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lllustrative Applications of Optimal
Control Theory Techniques to
Problems in Agricultural Economics

James W. Richardson, Daryll E. Ray, and James N. Trapp**

Optimal control theory is a mathematical technique for analyzing sys-
tems under alternative sets of controls. Specifically optimal control theory is a
technique to determine the optimal values for particular control variables in a
system. The technique has been used primarily by engineers and mathemati-
cians in dealing with control problems in physical systems.

Many industrial processes that make use of automated control devices
were designed and calibrated using optimal control techniques. Such pro-
cesses make use of some type of sensing device that measures chemical
reactions, solution mixture, pressure, etc. Signals from the devices are
analyzed and converted into mechanical commands. For example, an auto-
pilotin an airplane consists of a system of gyrocompasses, hydrolic gauges and
pumps, electrical circuits, etc., which sense the position, speed, wind resis-
tance, etc., of the plane and in turn adjust wing flaps, throttle settings, etc. The
mechanical systems used to conduct automatic control procedures such as this
have been designed and calibrated using optimal control techniques.

Optimal control theory can be readily applied to many agricultural
economics problems. Agricultural economists, like engineers, are dealing with
complex systems that emit reactions and signals which require management
responses. Optimal control analysis can assist in designing information sys-
tems and managerial decision procedures that will create desired economic
results.

Traditionally, optimal control theory has been viewed as applicable only
to continuous time systems described with differential equations. In practice
most agricultural economic models do not fall in this category, rather, in most
cases, they are discrete time models. This discrepancy, plus the fact that
optimal control theory is typically described with complicated mathematical
expositions has caused many agricultural economist to be hesitant in learning
to apply optimal control theory. Optimal control techniques can, however, be
applied to discrete time models and the basic concepts of such applications can
be understood and applied without the use of advanced mathematics.

**The authors are respectively: Assistant Professor, Department of Agricultural Economics, Texas A & M University,
Associate Professor and Assistant Professor, Department of Agricultural Economics, Oklahoma State University.
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For discrete time models, or corrtinuous models for which discrete numer-
ical approximations can be found, the optimal control problem can be viewed
as the problem of choosing variables to maximize an objective function. From
this perspective, optimal control becomes the process of maximizing a
generalized non-linear, perhaps constrained, objective function. The maximi-
zation process may be either static or dynamic, depending on the nature of the
model, but is generally thought of in control theory as being dynamic. Recent
advances in the technique of numerical optimization of non-linear functions
make this perspective of optimal control a useful tool for analysis of many
applied problems in the arca of agricultural economics.

The objective of this bulletin is to demonstrate the use of optimal control
to solve applied problems in the area of agricultural economics. This bulletin
presents the principles of optimal control theory in a nonmathematical form to
allow researchers to focus on the application of optimal control techniques.
The first section briefly reviews the origin of optimal control theory and its use
in economics. The second section describes a particular numerical optimiza-
tion procedure which can be utilized in solving optimal control problems. The
last section presents three examples of how optimal control theory techniques
can be used in applied economic research.

Origin of Control Theory

The first application of control theory was on a single variable optimiza-
tion problem in the field of engineering, specifically it was a study by Maxwell
[1868] concerning the use of governors for speed control. This work led to other
applications in the engineering area and during the second World War control
theory was used extensively for studying military systems. Following the war,
control theory was expanded to handle multi-variable optimization problems
and later become widely used in aerospace and industrial development prob-
lems [Jacobs, 1975]. It was during this later stage that applied mathematicians
contributed to the technique by developing numerous application oriented
algorithms [Box, 1965; Goldfeld, et al., 1966; Kendrick and Taylor, 1970;
Swann, 1974; Fair, 1974; and Chow, 1976]. Recent control theory contribu-
tions have included the introduction of stochastic and adaptive controls [Kirk,
1970; Schweppe, 1973; Cooper and Fischer, 1974; and, Rausser and
Freebairn, 1975].

Economists have only recently been actively working with control theory.
General economists including Intriligator [1971], Pindyck [1973], Chow
[1975, 1976], Arrow [1968], Theil [1965], Dorfman [1969], Livesey [1971],
Kendrick and Taylor [1970], Pindyck and Roberts [1974], Cooper and Fischer
[1974], Arzac and Wilkinscon [1977] and numerous others have made use of
optimal control techniques to solve economic problems. Relatively few ag-
ricultural economists have applied the technique. Tinter [1969], Raulerson
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and Langham [1970], Rausser and Freebairn [1974a, 1974b], Rausser and
Howitt [1975], Trapp [1977], Taylor and Talpaz [1977], Frohberg and Taylor
[1977], Richardson [1978] and others have demonstrated the use of optimal
control techniques in analyzing problems in agricultural economics.

Principles of Control Theory

The objective of optimal control theory is to determine the values of
control variables that cause a particular system to maximize (or minimize) a
given performance measure subject to a set of boundary constraints [Jacobs,
1975; Kirk, 1970; and Sage, 1968]. Formulation of a control problem involves
three steps: 1) development of a mathematical model of the system to be
controlled; 2) a statement of the boundary constraints on the control, input
and output, variables; and, 3) a statement of the performance measure for the
system [Kirk, 1970]. As is true for other applications of mathematical models,
the model should be a structurally accurate representation of the system and
should include linkages between the various sectors. The structural coeffi-
cients of the model may be estimated econometrically, obtained from known
constant physical relations, or in some cases, iteratively estimated as part of
the optimal control problem.

In control theory literature, the endogenous variables in the model are
referred to as the state variables are denoted as: x,(t), x,(t), ..., x_(t) for time
period t (e.g., production mix, profits, net worth at micro level; supply and
utilization components, prices, government costs, stock levels, etc. in a macro
application). The subset of state variables used in the performance measure
are referred to as the output variables, and are designated as: y,(t), y,(t), ...
y,(t) (e.g., profit, net worth or stock levels and government cost). Uncontroll-
able exogenous variables, (e.g., weather, unemployment level, interest rates)
are denoted as z,(t), zy(t), ..., z,(t). The exogenous variables that can be
manipulated or controlled by the decision maker, such as fertilizer use by an
individual farmer or the level of loan rates by government officials, are referred
to as control inputs (controls). Controls for period t are represented by: u,(t),
u,(t), ..., u,(t). Values for the control variables over the period analyzed (t, to
t;) constitute the control path and values for the state variables over the period
analyzed make up the state trajectory [Kirk, 1970].

The model equations that describe the state (or endogenous) variables
can be a function of the controls, other state variables, time and the noncon-
trollable exogenous variables. In order for the system to be controlled, one or
more of the equations describing the state variables must contain a control
variable. In turn, controls are normally a function of one or more of the state
variables and/or time and other variables. When controls are a function of
state variables, dynamic feed back from the system can be used to throttle
successive control values. This circular causal flow which relates control
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values to state values and then back to the controls is called a closed loop
control problem. When controls are not a function of the state variables the
system is an open-loop control problem.

Boundary constraints are usually imposed on the control variables, and
can be imposed on the state variables. The constraints limit the states and
controls within boundaries established by the user in light of physical, eco-
nomic and political limits of the system. The constraints reduce the number of
alternative control paths that must be investigated since the model is only
solved for admissible controls and admissible trajectories. An admissible
control is a control path that satisfies all constraints on the controls for each
time period and an admissible trajectory is a state trajectory that satisfies all
constraints on state variables for each time period. Realistic boundary con-
straints on the controls allows more accurate modeling of the system while
reducing the number of feasible trajectories and the cost of solving for the
optimal control path.

A single valued performance measure, the criterion for evaluating the
admissible control paths, must be developed for the particular problem being
investigated. The performance measure (F) is defined by a mathematical
equation or set of equations that sums weighted functions of the output
variables for each state trajectory generated by the system being controlled.
Exogenous information such as priority rankings, target levels, etc., may be
integrated with the output variables in the mathematical formulation which
determines the single performance measure value associated with each state
trajectory and its corresponding control path. In application, values for the
controls are selected by a control procedure in an iterative process that
ultimately leads to the set of controls (or control path) that cause the perfor-
mance measure to be optimized.

