
THE DEVELOPMENT OF AN INDEPENDENT

STUDY GUIDE TO PROVIDE INSTRUCTION

TO IBGH SCHOOL STUDENTS IN WRITING

PROGRAMS FOR THE TI-82 AND TI-83

GRAPHICS CALCULATORS

By

JAMES G. BOWEN

Bachelor of Science
Oklahoma State University

Stillwater, Oklahoma
1971

Master of Science
Oklahoma State University

Stillwater, Oklahoma
1985

Submitted to the Faculty of the
Graduate College of the

Oklahoma State University
in partial fulfillment of
the requirements for

the Degree of
DOCTOR OF EDUCATION

May, 1997

THE DEVELOPMENT OF AN INDEPENDENT

STUDY GUIDE TO PROVIDE INSTRUCTION

TO IDGH SCHOOL STUDENTS 1N WRITJNG

PROGRAMS FOR THE TI-82 AND TI-83

GRAPIDCSCALCULATORS

Thesis Approved:

Dean of the Graduate College

ii

ACKNOWLEDGMENTS

I would like to express my sincere appreciation to my major advisor, Dr. Steve

Marks for the guidance he has provided me during the preparation of this dissertation. He

has been both an excellent advisor and a good friend and I will always appreciate the

support he has given me.

I also extend a sincere debt of gratitude to my doctoral committee members Drs.

Kenneth Wiggins, Cecil Dugger, and Douglas Aichele for their support.

In particular, I wouldlike to thank Dr. Wiggins for his flexibility in assisting me

to meet the requirements of this degree while I was engaged in teaching mathematics at

Stillwater High School

I would like to further acknowledge the work I have done on graphing calculators

with Douglas Aichele over the past four years as the inspiration for this dissertation. His

thorough understanding of the appropriate role of technology in mathematics education

has been most beneficial to me. I have enjoyed the work we have done together and I

have learned much about the proper way to teach mathematics.

I would also like to thank Steve DeBauge, Lenda Hill, and Guy Harris of Texas

Instruments Inc. for their evaluation of the programming manual which resulted from this

dissertation.

iii

TABLE OF CONTENTS

Chapter Page

I. INTRODUCTION . 1

Statement of the Problem 6
Significance of the Study 6
Purpose of the Study . 7
Limitations of the Study . 7
Assumptions of the Study . 7
Definition of Terms . 8

IL REVIEW OF SELECTED LITERATURE 10

The Relationship of Programming to Mathematics Education 10
Textbook Support for Graphics Calculators 16
Support Programs from Professional Organizations 21
Support Materials from Commercial Vendors 24

III. DEVELOPMENT OF THE PROGRAMMING MANUAL 28

The Selection ofa Specific Calculator. 29
The Format of the Manual . , . 32
Selection of Programming Instructions 34
Creation of Sample Programs . 37
Evaluating the Effectiveness of the Manual 49

Evaluation by High school Students 49
Evaluation by the Staff of Texas Instruments 52

Distribution of the Manual. 53

IV. RESULTS 55

Results of the Student Questionnaires . . 55
Results of the Critique by the Texas Instruments Staff 57
The Final Version of the Programming Manual 58

iv

Chapter Page

V. SUMMARY AND RECOMMENDATIONS 59

Summary. 59
Recommendations . 61

BIBLIOGRAPHY . 63

APPENDIXES . 67

APPENDIX A - CALCULATOR TECHNICAL
SPECIFICATIONS. 68

APPENDIX B - FINAL VERSION OF THE
PROGRAMMING MANUAL 74

APPENDIX C - STUDENT QUESTIONNAIRE 147

APPENDIX D - TI CARES NEWSLETTER 149

APPENDIX E - INSTITUTIONAL REVIEW BOARD
APPROVALFORM 152

V

CHAPTER I

INTRODUCTION

During the 1990's, the use of graphics calculatortechnology in the high school

mathematics classroom has become increasingly commonplace. The impressive

capabilities of the newest generation of graphics calculators have forced mathematics

educators to reevaluate how they teach mathematics. Wonderful new opportunities to

increase student enthusiasm toward mathematics are now available to mathematics

teachers that were not available prior to the introduction of this new technology. As with

the introduction of any new methodology, however, mathematics educators are still

undergoing a period of experimentation in which they are attempting to determine which

methods should be used to make the most effective use of this new technology.

The National Council of Teachers of Mathematics (NCTM) has taken the lead in

attempting to give some direction to mathematics education in the 1990's through the

publication of three related documents; Curriculum and Evaluation Standards for School

Mathematics (NCTM, 1989), Professional Standards forTeaching Mathematics (NCTM,

1991), and Assessment Standards for School Mathematics (NCTM, 1995). This

collection of standards emphasizes the appropriate use of technology throughout the

mathematics curriculum. In fact, the NCTM' s position assumes that students in grades

1

nine through twelve will have access to graphing calculator technology at all times

(NCTM, 1989).

2

Since 1990, there has been a dramatic increase in the quantity and quality of the

support material available to teachers who are attempting to integrate graphics calculator

technology into their mathematics curriculum. The available support may be broadly

grouped into three categories.

The first category consists of support from national professional organizations,

such as the NCTM, and from local and state professional mathematics organizations. The

NCTM organizes regional and national meeting in which mathematics educators have an

opportunity to meet with their colleagues and exchange ideas about creative new ways in

which to utilize graphics calculator technology. Other professional groups, such as

Teachers Teaching with Technology (Teachers Teaching with Technology, 1996),

conduct summer institutes to provide additional training to math and science teachers

desiring to learn how to use this technology. The NCTM also publishes recommendations

in the form of guidebooks to aid teachers implementing the NCTM standards (Farrell,

1994).

The second category involves the support material available from commercial

vendors. These materials generally take the form of workbooks in which teachers are

provided with suggestions on how calculators may be effectively used in specific

mathematics classes. Some of the workbooks include experiments and exercises which

the teacher may use to supplement their classroom instruction (Best & Penner, 1994).

Others contain sample calculator programs which, when entered into the calculator,

allow the students to complete activities which are contained in the workbook

(Brueningsen & Kraviec, 1994). The workbooks are not consistent, however, in their

attitude toward copyright restrictions. Certain authors encourage teachers to make

photocopies of the activities in their manuals for their classrooms (Lund & Anderson,

1996), while other authors attempt to protect their copyright restrictions by insisting that

no part of the work be reproduced by any means (Kelly, 1992).

3

The third category involves the support materials that textbook publishers have

included in the latest editions of their mathematics textbooks. The most recent editions of

mathematics textbooks have attempted to integrate graphing calculator activities

throughout their textbooks. Many textbooks include calculator activities at the end of

each instructional block (Demana, Waits, & Clemens, 1992). Many of the new textbooks

include a supplemental manual containing additional activities requiring the use of

technology (Leiva & Brown, 1997). Certain new textbooks now contain an appendix

which lists calculator programs which may be entered into a calculator by the student

using the textbook (Larson & Hostetler, 1997). Upon review, it is clear that textbook

publishers in the 1990's have at least attempted to adhere to the recommendations

regarding technology contained in the NCTM standards, and these efforts will certainly

benefit teachers as they attempt to modify their classroom instruction to conform to the

same standards.

It is possible that an individual investigating the current status of graphics

calculator technology in mathematics education might conclude, from the numerous

sources of support now available to teachers, that all questions regarding the use of

calculators have been successfully addressed. There remains, however, one area

regarding the use of graphing calculator technology which has received essentially no

4

attention from the groups listed above. That area involves the skill required to write

programs for the graphics calculator to answer different types of questions. Perhaps the

primary reason this area has been neglected is the fact that there is no consensus among

mathematics educators on exactly where the subject of programming should fit into the

mathematics curriculum. In fact, there is little agreement on whether or not programming

has any place in the mathematics curriculum. As a result~ while each of the sources above

might make occasional reference to calculator programming and some might even

contain program listings which students may copy, there still exists no single source of

information providing instruction on how to program a graphics calculator which has

been specifically written for high school students.

The inability of high school students to obtain instruction on how to program their

graphics calculators limits the students' ability to make the most efficient use of their

calculator as an educational tool in solving new and different types of problems. As an

example, one group of high school science students attempted to predict the orbits of

satellites by creating a model on their calculator. In designing the calculator model they

faced several problems, including the fact that none of them had ever programmed a

graphing calculator (Papay, Serum, & Donnelly, 1996).

There are several other specific areas where the ability to program a calculator

may benefit high school students. The use of programmable graphics calculators has now

been approved on the ACT, SAT, and Advanced Placement (AP) Calculus exams

(Educational Testing Services, 1996). Each of these exams support the NCTM

recommendation that if calculators are to be an integral part of any mathematics course,

then they should also be a part of the instruments used in the assessment process. The

5

AP Calculus exam recognizes that there are differences in capabilities between expensive

and inexpensive calculators, and to eliminate those differences students are encouraged

to store any programs they choose in their calculators prior to the exam (Educational

Testing Services, 1996).. However, students are cautioned to make sure they have a

thorough understanding of how those programs work before taking the exam.

There are several obstacles facing high school students attempting to learn how to

program their calculators. Most high school mathematics teachers are unfamiliar with

how to program a graphics calculator and, therefore, they can offer little help to

interested students. Presently, the best way for high school students to learn how to

program their calculators is for them to enroll in a computer programming course. At the

completion of the programming course it should be possible for students to apply many

of the skills they have learned to writing programs for a graphics calculator. Because of

differences in the syntax of the programming languages, however, students can expect to

have certain difficulties as they begin to write calculator programs. While the guidebook

that is packaged with the calculator does describe the syntax of the calculator

programming language, it offers little help in describing how the programming

commands may be combined into efficient programs.

The commercial vendors have also tended to neglect the subject of calculator

programming. A very small number of programming guides for graphics calculators do

exist, but all of these guides were written for a broader audience than just high school

students. As a result, there is a need for an independent study guide to provide instruction

to high school students wishing to learn how to program their graphics calculators.

Statement of the Problem

Although there are many sources of information available to assist teachers and

students attempting to integrate graphics calculator technology into the mathematics

curriculum, there currently exists no single source of information providing instruction

on how to program a graphics calculator which is specifically targeted for high school

students.

The problem addressed in this study is the development of an independent study

guide providing programming instruction for a graphics calculator, written specifically

for high school students and which can be used in an extracurricular setting.

Significance of the Study

6

The ability to program a graphics calculator offers several advantages to high

school mathematics students. While it is true that calculator programming skills are not

an absolute necessity for high school students, students who possess these skills will have

the ability to be much more creative in their approach to problem solving now and in the

future. For example, students who can program their graphics calculators to create

dynamic models of experiments performed in their math and sciences classes can

develop a more thorough understanding of the concepts being studied. The students who

write their own programs also have total creative control over the model being

investigated. While students who lack the ability to program their calculators may utilize

programs available through commercial vendors, they must rely on the format presented

by the vendor and they sacrifice the option to be able to create their own custom model.

The literature review will identify many additional advantages enjoyed by students who

have the ability to write their own graphics calculator programs.

Purpose of the Study

7

The purpose of this study is to develop an independent study guide to provide

calculator programming instruction to high school students ,in an extracurricular setting.

This guide will enable high school students to obtain instruction on how to program their

graphics calculators outside the classroom without relying on their teachers.

Limitations of the Study

The purpose of this study was to develop an independent study guide to provide

programming instruction to high school students in an extracurricular setting. The study

did not address the issue of how programming should be integrated into the high school

mathematics curriculum.

Assumptions of the Study

First, it is assumed that there is a need for an independent study guide to provide

instruction to high school students who desire to learn how to program their graphics

calculators.

8

It is also assumed that in order to maximize distribution of the resulting manual,

the final version of the manual will be distributed free of all copyright restrictions and,

when possible, free of charge. The manual will also be placed in a website on the internet

for downloading by interested students.

Definition of Terms

BASIC. BASIC is an acronym for Beginner's All-purpose Symbolic Instruction

Code. BASIC is a high level computer programming language developed in the 1960's at

Dartmouth College by professors John Kemeny and Thomas Kurtz. There are several

versions of BASIC including QBASIC developed by Microsoft Corporation (Baumann &

Manndell, 1992).

Calculator Based Laboratory (CBL). The Texas Instruments CBL is an electronic

data gathering instrument that was introduced in 1994. Experimental data may be

collected using a variety of electronic probes. The data may be stored. in the CBL or

passed by link cable to a graphics calculator where an analysis of the data may be

performed by utilizing the statistical capabilities of the calculator (Texas Instrument,

1994).

High School Student For the purposes of this study, a high school student is a

student in the ninth, tenth, eleventh, or twelfth grade.

National Council of Teachers of Mathematics (NCTM). The NCTM, founded in

1920, is a nonprofit professional organization dedicated to the improvement of

mathematics education for all students. With more than 125,000 members, the NCTM is

the largest mathematical organization in the world and it is recognized as the leader in

efforts to insure excellence in mathematical education (NCTM, 1989).

PASCAL. PASCAL is a high level computer programming language that was

developed in 1969 by professor Nildaus Wirth in Switzerland. It is named after Blaise

Pascal, a 17th century mathematician and philosopher. PASCAL is the official language

of the Advanced Placement Computer Science Examination for high school students.

9

TI-82 Graphics Calculator. The Texas Instruments TI-82 graphics calculator was

introduced in 1994. This calculator was created specifically for high school mathematics

classes and it has become the most popular graphics calculator in use at the high school

level. A detailed technical description of the TI-82 calculator may be found in Appendix

A

TI-83 Graphics Calculator. The Texas Instruments TI-83 graphics calculator was

introduced in 1996. This calculator is an enhanced version of the TI-82 calculator

containing many improvements which were recommended by high school teachers using

the TI-82. Programs written for the TI-82 calculator will also run on the TI-83 calculator.

A detailed technical description of the TI-83 calculator may be found in Appendix A

CHAPTER II

REVIEW OF THE LITERATURE

This chapter contains a review of the literature that is relevant to the relationship

of programming to mathematics education. The review begins with a survey of the

various attitudes shown by mathematics educators concerning the role of programming in

mathematics education. This is followed by a review of current editions of mathematics

textbooks available to teachers and students who are attempting to integrate graphing

calculator technology into the mathematics curriculum. A review of graphing calculator

support material available to teachers from professional educational organizations is then

presented. The remainder of the literature review focuses on current graphing calculator

material available from commercial vendors.

The Relationship of Programming to Mathematics Education

The relationship between programming and mathematics is not new. The world's

first electronic computer, the ENIAC, introduced in 1945, was created to solve complex

mathematical problems (Halacy, 1962). The earliest relationship between programming

and mathematics was not a matter of choice, but one of necessity. Because no software

10

11

existed to run the computer, mathematicians had no choice but to program the computer

themselves if they wanted to use the computer to solve problems.

With the development of sophisticated programming languages in the 1960's and

1970' s, many university engineering and mathematics departments added courses in

numerical methods, in which languages such as FORTRAN were used to program the

existing mainframe computers. In the 1970' s, the introduction of programmable

microcomputers and programmable hand held calculators offered mathematics educators

new opportunities to combine programming with mathematics education. As the

following opinions will demonstrate, however, there exists no consensus on the role of

programming in mathematics education. In fact, several authors who indicate that, while

they recognize the potential benefit that programming offers to mathematics education,

they have not committed themselves to a clear position on exactly where programming

should fit into the mathematics curriculum, if indeed it should be included at all.

One of the most influential supporters of programming in mathematics education

is Seymour Papert, who created the LOGO computer programming language in the late

1970' s. The LOGO programming language was written for elementary level

schoolchildren and reflected Papert' s belief that even schoolchildren at the elementary

level could derive great benefits in their mathematics education from programming

computers (Papert, 1980). When explaining why he favored children writing programs

over traditional methods of computer aided instruction, Papert (1980) stated:.

In many schools today, the phrase "c9mputer aided instruction" means making
the computer teach the child. One might say the computer is being used to
program the child. In my vision, the child programs the computer and, in doing
so, both acquires a sense of mastery over a piece of the most modem and
powerful technology and establishes an intimate contact with some of the deepest

ideas from science, from mathematics, and from the art of intellectual model
building.

12

I shall describe the learning paths that have led hundreds of children to
becoming quite sophisticated programmers. Once programming is seen in the
proper perspective, there is nothing very surprising about the fact that this should
happen. Programming a computer means nothing more than communicating to it
in a language that it and the human user can both understand. And learning
languages is one of the things children do best. Every normal child learns to talk.
Why then should a child not learn to talk to a computer? (p. 5)

Shumway (1984), while investigating the use of the BASIC programming

language with elementary schoolchildren, takes an even stronger position stating,

"Regarding computers in public education, it is my basic view that as soon as children

are in school they should have the opportunity to program computers to solve

mathematics problems" (p. 127). At the completion of his study Shumway(l984)

concluded:

It is difficult to make direct claims, but such programming activities as these
seem to offer a wealth of logical reasoning experiences for children. In my view,
a substantial change in our curriculum can be made as young children have the
opportunity to write programs similar to those illustrated. It seems to me that we
can use programming daily as an integral part of the mathematics we teach. The
richness of the mathematics encountered will be multiplied dramatically; more
young children will see mathematics as a dynamic, creative activity; and teaching
and learning mathematics will be a lively, active sport indeed. (p. 134)

Stwertka (1987) investigated several recent developments which were creating
major changes in mathematics. He considered the effect of computers on mathematics to
be among the most important changes, stating:

Until quite recently, most mathematicians thought of computers as large number
crunchers that do arithmetic quickly and store huge amounts of data. Much to
their surprise, and almost against their will, the influence of computers on
mathematics itself has been increasing at an accelerating rate. It has established
itself as a kind of mathematics laboratory instrument, an exploratory device that
is helping mathematicians create new fields and make new discoveries. It is
changing the way many mathematicians go about proving a mathematical
statement or theorem. A large part of modem statistics, for example, is devoted to

13

making intelligent use of the computer. Mathematicians can use the computer to
quickly eliminate hundreds of possible proofs, or use computer graphics to give
them valuable information on how some complex mathematical functions
behave.(p. 88)

Smith (1984) investigated programming using the BASIC programming language

in the middle school curriculum in an attempt to improve students problem solving skills.

She stated:

Instruction in computer programming that is integrated with the traditional topics
of seventh- and eighth-grade curriculum can address each of the issues: basic
skills proficiency, the lack of freshness in the middle school curriculum,
computer literacy, and time. Being able to write computer programs is a
significant component of computer literacy; thus, programming as an integral
component of the mathematics·instruction necessarily contributes to computer
literacy. In the process of writing programs, students explore and develop their
own algorithms for solving all kinds of problems. This is an extension of their
basic skills. They must also work a number of computational exercises to make
sure the computer is giving the answers they want - thus gaining practice. Many
facets of the basic skills of problem solving are either taught or practiced in
computer programming. Trial and error, an important problem solving technique,
is seldom used by students with conventional textbook problems, but it is very
effective in the computer solution of certain problems. Thinking ahead is another
problem solving competency used in computer programming. Students must ask
themselves at each step, "What will happen if I do this?" Once a program is
written, they can be encouraged to ask, "What will happen if I change this?" The
latter question is the looking back step in problem solving.

If programming is integrated with the mathematics curriculum, then the
extra time spent in learning to program is minimal. For example, programming
can be incorporated into, and enhance the learning of, new concepts and skills.
The following is one of many models. The teacher introduces a new skill, the
students work a number of problems until they think they can tell the computer
how to do them, and finally the students program the computer and test their
program. This programming activity gives students additional practice on the
concept, tests their understanding of the concept, increases their programming
skills, and gives them a better understanding of computers. (p. 137)

14

There are instances where the introduction of programming into mathematics

classes has been initiated by the students and not the teachers. Ruthven (1992), while

introducing programmable graphing calculators to his students, noted that:

Unlike calculating and graphing, programming is not integral to advanced
secondary school mathematics in its present form. Consequently, this aspect of
calculator use was not given equal stress by all project teachers. However, after
one school year, around two-thirds of the students were making confident and
spontaneous use of the programming facility. Here, some gender differences were
noted: in particular, a lower proportion of female students expressed confidence
in programming, although this must be judged in the light both of the tendency of
male students to be less self-critical and of the lower proportion of female
students with prior programming experience. (p. 93)

Other researchers have been more cautious in their attitude regarding the role of

programming in mathematics education. Hatfield (1984) investigated the manner in

which computer technology was being integrated into mathematics instruction. He

understood the potential advantages that programming a computer offered, but he also

recognized problems that might arise if programming was used improperly. He observed:

When mathematics learners construct their own computer programs, powerful
learning experiences can occur. Indeed, many mathematics teachers have realized
the apparent connections between the thinking involved in building, testing,
correcting, and refining one's own computer algorithm and many aspects of
mathematical thought. In addition, many mathematics educators have recognized
the potential effects that solving a curriculum oriented computer programming
task can have on stimulating or enhancing understanding of a mathematical
concept, problem, or procedure. It has seemed almost a natural relationship for
computer programming to be taught within the mathematics curriculum; this may
have led to serious distortions of our goals and objectives for a sound
mathematical education. We know that students can learn to write computer
programs; we must now consider the more critical questions about why our
mathematics students should become engaged in such tasks. (p. 2)

In his conclusion, Hatfield cautions:

15

Lastly, we must be sensitive to potential misuses and abuses of the computer. It is
wrong to expect the computer to take over. Computers to not make good
replacements for mathematics teachers. When using student programming, we
must employ a constructive, problematic pedagogy; it violates the interactive,
solving context to give completed computer programs to our students. (p. 7)

Camp and Marchionini (1984) also acknowledge the advantages programming

gives to mathematics education, however, they are quick to identify several specific

problems which must be overcome before programming can be successfully integrated

into the mathematics curriculum. They state:

There are now programming languages that can be used with students throughout
the grades, and recent work on the format of programming exercises makes
programming a viable means for promoting mathematics learning .

