_new),length(bin_mid)); 
mean_area_ratio_new=NaN(length(timevec_new),length(bin_mid)); 
reject_ratio_new=NaN(length(timevec_new),1); 
conc_darea_new=NaN(length(timevec_new),length(bin_mid)); 
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%-----Sync data to appended indices-----% 
for k=1:length(timevec); 
    index(k)=find(abs(timevec_new-timevec(k))<datenum(0,0,0,0,0,0.3)); 
    time_new(index(k))=time(k); 
    twods_Nt_new(index(k))=twods_Nt(k); 
    twods_Nd_new(index(k),:)=twods_Nd(k,:); 
    count_new(index(k),:)=count(k,:); 
    mean_area_ratio_new(index(k),:)=mean_area_ratio(k,:); 
    reject_ratio_new(index(k))=reject_ratio(k); 
    conc_darea_new(index(k),:)=conc_darea(k,:); 
    for j=1000:1000:length(timevec); 
        if k==j; 
    fprintf('%d of %d time steps combined. \n',k, length(timevec)); 
        end 
    end 
end 
 
%-----Sync with summary file [YY_MM_DD_HH_MM_SS.oracles]-----% 
 
timevec_summary=datenum(2000,0,0,0,0,0)+datenum(str2double(summary(1:2)),str2double(summary(4:5)),... 
    str2double(summary(7:8)),str2double(summary(10:11)),str2double(summary(13:14)),... 
    str2double(summary(16:17))); 
 
if timevec_new(1)>timevec_summary(1)==1; 
x=timevec_summary:datenum(0,0,0,0,0,1):timevec_new(1)-datenum(0,0,0,0,0,1); 
disp(['Sync with summary file: Adding ', num2str(length(x)), ' time steps at the top to combined file.']) 
 
timevec=vertcat(x',timevec_new); 
time=vertcat(NaN(length(x),1),time_new); 
twods_Nt=vertcat(NaN(length(x),1),twods_Nt_new); 
twods_Nd=vertcat(NaN(length(x),length(bin_mid)),twods_Nd_new); 
count=vertcat(NaN(length(x),length(bin_mid)),count_new); 
mean_area_ratio=vertcat(NaN(length(x),length(bin_mid)),mean_area_ratio_new); 
reject_ratio=vertcat(NaN(length(x),1),reject_ratio_new); 
conc_darea=vertcat(NaN(length(x),length(bin_mid)),conc_darea_new); 
 
elseif timevec_new(1)>timevec_summary(1)==0; 
y=int16((timevec_new(1)-timevec_summary(1))/datenum(0,0,0,0,0,1)); 
x=num2str(y); 
disp(['Sync with summary file: Removing ',x, ' time steps at the top from combined file.']) 
 
timevec_new(1:y,:)=[];timevec=timevec_new; 
time_new(1:y,:)=[];time=time_new; 
twods_Nt_new(1:y,:)=[];twods_Nt=twods_Nt_new; 
twods_Nd_new(1:y,:)=[];twods_Nd=twods_Nd_new; 
count_new(1:y,:)=[];count=count_new; 
mean_area_ratio_new(1:y,:)=[];mean_area_ratio=mean_area_ratio_new; 
reject_ratio_new(1:y,:)=[];reject_ratio=reject_ratio_new; 
conc_darea_new(1:y,:)=[];conc_darea=conc_darea_new; 
end 
 
timevec_twods=timevec; clearvars timevec; 
count_twods=count; clearvars count; 
mean_area_ratio_twods=mean_area_ratio; clearvars mean_area_ratio; 
reject_ratio_twods=reject_ratio; clearvars reject_ratio; 
conc_darea_twods=conc_darea; clearvars conc_darea; 
bin_dD_twods=bin_dD; clearvars bin_dD; 
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bin_min_twods=bin_min; clearvars bin_min; 
bin_mid_twods=bin_mid; clearvars bin_mid; 
bin_max_twods=bin_max; clearvars bin_max; 
 
disp(['Saving ', num2str(length(timevec_twods)), ' time steps to the file.']) 
 
%-----Create output file-----% 
% outpath = path; 
outpath = [pwd '/']; 
outfile = sprintf('%sbase%s%s%s%s.combined.%s.2DS_2.cdf', outpath,... 
    flightdate(3:8),summaryfile(1).name(10:11),summaryfile(1).name(13:14),summaryfile(1).name(16:17),orientation); 
 
f = netcdf.create(outfile, 'clobber'); 
 
%-----Create dimensions and variables-----% 
    dimid0 = netcdf.defDim(f,'time',length(timevec_twods)); 
    dimid1 = netcdf.defDim(f,'bin_count',size(bin_min_twods,1)); 
    dimid3 = netcdf.defDim(f,'files_stitched',size(infile,1)); 
    varid0 = netcdf.defVar(f,'Time Vector','double',dimid0); 
    varid1 = netcdf.defVar(f,'Bin Minimum','double',dimid1); 
    varid2 = netcdf.defVar(f,'Bin Maximum','double',dimid1); 
    varid3 = netcdf.defVar(f,'Bin Midpoints','double',dimid1); 
    varid4 = netcdf.defVar(f,'Bin Width','double',dimid1); 
    varid5 = netcdf.defVar(f,'Mean Area Ratio','double',[dimid0 dimid1]); 
    varid6 = netcdf.defVar(f,'Counts','double',[dimid0 dimid1]); 
    varid7 = netcdf.defVar(f,'Size Distribution cm-3','double',[dimid0 dimid1]); 
    varid8 = netcdf.defVar(f,'Number Concentration cm-3','double',dimid0); 
    varid9 = netcdf.defVar(f,'Reject Ratio','double',dimid0); 
    netcdf.endDef(f) 
 
%-----Put variables into output file-----% 
    netcdf.putVar ( f, varid0, timevec_twods ); 
    netcdf.putVar ( f, varid1, bin_min_twods ); 
    netcdf.putVar ( f, varid2, bin_max_twods ); 
    netcdf.putVar ( f, varid3, bin_mid_twods ); 
    netcdf.putVar ( f, varid4, bin_dD_twods ); 
    netcdf.putVar ( f, varid5, mean_area_ratio_twods ); 
    netcdf.putVar ( f, varid6, count_twods ); 
    netcdf.putVar ( f, varid7, twods_Nd ); 
    netcdf.putVar ( f, varid8, twods_Nt ); 
    netcdf.putVar ( f, varid9, reject_ratio_twods ); 
    netcdf.close(f); 

 
 

INTARRANALYSIS_TIME.M 

function IntArrAnalysis_time(campaign,filedate,filetime,startTime,endTime,fileNum,probeName,orientation) 
%% Preamble 
%  This script determines the inter-arrival time between peaks in a bimodal 
%  distribution for each population of particles. Follows Field et al. 
%  (2006) technique. 
%  
%  Original code by Wei Wu, Univ. Illinois. 
%  Significant modifications by Joe Finlon, Univ. Illinois 2017. 
%  Modified to run over defined time period, for combined PBP file - Siddhant Gupta 
%  Modified for ORACLES - Siddhant Gupta 
%  
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%       ************************** 
%       *** Modification Notes *** 
%       ************************** 
%  
%  Usage: 
%    
%   infile : the particle-by-particle file containing inter-arrival times 
% directory: file path to save plots and threshold data 
% probeName : for handling SPEC probes (2DS & HVPS) differently 
% ianalysis: 1 to start inter-arrival analysis; 0 indicate only plotting 
%   numparticles: population size belonging to each bimodal fit 
% dateString: yyyymmdd if not using parallel processing, otherwise 
%       yyyymmdd_varargin format 
%   fileNum: Number of files with bimodal fit 
% varargin: {n chunks to be processed in parallel}{optional input for nth 
%       chunk to be processed} -- length(varargin)==1 means parallel 
%       processing is ignored 
%  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%% 
 
%-----Inputs-----% 
% campaign =   'oracles'; 
% filedate =   '20160908'; 
% filetime =   '064343'; 
% startTime=   '075000'; 
% endTime  =   '075500'; 
% fileNum  =   '5'; 
% probeName=   '2DS'; 
% orientation= 'H'; 
 
cd (sprintf('/condo/mcfarq/sid/b/%s/%s_%s/',campaign,campaign,filedate)) 
directory=''; 
directory_2=''; 
%directory=sprintf('/condo/mcfarq/sid/b/%s/%s_%s/',campaign,campaign,filedate); 
%directory_2=sprintf('/condo/mcfarq/sid/b/%s/%s_%s/',campaign,campaign,filedate); 
 
%file = dir(fullfile(directory,sprintf('base%s*.combined.%s_1.cdf', filedate(3:8),orientation))); 
file = dir(fullfile(directory,sprintf('base%s%s.%s_1.cdf', filedate(3:8),filetime,orientation))); 
 
infile = file(1).name; 
ianalysis=1; 
% % numparticles=ceil(length(intarr)/2); 
% % numparticles=200; 
dateString=filedate; 
varargin=0; 
%% Import file variables 
 
disp(['File: ', infile]) 
% ncid=netcdf.open(infile,'nowrite'); 
ncid=netcdf.open(infile); 
 
%%%%% 
timehhmmss_full=netcdf.getVar(ncid,netcdf.inqVarID(ncid,'Time')); 
startT=find(timehhmmss_full>=str2double(startTime)); 
endT=find(timehhmmss_full<=str2double(endTime)); 
timehhmmss=timehhmmss_full(startT(1):endT(end)); 
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if strcmp(probeName,'2DS') || strcmp(probeName,'HVPS') 
 tempTime_full=netcdf.getVar(ncid,netcdf.inqVarID(ncid,'Time_in_seconds')); 
    tempTime = tempTime_full(startT(1):endT(end)); 
%     tempTime=time_in_seconds; 
 intarr(1) = 0; % sets inter arrival time of first particle equal to 0 
 intarr(2:length(tempTime)) = diff(tempTime); % subtract time between particles 
 clear tempTime; 
else 
 intarr_full=netcdf.getVar(ncid,netcdf.inqVarID(ncid,'inter_arrival')); 
    intarr=intarr_full(startT(1):endT(end)); 
end 
 
% Read other particle variables 
 
% timehhmmss=time; 
% date=date; 
date_full = netcdf.getVar(ncid, netcdf.inqVarID(ncid,'Date')); 
date = date_full(startT(1):endT(end)); 
Dmax_full = netcdf.getVar(ncid, netcdf.inqVarID(ncid,'image_diam_minR')); % Joe Finlon 
Dmax = Dmax_full(startT(1):endT(end)); 
% Dmax = image_diam_minR; % Joe Finlon 
netcdf.close(ncid) 
intarr(intarr<=0)=NaN; 
int_arr=intarr; 
 
numparticles=ceil(length(intarr)/str2double(fileNum)); 
 
% Trim infile variable if processing will take too long 
if length(varargin)==2 % two arguments, # CPUs and the nth chunk to process 
    nChunks = varargin{1}; % number of chunks being processed in parallel 
    fileNum = varargin{2}; % nth chunk to be processed 
    startInd = 1000000*ceil(length(intarr)/(nChunks*1000000))*(fileNum-1)+1; 
    endInd = min(1000000*ceil(length(intarr)/(nChunks*1000000))*fileNum,length(int_arr)); 
     
    timehhmmss = timehhmmss(startInd:endInd); 
    date = date(startInd:endInd); 
    int_arr = int_arr(startInd:endInd); 
end 
 
if (ianalysis==0) 
    return 
end 
 
%% Start analyzing if prompted 
 
clear hist2dc NEWdate2dc NEWtime2dc 
n=1; 
int_arr(int_arr<0)=0; 
int_arr(int_arr>0.1)=0; 
bins = logspace(-7, 0, 35);              % Specify range of normalized frequency histogram 
width = log(bins(2))-log(bins(1)); 
 
% Determine # particles to factor into bimodal fit 
if numel(find(timehhmmss==mode(timehhmmss)))<numparticles 
    num_particles = numparticles; % mininum # of particles to factor into fit 
else % # of particles to factor into fit to nearest 25k 
    num_particles = (numparticles/4)*... 
        ceil(numel(find(timehhmmss==mode(timehhmmss)))/(numparticles/4)); 
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end 
disp(['  ', num2str(num_particles), ' particles will be factored into the bimodal distribution fit.']) 
 
% Initialize bimodal fitting function 
%bimodalfit = @(tau, dt) (dt/tau(1)).*exp(-dt/tau(1)); % Equation from Chapter 2+3 for bimodal fit 
bimodalfit = @(tau, dt) (1-tau(3)).*(dt/tau(1)).*exp(-dt/tau(1))+(tau(3)).*(dt/tau(2)).*exp(-dt/tau(2)); 
tau_std=[1e-2 1e-6 0.5]; 
 
hist2dc = NaN(ceil(length(int_arr)/num_particles), length(bins)-1); 
NEWtime2dc = NaN(1, ceil(length(int_arr)/num_particles)); 
NEWdate2dc = NaN(1, ceil(length(int_arr)/num_particles)); 
 
% Loop through sample populations and determine threshold 
for i=1:num_particles:length(int_arr) 
      disp(['  Current Progress: ', num2str(i), '/', num2str(length(int_arr)),... 
          ' Time: ', datestr(now)]) 
       
    indicies = i:min([i+num_particles-1 length(int_arr)]); 
     arr = int_arr(indicies); 
     [h,~] = histcounts(arr, bins); 
      binsCenter = bins(1:end-1)+diff(bins)/2; 
      hist2dc(n,:) = h; 
      NEWtime2dc(n) = timehhmmss(i); 
      NEWdate2dc(n) = date(i); 
 
      beta0 = [1e-2 1e-6 0.5]; % initial parameter guesses 
      [tau_std] = abs(nlinfit(binsCenter,h./sum(h)./width,bimodalfit,beta0,... 
          statset('Robust', 'on', 'FunValCheck', 'off', 'MaxIter', 1000))); 
       
      if sum(isnan(tau_std))>0 % bimodal fit still isn't achieved (nlinfit returns NaN) -- added by Joe Finlon 
          threshhold(i:min([i+num_particles-1 length(int_arr)])) = 1.3494e-6; % use a default inter-arrival time 
      else 
          threshhold(i:min([i+num_particles-1 length(int_arr)]))=min(tau_std(1:2))*2; 
      end 
             
      for j=i:min([i+num_particles-1 length(int_arr)]) 
        tau_all(j,:)=tau_std; 
      end 
       
      dt = binsCenter; 
      tau = tau_std; 
      hfit = (1-tau(3)).*(dt/tau(1)).*exp(-dt/tau(1))+(tau(3)).*(dt/tau(2)).*exp(-dt/tau(2)); 
       
      % Determine thresholds using 3 different techniques 
      tau1 = max(tau_std(1:2)); tau2 = min(tau_std(1:2)); 
      newDT = dt(dt<tau1 & dt >tau2); 
       
      if isempty(newDT) %% JOE FINLON 
          newDT = dt([find(dt<tau1 , 1, 'last'), find(dt>tau2, 1, 'first')]); 
          [minFit, indexFit] = min( hfit([find(dt<tau1 , 1, 'last'), find(dt>tau2, 1, 'first')]) ); 
          [minOriginal, indexOriginal] = min( h([find(dt<tau1 , 1, 'last'), find(dt>tau2, 1, 'first')]) ); 
      else 
          [minFit, indexFit] = min( hfit(dt <tau1 & dt >tau2 ) ); 
          [minOriginal, indexOriginal] = min( h(dt<tau1 & dt >tau2 ) ); 
      end 
       
      if isempty(newDT) % bimodal fit isn't achieved (nlinfit returns NaN) -- added by Joe Finlon 
          disp(['Trouble obtaining a bimodal fit for index ', num2str(i),... 
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              '. Setting inter-arrival thresholds to a default value.']) 
          threshhold_ww(i:min([i+num_particles-1 length(int_arr)])) = 1.3494e-6; % use a default inter-arrival time 
          threshhold_ak(i:min([i+num_particles-1 length(int_arr)])) = 1.3494e-6; % use a default inter-arrival time 
      else 
          threshhold_ww(i:min([i+num_particles-1 length(int_arr)]))=newDT(indexFit); 
          threshhold_ak(i:min([i+num_particles-1 length(int_arr)]))=newDT(indexOriginal); 
      end 
       
      % Optionally plot inter-arrival information for current population 
      if sum(isnan(tau_std))==0 
        figure('visible','off'); set(gcf, 'color', 'w'); 
        bar(bins(1:end-1), h ./ sum(h) ./ width, 'histc'); hold on; 
        plot(dt, hfit, 'k'); 
        plot(ones(1,length(0:0.01:0.3))*(tau2),0:0.01:0.3,'--k'); % tau2 
        plot(ones(1,length(0:0.01:0.3))*(tau1),0:0.01:0.3,'-.k'); % tau1 
        plot(ones(1,length(0:0.01:0.3))*(min(tau_std(1:2))*2),0:0.01:0.3,'g'); % threshold 
        plot(ones(1,length(0:0.01:0.3))*(newDT(indexFit)),0:0.01:0.3,'b'); % threshold_ww 
        plot(ones(1,length(0:0.01:0.3))*(newDT(indexOriginal)),0:0.01:0.3,'r'); % threshold_ak 
       
        ylim([0 0.5]); set(gca, 'xscale', 'log'); set(gca, 'xminortick', 'on'); 
        %set(gca,'FontSize',16); set(findall(gcf,'type','text'),'FontSize',16); 
        title(['Inter-arrival Distribution (', num2str(NEWtime2dc(n)), ' UTC)']); 
        xlabel('Inter-arrival Time (s)'); ylabel('Frequency'); 
        legend({'frequency', 'bin endpoint', 'fit', 'lower peak', 'higher peak',... 
            '2*(lower peak)', 'freq. min between peaks from fit', 'freq. min between peaks in hist'},... 
            'FontSize', 6, 'Location', 'northwest'); 
        print([directory_2, probeName, '_IntArrHistogram_', num2str(NEWtime2dc(n)), '.',... 
            dateString, '.jpg'],'-djpeg','-r300') 
      end 
       
      n=n+1; 
end 
 
%% Plotting Routines 
 
bins = logspace(-7, 0, 70); 
binsCenter = bins(1:end-1)+diff(bins)/2; 
 
disp(['  ', num2str(num_particles), ' paricles are factored into the contour plot for each time interval.']) 
n=1; 
for i=1:num_particles:length(int_arr)     
    indicies = i:min([i+num_particles-1 length(int_arr)]); 
     arr = int_arr(indicies); 
     [h,~] = histcounts(arr, bins); 
      binsCenter = bins(1:end-1)+diff(bins)/2; 
      hist2dc_contour(n,:) = h; 
      NEWtime2dc(n) = timehhmmss(i); 
      NEWdate2dc(n) = date(i); 
      n=n+1; 
end 
NEWtime2dc(n-1) = timehhmmss(length(int_arr)); % fix end time for contour plot 
NEWdate2dc(n-1) = date(length(int_arr)); % fix end date for contour plot 
 
cd /home/sid/b 
 
histsum = sum(hist2dc_contour,2); 
histsum = repmat(histsum,1,69); 
% time = time2datenum(date,timehhmmss); 
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y=num2str(timehhmmss); 
for k=1:length(timehhmmss); 
if timehhmmss(k)<100000; 
time(k)=time2datenum(date(k))+datenum(0,0,0,str2double(y(k,1)),str2double(y(k,2:3)),str2double(y(k,4:5))); 
else 
time(k)=time2datenum(date(k))+datenum(0,0,0,str2double(y(k,1:2)),str2double(y(k,3:4)),str2double(y(k,5:6))); 
end 
end 
% % ======= Plot the inter-arrival time in dot scatter ======= 
% figure('visible','off'); set(gcf, 'color', 'w'); 
% n=1; 
% plot(time(1:n:end),intarr(1:n:end),'.','markersize', 0.5); 
 
% ======= Plot the inter-arrival time as a contoured distribution ======= 
figure('visible','off'); set(gcf, 'color', 'w'); 
y=num2str(NEWtime2dc'); 
for k=1:length(NEWtime2dc); 
if NEWtime2dc(1,k)<100000; 
    if size(y,2)==5 
x(k,1)=time2datenum(NEWdate2dc(k))+datenum(0,0,0,str2double(y(k,1)),str2double(y(k,2:3)),str2double(y(k,4:5))); 
    elseif size(y,2)==6 
x(k,1)=time2datenum(NEWdate2dc(k))+datenum(0,0,0,str2double(y(k,2)),str2double(y(k,3:4)),str2double(y(k,5:6))); 
    end 
else 
x(k,1)=time2datenum(NEWdate2dc(k))+datenum(0,0,0,str2double(y(k,1:2)),str2double(y(k,3:4)),str2double(y(k,5:6))); 
end 
end 
% contourf(time2datenum(NEWdate2dc',NEWtime2dc'),binsCenter,(hist2dc_contour./histsum)',... 
contourf(x,binsCenter,(hist2dc_contour./histsum)',... 
    0.005:0.005:0.1,'LineColor','none'); 
% 
contourf(time2datenum(NEWdate2dc')+datenum(0,0,0,str2double(NEWtime2dc(1:2)),str2double(NEWtime2dc(3:4)),str2doubl
e(NEWtime2dc(5:6))),binsCenter,(hist2dc_contour./histsum)',... 
     