A diagrammatic illustration of a dynamic control system is presented in
Figure 1. The model is simulated to obtain values of the state variables, using
as input the following variables: the controls (u;), initial or lagged values of the
states (x;), and values for any uncontrollable exogenous variables (z;). The
equations in the model are used to estimate the values for the state variables
(x;). The estimated values for a subset of the state variables, which have been
referred to as output variables (y,), are used in conjunction with user provided
weights (r;) to compute the value of the performance measure (F). The control
mechanism (or numerical optimization routine as used here) computes new
values for the control variables (u;) for each iteration, based upon previous
values of the performance measure and controls until the objective function
value is optimized.

Rausser and Freebairn [1974b] propose a three step procedure for specify-
ing and estimating the performance measure in a control theory problem. The
steps to the procedure are: 1) select the relevant state variables in the model as
the output variables, 2) determine the appropriate mathematical form, and 3)
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OBSERVED OUTPUT
VALUES
Xy, 2 MODEL TO BE CONTROLLED Yy 7Y
xj = f(xi, zj, "j’ t) yj
where 1 # j
PERFORMANCE c
MEASURE 3
3
F=f T
(yj. j)
NON-LINEAR OPTIMIZATION
PROCEDURE
uj(new) = f(uj(old), F, t) F

Figure 1. A Dynamic Control System

obtain estimates of the parameters or weights for the output variables. The
guideline for selecting the output variables to include in the performance
measure is quite obvious, select variables that are important to decision
makers. Selection of the appropriate mathematical form and parameters or
weights for output variables is slightly more difficult.

In general, the functional form of the performance measure should for-
malize assumptions regarding the rate of substitution among the output
variables. In application, the functional form needs to be as simple as possible
in its assignment of a unique real number to each set of output variables. The
nature of the functional form for the performance measure depends upon the
type of problem being analyzed. For example, a terminal control problem
attempts to minimize the system’s deviations from some desired level for the
output variables in the final year (t) or:

n
Minimize: F = T r,[y(t) — s, (t)]?
i=1

where tjs the final year or stage of the system, s, is the target value for output
variable i, and r; is the parameter weight assigned to the i** output variable
measure [Kirk, 1970]. Another type of performance measure is for tracking
problems where the objective is to keep the output variable, y,(t), as close as
possible to a series of target value, s(t), over the interval t, to t;

t n
Minimize: F = 2 (.2 lrij[Yi(tj) - Si(tj)]z)
J=t\1=

where r; is the weight assigned to the deviation for output variable i in time
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period j from the target value s; [Kirk, 1970; Theil, 1965; Ryan, 1974]. Theil
referred to this functional form as a quadratic preference or performance
function and used it for analyzing economic problems despite its obvious
problems, that of using constant weights for under and over shooting the target
level and the need to establish single valued target levels for each output
variable for each period.

The performance measure developed by Richardson [1978] is a modified
version of the tracking function or quadratic preference function; it allows the
analysts to target output variables within acceptable ranges and provides a
weighting procedure that differentiates between positive and negative de-
viations from the desired ranges. These improvements generalize the perfor-
mance function suggested by Theil [1965] by allowing different penalties for
over and under shooting target values. Also, the modified functional form does
not force the analyst to provide single valued targets for each observation in
the trajectory of output variables but only targets for the upper and lower
boundaries for each output variable. The performance measure is expressed
as:

If lower bound is violated -
JLij = Hij lyij - LBij'

If upper bound is violated -
‘]Uij = Iij lyij - UBijI

n
Minimize: F = z (z ULU + JUIJ))
j=1 \li=l

where H;; is the weight for output variable y; violating lower boundary limit
LB, in period j; I;; is the weight for output variable y, violating upper boundary
limit UB,; in period j. The JL; or JU is set to zero when the boundary level ofan
output variable is not violated, so the objective function is not penalized when
the values of the output variables fall within their acceptable boundary limits.
Values for the upper and lower boundary limits can be specified from observ-
ing prior decisions by decision makers and by questioning decision makers as
to the acceptable ranges for the output variables. Theil’s quadratic preference
function is a special case of Richardson’s performance measure, for if LB; =
UB,, I; = H;;and the deviations from the targets are squared we obtain Theil’s
quadratic preference function.

The third step in Rausser and Freebairn’s preformance measure specifi-
cation, estimating parameters for the performance measure, is the most dif-
ficult step in applying control theory to problems in economics. The problem
of specifying the appropriate parameters for the performance measure (r;’s)
has been of little importance in the past, since the functions used by engineers
in optimal control applications require only that the weights cause the model
to follow a prescribed trajectory or achieve a final targeted value. Such weights
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can be found through experimentation or by studying the physical relation-
ships in the system. The performance measures developed for economic
applications of control theory are not generally of the tracking function form so
meaningful values for the weights must be developed [Bray, 1974; Rausser and
Freebairn, 1974a, 1974b, 1975].

Bray [1974] suggests that the parameter weights may be determined
through interviews with decision makers and government planners. Rausser
and Freebairn [1974b] include Bray’s suggestion in their direct approach and
add to this two other approaches. The indirect approach involves studying
past political decisions and the arbitrary approach involves the analyst assign-
ing arbitrary values for the parameter weights.

Numerical Solution of Optimal Control Problems

Theoretical descriptions of optimal control theory problems generally
utilize calculus of variation and assume the systems is represented in the form
of a set of first order differential equations which is referred to as the state form.
Direct-solution techniques are available for solving control problems in the
state form by maximizing the implicit Lagrangian functions [Chow, 1975;
Kirk, 1970]. However, as Swann [1974] points out, direct-solution techniques
may not be practical due to the lengthy and complicated calculations involved
in solving the derivatives. The problem often can be overcome with finite-
difference approximations but this tends to introduce truncation and cancella-
tion errors which can cause problems in obtaining the final solution.

An alternative to using direct-solution techniques is to use direct-search
or numerical techniques. Numerical techniques do not require the model be in
the state form and obtain the final (optimal) solution without solving deriva-
tives. Kirk [1970] and Swann [1974] describe several direct-search methods
available for solving constrained optimization problems. In general, the
direct-search techniques are hill climbing procedures that utilize alternative
methods of searching the surface of the performance measure for its global
maximum (or minimum). In application, the control mechanism selects val-
ues for the control variables, determines their impacts on the system’s output
variables and evaluates the performance measure based on the values of the
relevant output variables. This process is repeated in an iterative fashion until
any change in the control variables results in a reduction in the value of the
performance measure.

The direct-search technique described in this report is Box’s Complex
Procedure. The Complex Procedure, developed by Box [1965], is capable of
solving for the optimal set of controls in a multi-variable model, that is in the
form of a closed-loop feedback problem. Swann [1974] indicates that the
Complex Procedure has been used quite extensively and successfully tosolve a
wide range of constrained optimization problems. The procedure has the
flexibility of handling non-linear inequality constraints on the control var-
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iables and has been shown to be reliable when compared to more sophisticated
mathematical techniques [Box, 1965; Goldfeld, et al., 1966]. Since Complex is
a direct-search technique, the procedure can be applied to an existing model
without reprogramming the model to the state form. This was a major consid-
eration in selecting the technique, since most models in the field of agricultural
economics are not stated in terms of the state form. (A computer algorithm for
Complex is available in Kuester and Mize [1973] and a listing of the revised
computer algorithm used for this bulletin is in Appendix A.)

Box’s Complex Procedure

The objective of Box’s Complex Procedure is to maximize a performance
measure (F) subject to the boundary constraints on the control variables or:

Maximize: F(y,, Yy o0 Yoo Tps Tgs w0y Ty
Subject to: st u < H_,,j =123 ..,m

where y1, ..., y, are output variables, ri, ..., r, are user provided parameter
weights, and G; and H; are lower and upper boundary constraints for control
variable j, respectively. Values for the admissible control paths (u;’s) are used
as input in a model of the system to be controlled, to obtain predicted or
simulated values for the system’s state variables (x;’s), i.e., the state trajectory.
The output variables (y;’s) are used in the performance measure (F) to obtain
a unique real number to be associated with the control path being evaluated.
This process continues iteratively. With each iteration a new control path is
computed by systematically changing the values of the control variables. The
new control path is then evaluated by using it in the model to simulate values
for the state trajectory and using the predicted values of the output variables in
the performance measure. The final solution is reached when no improvement
in the value of the performance measure can be made.

