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Illustrative Applications of Optimal 
Control Theory Techniques to 

Problems in Agricultural Economics 

James W. Richardson, Daryll E. Ray, and James N. Trapp** 

Optimal control theory is a mathematical technique for analyzing sys
tems under alternative sets of controls. Specifically optimal control theory is a 
technique to determine the optimal values for particular control variables in a 
system. The technique has been used primarily by engineers and mathemati
cians in dealing with control problems in physical systems. 

Many industrial processes that make use of automated control devices 
were designed and calibrated using optimal control techniques. Such pro
cesses make use of some type of sensing device that measures chemical 
reactions, solution mixture, pressure, etc. Signals from the devices are 
analyzed and converted into mechanical commands. For example, an auto
pilot in an airplane consists of a system of gyrocompasses, hydrolic gauges and 
pumps, electrical circuits, etc., which sense the position, speed, wind resis
tance, etc., of the plane and in turn adjust wing flaps, throttle settings, etc. The 
mechanical systems used to conduct automatic control procedures such as this 
have been designed and calibrated using optimal control techniques. 

Optimal control theory can be readily applied to many agricultural 
economics problems. Agricultural economists, like engineers, are dealing with 
complex systems that emit reactions and signals which require management 
responses. Optimal control analysis can assist in designing information sys
tems and managerial decision procedures that will create desired economic 
results. 

Traditionally, optimal control theory has been viewed as applicable only 
to continuous time systems described with differential equations. In practice 
most agricultural economic models do not fall in this category, rather, in most 
cases, they are discrete time models. This discrepancy, plus the fact that 
optimal control theory is typically described with complicated mathematical 
expositions has caused many agricultural economist to be hesitant in learning 
to apply optimal control theory. Optimal control techniques can, however, be 
applied to discrete time models and the basic concepts of such applications can 
be understood and applied without the use of advanced mathematics. 

"The authors are respectively: Assistant Professor, Department of Agricultural Economics, Texas A & M University, 
Associate Professor and Assistant Professor, Department of Agricultural Economics, Oklahoma State University. 
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For discrete time models, or cortinuous models for which discrete numer
ical approximations can be found, the optimal control problem can be viewed 
as the problem of choosing variables to maximize an objective function. From 
this perspective, optimal control becomes the process of maximizing a 
generalized non-linear, perhaps constrained, objective function. The maximi
zation process may be either static or dynamic, depending on the nature of the 
model, but is generally thought of in control theory as being dynamic. Recent 
advances in the technique of numerical optimization of non-linear functions 
make this perspective of optimal control a useful tool for analysis of many 
applied problems in the area of agricultural economics. 

The objective of this bulletin is to demonstrate the use of optimal control 
to solve applied problems in the area of agricultural economics. This bulletin 
presents the principles of optimal control theory in a nonmathematical form to 
allow researchers to focus on the application of optimal control techniques. 
The first section briefly reviews the origin of optimal control theory and its use 
in economics. The second section describes a particular numerical optimiza
tion procedure which can be utilized in solving optimal control problems. The 
last section presents three examples ofhow optimal control theory techniques 
can be used in applied economic research. 

Ori~}in of Control Theory 
The first application of control theory was on a single variable optimiza

tion problem in the field of engineering, specifically it was a study by Maxwell 
[ 1868] concerning the use of governors for speed control. This work led to other 
applications in the engineering area and during the second World War control 
theory was used extensively for studying military systems. Following the war, 
control theory was expanded to handle multi-variable optimization problems 
and later become widely used in aerospace and industrial development prob
lems U acobs, 1975]. It was during this later stage that applied mathematicians 
contributed to the technique by developing numerous application oriented 
algorithms [Box, 1965; Goldfeld, et al., 1966; Kendrick and Taylor, 1970; 
Swann, 1974; Fair, 1974; and Chow, 1976]. Recent control theory contribu
tions have included the introduction of stochastic and adaptive controls [Kirk, 
1970; Schweppe, 1973; Cooper and Fischer, 1974; and, Rausser and 
Freebairn, 1975]. 

Economists have only recently been actively working with control theory. 
General economists including Intriligator [1971], Pindyck [1973], Chow 
[1975, 1976], Arrow [1968], Theil [1965], Dorfman [1969], Livesey [1971], 
Kendrick and Taylor[ 1970], Pindyck and Roberts [ 1974], Cooper and Fischer 
[1974], Arzac and Wilkinson [1977] and numerous others have made use of 
optimal control techniques to solve economic problems. Relatively few ag
ricultural economists have applied the technique. Tinter [1969], Raulerson 
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and Langham [1970], Rausser and Freebairn [1974a, 1974b], Rausser and 
Howitt [1975], Trapp [1977], Taylor and Talpaz [1977], Frohberg and Taylor 
[ 1977], Richardson [ 1978] and others have demonstrated the use of optimal 
control techniques in analyzing problems in agricultural economics. 

Principles of Control Theory 
The objective of optimal control theory is to determine the values of 

control variables that cause a particular system to maximize (or minimize) a 
given performance measure subject to a set of boundary constraints Qacobs, 
1975; Kirk, 1970; and Sage, 1968]. Formulation of a control problem involves 
three steps: 1) development of a mathematical model of the system to be 
controlled; 2) a statement of the boundary constraints on the control, input 
and output, variables; and, 3) a statement of the performance measure for the 
system [Kirk, 1970]. As is true for other applications of mathematical models, 
the model should be a structurally accurate representation of the system and 
should include linkages between the various sectors. The structural coeffi
cients of the model may be estimated econometrically, obtained from known 
constant physical relations, or in some cases, iteratively estimated as part of 
the optimal control problem. 

In control theory literature, the endogenous variables in the model are 
referred to as the state variables are denoted as: x1(t), x2(t), ... , xn(t) for time 
period t (e.g., production mix, profits, net worth at micro level; supply and 
utilization components, prices, government costs, stock levels, etc. in a macro 
application). The subset of state variables used in the performance measure 
are referred to as the output variables, and are designated as: y1(t), y2(t), ... 
yk(t) (e.g., profit, net worth or stock levels and government cost). Uncontroll
able exogenous variables, (e.g., weather, unemployment level, interest rates) 
are denoted as z1(t), z2(t), ... , zq(t). The exogenous variables that can be 
manipulated or controlled by the decision maker, such as fertilizer use by an 
individual farmer or the level ofloan rates by government officials, are referred 
to as control inputs (controls). Controls for period tare represented by: u1(t), 
u2(t), ... , um(t). Values for the control variables over the period analyzed (t0 to 
tr) constitute the control path and values for the state variables over the period 
analyzed make up the state trajectory [Kirk, 1970]. 

The model equations that describe the state (or endogenous) variables 
can be a function of the controls, other state variables, time and the noncon
trollable exogenous variables. In order for the system to be controlled, one or 
more of the equations describing the state variables must contain a control 
variable. In turn, controls are normally a function of one or more of the state 
variables and/or time and other variables. When controls are a function of 
state variables, dynamic feed back from the system can be used to throttle 
successive control values. This circular causal flow which relates control 
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values to state values and then back to the controls is called a closed loop 
control problem. When controls are not a function of the state variables the 
system is an open-loop control problem. 

Boundary constraints are usually imposed on the control variables, and 
can be imposed on the state variables. The constraints limit the states and 
controls within boundaries established by the user in light of physical, eco
nomic and political limits of the system. The constraints reduce the number of 
alternative control paths that must be investigated since the model is only 
solved for admissible controls and admissible trajectories. An admissible 
control is a control path that satisfies all constraints on the controls for each 
time period and an admissible trajectory is a state trajectory that satisfies all 
constraints on state variables for each time period. Realistic boundary con
straints on the controls allows more accurate modeling of the system while 
reducing the number of feasible trajectories and the cost of solving for the 
optimal control path. 

A single valued performance measure, the criterion for evaluating the 
admissible control paths, must be developed for the particular problem being 
investigated. The performance measure (F) is defined by a mathematical 
equation or set of equations that sums weighted functions of the output 
variables for each state trajectory generated by the system being controlled. 
Exogenous information such as priority rankings, target levels, etc., may be 
integrated with the output variables in the mathematical formulation which 
determines the single performance measure value associated with each state 
trajectory and its corresponding control path. In application, values for the 
controls are selected by a control procedure in an iterative process that 
ultimately leads to the set of controls (or control path) that cause the perfor
mance measure to be optimized. 

A diagrammatic illustration of a dynamic control system is presented in 
Figure I. The model is simulated to obtain values of the state variables, using 
as input the following variabl.es: the controls ( u), initial or lagged values of the 
states (x), and values for any uncontrollable exogenous variables (zi). The 
equations in the model are used to estimate the values for the state variables 
(xi). The estimated values for a subset of the state variables, which have been 
referred to as output variables ( y), are used in conjunction with user provided 
weights ( r) to compute the value of the performance measure (F). The control 
mechanism (or numerical optimization routine as used here) computes new 
values for the control variables (u) for each iteration, based upon previous 
values of the performance measure and controls until the objective function 
value is optimized. 

Rausser and Free bairn [ 1974b] propose a three step procedure for specify
ing and estimating the performance measure in a control theory problem. The 
steps to the procedure are: 1) select the relevant state variables in the model as 
the output variables, 2) determine the appropriate mathematical form, and 3) 
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OBSERVED OUTPUT 
VALUES 

MODEL TO BE CONTROLLED yj - xi xj, zj 

xj ~ f(x1 , zj, uj' t) 
y j 

where 1 'I j 

PERFORMANCE 
MEASURE rj 

uj r---
F = f(yj, rj) 

NON-LINEAR OPTIMIZATION 
PROCEDURE 

uj(new) = f(uj(old), F, t) F 

Figure 1. A Dynamic Control System 

obtain estimates of the parameters or weights for the output variables. The 
guideline for selecting the output variables to include in the performance 
measure is quite obvious, select variables that are important to decision 
makers. Selection of the appropriate mathematical form and parameters or 
weights for output variables is slightly more difficult. 

In general, the functional form of the performance measure should for
malize assumptions regarding the rate of substitution among the output 
variables. In application, the functional form needs to be as simple as possible 
in its assignment of a unique real number to each set of output variables. The 
nature of the functional form for the performance measure depends upon the 
type of problem being analyzed. For example, a terminal control problem 
attempts to minimize the system's deviations from some desired level for the 
output variables in the final year ( tr) or: 

n 

Minimize: F = 1: r)yi(tr) - si (tr)J2 
i=l 

where t~s the final year or stage of the system, si is the target value for output 
variable i, and ri is the parameter weight assigned to the i1h output variable 
measure [Kirk, 1970]. Another type of performance measure is for tracking 
problems where the objective is to keep the output variable, yi(t), as close as 
possible to a series of target value, si( t), over the interval t0 to tr 

Minimize: F = ~ (~r rJyi(t) - si(t)J2) 
j=t0 t=l 

where rij is the weight assigned to the deviation for output variable i in time 
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periodj from the target value sij [Kirk, 1970; Theil, 1965; Ryan, 1974]. Theil 
referred to this functional fi>rm as a quadratic preference or performance 
function and used it for analyzing economic problems despite its obvious 
problems, that of using consta.nt weights for under and over shooting the target 
level and the need to estahlish single valued target levels for each output 
variable for each period. 

The performance measure developed by Richardson [ 1978] is a modified 
version of the tracking function or quadratic preference function; it allows the 
analysts to target output variables within acceptable ranges and provides a 
weighting procedure that differentiates between positive and negative de
viations from the desired ranges. These improvements generalize the perfor
mance function suggested by Theil [1965] by allowing different penalties for 
over and under shooting target values. Also, the modified functional form does 
not force the analyst to provide single valued targets for each observation in 
the trajectory of output varia.bles but only targets for the upper and lower 
boundaries for each output variable. The performance measure is expressed 
as: 

If lower bound is violated -
JLii = Hii Jyij - LBij I 

If upper bound is violated -
JUij = Iij Jyij- UBijl 

Minimize: F = ~ (~ OLii + JUi)) 
j=l 1=l 

where Hij is the weight for output variable Yi violating lower boundary limit 
LBi in periodj; Iij is the weight for output variable Yi violating upper boundary 
limit UBi in period j. TheJLij or JU ij is set to zero when the boundary level of an 
output variable is not violated, so the objective function is not penalized when 
the values of the output variables fall within their acceptable boundary limits. 
Values for the upper and lower boundary limits can be specified from observ
ing prior decisions by decision makers and by questioning decision makers as 
to the acceptable ranges for the output variables. Theil's quadratic preference 
function is a special case of Richardson's performance measure, for ifLBii = 
UBij, Iii= Hij and the deviations from the targets are squared we obtain Theil's 
quadratic preference function. 

