Regional General Equilibrium Analysis of Reduced Trip Demand at Lake Texoma

B-811

March 1998

Oklahoma Agricultural Experiment Station
Division of Agricultural Sciences and Natural Resources Oklahoma State University

Oklahoma State University, in compliance with Title VI and VII of the Civil Rights Act of 1964, Executive Order 11246 as amended, Titte IX of the Education Amendments of 1972, Americans with Disabilities Act of 1990, and other federal laws and regulations, does not discriminate on the basis of race, color, national origin, sex, age, religion, disability, or status as a veteran in any of its policies, practices or procedures. This includes but is not limited to admissions, employment, financial aid, and educational services.

This report of the Oklahoma Agricultural Experiment Station is printed and issued by Oklahoma State University as authorized by the Dean of the Division of Agricultural Sciences and Natural Resources and has been prepared and distributed at a cost of $\$ 777.37$ for 225 copies. \#0434 0398 CC.

Regional General Equilibrium Analysis of Reduced Trip Demand at Lake Texoma

Aleligne Amera and Dean Schreiner* Department of Agricultural Economics

Oklahoma State University
Stillwater, Oklahoma 74078

Funding for this research was from the U.S. Army Corps of Engineers, Tulsa District and the Oklahoma Agricultural Experiment Station. The authors acknowledge important review comments from Arthur Stoecker, Dennis Robinson, Frances Epplin, and Edward Rossman.

[^0]
Table of Contents

Page
Number
Executive Summary and Conclusions v
Introduction 1
Problem Statement 1
Objective of the Study 4
Data and Methods 4
Trip Expenditure Profiles 4
Social Accounting Matrix (SAM) 5
Specification of Regional CGE Model 10
Quality Tax on Trip Demand 15
Simulation Results 15
Commodity Market 15
Factor Markets 18
Welfare Impacts of Reduced Trips 20
Anglers 21
Region 22
Households 22
References 23
APPENDIX
Appendix 1: Rims Sector Aggregation 26
Appendix 2: Sector Aggregation for Impact Region 27
Appendix 3: Texoma Market and Nonmarket Goods Regional General Equilibrium Model 28
Appendix 4: Definitions of Indices, Variables, and Parameters 39
Appendix 5: Exogenous Parameter Estimates and Their Sources 42
List of Tables
Table Page Number Number

1. Aggregate Effect of Lake Texoma Angler Expenditures on Impact Region, 1991 2
2. Trip Expenditure Profiles (in 1990 Purchaser's Value) for Anglers at Lake Texoma, 1990 6
3. Resident and Nonresident Angler Expenditures Spent Within Lake Texoma Region by Industry, 1991 7
4. Social Accounting Matrix For Lake Texoma Region, 1991 (\$1,000) 8
5. Impacts of a Quality Tax on Fishing Trips and Commodity Markets, 1991 17
6. Impacts of Reduced Trips on Factor Markets 19
7. Welfare Impacts of Reduced Trips 21
List of Figures
Figure Page
Number Number
8. Production and Distribution Structure of the Model 11
9. Marshallian Demand, Hicks-Compensated Demand, and Compensating Variation Relationships for a Quality Change in Fishing Trips 14

Executive Summary and Conclusions

An earlier study showed that regional impacts associated with angler expenditures at Lake Texoma equaled $\$ 14,602,000$ gross regional product (GRP) (aggregate value added) and 654 jobs. The impact region is five counties in Oklahoma (Bryan, Carter, Marshall, Love, and Johnston) and two counties in Texas (Grayson and Cooke). This impact is approximately 0.58 percent of total regional employment and 0.38 percent of gross regional product.

The earlier study is a fixed-price multiplier analysis where the angler expenditures create a multiplier effect on impact regional output, income, GRP, and employment. That type of analysis has two major limitations. (1) The implication is a with and without condition for angler expenditures. The with implies that Lake Texoma anglers make trips to the lake, find conditions as expected, and carryout their trip objectives. The without condition implies that trips were not made and thus angler expenditures did not occur. The analysis does not explain why the number of trips would go from the existing level to no trips, implying the with and without conditions. (2) The fixed-price multiplier analysis assumes no regional opportunity costs to resources used in regional production of goods and services purchased by anglers. If the goods and services are not purchased by anglers, those resources used in their production and the production of associated goods and services are assumed lost to the region. Resources do have regional opportunity costs. If they are not used in the production of goods and services associated with angler expenditures, they may be used in the production of other goods and services demanded within the region or for production of goods exported. Fixed prices for commodities and resources are a restrictive assumption of this type of impact analysis.

The objective of the current study is to assess the potential impact of changing water quality (removal of salts by the Red River Chloride project) of Lake Texoma on the demand for angler trips and thus on the region's economy using regional computable general equilibrium (CGE) methods. It is based on the premise that reducing the salt content of Lake Texoma reduces the striped bass fish population, thus reducing the quality of the trip and the number of trips demanded. A reduction in trips demanded reduces total resident and nonresident angler expenditures. A reduction in angler expenditures reduces aggregate regional demand with region-wide economic impacts.

The actual reduction in trip demand from a change in water quality at Lake Texoma is not known. This study has hypothetically posed a quality tax on angler trips that, if assessed, anglers would have to stay longer and spend more to catch the same number of fish and thus have the same level of trip satisfaction. At a higher cost per trip, anglers would demand fewer trips. Using a price elasticity of demand for trips of -0.5775 , the reduction in trip demand can be estimated for a given
quality tax. Even though the quality tax is not actually assessed, the effect of a reduced quality of trip on trip demand is thus estimated. Two levels of quality tax per trip price (expenditure) were evaluated: (1) 25 percent and (2) 50 percent. The two levels of quality tax were evaluated with respect to impacts on (1) trip demands, (2) regional commodity markets, (3) regional factor markets, and (4) regional welfare. The regional general equilibrium model was specified to evaluate short run and long run effects. Short run effects are defined to allow labor mobility between sectors of the economy and between the impact region and the rest of the U.S. Alabor migration elasticity of 0.92 was assumed. Capital and land are assumed fixed by sector and region for the short run. Long run effects allow labor and capital to be mobile between sectors and regions but land is fixed. The capital migration elasticity is specified also at 0.92.

Summary results of the study include the following:

(1) The number of resident angler trips decreased from 55,744 to 49,976 (10.3 percent) with the 25 percent quality tax and to 46,120 (17.3 percent) with the 50 percent quality tax. The short run and long run results are almost the same. Nonresident trips decreased from 56,285 to 49,481 (12.1 percent) with the 25 percent quality tax and to 44,538 (20.9 percent) with the 50 percent quality tax.
(2) Aggregate regional demand (sectoral output) decreased from 0.018 percent to 0.044 percent depending on level of quality tax and whether the results measure short run or long run effects. The 50 percent quality tax had a greater reduced aggregate regional demand compared to the 25 percent tax and, in general, the short run result was marginally greater than the long run result. Reductions in aggregate export demand were marginally greater than reductions in aggregate regional demand for the 25 percent quality tax.
(3) Regional wage rate decreases were from 0.004 percent to 0.031 percent depending on level of quality tax and whether results are short run or long run. The higher level of tax reduced wage rate more compared to the lower level of tax, and the short run wage rate was marginally lower than the long run wage rate. About seven jobs were lost through migration with the 25 percent quality tax, and about 30 jobs were lost to migration with the 50 percent quality tax. Industry demand for labor decreased in trade, services, and agriculture but increased in all other sectors when the quality tax was imposed.
(4) Aggregate capital rent increased with the 25 percent quality tax and decreased with the 50 percent quality tax. This resulted in
capital in-migration with the 25 percent quality tax and capital outmigration with the 50 percent quality tax. This occurred only in the long run analysis because capital is fixed in the short run analysis.
(5) Land rent (in agriculture) decreases were from 0.027 percent to 0.048 percent depending on level of quality tax and whether results are short run or long run. Land rents were marginally lower for short run analysis compared to long run analysis. The level of land use remains the same because full capacity of resource use is assumed with adjustments occurring in market equilibrium price (rent).
(6) Lake Texoma anglers show considerable consumer surplus losses fromimposing the quality tax ranging from $\$ 1,097,270$ to $\$ 2,114,410$ for resident anglers and from $\$ 3,890,470$ to $\$ 7,413,780$ for nonresident anglers depending on level of tax. For all anglers, the consumer surplus loss in the long run with the 50 percent quality tax is $\$ 9,528,190$. This represents a consumer surplus loss of about $\$ 85$ per trip when based on the initial number of trips.
(7) The loss in gross regional product (GRP) ranged from zero to $\$ 1,643,789$ depending on whether short run or long run effects are considered and on the level of quality tax imposed. With the 25 percent quality tax, the long run result shows no change in GRP. The higher capital rent and the returns to in-migration of capital off-set the losses due to lower wage and lower land rent and the loss of compensation of out-migrating labor. With the 50 percent quality tax, the loss in GRP is $\$ 1,642,789$ for the short run analysis. This loss is attributed to lower returns to labor, capital, and land and to loss in compensation to out-migration of labor. The loss in total GRP is minimal. However, the distribution among sectors shows that some lose and others gain. The trade and services sectors are the principal losers because of their direct linkages to the loss of angler expenditures. Manufacturing, transportation, and mining are the principal gainers because of the diversion of regional resources into those sectors for export production.
(8) Households remaining in the region show welfare losses and income losses because of the quality tax. Welfare loss for all household groups ranged from $\$ 1,112,136$ (short run with 25 percent quality tax) to $\$ 2,255,290$ (long run with 50 percent quality tax). The major part of this loss is attributed to the loss by resident anglers who are part of the regional households and suffer the loss in quality of angler trips. Household income losses for all household groups range from $\$ 20,234$ for the 25 percent quality tax long run result to $\$ 434,378$ for the 50 percent quality tax short run result. Income losses are due to lower wage rates and lower capital and land rents. The medium income household group shows the
greatest welfare and income losses whereas the low income household group shows the lowest welfare and income loses. Resource ownership is assumed to be unchanged in analysis of the various scenarios.

Major conclusions of the study may be stated as the following:

(1) Lake Texoma anglers are the principal losers with a change in trip demand because of a change in quality of trip. Over 70 percent of angler losses are associated with nonresident anglers.
(2) The loss in GRP because of the reduced trip demands is minimal, less than two million dollars for the 50 percent quality tax on angler trips. Alternative uses of resources in the production of other goods and services replaces to a considerable extent the losses from reduced angler expenditures.
(3) Welfare losses of households remaining in the region are mainly attributed to losses of resident anglers from fewer trips and higher prices per trip associated with the quality tax. Marginally lower incomes by households are partially offset by lower composite commodity prices in computing welfare losses.
(4) Fixed-price multiplier analysis overestimates employment and GRP losses because of reduced trip demands at Lake Texoma. For a 19.1 percent reduction in trip demand the CGE results estimate a reduction of GRP by $\$ 1,179,424$ in the long run. A similar reduction in trip expenditures under the fixed-price multiplier analysis gives a reduction in GRP of $\$ 2,788,982$. Similarly, CGE results for labor migration is 30 jobs versus a loss of jobs under fixed-price multiplier analysis of 125 .
(5) Distribution effects are important when considering the impact of reduced trip demands at Lake Texoma. Firms and businesses associated with trade (retail and wholesale), services, and transportation are major losers. Firms able to expand output because of lower wage rates are gainers including manufacturing, mining, and construction.
(6) General equilibrium models are operational at regional levels but require considerable data. Many of the parameters used in regional CGE models have not been verified. However, fixed-price multiplier models implicitly assume many of the same parameters but at more extreme levels.

Regional General Equilibrium Analysis of Reduced Trip Demand at LakeTexoma

Introduction

This study is an extension of a fixed-price multiplier analysis of the economic impact of Lake Texoma fishing activities (Amera et al., 1995). The study region covers five counties in Oklahoma (Bryan, Carter, Marshall, Love, and Johnston) and two counties in Texas (Grayson and Cooke). In the multiplier analysis, the aggregate economic effects of angler expenditures are expressed through Type I and Type III multiplier impacts (see Olson, 1993). Total angler hours of fishing at Lake Texoma estimated from the Oklahoma and Texas Cooperative Creel Survey were $1,328,815$ for 1990 . Total number of angler trips was estimated at 112,029 using the estimated number of angler hours and number of hours per trip estimated from an angler survey (Amera et al.).

Results of the angler survey reported in the multiplier analysis study indicate that regional anglers in 1990 spent about $\$ 85$ per trip per angler with all of the expenditures occurring within the impact region. Non-regional anglers spent about $\$ 350$ per trip per angler with about 85 percent of the expenditures occurring within the impact region. Regional anglers associated about 51 percent of their expenditures with striped bass fishing versus 87 percent for non-regional anglers.