The computer program for the Complex Procedure is written in Fortran.
The program consists of the following subroutines: COMPLX (acts as the
MAIN), CONSX, CHECK, CENTR, CONSTT, and OBJT (see the com-
puter listing in Appendix A). The researcher can link the Complex Procedure
to the system to be controlled in one of two ways: code the control model
directly into subroutine OBJT and use COMPLX as the MAIN or call
subroutine COMPLX from another computer program and code the control
model in subroutine OBJT. The performance measure must be provided by
the researcher in subroutine OBJT. Also, the researcher must provide the
upper and lower boundary constraints for the control variables in the
CONSTT subroutine. Whether COMPLX is used as the MAIN or as a
separate subroutine it has two functions, they are to read the data cards and to
print an output table of the optimal values for the control variables.
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The Complex Procedure begins each control problem by generating or
reading sets of initial values for the m control variables. The number of sets of
initial values required to identify the performance surface is the number of
controls plus 1. Thus, if there are two controls, the domain of the surface is 3
and can be visualized as a three dimensional graph with the performance
measure on the vertical axis and control variables on the two horizontal axes.
The number of sets of initial values for the control would be three in this case.
In general, a control problem with m controls has m+1 or k control paths to
mathematically identify the performance surface. Each of the k control paths
has values for each of the m control variables. Each path or set of values is
considered to be a coordinate for one point on the surface of the performance
measure. The control paths are stored in a k by m matrix (X), with the rows
containing the k different control paths and the columns containing the values
for the m different control variables.! The initial control paths can be user
supplied or they can be random values, uniformly distributed between the
respective lower and upper boundary constraints. The source of the initial
control paths is determined by the user, depending upon the data input option
specified on the I-0 Card (see Appendix B).

Once the X matrix is initialized with starting values for the control
variables, each control path is checked to be sure it is admissible (subroutine
CHECK ). The value of each control variable is compared to its respective
lower and upper boundary constraints, provided by the user in subroutine
CONSTT, to be sure the control is admissible. If a value is inadmissible, the
value is moved inside the violated boundary constraint by a small amount
DELTA, say 0.001.

After determining that the initial control paths are admissible, the per-
formance measure is evaluated for each of the k control paths. The OBJT
subroutine contains the performance measure and the user supplied model of
the system to be controlled so it is called each time a control path is evaluated.
To evaluate the initial control paths, subroutine OBJT is called k times, each
time a different control path is used as input in the researcher’s model.
Simulated values of the output variables are used in the performance measure
to obtain a unique real number for evaluating the particular control path. The
values of the performance measure are stored in the F array which is a kxl
array.

After evaluating the k™ initial control path, Complex begins the iterative
procedure that leads to the optimal control path for the given performance
measure. The first step in each iteration is to identify the control path (or row
of the X matrix) associated with the minimum value of the performance
measure, say row i. The control mechanism then replaces the rejected row, i,
with a control path that is associated with a higher point on the surface of the
performance measure.

1This definition of the X matrix in the Complex procedure should not be confused with the x vectors
discussed earlier which denote the values of a state trajectory.
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New values for control path i are calculated by the following formula:

X(new) = X; + a(X; — Xy(old));j = 1,2, .., m

C
where X (new) is the new value of control variable j in coordinate or control
pathi, a is the reflection factor (Box [1965] recommends using 1.3), and X, is
the centroid for control variable j. The new centroid for the j* control variable,
X, for each iteration is the average of the control variable excluding the one
that is rejected. The centroid for each of the m control variables is calculated in
subroutine CENTR. The reflection factor, @, is greater than one to insure that
the control mechanism searches both sides of the centroid in its approach to
the optimal control values.

The new values for the control variables (X; (new)) are then checked
against the lower and upper boundary constraints to assure that the control
path is admissible. The value of the performance measure for the i control
pathis obtained by using control pathias inputin the user supplied model and
simulating values for the endogenous or state variables in the model. If the i
control path is no longer associated with the minimum point on the perfor-
mance measure the first iteration is complete. However, if the i control path
repeats as the lowest point, new control values are selected, checked and
evaluated until the i® path is no longer associated with the minimum point on
the performance measure. In the next iteration this procedure is followed for
the row which now has the lowest performance measure value and so on.

By rejecting the control path associated with the minimum value for the
performance measure and replacing it with a control path that has a higher
value, the procedure will ultimately find the maximum value of the perfor-
mance measure. Each of the k sets or control paths will eventually coverge to
the optimal control path. The control path associated with the maximum
point on the performance measure surface is considered to be optimal for the
given performance measure.

At the end of each iteration the convergence criteria is checked to see if the
performance measure is at a maximum (subroutine CONSX). A maximum is
declared if for Y iterations the highest and lowest values of the performance
measure remain within 8 units of each other. (Values for Yand B are provided
by the user on the data cards, see Appendix A.)

To insure that the final solution is at the global maximum for the
performance measure, the problem should be run several times. Each time a
different set of initial control paths should be used so the procedure searches a
different set of values for the control variables. If the procedure returns the
same answer several times, the analyst can feel fairly certain of having found
the global maximum.

The boundary constraints for the control variables are critical to the use
of the Complex Procedure. The user must provide values for the boundary
constraints in the user provided constraint subroutine CONSTT. The lower
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boundary constraints (G,’s) are programmed in the G array and the upper
boundary constraints (H,’s) are programmed in the H array. The order of the
variables in the G and H arrays must correspond exactly to the order in the X
matrix, since G and H are mxl arrays and X is the kxm matrix of control
variables.

Application of Optimal Control Techniques

Box’s Complex Procedure can be used to solve many different problems
in the general area of agricultural economics. To demonstrate the flexibility of
the procedure, and to provide examples of typical optimal control problems
encountered in agricultural economics, three widely different problem exam-
ples will be discussed. The first application is a constrained profit maximiza-
tion problem for a firm producing three outputs with four inputs. This prob-
lem represents a static control problem. However, the main purpose of its use
here is display the capabilities and nature of the complex procedure.

The second application demonstrates how the procedure can be used to
estimate characteristics of the aggregate population of cattle being placed on
feed and in turn use this information to aid in forecasting beef supply. This
example is the classical dynamic control problem described in the preceding
control theory discussion. In this case the time path of control variables sought
are characteristics and numbers of cattle placed on feed which will generate
accurate tracking of cattle on feed slaughter.

The third application of the procedure is in the area of agricultural policy
analysis. The complex procedure is used in conjunction with a National
Agricultural Policy Simulator model to compute “optimal’’ values for policy
instruments given expected conditions and performance criteria. This exam-
ple can be viewed as an application of optimal control theory to assist in system
design. In this case the agricultural program, consisting of support prices,
target prices, etc., is viewed as a part of the total agricultural system structure.
By altering the nature of the agricultural program a different set of conse-
quences can be generated from a set of expected future conditions (i.e.,
scenarioed or forecasted model inputs). Optimal control is used to select the
program features which, given model inputs, lead to the desired results as
described by the simulated output.

Application of Control Techniques to Profit Maximization

One of the most common problems faced in the area of agricultural
economics is the problem of determining the profit maximizing level of pro-
duction and input use when the quantity of inputs available is constrained in
some way. Such problems are usually solved by setting up a constrained profit
function and maximizing it by simultaneously solving a system of first deriva-
tives for the profit function [Henderson and Quandt, 1958]. In general this
method is simple if the problem is limited to one or two products that are a
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function of a small number of inputs and the prices for both the outputs and the
inputs are fixed. If the products are produced in less than perfect competition,
i.e., face a downward sloping demand curve and the inputs are associated with
a positively sloped marginal factor cost function, the problem of finding the
profit maximizing level of production becomes more difficult.