The third step in Rausser and Freebairn's preformance measure specifi
cation, estimating parameters for the performance measure, is the most dif
ficult step in applying control theory to problems in economics. The problem 
of specifying the appropriate parameters for the performance measure (rij's) 
has been oflittle importance in the past, since the functions used by engineers 
in optimal control applications require only that the weights cause the model 
to follow a prescribed trajectory or achieve a final targeted value. Such weights 
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can be found through experimentation or by studying the physical relation
ships in the system. The performance measures developed for economic 
applications of control theory are not generally of the tracking function form so 
meaningful values for the weights must be developed [Bray, 1974; Rausser and 
Freebairn, 1974a, 1974b, 1975]. 

Bray [1974] suggests that the parameter weights may be determined 
through interviews with decision makers and government planners. Rausser 
and Freebairn [1974b] include Bray's suggestion in their direct approach and 
add to this two other approaches. The indirect approach involves studying 
past political decisions and the arbitrary approach involves the analyst assign
ing arbitrary values for the parameter weights. 

Numerical Solution of Optimal Control Problems 

Theoretical descriptions of optimal control theory problems generally 
utilize calculus of variation and assume the systems is represented in the form 
of a set of first order differential equations which is referred to as the state form. 
Direct-solution techniques are available for solving control problems in the 
state form by maximizing the implicit Lagrangian functions [Chow, 1975; 
Kirk, 1970]. However, as Swann [1974] points out, direct-solution techniques 
may not be practical due to the lengthy and complicated calculations involved 
in solving the derivatives. The problem often can be overcome with finite
difference approximations but this tends to introduce truncation and cancella
tion errors which can cause problems in obtaining the final solution. 

An alternative to using direct-solution techniques is to use direct-search 
or numerical techniques. Numerical techniques do not require the model be in 
the state form and obtain the final (optimal) solution without solving deriva
tives. Kirk [ 1970] and Swann [ 197 4] describe several direct-search methods 
available for solving constrained optimization problems. In general, the 
direct-search techniques are hill climbing procedures that utilize alternative 
methods of searching the surface of the performance measure for its global 
maximum (or minimum). In application, the control mechanism selects val
ues for the control variables, determines their impacts on the system's output 
variables and evaluates the performance measure based on the values of the 
relevant output variables. This process is repeated in an iterative fashion until 
any change in the control variables results in a reduction in the value of the 
performance measure. 

The direct-search technique described in this report is Box's Complex 
Procedure. The Complex Procedure, developed by Box [1965], is capable of 
solving for the optimal set of controls in a multi-variable model, that is in the 
form of a closed-loop feedback problem. Swann [1974] indicates that the 
Complex Procedure has been used quite extensively and successfully to solve a 
wide range of constrained optimization problems. The procedure has the 
flexibility of handling non-linear inequality constraints on the control var-
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iables and has been shown to be reliable when compared to more sophisticated 
mathematical techniques [Box, 1965; Goldfeld, et al., 1966]. Since Complex is 
a direct-search technique, the procedure can be applied to an existing model 
without reprogramming the model to the state form. This was a major consid
eration in selecting the technique, since most models in the field of agricultural 
economics are not stated in terms of the state form. (A computer algorithm for 
Complex is available in Kuester and Mize [1973] and a listing of the revised 
computer algorithm used for this bulletin is in Appendix A.) 

Box's Complex Procedure 

The objective of Box's Complex Procedure is to maximize a performance 
measure (F) subject to the boundary constraints on the control variables or: 

Maximize: F(y1, y2 , ••• , Yn' r1 , r2 , ••• , rn) 
Subject to: GJ.:::; u. ::::; H, j = l, 2, 3, ... , m 

J • 

where yt, ... , Yn are output variables, n, ... , rn are user provided parameter 
weights, and Gj and Hj are lower and upper boundary constraints for control 
variablej, respectively. Values for the admissible control paths (u/s) are used 
as input in a model of the ~.ystem to be controlled, to obtain predicted or 
simulated values for the system's state variables (x/s), i.e., the state trajectory. 
The output variables (y/s) are used in the performance measure (F) to obtain 
a unique real number to be associated with the control path being evaluated. 
This process continues iteratively. With each iteration a new control path is 
computed by systematically changing the values of the control variables. The 
new control path is then evaluated by using it in the model to simulate values 
for the state trajectory and using the predicted values of the output variables in 
the performance measure. The final solution is reached when no improvement 
in the value of the performance measure can be made. 

The computer program for the Complex Procedure is written in Fortran. 
The program consists of the following subroutines: COMPLX (acts as the 
MAIN), CONSX, CHECK, CENTR, CONSTT, and OBJT (see the com
puter listing in Appendix A). The researcher can link the Complex Procedure 
to the system to be controlled in one of two ways: code the control model 
directly into subroutine OBJT and use COMPLX as the MAIN or call 
subroutine COMPLX from another computer program and code the control 
model in subroutine OBJT. The performance measure must be provided by 
the researcher in subroutine OBJT. Also, the researcher must provide the 
upper and lower boundary constraints for the control variables in the 
CONSTT subroutine. Whether COMPLX is used as the MAIN or as a 
separate subroutine it has two functions, they are to read the data cards and to 
print an output table of the optimal values for the control variables. 
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The Complex Procedure begins each control problem by generating or 
reading sets of initial values for them control variables. The number of sets of 
initial values required to identify the performance surface is the number of 
controls plus 1. Thus, if there are two controls, the domain of the surface is 3 
and can be visualized as a three dimensional graph with the performance 
measure on the vertical axis and control variables on the two horizontal axes. 
The number of sets of initial values for the control would be three in this case. 
In general, a control problem with m controls has m+ I or k control paths to 
mathematically identify the performance surface. Each of the k control paths 
has values for each of the m control variables. Each path or set of values is 
considered to be a coordinate for one point on the surface of the performance 
measure. The control paths are stored in a k by m matrix (X), with the rows 
containing the k different control paths and the columns containing the values 
for them different control variables.1 The initial control paths can be user 
supplied or they can be random values, uniformly distributed between the 
respective lower and upper boundary constraints. The source of the initial 
control paths is determined by the user, depending upon the data input option 
specified on the 1-0 Card (see Appendix B). 

Once the X matrix is initialized with starting values for the control 
variables, each control path is checked to be sure it is admissible (subroutine 
CHECK ) . The value of each control variable is compared to its respective 
lower and upper boundary constraints, provided by the user in subroutine 
CONSTT, to be sure the control is admissible. If a value is inadmissible, the 
value is moved inside the violated boundary constraint by a small amount 
DELTA, say 0.00 1. 

After determining that the initial control paths are admissible, the per
formance measure is evaluated for each of the k control paths. The OBJT 
subroutine contains the performance measure and the user supplied model of 
the system to be controlled so it is called each time a control path is evaluated. 
To evaluate the initial control paths, subroutine OBJT is called k times, each 
time a different control path is used as input in the researcher's model. 
Simulated values of the output variables are used in the performance measure 
to obtain a unique real number for evaluating the particular control path. The 
values of the performance measure are stored in the F array which is a kxl 
array. 

After evaluating the k'h initial control path, Complex begins the iterative 
procedure that leads to the optimal control path for the given performance 
measure. The first step in each iteration is to identify the control path (or row 
of the X matrix) associated with the minimum value of the performance 
measure, say row i. The control mechanism then replaces the rejected row, i, 
with a control path that is associated with a higher point on the surface of the 
performance measure. 

1This definition of the X matrix in the Complex procedure should not be confused with the x vectors 
discussed earlier which denote the values of a state trajectory. 
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New values for control path i are calculated by the following formula: 
Xi/new) = Xjc + a(Xic - Xu( old)); j = l, 2, ... , m 

where Xu (new) is the new va.lue of control variablej in coordinate or CO!!_trol 
path i, a is the reflection factor (Box [1965] recommends using 1.3), and Xjc is 
the centroid for control variablej. The new centroid for thejth control variable, 
Xjc' for each iteration is the average of the control variable excluding the one 
that is rejected. The centroid for each of them control variables is calculated in 
subroutine CENTR. The reflection factor, a, is greater than one to insure that 
the control mechanism searches both sides of the centroid in its approach to 
the optimal control values. 

The new values for the control variables (Xij (new)) are then checked 
against the lower and upper boundary constraints to assure that the control 
path is admissible. The value of the performance measure for the i1h control 
path is obtained by using control path i as input in the user supplied model and 
simulating values for the endogenous or state variables in the model. If the i1h 
control path is no longer associated with the minimum point on the perfor
mance measure the first iteration is complete. However, if the i1h control path 
repeats as the lowest point, new control values are selected, checked and 
evaluated until the i1h path is no longer associated with the minimum point on 
the performance measure. In the next iteration this procedure is followed for 
the row which now has the l.owest performance measure value and so on. 

By rejecting the control path associated with the minimum value for the 
performance measure and replacing it with a control path that has a higher 
value, the procedure will ultimately find the maximum value of the perfor
mance measure. Each of the k sets or control paths will eventually coverge to 
the optimal control path. The control path associated with the maximum 
point on the performance measure surface is considered to be optimal for the 
given performance measure. 

At the end of each iteration the convergence criteria is checked to see if the 
performance measure is at a maximum (subroutine CONSX). A maximum is 
declared if for Y iterations the highest and lowest values of the performance 
measure remain within B units of each other. (Values for Y and Bare provided 
by the user on the data cards, see Appendix A.) 

To insure that the final solution is at the global maximum for the 
performance measure, the problem should be run several times. Each time a 
different set of initial control paths should be used so the procedure searches a 
different set of values for the control variables. If the procedure returns the 
same answer several times, the analyst can feel fairly certain of having found 
the global maximum. 

The boundary constraints for the control variables are critical to the use 
of the Complex Procedure. The user must provide values for the boundary 
constraints in the user provided constraint subroutine CONSTT. The lower 

10 Oklahoma Agricultural Exporiment Station 



boundary constraints (Gi's) are programmed in the G array and the upper 
boundary constraints (Hi's) are programmed in the H array. The order of the 
variables in the G and H arrays must correspond exactly to the order in the X 
matrix, since G and H are mxl arrays and X is the kxm matrix of control 
variables. 

Application of Optimal Control Techniques 

Box's Complex Procedure can be used to solve many different problems 
in the general area of agricultural economics. To demonstrate the flexibility of 
the procedure, and to provide examples of typical optimal control problems 
encountered in agricultural economics, three widely different problem exam
ples will be discussed. The first application is a constrained profit maximiza
tion problem for a firm producing three outputs with four inputs. This prob
lem represents a static control problem. However, the main purpose of its use 
here is display the capabilities and nature of the complex procedure. 

The second application demonstrates how the procedure can be used to 
estimate characteristics of the aggregate population of cattle being placed on 
feed and in turn use this information to aid in forecasting beef supply. This 
example is the classical dynamic control problem described in the preceding 
control theory discussion. In this case the time path of control variables sought 
are characteristics and numbers of cattle placed on feed which will generate 
accurate tracking of cattle on feed slaughter. 

The third application of the procedure is in the area of agricultural policy 
analysis. The complex procedure is used in conjunction with a National 
Agricultural Policy Simulator model to compute "optimal" values for policy 
instruments given expected conditions and performance criteria. This exam
ple can be viewed as an application of optimal control theory to assist in system 
design. In this case the agricultural program, consisting of support prices, 
target prices, etc., is viewed as a part of the total agricultural system structure. 
By altering the nature of the agricultural program a different set of conse
quences can be generated from a set of expected future conditions (i.e., 
scenarioed or forecasted model inputs). Optimal control is used to select the 
program features which, given model inputs, lead to the desired results as 
described by the simulated output. 

Application of Control Techniques to Profit Maximization 

One of the most common problems faced in the area of agricultural 
economics is the problem of determining the profit maximizing level of pro
duction and input use when the quantity of inputs available is constrained in 
some way. Such problems are usually solved by setting up a constrained profit 
function and maximizing it by simultaneously solving a system of first deriva
tives for the profit function [Henderson and Quandt, 1958]. In general this 
method is simple if the problem is limited to one or two products that are a 
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function of a small number ofinputs and the prices for both the outputs and the 
inputs are fixed. If the products are produced in less than perfect competition, 
i.e., face a downward sloping demand curve and the inputs are associated with 
a positively sloped marginal factor cost function, the problem of finding the 
profit maximizing level of production becomes more difficult. 

