



1 11



**Bulletin B-515** November 1958

# CORONADO SIDE-OATS GRAMA

By Jack R. Harlan and Robert M. Ahring<sup>a</sup>

Coronado is a new variety of side-oats grama developed for western Oklahoma and adjacent areas primarily to the south and west.

# Orígín

The original source from which Coronado was developed was a collection made by Jack R. Harlan in 1946, in a small, dry wash 1.5 miles west of the town (Post Office) of Encinoso, New Mexico. The association was dominated by white oak but the location was very near the ecotone between oak and the midgrass association. The exact location is of some interest because the general area was revisited in 1949 when it became evident that this particular source had promise. Collections made within 200 yards of the original site proved to be of a different and less desirable type.



An irrigated field of foundation Coronado, Livestock Research Station, El Reno, Oklahoma.

<sup>&</sup>lt;sup>1</sup> Contribution of Crops Research Division, Agricultural Research Service, U.S.D.A. and the Oklahoma Agricultural Experiment Station, <sup>2</sup> Geneticist, Crops Research Div., Agricultural Research Service, U.S.D.A., Professor of Agronomy, Oklahoma State University and Research Agronomist, Crop Res. Div., Agricultural Research Service, U.S.D.A., respectively.

The source was grown at the U. S. Field Station, Woodward, Oklahoma, in 1947 and immediately indicated promise because of its seedling vigor and total production. Some plants died the first two winters, however, and there was some concern over its winter hardiness. Since this time no evidence of winter injury has been observed. It is presumed that non-hardy types have now been eliminated.

Following the initial selection the source was increased for testing at Woodward and later at El Reno. It has been distributed rather widely for trial under the name Encinoso.

#### Characterístics

Coronado is an apomictic type of side-oats grama. It is rather robust, productive of both forage and seed, and extremely uniform. Spikes tend to be straw-colored at maturity and the tips of the inflorescences characteristically turn white as the spikes ripen. The seed is large; seed set under favorable conditions is good, and seedling vigor is excellent. Two crops of seed per year may be expected as in most apomictic varieties.

# Production

Plot tests conducted during the last five years at Woodward, Perkins, and the Blackland Station, Temple, Texas, indicate Coronado produces somewhat more forage than Tucson and substantially more



A commercial field to Coronado, in Southwestern Oklahoma. Frequent examination of the seed field is necessary in order to select the best harvest date. forage than El Reno and commercial sources. (Table I). Protein analyses of the forage from four different cuttings, over a three-year period at Woodward, indicate the protein content of Coronado is comparable to that of other available varieties. Table II.

### Seeding Habits

Desirable seeding habits are especially important in native grasses, since they are wild plants, not adapted to conditions of domestication and notoriously difficult to handle from the seed point of view. Coronado was selected from many side-oats grama varieties primarily for its desirable seeding habits. Under favorable conditions seed set is unusually high permitting the marketing of seed with 80% or higher purity which is exceptional in this species. The seed is large compared to that of other varieties. Table III.

Seedling vigor is also very good, probably as a corollary to the seed size. Seedling growth in the green honse was measured from both large and small seeds of the same varieties with the results given in Table IV. Green weight of seedlings was determined from cuts made at 4, 6 and 13 weeks following planting.

Note the uniform emergence and high seedling yield of Coronado when compared to the next best variety and to nursery bulk material.



A five-year old stand of Coronado at maturity.

It should be remembered that nursery bulk is far above average commercial material in most respects.

Although no stand count data were taken, it was observed on no less than five occasions in plot seedings that Coronado produced a better stand than all other varieties in the test. Counts were not taken because the near or complete failure of some varieties made the plots unusable. High seedling vigor and ability to produce stands is therefore an outstanding feature of the variety.

# Seed Production

A number of seed production studies have been conducted on Coronado under irrigation and on dryland at El Reno. Results of the several studies are presented in Tables V through X and the production and chemical evaluation of the stover in Tables XI and XII.

It seems evident from these rather extensive studies on the effect of fertility level on seed production that Coronado side-oats grama, on this soil, gives only occasional and modest responses to soil amendments. Apparently Brewer clay loam, on which the tests were conducted, can supply Coronado with about as much mineral nutrition as the variety can use, although occasional responses were obtained.