% contourf(datenum(NEWdate2dc', NEWtime2dc'),binsCenter,(hist2dc_contour./histsum)',... 
colormap(jet); colorbar; hold on; 
n=1; 
plot(time(1:n:length(time)),threshhold(1:n:end),'g','LineWidth',2); 
plot(time(1:n:length(time)),threshhold_ww(1:n:end),'b','LineWidth',2); 
plot(time(1:n:length(time)),threshhold_ak(1:n:end),'r','LineWidth',2); 
 
ylim([1e-7, 1]); set(gca,'yscale','log'); datetick('x','HH:MM'); 
title(sprintf('Inter-arrival Time Frequency for %s',dateString)); 
xlabel('Time'); ylabel('Inter-arrival Time [sec]'); 
legend({'frequency', '2*lower peak', 'freq. min between peaks from fit',... 
    'freq. min between peaks in hist'}, 'FontSize', 6, 'Location', 'northwest'); 
% set(gca,'FontSize',16); set(findall(gcf,'type','text'),'FontSize',16); 
 
cd (sprintf('/condo/mcfarq/sid/b/%s/%s_%s/',campaign,campaign,filedate)) 
% savefig([directory, probeName, 'IntArrAnalysis.', dateString, '.fig']) 
print([directory_2, probeName, '_IntArrAnalysis.', dateString,filetime, '_', startTime, '_', endTime, '.jpg'],'-djpeg','-r300') 
 
% ======= Box plot of inter-arrival times by size ======= 
switch probeName 
    case '2DS' 
dD = 0.01; % bin width for size categories to partition inter-arrival times [mm] 
binsMid = 0.05:dD:1.3; % particle size categories to partition inter-arrival times [mm] 
    case 'HVPS' 
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dD = 0.15; % bin width for size categories to partition inter-arrival times [mm] 
binsMid = 0.15:dD:10; % particle size categories to partition inter-arrival times [mm] 
end 
 
intArr_copy = int_arr; % copy inter-arrival times for plotting 
intArr_sizes = NaN(1, length(int_arr)); % allocate size category for  
for iter=1:length(binsMid) 
    intArr_sizes(find((Dmax>=binsMid(iter)-dD/2) & (Dmax<binsMid(iter)+dD/2))) = binsMid(iter); 
end 
 
intArr_copy(find(isnan(intArr_sizes))) = []; % ignore particles outside of size range 
intArr_sizes(find(isnan(intArr_sizes))) = []; % ignore particles outside of size range 
 
figure('visible','off'); set(gcf, 'color', 'w'); 
intArr_round = NaN(1,ceil(length(int_arr)/num_particles)); % dummy inter-arrival for box plot grouping 
for i=1:num_particles:length(int_arr) 
    intArr_round(i) = 1000*(ceil(Dmax(i)*10)/10 - 0.05); % round to mid-point of 100 um bin incriments [e.g. 50,150,250] 
end 
 
boxplot(intArr_copy, 1000*intArr_sizes, 'PlotStyle',  'compact'); 
ylim([1e-7 1]); set(gca,'YScale','log'); 
title(sprintf('Inter-arrival Time by Size for %s',dateString)); 
xlabel('Size Bin Midpoint (\mum)'); ylabel('Inter-arrival Time [sec]'); 
 
% savefig([directory, probeName, 'IntArrSizes.', dateString, '.fig']) 
print([directory_2, probeName, '_IntArrSizes.', dateString, filetime, '_', startTime, '_', endTime, '.jpg'],'-djpeg','-r300') 
 
%% Save the Data 
 
fprintf('Now writing ouput to file: %s\n\n', datestr(now)); 
 
% Save all variables to Matlab datafile 
save([directory_2, probeName, '_IntArrAnalysis.', dateString, '_', startTime, '_', endTime, '.mat']) 
 
% Save only threshold information for sizeDist.m script (may need manual 
% intervention if fitting technique is not robust 
% f = netcdf.create([directory_2,probeName '_intArrThreshold_', dateString, '_', startTime, '_', endTime, '.cdf'], 'clobber'); 
f = netcdf.create([directory_2,probeName '_intArrThreshold_', infile], 'clobber'); 
 
dimid0 = netcdf.defDim(f,'particleTime',length(time)); 
 
NC_GLOBAL = netcdf.getConstant('NC_GLOBAL'); 
netcdf.putAtt(f, NC_GLOBAL, 'Software', 'UIOOPS/IntArrAnalysis_revised'); 
netcdf.putAtt(f, NC_GLOBAL, 'Institution', 'Univ. Oklahoma, SoM'); 
netcdf.putAtt(f, NC_GLOBAL, 'Creation Time', datestr(now, 'yyyy/mm/dd HH:MM:SS')); 
netcdf.putAtt(f, NC_GLOBAL, 'Description', ['Contains inter-arrival threshold ',... 
    'information for each particle following Field et al. (2006)']); 
netcdf.putAtt(f, NC_GLOBAL, 'Flight Date', dateString) 
netcdf.putAtt(f, NC_GLOBAL, 'Data Source', infile); 
netcdf.putAtt(f, NC_GLOBAL, 'Probe Type', probeName); 
netcdf.putAtt(f, NC_GLOBAL, 'Population Size', [num2str(num_particles),... 
    ' particles per distribution fit']); 
 
varid0 = netcdf.defVar(f,'particle_time','double',dimid0);  
netcdf.putAtt(f, varid0,'units','HHMMSS'); 
netcdf.putAtt(f, varid0,'name','Time'); 
 
varid1 = netcdf.defVar(f,'threshold','double',dimid0);  
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netcdf.putAtt(f, varid1,'units','sec'); 
netcdf.putAtt(f, varid1,'name','Inter-arrival time threshold in n-particle blocks'); 
 
netcdf.endDef(f) 
 
netcdf.putVar ( f, varid0, timehhmmss ); 
netcdf.putVar ( f, varid1, threshhold_ak ); 
 
netcdf.close(f) % Close output NETCDF file 
 
disp('Finished determining inter-arrival time thresholds!') 
% end 
 
% function [dateValue] = time2datenum(date, timehhmmss) 
%  
% secFromMidnight = floor(timehhmmss/10000)*3600 + floor(mod(timehhmmss,10000)/100)*60 + 
floor(mod(timehhmmss,100)); 
% dateVector = [floor(date/10000), floor(mod(date,10000)/100), floor(mod(date,100)) , zeros(length(date),1),... 
%     zeros(length(date),1), secFromMidnight]; 
% dateValue = datenum(dateVector); 
%  
cd /home/sid/b 
end 
 

INTARR_TIME.M 

%-----Call Inter-arrival analysis function for a defined time period-----% 
%-----Requires the Combined PBP file (combined.H_1.cdf) to be in the same directory-----% 
%-----Written by Siddhant Gupta - 10/26/2017-----% 
 
campaign =   'oracles';                % Name of Campaign 
filedate =   '20170818';               % Flight date 
filetime =   '150513';                 % Flight time 
startTime=   '150000';                 % Start time for analysis 
endTime  =   '173000';                 % End time for analysis 
fileNum  =   '5';                      % Number of histograms required 
probeName=   'HVPS';                   % Required for SPEC probes (2DS, HVPS) 
orientation= 'V';         % Required for 2DS 
  
IntArrAnalysis_time(campaign,filedate,filetime,startTime,endTime,fileNum,probeName,orientation); 
 

FIND_SHADOW_DIODES.M 

function find_shadow_diodes(date,time,orientation) 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%-----Plot illumination/shadow count for diodes from particle by particle image file-----% 
%-----Identify diodes with <80% of max count and output them in .mat file-----% 
%-----Written by Siddhant Gupta - 10/31/2017-----% 
% 
%-----MODIFIED: If high counts (20% greater than mean) found from diodes masked 
%               in-flight, replace counts with mean from other diodes and 
%               mask the diodes with <80% of mean count - 06/20/2018-----% 
% 
% Input: 
%     Date: 'YYMMDD' - Flight date 
%     Time: 'HHMMSS' - Start time 
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%     Particle-by-particle image file: 'baseYYMMDDHHMMSS.H_1.cdf' 
%     IMPORTANT: This script uses 'bin_stats' (# times specified photodiode 
%     is shadowed for particles in file). 
% 
% Output: 
%     Figure: Illumination/shadow counts for each diode, with mean count line 
%     - diodeYYMMDDHHMMSS.counts.jpeg 
%     Figure: If high counts present, new figure with replaced counts 
%     - diodeYYMMDDHHMMSS.counts_high.jpeg 
%     Mat file with diode # for diodes having <80% of max count 
%     Diode # are stored within "shadow_diode" in: 
%     diodeYYMMDDHHMMSS.H.mat 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% 
campaign='oracles'; 
% path = [pwd '/']; 
path=sprintf('/condo/mcfarq/sid/b/%s/%s_20%s/',campaign,campaign,date); 
 
% clear all 
% date='170812'; 
% time='123215'; 
% % orientation='H'; 
% orientation='V'; 
% path = [pwd '/']; 
 
infile=[path 'base' date time '.' orientation '_1.cdf']; 
a=ncread(infile,'bin_stats'); 
 
%-----Plot Illumination counts for diodes-----% 
hold on 
g=plot(a); 
grid minor 
h=line('XData',1:length(a),'YData',ones(length(a),1)*mean(a)); 
set(g,'LineWidth',5); 
set(g,'Marker','x'); 
set(g,'MarkerSize',10); 
set(h,'LineWidth',5); 
 
xlabel('Diode #','FontSize',40); 
ylabel('Illumination count','FontSize',40); 
ylim([0 1.5*nanmean(a)]); 
set(gca,'fontsize',40); 
legend(sprintf('File: 20%s-%s-%s',date,time,orientation)); 
 
%-----Save figure-----% 
fig=gcf; 
set(gcf,'PaperUnits','centimeters','PaperPosition',[0 0 60 40]) 
saveas(gcf,[path sprintf('diode.%s%s.%s_2.counts',date,time,orientation) '.jpeg']); 
close all 
%% %-----Replace high values (20% greater than mean) from diodes masked in-flight-----% 
 
ill_diode=find(a>1.2*mean(a)); 
if ~isempty(ill_diode)==1; 
a(ill_diode)=NaN; 
a(ill_diode)=nanmean(a); 
 
%-----Plot Illumination counts for diodes-----% 
hold on 
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g=plot(a); 
grid minor 
h=line('XData',1:length(a),'YData',ones(length(a),1)*mean(a)); 
set(g,'LineWidth',5); 
set(g,'Marker','x'); 
set(g,'MarkerSize',10); 
set(h,'LineWidth',5); 
 
xlabel('Diode #','FontSize',40); 
ylabel('Illumination count','FontSize',40); 
ylim([0 1.5*nanmean(a)]); 
set(gca,'fontsize',40); 
legend(sprintf('File: 20%s-%s-%s',date,time,orientation)); 
 
%-----Save figure-----% 
fig=gcf; 
set(gcf,'PaperUnits','centimeters','PaperPosition',[0 0 60 40]) 
saveas(gcf,[path sprintf('diode.%s%s.%s.counts',date,time,orientation) '_highs.jpeg']); 
close all 
 
    diode=find(a<0.80*mean(a)); 
    shadow_diode=sort(diode); 
else 
    diode=find(a<0.80*max(a)); 
    shadow_diode=sort(diode); 
end 
%% 
clearvars -except path orientation shadow_diode date time a 
%save(sprintf('diode.%s%s.%s.mat',date,time,orientation)); 
if isempty(shadow_diode)==0; 
save([path sprintf('diode.%s%s.%s.mat',date,time,orientation)]); 
elseif isempty(shadow_diode)==1; 
save([path sprintf('diode.%s%s.%sempty.mat',date,time,orientation)]); 
end 
end 
 

IMGPROC_SM.M 

function imgProc_sm(infile, outfile, probename, n, nEvery, projectname,path,flight,file) 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%     
%  This function is the image processing part of OAP processing using  
%  distributed memory parallisation. The function use one simple interface 
%  for all probes.  
% 
%  Interface: 
%    infile   :   The input file name 
%    outfile  :   The output file name 
%    probetype:   One of the following: '2DC','2DP','CIP','PIP','HVPS' and '2DS' 
%    n        :   The nth chuck to be processed.   
%    nEvery   :   The individual chuck size. nChuck*nEvery shoudl equal the 
%                 total frame number  
%    projectname: The name of project so that you can write the specific 
%                 code for you data 
% 
%  Note other important variables used in the program 
%    handles:  a structure to store information. It is convinient to use a 
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%          struture to store the global information rather than using 
%          various varibles 
% 
%  Update Dates: 
%    * Initially Written by Will Wu, 06/24/2013  
%          imgprocdm(File,probetype,n) 
%    * Updated by Will Wu, 10/11/2013    
%          New function interface  
%          imgprocdm(infile,outfile,probetype,n, nEvery) and updated documentation.  
%          This version is a major update to include all probes and simplify 
%          the function interface significantly 
%    * Updated by Will Wu, 07/10/2013 
%          New function interface imgProc_dm(infile,outfile,probetype,n, nEvery) 
%          Output perimeter, rectangle length/width/angle and eclispe 
%          length/width/angle 
%    * Added by Wei Wu, May 11, 2016 
%          Add the project specific code with projectname in the following format: 
%            if strcmp(projectname, 'PECAN')  % For example for PECAN dataset  
%               ... 
%            end  
%    * Updated by Will Wu, 07/11/2016 
%          New function name with the option to turn CGAL on and off for 
%          speed 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%     
 
%% Setting probe information according to probe type 
%    use ProbeType to indicate three type of probes: 
%       0: 2DC/2DP, 32 doides, boundary 85,  
%       1: CIP/PIP, 64 doides, boundary 170 
%       2: HVPS/2DS, 128 doides, boundary 170 
 
 
iRectEllipse = 0;  % Set defualt to no Rectangle fit and Ellipse fit 
switch probename 
    case '2DC' 
        boundary=[255 255 255 255]; 
        boundarytime=85; 
 
        ds = 0.025;        % Size of diode in millimeters 
        handles.diodesize = ds;   
        handles.diodenum  = 32;  % Diode number 
        handles.current_image = 1; 
        probetype=0; 
 
    case '2DP' 
        boundary=[255 255 255 255]; 
        boundarytime=85; 
 
        ds = 0.200;        % Size of diode in millimeters 
        handles.diodesize = ds;   
        handles.diodenum  = 32;  % Diode number 
        handles.current_image = 1; 
        probetype=0; 
 
    case 'CIP' 
        boundary=[170, 170, 170, 170, 170, 170, 170, 170]; 
        boundarytime=NaN; 
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        ds = 0.025;        % Size of diode in millimeters 
        handles.diodesize = ds; 
        handles.diodenum  = 64;  % Diode number 
        handles.current_image = 1; 
        probetype=1; 
 
    case 'PIP' 
        boundary=[170, 170, 170, 170, 170, 170, 170, 170]; 
        boundarytime=NaN; 
 
        ds = 0.100;        % Size of diode in millimeters 
        handles.diodesize = ds; 
        handles.diodenum  = 64;  % Diode number 
        handles.current_image = 1; 
        probetype=1; 
         
    case 'HVPS' 
        boundary=[43690, 43690, 43690, 43690, 43690, 43690, 43690, 43690]; 
        boundarytime=0; 
 
        ds = 0.150;        % Size of diode in millimeters 
        handles.diodesize = ds; 
        handles.diodenum  = 128; % Diode number 
        handles.current_image = 1; 
        probetype=2; 
 
    case '2DS' 
        boundary=[43690, 43690, 43690, 43690, 43690, 43690, 43690, 43690]; 
        boundarytime=0; 
 
        ds = 0.010;        % Size of diode in millimeters 
        handles.diodesize = ds; 
        handles.diodenum  = 128; % Diode number 
        handles.current_image = 1; 
        probetype=2; 
end 
 
diodenum = handles.diodenum; 
byteperslice = diodenum/8;   
handles.disagree = 0; 
 
%% Read the particle image files 
handles.f = netcdf.open(infile,'nowrite'); 
[~, dimlen] = netcdf.inqDim(handles.f,2); 
[~, handles.img_count] = netcdf.inqDim(handles.f,0); 
size_mat = dimlen;  
warning off all 
diode_stats = zeros(1,diodenum); 
 
if strcmp(projectname, 'PECAN')  % For example for PECAN dataset  
    disp('Testing...')  %% Add project specific code if you like 
end 
%% Create output NETCDF file and variables 
f = netcdf.create(outfile, 'clobber'); 
dimid0 = netcdf.defDim(f,'time',netcdf.getConstant('NC_UNLIMITED')); 
dimid1 = netcdf.defDim(f,'pos_count',2); 
dimid2 = netcdf.defDim(f,'bin_count',diodenum); 
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varid1 = netcdf.defVar(f,'Date','double',dimid0); 
varid0  = netcdf.defVar(f,'Time','double',dimid0); 
varid2  = netcdf.defVar(f,'msec','double',dimid0); 
varid101  = netcdf.defVar(f,'Time_in_seconds','double',dimid0); 
 
varid102  = netcdf.defVar(f,'SliceCount','double',dimid0); 
varid103  = netcdf.defVar(f,'DMT_DOF_SPEC_OVERLOAD','double',dimid0); 
varid104  = netcdf.defVar(f,'Particle_number_all','double',dimid0); 
 
%varid3 = netcdf.defVar(f,'wkday','double',dimid0); 
varid4  = netcdf.defVar(f,'position','double',[dimid1 dimid0]); 
varid5  = netcdf.defVar(f,'particle_time','double',dimid0); 
varid6  = netcdf.defVar(f,'particle_millisec','double',dimid0); 
varid7  = netcdf.defVar(f,'particle_microsec','double',dimid0); 
varid8  = netcdf.defVar(f,'parent_rec_num','double',dimid0); 
varid9  = netcdf.defVar(f,'particle_num','double',dimid0); 
varid10 = netcdf.defVar(f,'image_length','double',dimid0);                                 
varid11 = netcdf.defVar(f,'image_width','double',dimid0);                                  
varid12 = netcdf.defVar(f,'image_area','double',dimid0);                                   
varid13 = netcdf.defVar(f,'image_longest_y','double',dimid0);                              
varid14 = netcdf.defVar(f,'image_max_top_edge_touching','double',dimid0);                  
varid15 = netcdf.defVar(f,'image_max_bottom_edge_touching','double',dimid0);               
varid16 = netcdf.defVar(f,'image_touching_edge','double',dimid0);                          
varid17 = netcdf.defVar(f,'image_auto_reject','double',dimid0);                            
varid18 = netcdf.defVar(f,'image_hollow','double',dimid0);                                 
varid19 = netcdf.defVar(f,'image_center_in','double',dimid0);                              
varid20 = netcdf.defVar(f,'image_axis_ratio','double',dimid0);                             
varid21 = netcdf.defVar(f,'image_diam_circle_fit','double',dimid0);                        
varid22 = netcdf.defVar(f,'image_diam_horiz_chord','double',dimid0);                       
varid23 = netcdf.defVar(f,'image_diam_horiz_chord_corr','double',dimid0);                  
varid24 = netcdf.defVar(f,'image_diam_following_bamex_code','double',dimid0);              
varid25 = netcdf.defVar(f,'image_diam_vert_chord','double',dimid0);                        
varid26 = netcdf.defVar(f,'image_diam_minR','double',dimid0);                        
varid27 = netcdf.defVar(f,'image_diam_AreaR','double',dimid0);      
varid45 = netcdf.defVar(f,'image_perimeter','double',dimid0); 
if 1==iRectEllipse  
    varid46 = netcdf.defVar(f,'image_RectangleL','double',dimid0);                        
    varid47 = netcdf.defVar(f,'image_RectangleW','double',dimid0);                          
    varid67 = netcdf.defVar(f,'image_RectangleAngle','double',dimid0);                          
    varid48 = netcdf.defVar(f,'image_EllipseL','double',dimid0);                          
    varid49 = netcdf.defVar(f,'image_EllipseW','double',dimid0);                             
    varid69 = netcdf.defVar(f,'image_EllipseAngle','double',dimid0);    
end 
varid28 = netcdf.defVar(f,'percent_shadow_area','double',dimid0);                          
varid29 = netcdf.defVar(f,'edge_at_max_hole','double',dimid0);                             
varid30 = netcdf.defVar(f,'max_hole_diameter','double',dimid0);                            
varid31 = netcdf.defVar(f,'part_z','double',dimid0);                                       
varid32 = netcdf.defVar(f,'size_factor','double',dimid0);                                  
varid33 = netcdf.defVar(f,'holroyd_habit','double',dimid0);                                
varid34 = netcdf.defVar(f,'area_hole_ratio','double',dimid0);                              
varid35 = netcdf.defVar(f,'inter_arrival','double',dimid0);                                
varid36 = netcdf.defVar(f,'bin_stats','double',dimid2);                                    
netcdf.endDef(f) 
 
%% Variables initialization  
kk=1; 
w=-1; 
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wstart = 0; 
 
time_offset_hr = 0; 
time_offset_mn = 0; 
time_offset_sec = 0; 
time_offset_ms = 0; 
timeset_flag = 0; 
 
 
 
%% Processing nth chuck. Every chuck is nEvery frames 
%% Analyze each individual particle images and Output the particle by particle information 
for i=((n-1)*nEvery+1):min(n*nEvery,handles.img_count) % Start on 1st frame for 1st chuck, nEvery+1 frame for 2nd chuck... 
 
    handles.year     = netcdf.getVar(handles.f,netcdf.inqVarID(handles.f,'year'    ),i-1,1); 
    handles.month    = netcdf.getVar(handles.f,netcdf.inqVarID(handles.f,'month'  ),i-1,1); 
    handles.day      = netcdf.getVar(handles.f,netcdf.inqVarID(handles.f,'day'  ),i-1,1); 
    handles.hour     = netcdf.getVar(handles.f,netcdf.inqVarID(handles.f,'hour'    ),i-1,1); 
    handles.minute   = netcdf.getVar(handles.f,netcdf.inqVarID(handles.f,'minute'  ),i-1,1); 
    handles.second   = netcdf.getVar(handles.f,netcdf.inqVarID(handles.f,'second'  ),i-1,1); 
    handles.millisec = netcdf.getVar(handles.f,netcdf.inqVarID(handles.f,'millisec'),i-1,1); 
   
    if mod(i,100) == 0 
        [num2str(i),'/',num2str(handles.img_count), ', ',datestr(now)] 
        % Display if diode unmasking is being done - Added by Siddhant Gupta 
        if exist([path '/' 'diode.' flight file '.' infile(end-4) '.mat'],'file')==2; 
           disp(['Diode unmasking done. See diode' flight file '.' infile(end-4) '.mat file for diode # unmasked']); 
        else 
        end 
    end 
    varid = netcdf.inqVarID(handles.f,'data'); 
     
    if probetype==0 
        temp = netcdf.getVar(handles.f,varid,[0, 0, i-1], [4,1024,1]); 
    else 
        temp = netcdf.getVar(handles.f,varid,[0, 0, i-1], [8,1700,1]); 
    end 
    data(:,:) = temp';   
     
    j=1; 
    start=0; 
    firstpart = 1; 
     