The Problem. To demonstrate how a constrained profit maximization 
problem can be solved using ]Box's Complex Procedure, consider a firm with 
three outputs (yp y2, and y3), four inputs (xp x2, x3, and x4) and constraints on 
the maximum amount of each input that can be used. The problem can be 
stated as: 

Maximize: profits for outputs YP y2, and y3 

Subject to: production functions -

.09 .19 .15 .20 
Y3 = X31 X32 X33 X34 

Output demand functions (prices) -
Py1 = 1050.0 - 0.5y1 

Py2 = 1000.0 - 0.25(y2) 2 

Py3 = 100.0 - O.l5(y3)2 

Input constraints -
2000.0 ~ x11 + x~ 1 + x31 = sum x1 

3000.0 ~ x12 + x~ 2 + x23 = sum x2 

2100.0 ~ x 13 + x,3 + x33 = sum x3 

1000.0 ~ x14 + x,4 + x34 = sum x4 

Input marginal costs -
Px1 = 3.0 + 0.0009 sum x1 

Px2 = 6.0 + 0.00011 sum x2 

Px3 = 9.0 + 0.0003 sum x3 

Px4 = 7.0 + 0.000199 sum x4 

And: xij > 0.0 fori= 1, 2, 3 andj = 1, 2, 3, 4. 

Production functions in the Cobb-Douglas form are used since they are 
non-linear and the functional form is used in most mathematical economics 
textbooks [Henderson and Quandt, 1958]. Demand functions foryp y2, and y3 

are used to demonstrate an a.dditional dimension, that of less than perfect 
competition in the output market. The constraints on the inputs x1 through x4 

are incorporated, to make the example a constrained profit maximization 
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problem. The marginal input prices or costs for the four inputs are functions of 
the quantities used, instead of a fixed price or cost for unlimited use of the 
inputs. The linear marginal input prices allows for input markets that are not 
operating in perfect competition. The final constraint on the problem, that of 
non-zero levels of input use, is imposed to prevent the model from selecting a 
zero level of input which in a multiplicative production function causes the 
output level to be zero. 

Setting Up the Problem. To incorporate the profit maximization prob
lem into the Complex Procedure the first step is to identify the control 
variables and determine lower and upper boundary constraints for the indi
vidual controls. For the problem presented above, the controls are the levels of 
inputs used in each product; more specifically the control varaiables are: 

Control variable I X(i, I), G(l), H(l) input xu 
Control variable 2 X(i, 2), B(2), H(2) input x21 

Control variable 3 X(i, 3), G(3), H(3) input x31 

Control variable 4 X(i, 4), G(4), H(4) input x12 

Control variable 5 X(i, 5), G(5), H(5) input x22 

Control variable 6 X(i, 6), G(6), H(6) input x32 

Control variable 7 X(i, 7), G(7), H(7) input x 13 

Control variable 8 X(i, 8), G(8), H(8) input x23 

Control variable 9 X(i, 9), G(9), H(9) input x33 

Control variable 10 X(i, 10), G(lO), H(lO) input x14 

Control variable 11 X(i, 11), G(ll), H(ll) input x24 

Control variable 12 X(i, 12), G(12), H(l2) input x34 

where the X matrix is the location of values for the control variables selected 
by the control mechanism, G is the lower boundary constraint array and H is 
the upper boundary constraint array. The boundary constraints must be 
provided by the user in the CONSTT subroutine. The listing of the program in 
Appendix A includes the profit maximization problem presented here, to 
demonstrate how the user provides the boundary constraints and the perfor
mance measure. The lower boundary constraint for each of the 12 control 
variables is zero so G(i) = 0.0 fori = 1, 2, 3, ... , 12 as indicated in CONSTT. 
The upper boundary constraints for the control variables are given in the 
problem statement, for example, the maximum level ofx1 that could be used to 
produce one product (zero amounts of other products) is 2000.0 units. 2 Thus 
H(l), H(2), and H(3) equal 2000.0 in subroutine CONSTT. The upper 
boundary constraints for the remaining control variables are set in a similar 
manner. 

The second step in setting up the profit maximization problem is to 
program the model or system to be optimized and the performance measure 
into the OBJT subroutine. The production functions for YP y2 and y3 are 

2Strictly speaking, input use would only approach 2000.0 units since the Xij are constrained to be non-zero. 
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programmed in Fortran usin1~ the appropriate locations in the X matrix as the 
input variables Xp x2, x3 and x4 (see subroutine OBJT in Appendix A). The 
control mechanism selects va:tues for the control variables and puts them in the 
ith row of the X matrix, the o:rder of the controls in the X matrix is the same as 
the order used for the G and H arrays presented above. The simulated output 
levels for YP y2 and y3 are used in the product demand equations to obtain 
prices for the outputs (Pyp Py2 and Py3). The total quantity of each input used 
is calculated and used to compute the prices or costs for the four factors of 
production (Pxp Px2, Px3 and Px4). The performance measure to be 
maximized is a constrain ted profit function (F): 

3 4 4 
F = 1: Pyi * yi - 1: Pxj '' sum xj - 1: (UB,t- sum x9)2 

i=l j=l R, =I 

where Pyi is the price of output yi, Pxj is the cost of input xj and UB is the 
maximum amount ofx,tavailable. Values for UB,tare 2000, 3000, 2100 and 
1000 for sum Xp sum x2, sum x3, and sum x4, respectively. If sum x,tis less than 
UB,tthe last part ofF is ignored thus only penalizing the performance measure 
if excessive quantities of x,t are used. 

The final step in solving the profit maximization problem with Box's 
Complex procedure is to code the data cards and run the program. Coding 
instructions for the data cards are presented in Appendix B. For the results 
presented in the next section, the random number seed provided on the 1-0 
Card is 999991.0 and the initial set of values for the control variables are 
selected at random. The values entered on the Parameter Card are the 
following: Alpha = 1.3, Beta = 0.30, Delta = 1.0, Gamma = 5, the number of 
control variables is 12, and the maximum number of iterations is 700. (Defini
tions of the parameters are presented in an earlier section of this bulletin.) 

Results of the Example~ Problem. The optimal solution obtained from 
using the Complex Procedure to solve the profit maximization problem is 
presented in Table l. The maximum value of the performance measure is 
$545,090.4 and comes from producing 1,000.9 units ofyl> 35.9 units ofy2, and 
10.1 units of y 3• 

The sum of x 1 used in the production of Y1> y2 and y3 is 1998.0 units, 
approximately equal to the maximum amount ofx1 available (2,000 units). A 
similar situation exists for input x4, in that the total quantity used is 998 units 
and the maximum available is 1000 units. The x2 and x3 inputs do not restrain 
on the profit maximization solution since the optimal levels for these inputs are 
substantially below their respective upper constraints. A change in the de
mand function for any of the three outputs or a change in the input cost 
function for any of the four inputs causes the solution to the problem to be 
altered. Also, changes in the form of the performance measure can alter the 
optimal solution reported in Table l. 
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Table 1. Results of the Sample Problem - A Profit Maximization With Three 
Outputs and Four Inputs. 

Outputs Sum of 
Inputs y1 y2 y3 Inputs (x1) 

X1 1972.04 10.85 15.89 1998.78 
X2 1202.95 7.67 59.67 1270.29 
X3 396.24 198.40 11.50 606.14 
X4 793.34 103.94 101.10 998.38 
Total Production 1000.9 35.9 10.1 
Profit $545,090.4 

The costs of using Box's Complex Procedure to solve the profit maximiza
tion problem are quite small in comparison to the alternatives, namely solving 
ihe problem by hand or using parametric programming. The time required to 
program the problem is less than one hour and the computer time on an IBM 
370-75 to solve the problem is about 30 seconds; even though the program runs 
about 800 iterations to reach the final solution. This particular problem 
requires a large number of iterations because of the number of control var
iables (12) and the non-linearities in the production functions. 

Many other problems of this type can be solved by using Box's Complex 
Procedure. For example the problem of how to allocate "given quantities" of 
x1, x2, x3 and x4 among the three outputs to maximize profits can be solved by 
simply changing the performance measure to: 

3 4 4 
F = r Pyi * Yi- r Pxj * sum xj - r (DSR, * - sum X9J2 

i=l j=l R.=l 

where Pyi is the price of output Yi• Pxi is the input cost of all xi used and DS is 
the desired level of use for input x. In this case a penalty is forthcoming if the 
level of input use is different from the desired level of use. 

Application of Control Techniques to Beef Supply Models 

Agricultural outlook economists have made extensive use of cattle on feed 
data to make short-run beef supply forecasts. Cattle on feed statistics report 
the number of animals on feed by sex and weight. Weight of cattle on feed is 
reported in 200 lb. increments, i.e., 500 lbs. and under, 500-700 lbs., 700-900 
lbs., 900-1100 lbs., and 1100 lbs. and above. Cattle on feed data also report the 
number of animals placed on feed during the last reporting period. Placement 
data does not describe the sex or weight characteristics of the animals placed 
on feed. 

The traditional method outlook economists have used in making short
run supply forecasts based upon cattle on feed data, has been to assume 
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various percentages of the cattle, in different weight groups, will be marketed 
within 30 days, 60 days, etc. Statistical models have been developed to predict 
slaughter one to six months in advance from the cattle on feed data. These 
statistical models regress slaughter for the period in question upon current 
cattle on feed numbers by weight groupings. An example of such a model is 
specified below. 

Slg =a+ b (# of700-900 lb. ) +c 
cattle on feed ( # of900-ll00 lb.) 

cattle on feed 

Short-run beef slaughter forecasts made in this manner have proven to be 
quite reliable, especially when tempered with experience and judgment. Fore
casts made by this method, however, ignore substantial amounts of informa
tion known about beef growth processes. This is because aggregate cattle on 
feed data do not describe the nature of the animals on feed in enough detail to 
make such information usefuL For example, if the precise weight distribution 
of animals on feed were known as well as exact placement weights and rations, 
then growth models of beef animals could predict the future weight of animals 
for a given date quite accurately. Growth models capable of such predictions 
have been developed by Fox and Black [1977] and Gill [1975]. These models 
are heavily based upon Lofgt~~en and Garrett's [1968] net energy equations. It 
is the premise of the modeling and optimal control applications to be described 
here that more detailed knowledge of the weight of cattle on feed and the 
weight at which they are placed on feed coupled with beef growth models 
and/or common knowledge of typical beef growth rates will permit more 
accuracy to be developed in making short-term beef supply forecasts. 

Optimal feedback control techniques have been applied to a cattle on feed 
growth simulator to estimate specific cattle on feed weight distributions and 
placement weights. In this procedure cattle placement weights sex of the 
animals placed and growth rates are treated as control parameters. Box's 
Complex Procedure is used to adjust the control parameters to optimize the 
tracking of historical cattle on feed data. The mathematical relations used to 
describe the inventory of cattle on feed and their growth process and eventual 
slaughter consists of a set of continuous differential equations3 . Because the 
equations describing the growth process and placement weight distributions 
are continuous with respect to time and weight, inventories of cattle on feed 
can be computationally broken into single pound increments with respect to 
the current weight distribution of cattle on feed and their placement weights. 
Even though the model is continuous in nature, tracking must be done in a 
discrete sense because the data to be tracked are discrete. This is achieved by 
integrating the continuous fimctions over the desired time and/or weight 
ranges and comparing the results with the discrete data. Hence, the continu
ous flows of the model interpolate between discrete data points in such a way 
that accurate discrete trackin1~ is obtained. The time path of control variables 

3See Llewellyn [1966] or Manetsch and Park [1974] for presentations of differential equation modeling. 
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derived to generate accurate tracking of the discrete cattle on feed data provide 
information which can be used to assist in predicting future placement 
weights, sex of animals and aggregate growth rates. 

The optimal feedback control framework used is depicted in Figure I. 
Observed cattle on feed and cattle placed on feed coupled with base values of 
growth rates and placement weights are initially supplied to the cattle on feed 
simulation model. The simulation model is then operated to generate predic
tions of beef slaughter and ending cattle on feed by 200 lb. weight increments. 
These predicted values are compared to observed values and an error squared 
performance measure calculated. The performance measure is defined as 
follows: 

" " " OBJ = (M- M/M)2 + (COF + COF/COF)2 * 8 + (S5- S5/S5)2 + 
" " .... (S57- S57 /S57)2 + (S79- S79/S79)2 + (S9- S9/S9)2 + (H5-

" " " Ji5/H5) 2 + (H57- H57/H57) 2 + (H79- H79/H79) 2 + (H9-
H9/H9) 2 

where the symbol "' denotes model predictions and 
OBJ =performance value to be minimized; 

M = cattle on feed marketed, i.e., slaughtered; 
COF = total cattle on feed; 

S5 = steer under 500 lbs. on feed; 
S57 = steer between 500-699 lbs. on feed; 
S79 = steer between 700-899 lbs. on feed; 

S9 = steer 900 lbs. and over on feed; 
H5 = heifers under 500 lbs. on feed; 

H57 = heifers 500-699 lbs. on feed; 
H79 = heifers 700-899 lbs. on feed; and, 
H9 = heifers 900 lbs. and over on feed. 