A supply of exceptionally high quality certified seed of Coronado. This was raised in Southwestern Oklahoma under irrigation.

Inconclusive evidence shown in Table X suggests that, in general, nitrogen amendments may increase seed slightly under irrigation and could possibly decrease it somewhat under dryland. More study is needed on this point.

The protein content of Coronado stover following seed harvest suggests that this would make very satisfactory roughage. The first crop under irrigation is always higher than the second crop, and dryland stover is higher in protein than irrigated stover.

### Superior Qualities

Coronado is considered superior to other available varieties in the following characteristics, approximately in order of superiority:

- 1. Seed size
- 2. Seedling vigor
- 3. Seed production
- 4. Forage production
- 5. Coronado is superior to Tucson in resistance to cold especially in the seedling stage. For this reason it can be used in areas where Tucson is not satisfactory.
- 6. Coronado is superior to El Reno in all qualities measured, while El Reno in turn is somewhat superior to commercial sources in several respects.

## **Recommended Area of Use**

At the present time, the area recommended is the western half of Oklahoma, the Texas Panhandle and areas immediately adjacent thereto.

| Perkins Test (O   | ven dry basis)  |      |              |      |      |      |
|-------------------|-----------------|------|--------------|------|------|------|
|                   | 1952            | 1953 | <b>195</b> 4 | 1    | 1955 | Avg. |
| Coronado          | 2674            | 3869 |              |      | 2033 | 2859 |
| Tucson            | 2147            | 3595 |              | - ,  | 2124 | 2633 |
| El Reno           | 2330            | 3552 |              |      | 1593 | 2492 |
| Commercial        | 1354            | 2750 |              | -    | 1606 | 1903 |
| Woodward Test     | (Air dry basis) |      |              |      |      |      |
|                   | 1952            | 1953 | 1954         | 1955 | 1956 | Avg. |
| Coronado          | 1634            | 1192 | 662          |      | 1481 | 1242 |
| Tucson            | 1361            | 1128 | 563          |      | 697  | 937  |
| El Reno           | 1089            | 840  | 245          |      | 755  | 732  |
| Woodward Test     | 2 (Air dry basi | s)   |              |      |      |      |
|                   | 1951            | · 1  | 952          | 1953 |      | Avg. |
| Tucson            | 1299            |      | 633          | 806  |      | 912  |
| El Reno           | 1013            |      | 558          | 536  |      | 702  |
| Commercial        | 1046            |      | 496          | 602  |      | 715  |
| Blackland Station | n, Temple, Tex  | as   |              |      |      |      |
| (Oven dry basis)  | · · ·           |      |              |      |      |      |
| (oven ary busis)  | 1952            | 195  | 3            | 1954 |      | Avg. |
| Coronado          | 870             | 286  | 5            | 1740 |      | 1825 |
| Tucson            | 705             | 263  | 0            | 1735 |      | 1690 |
| El Reno           | 735             | 249  | 0            | 1430 |      | 1550 |
|                   |                 |      |              |      |      |      |

#### Table I.—Forage Yields of Coronado Side-Oats Grama in Pounds Per Acre.

Table II.—Percentage Crude Protein in Dry Matter.2nd cut1st cut1952195319531954Ave

|          | 1952 | 1953  | 1953         | 1954 | Average |
|----------|------|-------|--------------|------|---------|
| Coronado | 9.27 | 11.10 | 9.02         | 5.70 | 8.77    |
| Tucson   | 9.79 | 11.32 | <b>8.9</b> 2 | 6.27 | 9.08    |
| El Reno  | 7.07 | 10.61 | 9.58         | 6.19 | 8.36    |
|          |      |       |              |      |         |

| Table III.—Percent | of | 500-gram | Seed | Sample | of | Size | Indicated. |
|--------------------|----|----------|------|--------|----|------|------------|
|--------------------|----|----------|------|--------|----|------|------------|