Total expenditures by Lake Texoma anglers occurring within the impact region was estimated in the multiplier analysis study at $\$ 21,350,000$. Of this amount, $\$ 16,721,000$ (78 percent) was associated with non-regional anglers and $\$ 4,629,000$ (22 percent) was associated with regional anglers. Striped bass fishing was associated with about $\$ 16,908,060$ of expenditures and all other specie fishing was associated with about $\$ 4,442,000$ of expenditures (79 percent and 21 percent, respectively, of the total).

Problem Statement

Direct impact on region business transactions (outputs), income (employee compensation, proprietary income, and other property income), value-added (regional income plus indirect business taxes), and employment (number of jobs) associated with Lake Texoma angler expenditures is shown in Table 1. The aggregate economic effects of angler expenditures were expressed through the Type I and Type III multiplier impacts. Impact on region business transactions (outputs)
associated with angler expenditures ranged from $\$ 11,973,000$ for Type I impact (direct and indirect) to $\$ 24,332,000$ for Type III impact (direct, indirect and induced). Regional income associated with angler expenditures was $\$ 5,685,000$ for direct purchases by anglers, $\$ 6,347,000$ for Type I income impact, and $\$ 12,771,000$ for Type III income impact. These results imply that the effect of angler expenditures on impact region income ranged from about $\$ 6,000,000$ to $\$ 13,000,000$ depending on the degree of associated linkages or multiplier effects included in the analysis. The lower end of the income range captures the direct income associated with angler expenditures while the higher end of the income range captures direct, indirect, and induced income associated with angler expenditures. Value added includes indirect business taxes with regional income estimates as presented above and thus the range of value added was from $\$ 6,468,000$ to $\$ 14,602,000$ depending on the degree of associated linkages included in the analysis. Impact region employment (number of jobs) associated with Lake Texoma angler expenditures was 377 directjobs, 402 jobs for Type I employment impact, and 654 jobs for Type III employment impact.

Table 1. Aggregate Effect of Lake Texoma Angler Expenditures on Impact Region, 1991.

Angler Expenditures Associated With	Direct Effects	Indirect Effects	Induced Effects	Total Effects
Output (\$1,000)				
\quad Resident anglers	1,806	274	2,146	4,226
\quad Nonresident anglers	8,747	1,147	10,211	20,106
\quad Total	10,553	1,421	12,357	24,332
Income (\$1,000)	928	125	1,115	2,168
\quad Resident anglers	4,757	537	5,306	10,600
\quad Nonresident anglers	5,685	662	6,421	12,768
\quad Total				
Value-Added (\$1,000)	1,050	137	1,285	2,472
\quad Resident anglers	5,418	594	6,116	12,128
\quad Nonresident anglers	6,468	731	7,401	14,600
\quad Total				
		5		
Employment (Number of jobs)	65	21	44	114
\quad Resident anglers			208	541
Nonresident anglers	312	21	252	655
\quad Total	377	26		

Source: Amera et al., (1995).

The fixed-price multiplier analysis is a method frequently used to show the associated regional effects of a set of economic activities. In this case, the economic activities are expenditures by Lake Texoma anglers. Such an analysis has two major limitations. (1) When left with the results as presented in Table 1, the implication is a with and without condition. The with condition implies that Lake Texoma anglers make trips to the lake, find conditions at the lake as expected, and carryout their trip objectives. In the process, the anglers make direct expenditures in the region as estimated. The without condition implies that if no trips were made by anglers to Lake Texoma, no direct expenditures occur, and, hence, regional output decreases by $\$ 24,332,000$, regional income decreases by $\$ 12,771,000$, regional value-added decreases by $\$ 14,602,000$, and regional employment decreases by 654 jobs. The analysis does not explain why the number of trips would go from the existing level to no trips, implying the with and without conditions. The analysis only shows associated regional impacts of existing angler expenditures.
(2) The fixed-price multiplier analysis assumes no regional opportunity costs to resources associated directly and indirectly with the goods and services purchased by the anglers (see Koh, Schreiner, and Shin for the limitations of fixed-price multiplier analysis). If the goods and services are not purchased by anglers, those resources used in their production and the production of associated goods and services are assumed lost to the region. This assumption is very restrictive. Resources do have opportunity costs. If they are not used in the production of goods and services associated with angler expenditures, they may be used in the production of other goods and services demanded within the impact region or for production of goods exported. Some resources may be bid away from the region if people and capital are willing to migrate. Fixed-prices for commodities and resources are thus a very restrictive assumption of any impact analysis.

Assumptions of fixed prices and no regional opportunity costs to resources are relaxed in computable general equilibrium (CGE) analysis. Han-Sung Lee and Rini Budiyanti have developed regional general equilibrium models to assess the impacts of sport fishing activities in Oklahoma. Lee (1993) analyzed the general equilibrium impacts of establishing a trout fishery in McCurtain County, Oklahoma and concluded that the existence of the trout fishery resulted in a total welfare gain of about $\$ 608,537$ to all households in the county. Non-resident anglers contributed about 92 percent $(\$ 558,080)$ of the total household welfare gain. Budiyanti (1995) studied measures of welfare change and regional equilibrium results from a reduction of sport fishing trips due to a quality change in trips because of a hypothetical water pollution problem. The Lake Texoma fishery is similar in nature and requires an analysis of the impacts of a change in trip demand.

Objective of the Study

The objective of this study is to assess the potential impact of changing water quality (removal of salts by the Red River Chloride (RRC) project) of Lake Texoma on the demand for fishing trips and thus on the region's economy using regional computable general equilibrium (CGE) methods. It is based on the premise that reducing the salt content of Lake Texoma reduces the striped bass fish population and thus the number of trips demanded (decrease in quality of fishing trips to Lake Texoma). A reduction in trips demanded reduces total resident and nonresident angler expenditures. A reduction in aggregate regional demand will have region-wide economic impacts. The objective of this study is carried out by simulating the effects of reduced trip demands by means of a price increase in trips. Price increases are proposed through a quality tax which increases the price of a trip and thus reduces trip demand. Two quality tax scenarios on resident and nonresident trips are considered; (1) a 25 percent and (2) a 50 percent quality tax on resident and nonresident trips. In the regional general equilibrium model, the quality tax on Lake Texoma fishing trips has the effect of reducing trip demand. Resident angler households shift their consumption expenditures to other goods and services. Non-resident anglers reduce their demand for Lake Texoma trips.

Data and Methods

The procedure of analysis included the following: (1) trip expenditure profiles were estimated for resident and nonresident anglers using 1990 data from the angler expenditure survey reported in Amera et al.; (2) estimation of a social accounting matrix (SAM) for the impact region using the IMPLAN Database and other data sources; (3) specification and calibration of a regional computable general equilibrium (CGE) model including the non-market goods of resident and nonresident angler trips; and (4) simulation of the impacts of trip reduction through imposing a quality tax on trip demand.

Trip Expenditure Profiles

Because of limited information gathered on angler expenditures, modified spending profiles and bridge tables developed by Stynes and Propst to match spending categories of Lake Texoma anglers and IMPLAN's 528 sectors were used. The spending profiles were developed by Stynes and Propst for the U.S. Army Corps of Engineers and are assumed generalizable across regions, sites, and types of anglers. The degree to which the spending profiles are generalizable, however, was not tested. The spending profiles are based on visitations to the Upper Mississippi River system (1989-90) and measure trip spending in eight major and 32 detailed categories. In the current study, survey data were
used to modify the percentage expenditures in the major categories, but the Stynes and Propst percentages were used for disaggregation within the detailed categories.

The modified spending profiles were multiplied by a bridge table to allocate the expenditures among the 528 IMPLAN sectors. In the bridge table, margin industries (retail trade, wholesale trade, and transportation) convert purchaser values to producer values.

The use of percentage expenditure distributions and bridge tables of Stynes and Propst assumes the following:

1. The expenditure behavior of anglers in the Lake Texoma impact region is similar to the anglers in the Upper Mississippi River System.
2. Definitions of broad spending categories between the Lake Texoma survey questionnaire and the Stynes and Propst study are similar.
Two modifications were made to the Stynes and Propst data for the current study. First, the amounts in the broad spending categories (eight categories) were changed to results obtained in the Lake Texoma survey. Percentage distribution within the broad categories, however, are from Stynes and Propst. Second, the percent purchased locally reflects the Lake Texoma survey results rather than the Stynes and Propst results. The latter study reflects purchases within a 30 mile radius of the recreation site. The current study bases results on a survey question of whether purchases were made within the impact region or outside the region. The modified spending profiles are presented in Table 2.

This analysis is based on the 1991 IMPLAN Database and thus the 1990 survey results are inflated to the 1991 price level. The IMPLAN 528 sectors were aggregated into 38 industries corresponding to the 1987 Standard Industrial Classification (SIC) code and following the aggregation of Regional Input-Output Modeling Systems (RIMS) II (U.S. Department of Commerce, 1992) (Appendix 1). These sectors were further aggregated into eight sectors to reduce the size of the model. These sectors are: (1) agriculture, forestry, fishery products and services; (2) mining; (3) construction; (4) manufacturing; (5) transport, communication, and utilities; (6) trade; (7) finance, insurance, and real estate; and (8) other services (Appendix 2). Resident and nonresident angler expenditures in producer's value and 1991 price level for the eight major and 38 RIMS sectors are presented in Table 3. The data in Table 3 differ from the results in Table 2 because (1) the price level is 1991 rather than 1990 and (2) nonresident angler expenditures are adjusted to include only expenditures within the impact region.

Social Accounting Matrix (SAM)

A social accounting matrix (SAM) was developed using the information from IMPLAN and the Bureau of Economic Analysis (BEA) for the

Table 2. Trip Expenditure Profiles (in 1990 Purchaser's Value) for Anglers at Lake Texoma, 1990.

Trip Spending Categories	Resident Anglers		Nonresident Anglers		All Anglers	
	\$	(\%)	\$	(\%)	\$	(\%)
(1) Lodging Expenses						
Hotel	70,032		2,640,885		2,710,917	
Camp Grounds	13,617		518,392		532,009	
	83,649	1.8	3,159,277	15.1	3,242,927	12.6
(2) Food and Beverages						
Grocery	452,938		3,619,376		4,072,315	
Restaurant	257,108		1,531,235		1,788,343	
	710,047	15.0	$\overline{5,150,611}$	24.6	5,860,657	22.9
(3) Auto \& RV Expenses						
Auto/RV gas \& oil	155,302		2,239,079		2,394,382	
Auto/RV rental	9,402		134,282		143,685	
Auto/RV repairs	6,160		87,440		93,600	
Auto/RV tires	12,969		189,453		202,421	
Auto/RV parts	3,891		55,170		59,061	
Auto/RV parking \& tolls	2,270		35,392		37,662	
	189,994	4.0	2,740,816	13.1	2,930,810	11.4
(4) Boat Gas \& Oil						
Boat gas \& oil	391,336		933,730		1,325,067	
	391,336	8.3	933,730	4.5	1,325,067	5.2
(5) Boat Rental, Repair \& Fees						
Boat rental	49,606		13,532		63,138	
Boat repairs	502,544		137,405		639,950	
Boat parts	1,093,277		297,711		1,390,988	
Boat launch fees	588,463		159,265		747,728	
Boat fares	29,504		7,287		36,791	
	2,263,395	47.8	615,200	2.9	2,878,595	11.2
(6) Fishing Expenses						
Bait and fishing tackle	78,138		394,519		472,657	
	78,138	1.6	394,519	1.9	472,657	1.8
(7) Activity Fees						
Equipment rental	81,704		1,074,258		1,155,962	
Guide fees	30,153		394,519		424,672	
Spectator sports fees	30,153		394,519		424,672	
Tourist attraction fees	174,432		2,292,167		2,466,599	
Other recreation fees	108,939		1,432,344		1,541,283	
	425,380	9.0	5,587,809	26.7	6,013,188	23.4
(8) Other Expenses						
Film purchase	84,298		328,940		413,237	
Film developing	50,903		198,821		249,724	
Souvenirs	116,720		454,894		571,614	
Footwear	64,844		252,950		317,795	
Men's clothing	67,762		262,319		330,081	
Women's clothing	116,720		454,894		571,614	
All other	9,694		373,700		469,994	
	597,542	12.6	2,326,519	11.1	2,924,060	11.4
Total	4,739,480	100.0	20,08,482	100.0	25,647,962	100.0

Source:Broad expenditure categories were from the telephone survey.
Allocations within the broad categories were from Stynes and Propst.
Note: Nonresident angler expenditures are not adjusted for within region expenditure of 85.3%.

Table 3. Resident and Nonresident Angler Expenditures Spent Within Lake Texoma Region by Industry, 1991.