    %c=[dec2bin(data(:,1),8),dec2bin(data(:,2),8),dec2bin(data(:,3),8),dec2bin(data(:,4),8)]; 
    while data(j,1) ~= -1 && j < size(data,1) 
        % Calculate every particles 
        if (isequal(data(j,:), boundary) && ( (isequal(data(j+1,1), boundarytime) || probetype==1) ) ) 
           if start ==0 
               if 1 == probetype  
                   start = 2; 
               elseif 0 == probetype 
                   start = 2; 
               else 
                   start = 1; 
               end 
           end 
             
               if probetype==0 
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                   if start+1 > (j-1)  % Remove Corrupted Data 
                    break; 
                   end 
               else 
                   if start > (j-1)  % Remove Corrupted Data 
                    break; 
                   end 
               end  
                 
                header_loc = j+1; 
                w=w+1; 
                %% Create binary image according to probe type 
                    
                if probetype==0     
                    ind_matrix(1:j-start-1,:) = data(start+1:j-1,:);  % 2DC has 3 slices between particles (sync word timing word and end of 
particle words) 
                    c=[dec2bin(ind_matrix(:,1),8),dec2bin(ind_matrix(:,2),8),dec2bin(ind_matrix(:,3),8),dec2bin(ind_matrix(:,4),8)]; 
                elseif probetype==1 
                    ind_matrix(1:j-start,:) = data(start:j-1,:); 
                    c=[dec2bin(ind_matrix(:,1),8), dec2bin(ind_matrix(:,2),8),dec2bin(ind_matrix(:,3),8),dec2bin(ind_matrix(:,4),8), ... 
                    dec2bin(ind_matrix(:,5),8), dec2bin(ind_matrix(:,6),8),dec2bin(ind_matrix(:,7),8),dec2bin(ind_matrix(:,8),8)]; 
                elseif probetype==2 
                    ind_matrix(1:j-start,:) = 65535 - data(start:j-1,:); % I used 1 to indicate the illuminated doides for HVPS 
                    c=[dec2bin(ind_matrix(:,1),16), dec2bin(ind_matrix(:,2),16),dec2bin(ind_matrix(:,3),16),dec2bin(ind_matrix(:,4),16), 
... 
                    dec2bin(ind_matrix(:,5),16), dec2bin(ind_matrix(:,6),16),dec2bin(ind_matrix(:,7),16),dec2bin(ind_matrix(:,8),16)]; 
                end 
                 
                % If diode.YYMMDDHHMMSS.H.mat file exists, unmask diodes numbered in 'shadow_diode' variable, added by Siddhant 
Gupta 
                if exist([path '/' 'diode.' flight file '.' infile(end-4) '.mat'],'file')==2; 
                load([path '/' 'diode.' flight file '.' infile(end-4) '.mat'],'shadow_diode'); 
                c(:,shadow_diode)='1'; 
                else 
                end 
 
                % Just to test if there is bad images, usually 0 area images 
                figsize = size(c); 
                if figsize(2)~=diodenum 
                    disp('Not equal to diode number'); 
                    return 
                end 
                 
                 
                images.position(kk,:) = [start, j-1]; 
                parent_rec_num(kk)=i; 
                particle_num(kk) = mod(kk,66536); %hex2dec([dec2hex(data(start-1,7)),dec2hex(data(start-1,8))]); 
                 
                %  Get the particle time  
                if probetype==0  
                    bin_convert = [dec2bin(data(header_loc,2),8),dec2bin(data(header_loc,3),8),dec2bin(data(header_loc,4),8)]; 
                    part_time = bin2dec(bin_convert);       % Interarrival time in tas clock cycles 
                    tas2d = netcdf.getVar(handles.f,netcdf.inqVarID(handles.f,'tas'),i-1, 1); 
                    part_time = part_time/tas2d*handles.diodesize/(10^3);                     
                    time_in_seconds(kk) = part_time; 
 
                    images.int_arrival(kk) = part_time; 
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                    if(firstpart == 1) 
                        firstpart = 0; 
                        start_hour = handles.hour; 
                        start_minute = handles.minute; 
                        start_second = handles.second; 
                        start_msec = handles.millisec*10; 
                        % First, we get the hours.... 
                        start_msec = start_msec; 
                        start_microsec = 0; 
                        time_offset_hr = 0; 
                        time_offset_mn = 0; 
                        time_offset_sec = 0; 
                        time_offset_ms = 0; 
 
                        part_hour(kk) = start_hour; 
                        part_min(kk) = start_minute; 
                        part_sec(kk) = start_second; 
                        part_mil(kk) = start_msec; 
                        part_micro(kk) = 0; 
                    else 
                        frac_time = part_time - floor(part_time); 
                        frac_time = frac_time * 1000; 
                        part_micro(kk) = part_micro(kk-1) + (frac_time - floor(frac_time))*1000; 
                        part_mil(kk) = part_mil(kk-1) + floor(frac_time); 
                        part_sec(kk) = part_sec(kk-1) + floor(part_time); 
                        part_min(kk) = part_min(kk-1); 
                        part_hour(kk) = part_hour(kk-1); 
                    end 
                     
                    part_sec(part_mil >= 1000) = part_sec(part_mil >= 1000) + 1; 
                    part_mil(part_mil >= 1000) = part_mil(part_mil >= 1000) - 1000; 
 
                    part_min(part_sec >= 60) = part_min(part_sec >= 60) + 1; 
                    part_sec(part_sec >= 60) = part_sec(part_sec >= 60) - 60; 
 
                    part_hour(part_min >= 60) = part_hour(part_min >= 60) + 1; 
                    part_min(part_min >= 60) = part_min(part_min >= 60) - 60; 
                    part_hour(part_hour >= 24) = part_hour(part_hour >= 24) - 24; 
                elseif probetype==1 
                    bin_convert = [dec2bin(data(start-1,2),8),dec2bin(data(start-1,3),8),dec2bin(data(start-1,4),8), ... 
                        dec2bin(data(start-1,5),8), dec2bin(data(start-1,6),8)]; 
 
                    part_hour(kk) = bin2dec(bin_convert(1:5)); 
                    part_min(kk) = bin2dec(bin_convert(6:11)); 
                    part_sec(kk) = bin2dec(bin_convert(12:17)); 
                    part_mil(kk) = bin2dec(bin_convert(18:27)); 
                    part_micro(kk) = bin2dec(bin_convert(28:40))*125e-9; 
                 
                    particle_sliceCount(kk)=bitand(data(start-1,1),127); 
                    particle_DOF(kk)=bitand(data(start-1,1),128); 
                    particle_partNum(kk)=bin2dec([dec2bin(data(start-1,7),8),dec2bin(data(start-1,8),8)]); 
 
                    time_in_seconds(kk) = part_hour(kk) * 3600 + part_min(kk) * 60 + part_sec(kk) + part_mil(kk)/1000 + part_micro(kk); 
                    if kk > 1 
                        images.int_arrival(kk) = time_in_seconds(kk) - time_in_seconds(kk-1); 
                    else 
                        images.int_arrival(kk) = time_in_seconds(kk); 
                    end 
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                elseif probetype==2 
 
                    particle_DOF(kk)=bitand(data(header_loc,4), 32768); 
                    particle_partNum(kk)=double(data(header_loc,5)); 
                    particle_sliceCount(kk)=double(data(header_loc,6)); 
 
                    part_time = double(data(header_loc,7))*2^16+double(data(header_loc,8));       % Interarrival time in tas clock cycles 
                    part_micro(kk) = part_time; 
                    part_mil(kk)   = 0; 
                    part_sec(kk)   = 0; 
                    part_min(kk)   = 0; 
                    part_hour(kk)  = 0; 
                    time_in_seconds(kk) = part_time*(handles.diodesize/(10^3)/170); 
                    if(kk>1) 
                        images.int_arrival(kk) = part_time-part_micro(kk-1);  
                    else 
                        images.int_arrival(kk) = 0; 
                    end 
                end 
                 
                temptimeinhhmmss = part_hour(kk) * 10000 + part_min(kk) * 100 + part_sec(kk); 
                %if (temptimeinhhmmss<200000 || temptimeinhhmmss>240000) 
                %    temptimeinhhmmss 
                %end 
                 
                slices_ver = length(start:j-1); 
                rec_time(kk)=double(handles.hour)*10000+double(handles.minute)*100+double(handles.second); 
                rec_date(kk)=double(handles.year)*10000+double(handles.month)*100+double(handles.day); 
                rec_millisec(kk)=handles.millisec; 
                %                 rec_wkday(kk)=handles.wkday(i); 
    
                %% Determine the Particle Habit 
                %  We use the Holroyd algorithm here 
                handles.bits_per_slice = diodenum; 
                diode_stats = diode_stats + sum(c=='1',1); 
                csum = sum(c=='1',1); 
 
                images.holroyd_habit(kk) = holroyd(handles,c); 
                 
                %% Determine if the particle is rejected or not 
                %  Calculate the Particle Length, Width, Area, Auto Reject  
                %  Status And more... See calculate_reject_unified() 
                %  funtion for more information 
                 
                [images.image_length(kk),images.image_width(kk),images.image_area(kk), ... 
                    
images.longest_y_within_a_slice(kk),images.max_top_edge_touching(kk),images.max_bottom_edge_touching(kk),... 
                    images.image_touching_edge(kk), 
images.auto_reject(kk),images.is_hollow(kk),images.percent_shadow(kk),images.part_z(kk),... 
                    images.sf(kk),images.area_hole_ratio(kk),handles]=calculate_reject_unified(c,handles,images.holroyd_habit(kk)); 
 
                images.max_hole_diameter(kk) = handles.max_hole_diameter; 
                images.edge_at_max_hole(kk) = handles.edge_at_max_hole; 
 
                max_horizontal_length = images.image_length(kk); 
                max_vertical_length = images.longest_y_within_a_slice(kk); 
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                image_area = images.image_area(kk); 
 
                diode_size= handles.diodesize; 
                corrected_horizontal_diode_size = handles.diodesize; 
                largest_edge_touching  = max(images.max_top_edge_touching(kk), images.max_bottom_edge_touching(kk)); 
                smallest_edge_touching = min(images.max_top_edge_touching(kk), images.max_bottom_edge_touching(kk)); 
 
                %% Calculate more size deciptor using more advanced techniques 
                %  See dropsize for more information 
                
[images.center_in(kk),images.axis_ratio(kk),images.diam_circle_fit(kk),images.diam_horiz_chord(kk),images.diam_vert_chord(
kk),... 
                    images.diam_horiz_mean(kk), 
images.diam_spheroid(kk)]=dropsize(max_horizontal_length,max_vertical_length,image_area... 
                    ,largest_edge_touching,smallest_edge_touching,diode_size,corrected_horizontal_diode_size, diodenum); 
                 
                %% Calculate size deciptor using bamex code 
                %  See dropsize_new for more information 
                % images.diam_bamex(kk) = dropsize_new(c, largest_edge_touching, smallest_edge_touching, diodenum, 
corrected_horizontal_diode_size, handles.diodesize, max_vertical_length); 
                 
                %% Using OpenCV C program to calculate length, width and radius. This                  
                %% Get diameter of the smallest-enclosing circle, rectangle and ellipse 
                %images.minR(kk)=particlesize_cgal(c); 
                images.minR(kk)=CGAL_minR(c); 
                images.AreaR(kk)=2*sqrt(images.image_area(kk)/3.1415926);  % Calculate the Darea (area-equivalent diameter) 
                images.Perimeter(kk)=ParticlePerimeter(c); 
                 
                if 1==iRectEllipse  
                    [images.RectangleL(kk), images.RectangleW(kk), images.RectangleAngle(kk)] = CGAL_RectSize(c); 
                    [images.EllipseL(kk), images.EllipseW(kk), images.EllipseAngle(kk)]       = CGAL_EllipseSize(c); 
                end 
                %% Get the area ratio using the DL=max(DT,DP), only observed area are used 
                if images.image_length(kk) > images.image_width(kk) 
                    images.percent_shadow(kk) = images.image_area(kk) / (pi * images.image_length(kk).^ 2 / 4); 
                elseif images.image_width(kk) ~= 0 
                    images.percent_shadow(kk) = images.image_area(kk) / (pi * images.image_width(kk).^ 2 / 4); 
                else 
                    images.percent_shadow(kk) = 0; 
                end 
 
                start = j + 2; 
                kk = kk + 1; 
                clear c ind_matrix 
           %end 
        end 
 
        j = j + 1; 
    end 
 
    %% Write out the processed information on NETCDF 
    if kk > 1 
         
        
        netcdf.putVar ( f, varid0, wstart, w-wstart+1, rec_time(:) ); 
        netcdf.putVar ( f, varid1, wstart, w-wstart+1, rec_date(:) ); 
         
        netcdf.putVar ( f, varid101, wstart, w-wstart+1, time_in_seconds(:) ); 
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        netcdf.putVar ( f, varid102, wstart, w-wstart+1, particle_sliceCount ); 
        netcdf.putVar ( f, varid103, wstart, w-wstart+1, particle_DOF ); 
        netcdf.putVar ( f, varid104, wstart, w-wstart+1, particle_partNum ); 
 
         
        netcdf.putVar ( f, varid2, wstart, w-wstart+1, rec_millisec(:) ); 
        %netcdf.putVar ( f, varid3, wstart, w-wstart+1, rec_wkday(:) ); 
        netcdf.putVar ( f, varid4, [0 wstart], [2 w-wstart+1], images.position' ); 
        netcdf.putVar ( f, varid5, wstart, w-wstart+1, part_hour(:)*10000+part_min(:)*100+part_sec(:) ); 
        netcdf.putVar ( f, varid6, wstart, w-wstart+1, part_mil(:) ); 
        netcdf.putVar ( f, varid7, wstart, w-wstart+1, part_micro(:) ); 
        netcdf.putVar ( f, varid8, wstart, w-wstart+1, parent_rec_num );     
        netcdf.putVar ( f, varid9, wstart, w-wstart+1, particle_num(:) ); 
        netcdf.putVar ( f, varid10, wstart, w-wstart+1, images.image_length);                          
        netcdf.putVar ( f, varid11, wstart, w-wstart+1, images.image_width);                           
        netcdf.putVar ( f, varid12, wstart, w-wstart+1, images.image_area*diode_size*diode_size);                            
        netcdf.putVar ( f, varid13, wstart, w-wstart+1, images.longest_y_within_a_slice);              
        netcdf.putVar ( f, varid14, wstart, w-wstart+1, images.max_top_edge_touching);                 
        netcdf.putVar ( f, varid15, wstart, w-wstart+1, images.max_bottom_edge_touching);  
        netcdf.putVar ( f, varid16, wstart, w-wstart+1, images.image_touching_edge-'0');                   
        netcdf.putVar ( f, varid17, wstart, w-wstart+1, double(images.auto_reject));                   
        netcdf.putVar ( f, varid18, wstart, w-wstart+1, images.is_hollow);                             
        netcdf.putVar ( f, varid19, wstart, w-wstart+1, images.center_in);                             
        netcdf.putVar ( f, varid20, wstart, w-wstart+1, images.axis_ratio);                            
        netcdf.putVar ( f, varid21, wstart, w-wstart+1, images.diam_circle_fit);                       
        netcdf.putVar ( f, varid22, wstart, w-wstart+1, images.diam_horiz_chord);                      
        netcdf.putVar ( f, varid23, wstart, w-wstart+1, images.diam_horiz_chord ./ images.sf);         
        netcdf.putVar ( f, varid24, wstart, w-wstart+1, images.diam_horiz_mean);               
        netcdf.putVar ( f, varid25, wstart, w-wstart+1, images.diam_vert_chord);                            
        netcdf.putVar ( f, varid26, wstart, w-wstart+1, images.minR*diode_size);                       
        netcdf.putVar ( f, varid27, wstart, w-wstart+1, images.AreaR*diode_size);        
        netcdf.putVar ( f, varid45, wstart, w-wstart+1, images.Perimeter*diode_size);  
        if 1==iRectEllipse  
            netcdf.putVar ( f, varid46, wstart, w-wstart+1, images.RectangleL*diode_size);                       
            netcdf.putVar ( f, varid47, wstart, w-wstart+1, images.RectangleW*diode_size);          
            netcdf.putVar ( f, varid67, wstart, w-wstart+1, images.RectangleAngle);          
            netcdf.putVar ( f, varid48, wstart, w-wstart+1, images.EllipseL*diode_size);                       
            netcdf.putVar ( f, varid49, wstart, w-wstart+1, images.EllipseW*diode_size);  
            netcdf.putVar ( f, varid69, wstart, w-wstart+1, images.EllipseAngle);  
        end 
        netcdf.putVar ( f, varid28, wstart, w-wstart+1, images.percent_shadow);                        
        netcdf.putVar ( f, varid29, wstart, w-wstart+1, images.max_hole_diameter);                     
        netcdf.putVar ( f, varid30, wstart, w-wstart+1, images.edge_at_max_hole);                      
        netcdf.putVar ( f, varid31, wstart, w-wstart+1, images.part_z);                                
        netcdf.putVar ( f, varid32, wstart, w-wstart+1, images.sf);                                    
        netcdf.putVar ( f, varid33, wstart, w-wstart+1, double(images.holroyd_habit));                 
        netcdf.putVar ( f, varid34, wstart, w-wstart+1, images.area_hole_ratio);                       
        netcdf.putVar ( f, varid35, wstart, w-wstart+1, images.int_arrival);                           
        netcdf.putVar ( f, varid36, diode_stats ); 
         
        wstart = w+1; 
        kk = 1; 
        clear rec_time rec_date rec_millisec part_hour part_min part_sec part_mil part_micro parent_rec_num particle_num 
images time_in_seconds particle_sliceCount particle_DOF particle_partNum 
 
    end 
    clear images 
end 
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warning on all 
 
netcdf.close(f); 
end 
 

SIZEDIST.M 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%% 
%  Derive the area and size distribution for entire-in particles  
%  Include the IWC calculation 
%  Include the effective radius  
%               Created by Will Wu, 09/18/2013 
% 
% ************************** 
% *** Modification Notes *** 
% ************************** 
% * Modified to use the new maximum size and derive both maximum size distribution 
%    and area-equivalent size distribution.   
%   Will Wu, 10/26/2013   
% * Modified to calculate terminal velocity using Heymsfield and Westbrook (2010) method 
%    and precipitation rate.      
%   Will Wu, 01/15/2014 
% * Modified to include mass size distribution with habit info.  
%   Will Wu, 02/09/2014 
% * Modified to include particle area using A-D relations.  
%   Will Wu, 02/14/2014  
% * Special Edition for Boston Cloud workshop.  
%   Wei Wu, 04/01/2014 
% * Gneralized as a new sorting function for all probes.  
%   Wei Wu, 07/25/2014 
% * Modified to allow the option to ingest/use interarrival time dynamic threshold 
%   Dan Stechman, 05/06/2016 
% * Added project and date specific capabilities (including spiral-dependent interarrival 
%    thresholding). Also cleaned up code and improved efficiency in places. 
%   Dan Stechman, 06/03/2016 
% * Added shatter removal using array of interarrival time thresholds (either constant or varrying [e.g., different threshold 
for 
%  each spiral in PECAN project]). Also added experimental shatter reacceptance option to allow for potential diffraction 
fringes 
%    originally flagged as shattered to be reaccepted. 
%   Dan Stechman, 06/09/2016 
%   * Expanded upon time-varying interarrival time thresholds and reacceptance of particles for GPM (GCPEx, OLYMPEX) 
campaigns. 
%    Also added option to save out information on interarrival times and sample volume. 
%    Bug fix for calculation of 'n' and 'count' to un-normalize by binwidth. 
%    Bug fix when syncing particle time with flight time. 
%           Joe Finlon, 03/03/2017 
%   * Added probe default settings for GCPEx campaign 
%           Joe Finlon, 06/05/2017 
%   * Added metadata for netCDF output & fixed handling of 2DC/2DP data. 
%           Joe Finlon, 06/26/17 
% 
%  Usage:  
%    infile:   Input filename, string 
%    outfile:       Output filename, string 
%    tas:           True air speed, double array 



193 
 

%    timehhmmss:    Time in hhmmss format, double array 
%    probename:     Should be one of 'HVPS', 'CIP', 'PIP', '2DC', '2DP', 'F2DC'  
%    d_choice:      the definition of Dmax, should use 6 usually. [1-6]  
%    SAmethod:      0: Center in; 1: Entire in; 2: With Correction 
%    Pres:          1 second pressure data 
%    Temp:          1 second temperature data 
%    projectname:   Project name, string 
%    ddate:         Date to be analyzed, string (YYYYMMDD) 
% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%% 
function sizeDist(infile, outfile, tas, timehhmmss, probename, d_choice, SAmethod, Pres, Temp, projectname, ddate, varargin) 
iCreateBad = 0; % Default not to output bad particles PSDs and other info 
iCreateAspectRatio = 0; % Default not to process aspect ratio info 
iSaveIntArrSV = 1; % Default not to save inter-arrival and sample volume information 
%% Interarrival threshold file specification 
% Can be implemented if a time-dependent threshold is required - add 'varargin' to arguments in function header above 
 
if length(varargin) == 1 % Added by Siddhant Gupta - 07/15/2020 to identify file with time-dependent inter-arrival thresholds 
    if exist(varargin{1},'file')==2 
 iaThreshFile = varargin{1}; 
 fprintf('Inter-arrival time file being used: %s \n',iaThreshFile) 
    else 
    iaThreshFile = 'NONE'; 
 fprintf('Inter-arrival time file being used: %s \n',iaThreshFile) 
    end 
elseif length(varargin)>1 
 display('You have added too many inputs!') 
 iaThreshFile = 'NONE'; 
end 
 
%% Define input and output files and initialize time variable 
f = netcdf.open(infile,'nowrite'); 
mainf = netcdf.create(outfile, 'clobber'); 
 
% Fix flight times if they span multiple days - Added by Joe Finlon - 
% 03/03/17 
timehhmmss(find(diff(timehhmmss)<0)+1:end)=... 
    timehhmmss(find(diff(timehhmmss)<0)+1:end) + 240000; 
 
 
% tas_char = num2str(timehhmmss); %Unused 
tas_time = floor(timehhmmss/10000)*3600+floor(mod(timehhmmss,10000)/100)*60+floor(mod(timehhmmss,100)); 
% averaging_time = 1; 
 
%% Project-, probe-, and date-specific information 
switch projectname 
    case 'PECAN' 
  switch probename 
            case 'CIP' 
                num_diodes =64; 
                diodesize = 0.025; % units of mm 
                armdst=100.; 
%                 num_bins = 64; 
%                 kk=diodesize/2:diodesize:(num_bins+0.5)*diodesize; 
                num_bins=19; 
                kk=[50.0   100.0   150.0   200.0   250.0   300.0   350.0   400.0   475.0   550.0   625.0 ... 
                    700.0   800.0   900.0  1000.0  1200.0  1400.0  1600.0  1800.0  2000.0]/1000; %Array in microns - converted to mm 
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                probetype=1; 
                tasMax=200; % Max airspeed that can be sampled without under-sampling (images would appear skewed) 
                 
    applyIntArrThresh = 1; 
     defaultIntArrThresh = 1e-5; 
    reaccptShatrs = 1; 
     reaccptD = 0.5; % Diammeter (in mm) to reaccept if initially flagged as shattered 
     reaccptMaxIA = 2.5e-7; % Max interarrival time in seconds a particle can 
have to be reaccepted if  
           % size criteria are 
met. Possible definition of this is the time of one slice, so in 
           % this case, with an 
airspeed of ~100 m/s and a slice of 25 um, this would be 2.5e-7. 
                 
