Economic Feasibility of Ground Water Irrigated Fresh Market Vegetable Production in Southeast Oklahoma

Bulletin B-787 November 1989

Agricultural Experiment Station Division of Agriculture
Oklahoma State University

ECONOMIC FEASIBILITY OF GROUND WATER IRRIGATED FRESH MARKET VEGETABLE PRODUCTION IN SOUTHEAST OKLAHOMA

by

Julie A. Stanley
James R. Nelson
Raymond J. Schatzer*

Abstract

*Stanley is an Economic Research Specialist at the Federal Reserve Bank of Kansas City. Nelson and Schatzer are Professor and Associate Professor, respectively, Department of Agricultural Economics, Oklahoma State University. Support for this Research was received from the Oklahoma Agricultural Experiment Station (Project No. OKLO 1941), and from the Oklahoma State University Center for Water Research. The constructive review comments of Damona Doye and James Motes are gratefully acknowledged.

TABLE OF CONTENTS

Page
INTRODUCTION 1
OBJECTIVES OF THE STUDY 2
ANALYTICAL PROCEDURES AND DATA 2
RESULTS 15
SUMMARY AND CONCLUSIONS 19
LIMITATIONS 21
REFERENCES 23
APPENDIX 26

LIST OF FIGURES

Figure Page

1. The Study Area 3
2. Designs of Furrow Irrigation Systems 10
3. Designs of Sprinkler Irrigation Systems 11
4. Designs of Drip Irrigation Systems 12
LIST OF TABLES
Table Page
5. Description of Representative Farm 5
6. Vegetable Crop Activities Considered 6
7. Approximate Supplemental Water Requirements by Vegetable Crop 8
8. Investment Costs of Irrigation Systems by Vegetable System Acreage 13
9. Results for the Furrow Irrigation System Scenarios 17
10. Results for the Sprinkler Irrigation System Scenarios 17
11. Results for the Drip Irrigation System Scenarios 20

INTRODUCTION

The economy of southeastern Oklahoma relies heavily on agriculture [24]. Most farmers in the area operate relatively small acreages and use low levels of management and technology [27]. In 1982, more than one-third of the farms in the region had less than 100 acres [26]. Nearly 55 percent of the farms had sales less than $\$ 5,000$, while just 14 percent of the farms had sales greater than \$20,000 [26].

In southeastern Oklahoma a transition to a pasture and hay farming pattern from a substantial reliance on row crops began immediately following World War II and accelerated during the 1960's and 1970's [24]. The result was increased unemployment and substantial declines in rural communities.

Part-time farming now predominates among agricultural operations in the region. Approximately 60 percent of farm operators in southeastern Oklahoma have an occupation other than farming. Over one-half of the farm operators spend more than 200 days of the year working off of the farm. The typical operator is between 50 and 53 years of age [26].

The region does have substantial, undeveloped natural resources. Among these are abundant water, fertile bottomland, and a long growing season, favorable for the production of crops. One way that southeastern Oklahoma residents could increase their standard of living is by more fully using these resources to improve the productivity of local agriculture [27]. Opportunities exist for the production of traditional crops and high value vegetable crops on the numerous bottomlands in the region [20].

The introduction or expansion of vegetable enterprises in southeastern Oklahoma depends on irrigation [27]. While the area has relatively high rainfall, timely application of water is necessary to supplement rainfall during part of the growing season [21].

Ground water, water that has percolated downward from the surface to subsurface storage basins (aquifers), is available for irrigation in many locations in southeastern Oklahoma. Major ground water basins, or aquifers, in southeastern Oklahoma are the Antlers Sandstone along the southern border of the area, the Arbuckle Group and the Simpson Group in the western counties of the area, and the Alluvium and Terrace Deposits of the Canadian River in the northern counties of the area. The Antlers Sandstone is a large deposit with average yields of 100-150 gallons per minute. The quality of the water is suitable for irrigation and other uses. The Arbuckle Group has been known to produce large yields (200-500 gallons per minute) of good quality water. Wells in the Simpson Group can yield 100-200 gallons per minute, and the water is good quality at most of its locations [18].

Currently, a lack of information on the economics of irrigation of vegetable crops in southeastern Oklahoma is a major barrier to development of water resources. Emphasis in this study is on evaluating the economics of various ground water irrigation systems in fresh market vegetable production on a representative farm in southeastern Oklahoma.

The study region for this research includes fifteen counties in southeastern Oklahoma (Figure 1). Roughly, the boundaries of the region are Interstate 40, U.S. Highway 177, and the eastern and southern borders of Oklahoma. The study region is not homogeneous. Each county in the region contains different resources, problems, and opportunities. But some potential for irrigated vegetable crop production exists in each county, and in some counties the potential is great [27].

OBJECTIVES OF THE STUDY

The overall objective of this study is to develop a decision framework for farmers to use to determine whether to include irrigated fresh market vegetable crop systems in their farm enterprise mix. More specific objectives are:

1. Estimate the relative costs and returns of irrigated fresh market vegetable crop systems.
2. Estimate the cash flows that result from the introduction of irrigated fresh market vegetable crop systems into farm enterprise mixes.
3. Evaluate the relative economic feasibilities of incorporation of irrigated fresh market vegetable crop systems into a southeastern Oklahoma farm operation.

ANALYTICAL PROCEDURES AND DATA

A representative farm was developed for the study region. The initial crop mix was specified for the representative farm. The associated costs, net returns, and cash flows of the farm were then developed. The representative farm's economic and financial situation were then analyzed for thirty-six irrigated fresh market vegetable systems. These thirty-six systems were developed considering four vegetable acreages (1.0, 2.5, 5.0, and 10.0 acres), three irrigation technologies (furrow, sprinkler, and drip), and three vegetable crop activities.

A computerized financial analysis package, Integrated Farm Financial Statements (IFFS) [9], was used to analyze the possible activities. Personal and family cash inflows and outflows that do not directly relate to farm cash flow were not considered.

OKLAHOMA

Figure 1. Study Area

Enterprise budgets were developed based on the initial enterprise mix of the representative farm and vegetable crop activities considered in this study. Cash flow information from the budgets was summarized by month with the IFFS financial analysis package.

Budgets selected for vegetable crop activities require irrigation cost information. Irrigation systems were designed, and costs of the components of the systems were determined from irrigation supplier's catalogs [1]; [6]; [15]; [23]. These costs were then included in the vegetable crop budgets used in this study.

Representative Farm

The soil and topography situations of the representative farm were determined from Oklahoma soil surveys of the counties in the study region [25]. The initial enterprise mix of the farm (Table 1) was determined from southeastern Oklahoma information published by the United States Census Bureau [26] and the Oklahoma Department of Agriculture [17], as well as from interviews with Cooperative Extension personnel [7]; [10].

Further information developed for the farm included soil and topography information. Soil survey publications [25] and information from personnel with the United States Department of Agriculture, Soil Conservation Service [11] were used to determine the amount of bottomland and unusable land. The amount of bottomland was determined to be adequate for vegetable crop production in the study region.