Sector		Total Angler Expenditures (\$)		
		Resident Anglers	Nonresident Anglers	Total Anglers
Agriculture, forestry, and fisheries:				
	Agricultural products and			
	Agricultural, forestry, and			
	fisheries services	37,838	340,058	377,896
2.	Forestry and fishery products	13,327	145418	158,745
Mining:				
3. Coal mining				
4. Crude petroleum and natural gas				
5.	Miscellaneous mining			
Construction:				
6. New construction				
7.	Maintenance and repair construction			
Manufacturing:				
8.	Food and kindred products			
	and tobacco	273,687	1,853,161	2,126,849
9.	Textile mill products	6,500	21,479	27,978
10.	Apparel	81,912	270,554	352,467
11.	Paper and allied products	8,153	32,041	40,194
12.	Printing and publishing	3,164	11,634	14798
13.	Chemicals and petroleum refining	327802	1,616,011	1,943,813
14.	Rubber and leather products	51,463	225,391	276,854
15.	Lumber and wood products and furniture			
16.	Stone, clay, and glass products	4,814	20,875	25,689
17.	Primary metal industries			
18.	Fabricated metal products	6,402	2,227	8,629
19.	Machinery, except electrical	61,921	15,152	77,072
20.	Electric and electronic equipment	13,437	49,545	62,982
21.	Motor vehicles and equipment	622	7,430	8,053
22.	Transportation equipment, except motor veh.	1,281,588	296,477	1,578,064
$\begin{aligned} & 23 . \\ & 24 . \end{aligned}$	Instruments and related products	31,701	105,000	136,701
	Miscellaneous manufacturing			
	industries	77,345	274,613	351,958
Transportation and public utilities:				
25.	Transportation	141,133	318,455	459,587
26.	Communication	52	167	218
27.	Electric, gas, water, and sanitary services			
Wholesale and retail trade:				
28.	Wholesale	217,861	933,626	1,151,487
29.	Retail trade	646,060	1,976,653	2,622,713
Finance, insurance, and real estate:				
30. Finance				
31. Insurance				
32. Real estate				
Services:				
33.	Hotels and lodging places and amusements	941,535	6,274,888	7,216,423
34.	Personal services	96,617	319,298	415,915
35.	Business services	50,147	166,501	216,648
36.	Eating and drinking places	230,216	1165,208	1,395,424
37.	Health services			
38.	Miscellaneous services	23,704	279,140	302,843
	Total	4,629,000	16,721,001	21,350,000

∞ Table 4: Social Accounting Matrix for Lake Texoma Region, 1991 (\$1,000).

Expenditures	Agriculture	Mining	Construction	Manufacturing	Transport	Trade	Finance	Services	Resident Trips	Nonresident Trips	total
COMMODITY											
Agriculture	66,517	3	2,627	57,767	307	151	824	3,636	43	413	132,294
Mining	1,149	2,049	2,409	18,090	5,976	367	214	4,232			34,491
Construction	3,641	92,368	495	5,6703	12,365	834	1,094	26,638			143,110
Manufacturing	13,102	381	50,566	292,954	23,151	4,837	8,833	31,758	1,337	2,877	429,800
Transport	16,251	687	22,714	139,339	41,726	11,159	11,332	44,306	89	202	287,809
Trade	6,264	108	24,490	50,449	2,591	509	2,519	8,986	580	1,956	98,454
Finance	12,741	231	10,003	28,415	10,067	6,248	81,439	16,447			165,596
Services	23,018	623	58,786	49,651	20,742	15,588	21,028	88,700	904	5,532	284,576
Resident Trips Nonresident Trips											28,57
Total	142,686	96,454	172,093	642,338,986	116,929	39,695	127,286	224,705	2,955	10,982	1,576,128
FActors											
Labor	26,235	35,029	141.049	604,120	134,770	243,858	98,306	529,629			1,813.000
Capital	37,194	141,215	48,321	391,605	144,456	58,450	279,364	154,258			1,254,867
Land	46,148										46,148
Total	109,578	176,244	189,370	995,726	279,227	302,309	377,671	683,888			3,114,016
institutions											
ENTERPRISE											
household low medium high Sub Total											
GOVERNMENT	5,983	124,690	2,077	49,726	26,593	84,219	103,093	17,941			414,324,900
CAPITAL											
IMPORTS											
Agriculture	43,084	648	1,061	15,570	87	70	844	2,751	7		63,478
Mining	${ }_{6}^{646}$	37,285	11,691	308,459	45,717	15	. 017	794			404,611
Construction	1,231	15	125	2,061	4,433	305	1,386	9,950			19,510
Manufacturing	45.731	773	219,976	853,565	29,667	6.414	3,114	160,385	893		1,320,522
Transport	7,677	171	19,862	81,604	30,377	5,455	3,104	33,970	51		182,275
Trade	8,161	81	23.595	73,671	3,404	626	170	13,230	283		123,225
Finance	35,252	570	8,038	20,190	14,225	12,621	25,345	90,582			206,829
Services Resident Trips Nonresident Trips	10,067	254	25,121	109,567	31,127	22,381	13,026	113,088	437		325,072
Total	151,852	39,153	309,472	1,464,691	159,041	47,890	46,991	424.755	1,673		2,645,522
TOTAL	410,101	436,542	673,014	3,152,483	581,792	474,114	655.041	1,351,290	4,629	10,982	7,749,992

Table 4 (Continued)

Expenditures	Labor	Capital	Land	Total	Enterprises	Hh-Low	Hh-Med	Hh-High	Sub-Tot	Government	Capital	Exports	Total
commodity													
Agriculture						5,143	5,300	2,701	13,145	1,200		263,460	410,101
Mining										4	715	401,333	436,542
Construction										107,187	281,742	140,977	673,014
Manufacturing						55,028	93,774	43,976	192,780	18,816	154,987	2,356,100	3,152,483
Transport						63,230	68,02	33,380	164,633	1,724	4,069	123,555	581,791
Trade						91,559	151,164	73,431	316,154	3,495	8,560	47,449	474,114
Finance						133,712	204,221	91,205	429,139	1,812	660	57,832	655,041
Services						254,568	302,465	163,496	720,530	32,179	1,865	312,138	1,351,290
Resident Trips Nonresident Trips						1,203	2,221	1,203	4,629			10,982	$\begin{array}{r} 4,629 \\ 10,982 \end{array}$
Total						604,448	827,169	409,395	1,841,013	166,420	452,598	3,713,830	7,749,991
FACTORS													
Labor								5,140	5.140	261,725			2,079,865
Capital													1,254,867
Land													46,148
Total								5,140	5,140	261,725			3,380,881
Institutions													
ENTERPRISE		1,086,841		1,086,841									1,086,841
HOUSEHOLD													
medium	174,172 539,592		1,163 17,448	175,335 557,040	22,710 38,974	1,500	4,245	1,722	7,468	401,133 221,620		125,550 827,149	732,199 $\mathbf{1 , 6 4 4 , 7 8 5}$
high	1,087,398		20,162	1,107,560	110,235					115,981		$(278,224)$	1,055,553
Sub Total	1,801,163		38,773	1,839,937	171,921	1,500	4,245	1,722	7,468	738,735		674,475	3,432,537
GOVERNMENT	278,701	168,026	7,374	454,103		27,091	152,965	185,777	365,833	321,408			1,555,670
CAPITAL					914,919	$(338,684)$	80,115	159,927	$(98,641)$	$(229,357)$		$(43,154)$	543,767
IMPORTS													
Agriculture						2,829	3,260	1,749	7,839	628			71,946
Mining						107	71	38	217	308	11,332		416,469
Construction										8,232	5,756		33,497
Manufacturing						194,206	270,700	129,691	594,598	131,620	63,386		2,110,127
Transport						46.19	51,643	28,844	126,680	21,8140	2,597		333,367
Trade						30,441	43,037	21,530	95,010	7.074	6,051		231,361
Finance						74,688	94,212	46,491	215,392	70,824	1,725		494,771
Services Resident Trips						89,377	117,362	65,242	271,982	56,236	318		653,609
Sub Total						437,843	580,289	293,589	131,172	296,738	91,168,		4,345,151
total	2,079,865	1,254,867	46,148	3,380,881	1,086,841	732,199	1,644,785	1,055,553	3,432	1,555,670	543,767	4,345,151	22,094,838

seven counties for the year 1991. In this study, employee compensation, proprietary income, and other property income were distributed to factors of labor, capital, and land. Indirect business taxes were allocated to government following procedures in Koh (1991), Lee (1993) and Budiyanti (1995). Income by income source for the three household income levels was estimated using sources of data in Budiyanti and Lee.

The estimated social accounting matrix (SAM) for the impact region is presented in Table 4. Total commodity output was $\$ 7,750$ million of which total exports account for about 48 percent ($\$ 3,714$ million). Total commodity final demand in the region was $\$ 12,095$ million of which $\$ 4,345$ million (35.9 percent) was fulfilled by imports. The intermediate inputs used and produced in the region account for about 37 percent ($\$ 1,576$ million) of the total intermediate inputs used. Share of labor from the total gross regional product (value added plus indirect business taxes) of $\$ 3,795$ million was 54.8 percent, capital 33.1 percent, and land 1.2 percent.

The resident and nonresident trips were treated as sectors of nonmarket goods making market good purchases from other sectors in the social accounting matrix. The nonresident trips were considered as an export of goods. About 30 percent of nonresident angler expenditures were spent on imported commodities, and hence excluded from the SAM. The remaining expenditures by sector were considered as inputs for the production of exportable nonmarket goods. The resident expenditures by sector were treated as inputs of a resident trip production function while the output is consumed by household groups.

Specification of Regional CGE Model

General equilibrium models have four essential ingredients: endowments of consumers (households), production technology, demand functions, and the conditions for equilibrium (Ballard et al, 1985). In our model, households possess endowments of labor, land, and capital. The model is built based on the assumptions of competitive markets with full information, and profit or utility maximizing behavior of producers and consumers. A sector is an aggregation of many producers, but the sector is treated as a single firm in the model. Household groups are an aggregation of many similar households within each income group, but each income group is treated as a single household. Variable and parameter descriptions, model equations, endogenous and exogenous variables are listed in Appendices 3 and 4. Exogenous parameter estimates and their sources are presented in Appendix 5.

Under the Walrasian general equilibrium framework, relative prices are assumed to be the only force that determines the flow of commodities and factors. Therefore, all prices are expressed in terms of relative value with respect to a base price of one. The regional market price of the composite good is a weighted average of the imported and domestic good prices. Import prices are exogenous to the region whereas regional
prices are endogenous except for the sectors to which shocks are given.
Production functions are characterized at two (nested) levels. At the first level, each production sector produces only one homogeneous commodity using intermediate and primary inputs (Figure 1). Technology assumes no substitution between composite intermediate inputs and composite primary factors nor between intermediate inputs produced by different sectors. This is the Leontief input-output production function technology. At the second level, substitution among primary factors of labor, capital, and land is represented by a constant returns to scale Cobb-Douglas (C-D) production function. It is assumed that there exists only one type of each factor.

Demand for the composite and individual intermediate inputs is derived from the Leontief input-output production relationship whereas primary factor demand is determined from the (C-D) production rela-

Figure 1. Production and Distribution Structure of the Model.
tionship by profit maximizing for each sector. The first order conditions for profit maximization are included in the CGE model. The model assumes that full employment is always attained by adjustment of the wage rate and the rates of return to land and capital for a given time period. Land is used only in agriculture and is assumed fixed in supply. Capital is assumed fixed in supply by sector in the short run. Both intersectoral and interregional mobility of capital are allowed in the long run analysis. Labor supply from regional households is part of the household expenditure system and is derived from the labor-leisure choice. Labor migration is defined as a function of the ratio of regional and out-of-region wage rate and an assumed labor migration elasticity.

Intermediate inputs are treated as a mix of regional and imported products (Figure 1). Quantity of the intermediate input demanded is described by a constant elasticity of substitution(CES) function between regional and imported components. The elasticity of substitution parameters are exogenously specified. The regional intermediate input demand is obtained from first order conditions of cost minimization subject to a given level of composite intermediate input defined by the CES function. Relative prices of regionally produced and imported inputs and the elasticity of substitution parameter determine regional intermediate input demand.

Similarly, each sector producing market goods transforms its output for export or a product used by the region. A constant elasticity of transformation (CET) function describes this transformation process for the market good sectors. The regional supply function for market goods is derived from the first order conditions for maximizing revenue subject to a given output level with the CET function. Relative prices of regional goods to exported goods and the constant elasticity of transformation parameter determine regional supply and export supply for market goods. For nonmarket goods, Texoma resident fishing trips are only consumed in the region (no exports) and Texoma nonresident fishing trips are consumed in the region but considered as exports. The export demand for nonresident trips is a function of regional price and a price elasticity of export demand.