The Problem. To demonstrate how a constrained profit maximization
problem can be solved using Box’s Complex Procedure, consider a firm with
three outputs (y,, y,, and y,), four inputs (x,, x,, X,, and x,) and constraints on
the maximum amount of each input that can be used. The problem can be
stated as:

Maximize: profits for outputs y,, y,, and y,
Subject to: production functions -

33 a7 20 30
Yi=Xnp X X3 Xy

10 08 25 40
Yo = X9 Xgg X9z Xgy

09 19 a5 .20
Y3 T X3 X5 Xgz Xy

Output demand functions (prices) -
Py, = 1050.0 ~ 0.5y,
Py, = 1000.0 — 0.25(y,)?
100.0 — 0.15(y)2

5
b
I

Input constraints -
2000.0 = x,, + x;; + x; = sum x,
3000.0 = x,, + x;p + Xy = sum x,
2100.0 = x; + x5 + X5 = sum X,
1000.0 = x,, + x;, + x,;, = sum x,

Input marginal costs -
Px, = 3.0 + 0.0009 sum x,
Px, = 6.0 + 0.00011 sum x,
Px; = 9.0 + 0.0003 sum x,
Px, = 7.0 + 0.000199 sum x,

And: xij>0.0 fori=1,2,3andj=1,2,3,4.

Production functions in the Cobb-Douglas form are used since they are
non-linear and the functional form is used in most mathematical economics
textbooks [Henderson and Quandt, 1958]. Demand functions for y,, y,, and y,
are used to demonstrate an additional dimension, that of less than perfect
competition in the output market. The constraints on the inputs x, through x,
are incorporated, to make the example a constrained profit maximization
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problem. The marginal input prices or costs for the four inputs are functions of
the quantities used, instead of a fixed price or cost for unlimited use of the
inputs. The linear marginal input prices allows for input markets that are not
operating in perfect competition. The final constraint on the problem, that of
non-zero levels of input use, is imposed to prevent the model from selecting a
zero level of input which in a multiplicative production function causes the
output level to be zero.

Setting Up the Problem. To incorporate the profit maximization prob-
lem into the Complex Procedure the first step is to identify the control
variables and determine lower and upper boundary constraints for the indi-
vidual controls. For the problem presented above, the controls are the levels of
inputs used in each product; more specifically the control varaiables are:

Control variable 1 X(i, 1), G(1), H(1) input x,

Control variable 2 X(i, 2), B(2), H(2) input x,,

Control variable 3 X(i, 3), G(3), H(3) input x,,

Control variable 4 X(i, 4), G(4), H(4) input x,

Control variable 5 X(i, 5), G(5), H(5) input x,,

Control variable 6 X(i, 6), G(6), H(6) input x,,

Control variable 7 X(i, 7), G(7), H(7) input x,

Control variable 8 X(i, 8), G(8), H(8) input x,,

Control variable 9 X(i, 9), G(9), H(9) input x,,

Control variable 10 X(i, 10), G(10), H(10) input x,,

Control variable 11 X(i, 11), G(11), H(11) input x,,

Control variable 12 X(i, 12), G(12), H(12) input x,,
where the X matrix is the location of values for the control variables selected
by the control mechanism, G is the lower boundary constraint array and H is
the upper boundary constraint array. The boundary constraints must be
provided by the user in the CONSTT subroutine. The listing of the program in
Appendix A includes the profit maximization problem presented here, to
demonstrate how the user provides the boundary constraints and the perfor-
mance measure. The lower boundary constraint for each of the 12 control
variables is zero so G(i) = 0.0 fori = 1,2, 3, ..., 12 as indicated in CONSTT.
The upper boundary constraints for the control variables are given in the
problem statement, for example, the maximum level of x, that could be used to
produce one product (zero amounts of other products) is 2000.0 units.2 Thus
H(1), H(2), and H(3) equal 2000.0 in subroutine CONSTT. The upper
boundary constraints for the remaining control variables are set in a similar
manner.

The second step in setting up the profit maximization problem is to
program the model or system to be optimized and the performance measure
into the OBJT subroutine. The production functions for y,, y, and y, are

3

3

2Strictly speaking, input use would only approach 2000.0 units since the xij are constrained to be non-zero.
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programmed in Fortran using the appropriate locations in the X matrix as the
input variables x;, X,, X, and x, (see subroutine OBJT in Appendix A). The
control mechanism selects values for the control variables and puts them in the
ith row of the X matrix, the order of the controls in the X matrix is the same as
the order used for the G and H arrays presented above. The simulated output
levels for y,, y, and y, are used in the product demand equations to obtain
prices for the outputs (Py,, Py, and Py,). The total quantity of each input used
is calculated and used to compute the prices or costs for the four factors of
production (Px,, Px,, Px, and Px,). The performance measure to be
maximized is a constrainted profit function (F):

3 4 4
F=1LPy *y, — IPx " sum x; — T (UBg— sum xy)?
i=I j=l1 L=1

where Py; is the price of output y,, Px; is the cost of input x; and UB is the
maximum amount of xg available. Values for UBg are 2000, 3000, 2100 and
1000 for sum x|, sum x,, sum x,, and sum x,, respectively. If sum xgis less than
UBgthe last part of F is ignored thus only penalizing the performance measure
if excessive quantities of xg are used.

The final step in solving the profit maximization problem with Box’s
Complex procedure is to code the data cards and run the program. Coding
instructions for the data cards are presented in Appendix B. For the results
presented in the next section, the random number seed provided on the I-0
Card is 999991.0 and the initial set of values for the control variables are
selected at random. The values entered on the Parameter Card are the
following: Alpha = 1.3, Beta = 0.30, Delta = 1.0, Gamma = 5, the number of
control variables is 12, and the maximum number of iterations is 700. (Defini-
tions of the parameters are presented in an earlier section of this bulletin.)

Results of the Example Problem. The optimal solution obtained from
using the Complex Procedure to solve the profit maximization problem is
presented in Table 1. The maximum value of the performance measure is
$545,090.4 and comes from producing 1,000.9 units of y,, 35.9 units of'y,, and
10.1 units of y,.

The sum of x, used in the production of y,, y, and y; is 1998.0 units,
approximately equal to the maximum amount of x,; available (2,000 units). A
similar situation exists for input x,, in that the total quantity used is 998 units
and the maximum available is 1000 units. The x, and x, inputs do not restrain
on the profit maximization solution since the optimal levels for these inputs are
substantially below their respective upper constraints. A change in the de-
mand function for any of the three outputs or a change in the input cost
function for any of the four inputs causes the solution to the problem to be
altered. Also, changes in the form of the performance measure can alter the
optimal solution reported in Table 1.
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Table 1. Results of the Sample Problem - A Profit Maximization With Three
Outputs and Four Inputs.

Outputs

Sum of

Inputs 17) Yo Y3 Inputs (x;)
X1 1972.04 10.85 15.89 1998.78
X2 1202.95 7.67 59.67 1270.29
X3 396.24 198.40 11.50 606.14
X4 793.34 103.94 101.10 998.38
Total Production 1000.9 35.9 10.1
Profit $545,090.4

The costs of using Box’s Complex Procedure to solve the profit maximiza-
tion problem are quite small in comparison to the alternatives, namely solving
the problem by hand or using parametric programming. The time required to
program the problem is less than one hour and the computer time on an IBM
370-75 to solve the problem is about 30 seconds; even though the program runs
about 800 iterations to reach the final solution. This particular problem
requires a large number of iterations because of the number of control var-
iables (12) and the non-linearities in the production functions.

Many other problems of this type can be solved by using Box’s Complex
Procedure. For example the problem of how to allocate “given quantities” of
X, X, X5 and x, among the three outputs to maximize profits can be solved by
simply changing the performance measure to:

3 4 4
F=ZPy*y, —LPx*sumx;—I (DSg* — sum xg)?
i=1 j=1 =1

where Py, is the price of output y;, Px; is the input cost of all x; used and DS is
the desired level of use for input x . In this case a penalty is forthcoming if the
level of input use is different from the desired level of use.