	TABLE DESCRIPTION	
OF		
REPRESENTATIVE		
FARM		

Enterprise Budgets

Nonvegetable enterprise budgets were selected from the OSU Enterprise Budget Book [5] for the representative farm. These budgets contain detailed input and output information for producing crops and livestock. Input information includes units, quantities, and costs. Costs are divided into operating costs and fixed costs. Operating costs include items such as fertilizer, lime and chemicals, rental of machinery, labor, annual operating capital, seeds, plants, other supplies, and variable machinery costs (repairs, fuel, and lube). Fixed costs include items such as interest, depreciation, taxes and insurance on machinery, and taxes on land. Output information contained in the budgets includes items such as production units, quantities, and prices. The budgets contain detailed information on production practices, including dates and levels of required field work, chemicals, supplies, irrigation water, labor, and machinery. The budgets were adapted to climatic and agronomic conditions of southeastern Oklahoma. The appendix contains all budgets used in this study.

The budgets were modified so that the machinery and equipment would represent that for the representative farm considered in this study. It was assumed that machinery and land are owned. The machinery was assumed to be between eight and fifteen years of age. Machinery values were determined from the National Farm and Tractor Implement Blue Book [14], depreciation schedules, and information from local implement dealership personnel [2]. In crop and hay budgets, custom baling and custom harvesting were assumed. Custom work charges were determined from "Oklahoma Farm and Ranch Custom Rates, 1986-87" [16].

Production data comprise a large portion of the data requirements in the vegetable budgets. Production data, including fertilizer, pesticide, seed, and harvesting costs used in this study, are based on crop enterprise budgets developed by Schatzer, Wickwire, Tilley, and Motes [20] (see Appendix).

Many vegetable crop varieties are well adapted to the climatic and agronomic conditions of southeastern Oklahoma. Vegetable activities were selected to be incorporated into the existing farm plan based on projected profits, level of irrigation water usage, level of management required, and marketability. Previous research in these areas was considered [4]; [21]; [22] as well as information from Oklahoma State University Extension Horticulture personnel [12]. Table 2 contains a list of the vegetable crop activities considered in this study.

Management practices contained in the vegetable budgets were reviewed by horticulture specialists [12]. This information included dates for field work and times and amounts of applications of chemicals and irrigation water.

TABLE 2 VEGETABLE CROP ACTIVITIES CONSIDERED

1. Spring broccoli (transplanted) followed by fall spinach

2. Okra, alone

3. Tomatoes followed by fall broccoli (seeded)

The additional machinery used in the vegetable budgets was based on the minimal needs of a farmer on a representative farm adding vegetable enterprises. The farmer may need to purchase machinery such as a cultibedder tiller, a planter, a transplanter, a flatbed trailer, a rototiller, and an additional sprayer. The additional machinery needed will vary, depending on the vegetable crop activities added to the farm plan. Current prices for insecticides, fungicides, nematicides, bactericides, and herbicides were included in the budgets [3]. These prices were based on current prices obtained from chemical suppliers.

For calculating the water needs of vegetable enterprises, irrigation periods were specified on a quarter-month basis. Irrigation water requirements were based on total needs of vegetable crops and expected rainfall by irrigation period. Precipitation amounts were collected by irrigation period from Atoka county reporting station information [13]. This information was collected for a ten-year period and averaged for each irrigation period. Vegetable evapo- transpiration (ET) water requirements were used as the minimum total requirements of water for the vegetable crops considered. Total ET needs of vegetables considered were obtained from horticulture research information [12]. Rainfall per irrigation period was subtracted from the vegetables' total ETs, to estimate the amounts to be added by irrigation. Resulting amounts are shown in Table 3, according to the irrigation period when the amounts are likely to be needed. Actual times and amounts of irrigation water applied will vary from year to year with precipitation.

Post-harvesting expenses such as cooling, packaging, washing, and transportation increase production costs for producers. Transportation costs vary greatly depending on freight supply and demand. Assumed harvesting and marketing costs are shown in the budgets (Appendix). Variability can also occur in prices received for produce. Assumed prices are also shown in the budgets.

TABLE 3
APPROXIMATE SUPPLEMENTAL WATER REQUIREMENTS BY VEGETABLE CROP

Month $\begin{gathered}\text { Irrig. } \\ \text { Period }\end{gathered}$	Fall Broccoli Seeded	Fall Spinach	Okra	Spring Broccoli Transplanted	Tomatoes
March $\begin{array}{ll}\text { M } \\ \\ & 1 \\ & 2 \\ & 3 \\ & 4\end{array}$				$\begin{aligned} & 0.50 \\ & 0.50 \end{aligned}$	
Monthly Total				1.00	
April 1 2 3 4				1.00 0.50 0.50	$\begin{aligned} & 1.00 \\ & 0.50 \\ & 0.50 \end{aligned}$
Monthly Total				2.00	2.00
May 1 2 3 4			0.50	1.00	1.00
Monthly Total			0.50	1.00	1.00
$\begin{array}{ll} \text { June } & 1 \\ & 2 \end{array}$			0.50 1.00		1.00 1.00
3			0.50		1.00
- 4^{4}			0.25		1.25
Monthly Total			2.25		4.25
July $\quad 1$					
$\begin{aligned} & 2 \\ & 3 \end{aligned}$			1.00 2.00		2.00 2.00
$\begin{aligned} & 3 \\ & 4 \end{aligned}$			2.00 1.00		2.00 1.00
Monthly Total			5.00		7.00

MonthIrrig. Period	$\begin{gathered} \text { Fall } \\ \text { Broccoli } \\ \text { Seeded } \end{gathered}$	Fall Spinach	Okra	Spring Broccoli Transplanted	Tomatoes
$\begin{array}{lr} \text { August } & \mathbf{1} \\ & 2 \\ & 3 \\ & 4 \end{array}$	$\begin{aligned} & 1.00 \\ & 1.00 \\ & 1.50 \\ & 1.00 \end{aligned}$		$\begin{aligned} & 0.50 \\ & 0.50 \\ & 1.50 \\ & 1.00 \end{aligned}$		
Monthly Total	4.50		3.50		
$\begin{array}{cc} \text { September } & 1 \\ 2 \\ 3 \\ 4 \\ 4 \\ \text { Monthly Total } \end{array}$	$\begin{array}{r} 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \end{array}$	$\begin{aligned} & 1.00 \\ & 1.00 \\ & 2.00 \end{aligned}$	$\begin{aligned} & 0.50 \\ & 0.50 \\ & 1.00 \\ & 1.00 \end{aligned}$		
Monthly Total	4.00	2.00	3.00		
October1 2 3 4	$\begin{aligned} & 1.00 \\ & 1.00 \\ & 0.50 \end{aligned}$	$\begin{aligned} & 1.00 \\ & 0.50 \end{aligned}$			
Monthly Total	2.50	1.50			
November 1 2 3 4 4 Monthly Total					
Annual Total	11	3.5	14.25	4	14.25

Irrigation Costs

Three types of irrigation systems were considered: a furrow system, a sprinkler (hand-move) system, and a drip (biwall pipe) system. Large variation exists in the investment costs of these systems, as well as in their efficiencies of application of irrigation water. Furrow systems generally have the lowest investment costs, followed by sprinkler systems, with drip systems requiring the highest investments. However, drip systems are the most efficient in applying irrigation water, followed by sprinkler systems, and then furrow systems.