Three household annual income groups are considered in this study: low income ($<\$ 20,000$ income), medium income ($\$ 20,000$ to $\$ 40,000$), and high income ($>\$ 40,000$). Income for each household group is determined by the level of ownership of the primary factors (labor, land, and capital), factor prices, government transfers, and inter-household transfers. Government and inter-household transfers are assumed fixed in this analysis. It is assumed that resource ownership structure remains unchanged. Quantity of labor supplied by household is endogenous and determined by wage rate and the labor-leisure choice.

Consumer demand functions are derived from maximization of utility. The Stone-Geary utility function is used which results in a linear expenditure system (LES) and satisfies the assumption of a diminishing
marginal rate of substitution. The Stone-Geary utility function is given as:
$\mathrm{U}_{\mathrm{h}}=\sum_{\mathrm{i}} \beta_{\mathrm{ih}} \log \left(\mathrm{Q}_{\mathrm{ih}}-\gamma_{\mathrm{ih}}\right)$
where, $U_{h}=$ utility of household group h
$\mathrm{Q}_{\mathrm{ih}}=$ amount of commodity i consumed by household group h
$\gamma_{\text {ih }}=$ minimum subsistence consumption requirement for commodity i by household group h
$\beta_{\mathrm{ih}}=$ average budget share for commodity i of household group h.

The demand system derived from this utility function satisfies the general properties required; homogeneity of degree zero in all prices and income, symmetry of cross-substitution effects, adding up condition, and negativity of direct substitution effects. Household consumption is modeled at two levels. The first level determines consumption of the composite market goods, nonmarket goods, and the demand for leisure (or supply of labor) derived from maximizing utility subject to prices and full income. The average budget shares are calculated from the SAM data. Income elasticity of demand for market and nonmarket goods, income elasticity of labor supply, and a Frisch parameter are exogenously assigned to allow calibration of the minimum subsistence consumption parameters. A backward bending labor supply curve is assumed and hence the income elasticity of labor supply is greater in absolute value for high income (-0.24) than for low income (-0.12) household groups (Appendix 5).

The second level determines the optimal combination of imported and regional consumer goods (market goods and Texoma resident fishing trips). The optimal combination is the result of first order conditions for cost minimization subject to the level of composite commodity obtained from the first level which is expressed as a CES function of imported and regionally produced components. The optimal combination is determined by relative prices and the elasticity of substitution.

Federal and state and local government revenues include indirect business taxes, factor taxes, intergovernmental transfers, and household and corporate income taxes. Their expenditures include commodity consumption, transfers to households and governments, and payment to labor. Quantity of commodity consumption is held constant but as regional prices change total government expenditure changes. The proportion of regional relative to imported commodities specified by a CES function changes as discussed above for households.

Total saving is composed of household savings, retained earnings for enterprises, and net transfers (saving) from rest-of-world. Capital expenditures are for investment demand and include regional produced and imported components as specified through a CES function. Capital

Figure 2. Marshallian Demand, Hicks-Compensated Demand, and Compensating Variation Relationships for a Quality Change in Fishing Trips.
expenditures are the result of a fixed quantity (exogenous) and a regionally determined composite price.

Gross regional product is estimated by before tax factor income generated from the production activities of the region plus indirect business taxes. Welfare changes measured by compensating variation (CV) were computed outside of the model for each household income group.

Quality Tax on Trip Demand

As the water quality decreases, the number of fish caught per trip for a given period of time decreases. Anglers have to stay longer and spend more to catch the same number of fish. This is illustrated in Figure 2. Utility for anglers shifts from U_{0}^{0} to U_{0}^{1}. U_{0}^{1} after a decrease in water quality represents the same level of utility as U_{0}. The shape of the utility curve changes. After the quality is reduced, the utility curve becomes flatter because it takes more trips than before to achieve one unit of utility. In other words, the trade off between one unit of all other commodities and fishing trips increases. To remain as well off as before, anglers consume more fishing trips (X_{1}) for the same level of all other commodities $\left(Q_{0}\right) . P_{0}^{1}$ is the iso-cost line tangent to U_{0}^{1} at point B. Because U_{0}^{0} is equivalent to U_{0}^{1} the following analysis is relative to U_{0}.

For a given level of expenditure anglers are limited to Q_{0} and X_{0}. This shifts the utility curve from U_{0}^{1} to U_{1}^{1}. This is equivalent to a shift from B to point D in the lower graph, that is, fishing trips decrease from X_{1} to X_{0}. The iso-cost line at point A is tangent to Q_{1}^{1}, that is, P_{1}^{1} is steeper than P_{0}^{1} indicating an increase in the price of fishing trips.

To remain as well off as before, the compensating variation (CV) in the upper graph is the amount of money required to leave anglers as well off as before. Point C is obtained by shifting the iso-cost line P_{1}^{1} to the right until it is tangent to U_{0}^{1}. This corresponds to point C on the HicksCompensated demand curve in the lower graph. The price increase from P_{0}^{1} to P_{1}^{1} is considered as a quality tax in our analysis.

Simulation Results

Commodity Market

Short run and long run changes in commodity markets of the impact region from imposing a quality tax (reduced trip demand) of 25 percent and 50 percent are presented in Table 5 . Most changes are expressed in terms of indices with the base value equal to one. A 25 percent quality tax increases unit price of resident trips by the same amount. The marginally lower price in the short run analyses is because of a slightly lower aggregate regional price level. Budiyanti (1995) found a less than proportional increase in composite price of fishing trips for a quality tax for the State of Oklahoma (a 7.3 percent increase in composite price for
a 10 percent quality tax and a 30 percent increase for a 50 percent quality tax). The results in this model are different because the model does not consider alternative out-of-region fishing trips for resident anglers. The assumption is that Lake Texoma represents a unique fishery with the striped bass fishing that is not available elsewhere. Hence, stripe bass trips are not a substitute for other fishing trips but stripe bass trips are substitutes for other goods and services.

With capital fixed and labor mobile, an increase in the unit price of fishing trips from 1 to 1.25 reduced resident trips from 55,744 to 49,976 (10.3 percent), and nonresident trips from 56,285 to 49,481 (12.1 percent). With a quality tax of 50 percent, resident trips decreased by about 17.3 percent and nonresident trips by 20.9 percent. In the long run, where both capital and labor are allowed to move freely among sectors, resident trips decreased marginally less in the long run than in the short run. The trip demand levels at higher prices correspond to the trip levels that would have been obtained from a shift in the demand curve to the left at the original cost per trip (Figure 2). The quality tax (even though not assessed) has the effect of shifting the demand curve because anglers are on a lower indifference curve.

Most market good regional and composite prices in the short run decreased because of the reduced aggregate regional demand. The exceptions are mining and manufacturing with the 25 percent quality tax. Services, trade, and finance show the greatest decrease in prices because of their direct linkages with trip demands. The long run composite prices of market goods are the same or higher than the short run levels. This is due to the mobility of capital in the long run. The regional prices are less than the composite prices in the short run for each sector except mining. This is because of the fixed nature of external prices and the effect of reduced aggregate demand on regional prices. The exception for mining and manufacturing may be due to shifting of resources out of other sectors into mining. In the long run analyses, regional agriculture, manufacturing, and trade prices are lower than the composite price with the 25 percent quality tax. With the 50 percent quality tax, all regional prices are lower than the composite prices.

Changes in output by sector are net results of changes in regional and composite prices, changes in factor prices, substitutions between factor inputs, elasticity of substitution between regionally produced and imported intermediate goods, and elasticity of transformation between regional supply and export. In both the short run and long run analysis, the overall output level decreased. The overall decrease for market goods is less than the percentage decrease for nonmarket goods which are directly affected by the quality tax. The changes in output by sector show mixed results. Output decreased in agriculture, trade, and services and increased for all other market goods with the 25 percent quality tax and short run. This means labor resources were shifting from the output decreasing sectors to the output increasing sectors. In the long

Table 5. Impacts of a Quality Tax on Fishing Trips and Commodity Markets, 1991.

Items	Base	Quality Tax (25\%)		Quality Tax (50\%)	
		Short Run	Long Run	Short Run	Long Run
Resident Trips					
Composite Price (index)	1.00000	1.24998	1.24999	1.49988	1.49993
Number of Regional Trips	55,744	49,976	49,977	46,120	46,121
Expenditure/Trip (\$)	83.04	103.80	103.80	124.55	124.55
Non-Resident Trips					
Regional Price (index)	1.00000	1.25000	1.25000	1.50000	1.50000
No. of Trips	56,285	49,481	49,481	44,538	44,537
Expenditure/Trip	297.08	371.35	371.35	445.62	445.62
Regional Price (index)					
Agriculture	1.00000	0.99992	0.99996	0.99982	0.99986
Mining	1.00000	1.00002	1.00000	0.99903	0.99989
Construction	1.00000	0.99997	0.99999	0.99985	0.99989
Manufacturing	1.00000	1.00001	0.99999	0.99991	0.99990
Transport, Comm., \& Utilities	1.00000	0.99999	1.00000	0.99986	0.99987
Trade	1.00000	0.99994	0.99998	0.99964	0.99979
Finance, Insurance, R. Est.	1.00000	0.99996	1.00001	0.99978	0.99987
Services	1.00000	0.99992	0.99999	0.99968	0.99984
Resident Fishing	1.00000	1.24998	1.24999	1.49988	1.49993
Non-resident trips	1.00000	1.25000	1.25000	1.50000	1.50000
Composite Price (index)					
Agriculture	1.00000	0.99994	0.99997	0.99988	0.99991
Mining	1.00000	1.00000	1.00000	0.99992	0.99999
Construction	1.00000	0.99998	0.99999	0.99986	0.99990
Manufacturing	1.00000	1.00000	1.00000	0.99998	0.99997
Transport, Comm., \& Utilities	1.00000	0.99999	1.00000	0.99992	0.99993
Trade	1.00000	0.99996	0.99999	0.99977	0.99986
Finance, Insurance, R. Est.	1.00000	0.99998	1.00000	0.99988	0.99993
Services	1.00000	0.99995	0.99999	0.99980	0.99990
Resident trips	1.00000	1.24998	1.24999	1.49988	1.49993
Sectoral Output (index)					
Agriculture	1.00000	0.99995	0.99983	0.99999	0.99982
Mining	1.00000	1.00003	1.00013	0.99967	1.00045
Construction	1.00000	1.00001	1.00002	1.00003	1.00012
Manufacturing	1.00000	1.00016	1.00031	1.00028	1.00034
Transport, Comm., \& Utilities	1.00000	1.00005	1.00008	1.00012	1.00008
Trade	1.00000	0.99995	0.99993	0.99955	0.99940
Finance, Insurance, R. Est.	1.00000	1.00001	0.99997	1.00002	0.99989
Services	1.00000	0.99972	0.99962	0.99931	0.99905
Resident Fishing	1.00000	0.89652	0.89653	0.82735	0.82736
Non-resident Fishing	1.00000	0.87911	0.87910	0.79128	0.79126
Total	1.00000	0.99979	0.99982	0.99956	0.99956
Exports (index)					
Agriculture	1.00000	1.00007	0.99989	1.00023	1.00002
Mining	1.00000	1.00002	1.00013	0.99990	1.00048
Construction	1.00000	1.00007	1.00004	1.00037	1.00037
Manufacturing	1.00000	1.00016	1.00031	1.00034	1.00041
Transport, Comm., \& Utilities	1.00000	1.00008	1.00009	1.00056	1.00046
Trade	1.00000	1.00011	0.99998	1.00048	0.99995
Finance, Insurance, R. Est.	1.00000	1.00010	0.99995	1.00061	1.00023
Services	1.00000	0.99991	0.99965	1.00002	0.99940
Non-resident Fishing	1.00000	0.87911	0.87910	0.79128	0.79126
Total	1.00000	0.99975	0.99982	0.99966	0.99968

run analysis, output decreased in agriculture, trade, finance, and services and increased for all other sectors. In general, the changes in output with the 50 percent quality tax are in the same direction as with the 25 percent tax but at a higher level of magnitude.

The overall export level decreased in the short run and in the long run. The decrease in export demand is heavily influenced for the decrease in nonresident trip demand. The level of exports in the short run increased for all market goods except trade with the 25 percent tax and all except mining with the 50 percent tax. This increase in exports is expected because reduced aggregate demand lowers regional prices relative to out-of-region prices and induces export demand. The level of export demand in the long run for market goods has increased more with the 50 percent quality tax compared to the 25 percent quality tax.

Factor Markets

It is in the factor markets where distinction occurs between the short run and the long run. In the short, capital is fixed by sector but labor is mobile between sectors and between regions. In the long run, both labor and capital are mobile between sectors and regions. Land is fixed in both short and long run.