A heavier weight or penalty is given to error in tracking total cattle on feed 
since it is the summation of individual categories of cattle on feed and is 
believed to be reported more accurately than individual categories of cattle on 
feed. 

The numerical optimization routine receives performance "feedback" 
information from each setting of the control variables. This information is in 
terms of weighted percent of tracking error squared. By recording the margi
nal change in performance (improved tracking accuracy) associated with a 
given marginal change in the control variables (growth rates and placement 
weights by sex), the optimization routine iteratively adjusts the control vari
able settings in a systematic manner until the performance measure is 
minimized. 

This procedure of estimating growth rates and placement weights consti
tutes a closed-loop feedback control procedure according to the traditional 
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definition, i.e., the control variables are a function of state variables. In this 
case the state variables are estimates of cattle on feed and cattle on feed 
marketed. 

The cattle on feed growth simulation model will not be described in detail 
here.4 A basic understanding of the structure of the model can be obtained by 
studying Figure 2 which outlines the placement and cattle on feed categories 
described within the model. The model simulates the daily rate of gain of cattle 
on feed by considering the effect of placement weight, current weight, sex and 
season of the year upon growth rates. Briefly, the effect of each of these factors 
as modeled is the following: steers have been observed to grow faster than 
heifers and grade choice at heavier weights than heifers and, hence, are 
typically slaughtered at heav:ier weights; animals placed at heavier weights, 
once on full feed experience "compensitory growth" and gain weight at faster 
marginal daily rates of gain than other animals of the same current weight but 
placed at a lighter weight; as animals on feed become heavier, their marginal 
daily rate of gain slows because more energy from their ration is required for 
body maintenance leaving less for growth; seasonal changes in temperature, 
rainfall, etc., cause different growth rates. 

Results of operating the model over the period 1962-1977 in a feedback 
control framework indicate that seasonal patterns exist for aggregate growth 
rates, placement weights and sex ratios of cattle placed on feed. Table 2 
presents the results found for seasonal growth rates, sex ratios and average 
weight of cattle on feed. Growth rates were estimated to be most rapid in the 
first and fourth quarters and the slowest in the third quarter. These results 
would tend to indicate that heat stress in the third quarter hampers animal 
growth more than cold temperatures in the first and fourth quarter. A definite 
seasonal change in the steer to heifer ratio (sex ratio) of cattle placed on feed is 
estimated. The ratios indicate that proportionately fewer heifers are placed in 
first and fourth quarters. Lastly, the estimates of average weight of cattle on 
feed reported in Table 2, Column 3, indicates that the heaviest average weight 

4See Trapp, James N., "A New Approach to Beef Supply Modeling Using Differential Equations and 
Optimal Control Techniques," forthcoming, Oklahoma State University Experiment Station Technical Bulle
tin. 

Table 2. Selected Average Estimated Characteristics of Cattle on Feed and 
Placed on Feed by Quarter, 1962-1977. 

Growth Sex Ratio of 
Rate Cattle Placed on Feed 

Quarter Index Steers/Heifers 

1 104 3.20 
2 100 2.15 
3 89 1.92 
4 105 2.24 
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Figure 2. Cattle on Feed Population and Growth Model 



Table 3. Estimated Seasonal Distribution and Average Weight of Cattle 
Placed on Feed, 1962·1977. 

Percent Placed 

Average 
Quarter Under 500 lbs. 50(). 700 lbs. 700.900 lbs. Weight 

53.2 40.3 6.6 508 
2 26.7 66.3 7.6 557 
3 26.5 43.7 29.8 581 
4 64.4 26.5 9.1 490 

Annual 
Average 42.2 44.5 13.2 534 

of cattle on feed occurs in the second quarter, with the next heaviest weight 
occurring in the third quarter. This pattern of weights for cattle on feed 
appears to be due to the seasonal fluctuation of cattle placement weights and 
numbers of cattle placed. 

The placement weight information generated by the model is perhaps the 
most interesting and valuable. Somewhat surprisingly the estimates indicate 
that a significant portion of cattle placed weigh less than 500 lbs., i.e., 42.2 
percent (Table 3). This is not so surprising if one considers that the turnover 
rate of cattle on feed under 500 lbs. is the most rapid of any reported weight 
group of cattle on feed. Cattle typically gain only 50-75lbs. while in this weight 
classification as compared to 200 lbs. in others. Hence, to maintain a given 
inventory of cattle on feed under 500 lbs. requires more placements than to 
maintain the same inventory in wider ranged weight classes where the turn
over rate is three to four times slower. 

The estimates reported in Table 3 indicate that the majority of the under 
500 lb. placements occur during the first and fourth quarters. This factor 
contributes to causing the low average weight estimates for cattle on feed 
reported for these quarters in Table 3. The heaviest average placement 
weights occur in the second and third quarters. The largest percentage of 
cattle placed in the second quarter is in the 500-700 lb. weight range, i.e., 61 
percent. This group of cattle likely consists of spring calves that have been 
wintered, grazed on spring pasture and sent to the feedlot. The third quarter 
average placement weight, unlike the other quarters, is derived from a rela
tively uniform distribution of placement weights. 

The time series paths of the annual average values found for the control 
variables are presented in Figures 3A-3C. The sex ratio (Figure 3A) is corre
lated with the cattle cycle (Figure 3D) as measured in terms of the annual 
index of the rate of change in the size of the cow herd. The simple correlation 
coefficient is + .67. The sex ratio is hypothesized to rise during period of 
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Figure 3A. Steer/Heifer Sex Ratio of Cattle Placed on Feed, 1960-77 
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Figure 38. Average Weight of Cattle Placed on Feed, 1960-77 
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Figure 3C. Daily Growth Rates for 900 lb. Cattle on Feed, 1960-77 
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Figure 30. Rate of Change in the Size of the Beef Cow Herd, 1960-77 

expansion due to more heifers being held for replacements, thus causing the 
steer/heifer ratio to rise. The placement weight series is not strongly correlated 
to the cattle cycle as measured here but does appear to be cyclical. During 1974 
and 1975 when feed prices were high relative to cattle prices and "grass fed" 
beef was common, placement weights were estimated to be the highest ob
served for the period 1960-1977. 

The index of growth rates does not seem to follow the cycle either. When 
regressed against time it shows a significant positive trend (a t-value of 3. 76 
was found). This trend is primarily due to the unprecedented rise in growth 
rates occurring since 1973. The drop in growth rates estimated from 1970 to 
1973 may be due to the legal actions taken against growth hormones and feed 
additives being used at that t::me. 

Information generated from the estimated time paths of the control 
variables can likely be used to aid making cattle on feed forecasts via the 
traditional approaches. Their best use for assisting in making forecasts would 
appear to be in conjunction with continuous models of the beef growth process 
such as the one described and used in this study. By forecasting the control 
variables and using them as inputs to the continuous cattle on feed inventory 
and growth model, continuous (with respect to time and weight) projections of 
cattle on feed inventories and marketing can be made. Forecasts ofthe control 
variables (placement weights, 5ex ratios and growth rates) can be made either 
subjectively or via econometric methods. Research using econometric 
methods to estimate structural relations between the estimated values for the 
control variables and other observed economic variables is currently under
way. 

Figure 4 is presented as an example of the type of forecasts that can be 
made with the continuous cattle on feed inventory and growth model. It 
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compares the 1977 optimal tracking path for cattle on feed marketed against a 
simulated 1978 projection. The daily slaughter rate simulated for January 1 of 
1977 is used as a base value. 

The 1978 projection depicted in Figure 4 was made immediately after the 
release of the 1977 fourth quarter cattle on feed report. The detailed (broken 
into one pound weight increments) December 31st ending cattle on feed 
estimates made by the model were used as an input into the projection. All 
other inputs were provided by making subjective assumptions of the expected 
changes from the reported or estimated (estimated in the cases where input 
data are not reported) 1977 values for the inputs. The input assumptions were 
as follows: a) placements would decline by five percent; b) slaughter weights 
would decline by 20 pounds; c) placem~nts weights would decline by 30-40 
pounds; d) growth rates would slow by five percent; and e) the steer/heifer 
ratio would increase by 15 percent. 

At the date of this writing the January and February seven state cattle on 
feed reports were available. They incidate that 1978 seven state cattle on feed 
marketings as a percent of 1977 seven state cattle on feed marketings were 109 
and 106 percent respectively for January and February. The model is based 
upon 23 state quarterly marketings, hence comparisons of absolute values is 
not possible but ratio comparisons are valid. The model forecasts of 1978 
marketings as a percent of simulated 1977 marketings for January and Feb
ruary were 111 percent and 108 percent respectively. 

14T 
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90 

80 
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Figure 4. Simulated Indices of Daily Slaughter Rates for January Through 
June of 1977 and 1978 

Optimal Control Theory Techniques 23 



Application of Control Techniques to Agricultural Policy 

The POLYSIM model is a disaggregated simulation model of the na
tional agricultural economy developed by Ray and Richardson [1978] at 
Oklahoma State University. The model makes full use offorecasted data as a 
reference baseline. Included are the five-year baseline projections of commod
ity supplies, prices, and utilization made by ERS. Commodity specialists 
develop these projections using formal and informal forecasting models tem
pered with their own experienced judgments. The projections contain explicit 
assumptions concerning the rates of change in population, per capita incomes, 
consumer preferences, export demand, technology (including crop yields and 
livestock grains), and other 8upply and demand shifters. These projections 
also assume a specific set of Government farm programs. The user starts a 
simulation by changing one or more of the policy assumptions used in the base 
conditions, for example, by using a different series ofloan rates. The simula
tion procedure traces through the effects on production, price, utilization, and 
farm income for each of the eleven commodity groups and on agriculture in the 
aggregate. 

As indicated in Figure 5, the Complex Procedure is linked to the 
POL YSIM model by calling subroutine COMPLX from POL YSIM. Sub
routine call statements for the execution subroutines in POLYSIM are in
cluded in subroutine OBJT so the simulation model is executed each time an 
admissible control path is selected by the optimization procedure. 

A grain reserve farm program with acreage set-aside and loan rate 
provisions is analyzed to demonstrate how optimal control theory can be used 
to select loan rates and acreage set-aside levels for feed grains, wheat and 
cotton, that cause the Commodity Credit Corporation (CCC) to maintain a 
fixed reserve of grains. A grair.. reserve of20 million tons offeed grains and 500 
million bushels of wheat is assumed to be established in 1977 by the CCC. The 
farm program is analyzed for the four year period of 1978-1981. 

The control variables, loan rates and set-aside levels for the three crops, 
are constrained to the upper and lower boundary constraints for these var
iables (Tables 4 and 5). The performance measure used for the analysis is 
reported in Table IV of Richardson [ 1978]. In general, the performance 
measure seeks to maximize net farm income subject to constraints on govern
ment expenditures, consumer food costs and maintenance of a critical level of 
stocks. 

The 24 control variables for the farm program reported here are loan rates 
and acreage set-aside levels for feed grains, wheat and cotton in 1978, 1979, 
1980 and 1981. The objective is to determine loan rates and acreage set-aside 
levels that maximize the perfo:cmance measure. The CCC release rule used for 
the farm program is the following: release CCC held reserves if the average 
market price exceeds the loan rate by 50 percent and release only the amount 

24 Oklahoma Agricultural Expel'iment Station 



.;-- -l 
D0 100 I "' 1,4 

Execute subroutine SETUP 1 
Execute subroutine LUSK 
Execute subroutine TGTP I 
Execute subroutine ADJLOT 
Execute subroutine CROPG 
Execute subroutine FDGR 
Execute subroutine FEED 
Execute subroutine WHEAT 
ixecute subroutine SOYB 
Execute subroutine COTTON 
Execute subroutine FED2 
Execute subroutine RECPTS 
Execute subroutine GOVP 
Execute subroutine TOTALS 
Execute subroutine CONS 

100 Continue 

I 
1' 

Yes 

Control Problem 

Evaluate the 
Performance 
Measure 

No 

Figure 5. Flowchart of POL YSIM and its Modifications for the Control 
Theory Option 

of stocks needed to lower the average market price to 150 percent of the loan 
rate. 

For the control mechanism to maximize the performance measure it must 
select values for the control variables (loan rates and acreage set-aside levels 
for feed grains, wheat and cotton in 1978-1981) with respect to their estimated 
impacts on the state variables in POL YSIM and the output variables in the 
performance measure. Both immediate impacts (one year) and longer run 
impacts (two or more years) are considered by the control mechanism. 

To select a value for the wheat loan rate in 1978 the control mechanism 
must consider the immediate impacts in 1978, as well as, the longer run 
impacts in 1979-1981, on the state variables in the model and particularly the 
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Table 4. Upper and Lower Boundary Constraints for Loan Rates for Wheat, 
Corn, and Cotton 1978-1981. 