Irrigation System Descriptions

With a furrow irrigation system, water is applied through furrows between the rows of plants. Water runs down the furrows and filters into the soil to refill the soil moisture reservoir. This system generally requires a smaller initial investment than other types of systems. Furrow irrigation may have a problem of unsteady, nonuniform flow. A flat terrain and fields of regular shapes are preferred for this type of system. This system is not suitable for sandy soils.

With a sprinkler irrigation system, water is delivered through a main line from the source of water supply to lateral lines. Water is discharged above the crop or soil surface through sprinkler heads on riser pipes attached to the laterals. Each sprinkler head applies water to a circular area with the diameter controlled by nozzle size and pressure [19]. A sprinkler system requires a moderately high initial investment. Erosion can be controlled, and efficient irrigation is possible on sloping soils with this system. More even application of water is possible than with furrow systems. Less interference with other field operations is possible, as is a higher water application efficiency.

With a drip irrigation system, water is applied frequently at a slow rate near the plants. Water is used most efficiently with this system, due to limited evaporation, reduced water runoff, increased ability of the soil to store water from rainfall, and deposition of water near the roots of the plants. This system is sensitive to stoppages and clogging, so filtration is necessary. A relatively high initial investment is required for a drip irrigation system.

Irigation System Designs

Potential irrigation system layouts were designed for each of the system types, for each of the acreages of vegetable crop production considered in this study (1.0, 2.5, 5.0, and 10.0 acres). Designs for these systems are contained in Figures 2, 3, and 4.

System costs were calculated by estimating and aggregating costs of individual components. Prices of each component for each

Figure 2. Designs of Furrow Irrigation Systems

1.0 acre (208' x 208')

Well \& Pump

(Water Source)
100^{\prime} of Supply Line

Furrows, 208' in length
2.5 acres $\left(330^{\prime} \times 330^{\circ}\right) \quad \underline{5.0 \text { acres }\left(467^{\prime} \times 467^{\prime}\right) \quad 10.0 \text { acres }\left(660^{\prime} \times 660^{\prime}\right)}$

Figure 3. Designs of Sprinkler Irrigation Systems

1.0 acre (208' x 208')

165' laterak, 5 sprinkders each 10 sprinklers, 40° diameter 18 lateral positions

233' laterals, 6 sprinklers each 12 sprinklers, 40° diameter 24 lateral positions
330° laterals, 10 sprinklers each 20 sprinklers, 40° diameter 36 lateral positions

Figure 4. Designs of Drip Irrigation Systems
1.0 acre (208' x 208')

囚 - Valve
30' PEC Segments
70 total rows

system for each acreage were determined from current catalogs of irrigation system equipment suppliers [1]; [6]; [15]; [23]. These component costs were aggregated to estimate investment costs of irrigation systems (Table 4).

Special consideration, while designing the systems, was given to efficiencies of the systems in applying water. Efficiencies assumed, based on agricultural engineering information [8], were furrow -- 50 percent; hand-move sprinkler -- 70 percent; and biwall pipe drip -- 90 percent. Special consideration was also given to gallons per minute requirements of the systems to meet the typical needs of vegetable crops.

TABLE 4
INVESTMENT COSTS OF IRRIGATION SYSTEMS BY VEGETABLE SYSTEM ACREAGE

Total Investment		Total Investment Per Acre
Drip (Biwall Pipe) Systems		
1.0 acre	$\$ 3,830$	$\$ 3,830$
2.5 acres	6,143	2,457
5.0 acres	12,088	2,418
10.0 acres	21,156	2,116
Sprinkler (Hand-move) Systems	2,269	2,269
1.0 acre	4,031	1,612
2.5 acres	5,281	1,056
5.0 acres	7,478	748
10.0 acres		
		1,733
Furrow (Surface) Systems	1,733	857
1.0 acre	2,143	467
2.5 acres	2,336	329
5.0 acres	3,287	
10.0 acres		

Current power costs for the southeastern Oklahoma region were used to calculate charges for electrical power [8].

Specific procedures in the operation of the irrigation systems, such as rotations of laterals in hand-move sprinkler systems, were considered in designing and determining costs of the systems (Figures 2, 3, and 4). Typical application rates and times were also considered in determining the adequacy of components of the systems such as power units and pipe capacities.

Other information was derived from the investment information. The enterprise budgets require cost information for depreciation, interest, insurance, taxes, repairs, and power. Based on the total acre inches required for each of the three vegetable activities considered in this study, per acre inch costs for the above items were calculated. These costs were included in the vegetable budgets used in the study.

The Integrated Farm Financial Statements Package

The Integrated Farm Financial Statements Package (IFFS) was used to analyze various scenarios considered with respect to costs and
returns directly related to farm activities, especially irrigation. IFFS includes a net worth statement, a cash flow statement, an income statement, and a debt worksheet. IFFS combines the monthly cash flows obtained from the budgets for the individual enterprises to determine an aggregated cash flow for all farm enterprises.

Key Decision Variables

This study focuses on the changes in cash returns to operations and the changes in cash returns to the family for family living expenses with the introduction of irrigated vegetable production into the farm plan. These changes are important because the family can improve its standard of living by generating increased cash returns to farm operations and cash returns to family from the farm.

Cash returns to operations were calculated as IFFS net cash farm income (assuming all labor was paid a cash wage, whether hired or provided by the family) minus additional principal and interest payments due to investments in irrigation systems and additional machinery needed for vegetable production.

Cash available to the family for family living expenses is larger than cash returns to farm operations if the farm family provides some of the labor for the vegetable crop operation. Some problems with labor shortages may be avoided if available family labor is used, especially in smaller vegetable crop operations. Irrigated vegetable enterprises may provide labor wages to otherwise unemployed or underemployed family members while generating economic returns to land resources and management skills. Returns to labor provided by the family plus cash returns to operations were designated as cash returns to family.

For scenarios considered in this study, labor charges (machinery labor at $\$ 4.90 / \mathrm{hr}$., other labor at $\$ 4.65 / \mathrm{hr}$.) represent substantial expenses. The maximum amounts of labor assumed to be provided by the farm operator and family in this study are: 20 hours per week during January, February, March, November, and December; 40 hours per week during April, May, September, and October; and 100 hours per week during June, July, and August. Amounts of labor available from November through March are least, because the amount of daylight during these months is less than any other time during the year, and the farm operator and family are likely to have part-time jobs and school obligations. Labor available during April, May, September, and October is greater, because of more daylight hours per day. During the months of June, July, and August, the family will likely have the most time available to supply labor for the operation due to days with many daylight hours and few, if any, outside obligations for time.

RESULTS

The procedures and data discussed above facilitate the estimation of cash returns to operations and cash returns to family for the original farm scenario and for each of the thirty-six alternative vegetable crop production scenarios considered. The original farm scenario represents a farm operation without the introduction of vegetable crop production. On the original farm, cash returns to operations are $\$ 942$, and total labor charges are $\$ 1,826$. Since total labor requirements could be met by the family, cash returns to family for the original or base farm scenario are $\$ 2,768$.

Comparison of Furrow Irrigation System Scenarios to the Original Farm Scenario

The furrow irrigation system scenarios address the economics of irrigated vegetable crop production for an individual vegetable crop producer using furrow irrigation. Results for the furrow irrigation system scenarios are contained in Table 5.