 
    % Get start and end times (in seconds) of spirals; interarrival time thresholds for each 
spiral 
    [startT, endT, ~, ~, intar_threshold_spirals] = getPECANparams(ddate, probename); 
     
    intar_threshold = ones(size(tas_time))*defaultIntArrThresh; 
    for ix = 1:length(tas_time) 
     for iz = 1:length(startT) 
      if (tas_time(ix) >= startT(iz) && tas_time(ix) < endT(iz)) 
       intar_threshold(ix) = intar_threshold_spirals(iz); 
      end 
     end 
    end 
                 
            case 'PIP' 
                num_diodes =64; 
                diodesize = 0.1; %units of mm 
                armdst=260.; 
                num_bins = 64; 
%                 kk=diodesize/2:diodesize:(num_bins+0.5)*diodesize; 
                kk=diodesize/2:diodesize:(num_bins+0.6)*diodesize; 
%                 num_bins=19; 
%                 kk=[50.0   100.0   150.0   200.0   250.0   300.0   350.0   400.0   475.0   550.0   625.0 ... 
%                    700.0   800.0   900.0  1000.0  1200.0  1400.0  1600.0  1800.0  2000.0]*4/1000; 
                probetype=1; 
                tasMax=200;  
                 
    applyIntArrThresh = 1; 
     defaultIntArrThresh = 1e-5; 
    reaccptShatrs = 1; 
     reaccptD = 0.5; % Diammeter (in mm) to reaccept if initially flagged as shattered 
     reaccptMaxIA = 1e-6; % (Slice size [m])/(avg. airspeed [m/s]) 
                 
    % Get start and end times (in seconds) of spirals; interarrival time thresholds for each 
spiral 
    [startT, endT, ~, ~, intar_threshold_spirals] = getPECANparams(ddate, probename); 
     
    intar_threshold = ones(size(tas_time))*defaultIntArrThresh; 
    for ix = 1:length(tas_time) 
     for iz = 1:length(startT) 
      if (tas_time(ix) >= startT(iz) && tas_time(ix) < endT(iz)) 
       intar_threshold(ix) = intar_threshold_spirals(iz); 
      end 
     end 
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    end 
        end 
         
    case 'GPM' 
        switch probename 
            case '2DS' 
                num_diodes =128; 
                diodesize = .010; 
                armdst=63.; 
                num_bins =22; 
                kk=[40.0    60.0    80.0   100.0   125.0   150.0   200.0   250.0   300.0   350.0   400.0 ... 
                    475.0   550.0   625.0   700.0   800.0   900.0  1000.0  1200.0  1400.0  1600.0  1800.0  2000.0]/1000; 
                probetype=2; 
                tasMax=170; 
                 
                % Interarrival threshold and reaccept max interarrival time are often flight-/instrument-specific 
    % **Values here may not be correct**  
    % The interarrival threshold can be modifided to change second-by-second if desired 
                applyIntArrThresh = 1; 
     defaultIntArrThresh = 1e-6; 
    reaccptShatrs = 1; 
     reaccptD = 0.5; 
                    %reaccptMaxIA = 1e-7; % (Slice size [m])/(avg. airspeed [m/s]) 
     reaccptMaxIA = 1e-6; % (Slice size [m])/(avg. airspeed [m/s]) 
                     
            case 'CIP' 
                num_diodes =64; 
                diodesize = 0.025; % units of mm 
                armdst=100.; 
                num_bins=19; 
                kk=[50.0   100.0   150.0   200.0   250.0   300.0   350.0   400.0   475.0   550.0   625.0 ... 
                    700.0   800.0   900.0  1000.0  1200.0  1400.0  1600.0  1800.0  2000.0]/1000; %Array in microns - converted to mm 
                probetype=1; 
                tasMax=200; % Max airspeed that can be sampled without under-sampling (images would appear skewed) 
                 
    applyIntArrThresh = 1; 
     defaultIntArrThresh = 1e-6; 
    reaccptShatrs = 1; 
     reaccptD = 0.5; % Diammeter (in mm) to reaccept if initially flagged as shattered 
     reaccptMaxIA = 2.5e-7; % Max interarrival time in seconds a particle can 
have to be reaccepted if  
           % size criteria are 
met. Possible definition of this is the time of one slice, so in 
           % this case, with an 
airspeed of ~100 m/s and a slice of 25 um, this would be 2.5e-7. 
                                                
            case 'HVPS' 
                % For the HVPS 
                num_diodes =128; 
                diodesize = .150; 
                armdst=161.; 
                num_bins = 28; 
                kk=[200.0   400.0   600.0   800.0  1000.0  1200.0  1400.0  1600.0  1800.0  2200.0  2600.0 ... 
                     3000.0  3400.0  3800.0  4200.0  4600.0  5000.0  6000.0  7000.0  8000.0  9000.0 10000.0 ... 
                     12000.0 14000.0 16000.0 18000.0 20000.0 25000.0 30000.0]/1000; 
                probetype=2; 
                tasMax=170; 
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                % Interarrival threshold and reaccept max interarrival time are often flight-/instrument-specific 
    % **Values here may not be correct**  
    % The interarrival threshold can be modifided to change second-by-second if desired 
                applyIntArrThresh = 0; 
     defaultIntArrThresh = 1e-6; 
    reaccptShatrs = 0; 
     reaccptD = 0.5;  
     reaccptMaxIA = 1e-6; % (Slice size [m])/(avg. airspeed [m/s]) 
                 
        end 
         
    otherwise 
        switch probename 
            case 'HVPS' 
                % For the HVPS 
                num_diodes =128; 
                diodesize = .150; 
                armdst=161.; 
                %num_bins = 28; 
                %kk=[200.0   400.0   600.0   800.0  1000.0  1200.0  1400.0  1600.0  1800.0  2200.0  2600.0 ... 
                %     3000.0  3400.0  3800.0  4200.0  4600.0  5000.0  6000.0  7000.0  8000.0  9000.0 10000.0 ... 
                %     12000.0 14000.0 16000.0 18000.0 20000.0 25000.0 30000.0]/1000; 
                num_bins =70; 
                kk=diodesize/2:diodesize:(num_bins+0.5)*diodesize; 
                probetype=2; 
                tasMax=170;  
     
    % Interarrival threshold and reaccept max interarrival time are often flight-/instrument-
specific 
    % **Values here may not be correct**  
    % The interarrival threshold can be modifided to change second-by-second if desired 
                applyIntArrThresh = 1; 
     defaultIntArrThresh = 1e-6; % Changed from 4e-6 to 1e-6 for ORACLES - 
Siddhant Gupta - 11/22/17 
    reaccptShatrs = 0; 
     reaccptD = 0.5;  
     reaccptMaxIA = 1e-6; % (Slice size [m])/(avg. airspeed [m/s]) 
                 
    intar_threshold = ones(size(tas_time))*defaultIntArrThresh; 
 
            case '2DS' 
                % For the HVPS 
                num_diodes =128; 
                diodesize = .010; 
                armdst=63.; 
                %num_bins = 28; 
                %kk=[200.0   400.0   600.0   800.0  1000.0  1200.0  1400.0  1600.0  1800.0  2200.0  2600.0 ... 
                %     3000.0  3400.0  3800.0  4200.0  4600.0  5000.0  6000.0  7000.0  8000.0  9000.0 10000.0 ... 
                %     12000.0 14000.0 16000.0 18000.0 20000.0 25000.0 30000.0]/1000/15; 
                num_bins =128; 
                %kk=diodesize/2:diodesize:(num_bins+0.5)*diodesize; 
                kk=diodesize/2:diodesize:(num_bins+0.6)*diodesize; 
                probetype=2; 
                tasMax=170;   
     
    % Interarrival threshold and reaccept max interarrival time are often flight-/instrument-
specific 
    % **Values here may not be correct**  
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    % The interarrival threshold can be modifided to change second-by-second if desired 
                applyIntArrThresh = 1; 
     defaultIntArrThresh = 6e-6; % Changed from 1e-6 to 6e-6 for ORACLES - 
Siddhant Gupta - 11/1/17 
    reaccptShatrs = 0; 
     reaccptD = 0.5;  
     reaccptMaxIA = 1e-6; % (Slice size [m])/(avg. airspeed [m/s]) 
                 
    intar_threshold = ones(size(tas_time))*defaultIntArrThresh; 
 
            case 'CIP' 
                % For the CIP  
                num_diodes =64; 
                diodesize = .025; %units of mm 
                armdst=100.; 
                num_bins = 64; 
                kk=diodesize/2:diodesize:(num_bins+0.5)*diodesize; 
%                 num_bins=19; 
%                 kk=[50.0   100.0   150.0   200.0   250.0   300.0   350.0   400.0   475.0   550.0   625.0 ... 
%                     700.0   800.0   900.0  1000.0  1200.0  1400.0  1600.0  1800.0  2000.0]/1000; %Array in microns - converted to mm 
                probetype=1; 
                tasMax=200; % Max airspeed that can be sampled without under-sampling (images would appear skewed) 
     
    % Interarrival threshold and reaccept max interarrival time are often flight-/instrument-
specific 
    % **Values here may not be correct**  
    % The interarrival threshold can be modifided to change second-by-second if desired 
                applyIntArrThresh = 1; 
     defaultIntArrThresh = 1e-6; 
    reaccptShatrs = 0; 
     reaccptD = 0.5;  
     reaccptMaxIA = 1e-6; % (Slice size [m])/(avg. airspeed [m/s]) 
                 
    intar_threshold = ones(size(tas_time))*defaultIntArrThresh; 
 
            case 'PIP' 
                num_diodes =64; 
                diodesize = .1; %units of mm 
                armdst=260.; 
                num_bins = 64; 
%                 kk=diodesize/2:diodesize:(num_bins+0.5)*diodesize; 
                kk=diodesize/2:diodesize:(num_bins+0.6)*diodesize; 
%                 num_bins=19; 
%                 kk=[50.0   100.0   150.0   200.0   250.0   300.0   350.0   400.0   475.0   550.0   625.0 ... 
%                    700.0   800.0   900.0  1000.0  1200.0  1400.0  1600.0  1800.0  2000.0]*4/1000; 
                probetype=1; 
                tasMax=200;  
                 
    % Interarrival threshold and reaccept max interarrival time are often flight-/instrument-
specific 
    % **Values here may not be correct**  
    % The interarrival threshold can be modifided to change second-by-second if desired 
                applyIntArrThresh = 0; 
     defaultIntArrThresh = 1e-5; 
    reaccptShatrs = 0; 
     reaccptD = 0.5;  
     reaccptMaxIA = 1e-6; % (Slice size [m])/(avg. airspeed [m/s]) 
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    intar_threshold = ones(size(tas_time))*defaultIntArrThresh; 
 
 
            case '2DC' 
                % For the 2DC 
                num_diodes =32; 
                diodesize = .03; %.025; 
                armdst=61.; 
                %num_bins = 32; 
                %kk=diodesize/2:diodesize:(num_bins+0.5)*diodesize; 
                num_bins=19; 
                kk=[50.0   100.0   150.0   200.0   250.0   300.0   350.0   400.0   475.0   550.0   625.0 ... 
                    700.0   800.0   900.0  1000.0  1200.0  1400.0  1600.0  1800.0  2000.0]/1000; 
                probetype=0; 
                tasMax=125;   
     
    % Interarrival threshold and reaccept max interarrival time are often flight-/instrument-
specific 
    % **Values here may not be correct**  
    % The interarrival threshold can be modifided to change second-by-second if desired 
                applyIntArrThresh = 0; 
     defaultIntArrThresh = 4e-6; 
    reaccptShatrs = 0; 
     reaccptD = 0.5;  
     reaccptMaxIA = 1e-6; % (Slice size [m])/(avg. airspeed [m/s]) 
                 
    intar_threshold = ones(size(tas_time))*defaultIntArrThresh; 
 
            case '2DP' 
                % For the 2DP 
                num_diodes =32; 
                diodesize = .200; %.025; 
                armdst=260.; %75.77; %61.; 
                %num_bins = 32; 
                %kk=diodesize/2:diodesize:(num_bins+0.5)*diodesize; 
                num_bins=19; 
                kk=[50.0   100.0   150.0   200.0   250.0   300.0   350.0   400.0   475.0   550.0   625.0 ... 
                    700.0   800.0   900.0  1000.0  1200.0  1400.0  1600.0  1800.0  2000.0]*8/1000; 
                probetype=0; 
     
    % Interarrival threshold and reaccept max interarrival time are often flight-/instrument-
specific 
    % **Values here may not be correct**  
    % The interarrival threshold can be modifided to change second-by-second if desired 
                applyIntArrThresh = 0; 
     defaultIntArrThresh = 4e-6; 
    reaccptShatrs = 0; 
     reaccptD = 0.5;  
     reaccptMaxIA = 1e-6; % (Slice size [m])/(avg. airspeed [m/s]) 
                 
    intar_threshold = ones(size(tas_time))*defaultIntArrThresh; 
 
            case 'F2DC' 
                % For the 2DC 
                num_diodes =64; 
                diodesize = .025; %.025; 
                armdst=61.; %60; % 
                %num_bins = 32; 
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                %kk=diodesize/2:diodesize:(num_bins+0.5)*diodesize; 
                num_bins=19; 
                kk=[50.0   100.0   150.0   200.0   250.0   300.0   350.0   400.0   475.0   550.0   625.0 ... 
                    700.0   800.0   900.0  1000.0  1200.0  1400.0  1600.0  1800.0  2000.0]/1000; 
                probetype=0; 
     
    % Interarrival threshold and reaccept max interarrival time are often flight-/instrument-
specific 
    % **Values here may not be correct**  
    % The interarrival threshold can be modifided to change second-by-second if desired 
                applyIntArrThresh = 0; 
     defaultIntArrThresh = 4e-6; 
    reaccptShatrs = 0; 
     reaccptD = 0.5;  
     reaccptMaxIA = 1e-6; % (Slice size [m])/(avg. airspeed [m/s]) 
                 
    intar_threshold = ones(size(tas_time))*defaultIntArrThresh; 
        end 
end 
 
if applyIntArrThresh && ~reaccptShatrs 
 fprintf('Beginning sizeDist.m for %s %s - %s probe\n\t**Optional parameters active:\n\t- Shatter 
removal\n\n',projectname,ddate,probename); 
elseif applyIntArrThresh && reaccptShatrs 
 fprintf('Beginning sizeDist.m for %s %s - %s probe\n\t**Optional parameters active:\n\t- Shatter removal\n\t- Shatter 
reacceptance\n\n',... 
  projectname,ddate,probename); 
else 
 fprintf('Beginning sizeDist.m for %s %s - %s probe\n\n',projectname,ddate,probename); 
end 
 
res=diodesize*1000; 
binwidth=diff(kk); 
% SAmethod = 2; 
% for i=1:num_bins+1 
%     kk(i)=  (diodesize*i)^2*3.1415926/4;  
% end 
 
 
%% Define Variables 
 
% Good particles (not rejected) 
particle_dist_minR  = zeros(length(tas),num_bins)*NaN; 
particle_dist_AreaR = zeros(length(tas),num_bins)*NaN; 
particle_aspectRatio = zeros(length(tas),num_bins)*NaN; 
particle_aspectRatio1 = zeros(length(tas),num_bins)*NaN; 
particle_areaRatio1 = zeros(length(tas),num_bins)*NaN; 
particle_area = zeros(length(tas),num_bins)*NaN; 
cip2_meanp = zeros(length(tas),num_bins)*NaN; 
cip2_iwc = zeros(length(tas),num_bins)*NaN; 
cip2_iwcbl = zeros(length(tas),num_bins)*NaN; 
cip2_vt = zeros(length(tas),num_bins)*NaN; 
cip2_pr = zeros(length(tas),num_bins)*NaN; 
cip2_partarea = zeros(length(tas),num_bins)*NaN; 
 
cip2_re = zeros(1,length(tas))*NaN; 
good_partpercent=zeros(length(tas),1); 
goodintpercent=zeros(length(tas),1); 
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numGoodparticles=zeros(length(tas),1); 
one_sec_ar=zeros(length(tas),1); 
 
 
cip2_habitsd = zeros(length(tas),num_bins,10)*NaN; 
cip2_habitmsd = zeros(length(tas),num_bins,10)*NaN; 
area_dist2 = zeros(length(tas),num_bins,10)*NaN; 
 
rejectpercentbycriterion=zeros(length(tas),14); 
 
 
% Bad particles (rejected) 
bad_particle_dist_minR  = zeros(length(tas),num_bins)*NaN; 
bad_particle_dist_AreaR = zeros(length(tas),num_bins)*NaN; 
bad_particle_aspectRatio = zeros(length(tas),num_bins)*NaN; 
bad_particle_aspectRatio1 = zeros(length(tas),num_bins)*NaN; 
bad_particle_areaRatio1 = zeros(length(tas),num_bins)*NaN; 
bad_particle_area = zeros(length(tas),num_bins)*NaN; 
bad_cip2_meanp = zeros(length(tas),num_bins)*NaN; 
bad_cip2_iwc = zeros(length(tas),num_bins)*NaN; 
bad_cip2_iwcbl = zeros(length(tas),num_bins)*NaN; 
bad_cip2_vt = zeros(length(tas),num_bins)*NaN; 
bad_cip2_pr = zeros(length(tas),num_bins)*NaN; 
bad_cip2_partarea = zeros(length(tas),num_bins)*NaN; 
 
bad_cip2_re = zeros(1,length(tas))*NaN; 
badintpercent=zeros(length(tas),1); 
numBadparticles=zeros(length(tas),1); 
bad_one_sec_ar=zeros(length(tas),1); 
 
bad_cip2_habitsd = zeros(length(tas),num_bins,10)*NaN; 
bad_cip2_habitmsd = zeros(length(tas),num_bins,10)*NaN; 
bad_area_dist2 = zeros(length(tas),num_bins,10)*NaN; 
 
 
% particle_dist2 = zeros(length(tas),num_bins)*NaN; %Unused 
% time_interval1 = zeros(length(tas), 1); %Unused 
% cip2_ar = zeros(1,length(tas))*NaN; %Unused 
% throwoutpercent=zeros(length(tas),1); %Used in legacy interarrival time analysis 
% totalint=zeros(length(tas),1); %Used in legacy interarrival time analysis 
% intsum=zeros(length(tas),1); %Used in legacy interarrival time analysis 
 
area_bins = 0:.1:1.01; 
one_sec_times = tas_time; 
one_sec_dur = length(one_sec_times); 
total_one_sec_locs(1:one_sec_dur) = 0; 
start_time = floor(tas_time(1)); 
end_time = ceil(tas_time(end)); 
one_sec_tas(1:one_sec_dur) = 0; 
one_sec_tas_entire(1:one_sec_dur) = 0; 
deadtime(1:one_sec_dur) = 0; 
 
warning off all 
 
one_sec_times=[one_sec_times;one_sec_times(one_sec_dur)+1]; 
time_interval2 = zeros(one_sec_dur,1); 
 
TotalPC1 = zeros(one_sec_dur,1)'; 
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TotalPC2 = zeros(one_sec_dur,1)'; 
 
% Used for debugging of interarrival time analysis 
shatrReject_times = []; 
shatrReject_intArr = []; 
shatrReject_diam = []; 
 
rccptReject_times = []; 
rccptReject_intArr = []; 
rccptReject_diam = []; 
 
loopedTimes = []; 
loopedIntArr = []; 
loopedDiam = []; 
loopedAutoRej = []; 
 
%% Load particles for each second, and then process them 
% Only for large files cannot be processed at once 
[~, NumofPart] = netcdf.inqDim(f,0); % Check the number of particles 
 
if 1==probetype 
%     image_time_hhmmssall = netcdf.getVar(f,netcdf.inqVarID(f,'particle_time')); 
    image_time_secs = hhmmss2insec(netcdf.getVar(f,netcdf.inqVarID(f,'particle_time')))+tas_time(1); 
    image_time_hhmmssall = insec2hhmmss(image_time_secs); 
 
elseif 2==probetype 
    image_time_hhmmssallbuffer = netcdf.getVar(f,netcdf.inqVarID(f,'Time')); 
%    image_time_hhmmssallbuffer(image_time_hhmmssallbuffer<10000 & 
image_time_hhmmssallbuffer>=0)=image_time_hhmmssallbuffer(image_time_hhmmssallbuffer<10000 & 
image_time_hhmmssallbuffer>=0)+240000; 
    alltimeinseconds = netcdf.getVar(f,netcdf.inqVarID(f,'Time_in_seconds')); 
    time_msec_all = netcdf.getVar(f,netcdf.inqVarID(f,'msec'),0,1); 
   
    indexRollback=find(diff(alltimeinseconds)<-250)+1; 
    for i=1:length(indexRollback) 
        if mod(i,1000)==0 
            disp([num2str(i),' / ',num2str(length(indexRollback)),datestr(now)]) % Joe Finlon 
        end 
        alltimeinseconds(indexRollback(i):end)=alltimeinseconds(indexRollback(i):end)+(2^32-1)*(res/10^6/tasMax); 
    end 
    
%    alltimeinsecondsstart=alltimeinseconds(indexBuffert); 
%    increaseAllinseconds= alltimeinseconds-alltimeinseconds(1); 
%    increaseAllinseconds(increaseAllinseconds<0)=increaseAllinseconds(increaseAllinseconds<0)+(2^32-1)*(res/10^6/170); 
%    image_time_hhmmssall = insec2hhmmss(floor(47069+time_msec_all(1)/1000.0+increaseAllinseconds*170/110)); 
    image_time_hhmmssall = image_time_hhmmssallbuffer; 
else 
    image_time_hhmmssall = netcdf.getVar(f,netcdf.inqVarID(f,'Time')); 
end 
disp('Performing time correction.') % Joe Finlon 
% image_time_hhmmssall = netcdf.getVar(f,netcdf.inqVarID(f,'Time')); 
% image_time_hhmmssall(image_time_hhmmssall<50000 & 
image_time_hhmmssall>=0)=image_time_hhmmssall(image_time_hhmmssall<50000 & image_time_hhmmssall>=0)+120000; 
 
% Fix particle times if they span multiple days - Added by Joe Finlon - 
% 03/03/17 
image_time_hhmmssall(find(diff(image_time_hhmmssall)<0)+1:end)=... 
    image_time_hhmmssall(find(diff(image_time_hhmmssall)<0)+1:end) + 240000; 
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% Find all indices (true/1) with a unique time in hhmmss - in other words, we're getting the particle index where each new 
% one-second period starts 
startindex=[true;(diff(hhmmss2insec(image_time_hhmmssall))>0)]; % & diff(hhmmss2insec(image_time_hhmmssall))<5)]; % 
Simplified (tested/changed by DS) 
 