Application of Control Techniques to Beef Supply Models

Agricultural outlook economists have made extensive use of cattle on feed
data to make short-run beef supply forecasts. Cattle on feed statistics report
the number of animals on feed by sex and weight. Weight of cattle on feed is
reported in 200 lb. increments, i.e., 500 Ibs. and under, 500-700 lbs., 700-900
lbs., 900-1100 1bs., and 1100 lbs. and above. Cattle on feed data also report the
number of animals placed on feed during the last reporting period. Placement
data does not describe the sex or weight characteristics of the animals placed
on feed.

The traditional method outlook economists have used in making short-
run supply forecasts based upon cattle on feed data, has been to assume
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various percentages of the cattle, in different weight groups, will be marketed
within 30 days, 60 days, etc. Statistical models have been developed to predict
slaughter one to six months in advance from the cattle on feed data. These
statistical models regress slaughter for the period in question upon current
cattle on feed numbers by weight groupings. An example of such a model is
specified below.

— # of 700-900 Ib. # of 900-1100 Ib.
Slg=a+b cattle on feed) *e ( cattle on feed

Short-run beef slaughter forecasts made in this manner have proven to be
quite reliable, especially when tempered with experience and judgment. Fore-
casts made by this method, however, ignore substantial amounts of informa-
tion known about beef growth processes. This is because aggregate cattle on
feed data do not describe the nature of the animals on feed in enough detail to
make such information useful. For example, if the precise weight distribution
of animals on feed were known as well as exact placement weights and rations,
then growth models of beef animals could predict the future weight of animals
for a given date quite accurately. Growth models capable of such predictions
have been developed by Fox and Black [1977] and Gill [1975]. These models
are heavily based upon Lofgreen and Garrett’s [1968] net energy equations. It
is the premise of the modeling and optimal control applications to be described
here that more detailed knowledge of the weight of cattle on feed and the
weight at which they are placed on feed coupled with beef growth models
and/or common knowledge of typical beef growth rates will permit more
accuracy to be developed in making short-term beef supply forecasts.
Optimal feedback control techniques have been applied to a cattle on feed
growth simulator to estimate specific cattle on feed weight distributions and
placement weights. In this procedure cattle placement weights sex of the
animals placed and growth rates are treated as control parameters. Box’s
Complex Procedure is used to adjust the control parameters to optimize the
tracking of historical cattle on feed data. The mathematical relations used to
describe the inventory of cattle on feed and their growth process and eventual
slaughter consists of a set of continuous differential equations3. Because the
equations describing the growth process and placement weight distributions
are continuous with respect to time and weight, inventories of cattle on feed
can be computationally broken into single pound increments with respect to
the current weight distribution of cattle on feed and their placement weights.
Even though the model is continuous in nature, tracking must be done in a
discrete sense because the data to be tracked are discrete. This is achieved by
integrating the continuous functions over the desired time and/or weight
ranges and comparing the results with the discrete data. Hence, the continu-
ous flows of the model interpclate between discrete data points in such a way
that accurate discrete tracking is obtained. The time path of control variables

3See Llewellyn [1966] or Manetsch and Park [1974] for presentations of differential equation modeling.
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derived to generate accurate tracking of the discrete cattle on feed data provide
information which can be used to assist in predicting future placement
weights, sex of animals and aggregate growth rates.

The optimal feedback control framework used is depicted in Figure 1.
Observed cattle on feed and cattle placed on feed coupled with base values of
growth rates and placement weights are initially supplied to the cattle on feed
simulation model. The simulation model is then operated to generate predic-
tions of beef slaughter and ending cattle on feed by 200 Ib. weight increments.
These predicted values are compared to observed values and an error squared
performance measure calculated. The performance measure is defined as
follows:

OBJ = (M — M/M)2 + (COF + CQF/COF)? * 8 + (35 — $5/85) +
(357 — 857/S57)2 + (879 — $79/579)2 + (S9 = S9/S9)2 + (H5 —
H5/H5)? + (H57 — H37/H57)2 + (H79 — H79/H79)2 + (H9 —
HY/H9)2

where the symbol ~ denotes model predictions and
OB]J = performance value to be minimized;
M = cattle on feed marketed, i.e., slaughtered,
COF = total cattle on feed;
S5 = steer under 500 lbs. on feed;
S57 = steer between 500-699 lbs. on feed;
S79 = steer between 700-899 lbs. on feed;
S9 = steer 900 lbs. and over on feed;
H5 = heifers under 500 lbs. on feed;
H57 = heifers 500-699 lbs. on feed;
H79 = heifers 700-899 lbs. on feed; and,
H9 = heifers 900 lbs. and over on feed.

A heavier weight or penalty is given to error in tracking total cattle on feed
since it is the summation of individual categories of cattle on feed and is
believed to be reported more accurately than individual categories of cattle on
feed.

The numerical optimization routine receives performance ‘“‘feedback”
information from each setting of the control variables. This information is in
terms of weighted percent of tracking error squared. By recording the margi-
nal change in performance (improved tracking accuracy) associated with a
given marginal change in the control variables (growth rates and placement
weights by sex), the optimization routine iteratively adjusts the control vari-
able settings in a systematic manner until the performance measure is
minimized.

This procedure of estimating growth rates and placement weights consti-
tutes a closed-loop feedback control procedure according to the traditional
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definition, i.e., the control variables are a function of state variables. In this
case the state variables are estimates of cattle on feed and cattle on feed
marketed.

The cattle on feed growth simulation model will not be described in detail
here.# A basic understanding of the structure of the model can be obtained by
studying Figure 2 which outlines the placement and cattle on feed categories
described within the model. The model simulates the daily rate of gain of cattle
on feed by considering the effect of placement weight, current weight, sex and
season of the year upon growth rates. Briefly, the effect of each of these factors
as modeled is the following: steers have been observed to grow faster than
heifers and grade choice at heavier weights than heifers and, hence, are
typically slaughtered at heavier weights; animals placed at heavier weights,
once on full feed experience “compensitory growth’ and gain weight at faster
marginal daily rates of gain than other animals of the same current weight but
placed at a lighter weight; as animals on feed become heavier, their marginal
daily rate of gain slows because more energy from their ration is required for
body maintenance leaving less for growth; seasonal changes in temperature,
rainfall, etc., cause different growth rates.

Results of operating the model over the period 1962-1977 in a feedback
control framework indicate that seasonal patterns exist for aggregate growth
rates, placement weights and sex ratios of cattle placed on feed. Table 2
presents the results found for seasonal growth rates, sex ratios and average
weight of cattle on feed. Growth rates were estimated to be most rapid in the
first and fourth quarters and the slowest in the third quarter. These results
would tend to indicate that heat stress in the third quarter hampers animal
growth more than cold temperatures in the first and fourth quarter. A definite
seasonal change in the steer to heifer ratio (sex ratio) of cattle placed on feed is
estimated. The ratios indicate that proportionately fewer heifers are placed in
first and fourth quarters. Lastly, the estimates of average weight of cattle on
feed reported in Table 2, Column 3, indicates that the heaviest average weight

4See Trapp, James N., “A New Approach to Beef Supply Modeling Using Differential Equations and
Optimal Control Techniques,” forthcoming, Oklahoma State University Experiment Station Technical Bulle-
tin.

Table 2. Selected Average Estimated Characteristics of Cattle on Feed and
Placed on Feed by Quarter, 1962-1977.

Growth Sex Ratio of Average Wt.
Rate Cattle Placed on Feed of Cattle
Quarter Index Steers/Heifers on Feed
1 104 3.20 815
2 100 2.15 834
3 89 1.92 821
4 105 2.24 768
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Table 3. Estimated Seasonal Distribution and Average Weight of Cattle
Placed on Feed, 1962-1977.