Among the three vegetable activities, tomatoes followed by fall broccoli shows the highest cash returns to operations and cash returns to family. One acre of production of tomatoes-fall broccoli results in an

TABLE 5
RESULTS FOR THE FURROW IRRIGATION SYSTEM SCENARIOS

Vegetable Activity	Acres in Vegetables	Cash Returns to Operations -	Change ${ }^{\text {a }}$ in Cash Returns to Operations -\$-	Cash Returns to Family -\$-	Changea in Cash Returns to Family - \$-
No Vegetables (Base Farm) 0 942 0 2,768 0					
Spring Broccoli Fall Spinach	1	1,261	319	4,235	1,467
	2.5	3,221	2,279	6,569	3,801
	5	6,076	5,134	10.010	7,242
	10	12,715	11,773	17,137	14,369
Okra	1	221	(621)	3,512	744
	2.5	433	(509)	5.486	2,718
	5	540	(402)	6,698	3,930
	10	1,394	452	8.093	5,325
Tomatoes Fall Broccoli	1	1,871	929	6,030	3,262
	2.5	5,072	4,130	10,930	8,162
	5	10,102	9,160	16,494	13,726
	10	20,988	20,046	27,361	24,593

[^0]increase in cash returns to operations of $\$ 929$. One acre of production of the spring broccoli-fall spinach double crop results in an increase in cash returns to operations of only $\$ 319$. A single acre of okra production actually causes a decrease in cash returns to operations (Table 5). This general pattern of changes in cash returns to operations is demonstrated for larger vegetable acreages.

Notable economies of size, because of irrigation investments, are evidenced for all three crop activities considered throughout the acreages considered. For example, one acre of production of spring broccoli-fall spinach results in an increase in cash returns to operations of \$319; two and one-half acres results in an increase in cash returns to operations of $\$ 2,279$ or $\$ 912$ per acre of vegetable production; ten acres results in an increase in cash returns to operations of $\$ 11,773$, or $\$ 1,177$ per acre of vegetable production. The impacts of economies of size cause estimated changes in cash returns to operations for okra to change from being negative at small acreages to being positive for the 10 acre scenario.

For all acreages and crop activities considered, changes in cash returns to family are greatest for tomatoes-fall broccoli and least for okra (Table 5). The tomatoes-fall broccoli double crop results in the highest cash returns to operations and cash returns to family, even though it is the activity that requires the highest amount of irrigation water to be applied. Expected yields and prices cause cash returns from production of the tomatoes-fall broccoli double crop to be much larger than cash returns from production of other vegetable activities considered in this study. Thus the tomatoes-fall broccoli double crop is the most profitable alternative activity considered in this study.

Increases in cash returns to family for the representative farm may be achieved with the addition of vegetable production of any of the three vegetable activities considered in this study. Production of okra may result in lower cash returns to operations than expected with the original farm, while at the same time yielding higher cash returns to family than the original farm, if the family is willing to supply available labor to the vegetable crop operation. The family may receive significant economic benefits from production of any of the vegetable activities considered in this study.

Comparison of Sprinkler Irrigation System Scenarios to Furrow Irrigation System Scenarios

Comparison of results from the sprinkler and furrow irrigation system scenarios facilitates the evaluation of the potential economic benefits to a farm operator from introducing vegetable crop production with the use of a sprinkler technology versus a furrow technology. Results for the sprinkler irrigation system scenarios are contained in Table 6.

TABLE 6
RESULTS FOR THE SPRINKLER IRRIGATION SYSTEM SCENARIOS

Vegetable Activity	Acres in Vegetables	Cash Returns to Operations -\$-	Changea in Cash Returns to Operations -\$	Cash Returns to Family - \$-	Changea in Cash Returns to Family -\$-
No Vegetables (Base Farm)	0	942	0	2,768	0
Spring Broccoll Fall Spinach	$\begin{array}{r} 1 \\ 2.5 \\ 5 \\ 10 \end{array}$	$\begin{array}{r} 1,172 \\ 2,932 \\ 5,462 \\ 11,875 \end{array}$	$\begin{array}{r} 230 \\ 1,990 \\ 4,520 \\ 10,933 \end{array}$	$\begin{array}{r} 4,146 \\ 6,280 \\ 9,396 \\ 16,297 \end{array}$	$\begin{array}{r} 1,378 \\ 3,512 \\ 6,628 \\ 13,529 \end{array}$
Okra	$\begin{array}{r} 1 \\ 2.5 \\ 5 \\ 10 \end{array}$	$\begin{array}{r} 132 \\ 149 \\ (213) \\ 376 \end{array}$	$\begin{array}{r} (810) \\ (793) \\ (1,155) \\ (566) \end{array}$	$\begin{aligned} & 3,423 \\ & 5,202 \\ & 5,945 \\ & 7,075 \end{aligned}$	$\begin{array}{r} 655 \\ 2,434 \\ 3,177 \\ 4,307 \end{array}$
Tomatoes Fall Broccoli	$\begin{array}{r} 1 \\ 2.5 \\ 5 \\ 10 \\ \hline \end{array}$	$\begin{array}{r} 1,779 \\ 4,794 \\ 9,123 \\ 19,677 \\ \hline \end{array}$	$\begin{array}{r} 837 \\ 3,852 \\ 8,181 \\ 18,735 \\ \hline \end{array}$	$\begin{array}{r} 5,938 \\ 10,652 \\ 15,515 \\ 26,050 \\ \hline \end{array}$	$\begin{array}{r} 3,170 \\ 7,884 \\ 12,747 \\ 23,282 \\ \hline \end{array}$

${ }^{a}$ Change is from base farm results.

Among all vegetable activities and acreages considered, cash returns and changes in cash returns are greater for the furrow system scenarios than for the sprinkler system scenarios. Cash returns to operations and cash returns to family for the production of five acres of tomatoes-fall broccoli are $\$ 9,160$ and $\$ 13,726$, respectively, using furrow technology, but just $\$ 8,181$ and $\$ 12,747$, respectively, using sprinkler technology (Tables 5 and 6).

When comparing the sprinkler system scenarios, within a vegetable activity, production of a larger acreage of vegetables results in larger cash returns to operations and cash returns to family than result with production of a smaller acreage of vegetables. Again, economies of size for the irrigation systems are experienced. The per acre vegetable returns increase as number of acres in vegetable production increases.

As in the furrow system scenarios, within each acreage, the tomatoes-fall broccoli double crop results in the largest cash returns to operations, change in cash returns to operations, cash returns to family, and change in cash returns to family, even though it is the activity that requires the largest amount of irrigation water. The spring broccoli-fall spinach double crop results in the second largest cash returns. The okra activity results in the lowest cash returns. Although negative effects in cash returns to operations are expected with the introduction of okra production, the family may benefit from production of okra due to increased cash returns to family if the family supplies some of the farm labor.

Comparisons of Drip Irrigation System Scenarios to Sprinkler and Furrow Irrigation System Scenarios

Comparisons of results from the drip irrigation system scenarios and the sprinkler and furrow irrigation system scenarios facilitate the evaluation of the potential economic benefits to a farm operator from introducing vegetable crop production with the use of a drip technology versus a sprinkler or furrow technology. Results for the drip irrigation system scenarios are contained in Table 7.