. . . There is a role for computer programming in mathematics education. But, as
you consider the options, make a clear distinction between the study of
programming, which belongs to the domain of computer literacy and computer
science, and the use of programming to achieve learning objectives in
mathematics. Programming in mathematics education is defensible to the extent
that it helps achieve goals for school mathematics. But if programming is to be a
general strategy for mathematics education, then particular attention must be
given to format, formality, and methods by which programming is integrated into
curriculum and classroom practice. (p. 118)

They continue:

The problem with programming in currently available languages is that it can be a
difficult, multi-step, time-consuming task. Teachers prefer devoting their time
and their students' time to learning mathematics. They recognize that
programming in its purest sense can potentially interfere with mathematics
learning because it (l) takes too long, and (2) focuses attention on programming
rather than mathematics. (p. 119)

Camp and Marchionini conclude:

Integrating programming to promote learning into mathematics teaching and
curriculum will be no simple task. First of all, there is the massive problem of
teacher education. Teachers not only need to be computer literate but also need to

16

be able to use computers in a variety of ways, including programming, to support
instruction. Second is the problem of curriculum development. To date, there are
no elementary, middle, or high school textbook series that truly enhance
mathematics learning through computer experiences - programs to run, like
simulations, management, drill and practice, and so forth, or programming to do.
(p. 125)

The lack of a consensus on the role of programming in mathematics education

has resulted in the fact that it is currently quite rare to find high school mathematics

classrooms in which students receive any instruction on how to program their graphics

calculators. Camp and Marchionini (1984) correctly identified one of the greatest

problems which must be overcome, and that is the problem of teacher training. The

simple fact is that very few high school math teachers know how to program a graphics

calculator and, therefore, they can offer no assistance to their students. Until the

mathematics community comes to a consensus and agrees that there is a place in the

mathematics curriculum for programming and begins to provide teachers with formal

training in programming, the best source of calculator programming instruction for high

school students will probably be in the form of an independent study programming guide.

Textbook Support for Graphics Calculators

Camp and Marchionini (1984) reported that in 1984 there existed no high school

textbooks which truly supported computer experiences for students. Thankfully, that

situation had changed dramatically by 1997. Two factors were primarily responsible for

this change.

17

The first was the introduction of hand held graphics calculators in the late

1980's. For the first time, high school students had a tool which was relatively

inexpensive but had the capability to allow students to investigate the graphs of

functions. It had the added advantage of portability, which was missing in

microcomputers, and this allowed students to take the new tool home at night to assist in

their homework.

The second factor was the introduction of the NCTM Curriculum and Evaluation

Standards (NCTM, 1989) which called for all students to have access to graphics

calculators at all times. Textbook authors and publishers responded to this call by

including reference to graphics calculator technology throughout their new textbooks

from beginning algebra through calculus.

One of the most obvious changes in the new textbooks may be seen on the front

cover. Many of the new textbooks now include the phrase "A Graphing Approach",

positioned immediately after the title of the book. (Demana, Waits, & Clemens,1992;

Demana et al. 1994; Finney, Thomas, Demana, & Waits, 1993; Larson, Hostetler, &

Edwards, 1993) This new graphing approach to textbook design reflects a significant

change from previous editions, and it represents an attempt by publishers to assist

teachers and students in integrating graphing calculator technology. Because it is

important to understand exactly what is implied by the term "A Graphing Approach", a

complete description of this term as found in the Demana, Waits, and Clemens textbook

Precalculus Mathematics: A Graphing Approach (1994) is presented:

As in the previous editions, this text is designed to be used in a one or two
semester precalculus course. We take advantage of the power and speed of

modem technology to apply a graphing approach to this course. The
characteristics of this course are described below;

Integration of Technology:

18

Use of a graphing utility - whether a hand held graphing calculator or computer
graphing software - is not optional.. Technology allows the focus of the course to
be on problem solving and exploration, while building a deeper understanding of
algebraic techniques. Students are expected to have regular and frequent access to
a graphing utility for class activities as well as homework.

Problem Solving:
The ultimate power of mathematics is that it can be used to solve problems.
Technology removes the need for contrived problems and opens the door for
realistic and interesting applications. Throughout this text, we focus on what we
call problem situations - situations from the physical world, from our social
environment, or from the quantitative world of mathematics. Using real life
situations makes math more understandable to the students, and students come to
value mathematics because they appreciate its power.

Throughout this text we used a three step problem solving process.
Students will be asked to:

1. Find an algebraic representation of the problem.
2. Find a complete graph of the algebraic representation; and
3. Find a complete graph of the problem solving situation.

Multiple Representations:
A quantitative mathematical problem can often be approached using multiple
representations. In a traditional precalculus course, problems are analyzed using
an algebraic representation, and perhaps a numerical representation. However,
modem technology allows us to take full advantage of a graphical, or geometric,
representation of a problem. Our understanding of the problem is enriched by
exploring it numerically, algebraically, and graphically.

Exploration:
We believe that a technology based approach enriches the student's mathematical
intuition by exploration. With modem technology, accurate graphs can be
obtained quickly and used to study the properties of functions. Students learn to
decide for themselves what technique should be used. The speed and power of
graphing technology allows an emphasis on exploration.

Geometric Transformations:
The exploratory nature of graphing helps students learn how to transform a graph
geometrically by horizontal or vertical shifts, horizontal or vertical stretches and
shrinks, and reflection with respect to axes. This develops students' abilities so
they can sketch graphs of functions quickly and understand the behavior of
graphs.

19

Foreshadowing Calculus:
We foreshadow important concepts of calculus through an emphasis on graphs.
Using graphs, students can find maxima and minima of functions, and intervals
where functions are increasing or decreasing and limiting behavior of functions
are quickly determined graphically. We do not borrow the techniques of calculus
- rather we lay the foundation for later study by providing students with rich
intuitions about functions and graphs.

Approximate Answers:
Technology allows a proper balance between exact answers that are rarely needed
in the real world and accurate approximations. Graphing techniques such as
zoom-in provide an excellent geometric vehicle for discussion about error in
answers. Students can read answers from graphs with accuracy up to the limits of
machine precision.

Visualization:
Graphing helps students gain an understanding of the properties of graphs and
makes the addition of geometric representations to the usual numeric and
algebraic representations very natural. Exploring the connection between
graphical representations and problem situations deepens student understanding
about mathematical concepts and helps them appreciate the role of mathematics.
(p. vii)

Another popular approach used by textbook publishers utilizes the phrase "An

Integrated Approach". (Larson, Boswell, & Stiff, 1995; Larson, Boswell, Kan.old, & Stiff,

1996; Larson, Kan.old, & Stiff, 1997) New textbooks containing an integrated approach

provide for a vertical integration of material from what were previously separate and

independent courses. For example, concepts from geometry may be intermixed in an

algebra course and vice versa. These textbooks also have completely integrated graphing

calculator technology throughout the book.

Other new textbooks, which retain only their old titles such as Calculus,

Precalculus, and Trigonometry, have also updated the new editions for graphing

calculator technology.(Larson, Hostetler, & Edwards, 1994; Larson & Hostetler, 1997;

Leiva & Brown, 1997)

20

High school mathematics textbooks covering Geometry have also attempted to

meet the NCTM standards. The new textbooks utilize a microcomputer software, such as

Cabri Geometry Il which enables students to manipulate geometric figures on a computer

graphics screen, and hand held graphics calculator technology (Aichele, Hopfensperger,

Leiva, Mason, Murphy, Schei, & Vheru, 1998).

Taken as a whole, the new text do an excellent job in assisting teachers and

students in using graphing calculators to explore mathematics. All the books have special

"technology" problems contained at the end of each section which require the use of

graphing technology for their solutions. In addition, most of the new textbooks have

technology supplements in the form of workbooks which teachers can use to enhance

their presentations. A careful examination of the new books reveals that the publishers

have done a good job in complying with the NCTM standards regarding the use of

technology.

There remains, however, one area which has been neglected in the new textbooks,

and that area involves providing calculator programming instruction for students. Some

of the textbooks do contain listing of calculator programs (Larson & Hostetler, 1997),

however, none of the books provide instruction on how to write original calculator

programs. As a result, students and teachers will find the new textbooks to be of little use

in learning how to program their calculators.

21

Support Programs from Professional Organizations

In recent years, the support available to teachers from national professional

organizations such as the National Council of Teachers of Mathematics (NCTM) has also

increased substantially. The program committees responsible for the selection of

presentations at the regional and national NCTM meetings have made sure that

information regarding the use of graphing calculators occupies a prominent position.

Teachers attending these meetings can obtain ideas covering a wide variety of current

graphing calculator projects .. In addition, the NCTM professional journal "The

Mathematics Teacher" for contains a special section dedicated to technology in each

issue.

One of the most important sources of information on graphing calculator

technology is the Teachers Teaching with Technology (pronounced T-cubed) program.

This nationwide program was established in 1986 by Professors Bert K. Waits and

Franklin Demana of The Ohio State University. The T-cubed program provides hands on

training to public school teachers and college instructors in the use of Texas Instruments

graphing calculator technology. This training takes place in various summer institutes

located on high school and college campuses throughout the United States. The institutes

are subject specific and are taught by instructors who are practicing educators,

experienced in the use of graphing calculators. Since 1986, the T-cubed program has

expanded to include 14 institute topics. A description of each institute and its subject

material (Teachers Teaching with Technology, 1996) is as follows:

22

1. Elementary Mathematics: A two day institute focusing on K-6 mathematics

topics that can be enhanced with the Math Mate AOS four-function calculator

and with the Math Explorer fraction calculator. It is designed for elementary

school teachers in grades K-6.

2. Middle School Mathematics: A one week institute focusing on mathematics

that can be enhanced by the TI-12 Math Explorer, Explorer Plus, and the TI-

82 or TI-80 graphing calculators. It is designed for mathematics teachers in

grades 5-8 including pre-algebra teachers.

3. Algebra: A one week institute focusing on algebra for high school teachers of

pre-algebra, algebra, and advanced algebra using the TI-82, Ti~83, and TI-85

graphing calculators.

4. Geometry: A one week institute focusing on the Cabri Geometry II interactive

geometry software package for high school geometry teachers.

5. Precalculus: A one week institute for teachers of advanced algebra,

trigonometry, precalculus, math analysis, or calculus using the TI-83

calculator.

6. Calculus: A one week institute for high school AP calculus teachers using the

TI-83, TI-85, and TI-86 graphics calculators.

7. Calculus Reform and the TI-92: A one week institute for secondary

mathematics teachers interested in using the TI-92 and interested in

implementing calculus reform in their classes.

8. Statistics: A one week institute focusing on statistics topics which can be

integrated into grades 9-12 mathematics using the TI-83. This institute is for

high school pre-algebra, algebra, consumer math, applied math, general

mathematics, business mathematics, advanced algebra, statistics, and

precalculus teachers.

23

9. Advanced Placement Statistics: A one week institute focusing on AP statistics

using the TI-83 calculator. This institute targets high school AP statistics

teachers.

IO. Connecting Mathematics and Science: A one week institute for high school

teachers ofphysics, chemistry, precalculus, and calculus who are interested in

the use of the Calculator Based Lab (CBL) and the TI-83 graphics calculator.

11. Chemistry and Biology: A one week institute for secondary chemistry and

biology teachers focusing on enhancing chemistry and biology experiments

both inside and outside the lab using the CBL and TI-83 calculator.

12. Algebra and.the TI-92: A two week institute focusing on preparing secondary

mathematics teachers to use the TI-92 to enhance a high school algebra

course.

13 .. Modeling and Data Analysis: A one week institute for high school precalculus

teachers focusing on the North Carolina School of Science and Mathematics

modeling with functions and data analysis precalculus curriculum. Instructors

will be from the North Carolina School of Science and Mathematics.

14. Integrated Mathematics Using the TI-92: A one week institute for high school

mathematics teachers interested in integrating mathematics using the TI-92

calculator. The participants are introduced to a wide range of investigations

emphasizing the relationships of topics within mathematics as well as

between mathematics and other disciplines.

24

The average cost to attend one of the institutes is $100. These institutes provide

high school and college mathematics teachers with an excellent opportunity to become

knowledgeable about the appropriate integration of Texas Instruments graphing

calculator technology into their mathematics classrooms. One disadvantage of these

institutes is that they utilize only technology provided by Texas Instruments Inc. and they

do not discuss technology available through other manufactures.

Once again, although these organizations do an excellent job in training teachers

how to use the "built-in" functions of the calculator, very little attention, if any, is paid to

providing instruction on how to write programs for the calculators. Another source of

information regarding programming is still needed.

Support Materials from Commercial Vendors

The quantity of graphics calculator support material available to teachers and

students has increased substantially during the past five years. In 1992, Dr. Brendan Kelly

correctly noted that "There is a dearth of (approximately zero) instructional materials

which teachers can use with their students to help them use the graphics calculators to do

mathematics" (p.2). Fortunately, there has been a rapid expansion in both the variety and

quality of the material from commercial vendors that teachers may now utilize in their

mathematics classes. In most cases, these materials take the form of instructional guides

or workbooks, with each workbook dedicated to a particular make and model graphing

calculator. These materials are available from a number of different publishers and

authors. The various publications may be grouped into several specific types.

25

The first type consists of publications that are concerned primarily with

describing the basic operation of the calculator to new users. An example of this type

publication, A Guided Tour of the TI-85 Graphics Programmable Calculator (Lucas &

Lucas, 1992), contains only a description of the operation of the calculator. Other

publications of this type contain classroom exercises or experiments which teachers may

photocopy and distribute to their students (Best & Penner, 1994;Lund & Anderson, 1996;

Rich, Rose, & Gilligan, 1996). These publications are generally more useful to teachers

because they demonstrate specific ways in which the various function of the calculator

may be used to support mathematics instruction. Some of these publications also contain

a brief description of calculator programs (Best & Penner, 1994;Rich et al.,1996),

however, their focus is on teaching math with the calculator, and not on calculator

programming instruction.

Another type of publication consists of manuals for both science and math

teachers which provide instruction on how new data gathering instruments, such as the

Texas Instruments Calculator Based Laboratory (CBL), may be used in combination with

graphics calculators (Brueningsen, Bower, Antinone, & Brueningsen, 1994; Brueningsen

& Krawiec, 1994; Nichols, 1995). These manuals typically consist of a series of exercises

or experiments which may be photocopied by the teacher for use in the classroom. The

students use probes attached to the CBL to gather data during an experiment, and then

connect the CBL to a graphics calculator and pass the collected data to the calculator for

analysis .. All of these publications use calculator programs because the CBL cannot be

26

used in conjunction with a graphics calculator unless a calculator program is written and

executed to act as a driver for the CBL. Each of the exercises in the manuals contain

listing of calculator programs which a teacher or student may enter into the calculator.

Like previous calculator support material, these manuals make no attempt to provide

instruction to the student on how to write programs for the calculator. Instead, the

students are provided with a completed program that they simply enter into their

calculators without necessarily understanding how or why the program works. This is

obviously a less than ideal situation because if a student desires to modify one of the

experiments listed in the manual, unless they can find some source of instruction on

programming the calculator, they will be unable to make the custom changes they desire.

There are an extremely limited number of publications in the final type,

specifically, those publications devoted to instruction on how to program a graphics

calculator. The first examples of this type are the guidebooks packed with the calculators

when they are purchased. The guidebooks provided with the Texas Instrument series of

calculators do contain a chapter on programming, but the chapter primarily describes

only the syntax of the programming language, and it makes a very poor reference for

students who have no previous programming experience (Texas Instruments, 1993,

1996). In an attempt to improve the quality of programming instruction for their

calculators, Texas Instruments published a series of brochures expanding the descriptions

to include three sample programs and a discussion on how the various programming

commands work (Texas Instruments, 1993, 1994, 1996). While these brochures represent

an improvement over the calculator guidebooks, the limited number of examples makes

them less than ideal as a programming guide for high school students.

27

As of 1996, only one other author, Dr. Brendan Kelly (1992), had written a

manual specifically dedicated to providing instruction on how to program graphics

calculators. Several of the examples in Kelly's manual, however, are clearly intended for

a wider audience than just high school students, and as a result, it is also less than ideal

as a.programming guide for high school students.

The conclusion that can be drawn from a review of the literature associated with

graphics calculators, is that in spite of the improvement in variety and quality of material

available to support teachers and students, there still exists a need for an independent

study guide written to provide instruction specifically to high school students on how to

program their graphics calculators.

CHAPTER III

THE DEVELOPMENT OF THE PROGRAMMING MANUAL

In order to develop a calculator programming guide specifically written for high

school students, a number of decisions had to be made which would give direction to the

project. Because the results of one decision would influence later decisions, a specific

order was created for each option. First, each of the decisions which guided the

. development of this manual will be listed, followed by a detailed description of how the

decision presented by each choice was resolved. The decisions which guided the

development of this manual were:

1. Which specific calculator should be selected for this project?

2. What should be the format of the manual?

3. Which of the available calculator programming instructions should be

included in the manual?

4. What sample programs should be included in the manual?

5. What evaluation process should be used to evaluate the effectiveness of the

manual for its intended audience?

6. What distribution process should be used to maximize distribution of the final

version of the manual?

28

29

The resolution of each of the questions posed will now be discussed in detail.

1. The Selection of a Specific Calculator

There are several manufacturers of quality hand held graphing calculators.

Among these are Hewlett - Packard, Casio, Sharp, and Texas Instruments. Graphing

calculators from each of these manufacturers are found to varying degrees in high school

classrooms today. The selection of a specific calculator is further complicated by the fact

that most manufacturers produce a series of graphing calculators targeted for different

educational levels from middle school through college. Each calculator in a series offers

a wide range of both capabilities and prices. Certain calculators are clearly more

appropriate at one level than another, and teachers must use care in deciding which

calculator would be most appropriate for their students.

Calculators from each of the above manufacturers were carefully reviewed,

including the complete line of educational support material offered by the manufacturer.

The result of this investigation identified the Texas Instruments TI-82 and TI-83 graphing

calculators to be the best choice for the specific calculators to be used in this project.

This decision was based on the following factors:

1. If one of the goals of this project was to provide programming instruction to

the maximum number of students, then the selection of the calculator used

should be based, in part, upon which calculator is most commonly found in

high school mathematics classes. The TI-82 and TI-83 calculators were

specifically targeted for high school mathematics students by Texas

30

Instruments Inc., and they represent the most popular graphing calculators in

use at the high school level today. Even though they have different names, the

TI-82 and TI-83 are essentially the same calculator. The TI-82 was introduced

in 1994 and quickly became the most popular graphing calculator at the high

school level. The TI-83, introduced in 1996, is an improved version of the

TI-82. The design of the TI-83 was based upon suggested improvements to the

TI-82 from high school math teachers, however, both calculators are very

similar in both their capabilities and operation. A detailed technical

description of each calculator is contained in Appendix A

2. The physical layout of the keyboards and the syntax of the programming

languages used by each calculator are essentially identical. This allows for the

development of a single programming manual which may be used for both

calculators.

3. Both calculators contain a link cable which enables programs to be transferred

between calculators of the same type. This feature is important because it

enables high school students to exchange programs by simply linking their

calculators together. In addition, programs stored in a TI-82 calculator may be

passed directly to a TI-83 calculator.

4. The link cable system also allows both calculators to be connected to a

microcomputer which enables the students to store copies of their programs in

files on the computer. The students also have the capability, when appropriate

software is used, to download calculator programs from the internet. A

substantial library of public domain software is already in existence, and

31

many of these programs are available for downloading from internet sites to a

microcomputer and then via the link cable directly into a calculator.

5. The Texas Instruments' Calculator Based Laboratory (CBL) has become a

very popular tool in high school math and science classes for gathering

experimental data. Both the TI-82 and TI-83 have the capability to link to the

CBL via cable to retrieve and process experimental data collected by the CBL.