% startindex=int8(image_time_hhmmssall*0); 
% for i=1:length(timehhmmss) 
%    indexofFirstTime =  find(image_time_hhmmssall==timehhmmss(i),1); 
%    if ( ~isempty(indexofFirstTime) ) 
%        startindex(indexofFirstTime)=1; 
%    end 
%    disp([i,length(timehhmmss)]); 
% end 
 
 
% Get the start time for each new one-second period 
starttime=image_time_hhmmssall(startindex); % Simplified (tested/changed by DS) 
 
 
% Find all instances where startindex is true (where image_time_hhmmssall changes by more than 0) and shift indices back by 
one to 
% facilitate proper particle counts for each one-second period 
start_all=find(startindex)-1; % Simplified (tested/changed by DS) 
 
% Sort the particle one-second time array in the event it is out of order and redefine the start_all variable as needed 
[starttime,newindexofsort]=sort(starttime); 
start_all=start_all(newindexofsort); 
 
%% Remove times when there is no tas data available 
% nNoTAS=0; 
% for i=1:length(starttime) 
%     if isempty(timehhmmss(timehhmmss == starttime(i))) 
%         starttime(i)=500000; 
%         nNoTAS=nNoTAS+1; 
%     end 
%      
%     if i>5 & i<length(starttime)-5 & hhmmss2insec(starttime(i))>mean(hhmmss2insec(starttime(i-5:i+5)))+5 
%         starttime(i)=500000; 
%     end 
% end 
% nNoTAS 
% start_all = start_all(starttime<500000); 
% count_all = count_all(starttime<500000); 
% starttime = starttime(starttime<500000); 
 
%% Remove any duplicate times and determine how many particles are present in each one-second period 
fprintf('Number of duplicate times = %d\n\n',(length(starttime)-length(unique(starttime)))); 
 
[starttime, ia, ~] = unique(starttime,'first'); 
start_all = start_all(ia); 
count_all= [diff(start_all); NumofPart-start_all(end)]; 
count_all(count_all<0)=1; 
 
%% Remove times when there are less than 10 particles in one second 
% starttime = starttime(count_all>10); 
% start_all = start_all(count_all>10); 
% count_all = count_all(count_all>10); 
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%if (int32(timehhmmss(1))>int32(starttime(2))) 
%    error('Watch Out for less TAS time from begining!') 
%end 
 
%% Main loop over the length of the true air speed variable (1-sec resolution) 
jjj=1; 
eofFlag=0; % end of the particle data flag - Added by Joe Finlon - 03/03/17 
 
sumIntArrGT1 = 0; 
intArrGT1 = []; 
 
% nThrow11=0; % Used in legacy interarrival time analysis 
% maxRecNum=1; % Used in legacy interarrival time analysis 
 
fprintf('Beginning size distribution calculations and sorting %s\n\n',datestr(now)); 
 
for i=1:length(tas)  
     
%     if (int32(timehhmmss(i))>=int32(starttime(jjj))) 
    if (eofFlag==0 && int32(timehhmmss(i))>=int32(starttime(jjj))) % Modified by Joe Finlon - 03/03/17 
         
        % Attempt to sync TAS file time (timehhmmss) with particle time 
%         if (int32(timehhmmss(i))>int32(starttime(jjj))) %% Deprecated 
%         (Joe Finlon - 03/03/17) 
        while (int32(timehhmmss(i))>int32(starttime(jjj))) && jjj<length(start_all) % Added by Joe Finlon - 03/03/17 
            jjj=jjj+1; 
            if (jjj==length(start_all)) % we've reached the end of the particle data - Added by Joe Finlon - 03/03/17 
                eofFlag = 1; 
            end 
             
%             switch probename 
%                 case 'CIP' 
%             if (jjj>length(start_all)) 
%                 break; 
%             end 
%             end 
             
        end 
         
        if (jjj==length(start_all)) % we've reached the end of the particle data - Added by Joe Finlon - 03/03/17 
            eofFlag = 1; 
        end 
         
        start=start_all(jjj); 
        count=count_all(jjj); 
        jjj=min(jjj+1,length(start_all)); 
         
        % Load autoanalysis parameters. Start at beginning (start) of some one-second period and load the values for every 
        % particle in that period (count) 
        msec = netcdf.getVar(f,netcdf.inqVarID(f,'particle_millisec'),start,count); 
        microsec = netcdf.getVar(f,netcdf.inqVarID(f,'particle_microsec'),start,count); 
        auto_reject = netcdf.getVar(f,netcdf.inqVarID(f,'image_auto_reject'),start,count); 
        im_width = netcdf.getVar(f,netcdf.inqVarID(f,'image_width'),start,count); 
        im_length = netcdf.getVar(f,netcdf.inqVarID(f,'image_length'),start,count); 
        area = netcdf.getVar(f,netcdf.inqVarID(f,'image_area'),start,count); 
        perimeter = netcdf.getVar(f,netcdf.inqVarID(f,'image_perimeter'),start,count); 
%         rec_nums = netcdf.getVar(f,netcdf.inqVarID(f,'parent_rec_num'),start,count); %Used in legacy interarrival time analysis 
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%         top_edges = netcdf.getVar(f,netcdf.inqVarID(f,'image_max_top_edge_touching'),start,count); %Unused 
%         bot_edges = netcdf.getVar(f,netcdf.inqVarID(f,'image_max_bottom_edge_touching'),start,count); %Unused 
%         longest_y = netcdf.getVar(f,netcdf.inqVarID(f,'image_longest_y'),start,count); %Unused 
        size_factor = netcdf.getVar(f,netcdf.inqVarID(f,'size_factor'),start,count); 
        habit1 = netcdf.getVar(f,netcdf.inqVarID(f,'holroyd_habit'),start,count); 
        centerin = netcdf.getVar(f,netcdf.inqVarID(f,'image_center_in'),start,count); 
        entirein = netcdf.getVar(f,netcdf.inqVarID(f,'image_touching_edge'),start,count); 
         
        particle_diameter_AreaR = netcdf.getVar(f,netcdf.inqVarID(f,'image_diam_AreaR'),start,count); 
        particle_diameter_AreaR = particle_diameter_AreaR * diodesize; 
 
        Time_in_seconds = netcdf.getVar(f,netcdf.inqVarID(f,'Time_in_seconds'),start,count); 
%         SliceCount = netcdf.getVar(f,netcdf.inqVarID(f,'SliceCount'),start,count); %Unused 
        if probetype~=0 % skip reading variables if 2DC/2DP - Joe Finlon - 06/26/17 
            DMT_DOF_SPEC_OVERLOAD = netcdf.getVar(f,netcdf.inqVarID(f,'DMT_DOF_SPEC_OVERLOAD'),start,count); 
            Particle_count = netcdf.getVar(f,netcdf.inqVarID(f,'Particle_number_all'),start,count); 
            TotalPC1(i)=length(Particle_count);         
            TotalPC2(i)=Particle_count(end)-Particle_count(1); 
        end 
         
        if 1==probetype 
            auto_reject(DMT_DOF_SPEC_OVERLOAD~=0)='D'; 
        end 
         
        if iCreateAspectRatio == 1 
            aspectRatio = 
netcdf.getVar(f,netcdf.inqVarID(f,'image_RectangleW'),start,count)./netcdf.getVar(f,netcdf.inqVarID(f,'image_RectangleL'),start
,count); 
            aspectRatio1 = 
netcdf.getVar(f,netcdf.inqVarID(f,'image_EllipseW'),start,count)./netcdf.getVar(f,netcdf.inqVarID(f,'image_EllipseL'),start,count)
; 
        end 
 
        if 0==probetype 
            int_arr=Time_in_seconds; 
  else 
   if start-1 <= 0 
    int_arr = [0;diff(Time_in_seconds)]; 
    int_arr2 = []; %Won't bother reaccepting particles at the beginning or end of dataset 
    
   else 
    Time_in_seconds2 = netcdf.getVar(f,netcdf.inqVarID(f,'Time_in_seconds'),start-
1,count+1); 
    int_arr = diff(Time_in_seconds2); 
     
    if start ~= start_all(end) 
     Time_in_seconds3 = 
netcdf.getVar(f,netcdf.inqVarID(f,'Time_in_seconds'),(start+count)-1,2);       
     int_arr2 = diff(Time_in_seconds3); %Single value describing interarrival time of 
first particle of next 1-sec period 
    else 
     int_arr2 = []; 
    end 
   end 
    
   int_arr2(int_arr2<0)=0; 
    
   if reaccptShatrs 
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    if start ~= start_all(end) 
     Time_in_seconds4 = 
netcdf.getVar(f,netcdf.inqVarID(f,'Time_in_seconds'),start,count+1); 
     int_arr3 = diff(Time_in_seconds4);   
    else 
     Time_in_seconds4 = Time_in_seconds; 
     int_arr3 = diff(Time_in_seconds4);   
     int_arr3 = [int_arr3;int_arr3(end)]; 
    end 
    int_arr3(int_arr3<0)=0; 
   end 
    
        end 
%         if 2==probetype  
%           int_arr=int_arr*(res/10^6/170);  
%         end 
         
        if 2==probetype 
            int_arr(int_arr<-10)=int_arr(int_arr<-10)+(2^32-1)*(res/10^6/tasMax); 
        elseif 0==probetype 
            int_arr(int_arr<0)=int_arr(int_arr<0)+(2^24-1)*(res/10^6/tasMax);             
        end 
             
        if sum(int_arr<0)>0 
   fprintf(2,'\nAt index %d number of int_arr < 0: %d\n',i,sum(int_arr<0)); 
            disp([int_arr(int_arr<0),int_arr(int_arr<0)+(2^32-1)*(res/10^6/tasMax)]); 
        elseif sum(int_arr>1)>0 
   sumIntArrGT1 = sumIntArrGT1 + sum(int_arr > 1); 
   tempLocs = find(int_arr > 1);  
   intArrGT1 = vertcat(intArrGT1,int_arr(tempLocs)); 
    
%             fprintf(2,'\nAt index %d number of int_arr > 1: %d\n',i,sum(int_arr>1)); 
%             disp([int_arr(int_arr>1)-(2^32-1)*(res/10^6/tasMax), int_arr(int_arr>1), Time_in_seconds(int_arr>1)/(0.15/(10^3)/170), 
Time_in_seconds((int_arr>1))/(0.15/(10^3)/170)]); 
        end 
         
%         auto_reject(int_arr<0 | int_arr>1)='I'; 
  auto_reject(int_arr<0)='I'; 
        int_arr(int_arr<0)=0; 
%         int_arr(int_arr>1)=0; 
 
 
%         max_dimension = im_width; 
%         max_dimension(im_length>im_width)=im_length(im_length>im_width); 
 
         
        % Size definition chosen based on the d_choice given in the function call 
        if 1==d_choice 
            particle_diameter_minR = im_length * diodesize; %(im_length+ 
        elseif 2==d_choice 
            particle_diameter_minR = im_width * diodesize; %(im_length+ 
        elseif 3==d_choice 
            particle_diameter_minR = (im_length + im_width)/2 * diodesize; %(im_length+ 
        elseif 4==d_choice 
            particle_diameter_minR = sqrt(im_width.^2+im_length.^2) * diodesize; %(im_length+ 
        elseif 5==d_choice 
            particle_diameter_minR = max(im_width, im_length) * diodesize; %(im_length+ 
        elseif 6==d_choice 
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            particle_diameter_minR = netcdf.getVar(f,netcdf.inqVarID(f,'image_diam_minR'),start,count); % * diodesize 
        end 
         
%         if 1==strcmp('2DC',probename)  % Adjust resolution from 25 to 30 
%            particle_diameter_minR=particle_diameter_minR*1.2; 
%            area = area*1.44; 
%         end 
 
 
 
        % Legacy: Added for Paris meeting, 08/25/2014 
        % Used in intercomparison with Environment Canada and University of Blaise Pascal 
        %{ 
        diffPartCount=[1;diff(Particle_count)]; 
        time_interval22(i) = (Time_in_seconds(end)-Time_in_seconds(1)); 
        time_interval32(i) = sum(int_arr(diffPartCount==1)); 
        time_interval42(i) = sum(int_arr); 
        time_interval52(i) = sum(int_arr(diffPartCount~=1)); 
        time_interval62(i) = sum(int_arr(DMT_DOF_SPEC_OVERLOAD==0)); 
        lengthForTemp = im_length * diodesize;  
        particle_diameter_minR(entirein~=0)=lengthForTemp(entirein~=0); 
         
        if time_interval22(i)<0 
            time_interval22(i)=time_interval22(i)+(2^32-1)*(res/10^6/tasMax); %#ok<*AGROW> 
        end 
         
        if RejectCriterier==1 
           particle_diameter_minR = particle_diameter_minR .* size_factor; 
        end 
         
 
        if 1==probetype 
            image_time_hhmmss    = netcdf.getVar(f,netcdf.inqVarID(f,'particle_time'),start,count); 
            image_time_hhmmssnew = netcdf.getVar(f,netcdf.inqVarID(f,'particle_time'),start,count);  
 
        elseif 2==probetype 
            alltimeinseconds = netcdf.getVar(f,netcdf.inqVarID(f,'Time_in_seconds'),start,count); 
            increaseAllinseconds= alltimeinseconds-alltimeinseconds(1); 
            increaseAllinseconds(increaseAllinseconds<0)=increaseAllinseconds(increaseAllinseconds<0)+(2^32-1)*(res/10^6/170); 
            image_time_hhmmss = 
floor(hhmmss2insec(netcdf.getVar(f,netcdf.inqVarID(f,'Time'),start,count))+netcdf.getVar(f,netcdf.inqVarID(f,'msec'),start,coun
t)/1000+increaseAllinseconds); % 'Time'? 
            image_time_hhmmss = insec2hhmmss(image_time_hhmmss); 
            image_time_hhmmssnew = image_time_hhmmss; 
        end 
        %} 
        if probetype==0 % skip reading variable if 2DC/2DP - Joe Finlon - 06/26/17 
            time_interval72(i) = 0; % 2DC/2DP does not have overload flag 
        else 
            time_interval72(i) = sum(int_arr(DMT_DOF_SPEC_OVERLOAD~=0)); 
        end 
         
        % Simplified by DS - Removed image_time_hhmmssnew as it was defined by and never changed from image_time_hhmmss 
        image_time_hhmmss = image_time_hhmmssall(start+1:start+count); 
         
        % If image time crosses midnight, add 240000 to all times past midnight 
%         image_time_hhmmss(image_time_hhmmss<10000)=image_time_hhmmss(image_time_hhmmss<10000)+240000; 
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        % Save an intermediate output file every 8000 steps through the loop 
        if i==8000 
            save([outfile(1:end-3) 'tempComp.mat']); 
        end 
         
        %% Calculate area of particle according to image reconstruction and airspeed (if tasMax exceeded) 
 
        % Correct for airspeeds exceeding the max airspeed for the probe 
        if(tas(i) > tasMax) % Set to threshold as necessary - stretch area of particle 
   fprintf(2,'TAS at tas index %d exceeds tasMax (%.1f) of probe. Reconstructing area...\n\n',... 
    i,tasMax); 
            area = area*tas(i)/tasMax; 
        end 
 
        particle_mass = area*0; 
        calcd_area = area*0; 
        for iiii=1:length(area) 
           particle_mass(iiii)=single_mass(particle_diameter_minR(iiii)/10, habit1(iiii));  % in unit of gram 
           calcd_area(iiii)=single_area(particle_diameter_minR(iiii)/10, habit1(iiii));  % in unit of mm^2          
        end 
        particle_massbl=0.115/1000*area.^(1.218); % in unit of gram 
 
 
        %% Added by Robert Jackson -- old version did not have area ratio code 
        area_ratio = area./(pi/4.*particle_diameter_minR.^2); 
        auto_reject(area_ratio < .5) = 'z'; % Changed from .2 to .5 for ORACLES - Siddhant Gupta - 11/1/17 
         
        %% Added by Will to calculate terminal velocity and precipitation rate 
        particle_vt = area*0; 
        for iiii=1:length(area) 
           particle_vt(iiii)=single_vt(particle_diameter_minR(iiii)/1000, area_ratio(iiii), particle_mass(iiii)/1000,Pres(i),Temp(i));  % in 
unit of gram 
        end 
        particle_pr=particle_mass.*particle_vt; 
 
         
        %% Time-dependent threshold for interarrival time - Added by Dan Stechman - 5/10/16 & Modified by Joe Finlon - 03/03/17 
  % Enable this section to use a time-dependent threshold for interarrival time. Also need to enable section at 
top of 
  % script allowing for threshold file to be pulled in 
   
        % Ingest previously calculated interarrival time threshold and flag in auto_reject appropriately to remove particle 
  % flagged with short inter arrv time, and the one immediately before it 
         
        if applyIntArrThresh && length(varargin) == 1 % Edited by Siddhant Gupta to input inter-arrival threshold file or use default 
value if not available 
             
            if strcmp(iaThreshFile,'NONE') == 0 
            auto_reject_preIAT = auto_reject; 
   iaThresh_ncid = netcdf.open(iaThreshFile,'nowrite'); 
   iaThresh = netcdf.getVar(iaThresh_ncid,netcdf.inqVarID(iaThresh_ncid,'threshold'),start,count); 
   netcdf.close(iaThresh_ncid); 
            elseif strcmp(iaThreshFile,'NONE') == 1 
            iaThresh = ones(count,1)*defaultIntArrThresh; 
            end 
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            if ((length(int_arr) == 1) && (int_arr(1) <= iaThresh(1))) 
    auto_reject(1) = 'S'; 
            else 
                if int_arr(1) <= iaThresh(1) 
     auto_reject(1) = 'S'; 
                end 
   
                for ix = 2:length(int_arr) 
     if int_arr(ix) <= iaThresh(ix) 
      auto_reject((ix-1):ix) = 'S'; 
     end 
                end 
            end 
             
            % Experimental option to reaccept particles flagged as shattered which may in fact be the result of diffraction 
   % fringes 
   % Added by Dan Stechman - 6/8/2015 & Modified by Joe Finlon - 03/03/17 - with base code by Wei 
Wu 
   if reaccptShatrs 
    % Start by defining the indices for the beginning and end of individual shattering events 
    rBegin = ((int_arr > iaThresh & int_arr3 < iaThresh)); 
    rEnd = ((int_arr < iaThresh & int_arr3 > iaThresh)); 
     
    maxParticle = reaccptD; 
    eIndex = []; 
     
    % We search through each individual set of shattering events and check to see if any of 
the particles are both 
    % larger than the reacceptance diameter and have an interarrival time less than the 
reacceptance threshold as we'd 
    % expect diffraction fringes to be larger than shattered particles and to have a particularly 
small interarrival time 
                for iEvent = find(rBegin):find(rEnd) 
     if ((particle_diameter_minR(iEvent) > maxParticle) && (int_arr(iEvent) < 
reaccptMaxIA)) 
      maxParticle = particle_diameter_minR(iEvent); 
      eIndex = iEvent; 
     end 
                end 
 
    auto_reject(eIndex) = 'R'; 
   end 
    
         
   % Following vars used for verifying shatter removal and reacceptance in external script - can be 
commented out if desired 
    
            shatterLocs = find(auto_reject == 'S'); 
   shatterIA = int_arr(shatterLocs); 
   shatterTimes = Time_in_seconds(shatterLocs); 
            shatterDiam = particle_diameter_minR(shatterLocs); 
             
   shatrReject_times = vertcat(shatrReject_times, shatterTimes); 
   shatrReject_intArr = vertcat(shatrReject_intArr, shatterIA); 
            shatrReject_diam = vertcat(shatrReject_diam, shatterDiam); 
             
            rccptLocs = find(auto_reject == 'R'); 
   rccptIA = int_arr(rccptLocs); 
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   rccptTimes = Time_in_seconds(rccptLocs); 
            rccptDiam = particle_diameter_minR(rccptLocs); 
             
   rccptReject_times = vertcat(rccptReject_times, rccptTimes); 
   rccptReject_intArr = vertcat(rccptReject_intArr, rccptIA); 
            rccptReject_diam = vertcat(rccptReject_diam, rccptDiam); 
             
                         
   loopedTimes = vertcat(loopedTimes, Time_in_seconds); 
   loopedIntArr = vertcat(loopedIntArr, int_arr); 
            loopedDiam = vertcat(loopedDiam, particle_diameter_minR); 
   loopedAutoRej = vertcat(loopedAutoRej, auto_reject); 
             
        end 
         
    
        %% Legacy interarrival time integrity analysis  
        %{ 
        % Time and interarrival calculation. Modified by Will Wu 11/12/2013 
        % Simplified (tested/changed by DS) 
        if strcmp(probename,'2DC')==1 || strcmp(probename,'2DP')==1 || strcmp(probename,'F2DC')==1 
            fracseccc= netcdf.getVar(f,netcdf.inqVarID(f,'msec'),start,count); 
            image_timeia = hhmmss2insec(image_time_hhmmss)+fracseccc*1e-2; % for 2DC 
        elseif strcmp(probename,'CIP')==1 || strcmp(probename,'PIP')==1 
            image_timeia = hhmmss2insec(image_time_hhmmss)+msec*1e-3+microsec; % for CIP  
        else 
            image_timeia = hhmmss2insec(image_time_hhmmss)+msec*1e-3+microsec/10^6; % for HVPS 
        end 
         
        disp('Checking Interarrival Times') 
 
        nThrow=0; 
        for(itemp=min(rec_nums):max(rec_nums)) 
           rec_particles = find(rec_nums == itemp); 
           rej = auto_reject(rec_particles); 
           arr = int_arr(rec_particles); 
           sum_arr = sum(arr(2:end)); 
           if(~isempty(rec_particles) && length(rec_particles) > 1) 
               int_arr(rec_particles(1)) = int_arr(rec_particles(2)); 
           elseif(length(rec_particles) == 1) 
               int_arr(rec_particles(1)) = 0; 
           end 
 
           if (strcmp(probename,'CIP')==1 || strcmp(probename,'PIP')==1 || strcmp(probename,'HVPS')==1 ) % 2DC use the 
interarrival time for every particles, not absolute time  
 
               if(isempty(rec_particles)) 
                 sum_int_arr_good = 0; 
               else 
                 sum_int_arr_good = image_timeia(rec_particles(end))-image_timeia(rec_particles(1)); 
               end 
               if ~(sum_int_arr_good >= .6*sum_arr && sum_int_arr_good <= 1.4*sum_arr) 
                 auto_reject(rec_particles) = 'I'; 
                 %disp(['Record ' num2str(itemp) ' thrown out: Accepted time = ' num2str(sum_int_arr_good) ' total time = ' 
num2str(sum_arr)]); 
                 nThrow=nThrow+1;   
                 nThrow11=nThrow11+1; 
               end 
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           end 
        end 
        disp([num2str(100*nThrow/(max(rec_nums)-min(rec_nums)+1)),'% is thrown out']); 
        throwoutpercent(i)=100*nThrow/(max(rec_nums)-min(rec_nums)+1); 
        maxRecNum=max(max(rec_nums),maxRecNum); 
        totalint(i)=sum_int_arr_good; 
        intsum(i)=sum_arr; 
        save('intarrhvps.mat','int_arr') 
        %} 
         