Cash returns to operations, change in cash returns to operations, cash returns to family, and change in cash returns to family are smaller with the use of a drip technology than with the use of a sprinkler technology or furrow technology (Tables 5, 6, and 7). Change in cash returns to operations for one acre of spring broccoli-fall spinach are negative. Within the drip system scenarios, the larger acreages of vegetable production, as expected, result in larger cash returns figures. Also, the tomatoes-fall broccoli double crop shows largest cash returns figures, followed by the spring broccoli-fall spinach double crop, and then the okra activity. Again, okra production may result in negative changes in cash returns to operations but may result in positive changes in cash returns to family.

TABLE 7

RESULTS FOR THE DRIP IRRIGATION SYSTEM SCENARIOS

Vegetable Activity	Acres in Vegetables	Cash Returns to Operations -\$-	Change ${ }^{a}$ in Cash Returns to Operations -\$-	Cash Returns to Family -\$-	Change ${ }^{\text {a }}$ in Cash Returns to Family -\$-
No Vegetables (Base Farm)					
Spring Broccoli Fall Spinach	1	443	(499)	3,417	649
	2.5	2.629	1,687	5,977	3,209
	5	4,459	3,517	8,393	5,625
	10	9,668	8,726	14,090	11,322
Okra	1	(102)	$(1,044)$	3,189	421
	2.5	(139)	$(1,081)$	4,914	2.146
	5	$(1,088)$	$(2,030)$	5,070	2,302
	10	$(1,675)$	$(2,617)$	5,024	2,256
Tomatoes Fall Broccoli	1	1,573	631	5,732	2,964
	2.5	4,533	3,591	10,391	7,623
	5	8,458	7,516	14,850	12,082
	10	17,853	16,911	24,226	21,458

[^1]
SUMMARY AND CONCLUSIONS

Southeastern Oklahoma is a region with small acreages of level cropland suitable for fresh market vegetable production. Many bottomlands in the region have fertile soils, and water is available in adequate quantity and quality for irrigation of vegetable crops.

The region has labor that is underemployed. Little opportunity exists for off-farm employment. Diversification into irrigated fresh market vegetable production is an option for farm operators in the region to increase cash returns to their farm operations.

Three irrigation systems are appropriate for irrigation of fresh market vegetable crops in the region: furrow systems, sprinkler systems, and drip systems. Costs related to use of these irrigation systems are important considerations of farm operators considering the addition of fresh market vegetable production to existing operations.

Assuming the use of such irrigation systems, the economics of incorporating vegetable crops into a representative southeastern Oklahoma crop and livestock farm were evaluated in this study. Three vegetable crop activities (spring broccoli-fall spinach, okra, and tomatoesfall broccoli) and four vegetable acreages (1.0, 2.5,5.0, and 10.0 acres) were considered for each type of irrigation system.

Results of this study indicate that the introduction of vegetable crop production into a representative southeastern Oklahoma farm could substantially increase cash returns to operations for some vegetable crops and cash returns to family for all vegetable crops considered. As acreage of vegetables increases, benefits due to introduction of vegetable crops increase.

Differences in results due to use of the various irrigation systems occur because of variations in investment, power, and repair costs of the irrigation systems. Largest economic benefits in estimated producers' cash returns to operations and cash returns to family result with the use of furrow technology, followed by sprinkler technology, and then drip technology, due largely to the amount of investment costs required for the irrigation systems. It is conceivable that diversification of the agricultural sector into fresh market vegetable production could lead to substantial economic development for southeastern Oklahoma.

LIMITATIONS

In this study, to introduce vegetable production on a representative farm, land was assumed to be taken out of production of wheat. Similar increases in cash returns due to introducing vegetable production into an existing operation may be experienced on farms of any size. However, the same increases in cash returns that are reported in this study are expected only if land currently in wheat production on a given farm is used for production of the vegetable crops.

The results of this study indicate that although sprinkler and drip irrigation systems have higher application efficiencies, producers may benefit most from using furrow irrigation systems that require lower investment and operating costs. In this study, vegetable yields and input costs were assumed to be invariate over irrigation systems. These results might have been different if yields or input costs had been allowed to vary over irrigation technologies. Horticulturists suggest that such variations may occur; however, adequate information is not available on the magnitudes of yield and input cost variations that may be experienced with the various irrigation technologies. Also, furrow and sprinkler systems require more water than do drip systems. If water is in sufficiently short supply, furrow and sprinkler systems may not be technically feasible.

The use of family labor in the production of vegetable crops was discussed earlier in this report. Projected cash available to the family for family living can vary significantly, depending on the amount of family labor that can be provided for the vegetable crop operation. Unprofitable enterprises with hired labor may become profitable if part or all of the required labor is supplied by family members to whom other higher paying jobs are not available. In addition, less profitable enterprises may yield higher cash returns to family than more profitable enterprises if the less profitable enterprises have labor requirements that are spread over extended periods of time, instead of labor requirements that occur in a peak period, if family members can more nearly meet the more spread-out labor requirements, and if higher paying jobs are not available.

This study is based on several assumptions that may vary by individual situations, causing differences in actual results. Variation from assumptions in this study may occur in labor charges, yields, prices, and application of chemicals.

As mentioned above, this study does not address yield variations that may occur due to use of various irrigation technologies. Application of chemicals and other production practices may also vary as irrigation technologies vary. Due to variations in methods of application of irrigation water in the production of vegetable crops, severity and types of pest problems may differ in a vegetable field. If this occurs, variations in types and amounts of chemicals to be applied would be necessary, causing additional differences in costs related to use of the different irrigation technologies.

Yield and price variability unrelated to irrigation technologies can be substantial in vegetable production. Sensitivity analyses dealing with changes in yields and prices would provide useful information to producers considering additions of vegetable enterprises. Such information could have significant implications in relation to this study.