Both in the short run and long run, the overall wage rate decreased (Table 6). Long run wage rates are marginally higher than short run rates. This is expected because capital flows out of the region in the long run, thus increasing labor demand and increasing wage rate. In the short run, wage rate declined by 0.006 percent and 0.031 percent with a 25 percent and a 50 percent quality tax rate, respectively. Equilibrium wage rate is determined by supply of and demand for labor. In the short run, total labor demand decreased marginally with a 25 percent quality tax. The decline in labor demand is higher for a 50 percent quality tax. In the long run, labor demand increased marginally with a 25 percent quality tax rate. Labor demand, however, declined with a 50 percent tax.

Lower internal wage rate relative to a fixed out-of-region wage rate encourages outmigration. Migration of labor depends on the assumed labor migration elasticity (0.92 in this study). In the short run, labor outmigrated from the Lake Texoma region by 0.006 percent and 0.029 percent of the initial total labor supply with a 25 percent and a 50 percent quality tax rate, respectively. This is equivalent to a loss of 8 and 30 jobs, respectively. The outmigrated labor receives labor compensation at the out-of-region wage rate (1.0 base) and amounts to $\$ 114,528$ and $\$ 596,077$ with a 25 percent and a 50 percent quality tax, respectively. In the long run analysis, the loss of jobs and out-of-region labor compensation amounts are marginally less than that of the short run levels.

Both in the short run and long run analyses, labor demand increased in sectors where output increased: mining (except with the 50 percent quality tax), construction, manufacturing, transport, and finance. La-

Table 6: Impacts of Reduced Trips on Factor Markets.

Items	Base	Quality Tax (25\%)		Quality Tax (50\%)	
		Short Run	Long Run	Short Run	Long Run
Labor					
Labor Demand (index)	1.00000	0.99999	1.00001	0.99983	0.99985
Wage Rate (index)	1.00000	0.99994	0.99996	0.99969	0.99971
Migration					
No. of Jobs	0	-7.54	-6.68	-29.83	-29.18
Compensation (\$)	0	-114,528	-69,282	-596,077	-545,428
Industry Demand (index)					
Agriculture	1.00000	0.99979	0.99975	0.99995	0.99980
Mining	1.00000	1.00013	1.00018	0.99836	1.00059
Construction	1.00000	1.00002	1.00003	1.00004	1.00017
Manufacturing	1.00000	1.00027	1.00033	1.00046	1.00041
Transport, Comm., \& Utilities	1.00000	1.00010	1.00011	1.00024	1.00017
Trade	1.00000	0.99993	0.99994	0.99944	0.99943
Finance, Insurance, R. Est.	1.00000	1.00002	1.00001	1.00006	1.00003
Services	1.00000	0.99964	0.99964	0.99911	0.99909
Capital					
Capital Demand (index)	1.00000	1.00000	1.00002	1.00000	0.99990
Capital Rent (index)	1.00000	1.00003	1.00003	0.99955	0.99989
Capital Migration					
Rents (\$)	NA	-59,843	-36,204	-311,343	-284,985
Flows (\$)	NA	0.0	+29,140	0.0	-121,290
Industry Rents (index)					
Agriculture	1.00000	0.99973	1.00003	0.99964	0.99989
Mining	1.00000	1.00007	1.00003	0.99805	0.99989
Construction	1.00000	0.99996	1.00003	0.99973	0.99989
Manufacturing	1.00000	1.00021	1.00003	1.00015	0.99989
Transport, Comm., \& Utilities	1.00000	1.00004	1.00003	0.99993	0.99989
Trade	1.00000	0.99987	1.00003	0.99913	0.99989
Finance, Insurance, R. Est.	1.00000	0.99996	1.00003	0.99975	0.99989
Services	1.00000	0.99958	1.00003	0.99980	0.99989
Land					
Land Demand (index)	1.00000	1.00000	1.00000	1.00000	1.00000
Land Rent (index)	1.00000	0.99973	0.99971	0.99964	0.99952
Migration					
Rents (\$)	NA	-2,135	-1,291	-11,108	-10,163

bor demand decreased in agriculture, trade, and services. The decline in labor demand is the highest for the services sector in all scenarios because of its strong linkages with trip demands.

In all scenarios, the change in total labor use is less than the change in the wage rate. This result is consistent with results of Budiyanti (1995). Budiyanti attributed this result to at least three factors: (1) a slight inelasticity of labor migration which means that the change in overall wage rate leads to a smaller than proportional change in labor supply; (2) a negative income elasticity of labor supply, which means that with a lower wage rate (and subsequent income) households supply
more labor; and (3) a lower wage rate increases industry demand for labor in the region.

Labor supply, which is determined by the labor-leisure choice, increased for each household income group. The largest percentage increase was for high income households because the income elasticity of labor supply was assumed to be larger in absolute value (-0.24) when compared to low income households (-0.12). The increase in labor supply is higher with the 50 percent quality tax compared to the 25 percent quality tax. The increase in labor supply is marginally less in the long run compared to the short run because of higher wage rates in the long run.

In the short run, capital is fixed by sector and hence the total capital demand remains unchanged. In the long run, capital demand increased with the 25 percent quality tax but decreased with the 50 percent quality tax. In both the short run and the long run, the overall capital rent increased for the 25 percent quality tax but decreased for the 50 percent quality tax. The decrease in capital rent was higher in the short run than in the long run.

Out-migrating households are assumed to take their proportional capital compensation with them. This assumption is based on no changes in resource ownership. With a quality tax of 25 percent, the impact region lost $\$ 59,843$ and $\$ 36,204$ in the short run and long run, respectively, in the form of compensation for out-migrating household capital ownership. With a 50 percent quality tax, the amount of compensation increased to $\$ 311,343$ and $\$ 284,985$ in the short run and long run, respectively.

In the long run, a small amount of capital $(\$ 29,140)$ flows into the region with a 25 percent quality tax due to the higher overall capital rent. However, with a 50 percent quality tax rate, $\$ 121,290$ of capital migrates from the region.

The capital rents by industry in the short run show mixed results. With a 25 percent quality tax, capital rents decreased for all sectors except mining, manufacturing, and transport. Capital rent in the services sector decreased by the highest percentage. With a 50 percent quality tax, capital rents decreased for all sectors except manufacturing in the short run. The highest percentage decrease in the price of capital is in the mining sector.

Land demand was assumed fixed for all scenarios. Rental price of land for agriculture decreased both in the short run and long run. The decrease in land rent is higher in the long run than in the short run. In the short run, out-migrating households received $\$ 2,135$ and $\$ 11,108$ for compensation of land ownership with the 25 percent and the 50 percent quality tax, respectively. Compensation to out-migrating households for land ownership is less in the long run than in the short run because of lower rent in the long run.

Welfare Impacts of Reduced Trips

Impacts of reduced trips from the imposed quality tax are discussed in terms of how it affects the welfare of (1) anglers, (2) the impact region, and (3) households remaining in the region.

Anglers. In the short run, the quality tax cost to resident anglers is equivalent to $\$ 1,037,403$ at the 25 percent quality tax and $\$ 1,914,462$ at the 50 percent quality tax (Table 7). The cost in the long run is marginally higher compared to the short run. The increase cost per trip for the 25 percent quality tax is $\$ 20.76$ and $\$ 41.51$ for the 50 percent

Table 7: Welfare Impacts of Reduced Trips.

Items	Base	Quality Tax (25\%)		Quality Tax (50\%)	
		Short Run	Long Run	Short Run	Long Run
Anglers					
Resident Anglers					
Quality tax (\$)	0	1,037,403	1,037,488	1,914,462	1,914,663
Consumer Surplus Change (\$)	\$) NA	-1,097,270	-1,097,350	-2,114,210	-2,114,410
Non-Resident Anglers					
Quality tax (\$)	0	3,674,969	3,674,924	6,615,688	6,615,519
Consumer Surplus Change (\$)	\$) NA	-3,890,490	-3,890,470	-7,413,860	-7,413,780
Total Anglers					
Quality tax (\$)	0	4,712,372	4,712,412	8,530,150	8,530,182
Consumer Surplus Change (\$)	\$) NA	-4,987,760	-4,987,820	-9,528,070	-9,528,190
Impact Region					
Gross Regional Product					
Index	1.00000	0.99996	1.00000	0.99957	0.99969
Change (\$)	NA	-157,548	0.00	-1,642,789	-1,179,424
Industry Value-Added (index)					
Agriculture	1.00000	1.00095	0.99983	0.99999	0.99982
Mining	1.00000	1.00003	1.00013	0.99967	1.00045
Construction	1.00000	1.00001	1.00002	1.00003	1.00012
Manufacturing	1.00000	1.00016	1.00031	1.00028	1.00034
Transport, Comm., \& Utilities	1.00000	1.00005	1.00008	1.00012	1.00008
Trade	1.00000	0.99995	0.99993	0.99955	0.99940
Finance, Insurance, R. Est.	1.00000	1.00001	0.99997	1.00002	0.99989
Services	1.00000	0.99972	0.99962	0.99931	0.99905
Total	1.00000	0.99999	1.00001	0.99989	0.99986
Households Remaining					
Change in Welfare (\$)					
Low Income	NA	-271,908	-288,527	-495,734	-535,727
Medium Income	NA	-521,033	-541,455	-967,840	-1,024,178
High Income	NA	-319,195	-319,857	-697,255	-695,385
Total	NA	-1,112,136	-1,149,839	-2,160,829	-2,255,290
Change in Household Income (\$)					
Low Income	NA	-7,004	-2,487	-55,520	-43,328
Medium Income	NA	-16,474	-3,822	-141,849	-117,591
High Income	NA	-18,340	+4,285	-237,006	-183,486
Total	NA	-41,818	-2,024	-434,375	-343,405

quality tax. Resident anglers will have a loss in consumer surplus of $\$ 1,097,270$ and $\$ 2,114,210$ with the 25 percent and 50 percent quality tax, respectively.

Non-resident angler cost is the equivalent of $\$ 3,674,969$ for the 25 percent tax and $\$ 6,615,688$ for the 50 percent tax in the short run analysis. The cost in the long run is marginally less than in the short run. The increase cost per trip for the 25 percent quality tax is $\$ 95.23$ and $\$ 148.54$ for the 50 percent quality tax. Non-resident anglers will have a loss in consumer surplus of $\$ 3,890,490$ and $\$ 7,413,860$ with the 25 percent and a 50 percent quality tax, respectively. The total consumer surplus loss for both resident and non-resident anglers is $\$ 4,987,760$ with the 25 percent quality tax and $\$ 9,528,070$ with 50 percent quality tax.

Region. The gross regional product, which is the sum of factor income and indirect business taxes, decreased by $\$ 157,548$ with the 25 percent tax and $\$ 1,642,789$ with the 50 percent quality tax in the short run. In the long run, gross regional product remained unchanged for the 25 percent quality tax because the higher capital rent more than off-set the losses associated with migration of labor. With the 50 percent quality tax, the change in gross regional product is negative in the long run but less than in the short run. The higher wage rate and capital rents in the long run plus the lower labor migration effects in the long run more than off-set the capital migration in the long run compared to the short run.

In the short run, value-added by industry increased for all industries except trade and services at the 25 percent quality tax. These exceptions are because of close linkages with angler trips. The decrease in valueadded is highest for services. Aggregate value-added, however, decreased. At the 50 percent tax, value-added increased for construction, manufacturing, transport, and finance sectors and decreased for others. Aggregate value-added by industry decreased.

In the long run analysis, aggregate value-added by industry marginally increased at the 25 percent tax but decreased at the 50 percent tax. Value-added increased for the mining, construction, manufacturing and transport sectors and decreased for all other sectors, both at the 25 percent and the 50 percent quality tax.

Households. Compensating variation for households is computed to assess the impact of simultaneous changes in prices and incomes on household welfare. Households staying in the region had a welfare loss equal to $\$ 1,112,136$ and $\$ 1,149,839$ for short run and long run models, respectively, with the 25 percent quality tax and a loss equal to $\$ 2,160,829$ and $\$ 2,255,290$ for short run and long run models, respectively, with the 50 percent quality tax. The medium income household group faced the largest loss in every scenario followed by the high income household group.

In the short run, each household group staying in the region showed a decrease in household income with the high income class showing the largest decrease in absolute value both at 25 percent and 50 percent tax rate ($\$ 18,340$ with a 25 percent tax and $\$ 237,006$ with a 50 percent tax) followed by the medium income class. In the long run with a 25 percent tax, however, high income households showed an increase in income $(\$ 4,285)$ whereas low and medium income households experienced a loss in income. The increase in income for high income households is associated with the increase in capital rent. At a 50 percent tax, all household groups lost income but the loss is less than that of the short run.

Comparisons of income and welfare losses for each household income group at different scenarios gave consistent results. In all scenarios, the welfare loss is greater than the income loss for all household income groups. This implies that the price effect is greater than the income effect for all household groups.