6. Texas Instruments Inc. has established a more extensive and comprehensive

support system for educators using calculators than any of the other

manufacturers. This is the most important reason for the widespread

popularity of the TI series of calculators, and it offers many benefits to

educators.

7. Although there are differences between the programming instructions

available on the TI-82 and TI-83 calculators and other TI calculators such as

the TI-85, TI-86, and TI-92, there exists sufficient similarity between the

languages that a student who learned to program a TI-82 could easily adapt

that skill to the programming of other TI calculators like the TI-85 or TI-92.

It was for these reasons that the TI-82 and TI-83 calculators were chosen as the

focus of this project.

32

2. The Format of the Manual

It was decided. that the format of the manual should be determined only after a

review of existing high school level computer science textbooks. It was assumed that

many of the students who might want to learn how to program a graphics calculator

would be students who had completed a previous high school computer programming

class. Because there is a basic format that appears to be common to most high school

computer programming textbooks, it was felt that students learning to program a graphics

calculator would be more comfortable utilizing a manual which was written in a format

similar to the textbooks they had used in previous programming courses.

There are, however, some inherent difficulties in attempting to define a common

format in computer programming textbooks, particularly when different programming

languages are considered. Certain programming commands which are included in one

programming language may not be available in another language, so while similarities

may exist between the format of textbooks written in one language, it may be expected

that differences in format will occur with textbooks using a different language. Even

when these differences are considered, most textbooks still follow a somewhat similar

format in introducing computer programming languages.

The computer languages available at the high school level which bear the closest

resemblance to the programming language used on the TI-82 and TI-83 calculators are

BASIC and Pascal. Both of these languages enjoy widespread use at the high school

level, and it is reasonable to assume that many, if not most, students with previous

33

programming experience would be familiar with the syntax of one, or both, of these

programming languages. For this reason, the investigation into possible formats for the

manual centered on textbooks describing BASIC and Pascal. The textbooks reviewed

were; Standard BASIC Programming with True BASIC (Catlin, 1992), Fundamentals of

Pascal (Nance, 1990), Computer Science with Pascal (Mandell & Mandell, 1985),

Running MS-DOS OBASIC (Halvorson & Rygmyr, 1991), OBASIC (Baumann &

Mandell, 1992). The guidebooks provided with each calculator by Texas Instruments Inc.

were also reviewed to examine their format(Texas Instruments, 1993, 1994, 1996).

The order in which the various programming operations appeared in the textbooks

followed a generally consistent pattern. The fundamental statements required to initiate

programming operations were presented first. Then the statements involving input and

output operations such as PRINT, INPUT, and READ were described. Next statements

used to control the flow of a program including IF-THEN and SELECT-CASE were

introduced. Loop control instructions such as FOR-NEXT, DO-WHil.,E, and DO-UNTIL

were presented next. These were usually followed by statements like FUNCTION and

SUBROUTINE which allow the programmer to create sub-programs. Data storage

structures including arrays, records, and files were generally presented last.

In addition tothe order of presentation, there was a consistent pattern to the

method of presentation. Most textbooks presented short program segments in which the

statements that made up the program were printed first, followed by a simulated display

window in which the output corresponding to the program was presented. This format

has been successfully used by textbook publishers for many years to offer students an

34.

easy to follow description of both the combination of statements that make up a program

and the outputthat results when the program is executed

As a result of this textbook review, the decision was made to present the

calculator programming instructions in an order similar to that found in most textbooks.

The format would also include short program segments which included the program

statements and a simulated display window showing the resulting output After

presenting a description of each of the various programming instructions available on the

graphing calculator, the final section of the programming manual would include several

complete calculator programs demonstrating to the students how the individual

programming instruction might be combined into programs to solve specific

mathematical problems.

3. Selection of Programming Instructions

There are more than one hundred functions and instructions that are available to

anyone desiring to write a program for the TI-82 and TI-83 graphics calculators. The goal

of this study was to produce an introductory programming manual which presented only

the essential commands a beginning student would need in order to write basic calculator

programs. If this goal was to be obtained in a reasonably short introductory manual, then

careful attention had to be paid to which programming instructions should be included in

the manual. The final selection of which instructions were included was primarily based

on the experience gained by the author in writing over one hundred. TI-82 and TI-83

calculator programs. This experience enabled the author of this study to select the

instructions which would be essential to a beginning student programmer while

eliminating insµuctions which could added after the programmer gained experience in

writing programs through the use of the manual.

The following programming instructions involving input and output operations

were selected for inclusion in the final version of the manual.

1. ClrHome - Used to clear the home screen.

2. Pause - Used to temporarily delay execution of a program.

3. Stop - Used to permanently stop execution of a program.

4. DispGraph - Used to display a graphics screen.

5. Disp - Used to print information on a text screen.

6. Output - Used to format output on a text screen.

7. Input - Used to enter data into a program.

8. Prompt - Used to enter data into a program.

The following instructions involving control of the flow of a program were also

included.

1. If - Then - Used to make decisions within a program.

2. If - Then - Else - Used to make decisions within a program.

3. Lbl- Goto - Used to control the flow of a program.

4. Menu - Used to control the flow of a program.

5. Prgm - Return - Used to execute sub-programs.

35

36

The following loop control instructions were selected to be included in the

manual.

1. For - Used to control looping operations.

2. While - Used to control looping operations.

3. Repeat - Used to control looping operations.

The selection of a few instructions which are particularly useful in writing

mathematics programs include the following instructions.

1. Rand - Used to generate random numbers.

2. fMin - Used to find where the minimum value ofa function occurs.

3. fMax - Used to find where the maximum value of a function occurs.

4. nDeriv - Used to evaluate the derivative of a function.

Finally, the following instructions which allow the programmer to add

information to a graphics display are especially useful.

1. ClrDraw - Used.to clear the graphics screen.

2. Line - Used to draw straight lines on a graphics display.

3. Horizontal- Used to draw horizontal lines on a graphics display.

4. Vertical - Used to draw vertical lines on a graphics display.

5. Circle- Used to draw circles on a graphics display.

6. Tangent - Used to draw the tangent line to a given function.

7. Text - Used to print text information on a graphics display.

37

8. Drawlnv - Used to draw the inverse of a given function.

9. Pt - On - Used to plot a point on a graphics display.

The instructions presented in the preceding list will allow a beginning student

programmer to write.reasonably sophisticated calculator programs which take full

advantage of the graphing capabilities of both the TI-82 and TI-83 calculators. As the

students gain experience, they can make reference to the calculator guidebook to utilize

the remaining instructions which were not included in this manual.

4. Creation of the Sample Programs

Two objectives were to be met in the creation of the sample programs to be

included in the final version of the manual.

Because the primary goal ofthis study was to produce a programming guide

specifically targeted for high school students, the first objective was to insure ·that the

mathematics included in the sample programs was restricted to the level of mathematics

commonly available to a typical high school student. The mathematics curriculum found

in a typical high school ranges from a beginning algebra course at the freshman level

through calculus at the senior level. Because the manual was designed to provide

instruction to students at each grade level, care was taken to provide a variety of sample

programs which insured that the instruction would be of value to students in beginning

algebra as well as students in calculus. It was anticipated that senior level students taking

calculus would derive the most benefit from the manual because they would understand

38

not only the programming instruction but also the mathematics involved in the

trigonometry and calculus sample programs. Students in the lower grades would still find

the manual beneficial because a number of lower level sample programs involving

mathematics no higher than algebra were also included. The possibility also existed that

even though a lower level student might not fully understand the mathematics in a

particular sample program, that same student could still benefit from the example by

noting the effects of the various programming instructions used in the sample program.

The second objective was to utilize the widest possible variety of programming

instructions within the sample programs. Each of the instructions selected for inclusion in

the manual may be found in at least one of the sample programs, and in several cases

programs were designed to show alternative uses of the instructions. In certain instances,

the same problem was solved in two or more ways just to show students the options that

are available to them when writing programs.

In the final version of the manual, fifteen sample programs are included. A

description of the problem solved by each program as well as a description of why

certain programming instructions were included in each example will now be presented.

Sample Program 1

Sample Program l uses a financial equation to demonstrate how a student may

store a formula within a program. The program then evaluates the formula using values

entered by the user.

39

This program demonstrates:

• Basic input and output operations.

• The Disp instruction to display output to the user.

• The Prompt instruction to enter values into the program.

• How an assignment statement may be used to store the equation within the

program.

• The ClrHome instruction to clear the screen.

Sample Program 2
//

Sample Program 2 allows the student to enter the X andY coordinates of two

points and then uses the distance formula and the midpoint formula from algebra to

calculate both the distance between the points and the midpoint between the points.

This program demonstrates:

• The Input instruction to enter values into the program.

• How the Pause instruction may be combined with the ClrHome instruction to

display output on more than one screen.

• The Frac instruction to display program output in fractional form.

• The round instruction to control the number of decimal places displayed in

the output.

• The Output instruction for more precise control over the positioning of

output on the screen.

Sample Program 3

40

Sample Program 3 uses a random number generator to create a game in which the

student attempts to guess which number between 1 and 100 the calculator has randomly

selected. After the student enters a guess, the calculator will state whether the guess was

too high or too low.· This process is repeated until the student guesses the correct answer.

The program will then display the number of guesses needed to determine the correct

answer.

This program demonstrates:

• How to use the int and rand instructions to generate random integers within a

specified range.

• The use of the Lbl and Goto instructions to control the flow of a program.

• How the If instruction may be used to make decisions within a program.

• The use of a "counter" variable to sum up the number of incorrect answers.

Sample Program 4

Sample Program 4 presents a second solution to the guessing game posed in

Sample Program 3. To the user, the input and output screens appear identical, however,

41

this program uses a "while" loop to control the flow of the program. Sample Program 4

and Sample Program 5 have been included to show students that more than one program

structure may be used to solve the same problem.

This program demonstrates:

• The use of the While instruction to control the flow of a program. The

"while" loop will repeat while a specific condition is true.

• How an If - Then - Else instruction may be used to make decisions within a

program.

• The use of a priming input statement to "prime" the while loop.

Sample Program 5

Sample Program 5 presents a third solution to the guessing game posed in Sample

Program 3. To the user the input and output screens appear identical, however, this

program uses a "repeat" loop to control the flow of the program.

This program demonstrates:

• The use of the Repeat instruction to control the flow of a program. The

"repeat" loop will repeat until a specified condition is true.

42

Sample Program 6

Sample Program 6 uses a random number generator to simulate flipping a coin

and then displays the resulting number of heads and tails. The user controls the number

of times the coin is tossed. The program will also display the final percentages for heads

and tails.

This. program demonstrates:

• The use of the For loop instruction in which the upper limit of the loop is a

variable to be determined by the user.

• How a random number generator may be usedto model experimental data.

• The use of the round and Output instructions to precisely control the position

of output displayed on the screen.

Sample Program 7

Sample Program 7 allows the user to enter a function into a program while the

program is running. The program switches from the text screen to the graphics screen and

graphs the given function.

This program demonstrates:

• How the user may enter a given function into the program and store it in one

of the Yvariables so its graph may be displayed.

• The use of the Zstandard instruction to change from the text mode to the

graphics mode and display the graph of a function.

Sample Program 8

43

Sample Program 8 demonstrates how one program may call another program

during execution. This program also shows how a "setup" program may be used to

restore the default settings of the calculator prior to the execution of a second program.

This program demonstrates:

• How the prgm instruction may be used to have one program call a second

program.

• How execution returns from the "called" program to the main program.

• How the default settings of the calculator may be restored within a program.

Sample Program 9

Sample Program 9 allows the user to draw any size triangle on the screen by

entering the coordinates of the three vertices of the triangle. This is the first sample

program to make use of the programming instructions within the "draw" menu. These

instructions are useful in placing text and figures on the screen to complement the

graphing capabilities of the calculator.

44

This program demonstrates:

• How the Line instruction may be used to draw lines at any position on the

screen.

• How the user may enter values into the "window" size variables from within a

program.

Sample Program 10

Sample Program 10 shows how the calculator may be used to graph ·conic

sections. The program first allows the user to enter values into the equation of an ellipse

in standard form. The program then graphs the ellipse and gives the user the option to

zoom in or out in order to clearly view the ellipse.

This program demonstrates:

• The importance of coordinate geometry in writing programs which display

graphics.

• How a conic section may be broken down into two individual functions for

graphing purposes.

• How the "draw" menu instructions may be used to enhance the graphical

presentation.

• The use of a zoom in or out option within a program.

45

Sample Program 11

Sample Program 11 presents an example involving trigonometry in which the user

is allowed to enter an angle in either the degree or radian mode. The program then

displays all six basic trigonometric functions for the given angle. The program will

anticipate any trigonometric functions which are undefined and will display the word

"Undefined" in these cases.

This program demonstrates:

• The use of the basic trigonometric functions Sin, Cos, and Tan.

• The Fix instruction to limit the number of decimals displayed in the output.

• The use of conditional Output instructions to display various options as

determined by the program.

• How the Radian and Degree instructions may be used within the program to

control the mode of the calculator.

Sample Program 12

Sample Program 12 presents a simple method of storing and displaying text

information. This program stores the names and telephone numbers of individuals and

then displays the names and numbers when the program executes.

This program demonstrates:

• How the Disp instruction may be used to store and display text information.

• How the Pause and ClrHome instructions may be used in combination to

allow the user to control the pace of a program.

Sample Program 13

46

Sample Program 13 allows the user to perform a graphical simulation of

projectile motion. The user enters the initial height and the initial velocity of an object

and the desired length of time for the model to run. The program then graphically models

the object's height as a function of time with a continuous display of both height and

time. Finally, the user is given the option to change the time period and restart the model.

This program demonstrates:

• How the calculator may be used by science students to bring equations to life

by modeling real world situations.

• The use of the fMax instruction to automatically scale the graph so the entire

projectile motion is displayed on the graph.

• The use of the Text instruction to combine both graphical and text

information on the same screen.

• How the Pt-On instruction may be used as an alternative method of graphing

a function.

47

Sample Program 14

Sample Program 14 is a calculus program which combines both the

computational and graphics features of the calculator in approximating a Reimann sum ..

The user is allowedto enter a function and the program then graphically and numerically

displays the Reimann sum over a given interval. The user is given the option of

determining how many rectangles will be used to approximate the Reimann sum. The

program then offers the user an opportunity to change the lower and upper limits of the

interval and the number of rectangles used. in the approximation.

This program demonstrates:

• How the user may enter a function into a "Y'' variable for graphing within a

program.

• The use of the Xmin and Xmax variables to control the width of the graphics

screen.

• How to evaluate a function at a given value of X from within a program.

• How the tMin and tMax instructions may be used to automatically scale the

graphics screen to maximize use of the display area.

• How the Line instruction from the "draw" menu may be combined with the

graph of a function to increase the effectiveness of the display as a teaching

and learning tool.

• How the user may be given the option to re-run the program and change key

parameters.

• The importance of coordinate geometry in mathematical programming

involving graphics.

Sample Program 15

48

Sample Program 15 is a calculus program which allows the user to enter a

function and a specific X coordinate. Then the program determines the equation of the

tangent line to the function atthe specified X value and displays both a graph of the

tangent line and the equation of the tangent line in slope-intercept form. Finally, the

program determines the equation of the normal line to the function at the specified X

value and display both the graph of the normal line and the equation of the normal line in

slope-intercept form.

This program demonstrates:

• The use of the nDeriv instruction to determine the slope of the tangent line at

a specific value ofX.

• How a program can change a linear equation from point-slope form into

slope-intercept form for graphing purposes.

• How the equation of the normal line may be determined from the equation of

the tangent line.

49

• The use of the Text instruction to display both text and graphical information

on the same screen.

5. Evaluating the Effectiveness of the Manual

Two different methods were selected to evaluate the effectiveness of the manual.

The first method involved an evaluation of the manual by high school students. The

second method involved an evaluation of the manual by the educational marketing staff

at Texas Instruments Inc. A detailed description of each method of evaluation is now

presented.

1. Evaluation by high school students

The first method involved the creation of a questionnaire which would be

completed by high school students evaluating early versions of the manual. The

responses obtained from these questionnaires were used to improve later versions of the

manual. The purpose of the questionnaires used in this study was solely to obtain specific

suggestions from high school students in order that the final version of the manual would

contain the most effective presentation of an independent study programming guide. It

was never the intention of this study to perform a detailed statistical analysis of the

results of the questionnaires.

A sample of the questionnaire used in this study may be found in Appendix C. A

description of each of the eight questions included on the questionnaire is now presented.

50

Questions #1 and #2:

1: What grade level are you in this school year?

#2: What math course are you taking now or will be taking next semester?

It was anticipated that a senior in high school who was enrolled in calculus would

be able to derive the greatest benefit from this manual because this student should be

able to understand the mathematical content of all of the examples in the manual. These

questions were included primarily to determine if the examples contained in the manual

provided adequate instruction for students at the lower grade levels. If students at the

lower levels experienced problems in using the manual, then additional lower level

examples could be included.

Questions #3 and #4:

#3: Prior to using this calculator programming manual, have you had any previous

experience in computer programming?

#4: If you have had any previous programming experience, did you have difficulty

adapting those programming skills to the graphing calculator?

These questions were included as a check on how effective the format used in the

manual was in providing instruction in programming. It was felt that a student with

previous programming experience would have an advantage in learning to program a

graphing calculator, however one of the goals of this project was to create an manual

which would be useful to students with no previous programming experience. If students

with no previous experience indicated that they had difficulty using the manual, then

adjustments would have to be made to either the format or the content of the manual.

Questions #5 and #6

#5: Did you find the manual easy, reasonable, or difficult to use?

#6: How helpful would it be to you if additional sample programs were included in the

manual?

51

These questions were included to determine if there was a correlation between the

students grade, mathematics level, and level ofprevious programming experience and the

ease or difficulty they experienced in attempting to use the manual. If students

experienced difficulty in using the manual, then one solution would be to add additional

sample programs for added clarity.

Question #7

#7: How valuable do you think your ability to write programs for your graphics calculator

will be during your high school and college career?

This question was included to survey student's attitudes concerning the

importance they place on programming skills, both now and in their immediate future.

Although this question did not influence the design of the manual, it was felt that an

understanding of student's attitudes towards learning programming skills would be

meaningful in future research relating programming to the mathematics curriculum.

Question #8:

#8: Please suggest any improvements you think would make this manual easier to use.

This final question was included to give students an open opportunity to make any

suggestions to improve the final version of the manual.

52

Early versions of the manual, including the questionnaire, were distributed to high

school students over a nine month period. The initial group of students consisted of

approximately 30 ninth and tenth grade students attending a summer math academy at

Oklahoma State University in 1996. Students attending the academy received copies of

the manual along with a TI-83 graphics calculator for the duration of the academy. The

students received no formal instruction on programming the calculators, but were given

the programming manual as an extracurricular activity to be used an independent study

guide. At the completion of the academy, they returned the questionnaires containing

they responses.

During the 1996-97 school year, students at StillwaterHighSchool in Stillwater,

Oklahoma, participated in the study on a voluntary basis. Students with an interest in

learning how to program their graphics calculators were given copies of the manual and a

TI-83 calculator and asked to evaluate how effective the manual was as an independent

study guide. A total of 30 students in varying grade levels from sophomores in algebra

through seniors in calculus participated in this evaluation. They also returned completed

questionnaires as part of their evaluation.

As each group of students completed their evaluation, the comments provided on

the questionnaires were used to make revisions and improvements to early versions of the

manual.

2. Evaluation by the staff of Texas Instruments

53

The second method of evaluation consisted of a thorough review of the manual by

members of the Texas Instruments educational marketing and programming staff A copy

of the manual was presented to Texas Instruments and they were asked to distribute the

manual to all staff members in a position to suggest revisions or improvements to the

manual. The TI staff spent approximately six weeks reviewing the manual and returned a

technical critique of the programming presentation as well as a general critique of the

format of the manual.

The results of both methods of evaluation are contained in the results section of

this document.

6. Distribution of the Manual

Several decisions were made which would insure that the final version of the

manual would be available to the largest possible audience of high school students. First,

the selection of the TI-82 and TI-83 calculators meant that the programming manual

would be written for the calculators most commonly used at the high school level. This

should insure that it would appeal to the largest group of high school students currently

using graphics calculators.

The decision was also made to produce a manual which was free of all copyright

restrictions. Teachers and students using the manual would be encouraged to make

additional copies of the manual for distribution attheir school. To allow further

distribution, the manual would be provided either free of charge or at the cost of making

copies of the manual. It was believed that this approach would relieve the financial

burden to school systems utilizing the manual.