        %% Shatter identification and removal - Added by Dan Stechman on 5/31/2016 
        % Currently this is spiral-dependent and uses a threshold defined in the header of this script 
        % Flag particles as shattered if their interarrival time is less than or equal to the threshold. Also flag the particle 
        % immediately before the target particle. 
        %{ 
        if applyIntArrThresh 
   % If the first particle in the next 1-sec period has a small interarrival time, we flag the last particle 
of 
   % the current period as shattered as well 
   if ~isempty(int_arr2) 
    if int_arr2 <= intar_threshold(i) 
     auto_reject(end) = 'S'; 
    end 
   end 
 
   if (length(int_arr) == 1 && int_arr(1) <= intar_threshold(i))  
    auto_reject(1) = 'S'; 
   else 
    if int_arr(1) <= intar_threshold(i) 
     auto_reject(1) = 'S'; 
    end 
 
    for ix = 2:length(int_arr) 
     if int_arr(ix) <= intar_threshold(i) 
      auto_reject(ix-1:ix) = 'S'; 
     end 
    end 
   end 
 
    
   % Experimental option to reaccept particles flagged as shattered which may in fact be the result of 
diffraction 
   % fringes 
   % Added by Dan Stechman - 6/8/2015 - with base code by Wei Wu 
   if reaccptShatrs 
    % Start by defining the indices for the beginning and end of individual shattering events 
    rBegin = ((int_arr > intar_threshold(i) & int_arr3 < intar_threshold(i))); 
    rEnd = ((int_arr < intar_threshold(i) & int_arr3 > intar_threshold(i))); 
     
    maxParticle = reaccptD; 
    eIndex = []; 
     
    % We search through each individual set of shattering events and check to see if any of 
the particles are both 
    % larger than the reacceptance diameter and have an interarrival time less than the 
reacceptance threshold as we'd 
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    % expect diffraction fringes to be larger than shattered particles and to have a particularly 
small interarrival time 
    for iEvent = find(rBegin):find(rEnd) 
     if ((particle_diameter_minR(iEvent) > maxParticle) && (int_arr(iEvent) < 
reaccptMaxIA)) 
      maxParticle = particle_diameter_minR(iEvent); 
      eIndex = iEvent; 
     end 
    end 
 
    auto_reject(eIndex) = 'R'; 
   end 
    
         
   % Following vars used for verifying shatter removal and reacceptance in external script - can be 
commented out if desired 
   shatterLocs = find(auto_reject == 'S'); 
   shatterIA = int_arr(shatterLocs); 
   shatterTimes = Time_in_seconds(shatterLocs); 
            shatterDiam = particle_diameter_minR(shatterLocs); 
             
   shatrReject_times = vertcat(shatrReject_times, shatterTimes); 
   shatrReject_intArr = vertcat(shatrReject_intArr, shatterIA); 
            shatrReject_diam = vertcat(shatrReject_diam, shatterDiam); 
             
            rccptLocs = find(auto_reject == 'R'); 
   rccptIA = int_arr(rccptLocs); 
   rccptTimes = Time_in_seconds(rccptLocs); 
            rccptDiam = particle_diameter_minR(rccptLocs); 
             
   rccptReject_times = vertcat(rccptReject_times, rccptTimes); 
   rccptReject_intArr = vertcat(rccptReject_intArr, rccptIA); 
            rccptReject_diam = vertcat(rccptReject_diam, rccptDiam); 
             
                         
   loopedTimes = vertcat(loopedTimes, Time_in_seconds); 
   loopedIntArr = vertcat(loopedIntArr, int_arr); 
            loopedDiam = vertcat(loopedDiam, particle_diameter_minR); 
   loopedAutoRej = vertcat(loopedAutoRej, auto_reject); 
        end 
        %} 
 
        %% Apply rejection criteria and identify good and bad particles  
        % Modify the next line to include/exclude any particles you see fit.  
         
        good_particles = (auto_reject == '0' | auto_reject == 'H' | auto_reject == 'h' | auto_reject == 'u' | auto_reject == 'R'); 
        bad_particles = ~(auto_reject == '0' | auto_reject == 'H' | auto_reject == 'h' | auto_reject == 'u' | auto_reject == 'R'); 
%   bad_particles = (auto_reject == 'S'); 
         
        % Legacy: Rejection criteria used in the past 
        %{ 
        %if RejectCriterier==0 
        %    good_particles = (auto_reject ~= 'c'); %  &  centerin==1; % & int_arr > 1e-5 int_arr > 1e-5 & 
        %else 
        %    good_particles = (auto_reject == '0' | auto_reject == 'H' | auto_reject == 'h' | auto_reject == 'u' & int_arr > 
intar_threshold) % | auto_reject == 'u'); % & centerin==1; % & int_arr > 1e-5;  
        %end 
        %} 
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        if SAmethod==0 
            good_particles = good_particles & centerin==1; 
            bad_particles = bad_particles & centerin==1; 
        elseif SAmethod==1 
            good_particles = good_particles & entirein==0; 
            bad_particles = bad_particles & centerin==0; 
        end 
         
        good_partpercent(i)=sum(good_particles)/length(good_particles); 
         
        rejectpercentbycriterion(i,1)=sum(centerin==1)/length(good_particles); 
        rejectpercentbycriterion(i,2)=sum(auto_reject == '0')/length(good_particles); 
        rejectpercentbycriterion(i,3)=sum(auto_reject == 'H')/length(good_particles); 
        rejectpercentbycriterion(i,4)=sum(auto_reject == 'h')/length(good_particles); 
        rejectpercentbycriterion(i,5)=sum(auto_reject == 'u')/length(good_particles); 
        rejectpercentbycriterion(i,6)=sum(auto_reject == 'a')/length(good_particles); 
        rejectpercentbycriterion(i,7)=sum(auto_reject == 't')/length(good_particles); 
        rejectpercentbycriterion(i,8)=sum(auto_reject == 'p')/length(good_particles); 
        rejectpercentbycriterion(i,9)=sum(auto_reject == 's')/length(good_particles); 
        rejectpercentbycriterion(i,10)=sum(auto_reject == 'z')/length(good_particles); 
        rejectpercentbycriterion(i,11)=sum(auto_reject == 'i')/length(good_particles); 
        rejectpercentbycriterion(i,12)=sum(auto_reject == 'A')/length(good_particles); 
        rejectpercentbycriterion(i,13)=sum(auto_reject == 'S')/length(good_particles); %Shattered - Added DS 
  rejectpercentbycriterion(i,14)=sum(auto_reject == 'R')/length(good_particles); %Reaccepted - Added DS 
         
        numGoodparticles(i)=length(good_particles); 
        numBadparticles(i)=length(bad_particles); 
%         disp([int32(timehhmmss(i)), sum(good_particles),length(good_particles),length(good_particles)-sum(good_particles)]); 
 
        image_time = hhmmss2insec(image_time_hhmmss); 
 
        % Good (accepted) particles 
        good_image_times = image_time(good_particles); 
        good_particle_diameter_minR = particle_diameter_minR(good_particles); 
        good_particle_diameter_AreaR = particle_diameter_AreaR(good_particles); 
        good_int_arr=int_arr(good_particles); 
        good_ar = area_ratio(good_particles); 
        good_area = area(good_particles); 
        good_perimeter = perimeter(good_particles); 
        if iCreateAspectRatio == 1 
        good_AspectRatio = aspectRatio(good_particles & entirein==0);         
        good_AspectRatio1 = aspectRatio1(good_particles & entirein==0); 
        end 
        good_ar1 = area_ratio(good_particles & entirein==0); 
        good_image_times1 = image_time(good_particles  & entirein==0); 
        good_iwc=particle_mass(good_particles); 
        good_partarea=calcd_area(good_particles); 
        good_iwcbl=particle_massbl(good_particles); 
        good_vt=particle_vt(good_particles); 
        good_pr=particle_pr(good_particles);         
        good_habit=habit1(good_particles); 
         
        good_particle_diameter=good_particle_diameter_minR; 
        good_particle_diameter1 = particle_diameter_minR(good_particles  & entirein==0); 
         
        if iCreateBad == 1 
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        % Bad (rejected) particles 
        bad_image_times = image_time(bad_particles); 
        bad_particle_diameter_minR = particle_diameter_minR(bad_particles); 
        bad_particle_diameter_AreaR = particle_diameter_AreaR(bad_particles); 
        bad_int_arr=int_arr(bad_particles); 
        bad_ar = area_ratio(bad_particles); 
        bad_area = area(bad_particles); 
        bad_perimeter = perimeter(bad_particles); 
        if iCreateAspectRatio == 1 % added if statement if not creating aspect ratio - Joe Finlon - 03/03/17 
        bad_AspectRatio = aspectRatio(bad_particles & entirein==0);         
        bad_AspectRatio1 = aspectRatio1(bad_particles & entirein==0); 
        end 
        bad_ar1 = area_ratio(bad_particles & entirein==0); 
        bad_image_times1 = image_time(bad_particles  & entirein==0); 
        bad_iwc=particle_mass(bad_particles); 
        bad_partarea=calcd_area(bad_particles); 
        bad_iwcbl=particle_massbl(bad_particles); 
        bad_vt=particle_vt(bad_particles); 
        bad_pr=particle_pr(bad_particles);         
        bad_habit=habit1(bad_particles); 
         
        bad_particle_diameter=bad_particle_diameter_minR; 
        bad_particle_diameter1 = particle_diameter_minR(bad_particles  & entirein==0); 
        end 
        %% Perform various status and error checks 
        if mod(i,1000) == 0 
   fprintf('%d/%d | %s\n',i,one_sec_dur,datestr(now)); 
        end 
         
        total_one_sec_locs(i) = length(find(image_time >= one_sec_times(i) & image_time < one_sec_times(i+1))); 
        time_interval2(i) = sum(int_arr(image_time >= one_sec_times(i) & image_time < one_sec_times(i+1))); 
 
        if sum(image_time >= one_sec_times(i) & image_time < one_sec_times(i+1)) ~= length(image_time) 
   fprintf(2,'%d / %d\tError on sizing at index %d\n',sum(image_time >= one_sec_times(i) & 
image_time < one_sec_times(i+1)),length(image_time),i); 
        end 
 
        if(total_one_sec_locs(i) == 0) 
         time_interval2(i) = 1; 
        end 
 
        %% Sort good (accepted) particles into size distributions 
        good_one_sec_locs = find(good_image_times >= one_sec_times(i) & good_image_times < one_sec_times(i+1)); 
        good_one_sec_locs1 = find(good_image_times1 >= one_sec_times(i) & good_image_times1 < one_sec_times(i+1)); 
         
        goodintpercent(i) = sum(good_int_arr(good_image_times >= one_sec_times(i) & good_image_times < 
one_sec_times(i+1)))/time_interval2(i); 
 
        one_sec_ar(i) = mean(good_ar1(good_one_sec_locs1)); 
         
        if ~isempty(good_one_sec_locs) 
 
            for j = 1:num_bins 
               particle_dist_minR(i,j)  = length(find(good_particle_diameter_minR(good_one_sec_locs) >= kk(j) &... 
                   good_particle_diameter_minR(good_one_sec_locs) < kk(j+1))); 
               particle_dist_AreaR(i,j) = length(find(good_particle_diameter_AreaR(good_one_sec_locs) >= kk(j) &... 
                   good_particle_diameter_AreaR(good_one_sec_locs) < kk(j+1))); 
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               % Create Habit Number Size Distribution  
               cip2_habitsd(i,j,1) = length(find(good_habit(good_one_sec_locs)=='s' & good_particle_diameter(good_one_sec_locs) >= 
kk(j) &... 
                   good_particle_diameter(good_one_sec_locs) < kk(j+1))); 
               cip2_habitsd(i,j,2) = length(find(good_habit(good_one_sec_locs)=='l' & good_particle_diameter(good_one_sec_locs) >= 
kk(j) &... 
                   good_particle_diameter(good_one_sec_locs) < kk(j+1))); 
               cip2_habitsd(i,j,3) = length(find(good_habit(good_one_sec_locs)=='o' & good_particle_diameter(good_one_sec_locs) 
>= kk(j) &... 
                   good_particle_diameter(good_one_sec_locs) < kk(j+1))); 
               cip2_habitsd(i,j,4) = length(find(good_habit(good_one_sec_locs)=='t' & good_particle_diameter(good_one_sec_locs) >= 
kk(j) &... 
                   good_particle_diameter(good_one_sec_locs) < kk(j+1))); 
               cip2_habitsd(i,j,5) = length(find(good_habit(good_one_sec_locs)=='h' & good_particle_diameter(good_one_sec_locs) 
>= kk(j) &... 
                   good_particle_diameter(good_one_sec_locs) < kk(j+1))); 
               cip2_habitsd(i,j,6) = length(find(good_habit(good_one_sec_locs)=='i' & good_particle_diameter(good_one_sec_locs) >= 
kk(j) &... 
                   good_particle_diameter(good_one_sec_locs) < kk(j+1))); 
               cip2_habitsd(i,j,7) = length(find(good_habit(good_one_sec_locs)=='g' & good_particle_diameter(good_one_sec_locs) 
>= kk(j) &... 
                   good_particle_diameter(good_one_sec_locs) < kk(j+1))); 
               cip2_habitsd(i,j,8) = length(find(good_habit(good_one_sec_locs)=='d' & good_particle_diameter(good_one_sec_locs) 
>= kk(j) &... 
                   good_particle_diameter(good_one_sec_locs) < kk(j+1))); 
               cip2_habitsd(i,j,9) = length(find(good_habit(good_one_sec_locs)=='a' & good_particle_diameter(good_one_sec_locs) 
>= kk(j) &... 
                   good_particle_diameter(good_one_sec_locs) < kk(j+1))); 
               cip2_habitsd(i,j,10) = length(find(good_habit(good_one_sec_locs)=='I' & good_particle_diameter(good_one_sec_locs) 
>= kk(j) &... 
                   good_particle_diameter(good_one_sec_locs) < kk(j+1))); 
 
               % Create Habit Mass Size Distribution  
               cip2_habitmsd(i,j,1) = sum(good_iwc(good_habit(good_one_sec_locs)=='s' & 
good_particle_diameter(good_one_sec_locs) >= kk(j) &... 
                   good_particle_diameter(good_one_sec_locs) < kk(j+1))); 
               cip2_habitmsd(i,j,2) = sum(good_iwc(good_habit(good_one_sec_locs)=='l' & 
good_particle_diameter(good_one_sec_locs) >= kk(j) &... 
                   good_particle_diameter(good_one_sec_locs) < kk(j+1))); 
               cip2_habitmsd(i,j,3) = sum(good_iwc(good_habit(good_one_sec_locs)=='o' & 
good_particle_diameter(good_one_sec_locs) >= kk(j) &... 
                   good_particle_diameter(good_one_sec_locs) < kk(j+1))); 
               cip2_habitmsd(i,j,4) = sum(good_iwc(good_habit(good_one_sec_locs)=='t' & 
good_particle_diameter(good_one_sec_locs) >= kk(j) &... 
                   good_particle_diameter(good_one_sec_locs) < kk(j+1))); 
               cip2_habitmsd(i,j,5) = sum(good_iwc(good_habit(good_one_sec_locs)=='h' & 
good_particle_diameter(good_one_sec_locs) >= kk(j) &... 
                   good_particle_diameter(good_one_sec_locs) < kk(j+1))); 
               cip2_habitmsd(i,j,6) = sum(good_iwc(good_habit(good_one_sec_locs)=='i' & 
good_particle_diameter(good_one_sec_locs) >= kk(j) &... 
                   good_particle_diameter(good_one_sec_locs) < kk(j+1))); 
               cip2_habitmsd(i,j,7) = sum(good_iwc(good_habit(good_one_sec_locs)=='g' & 
good_particle_diameter(good_one_sec_locs) >= kk(j) &... 
                   good_particle_diameter(good_one_sec_locs) < kk(j+1))); 
               cip2_habitmsd(i,j,8) = sum(good_iwc(good_habit(good_one_sec_locs)=='d' & 
good_particle_diameter(good_one_sec_locs) >= kk(j) &... 
                   good_particle_diameter(good_one_sec_locs) < kk(j+1))); 
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               cip2_habitmsd(i,j,9) = sum(good_iwc(good_habit(good_one_sec_locs)=='a' & 
good_particle_diameter(good_one_sec_locs) >= kk(j) &... 
                   good_particle_diameter(good_one_sec_locs) < kk(j+1))); 
               cip2_habitmsd(i,j,10) = sum(good_iwc(good_habit(good_one_sec_locs)=='I' & 
good_particle_diameter(good_one_sec_locs) >= kk(j) &... 
                   good_particle_diameter(good_one_sec_locs) < kk(j+1))); 
 
 
               particle_area(i,j) = nansum(good_area(good_one_sec_locs(good_particle_diameter(good_one_sec_locs) >= kk(j) &... 
                   good_particle_diameter(good_one_sec_locs) < kk(j+1)))); 
 
               cip2_meanp(i,j) = nanmean(good_perimeter(good_one_sec_locs(good_particle_diameter(good_one_sec_locs) >= kk(j) 
&... 
                   good_particle_diameter(good_one_sec_locs) < kk(j+1)))); 
 
               if iCreateAspectRatio == 1 
 
               particle_aspectRatio(i,j) = 
nanmean(good_AspectRatio(good_one_sec_locs1(good_particle_diameter1(good_one_sec_locs1) >= kk(j) &... 
                   good_particle_diameter1(good_one_sec_locs1) < kk(j+1)))); 
 
               particle_aspectRatio1(i,j) = 
nanmean(good_AspectRatio1(good_one_sec_locs1(good_particle_diameter1(good_one_sec_locs1) >= kk(j) &... 
                   good_particle_diameter1(good_one_sec_locs1) < kk(j+1)))); 
               end 
               particle_areaRatio1(i,j) = nanmean(good_ar1(good_one_sec_locs1(good_particle_diameter1(good_one_sec_locs1) >= 
kk(j) &... 
                   good_particle_diameter1(good_one_sec_locs1) < kk(j+1)))); 
 
 
               cip2_iwc(i,j) = nansum(good_iwc(good_one_sec_locs(good_particle_diameter(good_one_sec_locs) >= kk(j) &... 
                   good_particle_diameter(good_one_sec_locs) < kk(j+1)))); 
 
               cip2_partarea(i,j) = nansum(good_partarea(good_one_sec_locs(good_particle_diameter(good_one_sec_locs) >= kk(j) 
&... 
                   good_particle_diameter(good_one_sec_locs) < kk(j+1)))); 
 
               cip2_iwcbl(i,j) = nansum(good_iwcbl(good_one_sec_locs(good_particle_diameter(good_one_sec_locs) >= kk(j) &... 
                   good_particle_diameter(good_one_sec_locs) < kk(j+1)))); 
 
               cip2_vt(i,j) = nansum(good_vt(good_one_sec_locs(good_particle_diameter(good_one_sec_locs) >= kk(j) &... 
                   good_particle_diameter(good_one_sec_locs) < kk(j+1)))); 
 
               cip2_pr(i,j) = nansum(good_pr(good_one_sec_locs(good_particle_diameter(good_one_sec_locs) >= kk(j) &... 
                   good_particle_diameter(good_one_sec_locs) < kk(j+1)))); 
 
 
               for k = 1:length(area_bins)-1 
                   area_dist2(i,j,k) = length(find(good_ar(good_one_sec_locs) >= area_bins(k) & ... 
                       good_ar(good_one_sec_locs) < area_bins(k+1) & good_particle_diameter(good_one_sec_locs) >= kk(j) &... 
                       good_particle_diameter(good_one_sec_locs) < kk(j+1))); 
               end 
            end 
 
           % Normalize by binwidth and convert from mm to cm 
           particle_dist_minR(i,:)=particle_dist_minR(i,:)./binwidth*10; 
           particle_dist_AreaR(i,:)=particle_dist_AreaR(i,:)./binwidth*10; 
           cip2_iwc(i,:)=cip2_iwc(i,:)./binwidth*10; %g/cm 
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           cip2_iwcbl(i,:)=cip2_iwcbl(i,:)./binwidth*10; 
           cip2_vt(i,:)=cip2_vt(i,:)./binwidth*10; 
           cip2_pr(i,:)=cip2_pr(i,:)./binwidth*10; 
           cip2_partarea(i,:)=cip2_partarea(i,:)./binwidth*10; 
           particle_area(i,:)=particle_area(i,:)./binwidth*10;                
            
           for mmmmmm=1:10 
               cip2_habitsd(i,:,mmmmmm)=cip2_habitsd(i,:,mmmmmm)./binwidth*10; 
               cip2_habitmsd(i,:,mmmmmm)=cip2_habitmsd(i,:,mmmmmm)./binwidth*10; 
           end 
            
           for mmmmmm = 1:length(area_bins)-1 
               area_dist2(i,:,mmmmmm) =area_dist2(i,:,mmmmmm)./binwidth*10 ; 
           end 
            
           % Generalized effective radius calculation from Fu (1996) 
           cip2_re(i) = (sqrt(3)/(3*0.91))*1000*(sum(cip2_iwc(i,:)./binwidth,2)/sum(particle_area(i,:)./binwidth,2))*1000; % in unit of 
um 
         
  else 
 
           particle_dist_minR(i,1:num_bins) = 0; 
           particle_dist_AreaR(i,1:num_bins) = 0; 
           area_dist2(i,1:num_bins,1:length(area_bins)-1) = 0; 
           cip2_partarea(i,:) = 0; 
           cip2_iwc(i,:) = 0; 
           cip2_iwcbl(i,:) = 0; 
           cip2_vt(i,:) = 0; 
           cip2_pr(i,:) = 0; 
           cip2_re(i) = 0; 
           cip2_habitsd(i,:,:) = 0; 
           cip2_habitmsd(i,:,:) = 0; 
           time_interval2(i) = 1; 
                      
           % Legacy: used in Paris intercomparison 
           %{ 
           time_interval22(i) = 1; 
           time_interval32(i) = 1; 
           time_interval42(i) = 1; 
           time_interval52(i) = 0; 
           time_interval62(i) = 1; 
           %} 
           time_interval72(i) = 0; 
 