Results of the fixed-price multiplier analysis from Table 1 may be compared to the regional general equilibrium results of Table 7. In Table 1, the assumption is that angler trips go to zero and the loss in gross regional product is $\$ 14,602,000$ (aggregate value-added). For Table 7, the assumption of a 50 percent quality tax on angler trips reduces trips by 19.1 percent and reduces gross regional product by $\$ 1,642,789$ in the short run and \$1,179,424 in the long run. The proportional amount (19.1 percent) of $\$ 14,602,000$ is $\$ 2,788,982$ suggesting that the fixed-price multiplier analysis tends to over estimate the impacts of reduced angler trips when compared to regional general equilibrium results.

Similarly, employment losses under fixed-price multiplier analysis when angler trips go to zero is 654 jobs (Table 1). Under regional general equilibrium analysis, for a reduction of angler trips by 19.1 percent, labor migration is equal to about 30 jobs (Table 6). The same proportional amount under fixed-price multiplier analysis would be a loss of 125 jobs. Clearly, the regional general equilibrium model identifies alternatives for employment with the region compared to the fixed-price multiplier model.

References

Abbot, Michael and Orley Ashenfelter. 1976. "Labor Supply, Commodity Demand and the Allocation of Time." Review of Economic Studies, Vol. 43:289-411.
Amera, Aleligne; D. Schreiner; and D. Robinson. Economic Impact of Lake Texoma Fishing Activities. Department of Agricultural Economics, Oklahoma State University. Report submitted to the U.S. Army Corps of Engineers, Tulsa District, August 30, 1995.
Ballard, C.L; D. Fullerton; J.B. Shoven; and J. Whalley. 1985. A General Equilibrium Model for Tax Policy Evaluation, University of Chicago Press for the National Bureau of Economic Research, Chicago.
Budiyanti, Rini. 1995. Application of General Equilibrium Modeling for Measuring Regional Economic and Welfare Impacts of Quality Changes in Sport Fishing in Oklahoma. Unpublished Ph.D. Dissertation, Oklahoma State University, Stillwater, Oklahoma.
Choi, Se-Hyun. 1993. Economic Analysis of the Mountain Fork River Trout Fishery in Southeastern Oklahoma Using Travel Cost Method. Unpublished Ph.D. Dissertation, Oklahoma State University, Stillwater, OK.
de Melo, J. and D. Tarr. 1992. A General Equilibrium Analysis of U.S. Foreign Trade Policy. The MIT Press, Cambridge, MA.
Koh, Y. 1991. Analysis of Oklahoma's Boom and Bust Economy by Means of a CGE Model. Unpublished Ph.D. Dissertation, Oklahoma State University, Stillwater, OK.
Koh, Y.; D. Schreiner; and H. Shin. 1992. "Comparisons of Regional Fixed Price and General Equilibrium Models." Regional Science Perspectives, Vol. 23, No. 1 (1993):33-80.
Lee, Han-Sung. 1993. Welfare Measures of Rural Development: Regional General Equilibrium Analysis Including Non-Market Goods. Unpublished Ph.D. Dissertation, Oklahoma State University, Stillwater, OK.
Lluch, C.;Powell, A.; and Williams, R. 1977. Patterns in Household Demand and Savings. Oxford: Oxford University Press.
Olson, D.; S. Lindall; and W. Maki. 1993. Micro IMPLAN User's Guide, Version 91-F. Minnesota IMPLAN Group, St. Paul, MN.
Rickman, D. 1992. "Estimating the Impacts of Regional Business Assistance Programs: Alternative Closures in Computable General Equilibrium Model." Regional Science, 71(4): 421-435.
Stone, R. 1954. "Linear Expenditure Systems and Demand Analysis: An Application to the British Pattern of Demand." Economic Journal, 64:511527.

Stynes, D.J. and D.B. Propst. n.d.. Micro-Implan Recreation Economic Impact Estimation System: User's Manual. Department of Park \& Recreation Resources, Michigan Agricultural Experiment Station, East Lansing, Michigan.
U.S. Department of Commerce. 1992. Regional Multipliers: A User Handbook for the Regional Input-Output Modelling System (RIMS II). Second Edition. U.S. Department of Commerce, Washington, D.C.

APPENDIX

APPENDIX 1
 RIMS SECTOR AGGREGATION

RIMS	IMPLAN Database Sector Number	Standard Industrial Classification (SIC) 1987
Agriculture, forestry, and fisheries:		
1. Agricultural products and agricultural, forestry, and fisheries services	1-23, 26-27	$\begin{aligned} & \text { 01, 02, 07, 08, } 09 \text { (exc. 074, 081, } \\ & 083,097,091 \text {) } \end{aligned}$
2. Forestry and fishery products	24-25	081, 083, 097, 091
Mining:		
3. Coal mining	37	
forestry, and fisheries services		083, 097, 091)
4. Crude petroleum and natural gas	38-39	131, 132
5. Miscellaneous mining	28-36, 40-47	10,14
Construction:		
6. New construction	48-54	Part 15, 16, 17
7. Maintenance and repair construction	55-57	138, Part 15, 16, 17
Manufacturing:		
8. Food and kindred products and tobacco	58-107	20,21
9. Textile mill products	108-123	22
10. Apparel	124-132	23
11. Paper and allied products	171-183	27
12. Printing and publishing	174-185	27
13. Chemicals and petroleum refining	186-214	28, 29
14. Rubber and leather products	215-217, 219-229	301, 302, 3052, 306, 308, 31
15. Lumber and wood products and furniture	133-142, 144-160	24 (exc. 2451), 25
16. Stone, clay, and glass products	218, 230-253	3053, 32
17. Primary metal industries	254-272, 290-291	33, 3462, 3463
18. Fabricated metal products	$\begin{aligned} & \text { 273-289, 292-306, } \\ & 396,398 \end{aligned}$	34 (exc. 3462, 3463), 3761, 3795
19. Machinery, except electrical	307-323, 325-354, 382	35 (exc. 3548), 3695
20. Electric and electronic equipment	$\begin{aligned} & 324,355-381,383, \\ & 404,410411 \end{aligned}$	3458, 36 (exc. 3695), 3825, 3844, 3845
21. Motor vehicles and equipment	384-387	3711, 3713, 3714, 3715
22. Transportation equipment, except motor vehicles	143, 388-395, 397, 399	2451, 3716, 372-5, 3792, 3799
23. Instruments and related products	400-403,405-409, 412-414	38 (exc. 3825, 3844, 3845)
24. Miscellaneous manufacturing industries	415-432	39
Transportation and public utilities:		
25. Transportation	433-440, 513	40, 41, 42, 44, 45, 46, 47, 4311
26. Communication	441-442	48
27. Electric, gas, water, and sanitary services	443-446, 514	49
Wholesale and retail trade:		
28. Wholesale trade	447	50,51
29. Retail trade	448-453, 455	52-7, 59
Finance, insurance, and real estate:		
30. Finance	456-458	60, 61, 62, 67 (exc. 6732)
31. Insurance	459-460	63, 64
32. Real estate	461-462	65
Services		
33. Hotels and lodging places and amusements		463, 483-489 70, 78,79
34. Personal services	464-468, 480-481	721-9
35. Business services	$\begin{aligned} & \text { 469-476, 482, 494, } \\ & 506-509 \end{aligned}$	73, 769, 811, 87
36. Eating and drinking places	454	58
37. Health services	490-493	80, 074
38. Miscellaneous services	$\begin{aligned} & \text { 477-479, 495-505, } \\ & 510-512,515 \end{aligned}$	$\begin{aligned} & 6732,75,82-86,8922 \text {, } \\ & \text { part of } 41 \& 491 \end{aligned}$

[^1]
APPENDIX 2
 SECTOR AGGREGATION FOR IMPACT REGION

Impact Region Sector	RIMS Sector Number	IMPLAN Sector Number
1. Ag, Forestry, Fishery Products and Services	$1-2$	$1-27$
2. Mining	$3-5$	$28-47,186-214,218,230-253$
3. Construction	$6-7$	$48-57$
4. Manufacturing	$8-24$	$58-432$
5. Transportation, Communication, Utilities	$25-27$	$433-446,513-514$
6. Trade (Wholesale, Retail)	$28-29$	$447-453,455$
7. Finance, Insurance, Real	$30-32$	$456-462$
Estate	$33-38$	$454,463-515$

TEXOMA MARKET AND NONMARKET GOODS REGIONAL GENERAL EQUILIBRIUM MODEL

APPENDIX 3 (Continued)

	Equation	Description Equations	No. of Equations	Endogenous Variables	Exogenous Variables	Parameters
	$V R_{j i}=V M_{j i}\left[\left(\frac{1-\delta_{j i}^{V}}{\delta_{j i}^{V}}\right)\left(\frac{P M 0_{j}}{P R_{j}}\right)\right]^{\sigma_{j}^{\nu}}, i \in M, N R ; j \in M$	Intermediate regional demand	$m^{2}+(n r \times m)$	$V M_{\mu \prime} V R_{\mu \prime} P R_{j}$	PM ${ }^{\text {j }}$	$\delta_{j}{ }^{V} \sigma_{j}^{V}$
10.	$V R_{j i}=V_{j i}, i \in N E ; j \in M$	Intermediate regional demand	$\boldsymbol{m} \times \boldsymbol{n c}$	$V_{f t} V R_{j t}$		
11.	$V M_{j i}=0, i \in N E j \in M$	Intermediate imported demand	$m \times n e$	$V M_{1 \prime}$		
12.	$T V R_{r}=\sum_{j} V R_{j i}, i \in M, N M ; j \in M$	Total intermediate regional demand	n	$T V R_{1} V R_{\mu}$		
13.	$T V M_{i}=\sum V M_{j i}, \quad i \in M, N M ; j \in M$	Total intermediate imported demand	n	$T V M_{1} V M_{1}$		
14.	$X_{i}=\phi_{i}^{x}\left[\delta_{i}^{x} E X P_{1}^{\rho_{i}^{x}}+\left(1-\delta_{i}^{x}\right) R_{i}^{\rho_{i}^{x}}\right]^{\frac{1}{\rho_{i}^{x}}} \cdot \sigma_{i}^{X}=\frac{1}{\rho_{i}^{X}-1}, i \in M$	Regional supply	m	$X_{1} E X P_{1} R_{1}$		$\phi_{1}^{x} \delta_{i}^{x} \rho_{1}^{x} \sigma_{1}^{x}$
15.	$R_{i}=E X P_{i}\left[\left(\frac{1-\delta_{i}^{x}}{\delta_{i}^{x}}\right)\left(\frac{P E 0_{i}}{P R_{i}}\right)\right]^{-\sigma_{i}^{x}}, i \in M$	Regional supply for regional demand (market goods)	m	R_{1} EXP ${ }_{1} P R_{1}$	PEO،	$\phi_{i}^{x} \delta_{i}^{x} \sigma_{i}^{x}$
16.	$R_{1}=X_{i}, i \in N R$	Regional supply for regional demand (nonmarket goods for resident)	$n r$	$R_{1} X_{1}$		

	quation	Description Equations	No. of Equations	Endogenous Variables	Exogenous Variables	Parameters
17.	$R_{1}=0, \mathrm{i} \in \mathrm{NE}$	Regional supply for regional demand (nonmarket good for nonresident)	ne	R_{i}		
18.	$E X P_{i}=0, i \in N R$	Export (nonmarket good for resident)	nr	$\mathrm{EXP}_{\mathrm{i}}$		
19.	$E X P_{i}=E 0_{i}\left(P_{i}+q_{t a x}\right)^{\varepsilon^{\omega t}}, i \in N E$	Export (nonmarket good for nonresident)	ne	$\operatorname{EXP}_{i} \mathrm{P}_{\mathrm{i}}$	$\mathrm{EO}_{\mathbf{i}} \mathbf{q}$ tax	$\varepsilon^{\text {tip }}$
INCOME BLOCK						
20.	$Y L=P L(T L A B+L H H H O+L G O V O)$	Labor income	1	$\underset{T L A B}{Y L} P L L M i g$	$\begin{aligned} & \text { PLROCO } \\ & \text { LHHHVO } \\ & \text { LGOVOC } \end{aligned}$	
	$\begin{aligned} & + \text { PLROC0 }\left(\sqrt{\sqrt{\text { TLMIG }}^{2}}-\text { TLMIG }\right) 0.5 \\ & -P L\left(\sqrt{\text { TLMIG }^{2}}+\text { TLMIG }\right) 0.5 \end{aligned}$					
21.	$Y K=\sum_{1}\left(C A P_{i} P K_{i}\right)+P K R O C O$	Capital income	1	YK CAP ${ }_{1} \mathrm{Pk}_{1}$	PKROC0	
	$\left(\sqrt{\mathrm{KMIG}^{2}}-\mathrm{KMIG}\right) \quad 0.5-\mathrm{PK}(\mathrm{Agr})$			KMiG		
	$\left(\sqrt{\mathrm{KMIG}^{2}}+\mathrm{KMIG}\right) 0.5$					
22.	YENT $=Y$ Y - $(1-\mathrm{Ktax})$	Enterprise income	1	YENT YK		ktax