Percent Placed

Average

Quarter Under 500 Ibs. 500-700 Ibs. 700-900 Ibs. Weight
1 53.2 40.3 6.6 508
2 26.7 66.3 7.6 557
3 26.5 43.7 29.8 581
4 64.4 26.5 9.1 490

Annual

Average 42.2 445 13.2 534

of cattle on feed occurs in the second quarter, with the next heaviest weight
occurring in the third quarter. This pattern of weights for cattle on feed
appears to be due to the seasonal fluctuation of cattle placement weights and
numbers of cattle placed.

The placement weight information generated by the model is perhaps the
most interesting and valuable. Somewhat surprisingly the estimates indicate
that a significant portion of cattle placed weigh less than 500 Ibs., i.e., 42.2
percent (Table 3). This is not so surprising if one considers that the turnover
rate of cattle on feed under 500 lbs. is the most rapid of any reported weight
group of cattle on feed. Cattle typically gain only 50-75 lbs. while in this weight
classification as compared to 200 lbs. in others. Hence, to maintain a given
inventory of cattle on feed under 500 lbs. requires more placements than to
maintain the same inventory in wider ranged weight classes where the turn-
over rate is three to four times slower.

The estimates reported in Table 3 indicate that the majority of the under
500 Ib. placements occur during the first and fourth quarters. This factor
contributes to causing the low average weight estimates for cattle on feed
reported for these quarters in Table 3. The heaviest average placement
weights occur in the second and third quarters. The largest percentage of
cattle placed in the second quarter is in the 500-700 Ib. weight range, i.e., 61
percent. This group of cattle likely consists of spring calves that have been
wintered, grazed on spring pasture and sent to the feedlot. The third quarter
average placement weight, unlike the other quarters, is derived from a rela-
tively uniform distribution of placement weights.

The time series paths of the annual average values found for the control
variables are presented in Figures 3A-3C. The sex ratio (Figure 3A) is corre-
lated with the cattle cycle (Figure 3D) as measured in terms of the annual
index of the rate of change in the size of the cow herd. The simple correlation
coefficient is +.67. The sex ratio is hypothesized to rise during period of
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Figure 3D. Rate of Change in the Size of the Beef Cow Herd, 1960-77

expansion due to more heifers being held for replacements, thus causing the
steer/heifer ratio to rise. The placement weight series is not strongly correlated
to the cattle cycle as measured here but does appear to be cyclical. During 1974
and 1975 when feed prices were high relative to cattle prices and ““grass fed”
beef was common, placement weights were estimated to be the highest ob-
served for the period 1960-1977.

The index of growth rates does not seem to follow the cycle either. When
regressed against time it shows a significant positive trend (a t-value of 3.76
was found). This trend is primarily due to the unprecedented rise in growth
rates occurring since 1973. The drop in growth rates estimated from 1970 to
1973 may be due to the legal actions taken against growth hormones and feed
additives being used at that time.

Information generated from the estimated time paths of the control
variables can likely be used to aid making cattle on feed forecasts via the
traditional approaches. Their best use for assisting in making forecasts would
appear to be in conjunction with continuous models of the beef growth process
such as the one described and used in this study. By forecasting the control
variables and using them as inputs to the continuous cattle on feed inventory
and growth model, continuous (with respect to time and weight) projections of
cattle on feed inventories and rnarketing can be made. Forecasts of the control
variables (placement weights, sex ratios and growth rates) can be made either
subjectively or via econometric methods. Research using econometric
methods to estimate structural relations between the estimated values for the
control variables and other observed economic variables is currently under-
way.

Figure 4 is presented as an example of the type of forecasts that can be
made with the continuous cattle on feed inventory and growth model. It
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compares the 1977 optimal tracking path for cattle on feed marketed againsta
simulated 1978 projection. The daily slaughter rate simulated for January 1 of
1977 is used as a base value.

The 1978 projection depicted in Figure 4 was made immediately after the
release of the 1977 fourth quarter cattle on feed report. The detailed (broken
into one pound weight increments) December 31st ending cattle on feed
estimates made by the model were used as an input into the projection. All
other inputs were provided by making subjective assumptions of the expected
changes from the reported or estimated (estimated in the cases where input
data are not reported) 1977 values for the inputs. The input assumptions were
as follows: a) placements would decline by five percent; b) slaughter weights
would decline by 20 pounds; c) placements weights would decline by 30-40
pounds; d) growth rates would slow by five percent; and e) the steer/heifer
ratio would increase by 15 percent.

At the date of this writing the January and February seven state cattle on
feed reports were available. They incidate that 1978 seven state cattle on feed
marketings as a percent of 1977 seven state cattle on feed marketings were 109
and 106 percent respectively for January and February. The model is based
upon 23 state quarterly marketings, hence comparisons of absolute values is
not possible but ratio comparisons are valid. The model forecasts of 1978
marketings as a percent of simulated 1977 marketings for January and Feb-
ruary were 111 percent and 108 percent respectively.

140

1978 Projection

130

~
o
T

> —~ 1977 Simulation
2
e 110
o
g
o
< 10 t + t f f /
Feb Mar Apr Moy Jun
90+
80

Figure 4. Simulated Indices of Daily Slaughter Rates for January Through
June of 1977 and 1978
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Application of Control Techniques to Agricultural Policy

The POLYSIM model is a disaggregated simulation model of the na-
tional agricultural economy developed by Ray and Richardson [1978] at
Oklahoma State University. The model makes full use of forecasted data as a
reference baseline. Included are the five-year baseline projections of commod-
ity supplies, prices, and utilization made by ERS. Commodity specialists
develop these projections using formal and informal forecasting models tem-
pered with their own experienced judgments. The projections contain explicit
assumptions concerning the rates of change in population, per capita incomes,
consumer preferences, export demand, technology (including crop yields and
livestock grains), and other supply and demand shifters. These projections
also assume a specific set of Government farm programs. The user starts a
simulation by changing one or more of the policy assumptions used in the base
conditions, for example, by using a different series of loan rates. The simula-
tion procedure traces through the effects on production, price, utilization, and
farm income for each of the eleven commaodity groups and on agriculture in the
aggregate.

As indicated in Figure 5, the Complex Procedure is linked to the
POLYSIM model by calling subroutine COMPLX from POLYSIM. Sub-
routine call statements for the execution subroutines in POLYSIM are in-
cluded in subroutine OBJT so the simulation model is executed each time an
admissible control path is selected by the optimization procedure.

A grain reserve farm program with acreage set-aside and loan rate
provisions is analyzed to demonstrate how optimal control theory can be used
to select loan rates and acreage set-aside levels for feed grains, wheat and
cotton, that cause the Commodity Credit Corporation (CCC) to maintain a
fixed reserve of grains. A grair. reserve of 20 million tons of feed grains and 500
million bushels of wheat is assumed to be established in 1977 by the CCC. The
farm program is analyzed for the four year period of 1978-1981.

The control variables, loan rates and set-aside levels for the three crops,
are constrained to the upper and lower boundary constraints for these var-
iables (Tables 4 and 5). The performance measure used for the analysis is
reported in Table IV of Richardson [1978]. In general, the performance
measure seeks to maximize net farm income subject to constraints on govern-
ment expenditures, consumer food costs and maintenance of a critical level of
stocks.

The 24 control variables for the farm program reported here are loan rates
and acreage set-aside levels for feed grains, wheat and cotton in 1978, 1979,
1980 and 1981. The objective is to determine loan rates and acreage set-aside
levels that maximize the performance measure. The CCC release rule used for
the farm program is the following: release CCC held reserves if the average
market price exceeds the loan rate by 50 percent and release only the amount
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Figure 5. Flowchart of POLYSIM and its Modifications for the Control
Theory Option

of stocks needed to lower the average market price to 150 percent of the loan
rate.

For the control mechanism to maximize the performance measure it must
select values for the control variables (loan rates and acreage set-aside levels
for feed grains, wheat and cotton in 1978-1981) with respect to their estimated
impacts on the state variables in POLYSIM and the output variables in the
performance measure. Both immediate impacts (one year) and longer run
impacts (two or more years) are considered by the control mechanism.