54

Finally, two additional steps were taken to provide easy access to students and

teachers desiring to obtain a copy of the manual First, a copy of the manual was placed

in a web site on the internet so students with internet access could download free copies

of the manual (http://www.math.okstate.edu/-aichele/GrCalcs/TGC.html). Second, Texas

Instruments Inc. included a reference to the manual in their "TI Cares" newsletter

containing educational support material for their graphics calculators (Appendix D).

Students and teachers may order copies of the manual directly from Texas Instruments

Inc., for copying costs only, by calling 1-800-TI-CARES.

The steps described above should insure the maximum distribution of the manual

to its intended audience.

CHAPTER IV

RESULTS

The two methods of evaluation discussed. in the previous chapter both contributed

to the final design of the programming manual. The results of the student questionnaire

primarily influenced the number and type of sample programs included in the final

version of the manual. The results of the critique by the staff at Texas Instruments Inc.

improved the technical presentation of the programming instructions and eliminated

minor errors and omissions in the sample programs thus insuring the accuracy of the

examples presented in the manual.

Results of the Student Questionnaires

Approximately 60 students completed questionnaires after participating in the

evaluation of the programming manual. A summary of the students' responses to the

questions will now be presented along with the effect those responses had on the final

design of the manual.

The response to questions #1 and #2 regarding grade level and mathematics

curriculum level showed that the manual was evaluated by a relatively even distribution

55

56

of students throughout each of the grade levels from nine through twelve. This even

distribution of students, and the responses obtained, indicated that the manual received a

thorough evaluation from students at each of the levels of its intended audience.

As anticipated, students at the upper level seemed to have an easier time making

full use of all the examples in the manual. Students who experienced difficulty

understanding certain sample program tended to be students at the lower levels who had

not yet completed a mathematics course covering the material present in a specific

example. Generally, the problems they experienced were a result of not being familiar

with the mathematics presented rather than not being able to follow the programming

instructions utilized in the example. As a result of the suggestions for improving the

manual by the students reviewing early versions of the manual, the number of sample

programs was extended from ten to fifteen in the final version of the manual and each of

the five new sample programs was targeted for students at the lower levels. After the five

new programs were added, lower level students reviewing a later version of the manual

appeared to find the later version much more beneficial in providing programming

instruction.

It was also anticipated that students who had completed a previous programming

course would have an easier time learning to program the graphics calculator, and the

responses indicated that this indeed was the case. However, students with no previous

programming experience indicated that they also found the manual easy to use and very

instructive as a programming guide. The most common suggestion for improving the

manual was to include additional sample programs at the lower level and this suggestion

was implemented in the final version of the manual.

57

The responses to the final question concerning the importance that high school

students placed on the ability to write calculator programs showed a wide variation in the

importance students attached to this skill. Many felt that programming skills would be

very beneficial during both high school and college, while others felt that only minimal

importance should be attached to the ability to program a calculator. It should be

remembered.that this manual.is intended to be used as an extracurricular activity by

students who have an active interest in learning to program their calculators. In spite of

the variation. in interest demonstrated by the students, it is anticipated that there still

exists a large number of students who will benefit from this programming manual.

The overall results of the student questionnaires indicated that the final version of

the manual did an effective job as an independent study guide in providing programming

instruction to students at all grade levels in high school, including students with wide

variations in both their mathematics and previous programming experience.

Results of the Critique by the Texas Instruments Staff

The educational marketing staff at Texas Instruments (TI) also returned a

critique ofa preliminary version of the.manual. The focus of the critique by TI staff was

to conduct a thorough examination of each of the programming instructional examples

and sample programs to identify any errors in the programs andto make sure the

programs performed as they were expected to. All errors and omissions identified by the

TI staff were corrected in the final version of the manual. In addition, the TI staff

members offered several suggestions for improving the accuracy and the presentation

format of the manual and many of their suggestions were also included in the final

manual. The efforts of the TI staff are acknowledged and greatly appreciated.

The Final Version of the Programming Manual

58

The final version of the programming manual designed to serve as an independent

study guide for high school students may be found in Appendix B. To obtain a copy of

the manual, students and teachers can find ordering information for the manual in the TI

Cares newsletter contained in Appendix D. A copy of the manual has also been stored in

a website on the internet and.may be downloaded by students with internet access using

the address http://www.math.okstate.edu/-aichele/GrCalcs/TGC.html .

CHAPTER V

SUMMARY AND RECOMMENDATIONS

Summary

The goal of this study was to develop a programming manual which could be

used as an independent study guide by high school students desiring an introduction to

programming on the TI-82 and TI-83 graphics calculators. The final version of the

manual which was developed. in this study appears to have satisfied that goal. This

conclusion is based on two primary evaluations.

First, several preliminary versions of the manual were tested and critiqued over a

nine month period by a variety of students ranging in grade level from ninth grade

students through college level students. The students who took part in the evaluation had

widely varied mathematical backgrounds ranging from Algebra I in high school through

college level mathematics. There was also a wide variation in computer programming

experience ranging from students who had. no previous programming experience to

students who had completed at least two programming courses. An examination of the

questionnaire completed by students who evaluated the programming manual confirmed

the following:

59

60

1. Almost every student who reviewed the manual stated that they found it to be a

very helpful introduction to programming a graphics calculator.

2. Students who had completed a previous programming course appeared to find

the transition to programming a graphics calculator easier than students who

had no previous programming experience.

3. Because the sample programs in the manual ranged from Algebra 1 through

Calculus, students who had completed higher level math courses such as

Calculus found it easier to understand the mathematical methods

demonstrated in the advanced sample programs. This difference was

anticipated at the beginning of the study and was, therefore, expected

A review of the student critiques of early versions of the manual found that the

most common criticism suggested that additional examples should be added to the

manual to add clarity to several of the programming instructions. As a result of these

comments, several new examples and sample programs were added to the final version of

the manual to clarify any problem areas identified by the students. Students reviewing the

final version of the manual appeared to find both the quantity and content of the

examples presented satisfactory to insure their understanding of the programming

instructions.

The second evaluation was based on a thorough review of the manual by

members of the staff of Texas Instruments Inc. Several members of the Texas

Instruments educational marketing and programming staff spent about six weeks

conducting a detailed review of the manual. Several specific points involving

programming errors and omissions were identified by the Texas Instruments reviewers,

and each error or omission was corrected in the final version of the manual. The

reviewers also made many pertinent suggestions involving changes in the format of the

manual which, when incorporated into the final version, resulted in a more orderly

presentation of the material. The efforts of the Texas Instruments staff in improving the

final version of the manual are very much appreciated.

The fact that Texas Instruments Inc. has endorsed the final manual is evidenced

by the following:

61

1. A reference to the manual has been included in the reference list of published

graphing calculator material in the Spring 1997 TI - CARES educational

support programs newsletter which is distributed nationally.

2. Texas Instruments Inc. has further agreed to handle both the publishing and

distribution of the manual nationally by having persons interested in obtaining

a copy of the manual call 1 - 800 - TI - CARES. Texas Instruments will keep

copies of the manual in stock and will mail them, at cost, to individuals or

groups who place an order.

Recommendations

This study was designed to produce an independent study guide which could be

used to provide programming instruction to students in an extracurricular setting. This

study made no attempt to define the role of programming within the mathematics

curriculum. Past objections to including programming within the mathematics

curriculum have included the fact that the limited time available to complete the core

62

mathematics material leaves no time to add additional instruction in programming. In

recent years, however, there has been a significant change in the manner in which high

schools schedule classes which may permit the inclusion of programming within the

mathematics curriculum. This change involves a "block schedule" in which high schools

complete courses under a semester arrangement similar to many college schedules. The

block schedule allows students to increase the number of mathematics courses they

complete prior to graduation from high school (Kramer, 1997). Many high schools have

used the block schedule to add new mathematics course to their curriculums. One

recommendation is to investigate the possibility of adding a new course providing

instruction in mathematical programming and modeling using graphics calculators within

a block schedule.

Researchers investigating the role of technology in mathematics education must

be careful to consider the appropriate role of technology. It is important that the

technology should not be allowed to drive the curriculum. The appropriate role of

technology is one in which the technology enhances the mathematical discussion without

diverting the focus away from the mathematical principles being discussed.

Finally, as the infusion of technology into mathematics instruction continues and

the distinction between disciplines of mathematics and computer science becomes

increasing blurred, it is recommended that new investigations be initiated to determine

the proper role of programming within the mathematics curriculum.

BIBLIOGRAPHY

Aichele, D., Hopfensperger, P., Leiva, M., Mason, M., Murphy, S., Schell, V., Vheru, M.
(1998). Geometry: Explorations and applications. Boston, MA: Houghton - Mifflin.

Baumann, S. K., & Mandell, S. L. (1992). OBasic. St. Paul, MN: West.

Best, G. W., & Penner, D. A. (1994). Using the TI-82 to explore precalculus and
calculus. Andover, MD: Venture.

Brueningsen, C., Bower, B., Antinone, L., & Brueningsen, E. (1994). Real-worldmath
with the CBL system. Dallas, TX: Texas Instruments Inc.

Brueningsen, C., & Kraviec, W. (1994). Exploring physics and math with the CBL
system. Dallas, TX: Texas Instruments Inc.

Camp, J.S., & Marchionini, G. (1984). Programming and learning: Implications for
mathematics education. Computers in Mathematics Education: NCTM 1984
Yearbook. (pp. 118-126) . Reston, VA: NCTM.

Catlin, A. (1992). Standard basic programming with True Basic (2nd ed.). Englewood
Cliffs, NJ: Prentice-Hall.

Demana, F., Waits, B. K., & Clemens, S. R. (1992). College algebra: A graphing
approach (2nd ed.). Reading, MA: Addison-Wesley.

Demana, F., Waits, B. K., & Clemens, S. R. (1992). College algebra and trigonometry: A
graphing approach (2nd ed.). Reading, MA: Addison-Wesley.

Demana, F., Waits, B. K., & Clemens, S. R. (1994) Precalculus mathematics: A graphing
approach (3rd ed.).Reading, MA: Addison-Wesley.

Educational Testing Sevices (1996) A student guide to the AP calculus courses and
examinations. Princeton, NJ: Author.

Farrell, M.A. (1994). A bridge to the classroom: Implementing the NCTM standards.
Dedham, MA: Janson.

63

Finney, R. L., Thomas, G. B., Demana, F., & Waits, B. K. (1993) Calculus: A graphing
approach. Reading, MA: Addison-Wesley.

Halacy, D. S. (1962). Computers: The machines we think with. New York, NY: Harper
and Row.

Halvorson, M., & Rygmyr, D. (1991). Running MS-DOS QBasic. Redmond, WA:
Microsoft Press.

Hatfield, L. L. (1984). Toward comprehensive instructional computing in mathematics.
Computers in Mathematics Education: NCTM 1984 Yearbook. (pp. 1-9) .
Reston, VA: NCTM.

Kelly, B. (1992). Programming the TI-81 andTI-85 graphics calculators to explore
mathematics. Burlington, Ontario: Author.

Kramer, S. L. (1997). "What we know about block scheduling and its effect on math
instruction, Part 1." Bulletin: National Association of Secondary. School
Principals, 81(586), 18-42.

Larson, R. E., Boswell, L., & Stiff, L. (1995). Geometry: An integrated approach.
Lexington, MA: D. C. Heath.

Larson, R. E., Boswell, L., Kanold, T., &Stiff, L. (1996). Passport to algebra and
geometry: An integrated approach. Evanston, IL: McDougal-Littell.

Larson, R. E., Hostetler, R. P., & Edwards, B.H. (1994). Calculus (5th ed.). Lexington,
MA: D. C. Heath.

Larson, R. E., Hostetler, R. P., & Edwards, B. H. (1993). College algebra: A graphing
approach. Lexington, MA: D. C. Heath ..

Larson, R. E., & Hostetler, R. P. (1997). Precalculus (4th ed.) Boston, MA: Houghton
Mifflin.

64

Larson, R. E., & Hostetler, R. P. (1997). Trigonometry (4th ed.). Boston, MA: Houghton
Mifflin.

Larson, R. E., Kanold, T., & Stiff, L. (1997). Algebra 1: An integrated approach.
Evanston, IL: McDougal-Littell.

Larson, R. E., Kanold, T., & Stiff, L. (1997). Algebra 2: An integrated approach.
Evanston, IL: McDougal-Littell

Leiva, M.A., & Brown, R.G. (1997). Algebra 1: Explorations and Applications.
Evanston, IL: McDougal-Littell.

Leiva, M. A, & Brown, R.G. (1997). Algebra 2: Explorations and Applications.
Evanston, IL.: McDougal-Littell ..

Lucas, J. F., & Lucas, C. A (1992). A guided tour of the TI-85 graphics programmable
calculator. New York, NY: Ardsley House.

Lund, C., & Anderson, E. (1996). Introduction to the TI-92: 37 experiments in
precalculus and calculus. Urbana, IL: Mathware.

Mandell, S. L., & Mandell, C. J. (1985). Computer science with Pascal for advanced
placement students. St. Paul, MN: West.

65

Nance, D. W. (1990). Fundamentals of Pascal: Understanding programming and problem
solving (2nd ed.). St. Paul, MN: West.

National Council of Teachers ofMathematics. (1989).. Curriculum and evaluation
standards for school mathematics. Reston, VA: Author.

National Council of Teachers of Mathematics. (1991). Professional standards for
teaching mathematics. Reston, VA: Author.

National Council of Teachers ofMathematics. (1995). Assessment standards for school
mathematics. Reston, VA: Author.

Nichols, S. D. (1995). CBL explorations in calculus for the TI-82. Erie, PA: Meridian
Creative Group.

Papert, S. (1980). Mindstorms. New York, NY:BasicBooks.

Papay, K.,Serum, L., & Donnelly, J. (1996). "Predicting the orbit of satellites with a TI-
85 caluclator." The Science Teacher, 63(4), p.33.

Rich, N., Rose, J., & Gilligan, L. (1996). Mastering the TI-92: Explorations from algebra
through calculus. Cincinnati; OH: Gilmar.

Ruthven, K. (1992). Personal technology and classroom change: A British perspective.
Calculators in Mathematics Education:NCTM 1992 Yearbook. (pp. 91-100).
Reston, VA: NCTM.

Shumway, R. J. (1984). Young children, programming, and mathematical thinking.
Computers in Mathematics Education: NCTM 1984 Yearbook. (pp. 127-134).
Reston, VA: NCTM.

Smith, S. (1984). Microcomputers in middle school. Computers in Mathematics
Education:NCTM 1984 Yearbook. (pp. 135-145) . Reston, VA: NCTM.

66

Stwertka, A. (1987). Recent revolutions in Mathematics. New York, NY: Franklin Watts.

Teachers Teaching with Technology (1997). http://www.ti.com/calc/docs/shrt.htm.

Texas Instruments Inc. (1993). Introduction to programming on the TI-82 [Brochure].
Dallas, TX: Author.

Texas Instruments Inc. (1994). Introduction to programming on the TI-85 [Brochure}.
Dallas, TX: Author.

Texas Instruments Inc. (1996). Introduction to programming on the TI-83 [Brochure}.
Dallas, TX: Author.

Texas Instruments Inc. (1993). Tl-82 graphics calculator guidebook. Dallas, TX: Author.

Texas Instruments Inc. (1996). TI-83 graphics calculator guidebook. Dallas, TX: Author.

APPENDIXES

67

APPENDIX A

CALCULATOR TECHNICAL SPECIFICATIONS

68

TI - 82 TECHNICAL SPECIFICATIONS

• 8 - line by 16 character display.

• Advanced functions accessed by pull-down display menus.

• Operates on lists of numbers as well as single numbers.

• Number calculated to 14-digit accuracy and displayed with 10 digits plus a 2-digit

exponent.

• Graphs rectangular functions, parametric expressions, polar expressions, and

recursively defined sequences.

• Up to 10 graphing functions defined, saved,.graphed, and analyzed at one time.

• Simultaneous graphing of more than one function.

• Sequence graphing mode shows both time series and cobweb/stair-step plot.

• 13 interactive zoom features.

• Function evaluation table shows numeric evaluation of functions in table format.

69

• Interactive evaluation of function values, roots, maximums, minimums, integrals, and

derivatives.

• Matrix operations including inverse, determinant, transpose, augment, and

elementary-row operations.

• List-based one- and two-variable statistical analysis, including median-median line,

linear, logarithmic, exponential, power, quadratic polynomial, cubic polynomial, and

quartic polynomial regression models.

• Box-and-whisker plots, histograms, scatter diagrams, and regression equation graphs.

• Programming capability with the number of programs limited only by available

memory.

• 28K bytes of available memory.

• Link capabilities for data transfer through 1/0 port.

• Unit-to-unit link included.

• Overhead projector unit available.

• Accessories allow information to be transferred to a computer and to be printed or

stored on disk.

• Compatible with Calculator-Based Lab (CBL) and Calculator-Based Ranger (CBR)

systems to allow analysis of real world data.

• Calculator poster and keyboard transparency available.

• One year limited warranty.

• Volume Purchase Program - proofs of purchase redeemable for additional products.

70

TI - 83 TECHNICAL SPECIFCATIONS

• 8-line by 16 character display.

• Advanced functions accessed through pull~down display menus.

• Real and complex numbers calculated to 14-digit accuracy and displayed with 10

digits plus a two digit exponent

71

• Graphs 10 rectangular functions, 6 parametric expressions, 6 polar expressions, and 3

recursively-defined sequences.

• Up to 10 graphing functions defined, saved, graphed, and analyzed at the same time.

• Sequence graphing mode shows time series plot, cobweb/stair-step plot, and phase

plots.

• User-definedlistnames. Lists up to 999 elements.

• 14 interactive zoom features.

• Function evaluation table shows numeric evaluation of functions in table format.

• Interactive analysis of function values, roots, maximums, minimums, integrals, and

derivatives.

• 7 different graph styles for differentiating the look of each graph drawn.

• Horizontal and vertical split-screen options.

• Matrix operations including inverse, determinan~ transpose, augment~ reduced row

echelon form, and elementary row operations. Convert matrices to lists and vice

versa.

72

• List-based one-and two-variable statistical analysis including logistical, sinusoidal,

median-median, linear, logarithmic, exponential, power, quadratic polynomial, cubic

polynomial, and quartic polynomial regression models.

• 3 statistical plot .definitions for scatter plots, xy-line plots, histograms, regular and.

modified box-and-whisker plots, and normal probability plots.

• Advanced statistical features including 9 hypothesis testing functions, 6 confidence

interval functions, and one-way analysis of variance.

• Supplementary workbooks available.

• 15 probability distribution functions including Normal, Student-t, Chi-Square,

Binomial, .and Poisson.

• Business functions including Time-Value-of-Money (TVM),. cash flows, and

amortization. Full screen interactive editor for solving TVM.problems.

• Interactive equation solver editor for solving for different variables in an equation.

• Alphabetic catalog of all calculator operations in one menu.

• Programming capability with the number of programs limited only by available

memory.

• 27.3K bytes of available memory.

• Link capabilities for data transfer through I/0 port. Transfer all.data between two TJ.,.

83's and from a TI-82 to a TI-83, and lists Ll-L6 from a TI-83 to a TI-82.

• Overhead. projector unit available (same LCD as the TI.,..82).

• TI-Graph Link accessory allows information to be transferred to a computer and to be

printed or stored to disk.

• Compatible with Calculator-Based Laboratory (CBL) and Calculator-Based Ranger

(CBR) systems to allow analysis ofreal-,world data.

• Calculator poster and keyboard transparency available.

• Volume Purchase Program - proofs of purchase redeemable for additional products.

73

APPENDIX B

FINAL VERSION OF THE PROGRAMMING MANUAL

74

The High School Student's Guide to
Programming the TI - 82 and TI - 83

Graphics Calculators

Jim Bowen
Stillwater High School
Stillwater, Oklahoma

75

Acknowledgments

Special thanks to Steve DeBauge, Lenda Hill, and Guy Harris of
Texas Instruments for their insightful comments and suggestions for
improving the final version of this manual.

Thanks also to students in the Mu Alpha Theta math club at
Stillwater High School and students in the Pi Mu Epsilon math club at
Oklahoma State University for their evaluations of preliminary versions of
this manual. Many of their suggestions have been included in the final
version of the manual.

Jim Bowen
Stilwater High School
Stillwater, Ok.
1997

76

77

To The Students

The purpose of this manual is to assist high school students in writing original
programs on the TI - 82 and TI - 83 graphics calculators. All the examples presented in
this manual will work on both calculators, however the TI - 83 has a few additional
features that the TI - 82 does not have. In certain instances these new features allow the
TI - 83 programmer to perform operations not available to the TI - 82 programmer. This
manual has been careful to include only techniques which work the same on both
calculators.