	Equation	Description Equations	No. of Equations	Endogenous Variables	Exogenous Variables	Parameters
23.	$\mathrm{YT}=\sum_{\mathbf{i}}\left(\mathrm{LAND}_{\mathrm{i}} \mathrm{PT}_{\mathrm{i}}\right), i \in M$	Land income	1	YT LANDı PT,		
	$A Y L=P L\left(\sum_{i} L A B_{i}+L H H H O+L G O V O\right)$	Adjusted labor income	h	AYL, PL, LAB,	$\begin{aligned} & \text { LHHHO } \\ & \text { LGOVO } \end{aligned}$	
	$a d j L=\frac{L S S O_{h}+L M i g_{h}}{T L S O}$	Household adjustment factor	h	$\underset{\text { AdjL }^{L M i g}}{\text { h }}$	$L_{T L S}{ }^{2} 0^{2}$	
	$Y H_{h}=P L\left(L S_{h}+L M \mathrm{Sig}_{h}\right)(1-$ SStax $)$					
		Household income	\boldsymbol{h}	$\boldsymbol{Y H}{ }_{\boldsymbol{h}}$	TRGOVOh LHTRHO LMTRHO LLTRHO	$\begin{aligned} & \text { retr } \\ & \ell_{h}, t_{h} \\ & e_{h} \\ & l_{t r} \\ & \text { ttax }_{n} \end{aligned}$
27.	$D Y H_{h}=Y H_{h}\left(1-h h t a x_{h}\right)$	Disposable income	h	$D Y H_{h} \mathbf{Y H}_{\boldsymbol{h}}$		hhtax ${ }_{\text {a }}$
28.	$H S A V_{h}=m p s_{h} Y H_{h}$	Household saving	h			$m p s_{h}$
29.	$G S P=Y L+Y K+Y T+\Sigma_{i} i$ btax $_{i} X_{i}, i \in M$	Gross state product	1	GSP YL YK YT \mathbf{X}_{1}		$i^{\text {i }}$ tax ${ }_{1}$

	Equation	Description Equations	No. of Equations	Endogenous Variables	Exogenous Variables	Parameters
EXPENDITURE BLOCK						
30.	$\begin{aligned} A H E X P_{h} & =D Y H_{h}-H S A V_{h} P L \\ & { }^{* L L H H O_{h}-L L T R H} \end{aligned}$	Household expenditure	h	$\begin{aligned} & H E X P_{h} D Y H_{h} \\ & H S A V_{h} P L \end{aligned}$	LLHO LLTRHO	
31. $\begin{aligned} & Q_{i h}=\operatorname{adjL\gamma _{ih}+(\frac {\beta _{ih}}{(1-\beta _{Oh})PX_{i}})} \\ & \quad\left(A H E X P_{h}-\operatorname{adjL} \sum_{j} P_{j} \gamma_{j h}\right), i, j E M, N R \end{aligned}$ Composite demand						
$\text { 32. } \begin{aligned} \mathrm{Q}_{i h}= & \phi_{i}^{Q}\left[\delta_{i}^{Q} \mathrm{QM}_{i h}^{\rho^{Q}}+\left(1-\delta_{i}^{Q}\right)\right. \\ & \left.\mathrm{QR}_{i h}^{\rho^{Q}}\right]^{\frac{1}{\rho \rho}}, \sigma_{i}^{Q}=\frac{1}{1-\rho_{i}^{Q}}, i \varepsilon M, N R \end{aligned}$		Domestic and import hh demand substitiution	$\mathrm{h}(\mathrm{m}+\mathrm{nr})$	$\mathrm{Q}_{\text {in }} \mathrm{QM}_{\text {in }} \mathrm{QR}_{\text {in }}$		$\phi_{i}{ }^{Q} \delta_{i}{ }^{\text {Q }} \rho_{i}{ }^{\text {Q }} \sigma_{i}{ }^{\text {e }}$
33.	$Q_{i h}=0, \mathrm{i} \in \mathrm{NE}$	Composite demand for hh consumption (non - market good: for nonresident)	hxne	Q ${ }_{\text {in }}$		
34.	$Q R_{i h}=Q M_{i h}\left[\left(\frac{1-\delta_{i}^{Q}}{\delta_{i}^{Q}}\right)\left(\frac{P M 0_{i}}{P R_{i}}\right)\right]^{\frac{1}{1-\rho_{i}^{Q}}}, \mathrm{i} \in \mathrm{M}, \mathrm{NR}$	Regional hh demand for consumption	$\mathrm{h}(\mathrm{m}+\mathrm{nr})$	$\mathrm{QR}_{\text {ih }} \mathrm{QM}_{\text {ih }} \mathrm{PR}_{\mathbf{i}}$	PM0 ${ }_{\mathbf{j}}$	$\delta_{i}{ }^{\text {Q }} \mathrm{p}_{\mathrm{i}}^{\mathrm{Q}}$
.	$T Q_{i}=\sum_{h} Q_{i h}, \mathrm{i} \in \mathrm{M}, \mathrm{NR}$	Total household demand	$\mathrm{m}+\mathrm{nr}$	TQ ${ }_{\text {i }} \mathrm{Q}_{\text {in }}$		

Description Equations	No. of Equations	Endogenous Variables	Exogenous Variables	Parameters

43. QGOV $_{i}=$ QGOVO $_{i}, i \in M$

State / Local gov commodity demand
m
QGOV. QGOVO
44. $Q G O V_{i}=\phi_{i}^{G O V}\left[\delta_{i}^{G O V} Q G O V M_{i}^{\rho_{i}^{g O V}}\right.$
$\left.+\left(1-\delta_{i}^{a O v}\right) Q G O V_{R_{i}}^{\operatorname{cov}}\right]^{\frac{1}{\rho_{1}^{\sigma O V}}}, i \in M$
45. $Q G O V R_{i}=Q G O V M_{i}\left[\left(\frac{1-\delta_{i}^{G O V}}{\delta_{i}^{G O V}}\right)\right.$

$$
\left.\left(\frac{P M O_{i}}{P R_{i}}\right)\right]^{\frac{1}{1-\rho_{i}^{G O V}}} . i \in M
$$

46. $\quad S A V=\sum_{h}\left(H S A V_{h} * A d j L\right)$

$$
+\operatorname{retr} Y K+R O W S A V 0
$$

Total Saving
SAV HSAVh YK YENT

ROWSAVO
depr retr
47. $\quad \mathrm{QINV}_{i}=\phi_{i}^{\mathrm{NVV}}\left[\delta_{i}^{\mathrm{NV}} \mathrm{QNNVM}_{i}^{\rho_{i}^{\mathrm{NV}}}\right.$
Investment demand
substitution between
region and import

$$
\left.\left.+\left(1-\delta_{i}^{\mathrm{NV}}\right) \mathrm{QNNVR}_{\mathrm{i}}\right]^{\rho_{i}^{\mathrm{NV}}}\right]^{\frac{1}{\rho_{i}^{\mathrm{NV}}}}, \sigma_{i}^{\mathbb{N V V}}=\frac{1}{1-\rho_{\mathrm{i}}^{\mathrm{NV}}}, i \varepsilon M
$$

48. $Q I N V_{i}=Q I N V 0_{i}, i \in M$

Equation		Description Equations	No. of Equations	Endogenous Exogenous Variables Variables	Parameters
49.	$\mathrm{QINVR}_{i}=\mathrm{QINVM}_{\mathrm{i}}\left[\left(\frac{1-\delta_{i}^{\mathrm{NV}}}{\delta_{i}^{\mathrm{NV}}}\right)\right.$	Investment demand for regional good	m	QiNVR $_{\text {i }}$ QNVM $_{i}$ PR $_{\mathbf{i}} \quad P M \mathbf{N}_{\mathbf{i}}$	$\delta_{t}^{I N V} \rho_{t}^{I N V}$
	$\left.\left(\frac{\mathrm{PM}_{\mathrm{i}}}{\mathrm{PR}_{\mathrm{i}}}\right)\right]^{\frac{1}{1-\rho_{\mathrm{i}}^{\mathrm{NV}}}} ; \mathrm{i} \varepsilon \mathrm{M}$				
	$I N V=\sum_{i} Q I N V_{i} P_{i}, i \in M$	Total investment	1	INV QINV ${ }_{i} P_{i}$	
51.		Import (market goods)	m	$M_{i} T V M_{i} T Q M_{i}$ $Q_{i} O M_{i}$ QINVM $_{i}$	
52.	$M_{i}=T V M_{i}+T Q M_{i}, i \in N R$	Import (nonmarket good)	$n r$	$M_{1} T M_{1}$ TQM ${ }_{1}$	

PRICE BLOCK

53. $\begin{aligned} P N_{i}= & P R_{i}-\sum_{j} a_{j i} P_{j} \\ & -i \text { btax }_{i} P R_{i} \quad, i \in M ; j \in M\end{aligned}$
54. $\quad P_{i}=\frac{P R_{i} R_{i}+P M 0_{i} M_{i}}{R_{i}+M_{i}}, i \in M, N R$
Net price
n
$P N_{1} P R_{1} P_{1}$
a_{i} ibtax $_{1}$

Equation	Description	No. of	Endogenous	Exogenous	Parameters
	Equations	Equations	Variables	Variables	

55. $\quad P_{i}=\frac{\sum_{j} P_{j} V_{j i}}{\sum_{j} v_{j i}}, i \in N E ; j \in M$

Composite price
(nonmarket good
for nonresident)

Regional price
(Non-market
good for residents)
Regional price
faced by consumer
with quality tax
Regional price
faced by consumer
with quality tax
(non-market good)
Composite price
faced by conmsumer
with quality tax
$m+n r$
$P R X_{1} P X_{1} R_{1} \quad P M O_{1}$
Exogeneous variables

APPENDIX 3 (Continued)

Equation	Description Equations	No. of Equations	Endogenous Variables	Exogenous Variables	Parameters
MARKET EQUILIBRIUM					
60. $\begin{aligned} X_{i} & +M_{i}=T V_{i}+T Q_{j} \\ & +Q G O D_{i}+Q I N V_{i}+E X P_{i}, i \in M \end{aligned}$	Commodity market equilibrium	m	$X_{i} \mathrm{Mi} \mathrm{TV}_{i} \mathrm{TQ}_{i}$ QGOV $_{i}$ QINV $_{i} E X P$		
61. $X_{i}+M_{i}=T Q R_{i}+T Q M_{i}, i \in N R$	Nonmarket good equilibrium (for resident)	$n r$	$X_{1} M_{1}$ TQR ${ }_{1} T Q M_{1}$		
62. $X_{i}=E X P_{i}, i \in N E$	Nonmarket good equilibrium (for nonresident)	ne	X_{1} EXP ${ }_{1}$		
63. $\begin{aligned} \sum_{i} L A B_{i} & +L L H H O+L G O V O \\ & =\sum_{h} L S_{h}+T L M G G, i \varepsilon M \end{aligned}$	Labor market equilibrium	l	LSh TLMIG LAB ${ }_{\text {l }}$	$\begin{aligned} & \text { LLHHO } \\ & \text { LGOVO } \end{aligned}$	
$L M I G_{h}=\left(\frac{L S O}{h}\right.$ (LSOO $)\left[L O_{i}+L L H H O\right.$				$L S O_{h} \mathrm{PL}^{\text {ROCO }}$	
64. $+L G O V O] \log \left(\frac{P L}{P L O C O}\right) \eta^{L}, i \varepsilon M$	Labor migration	h	LMIG ${ }_{\boldsymbol{h}}$ PL	LOi LLHHO LGOVO	η^{t}
65. $C A P^{\text {i }}=K S 0_{i}, i \in M$	Capital market equilibrium (short run equilibrium)	m	CAP،	KSO,	
$\text { 66. } \sum_{i} C A P_{i}=\sum_{i} K S 0_{i}+K M I G, i \in M$	Capital market equilibrium (long run equilibrium)	1	CAP, KMIG	KSO,	