REFERENCES CITED

[1] A-Submatic Irrigation Systems, Better Way to Water. 1986-87 Drip Irrigation Catalog. Lubbock, Texas.
[2] Albright, J. Personal interview. Stillwater Equipment, John Deere dealership, Stillwater, OK. 1987.
[3] Criswell, J. Personal interview. Agricultural Extension Entomologist, Oklahoma State University, Stillwater. 1988.
[4] Dale, J. F., R. J. Schatzer, and J. R. Nelson. "Economics of Surface Water Development For Vegetable Irrigation in Southeastern Oklahoma." Bulletin B-785. Agriculture Experiment Station, Division of Agriculture, Oklahoma State University. Stillwater. December 1987.
[5] Farm Management Extension, Department of Agricultural Economics. "Oklahoma Crop and Livestock Budgets." Cooperative Extension Service, Oklahoma State University, Stillwater. 1987.
[6] General Irrigation Catalog and Price List. Carthage, Missouri. 1987.
[7] Hobbs, J. C. Personal interview. Agricultural Extension Economist, Oklahoma State University, Stillwater. 1987.
[8] Kizer, M. Personal interview. Agricultural Extension Engineer, Oklahoma State University, Stillwater. 1987.
[9] Mapp, H. P., R. O. Love, and R. Hesser. Integrated Farm Financial Statements: Lotus 1-2-3 Version. Agricultural Experiment Station, Division of Agriculture. Department of Agricultural Economics, Oklahoma State University. October 1985.
[10] Maxson, Joe M. Personal interview. Agricultural Extension Economist, Oklahoma State University, Stillwater. 1987.
[11] Mosley, J. L. Personal interview. United States Department of Agriculture, Soil Conservation Service, Stillwater, Oklahoma. 1987.
[12] Motes, J. E. Personal interview. Agricultural Extension Horticulturist, Oklahoma State University, Stillwater. 1988.
[13] National Climatic Data Center. Climatological Data, Oklahoma. Ashville, NC. 1976-1985.
[14] National Market Reports, Inc., National Farm and Tractor Implement Blue Book. Volumes 42-47, 1981-86.
[15] Nebraska Plastics, Inc. Equipment Price List. Cozad. 1987.
[16] Nelson, T. R., and D. D. Kletke. "Oklahoma Farm and Ranch Custom Rates, 1986-87." OSU Extension Facts No. 140. Cooperative Extension Service, Division of Agriculture, Oklahoma State University, Stillwater. 1987.
[17] Oklahoma Department of Agriculture. Oklahoma Agricultural Statistics. Oklahoma Crop and Livestock Reporting Service, Oklahoma City. 1984.
[18] Oklahoma Water Resources Board. Oklahoma's Water Atlas. Publication No. 120. Oklahoma City. November 1984.
[19] Rain Bird. "Sprinkler Irrigation Handbook." Tenth edition. 1971.
[20] Schatzer, R. J., M. C. Wickwire, D. S. Tilley, and J. E. Motes. "Costs and Returns for Small Scale Producers." Research Report P875, Agriculture Experiment Station, Division of Agriculture, Oklahoma State University, Stillwater. April 1986.
[21] Schatzer, R. J., M. Wickwire, and D. S. Tilley. "Supplemental Vegetable Enterprises for a Cow-Calf and Grain Farmer in Southeastern Oklahoma." Research Report P874, Agriculture Experiment Station, Division of Agriculture, Oklahoma State University, Stillwater. April 1986.
[22] Tilley, D. S., C. Falk, and R. J. Schatzer. "Wholesalers' Interest in Oklahoma Produce." Current Farm Economics. Vol. 59, Number 2. Pp. 17-25. Agriculture Experiment Station, Oklahoma State University, Stillwater. June 1986.
[23] Transamerica Delaval, Inc.,Berkeley Pump Catalog. Pumptron Division, Berkeley, California. 1987.
[24] U.S. Army Corps of Engineers. "Resource Assessment and Development Strategies-Optimum Economic Development for Southeast Oklahoma." Executive Summary. Washington, D.C. October 1982.
[25] U.S. Department of Agriculture, Soil Conservation Service, in cooperation with Oklahoma Agricultural Experiment Station. "Soil Surveys of Oklahoma." Stillwater. 1979.
[26] U.S. Department of Commerce, Bureau of the Census. 1982 Census of Agriculture: Oklahoma State and County Data. Vol. 1, Part 36. US Government Printing Office, Washington, D.C. 1984.
[27] Williams, R. J. and D. D. Badger. "An Action Plan for Southeastern Oklahoma." Department of Agricultural Economics Paper No. AE 8248. Stillwater. 1982.

APPENDIX

WHEAT BUDGET

hieat
SOUTHEAST ORLAHOMA 05/01/89

MACHINERY				
INTEREST AT 13.0\%	DOL.	3.349		
DEPR.,TAXES, INSUR.	DOL.	3.053		
LAND				
INTEREST AT 0.0\%	DOL.	0.000		
TAXES	DOL.	0.000		
TOTAL FIXED COSTS		6.40		
PRODUCTION:	UNITS	PRICE	QUANTITY	value your value
WHEAT	BU.	2.700	30.000	81.00
PASTURE	AUMS	0.000	0.800	0.00

TOTAL RECEIPTS	81.00	
RETURNS ABOVE TOTAL OPERATING COSTS	17.86	
RETU'RNS ABOVE ALL COSTS EXCEPT OVERHEAD,RISK AND MANAGEMENT	11.46	
	STANLEY, NELSON $05 / 22 / 89$	SCHATZER 2ND COMP

PROCESSED BY DEPT. OF AGRI. ECON. - OKLAHOMA STATE UNIVERSITY PROGRAM DEVELOPED BY DEPT. OF AGRI. ECON. OKLAHOMA STATE UNIVERSITY

SOYBEANS BUDGET

SOYBEANS, BOTTOMLAND, SOUTHEAST ORLAHOMA
05/01/89

OPERATING INPUTS:	UNITS	PRICE	QUANTITY	value	your value
SOYbean seed	LBS.	0.250	45.000	11.25	
NITROGEN (N)	LBS.	0.170	32.000	5.44	
PHOSPH (P205)	LBS.	0.150	48.000	7.20	
POTASH (K20)	LBS.	0.100	48.000	4.80	
HERB-SOYBEANS	ACRE	6.750	1.000	6.75	
BROAD LEAF HERB.	ACRE	2.500	1.000	2.50	
CUSTOM HARVEST	ACRE	15.490	1.000	15.49	
annual operating Capital	DOL.	0.130	4.832	0.63	
LABOR CHARGES	HR.	4.900	1.775	8.70	
MACHINERY FUEL, LUBE, REPAIRS	ACRE			11.40	
TOTAL OPERATING COST				74.15	
FIXED COSTS		value	YOUR VALUE		
MACHINERY					
INTEREST AT 13.0\%	DOL.	5.755			
DEPR., TAXES, INSUR.	DOL.	5.490			
LAND					
INTEREST AT 0.0\%	DOL.	0.000			
TAXES	DOL.	0.000			
TOTAL FIXED COSTS		11.25			
PRODUCTION:	UNITS	PRICE	QUANTITY	value	your value
SOYBEANS	BU.	5.850	35.000	204.75	
RETURNS ABOVE TOTAL OPERATING	COSTS			130.60	
returns above all costs excep OVERHEAD,RISR AND MANAGEM				119.35	

STANLEY, NELSON, SCHATZER 2ND COMP
05/22/89
PROCESSED BY DEPT. OF AGRI. ECON. - ORLAHOMA STATE UNIVERSITY PROGRAM DEVELOPED BY DEPT. OF AGRI. ECON. OKLAHOMA STATE UNIVERSITY

ALFALFA HAY BUDGET

ALFALFA HAY
$\begin{array}{lr}\text { CUSTOM BALE } & \text { 05/01/89 } \\ \text { SOUTHEAST OKLAHOKA }\end{array}$

OPERATING INPUTS:	UNITS	PRICE	QUANTITY	value your value
NITROGEN (N)	LBS.	0.170	30.000	5.10
PHOSPH (P205)	LBS.	0.150	80.000	12.00
POTASH (K20)	LBS.	0.100	80.000	8.00
RNTFERTSPRD/ACRE	ACRE	2.000	1.000	2.00
1/5 EST. COST	ACRE	95.000	0.200	19.00
HAY HARVEST EXP	ACRE	16.800	4.000	67.20
anNuAL OPERATING CAPITAL	DOL.	0.130	2.292	0.30
LABOR CWEGES	H2.	4.811	11.282	54.28
MACHIMEAY FUEL, LUBE, REPAIES	ACRE			61.99
TOTAL OPERATIMG COST				229.86
FIXED Costs		VALUE	yous value	