           TotalPC1(i)=1;         
           TotalPC2(i)=1; 
 
        end 
         
        if iCreateBad == 1 
        %% Sort bad (rejected) particles into size distributions 
        bad_one_sec_locs = find(bad_image_times >= one_sec_times(i) & bad_image_times < one_sec_times(i+1)); 
        bad_one_sec_locs1 = find(bad_image_times1 >= one_sec_times(i) & bad_image_times1 < one_sec_times(i+1)); 
         
        badintpercent(i) = sum(bad_int_arr(bad_image_times >= one_sec_times(i) & bad_image_times < 
one_sec_times(i+1)))/time_interval2(i); 
         
        bad_one_sec_ar(i) = mean(bad_ar1(bad_one_sec_locs1)); 
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        if ~isempty(bad_one_sec_locs) 
 
           for j = 1:num_bins 
               bad_particle_dist_minR(i,j)  = length(find(bad_particle_diameter_minR(bad_one_sec_locs) >= kk(j) &... 
                   bad_particle_diameter_minR(bad_one_sec_locs) < kk(j+1))); 
               bad_particle_dist_AreaR(i,j) = length(find(bad_particle_diameter_AreaR(bad_one_sec_locs) >= kk(j) &... 
                   bad_particle_diameter_AreaR(bad_one_sec_locs) < kk(j+1))); 
 
               % Create Habit Number Size Distribution  
               bad_cip2_habitsd(i,j,1) = length(find(bad_habit(bad_one_sec_locs)=='s' & bad_particle_diameter(bad_one_sec_locs) >= 
kk(j) &... 
                   bad_particle_diameter(bad_one_sec_locs) < kk(j+1))); 
               bad_cip2_habitsd(i,j,2) = length(find(bad_habit(bad_one_sec_locs)=='l' & bad_particle_diameter(bad_one_sec_locs) >= 
kk(j) &... 
                   bad_particle_diameter(bad_one_sec_locs) < kk(j+1))); 
               bad_cip2_habitsd(i,j,3) = length(find(bad_habit(bad_one_sec_locs)=='o' & bad_particle_diameter(bad_one_sec_locs) 
>= kk(j) &... 
                   bad_particle_diameter(bad_one_sec_locs) < kk(j+1))); 
               bad_cip2_habitsd(i,j,4) = length(find(bad_habit(bad_one_sec_locs)=='t' & bad_particle_diameter(bad_one_sec_locs) >= 
kk(j) &... 
                   bad_particle_diameter(bad_one_sec_locs) < kk(j+1))); 
               bad_cip2_habitsd(i,j,5) = length(find(bad_habit(bad_one_sec_locs)=='h' & bad_particle_diameter(bad_one_sec_locs) 
>= kk(j) &... 
                   bad_particle_diameter(bad_one_sec_locs) < kk(j+1))); 
               bad_cip2_habitsd(i,j,6) = length(find(bad_habit(bad_one_sec_locs)=='i' & bad_particle_diameter(bad_one_sec_locs) >= 
kk(j) &... 
                   bad_particle_diameter(bad_one_sec_locs) < kk(j+1))); 
               bad_cip2_habitsd(i,j,7) = length(find(bad_habit(bad_one_sec_locs)=='g' & bad_particle_diameter(bad_one_sec_locs) >= 
kk(j) &... 
                   bad_particle_diameter(bad_one_sec_locs) < kk(j+1))); 
               bad_cip2_habitsd(i,j,8) = length(find(bad_habit(bad_one_sec_locs)=='d' & bad_particle_diameter(bad_one_sec_locs) 
>= kk(j) &... 
                   bad_particle_diameter(bad_one_sec_locs) < kk(j+1))); 
               bad_cip2_habitsd(i,j,9) = length(find(bad_habit(bad_one_sec_locs)=='a' & bad_particle_diameter(bad_one_sec_locs) >= 
kk(j) &... 
                   bad_particle_diameter(bad_one_sec_locs) < kk(j+1))); 
               bad_cip2_habitsd(i,j,10) = length(find(bad_habit(bad_one_sec_locs)=='I' & bad_particle_diameter(bad_one_sec_locs) 
>= kk(j) &... 
                   bad_particle_diameter(bad_one_sec_locs) < kk(j+1))); 
 
               % Create Habit Mass Size Distribution  
               bad_cip2_habitmsd(i,j,1) = sum(bad_iwc(bad_habit(bad_one_sec_locs)=='s' & 
bad_particle_diameter(bad_one_sec_locs) >= kk(j) &... 
                   bad_particle_diameter(bad_one_sec_locs) < kk(j+1))); 
               bad_cip2_habitmsd(i,j,2) = sum(bad_iwc(bad_habit(bad_one_sec_locs)=='l' & 
bad_particle_diameter(bad_one_sec_locs) >= kk(j) &... 
                   bad_particle_diameter(bad_one_sec_locs) < kk(j+1))); 
               bad_cip2_habitmsd(i,j,3) = sum(bad_iwc(bad_habit(bad_one_sec_locs)=='o' & 
bad_particle_diameter(bad_one_sec_locs) >= kk(j) &... 
                   bad_particle_diameter(bad_one_sec_locs) < kk(j+1))); 
               bad_cip2_habitmsd(i,j,4) = sum(bad_iwc(bad_habit(bad_one_sec_locs)=='t' & 
bad_particle_diameter(bad_one_sec_locs) >= kk(j) &... 
                   bad_particle_diameter(bad_one_sec_locs) < kk(j+1))); 
               bad_cip2_habitmsd(i,j,5) = sum(bad_iwc(bad_habit(bad_one_sec_locs)=='h' & 
bad_particle_diameter(bad_one_sec_locs) >= kk(j) &... 
                   bad_particle_diameter(bad_one_sec_locs) < kk(j+1))); 
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               bad_cip2_habitmsd(i,j,6) = sum(bad_iwc(bad_habit(bad_one_sec_locs)=='i' & 
bad_particle_diameter(bad_one_sec_locs) >= kk(j) &... 
                   bad_particle_diameter(bad_one_sec_locs) < kk(j+1))); 
               bad_cip2_habitmsd(i,j,7) = sum(bad_iwc(bad_habit(bad_one_sec_locs)=='g' & 
bad_particle_diameter(bad_one_sec_locs) >= kk(j) &... 
                   bad_particle_diameter(bad_one_sec_locs) < kk(j+1))); 
               bad_cip2_habitmsd(i,j,8) = sum(bad_iwc(bad_habit(bad_one_sec_locs)=='d' & 
bad_particle_diameter(bad_one_sec_locs) >= kk(j) &... 
                   bad_particle_diameter(bad_one_sec_locs) < kk(j+1))); 
               bad_cip2_habitmsd(i,j,9) = sum(bad_iwc(bad_habit(bad_one_sec_locs)=='a' & 
bad_particle_diameter(bad_one_sec_locs) >= kk(j) &... 
                   bad_particle_diameter(bad_one_sec_locs) < kk(j+1))); 
               bad_cip2_habitmsd(i,j,10) = sum(bad_iwc(bad_habit(bad_one_sec_locs)=='I' & 
bad_particle_diameter(bad_one_sec_locs) >= kk(j) &... 
                   bad_particle_diameter(bad_one_sec_locs) < kk(j+1))); 
 
 
               bad_particle_area(i,j) = nansum(bad_area(bad_one_sec_locs(bad_particle_diameter(bad_one_sec_locs) >= kk(j) &... 
                   bad_particle_diameter(bad_one_sec_locs) < kk(j+1)))); 
 
               bad_cip2_meanp(i,j) = nanmean(bad_perimeter(bad_one_sec_locs(bad_particle_diameter(bad_one_sec_locs) >= kk(j) 
&... 
                   bad_particle_diameter(bad_one_sec_locs) < kk(j+1)))); 
 
               if iCreateAspectRatio == 1 % added if statement if not creating aspect ratio - Joe Finlon - 03/03/17 
               bad_particle_aspectRatio(i,j) = 
nanmean(bad_AspectRatio(bad_one_sec_locs1(bad_particle_diameter1(bad_one_sec_locs1) >= kk(j) &... 
                   bad_particle_diameter1(bad_one_sec_locs1) < kk(j+1)))); 
 
               bad_particle_aspectRatio1(i,j) = 
nanmean(bad_AspectRatio1(bad_one_sec_locs1(bad_particle_diameter1(bad_one_sec_locs1) >= kk(j) &... 
                   bad_particle_diameter1(bad_one_sec_locs1) < kk(j+1)))); 
               end 
 
               bad_particle_areaRatio1(i,j) = nanmean(bad_ar1(bad_one_sec_locs1(bad_particle_diameter1(bad_one_sec_locs1) >= 
kk(j) &... 
                   bad_particle_diameter1(bad_one_sec_locs1) < kk(j+1)))); 
 
 
               bad_cip2_iwc(i,j) = nansum(bad_iwc(bad_one_sec_locs(bad_particle_diameter(bad_one_sec_locs) >= kk(j) &... 
                   bad_particle_diameter(bad_one_sec_locs) < kk(j+1)))); 
 
               bad_cip2_partarea(i,j) = nansum(bad_partarea(bad_one_sec_locs(bad_particle_diameter(bad_one_sec_locs) >= kk(j) 
&... 
                   bad_particle_diameter(bad_one_sec_locs) < kk(j+1)))); 
 
               bad_cip2_iwcbl(i,j) = nansum(bad_iwcbl(bad_one_sec_locs(bad_particle_diameter(bad_one_sec_locs) >= kk(j) &... 
                   bad_particle_diameter(bad_one_sec_locs) < kk(j+1)))); 
 
               bad_cip2_vt(i,j) = nansum(bad_vt(bad_one_sec_locs(bad_particle_diameter(bad_one_sec_locs) >= kk(j) &... 
                   bad_particle_diameter(bad_one_sec_locs) < kk(j+1)))); 
 
               bad_cip2_pr(i,j) = nansum(bad_pr(bad_one_sec_locs(bad_particle_diameter(bad_one_sec_locs) >= kk(j) &... 
                   bad_particle_diameter(bad_one_sec_locs) < kk(j+1)))); 
 
 
               for k = 1:length(area_bins)-1 
                   bad_area_dist2(i,j,k) = length(find(bad_ar(bad_one_sec_locs) >= area_bins(k) & ... 
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                       bad_ar(bad_one_sec_locs) < area_bins(k+1) & bad_particle_diameter(bad_one_sec_locs) >= kk(j) &... 
                       bad_particle_diameter(bad_one_sec_locs) < kk(j+1))); 
               end 
           end 
 
           % Normalize by binwidth and convert from mm to cm 
           bad_particle_dist_minR(i,:)=bad_particle_dist_minR(i,:)./binwidth*10; 
           bad_particle_dist_AreaR(i,:)=bad_particle_dist_AreaR(i,:)./binwidth*10; 
           bad_cip2_iwc(i,:)=bad_cip2_iwc(i,:)./binwidth*10; %g/cm 
           bad_cip2_iwcbl(i,:)=bad_cip2_iwcbl(i,:)./binwidth*10; 
           bad_cip2_vt(i,:)=bad_cip2_vt(i,:)./binwidth*10; 
           bad_cip2_pr(i,:)=bad_cip2_pr(i,:)./binwidth*10; 
           bad_cip2_partarea(i,:)=bad_cip2_partarea(i,:)./binwidth*10; 
           bad_particle_area(i,:)=bad_particle_area(i,:)./binwidth*10;                
            
           for mmmmmm=1:10 
               bad_cip2_habitsd(i,:,mmmmmm)=bad_cip2_habitsd(i,:,mmmmmm)./binwidth*10; 
               bad_cip2_habitmsd(i,:,mmmmmm)=bad_cip2_habitmsd(i,:,mmmmmm)./binwidth*10; 
           end 
            
           for mmmmmm = 1:length(area_bins)-1 
               bad_area_dist2(i,:,mmmmmm)=bad_area_dist2(i,:,mmmmmm)./binwidth*10 ; 
           end 
            
           % Generalized effective radius calculation from Fu (1996) 
           bad_cip2_re(i) = 
(sqrt(3)/(3*0.91))*1000*(sum(bad_cip2_iwc(i,:)./binwidth,2)/sum(bad_particle_area(i,:)./binwidth,2))*1000; % in unit of um 
         
        else 
           bad_particle_dist_minR(i,1:num_bins) = 0; 
           bad_particle_dist_AreaR(i,1:num_bins) = 0; 
           bad_area_dist2(i,1:num_bins,1:length(area_bins)-1) = 0; 
           bad_cip2_partarea(i,:) = 0; 
           bad_cip2_iwc(i,:) = 0; 
           bad_cip2_iwcbl(i,:) = 0; 
           bad_cip2_vt(i,:) = 0; 
           bad_cip2_pr(i,:) = 0; 
           bad_cip2_re(i) = 0; 
           bad_cip2_habitsd(i,:,:) = 0; 
           bad_cip2_habitmsd(i,:,:) = 0; 
 
        end 
        end 
        warning on all 
%     elseif (int32(timehhmmss(i))<int32(starttime(jjj))) 
    elseif (eofFlag==1 || int32(timehhmmss(i))<int32(starttime(jjj))) % Modified by Joe Finlon - 03/03/17 
 
       particle_dist_minR(i,1:num_bins) = NaN; 
       particle_dist_AreaR(i,1:num_bins) = NaN; 
       area_dist2(i,1:num_bins,1:length(area_bins)-1) = NaN; 
       cip2_partarea(i,:) = NaN; 
       cip2_iwc(i,:) = NaN; 
       cip2_iwcbl(i,:) = NaN; 
       cip2_vt(i,:) = NaN; 
       cip2_pr(i,:) = NaN; 
       cip2_re(i) = NaN; 
       cip2_habitsd(i,:,:) = NaN; 
       cip2_habitmsd(i,:,:) = NaN; 
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       one_sec_ar(i) = NaN; 
       good_partpercent(i)=1; 
       rejectpercentbycriterion(i,:)=NaN; 
       numGoodparticles(i)=NaN; 
       time_interval2(i) = 1; 
        
       % Legacy: used in Paris intercomparison 
       %{ 
       time_interval22(i) = 1; 
       time_interval32(i) = 1; 
       time_interval42(i) = 1;     
       time_interval52(i) = 0;     
       time_interval62(i) = 1;        
       %} 
       time_interval72(i) = 0; 
        
       TotalPC1(i)=1;         
       TotalPC2(i)=1; 
        
    end 
 
end 
 
% Finished Sorting and close input file. 
netcdf.close(f); 
 
fprintf('int_arr > 1 mean: %.4f, max: %.4f\nNumber of particles with int_arr > 1: %d\n\n',... 
 mean(intArrGT1),max(intArrGT1),sumIntArrGT1); 
 
fprintf('Size distribution calculations and sorting completed %s\n\n', datestr(now)); 
 
 
%% Check TAS length, should be the same 
% if (jjj~=length(start_all)) 
%     disp([jjj, length(start_all)]) 
%     %error('Watch Out for less TAS time at the end!') 
% end 
 
%disp([num2str(100*nThrow11/maxRecNum),'% is thrown out IN TOTAL']);  
 
%% Combine - calculate sample volumes, and divide by sample volumes  
% Modified by Will, Nov 27th, 2013. For flexible bins 
cip2_binmin = kk(1:end-1);  
cip2_binmax = kk(2:end);  
cip2_binmid = (cip2_binmin+cip2_binmax)/2;  
cip2_bindD = diff(kk); 
 
% Legacy bin and surface area calculations 
%{ 
% cip2_binmin = diodesize/2:diodesize:(num_bins-0.5)*diodesize; %(12.5:25:(num_bins-0.5)*25); 
% cip2_binmax = 3*diodesize/2:diodesize:(num_bins+0.5)*diodesize; %(37.5:25:(num_bins+0.5)*25); 
% cip2_binmid = diodesize:diodesize:num_bins*diodesize; %(25:25:num_bins*25); 
% cip2_bindD = diodesize*ones(1,num_bins); 
 
% sa2 = calc_sa(num_bins,res,armdst,num_bins);  %mm2 
% switch probename 
%     case 'PIP' 
%         sa2 = calc_sa_randombins_PIP(cip2_binmid,res,armdst,num_diodes, SAmethod); %(bins_mid,res,armdst,num_diodes) 
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%     case '2DS' 
%         sa2 = calc_sa_randombins(cip2_binmid,res,armdst,num_diodes, SAmethod); %(bins_mid,res,armdst,num_diodes) 
% end 
%} 
 
sa2 = calc_sa_randombins(cip2_binmid,res,armdst,num_diodes,SAmethod, probetype); %(bins_mid,res,armdst,num_diodes) 
 
% Clocking problem correction 
vol_scale_factor = tas/tasMax;   
vol_scale_factor(vol_scale_factor < 1) = 1; 
 
TotalPC2_pre = TotalPC2; 
 
if probetype==2 
    time_interval200=1-time_interval72'; 
 
elseif probetype==1 
 % Correct offset in probe particle count (TotalPC2) when we have negative values 
    TotalPC2(TotalPC2<0)=TotalPC2(TotalPC2<0)+2^16; 
  
 % Derive a linear scale factor based on the difference between number of images (TotalPC1) 
 % and number of particles counted by the probe (TotalPC2). 
    time_interval199=(TotalPC1./TotalPC2)'; 
 
elseif 0==probetype 
    time_interval200=1-time_interval72'; 
end 
 
% Experimental - Use with care! 
% It was discovered that for data collected during the PECAN project, there were quite 
% a few periods of time when the number of images we had for a 1-sec period of time was 
% up to twice that of the number of particles the probe counted. 
% This next if-statement contains code to find and change these instances to 1, resolving  
% the far exaggerated concentrations that resulted otherwise. 
 
if probetype==1 
% TotalPCerrIx = find(time_interval199 > 1); 
 time_interval200 = time_interval199; 
% time_interval200(TotalPCerrIx) = 1; 
%   fprintf(['Total image count exceeded probe particle count %d times\ntime_interval200',... 
%        ' was set to 1 in these cases. See TotalPCerrIx variable for indices of occurence.\n\n'],... 
%        length(TotalPCerrIx)); % moved inside if statement - Joe Finlon - 03/03/17 
end 
% disp(time_interval200) 
 
for j=1:num_bins 
    % Sample volume is in m-3 
%     svol_old(j,:)=dof/100.*sa/100.*tas; 
    svol2(j,:) = sa2(j)*(1e-3)^2*time_interval200.*tas; %m3 .*vol_scale_factor 
end 
 
svol2 = svol2*100^3; %cm3 
 
for j = 1:10 
    svol2a(:,:,j) = svol2'; 
end 
 
% Good (accepted) particles 
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cip2_conc_minR  = particle_dist_minR./svol2'; 
cip2_conc_AreaR = particle_dist_AreaR./svol2'; 
cip2_area = particle_area./svol2'; 
cip2_partarea = cip2_partarea./svol2'; 
cip2_iwc = cip2_iwc./svol2'; 
cip2_iwcbl = cip2_iwcbl./svol2'; 
cip2_vt = cip2_vt./svol2'; 
cip2_pr = cip2_pr./svol2'; 
 
cip2_countP_no  = particle_dist_minR.*repmat(binwidth,[length(tas) 1])/10; % un-normalized by binwitdh - Joe Finlon - 03/03/17 
cip2_conc_areaDist = permute(double(area_dist2)./svol2a, [3 2 1]); 
cip2_n = nansum(cip2_conc_minR.*repmat(binwidth,[length(tas) 1]),2)/10; % un-normalized by binwitdh & converted to cm^-3 
- Joe Finlon - 03/03/17 
cip2_lwc = lwc_calc(cip2_conc_minR,cip2_binmid); 
 
% Bad (rejected) particles 
bad_cip2_conc_minR  = bad_particle_dist_minR./svol2'; 
bad_cip2_conc_AreaR = bad_particle_dist_AreaR./svol2'; 
bad_cip2_area = bad_particle_area./svol2'; 
bad_cip2_partarea = bad_cip2_partarea./svol2'; 
bad_cip2_iwc = bad_cip2_iwc./svol2'; 
bad_cip2_iwcbl = bad_cip2_iwcbl./svol2'; 
bad_cip2_vt = bad_cip2_vt./svol2'; 
bad_cip2_pr = bad_cip2_pr./svol2'; 
 
bad_cip2_countP_no  = bad_particle_dist_minR.*repmat(binwidth,[length(tas) 1])/10; % un-normalized by binwitdh - Joe Finlon 
- 03/03/17 
bad_cip2_conc_areaDist = permute(double(bad_area_dist2)./svol2a, [3 2 1]); 
bad_cip2_n = nansum(bad_cip2_conc_minR.*repmat(binwidth,[length(tas) 1]),2)/10; % un-normalized by binwitdh & converted 
to cm^-3 - Joe Finlon - 03/03/17 
bad_cip2_lwc = lwc_calc(bad_cip2_conc_minR,cip2_binmid); 
 
 
 
%% Output results into NETCDF files (mainf) 
 
fprintf('Now writing output files %s\n\n',datestr(now)); 
 
if applyIntArrThresh 
 save([outfile(1:end-3) 'noShatters.mat']); 
else 
 save([outfile(1:end-3) 'withShatters.mat']); 
end 
 
 
% Define Dimensions 
dimid0 = netcdf.defDim(mainf,'CIPcorrlen',num_bins); 
dimid1 = netcdf.defDim(mainf,'CIParealen',10); 
dimid2 = netcdf.defDim(mainf,'Time',length(timehhmmss)); 
dimid3 = netcdf.defDim(mainf,'Habit',10); 
 