Wheat Corn Cotton 
Lower u~~er Lower U~per Lower U~per 

Year $/bu. $/bu. $lib. 

1978 2.00 3.00 1.75 2.10 .37 .52 
1979 2.00 3.10 1.75 2.21 .37 .55 
1980 2.00 3.34 1.75 2.34 .37 .58 
1981 2.00 3.52 1.75 2.47 .37 .61 

Source: Lower boundaries for wheat and corn 1978-81 are minimum legal values established in the 1977 
Act; the legal minimum for whE•at and corn is about 88 percent of the 19771oan rate, using this for 
cotton we get a minimum of about 0.37; upper boundaries for all crops 1978·8~, are estimated 
target prices over the life of the 1977 Act. 

Table 5. Upper and Lower Boundary Constraints for Acreage Set-Aside 
Levels for Wheat, Feed Grains, and Cotton 1978-1981. 

Wheat Feed Grains Cotton 
Lower U~per Lower u~~r Lower U~per 

Year -------------------- m.ac. --------------------

1978 0 24.7 0 37.7 0 3.2 
1979 0 24.8 0 37.7 0 3.3 
1980 0 24.8 0 37.6 0 3.1 
1981 0 24.8 0 37.5 0 3.2 

Source: The Agricultural Act of 1977 specifies that the maximum acreage set-aside for cotton is 28 percent 
of planted acreage in the previous year. For cotton, planted acreage is about equal to harvested 
acreage so the maximum set-aside for cotton is 28 percent of harvested acreage in the previous 
year. For feed grains and wheat, planted acreage is often much larger than harvested acreage so 
the maximum set-aside is 35 percent of harvested acreage in the previous year. 

impacts on the output variables. The immediate impacts on the following state 
variables must be considered: the market price of wheat, the quantity of 
domestic and export demands for wheat, and wheat cash receipts, as well as 
their impacts on the output variables in the performance measure. The longer 
run impacts that must be considered are impacts on state variables such as: 
harvested acreage and supply of wheat, feed grains, cotton and soybeans, 
wheat yields, market prices of wheat, feed grains, cotton and soybeans, the 
quantity of domestic and export demands for the four model crops and cash 
receipts for all four model crops, because of their linkages to the output 
variables. 

To select a value for the corn loan rate in 1978 the control mechanism 
must consider the immediate impacts on the following state variables: the 
market price for corn and the other feed grains, export and domestic demands 
for feed grains, feed grains cash receipts, and livestock feed costs, because of 
the linkages between these state variables and the output variables in the 
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performance measure. Also, the control mechanism must consider the longer 
run impacts ( 1979-1981) on the following state variables: livestock produc
tion, prices and cash receipts, harvested acreage for feed grains, wheat, 
soybeans, and cotton, feed grain yields, supplies and prices of the four model 
crops, domestic and export demands for the model crops, total cash receipts 
for crops and livestock feed costs due to their linkages to farm income, 
government payments, CCC costs, food costs and ending year carryovers for 
the four model crops. 

The above discussion assumes only the selection of the 1978loan rates to 
illustrate the linkages in POL YSIM. Actually, the control mechanism simul
taneously selects values for the loan rates of corn, wheat and cotton in 1978, 
1979, 1980 and 1981, after considering the impacts of the loan rates on the 
output variables in the performance measure. The immediate and longer run 
interrelationships described above for 1978 thus become confused with the 
immediate and longer run impacts due to selecting loan rates in each of the 
remaining years. 

In addition to selecting values for the loan rates, the control mechanism 
also selects the acreage set-aside levels for feed grains, wheat and cotton in 
1978, 1979, 1980 and 1981. The immediate impacts that the control 
mechanism must consider are the same as those for changing the loan rates, as 
well as the impacts on: harvested acreage, production and supply for each of 
the three crops, of course, the longer run ( 1979-81) impacts on the output and 
other state variables must also be considered. 

The optimal values for the control variables are presented in Table 6. 
Loan rates are not used by the control mechanism to support the market price 
in this particular farm program since the support action results in the CCC 
acquiring control of additional stocks. So acreage set-aside is the predominate 
control variable for the farm program. The optimal acreage set-aside levels for 
wheat and cotton are equal to the crop's respective upper boundary con
straints in each of the four years simulated. Optimal acreage set-aside levels 
for feed grains range from 12 million acres to 32 million acres over the period 
simulated. So the feed grain acreage diversion levels are less than the bound
ary constraints (about 37 million acres). 

The high levels of acreage set-aside for feed grains, wheat and cotton 
cause the average market prices for these crops to be greater than the respec
tive market prices in the baseline for each of the years simulated. The corn loan 
rate is increased from year to year but is never greater than the market price 
and it is never less than the market price by more than 50 percent. So the CCC 
release and acquisition rule for corn is never activated. A similar situation 
exists for wheat. 

The total government payments for miscellaneous farm programs and 
acreage set-aside is less than the $3.7 billion upper limit imposed on the 
performance measure, in each year simulated. The upper limit is almost 

Optimal Control Theory Techniques 27 



1\) TableS. Optimal Values of Control Variables and the Simulated Values of Selected State Variables for a Farm Program with co 
0 Loan Rates and Acreage Set-Aside Provisions1•2 
~ 
Ill Baseline Values Simulated Values ::T 
0 

Item Unit 1978 1979 1980 1981 1978 1979 1980 1981 3 
Ill CONTROL VARIABLES 
)> 

Price Support Levels <0 ... 
(')" 

Corn $/bu. 2.00 2.00 2.00 2.00 1.80 1.94 2.10 2.18 5. c: Wheat ds . 2.35 2.35 2.35 2.35 2.23 2.26 2.44 2.46 ... 
!!!.. Cotton $/lb. .51 .51 .51 .51 .38 .38 .42 .46 
m Income Support Levels X -c 
~ Corn $/bu. 2.10 2.21 2.34 2.47 0.0 0.0 00 00 
3" Wheat ds. 3.00 3.16 3.34 3.52 0.0 0.0 0.0 0.0 
CD Cotton $/lb. .52 .55 .58 .61 0.0 0.0 0.0 0.0 a. 
(J) Set-Aside 
§: 

Feed grains m. ac. 0.0 0.0 0.0 0.0 11.8 20.9 27.8 31.9 o· 
24.6u 24.su 24.au 24.su ::::J Wheat ds. 0.0 0.0 0.0 0.0 

Cotton ds. 0.0 0.0 0.0 0.0 3.2u 3.3u 3.1u 3.2u 

STATE VARIABLES 
Harvested Acreage 

Feed grains m. ac. 107.7 107.7 107.4 107.2 100.6 96.3 92.9 90.3 
Wheat ds. 70.7 71.1 71.1 71.1 55.9 57.7 58.5 58.6 
Cotton ds. 11.6 11.4 11.7 11.2 9.7 9.9 10.7 10.0 

Yield 

Feed grains T./ac. 2.06 2.09 2.12 2.15 2.06 2.10 2.16 2.22 
Wheat bu./ac. 31.00 31.50 32.00 32.49 31.00 31.89 32.71 33.37 
Cotton lb./ac. 480.00 480.00 480.00 480.00 480.00 488.66 497.21 501.24 

10ptimal control variables that equal their lower boundary constraints are denoted by superscript "L" and those that equal their upper boundary constraints are denoted 
by s~erscript "U". 

he performance measure for the optimal solution presented is the lower range performance measure in Table IV. 



Table 6. Continued. 

Baseline Values Simulated Values 
Item Unit 1978 1979 1980 1981 1978 1979 1980 1981 

Export Levels 

Feed grains m.t. 50.4 52.2 53.7 55.4 49.1 46.9 45.9 46.0 
Wheat m. bu. 1025.0 1070.0 1110.0 1160.0 900.4 854.6 857.8 894.0 
Cotton m. bales 4.5 4.5 4.4 4.4 4.2 4.0 3.9 3.8 

Total Utilization 

Feed grains m.t. 206.2 213.3 223.0 228.6 204.2 201.0 201.2 204.3 
Wheat m. bu. 1925.0 1953.0 1991.0 2049.0 1770.6 1688.6 1681.6 1723.5 
Cotton m. bales 11.6 11.7 11.6 11.8 11.2 11.0 10.8 10.9 

Ending Year Carryovers 

Feed Grains m.t. 70.4 82.6 87.5 89.3 57.8 59.5 59.7 55.8 
Wheat m. bu. 1539.0 1827.0 2112.0 2374.0 1235.2 1385.9 1620.0 1852.6 

0 
Cotton m. bales 4.3 4.2 4.5 4.1 2.7 2.0 2.5 2.1 

-g. CCC Inventory and 
3" 

Outstanding Loans !!!. 
0 Feed grains m.t. 0.0 0.0 0.0 0.0 20.0 20.0 20.0 20.0 
0 
:::J Wheat m. bu. 776.0 1130.0 1497.0 1848.0 500.0 500.0 500.0 500.0 
ct 
Q. Cotton m. bales 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
-1 Commodity Prices ;:r 
<D 
0 Corn $/bu. 2.00 2.00 2.00 2.00 2.11 2.37 2.45 2.49 
-< Wheat ds. 2.35 2.35 2.35 2.35 2.92 3.11 3.11 3.09 
-1 
<D Soybeans ds. 5.60 5.60 5.70 5.80 4.32 4.88 6.16 6.49 
(") 
;:r Cotton $/lb. .54 .55 .52 .55 .60 .65 .61 .65 
:::J .o· Cattle and Calves ds. .42 .45 .49 .50 .42 .46 .52 .53 
c: 

Hogs ds. .35 .41 .40 .37 .35 .42 .45 .41 <D 
(/) 

1\) 
co 



(..) 
0 

0 
" iii" 
::::r 
0 Table 6. Continued. 3 
Ill 
)> Baseline Values Simulated Values 

<C Item Unit 1978 1979 1980 1981 1978 1979 1980 1981 .... 
()" 

£ 
Total Government Payments ~ B.$ 2.019 3.549 4.712 5.850 2.544 3.144 3.359 3.696 

Pi 
Total CCC Storage and m 

X 
Interest Costs B.$ 0.150 0 310 0.452 0.599 0.150 0.253 0.253 0.253 "0 

CD .... 
3" Consumer's Food Expenditures B. $ 188.3 196.8 205.0 214.0 188.3 197.9 208.7 218.1 
CD a Livestock Producer's Net 
g,? Income B. $ 17.312 18.844 19.967 21.289 17.169 18.425 21.549 23.232 e o· 

Realized Net Farm Income B.$ 18.118 18.949 18.812 19.550 18.641 18.995 21.634 22.911 :::1 

Performance Measure 123,162.0 



passed in 1981 with total government payments of$3,696 billion. Additional 
acreage set-aside of feed grains is possible in 1981; however, higher levels of 
set-aside would increase total government payments over the upper limit and 
penalize the performance measure. Realized net farm income for the farm 
program is higher than the baseline values in each year simulated, and over 
the four years the simulated net farm income is nine percent greater than the 
baseline. 

Summary and Conclusions 

Optimal control theory is a mathe.matical technique to determine the 
values for the control variables that cause a particular system to satisfy a given 
set of constraints and optimize a given performance criteria. The objective of 
this report is to demonstrate the use of a non-linear optimization technique to 
solve applied problems in the area of agricultural economics. 

The principles of optimal control theory are presented in a non
mathematical form, with an emphasis on application of the technique rather 
than the mathematics involved. Box's Complex Procedure, a direct-search 
algorithm for controlling a non-linear constrained system, is described. Also, 
three illustrative applications of the Complex Procedure for solving problems 
in the area of agricultural economics are presented. The examples are: 1) a 
constrained profit maximization for a firm producing three outputs with four 
inputs and facing less than perfectly elastic output demand and input supply 
functions; 2) a procedure for predicting beef supplies based on growth rates 
and SRS's cattle on feed reports; and 3) a farm policy problem where the 
control mechanism selects optimal values for the farm policy variables. 