| creen Size | Coronado | Норе         | Nursery Bull |
|------------|----------|--------------|--------------|
| 6/28       | 4.0      | 0.0          | 5.6          |
| 6/30       | 15.0     | 3.4          | 3.6          |
| 6/32       | 63.8     | 34 <b>.8</b> | 21.2         |
| 6/34       | 4.4      | 17.6         | 12.4         |
| 6/36       | 7.0      | 33.2         | 34.4         |
| 6/38       | 1.8      | 4.6          | 5.6          |
| Below 6/38 | 4.0      | 6.6          | 1.7          |

|          | Seed size | Weight 100<br>seeds in gr. | Days to<br>mergence | Total green weight<br>per 100 seedlings<br>in Gr. (3 cuts) |
|----------|-----------|----------------------------|---------------------|------------------------------------------------------------|
| Coronado | 6/28      | .099                       | 9.0                 | 31.03                                                      |
|          | 6/38      | .052                       | 9.4                 | 19.95                                                      |
| Hope     | 6/28      | .092                       | 8.5                 | 16.12                                                      |
|          | 6/38      | .053                       | 13.0                | 14.08                                                      |
| Bulk     | 6/28      | .097                       | 12.9                | 17.23                                                      |
|          | 6/38      | .054                       | 13.6                | 14.90                                                      |

Table IV.—Seedling Growth Measured from Both Large and Small Seeds of the Same Varieties.

Table V.—Effect of Soil Amendments on Seed Production under Irrigation at El Reno.

|          |      | 0-0-0 | Per Crop<br>60-0-0 | Per Crop<br>180-0-0 | Per Crop<br>60-180-0 |
|----------|------|-------|--------------------|---------------------|----------------------|
| 2nd crop | 1954 | 55    | 49                 | 71                  | 52                   |
| 1st crop | 1955 | 331   | 408                | 269                 | 385                  |
| 2nd crop | 1955 | 247   | 225                | 2 <b>58</b>         | 247                  |
| Total    | 1955 | 579   | 633                | 527                 | 632                  |

Table VI.—Residual Effects of Fertilizer. The indicated amounts of fertilizer were applied on each crop in 1956 and no fertilizer in 1957.

|          |      | 0-0-0 | 30-0-0 | 90-0-0 | 90-90-0     |
|----------|------|-------|--------|--------|-------------|
| 1st crop | 1956 | 445   | 446    | 470    | 487         |
| 2nd crop | 1956 | 387   | 548    | 374    | 478         |
| Total    | 1956 | 832   | 994    | 844    | 965         |
| 1st crop | 1957 | 345   | 508    | 544    | 50 <b>8</b> |
| 2nd crop | 1957 | 218   | 272    | 357    | 309         |
| Total    | 1957 | 563   | 780    | 881    | 817         |

Table VII.—Residual Effects of Fertilizer. The indicated amounts of fertilizer were applied in the spring of 1956 and no fertilizer thereafter.

|          |      | 0-0-0 | 60-0-0      | 180-0-0 | 180-180-0   |
|----------|------|-------|-------------|---------|-------------|
| 1st crop | 1956 | 485   | 481         | 578     | 495         |
| 2nd crop | 1956 | 260   | 299         | 322     | 352         |
| Total    | 1956 | 745   | 780         | 902     | 847         |
| 1st crop | 1957 | 526   | 544         | 472     | 417         |
| 2nd crop | 1957 | 363   | 3 <b>81</b> | 381     | 436         |
| Total    | 1957 | 889   | 925         | 853     | <b>8</b> 53 |

|                                                                 | Lbs. Yield Per Acre |
|-----------------------------------------------------------------|---------------------|
| First Crop—No amendments<br>Second Crop—50 lbs. N applied       | 590<br>31 <b>8</b>  |
| Total                                                           | 908                 |
| First Crop—50 lbs. N. applied<br>Second Crop—50 lbs. N. applied | 726<br>454          |
| Total                                                           | 1180                |

# Table VIII.—A Comparison in 1957 Between Fertilizing the Second Crop Only and Fertilizing Both Crops.

Table IX.—Seed Production in Pounds per Acre of Coronado Side-Oats Grama Under Irrigation and Dryland.