Equation	Description Equations	No. of Equations	Endogenous Variables	Exogenous Variables	Parameters
67. $K M A G=\sum_{i}{ }_{K O} 0_{i}^{\log }\left(\frac{P K\left({ }^{\prime \prime} \mathrm{Agr"}\right)}{P K^{R O C O}}\right)^{\eta^{\boldsymbol{x}}}, \mathrm{i} \in M$	Capital migration (long run equilibrium)	1	KMIG PK	$K 0, P K^{R 0 C 0}$	η^{K}
68. L LAND ${ }_{\text {l }}=T S 0_{i}, i \in M$	Land market equilibrium	m	$L A N D$,	TSO,	
WELFARE MEASURE					
Compensating Variation:					
$\begin{aligned} C V_{h} & =\left(\frac{1}{1-\beta_{0 h}}\right)\left[\left(A H E X P_{h}-\underset{j}{\operatorname{adjLE} P X_{j} \gamma_{j h}}\right)\right. \\ & -\left(\operatorname{adjL}_{h} H E X P O_{h}-\operatorname{adjL}^{\sum} \sum_{j} P 0_{j} \gamma_{j h}\right) \\ & \left.\Pi\left(\frac{P X_{i}}{P 0_{i}}\right)^{\beta_{i h}}\left(\frac{P L}{P L 0}\right)^{\beta_{0 h}}\right], i j E M, N R, \end{aligned}$	Changes in Compensating Variation by Household Income Group	h			
Equivalent Variation:$E V_{h}=\left(\frac{1}{1-\beta_{0 h}}\right)\left[\left(\operatorname{AHEXP}_{h}-\operatorname{adjL}_{j} \sum_{j} X_{j} \gamma_{j h}\right)\right.$					
$\underset{i}{\Pi}\left(\frac{P 0_{i}}{P X_{i}}\right)^{\beta_{i h}}\left(\frac{P L 0}{P L}\right)^{\beta_{0 h}}$	Changes in Equivalent Variation by Household Income Group	h			
$\left.-\left(\operatorname{adjL}_{\mathbf{h}} \mathrm{HEXPO}_{\mathrm{h}}\right)-\operatorname{adjL} \sum_{\mathrm{j}} \mathrm{P}_{\mathrm{j}} \boldsymbol{\gamma}_{\mathrm{j}}\right], \mathrm{ij} \varepsilon M, N R$,					

APPENDIX 4
 DEFINITIONS OF INDICES, VARIABLES, AND PARAMETERS

Indices	Description	
i,j	Sectors: Agr, Min, Cnst, Transp, Trade, Finan, Ser, TFR and TFE	
f	Factors of production: Lab (L), Cap (K), and Land (L)	
h	Households: Low, Med, and High	
g	Government	
$m k, m l$	Set of market goods: Agr, Min, Cnst, Transp, Trade, Finan, Ser.	
$n m$	Set of nonmarket goods: TFR and TFE	
$n m r$	Nonmarket good: Resident trip (TFR)	
nme	Nonmarket good: Nonresident trip (TFE)	
ci,cj	Set of regional consumption goods: Agr, Min, Cons, Man, Transp, Trade, Finan, Ser, and TFR	
n	Number of sectors $=10$	
m	Number of market good sectors $=8$	
$n r$	Number of nonmarket good consumed in the region $=1$	
ne	Number of nonmarket good exported $=1$	
h	Number of household income size $=3$	
f	Number of factor $=3$	
Variables	Description	No. of Varia
PRODUCTION BLOCK		
Li		
K_{1}		
T		
$V A_{i}$		
V	Intermediate demand $n \times m$	
$V M_{1}$	Imported intermediate input demand $n \times m$	
$V R_{j}$	Regional intermediate input demand $n \times m$	
TVM,		
TVR,		
TVi		
X	Composite good supply n n	
$E X P_{i}$	Export of regional products	
R_{i}	Regional supply of regional products n n	
$E O_{i s}$	Initial export nn nn	
INCOME BLOCK		
LHHHO	Labor employed by households	
LGOVO	Labor employed by government	
LSO	Initial stock of labor	
KSO	Supply of private capital	
TSO	Supply of land	
YL	Labor income	
TYL	Total labor income	
YK	Capital income	
YT	Land income 1	
YH	Household income	
DYH ${ }_{n}$	Disposable household income \boldsymbol{h}	
$H^{\text {HSAV }}$	Household saving	
TRGOVO $_{n}$	gov transfer payment to households Net remittance from rest-of-country to households Enterprise income	
REMITO $^{\text {n }}$		
YENT		

APPENDIX 4 (Continued)

Variables	Description	No. of Variables
GOV	Government revenue/income	1
GRP	Gross Regional Product	1
EXPENDITURE BLOCK		
HEXP ${ }_{n}$	Household expenditure	h
AHEX $^{+}{ }_{n}$	Adjusted household expenditure	h
$Q_{i n}$	Composite demand for private consumption	$h(m+n r)$
QR ${ }_{\text {in }}$	Regional demand for consumption	$h(m+n r)$
QM ${ }_{\text {ch }}$	Imported demand for consumption	$h(m+n r)$
TQ,	Total demand for composite consumption	$m+n r$
TQR,	Total regional demand for consumption	$m+n r$
TQM,	Total imported demand for consumption	$m+n r$
GOVEXP	Government expenditure	1
QGOVR,	Government demand for regional good	m
QGOVLM,	Government demand for imported good	m
QGOVO,	Commodity demand by Government	m
SAV	Total savings	1
INV	Total investment	1
QINVR	Investment demand for regional good	m
QINVM,	Investment demand for imported good	m
QNVO ${ }_{\text {i }}$	Investment demand	m
M	Import	n
$E X P_{i}$	Export	n
PRICE BLOCK		
PN,	Net price	n
P_{1}	Price of composite good	n
$P R_{1}$	Regional sales price	n
$P X_{1}$	Composite price faced by consumers after quality tax	n
$P_{P R}{ }_{i}$	Regional sales price faced by consumers after quality tax	n
$P E_{1}$	Regional price of exports	n
PMO,	Import price	n
PL	Wage rate	1
PL ${ }^{\text {Roco }}$	Wage rate of rest-of country	1
PK_{1}	Price of a unit of capital	m
PT,	Land rent	m
M	Import	n
EXP ${ }_{\text {i }}$	Export	n
PK ${ }^{\text {ROCO }}$	Out of region capital rent	1
$\alpha_{p}^{\alpha} L, K$ and T	Labor share parameter in production function	f
α_{0}	Value added requirement per unit of output	m
$\alpha_{i j}$	Intermediate input requirement per unit of output	$n \times m$
$\phi^{\text {VA }}$	Production (value added) function shift parameter	m
$\delta_{i j}^{V}$	CES intermediate input demand function share parameter	m2
σ_{i}^{v}	Elasticity of substitution for intermediate demand	m
ρ_{i}^{v}	CES function exponent for intermediate demand	m
ϕ^{x}	Supply function shift parameter	m
δ_{1}^{x}	CET function share parameter	m
σ_{i}^{x}	Elasticity of transformation	m
ρ_{i}^{x}	CET function exponent	m
$\gamma_{1}{ }^{n}$	Minimum requirement of commodity consumption	$h(m+n r)$
$\beta_{\text {on }}$	Marginal budget share for leisure	h

APPENDIX 4 (Continued)

Variables	Description No	No. of Variables
$\beta_{\text {in }}$	Marginal budget share for commodity	$h(m+n r)$
η^{L}	Labor migration elasticity	1
η^{K}	Capital migration elasticity	1
retr	Depreciation rate and retained earnings of enterprise income	1
sstax	Social security tax rate	1
ktax	Capital tax rate	1
ttax	Land tax rate	1
htax ${ }_{n}$	Household income tax rate	h
$i_{\text {ibtax }}$	Indirect business tax	m
htax ${ }_{n}$	Household income tax rate	h
ibtax ${ }_{n}$	Indirect business tax	\boldsymbol{h}
$m p s_{n}$	Household saving rate	h
adjL_{n}	Labor adjustment coefficient	h
ltrn_{n}	Transfer income distribution coefficient	h
I_{n}	Labor income distribution coefficient to household	h
t_{n}	Land income distribution coefficient to household groups	h
e_{n}	Enterprise profit distribution coefficient to household groups	h
$\phi_{i n}{ }^{\text {a }}$	CES household demand function shift parameter	$h(m+n r)$
$\delta_{i h}{ }^{\text {a }}$	CES household demand function share parameter	$h(m+n r)$
σ_{i}^{a}	Elasticity of substitution for housheold commodity demand	$m+n r$
ρ_{i}^{Q}	CES household demand function exponent	$m+n r$
$\phi_{i}^{\text {GOV }}$	CES gov demand function shift parameter	m
$\delta_{i}^{\text {GOV }}$	CES gov demand function share parameter	m
$\sigma_{i}^{\text {GOVV }}$	Elasticity of subs for state and local gov commodity demand	m
$\rho_{i}^{\text {GOV }}$	CES state and local gov demand function exponent	m
$\phi_{i}^{\text {INV }}$	CES investment gov demand function shift parameter	m
$\delta_{i}^{\text {INV }}$	CES investment gov demand function share parameter	m
$\sigma_{i}^{\text {INV }}$	Elasticity of subs for investment gov commodity demand	m
$\rho_{i}^{\text {INV }}$	CES investment gov demand function exponent	m
$\boldsymbol{E}^{\text {mip }}$	Fishing demand elasticity	1
$q^{\text {Tax }}$	Quality tax	1

Total number of variables $=13 n+5 m+3(n \times m)+8 h+3 h(m+n r)+3(m+n r)+17$

APPENDIX 5
 EXOGENOUS PARAMETER ESTIMATES AND THEIR SOURCES

Parameter	Parameter Value	Source
Elasticities of Substitution ($\sigma^{\nu}, \sigma^{\text {a }}, \sigma^{\text {SL }}, \sigma^{\text {FED }}, \sigma^{\text {NV }}$)		De Melo and Tarr (1992)
Agriculture	1.42	
Mining	0.50	
Construction	3.55	
Manufacturing	3.55	
Transport, communication, and utilities	2.00	
Trade	2.00	
Finance, insurance, and real estate	2.00	
Services	2.00	
Resident fishing trips (σ° only)	2.00	
Elasticities of Transformation ($\sigma^{\mathbf{x}}$)		De Melo and Tarr (1992)
Agriculture	3.90	
Mining	2.90	
Construction	2.90	
Manufacturing	2.90	
Transport, communication, and utilities	0.70	
Trade	0.70	
Finance, insurance, and real estate	0.70	
Services	0.70	
Income Elasticities of Household Consumption		
Agriculture	0.30	De Melo and Tarr (1992)
Mining	0.89	De Melo and Tarr (1992)
Construction	1.06	De Melo and Tarr (1992)
Manufacturing	1.06	De Melo and Tarr (1992)
Transport, communication, and utilities	0.985	De Melo and Tarr (1992)
Trade	0.985	De Melo and Tarr (1992)
Finance, insurance, and real estate	0.985	De Melo and Tarr (1992)
Services	0.985	De Melo and Tarr (1992)
Resident Fishing Trips	0.82	Choi (1993)
Price Elasticity of Exported		
Income Elasticities of Labor Supply		Abott and Ashenfelter (1979)
Low income Household	-0.12	
Medium Income Households	-0.18	
High Income Households	-0.24	
Frisch Parameters		Liuch, Powell, and Williams
Low Income Households	-1.80	(1977)
Medium Income Households	-1.60	
High Income Households	-1.40	
Labor Migration Elasticity (z)	0.92	Rickman (1992)
Capital Migration Elasticity (z)	0.92	Budiyanti (1995)

THE OKLAHOMA

AGRICULTURAL EXPERIMENT STATION

SYSTEM COVERS THE STATE

(2) MAIN STATION—Stillwater and adjoining areas

1. Panhandle Research Station-Goodwell
2. Southern Great Plains Research Station—Woodward
3. Marvin Klemme Range Research Station-Bessie
4. North Central Research Station-Lahoma
5. Vegetable Research Station-Bixby
6. Eastern Research Station-Haskell
7. A. Kiamichi Forestry Research Station—Idabel
B. Broken Bow Field Research Facility
8. Wes Watkins Agricultural Research and Extension Center-Lane
9. Pecan Research Station-Sparks
10. A. Agronomy Research Station-Perkins
B. Fruit Research Station-Perkins
11. A. South Central Research Station-Chickasha
B. Caddo Research Station-Ft. Cobb
C. Forage and Livestock Research Laboratory-EI Reno
12. A. Cotton Research and Extension Center-Altus
B. Sandyland Research Station-Mangum
C. Southwest Agronomy Research Station-Tipton

[^0]: * Aleligne Amera is a graduate student in Agricultural Economics and Dean Schreiner is a Professor of Agricultural Economics at Oklahoma State University.

[^1]: * Includes Federal Government Enterprises

 Sources: Regional Multipliers: A User Handbook for Regional Input-Output Modeling System (RIMS II), USDC, BEA, 1992, and Micro IMPLAN User's Guide Version 91-F, USDA Forest Service, 1994.