PROCESSED BY DEPT. OF AGRI. ECON. - OKLAHOMA STATE UNIVERSITY PROGRAK DEVELOPED BY DEPT. OF AGQI. ECON. OXLAHOYM STATE UMIVERSITY

BERMUDA HAY BUDGET

PROCESSED BY DEPT. OF AGRI. ECON. - OXLAHOMA STATE UNIVERSITY PROGRAM DEVELOPED BY DEPT. OF AGRI. ECON. OKLAHOKA STATE UNIVERSITY

BERMUDA PASTURE BUDGET

BERMUDA GRASS MAINTENANCE, SOUTHEAST ORLAHOMA
05/01/89

OPERATING INPUTS:	UNITS	PRICE	QUANTITY	VALUE YOUR VALUE
NITROGEN (N)	LBS.	0.170	200.000	34.00
PHOSPH (P205)	LBS.	0.150	60.000	9.00
POTASH (R20)	LBS.	0.100	120.000	12.00
RNTFERTSPRD/ACRE	ACRE	2.000	5.000	10.00
2,4-D	ACRE	2.500	0.330	0.82
ESTAB COST	ACRE	109.730	0.100	10.97
HERBICIDE	ACRE	5.500	0.330	1.81
ANNUAL OPERATING CAPITAL	DOL.	0.130	39.289	5.11
LABOR CHARGES	HR.	4.900	1.060	5.20
MACHINERY FUEL, LUBE, REPAIRS	ACRE			22.09

TOTAL OPERATING COST 111.00
FIXED COSTS VALUE YOUR VALUE

PROCESSED BY DEPT. OF AGRI. ECON. - ORLAHOMA STATE UNIVERSITY
PROGRAM DEVELOPED BY DEPT. OF AGRI. ECON. OKLAHOMA STATE UNIVERSITY

NATIVE PASTURE BUDGET

native pasture, maintenance, southeast orlahoma
05/01/89

OPERATING INPUTS:	UNITS	PRICE	QUANTITY	value your value
2,4-D	ACRE	1.400	0.250	0.35
ANNUAL OPERATING CAPITAL	DOL.	0.130	0.041	0.01
LABOR CHARGES	HR.	4.900	0.035	0.17
MACHINERY FUEL, LUBE, REPAIRS	ACRE			0.14
TOTAL OPERATING COST				0.67

MACHINERY				
INTEREST AT 13.0\%	DOL.	0.151		
DEPR., TAXES, INSUR.	DOL. 0.165			
LAND				
INTEREST AT 0.0\%	$\begin{aligned} & \text { DOL. } \\ & \text { DOL. } \end{aligned}$	$\begin{aligned} & 0.000 \\ & 0.000 \end{aligned}$		
TAXES				
TOTAL FIXED COSTS		0.32		
PRODUCTION:	UNITS	PRICE	QUANTITY	value your value
PASTURE	AUMS	0.000	1.580	0.00
RETURNS ABOVE TOTAL OP	COSTS			-0.67

RETURNS ABOVE ALL COSTS EXCEPT
OVERHEAD,RISR AND MANAGEMENT -0.98 \qquad
2,4-D APPLIED EVERY FOURTH YEAR
STANLEY, NELSON, SCHATZER
05/22/89
PROCESSED BY DEPT. OF AGRI. ECON. - ORLAHOMA STATE UNIVERSITY PROGRAM DEVELOPED BY DEPT. OF AGRI. ECON. OKLAHOMA STATE UNIVERSITY

COW CALF BUDGET

PROCESSED BY DEPT. OF AGRI. ECON. - ORLAHOMA STATE UNIVERSITY

FALL BROCCOLI BUDGET

FALL BROCCOLI, strmen SOHfiteft ORLamont
 22 LE. CARTONS, ADJ. DALLAS Wholssalt PRICE.

OPERATIMC INPUTS:	UnITS	PICE	Quartity	VALUE	your value
HERBICIDE	ACRE	3.130	1.000	3.13	
15-15-15 FERT	CWT.	9.750	3.000	29.25	
RNTFERTSPRD/ACRE	ACRE	1.250	3.000	3.75	
vegetable SEED	LBS.	200.000	1.000	200.00	
THIN SEEDLINGS	HR.	4.650	6.000	27.90	
NITROGEN (N)	LBS.	0.170	80.000	13.60	
INSECTICIDE	ACRE	6.370	4.000	25.48	
CARTONS	CART	1.020	400.000	408.00	
HARVEST LABOR	HR.	4.650	120.000	558.00	
GRADING \& MRTG	CART	1.330	400.000	532.00	
ANNUAL OPERATIMG CAPITAL	DOL.	0.130	89.101	11.58	
LABOR CHARGES	HR.	4.819	7.204	34.72	
MACHINERY FUEL, LUBE, REPAIRS	ACRE			37.41	
IRRIGATION FUEL, LUBE, REPAIRS	ACRE			81.33	
total operating cost				1966.16	

FIXED COSTS value tour value

MACHINERY				
INTEREST AT 13.0\%	DOL.	17.725		
DEPR., TAXES, INSUR.	DOL.	18.029		
IRRIGATION				
INTEREST AT 13.0\%	DOL.	109.923		
DEPR., TAXES, INSUR.	DOL.	270.567		
LAND				
INTEREST AT 0.0\%	DOL.	0.000		
taxes	DOL.	0.000		
TOTAL FIXED COSTS		416.24		
PRODUCTION:	UNITS	PRICE	Quartity	value your value
BROCCOLI		7.010	400.000	2804.00
RETURNS ABOVE TOTAL OPERATIMG COSTS				837.84
RETURNS ABOVE ALL COSTS EXCEPT				
			STANL	$\begin{aligned} & \text { 1, NELSON, SCHATZER } \\ & \text { 2ND COMP } \end{aligned}$

PROCESSED BY DEPT. OF AGRI. ECON. - OKLAHOMA STATE UNIVERSITY PROGRAM DEVELOPED BY DEPT. OF AGRI. ECON. OKLAHOMA STATE UNIVERSITY

FALL SPINACH BUDGET

FALL SPINACH, SOUTHEAST ORLAHOMA
SANDY LOAM SOILS, IRRIGATED, OWNED EQUIPMENT WITH HAND HARVEST 05/01/89 BUSHEL BASKETS, ADJ. DALLAS WHOLESALE PRICE.

OPERATING INPUTS:	UNITS	PRICE	QUANTITY	value your value
HERBICIDE	ACRE	27.500	1.000	27.50
15-15-15 FERT	CWT.	9.750	5.000	48.75
RNTFERTSPRD/ACRE	ACRE	1.250	2.000	2.50
SEEDLINGS	LBS.	4.000	15.000	60.00
INSECTICIDE	ACRE	1.800	1.000	1.80
INSECTICIDE	ACRE	6.370	3.000	19.11
FUNGICIDE	ACRE	3.500	3.000	10.50
NITROGEN (N)	LBS.	0.170	102.000	17.34
BASKETS	BU.	1.020	350.000	357.00
HARVEST LABOR	HR.	4.650	175.000	813.75
GRADING \& MRTG	BU.	1.200	350.000	420.00
ANNUAL OPERATING CAPITAL	DOL.	0.130	33.655	4.38
LABOR CHARGES	HR.	4.792	7.781	37.29
MACHINERY FUEL, LUBE, REPAIRS	ACRE			35.54
IRRIGATION FUEL, LUBE, REPAIRS	ACRE			91.99
TOTAL OPERATING COST				1947.44
FIXED COSTS		value	YOUR VALUE	

PROCESSED BY DEPT. OF AGRI. ECON. - OKLAHOMA STATE UNIVERSITY PROGRAM DEVELOPED BY DEPT. OF AGRI. ECON. OKLAHOMA STATE UNIVERSITY

OKRA BUDGET

OKRA, SOUTHEAST ORLAHOMA
SANDY LOAM SOILS, IRRIGATED, OWNED EQUIPYENT WITH HAND HARVEST 05/01/89
18 LB. CARTONS, ADJ. DALLAS WHOLESALE PRICE.