To select a value for the wheat loan rate in 1978 the control mechanism
must consider the immediate impacts in 1978, as well as, the longer run
impacts in 1979-1981, on the state variables in the model and particularly the
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Table 4. Upper and Lower Boundary Constraints for Loan Rates for Wheat,
Corn, and Cotton 1978-1981.

Wheat Corn Cotton
Lower Upper Lower Upper Lower Upper
Year $/bu. $/bu. $/Ib.
1978 2.00 3.00 1.75 2.10 .37 .52
1979 2.00 3.10 1.75 2.21 .37 .55
1980 2.00 3.34 1.75 2.34 .37 .58
1981 2.00 3.52 1.75 2.47 .37 .61

Source: Lower boundaries for wheat and corn 1978-81 are minimum legal values established in the 1977
Act; the legal minimum for wheat and corn is about 88 percent of the 1977 loan rate, using this for
cotton we get a minimum of about 0.37; upper boundaries for all crops 1978-81, are estimated
target prices over the life of the 1977 Act.

Table 5. Upper and Lower Boundary Constraints for Acreage Set-Aside
Levels for Wheat, Feed Grains, and Cotton 1978-1981.

Wheat Feed Grains Cotton
Lower Upper Lower Upper Lower Upper
Year = - mac. ——————— e ——
1978 0 24.7 0 37.7 0 3.2
1979 0 24.8 0 37.7 0 3.3
1980 0 248 0 37.6 0 3.1
1981 0 24.8 0 37.5 0 3.2

Source: The Agricultural Act of 1977 spacifies that the maximum acreage set-aside for cotton is 28 percent
of planted acreage in the previous year. For cotton, planted acreage is about equal to harvested
acreage so the maximum set-aside for cotton is 28 percent of harvested acreage in the previous
year. For feed grains and wheat, planted acreage is often much larger than harvested acreage so
the maximum set-aside is 35 percent of harvested acreage in the previous year.

impacts on the output variables. The immediate impacts on the following state
variables must be considered: the market price of wheat, the quantity of
domestic and export demands for wheat, and wheat cash receipts, as well as
their impacts on the output variables in the performance measure. The longer
run impacts that must be considered are impacts on state variables such as:
harvested acreage and supply of wheat, feed grains, cotton and soybeans,
wheat yields, market prices of wheat, feed grains, cotton and soybeans, the
quantity of domestic and export demands for the four model crops and cash
receipts for all four model crops, because of their linkages to the output
variables.

To select a value for the corn loan rate in 1978 the control mechanism
must consider the immediate impacts on the following state variables: the
market price for corn and the other feed grains, export and domestic demands
for feed grains, feed grains cash receipts, and livestock feed costs, because of
the linkages between these state variables and the output variables in the
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performance measure. Also, the control mechanism must consider the longer
run impacts (1979-1981) on the following state variables: livestock produc-
tion, prices and cash receipts, harvested acreage for feed grains, wheat,
soybeans, and cotton, feed grain yields, supplies and prices of the four model
crops, domestic and export demands for the model crops, total cash receipts
for crops and livestock feed costs due to their linkages to farm income,
government payments, CCC costs, food costs and ending year carryovers for
the four model crops.

The above discussion assumes only the selection of the 1978 loan rates to
illustrate the linkages in POLYSIM. Actually, the control mechanism simul-
taneously selects values for the loan rates of corn, wheat and cotton in 1978,
1979, 1980 and 1981, after considering the impacts of the loan rates on the
output variables in the performance measure. The immediate and longer run
interrelationships described above for 1978 thus become confused with the
immediate and longer run impacts due to selecting loan rates in each of the
remaining years.

In addition to selecting values for the loan rates, the control mechanism
also selects the acreage set-aside levels for feed grains, wheat and cotton in
1978, 1979, 1980 and 1981. The immediate impacts that the control
mechanism must consider are the same as those for changing the loan rates, as
well as the impacts on: harvested acreage, production and supply for each of
the three crops, of course, the longer run (1979-81) impacts on the output and
other state variables must also be considered.

The optimal values for the control variables are presented in Table 6.
Loan rates are not used by the control mechanism to support the market price
in this particular farm program since the support action results in the CCC
acquiring control of additional stocks. So acreage set-aside is the predominate
control variable for the farm program. The optimal acreage set-aside levels for
wheat and cotton are equal to the crop’s respective upper boundary con-
straints in each of the four years simulated. Optimal acreage set-aside levels
for feed grains range from 12 million acres to 32 million acres over the period
simulated. So the feed grain acreage diversion levels are less than the bound-
ary constraints (about 37 million acres).

The high levels of acreage set-aside for feed grains, wheat and cotton
cause the average market prices for these crops to be greater than the respec-
tive market prices in the baseline for each of the years simulated. The corn loan
rate is increased from year to year but is never greater than the market price
and it is never less than the market price by more than 50 percent. So the CCC
release and acquisition rule for corn is never activated. A similar situation
exists for wheat.

The total government payments for miscellaneous farm programs and
acreage set-aside is less than the $3.7 billion upper limit imposed on the
performance measure, in each year simulated. The upper limit is almost
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Table 6. Optimal Values of Control Variables and the Simulated Values of Selected State Variables for a Farm Program with
Loan Rates and Acreage Set-Aside Provisions'2

Baseline Values Simulated Values
Item Unit 1978 1979 1980 1981 1978 1979 1980 1981
CONTROL VARIABLES
Price Support Levels
Corn $/bu. 2.00 2.00 2.00 2.00 1.80 1.94 2.10 2.18
Wheat ds. 2.35 2.35 2.35 2.35 2.23 2.26 2.44 2.46
Cotton $/Ib. .51 .51 .51 .51 .38 .38 42 .46
Income Support Levels
Corn $/bu. 2.10 2.21 234 2.47 0.0 0.0 0.0 00
Wheat ds. 3.00 3.16 3.34 3.52 0.0 0.0 0.0 0.0
Cotton $/ib. .52 .55 .58 .61 0.0 0.0 0.0 0.0
Set-Aside
Feed grains m. ac. 0.0 0.0 0.0 0.0 11.8 20.9 27.8 31.9
Wheat ds. 0.0 0.0 0.0 0.0 24.6Y 24.8Y 24.8Y 24.8Y
Cotton ds. 0.0 0.0 0.0 0.0 3.2V 3.3V 3.1V 3.2V
STATE VARIABLES
Harvested Acreage
Feed grains m. ac. 107.7 107.7 107.4 107.2 100.6 96.3 92.9 90.3
Wheat ds. 70.7 711 711 711 55.9 57.7 58.5 58.6
Cotton ds. 11.6 114 11.7 11.2 9.7 9.9 10.7 10.0
Yield
Feed grains T./ac. 2.06 2.09 2.12 215 2.06 2.10 2.16 2.22
Wheat bu./ac. 31.00 31.50 32.00 32.49 31.00 31.89 32.71 33.37
Cotton Ib./ac. 480.00 480.00 480.00 480.00 480.00 488.66 497.21 501.24

‘Optlmal control variables that equal their lower boundary constraints are denoted by superscript “L” and those that equal their upper boundary constraints are denoted

by sy,
zger peﬁormance measure for the optimal solution presented is the lower range performance measure in Table IV.
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Table 6. Continued.