Optimal control techniques are important additions to the kit of tools 
available to agricultural economists for use in applied research. A large 
portion of the problems considered by agricultural economists can be cast into 
a maximization (or minimization) framework. The ability of optimal control 
techniques to handle nonlinearities, multiple objectives and non-normative 
behavioral response parameters makes it potentially a very powerful analyses 
tool. 
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Appendix A 

Listing of the Source Program for COMPLX 

C/1111 THIS VERSION Or BOX COIHAI NS COMMON STATEMENTS AND RANG AS A JODOOTOO 
C/11/1 RA'IOO~ 'I::J. GENERATOR FOR TrlE RANDOM POINTS ON THE SURFACE. J()0()()800 
C/1111 ALSO, THE VERSION HAS "HE PROVISION FJR THE USER TJ PROVIDE 0000()900 
C/1/11 THE POINTS FOR All OF fHE INITIAL POINTS ON THE SURFACE. 00001000 
C/1111 RfVIZED RY JWR 6177. JOOOUOO 

INTEGER GAMMA 00001200 
COM~ON /BMAINl/ ITMAX .11.1, RloO:oOI , ~0, ALPHA, BETA, GAMMA JO()OUOO 
INTEGER HEG,END, BEG2 00001,00 
COMMON /BMAIN2/ IBASE, DELTA, KOOE, !PRINT riC rBEGoENDrBEG2 D0001500 
COMMON /BMAI"13/ Xl60o9~1 ,N,M,KoiEVt,l:vz, KloFI60l,GI99l,HI991000011>00 
loXCI60loNOE~UG rKNB,NB2,NB3,NB1 00001700 

COM'lON /BMAIN4/ NBFILEI991 ,I ,J 00001800 
DEFINE FILE 161100,60,u,J:OMI 00001900 

l FORMAT((l,9X,Fl0.0,3141 00002000 
2 FORMA Till, 9X, 3F 1 O. O, 91 41 00002100 
4 FOR~4T 18Fl0.41 :>0002200 
~FORMAT I' 0 ol4o10l10Fl0.5o/ll 00002300 
b FORMAT I' 'rT5,J4,T12,20X,T40,31F10.4,5XIl 000021t00 
7 FORMATI'O',T8,'J 0 ,T17o' 'oT42,'Xll,JI'oT59,'GIJI', 00002500 

1 T74, 'HI Jl' I 00002600 
8 FOR~AT(' •,//, ' THE US:R PROVIDED VALUES FOR POINTS 1-K'l J0002700 

10 FORMAT 11Hlr//,18X,24HCO~PLEX PRJCEOU~E JF BOXI 00002800 
11 fORMA Tl' ',/, T3, 'PARAMETERS• ,/ 00002900 

loTS, 'NO. OF EXPLICIT CONTRJL VARINl =' ,(4,/ 00003000 
l,T5,'NO. OF IMPLICIT CONTROL VARIIC =',14,/ 00003100 
3,T5,'NO. Of- TOTAL CO'lTRJL VARIMI =• ol4tl/ 00003200 
3,T5,' NO. OF POINTS ON SURFACEIKI = 0 ,14,/ 00003)00 
3,T5, 0 NO. OF MAXIMUM ITERATIONIITMAXI='ol4,/ 000031t00 
3oT5, 'NO. OF REPEAT ITERA TIONSIGAMMAI=' ol4,// 00003500 
3,T5o' REFLECTION FACTOR IALPHAI =•, F6.2tl 00003600 
3oT5,' DEGREE OF ACCURACY I RET AI =', F6.2 ,/ v0003700 
3,T5,'~1THIN BOUNDS ADJUST IDELTAI ='• F8.4tl 00003800 

12 FORMAT l//o2Xol4HRANOOM NUMBERS! 00003900 
13 FORMAT I/o 31 2Xo2HRI oiZolH, ol2 o4HI ,F6. 4, 2X II OOOOitOOO 
14 FOP~AT ll/lo2Xo30HFINAL VALUE OF THE FUNCTION= oE20.81 DDDOitlOO 
15 FOR~AT l//o2Xol4HFINAL X VALUES! 00001t200 
16 FOR~AT I/,2X,2HXI,I2o4Hl = ,4Xo20X,F30.10,10X.I41 D0004300 
17 FORMAT I///,2X,38HTHE ~JMHER OF ITERATIO~S HAS EXCEEDED ol4o10X, 00004400 

11BHP~OGRAM TERMINATED) 0000it500 
16 ~OR"'ATI' '• ' II.ANOOM NO. SEEC> IS = 'r2X,Fl2.0 ,/I DDD04600 
19 FORMATI'l'•' JOB TERMINATED BECAUSE CARDS FOR COMPLX ARE OUT OF OR00004700 

lOER'I 0DOD4800 
Nl • 5 000049DO 
NO = 6 DOD05000 

C READ THE 1-0 CARD OOOD51DO 
REAOI5oll IKO, ANA~, !PRINT, NOEBJG, IBASE JD005200 
IFIIKO.Nf.7l GO TO 29 OODD5l00 

C READ THE PARA~ETER CARD. DDD05400 
REAOI5o21 IKO, ALPHA, BETA, DELTA, GAMMA, ITMAX oEIIIO OOOD5500 
IFIIKO.NE.81 GO TO 29 D00051>0D 
GO TO 32 DOD05700 

29 WRITEI6ol9l OOOD5800 
STOP 0D005900 

32 NAR=ANAR ()OD06000 
BFG=l 00006100 

C N IS NO. OF EXPLICIT INO. VARIABLES. 6D 00006200 
N= EN 0 D DD 06 3DO 

C M IS NO. OF IMPLICIT & EXPLICIT CONTII.OL VARIABLES D00061t00 
M=ENO DD0065DO 
BEG2=END•l 00005600 

C IC IS NU. OF IMPLICIT CUNTRJL VARIABLES IC=M-~ 0000&700 
IC=M-N OD00i>6<)0 

C K IS NO. OF POINTS ON THE COMPLEX. 30 MAX00006900 
K=EN~ • 1 00007DOO 

C PRINT THE PARAMETER SUM~IARY )0007100 
WRITE INO,DlOl OOOD720D 
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WRITE (6olll N,IC,M,K,IH1AX,GAMMA,ALPHA,BETA,OELTA 00001300 
C ZERO ~UT THE X MATRIX J0007400 

DO 41 11=1, K 00007500 
00 31 J=BEG,M ~JOJ7600 

31 XI II,JI = 0.0 00001100 
41 CONTINUE 00007800 

C WHEN THF USER PROVIDES ONLY THE INITAL VALUES FOR THf FI~ST 00007900 
C SET OF CU~TROL VARIABLES, REA[) Trl' STA~TING VALUE :ARD, J0008000 

IFIIBASE.NE.OI GO TO 40 00008100 
READ( 5,41 I XI 1,JI,J=BEG,ENJI 00008200 
WRITE(b,3IIXI1,JI,J=BEG, E~DI 00008300 
GO T:J 450 0000d400 

C READ THE USER SUf'PLI EO VALUeS FOR X FOR POINTS 1 THROUGH K, 00006500 
C THE STARTING VALUE ~AROS. 00008600 

40 IFIIBASE.NE.11 GO TO 450 00008700 
WRITEI6,81 ~OOJ88JO 
DO 425 L=1,K 00008900 
READ I 5,41 I XIL,JI ,J=BEG, END I 00009000 

42~ WRITEI6,31 L, IXIL,JI,J=BEG,ENOI 00009100 
GO TO 210 000092 00 

450 CONTINUF 00009300 
I= 1 00009400 
CALL CONS TT 00009500 
WRITE I 6, 71 J0009600 
DO 250 J=BEG,M 00009700 
L=J+2 00009800 

250 WRITEI6,61 J, X(1,JI,GIJI,HIJI 00009900 
IFIIBASE.EQ.31 GO TO 210 00010000 
DO 100 Il=1tK 00010100 
DO 100 JJ=BEG,END 00010200 
RIII,JJI = RANGINARI 00010300 

100 :ONTI NUE 00010400 
WRITE I NO, 0121 00010500 
WRITEI6,181ANAR 00010600 
00 200 J=1 ,K 00010700 
WRITE OIJ,013l IJ, Lt Rl J,L), L= BEG,ENJI 00010800 

2 CO CONTINUE 00010900 
210 CONTINUE 00011000 

C CALL SUBROUTINE C3NSX TO BEGIN OPTIMTlATION. 00011100 
CALL CONS X 00011200 

C RETU~N EITHER WITH OPTIMAL SOLUTION OR AFTER GOING TO THE MAX ITER00011300 
If IIQ-ITMAXI 20,20, 30 00011400 

20 WRITE IN0,0141 FIIEV21 00011500 
WRITE 1'10,0151 00011600 

C WRITE OPTIMAL VALUES OF THE CONTROL VARIABLES. 00011700 
JO 300 J=BEG,M 00011800 
L=J+2 00011900 
WRITE IN0,0161 J, XI IEV2,JI 00012000 

300 CONTINUE 00012100 
GO TO 999 00012200 

C MAX NO. OF ITERATIONS EXCEEDED SO PRINT THE VALUES OF THE CONTROLS00012300 
30 WRITE IN0,0171 ITMAX 00012400 

00 850 1=1,K 00012500 
Du 900 J=BEG,M 00012600 
L•J+2 00012700 
WRITE (N0,0161 J, X( I,J) tl 00012800 

9CO CONTINUE 00012900 
d50 CONTI~UE 00013000 

C STORE THt POINTS ON DIS< FOR COLO START .'0003' IN CC 28-32 1-0 C000013100 
DO B75 J=l,M 00013200 

a 75 WRITE 116' J I I XI I ,J) ,!=1 ,KI 00013300 
999 CONTINUE 00013400 

RETURN 00013500 
END 00013600 

C********************************************•••••••••••••••••••••••••••ooo13700 
SUBRuUT INE CONS X 00013800 

c•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••ooo13900 
INHGER GAMMA J0014000 
COMMON /BMAIN1/ ITMAX ,IQ, ~160,601 , NO, ALPHA, BETA, GAMMA 00014100 
INTEGE~ BEG,ENO, BE~2 00014200 
COMMON /BMAIN2/ !BASE, DELTA, KDOE, !PRINT ,IC ,BEG,ENDtBEG2 00014300 
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c 
c 
c 
c 
c 
c 
c 

c 
c 

c 

c 
c 

c 

1 
16 
17 

018 
019 
021 

Z2 
G23 
024 
025 
J 2C. 

12 34 

10 
20 

50 

3 20 

3 30 
340 
350 

51 
52 

55 
56 
65 

61 

62 

63 

:aMMON /BMAIN3/ X(60,991 ,N,M,K,IEVl,IEV2, Kl,FI601,GI991,HI9910001~400 
1, XCI 6Ql,~DEBUG ,KI\IB ,NB;~ ,NB3,NB 1 

COMMON /~MAIN4/ NBFILEt991 oloJ 
FORMAT(' ',• GOI Nl> TO 10'0 FOR TIME NO. ',I4,3El5o5l 
FOR"! AT( 1 '•' STORED K POINTS ON Dl S< FJR ITERATION 
FORMAT(' '•' DATA FORK POINTS READ FR0'1 UNIT 16'1 
FORMAT (//,2X,30HCOORDINAT~S OF INITIAL COMPLEX! 
FORMAT llo511Xo2HX(, 12,:.H.,I2 1 4HI = , E13.611 
FORMAT (/,2X,22HVALUES OF THE FUNCTION l 
FORMAT I /,511Xo2Hf(,U,4Hl =, El3.61l 
FORMAT ll/o2Xtl7HITERATION NUMBER ,(51 
FORMAT llo2X,30HCOORDINIITES Of CORRECTED POINT l 
FORMAT I/,2X,27HCOORDINIITES OF THE CENTROIDI 
FORMAT I/,511X,2HX(, 12 1 bH,CI z , El3.6ll 
FORMAT(' ', 2X, 'SUB ROUT:; NE CONSX'l 
IFINOEBU!>.NE.OI WRITEI6.1234l 
10 ITERATION INDEX 
IEV1 INDEX OF POINT ;~IT~ MINIMUM FUNCTION VALUE. 
IEV2 INDEX OF POINT 1HTct MAXIMUM FUNCTION VALUE. 
I POINT INDEX. 