OPERATING INPUTS:	UNITS	PRICE	QUANTITY	value your value
HERBICIDE	ACRE	3.130	1.000	3.13
15-15-15 FERT	CWT.	9.750	2.000	19.50
RNTFERTSPRD/ACRE	ACRE	1.250	2.000	2.50
vegetable seed	LBS.	1.000	10.000	10.00
HOEING LABOR	HR.	4.650	6.000	27.90
NITROGEN (N)	LBS.	0.170	20.000	3.40
INSECTICIDE	ACRE	5.100	3.000	15.30
CARTONS	CART	1.020	500.000	510.00
HARVEST LABOR	HR.	4.650	300.000	1395.00
GRADING \& MRTG	CART	0.580	500.000	290.00
ANNUAL OPERATING CAPITAL	DOL.	0.130	12.714	1.65
LABOR CHARGES	HR.	4.819	9.894	47.68
MACHINERY FUEL, LUBE,REPAIRS	ACRE			44.04
IRRIGATION FUEL, LUBE, REPAIRS	ACRE			149.25
TOTAL OPERATING COST				2519.35

FIXED COSTS Value your value

PROCESSED BY DEPT. OF AGRI. ECON. - ORLAHOMA STATE UNIVERSITY PROGRAM DEVELOPED BY DEPT. OF AGRI. ECON. ORLAHOMA STATE UNIVERSITY

SPRING BROCCOLI BUDGET

SPRING BROCCOLI, TRANSPLANT, SOUTHEAST OKLAHOMA
SANDY LOAM SOILS, IRRIGATED, OWNED EQUIPMENT WITH HAND HARVEST
22 LB. CARTONS, ADJ. DALLAS WHOLESALE PRICE.

OPERATING INPUTS:	UNITS	PRICE	QUANTITY	value your value
HERBICIDE	ACRE	3.130	1.000	3.13
15-15-15 FERT	CWT.	9.750	3.000	29.25
RNTFERTSPRD/ACRE	ACRE	1.250	3.000	3.75
TRANSPLANTS	THPL	30.000	14.500	435.00
TRANSPLANT LABOR	HR.	4.650	18.000	83.70
NITROGEN (N)	LBS.	0.170	80.000	13.60
INSECTICIDE	ACRE	6.370	6.000	38.22
CARTONS	CART	1.020	350.000	357.00
HARVEST LABOR	HR.	4.650	105.000	488.25
GRADING \& MKTG	CART	1.330	350.000	465.50
ANNUAL OPERATING CAPITAL	DOL.	0.130	109.436	14.23
LABOR CHARGES	HR.	4.875	8.316	40.54
MACHINERY FUEL, LUBE, REPAIRS	ACRE			48.56
IRRIGATION FUEL, LUBE, REPAIRS	ACRE			66.90
total operating cost				2087.63

PROCESSED BY DEPT. OF AGRI. ECON. - OKLAHOMA STATE UNIVERSITY PROGRAM DEVELOPED BY DEPT. OF AGRI. ECON. OKLAHOMA STATE UNIVERSITY

TOMATOES BUDGET

STAKED TOMATOES, SOUTHEAST OKLAHOMA
SANDY LOAM SOILS, IRRIGATED, OWNED EQUIPMENT WITH HAND HARVEST
05/01/89 30 LB. LUGS, ADJ. DALLAS WHOLESALE PRICE.

OPERATING INPUTS:	UNITS	PRICE	QUANTITY	Value	your value
HERBICIDE	ACRE	3.130	1.000	3.13	
15-15-15 FERT	CWT.	9.750	3.350	32.66	
POTASH (K20)	LBS.	0.100	200.000	20.00	
RNTFERTSPRD/ACRE	ACRE	1.250	2.000	2.50	
TRANSPLANTS	THPL	50.000	5.000	250.00	
TRANSPLANT LABOR	HR.	4.650	8.000	37.20	
STAKES	EACH	0.250	834.000	208.50	
TWINE	LBS.	1.250	30.000	37.50	
STAKING LABOR	HR.	4.650	50.000	232.50	
TIEING LABOR	HR.	4.650	180.000	837.00	
HOEING LABOR	HR.	4.650	9.000	41.85	
INSECTICIDE	ACRE	6.690	10.000	66.90	
BACTICIDE	ACRE	9.940	10.000	99.40	
FUNGICIDE	ACRE	3.500	4.000	14.00	
NITROGEN (N)	LBS.	0.170	50.000	8.50	
FUNGICIDE	ACRE	10.500	6.000	63.00	
LUGS	LUGS	0.610	700.000	427.00	
HARVEST LABOR	HR.	4.650	200.000	930.00	
GRADING \& MKTG	LUGS	0.750	700.000	525.00	
ANNUAL OPERATING CAPITAL	DOL.	0.130	259.340	33.71	
LABOR CHARGES	HR.	4.833	11.221	54.23	
MACHINERY FUEL, LUBE, REPAIRS	ACRE			51.30	
IRRIGATION FUEL, LUBE,REPAIRS	ACRE			91.44	
TOTAL OPERATING COST				4067.33	

PROCESSED BY DEPT. OF AGRI. ECON. - OKLAHOMA STATE UNIVERSITY PROGRAM DEVELOPED BY DEPT. OF AGRI. ECON. OKLAHOMA STATE UNIVERSITY

THE OKLAHOMA

AGRICULTURAL EXPERIMENT STATION

System Covers the State

Main Station - Stlliwater and Lake Carl Blackwell

1. Panhandle Research Station - Goodwell
2. Southern Great Plains Field Station - Woodward
3. Marvin Klemme Range Research Station - Bessie
4. Sandylind Research Station - Miangum
5. Irrigation Research Station - Altus
6. Southwest Agronomy Research Station - Tipton
7. Caddo Research Station - Ft. Cobb
8. North Central Research Station - Lahoma
9. Forage and Livestock Research Laboratory - El Reno
10. South Central Research Station - Chickasha
11. Agronomy Research Station - Perkins
Fruit Research Station - Perkins
12. Pecan Research Station - Sparks
13. Pawhuska Research Station - Pawhuska
14. Vegetable Research Statlon - Bixby
15. Eastern Research Station - Haskell
16. Kiamichi Foresty Research Station - Idabel
17. Wes Watkins Agricultural Research and Extension Cenier -
Lane

$1890 \cdot 1990$

[^0]: achange is from base farm results.

[^1]: ${ }^{a}{ }^{\text {Change }}$ is from base farm results.