% Define Global Attributes 
NC_GLOBAL = netcdf.getConstant('NC_GLOBAL'); 
netcdf.putAtt(mainf, NC_GLOBAL, 'Software', 'UIOPS/sizeDist'); 
netcdf.putAtt(mainf, NC_GLOBAL, 'Institution', 'Univ. Illinois, Dept. Atmos. Sciences'); 
netcdf.putAtt(mainf, NC_GLOBAL, 'Creation Time', datestr(now, 'yyyy/mm/dd HH:MM:SS')); 
netcdf.putAtt(mainf, NC_GLOBAL, 'Description', ['Contains size distributions of ',... 
    'particle count, mass, etc. & various bulk properties.']); 
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netcdf.putAtt(mainf, NC_GLOBAL, 'Project', projectname); 
netcdf.putAtt(mainf, NC_GLOBAL, 'Data Source', infile); 
netcdf.putAtt(mainf, NC_GLOBAL, 'Probe Type', probename); 
if SAmethod==0 
    netcdf.putAtt(mainf, NC_GLOBAL, 'SA Method', 'Center-in'); 
elseif SAmethod==1 
    netcdf.putAtt(mainf, NC_GLOBAL, 'SA Method', 'Entire-in'); 
elseif SAmethod==2 
    netcdf.putAtt(mainf, NC_GLOBAL, 'SA Method', 'Using Heymsfield & Parrish (1978) correction'); 
end 
if d_choice==1 
    netcdf.putAtt(mainf, NC_GLOBAL, 'Dmax Definition', 'L_x'); 
elseif d_choice==2 
    netcdf.putAtt(mainf, NC_GLOBAL, 'Dmax Definition', 'L_y'); 
elseif d_choice==3 
    netcdf.putAtt(mainf, NC_GLOBAL, 'Dmax Definition', 'mean(L_x,L_y)'); 
elseif d_choice==4 
    netcdf.putAtt(mainf, NC_GLOBAL, 'Dmax Definition', 'hypotenuse(L_x,L_y)'); 
elseif d_choice==5 
    netcdf.putAtt(mainf, NC_GLOBAL, 'Dmax Definition', 'max(L_x,L_y)'); 
elseif d_choice==6 
    netcdf.putAtt(mainf, NC_GLOBAL, 'Dmax Definition', 'D of minimum enclosing circle'); 
end 
if applyIntArrThresh && reaccptShatrs 
    netcdf.putAtt(mainf, NC_GLOBAL, 'Shattering Algorithm',... 
        'Applied w/ reacceptance of particles'); 
    netcdf.putAtt(mainf, NC_GLOBAL, 'Reacceptance Criteria',... 
        ['D > ', num2str(reaccptD*1000), ' um; inter-arrival < ',... 
        num2str(reaccptMaxIA), ' sec']) 
elseif applyIntArrThresh && ~reaccptShatrs 
    netcdf.putAtt(mainf, NC_GLOBAL, 'Shattering Algorithm',... 
        'Applied without reacceptance of particles'); 
else 
    netcdf.putAtt(mainf, NC_GLOBAL, 'Shattering Algorithm', 'Not applied'); 
end 
if iCreateBad && iCreateAspectRatio && iSaveIntArrSV 
    netcdf.putAtt(mainf, NC_GLOBAL, 'Optional Parameters Saved',... 
        'SDs from rejected particles, SDs w/ aspect ratio, Sample volume info'); 
elseif iCreateBad && ~iCreateAspectRatio && iSaveIntArrSV 
    netcdf.putAtt(mainf, NC_GLOBAL, 'Optional Parameters Saved',... 
        'SDs from rejected particles, Sample volume info'); 
elseif iCreateBad && iCreateAspectRatio && ~iSaveIntArrSV 
    netcdf.putAtt(mainf, NC_GLOBAL, 'Optional Parameters Saved',... 
        'SDs from rejected particles, SDs w/ aspect ratio'); 
elseif iCreateBad && ~iCreateAspectRatio && ~iSaveIntArrSV 
    netcdf.putAtt(mainf, NC_GLOBAL, 'Optional Parameters Saved',... 
        'SDs from rejected particles'); 
elseif ~iCreateBad && iCreateAspectRatio && iSaveIntArrSV 
    netcdf.putAtt(mainf, NC_GLOBAL, 'Optional Parameters Saved',... 
        'SDs w/ aspect ratio, Sample volume info'); 
elseif ~iCreateBad && ~iCreateAspectRatio && iSaveIntArrSV 
    netcdf.putAtt(mainf, NC_GLOBAL, 'Optional Parameters Saved',... 
        'Sample volume info'); 
elseif ~iCreateBad && iCreateAspectRatio && ~iSaveIntArrSV 
    netcdf.putAtt(mainf, NC_GLOBAL, 'Optional Parameters Saved',... 
        'SDs w/ aspect ratio'); 
else 
    netcdf.putAtt(mainf, NC_GLOBAL, 'Optional Parameters Saved', 'None'); 
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end 
 
% Define Variables 
varid0 = netcdf.defVar(mainf,'time','double',dimid2);  
netcdf.putAtt(mainf, varid0,'units','HHMMSS'); 
netcdf.putAtt(mainf, varid0,'name','Time'); 
 
varid1 = netcdf.defVar(mainf,'bin_min','double',dimid0);  
netcdf.putAtt(mainf, varid1,'units','millimeter'); 
netcdf.putAtt(mainf, varid1,'long_name','bin minimum size'); 
netcdf.putAtt(mainf, varid1,'short_name','bin min'); 
 
varid2 = netcdf.defVar(mainf,'bin_max','double',dimid0);  
netcdf.putAtt(mainf, varid2,'units','millimeter'); 
netcdf.putAtt(mainf, varid2,'long_name','bin maximum size'); 
netcdf.putAtt(mainf, varid2,'short_name','bin max'); 
 
varid3 = netcdf.defVar(mainf,'bin_mid','double',dimid0);  
netcdf.putAtt(mainf, varid3,'units','millimeter'); 
netcdf.putAtt(mainf, varid3,'long_name','bin midpoint size'); 
netcdf.putAtt(mainf, varid3,'short_name','bin mid'); 
 
varid4 = netcdf.defVar(mainf,'bin_dD','double',dimid0);  
netcdf.putAtt(mainf, varid4,'units','millimeter'); 
netcdf.putAtt(mainf, varid4,'long_name','bin size'); 
netcdf.putAtt(mainf, varid4,'short_name','bin size'); 
 
% Good (accepted) particles 
varid5 = netcdf.defVar(mainf,'conc_minR','double',[dimid0 dimid2]);  
netcdf.putAtt(mainf, varid5,'units','cm-4'); 
netcdf.putAtt(mainf, varid5,'long_name','Size distribution using Dmax'); 
netcdf.putAtt(mainf, varid5,'short_name','N(Dmax)'); 
 
varid6 = netcdf.defVar(mainf,'area','double',[dimid1 dimid0 dimid2]);  
netcdf.putAtt(mainf, varid6,'units','cm-4'); 
netcdf.putAtt(mainf, varid6,'long_name','binned area ratio'); 
netcdf.putAtt(mainf, varid6,'short_name','binned area ratio'); 
 
varid7 = netcdf.defVar(mainf,'conc_AreaR','double',[dimid0 dimid2]);  
netcdf.putAtt(mainf, varid7,'units','cm-4'); 
netcdf.putAtt(mainf, varid7,'long_name','Size distribution using area-equivalent Diameter'); 
netcdf.putAtt(mainf, varid7,'short_name','N(Darea)'); 
 
varid8 = netcdf.defVar(mainf,'n','double',dimid2);  
netcdf.putAtt(mainf, varid8,'units','cm-3'); 
netcdf.putAtt(mainf, varid8,'long_name','number concentration'); 
netcdf.putAtt(mainf, varid8,'short_name','N'); 
 
varid9 = netcdf.defVar(mainf,'total_area','double',[dimid0 dimid2]);  
netcdf.putAtt(mainf, varid9,'units','mm2/cm4'); 
netcdf.putAtt(mainf, varid9,'long_name','projected area (extinction)'); 
netcdf.putAtt(mainf, varid9,'short_name','Ac'); 
 
varid10 = netcdf.defVar(mainf,'mass','double',[dimid0 dimid2]);  
netcdf.putAtt(mainf, varid10,'units','g/cm4'); 
netcdf.putAtt(mainf, varid10,'long_name','mass using m-D relations'); 
netcdf.putAtt(mainf, varid10,'short_name','mass'); 
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varid11 = netcdf.defVar(mainf,'habitsd','double',[dimid3 dimid0 dimid2]);  
netcdf.putAtt(mainf, varid11,'units','cm-4'); 
netcdf.putAtt(mainf, varid11,'long_name','Size Distribution with Habit'); 
netcdf.putAtt(mainf, varid11,'short_name','habit SD'); 
 
varid12 = netcdf.defVar(mainf,'re','double',dimid2);  
netcdf.putAtt(mainf, varid12,'units','mm'); 
netcdf.putAtt(mainf, varid12,'long_name','effective radius'); 
netcdf.putAtt(mainf, varid12,'short_name','Re'); 
 
varid13 = netcdf.defVar(mainf,'ar','double',dimid2);  
netcdf.putAtt(mainf, varid13,'units','100/100'); 
netcdf.putAtt(mainf, varid13,'long_name','Area Ratio'); 
netcdf.putAtt(mainf, varid13,'short_name','AR'); 
 
varid14 = netcdf.defVar(mainf,'massBL','double',[dimid0 dimid2]);  
netcdf.putAtt(mainf, varid14,'units','g/cm4'); 
netcdf.putAtt(mainf, varid14,'long_name','mass using Baker and Lawson method'); 
netcdf.putAtt(mainf, varid14,'short_name','mass_BL'); 
 
varid15 = netcdf.defVar(mainf,'Reject_ratio','double',dimid2);  
netcdf.putAtt(mainf, varid15,'units','100/100'); 
netcdf.putAtt(mainf, varid15,'long_name','Reject Ratio'); 
 
varid16 = netcdf.defVar(mainf,'vt','double',[dimid0 dimid2]);  
netcdf.putAtt(mainf, varid16,'units','g/cm4'); 
netcdf.putAtt(mainf, varid16,'long_name','Mass-weighted terminal velocity'); 
 
varid17 = netcdf.defVar(mainf,'Prec_rate','double',[dimid0 dimid2]);  
netcdf.putAtt(mainf, varid17,'units','mm/hr'); 
netcdf.putAtt(mainf, varid17,'long_name','Precipitation Rate'); 
 
varid18 = netcdf.defVar(mainf,'habitmsd','double',[dimid3 dimid0 dimid2]);  
netcdf.putAtt(mainf, varid18,'units','g/cm-4'); 
netcdf.putAtt(mainf, varid18,'long_name','Mass Size Distribution with Habit'); 
netcdf.putAtt(mainf, varid18,'short_name','Habit Mass SD'); 
 
varid19 = netcdf.defVar(mainf,'Calcd_area','double',[dimid0 dimid2]);  
netcdf.putAtt(mainf, varid19,'units','mm^2/cm4'); 
netcdf.putAtt(mainf, varid19,'long_name','Particle Area Calculated using A-D realtions'); 
netcdf.putAtt(mainf, varid19,'short_name','Ac_calc'); 
 
varid20 = netcdf.defVar(mainf,'count','double',[dimid0 dimid2]);  
netcdf.putAtt(mainf, varid20,'units','1'); 
netcdf.putAtt(mainf, varid20,'long_name','number count for partial images without any correction'); 
 
if iCreateAspectRatio == 1 
varid21 = netcdf.defVar(mainf,'mean_aspect_ratio_rectangle','double',[dimid0 dimid2]);  
netcdf.putAtt(mainf, varid21,'units','1'); 
netcdf.putAtt(mainf, varid21,'long_name','Aspect Ratio by Rectangle fit'); 
 
varid22 = netcdf.defVar(mainf,'mean_aspect_ratio_ellipse','double',[dimid0 dimid2]);  
netcdf.putAtt(mainf, varid22,'units','1'); 
netcdf.putAtt(mainf, varid22,'long_name','Aspect Ratio by Ellipse fit'); 
end 
varid23 = netcdf.defVar(mainf,'mean_area_ratio','double',[dimid0 dimid2]);  
netcdf.putAtt(mainf, varid23,'units','1'); 
netcdf.putAtt(mainf, varid23,'long_name','Area Ratio'); 



226 
 

 
varid24 = netcdf.defVar(mainf,'mean_perimeter','double',[dimid0 dimid2]);  
netcdf.putAtt(mainf, varid24,'units','um'); 
netcdf.putAtt(mainf, varid24,'long_name','mean perimeter'); 
 
if iCreateBad == 1 
 
% Bad (rejected) particles 
varid25 = netcdf.defVar(mainf,'REJ_conc_minR','double',[dimid0 dimid2]);  
netcdf.putAtt(mainf, varid25,'units','cm-4'); 
netcdf.putAtt(mainf, varid25,'long_name','Size distribution of rejected particles using Dmax'); 
netcdf.putAtt(mainf, varid25,'short_name','N(Dmax) rejected'); 
 
varid26 = netcdf.defVar(mainf,'REJ_area','double',[dimid1 dimid0 dimid2]);  
netcdf.putAtt(mainf, varid26,'units','cm-4'); 
netcdf.putAtt(mainf, varid26,'long_name','binned area ratio of rejected particles'); 
netcdf.putAtt(mainf, varid26,'short_name','binned area ratio of rejected particles'); 
 
varid27 = netcdf.defVar(mainf,'REJ_conc_AreaR','double',[dimid0 dimid2]);  
netcdf.putAtt(mainf, varid27,'units','cm-4'); 
netcdf.putAtt(mainf, varid27,'long_name','Size distribution of rejected particles using area-equivalent Diameter'); 
netcdf.putAtt(mainf, varid27,'short_name','N(Darea) rejected'); 
 
varid28 = netcdf.defVar(mainf,'REJ_n','double',dimid2);  
netcdf.putAtt(mainf, varid28,'units','cm-3'); 
netcdf.putAtt(mainf, varid28,'long_name','number concentration of rejected particles'); 
netcdf.putAtt(mainf, varid28,'short_name','N_rejected'); 
 
varid29 = netcdf.defVar(mainf,'REJ_total_area','double',[dimid0 dimid2]);  
netcdf.putAtt(mainf, varid29,'units','mm2/cm4'); 
netcdf.putAtt(mainf, varid29,'long_name','projected area (extinction) of rejected particles'); 
netcdf.putAtt(mainf, varid29,'short_name','Ac_rejected'); 
 
varid30 = netcdf.defVar(mainf,'REJ_mass','double',[dimid0 dimid2]);  
netcdf.putAtt(mainf, varid30,'units','g/cm4'); 
netcdf.putAtt(mainf, varid30,'long_name','mass of rejected particles using m-D relations'); 
netcdf.putAtt(mainf, varid30,'short_name','mass_rejected'); 
 
varid31 = netcdf.defVar(mainf,'REJ_habitsd','double',[dimid3 dimid0 dimid2]);  
netcdf.putAtt(mainf, varid31,'units','cm-4'); 
netcdf.putAtt(mainf, varid31,'long_name','Size Distribution with Habit of rejected particles'); 
netcdf.putAtt(mainf, varid31,'short_name','habit SD rejected'); 
 
varid32 = netcdf.defVar(mainf,'REJ_re','double',dimid2);  
netcdf.putAtt(mainf, varid32,'units','mm'); 
netcdf.putAtt(mainf, varid32,'long_name','effective radius of rejected particles'); 
netcdf.putAtt(mainf, varid32,'short_name','Re_rejected'); 
 
varid33 = netcdf.defVar(mainf,'REJ_ar','double',dimid2);  
netcdf.putAtt(mainf, varid33,'units','100/100'); 
netcdf.putAtt(mainf, varid33,'long_name','Area Ratio of rejected particles'); 
netcdf.putAtt(mainf, varid33,'short_name','AR_rejected'); 
 
varid34 = netcdf.defVar(mainf,'REJ_massBL','double',[dimid0 dimid2]);  
netcdf.putAtt(mainf, varid34,'units','g/cm4'); 
netcdf.putAtt(mainf, varid34,'long_name','mass of rejected particles using Baker and Lawson method'); 
netcdf.putAtt(mainf, varid34,'short_name','mass_BL_rejected'); 
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varid35 = netcdf.defVar(mainf,'REJ_vt','double',[dimid0 dimid2]);  
netcdf.putAtt(mainf, varid35,'units','g/cm4'); 
netcdf.putAtt(mainf, varid35,'long_name','Mass-weighted terminal velocity of rejected particles'); 
 
varid36 = netcdf.defVar(mainf,'REJ_Prec_rate','double',[dimid0 dimid2]);  
netcdf.putAtt(mainf, varid36,'units','mm/hr'); 
netcdf.putAtt(mainf, varid36,'long_name','Precipitation Rate of rejected particles'); 
 
varid37 = netcdf.defVar(mainf,'REJ_habitmsd','double',[dimid3 dimid0 dimid2]);  
netcdf.putAtt(mainf, varid37,'units','g/cm-4'); 
netcdf.putAtt(mainf, varid37,'long_name','Mass Size Distribution with Habit of rejected particles'); 
netcdf.putAtt(mainf, varid37,'short_name','Habit Mass SD rejected'); 
 
varid38 = netcdf.defVar(mainf,'REJ_Calcd_area','double',[dimid0 dimid2]);  
netcdf.putAtt(mainf, varid38,'units','mm^2/cm4'); 
netcdf.putAtt(mainf, varid38,'long_name','Particle Area of rejected particles Calculated using A-D realtions'); 
netcdf.putAtt(mainf, varid38,'short_name','Ac_calc_rejected'); 
 
varid39 = netcdf.defVar(mainf,'REJ_count','double',[dimid0 dimid2]);  
netcdf.putAtt(mainf, varid39,'units','1'); 
netcdf.putAtt(mainf, varid39,'long_name','number count of rejected particles for partial images without any correction'); 
 
varid40 = netcdf.defVar(mainf,'REJ_mean_aspect_ratio_rectangle','double',[dimid0 dimid2]);  
netcdf.putAtt(mainf, varid40,'units','1'); 
netcdf.putAtt(mainf, varid40,'long_name','Aspect Ratio of rejected particles by Rectangle fit'); 
 
varid41 = netcdf.defVar(mainf,'REJ_mean_aspect_ratio_ellipse','double',[dimid0 dimid2]);  
netcdf.putAtt(mainf, varid41,'units','1'); 
netcdf.putAtt(mainf, varid41,'long_name','Aspect Ratio of rejected particles by Ellipse fit'); 
 
varid42 = netcdf.defVar(mainf,'REJ_mean_area_ratio','double',[dimid0 dimid2]);  
netcdf.putAtt(mainf, varid42,'units','1'); 
netcdf.putAtt(mainf, varid42,'long_name','Area Ratio of rejected particles'); 
 
varid43 = netcdf.defVar(mainf,'REJ_mean_perimeter','double',[dimid0 dimid2]);  
netcdf.putAtt(mainf, varid43,'units','um'); 
netcdf.putAtt(mainf, varid43,'long_name','mean perimeter of rejected particles'); 
end 
 
if iSaveIntArrSV == 1 
varid44 = netcdf.defVar(mainf,'sum_IntArr','double',dimid2); 
netcdf.putAtt(mainf, varid44,'units','s'); 
netcdf.putAtt(mainf, varid44,'long_name','sum of inter-arrival times, excluding the overload time for particles affected by saving 
of image data'); 
 
varid45 = netcdf.defVar(mainf,'sample_vol','double',[dimid0 dimid2]); 
netcdf.putAtt(mainf, varid45,'units','cm^3'); 
netcdf.putAtt(mainf, varid45,'long_name','sample volume for each bin'); 
end 
 
netcdf.endDef(mainf) 
 
% Output Variables 
netcdf.putVar ( mainf, varid0, timehhmmss ); 
netcdf.putVar ( mainf, varid1, cip2_binmin ); 
netcdf.putVar ( mainf, varid2, cip2_binmax ); 
netcdf.putVar ( mainf, varid3, cip2_binmid ); 
netcdf.putVar ( mainf, varid4, cip2_bindD ); 
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% Good (accepted) particles 
netcdf.putVar ( mainf, varid5, cip2_conc_minR' ); 
netcdf.putVar ( mainf, varid6, cip2_conc_areaDist); 
netcdf.putVar ( mainf, varid7, cip2_conc_AreaR' ); 
netcdf.putVar ( mainf, varid8, cip2_n); 
netcdf.putVar ( mainf, varid9, cip2_area'); 
netcdf.putVar ( mainf, varid10, cip2_iwc'); 
netcdf.putVar ( mainf, varid11, permute(double(cip2_habitsd)./svol2a, [3 2 1]) ); 
netcdf.putVar ( mainf, varid12, cip2_re ); 
netcdf.putVar ( mainf, varid13, one_sec_ar ); 
netcdf.putVar ( mainf, varid14, cip2_iwcbl' ); 
netcdf.putVar ( mainf, varid15, 1-good_partpercent ); 
netcdf.putVar ( mainf, varid16, cip2_vt' ); 
netcdf.putVar ( mainf, varid17, cip2_pr' ); 
netcdf.putVar ( mainf, varid18, permute(double(cip2_habitmsd)./svol2a, [3 2 1]) ); 
netcdf.putVar ( mainf, varid19, cip2_partarea'); 
netcdf.putVar ( mainf, varid20, cip2_countP_no'); 
if iCreateAspectRatio == 1 
netcdf.putVar ( mainf, varid21, particle_aspectRatio); 
netcdf.putVar ( mainf, varid22, particle_aspectRatio1); 
end 
netcdf.putVar ( mainf, varid23, particle_areaRatio1); 
netcdf.putVar ( mainf, varid24, cip2_meanp'); 
 
if iCreateBad == 1 
 
% Bad (rejected) particles 
netcdf.putVar ( mainf, varid25, bad_cip2_conc_minR' ); 
netcdf.putVar ( mainf, varid26, bad_cip2_conc_areaDist); 
netcdf.putVar ( mainf, varid27, bad_cip2_conc_AreaR' ); 
netcdf.putVar ( mainf, varid28, bad_cip2_n); 
netcdf.putVar ( mainf, varid29, bad_cip2_area'); 
netcdf.putVar ( mainf, varid30, bad_cip2_iwc'); 
netcdf.putVar ( mainf, varid31, permute(double(bad_cip2_habitsd)./svol2a, [3 2 1]) ); 
netcdf.putVar ( mainf, varid32, bad_cip2_re ); 
netcdf.putVar ( mainf, varid33, bad_one_sec_ar ); 
netcdf.putVar ( mainf, varid34, bad_cip2_iwcbl' ); 
netcdf.putVar ( mainf, varid35, bad_cip2_vt' ); 
netcdf.putVar ( mainf, varid36, bad_cip2_pr' ); 
netcdf.putVar ( mainf, varid37, permute(double(bad_cip2_habitmsd)./svol2a, [3 2 1]) ); 
netcdf.putVar ( mainf, varid38, bad_cip2_partarea'); 
netcdf.putVar ( mainf, varid39, bad_cip2_countP_no'); 
netcdf.putVar ( mainf, varid40, bad_particle_aspectRatio); 
netcdf.putVar ( mainf, varid41, bad_particle_aspectRatio1); 
netcdf.putVar ( mainf, varid42, bad_particle_areaRatio1); 
netcdf.putVar ( mainf, varid43, bad_cip2_meanp'); 
end 
 
if iSaveIntArrSV == 1 
    % Inter-arrival time and sample volume information 
netcdf.putVar ( mainf, varid44, time_interval200'); 
netcdf.putVar ( mainf, varid45, svol2); 
end 
 
netcdf.close(mainf) % Close output NETCDF file  
fprintf('sizeDist.m script completed %s\n',datestr(now)); 
end 
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