Creating original programs on graphics calculators is similar to writing programs
in other programming languages. Students who have completed a previous programming
course in a language such as BASIC or PASCAL will recognize many similarities
between the languages. The primary difference between editing programs on a graphics
calculator and a normal desktop computer involves the manner in which the program
statements are entered. On a desktop computer you generally type each program
statement letter by letter, similar to using a word processor. Most of the program
instructions on a graphics calculator, however, are entered by selecting the appropriate
instruction from various menus within the calculator. In one sense, this makes
programming the calculator easier because it minimizes the typing required. Initially,
however, it makes programming the calculator more frustrating because you must learn
in which menu to search to find a particular instruction, and the location of these
instructions is not always obvious. As you gain experience programming the graphics
calculator, you will quickly become adept at locating the required instruction within the
various menus.

This manual assumes that you have already been introduced to, and are familiar
with, the basic operations of the calculator. This manual will attempt to extend that basic
knowledge by presenting descriptions of the programming instructions available on the
calculators. This will include the use of numerous examples and sample programs to
show you how these individual instructions may be combined into complete programs.
This will allow you to expand the capabilities of your calculator well beyond the built in
functions.

You should be advised, however, that this manual is intended to complement the
calculator guidebook, not replace it! You will want to keep your calculator guidebook
handy because you will probably make frequent reference to it to recall details about
specific calculators functions as you write your programs. Particularly useful is the
"menu map" located near the back of the guidebook. This "menu map" shows the menu
location of every instruction available on the calculator.

78

INTRODUCTION

79

Throughout this manual, the following format has been applied:

First, the programming instructions you enter into the calculator are shown on the
l.eft side of the page. The output to the screen when the program is executed is shown in
the shaded area on the right side of the page.

IMPORTANT:
Notice that some text is in boldface type while other text is in normal
type.

Instructions which are presented in boldface type represent instructions
which must be selected from menus. You do not type them in letter by
letter !

Any text which is not in boldface must be entered letter by letter by
using the key and choosing the appropriate alphabetic character
from the calculator keyboard.

:ClrHome

All boldface instructions must be
selected from menus !

:Input "ENTER AMOUNT ", N
:Disp "AMOUNT = " , N

ENTER AMOUNT 14
AMOUNT=

Any text not in boldface must be
entered letter by letter using the
calculator keyboard.

14

To Enter and Run Programs on the Graphics Calculator

To Create a New Program

Assume you wanted to write a simple program named DEMO that just printed
the word "HELLO" on the home screen.

Follow these steps:

(I) Hit the ElliB] key to enter the program mode.

(2) Then hit the
i[i11l1.

key twice to highlight [NEw] for a new program, then hit

(3) Type DEMO to name the program, then hit [Bll1J.
(4) Now enter your program statements:

(a) Hit the key to view the programming menus.
(b) Hit to highlight [11 o].
(c) Hit to highlight 8: Cir Home , then hit 111111 to move the

ClrHome instruction from the menu into your program.
(d) Hit to start a new line beginning with a : .
(e) Hit to view the programming menus.
(f) Hit to highlight [11 o].
(g) Hit to highlight 3: Disp, then hit I~lllli: to move the Disp

instruction from the menu into your program.
(h) Lock the calculator in the alpha mode by hitting the f 1111 , lll~Bl keys.

This enables you to type letters from the keyboard.
(i) Now type "HELLO", then hit fti&!II to complete this statement.

t·::···········a,·,,.
(5) The program is now finished, so hit lltil, [QUIT] to exit the program mode.

The program is automatically stored under the name DEMO.

To Run the Program DEMO

(1) Hit the E1lllu1 key to enter the program mode.

(2) Hit to highlight the program DEMO , then hit the it!IJIJ key to load
the program.

(3) Now hit Ille] again to run the program.

(4) The program and output should have looked as follows:

PROGRAM: DEMO
:Cir Home
:Disp "HELLO"

I HELLO

80

To Edit Existing Programs on the Graphics Calculator

The only time you choose "NEW" on the program menu is when you initially create a
new program.

If you want to make changes to an existing program, follow these steps :

(1) Hit the 111111 key to enter the program mode.

(2) Hit the key once to highlight [EDIT]. This puts you in the editing mode
to make changes to existing programs.

(3) :E-Iittht!])il key to highlight the program name you want to edit, then hit the
1Bll>Jkey.

(4) You should now see a listing of the program, and you can make whatever
changes you like.

(5) After making the required changes, hit El!IJ , (;1111 and the new version of
your program is automatically stored under the same program name.

tip: Ifyou make typing mistakes while editing, you can use the key,
or the lill~J , £~1111 keys to make corrections. -

tip: To add anew line between existing lines in a program, first use the arrow
keys to position the cursor where you want the new line to begin, then
hit E\i)l:iJ , f Iii , £1111111 . This will open a space for you to
insert the new line.

tip: There may be times when you will want to save a modified copy of a
program under a different name while preserving the original program.
To do this, first create a new program and choose a new name for the

1iiilt 1liit :n the ~;~t ~!:~1~:~:; ::c r0fii::,u~~ ' tll!J ,
highlight the name of the original program and hit . This moves
a copy of the entire original program into the new program . Now you
can change the copy program and save it under the new name while
preserving the original program under the old name.

81

PROGRAMMING
INSTRUCTIONS

82

83

The PRGM CTL and I I O menus

When writing programs, there are two primary menus that contain most of the
calculator's basic programm~ instructions. Both of these programming menus are
accessed by hitting the liiii;J key while editing a program. The two menus are the
control menu [CTL], and the input I output menu [1 , o] . There are some minor
differences between the menus on the TI - 82 and.the Tl - 83 , however the discussions
in this manual will only involve menu items that are common to both calculators. The
menu items that will be discussed in this manual are reproduced here for yoti.r reference.

CTL menu

:H
: Then
: Else
: For(
: While
: Repeat
: End
: Pause
: Lbl
: Goto
: Menu (
:prgm
: Return
: Stop

1/ 0 menu

: Input
: Prompt
: Disp
: DispGraph
: DispTable
: Output(
: ClrHome
: ClrTable

Generally, if an instruction involves input or output operations it will be found in
the [1 , o] menu. If an operation involves control of the flow of the program, it will be
found in the [CTL] menu.

These are the two primary programming menus, but remember, when writing
programs you may use almost every instruction or function available in all menus on the
calculator. This is another good reason to keep the calculator guidebook "menu map"
handy when writing programs !

ClrHome Instruction I
The ClrHome instruction clears the text screen and places the cursor in

the upper left hand comer.

Note: The ClrHome instruction is found in the ltiliij , [11 o] menu.

Pause Instruction I
The Pause instruction is used to temporarily delay execution of a

program so you will have time to view text or graphs screens. When you are
ready to continue, just hit the lft.iffll key.

Note: The Pause instruction is found in the 1-j , [CTL] menu.

Stop Instruction I
The Stop instruction permanently stops the execution of a program and

displays the home screen. It may be placed at any point in the program where
you want the program to end.

Note: The Stop instruction is found in the 1m11, l CTL 1 menu.

I DispGraph Instruction I
The DispGraph instruction displays the current graph. It is frequently

used to switch the calculator from text mode to graphics mode within a program.

~ The DispGraph instruction is found in the lill'fl , [11 o] menu.

84

I Disp -The Display Instruction I
This instruction is used to print either text or numeric information on the screen, or to
return to the home screen from another display mode such as graphics.

EXAMPLES:

tip: Prior to using the Disp instruction you might elect to use the Cir Home
instruction so you begin with a clean home screen.

I. To print text information,just enclose the message you want to print within double
quotes:

:Cir Home THIS IS A DEMO
:Disp ''THIS IS A DEMO"

tip: Instead of hitting the [f;i:iilirJ key prior to each character, you can lock the
• . . '1''\iiJiPI''·• ·,.·,.·,,;:·:.;:g,:;;:,;::;·;·,1:,-

calculator m the alpha mode by hittmg • t~wrH: : JW,'i(~:qi ·,, .. .,., /.·'··?~~--'-

3. The maximum number of characters you can print across the screen is 16.

85

4. If the text message is longer than one line you must use multiple Disp instructions to
print it. For example, to print "This sentence requires more than one line":

:Cir Home
:Disp "THIS SENTENCE"
:Disp "REQUIRES MORE"
:Disp "THAN ONE LINE"

TIDSSENTENCE
REQUIRES MORE
THAN ONE LINE

5. To print a blank line, use two successive quotes in a Disp instruction:

:Cir Home
:Disp "THIS SENTENCE"
:Disp""
:Disp "REQUIRES MORE ''
:Disp""
:Disp "THAN ONE LINE"

TIDSSENTENCE

REQUIRES MORE

THAN ONE LINE

Disp - Continued:

tip: To keep from splitting words while printing~ don't allow the
trailing quote to extend more than one character beyond the
initial quote. If a word does extend beyond the initial quote, then
end the first part of the message between.words and continue the
message on the next line using a new Disp instruction.

86

6. You can display both text and numeric information using a single Disp instruction by
placing a comma between each value:

:Cir Home
:7.54 ~N
:Disp "THE VALUE IS", N

THE VALUE IS
7.54

7. You may .include an arithmetic expression within a Disp instruction. The expression
will be evaluated before the fmal value is displayed:

:Cir Home
:Disp "THE VALUE
IS",(7+9)/3

THE VALUE IS·
5.333333333

8. You can control the number of decimal places by using the Round function within a
Disp instruction:

:Cir Home
:8/3 ~N
:DispN
:Disp Round (N,3)

2.666666667
2.667

9. If you want to display a result in fractional form, use the ~ Frac function within the
Disp instruction:

:Cir Home
:8/3 ~N
:DispN
:Disp N ~ Frac

2.666666667
8/3

87

Disp - Continued:

10. You can fix the number of decimals to be displayed throughout a program by placing
the instruction Fix # at the beginning of your program.

:Fix 2
:Cir Home
: 3.5678765 ~ A
: 234.6758878 ~ B
: 7.878912 ~ C
:Disp A,B, C
:Float

3.57
234.68

7.88

Note: To enter the Fix instruction you must be in the program edit mode.
Then hit [[l;lll]J , i/1;') to FLOAT, Ii] to 2, then hit [/ii!lll~il

Note: The calculator will remain fixed at2 decimals even after your program is
finished executing unless you reset the mode back to Float at the end of
the program.

11. If you want the output to be displayed horizontally instead of vertically, you can
enclose the output in braces { } which prints the values in list form:

:Cir Home
:46~A
: 8~B
: 234~C
:Disp { A , B , C }

{ 46 8 234}

88

Output - The Output Instruction I
The Output instruction gives you more control over the positioning of output on

the screen than the Disp instruction. You can specify the exact row number and column
number where you want the output to begin. Remember, you have 8 horizontal rows
down the screen and 16 vertical columns across the screen.

The format of the instruction is: Output (row#, col#, value)

EXAMPLES:

1. To place the words "HI THERE" near the center of the screen:

:Cir Home
:Output (4, 7, "HI")
:Output (5, 5, "THERE") HI

THERE

2. The Output instruction may be used to display both text and numeric information on
the same line:

:Cir Home
:95~M
:17~F HERAGEIS17
:Output (3, 1, "HER AGE IS")
:Output (3, 12, F) IDS SCORE JS 95
:Output (5, 1, "IDS SCORE IS")
:Output (5, 14, M)

tip: When using two Output instructions to print on the same line, count
the number of characters in the first Output instruction and this will
tell you in which column to begin the second Output instruction.

89

Input -The Input Instruction I
The Input instruction allows the user to enter values into the calculator and store

those values in specified variables.

The format of the instruction is either: Input "TEXT",variable
or Input variable

EXAMPLES:

1. In the most basic form, allow the user to enter a number, store that number in the
variable "N", and then display the result:

:Cir Home
:Input N
:Disp N

Notice that the Input instruction displays a "?" and waits for the user to enter a
value.

2. Normally, when you use an Input instruction you will want to display a message
telling the user what to enter. This message is called a "prompt", and there are several
ways to display a prompt:

(A) The prompt may be enclosed within quotes in the Input instruction. Include a
comma before the variable name.

:ClrHome ENTER A VALUE 5.2
:Input "ENTER A VALUE ", N 5.2
:Disp N

Notice the question mark has been replaced by a fl.ashing cursor.

(B) The prompt may be placed in a Disp instruction prior to the Input instruction.

:Cir Home
:Disp ''ENTER A VALUE"
:Input N
:Disp N

ENTERA VALUE
? 5.34e4

57300

Notice the question mark now prints on the line following the prompt.

90

Input - Continued:

3. The Input instruction also allows the user a method of assigning functions to the Y=
variables within a program. For example, suppose you wanted to assign the function
X 2 - 9 to the variable Y 1. To do this, use Y 1 as the variable in your Input instruction
and make sure you enclose "X 2 - 9" within quotes as you enter it in the program.

Notes:
(a) To select Y1, hit i!lll;J , iltlli!J, [Function l , and then select Y1.
(b) To select =, hit 111111, Emil;} , and select =.

:Cir Home
:Disp "ENTER FUNCTION"
:Disp "(WITHIN QUOTES)"
:Input "Y1 = ", Yt

ENTER FUNCTION
(WITHIN QUOTES)
Y1 = "X 2 - 9"

Remember, you must enclose the function within quotes as you enter it !

Now hit the 1ElliJ key and you will see that X 2 - 9 has been assigned to Y 1 .

91

Prompt - The Prompt Instruction I
The Prompt instruction is similar to the Input instruction. It also allows the user

to enter values into the calculator and store the values in variables. One or more variables
may be included. within a single Prompt instruction. The Prompt instruction displays the
variable name, including =?, when executed. However, unlike the Input instruction,
you cannot include a prompt message to the user within a Prompt instruction.

The format of the instruction is: Prompt varl, var2, ...

EXAMPLES:

1. The primary difference between the Prompt and Input instructions is that the
Prompt automatically displays the variable name while the Input instruction does
not:

:Cir Home
:Input "ENTER AV ALUE ", N
:Prompt N

ENTER AV ALOE 17
N=?17

Notice the difference between the two instructions.

2. You may use one or more variables (separated by commas) in a single Prompt
statement:

:Cir Home
:Prompt A, B, C

I A=?4
B=?S
C=?6 I

3. You may also use the Prompt instruction to assign values to the built-in calculator
variables. Suppose you want to change the Window variables to + I - 20:

Note: To select the variables, hit ,[)11111, [window l, [Xmin J etc.

:Cir Home
:Prompt Xmin, Xmax
:Prompt Ymin, Ymax

Xmin =?-20
Xmax=? 20
Ymin =?-20
Ymax =? 20

92

If - Then Instruction I
The If - Then instruction allows a program to make decisions and then branch to

alternative courses of action.

The format of the If- Then instruction is :

: If condition
: Then

statement 1
statement 2
etc.

: End

Note: If, Then, and End are all separate statements and you must
select each One individually from the l.mo'1fll , [CTL] menu.

The If - Then instruction works by first evaluating the condition to see if it is true
or false. If the condition is true, the block of statements between Then and End are
executed. If the condition is false, the block of statements between Then and End are
skipped, and execution of the program resumes at the first statement following the End
statement.

The condition is evaluated using the following relational operators :

. Equal to

* Not equal to

> Greater than

~ Greater than or equal to

< Less than
:::;; Less than or equal to

Note: To select relational operators, hit l1ll~j , IJ:f.ll!Jl.

If - Then - Continued:

EXAMPLES:

1. Write a program which will allow you to enter your age and then tell you if you are
old enough to drive:

:Cir Home
:Input "ENTER AGE", A
:HA~ 16
:Then
:Disp "YOU CAN DRIVE"
:Disp "A CAR"
:End
:Disp""
:Disp "FINISHED"

ENTERAGE 18
YOU CAN DRIVE
ACAR

FINISHED

Now observe what happens when your age is less than 16.

ENTERAGE 14

FINISHED

Notice that the block of statements between Then and End are only
executed if the condition is true, but the word "FINISHED" prints in either
case.

2. You may use compound conditions in If - Then statements by using Boolean
operators. The Boolean operators are :

AND - True only if both parts are true
OR - True if at least one part is true
XOR - True if only one part is false
NOT - True if the original condition is false

Note: To sdect the Boolean operators hit
£Iil~!!i , , [LOGIC]

93

We will now modify example 1 to offer a discount to students who are old enough to
drive and who have a 3. 0 GP A:

H - Then - Continued:

EXAMPLE 2 continued:

:Cir Home
:Input "ENTER AGE", A
:Input "ENTER GPA", G

:If A 2 16 and G 2 3.0
:Then
:Disp "YOU CAN DRIVE"
:Disp "WITH A DISCOUNT"
:End
:Disp""
:Disp "FINISHED"

ENTERAGE 18
ENTER GPA 3.5
YOU CAN DRIVE
WITH A DISCOUNT

FINISHED

Now run the program again and observe what happens if one of the
conditions is false.

94

3. In situations where only a single statement is to be executed if the condition is true,
then you may omit the Then and End statements. If the condition is true, the single
statement following the If instruction is executed. If the condition is false, execution
skips to the second statement following the If instruction.

:Cir Home
:Input "ENTER YOUR AGE ', A
:If A 2 16
:Disp "YOU CAN DRIVE"
:Disp "FINISHED"

ENTER YOUR AGE 18
YOU CAN DRIVE
FINISHED

Now observe what happens when your age is less than 16.

ENTER YOUR AGE 14
FINISHED

95

If - Then - Else Instruction I
The H -Then - Else instruction is similar to the If - Then instruction but there is

one important additional feature. The H - Then - Else instruction executes one block of
statements if the condition is true, and it executes a different block of statements if the
condition is false.

The format of the If - Then - Else instruction is :

:If condition
:Then
: statements if true
:Else
: statements if false
:End

The H - Then - Else instruction works by first evaluating the condition to see if it
is true or false. If the condition is true, the firs.t block of statements (the statements
between Then and Else) are executed. If the condition is false, the second block of
statements (the statements between Else and End) are executed

EXAMPLE:

1. Modify the previous U- Then example by using H - Then - Else to tell if:
(a) You are old enough to drive
(b) You are too young to drive

:Cir Home
:Input "ENTER AGE", A
:If A~ 16
:Then
:Disp "YOU CAN DRIVE"
:Disp "A CAR"
:Else
:Disp "YOU ARE TOO"
:Disp "YOUNG"
:End
:Disp""
:Disp "FINISHED"

ENTERAGE 14
YOU ARE TOO
YOUNG

FINISHED

Now run the program again and observe what happens if the condition is
true.

96

! . Lbl and Goto Instructions I
The Lbl and Goto instructions are used together to control the possible branches

that the flow of a program may follow.

The format of the Lbl instruction is: Lbl label

The format of the Goto instruction is : Goto label

Note: In both instructions, label is a single letter or number.
-- The Lbl and Goto instructions are found in the !£~:illliff , [CTL] menu.

When the program encounters a Goto instruction, the flow of the program
immediately branches to the line where the specified label is located.

EXAMPLES:

1. One common use of the Lbl and Goto instructions is to allow the user to run a
program more than once. To do this, put the Lbl instruction at the beginning of the
program, and put the Goto instruction in an U- Then instruction near the end of the
program.

:Lbl A
:Disp""
:Input "ENTER A VALUE ", X
:Disp X
:Disp "RUN AGAIN ? "
:Disp "(l) YES"
:Disp "(2) NO"
:Input "ENTER 1 OR 2: ", C
:H C= 1
:Goto A
:Disp ""
:Disp "FINISHED"

ENTER A VALUE 8
8
RUN AGAIN?
(l)YES
(2) NO
ENTER 1 OR 2: 1

ENTERA VALUE 9
9
RUN AGAIN?
(1) YES
(2) NO
ENTER 1 OR 2: 2

FINISHED

Notice if the user enters a 1, control of the program immediately transfers
from the Goto A instruction to the Lbl A instruction and the entire
program is executed again. If the user enters a 2, then the Goto A to
instruction is skipped and the program ends.

Lbl and Goto - Continued:

2. Programs are often written which contain several parts and the user is given the
choice of which part to run. The Lbl and Goto instructions may be combined with
the If- Then instruction to set up a menu to control. which part of a program is
executed:

:Cir Home
:Disp "PLEASE CHOOSE:"
:Disp "(1) PART A"
:Disp ''(2) PART B"
:Disp "(3) PART C"
:Input "ENTER 1, 2, OR 3 :", C
:Disp""
:If C = I
:Goto I
:H C=2
:Goto 2
:If C = 3
:Goto 3

:Lbl l
:Disp "THIS IS PART A"
:Goto 4

:Lbl 2
:Disp ''THIS IS PART B"
:Goto 4

:Lbl 3
:Disp "THIS IS PART C"

:Lbl 4
:Disp ""
:Disp "FINISHED"

PLEASE CHOOSE:
(1) PART A
(2) PART B
(3) PART C
ENTER 1, 2, OR 3: 1

TIDSISPART A

FINISHED

PLEASE CHOOSE:
(1) PART A
(2)PART B
(3) PART C
ENTER 1, 2, OR 3: 2

TIDSISPART B

FINSIHED

PLEASE CHOOSE:
(1) PART A
(2)PART B
(3) PART C
ENTER 1, 2, OR 3: 3

TIDSISPART C

FINISHED

Note: You must insert a Goto 4 instruction at the end of each part to prevent
following parts from also being executed.