| Irrigated Dryland |                  |                  |                          |               |                      |       | d    |                      |
|-------------------|------------------|------------------|--------------------------|---------------|----------------------|-------|------|----------------------|
| Treatments        | 2nd crop<br>1956 | 1st crop<br>1957 | 2 <b>nd</b> crop<br>1957 | Total<br>1957 | Total for<br>3 crops | 1956* | 1957 | Total for<br>2 years |
| 0-0-0             | 436              | 336              | 354                      | 688           | 1116                 |       | 93   | 93                   |
| 0-100-0           | 516              | 322              | 414                      | 735           | 1176                 |       | 113  | 113                  |
| 0-0-100           | 529              | 314              | 346                      | 660           | 1264                 |       | 123  | 123                  |
| 0-100-100         | 396              | 175              | 395                      | 570           | 966                  |       | 85   | 85                   |
| 100-0-0           | 559              | 409              | 406                      | 815           | 1374                 |       | 99   | 99                   |
| 100-100-0         | 5 <b>8</b> 4     | 479              | 363                      | <b>8</b> 41   | 1340                 |       | 55   | 55                   |
| 100-0-100         | 6 <b>8</b> 4     | 295              | 371                      | 766           | 1525                 |       | 90   | 90                   |
| 100-100-100       | 547              | 5 <b>8</b> 2**   | 419                      | 1000          | 1547                 |       | 59   | 59                   |
| 200-0-0           | 653              | 50 <b>8</b>      | 429                      | 935           | 15 <b>88</b>         |       | 81   | 81                   |
| 200-100-0         | 540              | 346              | 404                      | 749           | 1506                 |       | 127  | 127                  |
| 200-0-100         | 476              | 576              | 391                      | 966           | 1225                 |       | 93   | 93                   |
| 200-100-100       | 63 <b>8</b>      | 592**            | 385                      | 977           | 1615                 |       | 74   | 74                   |

\* No seed produced under dryland in 1956.

\*\*Significantly higher than check at the 5% level.

| Table | XProdu    | uction o | f Caryops | es of Coi | conado 🤉 | Side-Oats  | grama |
|-------|-----------|----------|-----------|-----------|----------|------------|-------|
|       | Expressed | as Perce | entage of | Total Se  | ed Weig  | ght, 1957. | 0     |

| Treatment                                                                                        | Irrigated                                                    | Treatment                                                                                    | Dryland                                        |
|--------------------------------------------------------------------------------------------------|--------------------------------------------------------------|----------------------------------------------------------------------------------------------|------------------------------------------------|
| 200-100-100<br>200-0-100<br>100-0-0<br>100-100-100<br>100-0-100<br>0-100-0<br>0-0-100<br>0-0-100 | 23.5<br>19.9<br>19.6<br>19.0<br>18.1<br>17.8<br>17.4<br>16.8 | 0-100-0<br>200-100-0<br>0-0-0<br>0-100-100<br>200-0-100<br>200-0-0<br>200-100-100<br>100-0-0 | 11.9<br>7.6<br>6.9<br>6.7<br>6.2<br>5.7<br>5.3 |
| 0-100-100<br>200-0-0<br>200-100-0<br>0-0-0                                                       | 16.3<br>16.1<br>15.1<br>13.0                                 | 0-0-100<br>100-0-100<br>100-100-0<br>100-100-100                                             | 4.3<br>4.2<br>3.8<br>3.8                       |

Figures covered by the same line are not significantly different from each other.