NO. 1 ,lit I 

KODE CONTROL KEY USED TO DETERMINE If IMPLICIT CONSTRAINTS 

K1 
10 
KODE = 0 

ARE PROVIDED. 
DO LOOP Ll Ml T 

IF IM-Nl 20,20,10 
KODE = 1 
CONT IIIIUE 
CALCULATE COMPLEX POINTS AT RANDOM FRON 
NOS. & THE BOUNDARY CONSTRAINTS. 
IFIIBASE.EO.l .OR. IBASE.E0.31 GO TO 61 
IROWl = 2 
IFIIBASE.E0.21 IROW1 = 1 
DO 6 5 I I= I R OWl , K 
DO 50 J=BEG ,END 
I = I I 
CALL CONS TT 
XIII,JI = GIJI + RIII,Jl*I·HJI-GIJil 
CONTINUE 
CHECK THE VALUES OF EXPL !CIT VARIABLES 
DO 350 J=BEG,END 
IFIXI loJI- GIJII 320,320,330 
XlloJI = G( Jl + DELTA 
GO Til 350 
IFI HIJI-Xt I,Jll 340,340,350 
XII,Jl = HIJI- DELTA 
CONTINUE 
CALL CO'ISTT 
K 1 = II 
CALL CHECK 
If 111-21 51, 51, 55 
IF II PRI~TI 52, 65, 52 
WRITE I'-IJ,Ol81 
I 0 = 1 

JNIFORMLY DISTRIBUTED 

WRITE UW,Ol9l ((0, J, XII'J,JI, J= B~G.ENUI 
IF IIPRIHI 56, £>5, 56 
WRITE INO,Ol9l III, J, XllloJlo J= tl!:G,E~DI 

CONTINUE 
GO T 0 69 

00014500 
00014600 
0001~700 
1)001~800 

00014900 
000151)00 
00015100 
00015200 
00015300 
00015~00 
00015500 
1)0015600 
00015700 
00015800 
00015900 
00016000 
OOQ16100 
00016200 
00016300 
00016400 
00016500 
00016600 
00016700 
00016800 
00016900 
00017000 
00017100 
00017200 
00017300 
00017~00 
00017500 
00017600 
00017700 
00017800 
00017900 
00018000 
00018100 
00018200 
00018300 
00018400 
00018500 
00018600 
~0018700 

()0013800 
J00ld900 
OOOl~OllO 

00019100 
00019200 
0001~300 
00019400 
J0019500 
00019600 
00019700 
00019800 
00019900 
0002llil00 
0002010) 
000202 00 

ENTER HERE IF THE USER HAS PPOVIDED X VALUE'S 
CALL CONST TO CALCULATE OTHER X VALUES & GET 

CONTINUE 

FOR 1 THRJJGH K 00020300 
READY TU CALL FUNC000204ll0 

IFIIBASE.EQ.ll GU TO 63 
READ THE~ POI'HS FROM JISK, UNIT 16. 
DO 62 L=l,M 
READI16' Ll IXIIKJ<,Ll,(KK=l,Kl 
WRITEI6.171 
CONTINUE 
WRITE INO,Ol81 
DO 64 1=1,K 
CALL CONSTT 

00020500 
00020600 
00020701) 
0002 0800 
00020900 
00021000 
00021100 
00021201) 
00021300 
00021't00 
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c 
c 
c 
c 

c 

c 

c 
c 
c 

c 
c 

c 

64 
69 

70 

72 

80 

90 
100 

110 
120 

130 

140 

150 

160 

K 1=1 
CAll CHECK 
WRITE IN0,0191 II, J, XII ,JJ, J= tlEG,E~DI 

CONTINUE 
K1 = K 
DO 70 1=1,K 
CAll OBJT 
CONTINUE 
KOUNT = 1 
I A = 0 
IF IIPRINTI 72, 80, 72 
WRITE IN0,02ll 
WRITE IN0,0221 (J, fiJI, J=1,KI 

THE PROGRAM WORKS BETWEEN ~ERE AND '240 RETURN' 
UN TIL AN OPT! MUM IS R EACHEO. 

I EV 1 = 1 
FIND THE INDEX FOR THE MINIMcJ"' OF Fill .1=1,1\ 
DO 100 ICM=2,K 
IF If I lEV 11-FI lOili 100, 100, 90 
IEV1 = ICM 
CONTINUE 
FINO POINT WITH HIGHEST FUNCTION VALUE 
IE V2 = 1 
DO 120 ICM=2,K 
IF IFIIEV21-FII011l 110,110,120 
IEV2 = ICM 
CONTINUE 

CHECK CONVERGENCE CRITERIA 

IF IFIIEV2l-IFIIEVli+BETAII 140.130,130 
KOUNT = 1 
GO TO 150 
KOUNT = KOUNT + 1 
IF IKllUNT-GAMMAl 150,240,240 

REPLACE POINT WITH LGWEST FUNCTION VALUE 
CONTI"'UE 
CAll CENT R 
no 160 JJ=BEG,END 
XI IEV1,JJI = I 1.0+ALPHAI*IXCIJJil-ALPHA*IXIIEV1,JJil 
I = I EV1 
CAll CHECK 
CALL OBJT 
IEV3 = IEV2 
I COUN T=O 

170 CONTINUE 

C REPlACE NEW POINT If IT REPEATS AS LOWEST FUNCTION VALUE 
c 
C FINO THE INDEX FOR THE Fll WITH THE MINI~UM VALUE. 

ICOUNT=1+ !COUNT 
IEV2 = 1 
DO 19 0 I CM=2 , K 
IF IF IIEV21-Fl ICMil 190.190,f80 

180 IEV2 = ICM 
190 CONTINUE 

If IIEV2-IEV11 220,200,220 
200 DO 210 JJ=BEG,END 

L=K/4 
IFIK.GT.2 .AND. ICOUNT.GE.Ll XCIJJl=XIIEV3,JJI 
XI IEVl,JJI=IXI IEV1,JJl + XCIJJll/2.0 

210 CONTI NUE 
I = I EV1 
CALL CHECK 
CALL OBJT 
IFI IPRINTl 480,485,480 

ft80 WRITE 16,11 ICOUNT,fl IEV1ltfi1EV21 ,FI IEV31 
WRITE IN0,0221 lit Flllt I=BEG,Kl 

;)0021500 
00021600 
00021700 
00021800 
00021900 
00022000 
00022100 
00022200 
00022300 
00022ft00 
00022500 
00022600 
00022700 
00022800 
00022900 
00023000 
00023100 
00023200 
00023300 
00023ft0() 
00023500 
00023600 
:10023700 
00023800 
00023900 
0002ft000 
0002ftl 00 
0002it200 
00024300 
00024ft00 
00024500 
00024600 
00024700 
00024800 
0002ft900 
00025000 
00025100 
00025200 
00025300 
00025't00 
00025500 
00025600 
00025700 
00025800 
00025900 
00026000 
00026100 
00026200 
00026300 
00026't00 
00026500 
00026600 
00026700 
00026800 
00026900 
0002 7000 
00027100 
00027200 
00027300 
00027't00 
00027500 
00027600 
00027100 
0002 7800 
00027900 
00028000 
00028100 
00028200 
00028300 
00028't00 
00028500 
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4 85 CONTINUE 
C IFIICOUNT.EQ. Kl GO TO <:20 

:;o TO 170 
2 20 CONTINUE 

IF IIPRINTI 230, 22&, z;,o 
230 WRITE 11\10,0231 11.1 

WRITE IN0,0241 
WRITE IN0,019l IIEV1, J(., XIIEV1,JClt JC= BEG, ENOl 
WRITE 11110,0211 
WRITE IN0,022l (1, FlU, I=BEG,KI 
WRITE IN0,025l 
WRITE IN0,026l I JC, XCI.ICI, JC=BEG,ENDI 

2 28 IQ = IQ + 1 
C STORE THE X MATRIX ON DISK AT THE END OF EVERY TENTH ITEUTION 
C FOR A :OLD START, '0003' IN CC 28-32 OF 1-0 CARD. 

IFIMOOIIQtlOI.NE.OI GO ''0 239 
DO 238 L=1,M 

236 WRITEI16' Ll IXIIKK,LI ,::KK=1,Kl 
WRITEI6,161 IQ 
IFIIPRINTI 242,241,242 

241 CONTINUE 
WRITE I NO, 0241 
WRITE 1~0,0191 I IEV1, JC., XIIEV1,JC), JC= ~FG,ENOl 
WR IlE (NO, 0211 
WRITE INQ,0221 11, fill, I=BEG,Kl 

242 CONTINUE 
239 IF IIC-IHIAXI 80,~0,240 
2 40 RE TUR'l 

END 

00028600 
00028700 
00028800 
00028900 
00029000 
00029100 
00029200 
00029300 
00029400 
00029500 
00029600 
00029700 
00029800 
00029900 
00030000 
00030100 
00030200 
00030300 
00030400 
00030500 
00030600 
00330700 
()0030800 
00030900 
OOOJlOOO 
00031100 
00031200 
:>0031300 
00031400 

C****************************4'******************************************00031500 
SUBRO UTI~ E CHECK 000 31600 

C****************************lC******************************************00031700 
INTEGER ~AMMA 00031800 
COMMON /BMAIN1/ IT•~AX ,IQ, 0.160,60) , NO, ALPHA, !lETA, GAMMA 00031900 
INTEGER SEG,ENO, llEG2 00032000 
COMMON /llMAIN2/ IBASE, DELTA, KOD~, (PRINT ,IC ,HEG,ENO,AEG2 00032100 
COM"'DN /BMAI~3/ Xlo0,99l ,r.,'I,K,IEV1,I:V2, K1,FibOI,GI991 ,>H99lJ003220J 

1,XC(b01 ,NOEBUG ,KNb ,Nf\Z ,NB3,NB1 00032300 
COMMON /AMAIN4/ NBFILEI 991 ·,1 ,J 00032400 

1 FDR~ATI • •,214,3FL5.41 00032500 
1234 FORMATI' •,2X, 'SUB~OUHNE CHECK') 00032600 

IFINDEBUG.NE.Ol ~RITEI6. 12341 00032700 
ICOUIIIT=O 00032800 

10 KT = 0 00032900 
I COUNT= 1 + I CDUIIl T 0 00 33000 
CALL CONSTT 00033100 

C CHECK AGAINST EXPLICIT CCNSTRAIIIlTS 00033200 
DO 50 J=BEG, END 00033300 
IF IX(I,JI-GIJil 20,20.:10 00033400 

20 XII ,JI = G(JI + DELTA :l003350'J 
GO TO 50 00033600 

30 IF (H(Jl-X(I,Jll 40,4a,50 00033700 
40 XII,JI = HIJl- DELTA 00033800 
50 CONTINUE 00033900 

IF IKCDEI 110,110.60 00034000 
C .CHECK AGAINST THE IMPLICIT CONSTRAINTS 00034100 

60 NN = END + 1 00034200 
DO 100 J=NN,M 00034300 
CIILL CONSTT 00034400 
IFIIIIDEBUG.NE.OI WRITEI6,ll J,I,XII,Jl,GIJI, HIJI 00034500 
IF (X (I,JI-G(Jll ~0,70f10 00034600 

70 If IHIJl-XI!,Jll dO.lOO.lOa 0.:1034700 
80 IEV1 = I 00034800 

KT = 1 00034900 
CALL CENTR 000350:>0 
00 90 JJ=BEG,END 00035100 
XII,JJI = IXII,JJI + XCIJJll/2.0 00035200 

90 CONTINUE 00035300 
100 CONTINUE 00035400 

IF IKTI 110, 110, 10 00035500 
110 RETURN 0003~600 

END 00035700 
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C***********************************************************************00035800 
SUBROUTINE CENTR 00035900 

C***********************************************************************00036000 
INTEGER BEG,END, 8EG2 00036100 
COMMON /BMAIN2/ IBASE, llELTA, KODE. IPRINT ,IC oBEG,END,BEG2 00036200 
COMMON /BMAIN3/ Xl60o991 ,N,M,K,IEVloi:V2o K1,FI60l,GI9'1) ,H(99IJ0036300 

1,XCI60),NOEBUG oKNB,NB2oNB3,NB1 00036400 
COMMON /BMAIN4/ NBFILEI991 ,I,J J0036500 

1234 FORMAT(' 'o2X, •SUBROUTINE CENTR'l 00036600 
IFINOEBUG.NE.OI ~RITEibo 12341 00036700 
DO 20 J= BEG, END 00036800 
XC I J I = 0 .0 00036900 
DO 10 IL=1,K1 00037000 

10 XCIJI XCIJI + XIIL,Jl 00037100 
RK = K1 00037200 

20 XCIJI = IXCIJI-XIIEVloJII/IRK-1.01 00037300 
RETURN 0003nOO 
END 00037500 

C***********************************************************************00037600 
FUNCTION RANG(NARGI 00037700 

C***********************************************************************00037800 
C GE~ERATES PSEUDO-RANDOM NUMBERS, UNIFORMLY JISTRIBUTED ON 10,11. 
C THIS VERSION IS FOR THE IBM 360. 