Baseline Values Simulated Values
Item Unit 1978 1979 1980 1981 1978 1979 1980 1981

Export Levels

Feed grains m. t. 50.4 52.2 53.7 55.4 49.1 46.9 45.9 46.0

Wheat m. bu. 1025.0 1070.0 1110.0 1160.0 900.4 854.6 857.8 894.0

Cotton m. bales 4.5 4.5 4.4 4.4 4.2 4.0 3.9 3.8
Total Utilization

Feed grains m. t. 206.2 213.3 223.0 228.6 204.2 201.0 201.2 204.3

Wheat m. bu. 1925.0 1953.0 1991.0 2049.0 1770.6 1688.6 1681.6 1723.5

Cotton m. bales 11.6 11.7 11.6 11.8 11.2 11.0 10.8 10.9
Ending Year Carryovers

Feed Grains m. t. 70.4 82.6 87.5 89.3 57.8 59.5 59.7 55.8

Wheat m. bu. 1539.0 1827.0 2112.0 2374.0 1235.2 1385.9 1620.0 1852.6

Cotton m. bales 4.3 4.2 4.5 4.1 2.7 2.0 25 2.1
CCC Inventory and
Outstanding Loans

Feed grains m. t. 0.0 0.0 0.0 0.0 20.0 20.0 20.0 20.0

Wheat m. bu. 776.0 1130.0 1497.0 1848.0 500.0 500.0 500.0 500.0

Cotton m. bales 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Commodity Prices

Corn $/bu. 2.00 2.00 2.00 2.00 2.11 2.37 2.45 249

Wheat ds. 2.35 2.35 2.35 2.35 2.92 3.1 3.11 3.09

Soybeans ds. 5.60 5.60 5.70 5.80 4.32 4.88 6.16 6.49

Cotton $/Ib. .54 .55 .52 .55 .60 .65 61 .65

Cattle and Calves ds. 42 .45 .49 .50 .42 .46 .52 .53

Hogs ds. .35 41 .40 .37 .35 42 .45 41
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Table 6. Continued.

Baseline Values Simulated Values

Item Unit 1978 1979 1980 1981 1978 1979 1980 1981
Total Government Payments g ¢ 2019 3549 4712 5850 2544  3.144 3359  3.696
Total CCC Storage and
Interest Costs B.$ 0.150 0310 0.452 0.599 0.150 0.253 0.253 0.253
Consumer’s Food Expenditures B. $ 188.3 196.8 205.0 214.0 188.3 197.9 208.7 218.1
Livestock Producer’'s Net
Income B. $ 17.312 18.844 19.967 21.289 17.169 18.425 21.549 23.232
Realized Net Farm Income B. $ 18.118 18.949 18.812 19.550 18.641 18.995 21.634 22.911

Performance Measure

123,162.0




passed in 1981 with total government payments of $3,696 billion. Additional
acreage set-aside of feed grains is possible in 1981; however, higher levels of
set-aside would increase total government payments over the upper limit and
penalize the performance measure. Realized net farm income for the farm
program is higher than the baseline values in each year simulated, and over
the four years the simulated net farm income is nine percent greater than the
baseline.

Summary and Conclusions

Optimal control theory is a mathematical technique to determine the
values for the control variables that cause a particular system to satisfy a given
set of constraints and optimize a given performance criteria. The objective of
this report is to demonstrate the use of a non-linear optimization technique to
solve applied problems in the area of agricultural economics.

The principles of optimal control theory are presented in a non-
mathematical form, with an emphasis on application of the technique rather
than the mathematics involved. Box’s Complex Procedure, a direct-search
algorithm for controlling a non-linear constrained system, is described. Also,
three illustrative applications of the Complex Procedure for solving problems
in the area of agricultural economics are presented. The examples are: 1) a
constrained profit maximization for a firm producing three outputs with four
inputs and facing less than perfectly elastic output demand and input supply
functions; 2) a procedure for predicting beef supplies based on growth rates
and SRS’s cattle on feed reports; and 3) a farm policy problem where the
control mechanism selects optimal values for the farm policy variables.

Optimal control techniques are important additions to the kit of tools
available to agricultural economists for use in applied research. A large
portion of the problems considered by agricultural economists can be cast into
a maximization (or minimization) framework. The ability of optimal control
techniques to handle nonlinearities, multiple objectives and non-normative
behavioral response parameters makes it potentially a very powerful analyses
tool.
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Appendix A
Listing of the Source Program for COMPLX

C////7/ THLS VERSION OF BOX CONTAINS COMMON STATEMENTS AND RANG AS A 30003700

C/7//7/7 RANDOM NO. GENERATOR FOR THE RANDOM POINTS ON THE SURFACE. 30000800
C////7/ ALSO, THE VERSION HAS "HE PROVISION FIR THE USER T PROVIDE 00000900
C/////7 THE POINTS FOR ALL OF THE INITIAL POINTS ON THE SURFACE. 00001000
C/77// REVIZED BY JWR 6/77. 20001100
INTEGER GAMMA 00001200
COMMON /BMAINL/ I1TMAX ,IQ, R{60:60) o NO, ALPHA, BETA, GAMMA 0001300
INTEGER BEGy ENDy BEG2 00001400

COMMON  /BMAIN2/ IBASE, DELTA, KODE, IPRINT ,IC +BEG,END,BEG2 00001500
COMMON /BMAIN3/ X(60093) oNyMsKsIEVLIZV2, KL1¢F(60),6(99),H(99)00001600

1,XC(60) NDEBUG +KNByNB2 yNB3sNB1 00001700
COMMON  /BMAIN4/ NBFILE(99) oI[,J 00001800
DEFINE FILE 16(100,60,U,JC0M) 00001900

L FORMAT(I1+9X,F10.04314) 00002000

2 FORMAT(I1+9%X43F10s0,914) 00002100

4 FORMAT (8F10.4) 00002200

3 FORMAT (* *414,10(10F10.5+/7)) 00002300

6 FORMAT (* *,T5,044T712020X+T40+3(F10.445X)) 00002400

7 FORMAT('0*,T8,*J*,T17,"* CeTa29 ' X(14d)*T59,°G(J)*, 00002500

1 T74,'HLY) ') 00002600

8 FORMAT(® *y//y * THE USZR PROVIDED VALUES FOR POINTS 1-K*) 30002700

10 FORMAT (LHL+//+18Xy24HCOMPLEX PRICEDURE JF BOX) 00002800

11 FORMAT(® *,/,T3,'PARAMETERS® ,/ 00002900
1o75,*ND. OF EXPLICIT CONTRIL VARIN) =',14,/ 00003000
LeT5,*NO. OF IMPLICIT CONTROL VAR(IC =',14,/ 00003100
3,T5,*'NO. OF TOTAL CONTROL VAR(M) =*414,// 00003200
3,75, N0O. OF POINTS ON SURFACE(K) =ty 144/ 00003300
3+754*ND. OF MAXIMUM ITERATIONUITMAX)=*,14,/ 00003400
3+75+'NO. OF REPEAT ITERATIONSIGAMMA)=*,14,// 00003500
3,75+ REFLECTION FACTOR (ALPHA) =%y F6.24/ 00003600
3,75,*DEGREE OF ACCURACY (BETA) =y F6.2 o/ 00003700
3,75, *WITHIN BOUNDS ADJUST {(DELTA) =%y F8e4o/ 00003800

12 FORMAT (//+2X914HRANDOM NUMBERS) 00003900

13 FORMAT (/93(2X92HRL ¢ 1291Hyo[1244H) = sF6.4,42X)) 00004000

14 FORMAT (///+2X+30HFINAL VALUE OF THE FUNCTION = ,E20.8) 00004100

15 FORMAT (//¢2X+14HFINAL X VALUES) 00004200

16 FORMAT (/¢2Xe2HX{s1294H) = ¢4X920X4F30.10,10Xs14) 00004300

17 FORMAT (///+2X+38HTHE NJMBER OF ITERATIONS HAS EXCEEDED ,[4+10X, 00004400
113HPROGRAM TERMINATED) 00004500

18 FORMAT(® ¢, * RANDOM NO. SZED IS = "92XsF12.0 /) 00004600

19 FORMAT('1*,* JOB TERMINATED BECAUSE CARDS FOR COMPLX ARE OUT OF OR00004700
LDER*) 00004800

NI = 5 00004900

NO = 6 00005000

C READ THE [-0 CARD 00005100
READ(S5,1) IKO. ANAR, IPRINT, NDEBUGs IBASE 00005200
IF{IKO.NE.7) GO TO 29 00005300

C READ THE PARAMETER CARD. 00005400
READ(5+2) IKO, ALPHA, BETA, DELTA, GAMMA, ITMAX ,END 00005500
IF(IKO.NE.8) GO TO 29 00005600