|                         |                  |                  | Irrigated                |               |                      |               | Drylan      | d                    |
|-------------------------|------------------|------------------|--------------------------|---------------|----------------------|---------------|-------------|----------------------|
| Treatment               | 2nd crop<br>1956 | 1st crop<br>1957 | 2 <b>nd</b> crop<br>1956 | Total<br>1957 | Total for<br>3 crops | 1956          | 1957        | Total for<br>2 years |
| 0-0-0                   | 2521             | 2219             | 2069                     | 4288          | 6809                 | 1430          | 844         | 22 <b>7</b> 4        |
| 0-100-0                 | 2598             | 3061             | 2253                     | 5314          | 6787                 | 1311          | <b>927</b>  | 2238                 |
| 0-0-100                 | 2 <b>58</b> 0    | 2137             | 2061                     | 4189          | 7894                 | 1332          | 808         | 2140                 |
| 0-100-100               | 2386             | 1921             | 1972                     | 3894          | 62 <b>8</b> 0        | 1222          | 702         | 1924                 |
| 100-0-0                 | 2925             | 3758             | 2541                     | 6299          | 9224                 | 1322          | 1013        | 2335                 |
| 100-100-0               | 2896             | 3281             | 24 <b>8</b> 0            | 5762          | 8629                 | 1208          | <b>75</b> 2 | 1957                 |
| 100-0-100               | 2 <b>8</b> 23    | 3025             | 2 <b>708</b>             | 5733          | 8585                 | 1081          | 1020        | 2101                 |
| 100-100-100             | 2768             | 3100             | 2468                     | 5568          | 8336                 | 1503          | 578         | 2081                 |
| 200-0-0                 | 3055             | 3180             | 2333                     | 5512          | 8567                 | 1201          | 476         | 1677                 |
| 200-100-0               | 2779             | 2 <b>818</b>     | 2081                     | 4899          | 9202                 | 14 <b>8</b> 2 | 779         | 2261                 |
| 200-0-100               | 2633             | 31 <b>8</b> 0    | 3242                     | 6423          | 7532                 | 1269          | 644         | 1913                 |
| 200-100-100<br>C. V. in | 3091             | 3434             | 2737                     | 6171          | 9262                 | 1124          | 403         | 152 <b>7</b>         |
| percent                 | 13.3             | 30.0             | 22.0                     | 21.0          |                      |               |             |                      |

Table XI.—Stover Production in Pounds Dry Matter per Acre of Coronado Side-oats Grama Under Irrigation and Dryland.

 Table XII.—Evaluation of Coronado Side-oats Grama Stover Produced

 Under Irrigation and Dryland.

| AVERAGE PERCENT PHOSPHORUS |           |              |              |              |               |               |       |  |  |  |  |
|----------------------------|-----------|--------------|--------------|--------------|---------------|---------------|-------|--|--|--|--|
|                            | with<br>K | without<br>K | with<br>P    | without<br>P | 100 lbs.<br>N | 200 lbs.<br>N | No N  |  |  |  |  |
| Irrigated:                 |           |              |              |              |               |               |       |  |  |  |  |
| lst crop 195               | .231      | .239         | .233         | .234         | .232          | .214          | .256  |  |  |  |  |
| 2nd crop 195               | .150      | .155         | .158         | .147         | .131          | .124          | .308  |  |  |  |  |
| Dryland: 195               | .332      | .315         | .32 <b>8</b> | .319         | .329          | .335          | .308  |  |  |  |  |
|                            | AVER      | AGE PER      | CENT C       | CALCIUM      |               |               |       |  |  |  |  |
| Irrigated:                 |           |              |              |              |               |               |       |  |  |  |  |
| lst crop 195               | .302      | .332         | .301         | .309         | .350          | .327          | .273  |  |  |  |  |
| 2nd crop 195               | .284      | .299         | .290         | .293         | .297          | .264          | .341  |  |  |  |  |
| Dryland: 195               | .363      | .307         | .320         | .350         | .348          | .372          | .293  |  |  |  |  |
|                            | AVER      | AGE PER      | CENT I       | PROTEIN      |               |               |       |  |  |  |  |
| Irrigated:                 |           |              |              |              |               |               |       |  |  |  |  |
| 2nd crop 195               | 6 5.25    | 5.38         | 5.56         | 5.07         | 5.75          | 5.87          | 4.33  |  |  |  |  |
| lst crop 195               | 7 8.98    | 8.88         | <b>8</b> .62 | 9.25         | 9.68          | 10.06         | 7.06  |  |  |  |  |
| 2nd crop 195               | 6.16      | 5.92         | 6.07         | 6.00         | 6.44          | 6.60          | 5.07  |  |  |  |  |
| Dryland: 195               | 6 8.75    | 8.99         | 8.98         | 8.76         | 8.44          | 9.48          | 8.69  |  |  |  |  |
| 195                        | 7 10.07   | 10.36        | 10.27        | 10.17        | 10.62         | 10.00         | 10.03 |  |  |  |  |

11/58-7M

•