97

Menu Instruction I
Since menus are so frequently used to control the flow of programs, the TI - 82

includes a separate Menu instruction.

The format of the Menu instruction is :

Menu ("TITLE" , "TEXT l ", label 1 , "TEXT 2" , label 2 , . . •)

where: "TITLE" - This is the title of the menu.
"TEXT 1", "TEXT 2", etc. - These are the menu choices.
label 1, label 2, etc. - These are the corresponding labels to

branch to.
Note: The maximum number of menu choices is seven.

EXAMPLE:

98

This example will show how one Menu instruction can be used to replace several
of the If - Then instructions used in the previous example menu :

:ClrHome
:Menu ("PLEASE CHOOSE:", "PA
RT A", 1, "PART B", 2, "PART
C", 3)

:Lbl 1
:Disp "THIS IS PART A"
:Goto 4

:Lbl 2
:Disp "THIS IS PART B"
:Goto 4

:Lbl 3
:Disp "THIS IS PART C"

:Lbl 4
:Disp""
:Disp "FINISHED"

PLEASE CHOOSE:
1: PART A
2: PART B
3: PART C

Now choose PART B by either:
(a) Hitth1g 2 on the keyboard
(b) Use El;]to highlight PART B,

and hit Eil1!1r1

THISISPART B

FINISHED

99

For Loop Instruction I
Although it may be used in several ways, the For loop is generally used to repeat

a block of statements a fixed number of times.

The format of the For loop is :

:For (var, initial, final, stepsize)

one or more statements

:End

where: var - This is the loop control variable.
initial - This is the initial value of the loop control variable.
final · - This is the final value of the loop control variable.
stepsize - This is the incremental value.

The For loop works by first setting the loop control variable equal to the initial
value. The loop then repeats all the statements between For. and End, incrementing the
control variable with each pass through the loop. The amount of the increment is given
by the stepsize value. The looping action finally stops when the value of the control
variable exceeds the final value. Then execution of the program resumes at the first
statement following the End statement.

Note: The stepsize is optional and if omitted it is assumed to be + 1

EXAMPLES:

1. Display the word "HELLO" five times using a For loop:

:Cir Home
:For (A , 1, 5)
:Disp "HELLO"
:End

HELLO
HELLO
HELLO
HELLO
HELLO

Notice that when the stepsize is omitted it becomes l by default!

For loop - Continued:

2. You can print the loop control variable as well:

:Cir Home
:For (A, 1, 5)
:Disp A
:End

3. The stepsize controls the increment value:

:Cir Home
:For (K, 1, 2, .2)
:Disp K
:End

4. You can run the loop backwards using a negative stepsize:

:Cir Home
:For (M, 5, 1, -1)
:Disp M
:End

1
2
3
4
5

1
1.2
1.4
1.6
1.8

2

5
4
3
2
1

100

5. You can allow the user to control the number of times the loop is repeated by using
input variables. instead of constants in the For instruction:

:Cir Home
:Input "ENTER FlRST ", F
:Input "ENTER LAST", L
:Input "ENTER STEP ", S
:Cir Home
:For (N, F, L, S)
:Disp N
:End

ENTER FIRST 3
ENTERLAST 5
ENTER STEP .5

3
3.5

4
4.5

5

101

For loop - Continued:

6. One common use ofloops is to find summation of values. Assume you wanted to find
the sum of the first 20 positive integers using a For loop. First, set the sum variable S
initially equal to zero. Then add the value of the loop control variable N to the current
sum with each pass through the loop. At the completion of the loop, print the final
value of the sum S :

:Cir Home
:O~ S
:For (N, 1, 20)
:S+N ~ S
:End
:Disp "SUM = ", S

SUM=
210

7. You may also use the loop control variable in expressions or functions within the
loop:

:ClrHome
:For (X, 1, 5)
:Output (X, 2*X, "HELLO")
:End

HELLO
HELLO

HELLO
HELLO

HELLO

While Loop Instruction I
The While loop is another looping structure that repeats a block of statements

within a loop.

The format of the While loop is :

: While condition

: statements if true

:End

102

The While loop works by first evaluating the condition to see if it is true or false.
While the condition is true, the block of statements inside the loop are executed
repeatedly. When the condition becomes false, the looping action stops and the program
transfers execution to the first statement following the End statement.

The While loop is generally used in situations where you may not !mow in
advance exactly how many times the loop will be executed.

EXAMPLES:

1. A While loop may be used to count by performing the following steps:

(a) First, set the counter variable (C) equal to an initial value.
(b) Increment the counter each time through the loop.
(c) Stop when the counter exceeds a specific final value.

Now use a While loop to print the numbers from 1 to 5 :

:ClrHome
: 1 ---1- C
:While C s 5
:Disp C
:C + 1 ---1- C
:End
:Disp "FINISHED"

FINISHED

1
2
3
4
5

103

While Loop Continued:

2. When using While loops, you must include a statement within the loop that changes
the value of the loop control variable. If this statement is omitted the program may
enter an infinite loop which would run forever without stopping. Using the previous
example, observe the effect of omitting the statement : C + 1 ~ C .

:Cir Home
: 1 ~c
:While C ~ 6
:Disp C
:End

1
1
1
1
1

etc

Notice that if there is no statement to change the value of C, the condition will
always be true and the loop: will never end !

Note: To interrupt a program while it is running, hit the ftR!l! key.

3. A While loop may be used to force the user to repeat an Input instruction until a
correct value is entered:

:Cir Home
:Input" 5 + 2 =",A
:While A=P-7
:Disp "WRONG"
:Disp "TRY AGAIN"
:Input " 5 + 2 = ", A
:End
:Disp "CORRECT"

5+2= 8
WRONG
TRY AGAIN
5+2= 4
WRONG
TRY AGAIN
5+2= 7
CORRECT

The first Input instruction in this program is called a "priming" Input
instruction because it "primes the loop". The Input statement inside the
loop is repeated until the user enters the correct answer.

Repeat Loop Instruction I
The Repeat loop is another looping structure that repeats a block of statements

within a loop.
The format of the Repeat loop is :

:Repeat condition . .
: statements if false

:End
Note: The Repeat instruction is found in the lii~lvl ' [CTL J menu.

104

The Repeat loop is similar to the While loop except it waits until the End
statement is encountered before it evaluates the condition. If the condition is false, the
block of statements inside the loop are repeatedly executed until the condition becomes
true. If the condition becomes true, the looping action stops and the program transfers
execution to the first statement following the End statement.

There is one primary difference between the While and Repeat loops. The While
loop is known as a "pre-test" loop which means it evaluates the condition before
executing the loop. The Repeat loop is known as a "post-test" loop which means it
evaluates the condition after executing the loop and encountering the End statement. The
effect of this difference is that the statements within a Repeat loop will always be
executed at least once regardless of whether the Repeat condition is true or false,
whereas it is possible that the statements within a While loop may never be executed at
~l .

EXAMPLES:

1. A Repeat loop may also be used to count. This example will be similar to the
previous While loop example 1 except that a Repeat loop will replace the While
loop.
Use a Repeat loop to print the numbers from l to 5 :

:Cir Home 1
: 1--+ C 2
:Repeat C > 5 3
:Disp C 4
:C+l-+C 5
:End

105

j prgm and Return Instructions I
The prgm and Return instructions are used together to allow one program to be

called and executed from another program.

The following example shows how the prgm and Return instructions work :

PROGRAM: ONE
:Cir Home
:Disp " THIS IS ONE "
: prgmTWO
:Disp " BACK TO ONE "

PROGRAM: TWO
:Disp " THIS IS TWO "
:Return

Note: You must not include a space in the prgmTWO statement

In this example, program ONE will call program TWO . The user initially runs
program ONE . When the prgm instruction is encountered, program TWO is called and
execution is transferred to the first line of program TWO. After program TWO is executed,
the Return instruction in program TWO transfers execution back to program ONE at the line
following the prgm instruction. The remainder of program ONE is then executed.

The output from the example above is :

THIS IS ONE
THIS IS TWO
BACK TO ONE

Students with previous programming experience will recognize this structure as being
similar to subroutines or sub-programs in other languages.

tip: The Return statement is optional. If the Return statement is omitted, an
implied return is considered to exist at the end of the called program, and
execution will ret~m to the main program.

rand Instruction I
The rand instruction generates random numbers between O and 1. One of the

main uses of the rand instruction is to program games on the calculator.

106

Generally, you will need random integers ranging between specific high and low
integer values. You can use the following formula to generate random integers between
chosen high and low integer values:

: int (rand * range) + low # ~ R

- converts a decimal number to an integer
- generates a random number between O and 1

where: int
rand
range
low#
R

- the range of numbers = (high # - low#) + 1
- the lowest possible integer in the range
- variable used to store the random integer

Note: The int instruction is found in the
E•mJ , , [NUM] , , [int] menu.

The rand instruction is found in the
, [PRB] , , [rand] menu.

EXAMPLE:

Suppose you wanted to write a program to simulate the roll of two dice. In this
case the high integer would be 6 and the low integer would be 1. The range is :

range = (high# - low #) + 1 = (6 - 1) + 1 = 6

This program will simulate rolling two dice 5 times:

:Cir Home
:For (X , 1 , 5)
: int (rand * 6) + 1 -)- A
: int (rand * 6) + 1 -)- B
:Disp {A, B}
:End

{ 3 5}
{ 1 6}
{ 4 4}
{ 4 2}
{ 5 6}

Note: Placing the output within { } will display them in list form.

107

fMin and fMax Instructions I
The fMin instruction returns the value of X which yields the minimum value of

a given function on a specified interval. The fMax instruction returns the value of X
which yields the maximum value of a given function on a specified interval.

The format of the fMin or fMax instruction is:

fMin (EXP,X,L,R)
tMax(EXP,X,L,R)

where: EXP = An expression or Y variable.
X = The independent variable.
L = The left endpoint of the range of X.
R = The right endpoint of the range of X.

EXAMPLE:

1. One of the most beneficial uses of the fMin and fMax instructions allows the
calculator to automatically determine the values for Ymin and Ymax to insure a
given function is entirely contained within the viewing window for specified values
of Xmin and Xmax. This automatic scaling feature may be demonstrated by the
following:

a.. First, use tM:in to determine the X value where the function minimum occurs.
b. Then evaluate the function at that X value and store the result in Ymin.
c. Now use fMax to determine the X value where the function maximum occurs.
d. Then evaluate the function at that X value and store the result in Ymax.

:Cir Home
:Disp " ENTER FUNCTION "
:Disp " (IN QUOTES) "
:Input" Yl =c ", Yl
:Prompt Xmin
:Prompt Xmax
:Cir Home
:Disp " SCALING GRAPH "
:Disp " PLEASE WAIT "
:tM:in(Yl , X, Xmin , Xmax)
~A
:Y1 (A)~ Ymin
:fMax(Yt , X , Xmin , Xmax)
~B
:Yl (B) ~ Ymax
:Cir Home
:DispGraph

ENTER FUNCTION
(IN QUOTES)

Y1 =" 3 - X 2 "

Xmin=? -3
Xmax=? 4

I SCALING GRAPH
PLEASE WAIT

108

The Draw Menu Instructions

The instructions contained in the DRAW menu are particularly useful for adding
information to the graphics screen of the calculator. By utilizing these instructions within
a program, you can draw lines, circles, and other figures, including text messages on a
graphics screen.

The DRAW instructions are contained in the ftl.l&~ , [DRA w] menu.

ClrDraw Instruction (DRAW MENU) I
The Cir Draw instruction is used to clear any existing drawings from the graphics

screen. It performs a similar function to the ClrHome instruction for the home screen.

109

Line Instruction (DRA w MENU) I
The Line instruction is used to draw or erase lines on the graphics screen.

The format of the Line instruction is:

To draw a line:

: Line (Xl, Yl, X2, Y2)

To erase a line:

: Line (XI, Yl, X2, Y2, 0)

The Line instruction draws a line from the point (Xl, Yl) to the point (X2, Y2).
This instruction may also be used to erase an existing line between the points by adding a
"O" after the last coordinate.

EXAMPLE:

1. Allow the user to enter the coordinates of two points (Xl, Yl) and (X2, Y2) and
then draw a line between the two points. Have the program pause until the user hits
taiiwl ' then erase the line. .

:ClrHome
:Disp "ENTER (Xl, Yl)"
:Disp "AND (X2, Y2)"
:Input " Xl = ", A
:Input " Yl = ", B
:Input " X2 = ", C
:Input" Y2 = ", D
:Cir Draw
:DispGraph
:Line (A, B, C, D)
:Pause
:Line (A, B, C, D, 0)

ENTER (Xl, Yl)
AND (X2, Y2)
Xl= -6
Yl= -8
X2= 3
Y2= 9

110

Horizontal and Vertical Line Instructions (DRA w MENU)

These instructions are used to draw horizontal or vertical lines across the entire
graphics window.

The format of the instructions are :

: Horizontal A

This instruction draws a horizontal line at Y = A.

: Vertical B

This instruction draws a vertical line at X = B.

EXAMPLE:

1. Allow the user to enter a Y position for a horizontal line and an X position for a
vertical line, and then draw these lines.

:Cir Home
:Disp " ENTER Y VALUE"
:Input" Y = ", H
:Disp " ENTER X VALUE"
:Input" X = ", V
:Cir Draw
:DispGraph
:Horizontal H
:Vertical V

ENTER Y VALUE
Y= -5
ENTER X VALUE
X=4

Horizontal and Vertical - Continued:

2. Draw a grid on the graphics screen by placing the Horizontal and Vertical
line instructions inside a" For Loop".

:Cir Draw
:ZStandard
:DispGraph
:For (P, -10, 10, 2)
:Horizontal P
:Vertical P
:End

I

111

112

! Circle Instruction (DRA w MENU) I
The Circle instruction allows the user to specify the (X, Y) coordinates of the

center of a circle and the radius, R , and then draws the circle on the graphics screen.

The format of the Circle instruction is :

:Circle (X. Y • R)

where: X = X coordinate of the center.
Y = Y coordinate of the center.
R = the radius of the circle.

EXAMPLE:

1. Allow the user to enter the (X , Y) coordinates of the center of a· circle and the
radius R , and then draw the circle on the graphics screen.

:ClrHome
:Disp " CENTER = (A , B)
"
:Prompt A
:Prompt B
:Disp " RADIUS = R "
:Prompt R
:Cir Draw
:ZSquare
:DispGraph
:Circle (A , B , R)

CENTER = (A, B)
A=?2
B=?J
RADIDS=R
R=?S

Note: Use ZSquare to prevent the circle from appearing distorted!

113

Tangent Instruction (DRA w MENU) I
The Tangent instruction draws the tangent line to a given function at a specified

X coordinate.

The format of the Tangent instruction is :

:Tangent (Exp , P)

where: Exp = An expression or Y function variable
in terms of X.

P = The X coordinate of the point on the function
where the tangent line is to be drawn.

EXAMPLE:

1. Allow the user to enter a function Yl and an X value. Then graph the function and
the tangent line at the specified value of X.

:Cir Home
:Disp " ENTER FUNCTION " .
:Disp " (IN QUOTES) "
:Disp ""
:Input" Yt = ", Yt
:Cir Home
:Disp " NOW ENTER THE "
:Disp "X COORDINATE OF"
:Disp " THE TAN GENT "
:Input" X = ", A
:Cir Draw
:DispGraph
:Tangent (Yl, A)

ENTER FUNCTION
(IN QUOTES)

NOW ENTER THE
X COORDINATE OF
THE TANGENT
X=l

114

Text Instruction (DRA w MENU) I
The Text instruction allows the user to display text information on the graphics

screen. The Text instruction may also include expressions and built-in calculator
functions.

or

The format of the Text instruction is:

:Text (R, c , " TEXT")

:Text (R, C," TEXT 1 ", EXP 1," TEXT 2 " 2 EXP 2 2 •••)

where: R
C

= the row number
= the column number

TEXT = the text message
EXP = a valid expression or built-in calculator function

The ranges of values for Rand Care: 0 s Rs 57
0 s C s 94

(0 , 0,_) ____________ ~ 0 , 94)

(57, 0) (57, 94)

Note: You must choose R and C values carefully to insure that the message
does not extend outside the viewing window !

Text - Continued:

EXAMPLES:

1. The Text instruction is frequently used to label an axis while graphing.

:Cir Home
:Cir Draw
:0 ~ Xmin
:10 ~ Xmax
:0 ~ Ymin
:10 ~ Ymax
:Text (0 , 0 , "HEIGHT ")
:Text (8 , 0 , " { FT) ")
:Text (57 , 40 , " TIME (SEC) ")
:DispGraph

HEIGHT
(FT)

TJME (SEC)

2. The Text instruction may also be used to display combinations of text messages
and the results of evaluating expressions and built-in functions. For example,
allow the user to enter two integers A and . B , and then use the Text instruction
to print the sum and the quotient of the two integers, and round off the result to
two decimal places,

:Cir Home
:Input" ENTER A", A
:Input " ENTER B ", B
:Cir Draw
:AxesOff
:Text (0 , 0 , " THE ANSWE
RS ARE:")

:Text (10 , 0 , " THE SUM 0
F ", A , " AND ", B , " IS ",
A+B)

:Text (20, 0, A," DIVIDED BY",
B, "IS", round (AI B, 2))

THE ANSWERS ARE:

THE SUM OF 20 AND 3 IS 23

20 DIVIDED BY 3 IS 6.67

Note: The AxesOff instruction is used to turn off the graphics axis
so the screen looks like the home screen.

115

116

! Draw Inv Instruction (DRA w MENU) I
The Drawlnv instruction draws the inverse of an expression or Y - variable. the

original function must be expressed in terms of X .

EXAMPLE:

The format of the Draw Inv instruction is :

:Drawlnv EXP

where: EXP = An expression or Y - variable
expressed in terms of X.

1. Allow the user to enter a function and store that function in Y 1. Then graph:
(a) The original function.
(b) The 45° line Y = X.
(c) The inverse of the original function using Drawlnv.

:Cir Home
:Disp " ENTER FUNCTION"
:Disp " (IN QUOTES) "
:Disp ""
:Input" Yt = ", Yl
:Cir Home
: "X" ~ Y2
:ZSquare
:Drawlnv Yt

ENTER FUNCTION
(IN QUOTES)

Yl = "X A 3 + 3 "

117

Pt - On Instruction (DRA w MENU) I
The Pt - On instruction plots an individual point on the graphics screen at a given

(X, Y) coordinate.

The format of the Pt - On instruction is :

:Pt - On (X , Y }

where: X = The X coordinate of the point.
Y = The Y coordinate of the point.

EXAMPLE:

1. One use of the Pt - On instruction is to allow the user to select the spacing between
individual points when plotting a graph. First, allow the user to enter a function and
store it in Y 1. Then, use the FnOff instruction to tum off Y 1 so the calculator will not
automatically graph it. (FnOff is found in the [Y - VARS] menu)

Then allow the user to enter Xmin , Xmax , and the AX spacing between each
point. Put the program in a loop from Xmin to Xmax using the given stepsize and
evaluate the function at each X value to obtain the corresponding Y value. Then use
the Pt - On instruction to plot each point.

:Cir Home
:Disp " ENTER FUNCTION "
:Disp " (IN QUOTES) "
:Input" Yt = ", Yt
:Disp""
:Prompt Xmin
:Prompt Xmax
:Disp " SP ACING BETWEEN "
:Input" POINTS = ", S
:FnOff
:DispGraph
:For (A , Xmin , Xmax , S)
:Yt(A)~B
:Pt - On (A , B)
:End

ENTER FUNCTION
(IN QUOTES)

Yt = ". 5 X + 2 "

Xmin = -10
Xmax= 10
SPACING BETWEEN
POINTS= 1

118

nDeriv Instruction I
The nDeriv instruction returns the first derivative of an expression or Y- variable

with respect to a given variable at a specific point.

The format of the nDeriv instruction is :

:nDeriv (EXP, VAR 2 PT)

where: EXP = An expression or Y - variable.
VAR = With respect to VAR
PT = At the point PT.

EXAMPLES:

1. Allow the user to enter a function and store it in Y 1. Then ail ow the user to enter a
value for X. Have the program print the slope of the tangent line to the function Yl at
the specified X value.