EQUIVALENCE IRAN,JRANI 
DIMENSION Nl1281 
DATA NFIRST/7/,K/7654321/ol/3141593/,M/271828183/ 
DATA MK/23152 5/ ,Ml/2 8262 9/, MM/253125/ 
IFINARGI20o10o20 

10 IFINFIRSTI30o60o30 
20 KLM=IABSI2*NARG+ll 

K=KLM 
L=KLM 
M=KLM 
N ARG= 0 

30 NFIRST=O 
'lDIV= 16777216 
ROIV=32768.*65536. 
DO 50 J=1 ,128 
K=K*MK 

50 NIJI=K 
60 L=L*ML 

J=1+1ABSILI/NDIV 
M=M*MM 
NR= I A es IN I J I +L +M I 
RAN=FLOATINRI/RDIV 
IFIJ.GT.64 .AND. RAN.LT.l.l JRAN=JRA~+l 
RANG= RAN 
K=K*'1K 
N I J l= K 
RETURN 
END 

00037900 
00038000 
00038100 
00038200 
00038300 
00038400 
()0038500 
00038600 
00038700 
00038800 
00038900 
00039000 
00039100 
00039200 
00039300 
00039400 
00039500 
00039600 
00039700 
00039800 
00039900 
OOOitOOOO 
00040100 
00040200 
0001t0300 
00040ft00 
0001t0500 
000ft0600 
00040700 
00040800 

C***********************************************************************OOOit0900 
SUBROUTINE OBJT 00041000 

C***********************************************************************00041100 
C SUBPOUTI~E OBJT IS PROVIDED FJR THE USE~ TO E~TER T~E MODLE TO 00041200 
C BE OPTIMIZED AND THE OBJECTI-VE FUNCTION TO BE MAXIMIZED. 00041300 
C ENTER THE MODLE PRIOR TO THE FUNCTION , USE THE VALUES OF THE 000ft1400 
C CONTROLS IN 'XIItl-NI' AS THE EXOGENOUS DATA IN THE MODLE 00041500 
C AND THE FUNCTION IS 1 FII 1'. 00041600 

INTEGER BEG.ENOo BEG2 00041700 
COMMON /BMAIN2/ !BASE, DELTA, KDJE. [PRINT ,IC oBEG,E~O,BEG2 00041800 
COMMON /BMAIN3/ X160.991 ,N,M,K,IEVloiEVZ. K1.FI60I.GI99I.HI99JOOO't1900 

1oXCI60I,NOEBUG ,KNB,NB2,NR3,NB1 00042000 
COMMON /BMAIN4/ NBFILEI991 oloJ 00042100 

2 FOR•,A Tl 1 ',' THE VALUE OF HtE PEFORMANCE MEA SURE = ' .12, FZl.lo 3 Fl00001t2200 
1.2) 00042300 

1234 FORMAT!' 1 o2X, 'SUBROUTINE OBJT'l 00042400 
IFINDEBUG.NE,Ol WRITEI6o 12341 000ft2500 
IB=I 00042600 

C EXAMPLE PROFIT MAXIMIZATION PRO~LEM wiTH 3 OUTPUT5,Y1, Vlo Y3. J0~42700 

V1=1XIItll**0.33l*IXII,41**0.17l * IXII 1 7l**0.20l* IXII 1 l~l**:J.31 00042600 
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Y2=1XII ,21**0.101*(X II ,51**0.0dl * (X( ld 1**0.2~1* lXI J, 111**0.41 00042900 
Y3=1X(I,31**0•09l*IXII,6'**uol91 * IXII,91U0,15l* IXII.l21**0.21 00043000 

C THE FOJR INPUTS X1, Xl, .<3, A"JU X4. 00043100 
SUMX1= X(l,ll + 1(1,021 + X(I,03J 00043200 
SUMX2= XI 1,041+ X((,051 +XII ,06) 00043300 
SUMX3= XI !,071+ XI (,0~ I + X(J,091 00043400 
SUMX4= XII .101+ Xll,111 ·+XII .121 00043~00 

C PRICES OF THE THREE OUTPIJTS 000431>01) 
PYl = 105 0. 0 -0 • 5 * Y1 00043700 
PY? = 1000.0 -0.25*1 YZ** 11 00043800 
PY3 = 100.00 -0.1~*1¥3**11 00043900 

C PRICES OF THE FOUR Ir.PUTi. 00044000 
PX1= 3.0 + 0,0009 * SUMX 1 00044100 
PX2=o.o • o.ooo111 • su~cz ooo44200 
PX3=9.0 + 0. 0003 * SUMX3 00044300 
PX4 = 7.0 + O. J00199 * SJIX4 J0044400 

C SET UP THE CONSTRAINTS ~N THE ~AXIMU~ A~OUNT OF RESJU~CES AVAILAUE00044500 
PE NAL1 0. 0 000441>00 
PENAL2 = 0.0 00044700 
PENAL3 = 0.0 00044800 
PENAL 4 = O. 0 30044900 
IFISUMX1.GT.2000.0I PENA·-1 =112<100.0- SU'1X1l*" 2 I * 200000. 00045000 
IFISUMXZ.GT.3000.0J PENAL2 =113000.0- SJMX2l** 2 I * 200000. 00045100 
IFISUMX3.GT.2100,0l PENAL3 =112103.0- SU~X3l** 2 l * 200JOJ, 00045200 
IFISUMX4.GT .1000.01 PENAL4 =I I 1000.0 - SU~X41** 2 l * 200000. 00045300 

C THE Oi:lJECTIVE FUNCTICN- A CONSTRAINE-D PRJFIT MAXPIIZATI1"J. 00045400 
fl IBI = PY1 * Yl + PY2 * Y2 + PY3*Y3 00045500 

1-IPX1*SUMX1+ PX2 * SUMX2+ PX3*SUMX3 + PX4 * SUMX4l 00045600 
2 -IPENAL1 + PENAL2 + PfNAL3 + PENAL41 00045700 

WRITE (6,21 (B,FI IRI, Y1,Y2,Y3 0004~800 

I=IB 00045900 
RETURN 00046000 
END 00046100 

C*****************************•*****************************************0004b200 
SURRUUT!Nf CONSTT 00046300 

C*****************************~*****************************************00046400 
C SU8ROUT INE CONSTT IS PRJ'/IlJED FJ~ THt USER TO ENTER THE 00046500 
C LOWER & UPPER BOUNDARY CCNSTRAINTS FOR THE CONTROL VARIABLES. 00041>600 
C THE LOWER BOUNDARY CONST~AJ,'HS AKE ENTERED IN THE 'Gil' A~RAY, 00046700 
C ANO THF JPPfR BDUNOAYR ~JNST~AINTS ARE E~TEKE-0 IN TH~ 'Hil' ARRAY.00046800 

:OMMDN /BMAIN3/ XlbO,~~I ,N,M,K,IEV1 ,IEVZ, K1,FioOI,GI99),H(99)00046900 
1,XC(601,NDEBUG ,KNB,NBL,NB3,NK1 00047000 

COMMON /BMAIN4/ NBFILEI191 ,I,J 00047100 
1234 FOR14ATI' •,21, 'SUBROUTINE CONSTT'I 00047200 

IFIND~BUG.NE.OI WR ITEI 6,12341 00047300 
C LOWER BOUNDARY CONST~AINTS. 00047400 

DO 1 L=1.12 00047500 
Gl L1 = 0 .o 0004 71>00 

C UPPER BOUNDARY CONSTRAINTS. 00047700 
HI 011 2000.0 00047800 
HIOZl 2000,0 00047900 
HI 031 2 000.0 00048000 
HI041 3000.0 00048100 
HI05l 3000.0 00048200 
HI 061 3000.0 00048300 
H(071 2100.0 00048400 
HI081 2100.0 00048500 
"'·'',) ill' • .) ~004db0) 
tl( 1'1 1 )•l,),<l 000437)0 
"I 111 l.l'J '. <l 00048800 
"i L.l 11.1.~ • .l 300489JO 
·' 1.)0'. 00049000 

• 00049100 
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Appendix B 
Data Cards for Box's Complex Procedure 

Data cards necessary for Box's Complex Procedure are presented in this Appen
dix. The first data card for the Complex Procedure is an 1-0 Card. The 1-0 Card 
provides a means for the user to indicate the type of input to be provided and the type of 
printed output desired from the model. The second data card, the Parameter Card is 
provided for the user to input parameters necessary for the optimization routine. The 
Parameter Card is the last data card unless the user selects the option of providing the 
initial values for each of the m control variables. In such a case, m +I (or k) Starting 
Values Cards follow the Parameter Card. 

1-0 Card 

The 1-0 Card is the first data card for the program; it provides three options for 
entering the initial values for the control variables (policy variables) and three options 
for printing the output. Code the 1-0 Card as follows: 
Card Column 

I Punch a '7'. 
2-10 Punch '1-0 CARD'. 
11-20 An odd, six-digit number, to be used as a random number generator seed 

(punched with decimal point) as '999991.0'. 
21-24 Code '00000' if a minimum amount of output is desired. Code '0001' to 

print the value of the control variables, and the performance measure on 
each iteration. 

25-28 Code '0001' to use the de-bug option for locating logic errors within the 
program. 

29-32 The option to indicate the source of the k initial values for the m control 
variables. A '000 I' indicates the user will provide data cards for the initial 
values of all control variables. 
A '0002' indicates that the initial values for all K points are to be selected 
at random. 
A '0003' indicates that initial values for all k points were stored on a direct 
access disk (unit 16) in a previous run and are to be used for this run. 

33-80 Blank. 

Parameter Card 

The computer program used in this study to execute Box's Complex Procedure 
requires values for five parameters. These parameters are provided by the user on the 
Parameter Card. (Integers must be right justified.) 

Card Column 
I 

2-10 
11-20 
21-30 
31-40 

Punch an '8'. 
Punch 'PARAMETER'. 
The reflection factor ALPHA, Box [ 1965] suggests using' 1.3'. 
The convergence parameter BETA, as '0.50'. 
The within bounds accuracy for the constraints, DELTA, as 
'0.001'. 
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41-44 

45-48 

49-52 

53-80 

The number ofinterations to continue searching after finding 
an optinal, GAMMA, as '0005'. 
The maximum number of iterations the search program can go 
through in trying to locate the maximum of the performance 
measure, as '0400'. 
Enter the number of control variables in the problem to be run, 
as '0008'. 
Blank. 

When a control path (a coordinate on the surface of the performance measure) is 
rejected the new values for the control variables are moved ALPHA units closer to the 
centroid. By using a value greater than one, say 1.3, we are assured of searching both 
sides of the centroid for the optimal control path. The Complex Procedure assumes 
convergence when the value oft::J.e performance measure for the k points on the surface 
is within BET A units for GAMMA iterations. When control values are selected that lie 
outside the boundary constraints, the control value is moved inside the violated 
boundary by DELTA units. 

Starting Value Cards 

The Starting Value Cards are used when the user chooses to provide them+ I (or 
k) initial values (or control paths) for them control variables (option '0001' in card 
columns 28-32 of the 1-0 Card). The starting values are stored in a k by m matrix, X. 
Each Starting Value Card provides values for m control variables, so k different 
Starting Value Cards must be provided. The order of the control variables on the 
Starting Value Cards depends upon the order of the control variables in the X matrix, 
established by the user in subroutine CONSTT and OBJT. Row i of arrays G and His 
the same variable as column i of the X matrix. 

The initial values for the first set of eight control variables are coded as: 
Card Column 

1-10 Value for X( I,!), punched with decimal point. 
ll-20 Value for X(l,2), punched with decimal point. 
21-30 Value for X(l,3), punched with decimal point. 
31-40 Value for X(l,4), punched with decimal point. 
41-50 Value for X(l,5), punched with decimal point. 
51-60 Value for X(l,6), punched with decimal point. 
61-70 Value for X(l,7), punched with decimal point. 
71-80 Value for X(l,9), punched with decimal point. 

This same format is used for the next set of eight control variables if necessary for the 
problem being simulated or X( I ,9) through X( I, 16). (If more than 16 control variables 
are being used, continue on a ·:hird and fourth card, until reaching control variable 
X( I ,m).) Repeat the process for the second set of initial control values or X(2,i), i= I, 2, 
... , m. The process is complete after coding k sets of the Starting Value Cards. 

As new values for the control variables are calculated, during the solution of the 
Complex Procedure, they are stored in the X matrix. The X matrix is stored on a direct 
access disk (unit 16) every tenth iteration, so if the programs stops prematurely the 
calculations can be resumed at the last solution set stored on disk. Calculations can be 
resumed by re-submitting the program with option '0003' specified in card column 
28-32 of the 1-0 Card. The process of re-submitting the program can be repeated as 
many times as necessary to get the program to a maximum value for the performance 
measure. 
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OKLAHOMA 

Agricultural Experiment Station 
System Covers the State 

Main Station - Stillwater, Perkins and Lake Carl Blackwell 

1. Panhandle Research Station - Goodwell 

2. Southern Great Plains Field Station - Woodward 

3. Sandyland Research Station - Mangum 

4. Irrigation Research Station - Altus 

5. Southwest Agronomy Research Station - Tipton 

6. Caddo Research Station - Ft. Cobb 

7. North Central Research Station - Lahoma 

8. Southwestern Livestock and Forage 
Research Station - El Reno 

9. South Central ResElarch Station - Chickasha 

10. Agronomy Research Station - Stratford 

11. Pecan Research Station - Sparks 

12. Veterinary Research Station - Pawhuska 

13. Vegetable Research Station - Bixby 

14. Eastern Research Station - Haskell 

15. Kiamichi Field Station - Idabel 

16. Sarkeys Research and Demonstration Project - Lamar 
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