:Cir Home
:Disp " ENTER FUNCTION "
:Disp " (IN QUOTES) "
:Disp""
:Input" Y1 = ", YI
:Disp ""
:Disp " ENTER X VALUE "
:Input "X = ", A
:nDeriv (Yt ,X, A)---? M
:Cir Home
:Disp " THE SLOPE OF THE "
:Disp" TANGENT LINt AT"
:Output (3 , 1 , " X = ")
:Output (3 , 5 , A)
:Output (5 , 1 , " IS M = ")
:Output (5 , 4 , M)

ENTER FUNCTION
(IN QUOTES)

Yl = "X /\ 2 "

ENTER X VALUE
X=2

THE SLOPE OF THE
TANGENT LINE AT
X = 2

IS M=4

119

nDeriv - Continued:

2. This example will demonstrate how the nDeriv instruction may be used to graph both
the first and second derivatives of a function entered by the user. The original
function will be stored in YI , the first derivative will be stored in Y2, and the second
derivative will be stored in Y3.

:Cir Home
:Disp " ENTER FUNCTION "
:Disp " (IN QUOTES) "
:Disp""
:Input" YI= ", Yt
: " nDeriv (Y 1 , X , X) " ~ Y 2

: " nDeriv (nDeriv (Y 1 , X , X) ,
X, X) "~ Y3

:FnOff
:Cir Home
:Cir Draw
:Text (0 , 0 , " ORIGINAL F
UNCTION GRAPH")

:FnOn 1
:Text (57 , 0 , " HIT ENTER
TO CONTINUE ")

:Pause
:Cir Draw
:Text (0 , 0 , " FIRST DERIV
A TIVE GRAPH")

:FnOn 2
:Text (57 , 0 , " HIT ENTER
TO CONTINUE ")

:Pause
:Cir Draw
:Text (57 , 0 , " SECOND DER
IV A TIVE GRAPH")

:FnOn 3

ENTER FUNCTION
(IN QUOTES)

Yl = "X A 2"

ORIGINAL FUNCTION GRAPH

HIT ENTER TO CONTINUE

FIRST DERIVATIVE GRAPH

HIT ENTER TO CONTINUE

SECOND DERIVATIVE GRAPH

Note: The FnOn instruction turns on each Y function as it is needed.

SAMPLE
PROGRAMS

120

121

The TI - 82 and TI - 83 Setup Programs

Sometimes you may run a program and the program will produce unexpected
results or perhaps it will not run at all. One reason this may happen is that the normal
default setting in the calculator have been changed by some previous operation. These
setup programs reset the values of the internal calculator variables to their default
settings, and this will help insure that your programs will produce the expected output. It
is suggested that you enter the setup program into your calculator and run it before
running your own programs, or whenever you want to return the calculator to its default
settings.

PROGRAM: SETUP82
:ClrHome
:Normal
:Float
:Radian
:Fune
:Connected
:Sequential
:FullScreen
:RectGC
:Coo rd On
:Grid Off
:Axes On
:Label Off
:FnOff
:PlotsOff
:ClrDraw
:ClrTable
:Zstandard
:ClrHome

PROGRAM: SETUP83
:ClrHome
:Normal
:Float
:Radian
:Fune
:Connected
:Sequential
:Real
:Full
:RectGC
:Coo rd On
:Grid Off
:AxesOn
:LabelOff
:ExprOn
:FnOff
:PlotsOff
:ClrDraw
:ClrTable
:Zstandard
:ClrHome

Note: Refer to the "menu map" in the guidebook to locate each of these instructions.

Note: Sample Program 8 will demonstrate how the setup program may be linked to your
programs so it will be automatically executed each time you run one of your
programs.

Note: These setup programs are not "fixed". You may add or remove any of the instructions
you choose to suit your programming needs !

Sample Program 1

This program will demonstrate how a formula may be stored in a program
and then be evaluated using input from the user.

122

A common problem in an Algebra class is to use the fonnula for simple interest to
detennine the future value of money.

The formula for simple interest is : A = P (1 + R) A T

where : A = Final Amount
P = Initial Principal
R = Yearly Interest Rate (in decimal form!)
T = Time (in years)

Programming Plan of Attack :
(1) First, display the formula so the user can see it.
(2) Allow the user to enter P, R, and T.
(3) Change R into decimal form by dividing by 100.
(4) Evaluate the formula and store the result in A.
(5) Clear the screen and display the result.

Assume: P = $1000
R = 8.3 %
T = 15 years

PROGRAM: MONEY
:Cir Home
:Disp "A=P (1 +R) I\ T"
:Disp""
:Prompt P
:Prompt R
:Prompt T
:RI 100 ~R
:P (l+R) I\ T ~ A
:Cir Home
:Disp "FINAL AMOUNT=", A

A=P (l+R) AT

P=? 1000
R=? 8.3
T=? 15

FINAL AMOUNT =

3306.944067

Sample Program 2

If you are given the coordinates of two points (X1 , Y 1) and (X2 , Y 2) you can
find the midpoint between the two points and the distance between the two points by
using the following formulas:

Midpoint = (Xi+ X2) , (Y 1 + Y 2)

2 2

Distance = ..[((X2- X1) 2 + (Y2- Vt) 2)

123

Write a program which will allow the user to enter values for X1, Y1, X2, Y2 and
then calculate and display the coordinates of the midpoint and the distance between the
two points.

PROGRAM: POINTS
:C!rHome
:Disp "ENTER THE"
:Disp "COORDINATES"
:Disp""
:Input "Xl = '', A
:Input "Yl = ", B
:Input "X2= ", C
:Input "Y2= ", D
:(A+C)/2~M
:(B+D)/2~N
: ..J ((C -AY2 + (D-B Y'2)) ~ E
:Cir Home
:Disp "MIDPOINT IS"
:Disp "X ="
:Disp M ~ Frac
:Disp "Y ="
:Disp N ~ Frac
:Pause
:Cir Home
:Disp "DISTANCE ="
:Disp round(E , 3)
:Disp "OR IN '1 FORM ="
:Output (4, 1," v")
:Output (4, 3, E I\ 2)

ENTER THE
···COORDR~ATES

I

Xl= 2
Yl= 9
X2= -8
Y2=-6

MIDPOINT IS
X=

Y=

DISTANCE=

OR IN '1 FORM=
v 325

I

18.028

Sample Program 3

This problem will be solved in three different ways to give you a chance to
compare loops created by Goto, While, and Repeat instructions.

124

Write a guessing game program which will generate a random number between 1
and 100. Then allow the user to guess the number. Tell the user if the guess is too high or
too low, and then let them guess again until they get it right. Also, tell the user how many
guesses it took to find the number. Then allow a friend to try the game and see who takes
the least number of guesses.

In the programs that follow : R = The random number (1 ~ R ~ 100)
G = The user's guess
T = The number of guesses

The first program, GUESSl, will solve the problem using a Goto loop:

:PROGRAM: GUESSl
:Cir Home
:O~T
: int (rand * 100) + 1 ~ R
:Lbl A
:Input "ENTER GUESS ", G
:T+l~T
:H G>R
:Disp "TOO HIGH "
:If G<R
:Disp "TOO LOW "
:If G-::f:R
:Goto A
:Disp""
:Disp "CORRECT:"
:Disp "GUESSES = ", T

ENTER GUESS 50
TOOIDGH
ENTER GUESS 30
TOO LOW
ENTER GUESS 37
TOO LOW
ENTER GUESS 44
TOOIDGH
ENTER GUESS 41

CORRECT:
GUESSES=

5

Note: You might want to review the discussion on the random number

instruction, rand, in the instruction section !

125

Sample Program 4

This program will solve the same problem presented in Sample Problem 3 using
a While loop:

:PROGRAM: GUESS2
:Cir Home
: int (rand * 100) + 1 ~ R
:Input "ENTER GUESS ", G
: 1 ~T

:While G =I= R
:H G>R
:Then
:Disp "TOO HIGH "
:Else
:Disp "TOO LOW " .
:End
:Input "ENTER GUESS ", G
:T+l~T
:End
:Disp""
:Dsfp "CORRECT:"
:Disp "GUESSES = ", T

ENTER GUESS 50
TOO LOW
ENTER GUESS 85
TOO LOW
ENTER GUESS 95
TOOfilGH
ENTER GUESS 91
roomGH.
ENTER GUESS 87
TOO LOW
ENTER GUESS 89
TOO LOW
ENTER GUESS 90

CORRECT:
GUESSES=

7

Sample Program 5

This program will solve the same problem presented in Sample Program 3 using
a Repeat loop:

:PROGRAM: GUESS3
:Cir Home
: int (rand* 100) + 1->, R
:0--->,T
:Repeat G :=; R
:input "ENTER GUESS ", G
:H G>R
:Disp "TOO HIGH"
:If G <R
:Disp "TOO LOvV"
:T+l->,T
:End
:Disp""
:Disp "CORRECT:"
:Disp "GUESSES = ", T

ENTER GUESS 50
TOOfilGH
ENTERGUESS 10
TOO LOW
ENTER GUESS 36
TOO LOW
ENTER GUESS 42

CORRECT:
GUESSES=

4

126

Sample Program 6

If you flip a coin repeatedly it should come up heads 50 % of the time and tails
50 % of the time. However~ if you only flip the coin twice, there is a distinct
possibility that you might get 100 % heads or 100 % tails.

Write a program which demonstrates that the greater the number of flips, the
more likely the final percentages will approach 50 % each.

Programming Plan of Attack:
(1) First, allow the user to enter the number of flips (F).
(2) Set up a For loop from 1 to F.
(3) Let 1 = heads and 2 = tails and use a random number generator from 1 and 2.
(4) Count the number of heads (H) and tails (T).
(5) When the loop finishes, display the number of heads and tails.

Include the % heads (C) and the % tails (D).

:PROGRAM: FLIP
:Cir Home
:Disp "HOW MANY FLIPS?"
:Input F
:Cir Home
:Output (1 , 1 , " FLIP NO. ") .
:Output (3, 1," RESULT =")
:O~H
:O~T
:For (N , 1 , F)
: int (rand * 2) + 1 ~ R
:If R= 1
:Then
:H+l~H
:Else
:T+l~T
:End
:Output (1 , 10 , N)
:Output (3 , 9 , R)
:End
:Cir Home
: (HI F) * 100 ~ C
: (T IF) * 100 ~ D
: round (C , 0) ~ C
: round (D , 0) ~ D
:Output (1, 1, "TOTAL =")
:Output (1 , 8 , F)

:Output (2 , 1 , "HEADS = ")
:Output (2 , 8 , H)
:Output (3, 1 , "TAILS =")
:Output (3 , 8 , T)
:Output (5 , 1
,"PERCENTAGES:")
:Output (6 , 1 , "HEADS ")
:Output (6 , 7 , C)
:Output (7 , 1 , "TAILS ")
:Output (7 , 7 , D)

FLIP NO. 34 etc

RESULT 1 etc

TOTAL =50
HEADS =23
TAILS =27
PERCENTAGES:
HEADS 46
TAILS 54

127

128

Sample Program 7

This program will demonstrate how to enter a function within a program and how
to switch from text to graphics mode.

Allow the user to enter a function and then graph that function on a 10 by 10
graph scale. When the program finishes execution, leave the graph on the screen so the
user can perform other operations on it.

Programming Plan of Attack:
(1) Allow the user to enter the function and assign it to the graph variable Y 1 .

Note: Remember, the function must be enclosed within quotes as you enter it!
(Y · ti d · th •·1i4@.lt1t ··i·•t?tJntnww1t 1 F. . y) 1 1s oun m e : <id?k,: : , · •···N',:-.VJlUt,• : , : unctmn , 1 menu .. ··· .. ··-:.'·.····.·· . '··.·,.•/•/•·.~, .. ;.···· ····.

(2) Display a message to the user telling them what they will see.
(3) Display the graph and end the program.

PROGRAM: GRAPHFN
:Cir Home
:Disp " ENTER FUNCTION "
:Disp " (IN QUOTES) "
:Disp""
:Input" Y1 = ", Y1
:Cir Home
:Disp " HIT ENTER TO SEE "
:Disp " GRAPH ON A "
:Disp " 10 BY 10 SCALE "
:Disp""
:Disp " THEN YOU CAN "
:Disp " TRACE, ZOOM, ETC "
:Pause
:Cir Home
:ZStandard

ENTER FUNCTION
(IN QUOTES)

Y1 = "X A 2 - 6"

IDT ENTER TO SEE
GRAPH ON A
10 BY 10 SCALE

THEN YOU CAN
TRACE, ZOOM, ETC

Note: You will get an error message if you forget to put quotes around the function!

tip: Instead of using DispGraph, use ZStandard. ZStandard will both
display the graph and zoom to a 10 by 10 scale !

129

Sample Program 8 · I
This program will demonstrate how one program can call another program.

This example will use the same problem presented in Sample Program 7,
however, one additional instruction will be added at the beginning of Sample Program 7.
This new instruction will call the TI - 82 setup program before executing Sample
Program 7. By calling the setup program, you will automatically reset all the system
variables to their default values before your main program runs, thus assuring that your
program will produce the output you expected it to. It is possible that the system
variables may have been changed to a setting that is not compatible with the program you
are attempting to run, and the setup program will reset these variables to prevent possible
problems.

Note: The prgm instruction is found in the :!\mill , [CTL] menu.

PROGRAM: GRAPHFN
:prgmSETUP82
:Disp " ENTER FUNCTION "
:Disp " (IN QUOTES) "
:Disp""
:Input" Y1 = ", Y1
:ClrHome
:Disp " HIT ENTER TO SEE "
:Disp " GRAPH ON A "
:Disp " 10 BY 10 SCALE "
:Disp""
:Disp " THEN YOU CAN "
:Disp " TRACE, ZOOM, ETC "
:Pause
:ClrHome
:ZStandard

PROGRAM: SETUP82
:ClrHome
:Normal
:Float
:Radian
:Fune
:Connected
:Sequential
:FullScreen
:RectGC
:CoordOn
:Grid Off
:Axes On
:LabelOff
:FnOff
:PlotsOff
:ClrDraw
:ClrTable
:Zstandard
:ClrHome

Note: Notice that even though the Return statement at the end of program SETUP82 has
been omitted, an implied return exists and execution still returns to the calling
program.

130

Sample Program 9

This program will demonstrate how the Line instruction from the [DRA w] menu
may be used to draw a triangle on the screen.

Allow the user to enter the coordinates of the three vertices of a triangle (X1 , Y 1)

, (X2 , Y 2) , (X3 , Y 3) . Then allow the user to set the size of the graph window by
selecting the four window values XMIN , XMAX , YMIN , YMAX .

The format of the Line instruction is : Line (X1 , Y 1 , X2 , Y 2)

Note: This instruction will draw a line between points (X1 , Y 1) and (X2 , Y 2) •

The Line instruction is found in the lll~l~!i!l!>RAW] menu.
The window variables, are found in the lirm:I , [WINDOW] menu.

Programming Plan of Attack:
(1) Allow the user to enter the coordinates of the three vertices: (A,B), (C,D), (E,F)
(2) Then allow the user to enter the four graph window values.
(3) Then use three separate Line instructions to .draw the three lines to form a triangle.

PROGRAM: DRA WTRI ,
:Cir Home
:Disp "ENTER THE"
:Disp "COORDINATES OF"
:Disp "THE VERTICES"
:Disp " (Xl,Yl), (X2,Y2)"
:Disp "AND (X3,Y3)"
:Input" Xl =",A
:Input " Yl = ", B
:Input " X2 = ", C
:Input " Y2 = ", D
:Input " X3 = ", E
:Input " Y3 = ", F
:Cir Home
:Disp "ENTER WINDOW"
:Disp "VALUES "
:Input " XMIN = ", XMIN
:Input " XMAX = ", XMAX
:Input " YMIN = ", YMIN
:Input" YMAX = ", YMAX
:DispGraph
:Line (A, B, C, D)
:Line (C, D, E, F)
:Line (E, F, A, B)

The output for Sample Program 9 :

ENTER THE
COORDINATES OF
THE VERTICES
(Xl,Yl) , (X2,Y2)
·AND (X3,Y3)
Xl= 10
Yl= 5
X2= -3
Y2= -8.
X3 = -12
Y3= 13

ENTER WINDOW
VALUES:·
XMIN = -15
XMAx= 10
YMIN = -10
YMAX= 20

Note: The ClrDraw instruction clears previous 4r~:vv,ings from the graph.
The ClrDraw instruction is found in the l~ilMl , [DRAW] menu.

13+

Sample Program 10 . !
This program will demonstrate how the calculator may be used to graph conic

sections. It will also show the importance of coordinate geometry in writing
mathematical programs.

The equation of an ellipse in standard form is :

(X-H) 2 + (Y-K) 2 = 1
A2 B2

Where: (H, K) = the coordinates of the center of the ellipse.
A and B = the lengths of the semi-major and semi-minor axes.

132

Write a program which allows the user to enter the coordinates of the center of
the ellipse (H , K) , and values for A and B. Then graph the ellipse initially on a 10
by 10 graph ~cale. The graph should include both the major and minor axes. Then give
the user the option to zoom in or zoom out using a scale factor of 2.

Programming Plan of Attack:
(1) Because an ellipse is not a function (remember the vertical line test from Algebra !

) you cannot graph it directly on a calculator because the calculator can only graph
functions. You can, however, split the ellipse into two parts, a top half and a bottom
half. Each of these halves is a function and each may be graphed separately to form
a complete ellipse. To algebraically split an ellipse into top and bottom halves, solve
the ellipse equation for Y. The resulting equation is :

Y = K ± v (B 2 - (B 2 I A 2)(X - H) 2)

The top half of the ellipse is given by :

Y1 = K + v (B 2 - (B 2 I A 2) (X - H) 2)

The bottom half of the ellipse is given by :

Y2 = K - v (B 2 - (B 2 I A 2) (X - H) 2)

Now assign the top function to graph variable Y1 and the bottom function to Y2.

(2) Allow the user to enter values for H, K, A, B

133

Sample Program 10 - Continued:

(3) Use the Line instruction to draw the major and minor axes by referring to the
following diagram:

(H,K+B)

(H,K-B)

Use: Line (H-A, K, H +A, K)
Line (H , K - B , H , K + B)

(4) Initially graph the ellipse with a 10 by 10 graph scale (S = 10), then allow the
user to zoom in or zoom out by a factor of 2.

PROGRAM: ELLIPSE
:prgmSETUP82
:Disp "(X - H) 2 I A 2 + "
:Disp""
:Disp "(Y - K) 2 I B 2 = 1 "
:Prompt H
:Prompt K
:Prompt A
:Prompt B
:"K+ -../(B 2 -(B 2 /A 2)(X-H

) 2) "~ Y1
:"K+ -../(B 2 -(B 2 /A 2)(X-H

)2) "~ v,
: 10~.s
:Lbl 1
:-S~XMIN.
:S~XMAX
:-S ~ YMIN
: s~ YMAX
: DispGraph

:Line(H-A,K,H+A,K)
: Line (H , K - B , H , K + B)
:Pause
:ClrHome
:Disp " (1) ZOOM IN "
:Disp " (2) ZOOM OUT "
:Di$p " (3) QUIT "
:Disp""
:Input" ENTER 1, 2, OR 3: ", C
:If C = 3
:Goto 2
:IF C = 1
:Then
:S/2~S
:Else
:S*2~S
:End
:Goto 1
:Lbl 2
:Cir Home

The output for Sample Program 10 :

(X-H) 2 /A 2 +

(Y - H) 2 I B 2 = 1

H=?6
K=? -4
A=?9
B=?6

,.,----
/

" -
(1) ZOOM IN
(2) ZOOM OUT
(3) QUIT

· ENTER 1,2, OR3: 2

r I

' I

(1) ZOOM IN
(2) ZOOM OUT
(3) QUIT

' ./

ENTER 1 , 2 , OR 3 : 3

~

~

134

135

Sample Program 11

This program will demonstrate a trigonometric application.

Write a program which will allow the user to enter an angle in either degree or
radian mode, and the display all six trig functions for the given angle. Have the program
anticipate the fact that some trig functions are undefined for certain angles, such as the
Tan (90 ·) . If the trig function is undefined, print "UNDEFINED" for the user.

Programming Plan of Attack:
(1) First, ask the user if the angle is in the Degree or Radian mode.
(2) Allow the user to enter the angle in either mode.
(3) Then print all six trig functions in table form. If the function is undefined; then print

"UNDEFINED". Use four decimal accuracy in the output.

PROGRAM: TRIGFNS
:Fix 4

.·•

:ClrHome
:Disp "WIDCH MODE "
:Disp""
:Disp "(1) DEGREE "
:Disp "(2) RADIAN "
:Disp""
:Input "ENTER 1 OR 2 : '', C
:If C = 1
:Degree
:If C = 2
:Radian
:ClrHome
:Disp "ENTER THE ANGLE "
:Prompt A
:ClrHome
:Output (1, 1, "SIN A= ")
:Output (1, 8, sin A)
:Output (2, 1, "COS A= ")
:Output (2, 8, cos A)
:Output (3, 1, "TAN A=")
:If (cos A) = 0
:Then
:Output (3, 8, "UNDEFINED ")

:Else
:Output (3, 8, tan A)
:End·
:Output (4, 1, "CSC A=")
:H (sin A) = 0
:Then
:Output (4, 8, "UNDEFINED ")
:Else
:Output (4, 8, l / sin A)
:End
:Output (5, 1, "SEC A=")
:If (cos A) = 0
:Then
:Output (5, 8, "UNDEFINED ")
:Else
:Output (5, 8, 1 I cos A)
:End
:Output (6, 1, "COT A=")
:If (sin A) = 0
:Then
:Output (6, 8, "UNDEFINED ")
:Else
:Output (6, 8, cos A I sin A)
:End
:Float

Note: The final Float instruction resets the default decimal setting.

The output for Sample Program 11 :

WHICH MODE

(1) DEGREE
(2) RADIAN

ENTER 1 OR 2 : 1

ENTER THE ANGLE
A=? 60

SIN A= .8660
COS A= .5000
TAN A= 1.7321
CSC A = 1.1547
SEC A= 2.0000
COT A= .5774

WHICH MODE

(1) DEGREE
(2) RADIAN

ENTER 1 OR 2 : 2

ENTER THE ANGLE
A=? rr/2

SIN A = 1.0000
COS A= 0.0000
TAN A= UNDEFINED
CSC A = 1.0000
SEC A= UNDEFINED
COT A= 0.0000

136

Sample Program 12

This program will demonstrate a simple method of storing and displaying text
information using the Disp instruction.

137

Assume you wanted to store the names and phone numbers of your friends in your
calculator. Use the Disp and Pause instructions to display this information.

:PROGRAM: PHONE
:ClrHome
:Disp " JOHN SMITH "
:Disp " 555 - 3958 "
:Disp""
:Disp "MARY JONES"
:Disp" 555 - 9481 "
:Disp""
:Disp " MORE - HIT ENTER "
:Pause
:Cir Home
:Disp " ED WILLIAMS "
:Disp " (968) 555 - 2974 "
:Disp ""
:Disp " SUE BARNES "
:Disp" 555 - 3401 "
:Disp ""
:Disp "MORE - HIT ENTER"
:Pause
:Cir Home
:Disp " ERIC THOMAS "
:Disp" 555 - 5254"

JOHN SMITH
555-3958

MARY JONES
555-9481

MORE - IDT ENTER

ED WILLIAMS.
(968) 555 - 2974 .

SUE BARNES
555-3401

MORE - IDT ENTER

ERIC THOMAS
555- 5254

138

Sample Program 13

This program will demonstrate how the Text, tMax, FnOff, and Pt-On
instructions may be used in a program to model projectile motion.

The formula that models projectile motion is Y = H + V • T - 16 T 2

where: Y = height (in feet)
H = initial height (z O)
V == initial velocity
T = time (in seconds)

Display the time on the horizontal axis and the height on the vertical axis.

Programming Plan of Attack :
(1) First, display the formula.
(2) Allow the user to enter H and V.
(3) Allow the user to enter the number of seconds (S) for the model to run by

setting Xmin = 0 and Xmax = S .
(4) Use tMax to automatically adjust the Y scale of the graph with Ymin = 0

and Ymax = the maximum value of Y during the given time period.
(5) Evaluate the function in increments of 0.1 seconds and use the Pt-On

instruction to plot each (X , Y) point.
(6) Use the Text instruction to label the axes and to display the current height

and time as the projectile moves.
(7) Have the program stop when the object hits the ground. (Y :$'. 0)
(8) Finally, ask the user if they would like to change the time period and rerun

the program.

:PROGRAM: MODEL
:Cir Home
:Disp "Y = H + V*T - 16 T 2 "

:Disp ""
:Disp "H = INITIAL HEIGHT"
:Disp "V = INITIAL VELOCITY"
:Prompt H
:Prompt V
:Lbl 1
:Disp "HOW MANY SEC ?"
:Prompt S
:Cir Home
:Disp "SCALING GRAPH''
:Disp "PLEASE WAIT"

Y=H+V* T-16T 2

H = INITIAL HEIGHT
V = INITIAL VELOCITY
H=?lOO
V=?200
HOW MANY SEC?
S=? 12

SCALING GRAPH
PLEASE WAIT

Sample Program 13 - Continued:

: s ~xmax
: "H + V*T - 16 T 2 " ~ Y1
:fMax (Yl, X, Xmin, Xmax) ~ M
:Yl (M) ~ Ymax
:FnOff 1
:0 ~Xmin
:O~ Ymin
:Text (0 , 0 , "HEIGHT ")
:Text (8 , 0 , " (FT) ")
:Text (57, 40," TIME (SEC)")
:Text (35 , 30 , "T = ")
:Text (42 , 30 , "H =")

:DispGraph
:For (N , 0 , S , 0.1)
:Y1(N)~Y
:Pt-On (N , Y)
:Text (35 , 40 , round (N , 1),
,, '')

:Text (42, 40, round (Yl (N), 1),
" ")
:If Y < 0
:Goto 2
:End
:Lbl 2
:Pause
:Cir Home
:Disp " RERUN AND "
:Disp " CHANGE NUMBER "
:Disp " OF SECONDS ? "
:Disp "(1) YES "
:Disp "(2) NO"
:Input "ENTER 1 OR 2 ", R
:If R = 1
:Then
:Cir Home
:Goto 1
:End

T = 12
H =196

-t--- TIME (SEC)

RERUN AND
CHANGE NUMBER
OF SECONDS?
(1) YES
(2) NO
ENTER 1 OR 2 2

DONE

139

140

Sample Program 14

A common problem in Calculus is to find the Riemann sum of a function by
summing up the areas of rectangles between the function and the X-axis. This program
will allow the user to find the Riemann sum of a given function and graphically display
both the function and the rectangles used to obtain the sum. The program will also
demonstrate an automatic scaling feature for the Y-axis.

Programming Plan of Attack:

(1) First, allow the user to.enter a function (Yl).

(2) Then, allow the user to enter the left (L) and right (R) endpoints of the interval.

(3) Finally, allow the user to enter the number of rectangles (N) desired to calulate
the Riemann sum.

(4) This program will use the " midpoint rule " when calculating the signed area of
each rectangle.

(5) To take full advantage of the viewing window, let Xmin =·Land Xmax = R.

(6) The width (W) of each rectangle will be the same with W = (U - L) IN.

(7) Use tMin and fMax to automatically scale the Y-axis, but add statements to
insure that the X-axis will always be displayed at either the top or bottom of the
window. :H Ymin > 0 :H Ymax < 0

: 0~ Ymin :O~ Ymax

(8) Put the program in a loop from 1 to N to calculate the area of each rectangle and
draw a picture of each rectangle on the graph.

(9) The midpoint (T) of each rectangle will be initially given by L + W / 2 ~ T and
subsequently by T + W ~ T.

(10) The area of each rectangle will be given by Yt(T) * W and be added to the
running sum by S + Y1(T) ~ S.

Sample Program 14- Continued:

(11) To draw each rectangle, use the following coordinates (with YI(T) = P).

(T-W/2,P)

T-W/2 T

It will take three Line instructions to draw the rectangle:
:Line (T - WI 2 , 0 , T - WI 2 , P)
:Line (T - W I 2 , P , T + WI 2 , P)
:Line (T + WI 2 , P ,. T + WI 2 , 0)

(12) To move to the next rectangle, use T + W ~ T.

(T+W/2,P)

T+W/2

141

(13) After drawing the required number of rectangles, Pause the display so the user may
view the gra,ph.

(14) When the user hits ~&mil switch to the home screen and display the Reimann
sum.

(15) Finally, allow the user to rerun the program and change the limits or the number of
rectangles using Lbl 1 and Goto.

Sample Program 14 - Continued:

PROGRAM:REIMANN
:Cir Home
:Disp " ENTER FUNCTION "
:Disp " (IN QUOTES) "
:Disp""
:Input" Yl = ", Yl
:Lbl 1
:Cir Draw
:Cir Home
:Disp " LOWER LIMIT "
:Disp " OF X "
:Prompt L
:Disp " UPPER LIMIT "
:Disp " OF X "
:Prompt U
:Disp " HOW MANY "
:Disp" INTERVALS"
:Prompt N
:L~Xmin
:U~Xmax
:Cir Home
:Disp " SCALING GRAPH "
:Disp " PLEASE WAIT "
:tMin(Yl , X, L , U) ~ A
:tMax(Yl , X, L, U) ~ B
: Yl(A) ~ Ymin
: Yl(B) ~ Ymax
:H Ymin> 0
: O,~ Ymin
:If Ymax< 0
: 0~ Ymax
:(p-L)/N~W
:O~S
:L+W/2~T

ENTER FUNCTION
(IN QUOTES)

Y1="X 2 +2"

LOWER LIMIT
OF X
L=? -1
UPPER LIMIT
OF X
U=?3
HOW MANY
INTERVALS?
N=?6

SCALING GRAPH
PLEASE WAIT

Continued ...

142

Sample Program 14 - Continued:

:DispGraph
:For (I , 1 , N)
: Yt(T)~P
:S+P*W~S
:Line (T - WI 2 , 0 , T - W l 2 , P)
;Line (T - WI 2 , P , T + WI 2 , P) .
:Line (T + WI 2 , P , T + WI 2 , 0)
:T+W~T
:End
:Pause
:Cir Home
:Disp " INTEGRAL = "

:Disp S
:Disp""
:Disp "RUN AGAIN ? "
:Disp " (1) YES "
:Disp " (2) NO "
:Input R
:If R= 1
:Goto 1
:Cir Home

I\. .___ --

INTEGRAL=

RUN AGAIN?
(1) YES
(2) NO
? 2

143

)
V

/
,v

.-

17.18518519

144

Sample Program 15

This Calculus program will allow the user to enter a function and then display the
tangent line equation and the normal line equation to the curve at a point specified by the
user. The program will also graphically display both the tangent and normal lines.

Programming Plan of Attack

(1) First, allow the user to enter the function (Yl).

(2) Then allow the user to enter the value C for X. (X = C)
(a) If Yl(C) = D, then the point on the original function is (C, D).

(3) Display the graph of the original function.

(4) Draw the tangent line on the graph display.

(5) Display the equation of the tangent line in slope-intercept form.

(a) Use the nDeriv function to find the slope (M) of the tangent line at
the point X = C.

(b) The point-slope form of the tangent line equation is:

Y-D=M(X-C)

In slope-intercept form this equation becomes :

Y=M*X - M*C +D

(6) Pause until the user hits enter.

(7) Then draw the normal line on the graph display.

(8) Display the normal equation in slope-intercept form.

(a) If the slope of the tangent line is M, the slope of the normal
line will be (- 1 I M).

(b) The point-slope form of the normal line equation is :

Y-D=(-1/M)(X-C)

(9) Finally, if the slope of the tangent line is zero (M = 0), then the
equation of the vertical normal line will be X = C.

Sample Program 15 - Continued:

PROGRAM: NORMTAN
:Cir Home
:Disp " ENTER FUNCTION "
:Disp " (IN QUOTES) "
:Disp""
:Input" Yl = ", Yl
:Cir Home
:Disp "NOW ENTER THE"
:Disp "X COORDINATE OF "
:Disp " THE POINT "
:Input" X = ", C
:Cir Draw
:ZSquare
:Tangent (Yl , C)
:nDeriv (Yl , X, C) ~ M
:Y1(C)~D
:Text (1 , 1 , " TANGENT

LINE EQ")
:(-M*C+D)~B
: round (B , 2) ~ B
:Text (8 , 1 , " Y =" , M,
"X+(" ,B, ")")

:Text (57 , 1 , " HIT ENT
ER FOR NORMAL EQ"

:Pause

Continued •••

ENTER FUNCTION
(IN QUOTES)

Yl = " (X - 2) A 2 - 5 "

NOW ENTER THE
X COORDINATE OF
THE POINT
X = 3

TANGENT LINE EQ
Y=2X+(-10)

145

Sample Program 15 - Continued:

:ClrDraw
:Tangent (Yl , C) ·
:Text (1 , 1 , " NORMAL
LINE EQUATION")

:If M * 0
:Then
:(C/M+D)~B
:round (- 1 IM , 2) ~ M
:round (B , 2) ~ B
:DrawF (M * X + B)
·Text (8 1 " Y = " M . ' ' ' '
"X+(" ,B, ")")

:Else
:Vertical C
:Text (8 , 1 , " X = " , C)
:End

NORMAL LINE EQUATION
Y=-.5X+(-2.5)

146

APPENDIX C

STUDENT QUESTIONNAIRE

147

Student Questionnaire
(Graphics Calculator Programming Manual)

(1) What grade level are you in this school year?
9 10 11 12 College __

(2) What math course are you taking now or will be taking next semester ?
Algebra I
Geometry
Algebra II
Trigonometry
Calculus
Other· -------

(3) Prior to using this calculator programming manual, have yoti had any previous
experience in computer programming ? Yes No __

If Yes, please describe your previous experience:

148

(4) If you have had previous programming experience, did you have difficulty adapting
those programming skills to the graphing calculator ? · Yes __ No

(5) Did you find this manual : Easy to use
Reasonable to use --
Difficult to use

(6) How helpful would it be to you if
. more sample programs were included in
this manual?

Not very helpful
Somewhat helpful
Very Helpful

(7) How valuable do you think your ability to write programs for your graphics calculator
will be during your: High School career

College career

(8) Please suggest any improvements you think would make this manual easier to use:

APPENDIX D

TI CARES NEWSLETTER

149

150

Reference List for the TI-82
These publications contain material relating to Texas Instruments calculators. You can order these
materials directly from the publisher. To add to this list, please write to us through our feedback
form, or send email to ti-cares@ti.com.

Alexander, Bob. Exploring Quadratic Functions with the TI-83. Students can use this
book to explore quadratic functions while they learn how to use the TI-83 or TI-82.
Topics include: Getting Started, Applications, Curves of Best Fit, Exploring Quadratic
Graphs, Iterating Quadratic Functions, and Programming the TI-82 or TI-83. Answers are
included. -

Alexander, Bob. Investigation with the TI-82 Graphics Calculator, What If! The
Straight Line.Math Ware.

Ball, Stuart. Programs for the TI-81 and TI-82 Calculators.(A great resource book
which contains 70 programs covering algebra, statistics, trigonometry, calculus and other
topics. Programs have a line-by-line menu location for all key entries. A useful appendix
shows sample programs in each program.)

Best, George W., and David A. Penner. Using the TI-82 to Explore Precalculus and
Calculus.Andover, MA: Venture Publishing, 1994. ISBN 1886018065.

Bjork, Lars-Eric and Hans Brohn. Calculus Explorations with the TI-82. Give your
students the calculator advantage by having them become familiar with calculus on the
TI-82. Professor Hans Brohn of the Department of Teacher Training at Uppsala
University in Sweden, one of the co-authors, has become well-known to many in the
United States from presentations at NCTM meeting over the past four years. The aims of
the book are to help the student to become familiar with the calculator and, by entering
the programs from the book, to provide a powerful tool for studies in calculus. Many
exercises and all answers included. Math Ware. ISBN 0-9623629-5-6.

Bowen, Jim. The High School Student's Guide to Programming the TI-82 and TI-83.
Call 800-TI-CARES (800-842-2737) to order.

Best, George W., and Sally Fischbeck. AP Calculus with the TI-82 Graphics
Calculator. Andover, MA: Venture Publishing 1995. ISBN 1886018073.

Carlson, Ronald J, and Mary Jane Winter. Algebra Experiments Il, Exploring
Non-Linear Functions.Reading, MA: Addison-Wesley Publishing Company, 1993. ISBN
0-201-81525-7.

... /

151

Reference List for the TI-83
These publications contain material relating to Texas Instruments calculators. You can order these
materials directly from the publisher. To add to this list, please write to us through our feedback
form, or send email to ti-cares@ti.com.

Alexander, Bob. Exploring Quadratic Functions with the TI-83. Students can use this
book to explore quadratic functions while they learn how to use the TI-83 or TI-92.
Topics include: Getting Started, Applications, Curves of Best Fit, Exploring Quadratic
Graphs, Iterating Quadratic Functions, and Programming the TI-82 or TI-83. Answers are
included.

Barrett, Gloria. Statistics with the TI-83. Based on core concepts taught in most statistics
classes~ the workbook features a series of well-developed chapters that cover concepts,
examples, exercises, and extended exercises. In addition, ideas for student generated data
sets are also provided. Meridian Creative Group.

Barton, Ray and John Diehl. TI-83 Enhanced Statistics. Venture Publishing.

Best, George and David Penner. Exploring Algebra, Precalculus and Statistics with the
TI-83 Graphing Calculator. A book that is filled with examples and exercises that
explain how the TI-83 can be used to teach concepts and problem solving techniques in
algebra, pre-calculus and statistics. It includes interesting exercises, probing and
instructive projects, technology tips, and a through explanation of how to program the
TI-83. Andover, MA: Venture Publishing, 1997. ISBN 1-886018-06-5.

Bowen, Jim. The High School Student's Guide to Programming the TI-82 and TI-83.
Call l-800-TI-CARES to order.

Cochner, Deborah J. and Bonnie M. Hodge. Explorations in College Algebra Using the
TI-82/fl-83: With Appendix notes for the TI-85. Sing these unique and user-friendly
workbooks, readers quickly learn to use the graphing calculator to develop
problem-solving and critical-thinking skills. Hands-on applications with solutions; key
.charts that show which units introduce keys of the calculator; and a troubleshooting
section are included. 1997, Brooks/Cole Publishing. ISBN 0-534-34228-0.

Cochner, Deborah J. and Bonnie M. Hodge. Explorations in Precalculus Using the
TI-82/fl-83: With Appendix notes for the TI-85. Sing these unique and user-friendly
workbooks, readers quickly learn to use the graphing calculator to develop
problem-solving and critical-thinking skills. Hands-on applications with solutions; key
charts that show which units introduce keys of the calculator; and a troubleshooting

APPENDIX E

INSTITUTIONAL REVIEW BOARD
APPROVAL FORM

152

Date: 05-06-96

OKLAHOMA ST ATE UNIVERSITY
INSTITUTIONAL REVIEW BOARD

HUMAN SUBJECTS REVIEW

IRB#: ED-96-124

153

Proposal Title: THE DEVELOPMENT OF AN INDEPENDENT STUDY GUIDE TO
PROVIDE INSTRUCTION TO HIGH SCHOOL STUDE.l\TTS IN WRITING
PROGRAMS FOR THE TI-82 GRAPHING CALCULATOR

Principal Investigator(s): Steve Marks, James G. Bowen

Reviewed and Processed as: Exempt

Approval Status Recommended by Reviewer(s): Approved

ALL APPROVALS MAY BE SUBJECT TO REVIEW BY FULL INSTITUTIONAL REVIEW BOARD
AT NEXT l\1EETING.
APPROVAL STATUS PERIOD VALID FOR ONE CALENDAR YEAR AFrER WHICH A
CONTINUATION OR RENEW AL REQUEST IS REQUIRED TO BE SUBMITTED FOR BOARD
APPROVAL.
ANY l\10DIFIC ATIONS TO APPROVED PROJECT MUST ALSO BE SUBMITfED FOR
APPROVAL.

Comments. Modifications/Conditions for Approval or Reasons for Deferral or Disapproval
arc as follows:

It's suggested that participating subjects be given a copy of the solicitation
form to take home.

Signature: Date: May 15, 1996

Chair of

VITA

James G. Bowen

Candidate for the Degree of

Doctor of Education

Thesis: THE DEVELOPMENT OF AN INDEPENDENT STUDY GUIDE TO PROVIDE
INSTRUCTION TO HIGH SCHOOL STUDENT IN WRITING PROGRAMS
FOR THE TI-82 AND TI-83 GRAPHICS CALCULATORS

Major Field: Applied Educational Studies

Biographical:

Education: Graduated from Camp Springs High School, Camp Springs, Maryland in
May 1966; received Bachelor of Science degree in Mechanical and Aerospace
Engineering from Oklahoma State University, Stillwater, Oklahoma in May
1971; received a Master of Science degree in Mechanical Engineering from
Oklahoma State University in May 1972; received a Master of Science degree in
Secondary Mathematics Education from Oklahoma State University in May
1985; completed the requirements for the Doctor of Education degree at
Oklahoma State University in May 1997.

Professional Experience: T-38 Instructor Pilot, USAF, 1972-1975; Petroleum
Engineer and District Manager, Halliburton Services, Indonesia, 1975-1983;
Math Teacher, Stillwater High School, Stillwater, Oklahoma, 1985-Present.

Professional Membership: National Council of Teachers of Mathematics.

